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ABSTRACT

       Acoustic sensors offer the potential to detect, track, and classify enemy ground tar-
gets such as tanks, trucks, and other military vehicles. Traditional multitarget tracking
techniques partition the track estimation operation into two isolated processes: direction-
of-arrival (DOA) estimation from array snapshot data, followed by track estimation from
the DOA estimates. In this paper, a multiple target track estimation method that operates
directly from broadband array data is presented. The maximum a-posteriori (MAP) esti-
mator for contact states is derived for temporally uncorrelated broadband target signals and
uncorrelated target tracks. This technique extends the MAP multitarget tracking approach
developed for narrowband signals in [1]. The track estimator is an iterative algorithm em-
ploying a nonlinear programming penalty method in conjunction with an alternating max-
imization algorithm for obtaining penalized maximum likelihood (PML) DOA estimates.
The penalty function couples the DOA estimates from the PML algorithm to the tracker
as synthetic measurements, eliminating the data association step of traditional multitarget
tracking approaches. It also creates a feedback mechanism to enhance the DOA estimation
process. The algorithm is derived as a batch method. A sequential implementation obtained
by stepping through the data in short batches is applied to acoustic array time series data
from field tests conducted by the Army Research Laboratory.

1. INTRODUCTION

      Acoustic sensor arrays offer the potential to detect and track enemy ground targets such as tanks,
trucks, and other military vehicles [2]-[7]. The acoustic emissions of ground vehicles are generally broad-
band in nature and are composed of several discrete harmonically related components and an underlying
lower level broadband component. A typical plot of the a target frequency spectrum vs. time as the
target moves past the array is shown in Figure 1. Traditional multitarget tracking techniques partition
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Figure 1:  Typical spectrogram for an aeroacoustic ground target.

the track estimation operation into two isolated processes: broadband direction-of-arrival (DOA) estima-
tion from array snapshot data, followed by track estimation from the DOA estimates. This partitioning
results in procedures which are suboptimal and require data association to match DOA estimates to tar-
gets. In this paper, a multiple target track estimation method that operates directly from broadband array
data is presented. The maximum a-posteriori (MAP) estimator for contact states is derived for tempo-
rally uncorrelated broadband target signals and uncorrelated target tracks, where the number of targets
is assumed known and fixed. This technique extends the MAP multitarget tracking approach developed
for narrowband signals in [1]. The track estimator is an iterative algorithm employing a nonlinear pro-
gramming (NLP) penalty method in conjunction with an alternating maximization algorithm for obtaining
penalized maximum likelihood (PML) DOA estimates. The penalty function couples the DOA estimates
from the PML algorithm to the tracker as synthetic measurements, eliminating the data association step
of traditional multitarget tracking approaches. It also creates a feedback mechanism to enhance the DOA
estimation process.

       This paper is organized as follows. In Section 2, the signal and motion models are developed for
the broadband multitarget tracking problem. The broadband MAP track estimation method is presented in
Section 3. In Section 4, a sequential implementation obtained by stepping through the data in short batches
is described and tested on acoustic array time series data from field tests conducted at Aberdeen Proving
Ground by the Acoustic Signal Processing Branch of the Army Research Laboratory (ARL). Section 5
contains a summary and areas for future research.



2. STATISTICAL MODEL AND ASSUMPTIONS

         We consider the multitarget tracking problem where there are M contacts radiating broadband signals
received by an array ofN sensors. The number of objectsM is assumed known and the trajectories of the
objects are assumed to be uncorrelated with the trajectories of other objects. The targets and the array are
assumed to lie in thex − y plane. The two-dimensional target state is defined as its bearingu = cos(θ)
and bearing ratėu. Thus the state of themth contact at snapshotk is xk,m = [uk,m, u̇k,m]T . We assume
the motion of the objects is described by a first order Gauss-Markov process, i.e. for themth contact,

xk,m = Fxk,m−1 + wk,m, (1)

