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Modelling of Plane Strain Interfacial Fracture in Incompressible Materials 

T. C. Miller 
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ABSTRACT 

Numerical modelling of a photoelastic experiment is discussed. The experiment 

examined incompressible materials under plane strain conditions, which results in a simplified 

analysis due to a vanishing of the bimaterial parameter.   The photoelastic experiment used the 

stress freezing method to determine near tip stresses in interfacial cracks in bimaterial specimens. 

Different crack orientations were used to produce different mode mixities. Photoelastic fringe 

patterns were analyzed to determine the magnitude and phase angle of the complex stress 

intensity factor. These experiments were modeled using a finite element analysis to determine 

the field variables near the tips of the interfacial cracks. Magnitudes of the complex stress 

intensity factors are found from J integral values, derived using the domain integral approach, 

and the phase angles are determined using extrapolation of the bond line traction data to_r = 0. 

The results show that this approach is a useful way to characterize completely the complex stress 

intensity factor in incompressible linear elastic bimaterial combinations under plane strain 

conditions. 

(Keywords: interface, fracture, defects) 

INTRODUCTION 

The solution of the general case of an interfacial crack lying between two linear elastic 

isotropic materials was first introduced by Williams in 19591. This boundary value problem was 
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solved by determining the eigenvalues for the characteristic equation, resulting in an infinite 

series of eigenvalues with imaginary parts related to the material properties of the two materials. 

The imaginary component, e, is an inherent part of the field equations, and causes a number of 

controversies relating to inherent mode mixity, stress oscillation, and predictions of crack face 

interpenetration2,3. Later works attempted to explain these discrepancies4,5; however, in a large 

class of problems these contradictions are predicted only in regions very close to the crack tip 

and are not significant2. Other works presented after Williams' showed that other eigenvalues 

existed and solved the problem using alternate methods, such as the complex variables 

formulation of Muskhelishvili. Greater detail is provided in several sources2'3. 

A subset of the general interfacial fracture problem is one in which both materials are 

incompressible and plane strain conditions exist. In this case, the imaginary part of the complex 

eigenvalues vanishes, and the mechanics of the crack are analogous to those of a mixed-mode 

crack in a homogenous material6,7. This set of problems includes that of an interfacial crack lying 

between solid rocket propellant and a rubber liner. To investigate the propellant-liner 

relationship, a set of photoelastic experiments was performed that also used incompressible 

materials6,8. 

In previous developments, the stress intensity factor in a photoelastic material was found 

using the set of isochromatic fringe loops near the tip of the crack. The location of the point 

along each fringe that was farthest from the crack tip was determined; this set of coordinate data 

was used to determine the stress intensity factor by extrapolating the data to r_= 0. This 

technique was developed for mode I and for mixed-mode loading9; the latter was used for the 



photoelastic experiments discussed here6. Because of the zero valued bimaterial parameter^ the 

presence of two materials provides no additional complications when using this procedure. 

The photoelastic experiments used single edge notched tension specimens that 

incorporated different crack orientations to produce different mode mixities. For these types of 

specimen and boundary conditions, an approximate analytical solution could be constructed6. 

However, more complex geometries preclude the use of an analytical expression for stress 

intensity factor calculations. Also, many bimaterial combinations cannot be analyzed using 

analogous photoelastic materials without ignoring important features of the material behavior. In 

such cases, developing numerical models may confirm experimental results and help extend the 

predictive capabilities of the research. It is with this goal that the numerical models featured here 

have been developed. These models simulate the photoelastic tests so that the evaluation of 

stress intensity factor magnitudes and phase angles from numerical models can be assessed. A 

similar method will be used in the study of incompressible bimaterial combinations related to 

solid rocket motor design. 

THEORY 

In general, an interfacial crack between two isotropic linear elastic materials will be 

characterized by a bimaterial parameter er•J: 
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Here ß is one of the two Dundurs' elastic mismatch parameters, u is the shear modulus,_v 

is Poisson's ratio, and K = (3 - v) / (1 + v) in plane stress and (3 - 4v) in plane strain. The 

subscripts are used to index the two materials. In a region near the crack tip, the higher order 

terms are negligible and the field expressions depend only on the singular terms10: 

opq = -^{Re(Kr'V^q(0)  + Im(Krie)^q(6)} (2) 
\j2itr 

Here the two S functions characterize the angular variations of the near tip field. 

