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(4)     Introduction 

Previous studies have found that there is a strong correlation between mammographic 
breast density and the risk of breast cancer. Mammographic breast density has been used by 
researchers in many studies to estimate breast cancer risk of epidemiological factors, monitor the 
effects of preventive treatments such as tamoxifen or dietary interventions, monitor the breast 
cancer risk of hormone replacement therapy, and investigate factors affecting mammographic 
sensitivity and cancer prognosis. However, most studies used Breast Imaging Reporting and 
Data System (BI-RADS) density rating as a measure of mammographic breast density, which 
contributes large inter- and intraobserver variations and may reduce the sensitivity of the 
analysis. 

The goal of this proposed project is to develop a fully automated technique to assist 
radiologists in estimating mammographic breast density. We hypothesize that the computerized 
technique can accurately and efficiently segment the dense area on digitized or digital 
mammograms, thereby eliminating inter- and intra-observer variations. The dense area as a 
percentage of total breast area thus estimated will be more consistent and reproducible than 
radiologists' subjective BI-RADS rating. To accomplish this goal, we will (1) collect a large 
database of normal mammograms, including digitized film mammograms and digital 
mammograms, for training and testing the dense area segmentation program; (2) evaluate the 
correlation between the radiologists' breast density classification based on BI-RADS lexicon and 
the percent breast dense area; and (3) study the correlation of percent breast dense area between 
different views of the same breast and between the same view of the two breasts; and (4) 
investigate the correlation between the percent breast dense area estimated from mammograms 
and the volumetric dense breast tissue estimated from a data set of magnetic resonance (MR) 
breast images. These comparisons will provide important information regarding the consistency 
of the BI-RADS rating with the measured percent breast dense area, the appropriate measure of 
% dense area from different mammographic views, and the usefulness of using the percent breast 
dense area on mammograms as an indicator of volumetric breast tissue density. 

It is expected that this project will produce a fully automated and effective tool for analysis 
of mammographic breast density, which can be applied to routinely acquired mammograms 
without special calibrations. This will facilitate studies of various factors associated with breast 
cancer risk and mammographic sensitivity, and monitoring the effects of interventional or 
preventive strategies. The image analysis tool will therefore contribute to the understanding of the 
relationship of density to breast cancer risk, detection, prognosis, and to the prevention and 
treatment of breast cancer. 
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(5)     Body 

In the current project year (7/1/01-6/30/02), we have performed the following studies: 

(A) Collection of Database 

We have obtained the research log (with IRB approval) of the previous research project 
that developed a dynamic MR imaging technique for the characterization of breast lesions. 
Based on the record, we found the mammographic files of 69 patients who have corresponding 
MR breast images and mammograms that are useful for the current study. The other cases have 
incomplete records, such as mammograms missing from the patient files, certain MR sequences 
not available. We will continue to track these cases to see if some of the missing information can 
be located. We have developed a database to categorize the cases for our project. The database 
includes the digitized mammograms, the corresponding MR images, and the pathological 
information obtained from biopsy. We have digitized the mammograms and archived them in 
our jukebox. For the MR study, we have retrieved the digital files from the archive in the MR 
laboratory, transferred all the files to our jukebox, and extracted the pre-contrast sequences for 
our analysis. 

The MR image series used in this study included coronal 3D Ti-weighted pre-contrast 
images acquired with the following technique: coronal sections 2-5 mm thick, 32 slices; 3D 
Spoiled Gradient-Recalled Echo (SPGR); TE=3.3ms; TR=10ms, Flip=40°, matrix=256xl28, 
FOV=28-32cm right/left, 14-16cm superior/inferior, scan time=2 min 38 sec. This 3D SPGR 
sequence produced full volume coverage of both breasts with contiguous image slices. An 
example of images from one breast is shown in Fig. 1. Although this is not the optimal pulse 
sequence for separating water and fat, the fibroglandular parenchyma (-water) and fatty tissue are 
well separated with the heavily Ti-weighted acquisition and therefore the series was chosen for 
the study. 

(B) Development of Graphical User Interface (GUI) for Analysis of MR Images 

We have developed a GUI for analysis of the MR images semi-automatically. The GUI 
was written based on Matlab in an AlphaStation. The GUI first displays all slices of the pre- 
contrast MR sequence of one breast and the corresponding mammogram of the same breast (Fig. 
1). The user can switch between the craniocaudal (CC) or the mediolateral oblique (MLO) view 
mammogram for comparison. The computer then displays each MR slice sequentially (Fig. 2). 
For each slice breast boundary is first detected automatically. A low pass filtering is employed 
within the breast boundary to estimate the low-frequency gray level background trend due to the 
field non-uniformity of the breast coil. The low frequency background is subtracted from the 
original image. After background correction, the histogram within the breast region is 
determined and interactive thresholding is used to separate the fibroglandular tissue region 
(displayed as dark) from the fatty tissue (white) region. After the segmentation is performed for 
all slices, the total fibroglandular tissue volume in the breast is estimated by summing the dark 
voxels over all slices, and the total breast volume is estimated by summing all the voxels within 
the breast. The percent fibroglandular tissue volume can then be derived as the ratio of the total 
fibroglandular tissue volume to the total breast volume. Some of the segmentation steps are 
detailed below: 

Breast segmentation 
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We performed the analysis for each individual breast. The breast region in the MR slices 
of the anterior portion of the breast can be easily segmented from the background by automatic 
edge detection. As the slices get close to the chest wall, the breast tissue merges with the chest 
tissue. Often there is no distinguishable boundary between the breast tissue and the chest tissue 
in these slices. An expert breast radiologist will inspect the computer segmentation on the GUI 
slice by slice and correct the edge location if necessary (Fig. 3). In our GUI, several options for 
boundary correction are available. The first option is to use a snake algorithm to push the initial 
boundary to be closer to the actual boundary. The user can determine when to stop the iteration. 
The second option is to use an active contour algorithm to push the initial boundary to the actual 
boundary. This is similar to the snake algorithm except that the energy terms are different. The 
third option is to manually move the edge, which is represented by a polygon with an edge point 
at each apex, to the user chosen location. The last option is to manually draw a new edge by 
choosing the apex points of a polygon. 

Background correction 

Background correction is applied to the breast region within the detected boundary. We 
have evaluated two background correction methods: (1) A low pass filtering method in which 
the low frequency gray level background of the breast is estimated by low-pass filtering and 
subtracted from the original image. (2) A distance-weighted background estimation method in 
which a given pixel in the background image is calculated as the weighted sum of the four 
boundary pixels. The weights are estimated by the inverse distance from the breast boundary to 
the given pixel. The background image is then subtracted from the original image. 

After comparison with a large number of images, it was found that the second method is 
more robust than the first. The first method tends to overestimate the background for images 
containing a large area of fibroglandular tissue. The second method can closely approximate the 
background gray level trend and correct for the non-uniform background in the original image. 

Gray level thresholding 

Gray level thresholding is used to separate the fibroglandular tissue from the fatty tissue. 
We employ an interactive thresholding method in which the gray level histogram of the breast 
region is displayed on the GUI. The thresholded image where the dense tissue is displayed as 
dark voxels and fatty tissue is displayed in white is also displayed and updated instantly 
whenever the threshold is changed. By comparing the thresholded image and the original image 
side-by-side, the user can adjust the threshold, using the threshold slider under the histogram, 
until the fibroglandular tissue is extracted from the fatty background. 

Density mask 

In many MR slices, the skin forms a ring of dark voxels around the breast boundary. To 
exclude these skin voxels from being counted as fibroglandular tissue, a density mask is defined 
by applying morphological erosion to the breast boundary to obtain a mask slightly smaller than 
the breast region.    The user can choose the structure element size for the morphological 
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Operation. The resulting density mask is displayed superimposed on the thresholded breast image 
so that the user can judge if the skin voxels are excluded from the mask region. 

Percent fibroglandular tissue volume calculation 

After the segmentation process is applied to all slices of the MR sequence of the breast, 
all voxels within the density mask in each slice are summed over the entire breast to obtain the 
fibroglandular tissue volume in the breast. Similarly, the voxels within the breast boundary in 
each slice are summed over all slices to obtain the total volume of the breast. The ratio of the 
fibroglandular tissue volume to the total breast volume yields the percent volumetric 
fibroglandular tissue in the breast. 

