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1. Summary 

The main purpose of the Phase I effort was to set up the general framework for the wavefront (WF) 
evolution technique and its initial implementation The framework we developed includes algorithms 

for evolution of WFs and fields associated with them, as well as algorithms for computation of the 

scattered fields (either directly, or through the prior computation of surface currents). An emphasis 
was put on incorporating, in a fashion consistent with reciprocity, edge diffraction effects into the 
WF approach. A UTD formulation, modified to reproduce rigorously the canonical solution in the 

near and transition regions, has been constructed [1] to describe the "non-optical" character of 

diffracted rays, and to evaluate diffracted fields. 
An additional benefit of our development of the WF method is that it will provide an essential 

element, a general parametric representation of the Ansatz, to the asymptotic high frequency integral 

equation formulations [2,3] based on the stationary point method. In other words, the HF code we 
plan to construct may, as a byproduct, provide an input, for a generalgeometry; to an asymptotic 

high-frequency integral equation solver. 
Phase I results may form the basis for the further development of an efficient high-frequency 

scattering code. 

2. Development of the WF evolution framework 

2.1. Main features of WF propagation approach 

In the context of high-frequency asymptotic expansions the WF (or a phasefront) is defined math- 
ematically as a surface on which the considered propagating fields have a constant phase. The set 
of all WFs forms a one-parameter family of surfaces, characterized by the phase or, equivalently, 

by the length of the path measured from the wave source. In the following we use the path length 

as the evolution parameter of the WF. 
Most of the recent activity in the development WF evolution techniques occurred in the area 

of geophysical (seismic) problems [4,5,6,7,8]. In such application the main interest lies in describ- 
ing wave propagation through penetrable inhomogeneous media, i.e., in the wave refraction. In 
electromagnetics, on the other hand, the more relevant phenomena are reflection and diffraction. 

Correspondingly, our WF evolution algorithms concentrate primarily on these processes. 
Wavefront evolution may be considered as an improved ray-tracing method, in which the number 

of rays is dynamically adjusted, while the WF expands or shrinks. New rays are also created at 

shadow and reflection boundaries, and in diffraction processes. 
The advantage of the WF evolution approach, compared to the conventional ray tracing, is 

that it maintains an approximately constant ray-ray spacing h, even in processes involving multiple 

reflection and diffraction; this is achieved due to the dynamic adjustment of the number of rays. 
In our implementation the WF is represented as a meshed (triangulated) surface with well defined 

boundaries; consequently, adjustment of the number of rays is realized as mesh simplification or 
complexification. The new rays maintain a precise WF definition, due to the use of the local 

second-order curvature-based surface representations. 



Another advantage of our implementation of the WF evolution algorithms is that they allow 

a precise, second order in h determination of shadow and reflection boundaries; this is also achieved 

by creating additional rays located precisely at these boundaries. 
Probably the most significant benefit of the WF evolution methods is that they allow, in a 

natural way, for the consistent inclusion of multiple diffraction mechanisms and diffraction occurring 
in combination with reflection processes. As we describe below in more detail, in our Phase I work 
we initiated the implementation of the geometrical construction of diffracted WFs due to edge 

diffraction, and the corresponding evaluation, according to the UTD asymptotic expansion, of the 

fields associated with the diffracted WFs. 
Our WF evolution algorithms are currently implemented for scatterers defined by some se- 

lected analytically defined surfaces, or by facetized (triangulated) surfaces. They can be, however, 

extended in a relatively straightforward way to general parametric surfaces, defined, e.g., in terms 
of bicubic patches. The only new element required for such a generalization is a set of func- 
tions providing information on the normals and curvatures of the scatterer surface, and computing 

intersections of lines with the surface. 
We note that our developments are based on the "Lagrangian" formulation of the WF the- 

ory, in which WF are characterized by geometrical and field parameters associated with a set of 

vertices ("markers") moving in space with the changing evolution parameter. There have been 
recent developments in the alternative "Eulerian" methods (Refs. [9,10,11] and private communi- 
cations), in which the WF parameters are associated with points of a fixed spatial grid (possibly in 
the higher number of dimensions). These methods have certain advantages in terms of simplicity 
of formulation, and provide a natural way of defining WF with an approximately constant spatial 
resolution (equal to the Eulerian grid spacing). The latter feature, however, may become a hin- 
drance in describing the WF behavior near caustics, because the Eulerian formulation naturally 
provides only storage for a limited amount of information per unit volume. Therefore, situations 
where rays converge require special treatments, such as using higher dimensions or "extension" in 
the evolution parameter. We note that the WF behavior near caustics is also relevant in describing 

diffraction, since diffraction sources are always caustics of the diffracted WF. 
It should be noted that neither Lagrangian nor Eulerian formulations provide, per se, any new 

physical mechanism or any new mathematical apparatus for describing GO evolution or diffrac- 
tion of waves. These processes have to modeled, in both approaches, using the asymptotic high 
frequency methods. Also, geometrical problems associated with the field propagation, such as 
detection of a scatterer or identification diffraction sources on the scatterer, have to be resolved 

independently of the use of a Lagrangian or an Eulerian approach. 
For all the reasons listed above we decided to stay, in our developments, with the more con- 

ventional Lagrangian formulation; we present its details below. 



2.2. WF propagation 

We implement the notion of a WF as a collection of points (vertices) forming a well-defined trian- 

gulated surface, specified by a mesh (a set of faces). With each vertex r we associate a ray, which 

carries with itself information on the main curvature values KX = 1/p^ and K2 = l/p2 
and on a 

triad of vectors: the normal n to the WF, and the directions ax and a2 of the main curvatures. 

Thus, each vertex on the WF provides a local definition of a second-order surface (Fig. 1). 

 —~°5jLai 

Fig. 1: A local quadratic surface representation associated with a ray. 

The crucial element of our WF implementation is that the number of vertices (rays) on the 

WF is not fixed, but may change during its evolution, i.e., some rays may be removed and some 
new rays created. The essence of the algorithm is that the ray-ray distances are kept in a certain 
range [hmin,hmax\, controlled by two parameters: a fixed default ray-ray spacing h0 and a local 

WF mean curvature radius (defined as p = 2/(|/cx| + |/c2|))- Using these parameters, our evolution 
algorithm defines, at each point of the WF, minimum and maximum values of the ray-ray spacing 

as 

/*min = 7 1mm{h0,ß lp) , 

^max=7    min{/i0,ß
-1p} , 

(2.1a) 

(2.1b) 

where ß>l and 7 > 1 are constants.l Eqs. (2.1) imply that, as long as the curvature radius p 

is not too small compared to h0 (p > ßh0), the range of the ray-ray distances is determined by 
the parameter h0; whereas for smaller curvature radii, the required values of ray-ray spacing are 
reduced to values proportional to p. This prescription helps to maintain a sufficient resolution 
when the WF shrinks in the neighborhood of caustics. The value of the default resolution h0 

should be determined on the basis of the scale of the geometrical details of the scattering object. 
As the two mesh modification mechanisms that allow us to maintain the required ray-ray 

spacing we use the well-known edge contraction and edge splitting algorithms (Figs. 2a and 2b); these 
operations enable us to realize mesh simplification and mesh "complexification" operations. Similar 
operations (and particularly mesh simplification) have been much studied and are well known in 
computer graphics. However, our algorithm differs from those methods in one important aspect: in 

creating new rays (vertices) we are using information on the local second-order surfaces associated 
with the existing rays. This enables us to maintain accuracy in the WF definition of the second 

In the current implementation we take ß = 4 and 7 = 2. 



order in the ray-ray spacing. Another difference between our mesh simplification/complexification 

algorithm and those algorithms commonly used in computer graphics is that, at each contraction 

or splitting step, we sort the edges according tho their lengths and apply contraction/splitting to 

the currently shortest/longest edge. This prescription contributes greatly to the good quality of 

the generated meshes (favorable aspect ratios of the triangles). 

Fig. 2a: Contraction of a short edge to 
a single vertex in a WF mesh. 

Fig. 2b: Splitting of a long edge in a WF 
mesh. 

As an example, we show in Fig. 3 the free-space evolution of a hemispherical WF, of initial 

radius R0 = 1, discretized with the resolution h0 = 0.1. The WF first shrinks, and then expands, 
with the evolution step 0.3 (in the length units). Three stages are shown: step 0 (the initial 
shrinking WF), with the radius 1.0 and 931 rays; step 4 Oust after the beginning of the expansion), 
with the radius 0.2 and 241 rays; and step 20, with the radius 5.0 and 12,213 rays. A visual 

inspection of Fig. 3 suggests that a good quality of the mesh defining the WFs is maintained in 

spite of the wide range of variation in the number of rays. 
A more quantitative assessment of the algorithm accuracy is presented in Figs. 4 and 5, where 

deviations of the WFs from the ideal spherical shape are shown, as r.m.s. errors. Fig. 4 shows 
that, in the later evolution steps, the errors remain practically constant. They also decrease with 
the decreasing resolution h0, although slower than proportionally to h^. The latter feature is due 
to some loss of accuracy associated with the WF shrinkage and the decrease in the number of rays. 
In a steady WF expansion, however, the error is, in fact, of the order 0(hl). This is demonstrated 
in Fig. 5, where we plot and the r.m.s. error in the surface definition for a hemispherical WF 
expanding in 13 steps from the radius 1.0 to the radius 4.9. Fig. 5 shows, in particular, that with 
decreasing the resolution h0 by the factor of 2, the error in WF definition decreases approximately 

by the factor of 4. 



Fig. 3: Propagation of a hemispherical WF, first shrinking (steps 0-3) and then expanding (steps 
4-20). For clarity, only halves of the hemispherical surfaces are shown. 
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Fig. 4: R.m.s. error in the WF sur- 
face as a function of the evolution step 
for a shrinking and subsequently ex- 
panding WF, for three resolutions ho = 
0.2,0.1,0.05. 
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Fig. 5: R.m.s. error in the WF surface 
as a function of the evolution step, for 
a steadily expanding WF, for three res- 
olutions ho = 0.2,0.1,0.05. 

The results shown above indicate that we are able to change, in a wide range, the number of rays 
in contracting and expanding WFs while keeping WF definition errors under control. Such a precise 
interpolation of WF surfaces is possible only because in mesh simplification and complexification 
steps we are using information on the local second-order surfaces associated with rays. 



We stress that, as already suggested by the results of Figs3 and 4, our WF discretization 

criteria allow for WFs passing through caustics with virtually no loss of accuracy. 
A similar example (Fig. 6) shows an ellipsoidal WF shrinking and then expanding, and assum- 

ing intermediate shapes of "swallow-tail" type. 

J 

Fig 6- Evolution of a WF of ellipsoidal shape, first shrinking and then expanding, showing creation 
of "swallow-tail" shapes. (The semitransparent ellipsoid in every evolution step shows the initial 

WF.) 

2.3. WF reflection processes 

We first describe our WF reflection algorithm for smooth scatterer surfaces. In this case the WF is 
generally a non-smooth surface, i.e., the tangentials to the WF may be discontinuous. However, 

the WF remains connected, and does not separate into disjoint components. 
We consider reflection of an incident WF <j> on an obstacle formed by a closed smooth surface 

S, as visualized in Figs. 7a and 7b. In this configuration the initial WF <£, shown in Fig. 7a as the 

dashed line, approaches the scatterer's surface. 



new vertices 

scatterer S 

Fig. 7a: A schematic representation of 
one evolution step of a WF <j> reflecting 
off a closed impenetrable surface S, and 
forming a new WF <j>''. 

new vertices 

Fig. 7b: A schematic representation of 
an evolution step following that shown 
in Fig. 7a. SB stands for the shadow 
boundary. 

The steps of the algorithm for the WF evolution are then as follows: 
We initially evolve the WF ignoring the scatterer, i.e., we move each vertex v on the WF <f> by 

the distance As in the direction normal to the WF surface. 
We then examine all vertices v' on the evolved WF, and classify them into "inner" and "outer" 
ones: inner vertices v' are such that the ray segment (W) intersects the surface, and outer 
vertices are the remaining ones. In Fig. 7a we marked inner vertices with red dots, and outer 

vertices with black dots. 
Next, we examine all edges of the evolved WF. If an edge connects an inner vertex and an 
outer vertex, such as the vertices a' and V in Fig. 7a, we find, by performing a binary search, 
the point where it intersects the surface S. At this point of the edge we create two new vertices, 

an "inner" and an "outer" one. Such vertices in Fig. 7a are a[ and a'0. They share the same 

spatial location, but will follow different evolution paths. 
We examine in turn all faces (triangles) of the evolved WF mesh, and process "divided"faces, 

i.e., those faces whose some vertices are inner and others are outer. An example of such a face 
is shown in Fig. 8. We partition such a face into a triangle (an outer triangle in Fig. 8) and a 

quadrilateral, and split further the quadrilateral into two triangles. 
Finally, we reprocess all the inner vertices (the original evolved vertices and the new ones). We 
evolve them back to the original WF <f>, and evolve them again forward in the presence of the 

scatterer, i.e., taking reflections into account. In this way the inner vertices form a part of the 
reflected WF <f)' (the red dash-dotted line in Fig. 7a), while the previously found outer vertices 

form the forward-propagating part of the WF cj>' (the black dash-dotted line in Fig. 7). 



a„ /   outer 
"•o Jo 

inner-' V 

Fig. 8: Partition of a WF face having two inner vertices (o' and c') and one outer vertex (6'). 

We stress an important element of our algorithm: The mesh faces such as shown in Fig. 8 are 

divided into parts belonging to the forward-propagating and reflected segments of the WF. The 

algorithm is able to locate the division points (new vertices a[, a'Q, j{, and 7^ in Fig. 8) with an 
arbitrary accuracy, unrelated to the ray-ray spacing h. Therefore, the location rays on the boundary 
between the forward-propagating and reflected parts of the WF can be considered exact; the only 
approximation made is the considered boundary consists of straight line segments, rather than 

curved lines. For typical segment length of order h0, the resulting error is 0(hl/R), where R is 

the curvature radius of the surface S. 
The algorithm described above can be generalized to scatterers formed by non-smooth surfaces, 

both closed and open.   The generalization is, however, somewhat more involved, for two main 

reasons: 
(i) the WF usually separates into several disconnected pieces; and 

(ii) in general, it is necessary to consider more complex cases of the scatterer surface intersecting 
the WF mesh; in particular, triangles forming the WF mesh may be intersected in ways more 
complicated than that shown in Fig. 7 (in the analysis of smooth surfaces we assumed that 

the surface's radii of curvature R were much larger than the ray-ray spacing h). 
If we attempt to reproduce GO shadow and reflection boundaries with an arbitrary accuracy, the 
second of these problems causes a significant complication of the algorithm.   Therefore, at the 
present stage of the algorithm development, we concentrated on the first problem, that is, splitting 

of the WF due to reflection on "sharp" edges of the scatterer. 
We give below a brief description of the WF reflection algorithm for a practically important 

case of a scatterer with a facetized (typically triangulated) surface representation. We consider a 
scatterer whose part is represented schematically in Fig. 9. The initial incident WF, denoted by 

(j>, approaches a wedge-type element of the scatterer surface S. The edge of the wedge shown in 

the figure is assumed to be "sharp", i.e., the angle between the normals to the faces exceeds some 

predefined, critical angle 90. 
As before, we first evolve the rays associated with the WF (f> as if the scatterer were absent; 

subsequently, we examine intersections of rays with the scatterer surface, and then create some 

additional rays, and reflect ray segments penetrating the scatterer surface. 