whereF =
[
1 ∆t
0 1

]
, ∆t is the time interval fromk to k + 1, andwk,m is a zero mean white Gaussian

noise process with covariance matrixQ which is assumed known and fixed over the observation period
and equal for all objects. Under these assumptions, the probability density function (pdf) ofxk,m given
xk,m−1 is

p(xk,m|xk,m−1) =
exp

{
−1

2(xk,m − Fxk,m−1)TQ−1(xk,m − Fxk,m−1)
}

2π |Q|
1
2

, (2)

where|Q| denotes the determinant ofQ. There areK snapshots in an observation batch. No data is
available atk = 0 so we assume the prior distribution on initial object states is Gaussian with meanx̄0,m

and covarianceΩ0,m,

p(x0,m) =
exp

{
−1

2(x0,m − x̄0,m)TΩ−1
0,m(x0,m − x̄0,m)

}
2π |Ω0,m|

1
2

. (3)

      At the array, we assume that the data has been transformed into the frequency domain and that there
areL frequency bins of interest. TheN × 1 observed data vector in thelth frequency bin during thekth
observation snapshot has the form

yk,l =
M∑

m=1

sk,l,mvl(uk,m) + nk,l, (4)

wheresk,l,m is a random signal from themth source in thelth frequency bin at thekth snapshot with
E[sk,l,ms∗k,l,m] = αk,l,m. The vectorvl(uk,m) is theN × 1 array response vector for thelth frequency
bin to the DOAuk,m, andnk,l is aN × 1 vector of uncorrelated sensor noise samples in thelth frequency
bin at thekth snapshot. The source signals and noise are assumed to be sample functions of independent
zero-mean Gaussian random processes. It is assumed that the observations are independent from snapshot
to snapshot and frequency bin to frequency bin. The signal powers,αk,l,m, are assumed to be unknown
and to vary across the frequency band and in time. The noise covariance matrix is assumed to be known
and vary across frequency withE[nk,lnH

k,l] = σ2
l I. Note that the array data depends on the target state

xk,m only through the bearinguk,m and not the bearing ratėuk,m. We will use the notation

uk,m = Hxk,m, (5)

with H = [1 0], to denote bearing component of the state in the subsequent derivation.



       We denote the collection of target states across all targets at time k as xk ≡ {xk,1,xk,2, . . . ,xk,M}
and the collection of target powers at timek in frequency binl asαk,l ≡ {αk,l,1, αk,l,2, . . . , αk,l,M}. The
collection of target powers over targets and frequency at timek is defined asαk ≡ {αk,1, αk,2, . . . , αk,L},
and the collection of data vectors across frequency at timek is defined asyk ≡ {yk,1,yk,2, . . . ,yk,L}.
It is also useful to define the collection of target states over the batch (the track) for each target as
Xm ≡ {x0,m,x1,m, . . . ,xK,m}.

       At each snapshot and in each frequency bin, the array data yk,l is then jointly complex Gaussian with
zero mean and covariance matrix

Kyk,l
(xk,αk,l) =

M∑
m=1

αk,l,mvl(Hxk,m)vl(Hxk,m)H + σ2
l I, (6)

and the pdf of the array data conditioned on the target states is given by

p(yk,l|xk : αk,l) =
exp

{
−yH

k,lK
−1
yk,l

(xk,αk,l)yk,l

}
πN
∣∣Kyk,l

(xk,αk,l)
∣∣ . (7)

We have used the notationp(yk,l|xk : αk,l) to emphasize that this pdf is conditioned on the random vector
xk but is also a function of the non-random but unknown parameter vectorαk,l. At each snapshot the joint
pdf of the broadband data conditioned on target states is the product of the pdfs in each frequency bin and
is given by:

p(yk|xk : αk) =
L∏

l=1

p(yk,l|xk : αk,l). (8)

The single snapshot joint pdf of the observations and contact state conditioned on the previous contact
state is then

p(yk,xk|xk−1 : αk) = p(yk|xk : αk)
M∏

m=1

p(xk,m|xk,m−1). (9)