Because in-plane tensile and shear loading are coupled, the parameter K characterizes the 

combination of these two effects as a complex stress intensity factor. The inherent mode mixity 

is manifested in the expression for the traction along the interface, derived from eqn (2) by letting 

6 = 02,3. 

Kr'e             K 
(a    + ia^e=Q = -   [cos(eLnr)  + isin(eLnr)] (3) 

\j2 7tr      ^2nr 

The complex stress intensity factor K = Kj + i K2 = Ke^ depends on the geometry, loads, 

stress state, and materials. Inspection of eqn (3) shows that the bond line traction ratio 

(axy / aw)e=0 varies with distance from the crack tip. In a region near the crack tip, the phase 

angles of the left-hand and right-hand sides of eqn (3) differ by eJLnr: 

tan-'KoJOyJgJ =tan-1[KJKJ  + eLnr (4) 

The magnitude of K is related to J, the contour integral, through2: 

.]=hlci_M (5) 
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Here cp = 4(1 - vp) / Up in plane strain and 4 / (u.p(l + vp)) in plane stress.   Equations (1-5) 

show that the presence of the nonzero bimaterial parameter^ causes complexities not present in 

the consideration of homogeneous materials. However, in the special case where both materials 

are incompressible and plane strain conditions prevail, then v, = v^ lA and Kp = (3 - 4vp); 

substitution into eqn (1) shows thatJ3j= e_= 0 in these circumstances. Introducing €_= 0 into 

eqns (3-5) gives simplified expressions for the degenerate case6,7:* 

(% +i^e-o --1= (6) 
\j2 7tr 

¥ - tan-'fK/Kj) = tan'KoJa^ eJ (7) 

j.J§L.     ±.L[±.U     IJ-^S   5—^4 (8) 
E*        E*      2 E}      E2 l  - Vj 1  - v\ 

The phase angle of the complex stress intensity factor is shown here as Y and the 

effective plane strain elastic modulus j£ depends on the plane strain elastic moduli of the two 

materials. Equations (6-8) show that the solution for an interfacial crack in an incompressible 

bimaterial pair under plane strain conditions is analogous to that of a homogeneous material with 

* Because vy= V2_= 1/2, additional simplifications could be made to eqn (8), but it has 
been presented as shown to preserve the meaning of the parameters. 



mixed-mode loading. The ratios (K^ / KO and (oxy / a^ )e = 0 are equal in the near tip region, andl 

and K are related through a modulus parameter. The additional complexities of stress 

oscillations, inherent mode mixity, and crack face interpenetration are no longer present. 

In the photoelastic experiment, mode mixity was varied by maintaining the vertical 

loading direction while testing specimens that have different crack orientations. Denoting the 

angle the crack makes with respect to the mode I loading orientation by V, the photoelastic 

experiments used specimens with crack orientations ofT = 0°, 15°, 30°, and 45°. ForT = 0° 

(mode I loading), the stress intensity factor phase angle equals zero. The mode mixity and phase 

angle of K increase in an approximately linear way with increases in_T6,8. 

DISCUSSION 

Figure 1 shows a representative specimen modelled using finite element analysis68. The 

set of investigations on which the numerical models is based used a photoelastic polymer, 

araldite, loaded above its stress freezing temperature of 116° C. The second material is 

composed of araldite and aluminum powder, so that the two materials have moduli of 18.6 and 

36.9 MPa, respectively, above the stress freezing temperature. The latter material is opaque due 

to the introduction of the aluminum powder, so that photoelastic fringe data is only available for 

the upper half of each specimen. Above the stress freezing temperature, both materials are 

incompressible. The two materials were bonded together using a thin layer (less than 0.5 mm) of 

photoelastic adhesive. The material properties of the adhesive layer were similar to that of the 

araldite-aluminum; later work confirmed that the presence of a thin adhesive layer causes no 

significant changes in the relationship between the loads and the complex stress intensity factor11. 



To simulate cracks, notches were machined along the interfaces to a depth of 9.5 mm. 

Loading was accomplished using freely rotation aluminum grips to which the specimens were 

bonded, and photoelastic fringe patterns of the loaded specimens were recorded for analysis7,8. 

The complex stress intensity factor was analyzed using fringe loop data from the araldite 

portion of the specimens. The fringe orders and locations of the maximum radii of the fringe 

loops near the crack tip were recorded. By extrapolating the data to the crack tip, the complex 

stress intensity factor can be evaluated. This method overestimated the value of applied K for the 

smaller crack angles because of the influence of residual stresses and machining stresses on the 

fringe patterns. An analytical model was developed that modified predictions for an edge 

cracked geometry with finite width effects and notch effects. The experimental results shown in 

this work are the results of analysis of stress frozen slices taken from the mid-thickness of the 

specimens so that the data from the experiment represents plane strain conditions6'8. 

