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NONLINEAR MODELS FOR EVOLUTION 
OF DISTURBANCES ON THE SUPERSONIC BOUNDARY LAYER 

S.A. Gaponov and N.M. Terekhova 
Institute of Theoretical and Applied Mechanics SB RAS, 

630090, Novosibirsk, Russia 

Introduction 

Over the last decade the nonlinear interaction of disturbances in supersonic boundary lay-
ers has been extensively investigated. It has become possible due to accumulated experience in 
theoretical and experimental studies of nonlinear disturbance evolution in subsonic flows. 

In the case of compressible gas flows, especially at supersonic velocities, the theoretical re-
searches of nonlinear evolution are strongly complicated by the following circumstances. Consid-
eration of temperature and density perturbations raises the order of differential equations, which 
results in an increase of the calculation volume. At high Mach numbers, additional unstable modes 
appear. According to the linear theory, the most unstable first mode waves are three-dimensional 
(3D) or oblique, the direction of their fronts does not coincide with the basic flow direction. 

For explanation of dynamics of unstable waves observed at introduction to a supersonic 
boundary layer of inspected disturbances of large intensity, the nonlinear models of interaction 
of disturbances are considered. In the models of weaklynonlinear interactions, mostly elaborated 
for subsonic flows, one distinguishes a coupling mechanism in the resonant triads and the com-
binational interactions of two oscillations, comprising the processes of waves self-action (self-
oscillation modes). The possibilities of realization of three-waves interaction with the order 
0(ε 2) for supersonic flows are discussed in [1]. 

In the present work the study of the action in the resonant triads including the stationary 
modes and also the study of the second non-linear mechanism realization possibility – interac-
tion in pairs - is conducted. Historically, it was just this, and more specifically, the study of the 
finite amplitude waves self-action effects was the beginning of the near-wall nonlinearity simu-
lation. 

The method and results of numerical simulation of development of disturbances in a su-
personic boundary layer on a flat plate at high Reynolds numbers are presented in the paper. The 
solution is built by expansion with respect to the small parameter. The contributions of linear 
and quadratic terms are taken into account. The resonance interaction of the fundamental 
(2D)mode of linear instability with (3D)mode and stationary (3D)mode in the parametric region 
is studied. The results are compared with experimental data under controlled conditions. The 
results obtained show that the suggested model accounts successfully for experimental results 
and that the resonance mechanism can play an important role in formation of the spectrum of 
dominating disturbances in a supersonic boundary layer. 

In the present paper, only the interaction of hydrodynamic waves which exponentially van-
ishes at infinity is considered, i.e., the problems similar to the case of low-speed flows are dis-
cussed. 

Formulation of the problem 
The governing equations for disturbance evolution in a supersonic boundary layer are the 

well known Navier – Stokes equations of continuity, energy and state. 
The flow parameters can be presented as a sum 

Q(x, y, z, t)=Qb(x, y, z)+ε Z(x, y, z, t) 

 S.A. Gaponov and N.M. Terekhova, 2002 
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where Qb(x, y, z) is the solution to the stationary equations of motion, ε Z  is the disturbances 
(ε  >>1). 

We consider the evolution of disturbances in supersonic boundary layer over flat plate at 
high Reynolds numbers Re = (Uex/ν e)1/2, where Ue, ν e – free-stream velocity and kinematic 
viscosity, x - distance from the leading edge to a reference point.  

Therefore parallel flows is a good aproximation for the basic flow.  
The disturbances can be described by a system of nonlinear equations which depend on the 

basic flow parameters. For weak nonlinearity it is possible to restrict the solution by the contri-
bution from linear and quadratic terms. Besides we shall take into account viscosity and termal 
conductivity only in the linear terms in highest derivative. Then the eight-component vector- 
function Z(u, uy, v, ρ ,T, Ty, w, wy) can be presented in the operational notation as a solution of 
the system of differential equations 

L Z=ε  M(qij,qkl).                                                               (1) 

Here u, v, w are velocity perturbations in x, y, z-directions, T, p are perturbations of temperature 
and pressure, q  is a four-component vector, subscripts y, t, x, z mean the transport coefficients 
(viscosity and heat conductivity). 

The solution of (1) can be obtained by using an expansion on the small parameter ε  and a 
two-scale expansion on the x -coordinate, i.e., we introduce «fast» (x1) and «slow» scales X=ε x. 
A possibility of introducing two scales is justified by a large difference in phase and amplitude 
changing rates. Thus,  

∂ /∂ x=∂ /∂ x1 +ε ∂ /∂ X ,  Z = Z0 +ε Z1. 

