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Abstract – A common therapeutic approach for the 
rehabilitation of patients with hemiparesis involves repetitive 
voluntary movements with manual assistance from a therapist 
(“active-assist therapy”). We used a novel robotic device to 
deliver a controlled form of active-assist therapy in chronic 
stroke patients (N = 7).  To examine the utility of direct 
mechanical assistance in rehabilitation of voluntary arm 
movements, a matched group of subjects with chronic 
hemiparesis (N = 7) performed the same repetitive exercises 
without the aid of the robotic device.  Each group performed 24 
therapy sessions over 8 weeks.  We found that both groups 
demonstrated significant improvements in straightness of 
voluntary reaching movements, with limited improvements in 
range.  Only the group that received robotic therapy significantly 
improved the smoothness of reaching.  Improvements in both 
groups transferred to an unpracticed reaching movement and the 
timed performance of functional tasks.  There were no significant 
differences in the magnitude of improvements between the two 
groups.  These results suggest that it is the action of repetitively 
attempting to move, rather than the mechanical assistance 
provided by the robot, that stimulates arm movement recovery. 
However, imposing a smooth trajectory during practice of the 
reaching movements may help subjects learn how to produce 
smoother movements.  In addition, practicing robot-assisted or 
unassisted reaching movements apparently improves control 
processes that generalize to other functional movements. 
 
 

I.  INTRODUCTION 
 

Vascular injury in the brain often results in significant 
impairment to voluntary movement.  This impairment usually 
includes deficits in strength (hemiparesis) and coordination as 
well as hyperexcitablity of reflex pathways.  Voluntary 
repetitive movements have been shown to enhance the 
recovery of upper extremity movement in hemiparesis after 
brain lesion [1-3].  Recently, voluntary repetitive exercises 
administered with the mechanical assistance of robotic 
“rehabilitators” have also proven effective in improving arm 
movement ability in both acute [4, 5] and chronic [6, 7] 
populations after stroke.   

Although repetitive movement with and without robotic 
assistance have both been shown to be of value, the role of the 
mechanical assistance in stimulating recovery remains unclear.  
Additionally, it remains unclear to what extent recovery 
remains specific to the therapy task, and to what extent robotic 
and non-robotic exercise aid the functional recovery of 
neuromuscular control of movement.   

We aimed to address these two issues using a novel 
robotic device, the Assisted Rehabilitation and Measurement 
Guide (ARM Guide) [7], to provide assistive therapy to 
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with a six-axis load cell (F) reporting the forces and torques at 
the interface between the subject and the device.  The device 
is statically counterbalanced so that it does not gravitationally 
load the arm. 
 
B.  Subjects and Protocol 

 
Fourteen subjects with chronic hemiparesis (at least 6 

months post-insult) were assigned to one of two exercise 
protocols.  Subjects were matched by their impairment level, 
as assessed using the Chedoke-McMaster Evaluation of the 
Upper Extremity [8]. The first group, termed the “robot 
group” (N = 7), participated in twenty-four exercise sessions 
that lasted approximately one hour each over the course of 
eight weeks.  During each session the subject performed 
reaching movements with the ARM Guide towards five 
different targets throughout the workspace (targets 2-6 in Fig.  
2).  The device was programmed to move using a 
proportional-derivative position controller along a minimum-
jerk trajectory with a velocity specified by the investigator.  If 
the subject was unable to complete the reach or moved too 
slowly the device would assist through the end of the reach, 
with the firmness of assistance increasing exponentially 
throughout the movement [9].  The device would resist 
movement when a subject had a higher amount of function 
and tried to reach too fast.  Real-time visual feedback of the 
location of the arm along the track, the yaw and elevation 
angles of the track, and the target location was given on a 
monitor in front of the subject (Fig. 1). 

The second group, or “free-reaching group” (N = 7), 
performed a matched amount of non-robotic exercise.  
Subjects sat in front of a black screen with numbered targets 
that were identically located to the targets used with the ARM 
Guide.  The subject was instructed to reach as far as he or she 
could towards the target at a comfortable pace.  No 
mechanical assistance or constraint was provided to the 
movement.  A Flock of Birds electromagnetic motion analysis 
system (Ascension Technologies, Inc.) was used to record the 
end-point (hand) motion throughout the reach.  Care was taken 

to remove ferrous metals from the workspace of the sensor, and the 
Flock of Birds readings were tested to be accurate to at least 1 cm.  
Trunk movement was minimized by fastening a harness around the 
shoulders and chest. 

A key outcome measure involved subjects participating in a 
functional assessment to quantify voluntary arm movements.  
During a single assessment, subjects performed eight unassisted 
reaches to all six targets shown in Figure 2.  To test for a possible 
transfer of improvements to unpracticed workspace regions, target 1 
(Fig. 2) was included in the assessment even though there was no 
training to that target.  To quantify each subject’s ability to perform 
functional tasks the Functional Test of the Upper Extremity was 
administered by a blinded therapist.  In this test, the time to 
complete simple daily tasks (e.g. pillow into a pillowcase, shirt 
tuck, etc.) was recorded.  This test has been shown to have high 
inter- and intra-rater reliability [10].  Each subject participated in 
three evaluations with the Flock of Birds and one Functional Test 
both before and after the therapy program. 