Figure 1 shows a typical finite element mesh. Eight-noded quadrilateral elements are 

used throughout the mesh. Quarter point elements surround the crack tip in a spider web 

formation as shown in Figure 2. The boundary conditions were vertical displacements applied at 

the outside middle nodes of the aluminum grips (see Figure 1). This type of loading closely 

resembled the pin loading of the actual specimens; rotation at the grips significantly affects the 

mode mixity at the crack tip. 

One complication that arises in the modelling of elastic incompressible materials is the 

indeterminacy of conventional finite element formulations. Typically, a finite element 

formulation solves for the displacement components at the nodes in the mesh. The solution will 

be the configuration that minimizes the potential energy of the mesh, and, in the approximate 



sense, the potential energy of the continuum that the mesh represents. The strains and stresses 

are derived from the nodal displacements using shape functions and constitutive relationships. 

Usually, a single set of displacements, strains, and stresses minimizes the potential energy of the 

mesh. However, with incompressible materials, addition of an arbitrary pressure term yields 

another solution that minimizes the potential energy, so that there are an infinite number of 

solutions. To resolve this dilemma, the finite element problem is formulated with the hydrostatic 

component of stress as an additional solution variable. For the eight-noded quadrilateral 

elements used here, this resulted in three additional degrees of freedom per element: a constant 

term and linear variations in two orthogonal directions. The resulting mixed formulation avoids 

the static indeterminacy associated with purely displacement-based formulations12"14. 

The results for each specimen include an estimate of the_J integral based on a domain 

integral approach. To implement this approach, two concentric contours are described that begin 

on the lower crack face and end on the upper one. The_J integral for the inner contour may be 

restated as an integral involving both contours by using a smooth weighting function1516: 

^/(^  " ^lj)m.q1 dC (10) 
c i 

Here the closed contour C is composed of four contours: Cinner, the inner contour; Couter, 

the outer contour, Cupper, the portion of the upper crack face (see Figure 3), and Clower, the 

corresponding portion of the lower crack face. Also, w is the strain energy density, m, is the jth 

component of the normal pointing away from the enclosed area, and q, is the X! component of a 

certain smoothing function, q. The above equation can be converted to an equivalent area 

integral using the Gauss divergence theorem, giving: 



,,    du. da, 

A l J 

Here A_ is the area enclosed by the contours. In practice, the inner contour is allowed to 

shrink onto the crack tip, the outer contour extends along the edges of the quadrilateral elements, 

and the area integral is approximated using Gauss quadrature formulas and values for the field 

variables evaluated at the integration points for each element16,17. A method for evaluating J for 

general interfacial cracks in bimaterials is given by Shih and Asaro, and allow for separation of 

the energy contributions and determination of K, and K2 using an interaction energy release 

rate16. For the degenerate case discussed here, a simpler methodology can be used to determine 

the overall energy release rate15. The domain integral method of estimating J works well with 

finite element methods and provides for a robust determination of J that is not sensitive to mesh 

construction and that does not require highly accurate stress approximations very near to the 

crack tip. Also, many finite element software programs have built-in algorithms for the 

determination of the _J integral in this manner. The J integral value was used with eqn (8) to 

calculate the magnitude, K, of the complex stress intensity factor. 

Accurate evaluation of the phase angle, T, is then required. Equations (6) and (7) show 

that the arctangent of the traction ratio ojo^ along the bond line is equal to Y in the near tip 

region. Using curve fitting techniques, tan"' [(axy/ayy)e = 0 ] can be evaluated as r - 0 and taken as 

an approximation of T (for the work performed here, a cubic polynomial was used). One 

problem with this method is that inaccuracies in the stress components caused by high gradients . 

near the crack tip make extrapolation of (oxy/oyy)e=0 to_r = 0 difficult. An unrefined mesh that 
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incorporates only a few quarter point elements will exhibit excessive scatter in tan"'[(oxy/oyy)e = 0 ] 

as_r_-* 0, so that this regression technique is unfeasible. This method can be implemented, 

however, with a more refined mesh, such as the one used here, which incorporates approximately 

30 quarter point elements (the number differs for the various crack geometries considered). 