10 



scatterer S scatterer S 

Fig. 9a: A schematic representation of 
one evolution step of a WF <f> reflecting 
off a non-smooth impenetrable surface 
5, and forming a new WF <£'. 

Fig. 9b: The same WF configuration as 
in Fig. 9a, with the rays and vertices 
removed for clarity. 

More specifically, the main steps of the algorithm are as follows: 
1. We evolve the WF ignoring the scatterer, i.e., we move each vertex on the WF $ by the distance 

As in the direction normal to the WF surface; thus the vertices a, b,...  become a', b',... . 

2. We locate sharp edges on the surface S - in our example the tip of the wedge. This task is 

carried out as follows: 
2.1. For each ray segment intersecting the surface S we find the normal to the surface at the 

intersection point. 
2.2. For each edge on the WF mesh we compare normals at the two ends. For example, for the 

original WF mesh edge (a b) we compare the normals at points where the ray segments 

(a a') and (bb1) intersect S. 
2.3. If the angle between the normals at the end vertices of an edge exceeds the critical angle, 

we examine the edge in more detail: we subdivide it in a binary fashion until we find two 
ray segments intersecting the surface 5 very near the edge (this can be done with any 

predefined accuracy). In Fig. 9 these rays are (5X S[), and (S2 6'2). 
3. As in the previous algorithm, we identify then pairs of rays with end slightly outside and 

slightly inside the scatterer (again with some predefined accuracy). Such ray pairs in Fig. 9 

are {(a, a[), (a2 a'2)} and {(ft ß[), (ß2 %)}. 
4. We split (partition) faces whose edges contain the additional vertices associated with ray 

segments created in the previous step. 
5. Finally, as before, we reflect the rays which have penetrated the scatterer surface S. 

In the example illustrated in Figs. 9 the resulting reflected WF consists of several segments 

(Fig. 9b):  the parts </)[ and <j>'2 of the incident WF which have not yet reached the scatterer's 

11 



surface, and the parts </>'3 and <& which have been reflected from the two facets forming the wedge. 
Reflection on a surface with an edge creates thus a "hole" in the WF, unlike reflection on a smooth 

surface (Figs. 7a and 7b), where the WF remains a connected surface. (We note that, as we will 

see, such "holes" are filled in by WF due to diffraction.) 
As an example of WF evolution in the presence of smooth scatterers, we consider a process 

of multiple reflection on a system of two spheres, Sx and S2 (Fig. 10). The radii of the spheres 
are equal 1, and the wavefront resolution is h0 = 0.1. The initial planar wavefront travels upward 
at at angle of approximately 45°. The consecutive evolution steps show reflections from the first, 

second, and again from the first sphere. 

stepl step 2 step 3 

step 4 step 5 step 6 

Fig. 10: Reflection of a planar WF on a system of two spheres. 

In Fig. 11a we show an evolution stage for the same system of two spheres arrived at after 

several reflections. (In this example, the initial planar wavefront travels downward in the vertical 

direction.) 
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Fig. 11a: Reflection of a planar WF on 
a system of two spheres, for the resolu- 
tion h0 = 0.1, and the number of rays 
increasing from 1,681 to 22,962. Var- 
ious colors show the parts of the WF 
W0,... , W3 due to 0, 1, 2, and 3 reflec- 
tions. 

Fig. lib: The same final WF as shown 
in Fig. 11a, but obtained using the con- 
ventional ray-tracing algorithm with a 
much higher resolution h0 = 0.02 and a 
fixed number of rays 40,401. 

Parts of the wavefront due to 0, 1, 2, and 3 reflections are shown in various colors. All these 
wavefront parts are equally well defined, due to the dynamical ray number adjustment. In the 
considered process of wavefront scattering and expansion the number of rays increases from N = 

1,681 to N = 22,962. 
For comparison, we show in Fig. lib the analogous final wavefront constructed using the 

conventional ray-tracing algorithm with a much higher resolution, h0 = 0.02, and the corresponding 
fixed number of rays NKT = 40,401. This Figure clearly shows the rapid deterioration of the 
wavefront definition with the increasing reflection order and the associated wavefront expansion. 
In particular, the last wavefront W3, due to triple reflection, is barely existent. The comparison 
indicates that, due to the dynamic ray number adjustment, our wavefront evolution algorithm 
provides a much superior resolution at all reflection orders with an overall much smaller number of 

rays. 

2.4. WF edge diffraction processes 

We describe now our WF algorithm for edge diffraction processes. While the algorithm is already 
complete, we are currently in the process of its numerical implementation, and thus the results 

presented here are preliminary. 
The geometrical construction of edge diffracted WFs is based on the original Geometrical 

Theory of Diffraction (GTD) [12,13], which in turn follows from the generalized Fermat's principle, 
and ultimately from the stationary-point asymptotics of the high-frequency scattering processes. 

The associated field amplitudes, however, are computed using the Uniform Geometrical Theory of 

Diffraction (UTD) [14,15]. 
The main steps of the algorithm for construction of edge-diffracted WFs are as follows: 

1. Identify scatterer edges constituting source of diffraction (we refer to these as "diffraction 

edges"). 
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2. Generate diffracted rays emanating from the diffraction edges. 
3. Assign WF curvature parameters and field values to the created diffracted rays. 

4. Construct triangulation mesh (connectivity) for the diffracted rays. 
Although the above steps may seem straightforward, their implementation is rather complex. We 

discuss them now in turn. 
Step 1 requires implementing an algorithm with elements of the previously discussed proce- 

dures for (1) detecting "sharp edges" (in the context of WF splitting associated with reflection), 
and (2) detecting the shadow boundary (described in the context of the smooth-surface reflection 

algorithm). If the edge-diffraction algorithm is applied to a facetized scatterer surface, we assume 

that the "sharp edges" are sources of diffraction, while "smooth edges" have to the treated by a 

separate algorithm for smooth-surface diffraction. 
An important element of the algorithm is that the identified "diffraction edges" are associated 

with and accessed through the WF mesh edges. As indicated in Fig. 12, new rays (a1,a2,--- ) 
hitting the sharp edge Eon the scatterer emerge from the edges of the WF mesh (ex, e2,... ). 

Indeed, these rays are created by interpolating rays at end vertices of the WF edges. 

scatterer surface S 

diffraction edge E 

Fig. 12: A schematic view of the procedure of generating diffracted rays emerging from the points 
of a diffraction edge E hit by newly created rays ox, a2, ■ ■ • ■ 

Step 2 is performed in a loop through the edges e of the WF. From some of these edges there 

emerges a pair of new rays a, terminating at a diffraction edge. At the termination point we create 
a set of new rays (of length equal to the evolution step decreased by the length of the ray segments 
a), on the surface of a cone (the "Keller cone"), whose axis is the diffraction edge (Fig. 12). The 
number of diffracted rays is fixed, and is determined on the basis of the required WF resolution 
(this element of the algorithm is not critical, since the number of rays will adjust itself during the 

subsequent evolution of the diffracted WF). 
Finally, step 3 is executed as a loop over the faces F of the WF. We consider here such faces 

F from two edges of which emerge new rays a (Fig. 13a.) Through these rays we access two 

consecutive sets of diffracted rays, and create edges connecting the corresponding rays in the two 
sets, forming a surface consisting of quadrilateral facets. By triangulating that surface (Fig. 13b), 

we arrive at a meshed diffracted WF. 

14 



Fig. 13a: Building connectivity for the 
diffracted rays. 

Fig. 13b: Triangulation of the diffracted 
WF. 

The overall picture of the newly created diffracted WF may be as shown in Fig. 14. In this 
Figure a plane WF <j> is approaching a smooth edge of a screen S, moving in a direction nearly 
tangential to the screen plane. As the incident WF advances to the position <£', it generates a 
reflected WF (not shown), and a diffracted WF, according to the algorithm described above. 

missing parts of the 
diffracted wavefront 

Fig. 14a:   A schematic view of a new Fig.  14b:   A perspective view of the 
diffracted WF generated along a smooth diffracted WF shown in Fig. 14a. 
edge of a screen S by a plane WF inci- 
dent nearly tangentially to the screen. 

We note that the diffracted WF algorithm, as described above, may not reproduce correctly 

the end (cone-shaped) parts of the new WF; this effect is indicated in Fig. 15, which shows the 
actual process of diffracted WF creation, as modeled by our code. The reason for this deficiency is 
that we use only WF edges to detect WF intersections with diffraction edges. In other words, the 

pairs of new rays a, terminating at the diffraction edge E, may emerge only from the WF edges 
e. This feature of our procedure affects also the GO reflection algorithm, where some parts of the 

reflected WF may be missing. In both cases the defects in the WFs are only due to the present 
implementation of the algorithm, and will be corrected as the algorithm is further refined. 
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diffracted WF 

missing part of 
the diffracted WF 

reflected WF   primary WF 

scatterer surface (disc) 

diffracted WF segment   diffracted WF segment 
created in step 2 created in step 1 

WF defect 

Fig. 15: A defect of the created WF - 
a missing end of the cone-shaped WF 
part, pointed to by the arrow. 

Fig. 16: A gap between the diffracted 
WF segments created in two consecutive 
evolution steps. 

Another, related, defect in the present algorithm for diffracted WF creation manifests itself 
in gaps between the segments of the diffracted WF generated in consecutive evolution steps. A 

situation of this type is shown for diffraction on a disc in Fig. 16. These deficiencies can be corrected 
by extending the "memory" of the algorithm, i.e., increasing the amount of information preserved 

from one to the next evolution step. 
The present version of our code includes only edge diffraction as an asymptotic expansion 

scattering mechanism of order 1/Vk. Another diffraction mechanism not implemented in the 
current version of our code is diffraction from corners, inevitably arising for diffraction edges 

consisting of straight line segments. As an example, we show in Fig. 17 several steps of creating 
diffracted WFs due to a plane WF incident on a rectangular plate. The WF diffracted on the 

individual edges of the plate form either cylinders of cut-off cones. These WFs should be connected 

by the four spherical WFs due to diffraction on the four corners of the plate. 
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scatterer surface (plate) 

incoming wavefront 

stepl 

stepO 

step 2 

Fig. 17: Three evolution steps in creating diffracted WFs due to a plane WF incident on a rect- 
angular plate. For clarity, the primary and reflected WFs are not shown in evolution steps other 
than the initial configuration ("step 0"). 

3. Field computation 

3.1. Behavior of edge diffracted fields 

The final outcome of the WF algorithm should be in the form of the observable quantities - 
typically the scattered fields, and the related scattering cross-section. Various approaches to this 

goal are possible, and we consider two of them: 
1. The scattered fields can be determined directly from the fields associated with the sufiiciently 

evolved WFs, i.e. WFs leaving the scattering region. 

Alternatively, 
2. The scattered fields can be computed as Kirchhoff integrals of the currents induced on the 

scatterer surface (more generally, effective currents on an appropriately defined aperture). 

The two approaches are equivalent, provided all terms to the given order in 1/k in the asymptotic 

expansion are consistently taken into account, both in computation of the currents and computation 
of the field. In both cases we utilize fields associated with rays constituting WFs. In particular, 

the second approach requires the electric induced current 

J = -2n x AH (3.1) 
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where AH is the discontinuity of the magnetic field across the scatterer surface, and n is the 

normal to the surface. Because of this fact, we find it more convenient to use the magnetic rather 

than electric field as the basic field associated with rays. 
Thus, to each point of a WF we ascribe a magnetic field value H; a field value is also associated 

with everir point on a ray connecting two consecutive WFs. For a WF propagating in free space, 

knowing the field value H(*0) at a certain evolution parameter s0, we can obtain (according to the 

laws of GO) the field value H(s) at another value s of the evolution parameter as 

HW = J-r— ^~ -T H(.0) , (3-2) 

where the curvature radii pt refer to the WF at the reference evolution parameter s0. Here the fields 
H are defined so as to exclude the common phase factor exp(ifcs) associated with the evolution 

parameter s. 
When creating new rays due to mesh complexification or simplification, we associate with them 

field values obtained by interpolation of the field values of the neighboring rays. In the present 
implementation, when creating new ray in edge contraction (Fig. 2a) or edge splitting (Fig. 2b) we 

use simple linear interpolation of field values between the end vertices of the considered edge. 
When creating diffracted rays, we ascribe to them fields calculated according to UTD [14,15], 

or rather to its modification [1], which we present below. Our modification of UTD was originally 
motivated by the need of calculating induced currents near the diffraction sources (edges); we thus 
refer to it as nUTD, or the "near-field UTD". We also discuss it mostly in the context of currents, 

although similar considerations apply to the general problem of field computation. 
It is important to stress that, in the "transition regions" (i.e. near the diffraction source and 

near the optical shadow and reflection boundaries), the fields provided by UTD or nUTD are 
not ray-optical, i.e., they do not evolve according to Eq. (3.2), but are given by more complex 
expressions involving appropriate transition functions. Only at large distances from the diffraction 

source, and outside the transition regions, do they reduce to ray-optical fields of GTD. 
During Phase I, we addressed the problem of modifying fields near the diffraction sources 

only for diffraction on a flat polygonal screen with straight edges, illuminated with a plane wave. 
Near the edges of a polygonal screen, the fields are given, asymptotically, by the solution of the 

corresponding canonical problem - in this case, a half-plane. Hence, we first examine the behavior 
of the fields and currents obtained form the exact half-plane solution. Then, assuming the exact 

half plane solution for the field diffracted by the edges of the screen, we compute the current 

induced on the screen. 

Behavior of the fields and currents near diffraction edges 

Consider a half-plane defined by 0 < x < oo, y = 0, -oo < z < oo (Fig. 18).  We assume an 

incident plane wave with the wave vector 

k; = -k (sin ß0 cos (j>0 x + sin ß0 sin <j>0 y + cos ß0 z) (3.3) 

(incidence normal to the edge would correspond to ß0 = 7r/2). 
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i incident wave direction 

half-plane 

*-  X 

Fig. 18: The half-plane geometry and the field configuration for the "H-polarization" problem. 

The exact solution for the canonical problem is well known (see, e.g., Ref. 16]). The Maxwell 

equations separate in this case into independent Helmholtz equations for the ^-components of the 

electric and magnetic fields, with appropriate boundary conditions. 
We first consider the "H-polarization" problem for the magnetic field Hz (the component along 

the edge of the half-plane). The solution contains the incident, reflected, and diffracted fields, the 

latter being 

HA{pA) = _ei*/4eifcp/sin0o ygji   Lec±_AoF(2kp sin/J0 cos: <i>-<t>o 

+ sec ^F^psin/W^)}^ 
(3-4) 

where the function F, related to the Fresnel integral, 

oo 

F(x) = -2iV^e-ix   f dteit2 , 

is normalized so that 

y/x 

F(x) a 1 - — + • • •    for x -» oo , 

and 
F(x) = [V^ -2xe-i*'4 + ■■■]e-i(x+*M    for^O, 

and satisfies the relation . 

