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Abstract 

Uniaxial tension tests using a strain rate of 0.04 in./in./min. are performed on rectangular smooth 
and single edge-notched specimens of varying thicknesses for a composite solid propellant. 
Stress-strain, crack growth, crack growth rate and crack growth resistance data are provided. 
Thickness effects and the mechanism of crack growth are described. Methods of calculation are 
explained for the crack growth fate and the Mode 1 stress intensity factor. A model is developed 
for the crack stable growth rate as a function of the stress intensity factor. 

Key Words 

linear elastic fracture mechanics, LEFM, plane stress, composite solid propellant, crack growth, 
crack growth rate, mode 1 stress intensity factor, crack growth resistance curve, thickness effect. 

Introduction 

Composite solid propellants consist of a lightly crosslinked polymer, highly filled with relatively 
coarse solid particles. Their loaded response is viscoelastic. Previous studies have been conducted 
to investigate crack growth in these materials {1-5}. The basic approach is based on linear elastic 
or linear viscoelastic fracture mechanics. Experimental results have shown that a power law 
relationship exists between the crack growth rate (d) and the Mode 1 (opening mode) stress 

intensity factor (Kx). This is consistent with the linear viscoelastic fracture theories developed by 

Knauss {6} and Schapery {7}. 

An example of a composite solid propellant can be described as follows {8}. Ammonium 

perchlorate crystal particles of two sizes, diameters 20 p. (lp = 10" meter) and 200(1 function 
as the oxidizer. The oxidizer weight fraction for the 20p particles is 0.3. The oxidizer weight 
fraction for the 200p. particles is 0.7. Aluminum powder particles of diameter 30p function as 
the fuel. Polybutadiene rubber functions as the matrix/binder (also as fuel). The weight fractions 
for the oxidizer, fuel, and matrix/binder are respectively 0.7, 0.2, 0.1. The specific gravities are 
respectively 1.69, 2.65, 1.0. The volume fractions are therefore respectively 0.7, 0.13, 0.17. The 
particle volume fraction (PVF) is 0.87. For every 200 p diameter particle, there are approximately 

77 30p diameter particles, and 429 20p particles. 

For this paper, four different thicknesses (0.2", 0.5", 1.0", 1.5") of smooth and single edge- 
notched tension (SENT) specimens of a composite solid propellant were uniaxially strained at a 
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rate (s) of 0.04 in./in./min. The induced end force (F) and crack length (a) (for the SENT 

specimens) were recorded as functions of e (equivalently as functions of time, t). Photographs 
showing the crack growth mechanism are included in the paper, and the mechanism is described. 
Stress (a) is plotted versus strain (e) for both the smooth and notched specimens, ä is 

calculated, and a and ä are plotted versus t. Kl is calculated and plotted versus the change in 

the crack length (8a), giving the material's crack growth resistance curve (R-curve). There are 

plots showing the relationship between ä  and Kx. The ä{Kx)  function is modeled and 

interpreted. Effects of specimen thickness (b) are noted. Linear elastic fracture mechanics 
(LEFM) was used. For finite element calculations the state of plane stress was used for all 
thicknesses. This is because there was no consistent evidence of plane strain, even in the thickest 
(1.5") specimens, as will be reported. 

Experiments 

All test specimens were rectangular, 1 in. wide (w = 1 in., perpendicular to the direction of 
loading) and 5 in. long {h = 5 in.). Specimen ends were glued to aluminum tabs and subjected to 

an applied uniform uniaxial displacement rate (Ä) of 0.2 in./min. (applied uniform uniaxial 

nominal strain rate (e) of 0.04 in./in./min.). Four specimen thicknesses (b) were used, 0.2 in., 0.5 
in., 1.0 in., and 1.5 in. Eight unnotched specimens were tested, two of each thickness. The stress 
(a) vs. strain (e) curves for those tests are shown in Figure 7. The average initial (linear) value 