The stresses in a finite element formulation are typically found using derivatives of 

displacement fields based on nodal displacements. Consequently, results for stresses are 

generally less accurate than displacements in any finite element solution. This dictates that, 

when possible, extrapolation techniques should be applied to displacements rather than stresses. 

A method analogous to the stress-based extrapolation technique exists for relative crack face 

displacements10'18. However, this method requires that the two crack faces be initially coincident, 

so that this technique cannot be easily applied to the current geometry, which incorporates crack 

faces with finite separation. 

In this work, J integral values were used to evaluate K, and bond line traction data was 

used to determine Y, the phase angle of K. Results are presented and compared with the 

photoelasticity results next. 

RESULTS 

Figure 4 shows a set of representative contour plots; the plots are for a crack orientation 

of 45°. The relative size of the two sets of fringe loops is caused by mismatch of the two elastic 

moduli; the shape of the o^ and oxy contours remains invariant with respect to mode mixity. 

Other stress variables, however, such as the maximum in-plane stress, are strong functions of 

mode mixity. Table 1 summarizes the results for both the magnitude and phase of K. 

Experimental and computational results agreed well. With the T = 0° and V = 15° specimens, the 
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photoelastic results were high due to the effect previously mentioned: residual and machining 

stresses incorporated into the specimen during fabrication influence the gradient of the fringe 

patterns in the vertical direction, and this gradient is used in the determination of K. 

Table 1 also shows the phase angle results. The worst discrepancy between the numerical 

and experimental results was for the Y = 45° bimaterial specimen, in which case the values 

differed by 4.2°. This is accurate enough for most applications, however, if necessary, other 

methods may be used to obtain additional improvements in accuracy of phase angle 

determination16'17. However, the method shown above is often preferable because of its 

simplicity compared with other procedures. 

CONCLUSIONS 

The fracture mechanics of interfacial cracks in incompressible bimaterials subject to 

plane strain conditions closely resembles those for homogeneous materials subject to 

mixed-mode loading. Static indeterminacy can cause inaccuracies unless a mixed formulation is 

used. Numerical modelling can be used to characterize the complex stress intensity factors for 

various specimen geometries. The magnitude of K can be evaluated fromJ_ integral calculations, 

and the phase angle of K can be determined by extrapolating field variables such as the bond line 
At- 

traction data.   Mesh refinements should include numerous quarter point elements near the crack 

tip so that phase angles can be evaluated using extrapolation of bond line traction data. 
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Table 1    Comparison of numerical modelling and photoelastic 
results for stress intensity factors 

magnitudes [kPa m"2] phase angles [degrees] 

applied stress crack computational       experimental      computational experimental 
[kPa] orientation 

60.3 0 15.8 19.0 4.0 0.0 

96.5 15 24.0 30.2 11.5 7.8 

96.5 30 20.8 20.3 19.5 17.1 

48.3 45 7.2 8.3 25.8 30.0 
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Figure 1 - Typical finite element mesh used in numerical computations (crack orientation = 15 

degrees) 

Figure 2 - Detail of finite element mesh near the crack tip (crack orientation = 15 degrees) 

Figure 3 - Evaluation of J integral using domain integral method 

Figure 4 - Contour plots of normal and shear stresses near the crack tip (bimaterial specimen, crack 

orientation = 45 degrees) 
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Abstract 

Numerical modelling of a photoelastic experiment is discussed. The experiment examined incompressible materials under plane strain 
conditions, which results in a simplified analysis owing to a vanishing of the bimaterial parameter. The photoelastic experiment used the 
stress freezing method to determine near tip stresses in interfacial cracks in bimaterial specimens. Different crack orientations were used to 
produce different mode mixities. Photoelastic fringe patterns were analyzed to determine the magnitude and phase angle of the complex 
stress intensity factor. These experiments were modeled using a finite element analysis to determine the field variables near the tips of the 
interfacial cracks. Magnitudes of the complex stress intensity factors are found from / integral values, derived using the domain integral 
approach, and the phase angles are determined using extrapolation of the bond line traction data to r = 0. The results show that this approach 
is a useful way to characterize completely the complex stress intensity factor in incompressible linear elastic bimaterial combinations under 
plane strain conditions. © 1999 Elsevier Science Ltd. All rights reserved. 
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Nomenclature 

ß Dundur's second elastic mismatch parameter 
T Crack orientation angle 
e Bimaterial parameter 
6 Angular orientation (second polar coordinate) 
K Kappa 
fi Shear modulus 
v Poisson's ratio 
<Jij Stress tensor component 
""P Complex stress intensity factor phase angle 
E* Bimaterial effective plane strain modulus 
Ei, E2   Plane strain moduli for component materials 
J J integral 
K Complex stress intensity factor 
K complex stress intensity factor magnitude 
r radius (first polar coordinate) 