*■«-!+(s-i)*M- 

The discontinuity of the magnetic field across the screen is then 

AH«(P) = H«(P,0)-H*(P,2K) 

= _ei*,4jkr/**ß0 h/^S.sech.F(2kp sin^0 cos2 ^) , 
■y/2irkp 2      \ * } 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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and, according to Eq.(3.1) (with n = y), the electric current due to diffraction is 

J«(p) = -2AHt(p). (3-10) 

As follows from Eq.(3.6), for large distances from the edge (i.e., kp cos2(<j>0/2) > 1), the 

current behaves like const/V^p, which is a reflection of the cylindrical-wave nature of the diffracted 
fields. Near the edge, on the other hand, Eq.(3.7) implies that J*(p) tends to a constant, which, 

actually, cancels the PO contribution from the current terms Jx(p) and Jx(p) due to the incident 

and reflected waves. A more detailed analysis (using the expansion (3.7) for x -> 0) shows that 

the total current exhibits the correct edge behavior, Jx(p) ~ yfp for p -> 0. 
Similar analysis applies to the "E-polarization" problem, in which the ^-component of the 

diffracted electric is 

E%A) = -h/V"-* Ä jsec^ F (2kp sin/50 cos* tz± 

-Bec^F(2*pam/J0coB*^)JBi 

(3.11) 

Here, after calculating the magnetic field and its discontinuity, we find that the total current (now 
directed along the z-axis) is Jz(p) ~ 1/y/p for r -> 0, again in agreement with the expected edge 

behavior. 

Behavior of conventional UTD fields and currents near diffraction edges 

Having established the behavior of the exact solution for the canonical problem, we can now 
compare them with the fields predicted by UTD [14] (converted to our conventions, and specialized 
to the case of a screen with a straight edge illuminated by a plane wave). As we will see, these 
expressions will require some modification of the conventional UTD formulation in order to correctly 

reproduce fields and currents in the vicinity of the diffraction edge. 
To specify the UTD diffraction coefficients, we first have to define the relevant geometrical 

quantities. Thus, in the reference system of Fig. 18, the edge direction is 

e = z (3-12) 

and the directions of the incident and diffracted rays are given by 

& = -wnß0 cos^x-sinßosin^oy-cosßo z ,    sd = sinß cos<£ x + sin0 sm<f> y - cosß z , 
(3.13) 

where the diffracted ray is required to lie on the diffraction cone, i.e., e • sd = e • s1, or ß = ß0. 
These two vectors and the vector e define two planes: the edge-fixed plane of incidence (e, s1), and 
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the edge-fixed plane of diffraction (e,sd). The unit directional vectors associated with the angles 

<j)0, <j), ß0, and ß are then 

0O = - sin <f>0 x + cos fa y , (3.14a) 

0 = - sin (j> x + cos <j> y , (3.14b) 

ß0 = cos/50 cos<£0 x + cosy90 sin<£0 y - sin/30 z , (3.14c) 

0 = cos/30 cos<£ x + cos^o sin<£ y + sinß0 z . (3.14d) 

It is now convenient to express the incident and diffracted fields in terms of the triads of unit 

vectors (§!,0Oi£o) and (§d><^£) associated with the incident and diffracted rays. The diffracted 

field Ed at the observation point r is then 

Ed(UTD)(r) = _   1   eifc,d [D^^Xs^ßßo -E^ro) 

+Dh(ß0,<t>0,<t>,k,sd)4>4>0-E
i(r0)} , (3.15) 

in terms of the incident field E1 at the corresponding diffraction point r0 (located on the edge), 
the path length of the diffracted ray sd = |r - r0|, and the "soft" and "hard" UTD diffraction 

coefficients Ds and Dh. The latter are given by 

»:<*■*.".'>--^vfe {*^F(^**»cos2^) 

(3.16) 

where the function F is, as before, defined by Eq.(3.5). 
Since p = sd sin/?0, we can see that the arguments of the functions F in Eq.(3.16) are exactly 

the same as in Eqs. (3.4) and (3.11). Verification of Eq.(3.11) for the E-polarization problem is 
now straightforward. By taking the ^-component of the diffracted electric field (3.15) we find that 
only the soft diffraction coefficient contributes, because z • 0 = 0. Since the E-polarization implies 
incident unit field E1 = -ß0, we have /VE* = -1, and substituting Ds of Eq.(3.16) into Eq.(3.15), 

we immediately reproduce Eq.(3.11), i.e., 

£d(UTD)(r)=£d(r) (3.17) 

In order to compare the UTD expression with the exact solution (3.4) for the H-polarization, 

we first use the exact relation (following from the Maxwell equations) 

Hd (UTD) = _ 1 v x Ed (UTD) , (3.18) 
k 

expressing the magnetic field in terms of the diffracted electric field (3.16). 
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To simplify the result, we specialize now to normal incidence, ß0 = TT/2. In this case we have 

Ht <UTD W) = 4 ö. K{VTD W) 
= ei1r/4eifcp 

sec 

1 

+ sec 

2y/2lrk~p 

2 
1 + cos(0 - 4) 

1 + cos(<£ + (j>0) 

\-F\2kp cos ,2<t>-<f>0 

l-F[2kpcos 2 <£ + <£c *)]]}*. 
(3.19) 

Eq.(3.6) implies that Eq.(3.19) approaches the exact result (3.4) for large kp. To assess the signif- 
icance of the differences for small values of kp for the computation of the current (Eq.(3.10)), we 

evaluate the discontinuity of the magnetic field across the screen, 

Aifd(UTD)(/9) = #d(UTD)(/O)0) _ jjdOJTD)^^) 

= e ,i7r/4   ifcp 
■y/2lFk~p *{ sec   o     1 1 + C0S ^0 1-F(2kp «**:£)]} Hi „2 <f>C 

(3.20) 

This results agrees with the exact Eq.(3.9) (for ß0 = TT/2) only for large arguments of the transition 
function F, but not for small arguments. For p -> 0 the UTD result is actually singular (~ 1/y/p), 

while the exact expression (3.9) tends to a constant. 
We have thus found that if we use the UTD formula (3.15) to calculate the electric field, and 

then evaluate the magnetic field using the exact relation following from Maxwell's equations, the 
result is incorrect. On the other hand, we obtain a correct result if we express the magnetic field 

in terms of the electric field using the approximate relation 

jjd (UTD) ^ gd x Ed (UTD) (3.21) 

valid only asymptotically, and assuming the ray-optical nature of the electric field.   Eq.(3.21) 

implies now 

#d(UTD)(r) ^. (§d x Ed(UTD)(r)) = _   1   eifc*d z^A^^M"1)^ •E'(ro) ,    (3.22) 

which coincides exactly with Eq.(3.4). 
It would, therefore, seem that UTD does reproduce the correct fields near the diffraction edge, 

provided the magnetic field is calculated according to Eq.(3.21), and not Eq.(3.18). This, however, 
is not an acceptable solution for computing all components of the magnetic field. In particular, if 

we consider again the E-polarization case, taking for simplicity normal incidence (ß0 = TT/2), the 

electric field is directed along the edge (the z-axis) and is given by Eqs. (3.11) and (3.17). In this 
case, if we evaluate the magnetic field on the surface of the screen, we have sd = x, and Eq.(3.21) 
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yields the magnetic field in the direction normal to the screen, sd x Ed<UTD) ~ y.  Therefore, 
the resulting electric current (Eq.(3.1)) is exactly zero, leading to the incorrect conclusion that 

soft diffraction generates no scattered field at all; while in reality the current is nonzero, because 
a tangential magnetic field results from the normal derivative of the tangential electric field, and, 

according to Eq.(3.18), we have Hd(UTD) = -i/k dy Ez 

Behavior of modified UTD (nUTD) fields and currents near diffraction edges 

We found above that the conventional UTD does not, in general, reproduce correct near fields and 

thus surface currents near the diffraction edges. 
In this situation we suggest a modification of the UTD procedure to allow for a correct de- 

scription of all field components, and a reliable computation of surface currents. Here we sketch 

the modified formulation only for a straight edge of a flat screen; generalization to other cases is 

more complex but feasible. 
Our starting point are the exact half-plane solutions (3.11) and (3.4) for the E- and H- 

polarization. These solutions can be, without any approximation, represented as 

HZ = -±eiksDhHl, (3.23b) 

where s = sd. 
We use Eq.(3.23b) for the z-component of the magnetic field, and express the remaining 

components of Hd in terms of ffd and £d, by applying the well known formula for the transverse 
components of the magnetic field in terms of the z-components, valid for solution of Maxwell 
equation having an exponential z-dependence, in our case exp(-ifcz cos0o). We also express the 
incident fields E\ and Hl

g in terms of the incident magnetic field components along the triad of 

vectors (s\0O» A>)- Assuming transversality of the incident fields, we have H1 = <j)0H
1

<j> + ß0 Hß, 

and, from Maxwell's equations, 

El = sin&lfj ,        HI = -smß0Hß . (3.24) 

Finally, we substitute in the resulting expression the relations Eqs. (3.23). In this way we find the 

total diffracted field as 

Hd = Ur- [i x VT£
d -cosA, VT#

d] +äi?d 

k shr ß0 

= _*        {Swß07.xVTDsHl + cosß0smß0VTDhHß} -j=eiks 

k sin PQ » 

+ tsmß0DhHß±le
ik*. (3-25) 

We use now j 
VT = psin/^ + 0^-0,, (3-26) 
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where 
p = cos <f> x + sin <j) y . (3.27) 

To the leading order, the gradients in Eq.(3.25) act only on the factor exp(ik s), 

VTeiks = piksmß0e
iks; (3.28) 

this is the same approximation that underlies Eq. (3.21). By using z x p = $ and cos ß0 p+sin ß0 z = 

ß, we obtain then the conventional UTD result 

H* ~ Hd(UTD) = 4= eifcÄ \DS$4>0 • H* + Dhßß0 ■ H1} (3.29) 

analogous to Eq.(3.15). 
To obtain the exact expression for the diffracted field, we differentiate the diffraction coefficients 

in Eq.(3.25) using the relation (3.8), and express the result in terms of the unit vectors sd = s, $, 

and ß by writing p = sin/?0 s + cos ß0 ß. We find that exact diffracted field is 

Hd==Hd(UTD) + 5Hd) (3.30) 

where the additional term 5Hd can be represented in terms of a new dyadic diffraction coefficient 

V as ! 
6H* = -LeiksVH[ . (3.31) 

Here V is a dyadic form which can be expressed in terms of the unit vectors associated diffracted 

and incident rays. In a compact matrix notation it has the form 

V = [s    $   ß) 

V8<i,   vsß 

VH    V<t>ß 

Vß<t>    Vßß 

00 

ßo 
=  s ß] 

sinß0    0 

0        1 

cosß0    0 

V
P<t>    VPß 

V4>4>    V4>ß 

00 

ßo 

where the dyadic coefficients associated with the vectors p and 0 are 

Vp<t> = -C(k,ß0) {sinV_ [1-F (£_)] - sinV+ [l - F (£+)]} , 

V„ = -C(k,ß0) sin2/3o {cos^_ [l - F (£_)] - cosV+ [l - F (£+)]} , 

pp^ = -C(k,ß0) sin2/30 cos & {cos V_ [1-F (£_)] + cosV+ [1-F (£+)]} 

V<t>ß=    C(k,ß0)cosß0{smi>_ [l-F (£_)]+sin V+ [l-F (£+)]} • 

Here 

C(k,ß0) = 
piir/4 

(3.32) 

(3.33a) 

(3.33b) 

(3.33c) 

(3.33d) 

(3.34) 
/27rfc sin/J0 

^    = !(«£ T (f>0), and £T = 2Jfcs sin2/30 cos2 V^-   We note that the diffracted field 5Hd is not 

transverse - it contains a longitudinal component proportional to s.   We also note that all the 
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diffraction coefficients (3.33) are proportional to [1 - F(- • •)], i.e., they fall off rapidly outside the 

transition region. 
In the special case of normal incidence (ß0 = TT/2) the total diffracted field can be written 

explicitly as 

H<W) = -e^e1*'       *        {p [2 sinV_ [l - F (£_)] - 2 sin^+ [l - F (£+)]] H\ 

+ 0 [2 cosV_ [1 - F (£_)] - 2 cosV+ [1 - F (£+)] 

+ sec V_ F{i_) - secV+ F(£+)] flj 

+ z [sec V_ F(C_) + sec V+ F(£+)] 4) > <3-35) 

where now fT = 2 kp cos2 0T- The magnetic field discontinuity is then 

AH^H-e-/^-^ 

{-p2sin^ [l-F^fcpcos2^)] l^ + Äsec&F^Jfcpcoe»^) flj} . 

(3.36) 

Here the second term, proportional to z, is the same as in conventional UTD, and is due to "hard 
diffraction". It represents the magnetic field directed along the edge, giving rise to the current 

(3.10) in the x-direction, 
4(p)^fTD)(p) = -2A^(ri, (3-37) 

normal to the edge. The first term, proportional to p = x is the new near field contribution due to 
our modification of UTD. It is associated with "soft diffraction", and yields a current component 

Jz(p) = SJz(p) = 2AHp(p) (3-38) 

in the ^-direction, i.e., along the edge. As expected, this current component behaves for small p as 
1/y/p, and decreases rapidly away from the edge (outside the transition region). 

In Fig. 19 we plot real parts of the current components Jx and Jz as functions of kp, for two 
values of </>0: 90° and 170°. The plots show that, as <£0 approaches 180° the transition region 
extends to larger values of kp, and the current Jz remains sizable over a wider range. 

It is of interest to note that the size of our correction <5Hd to the diffracted field is of the same 
order as the difference between the UTD and GTD result (the latter being UTD with all transition 
functions F replaced by unity), i.e., schematically, 

<5Hd ~ Hd (UTD) - Hd (GTD) . (3-39) 

Indeed, both quantities are sums of terms proportional to [1 -F(- ■ •)]• For instance, in our example 
Eqs. (3.37) and (3.38) imply that, assuming unit values of FLx

ß and H^, 

6Jz(p) = 2 sin^0 [Jf ™»(p) - 4GTD)(P)]  ■ (3-40) 
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For a more quantitative estimate we evaluate the integrals of the current components, e.g., 

where 

oo 

yv '     v/5F J       Vu 

= 1+VF^ Jl-e--/4 (x/T^2 + iff)1/2 + i (Vl - ff2 - iff) 
x/2(l-ff2) 

1/21 

(3.42) 

The function s(ff) is defined for -oo < a < \ with the square-root branch specified by Im a < 0, 
i.e., Vl-ff2 = -iVff2-lfor ff < -1. It is real, and is normalized so that 5(0) = \ (corresponding 
to i0 = TT/2), and g{-oo) = 1 (corresponding to <f>Q = IT). From its plot (Fig. 20) it is apparent 

that the size of both 6JZ and 4UTD) - 4GTD) increases when we approach <j>Q = 180°. 
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Fig. 20: The factor g of Eq.(3.42) plot- 
ted as a function of the angle </)0. 

Fig. 19: Real parts of the current com- 
ponents (3.37) and (3.38) as functions of 
kp, for <j>0 = 90° and <f>0 = 170°, assum- 
ing unit values of Hß and H^. 