In this case Z satisfied following equation and boundary conditions: 

L0 Z0=0, z1
0= z3

0=z5
0= z7 0=0  at y = 0, y =∞ .                               (2) 

The zeroth-order solution Z can be taken in the form: 

Z0=Real(∑ aj(X)Z0j(X, y)exp(iΘ j)).                                             (3) 

Coefficients aj, the phases Θ j= ∫ α j(x)dx+ β jz–ω jt and Z0j  depend on slow variable X. Solu-
tion Z0j is governed by equation (A,B,C,D,G) are matrixes which depend on flow parameters): 

(-iω jA+iα jB+i β jC+G) Z0j +Dd Z0j/dy=0   

with boundary conditions (2). Equation (3) subject to homogeneous boundary conditions (2) 
form eigenvalue problem which provides complex value α j for given (ω j, β j), Real(α j) being 
the streamwise wave number and -Im(α j) being the growth rate of primary wave. In the next 
order we obtain the following set of coupled equations (mark «asterisk» means complex conju-
gate): 

L0 Z1 = –∑ BZ0j exp(iΘ j)).(daj/dX) +M(z0m
k, z0n*

p), 

where vector M represents nonlinear terms. Applying usual solvability conditions  (orthogonal-
ity to the solution W0j of adjoint problem) yields the set of amplitude equations : 

da1/dX= –Im( 1α )a1 +k1a2a3 exp( 1i ϕ∆ ), 

da2/dX= –Im( 2α 2)a2 +k2a1a3 
*exp( 2i ϕ∆ ), 

da3/dX= –Im( 3α )a3 +k3a1a2
*
 exp( 3i ϕ∆ ), 
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kj= ∫ (Mj .W0j)dy/ ∫ (Bz0j . W0j)dy, 

where ϕ∆  – phases which are small for resonant triplet. 
We are interested, first of all, in evolution of the (2D) linear unstable mode with (3D)mode 

and stationary (3D)mode which satisfy the resonant conditions: 

β 1= β 2+ β 3, ω 1=ω 2+ω 3. 

For frame of the combinational interactions we come to the following set, describing the 
spatial behavior of wave amplitudes: 

da1/dX= [–Im(α 1)+(E1,1,–1 |a1|2+E1,2,-2 |a2|2)P1
–1]a1, 

da2/dX= [–Im(α 2)+(E2,2,-2 |a2|2+E2,1,-1 |al|2)P2
−1]a2, 

Pj= ∫ W0j∂ LZ0j/∂α j dy,   j=1,2. 

Here E are the non-linear coefficients, connecting the secondary harmonics and original waves 
(3). Let us write down the structure of several of them: 

E1,1,-1= ∫ Mj(Zvt 1,–1,Z0
1) W0jdy + ∫ Mj(Zvt 1,1,Z0

–1) W0j dy, 

E1,2,–2= ∫ Mj(Zvt
2,−2,Z0

1) W0jdy + ∫ Mj(Zvt 1,2,Z0
−2) W0j dy+ ∫ Mj(Zvt 1,−2,Z0

2) W0j dy. 

Here Zvt are the secondary waves, emerging by non-linear self- and cross- interactions; Zvt
1,-1 and 

Zvt
2, –2 are the zero harmonics, describing deformations of the mean flow characteristics; Zvt

1,1 is 
the overtone, being created by the first wave, its phase is Θ=2Θ 1; Zvt

1,2 is the summary secon-
dary wave with the phase Θ=Θ 1+Θ 2; Zvt

1,–2 is the differential secondary wave with the phase 
Θ=Θ 1–Θ 2. 

Numerical results and discussion 

In this work the total temperature was kept constant and equal to 310 K, the Prandtl num-
ber was Pr = 0.72, specific heat ratio was γ =1.4, the parameters corresponding to the wind 
experiments of [2]. 

The nonlinear interaction for resonant wave triads in the supersonic boundary layer on a 
flat plate were numerically investigated but we will not represent these. 

In the present paper the situation arising at introduction to a boundary layer on a slice has 
exposed to the theoretical analysis at a Mach number Me=2 of inspected disturbances the large 
intensity suffices [2]. The authors have called observable dynamics of disturbances as "abnor-
mal". As against earlier considered, she is characterized by a number of features to explain 
which within the framework of used non-linear models it fails. 

At "abnormal" dynamics is established, that 2D disturbances are most unstable. In an ini-
tial spectrum two wave packets on multiple frequencies (f1 = 10 kHz – subharmonic frequency 
are arrested and f2 = 20 kHz – base frequency), the packet dominates on f1, the maximum of 
intensity is necessary on 2D wave. Downstream mainly the preference (2D) character of wave 
spectrums does not change, the strong growth of disturbances on frequency f1 is watched (almost 
in 10 times), the amplification of disturbances on a base frequency f2 is a little bit less, but all 
the same it is much more linear. It results that the laminar-turbulent transition happens on 20% 
closer to a leading edge. There is the distortion of a mean stationary velocity U crosswise of 
boundary layer, which width was increased. The phase velocities of disturbances were above 
linear on 30-40%. 
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It was clear that the observable features are called by non-linear character of development 
of disturbances distinct from three-wave resonant. In the present paper only the combinational 
interactions of two (2D) oscillations of is considered. 