1. Introduction 

The solution of the general case of an interfacial crack 
lying between two linear elastic isotropic materials was first 
introduced by Williams in 1959 [1]. This boundary value 
problem was solved by determining the eigenvalues for the 

* Tel.: 001 805 275 5323; fax: 001 805 275 5435. 
E-mail address: tim_miller@ple.af.mil (T.C. Miller) 

characteristic equation, resulting in an infinite series of 
eigenvalues with imaginary parts related to the material 
properties of the two materials. The imaginary component, 
e, is an inherent part of the field equations, and causes a 
number of controversies relating to inherent mode mixity, 
stress oscillation, and predictions of crack face interpenetra- 
tion [2,3]. Later works attempted to explain these discrepan- 
cies [4,5]; however, in a large class of problems these 
contradictions are predicted only in regions very close to 
the crack tip and are not significant [2]. Other works 
presented after Williams' showed that other eigenvalues 
existed and solved the problem using alternate methods, 
such as the complex variables formulation of Muskhelish- 
vili. Greater detail is provided in several sources [2,3]. 

A subset of the general interfacial fracture problem is one 
in which both materials are incompressible and plane strain 
conditions exist. In this case, the imaginary part of the 
complex eigenvalues vanishes, and the mechanics of the 
crack are analogous to those of a mixed-mode crack in a 
homogenous material [6,7]. This set of problems includes 
that of an interfacial crack lying between solid rocket 
propellant and a rubber liner. To investigate the propel- 
lant-liner relationship, a set of photoelastic experiments 
was performed that also used incompressible materials 
[6,8]. 

In previous developments, the stress intensity factor in a 
photoelastic material was found using the set of isochro- 
matic fringe loops near the tip of the crack. The location 

1359-8368/99/$ - see front matter € 
PII: S1359-8368(98)00064-X 

1999 Elsevier Science Ltd. All rights reserved. 
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of the point along each fringe that was farthest from the 
crack tip was determined; this set of coordinate data was 
used to determine the stress intensity factor by extrapolating 
the data to r = 0. This technique was developed for mode I 
and for mixed-mode loading [9]; the latter was used for the 
photoelastic experiments discussed here [6]. Because of the 
zero valued bimaterial parameter e, the presence of two 
materials provides no additional complications when using 
this procedure. 

The photoelastic experiments used single edge notched 
tension specimens that incorporated different crack orienta- 
tions to produce different mode mixities. For these types of 
specimen and boundary conditions, an approximate analy- 
tical solution could be constructed [6]. However, more 
complex geometries preclude the use of an analytical 
expression for stress intensity factor calculations. Also, 
many bimaterial combinations cannot be analyzed using 
analogous photoelastic materials without ignoring impor- 
tant features of the material behavior. In such cases, devel- 
oping numerical models may confirm experimental results 
and help extend the predictive capabilities of the research. It 
is with this goal that the numerical models featured here 
were developed. These models simulate the photoelastic 
tests so that the evaluation of stress intensity factor magni- 
tudes and phase angles from numerical models can be 
assessed. A similar method will be used in the study of 
incompressible bimaterial combinations related to solid 
rocket motor design. 

2. Theory 

In general, an interfacial crack between two isotropic 
linear elastic materials will be characterized by a bimaterial 
parameter e [2,3]. 

Eq. (2) by letting 0=0 [2,3]: 

^Kirf) ß = 
jM*2 - 1) - fJ-2(K\  ~ 1) 

^,(K2 + 1) + l*q(K\ + 1) 
(1) 

Here ß is one of the two Dundurs' elastic mismatch para- 
meters, jjb the shear modulus, v Poisson's ratio, and K = 

(3 — v)l{\ + v) in plane stress and (3 — Av) in plane strain. 
The subscripts are used to index the two materials. In a 
region near the crack tip, the higher order terms are negli- 
gible and the field expressions depend only on the singular 
terms [10]: 

1 
o-, PI 

Re(Krie) £ (0) + Im(tfrie) £ (6) I        (2) 

Here the two X functions characterize the angular variations 
of the near tip field. Because in-plane tensile and shear 
loading are coupled, the parameter K characterizes the 
combination of these two effects as a complex stress inten- 
sity factor. The inherent mode mixity is manifested in the 
expression for the traction along the interface, derived from 