 
C.  Analysis 
 

The hand trajectories recorded by the electromagnetic tracking 
system were analyzed to examine the quality of each subject’s 
movement.  Specifically, the range, smoothness, and straightness of 
each reach were evaluated [11].  Range was quantified as the 
maximum distance moved away from the reach start position (i.e. 
hand in  lap). 

Smoothness of a movement was quantified as the number of 
peaks in the tangential speed signal for each reach.  To calculate the 
number of speed peaks, the norm of the tangential speed from the 
start to the end reach point was scanned for local maxima and 
minima.  A peak was counted if the increase from a minimum to the 
next maximum was above 15% of the global maximum speed in the 
reach. 

Patients with hemiparesis commonly do not move in a straight 
path during a point-to-point movement.  To quantify the 
straightness of movement, the length of the path followed by the 
hand from the starting point to the end reach point was calculated.  
The straightness of the reach was then quantified as the percent 
distance traveled along this path beyond the length of a straight line 
between the start and end reach points.  For example, a straightness 
score of 50% corresponded to traveling 50% farther than a straight-
line path. 

To test for an effect of therapy, these reach measures were 
calculated for the three pre- and three post-therapy evaluation 
sessions.  A single score was derived for each subject for each 
session, and the average of this score for the three pre- (or post-) 
therapy evaluations was calculated, yielding a single pre- (or post-) 
score for each subject.  Pre- to post- differences were evaluated for 
each group using one-sided, paired t-tests.  Scores for the robot and 
free reaching groups were compared using t-tests. 
 

III.  RESULTS 
 

No significant changes in reaching range were observed for 
either group (Fig. 3) following therapy.  However, the mean range 
across subjects to the targets that were practiced (2-6) showed slight 
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Fig. 2.  Target locations for both the robot and free reaching exercises 
shown for the left arm.  The target system is centered (0° and 0”) at the
center of the subject’s shoulder. 
improvement, with the robot group approaching significance.  The 



means to the unpracticed target (1) did not significantly 
improve with practice for either group.   

The robot group significantly improved the smoothness of 
their movements, while the free reaching group did not.  
Improvements in smoothness were also seen for the robot 
group for the unpracticed target.   

Both the robot and free reaching groups significantly 
improved the straightness of their movements with training.   
These improvements again transferred to the unpracticed 
target.  

Both groups improved in their ability to complete a series 
of functional tasks (Figure 4), quantified as a decrease in the 
time taken to complete the tasks. The decrease for the free 
reaching group was statistically significant, while the decrease 
for the robot group approached significance. No significant 
differences were observed between robot and free reaching 
groups in pre-, post-, or pre-post improvement for any of the 
measures. 

 
IV.  DISCUSSION 

 
The results of this study are relevant to two key questions 

in stroke rehabilitation. 
 
A.  What is the role of direct mechanical assistance in the 
rehabilitation of voluntary arm movement?   
 

Both the robot and free reaching groups significantly 
improved arm movement ability. However, there were no 
significant differences between the groups, as quantified by 
the kinematic and clinical measures of arm movement.  As 

reported previously, we also found no significant differences 
between the robot and free reaching groups using biomechanical 
measures of range, velocity, and tone acquired with the ARM Guide 
[12]. As both forms of exercise incorporate repetitive voluntary 
motion as an essential element, we hypothesize that is the action of 
repetitively attempting to move, rather than the mechanical 
assistance provided by the robot, that is the primary stimulus to arm 
movement recovery.  Such a hypothesis is consistent with other 
repetitive movement exercise paradigms that have been 
demonstrated to improve upper extremity movement ability 
following brain injury [1-3], and may also explain other robotic 
therapy results [4, 6]. 

Although the overall arm recovery was comparable between 
the two therapy techniques, the data did suggest a possible subtle 
difference.  Specifically, the ARM Guide group was marginally 
more effective in improving the smoothness of their movements 
with therapy. The mechanical assistance provided by the ARM 
Guide was designed to generate smooth hand trajectories similar to 
normal point-to-point movements in healthy subjects, which 
features a single peak in the tangential speed.  Imposing a smooth 
trajectory during practice of the reaching movements may help  
subjects learn how to reduce the number of speed peaks to produce 
smoother movements.   
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Fig. 3. Top Row:  The change in range, smoothness, and straightness after 8 weeks of robotic (x) or free-reaching (o) therapy across all subjects in each group and 
across all targets used in training (± s.d.). Bottom row:  the same measures for the one target that was outside the training region. 
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B.  Does repetitive practice of one set of movements transfer 
to other movements?  

 
This question was addressed in two ways.  First, 

movement ability was tested for a target to which the subjects 
did not practice reaching during therapy.  While the 
improvement in range was still limited to this target, the 
improvements in smoothness and straightness were 
comparable to those for the trained targets.  The transfer of 
training to other areas of the workspace suggests an 
improvement of the general control processes for reaching 
rather than refinement of motor programs specific to the 
trained targets.   

 Second, transfer to the performance of activities of daily 
living was evaluated.  These activities were not explicitly 
practiced as part of therapy, and yet significant decreases in 
the times to perform these activities were observed.  These 
results again suggest that practicing robot-assisted or 
unassisted reaching movements improves control processes 
that generalize to other movements. 
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