(£0) for Young's Modulus is 734 psi. The average maximum stress (cmax) is 90.9 psi, and the 

average strain at the maximum stress (s(amax)) is 0.187. The average maximum strain (emax ) is 

0.204. The overall trend is for (emax) to decrease as b increases. Eight single edge-notched 

(SENT) specimens were tested (Mode 1 loading), two of each thickness. The notch length (a0, 

cut along the specimen width) used was 0.3 in. The a vs. 8 curves for those tests are shown in 

Figure 8. (a is calculated using the specimen uncracked cross sectional area, A = bw). The 
curves show small slopes near the origin. This is probably because the specimens were 
unintentionally put in an initial state of slight compression. The average value for a 

(calculated using A = bw) is 40.6 psi. The average value for e(amax) is 0.075. The overall trend 

is for Young's Modulus (E) and amax to increase as b increases. 

The plots of Figures 8-14 refer to the eight SENT specimens. In each plot the data shown for a 
particular specimen stops when failure begins, and therefore corresponds to the strain range 
0 < e < e(amax) • This is done so that LEFM can be used. LEFM is not valid once a begins to 

decrease as a specimen fails. 

Crack Growth Mechanism 

The largest particles in a composite solid propellant are typically larger than 100(1 (0.1 mm.), so 
at that scale these materials are non-homogeneous. When stretched, the variations in particle size, 
particle distribution, cross link density, and particle-binder bonds result in non-homogeneous 
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stresses and strengths. Because the particles can be considered rigid with respect to the polymer, 
the magnitudes of local stresses can be much greater than the magnitudes of the applied stresses, 
particularly when the gaps between particles are small. Because of the randomness of local 
stresses and strengths, local failure locations usually do not coincide with the points of maximum 
stress as determined from an elastic analysis for a homogeneous isotropic material. For a cracked 
specimen, a damage zone forms ahead of the crack tip. Local failures (voids or microcracks) 
usually occur first in the interior of the damage zone, not at the crack tip itself. The crack tip 
extends into the damage zone when the ligament of material separating it from the nearest void or 
microcrack breaks. The front of the void or microcrack becomes the new crack tip. As the crack 
tip extends, the damage zone moves forward, gaining new material. The type of damage which 
causes void formation is matrix/binder cracking. The types of damage which cause damage zone 
microcracking are particle-matrix/binder debonding (dewetting) and particle cracking. 

Figures 1-6 show photographs of crack growth in the SENT specimens. All four specimen 
thicknesses (0.2", 0.5", 1.0", 1.5") are shown, and the common growth mechanism is void 
formation in the damage zone ahead of the crack tip, and then crack tip extension due to ligament 
rupture. This type of growth produces the rough crack surfaces shown in Figures 3-6. Figures 1 
and 2 show crack initiation from an initial notch. Crack tip blunting occurs before initiation 
because of the large uniaxial strain (Figure 7) the material is capable of withstanding. 

Examinations of the SENT specimen fracture surfaces showed, that for all thicknesses the crack 
fronts were straight lines and perpendicular to the direction of crack growth. This implies that the 
region near the crack tip always experienced a state of plane stress. If plane strain existed, it 
would have been indicated in the thicker specimens by a curved crack front which was advanced 
farther near its middle, and less near its edges. In that case the interior of the crack tip region 
would be in plane strain and the exterior would be in plane stress. (A material's crack growth 
resistance is less in plane strain than in plane stress). Apparently, void formations in the damage 
zone prevented the lateral constraint which is necessary for a state of plane strain. 