(ayy + \a„)^ 
Krl€ 

V277T 

K 

/2l7/' 
-. [cos(e In r) + i sin(e lnr)] 

(3) 

The complex stress intensity factor K = K{ + iK2 = 
Ke ' depends on the geometry, loads, stress state, and mate- 
rials. Inspection of Eq. (3) shows that the bond line traction 
ratio (anJ(Tyy)fj-^t) varies with distance from the crack tip. In 
a region near the crack tip, the phase angles of the left-hand 
and right-hand sides of Eq. (3) differ by e In r. 

tan 
l^vj^oj      a"    L^iJ 

4- ein r (4) 

The magnitude of K is related to J, the contour integral, 
through [2]: 

J 
(Cj + c2) \K\- 

16 cos/;2(7re) 
(5) 

Here cp = 4(1 — vp)/fir in plane strain and 4/(^,(1 + vp)) 
in plane stress. Eqs. (l)-(5) show that the presence of the 
nonzero bimaterial parameter e causes complexities not 
present in the consideration of homogeneous materials. 
However, in the special case where both materials are 
incompressible and plane strain conditions prevail, then 
v\ = v2 = 1/2 and Kp — (3 — Avp); substitution into Eq. 
(1) shows that ß = e = 0 in these circumstances. Introdu- 
cing e = 0 into Eqs. (3)-(5) gives simplified expressions for 
the degenerate case [6,7]': 

(<7VV + i er,.,.)^. 
K 

*■ = tan' 'UJ tan LUJ«J 

J 

1    _  1 

P ~~ 21E L Ei       E2\ 

(6) 

(7) 

(8) 

E, = 
1-rf' 

E,= 
1 - »4 

The phase angle of the complex stress intensity factor is 
shown here as SP and the effective plane strain elastic modu- 
lus E* depends on the plane strain elastic moduli of the two 
materials. Eqs. (6)-(8) show that the solution for an inter- 
facial crack in an incompressible bimaterial pair under plane 
strain conditions is analogous to that of a homogeneous 
material with mixed-mode loading. The ratios (K2/Kl) and 
(crvv/crvv)e=n are equal in the near tip region and J and K are 
related   through   a   modulus   parameter.   The   additional 

1 Because vt = i>2 = 1/2, additional simplifications could be made to Eq. 
(8). but it has been presented as shown to preserve the meaning of the 
parameters. 
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glued to aluminum 
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Araldite 

Araldite and 
aluminum powder 

Loading point 

Fig. 1. Typical finite element mesh used in numerical computations (crack 

orientation = 15 degrees). 

complexities of stress oscillations, inherent mode mixity, 
and crack face interpenetration are no longer present. 

In the photoelastic experiment, mode mixity was varied 
by maintaining the vertical loading direction while testing 
specimens that have different crack orientations. Denoting 
the angle the crack makes with respect to the mode I loading 
orientation   by   T,   the   photoelastic   experiments   used 

OTtf 

Fig. 2. Detail of finite element mesh near the crack tip (crack orientation = 

15 degrees). 

specimens with crack orientations of T = 0°, 15°, 30°, and 
45°. For T = 0° (model I loading), the stress intensity factor 
phase angle equals zero. The mode mixity and phase angle 
of K increase in an approximately linear way with increases 
in T [6,8]. 

3. Discussion 

Fig. 1 shows a representative specimen modelled using 
finite element analysis [6,8]. The set of investigations on 
which the numerical models is based used a photoelastic 
polymer, araldite, loaded above its stress freezing tempera- 
ture of 116°C. The second material is composed of araldite 
and aluminum powder, so that the two materials have 
moduli of 18.6 and 36.9 MPa, respectively, above the stress 
freezing temperature. The latter material is opaque because 
of the introduction of the aluminum powder, so that photo- 
elastic fringe data is only available for the upper half of each 
specimen. Above the stress freezing temperature, both 
materials are incompressible. The two materials were 
bonded together using a thin layer (less than 0.5 mm) of 
photoelastic adhesive. The material properties of the adhe- 
sive layer were similar to that of the araldite-aluminum; 
later work confirmed that the presence of a thin adhesive 
layer causes no significant changes in the relationship 
between the loads and the complex stress intensity factor 

[11]. 
To simulate cracks, notches were machined along the 

interfaces to a depth of 9.5 mm. Loading was accomplished 
using freely rotating aluminum grips to which the specimens 
were bonded, and photoelastic fringe patterns of the loaded 
specimens were recorded for analysis [7,8]. 