Let X, A, andY denote the batch collectionsX ≡ {X1,X2, . . . ,XM} = {x1,x2, . . . ,xK}, A ≡
{α1,α2, . . . ,αK}, andY ≡ {y1, . . . ,yK}. The joint pdf of the array snapshot data and target states over
the batch is given by

p(Y,X : A) =
M∏

ν=1

p(x0,ν) •

( K∏
k=1

p(yk|xk : αk)
M∏

m=1

p(xk,m|xk,m−1)

)
. (10)

3. BROADBAND BATCH MAP ALGORITHM

      In the classical single target tracking problem where the observations are a linear function of the target
states and the observations and states are Gaussion, the discrete time Kalman filter provides the mini-
mum mean square error (MMSE) and MAP estimates of the target states given the observations. When a
batch of observations is used, the MMSE and MAP estimates are obtained from the fixed interval Kalman
smoother [8]. In the problem considered here, the observations depend on the target states in a nonlinear



manner, therefore the MMSE and MAP estimates will yield different solutions. We also have the added
complication of the unknown nuisance parameter vectorA. The MAP methodology provides a tractable
framework for solving this problem. We can jointly find the MAP estimate ofX and the maximum like-
lihood (ML) estimate ofA by maximizing the joint pdfp(Y,X : A), or equivalently its logarithm, with
respect to bothX andA. In [1] a practical algorithm for batch track estimation for the narrowband prob-
lem was developed using the penalty method of nonlinear programming. Earlier versions also appeared in
[9] and [10]. In this section, a batch technique for broadband data is presented.

      The MAP/ML estimates of X and A are the solutions to the optimization problem:

max
X,A

ln

[
M∏

ν=1

p(x0,ν) •

( K∏
k=1

p(yk|xk : αk)
M∏

m=1

p(xk,m|xk,m−1)

)]
. (11)

Following [1], to assist in the solution we introduce a set of auxiliary DOA variablesµk,m for each tar-
get and snapshot, and define collections of these variables asµk ≡ {µk,1, µk,2, . . . , µk,M} andM ≡
{µ1,µ2, . . . ,µK}. We replaceuk,m = Hxk,m with the new auxiliary variableµk,m in thep(yk|xk : αk)
term. In order to retain the original optimization problem, we then require the new variable to be equal to
the old variable, i.e.µk,m = uk,m = Hxk,m. The unconstrained optimization problem in Eq. (11) can be
written as an equivalent constrained optimization problem as follows:

max
X,M,A

ln

[
M∏

ν=1

p(x0,ν) •

( K∏
k=1

p(yk : µk,αk)
M∏

m=1

p(xk,m|xk,m−1)

)]
(12)

s.t. µk,m = uk,m = Hxk,m, k = 1, . . . ,K;m = 1, . . . ,M

where
p(yk : µk,αk) ≡ p(yk|xk : αk)|Hxk,m=µk,m

. (13)

This formulation allows us to use the penalty method of NLP (e.g. [11], [12]) for constrained optimization
problems. It is an iterative procedure which involves solving a sequence of easier unconstrained opti-
mization problems. The easier problems are related to the original constrained problem by a continuous,
differentiable penalty function which is equal to zero in the feasible region where the constraints are sat-
isfied, and which is negative in the infeasible region. The penalty function relaxes the equality constraint
resulting in a problem which is an approximation to the original problem. With each iteration, a stronger
penalty is imposed for infeasibility, and the solution to the unconstrained problem converges to the solu-
tion to the original constrained problem. An overview of the method and the convergence properties is
provided in [1]. As in [1], we choose the quadratic penalty function,

P (X,M) = −
K∑

k=1

M∑
m=1

(µk,m −Hxk,m)2

2σ2
k,m

, (14)

whereσ2
k,m is a parameter that affects the strength of the penalty.