Fig. 1. The first screen of the graphical user interface that we developed for analysis of the MR 
breast images. The analysis was performed one breast at a time. The displayed slices on 
the left showed the MR sequence from the nipple to the chest wall of a coronal MR 
image sequence. The corresponding mammogram of the same breast is shown in the 
lower middle. The mammogram can be switched between the CC view and the MLO 
view. 
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Figure No.: 2: DehThr ■ 

MRI   Density  Segmentation 

background corrected 

Fig. 2. The second screen of the GUI. The MR sequence is analyzed one slice at a time. The 
breast boundary was detected. The non-uniform gray level background was estimated by 
low-pass filtering and subtracted from the original image. The background corrected 
image is shown in the middle. The histogram of this image is obtained and displayed at 
the bottom of the screen. The user interactively thresholds the image. The image results 
from thresholding is shown on the right. The user subjectively determines the proper 
threshold for separately the fibroglandular tissue from the fatty tissue. 
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Fig. 3. The third screen of the GUI. If the user is 
not satisfied with the breast boundary 
displayed on the second screen, the user 
can click a boundary correction button on 
the second screen and get to this third 
screen. In this screen, the automatically 
detected edge is displayed on the breast 
slice. The user can use a snake algorithm 
to move the edge automatically, or 
manually adjust the edge location by 
moving the edge points individually. 

Fig. 4. The fourth screen of the GUI. After 
edge detection, background correction, 
and thresholding, the user can generate a 
"density mask" to define the region 
where the thresholded black voxels 
representing the fibroglandular tissue 
should be summed. The mask excludes 
the skin layer from the black voxels by 
applying morphological erosion to the 
breast boundary. 

(C)      Estimation of Percent Dense Area on Mammograms 

We are developing an automated image analysis tool., Mammographic Density 
ESTimator (MDEST), to assist radiologists in estimating mammographic breast density. 
MDEST performs dynamic range compression, breast boundary tracking, pectoral muscle 
segmentation for the MLO view, automatic thresholding based on gray level histogram analysis, 
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and calculates the percent dense area on a mammogram. In a preliminary study, we found that 
the correlation between the computer-estimated percent dense area and radiologists' manual 
segmentation was 0.94 and 0.91, respectively, for CC and MLO views, with a mean bias of less 
than 2%. As a result of this study, a journal article was published in the Medical Physics Journal 
[ref. 1]. 

(D)      Correlation between Percent Dense Area and Percent Volumetric Fibroglandular 
Tissue 

To date, we have performed segmentation of the MR images and their corresponding 
mammograms for 37 cases [ref. 2]. Scatter plots of the percent volumetric fibroglandular tissue 
versus the percent dense area on mammograms are shown in Fig. 5(a) and 5(b) for the CC- and 
MLO-view mammograms, respectively. The correlation of percent dense area of the CC and 
MLO views with the percent volumetric fibroglandular tissue on MR images was found to be 
0.93 and 0.91, respectively, with a mean bias of 4.4%. 

10      20      30      40      50 

% Area-CC View 

(a) 

i   i 

10     20     30     40     50     60 
% Area-MLO View 

(b) 

Fig. 5. Correlation of % volumetric fibroglandular tissue on MR images with % dense area on 
mammograms for 37 patients. The left and right breasts are plotted as separate data points 
on each graph. The dash lines are linear least squares fits to the data points. 

(6)     Key Research Accomplishments 

• Collect the database of MR breast image sequence and the corresponding mammograms from 
the previous MR dynamic imaging study (Task 1 and Task 3) 

• Develop the Graphical User Interface (GUI) for interactive segmentation of the MR images 
(Task 3). 

• Develop preliminary methods for automated estimation of mammographic density (Task 2). 
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Analyze 37 cases of the MR images and mammograms and study the correlation between the 
percent volumetric fibroglandular tissue and percent mammographic dense area (Task 3). 

Present preliminary results at the International Workshop for Digital Mammography (IWDM) 
in Bremen, Germany. 

(7)     Reportable Outcomes 

As a result of the support by the USAMRMC BCRP grant, we have conducted studies to 
investigate the correlation between mammographic density and MR volumetric fibroglandular 
tissue. The preliminary results were presented in an international conference. A conference 
proceeding paper will be published by the IWDM. In addition, we have developed a preliminary 
method for automated estimation of mammographic density, and performed a study to evaluate 
the correlation between the computer-determined mammographic density and radiologists' 
manual segmentation using interactive thresholding. The results were published in an article in 
the Medical Physics Journal. 

Journal Articles: 

Zhou C, Chan HP, Petrick N, Helvie MA, Goodsitt MM, Sahiner B, Hadjiiski LM. 
Computerized image analysis: Estimation of breast density on mammograms. Medical Physics 
2001; 28: 1056-1069. 

Conference Proceeding: 

Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paquerault S, Sahiner B, Chenevert T, 
Goodsitt MM. Breast density estimation: correlation of mammographic density and MR 
volumetric density. Proceedings of the 6th International Workshop on Digital Mammography. 
IWDM-2002. Bremen, Germany. June 22-25, 2002. (in press). 

Conference Presentation: 

Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paquerault S, Sahiner B, Chenevert T, 
Goodsitt MM. Breast density estimation: correlation of mammographic density and MR 
volumetric density. Poster presentation at the 6th International Workshop on Digital 
Mammography. IWDM-2002. Bremen, Germany. June 22-25, 2002. 

(8)     Conclusions 

During this project year, we have collected the database of cases that have corresponding 
magnetic resonance (MR) images and mammograms acquired in a previous project. We have 
developed methods and a graphical user interface to analyze. MR breast images. The 
fibroglandular tissue in the MR breast images was segmented with a semi-automatic method. 
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We are also developing methods and computer programs, referred to as Mammographic Density 
ESTimator (MDEST), to automatically segment digitized mammograms and estimate the percent 
dense area on CC and MLO views. The preliminary results for analyzing 37 cases indicate 
strong correlation between mammographic density and the volumetric fibroglandular tissue 
estimated from MR breast images. 

These results, although still preliminary, indicate that the usefulness of mammographic 
density as a surrogate for breast density estimation. The automated analysis will provide a 
reproducible and efficient method for analysis of mammographic density. When fully developed, 
MDEST is expected to contribute to the understanding of the relationship of mammographic 
density to breast cancer risk, detection, and prognosis, and to the prevention and treatment of 
breast cancer. 
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Conference Proceeding: 

Chan HP, Hadjiiski LM, Roubidoux MA, Helvie MA, Paquerault S, Sahiner B, Chenevert T, 
Goodsitt MM. Breast density estimation: correlation of mammographic density and MR 
volumetric density. Proceedings of the 6th International Workshop on Digital Mammography. 
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Computerized image analysis: Estimation of breast density 
on mammograms 

Chuan Zhou, Heang-Ping Chan,a) Nicholas Petrick, Mark A. Helvie, Mitchell M. Goodsitt, 
Berkman Sahiner, and Lubomir M. Hadjiiski 
Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0030 

(Received 15 September 2000; accepted for publication 4 April 2001) 

An automated image analysis tool is being developed for the estimation of mammographic breast 
density. This tool may be useful for risk estimation or for monitoring breast density change in 
prevention or intervention programs. In this preliminary study, a data set of 4-view mammograms 
from 65 patients was used to evaluate our approach. Breast density analysis was performed on the 
digitized mammograms in three stages. First, the breast region was segmented from the surrounding 
background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic 
range compression technique was applied to the breast image to reduce the range of the gray level 
distribution in the low frequency background and to enhance the differences in the characteristic 
features of the gray level histogram for breasts of different densities. Third, rule-based classification 
was used to classify the breast images into four classes according to the characteristic features of 
their gray level histogram. For each image, a gray level threshold was automatically determined to 
segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage 
of the breast area was then estimated. To evaluate the performance of the algorithm, the computer 
segmentation results were compared to manual segmentation with interactive thresholding by five 
radiologists. A "true" percent dense area for each mammogram was obtained by averaging the 
manually segmented areas of the radiologists. We found that the histograms of 6% (8 CC and 8 
MLO views) of the breast regions were misclassified by the computer, resulting in poor segmen- 
tation of the dense region. For the images with correct classification, the correlation between the 
computer-estimated percent dense area and the "truth" was 0.94 and 0.91, respectively, for CC and 
MLO views, with a mean bias of less than 2%. The mean biases of the five radiologists' visual 
estimates for the same images ranged from 0.1% to 11%. The results demonstrate the feasibility of 
estimating mammographic breast density using computer vision techniques and its potential to 
improve the accuracy and reproducibility of breast density estimation in comparison with the 
subjective visual assessment by radiologists. © 2001 American Association of Physicists in Medi- 
cine.   [DOI: 10.1118/1.1376640] 

Key words: mammography, computer-aided diagnosis, breast density, breast cancer risk, image 
segmentation, thresholding 

I. INTRODUCTION 

Breast cancer is one of the leading causes for cancer mortal- 
ity among women.1 One in every eight women will develop 
breast cancer at some point in their lives. The most success- 
ful method for the early detection of breast cancer is screen- 
ing mammography. Currently, mammograms are analyzed 
visually by radiologists. Because of the subjective nature of 
visual analysis, qualitative responses may vary from radiolo- 
gist to radiologist. Therefore, a computerized method for 
analyzing mammographic features would be useful as a 
supplement to the radiologist's assessment. Previous re- 
search efforts in computer-aided diagnosis (CAD) for breast 
cancer detection mainly concentrated on detection and char- 
acterization of masses and microcalcifications on mammo- 
grams by using computer vision techniques. It has been dem- 
onstrated that an effective CAD algorithm can improve the 
diagnostic accuracy of breast cancer characterization on 
mammograms, which, in turn, may reduce unnecessary biop- 
sies. In this work, we are studying the feasibility of develop- 

ing a CAD system for an analysis of breast density on mam- 
mograms. Studies have shown that there is a strong positive 
correlation between breast parenchymal density on mammo- 
grams and breast cancer risk.2"9 The relative risk is estimated 
to be about 4 to 6 times higher for women whose mammo- 
grams have parenchymal densities over 60% of the breast 
area, as compared to women with less than 5% of parenchy- 
mal densities. 

