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Simulation of Constrained Multibody Systems Based
on Orthogonal Decomposition of Generalized Coordinates

Farhad Aghili and Jean-Claude Piedboeuf

({farhad.aghili, jean-claude.piedboeuf }@space.gc.ca)
Space Technologies, Canadian Space Agency, 6767 Route de 1’Aéroport, St-Hubert,
Québec, Canada, J3Y 8Y9

Abstract. This paper presents an efficient dynamic formulation for solving Differ-
ential Algebraic Equations (DAE) that is demanding in simulation of multibody
systems containing constraint. The method is based on decomposition of the gener-
alized coordinate into two orthogonal subspaces representing constraint coordinates
and "self-motion” coordinate. The equation of motion of the self-motion coordinate
is derived in an explicit form that is used to obtain the corresponding states as a
result of numerical integration. The state associated with the constraint coordinates
are obtained by solving algebraically the constraint equations.

1. Introduction

Dynamics of many mechanical systems is formulated as multibody
system with closed-loop topology, e.g. manipulators interacting with
environment, manipulators with closed-kinematic chain, parallel ma-
nipulators, vehicle and car suspension and steering system. Often one
need to simulate such a complex dynamical system in real-time, thus
speed and accuracy are important issues. Mathematically, simulation
of constraint mechanical systems tantamount to solve a set of n dif-
ferential equations coupled with a set of m algebraic equations, i.e.
Differential Algebraic Equations (DAE). Equations describing a DAE
system can be formally written as

Mg + h(q,q) + ATA = f. )
{@hﬁ=0 @

Where q € IR™ is the vector of generalized coordinate, M € IR™*"
is inertia matrix, h(q,q) € IR™ contains Coriolis, centrifugal terms,
A € IR™ is the Lagrangian multiplier corresponding to constraint force,
f € R™ is vector of generalized force, and A € IR™*" is the Jacobian
of the constraint equation ® € IR™ with respect to the generalized
coordinates, i.e.

_ 0%

A———a—q—




It should be noted that, in general, the kinematic constraint ®(q,t) = 0
is rhoeonomic reflecting the fact that the constraint condition is time-
varying, i.e. some of the constraint equations depends on time. In
solving equations (1), it is typically assumed that; (i) the mass matrix
is invertible and (ii) the constraint equations are independent, i.e. the
Jacobian matrix is not rank-deficient.

The survey of the existing techniques to solve DAE may be found in
[4, 1, 5, 2, 3]. The classical method to deal with DAE is to express the
constraint condition at acceleration level. This allows to replace the
original DAE system with an ODE one by consolidating the two set of
equations in (1), that is

FH [ e T

where the augmented mass matrix is invertible if the Jacobian ma-
trix is full rank, and hence g and A can be obtained uniquely from
the above matrix equation. Since maintaining the constraint at the
acceleration level results in a marginally stable system, ie. & = 0,
the Baumgarte stabilization [2] term v = —~K,® — K,® is used to
ensure exponentially convergence of the constraint error to zero. The
problem with this method though is that a very stiff system is required
- by choosing high gains K, and K, - in order to keep small transient
error in the constraint induced by numerical perturbation or by initial
condition error. However choosing high gains creates virtually a very
fast dynamics which slow down the simulation as maintaining stability
of the integrator demands a small step size.

The other method is based on coordinate partitioning [8, 7] by making
use of the fact that the n coordinates are not independent because of the
m constraint equations. Consequently, at every instant the coordinate
vector is partitioned as qf = [da,qiT], where g € R™ and ¢ €
IR™™™ are dependent and independent coordinates, respectively. The
motion of the system described by the independent coordinates can be
separated using an annihilator operator. Although this method may
significantly reduce the number of equations, finding the annihilator
operator is a very complex task [3].

In this work, we propose a new method for solving DAEs based on
decomposing the generalized coordinates into two orthogonal subspaces
using any generalized inverse of the constraint Jacobian. Unlike in the
coordinate partitioning method, in this method the decomposed coor-
dinates have no physical meaning and no order reduction is achieved.
Nevertheless, automatic decomposition can be easily carried out based
on any generalized inverse of the Jacobian. This paper is organized




as follows: section 2 describes the proposed decomposition algorithm.
An explicit equation of motion describing the evolution of the self-
motion coordinate is derived in section 3, while section 4 shows how
the constraint states can be found algebraically from the kinematic

equations.

2. Orthogonal Decomposition of Generalized Coordinate

By differentiating the constraint with respect to time, we have

0P
ot
In (3) there are m set of nonlinear equations and n unknown, where
m < n. That is there are fewer equations than unknowns. Therefore

a family of solutions exist. The theory of linear system of equations
establishes [6] that the general solution can be expressed by

(3)

Ag=—-c where c=

a=9"0q

where ¢° is particular solution, associated with constraint equation (3),
and ¢° is a homogeneous solution which belongs to the null space of
the Jacobian matrix.