       To enforce a more costly penalty at each iteration, a term (cq)−1 scales the penalty function, where
q is the iteration index andcq, q = 1, 2, . . . is a positive, decreasing sequence converging to zero. The



penalized unconstrained maximization problem is given by

max
X,M,A

ln

[
M∏

ν=1

p(x0,ν) •

( K∏
k=1

p(yk : µk,αk)
M∏

m=1

p(xk,m|xk,m−1)

)]
(15)

− 1
cq

K∑
k=1

M∑
m=1

(µk,m −Hxk,m)2

2σ2
k,m

.

Expanding and rearranging the terms in Eq. (15), we have

max
X,M,A

K∑
k=1

ln p(yk : µk,αk) +
M∑

m=1

ln

[
p(x0,m)

K∏
k=1

p(xk,m|xk,m−1)

]
(16)

−
K∑

k=1

M∑
m=1

(µk,m −Hxk,m)2

2cqσ2
k,m

.

Note that the first term is only a function ofM andA, the second term is only a function ofX, and the
third term provides the coupling between the parameter sets.

      First consider that for a fixed M and A, we can find X by maximizing over the second and third terms
in Eq. (16). These terms decouple with respect to the targets, therefore the problem reduces to solvingM

separate track estimation problems. Expanding the pdfs, the problem becomes

max
Xm

{
− (x0,m − x̄0,m)TΣ−1

0,m(x0,m − x̄0,m)−
K∑

k=1

(xk,m − Fxk−1,m)TQ−1(xk,m − Fxk−1,m)

−
K∑

k=1

(µk,m −Hxk,m)2

cqσ2
k,m

}
. (17)

This problem has the form of the classical single source tracking problem withµk,m acting as the noisy
measurements, andcqσ

2
k,m the measurement variance. The solution is the fixed interval Kalman smoother

[8]. The implementation consists of the standard forward Kalman filter, followed by a backward smooth-
ing filter. The forward Kalman filter is initialized witĥx0|0 = x̄0 andP0|0 = Ω0. The state estimates and
their error covariance matrices are computed sequentially fork = 1, . . . ,K using:

x̂k|k−1 = Fx̂k−1|k−1 (18)

Pk|k−1 = FPk−1|k−1F
T + Q (19)

Gk = Pk|k−1H
T
[
HPk|k−1H

T + cqσ
2
k,m

]−1
(20)

x̂k|k = x̂k|k−1 + Gk

[
µk,m − Hx̂k|k−1

]
(21)

Pk|k = Pk|k−1 − GkHPk|k−1. (22)

Once the forward filtering pass has completed, the backward smoothing pass updates the state estimates
and covariance matrices fork = K − 1, . . . , 0 using:

Bk = Pk|kF
TP−1

k+1|k (23)

x̂k|K = x̂k|k + Bk

[
x̂k+1|K − x̂k+1|k

]
(24)

Pk|K = Pk|k + Bk

[
Pk+1|K −Pk+1|k

]
BT

k . (25)



The final track estimate for themth target iŝxk,m = x̂k|K, k = 1, . . . ,K.

       Next consider that for a fixed X, we can solve for both M and A by maximizing over the first and
third terms in Eq. (16). These terms decouple with respect to the snapshots, therefore this problem reduces
to solvingK separate multiple source broadband DOA estimation problems of the form

max
µk,αk

ln p(yk : µk,αk)−
M∑

m=1

(µk,m −Hxk,m)2

2cqσ2
k,m

. (26)

This is a maximum penalized likelihood (MPL) estimation problem. In [1], it was solved iteratively us-
ing the expectation-maximization (EM) algorithm [13]. Here, we choose to solve it iteratively using the
relaxation, or alternating maximization (AM), method because the AM method usually converges faster
than the EM algorithm. The derivation is given in Appendix A.