An important difference between breast density as a risk 
factor and most other risk factors is the fact that breast tissue 
density    can    be    changed    by    dietary    or    hormonal 
interventions. ' ' Although there is no direct evidence that 
changes in mammographic breast densities will lead to 
changes in breast cancer risk, the strong correlation between 
breast density and breast cancer risk has prompted research- 
ers to use mammographic density as an indicator for moni- 
toring the effects of intervention as well as for studying 
breast cancer etiology.6'11-13 

Different methods have been used for the evaluation of 
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mammographic breast density. Earlier studies used a subjec- 
tive visual assessment of the breast parenchyma primarily 
based on the four patterns described by Wolfe2 (Nl is com- 
prised entirely of fat; PI has up to 25% nodular densities; P2 
has over 25% nodular mammographic densities; DY contains 
extensive regions of homogeneous mammographic densi- 
ties). The subjectivity in classifying the mammographic pat- 
terns introduced large variability in the risk estimation. Later 
studies used more quantitative estimates, such as planimetry, 
to measure the dense area in the breast manually outlined by 
radiologists on mammograms.3,7 These studies indicate that 
the percentage (%) of mammographic densities relative to 
the breast area can predict the breast cancer risk more accu- 
rately than a qualitative assessment of mammographic pat- 
terns. Warner et al.15 conducted a meta-analysis of the stud- 
ies published between 1976 and 1990 to investigate the 
effect of different methods of classification on estimates of 
cancer risk. They found that the mammographic parenchy- 
mal pattern does correlate with the breast cancer risk. The 
magnitude of the risk varies according to the method used to 
evaluate the mammograms. With the quantitative estimates 
of mammographic density, the difference in risk between the 
highest and the lowest risk category is substantial and is 
greater than the risks associated with most other risk factors 
for breast cancer. More recent studies used fractal texture 
and the shape of the gray level histogram14 to quantify the 
parenchymal pattern or used interactive thresholding on digi- 
tized mammograms to segment the dense area.11,15 It was 
reported that the thresholding method provided a higher risk 
value than the texture measure or the histogram shape.16 

Other researchers have attempted to calculate a breast den- 
sity index to model the radiologists' perception.17 

In clinical practice, radiologists routinely estimate the 
breast density on mammograms by using the BI-RADS lexi- 
con as recommended by the American College of 
Radiology18 in order to provide a reference for mammo- 
graphic sensitivity. Because of the lack of a quantitative 
method for breast density estimation, researchers often use 
the BI-RADS rating for monitoring responses to preventive 
or interventional treatment and the associated changes in 
breast cancer risk.19 We have found that there is a large 
interobserver variability in the BI-RADS ratings among ex- 
perienced mammographers.20'21 An automated and quantita- 
tive estimation, as investigated in this study, will provide not 
only an efficient means to measure mammographic density, 
but also a reproducible estimate that will reduce the inter- 
and intraobserver variability of mammographic density mea- 
surements. This image analysis tool will therefore allow re- 
searchers to study more definitively the relationship of mam- 
mographic density to breast cancer risk, detection, prognosis, 
and mammographic sensitivity, and to better monitor the re- 
sponse of a patient to preventive or interventional treatment 
of breast cancers. 

In this paper, we will describe the image processing tech- 
niques used in our automated breast density segmentation 
algorithm. The performance of the computer segmentation 
was evaluated by a comparison with the average segmenta- 
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tion by 5 radiologists using interactive thresholding in the 
same data set. 

II. MATERIALS AND METHODS 

A. Database 

A data set consisting of 260 mammograms of 65 patients 
was used for the development of the histogram analysis 
method in this study. Each case contains the craniocaudal 
(CC) view and the mediolateral oblique (MLO) view of both 
breasts of the patient. The first 50 mammograms were con- 
secutive screening cases from the patient files in the Radiol- 
ogy Department at the University of Michigan. After data 
analysis, it was found that there were very few dense breasts 
in the initial data set. An additional 15 cases visually judged 
by radiologists to be dense breasts were then randomly se- 
lected and mixed with the initial set. The images were pro- 
cessed individually without knowing their BI-RADS catego- 
ries. The mammograms were acquired with mammography 
systems approved by the Mammography Quality Standards 
Act (MQSA) and were digitized with a LUMISYS 85 laser 
film scanner with a pixel size of SOfimXSOfim and 4096 
gray levels. The gray levels are linearly proportional to op- 
tical densities (O.D.) from 0.1 to greater than 3 O.D. units. 
The nominal O.D. range of the scanner is 0-4 with large 
pixel values in the digitized mammograms corresponding to 
low O.D. The full resolution mammograms were first 
smoothed with a 16X16 box filter and subsampled by a fac- 
tor of 16, resulting in 800/tmX800/Lim images of approxi- 
mately 225X300 pixels in size for small films and 300 
X 375 pixels for large films. 

B. Breast segmentation and image enhancement 

The breast image is first segmented from the surrounding 
image background by boundary detection. The detected 
boundary separated the breast from other background fea- 
tures such as the directly exposed area, patient identification 
information, and lead markers. The density analysis was per- 
formed only within the breast region. An automated breast 
boundary tracking technique developed previously22'23 was 
modified to improve its performance. Briefly, the technique 
used a gradient-based method to search for the breast bound- 
ary. The background of the image was estimated initially by 
searching for the largest background peak from the gray 
level histogram of the image. After subtracting this back- 
ground level from the breast region, a simple edge was found 
by a line-by-line gradient analysis from the top to the bottom 
of the image. The criterion used in detecting the edge points 
was the steepness of the gradient of four adjacent pixels 
along the horizontal direction. The steeper the gradient, the 
greater the likelihood that an edge existed at that correspond- 
ing image point. The simple edge served as a starting point 
for a more accurate tracking algorithm that followed. The 
tracking of the breast boundary started from approximately 
the middle of the breast image and moved upward and down- 
ward along the boundary. The direction to search for a new 
edge point was guided by the previous edge points. The edge 
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FIG. 1. (a) A mammogram from our 
image database; (b) the image super- 
imposed with the detected breast 
boundary and pectoral muscle bound- 
ary; (c) the binary map of the seg- 
mented breast region. 

location was again determined by searching for the maxi- 
mum gradient along the gray level profile normal to the 
tracking direction. Since the boundary tracking was guided 
by the simple edge and the previously detected edge points, 
it could steer around the breast boundary and was less prone 
to diversion by noise and artifacts. The accuracy of the 
boundary tracking technique was evaluated in our previous 
study23 by quantifying the root-mean-square differences be- 
tween the detected and manually identified breast bound- 
aries. In the current study, the performance of the boundary 
tracking technique for this data set was determined by super- 
imposing the detected boundary on the breast image and vi- 
sually judged if the detected boundary coincided with the 
perceived breast boundary. The breast image and its bound- 
ary were displayed by appropriately adjusting the contrast 
and brightness. Incomplete, jagged and mistracked bound- 
aries were considered incorrect tracking. 

The unexposed film area around the film edges was de- 
tected automatically. After the breast boundary was found, a 
region growing algorithm was used to fill the enclosed breast 
region. The result was a binary map that distinguished the 
breast region from the background areas. An example of the 
tracked breast boundary and the breast binary map is shown 
in Figs. l(a)-l(c). 

For the MLO view mammograms, an additional step has 
to be performed for segmentation of the pectoral muscle. The 
initial edge in the pectoral region was found as the maximum 
gradient point by a line-by-line gradient analysis from the 
chest wall to the breast boundary. The false pectoral muscle 
edge points were discarded by an edge validation process. 
First, a straight line was fitted to the initial edge points, and 
the points that did not he close to the fitted line were re- 
moved. Second, the remaining edge points that were con- 
nected were identified by an 8-connectivity criterion. An 
edge segment was removed if its direction was inconsistent 
with the pectoral edge direction relative to the breast image. 
Finally, a second order curve was fitted to the remaining 
edge points to separate the pectoral muscle from the breast 
region. The pixels in the pectoral muscle region were ex- 
cluded from the histogram analysis and breast area calcula- 
tion. The accuracy of the pectoral muscle detection was also 
judged visually in this study, similar to the method used for 
the breast boundary described above. Figure 1 shows the 
pectoral muscle trimming result for an MLO view mammo- 
gram. 