In Section 4 we present examples in which we compare scattering cross-sections obtained using 

the MoM, with those computed using currents determined from GTD, UTD, and our modified 
version of UTD. We find there the contributions due to the modification of UTD significantly 

improve the agreement of asymptotic approximations with the exact results. 
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3.2. Direct field computation 

We return now to the problem of determining scattered fields directly form the fields defined on 

the WFs. 
Properties of the WFs reflected from smooth curved surfaces, and surfaces consisting of flat 

facets, are quite different. In the first case the WF is curved, and the individual rays have also 
nonzero curvatures. In the second case, meanwhile, the reflected WF consists of flat surface 
segments, and the rays carry zero curvatures (provided we consider a plane incident WF). 

Similarly, WFS diffracted from straight and curved edges behave differently: they are either 

cylindrical (conical), or spherical waves. In the following we consider thus only the processes which 
generate spherical waves, amenable to direct computation of the scattering cross-section. 

By definition, the scattering amplitude is defined as the appropriately normalized asymptotic 

value of the scattered field. A vector-valued scattering amplitude can be defined in terms of the 

magnetic fields as the limit 
A(R)=  lim 47ri*e-5fcÄH(R) , (3.43) 

R-*oo 

assuming a unU strength incident field, |Hin| = 1, and using the field H including the rapidly 
varying phase factor (as opposed to the smoothly varying field H used in Eq.(3.2)). According 
to the laws of GO we can calculate the field H at any observation point R provided we identify 
all rays passing through that point. Fig. 21 shows two such rays, originating at points rx and 
r2 of a certain WF, characterized by the given fixed phase ks (where s denotes the length of the 

propagation path). 

Fig. 21: Contributions to the field at the observation point R due to two rays originating at 
points r,. on segments Xj of a WF (j = 1,2), and propagating along the normals a,- towards the 
observation point. 

Since the rays in the regions outside the scatterer evolve according to the laws of GO, the 

contributions of the fields at points r^ to the field H(R) are given by (cf. Eq.(3.2)) 

H(j)(R) = Pi   *    ^H^), (3.44) 
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where ($ are the ray's curvatures at the points r^, and Sj = |R - r^ is the propagation path 

length. Since, in the limit R -> oo, we have SjC-R- Rr.,, the amplitude (3.43) becomes 

A(R) = 4TT £ y/tftfe-**"' H(r,) ; (3.45) 

actually, in practice we apply the GO evolution laws to real fields with the common phase exp(ifcs) 

factored out. 
The conventionally normalized differential scattering cross-section (per unit solid angle) for 

scattering in the direction R and for the scattered wave magnetic-field polarization h is then given 

by 
<re(R) = ^|h\A(R)|2. (3-46) 

According to Eq.(3.45), the scattering amplitude has the correct dimension of length, and the 

scattering cross-section the dimension of length squared. 
The procedure for computing the scattering amplitude A(R) is thus as follows: 

1. Select a sufficiently evolved WF characterized by some evolution parameter s. ^ 
2. On this WF locate all points r^ whose normals n^ coincide with the direction R. 

3. Sum contributions of these points according to Eq.(3.45). 
Having found the vector-valued amplitude A(R), we can then computing the conventional scat- 

tering amplitudes by taking scalar products of A with the magnetic field polarization vectors h of 
the scattered wave. Consequently, the differential polarized cross-sections are proportional to the 

squares of the absolute values of such amplitudes. 

Some remarks are in order here: 
(A) In the step 1. above by a "sufficiently evolved" WF we mean a WF containing contributions 

from a sufficient number of reflections (if there are multiple reflections in the problem). In 
practice, we can compute the scattering amplitudes for a number of WFs, and monitor the 
convergence of the result. Typically, the convergence is relatively fast, since the consecutive 

reflections give weaker and weaker contributions to the field. 
(B) Since the WF is represented in terms of a finite number of rays, we cannot expect to find 

normals n pointing exactly in the direction R. Instead, we have to use an interpolation 

procedure: We first map the mesh defining the WF onto a unit sphere, on which the nodes are 
the normals n. On this unit sphere we find then all the mesh faces (triangles) intersected by 
the direction vector R. Finally, for each such triangle we interpolate the field values associated 

with the three vertices to the point representing the required direction R; for sufficiently small 
triangles, linear interpolation is adequate. An important element of the procedure is that in 
the interpolation we use the smoothly varying fields H (as in Eq.(3.2)), and only then we 

multiply the result by the appropriate phase factor. 
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3.3 Surface current computation 

The goal of the current-based approach is to obtain equivalent surface currents corresponding to 

the field of the WF, and use these currents to compute the scattered field, or for other purposes 

(as we discuss below). For a p.e.c. scatterer the equivalent surface electric current is given by 

Eq.(3.1), hence the values of the magnetic field on the surface are required. 
Besides computing the scattered field (as the Kirchhoff integral of the current), a natural 

applications of this type of calculations might be to develop an interface to integral-equation 

methods, in which the unknown quantities are surface currents. There is a need for such an 

interface in several circumstances: 
1. Hybrid methods require input for solving low-frequency integral equations in the form of 

the initial current generated by the field originating from the high-frequency components of 

the object. Computation of this current provides, effectively, a coupling between the system 

components described by low-frequency and asymptotic methods. 
2. In an "enhanced" formulation of Physical Optics (PO) the required input for scatterer field 

computation is the current induced on the scatterer surface by the incident field, and by the 

fields due to GO reflections (in this case the WF is thus obtained in the GO approximation). 
3. The rigorous method of high-frequency asymptotic integral equations considered in [2,3] re- 

quires an Ansatz for the solution for the surface current. This Ansatz is in the form of a 
linear combination of unknown slowly varying functions multiplying rapidly oscillating func- 
tions representing asymptotic high-frequency solutions. These asymptotic solutions, generated 

by all possible reflection and diffraction processes, can be very naturally extracted from the 
purely geometrical construction of WFs (even without the need of computing diffracted field 

by means of UTD or similar methods). 
One of the first questions we encounter when trying to determine surface currents is how these 
currents should be represented and parameterized. At high frequencies it is, clearly, impractical to 
use a representation of the current in terms of their values at selected points on the surface, since 
this would require about 10 sampling points per wavelength. A more useful representation is its 
parameterization as a sum of rapidly oscillating exponential factors multiplied by smoothly varying 

coefficients. Such parameterizations would be applicable in some surface patches Dj centered 
around some "current points" R,. The sizes of the regions Dj is assumed to be of the order of the 

local ray spacing, and they are required to cover the entire scatterer surface S. 
Let us assume for a moment that a set of M distinct rays (originating from different segments 

of the WF) coalesce at a current point R,. The conventional WF form of the fields suggest then 

the representation 
M 

j(r) = ^ Am(r) e5fc5-(r)       for rePj, (3-47) 
m=l 

i.e., a sum of contributions of distinct rays arriving at It,. Here 5m's are the phases of the 
individual rays, defined so that V5m(r) = nm, where nm is the unit vector in the direction of the 
ray propagation. The amplitudes Am are parameterized as constant amplitudes multiplied by the 

conventional ray divergence factors involving the ray evolution parameter and the curvatures. 
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If the rays arrive at the surface not exactly at the "current point" Kp but in its vicinity, 

it is necessary to devise a procedure to interpolate the rays to the point Rj; and then find a 

parameterization of the phases and coefficients in Eq.(3.47). Such a procedure can be based on 
WF field interpolation within sets of neighboring rays, similarly to methods using "ray cells" (i.e., 

prisms formed by the corresponding faces of the meshes on the two consecutive WFs). 
Our algorithm can be formulated as a procedure for computing field values at any set of 

observation points (not necessarily points on the scatterer surface). Currents can be then obtained 
by applying the algorithm to surface points, and using J = 2n x AH, where AH is the discontinuity 

of the magnetic field across the surface. 
Conceptually, the interpolation algorithm can be stated as follows: 

1. Specify a set 11 of "field points" R, at which the fields are to be computed; the spacing of 
these points should be sufficiently small to resolve the variation of the amplitudes of the fields 

(but not variation of their phases). 
2. At every step of the WF evolution find, for each "field point" Rj? a set of nearby rays (within 

the distance of a few average ray-ray spacings). These rays are selected from the set of rays 

propagating from the previous WF to the current WF x (Fig. 22). 
3. For each of nearby rays £ construct a ray £R. passing through the point R,- and parallel to 

j 

the ray £. The length As of the ray is set to the distance between the point R^- and the WF, 

measured along the direction of the ray £. 
4. By evolving the ray £R forward in time find its intersection with the WF x- Identify the 

WF face / intersected by the ray (Fig. 22). (We note that a continuation of the ray £R may 

intersect further segments of the WF, but theses intersections are irrelevant, since we are only 

computing contributions of the rays evolved up to the WF %.) 
5. Identify the rays £/x, £/2, and £/3, associated with the corners of the face /. Evolve these rays 

backward through the distance As to form an image /' of the face /. We refer to the prism 

built on the faces / and /' as a ray tube. 
6. Check if the point Kj is located inside the face /'. If it is, continue to the point 7. If it is 

not, determine the average direction n123 of the rays £fi (i = 1,2,3), construct a new ray £R. 

emerging from R., in the direction of n123, and return to the point 4. 
7. Interpolate field values associated with the ends of the rays £fi to the point R^. 
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Fig. 22: The algorithm for computing a contribution of a ray to the fields at the observation point 
Rj, by interpolating between rays £fl, £/2, and £/3 associated with a face / on the WF x- Tlie 

heavy arrow denotes the direction of WF propagation. 

Several remarks and clarifications are in order here: 
(a) The steps 3 to 7 are repeated for all rays passing near the observation point Rj. If several 

near rays yield the same ray tube, only one of them is taken into account. Contributions to 
the fields from all distinct ray tubes are added to the field representation at Rj. The field is 
represented in analogy to Eq.(3.47), i.e., in the form of constant vector amplitudes and the 
corresponding wave vectors. Specifically, for each of the ray tubes containing the point R^, 
we store the field amplitudes ETO(Rj) and the phase Sm(Rj) evaluated at the observation 
point, as well as the gradient njTO = VSm(Rj) at that point. These data provide a local 
parameterization of the field in the neighborhood of the point R, as a sum of plane waves. 

(b) If the observation points Rj are located on the scatterer's surface, it is understood that the 
WF x is the WF computed as in the absence of the scatterer, i.e., before the effect of rays' 
reflections is taken into account. In fact, in our present implementation the WFs are first 

evolved without reflections, and then transformed by reflecting the rays. 
(c) We note that our algorithm for field interpolation differs from the method being used in 

previous WF approaches, and based on a somewhat different concept of a "ray cell" [5,6]. In 
that construction of a ray cell is specified in terms of two consecutive WFs (the "previous" 

and the "current" ones), while our algorithm employs only one WF (the "current" WF). Our 
procedure was mainly motivated by applications to diffraction: in this case we may encounter 

a situation where the "previous" WF simply does not exist, because the current WF, due to 

a diffraction process, was newly created in the considered evolution step. 
(d) In order to compute the induced electric field on an open surface, it is necessary to evaluate 

the field slightly above and slightly below the surface. In doing that, we have to check which 
side of the surface is illuminated by the individual rays of the WF, and we have to take into 

account possible discontinuities of diffracted waves across the surface. 
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(e) In the interpolation of fields associated with the rays we have to take into account the fact 
that the fields may not be ray-optical (in the UTD transition regions, including the region 

near the diffraction source). 
To summarize, the algorithm for computing the surface current, as described above, is similar to 

the previous method for computing the asymptotic far field, except that now the observation points 
are located on the scatterer surface. The resulting complication is that it is necessary to take into 
account contributions of all WFs during their evolution, rather than only the "far evolved" WFs, 
after all relevant scattering processes have occurred. In addition, an efficient current representation 

requires local analytic parameterizations of the current, rather than merely field or current values 

at some sampling points. 
We also note that the above current computation algorithm is applicable both to WFs resulting 

from reflection as well as diffraction effects. It can be thus used both to generate currents as input 
for Kirchhoff integral-type computations, and for creating the initial Ansatz (including diffraction) 

for the solution of rigorous asymptotic surface-current integral equations. 

3.4.   Assessment of the scattered field computation procedures 

From the practical point of view, the main advantage of the direct computation of the scattered 
fields is the relative simplicity of the algorithm. Its drawbacks, however, are the difficulties which 
appear near the scattered field caustics (we will see an example ofthat for scattering on a circular 

disc), and the fact that the only contribution to the cross-section comes from processes generating 
asymptotically spherical waves. Thus, for example, in scattering on a polyhedral object with flat 
faces, corner diffraction is the only mechanism generating asymptotically spherical waves, hence, 

corner diffraction is the only process contributing to the scattered field and to the cross section 
(edge diffraction generates cylindrical or conical waves). This situation appears rather unnatural, 

considering the fact that edge diffraction is certainly an important scattering process. 
The advantage of the procedure using induced currents to compute the scattered fields is its 

applicability to all diffraction processes, and the fact that it avoids difficulties due to caustics in the 
scattered field. (The only difficulty remains if the caustic is located on or intersects the scatterer's 
surface.) A certain disadvantage of the approach is a relative complexity of the algorithm for 

current computation. 
Below we present results obtained using both procedures for computing the scattered fields. 

4. Examples 

We give now results of scattered field and cross-section computations for several simple scatterers 

of various types. 

Reflection off a system of spheres 

We consider multiple reflection process on a system consisting of two spheres of unit radii, separated 
by a distance equal to the sphere diameter, as shown schematically in Fig. 23. The incident plane 
WF approaches the spheres along the negative z-axis, with the electric field along the x-axis. 
The evolution step length is 0.3.   For the cross-section computation we assume the wavelength 
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A = 0.2 (i.e., the spheres diameters 10 A). Fig. 24 shows the differential bistatic cross-section for 

the vertical (0-) polarization, compared with the exact result obtained using a LF code (in this 
case, our integral-equation solver with FMM compression), with the discretization leading to a 
problem with about 100,000 unknowns. The differential cross-section shown is the conventional 

dimensionless cross-section a = a I A2 normalized to the wavelength squared. 
The rapidly oscillating structure in the cross-sections of Fig. 24 is due to interference of 

reflections from the two spheres. The flat segment in the cross-section results from one sphere 

obscuring the view of the other, and is due to single reflection from one sphere only. The agreement 
of the asymptotic (GO) and exact cross-sections is good in the near-back-scattering region, where 

the main contributions come from single reflections from the individual scatterers. As expected, 

the cross-sections do not agree near 90° and 180°, where diffraction effects are important. 

Fig. 23:   A multiple-reflection problem 
with two spheres. 

0        20       40       60       80      100     120     140     160     180 
scattering angle 

Fig. 24: Comparison of the asymptotic 
(GO) cross-section with the exact LF 
code result. 