       We then alternate between estimating the penalized DOAs and power estimates using the DOA AM
algorithm, and theM track estimates viaM fixed interval Kalman smoothers. As presented above, there
are three levels of iteration: the penalty method iteration in which the penalty parameter forces the solu-
tion into the feasible region, the AM iteration between DOA estimation and track estimation, and the AM
iteration used in broadband DOA estimation. Each of the iterations may be performed until a convergence
criterion is satisfied or for a fixed number of cycles. The trade-off is algorithm complexity versus esti-
mation accuracy. In this paper, we choose to perform the two AM iterations only once for each penalty
method iteration, thus there is only one global iteration loop.

       The term cqσ
2
k,m controls the strength of the penalty in the DOA estimation stage and acts as the

measurement error variance in the tracking stage. In [1], it was suggested to setσ2
k,m proportional to the

Cramer-Rao bound and to letcq decrease exponentially. Here we take a simpler approach in specifying
σ2

k,m and set it inversely proportional to themth target’s total estimated power in thekth snapshot, i.e.

σ2
k,m = β

(
L∑

l=1

α̂k,l,m

)−1

. (27)

An explicit pseudo-code description of the batch algorithm using this method for settingσ2
k,m and the

simplified iteration strategy is provided in Table 1.

4. BROADBAND SEQUENTIAL MAP ALGORITHM
AND EXPERIMENTAL RESULTS

      The batch algorithm provides an elegant solution to multitarget tracking without requiring data as-
sociation. However, many systems cannot wait while a batch of data is collected and processed, and we
would like a real-time (sequential) solution. As suggested in [1], the batch method can be extended to a
sequential method by moving through the data with a shorter batch window of lengthKs and a stride of
length∆k. In the full batch methodKs = K and∆k = 0, while a fully sequential method would use



Table 1: Batch broadband MAP multitarget tracking algorithm pseudo code.

Initialize x̂0
k,m, α̂0

k,l,m, ∀k, l,m

for q = 1, . . . , qmax

Bearing and Power Estimates: AM Algorithm
for k = 1, . . . ,K

for m = 1, . . . ,M
Update ‘Measurement Error’ Variance

σ2
k,m = β

(
L∑

l=1

α̂q−1
k,l,m

)−1

Pre-whiten data, ∀l

Σk,l,m =
m−1∑
m′=1

α̂q
k,l,m′vl(µ̂

q
k,m′)vH

l (µ̂q
k,m′) +

M∑
m′=m+1

α̂q−1
k,l,m′vl(µ̂

q−1
k,m′)vH

l (µ̂q−1
k,m′) + σ2

l I

ỹk,l = Σ−1/2
k,l,myk,l

Bearing estimate

µ̂q
k,m =

argmax
µ

L∑
l=1


∣∣∣ỹH

k,lṽl(µ)
∣∣∣2 γl(µ)

1 + γl(µ) |ṽl(µ)|2
− ln

[
1 + γl(µ) |ṽl(µ)|2

]−

(
µ−Hx̂q−1

k,m

)2

2cqσ2
k,m

whereγl(µ) = max
[
σ2

l ,
(∣∣ỹH

k,lṽl(µ)
∣∣2/ |ṽl(µ)|2 − 1

)/
|ṽl(µ)|2

]
andṽl(µ) = Σ−1/2

k,l,mvl(µ)

Power Estimates, ∀l
α̂q

k,l,m = γl(µ̂
q
k,m)

end{m}
end{k}

Track Estimates: Fixed Interval Kalman Smoother
for m = 1, . . . ,M

Initialize x0|0 ≡ x̄0,m,P0|0 ≡ Ω0,m

for k = 1, . . . ,K
Pk|k−1 = FPk−1|k−1FT + Q

Gk = Pk|k−1HT
{
HPk|k−1HT + cqσ

2
k,m

}−1

Pk|k = Pk|k−1 −GkHPk|k−1

bk|k =Fbk−1,k−1 +Gk

{
µ̂q

k,m −HFbk−1|k−1

}
end{k}
Setx̂q

K,m = bK|K
for k = K − 1, . . . , 1

Bk = Pk|kFTP−1
k+1|k

x̂q
k,m = bk|k + Bk[x̂

q
k+1,m − Fbk|k]

P̂q
k,m = Pk|k + Bk

[
P̂q

k+1,m −Pk+1|k

]
BT

k

end{k}
end{m}

end{q}.