To facilitate histogram analysis, a dynamic range com- 
pression method was developed to reduce the gray level 
range of the histograms. With our digitization, the gray lev- 
els of the dense tissue are higher than those of the adipose 
tissue. Because of variations in exposure condition and 
breast thickness near the periphery, the gray level distribu- 
tion corresponding to the breast parenchymal pattern is su- 
perimposed on a low frequency background that mainly rep- 
resents the global variations in exposure. This low frequency 
background distorts the characteristic features of the histo- 
gram due to the density pattern. To reduce the distortion, an 
adaptive dynamic range compression technique was applied 
to the breast image. For a given breast image, F(x,y), which 
contains low frequency background and higher frequency 
breast tissue structures, a smoothed image, FB(x,y), was 
obtained by applying a large-scale box filter to F(x,y) to 
remove the high frequency components while retaining the 
low frequency components. The image FB(x,y) was then 
compressed by a scale factor t. 

Fc(x,y) = kFB(x,y). (1) 

To reconstruct the high frequency components, Fc(x,y), 
was subtracted from a constant gray level G, and added to 
the original image, F(x,y): 

FD(x,y) = G-Fc(x,y), 

FE(x,y)-- ■FD(x,y) + F(x,y). 

(2) 

(3) 

Histogram analysis was applied to the dynamic-range- 
compressed image FE(x,y). Figure 2 shows an example of 
the resulting images and gray level histograms obtained from 
this procedure, where the size of box filter is 35X35, the 
scale factor k is 0.5, and the constant gray level G is the 
maximum gray level of the compressed image Fc(x,y). The 
values of these parameters were chosen experimentally as a 
balance between reducing the dynamic range and preserving 
the image features in the compressed image. 

C. Breast density segmentation and estimation 

A rule-based threshold technique was developed to seg- 
ment the dense areas from the breast background. The histo- 
gram of the breast region on the dynamic-range-compressed 
mammogram was generated and smoothed. The histograms 
of these images in the database were analyzed to formulate 
an automatic thresholding routine. The histograms were 
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FIG. 2. (a) A typical mammogram from our image database; (b) the low frequency image FB(x,y) obtained by an 35X 35 box filter; (c) the compressed image 
F cU.y); (d) the inverted image FD(x,y); (e) the enhanced image FE(x,y); (0 the gray level histogram within the breast region of the original image F(x,y); 
and (g) the gray level histogram of the breast region of the enhanced image FE(x,y). 

grouped into four classes based on the characteristic shapes 
of their histograms. It was observed that the grouping corre- 
sponded approximately to the four BI-RADS breast density 
ratings: Class I corresponded to breasts of almost entirely fat, 
Class II corresponded to scattered fibroglandular densities, 
Class III corresponded to heterogeneously dense and Class 
IV corresponded to extremely dense breasts. Examples of 
typical histograms for these four classes are shown in Fig. 3. 
The histograms seemed to follow two basic patterns. In one 
pattern, there was only one dominant peak, which repre- 
sented most of the breast structures in the breast region. In 
the other pattern, in addition to a large peak in the histogram, 
there was one or two smaller peaks on the right or left side of 
the large peak. In a majority of the cases, the smaller peak 
was distinguishable from the large one when the random 
fluctuation on the histogram was smoothed. 

1. Peak detection and feature description 

The gray level histogram within the breast area was gen- 
erated and normalized, and passed through an averaging win- 
dow to smooth out the random fluctuations. We estimated 
the window size to be in the range of 30 to 50 gray levels by 
experimentally evaluating the histogram shapes and density 
segmentation at different window sizes. Too small a window 
size cannot smooth out the fluctuation and too large a win- 
dow size will blur the useful features. A window size of 30 
was used in this study. The second derivative of every point 
on the histogram curve was computed. An example of the 
histogram and its second derivative curve are shown in Fig. 
4. The zero crossing locations were detected by scanning for 
the positive-to-negative and negative-to-positive changes on 
the latter curve. If the second derivative was negative be- 
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FIG. 3. Four typical classes of histograms and the setting of gray level interval [g^ ,g2] f°
r the threshold calculation. 

tween two zero crossing points, it indicated that a peak ex- 
isted between these two points on the histogram. Normally, 
as shown in Fig. 4, a peak included the peak point P0 and 
two valley points Pi and P2 located on the two sides of the 
peak point. The peak point P0 was determined by searching 
for the maximum histogram value between the zero crossing 
points Z2 and Z3, and the Pj and P2 points were obtained by 
searching for the point with minimum histogram value be- 
tween zero crossing points Zj ,Z2 and Z3,Z4, respectively. 

The following peak features can be defined by peak point 
P0 and valley points P^ and P2: 

1 5 Energy:    E=-Jt f(i)*f(i), 
A i=p1 

1    P° 
left-side energy:    EL=- 2 /(»)*/(*). 

(4) 

(5) 
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FIG. 4. The gray level histogram (solid curve) and the second derivative 
(dot) curve. P0 is the peak point, Pi and P2 are the valley points of the peak 
on the two sides of the peak point P0. Points Zj, Z2, Z3 and Z4 are zero 
crossing points on the second derivative curve, which are used for searching 
the points P0, Pt and P2. 

right-side energy:    ER=- 2 /(«')*/(«). 
A i=p0 

likelihood:    L=EIE', 

(6) 

(7) 

where /(■) is the histogram, A is the total energy of the 
entire histogram and A='2lf=üf(i)*f(i),N is the maximum 
gray level of the histogram. E' is the energy calculated by 
approximating the histogram in the interval [.Pi,/^] using 
two straight lines, P^PQ and P0P2 ■ The energy E of the peak 
is used to compare the sizes of the peaks on the histogram, 
higher energy means bigger size of the peak. EL and ER split 
the energy E into two parts from the peak point for calculat- 
ing the ratio of the energy in these two parts. The likelihood 
L describes how close the real peak is to the triangle repre- 
sented by the three points P0, Px and P2. 

2. Rule-based histogram classification 

A rule-based histogram classifier was developed to clas- 
sify the gray level histogram of the breast area into four 
classes. As shown in Fig. 3, a typical Class I breast is almost 
entirely fat, it has a single narrow peak on the histogram. 
Class II has scattered fibroglandular densities, it has two 
peaks, other than the tail part on the left, on the histogram, 
with the smaller peak on the right of the bigger one. Class DI 
is heterogeneously dense, it also has two peaks, but the 
smaller peak is on the left of the bigger one. Class IV is 
extremely dense, which has a single dominant peak on the 
histogram, but it is wider compared with the peak in the 
Class I histogram, and a second small peak sometimes oc- 
curs to the left of the main peak. 

The classification is performed in two steps. In the first 
step, the computer determines whether there is only one 
single peak in the histogram. The biggest peak (main peak) 
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PM and its location are detected by comparing the energy of 
the peaks on the histogram. The single peak feature is mainly 
determined by the energy E under the main peak and the 
features EL and ER. If the histogram is found to have a 
single-peak pattern, in general, a narrow peak corresponds to 
very fatty breast (Class I), and a wider peak corresponds to 
very dense breast (Class IV). However, in some cases, the 
histogram of these two classes is very similar, as discussed 
below (Fig. 9), and it is difficult to distinguish them by their 
gray level histogram distributions. Two additional image fea- 
tures were analyzed to classify very fatty and very dense 
breasts. One feature is the gray level standard deviation (Std) 
in the entire breast area, defined as 

Std=  -  2      2    (f(x,y)-f(x,y)y 
\/VxeMAPyeMAP 

1/2 

(8) 

where MAP is the breast binary map region, TV is the pixel 
numbers within MAP. Another feature is the number of 
single pixels and single pixel-size holes (NSH) counted in 
the breast area of a segmented binary image using the big- 
gest histogram peak point PM as a threshold. For a very fatty 
mammogram, the breast mainly consists of a fatty back- 
ground with some fibrous structures and fibroglandular tissue 
scattered in the breast area. The NSH value was found to be 
larger (greater than 50 pixels on average), and Std smaller 
(less than 500 on average), compared with a mammogram of 
a very dense breast. 

In the second step, if the histogram is found to have more 
than one peak, decision rules are used to decide if the second 
major peak is on the left side or on the right side of PM by 
the features E, EL, ER and L, and the relative position of the 
two peaks. If the second major peak is on the right, then the 
histogram is classified to be Class II; otherwise, it is classi- 
fied to be Class III. 

