
 
There are many systems in nature in which a large 
assembly of autonomous parts (agents) interacting 
locally, in the absence of a high-level global controller, 
can give rise to highly coordinated and optimized 
behavior. The complex adaptive behavior of global-level 
structures that emerges is a consequence of nonlinear 
spatio-temporal interactions of local-level processes or 
subsystems. This form of nested co-optation (across 
levels of organization) constitutes isolated cells, 
organisms, societies and ecologies. Systems of this type 
are governed by universal principles of adaptation and 
self-organization, in which control and order is emergent 
rather than predetermined, i.e., cannot be derived simply 
from their concatenated fractions but evolves 
"relationally", i.e., it emanates from emergent internal 
requirements of the constitutive �parts within parts�. 
 
Evolution in heart rate variability dynamics was used as 
measure of the capacity of the transplanted human heart 
to express newly emergent regulatory order. In a cross-
sectional study consisting of 100-patients post (0-10 yrs) 
heart transplantation (HTX), heart rate dynamics was 
assessed using pointwise correlation dimension (PD2) 
analysis. In general, the number of variables required to 
characterize the time-dependent events of a dynamic 
system determines its �dimensionality�. PD2 of 4-5 in 
normal subjects is expected to reflect the minimum 
number of independent control variables, i.e., degrees of 
freedom that define the dynamics of the cardiac 
pacemaker. How precisely the interaction of the 
components comprising the autonomic nervous system 
translate into a system dimension that is greater than the 
mere number of known pacemaker control loops 
(attributable to the parasympathetic and sympathetic 
system) remains to be elucidated. Nevertheless, the 
number of control variables involved in the "regulation" 
of the HR-dynamics is considerable less than the number 
of neuromodulators known to alter sinus node 
automaticity. This is consistent with the view that a 
dissipative system having a large number of state 
variables does not traverse the whole of its state-space 
but operates within a bounded subset, defined by only 
few variables.  
 

 
Commencing with the acute event of transplantation, the 
dynamics of cardiac rhythm formation exhibited a 
number of phase transitions. Shortly after implantation, 
the donor heart manifested a metronome-like behavior 
(PD2~1.0). The dimensional trajectory of HRV reached a 
peak value of PD2~2.0 at 11 to 100 days post-HTX. The 
subsequent dimensional collapse to PD2~1.0 at 20-30 
month post-HTX was followed by a progressive near 
linear gain in the functional order of the rhythm 
generating system, reaching PD2~3.0 at 7-10 years post-
HTX (see Figure).  

 
Figure: Phase-plane portraits (Poincare' plots) of 
cardiac allograft RR-interval time-series, in route 
to/from complex dynamics with its respective 
attractor dimension (point correlation 
dimension-PD2). 
 
The "dynamic reorganization" of the rhythm generating 
system of the transplanted heart, seen in the first 100 
days can be attributed to adaptive capacity of intrinsic 
control mechanisms carried together with the donor 
organ. It is important to emphasize that the HRV 
dynamics in early stage of post-HTX (within first 100 
days) are in fact generated by a system devoid of central 
autonomic control, thus implicating a causative role to 
the intrinsic cardiac regulation. The fact that a finite 
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dimensionality associated with the heart rhythm 
generator was observed implies that the allograft is not 
merely a passive participant in the assimilation process 
within the host "landscape". Importantly, the 
decentralized heart is capable of expressing new patterns 
of self-regulation. The fact that the heart can restitute the 
multi-dimensional dynamics, relatively independent of 
external command and control, is an impetus for 
reassessing the prevailing paradigm of cardiac regulation 
and adaptation. 
 
The denervated heart offers a unique experimental model 
to study the reassembly of the mechanisms responsible 
for a complex HR dynamics. The transplanted heart 
cannot benefit from fixed structural arrangement of 
feedback mechanisms, i.e., homeostatic goal directed 
behavior. Viewing the heart as an open system may 
prove to be useful in the understanding of organizational 
forces involved in restituting a system that exhibits a 
higher order of behavior. The progressive gain in HRV-
dimension indicates some degree of restitution of 
"functional complexity" to cope with perturbations as 
they arise. Otherwise, the system would get "stuck in a 
rut" once it settles in stable environment, where the 
dynamics of operating point that is restricted in time to a 
fixed state space attractor.  
 