In this work we proposed a method for solving DAE by decomposing
the velocity of the generalized coordinate into the two orthogonal sub-
spaces; ¢° € N(A) (belong to the null space of the Jacobian), and
¢ € S(A) (belong to the support space of the Jacobian) — where
S(A) = N1(A) and N(A)US(A) = R™. In the sequel, the coordi-
nates associated with q° and ¢° are called constraint coordinate and
self-motion coordinate, respectively.

The projection of the generalized coordinates to the subspaces can be
carried out by using projection operator

q’ =Pq, (4)
q°=(I-P)q, (5)

where
P=I-A%A (6)

can be calculated by using pseudo-inverse At = AT(AAT)™! of the

Jacobian matrix 1.

! The pseudo-inverse and the projector operator can be also computed by the
Singular Value Decomposition method. Suppose the Jacobian is written as A=
USVT, then the pseudo inverse can be found by A* = VE~'U” and the projection
sP=I-VVT.




The velocity of the constraint coordinates ¢¢ can be obtained directly
from the constraint equation (3), i.e.

q° =—Atc(t) (7)

On the other hand, the homogenous solution, ¢° belonging to the null
space, represents all self motion irrespectful of the constraint. However,
the admissible motion is determined by the equation of motion of the
self-motion coordinate that will be derived in the followings.

3. Equations of motion of the self-motion coordinate

To obtain equation of the Lagrangian multiplier, equations (1) can be
solved first for an expression for acceleration

G=M1f-h-AT)) (8)

which can be then substituted in the acceleration of the constraint
equation, .
Aq+ Aq=—¢,

to obtain
A= (AM7IAT)T [AMY(f ~ h) + Ag + ¢] (9)
Now by differentiating equation (4) with respect to time we have
q° =Pg+Pgq. (10)

In the following, we derive P in an explicit form that is required to
calculate the acceleration term of the above equation. By knowing that
for any invertible matrix B we have

Edt-(B)*1 =-B BB,

and that the matrix AAT is invertible (because the Jacobian is full
rank), we can calculate the time derivative of the Jacobian pseudo-
inverse as

%[Aﬂ =PAT(AAT)1 - AtAAT (11)
Substituting (11) in the time differentiation of equation (6) yields
P =-PAT(AAT)'A + ATA(ATA - T)
By knowing that PT = P and by defining matrix S = QP, where
Q=A"A,




we have

P=—(ST+8) (12)
Finally, from equations (8), (10), and (12), we readily arrive at
§°=-PM }(h~f+ATX) - (ST +8)q. (13)

This is the equation of acceleration of the self-motion coordinates in a
closed form. Yet, in the following we rewrite equation (13) in a simpler
form which has also some useful interpretations. One can show that
QTP =0, hence from equation (7) we can say

QT = Q7¢e (14)
= Rec(t)

where matrix R is defined such that
QT =RA

Moreover, one can observe that Sq = Sq°, hence equation (13) can be
rewritten as

§* =P M7 (h~f+ATA) - Re(t)] - Qq° (15)

which expresses the equation of motion of the self-motion coordinates
in a compact form.

It is interesting to point out that the first term and the second term
of the acceleration (15) are in null space and support space of the
Jacobian, respectively — note that PQ = 0. Therefor, §° ¢ N (A) unless
the second term is identically zero. In that case the null set becomes
time-invariant because the evolution of the velocity of the self-motion
coordinate always takes place within that set. Since M(Q) = N(A),
we can say that the self-motion coordinate evolves in a time-invariant
set if

N(A) CN(A).

Then the second acceleration term, i.e. Qq4°, is zero.

Equations (9) and (15) express the constraint force and acceleration of
the self-motion coordinates in a closed form. Consequently, {q®,q°} can
be obtained as a result of numerical integration. On the other hand the
constraint coordinates can be algebraically derived from the constraint

equation.




3.1. Scleronomic systems

Since N (R) = §, then

c=0
is the only condition which vanishes the time-varying term Rec(t).
Therefor, we can say that the time-varying term of the acceleration
equation vanishes iff the constraint is time-invariant, i.e. Scleronomic
constraint. Moreover, for a Scleronomic systems we have ¢ = q¢ = 0,

hence _ )
q°=q
. . 16
(&= (16)
Therefore, the equation of motion of a Scleronomic system can be
directly expressed in terms of the generalized coordinate, i.e.

g=-PM Y(h-f+ATN) - Qq (17)

4. The states of the constraint coordinate

Having obtained q® and ¢°® from integration of the acceleration, the
kinematic constraint can be used to solve for q° and ¢°. Equation
(7) gives the velocity of the constraint coordinates €. In essence, one
should able to obtain the constraint coordinate from the constraint
equation if the self-motion coordinate is known, i.e. q° = (g’ ).
However, this explicit relationship may not exist. Hence the explicit
nonlinear equation ®(q° q°,t) should be solved numerically, e.g. the
Newton-Raphson method, in terms of q° where q° is treated as a known
parameter.
The Newton-Raphsom method solves a set of nonlinear equations iter-
atively based on linearized equations. Before we pay our attention to
the linearized equation, we present some useful relationship. It can be
inferred from (4) and (5) that %%; =I- P and %—Cg = P, hence by
using the chain rule, we have