3. Gray level thresholding 

Gray level thresholding is essentially a pixel classification 
problem. Its objective is to classify the pixels of a given 
image into two classes: one includes pixels with gray values 
that are below or equal to a certain threshold; the other in- 
cludes those with gray values above the threshold. Thresh- 
olding is a popular tool for image segmentation, a variety of 
techniques have been proposed over the years. In our study, 
two threshold selection methods are used: one is the Dis- 
criminant Analysis (DA) method24 and the other is the Maxi- 
mum Entropy Principle (MEP) based method.25 The DA 
method assumes that the image gray levels can be classified 
into two classes by a threshold. To estimate the threshold, a 
discriminant criterion based on the within-class variance and 
between-class variance is introduced. An optimal threshold 
is selected by the discriminant criterion to maximize the 
separability of the resultant classes in terms of gray levels. 
This method is well-suited for the cases where the gray level 
histogram is bimodal. In an ideal situation, the histogram has 
a deep and sharp valley between the two peaks representing 
objects and background, respectively, and the optimum cor- 
responds to the gray level at the bottom of this valley. A 

more detailed description of the DA method can be found in 
Appendix A. 

For the MEP method, the optimal threshold value is de- 
termined by maximizing the a posteriori entropy subject to 
certain inequality constraints that are derived by means of 
special measures characterizing the uniformity and the shape 
of the regions in the image. As is well-known,26 the maxi- 
mum a posteriori probability can serve as a criterion to se- 
lect a priori probability distributions when very little is 
known about the probability distribution. Compared with the 
DA method, MEP can provide a better thresholding result if 
the gray level histogram does not have a bimodal distribu- 
tion. A more detailed description of the MEP method can be 
found in Appendix B. 

The gray level histograms of the mammograms in our 
study are very complex, the histogram may be unimodal, 
bimodal or multi-modal. It is difficult to select an appropriate 
threshold by one general threshold selection method. There- 
fore, we combined both the DA and the MEP methods, to 
select a threshold according to the characteristic features of 
the histogram that has been classified into one of the four 
classes. Suppose /(g) is the gray level histogram of the 
breast area. Let r=Method(/(g)|g!<g<g2) represent the 
threshold, T, that is selected by use of Method in the interval 
[gi 182] of the histogram /(g), where Method can be either 
the DA or MEP method. The settings of the interval [gj ,g2] 
for the four classes are discussed below and shown in Fig. 3. 

Class I: The histogram is unimodal so that the threshold is 
selected as 

r=MEP(/(g)|g1<g<g2), 

where, gx is the main peak point; g2 is the valley point on 
the right side of main peak. 

Class II: The histogram is not unimodal and the histogram 
is classified as Class II; the threshold is selected by averaging 
two thresholds that are computed in two different intervals of 
the histogram by the DA method: 

71 = DA(/(g)|g>g1), 

72=DA(/(g)|g>g2), 

T=(Tl + T2)/2, 

where gj is the valley on the left of the main peak; g2 is the 
main peak point. 

Class III: The histogram is not unimodal; there are two 
possibilities in the histogram distribution: there is a valley 
between the main peak and its left side peak, as shown in 
Fig. 3, or no obvious valley exists between the main peak 
and its left side peak. In two different intervals of the histo- 
gram, two thresholds are computed as 

7, = DA(/(g)|g1<g<g2), 

r2=DA(/(g)|g;<g<g2), 

where g, is the left valley point of the left-side peak (PLM) 
of the main peak, g[ is the peak point of PLM and g2 is right 
valley point of the main peak. If there is an obvious valley, 
T= (Tx + T2)/2, otherwise T= Tt. 

Medical Physics, Vol. 28, No. 6, June 2001 



1062        Zhou etal.: Computerized image analysis 1062 

Class IV: Since the histogram is considered unimodal, the 
threshold is computed by the MEP method, T 
= MEP(f(g)\g1<g<g2), where, gl is the left valley point 
of the main peak; g2 is the main peak point. 

D. Radiologists' segmentation of dense breast tissue 

In order to evaluate the accuracy of the computer segmen- 
tation method, the computer segmentation results were com- 
pared to radiologists' manual segmentation in the data set of 
65 patient cases. Details of the observer study for estimation 
of the breast density and statistical analysis of the results 
were discussed elsewhere.27 Briefly, a graphical interface 
was developed for displaying the mammograms and record- 
ing the observer's evaluation. The CC-view and MLO-view 
mammograms for a given breast were displayed side-by- 
side; a radiologist observer examined the mammograms and 
gave a BI-RADS rating and a visual estimation of the per- 
cent breast density with 10% increments. After the subjective 
evaluation, each view was displayed sequentially, together 
with the histogram of the dynamic-range-compressed image. 
The radiologist would interactively choose a threshold by 
moving a slider along the abscissas of the histogram plot. 
The segmented binary image, displayed side-by-side with the 
mammogram, would change instantaneously when the 
threshold was changed. The radiologist could inspect if the 
segmented area corresponded to the dense area on the mam- 
mogram. Once the radiologist was satisfied with the segmen- 
tation of the dense area, the gray level threshold and the 
percent dense area derived from this threshold were re- 
corded. The display then moved to the next view of the same 
breast for evaluation. The mammograms of the other breast 
for the same patient would then be displayed and evaluated 
in the same way. The entire process was repeated for each 
patient until all patients in the data set were evaluated. 

Five MQSA-approved radiologists participated in the ex- 
periment. To familiarize the radiologists with the procedures 
and to assist them in their visual estimation of the percent 
breast density, we had them trained on a separate set of 25 
patient cases prior to the evaluation of the actual data set. 
During the training session, the computer displayed the per- 
cent breast dense area to the radiologist, which was obtained 
by the radiologist's interactive thresholding of the image. 
The radiologist could then compare the manually segmented 
percentage with their visually assessed percent density for 
the image. This feedback helped "calibrate" the radiolo- 
gists' visual estimates of the percent dense breast area. The 
percent dense area obtained by interactive thresholding was 
not displayed during the actual study. 

III. RESULTS 

An example of a typical mammogram from each of the 
four classes and its corresponding enhanced image, its histo- 
gram, the selected threshold and the segmented image are 
shown in Figs. 5(a)-5(d), respectively. 

The average percent breast density obtained from manual 
segmentation by the five trained radiologists for each mam- 
mogram was used as the "true standard" of the percent 

breast density for that mammogram. The breast region was 
segmented by the breast boundary tracking technique, and 
the pectoral muscle was trimmed for the MLO-view mam- 
mograms. The breast boundary was accurately tracked on 
92.3% (240/260) of the mammograms, and the pectoral 
muscle was correctly trimmed on 74.6% (97/130) of the 
MLO views. The histograms of 6% (8 CC views and 8 MLO 
views) of the breast regions did not exhibit the typical char- 
acteristic features of the four classes and were misclassified 
by the computer, resulting in poor segmentation of the dense 
region. 

Figure 6 shows a comparison of the percent breast density 
visually estimated by radiologists against the true standard 
for the 94% of the 260 mammograms that were classified 
correctly by the computer. Table I summarizes the compari- 
son of the radiologists' visual estimates with the true stan- 
dard. The "difference" between the estimated % breast den- 
sity and the true standard was calculated for each case, and 
the mean and the standard deviation of this difference over 
all cases were estimated for each radiologist and shown in 
the table. Therefore, the mean difference was the average 
bias of the estimated % breast density from the true standard 
over all images in the data set. It can be seen that almost all 
radiologists had a positive bias, on average, when they visu- 
ally estimated mammographic density, except for Radiolo- 
gist 5 who had a small negative average bias on the CC-view 
reading. For a given radiologist, the over-estimation in- 
creased as the breast density increased. Although the corre- 
lation coefficients were high, ranging from 0.90 to 0.95, the 
deviations from the diagonal line were systematic. The aver- 
age bias from the true standard varied from less than 1% to 
11%, depending on the radiologist. The root-mean-square 
(RMS) errors of the five radiologists relative to the true stan- 
dard ranged from 7.5% to 16.3%. 