Diffraction on a circular disc 

We consider here scattering on a circular disc of radius a, placed in the (x,y) plane, illuminated 
from above with an incident plane wave, with the electric field along the x axis. For simplicity, we 
take the normal incidence; in this case the first-order diffraction contribution to the GTD scattering 

amplitude in the scattering plane 4> = 0 is [13,14] 

A(0) = 2 
2na 

k sin0 

cos(fca sinfl - TT/4)     . sin(fca sinfl - TT/4) 

cos 0/2 1 sin 0/2 
(4.1) 

This expression is valid away from the specular reflection direction 0 = 0 (which is also a caustic of 

the reflected and diffracted rays). Eq.(4.1) is due to the interference of two rays diffracted from the 
opposite points on the disc edge, both located on the x axis. We also note that for computation of 
the far-field, away from the caustics and transition regions, GTD and UTD give identical results. 
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In Fig. 25 we compare the GTD/UTD cross-section based on Eq.(4.1) with the result of our 

WF computation (according to Eqs. (3.45) and (3.46)), and with the rigorous MoM result. The 

computations were done for a disc of radius a = 5 A. 
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Fig. 25: The differential bistatic cross-section (in dB, normalized to the wavelength squared) for 
a circular disc, computed using GTD (Eq.(4.1)), the Method of Moments (MoM), Physical Optics 
(PO), and our WF evolution algorithm. 

The comparison shows that the agreement of the WF calculation with GTD (away from 
the backscattering direction) is very good, except near the first (very narrow) minimum. The 
discrepancy in this case is likely due to inaccuracies in field interpolation in the range where the 

field varies very rapidly. 
As expected, neither GTD/UTD nor WF computation reproduce correctly the main diffrac- 

tion peak at 6 = 0 (which occurs in the direction of the reflected and diffracted rays caustic). 
Clearly, GTD/UTD give an infinite cross-section at ß = 0. This deficiency may be corrected by 

our alternative approach to scattered field computation based on evaluating the surface current 

distribution (provided the current itself can be reliably calculated in the caustic region. 
At the same time, the conventional PO approximation is expected to fail at larger scattering 

angles (in the bistatic cross-section). This well known fact is confirmed by the plots shown in 
Fig. 25. Thus, away from the specular reflection and caustic directions, GTD/UTD gives predic- 

tions definitely better than PO - unless the latter approximation is improved by adding diffraction 

contributions to the current itself. 
The discrepancies between the exact (MoM) result and GTD/UTD or WF calculations are 

evidently due to the fact that latter include only the first-order diffraction. Repeated multiple 

diffraction from the edges of the same flat screen can be included in the WF computation, but 
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requires an extension of the diffraction algorithm described above. The present algorithm is not 

able to detect an edge as giving rise to diffraction if that edge is illuminated by a ray strictly 

tangential to the screen; this problem is one of the issues we discuss in Section 5. 

Diffraction on a rectangular plate 

In this example we consider a 6 A x 6 A square plate placed in the (x,y) plane, illuminated by a 
plane wave of vertical (0) or horizontal (</>) polarization, with the incident wave vector in the (x, z) 

plane (cf> = 0). Here we evaluate the scattered field by first computing the induced current on the 
scatterer surface, using the algorithm described in Section 3.3. In evaluating the current we use 
either only the incident wave (is equivalent to the PO approximation), or include contributions 

from single edge diffraction utilizing GTD, UTD, and "near-field UTD" (nUTD), as described in 

Section 3. 
Figs. 26 and 27 show the results for the vertical-polarization bistatic cross-section as the 

function of the scattering angle 0, for two incidence angles: normal incidence (0j = 0°) and near- 

grazing incidence (0; = 80°). 
In the normal incidence case for the vertical polarization (Fig. 26a) the cross-section resulting 

from the PO current is much too low for theta approaching 90°. The GTD current yields a better 
result, while the UTD and nUTD currents give rise to cross-sections almost indistinguishable from 

the MoM. For the horizontal polarization (Fig. 26b), on the other hand, PO, GTD, and UTD 
currents yield almost identical cross-sections, which, however, do not agree with the MoM result 
neat 0 = 90°. The modified UTD, nUTD, provides a much better agreement with the MoM. 
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Fig. 26b: Same as Fig. 26a, but for hor- 
izontal polarization. 

Fig. 26a: The differential bistatic cross 
section (in dB, normalized to the wave- 
length squared) for the 6 A x 6 A plate 
at normal incidence (0j = 0°) and for 
vertical polarization, computed by us- 
ing the MoM and our current-based al- 
gorithm utilizing PO, GTD, UTD, and 
nUTD currents. 

In the near-grazing incidence case for the vertical polarization (Fig. 27a) the PO current gives 
a poor agreement with the MoM for all scattering angles. The GTD current results in an even 
worse approximation. The remaining procedures (UTD and nUTD) provide, on the other hand, 
very good agreement with the MoM. In the horizontal polarization case (Fig. 27b) the PO, GTD, 
and UTD currents give fairly close results, but all strongly disagree with the MoM. The nUTD 

provides a much better agreement. 
We also note a very poor agreement of the GTD result for vertical polarization (Fig. 27a), 

due to the incorrect behavior of the GTD fields in the transition region (which, for near-grazing 

incidence, extends over a large area of the plate). 
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Fig. 27a: The differential bistatic cross 
section for the 6 A x 6 A plate at near- 
grazing incidence (0j = 80°) and for 
vertical polarization, computed by us- 
ing the MoM and our current-based al- 
gorithm utilizing PO, GTD, UTD, and 
nUTD currents. 
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Fig. 27b: Same as Fig. 27a, but for hor- 
izontal polarization. 

Results for the back-scattering cross-section are shown in Fig. 28. The features of the various 
approximations are here similar to those seen for bistatic cross-sections. We note, in addition, the 
discontinuity of the GTD vertical-polarization cross-section near 6 = 90°, due to the nonuniform 

behavior of the GTD diffraction coefficients in the transition region. 
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Fig. 28b: Same as Fig. 28a, but for hor- 
izontal polarization. 

Fig. 28a: The differential back-scat- 
tering cross section for the 6 A x 6 A plate, 
for vertical polarization, computed by 
using the MoM and our current-based 
algorithm utilizing PO, GTD, UTD, and 
nUTD currents. 

As a further illustration we show in Fig. 29a the distribution of the induced current Re Jx 

(computed using nUTD) for the case of the near-grazing incidence of Fig. 27b, with the v-polarized 

incident wave. 
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Fig. 29a: Distribution of the current 
component Re Jx for a v-polarized wave 
at the incidence angle 6i = 80°. 
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Fig. 29b: The same as Fig. 29a, but for 
an h-polarized incident wave. 

The current Jx consists of the incident wave (PO) and diffraction contributions; the latter is 

mainly due to diffraction on the "trailing edge", and results in the enhancement (compared to PO) 
of the back-scattering cross-section at near-grazing angles, as seen in Fig. 28. (That enhancement 

is commonly termed the "surface wave" contribution.) 
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For comparison, Fig. 29b shows the distribution of the same current component as Fig. 29a, 

but for an h- (<£-) polarized incident wave. In this case the contributions to Re Jx come exclusively 

from diffraction on the edges parallel to the z-axis; it can be seen that the currents are nonzero 

only inside the relevant diffraction cones. 
The features of the approximate cross-sections in Figs. 26 and 27 can also be understood by 

analyzing the behavior of the induced currents. In particular, the large difference between the 

nUTD and the remaining approximate results in Figs. 26b and 27b is due to the fact that only 
nUTD correctly reproduces the behavior of the currents flowing in the y-direction near the edges 

aligned with the y-axis. 
We have analyzed many other cases of scattering on plates (for other cross-section cuts, and 

other incidence angles) and we found that the currents computed using nUTD consistently provide 
an improvement relative to both GTD and conventional UTD. Nevertheless, the agreement with 

the rigorous results is often not as good as that shown in Figs. 26 - 28. 
There are many possible sources of disagreement between the MoM currents and currents 

evaluated using an asymptotic theory. We stress here that nUTD applied to a rectangular plate 
reproduces exactly the solutions of canonical (half-plane) problems for the four plate edges. There- 
fore, the most likely missing diffraction mechanism is corner diffraction, understood not only as 
a term in the asymptotic expansion of the Kirchhoff integral, but also as due to specific physical 
diffraction processes occurring in the presence of a corner. Unfortunately, the known solutions of 
the canonical problem (a plane angular sector) are only given as a rather complicated series of Lame 
functions in the sphero-conal coordinate system [17,18,19]. For this reason, the corner diffraction 
problem has not yet been completely solved, although asymptotic forms of the corner-diffracted 

field (corner diffraction coefficients) have been obtained under some conjectures about the solution 
[20,21], or for the rigorous solution in some special cases [22]. The latter work suggests that, 
physically, corner diffraction manifests itself mainly in the appearance of "edge wave currents" - 
waves emanating from the edges and propagating along the two edges forming the corner. We also 

observe such behavior in our MoM solutions for the currents. 
We plan to analyze the problem of corner diffraction more thoroughly, and we expect that, 

as more complete calculations of corner diffraction coefficients become available, they will improve 

the agreement of the asymptotic theory with the rigorous results. 

Diffraction on a system of rectangular plates 

We discuss here our preliminary results for a system of two square plates: the plate A of size 
10 A x 10 A, and the plate B of size 8 A x 8 A, located one above the other, as shown in Fig. 30. The 

plates are illuminated by a vertically incident v-polarized wave (with the electric field along the 

x-axis). 
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plate A 
(illuminated)' 

plate B 
(shadowed) 

Fig. 30: A system of two plates (A and B) illuminated from above by an incident plane WF, so 
that plate B is in the shadow of plate A. 

For this configuration, our present WF algorithm includes, as scattering mechanisms, 

(a) reflection on plate A, 
(b) diffraction on plate A, 
(c) diffraction on plate A, reflection on plate B, 

(d) diffraction on plate A, diffraction on plate B. 
We evolve the WF through two relatively long steps. The first step creates WFs reflected and 
diffracted from the plate A (Fig. 31a). During the second step the diffracted wave arrives at the 

plate B and generates there secondary reflected and diffracted WFs (Fig. 31b). 

step 2: 

step 1: 
reflected WF 

diffracted WF 

plate B 

(a) (b) 

Fig. 31: WFs for the two-plate system after the first (a) and second (b) evolution steps. For clarity, 
the scatterer and the WFs are cut along the symmetry plane, and only one-half of the configuration 
is shown. 

The scattered field is obtained by integrating the currents induced on both plates. The con- 

tribution to the cross-section resulting from the current on the plate B includes then effectively 
scattering mechanisms (c) and (d) listed above ((c) expected to be dominant). Since the plate B is 

40 



inclined, these processes are expected to generate a certain asymmetry in the cross-section, more 

specifically, an enhancement around 6 = 30° due to reflection off the plate B. Indeed, some en- 

hancement is seen in Fig. 32, where we compare the WF computation with the MoM result for plate 

A only and for both plates. However, compared to the rigorous (MoM) result, the enhancement is 

definitely too small. 

e 30 
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e 

Fig. 32: The differential bistatic cross section (in dB, normalized to A2) for a single plate (plate 
A) and the system of two plates, computed by using the Method of Moments (MoM) and our WF 
evolution algorithm. 

In Fig. 33 we compare current distributions on the plates, obtained using the MoM and our WF 
algorithm. Currents on the plate B show symmetric and rather intricate distributions; however, 
the WF computation definitely predicts too small currents there. That fact may be due to the lack 

of corner diffraction in our present WF algorithm. 
We also note that the WF result shows no effect of plate B on the current distribution on A 

(while some effect is seen in the MoM current distribution). The reason is that in this particular 
computation the WFs reflected and scattered from plate B have not yet reached plate A (Fig. 31). 
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Fig. 33: Distributions of the absolute values of the induced current on the plates A and B, computed 
using the MoM (a) and our present WF evolution algorithm (b). 

5. Algorithm elements requiring further development 

When describing our WF algorithm we also mentioned its current inadequacies and shortcomings. 
Here we discuss improvements that can be introduced in the further algorithm development: 

1. Detection of diffraction edges. As we described in Section 2, the present algorithm identifies 
diffraction edges by finding intersections of rays with scatterer faces. This procedure is not 
applicable in the case when the rays are exactly tangential to the (flat) scatterer surface - 

a situation arising in multiple diffraction on a flat screen or on a polyhedral scatterer. The 
present algorithm may also miss edges of very thin wedges, it the wedge width is less than the 

typical ray-ray spacing h. 
A remedy to these problems is to preprocess the scatterer geometry and mark all edges that 
may be sources of diffraction. Then, in the WF evolution process we can check proximity 
of the rays to the marked edges, by effectively testing ray intersections with cylinders built 
around the edges (the cylinder radius being comparable to the minimal ray-ray spacing). 

This algorithm modification corrects also the problem of missing small end parts of the WF 

(Fig. 15). 
2. Detection of corners. The present algorithms, both for reflections and diffraction, detects edges 

of scatterer faces by testing intersections of rays with faces, and creates new rays hitting the 

detected edges by interpolating between existing rays along the edges of the WF mesh. While 
this procedure works well for sufficiently smooth edges, it may result, in the vicinity of sharp 

corners, in localization errors of order of the ray-spacing. 
This algorithm deficiency can also be corrected by localizing corners in the geometry prepro- 

cessing stage, and then testing ray intersections with spheres centered at the corners. 
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3. Multiple reflections and diffractions in a single evolution step. The present algorithm implements 

partially multiple ray reflections in a single evolution step, but does not allow computation of 

induced currents in this situation. Neither does it allow multiple diffraction in a single step. 
The difficulty in algorithm implementation stems from the fact that neighboring rays may 

undergo different numbers of reflections or diffractions, i.e., have different evolution histories; 

such as situation precludes straightforward field interpolation required in evaluation of the 

current. 
To correct this deficiency, we plan to modify the description of ray evolution between the 
consecutive WFs: instead of evolving individual rays, we will evolve ray tubes, a ray tube 

being a triplets of rays constituting vertices of a WF mesh face. In a multiple reflection or 

diffraction process these ray tubes will be split, until all rays in a given tube have the same 

evolution history, and interpolation becomes possible. 
4. Continuity of the diffracted WF generated in consecutive evolution steps. In the present algorithm 

implementation there may appear gaps between the segments created in consecutive evolution 

steps (Fig. 16). 
This problem can be also corrected by describing ray evolution in terms of ray tubes rather than 

individual rays. In this context a ray tube provides an additional connectivity information, 

and "memory" preserved between the evolution steps. 

Other algorithm modifications are extensions to include additional scattering mechanisms: 
5. Corner and tip diffraction. These diffraction mechanisms can be implemented in conjunction 

with the corner detection procedure mentioned in point 2. However, as we discussed in Section 
2, the corner and tip diffraction coefficients are presently available only for some special cases, 

or in approximate forms. 
6. Gap and crack diffraction. Although these processes can be, in principle, described as multiple 

diffraction, it will be more convenient and economical to model them as separate diffraction 

mechanisms characterized by specific diffraction coefficients [23]. 
7. Smooth-surface diffraction. Diffraction on smooth surfaces constitutes a major extension of 

the present algorithm. We have developed a general idea of the smooth-surface diffraction 

algorithm, involving splitting of "ray tubes" incident on the scatterer surface near the shadow 

boundary. Its implementation would be, however, rather complex. 
8. Treatment of caustics. Problems associated with caustics in the scattered field have been partly 

alleviated by utilizing the procedure of evaluating radar signatures from surface currents. 
Caustics, however, may also appear on the surface of the scatterer. In that case it might be 
necessary, in the last diffraction process, to avoid using the stationary-point approximation 

altogether, and describe the diffraction process in terms of one of "incremental" diffraction 

theory approaches [24,25,23,26,27]. 