Calculation of the Crack Growth Rate 

The rates (ä) of crack growth (for n + 1 points (a, t) numbered 0, 1, ..., n) were calculated by 

= «(P-q(O) 
1 ;     KD-t(0) 

U(O-'O-l)   t(i + \)-t(i)J 

., N     a(n) -a(n- 1) 
a{n) = t\n)-tin-I) 

This method is easy to implement, and assigns each experimental point (a, t) a value of ä. The 
values of ä are not smoothed. Each interior point (a, t) is assigned the larger of the two adjacent 
calculated values. Using the method results in the ability to determine the most conservative 
upper bound on the envelope of ä for the set of SENT specimens. 
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The Experimental Crack Growth Rate 

Figure 9 shows a plot of crack length (a) vs. time (t). The crack initiation time (tc) varies from 

1.34 min. to 1.59 min. The average value for tc is 1.45 min. The corresponding applied nominal 

strain at crack initiation (ec = tc ■ i) varies from 0.0535 to 0.0636. The average value for ec is 

0.0581. The maximum recorded value for a is 0.427 in. Figure 10 shows a plot of crack growth 

rate (ä) vs. time. The maximum calculated value for ä is 0.847 in./min., approximately 4.2 times 

the applied displacement rate of Ä = 0.2 in./min. 

Calculation of the Mode 1 Stress Intensity Factor 

For the SENT experiments, a specimen's edge displacement (A) was prescribed as a function of 

time (t). The crack length (a), was measured as a function of t. For each point (A, a) of each 

specimen thickness (b), the LEFM Mode 1 stress intensity factor (K{) was calculated by the 

method described in this section. 

ÄTj can be written in the form 

Kx = oavg>/g,^), (2) 

where aavg is the average value for a, w is the specimen width, h is the specimen length, and / 

is some function of a/h and h/w. Dividing Kx by a     Ja gives 

K, 

aavg7ä ^= -j-..-\ = i-..-l a  h 
w' w (3) 

where g is a second function of a/h and h/w. According to LEFM, the energy release rate (7) 
can be expressed as 

J = 
K\ 

(4) 

where E is Young's Modulus. This implies that 

K, = JjE. (5) 

o      can be expressed as avg. 
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Gavg. = X' (6) 

where F is the end force induced on the specimen, and A is the specimen's uncracked cross- 
sectional area (bw). Therefore <J      becomes 

Using Equations 5 and 7 in Equation 3 gives 

avg. cavcr Ja        Vw wj        F V a 

The function g —, —    is the specimen geometry correction factor for stress intensity, and is 

bw fjE approximated by numerically calculating — I—. Linear elastic plane stress finite element 
F *\ a 

calculations (ABAQUS code) were performed of a SENT specimen subjected to a uniform 
uniaxial displacement (A), using w = 1 and h = 5. The value of the specimen thickness (b) 
does not appear in plane finite element calculations, and is implicitly equal to 1. (Note that the 
value of g is independent of the value of the prescribed displacement (A) used in a finite element 

calculation. Note also that although E appears in the expression I — /— j for g, the value of the 

expression is independent of the value of E used. Any (positive) values can be used for A and E 

in the finite element calculations. The value of g depends only on the two parameters a/w and 
h/w.) The value of a was varied, and one finite element calculation was performed for each 
value. Each finite element calculation output a value for F and a value for J (energy domain 
integral method), g was plotted versus a/w. A second order polynomial was fitted to g, 

8{w>w=5rp°+piw+pAw)> (9> 

giving a close approximation to the function. From Equation 8, 

/s:1(A,a,6)w,Ä) = aavg^-^)^. (10) 

Using Equations 7 and 9 in Equation 10 gives 
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Ki(Ka,b,v,,h = 5)=F-^.[Po + Px
a- + Pl[^). (11) 

For each experimental point (A, a) of each specimen thickness (b), KX(A, a,b,w= 1) was 

determined using Equation 11, in which F was the experimentally measured specimen end force 
associated with (A, a). 

The alternative "brute force" method for calculating Kx is to make one finite element calculation 

for each experimental point (A, a) of each specimen thickness (b), in order to find J for the 
point, and then to compute Kx with Equation 5, using E = E0. The advantage of using the 

method of this section is that once the approximating function of Equation 9 is determined, Kl 

can be found for any number of points (A, a) without doing more finite element calculations. 