Figure 7 shows the comparison of the percent breast den- 
sity between the computer segmentation and the true stan- 
dard for the 94% of mammograms whose histograms were 
considered to be correctly classified. There was a trend of 
over-estimation in the very fatty breasts. In the medium 
dense range, the variances from the true standard were high. 
Some images had a large deviation from the diagonal line, 
indicating that the threshold was incorrectly determined. 
Table II summarizes the comparison between the computer 
performance and the true standard. For the CC views with 
correct histogram classification, the correlation between the 
computer-estimated percent dense area and the true percent 
breast density was 0.94, and between the computer and the 
radiologists' average visual estimate was 0.87 (not plotted). 
These correlation coefficients were 0.91 and 0.82, respec- 
tively, for the MLO views with correct classification. Al- 
though the correlation coefficients of the computer segmen- 
tation with the true standard were not better than those of the 
visual estimates, the average biases of the computer segmen- 
tation from the true standard were less than 2%, which were 
substantially less than those of visual estimates (Table I). 
This indicates that computerized segmentation is a good al- 
ternative to manual segmentation although variances of the 
automated method will need to be further reduced. The RMS 
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FIG. 5. Four classes of typical mammograms and corresponding enhanced and segmented image, histogram and threshold. 

errors of the computer segmentation were also less than 
those of the radiologists' visual estimates, at 6.1% and 7.2%, 
respectively, for the CC view and MLO view, when the his- 
tograms were correctly classified. The biases and RMS errors 
for the different subsets of images are also shown in Table n. 
It can be seen that correct histogram classification was the 
most important factor in reducing the biases and the RMS 
errors. The contributions by breast boundary detection and 
pectoral muscle segmentation were minor, on average, for 
improving the estimation of the percent dense breast area. 

Figure 8 shows the comparison of the individual radiolo- 
gists' manual segmentation against the true standard. For CC 
views, the RMS difference in the percent breast density be- 

tween an individual radiologist's manual segmentation and 
the true standard varied from 2.9% to 5.9% among the five 
radiologists. For MLO views, the RMS difference varied 
from 2.8% to 6.2%. The average biases of the five radiolo- 
gists ranged from -2.8% to 2.2% for the CC views and from 
-3.1% to 3.0% for the MLO views. The maximum biases of 
the five radiologists varied from 4.4% to 22.6% for the CC 
views and from 5.2% to 23% for the MLO views. 

The five radiologists provided BI-RADS density ratings 
for each breast. Although the BI-RADS ratings exhibited 
large inter-observer variations,20 it is interesting to compare 
the computer's histogram classification with the BI-RADS 
ratings. Since there were 260 images, each with 5 radiolo- 
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gists' ratings, there were a total of 1300 rating comparisons. 
The comparison of the computer and the radiologists' 
BI-RADS ratings is shown in Table III. It was found that 
87.4%of Class I classification have BI-RADS ratings 1 or 2, 
92.0% of Class II classifications have density ratings 2 or 3, 
83.4% of Class HI classifications have density ratings 3 or 4 

and 57.1% of Class IV classifications have density rating 4. 
More detailed analysis of the variability of radiologists' BI- 
RADS ratings was discussed by Martin et al.21 

IV. DISCUSSION 

Radiologists routinely estimate mammographic breast 
density using the four BI-RADS categories. In studies that 
require breast density estimation, radiologists' visual esti- 
mates of mammographic density were often used as the den- 
sity measure. Our observer study indicates that interobserver 
variation between the BI-RADS ratings of five experienced 
radiologists ranged from —1 to +1. The subjectively esti- 
mated percent dense area can deviate from the true standard 
by as much as 40%, as shown in Fig. 6. These results indi- 
cate the need to develop an objective method for the estima- 
tion of mammographic breast density in order to improve the 
accuracy and reproducibility of the estimation. A computer- 
ized image analysis method for mammographic breast den- 
sity estimation will be a useful tool for study of breast cancer 
risk factors and for monitoring the change of breast cancer 
risk with preventive or interventional treatments. 

In this study, we used the average of the percent breast 
area obtained with interactive thresholding by five experi- 
enced radiologists as the true standard. The gray level thresh- 
olding method used in this study could achieve a reasonable 
segmentation of the dense areas on the mammogram because 
the image was preprocessed with dynamic range compres- 
sion. The image-based analysis of breast density will not 
provide the actual percentage of fibroglandular tissue in the 
breast volume. However, the previous studies that estab- 

TABLE I. A comparison of the radiologists' visual estimate of mammographic breast density with the true 
standard. The "difference" was defined as the difference between the estimated % breast density and the true 
standard for each case, and the mean and the standard deviation of this difference are tabulated. 

No. of RMS Mean Std. dev. of 
Image subsets images Radiologist Correlation error difference difference 

CC view: 
All 130 Rad. 1 0.942 13.3% 6.9% 11.5% 

Rad.2 0.931 14.5% 9.8% 10.7% 
Rad.3 0.923 13.3% 6.3% 11.8% 
Rad.4 0.934 7.5% 2.9% 7.0% 
Rad.5 0.901 9.6% -1.4% 9.6% 

Histogram 122 Rad. 1 0.946 13.7% 7.2% 11.3% 
correctly Rad.2 0.936 14.7% 10.3% 10.8% 
classified Rad. 3 0.929 14.2% 6.7% 11.6% 

Rad.4 0.929 7.7% 3.1% 7.1% 
Rad.5 0.900 9.7% -1.3% 9.4% 

MLO view: 
All 130 Rad. 1 0.933 14.5% 8.3% 12.0% 

Rad.2 0.914 16.1% 11.2% 11.5% 
Rad. 3 0.915 14.4% 7.7% 12.2% 
Rad.4 0.919 8.8% 4.3% 7.7% 
Rad. 5 0.910 9.2% 0.1% 9.2% 

Histogram 122 Rad. 1 0.932 15.0% 8.3% 12.0% 
correctly Rad.2 0.914 16.3% 10.9% 11.4% 
classified Rad.3 0.919 14.7% 7.8% 12.2% 

Rad.4 0.916 9.0% 4.3% 7.7% 
Rad.5 0.909 9.4% 0.3% 9.2% 

Medical Physics, Vol. 28, No. 6, June 2001 



1065        Zhou etal;. Computerized image analysis 

CC view 

% Breast Density (True) 

MLO view 

1.Ü -  1 —1 1 1  

■_ 
Q> /   / 
3 / / 
Q.   0.8 - tf / E "// o 
ü 
~0.6- 
v> •  •   /fc* c 
®   0.4 O A^"#    • CO 
(0 .&..S 
£   0.2 
m 

•    1 
•• 

o.o -1 —, , , ,  

(b) 
0.0       0.2       0.4       0.6       0.8       1.0 

% Breast Density (True) 

FIG. 7. A comparison of the percent breast density between the computer 
segmentation and the true standard. The dashed line represents the linear 
regression of the data on the plot, (a) CC view, (b) MLO view. 

lished the correlation between breast density and breast can- 
cer risk were all based on mammographic density. This in- 
dicated that mammographic density is a sufficiently sensitive 
marker for breast cancer risk, although it may be less accu- 
rate than volumetric density. An actual measurement of the 
percentage of fibroglandular tissue volume in the breast, for 
example, by x-ray penetration with correction for scatter and 
beam hardening, is difficult because it requires accurate 
x-ray sensitometry or phantom calibration for each image. 
These requirements will limit its use to a few laboratories 
that have specialized equipment and expert physicists. Mag- 
netic resonance breast imaging can also provide volume 
measurement of dense tissue but it is expensive and not eas- 
ily accessible. It can be expected that the estimation of mam- 
mographic breast density by a computerized image analysis 
method will be a more practical and viable approach, espe- 
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daily when direct digital mammography becomes more 
widely used in the future. 

Our preliminary study indicates that breast density esti- 
mation can be performed automatically and accurately (Fig. 
7). Although the accuracy of our current algorithm still needs 
to be improved, it can be seen that the computer segmenta- 
tion can provide an estimate of the percent breast density 
with a very small bias (Table II). More importantly, com- 
puter segmentation will be more reproducible and consistent 
than visual estimates. This will improve the sensitivity of 
studies that depend on evaluation of the change in mammo- 
graphic density over time or before and after a certain treat- 
ment. 

In this study, we reduced the spatial resolution to a pixel 
size of 800/imX800/un for image processing. The small 
matrix size of the reduced images improves the computa- 
tional efficiency. The reduction in resolution has two major 
effects: reducing the image noise and blurring the details. 
Since the significant dense tissue in the breast that contrib- 
utes to the parenchyma is relatively large compared to 800 
fim, it is not expected that processing at this pixel size will 
have a strong effect on the accuracy of the estimated percent 
breast density. Differences in the segmented area may occur 
mainly along the boundary of the dense tissue region, but the 
effect may be averaged out statistically along boundaries of 
reasonable lengths. The residual errors in the estimation of 
the dense area should not be substantial in comparison with 
the inter- and intra-radiologists' variations in their manual 
segmentation. 