In addition, performance of the present, preliminary, algorithm implementation is inadequate, and 

has to be improved in at least two areas: 
9. WF mesh complexification and simplification. Improvement of this algorithm is relatively 

straightforward. It requires performing operations on the WF mesh in a way as local as 

possible, i.e., only in regions where the mesh has been modified or has to be modified. 
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10. Current computation. Efficiency requires that the present algorithm (Sections 3.2 and 3.3) be 
thoroughly revised. We plan to reverse the procedure by finding current points contained in 

specific ray cells, rather than finding ray cells containing specified current points. 

6. Assessment of the Phase I results 

As the main result of the Phase I effort, we developed and constructed preliminary implementations 

of the following algorithms: 
1. Algorithm for free-space WFs evolution. 
2. Algorithm for creating WFs according to the laws of Geometrical Optics (GO), and for eval- 

uating fields due to GO processes. 
3. Algorithm for creating geometry of the WFs due to edge diffraction according to prescriptions 

of the Geometrical Theory of Diffraction 
4. Algorithm for evaluating fields due to edge diffraction, according to a modified version of 

Uniform Geometrical Theory of Diffraction (UTD). 
5. Algorithm for direct evaluation of scattered fields in terms of WF fields. 
6. Algorithm for evaluating surface currents based on the computed WF field values. 

The algorithms for geometrical WF construction are applicable in both frequency and time do- 
mains. Our current implementation of UTD field computation algorithms has been carried out in 
frequency domain; it can be, however, extended to time domain in a rather straightforward way 
by incorporating the time-domain UTD being developed at the ElectroScience Laboratory of Ohio 

State University [28,29,31,32]. 
The modification of UTD mentioned in point 4, in its present implementation, provides the 

correct behavior of diffracted fields at all distances (including those small compared with the wave- 
length) for screen-edge problems. By a correct behavior we mean here coinciding with the exact 
solution for the corresponding canonical problem, in this case the half-plane. The construction can 

be generalized in a straightforward way to the perfectly conducting wedge problem [1]. 
As another comment, relevant to the point 6, we mention that computation of surface currents 

may either yield the scattered fields (in a more general and robust way than the direct evaluation 
mentioned in point 5), or, alternatively, it can be used to construct a solution Ansatz to be 
subsequently used in solving rigorous asymptotic high-frequency integral equations [2,3]. We stress 
that in the latter application only the geometrical construction of WF and rays is involved, and 

we avoid difficulties associated with the computation of field values (such as caustics). 

The description of our WF approach, presented in this report, indicates that many aspects of 

the algorithm are fairly complex both in formulation and in implementation. Also, as we discussed 
in the preceding Section, many algorithm elements require further development and substantial 

modifications. Nevertheless, the results obtained confirm the two most important features of our 

approach: 
(i) correct high-frequency scaling (number of rays and thus computational cost independent of 

frequency); and 
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(ii) algorithm ability to treat multiple reflections and diffraction in a consistent way (in agreement 

with reciprocity). 
In view of these findings, we believe that the Phase I results do provide a solid basis for development 

of an efficient software package capable of consistent and accurate modeling of a wide variety of 
high-frequency electromagnetic scattering processes. It would constitute a significant improvement 
compared to presently available codes which typically do not incorporate features (i) and (ii) just 

mentioned. 
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1. Introduction 

This report provides a brief summary of the technical support made available by the 

Ohio State University ElectroScience Lab (OSU-ESL), to Monopole Research in their 

development of a Wavefront Evaluation (WE) Algorithm for the efficient ray based 

analysis of electromagnetic (EM) radiation and scattering from electrically large objects 

of practical interest. 

Part of these contributions involved providing Monopole Research with some basic 

and important ray field expressions based on the uniform geometrical theory of 

diffraction (UTD) [1-3], and also providing associated computer subroutines for 

calculating these field expressions within the WE algorithm. The UTD solutions which 

have been provided are in the frequency domain (FD), as well as in the time domain 

(TD). Thus, both FD-UTD and TD-UTD type solutions and their associated subroutines 

have been included in this work. Additionally, two new TD-UTD solutions have been 

developed which are expected to be particularly useful in electromagnetic compatibility 

(EMC) and electromagnetic pulse (EMP) applications; however, the computer 

subroutines for calculating the TD-UTD fields in these two new cases have not been 

written as yet in a user friendly manner. It is hoped that the latter, as well as additional 

FD-UTD and TD-UTD solutions of importance (some of which have not been developed 

to date) could be included within the WE framework in the future phases of this study. 

The WE algorithm [4], which is being developed by Monopole Research, will allow 

one to track ray fields more efficiently than via other commonly used ray shooting 

methods. This is possible because in the WE approach, one simultaneously tracks a grid 

of rays rather than tracking a single ray at a time. The latter is possible since the WE 

method exploits the intimate relation between a family of rays and their associated 

wavefront. In a numerical sense, a discrete set of rays can be employed to approximately 

define a wavefront patch, and vice versa. Once an initial wavefront patch is chosen on the 

illuminating or incident field, one can then track this initial wavefront (or phasefront) 

patch as it evolves via reflection and/or diffraction from the radiating /scattering object, 

to arrive at observer locations of interest. The completion of the EM solution to the 

radiation, scattering and diffraction of waves from electrically large complex objects via 

the WE approach then requires one to assign field values to the discrete rays defining a 
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wavefront patch, as the latter evolves in a given problem configuration. The set of 

wavefront patches defining the part of the incident or excitation wavefront that interact 

with the radiating/scattering object must satisfy certain connectivity requirements. In this 

regard, it is noted that the wavefront patches could split at sharp edges due to the process 

of diffraction. The sum total of the fields associated with all the discrete set of rays on 

each of the patches as they evolve finally provides the required solution. Of course one 

may need to interpolate field values between the discrete set of adjacent rays in order to 

have a knowledge of the field at any point on the wavefront patch or patches. Since a 

discussion of the WE approach may be found in [4], the present report will focus on 

briefly describing some of the types of ray fields that need to be coupled into the WE 

algorithm during the initial phases of its development. Other types of ray fields may be 

included during later phases of this study to make the WE algorithm more versatile. 

Specifically, the type of ray fields considered for use in the initial WE algorithm being 

prepared by Monopole Research are those that are needed to account for some of the 

basic first order diffraction mechanisms that are generally present in large complex 

structures which can be built up from a combination of smooth convex surfaces and 

edges. The ray field expressions, and their associated computer subroutines which have 

been delivered to Monopole Research for calculating such ray fields are based on the 

UTD [1-3] as stated earlier. The UTD extends the original geometrical theory of 

diffraction (GTD) [5] to avoid the singularities of the GTD fields at the ray optical 

shadow boundaries. The accuracy and efficiency of the FD-UTD has been established 

over the last two decades via numerous scale model measurements and other independent 

approaches. On the other hand, the TD-UTD is a recent development [6,7]. A TD-UTD 

solution is generally obtained by inverting the corresponding FD-UTD solution which is 

assumed to be available. The analytical inversion of the FD-UTD into the TD-UTD is 

accomplished via the Analytic Time Transform (ATT) [6,9] which has many useful 

properties that make it particularly attractive for inverting ray solutions from the 

frequency to time domain. The latter properties of the ATT are also discussed in [6,7]. 

The motivation for the TD-UTD development stems from several factors some of 

which are enumerated as follows. Exact TD solutions are available only for a handful of 

relatively simple radiating objects/configurations. Furthermore, it is more natural to study 



transient EM wave phenomena directly in the time domain as opposed to a less physically 

appealing and less efficient numerical inversion of the frequency domain solutions into 

the time domain via the Fast Fourier Transform (FFT) Algorithm. Since TD-UTD 

solutions employ the same rays as the FD-UTD, it retains and therefore exhibits the same 

advantages as the well established FD-UTD; namely, the TD-UTD is expected to remain 

relatively simple to use and also provide a simple ray picture for EM radiation and 

scattering. Hence, the TD-UTD has the potential, when developed to the same extent as 

the FD-UTD, to efficiently solve large, complex problems for which exact analytical 

solutions may not be possible. While the FD-UTD offers localization of wave effects in 

space via the use of rays, the TD-UTD offers localization of wave effects in both space 

and time via space-time rays which traverse the same paths as the FD-UTD rays. The 

latter could make the TD-UTD approach useful in target identification (ID) application as 

well; in this regard, one notes that the time domain data needed for target ID studies is 

expected to be less affected by noise than the frequency domain data. 

The FD-UTD solutions (and associated computer subroutines) which have been 

provided for integration into the WE algorithm in order to describe some basic and 

important wave diffraction mechanisms are enumerated in section 2.1. All the 

corresponding TD-UTD solutions (and their associated computer subroutines) , which 

have also been provided for integration into a time domain version of the WE analysis of 

the radiation and scattering of EM waves from large complex structures, are enumerated 

next in section 2.2. It is noted that computer subroutines for all but two of the TD-UTD 

mechanisms are not available for integration into the WE algorithm at this time, because 

the development of these latter two TD-UTD solutions have only recently been 

completed as discussed in section 3 dealing with new TD-UTD solutions. The computer 

subroutines for the latter two new TD-UTD solutions will be submitted to Monopole 

Research in future phases of this study since they are presently not in a user friendly 

form. 

An e+J<at time convention is assumed and suppressed for all the FD-UTD fields 

discussed below. 



2. Brief Description of FD-UTD and TD-UTD Fields for 

Implementation in the initial WE Algorithm 

In general, a UTD ray analysis of the radiation/scattering from complex structures 

gets broken down into a set of simpler events such as incidence, reflection and diffraction 

which may be calculated in terms of fields that propagate along ray paths, in a sequential 

manner, from the source to the observer via these events on the complex structure. The 

actual incident, reflection and diffraction events are often referred to as occurring at flash 

points on the radiating/scattering object. To a first order of ray interactions, these flash 

points are points of reflection and diffraction on the structure; these exist in addition to 

direct rays from the source to the observer. It is assumed in the present work that the 

structure is impenetrable and perfectly-conducting. Other multiple ray interactions such 

as multiple reflection, reflection-diffraction effects, and multiple diffraction effects can 

also be calculated within the UTD framework; however, a discussion of the latter is not 

presented here for it is addressed in [10] for the FD-UTD. Multiple effects (other than 

multiple reflection) have not been analyzed yet within the TD-UTD framework and hence 

such a study also forms a topic of future investigation to elevate TD-UTD to the same 

level of applicability as the FD-UTD. The points of reflection that are considered in this 

work are associated with such points when they occur on smooth surfaces that may 

terminate at edges, while diffraction points are allowed to be on edges and at grazing 

incidence on smooth convex surfaces, respectively. 



2.1 FD-UTD for Edge and Surface Diffraction 

As stated above, a brief summary of the relevant FD-UTD based ray field expressions 

that are to be incorporated initially into the WE algorithm is given here. These 

expressions allow one to solve the radiation/scattering of EM waves by objects that can 

be built up from a contribution of arbitrary smooth convex surfaces, and curved surfaces 

containing arbitrary curved edges. Many practical shapes fall into this category of objects 

which can be modeled as a collection of curved surfaces and edges (e.g. aircraft, missile, 

satellite structures, etc.). Other important effects which can involve diffraction from tips 

(or corners), coupling between edge and smooth surface diffraction, double diffraction, 

diffraction by non-conducting surfaces etc. also need to be considered; however, the latter 

can be incorporated during the future phases of the WE algorithm development. 

First, the edge diffraction effect is summarized, and then the smooth convex surface 

diffraction effect is treated likewise. 

2.1.1 FD-UTD for Edge Diffraction 

The geometry for edge diffraction is shown in Fig.l, where a source illuminates an 

arbitrary curved wedge which is assumed here to be perfectly conducting. 

Fig.l : Diffraction by an Arbitrary Curved PEC Wedge 

In Fig.l, the pattern of the source/antenna is assumed to be relatively slowly varying 

at the point of edge diffraction. A corresponding ray tube picture illustrating how a small 

incident wavefront patch can transform into a edge diffracted wavefront patch is shown 

in Fig.2. The edge diffracted rays lie on the Keller cone of diffracted rays as is well 



known [5,1]. The Keller law of edge diffraction states that the half angle of the Keller 

cone of edge diffraction at any point of edge diffraction, QE exactly equals the angle that 

the incident ray makes with the edge tangent at QE. Thus, ß0 = ß'0 as shown in Fig.2. 

S*1 = |C£P| 

Fig.2 : Edge-diffracted ray tube. Radius of the incident wavefront where it intersects the edge = p'e 

The electric field at a point P anywhere on the Keller cone at a distance sd from QE, 

where ksrf» 1 and k = wave number of free space which surrounds the curved wedge, is 

given by 

Ed(p)«E'{QE)-DA(sä) f" (1) 

In (1), the Ed(p) and E'(QE) represent the edge diffracted electric field at P, and 

the incident electric field at QE, respectively. The UTD coefficient for edge diffraction is 

denoted by D [1,3] and it depends on the frequency of the incident wave as well as the 

angles of incidence and diffraction, and also the incident wave polarization as discussed 

in [1-3]. A[sd) is the spatial spread, (or divergence) factor of the edge diffracted ray 

(from QE to P) which indicates how the energy spreads in space after diffracting from the 

edge. A[sd) can also be obtained from a conservation of power in a diffracted ray tube; 

this conservation law is valid outside the incident and reflected ray shadow boundary 

transition regions [    ]. The D contains Fresnel transition functions which not only keep 



D bounded, but also provide the D with the appropriate behaviour to keep the total high 

frequency field continuous at the shadow boundaries where the geometrical optics 

incident and reflected fields become discontinuous The latter discontinuity results from 

the shadow boundaries for the incident and reflected rays, which are created by the 

presence of the edge (in a perfectly conducting or non-penetrable surface). 

Incident 
Rays 

Shadow 
Region 

Fig.3 : Incident and Reflection Shadow Boundaries ISB and RSB, respectively for diffraction by a 

PEC wedge illuminated by a plane wave 

Fig.3 illustrates these shadow boundaries for a simple wedge configuration when it is 

illuminated by an incident plane wave. A boundary layer exists adjacent to the shadow 

boundaries and it is referred to as a transition region whose size (or angular extent on 

either side of the boundaries) depends on the frequency as well as the source and 

observer  locations[l-3].  The  transition  region becomes  smaller with  increase  in 

frequency. The Fresnel integrals within D play an important role within the incident and 

reflection shadow boundary transition regions to keep D uniformly valid across these 

shadow boundaries. 

In (1), the sd denotes the distance from QE to P (i.e. sd = QEP ) as in Fig.2. If the 

edge is curved so that the edge radius of curvature is negative (concave rather than 

convexly curved edge), then the diffracted rays can go through a diffracted ray caustic 

before arriving to P. Also, the field incident on the edge at QE need not arrive from a 

distant antenna (here shown by a point source with a pattern), but more generally it can 



represent an incident wavefront (created possibly by an earlier reflection or diffraction 

elsewhere in the case of a previous interaction before arriving to QE). Consequently, the 

incident wavefront could arrive at QE after passing through one or more caustics. For the 

case when there is a diffracted ray caustic between QE and P, the A\sd) becomes 

4d)=\4sd] j"d (2) 

where nd is the number of caustics between QE and P with j = V-l • Typically, n = 1. 