Each finite element calculation of J is not trivial with respect to the number of elements required 

to obtain a reasonably accurate result. When determining the function g of Equation 8, only 
enough points were (finite element) calculated to provide the function's shape. 

(There is a standard equation for the determination of K{ in a SENT specimen. It is only valid 

when h/w is "large". "Large" for a specimen with a prescribed displacement is much larger than 
the case for this paper, h/w = 5.) 

The Crack Growth Resistance Curve 

Figure 11 is a plot of Kx vs. the change in the crack length (8a). These curves are called crack 

growth resistance curves (R-curves), and are a measure of a material's resistance to crack growth. 

The average value of Kx  at crack initiation (Klc) is 47.8 lb. -s-in.1'5. The maximum value 

recorded for Kx is 81.4 lb. -s- in. ' . The condition Kx < Klc corresponds to crack tipJJ.unting, 

as is shown in Figure L_The-Qverall trend is for fc^-to-increass with increasing ty: (This trend 

provides additional evidence that the thicker specimens were not in a state of plane strain. If it is 
assumed that as a specimen's thickness (b) is increased, the state of the crack tip region 

transitions from plane stress to plane strain, then Klc should decrease with increasing b, because 

'v^ajnaterial's crack growth resistance is smaller in plane strain than in plane stress.) v~ 

Analysis of the Crack GrowtETRafe 

Figure 12 shows a plot of ä vs. K{. The distribution of the points suggest the use of a parabolic 

modeling function. According to Knauss {6}, and Schapery {7}, the crack growth rate for a 
SENT specimen of a linearly viscoelastic material can be expressed as 

,c 
ä = ClKx\ (12) 
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(Note that in Equation 12, q and c2 are not asserted to be material properties, but rather are 

assumed to be specimen dependent.) Therefore, 

log10(fl) = log10(c1) + c2log10(£1). (13) 

Figure 13 shows a plot of log10(ä) vs. log10(Ä'1). Also shown is a least squares linear curve fit, 

giving (for [ä] = in. + min., [K{] = lb. + in.1-5 ,([x]= "units of x")) 

log10(fl) = -4.58 + 2.26 logu^). (14) 

—4 58 
Therefore, the best fit pair (cv c2) for representing all eight SENT specimens is (10 ' , 2.26). 

Equation 12 can then be written 

ä = 2.63X10"
5
ä:1

2
-
26

   in./min. (15) 

It was observed that cY and c2 are not independent parameters. Figure 14 shows a plot of 

logjotcj) vs. c2 (one best fit pair (cv c2) is calculated for each of the eight SENT specimens). 

Also shown is a least squares linear curve fit, giving, 

log10(Cl) =-0.553-1.79c2. (16) 

Substituting Equation 16 into Equation 12 eliminates cx and gives 

ä = 0.280- (Om&lKrf2    in./min. (17) 

c2 can be solved for, giving 

log10(fl) + 0.554 log10(ä) + 0.554 

'2 = logjQ^)-!^ 

Equation 18 indicates that for a particular SENT specimen, any experimental point (Kva) 

should give an estimate for the parameter c2 for that specimen. 

Substituting Equation 16 into Equation 13 and rearranging gives 

log10(d) + 0.553 = c2 • (log^j) - 1.79). (19) 
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Equation 19 has the form of a line, i.e., 

y-yi = m-ix-Xi). ' (20) 

Therefore, Equation 16 is identically satisfied for any line which passes thru the point 
(log10(isrj) = 1.79, log10(a) = -0.553), and has some slope c2. This means any line passing 

thru the point (1.79, -0.553). If Equation 16 was exactly true (if each point in Figure 14 was 
exactly on the line), then in Figure 13 the shown line (which is the best fit for the aggregate of the 
specimens) would pass thru the point (1.79, -0.553). Also if Equation 16 was exactly true, then 
in Figure 13 if a best fit line was plotted for each specimen, all of those lines would pass thru the 
point (1.79, -0.553). Therefore, point (1.79, -0.553) can be designated the "pivot point" for line 
fits of specimen experimental data of log10(a) vs. log10(üT1). 