Successful segmentation of dense tissue depends strongly 
on whether a mammogram can be classified correctly into a 
proper class. A successful classification will likely result in 
the selection of a near optimal threshold. Conversely, if a 
mammogram is classified into a wrong class, the threshold 
will be selected incorrectly. For the mammograms of very 
fatty breasts, the gray level histogram has the characteristics 
of Class I, which contains one large single peak. These his- 
tograms can be distinguished relatively easily from most of 
the other classes of histograms if those histograms exhibit 
the typical features. For mammograms of BI-RADS category 
2 or 3, there are scattered fibroglandular or heterogeneous 
densities in the breast. A small peak may be located on the 
left or on the right, or on both sides of the main peak on the 
histogram. The histogram could be classified into Class I if 
the small peak is not large enough and is not detected as a 
second peak. Otherwise, it would be classified into Class II 
or Class HI, depending on the location of that small peak 
relative to the main peak of the histogram. For the two-peak 
pattern histogram, the DA threshold selection method is ro- 
bust if there is an obvious valley between the two peaks. If 
the valley is flat or not obvious, averaging the two thresholds 
obtained by the DA method in two different intervals, as 
designed for this study, can reduce the chance of calculating 
an incorrect threshold that differs greatly from the optimum, 
but it also reduces the chance of finding the optimal thresh- 
old. Overall, the rules designed for classification of the two- 
peak patterns seem to perform consistently well for this data 
set. One of the difficult situations is to distinguish between 
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TABLE II. A comparison of computer segmentation with the true standard. The "difference" was defined as the 
difference between the estimated % breast density and the true standard for each case, and the mean and the 
standard deviation of this difference are tabulated. 

No. of RMS Mean Std. dev. of 
Image subsets images Correlation error difference difference 

CC view: 
All 130 0.746 12.3% 1.3% 12.3% 
Boundary correctly tracked 120 0.780 11.4% 1.4% 11.4% 
Histogram correctly classified 122 0.943 6.1% 0.2% 6.2% 
Boundary and histogram correctly done 113 0.953 5.6% 0.8% 5.6% 
MLO view: 
All 130 0.780 11.6% 1.9% 11.5% 
Boundary correctly tracked 120 0.766 11.9% 2.1% 11.7% 
Histogram correctly classified 122 0.914 7.2% 1.5% 7.1% 
Pectoral muscle correctly trimmed 97 0.733 11.6% 1.6% 11.6% 
Boundary and histogram correctly done 112 0.912 7.2% 1.7% 7.1% 
Boundary, histogram and pectoral 83 0.891 7.1% 1.9% 6.8% 
muscle correctly done 

Class I and Class IV, when the histogram of a very dense 
breast mimics that of a very fatty breast, as shown in Fig. 9. 
This image was correctly classified with the additional fea- 
tures, Std and NSH. However, there were other cases that 
failed in spite of the additional criteria. The large difference 
in the optimal threshold locations between these two classes 
will lead to a large error in the estimated percent breast den- 
sity if the histogram is misclassified. Further study is needed 
to more accurately distinguish these two classes. 

The dynamic range reduction technique reduces the vari- 
ability of the gray level histograms and enhances their char- 
acteristics. This pre-processing facilitates the classification of 
the image into the correct class. There are many image 
smoothing techniques published in the literature. Low-pass 
filtering with a box filter is the simplest choice. The effec- 

MLO view 

• Rad. 1 
o Rad. 2 

O.B - ▼ 
V 
■ 

Rad. 3 
Rad. 4 
Rad. 5 

o   yf 

0.6 - 

0.4 - 
o°fS2S r▼ 

0.2 - 
ogKr  T 

HP   T - 

0.0 -  1 1  

CB 
3 
C 
CD 

to 
c 
Q 
to 
CB s 

CD 

0.0 0.2 0.4 0.6 0.8 1.0 

% Breast Density (True) 

FIG. 8. A comparison of the percent breast density obtained from the five 
radiologists' manual segmentation with their average for the same mammo- 
grams. The MLO view is shown. The trend for the CC view is similar. 

tiveness of background correction with a box filtered image 
depends on the box size. We found that a 35 X 35-pixel filter 
is a good balance between computation time and the capa- 
bility to remove the high frequency components. The sub- 
traction of the low-pass filtered image from the original im- 
age is a form of unsharp masking. The breast boundary is 
generally enhanced as shown in Fig. 2(e). The pixels at the 
enhanced breast boundary contribute a small peak to the left 
tail of the gray level histogram of the breast area. Moreover, 
if dense tissue is present close to the breast boundary, it may 
not be segmented correctly due to intensity reduction. Other 
low frequency estimation techniques such as wavelet decom- 
position will be investigated in future studies. 

In this feasibility study, we used a small data set of mam- 
mograms to develop a rule-based classifier for the histogram 
analysis. Although a large fraction of the histograms mani- 
fest characteristic features that can be grouped into four 
classes, corresponding approximately to the four BI-RADS 
breast density ratings, there are many exceptions. One such 
example is shown in Fig. 9. This causes misclassification and 
incorrect thresholding by the histogram classifier. It will be 

TABLE HI.  A comparison of computer classification and radiologists' 
BI-RADS breast density ratings. 

Computer BI-RADS BI-RADS BI-RADS BI-RADS 
classification 1 2 3 4 Total 

Class I 210 262 52 16 540 
(16.2%) (20.2%) (4%) (1.2%) (41.5%) 

Class II 0 92 184 24 300 
(0%) (7.1%) (14.2%) (1.8%) (23.1%) 

Class ffl 1 52 167 100 320 
(0.1%) (4%) (12.8%) (7.7%) (24.6%) 

Class IV 5 12 43 80 140 
(0.4%) (0.9%) (3.3%) (6.2%) (10.8%) 

Total 216 418 446 220 1300 
(16.6%) (32.2%) (34.3%) (16.9%) (100%) 
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FIG. 9. The gray level histograms of two mammograms classified by radiologists as BI-RADS rating 1 (upper mammogram) and BI-RADS rating 4 (lower 
mammogram). The shapes of the histograms are very similar and cannot be distinguished by our current histogram analysis method. These two examples were 
correctly classified with the additional Std and NSH criteria. 

necessary to investigate if other classification strategies can 
be more effective than a rule-based method. Furthermore, we 
have not performed a systematic study to optimize the many 
parameters used in the segmentation algorithm. Further work 
will be required to investigate the dependence of the segmen- 
tation accuracy on the various parameters. The parameter 
selection and the performance of the computer classifier will 
have to be improved by training with a larger data set and its 
generalizability evaluated with unknown cases. The generali- 
zation of the algorithm to images acquired with other digi- 
tizers or direct digital mammography systems will also need 
to be investigated. 

V. CONCLUSION 

We are developing an image analysis method for auto- 
mated segmentation of the dense area from mammograms 
and estimation of the percent mammographic density. Our 
preliminary study indicates the feasibility of our approach. 
The computer-estimated mammographic breast density cor- 
relate closely with the average manual segmentation by five 
experienced radiologists and the average bias is much less 
than that of the radiologists' visual estimation. We have 
found that correct classification of the histogram shapes is 
the most crucial step in our approach. The histograms of 
many mammograms have distinctive characteristics that can 
be recognized by a rule-based classifier. However, some his- 
tograms deviate from these rules and this can lead to mis- 
classificatiön. A further investigation will be needed to de- 
sign more robust rules or classifiers to improve the 
classification accuracy. Despite these limitations, we have 

demonstrated in this preliminary study that the estimation of 
mammographic density can be performed efficiently and ac- 
curately by the automated image analysis tool. The fully au- 
tomated algorithm can provide an objective and reproducible 
quantitative estimation of mammographic breast density that 
is expected to be superior to subjective visual assessment and 
comparable to manual segmentation by radiologists. 
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APPENDIX A: GRAY-LEVEL 
THRESHOLDING—DISCRIMINANT ANALYSIS (DA) 
METHOD 

Suppose the probability of the gray level n, in an image 
with L gray levels can be estimated as 

Pi=ni/N,    N=5) *,-. 
1=1 

(Al) 

If the pixels in the image are classified into two classes C0 

and Cx by the threshold k, then the probabilities of class 
occurrence and the class mean levels are given by 
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k L 

«0=2 Pi=P(k),  a>i =  2   Pi=l-P(k), (A2) 
i=l i=k+l 

/K-O=2 iPi/ti>0=fi{k)/(o0, 
1=1 

L 
„ ^T-fi(k) 

I=*+l 1    "w 

(A3) 

where 

it L 

fW = Ipi,  /■<<(*) = 2) «>,-   and /ir=2 '/>.■>   (A4) 
i=i i=i i=i 

are the zeroth- and the first-order cumulative moments of the 
histogram up to the fcth level, and the total mean level of 
original image, respectively. 