The observed gain in dimensional complexity may be a 
product of newly evolved interactions and/or 
reinforcement of existing local control mechanisms that 
may facilitate new modes of regulatory function, i.e., 
emergent order. Specifically, upregulation of existing 
(dormant, less active) modes of sinus node modulation, 
such as mechanical stretch or activation of intrinsic 
neuroendocrine system are possible candidates involved 
in the emergence of new regulatory patterns. 
 
The biological implications associated with observed 
HRV-changes post-HTX go beyond the simple 
characterization of sinus node pacemaker function. In a 
centrally denervated heart, the modulatory response of 
cardiac rhythm dynamics is indicative of regulatory 
function of intrinsic cardiac neuroendocrine mechanisms 
[1]. The highly distributed nature of the intrinsic cardiac 
nervous system enables it to integrate changes in the 
chemical milieu and mechanical state of the myocardium. 
The organization of complex intrinsic feedback systems  
constitutes a functional "heart-brain" that may participate 
actively in the cardiac response to environmental 
changes. The dynamic interactions among functional 
components intrinsic to the heart, e.g., neurons and 

endothelium, give rise to a complex self-regulating 
organ-system. The transplanted heart, in its encounter 
with the host, manifests many of the attributes 
characterizing "complex adaptive systems": network of 
interacting components, organizational order, multi-
functionality, and fluctuation in system parameters. An 
early surge in dimensional order (PD2) of heart-rate 
generator proved to be a characteristic feature of donor 
heart-recipient dynamic interaction. Structural and 
functional uncoupling resulting from an imposed 
allostatic load, e.g., organ rejection [2], can trigger a 
loss/decline in network (hypercycles) of regulatory 
organization, manifested as a reduction in the dimension 
of HRV state-space attractor. 
 
The transition in the heart-rate generator "dimension" 
(gain/loss) may help in quantifying, at least in some 
reproducible way, the functional reserves and adaptive 
capacity of the intrinsic control mechanisms. This 
conceptual framework goes beyond the view that 
fluctuations in HRV are simply random events. 
Adaptation of the heart to its host is an impetus for 
greater level of functional integrity, i.e., higher system 
dimension, emergence of pattern and order. From a 
system theory standpoint, a system that is endowed with 
greater number of degrees of freedom is more robust and 
has a greater ability to accommodate imposed 
disturbances. In general, biological systems, independent 
of hierarchical organization (molecular to multi-cellular), 
normally operate such that a finite number of regulatory 
modes can be invoked. It seems that most of 
physiological time-series data are restricted in 
dimensional complexity to 3-6 degrees of freedom.  
 
Chaotic systems are very susceptible to changes in initial 
conditions, i.e., small changes in a parameter of chaotic 
system can produce very large changes in the output, i.e., 
poised at the "edge of chaos" [3,4]. This allows the 
system to switch from one state to another rather quickly. 
It may be that chaotic regime enables the heart to exert its 
function such that regulatory changes can be achieved 
with minimal external input, reminiscent of "self-
organized criticality" seen in other physical phenomena. 
From a standpoint of economy of performance (energy 
use, responsiveness) there must be some upper limit set 
on the number of active degrees of freedom (control 
variables) that can or need be summoned.  
 
The explanatory model of the newly emergent functional 
order attributable to graft-host interaction may benefit by 
evoking organizing principles of "co-evolution".  



The heart is an organ endowed with an adaptive plasticity 
(genotypic / phenotypic memory) and capacity to 
assimilate ("fitness capacity") within the host and in the 
process modify the environment determining the fate of 
the body system as whole.  
 
The principles by which "emergent properties" and 
functional order of self-organizing system, such as the 
heart, achieve homeodynamic stability provide a 
non-reductionist framework for understanding how 
biological system adapt to imposed internal and external 
stresses, i.e., ischemia, organ/tissue replacement. Thus, 
the newly emergent dynamics of cardiac rhythm arising 
after heart transplantation may represent a more stable, 
versatile and adaptive regulatory order.   
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