Each point (log^Cj), c2) in Figure 14 was determined by calculating a best fit line thru the 

points (log10(£j), log10(d)) for the particular specimen. Then the relation of Equation 16 was 

determined by calculating a best fit line thru all of the points (log10(c1), c2). The relation of 

Equation 14 was determined by calculating a best fit line thru the points (\ogl0(Kl), log10(a)) for 

all of the specimens together. From Equation 14, log10(cj) = -4.58. If c2 from Equation 14 

(c2 = 2.26) is substituted into Equation 16, then log10(cj) = -4.60. The two values of 

log10(c1) vary by 0.4%. Their agreement is good because each point in Figure 14 is close to the 
fit line. 

Equation 17 can be written in the form 

ä = c3 • {cAKx)
Cl in./min., (21) 

with c3 = 0.280 and c4 = 0.0164. c3 and c4 are independent of specimen thickness (b), and 

are constants for this particular composite solid propellant, and the particular values for the 
specimen width (w = 1 in.), specimen length (h = 5 in.), notch length (or initial crack length, 

a0 = 0.3 in.), and applied strain rate (e = 0.04 in./in./min.). c2 is a variable, dependent on the 

specific randomness of a particular specimen. Equation 21 is only approximately true, because 
Equation 16 is only approximately true. For any value of c2, a curve having the form of Equation 

21 will pass thru the common intersection point lüTj = —, ä = c3 ]. The common intersection 

point for best fit (to determine c2) curves of each of the eight SENT specimens represented in 

Figure 12 would be (Kx = 61.0 lb. -s-in.1'5, ä = 0.280 in./min.). The physical meaning of 

having an approximate common intersection point for curves of ä versus Kx is that once crack 



5/25/98 

growth begins, the acceleration of the crack tip (ä) is proportional to the value of Kx when crack 

growth begins (proportional to the value of Klc). (Equivalently, ä is proportional to the strain 

energy (U) stored in the specimen when crack growth begins. This is intuitively logical. It is 
similar to the acceleration of a released spring being proportional to its initial compression.) The 
idea can be demonstrated using two extreme cases. A hypothetical best fit curve in Figure 12 with 
the exponent (from Equation 17) c2 = 0 would be a horizontal line thru the common intersection 

point. Then crack growth would begin at t = 0 when Kx = KXc = 0, and would be constant 

with ä = 0.280 in./min., and ä = 0. A hypothetical best fit curve in Figure 12 with the exponent 

c2 = oo would give ä = 0 for 0<Kl<6\.0 lb. ^- in. , jump to ä = 1.00 in./min. for 

K{ = 61.0 lb. + in.1'5, then jump to ä = oo for Kx > 61.0 lb. -5- in. ' . Therefore there would 

be no crack growth until Kx = Klc = 61.0 lb. ^- in. ' , when ä-4°o, and when specimen 

failure would be instantaneous. 

Conclusions 

Constant uniaxial strain rate tests were performed on four thicknesses (0.2", 0.5", 1.0", 1.5") of 
specimens of a particular composite solid propellant. Tests were performed on eight smooth 
(unnotched) specimens to determine the material's uniaxial stress-strain behavior. Tests were 
performed on eight single edge-notched tension (SENT) specimens to determine cracked uniaxial 
stress-strain behavior, the material's Mode 1 crack growth resistance, and to determine and model 
the crack growth rate (ä). Methods were described for calculating ä from crack growth data, and 

for calculating the Mode 1 stress intensity factor (£j). For all analysis, linear elastic fracture 

mechanics (LEFM) was used. Results showed that there were no consistent and significant effects 
of specimen thickness (b). The crack growth data made it seem likely that for all four values of 

b, the crack tip region experienced a state of plane stress. This was explained as being due to void 
formations in the crack tip damage zone preventing the lateral constraint which would otherwise 
produce a state of plane strain in a thicker specimen. The crack growth rate was modeled as 