The between-class variance is defined as 

oj,(k) = o0(fi0- fiT)2+ WJC/AJ- fiT)2 

= O)0ü)l(fLl-/I.0)7 
[fiTP(k)-Mk)]2 

(A5) 
P(k)[l-P(k)]  ' 

and the optimal threshold k* is given by 

a2
B(k*)= max <r2B{k). (A6) 

lsHZ, 

APPENDIX B: GRAY-LEVEL 
THRESHOLDING—MAXIMUM ENTROPY 
PRINCIPLE (MEP) METHOD 

Suppose the probability of the gray level n,- in an image 
with L gray levels can be estimated as 

i=i 
(Bl) 

After thresholding the image by threshold k, the a posteriori 
probability of the pixels with gray level value less than k, is 
given by 

F(k) = JjPi. 
;=o 

(B2) 

And the a posteriori probability of all those pixels with val- 
ues greater than or equal to k is l-F(k). Thus the Shannon 
entropy of the thresholded image is 

H(F(k))= -F(*)logF(*)-(l -F(*))log(l -F(k)). 
(B3) 

The optimal threshold k maximizes H(F(k)). 
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^ABSTRACT 
Studies have demonstrated a strong correlation between mammographic 

breast density and breast cancer risk. Mammographic breast density may 
therefore be used as a surrogate marker for monitoring the response to 
treatment in studies of breast cancer prevention or Intervention methods. 

In this study, we evaluated the accuracy of using mammograms for 
estimating breast density by analyzing the correlation between the percent 
mammographic dense area and the percent fibroglandular tissue volume 
obtained from MR images. A data set of 37 patients who had corresponding 
MR images and mammograms was collected. The fibroglandular tissue 
regions in the MR slices were segmented by a semi-automatic method and 
the percent fibroglandular tissue volume calculated. Mammographic breast 
density was estimated by an automated image analysis program- 
Mammographic Density ESTimator (MDEST) that we developed previously. It 
was found that the correlation between the percent dense area of the CC and 
MLO views and the percent fibroglandular tissue volume on MR images was 
0.93 and 0.91, respectively, with a mean bias of 4.4%. The high correlation 
indicates the usefulness of mammographic density as a surrogate for breast 
density estimation. 

MATERIALS AND METHODS 
DATA SET 

37 patients, corresponding MR breast images and mammograms: 

MR series: Coronal 3DT1-weighted pre-contrast images 
3D Spoiled Gradient-Recalled Echo (SPGR) 
TE=3.3 ms;TR=10 ms, Flip=40 deg, matrlx=256x128, 
FOV=28-32 cm right/left, 14-16 cm superior/Inferior, 
scan tlme=2 min 38 sec 
Coronal sections 2-5 mm thick, 32 slices; 
Full volume coverage of both breasts with contiguous slices 

Mammograms: GE DMR mammography system (Mo/Mo, Mo/Rh, Rh/Rh) 
CC and MLO views 

MR BREAST IMAGE SEGMENTATION 
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Correlation Coefficient 0.93 0.91 

Root-mean-square residual S.2 5.3 
Mean difference between 
%Area and % Volume 4.7 4.1 

CONCLUSION 
Although the % projected area and the % volume of fibroglandular tissue in the 

breast are not expected to be linearly related, the correlation between the two 
estimates was found to be very high. This result indicates the usefulness of 
mammographic density as a surrogate of % fibroglandular tissue volume for study of 
the correlation between breast density and breast cancer risk. The computerized 
image analysis tool (MDEST) is useful for estimation of mammographic density. The 
automated analysis is expected to contribute to the understanding of the relationship 
of mammographic density to breast cancer risk, detection, and prognosis, and to the 
prevention and treatment of breast cancer. 
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Abstract. Studies have demonstrated a strong correlation between 
mammographic breast density and breast cancer risk. Mammographic breast 
density may therefore be used as a surrogate marker for monitoring the response 
to treatment in studies of breast cancer prevention or intervention methods. In 
this study, we evaluated the accuracy of using mammograms for estimating 
breast density by analyzing the correlation between the percent mammographic 
dense area and the percent glandular tissue volume as estimated from MR 
images. A data set of 37 patients who had corresponding MR images and 
mammograms was collected. The glandular tissue regions in the MR slices 
were segmented by a semi-automatic method and the percent glandular tissue 
volume calculated. Mammographic breast density was estimated by an 
automated image analysis program. It was found that the correlation between 
the percent dense area of the CC and MLO views and the percent volumetric 
fibroglandular tissue on MR images was 0.93 and 0.91, respectively, with a 
mean bias of 4.4%. The high correlation indicates the usefulness of 
mammographic density as a surrogate for breast density estimation. 

1. Introduction 

Previous studies have shown that there is a strong positive correlation between 
breast parenchymal density on mammograms and breast cancer risk [1-3]. The 
relative risk is estimated to be about 4 to 6 times higher for women whose 
mammograms have parenchymal densities over 60% of the breast area, as compared 
to women with less than 5% of parenchymal densities. The change in mammographic 
breast density is therefore often used as an indicator for monitoring the effects of 
preventive or interventional treatment of breast cancer. 

Breast cancer risk is expected to depend on the volume of glandular tissue in the 
breast. Mammographic density is a projection of the volume of glandular tissue onto 
the two-dimensional image plane. To better understand the correlation between 
mammographic density and breast cancer risk, it is important to investigate the 
relationship between the projected areal density on mammograms and the volume of 
glandular tissue in the breast. In this study, we investigate this relationship by 
analyzing the percent volumetric glandular tissue in magnetic resonance (MR) images 
and the percent dense area in corresponding mammograms for the same breasts. 



2. Materials and Methods 

Our data set consisted of corresponding MR breast images and mammograms from 
37 patients acquired between detection and biopsy. The MR image series used in this 
study, which included coronal 3D Tpweighted pre-contrast images (coronal sections 
2-5 mm thick, 32 slices; 3D Spoiled Gradient-Recalled Echo (SPGR); TE=3.3ms; 
TR=10ms, Flip=40°, matrix=256xl28, FOV=28-32cm right/left, 14-16cm 
superior/inferior, scan time=2 min 38 sec) was part of a dynamic breast MRI study. 
This 3D SPGR sequence produced full volume coverage of both breasts with 
contiguous image slices. An example of images from one breast is shown in Fig. 1. 
Although this is not the optimal pulse sequence for separating water and fat, the 
fibroglandular parenchyma (~water) and fatty tissue are well separated with this 
heavily Trweighted acquisition and therefore the series was chosen for this study. 
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Fig. 1. MR images of the right breast of a patient. The two-view mammogram of the 
same breast is shown in Fig. 2. 

We have developed a graphical user interface that displays the MR series and the 
corresponding mammogram of each breast. The interface allows the user to perform 
a combination of manual and automatic operations to segment the MR images. Each 
MR slice is first thresholded to separate the breast from the surrounding region. For 
slices close to the chest wall where no clear boundary can be seen, the boundary is 
manually drawn and evaluated by radiologists. Background correction [4] using the 
voxel values around the segmented breast region is employed to correct for the non- 



uniformity across the breast area due to the breast coil. The histogram of the voxel 
values in the breast region is then formed and interactive thresholding is used to 
segment the fibroglandular tissue from the fatty tissue. A morphological erosion 
operation along the breast boundary then excludes the skin voxels from the 
calculation of the fibroglandular tissue area in each slice. Finally, an integration of 
the fibroglandular voxels in all slices relative to the breast volume provides the 
percent volumetric fibroglandular tissue in the breast. 

We have previously developed an automated image analysis tool (Mammographic 
Density ESTimator) to assist radiologists in estimating mammographic breast density 
[5]. MDEST performs dynamic range compression, breast boundary tracking, 
pectoral muscle segmentation for the MLO view, automatic thresholding based on 
gray level histogram analysis, and calculates the percent dense area on a 
mammogram. We found that the correlation between the computer-estimated percent 
dense area and radiologists' manual segmentation was 0.94 and 0.91, respectively, for 
CC and MLO views, with a mean bias of less than 2%. An example of a 
mammogram segmented by MDEST is shown in Fig. 2. 
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Fig. 2. Automated breast density segmentation from mammograms.  Upper row: CC view. 
Lower row: MLO view. 

3. Results 

Scatter plots of the percent volumetric fibroglandular tissue versus the percent 
dense area on mammograms are shown in Fig. 3(a) and 3(b) for the CC- and MLO- 
view mammograms, respectively. The correlation of percent dense area of the CC and 
MLO views with the percent volumetric fibroglandular tissue on MR images was 
found to be 0.93 and 0.91, respectively, with a mean bias of 4.4%. 
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Fig. 3. Correlation of % volumetric fibroglandular tissue on MR images with % dense area on 
mammograms for 37 patients. The left and right breasts are plotted as separate data 
points on each graph. The dash lines are linear least squares fits to the data points. 

4. Conclusion 

Mammographic density is highly correlated with the volumetric fibroglandular 
tissue in the breast, indicating its usefulness as a surrogate for breast density 
estimation. The computerized image analysis tool, MDEST, is useful for estimation of 
mammographic density. The automated analysis is expected to contribute to the 
understanding of the relationship of mammographic density to breast cancer risk, 
detection, and prognosis, and to the prevention and treatment of breast cancer. 
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