The complex stress intensity factor was analyzed using 
fringe loop data from the araldite portion of the specimens. 
The fringe orders and locations of the maximum radii of the 
fringe loops near the crack tip were recorded. By extrapo- 
lating the data to the crack tip, the complex stress intensity 
factor can be evaluated. This method overestimated the 
value of applied K for the smaller crack angles because of 
the influence of residual stresses and machining stresses on 
the fringe patterns. An analytical model was developed that 
modified predictions for an edge cracked geometry with 
finite width effects and notch effects. The experimental 
results shown in this work are the results of analysis of stress 
frozen slices taken from the mid-thickness of the specimens 
so that the data from the experiment represents plane strain 
conditions [6,8]. 

Fig. 1 shows a typical finite element mesh. Eight-noded 
quadrilateral elements are used throughout the mesh. Quar- 
ter point elements surround the crack tip in a spider web 
formation as shown in Fig. 2. The boundary conditions were 
vertical displacements applied at the outside middle nodes 
of the aluminum grips (see Fig. 1). This type of loading 
closely resembled the pin loading of the actual specimens; 
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Fig. 3. Evaluation of J integral using domain integral method. 

rotation at the grips significantly affects the mode mixity at 
the crack tip. 

One complication that arises in the modelling of elastic 
incompressible materials is the indeterminacy of conven- 
tional finite element formulations. Typically, a finite 
element formulation solves for the displacement compo- 
nents at the nodes in the mesh. The solution will be the 
configuration that minimizes the potential energy of the 
mesh, and, in the approximate sense, the potential energy 
of the continuum that the mesh represents. The strains and 
stresses are derived from the nodal displacements using 
shape functions and constitutive relationships. Usually, a 
single set of displacements, strains, and stresses minimizes 
the potential energy of the mesh. However, with incompres- 
sible materials, addition of an arbitrary pressure term yields 
another solution that minimizes the potential energy, so that 
there are an infinite number of solutions. To resolve this 
dilemma, the finite element problem is formulated with 
the hydrostatic component of stress as an additional solution 
variable. For the eight-noded quadrilateral elements used 
here, this resulted in three additional degrees of freedom 
pet element: a constant term and linear variations in two 
orthogonal directions. The resulting mixed formulation 
avoids the static indeterminacy associated with purely 
displacement-based formulations [12-14]. 

The results for each specimen include an estimate of the J 
integral based on a domain integral approach. To implement 
this approach, two concentric contours are described that 
begin on the lower crack face and end on the upper one. 
The J integral for the inner contour may be restated as an 
integral involving both contours by using a smooth weight- 
ing function [15,16]. 

=\c{
ar^-w8'¥]Chdc (9) 

Here the closed contour C is composed of four contours: 
Cinner> the inner contour, Couter, the outer contour, Cupper, the 
portion of the upper crack face (see Fig. 3) and C|0Wcr, the 
corresponding portion of the lower crack face. Also, w is the 
strain energy density, m-t is the y'th component of the normal 
pointing away from the enclosed area, and 171 is the xt 

component of a certain smoothing function, q. The above 
equation can be converted to an equivalent area integral 
using the Gauss divergence theorem, giving: 

f   /     9«, s \d<7i 6A (10) 

Here A is the area enclosed by the contours. In practice, the 
inner contour is allowed to shrink onto the crack tip, the 
outer contour extends along the edges of the quadrilateral 
elements, and the area integral is approximated using Gauss 
quadrature formulas and values for the field variables eval- 
uated at the integration points for each element [16,17]. A 
method for evaluating J for general interfacial cracks in 
bimaterials is given by Shih and Asaro, and allows for 
separation of the energy contributions and determination 
of K\ and K2 using an interaction energy release rate [16]. 
For the degenerate case discussed here, a simpler methodol- 
ogy can be used to determine the overall energy release rate 
[15]. The domain integral method of estimating J works 
well with finite element methods and provides for a robust 
determination of J that is not sensitive to mesh construction 
and that does not require highly accurate stress approxima- 
tions very near to the crack tip. Also, many finite element 
software programs have built-in algorithms for the determi- 
nation of the J integral in this manner. The J integral value 
was used with Eq. (8) to calculate the magnitude, K, of the 
complex stress intensity factor. 

