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UNSTEADY CONJUGATE HEAT EXCHANGE OF  
OIL-GAS PIPE LINE IN SOIL 

A.M. Pavljuchenko and А.N. Popkov 

Institute of Theoretical and Applied Mechanics SB RAS, 
630090 Novosibirsk, Russia 

Introduction 

The problem of conjugate heat exchange of main gas-oil pipe lines is of special 
importance for pipelines laying in the permafrost regions, because the energy saving, reliability 
and ecology problems ought to be solved. In this work, this complex mathematical task without 
allowance for a movable thawing bound was numerically simulated.  

The calculating results of conjugate unstable heat exchange of a “hot” product-pipeline 
with a uniform soil were presented at the following assumptions: 

− The flow regime in a tube is turbulent and unsteady, the liquid is incompressed, and 
the physical properties are constant. 

− Heat exchange along the pipeline axis is negligibly small in comparison with the heat 
exchange normal to the pipeline axis. 

− The soil in which the product-pipeline is embedded is a uniform massif with known 
thermal-physical properties.  

− The pipe wall and its insulation is negligible thin, and their thermal resistance is 
modeled by a certain coefficient in the boundary condition at the pipe and soil 
junction.  

The task for the pipe at a flow hydraulic stabilizing comes to solution of the energy 
unstationary equation: 
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where T is a liquid temperature; τ  is a time; Taa , are the coefficients of a temperature 
conductivity of the laminar and turbulent flow regimes accordingly; W is a velocity axis 
component; 

Equation (1) describes the unsteady heat exchange of liquid and the pipeline wall at the 
turbulent flow regime, and the velocity field is described by the Reichard dependence [1] and 
[2]. Equation (1) is a hyperbolic-parabolic (ultra-parabolic) that are considered at difference 
scheme construction. 

The temperature distribution in soil at undersoil pipe laying taking into account a day 
surface is described by a non-stationary, two-dimensional equation of the thermal conductivity. 
In such case, the longitudinal heat flows are neglected in comparison with the transversal ones. 
Thus, a three-dimensional problem of the thermal conductivity is split in a great number of two-
dimensional problems connected by boundary conditions on a pipe wall:  
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t  is a soil temperature; sa is the coefficient of the soil thermal conductivity; ,x y are the co-
ordinates of the cross section; x  is directed along the soil bound and the day surface from a 
symmetry plane; axis −y lies in the symmetry plane and directed into the soil from the day 
surface [3]. 
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The thermal conductivity along the axis z  in the soil is negligibly small. 
The coordinates of the pipe center (0, H), where H is a depth of the pipe laying, and the 

equation of the pipe circle has a form: ( ) 2
0

22 rHyx =−+ . 

An area of the equation integration (2): 
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with the bound conditions on the day surface: 
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at the bound of the pipe and soil the conjugate conditions are written, that are equalities of the 
thermal flows and temperatures in the form: 

s liq s liq,q q t Tδ= = ,                                          (4) 

where sλ  is the coefficient of the soil thermal conductivity; airα is the coefficient of a heat 
transfer from the soil to air; −0r is a radius of a thin-wall pipe. Because the area, where the 
solution is determined, is symmetrical relatively to the axis y0 , the condition  
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is added at the bound 0=x .  
The endless integration area in the soil is transformed into the circle one using a conform 

transformation [3]: ( Rln=µ ) 
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The equation (2) in new dimensionless coordinates has a form: 
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Boundary conditions (3) – (5) in variables ϕµ ,   in the surface ω  take the form: 
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The symmetry conditions relatively to the axis y0 : 
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Symbols ϕµ , are the polar coefficients in a complex plane ω  ; 
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To construct a numerical algorithms it is necessary to express the derivatives on normal 
both at the day surface boundary and at the pipeline plane by new variables.  

In the result, derivatives on variables yx , will be written in the form: 
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The derivative on normal to the pipeline surface coincides with the derivative in radius of 
a polar coordinate system in the physical surface connected with the pipeline axis: 
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These expressions for derivatives are necessary to write the conjugate conditions at a contact 
pipe surface with the soil (4) in new variables. 

Transformation of thermal exchange equation (1) at the flow turbulent regime in the 
pipeline [1] . 