Ks = 1 and∆k = 1. In between, we have batch-sequential methods where∆k is determined by how of-
ten state updates are needed, andKs is chosen to balance estimation accuracy with algorithmic complexity.

      In the ARL data sets, most of the acoustic energy of the targets is concentrated in the frequency band
below 200 Hz. The ground vehicles exhibit both broadband energy and strong harmonics which are non-
stationary due to vehicle maneuvering and environmental factors. The sensor array is a seven element
circular array consisting of six elements in a circle of radius 4 ft., plus one sensor at the center. The array
is placed very close to the road traveled by the vehicles, therefore the range and bearing of the targets
changes rapidly as the target passes by the sensor. Furthermore, the signal power level varies with range,
thus the multiple target scenarios have sources with highly variable power levels as well as fluctuating
DOAs. The data is sampled at a frequency of 1024 Hz. The 1024 samples are converted to the frequency
domain using a 1024-point FFT to provide adequate frequency resolution, resulting in one frequency do-
main data snapshot per second. Previous studies have shown that reasonably good DOA estimates can
be obtained using the data from 40-85 Hz. Using higher frequency data provides increased resolution at
the expense of global estimation errors due to grating lobes in the array beampattern [4],[5]. The large
error estimates are extremely detrimental to tracking performance, thus we restrict processing to the lower
frequency bins to avoid these errors. The noise power (which is assumed known) was estimated during
from a quiet interval in the data when no targets were present.

       The data was processed in blocks of Ks = 60 seconds with a stride of∆k = 10 seconds. The block
length was chosen to provide sufficient track estimates for smoothing over periods when a weaker target
is masked by a stronger target. The stride was chosen to trade off providing track updates in a timely
manner vs. computational complexity. The blocks overlapped by 50 snapshots. State estimates for the
overlapping snapshots obtained from the previous block were used as the initial values for the current
block. To initialize the state estimates for the new snapshots, we simply projected out in time with the
motion model from the most recent state estimate. The batch algorithm was applied to the current block
with qmax = 2 iterations. The final state estimates from this block replaced the estimates from the previ-
ous block. To ensure continuity of the final track estimates as the block moved through the data, the prior
mean and covariance matrix of the target state for the current block was set equal to the track estimate at
the snapshot just prior to the current block, with a zero variance on the DOA and a small variance on the
DOA rate. To initialize the algorithm, the tracks in the first block were initialized to have constant DOA
and power spectrum equal to the true value at the beginning of the block.

      Figures 2 and 3 show results obtained for two scenarios involving two targets. Each figure shows
the true DOAs of the targets, the DOA estimates obtained using incoherent minimum variance (IMV)
beamforming as in [4], the DOA estimates obtained using broadband ML, and the target tracks from the
broadband MAP tracker. In the first scenario, the targets approach from different directions and pass each
other close to the array. The targets are widely separated in angle except for a short period of time while
they are crossing, and have nearly the same power levels. For this scenario, the single snapshot DOA
estimation techniques perform quite well except at the beginning of the experiment and for a short period
while the targets are crossing. ML seems to give better estimates than IMV. The tracker is able smooth
out the conflicting data and follow both contacts quite well. The tracks deviate a little from the true DOAs
during the crossing period, but are able to recover quickly.
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Figure 2:  Wideband DOA and MAP tracker estimates for two target crossing scenario.
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Figure 3:  Wideband DOA and MAP tracker estimates for two target following scenario.