Also, e~Jks is the exponential phase delay along the diffracted ray propagation path from 

QE to P. Since the details on the derivation of D in (1) are available in [1], no further 

discussion on the D is provided here. It is noted that the subroutines required to calculate 

D for edge diffraction have been made available to Monopole Research. Finally, it is 

noted that the magnetic field along the diffracted ray at P can be found via local plane 

wave conditions, H (P) « Y0s
d x Ed 

where Yo - Zo'1 and Zo = intrinsic free space wave impedance. 

2.1.2 FD-UTD for Slope Edge Diffraction 

Fig. 4 : Slope Diffraction by an Arbitrary Curved PEC Wedge 

When the incident field is rapidly varying at any point of edge diffraction, QE as 

shown in Fig. 4, then the result in (1) for    Ed{P) must be augmented by a slope 
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diffracted field contribution Esd(p). The Esd(P) is required to make the slope of the 

total field continuous across incident and reflection shadow boundaries, 

because Ed(P) is valid only for non-rapidly varying incident fields at QE. One notes that 

(1) can be expressed in matrix form as 

Ei 
-D. 0 

■A. 

E'. 
ßo 

E' 4f) -jksd (3) 

where the incident and diffracted fields are expressed in terms of unit vectors fixed in the 

incident and diffracted rays, and in particular in the edge fixed planes of incidence and 

diffraction as defined in [1-3]. One employs these special set of unit vectors so that D 

then reduces to a two term dyad [1]. Thus, 

Ed{p) = ßoE
d

ßo+0Ed        ; ßo*h5ä (4) 

E'{P) = ß0E'.+i E',    ; 
A> 

A **' = *' > (5) 

D = -ßJ0   D.-i't  Dh (6) 

One notes that the [ßo,0) are perpendicular to each other and to sd, while \ßö,f) 

are perpendicular to each other and to the incident ray direction, s'. 

The slope diffracted field Esd{P) for a perfectly conducting wedge can be expressed 

more conveniently in matrix form as 

7sd 

Ef 

-D*JLE' .-D" — Er. 
On'    ßo       * dnr    A 

-Dsi-^-E\-Ds
h
r—Er, 

On'   * dnr   *r 

4') -jw (7) 

A     ' A A A A A 

Again, the unit vectors ß0 , ß0,0' and <f> are as defined in [1], whereas, ßr and <j)r 

are the corresponding unit vectors fixed on the reflected ray and in the edge fixed plane 

of reflection as defined in [1]. Also, the slope diffraction coefficients Lf\ Efr and ZV are 

defined in [2]; they contain slope transition functions that are of the type 

2jx(\-F(x)) (8) 
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where the ordinary transition function F(x) occurs directly in the ordinary UTD edge 

diffraction coefficient D (or in Ds and Dh, respectively). Here F(x) contains the Fresnel 

integral alluded to earlier; in particular, 

F{x) = 2j4x~ eJX J e-^dx (9) 

Within the transition region x is small and close to the shadow boundary so 

F(x)&Jnjx, whereas outside the transition region x is large (usually x>3) so that 

F(x) = 1. More details on this slope diffracted field I^may be found in [2] and also in 

Appendix 1. Also, the computer subroutines for calculating the slope transition function 

of (8) and hence the UTD slope diffraction coefficient have been made available to 

Monopole Research. Finally, one notes that the slope diffracted field allows for the 

incident and reflected fields to vary rapidly along the directions normal to the edge fixed 

planes of incidence and reflection, respectively; i.e. along «'and «ras is evident from 

the normal derivatives given by n' • Vand hr • V in (7). 

2.1.3 FD-UTD for Surface Diffraction 

S5B "•* j»^£ 

REFLECTED 
GO RAY PATH" 

'  **• «•*. M^ ,'       *   h   ^ 

SURFACE- 
RAY PATH 

SURFACE DIFFRACTED 
RAY PATH 

Fig. 5(a) : Diffraction at a Smooth Convex Surface 

DIRECT CO 
RAY PATH 

0' 
SOURCE 

When an incident ray grazes a smooth perfectly conducting convex surface at Qi, it 

launches a surface ray, which propagates along a geodesic path into the shadow region of 

the convex object as shown in Fig.5 (a) and Fig. 5(b). 
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Fig. 5(b): Unit Vectors fixed in the Surface Diffracted Ray 

Furthermore, the field along the ray geodesic path is exponentially attenuated because 

energy is shed from the surface ray along its forward tangent. This energy, which is shed 

from the surface ray, travels a surface diffracted ray path to arrive at an observer at Ps in 

the shadow region of the smooth convex object as shown in Figs. 5(a) and 5(b). The 

surface diffracted ray arrives at P from the point of surface diffraction on geodesic 

surface ray at Q2. The path from point of launching of the surface ray at the point of 

grazing incidence Qi to the point Q2 is the surface ray path which is a surface geodesic. A 

surface ray strip and its associated surface diffracted ray tube are depicted in Fig. 6 in the 

general case when an astigmatic ray tube is incident at grazing on a smooth convex 

surface. If the smooth convex body is a closed, as it usually is in practice, the surface ray 

can also traverse around the body; hence, it can produce surface diffracted rays which can 

also reach an observer in the lit region at PL where the incident ray field is directly 

visible. In the lit region, the total field at PL consists of the incident and reflected 
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geometrical optics field as well as surface diffracted ray fields for closed bodies. In the 

shadow region, the total field at Ps consists of only the surface diffracted ray fields. 

1 

Fig. 6 : Surface-diffracted ray tube. Radius of the incident wavefront where 

it grazes the surface at Q! is p1 

In the smooth convexly curved body, the incident and reflected ray directions merge 

along grazing incidence to define the surface shadow boundary (SSB). The S SB is an 

extension of the incident ray past grazing. A boundary layer exists adjacent to SSB; this 

layer is referred to as the SSB transition region. On the lit side which is outside this 

transition region, the field consists of ordinary geometrical optics incident and reflected 

ray fields for a given incident ray field illumination. In addition, one or more surface 

diffracted ray field contributions can also be present in the lit region as mentioned 

previously. The latter occur if the surface rays, which continuously shed surface 

diffracted rays, encircle the body one or more times. Effects of multiple surface ray 

encirclements may be ignored if the closed convex body is electrically large, because the 

surface ray field in this case becomes exponentially weak (due to continental shedding of 

energy) to the point where it can be neglected. On the other hand, the ordinary 

geometrical optics reflected field vanishes along the SSB; however, there is a diffraction 

effect present which modifies the reflected field at and near the SSB (i.e. on the lit side of 

the SSB). Hence, the UTD electric field at a point PL (see Fig.5 (a)) on the lit side of the 

SSB is 

E(PL)*E'{PL)+E'(PL)+Ed{PL) (10) 
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where Ed(PL) results from single or multiple encirclements, and can be ignored if the 

closed convex body is large as mentioned before. The Egr(PL)-> Er(PL) in the lit region 

outside the SSB transition zone, and Er(PL) is the conventional geometrical optics 

reflected field. Hence Egr(PL) is the generalized reflected field which contains 

diffraction separate from that in Ed(PL) due to encirclements. One notes that Egr(PL) is 

far more significant than E d (PL) in the lit zone. 

At a point Ps on the shadow side of the SSB, the total field is simply the surface 

diffracted field Ed(Ps), i.e., 

E{P,)~E'(P.) (») 

Additional contributions to Ed(Ps) from encircling rays can also be present at Ps ; 

however; their contribution is negligible for large convex bodies. 

The fields El(PL), Egr(PL) and Ed(Ps) indicated in (10) and (11) are given in detail 

in    [11,12]. The form of Ed(PL) is the same as  Ed(Ps). The general forms of 

Egr(PL)andEd(Ps) are [11,12]: 

E"(PL)~E'(QR)1 Ar{sr) e~iks' (12) 

E'(P>£'fe,)-5  Ad(sd) e'^ (13) 

Outside the transition on the lit side region,   R->R, where   Ris the dyadic 

geometrical optics reflection coefficient. Likewise, outside the transition region on the 

shadow side, D reduces to Keller's field description in terms of GTD surface diffraction 

coefficients at Qi and Q2, respectively together with a complex propagation constant 

along the geodesic path from Qi to Q2 [13]. Within the transition regions, both, R and D 

in the UTD solution contain an F type transition function as in (9) and a Psh ,Fock type 

transition function, which keep the total field bounded and continuous across the SSB, 

respectively. From [11,12], one can write D as 
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where («,,£,) are the normal and binormal unit vectors to the surface ray geodesic at the 

launch point, Qi, while [n2,b2J are the corresponding unit vectors at the point of 

shedding, Q2 as in Fig. 5(b). The unit vectors (?13f2)  are along the forward tangents to 

the surface ray at at Qi and Q2, respectively. One notes that by = tl x «,. Also, t in (14) is 
222 

the geodesic surface ray arc length from Qi to Q2. Furthermore, Ar\sr) and Ad\sd) are 

the spatial spreading (or divergence) factors associated with the reflected ray (from QR to 

PL ) and with the surface diffracted ray (from Q2 to Ps). The C!T](QI2) in (14) represents 

the width of the surface ray strip at Qu as in Fig. 6 and hence the square root in (14) 

represents the spreading of energy in a surface ray strip along a geodesic ray.path. 

Finally, sr and Sd are the reflected and surface diffracted ray distances (QRPL )and 

(Q2PS ) respectively. 

It is noted that the UTD dyadic transition functions in (12) and (13) can be computed 

via the subroutines that have been made available to Monopole Research. 

2.1.4 FD-UTD for the Radiation from a Source on a Smooth Convex 

Surface 

When a source/antenna is placed on a smooth convex surface, which is perfectly 

conducting, then the near and far field radiated by this source at Q[ can be shown to be 

associated with a direct ray to a point PL in the lit region (where the source is directly 

visible), and a surface diffracted ray to a point Ps in the shadow region. These rays are 

depicted in Figs. 7(a) and 7(b), respectively, for a non closed smooth convex body. If the 

convex body is closed, as is usually the case in practice, then additional oppositely 

encircling surface rays can also contribute via surface diffraction to the point Pi. These 

additional contributions can also be present at Ps. Here, these additional contributions are 

assumed to be negligible as is true for large convex bodies. 
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7(a) 7(b) 

Fig. 7 : Radiation by a Source on a Smooth Convex Surface 

As shown in [14], the electric fields dEme(PL) and dEme(Ps) radiated by an 

infinitesimal magnetic (m) or electric (e) current moment dpme(Q') at Of can be 

expressed symbolically as 

dEmAPLh^e{Q')^Ad{sd) e-^ (15) 

and 

where A(s) ( = 1/s) and Ad(sd) constitute the spreading of the rays along the direct path 

along s (= WP~A), and the surface diffracted path sd (= |ö^|), respectively. One notes 

that the ray path from at Ql to Q (before it sheds from Q to Ps) is a surface geodesic. 

Also, the surface ray divergence factor from <$ to Q is given by the square root term in 

(16); the dy/0 and d7j(Q)'m (16) are shown in Fig. 8. The dyadic radiation and diffraction 

functions Tm,e and Tm,e, respectively, are given in terms of UTD transition functions 

involving the radiation Fock functions g and g [14,15]. The unit vectors (?',«' ,b') at (/ 

and (f, h, b) at Q, respectively, are fixed in the surface diffracted ray as in Fig. 7(a); the 

Tm.e then shows how a given orientation of dpme at Q (i.e. t',n' or b') produces the 
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polarization type (h, b) for dE (Ps) at Ps. Likewise, T m,e indicates how the (i[, b\ and h') 

components of dpme(Q') at (/ produce the (h,b) polarized fields dE(PL) at PL. Thus, 

m.e Tm,e and Tm,e are the UTD transition or transfer functions (containing the Fock functions 

g , g) that link the source to the fields produced by the source; they also keep the total 

field continuous as one goes from PL on the lit side, to Ps on the shadow side of the 

surface shadow boundary. These UTD dyadic transition functions in (15) and (16) can be 

computed via the subroutines made available to Monopole Research. 

Fig. 8 : Surface Diffracted Ray Tube excited by a Source at Q( on a Smooth Convex PEC Surface 

The response Eme(PL) 
and ^mAPs) due t0 my PnysicaI> finitely distributed 

equivalent magnetic (m) or electric (e) sources can be obtained by integrating dEme(PL) 

and dEme{Ps) over these sources [14]. Although, the results in (15) and (16) provide the 

fields radiated by an infinitesimal source on a smooth convex surface, they can also, by 

the reciprocity theorem, provide the surface charge density (e case) or the surface current 

density (m case) at Q[ which is induced by a wave incident at £/ from a distant source at 

PL or Ps, respectively. The latter is of interest in electromagnetic pulse (EMP) and 
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scattering problems, while the solutions in (15) and (16) given for the direct problem are 

useful for predicting the radiation by conformal antennas and arrays on smooth convex 

surfaces. 

2.1.5 FD-UTD for the Mutual Coupling between Antennas on a 

Smooth Convex Surface 

GEODESIC SURFACE 
RAY PATH PORTION OF A SM001 

CONVEX SURFACE 
WHICH CONTAINS 
THE SURFACE RAY 
FROMQ' TOO 

Surface-ray strip (or tube) 
Fig. 9(a): Surface ray from QftoQ 

Q<N. 
v?-.. 

CENTRAL RAY       NO^>-     "p* 
RAYS ADJACENT TO THE CENTRAL RA"-     * ^ 

0' 
(SOURCE 
POfNTj 

«WO) 

Q (FIELD POINT) 

Fig.9(b) : Surface-ray strip (or tube) 
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The surface ray field at any point Q on a smooth, perfectly conducting convex surface 

which is produced by a source at (/ on the same surface must again follow a geodesic 

path connecting (/ to Q. The ray geometry for this problem is sketched in Figs 9(a) and 

9(b). 

The electric and magnetic surface fields dEme and dHme at Q may be expressed via 

the development in [16] as follows: 

dKM-äfejQ')-r:,^-^A(s) e-^ (17) 

and 

dHejQ)«dpejQ').rlj^A(s) e^ (18) 

The dy/0 and dTj(Q), both of which appear in (17) and (18), respectively, have the 

same meaning as in (16); these quantities are also depicted in Fig. 8(b). The surface ray 

field dyadics Te^and Te,m indicate the type of surface field polarization (t ,n or b), 

which is produced at Q by any particular component   (t',nf or b') of the source 
=e =h 

dpme(Q') at Q. A detailed description of r\mand Te,m  are available in [16]. The 

A(s) = —J= in (17) and (18), where s is the geodesic arc length from Q[ to Q as sketched 

in Fig 9(a). 

The UTD dyadic transfer or transition functions in (17) and (18) contain the surface 

Fock functions U and V, respectively [16,15]; these UTD transition functions can be 

computed via the subroutines made available to Monopole Research. 
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2.1.6 An Application of FD-UTD To Airborne Antenna Pattern 

Prediction 

Fig 10 : Slot-Blade Cavity Antenna Geometry 

As indicated previously, the FD-UTD has been utilized extensively to analyze the 

radiation from complex shapes. The FD-UTD results have been tested numerous times 

with scale model measurements or by other independent numerical approaches where 

possible. An example analyzed here via the FD-UTD is indicated below to illustrate the 

versatility of this ray approach. Specifically, a complex cavity backed slot-blade antenna, 

which is analyzed via the moment method (MM) solution of the governing integral 

equation is placed on F-16 fighter jet in this example. The pattern of this antenna on F-16 

is analyzed via the Ohio State Univ. (OSU) NEW AIR code which is based on the FD- 

UTD [17]. The antenna geometry, as well as the NEWAIR FD-UTD model of F-16, and 

the patterns calculated from that code are illustrated in Figs. 10, 11 and 12, respectively. 