In [2] the source of inspected disturbances placed at Re = 497, and the measurements are 
conducted in range 624≤Re≤ 846. For these parameters calculations also are conducted. In 
Fig. 1 we are exhibited increments iα  of linear waves on a subharmonic frequency f1 and base 
frequency f2 (digit 1 and 2). The initial position of a subharmonic at Re = 624 – near to the 
lower branch of a neutral curve, the linear increment is augmented with growth Re, not reaching 
a maximum in final cross-section of measurements. The basic wave places near to a maximum 
of a linear increment, down-stream its increment decreases. 

In Fig. 2 we present the secondary harmonicses  u1,–1 and u2,–2 at initial Re on a background 
of a mean stationary profile U (shaped line). Full deformation U will be recorded ∆ U=|a1|2 u1,–

1+|a2|2 u2,–2   also will be determined by amplitudes of incident waves. The registration of 
nonlinearity is visible that results in the greater property of being filled up of a profile in wall-
rigion and occurrence of a defect at an outer boundary, that augments a boundary layer thick-
ness. It completely correlates with experimental observations. 

The direction of the influence of non-linear processes of amplitudes primary waves it is 
possible to analyze considering non-linear factors. Let's unite factors which are in charge of self-
effect and for a cross interaction. In Fig. 3 they are exhibited for the researched range Re. The 
positive values of the non-linear members 
will call accessory (concerning linear) 
growth of amplitudes and negative will 
put to its decrease. From a figure it be-
comes clear that self-effect of a subhar-
monic 1,1, 1E −  (full curve 1) will put to 
increase of amplitude a1 and on the con-
trary − self-effect of a wave on f2 will 
moderate its amplitude, this process will 
rise with increase Re (shaped curve 1). 

The influence of a base wave on a 
subharmonic (E1,2,−2) consists of increas-
ing amplitude by last at small Re and of 
decreasing downstream (full curve 2). For 
a base wave (f2) availability in a spectrum 

 
Fig. 1 The linear increments of waves (1 – in f1. 2 – in f2). 

 
Fig. 2. The secondary zero harmonics u1,-1 (1)  

and u2,−2 (2), mean profile U (dash-line). 

 
Fig. 3. Non-linear coefficients for the amplitude equations. 
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of a subharmonic always results in growth 
a2 (shaped curve 2). 

It is necessary to illustrate consid-
ered model on behaviour of amplitudes 
(Fig. 4). In calculation initial values a1 
and a2 is corresponded to experimental 
total intensities of initial wave packets, 
and I1/I2=3, and a1/a2=2. 

In figure shaped lines exhibit linear 
dynamics of amplitudes, appropriate to 
their linear increments, solid - are shown 
non-linear amplitudes at combinative 
process, and by dash-and-dot lines are 
given non-linear amplitudes in a mode of 
self-effect. 

For a subharmonic the nonlinearity 
always results in heightened growth of 
amplitude. Thus a linear degree of growth 
(relation of final and initial amplitudes) is determined by value ≈ 3 and value – ≈ 6 for non-
linear thus at the expense of nonlinearity the amplitude can bring up almost in 2 times. The basic 
contribution introduces to process self-effect, registration of presence of a wave on basic to fre-
quency lowers a level of accessory amplification because of transfer to her of a part of energy a 
little. 

For this base wave because of considerable reduction linear increments on a researched in-
terval Re the fading linear is watched the amplitudes a2, nonlinearity in a mode of self-effect 
practically has not an effect on its value and the influence of a subharmonic results to small to 
growth of this amplitude. A low-level level of influence of nonlinearity is determined by a 
smallness of an initial amplitude of this wave. 

In non-linear process there is also phase progression of phases which can result in to change 
of wave numbers Real(α )  and phase velocities of disturbances c=ω /Real(α ). In [2] is marked 
that experimentally particular values of phase velocities c ≈0.7-0.72 on the average on 30-
40%exceeded appropriate values of own waves supersonic boundary layer (c≈0.52-0.55). The 
phase velocities of waves at non-linear stage are determined. The values of phase velocities with 
non-linear by the corrections become very close to experimentally particular (c≈0.69-0.75). 

Summarizing said we shall mark that within the framework of the considered combinative 
model qualitatively prominent feature of dynamics of inspected disturbances of heightened in-
tensity - considerable signal amplification as contrasted to linear, the distоrtion of mean velocity 
diagrams correctly are described in the field of outer boundaries resulting in to growth the 
thickness of the boundary layer and increase of phase velocities of waves. 

This work was supported by the Russian Foundation for Basic Research (grant No. 00-01-
00828). 
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Rig. 4. The non-linear amplitudes a1  and a2. 
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