       In the second scenario, the targets follow one behind another. The targets start out with nearly the same
DOA. As the first target passes the array, it’s DOA changes rapidly from about 270◦ to about 90◦ and it
is so loud that it masks the second target. The IMV technique does not report any DOA estimates for the
weaker target during this time and the ML technique (which is required to report two estimates) provides
random estimates initially, then estimates which are due to a grating lobe from the stronger target. After
the first target moves away, the targets are widely separated and both can be heard. Both DOA estimators
work well. As the second target approaches the array, it masks the first target. The IMV technique can no
longer detect the first target. The ML technique again provides erroneous estimates which can be seen as
belonging to energy from a grating lobe of the loud target, then is able to provide reasonably good esti-
mates of the weaker source. This is a difficult scenario for the tracker. Initially, the tracker cannot track the
weaker target, but quickly locks on after the first target has passed. The tracker, like the DOA estimators,
is able to provide an accurate track of the second target as it moves past the array. The tracker becomes
confused when the first target is masked, but is eventually able to recover and track the first contact again.
Although the tracker is clearly influenced by the poor ML estimates, the penalty function in the tracker
DOA estimator and the smoothing operation allow the tracker to recover.

      These results demonstrate that the extra processing performed by the tracker can improve detection and
localization of multiple sources over wideband DOA estimation alone. The improvement in performance
is due to both the extra smoothing provided by the Kalman smoother, and the focused DOA estimation
provided by the MPL formulation.

5. SUMMARY

       The narrowband MAP multitarget tracker developed in [1] was extended to handle broadband targets.
To construct this algorithm, we introduced an auxiliary DOA parameter and a NLP penalty technique to
decouple the Gauss-Markov motion model and the array data model. Convergence of the artificial prob-
lem to the original problem was enforced through a stronger penalty with each iteration. In decoupling
the problem, DOA and power estimates were obtained from an AM algorithm solution to a maximum pe-
nalized likelihood problem, and track estimates were obtained fromM single target fixed interval Kalman
smoothers, with the DOA estimates serving as noisy measurements. The batch algorithm was imple-
mented in a sequential manner by stepping through the data with short overlapping batches.

      Results from acoustic time series data collected by ARL show that the tracker can improve detection
and localization of multiple sources over wideband DOA estimation alone. However, the tracker still has
trouble during periods when one target is so loud that it masks the other target. One possible solution is
to place the sensor array so that it is not so close to roadways or routes taken by the vehicles. This would
prevent the array from being overwhelmed by one source, and would decrease the rapidity with which the
DOA varies as it moves past the array. Another possibility is to jointly process data from multiple sensor
arrays [6],[7]. Not only would this increase the amount of data available, but during periods when a target
is close to one array, it would not be close to the rest of the arrays, so target masking will not occur at all
arrays simultaneously.



APPENDIX A. BROADBAND ALTERNATING MAXIMIZATION ALGORITHM
FOR MPL DOA ESTIMATION

       We start from the single snapshot penalized likelihood function in Eq. (26). Expanding terms, it has
the form

Λ ≡ ln p(yk : µk,αk) =
L∑

l=1

ln

exp
{
−yH

k,lK
−1
yk,l

(µk,αk,l)yk,l

}
πN
∣∣Kyk,l

(µk,αk,l)
∣∣

− M∑
m=1

(µk,m −Hxk,m)2

2cqσ2
k,m

. (28)

To reduce notation, we letKyk,l
≡ Kyk,l

(µk,αk,l) and write (28) as

Λ =
L∑

l=1

{
−yH

k,lK
−1
yk,l

yk,l

}
−

L∑
l=1

ln
{
πN
∣∣Kyk,l

∣∣}− M∑
m=1

(µk,m −Hxk,m)2

2cqσ2
k,m

. (29)