( )
( )

( )








∂
Θ∂+

∂
∂

+

+
=

∂
Θ∂

+
∂

Θ∂
ρ

ρ
ε

ερργ
ρρεε

ερ )(1
1 2

3

0 Z
V

F
 ,                               (11) 

where m
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dimensionless transformed (deformated) pipe radius; constε = is a stretching parameter of a 

pipe physical radius which is connected with the Reynolds dependence: ( )1Re005.0/1 4/3 −=ε . 
Using of the physical radius transformation is necessary to compensate a large near-wall 
profiles gradient of a velocity and temperature at the turbulent flow. m max,W W  are mean and 
maximum values on the flow velocity axis. m 02 / , ,e r TP W r a P P= are the Peckle and Prandtl 
numbers laminar and turbulent 

The conjugate conditions (4) are written in the form: 
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An attempt to construct an algorithm of a direct solution of the conjugate problem of the 
pipeline thermal exchange with the soil was made. To pursue this aim, a method of variable 
directions or the splitting method on spatial variables of N.N. Yanenko [4] was applied to 
integrate the equations (6). Two-dimensional equation is splitted into two one-dimensional 
equations: 
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Integrating areas sections ( ) ( )0 0 and 0µ µ ϕ π≤ ≤ ≤ ≤  are separated into N–1 and M–1 

accordingly with steps: ( ) ( ) ( ) ., 110
1

00 mmmnnn
jjj andFFF ϕϕϕµµµ −=∆−=∆−=∆ ++

+  
The system is integrated at every step on time. Indexes nm , run the values (n = 2, 3, 4,…,  
N–2, N–1), (m =2, 3, 4,…, M–2, M–1) accordingly. The difference equations for system (13) 
can be presented in a three-diagonal form: 
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The expressions for the coefficients A, B, C, D are written by the known form. The passing ratio 
for the first trinominal equation is written as: 

.111111 nnnn LUKU += ++  

Using the boundary condition (7) in the difference form, it can be obtained the initial values for 
the passing coefficients: 
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Further, all passing coefficients nn LK 11 ,  on the diminishing index values 
.2,3,...,2,1 −−= NNn are determined according to the re-current formulas. At  2=n a direct 

passing expression is written 

21112121 LUKU += .                                                     (14) 

Therefore, it is impossible yet to perform a direct passing for nU1 determining. Because value 
11U is unknown, it shall be determined from the conjugate conditions (12), but previously, the 

difference trinominal correlations are to be obtained for the thermal transfer in the pipeline, i.e. the 
difference scheme for the equation was constructed (11). To approximate the hyperbolic left 
section, a four-point “block” scheme  was used, it is absolutely stable and of the second order of 
accuracy. An operator of the second order is written on a three-point template with the step 

,1 lll ρρρ −=∆ +  where index l passes the values .1,2,...,3,2 −−= LLl  With increasing of the 
radius ρ , increasing from the pipeline axis is observed, and the running correlation has the form: 

.1 llll LK +Θ=Θ −  

From the symmetry conditions the initial values of the running coefficients .0,1 22 == LK are 
determined on the pipe axis. At the upper bound (on the pipe wall) the correlation  

Fig. 1      Fig. 2 
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,1 LLLL LK +Θ=Θ −                                                      (15) 
is obtained which encloses the conjugate conditions. If to write the equality (12) in the form of a 
difference scheme, so four equations relative to four unknown ones are obtained, they are  (12), 
(14), (15). Finally, the value of the soil temperature at the contact plane will take the form:  

,
)1()1(

)1)(1(

12

12
11 −Ω+−Φ

−−Ω+Φ+Ω
=

L

LL

KK
EKLL

U                                (16) 

where 
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Using 11U  in  (14) and etc., and  LΘ  in (15), it 
can be determined a temperature profile in the 
pipeline and solution of the splitting equation 
(13) relatively to .1U  Further, the equation solu-
tion relatively to 2U using a running along the 
coordinate lines of axis .ϕ are seen. The initial 
field is determined by solution of 
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the thermal conduction equation (6) in the soil is 
found using a longitudinal-transverse running 
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The algorithms of nonstationary heat exchange were previously checked in independent 
calculations both for the soil with a isothermal pipe and for the turbulent flow regime in the 
pipe. The calculations were compared with results of [1, 3] and are presented in Figs. 1 and 2 . 

Figure 1 shows a comparison of our numerical calculations (round points) with the 
calculation results of [3] under set conditions.  

Figure 2 presents the Nusselt number 4
0Nu ( , ) at Re 10 , Pr 1,Z F = = for the turbulent 

flow in the pipe and for uneven change of the heat flow 0( ) constQ F =  on the pipe wall, our 
computations in comparison with calculations made in [1] are marked by a dashed line. 

The calculations of the certain pipeline are presented in Fig. 3. 
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In the Fig. 3 shows dependence of the mean mass temperature liquid amT  from distance 
and times. 
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