Accurate evaluation of the phase angle, *P, is then 
required. Eqs. (6) and (7) show that the arctangent of the 
traction ratio crxJa>y along the bond line is equal to ty in the 
near tip region. Using curve fitting techniques, 
tan_1[(o;vv/o

-
vv)e=ol can be evaluated as r—»0 and taken 

as an approximation of ty (for the work performed here, a 
cubic polynomial was used). One problem with this method 
is that inaccuracies in the stress components caused by high 
gradients near the crack tip make extrapolation of 
(<rvl./crvv)0=0 to r = 0 difficult. An unrefined mesh that incor- 
porates only a few quarter point elements will exhibit exces- 
sive scatter in tan- [(crAT/o

-
).v)fl=o] as r ~* 0> s0 tnat this 

regression technique is unfeasible. This method can be 
implemented, however, with a more refined mesh, such as 
the one used here, which incorporates approximately 30 
quarter point elements (the number differs for the various 
crack geometries considered). 

The stresses in a finite element formulation are typically 
found using derivatives of displacement fields based on 
nodal displacements. Consequently, results for stresses are 
generally less accurate than displacements in any finite 
element solution. This dictates that, when possible, 
extrapolation techniques should be applied to displace- 
ments rather than stresses. A method analogous to the 
stress-based extrapolation technique exists for relative 
crack face displacements [10,18]. However, this method 
requires that the two crack faces be initially coincident, 
so that this technique cannot be easily applied to the 
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(a) 

normal stress [kPa] 
-18.76 
-6.27 
+6.27 

+ 18.76 
+31.31 
+43.86 
+56.41 
+69.00 

+ 1000.00 

* 

(b) zz, 
shear stress [kPa] 

-18.76 
-9.38 
-3.13 
+3.13 
+9.38 

+ 18.76 
+21.93 
+28.20 
+34.48 

+338.62 

Fig. 4. Contour plots of normal and shear stresses near the crack tip (bimaterial specimen, crack orientation = 45 degrees). 

Table 1 

Comparison of numerical modelling and photoelastic results for stress intensity factors 

Applied stress (kPa) Crack orientation (degrees) 

Magnitudes (kPa m"2) 

Computational Experimental 

Phase angles (degrees) 

Computational Experimental 

60.3 

96.5 

96.5 

48.3 

0 

15 

30 

45 

15.8 

24.0 

20.8 

7.2 

19.0 4.0 
30.2 11.5 
20.3 19.5 

8.3 25.8 

0.0 

7.8 

17.1 

30.0 
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current geometry, which incorporates crack faces with finite 
separation. 

In this work, J integral values were used to evaluate K, 
and bond line traction data was used to determine ty, the 
phase angle of K. Results are presented and compared with 
the photoelasticity results next. 

4. Results 

Fig. 4 shows a set of representative contour plots; the 
plots are for a crack orientation of 45°. The relative size 
of the two sets of fringe loops is caused by mismatch of 
the two elastic moduli; the shape of the o\T and axy contours 
remains invariant with respect to mode mixity. Other stress 
variables, however, such as the maximum in-plane stress, 
are strong functions of mode mixity. Table 1 summarizes 
the results for both the magnitude and phase of K. Experi- 
mental and computational results agreed well. With the T = 
0° and T = 15° specimens, the photoelastic results were high 
because of the effect previously mentioned: residual and 
machining stresses incorporated into the specimen during 
fabrication influence the gradient of the fringe patterns in 
the vertical direction, and this gradient is used in the deter- 
mination of K. 

Table 1 also shows the phase angle results. The worst 
discrepancy between the numerical and experimental results 
was for the T = 45° bimaterial specimen, in which case the 
values differed by 4.2°. This is accurate enough for most 
applications, however, if necessary, other methods may be 
used to obtain additional improvements in accuracy of phase 
angle determination [16,17]. However, the method shown 
above is often preferable because of its simplicity compared 
with other procedures. 

5. Conclusions 

The fracture mechanics of interfacial cracks in incom- 
pressible bimaterials subject to plane strain conditions 
closely resembles those for homogeneous materials subject 
to mixed-mode loading. Static indeterminacy can cause 
inaccuracies unless a mixed formulation is used. Numerical 
modelling can be used to characterize the complex stress 
intensity factors for various specimen geometries. The 
magnitude of K can be evaluated from J integral calcula- 
tions, and the phase angle of K can be determined by extra- 
polating field variables such as the bond line traction data. 
Mesh refinements should include numerous quarter point 
elements near the crack tip so that phase angles can be 
evaluated using extrapolation of bond line traction data. 
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