ä = CJ^TJ
2
. Cj and c2 were assumed to be mutually independent of each other, and to 

individually depend on the specific randomness of a particular specimen. Then data showed that 
Cj and c2 were mutually dependent, and one could be eliminated. The crack growth rate could 

then be modeled as ä = c3 • {.cAKx) 
2. c3 and c4 were independent of b, and depended on the 

particular material, and the particular values for the specimen width (w = 1 in.), specimen length 

(h = 5 in.), notch length (a0 = 0.3 in.), and applied strain rate (e = 0.04 in./in./min.). So c3 

and c4 were constants for the eight SENT specimens. c2 depended on the specific randomness of 

a particular specimen. It was noted that all SENT specimen curve fits (to determine c2) of 

ä = c3 • (cAKl f2 would pass thru the common point (Kx = l/c4, ä = c3). This implied that the 

acceleration of the crack tip (a) during crack growth, was proportional to the value of Kx at 
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crack initiation (the value of Klc), and therefore proportional to the magnitude (U) of the 

specimen's strain energy at crack initiation. This implication was proposed to be consistent with 
common experience. 

References 

{1} Liu, CT., 'Crack growth behavior in a composite propellant with strain gradients - Part 
II', Journal of Spacecraft and Rockets, 27,1990, 647-652. 

{2} Liu, CT., 'Crack propagation in a composite solid propellant', Proceedings of the 1990 
SEM Spring Conference, Baltimore MD, 1990, 614-620. 

{3} Smith, C.W., L. Wang, H. Mouille, and C.T. Liu, 'Near tip behavior of a particulate 
composite material containing cracks at ambient and elevated temperatures', ASTM STP 
1189,1993,775-787. 

{4} Liu, C.T. and C.W. Smith, 'Temperature and rate effects on stable crack growth in a 
particulate composite material', Proceedings of the 1994 SEM Spring Conference, 
Baltimore MD, 1994, 146-149. 

{5} , Liu, C.T, 'Numerical modeling of crack-defect interaction', Journal of Propulsion and 
Power,!, 1991, 526-530. 

{6} Knauss, W.G., 'On the steady propagation of a crack in a viscoelastic sheet: Experiments 
and analysis', Deformation and Fracture of High Polymers, H. Henning Kausch, J.A. 
Hassell and R.I. Jaffee (eds.), Plenum Press, New York, 1974, 501-541. 

{7} Schapery, R.A., 'A theory of crack initiation and growth in viscoelastic media I', 
International Journal of Fracture Mechanics, 11,1975,141-159. 

{8} Sutton, G.P., Rocket Propulsion Elements - An Introduction to the Engineering of Rockets, 
5th ed., John Wiley & Sons, New York, 1986,292-316. 

o b = 0.2" 

X b = 0.2" 

+ b = 0.5" 

* b = 0.5" 

D b = 1.0" 

0 b = 1.0" 

V 
A 

b = 1.5" 

b = 1.5" 

(b = specimen thickness) 
LEGEND 

Figures 7-14 



I 
I 
1 
I 
1 
I 
I 
I 
1 
Fl 
I 
I 
I 
1 
I 
1 
£ 

5/25/98 11 

Figure 1.   b = 1.0 in., Crack Tip Blunting Figure 2.   b = 1.0 in., Initial Crack Growth 

Figure 3.   b = 1.5 in., Damage Formation Figure 4.   b = 0.2 in., Damage Zone Voids 

Figure 5.   b = 0.2 in., Single Ligament Figure 6.   b = 0.5 in., Double Ligament 
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