       We can use the alternating maximization technique to iteratively solve for parameters associated with
one of theM targets by holding all of the parameters associated with the other targets fixed. The likelihood
increases at each iteration and convergence to a local maximum is guaranteed. This reduces to a series
of MPL problems involving a single source in knowncoloredGaussian noise. Consider estimation of the
mth target’s DOAµk,m and power spectrumαk,1,m, . . . , αk,L,m. We ca rewriteKyk,l

as

Kyk,l
= αk,l,mvl(µk,m)vl(µk,m)H + Σk,l,m, (30)

where
Σk,l,m =

∑
m′ 6=m

αk,l,m′vl(µk,m′)vH
l (µk,m′) + σ2

l I (31)

is the colored noise covariance matrix. It depends only on the noise power and the parameters of the other
sources, which are assumed known. Performing a pre-whitening operation on the data, we have

ỹk,l = Σ−1/2
k,l,myk,l. (32)

The pre-whitened data covariance matrix becomes

Kỹk,l
= Σ−1/2

k,l,mKyk,l
Σ−1/2

k,l,m

= αk,l,mṽl(µk,m)ṽl(µk,m)H + I, (33)

where
ṽl(µk,m) = Σ−1/2

k,l,mvl(µk,m). (34)

The penalized log-likelihood function in (29) can be written as

Λ =
L∑

l=1

{
−ỹH

k,lK
−1
ỹk,l

ỹk,l

}
−

L∑
l=1

ln
∣∣Kỹk,l

∣∣− (µk,m −Hxk,m)2

2cqσ2
k,m

+ γ, (35)

whereγ is a term which does not depend on the parameters of themth target. Using the definition in (33),
the determinant and inverse ofKỹk,l

are given by∣∣Kỹk,l

∣∣ = 1 + αk,l,m |ṽl(µk,m)|2 (36)

K−1
ỹk,l

= I− ṽl(µk,m)ṽl(µk,m)H αk,l,m

1 + αk,l,m |ṽl(µk,m)|2
, (37)



and the penalized log-likelihood reduces to (dropping unnecessary terms):

Λ =
L∑

l=1

{∣∣ỹH
k,lṽl(µk,m)

∣∣2 αk,l,m

1 + αk,l,m |ṽl(µk,m)|2

}

−
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l=1

ln
{

1 + αk,l,m |ṽl(µk,m)|2
}
−

(µk,m −Hxk,m)2

2cqσ2
k,m

. (38)

Maximizing overαk,l,m first, we take the derivative and obtain

∂Λ
∂αk,l,m

=

∣∣∣ỹH
k,lṽl(µk,m)

∣∣∣2(
1 + αk,l,m |ṽl(µk,m)|2

)2 −
|ṽl(µk,m)|2

1 + αk,l,m |ṽl(µk,m)|2
= 0. (39)

Therefore, our estimate is

α̂k,l,m(µk,m) =
1

|ṽl(µk,m)|2


∣∣∣ỹH

k,lṽl(µk,m)
∣∣∣2

|ṽl(µk,m)|2
− 1

 . (40)

To reduce spurious estimates due to false alarms, we restrict the value of the signal power estimate to be
no less than the noise power. Our constrained estimate becomes:

α̂k,l,m(µk,m) = max

σ2
l ,

1
|ṽl(µk,m)|2


∣∣∣ỹH

k,lṽl(µk,m)
∣∣∣2

|ṽl(µk,m)|2
− 1


 . (41)

To find an estimate ofµk,m, we substitute the estimateŝαk,l,m(µk,m) for l = 1, . . . , L back into the
penalized log likelihood function in (38) and maximize with respect toµk,m. There is no closed form
expression, so a one-dimensional search is required.

µ̂k,m =
argmax
µk,m

L∑
l=1

{∣∣ỹH
k,lṽl(µk,m)

∣∣2 α̂k,l,m(µk,m)
1 + α̂k,l,m(µk,m) |ṽl(µk,m)|2

}

−
L∑

l=1

ln
{

1 + α̂k,l,m(µk,m) |ṽl(µk,m)|2
}
−

(µk,m −Hxk,m)2

2cqσ2
k,m

. (42)

The power estimates are then found by substituting the DOA estimateµ̂k,m back into (41) forl = 1, . . . , L.
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