It is important to note that the FD-UTD patterns in Fig. 12 have been computed based 

primarily on the FD-UTD formulas given in item 2.1.1 and item 2.1.4 above. 
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Fig.l 1 : F-16 Model Based om FD-UTD 

It would be of interest, for the reasons mentioned in section 1, to develop a 

corresponding TD-UTD which would allow one to analyze the radiation /scattering of 

transient EM waves from complex objects to the same level as the FD-UTD. The recent 

TD-UTD developments are described next in sections 2.2 and 2.3. 

J80MTWM'' 

•OTTOM ".itmoM- 
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Fig. 12 : FD-UTD Radiation Patterns of the Antenna in Fig. 10 when placed on the aircraft of Fig. 11 

2.2 TD-UTD for Edge and Surface Diffraction 

The motivation for the development of a TD-UTD to efficiently analyze the transient 

radiation /scattering from complex objects which are excited by short pulses has been 

discussed earlier in section 1. The TD-UTD employs the same rays as the FD-UTD and 

hence retains all of the advantages of the FD-UTD since one constructs a TD-UTD 

solution from an analytic inversion into the time domain of the corresponding FD-UTD. 

The TD-UTD solutions which have been developed recently, but prior to the start of the 

present contract with monopole Research, are summarized below. The particular 

transform used in the TD-UTD development which converts the FD-UTD into the time 

domain is the Analytic Time Transform (ATT). The ATT is utilized because it has 

several advantages for this particular application. Specifically, the ATT is convenient for 

inverting the FD-UTD fields which may have traversed through ray caustics, and which 

may exhibit a general elliptic polarization. 

The ATT is defined for positive frequencies (i.e., for © > 0) as follows: 

}{t) = -\F{co)ejo*dco ;   lmt>cc   , (19) 

where /(f) is the ATT of the frequency domain function F(a>). f(t) is analytic for 

Imt > a with |F(ö))| « ceaw as co -> oo. The/ffj is obtained from f(t) via 
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/(0 = Re/(O ;   lmr = 0      , (20) 

Note that/fir) is the inverse Fourier transform of F(O)). Also, 

f(t) = f(t)+jHf(t) ;   lmt = 0    , (21) 

in which Hf(t) is the Hilbert transform off(t). 

The analytic delta function is defined as 

S(l): 

-i- ,lmf>0 
(22) 

S{f)+pvJ- ,lmf = 0 

where pv signifies the Cauchy principal value when integrating over the function. Hence 

S(t) is a distribution for Imt = 0; it may be used as an input or excitation with a time 

impulsive behaviour for the transient TD-UTD solution that is to be constructed. The TD- 

UTD response to a S(t) type excitation is generally easier to obtain; it then allows one to 

construct the response to any realistic finite bandwidth excitation via an efficient 

convolution procedure. For example, if a realistic excitation pulse E'0(co) can be 

represented in the frequency (co) domain by a sum of handful of exponential functions as 

Eio(co) = pfjAne-a"'a ,CD>0 (23) 

then 

e'.(t) = pt-^- ,lmt>-an (24) 

_+ 

Now, if eiit) denotes the TD-UTD response to an analytic delta (impulse) function 

+ 

i.e. to a  pdit)  time dependence, then the TD-UTD response,   e(t)  is given via 

convolution as 

or 
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m+jc   + 

"-' -00+ IF. 

-d? 
-<B+J£ J(*n 

\e>Q 

\\mt>a 
(26) 

Since eAt') may be assumed to be analytic for \mt' > a and the poles of " 

reside in the same half space, it follows that 

ja„ 

n=I 

As long as Rea„ >0 for all n, the e(t) will be analytic on the real time axis 

(Imf = 0) so one can obtain the desired TD-UTD response e(t) in a straight forward 

manner via 

e(t)=Rci{t)      ;     lmf = 0      . (28) 

Consider a typical waveform shown in Fig. 13 whose frequency (GO) domain 

behaviour is shown in Fig. 14. The behaviour in Fig. 14 can be synthesized with only 

three terms of the type in (23); consequently, the response in (27) and hence that in (28) 

can be found by summing (24) over just three terms. The attractive property that allows 

one to go from (26) to a simple result for the convolution in (27) is another reason to 

employ the ATT rather than the conventional Fourier or Laplace transforms in the TD- 

UTD development. 

Some TD-UTD results available from the recent past are reviewed next. 
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Fig. 13: The waveform in Time Domain Fig. 14 : Frequency Domain Behaviour 
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2.2.1 TD-UTD for Edge Diffraction 

The geometry for edge diffraction is shown in Fig.l as before for the FD-UTD case. 

The TD-UTD field for diffraction by an arbitrary curved conducting wedge can be found 

by taking the ATT of (1) for a general astigmatic wave illumination. The case of the 

+ 

astigmatic wave illumination in the FD-UTD case leads to a time impulsive  (S) 

astigmatic wave illumination for the corresponding TD-UTD case. Hence, the impulsive 

+ 

response  ef{t) for the wedge diffraction has been obtained from the ATT of (1) for this 

situation as [6,7] 

+ _+_ 

elitiHElfaydbMs') (29) 
where 

Td=t- 
sj    sd 

c     c (30) 

in which Si and Sd are the distances from   O to QE (i.e s' = OQE   ) and QE to P (i.e 

sd = QEP as before). Also, c = speed of the EM wave in free space which surrounds the 

wedge. Since the details of the development leading to (29) are available in [  ,  ], no 

+_ 

further details will be provided here, except to state that the d{vd ) of the TD-UTD turns 

out to be actually simpler than the corresponding D of (1) for the FD-UTD. Subroutines 

for computing (29) have been made available to Monopole Research. 

2.2.2 TD-UTD for Slope Edge Diffraction 

For the case of an incident wave which exhibits a rapid spatial variation at the point 

of edge diffraction, a slope diffracted field contribution had to be added to (1) as 

indicated in 2.1.2. The details of the TD-UTD development from the corresponding FD- 

UTD given in (7) are also available in [6]. However, a paper on this subject has been 

written on the present contract [18] and it is also included as Appendix 1 of this report for 

the sake of completeness. Thus, no further details about a TD-UTD for slope edge 
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diffraction are provided here. The computer subroutines for calculating TD-UTD slope 

diffracted field have been made available to Monopole Research. 

2.2.3 TD-UTD Surface Diffraction 

The geometry of this surface diffraction problem is found in Fig.  5 for the 

+ 

corresponding FD-UTD case. The TD-UTD solution for a time impulsive (S) astigmatic 

wave excitation can be found by taking the ATT of (10)-(13) for the corresponding FD- 

UTD case of an astigmatic ray optical field illumination of the smooth convex conducting 

surface as described in [6]. A paper describing this TD-UTD development is in 

preparation as a part of the present work for Monopole Research [19]. The desired TD- 

UTD solution is given as 

ei (') = 

e'i{t)+ef(t) 

el(t) 

where 

Z(0=*U (*')*('— 

lit side of SSB 

shadow side of SSB 

(31) 

(32) 

and 

ef(0=4-*4(*rk(*') 

%)=Ei
0-DAd{s")Ai{si) 

(33) 

(34) 

The R and D are the ATT of the transition functions involving the F and Psh type 

integrals in (10)-(13). 

As mentioned above, the details concerning the application of the ATT leading to 

(31)-(34) are available in [6], and will soon appear in [19]. Computer subroutines for 

calculating (31)-(33) have been made available to Monopole Research. 
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3. Summary of Two New TD-UTD Solutions 

The TD-UTD solutions for the radiation from antennas on a smooth convex* surface, 

and the mutual coupling between a pair of antennas on a smooth convex surface, 

respectively, have been completed under the present contract. These new TD-UTD 

solutions are developed via the application of the ATT to the general expressions 

indicated in sections 2.1.4, and 2.1.5, respectively, for the corresponding FD-UTD 

solutions; these solutions are summarized below together with the some numerical results 

illustrating their accuracy. 

3.1  TD-UTD for the Radiation from a Source on a Smooth 

Convex Surface 

The geometry of the problem in question is the same as that in Fig. 7(a). The FD- 

UTD for this problem is given separately for the lit and shadow regions as in (15) and 

(16), respectively. 

The ATT of (15) or the more detailed version in [12] yields the TD-UTD solution for 

the lit side as: 

dEm,e{t)=dp°m^Tm, 
='•< (     s\ 1 

/ — 
V     cj 

with 

Tm{t) = 
4nc 

Anc 

b'(hA+ i'fi B+ b[b C+ t\h D 

n'ehM+t'(hN 

where 

A = Ht + To
2Tcos0i 

B = Se-Tn
2Tcos20i 

C = T0T 

D = T0T cos 0, 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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M = sin#. H( + TQ
2rcos0i 

with 

N = sm0,Tor 

*     St-Hi COS0, 

~ [i+r0
2cos^ 

(42) 

(43) 

(44) 

and 

H<{E(,t)=ATT[He(co,Z()] 

Sl(Et,t,Me) = ATT[se(co,Z(,ml)] 

The parameters in the lit region are given by 

M({.) = M(.) 

(45) 

(46) 

(47) 
[i+r0W^F 

Et =-Ml(*)cos0i (48) 

One can also take the ATT of (16) the more detailed version in [12] to obtain the TD- 

UTD solution for the shadow side as: 

dEm,e{i)=dp°me*T» 
st    s 

c    c *(Pc+*) 
(49) 

with 

T   --1 
1 m — 

4xe 
b'hT, {Q')H+ t'bT2 (Q')S+ b'bT3 (Q')S+ t'nTA (Q')H 

' 1 dy/0 

\idrj(Q) 
PM 

[pg(Q')\ 

-11/6 

(50) 

and 

Te=       Z° 
AJVC 

h'hT5(Q')H+h'bT6(Q')S 
I dy/0 

idrjiQ) 
PM 

-11/6 

(51) 

where 

H{E,t) = ATT[H{a>,{)] 

S(Z,t,M)= ATT[s(co,Z,m)] 

(52) 

(53) 

and 
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M(.)-[^J (54) 

Jp8M 
The To in the above equations is referred to as the torsion factor [12] which 

characterizes torsional surface rays. 

Algorithms have been developed to calculate the ATT of the relevant radiation Fock 

functions g and g which appear in the above TD-UTD solutions. These subroutines are 

presently not written in a user friendly form. It is planned to make these subroutines user 

friendly in the future phases of this study. The details of this new TD-UTD solution will 

be submitted for publication soon [20]. It is noted that the above TD-UTD solutions have 

been obtained for an excitation Jor M which is dpemS{r-r'p(t-t') where U is a 

step function, and J or M are the source current densities at Q[. The fields radiated by a 

time impulsive source at Q[ may be found by differentiating the step response which is 

more easily obtained first. 

Some numerical results are illustrated in Figs. 15-20 for a source at ^ on a 

circular cylinder, where the transient pulse excitation at £/ is the same as in Fig. 13; The 

results for this pulsed excitation are found via an ATT based, essentially closed form, 

convolution as discussed at the beginning of section 2.2. The circular cylinder geometry 

is chosen because an exact frequency domain eigenfunction solution can be constructed 

for this case and transformed into the time domain for comparison. The results in the far 

zone at a given angle <f> are shown for both z (axial) directed as well as (/> 

(circumferentially directed) magnetic current sources at (x = a, y = 0, z = 0) where a is 

the radius of the cylinder. Here, a = 1 meter. The agreement between the TD-UTD and 

the reference solution (referred here simply as eigen solution) is very good. 
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Fig. 15: TD-UTD Radiation from a Source on a Circular Cylinder, which is evaluated in the far zone in the 

direction <j>. 
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Fig. 16: TD-UTD Radiation from a Source on a Circular Cylinder, which is evaluated in the far zone in the 

direction <|>. 
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Fig. 17: TD-UTD Radiation from a Source on a Circular Cylinder, which is evaluated in the far zone in the 

direction <|>. 
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Fig. 18: TD-UTD Radiation from a Source on a Circular Cylinder, which is evaluated in the far zone in the 

direction <|>. 
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dHm(t) = -±dp°e 2Zr n n Vo + 
V 

Vi + ^jUsV2 + AcU2 

-z 2    C 
( +        +' 

U-Vx 
(59) 

where 

Urn = ^(7T 

Fm=^7T 

(60) 

(61) 

The convolution with Mf-V) in the above formulas will simply cause a time 

delay due to surface ray propagation along the geodesic path length s from QI to Q. 

Algorithms have been developed to calculate the ATT of the relevant surface 

+ + 

Fock functions U and V which appear in the above TD-UTD solution; however, they 

are not presently available in a user friendly form but they will be made available in the 

future phases of this study. The details of this TD-UTD solution will be submitted for 

publication soon [21]. Some numerical results are shown in Figs. 21-22 for a source at Q 

(x = a, y = 0, z = 0) on a circular cylinder where the source excited by a transient pulse 

which is the same as in Fig. 13. The circular cylinder is chosen because an exact solution 

for this case can be obtained as a reference solution for comparison just as in the previous 

radiation problem case. These results in Figs. 21-22 are obtained via an ATT based 

convolution of the pulse with a step or impulse response, and the TD-UTD based results 

are compared with the corresponding exact eigen function based frequency domain 

results which have been converted into the time domain. The results indicate the surface 

fields at a given location Q (specified by the angle <fi). The agreement between the TD- 

UTD and eigen function based results is very good. 
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Fig. 21: TD-UTD Surface Field at Q (p = a, <|>,z = 0) on a circular cylinder due to a source 

atö'(x = a,y = 0,z = 0) 
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Fig. 22: TD-UTD Surface Field at Q (p = a, <(>,z = 0) on a circular cylinder due to a source 
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4 Discussion 
A set of five FD-UTD solutions is briefly reviewed in this report; these have been 

chosen to be initially incorporated into the WE algorithm which is being developed by 

Monopole Research. The subroutines for computing the FD-UTD transition functions and 

hence the diffraction functions have been made available to Monopole Research. The 

corresponding five TD-UTD solutions are also briefly discussed. These five solutions in 

each, the FD-UTD, and also the corresponding TD-UTD representations, involve the 

diffraction at an arbitrary curved wedge, the slope diffraction at an arbitrary curved 

wedge, the surface diffraction by a smooth convex surface, the radiation by a source on a 

smooth convex surface, and the mutual coupling between antennas on a smooth convex 

surface, respectively. It is noted that the latter two constitute new solutions in the TD- 

UTD case which have been completed under this contract. These FD-UTD and 

corresponding TD-UTD solutions when implemented within the WE algorithm can 

efficiently analyze the radiation/scattering /coupling of waves in complex structures. 

Hence, these solutions are very basic and useful in the analysis of scattering, radiation 

and EMC/EMP problems of practical interest. Additional important FD-UTD results are 

planned to be included within the WE algorithm in the future phases of this study to make 

the WE algorithm more versatile in applications to realistic problems; the corresponding 

TD-UTD solutions will also be developed in the future phases. 
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