0P Py 6_4)
oq°® oq°
By post multiplying the both sides of the above equation once with At
and once with P, we arrive at two equations:

A =

I-P)

§$A+ =1 (18)
gzp — 0 (19)




The constraint equation can be written in the so-called first-order
differential form in multi variables, i.e.

o® od

aqc ch + (,—3-('1';5(13 + cét

By virtue of (19) and dq°® € N(A), one can conclude that the second
term in the RHS of the above equation is identically zero. This result
was expected as the constraint condition is not to be affected by the
self-motion coordinates. Now, by knowing the inverse of the Jacobian
of the constraint with respect to q° from (18), we can solve the lin-
earized equation iteratively. The initial condition for the iteration loop

is calculated by solving the time-varying part, i.e.

46t
{af}t+or = {a}e —I—/t Atcdr (20)

Obviously the second term in the RHS of above equation is zero for
Scleronomic constraints, that is the initial condition is equal to the
value of the constraint coordinate at the previous step time. Thus the
following loop

0P =

qi41 = qf — AT®(q5, 9% 1) (21)
may be worked out iteratively until the error in the constraint falls into
an acceptable tolerance, e.g. || ®|| < e. It should be pointed out that the
initial estimate given by (20) cannot be far from exact solution, because
the drifting error within a single integration time step is quite small.
Indeed, experiments have shown that even if the iteration loop (21) is
called once every few time step, we still achieve a fast convergence.
Finally, the simulation of a constrained mechanical system based on
the decomposition method can be proceed as the following steps:

1. compute the Lagrangian multiplier and the acceleration of self-
motion coordinates from equations (9) and (15), assuming that the
initial conditions are known.

2. obtain the self-motion states {g°,q°} as a result of numerical inte-
gration

3. use equations (7) and (21) to obtain the states associated with con-
straint coordinate {q°, ¢°}. Having the vectors q and q completely
known, go to step(1).




Conclusion

In this paper we have presented an algorithm for solving DAEs. The
method is based on orthogonal decomposition of generalized coordi-
nates into two subspaces; the self-motion coordinates and constraint
coordinates. Explicit equation of motion governing the dynamics of the
self-motion coordinate has been derived that is used for simulation.
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Abstract:

The paper deals with the design and properties of Generalized Predictive Control
for path control of the redundant parallel robots. It summarizes classical and root
minimization of the quadratic criterion and direct and two-step design of actuators
respectively. As an example, the planar redundant parallel robot is used. Moreover,
the paper presents several possibilities to use Predictive control for compliance of some
additional requirements as smooth trends of actuators or fulfillment antibacklash condition.

1. Introduction

Topically, the next development in industrial area is constrained by deficit of powerful
machines with proportional dynamics and stiffness. At the same time, the new control
techniques, which would be able to achieve higher accuracy with keeping of dexterity
of the robot constructions, are missing or, on the other hand, there is no interest for their
real application during research and development of new machines.

One of the promising ways of solving mentioned problems is utilization of new robot
type based on parallel construction [1]. However, this new concept of the constructions
brings new questions, especially in control area, thus the parallel structures give
the possibilities to significantly improve mechanical parameters of new machines
(dexterity, dynamics, stiffness, kinematics” accuracy etc.).

The aim of this paper is investigation of one potential control approach - Generalized
Predictive Control (GPC) [2,3] as an example of high-level model-based control.
This approach firstly offers to achieve higher accuracy (better compliance with technolo-
gical requirements; i.e. for robots: better compliance of planned trajectory) and at the same
time effective cooperation of all actuators — drives. Secondly it offers several possibilities
to realize some additional requirements [4], e.g., requirement on smooth trends
of actuators — drives or fulfillment antibacklash condition can be mentioned.

The paper initially focuses on model description of the parallel structure, then continues
with introduction of predictive control technique and finally shows simulation examples
and briefly discuses real - time application.




2. Description of the robot model

The robot (manipulator) is a multibody system, which can be described by Lagrange’s
equations, in redundant case, of mixed type. These equations lead to the DAE system
(the Differential - Algebraic Equations) in the following form:

Ms-®7h=g+Tu
f(s()) = 0

M

where M is a mass matrix, s is a vector of physical coordinates (their number is higher
than number of degrees of freedom /DOF/), ®; is an overall Jacobian of the system,
A are Lagrange’s multipliers, g is a vector of right sides, matrix T transforms the inputs u
(n torques) into » drives and f(s(r)) = 0 represents geometrical constrains.

The physical coordinates s consist of the independent coordinates x (Cartesian
coordinates of the fix point of the cutting tool or gripper), drives’- actuators’ coordinates q;
and other auxiliary geometrical coordinates qs,.

Let us consider the possibility to transform the model (1) into independent coordinates x
[5]. As follows, the DAE robot model is transformed to the ordinary differential model
(ODE). It means that the Lagrange’s multipliers disappear and design of the robot control
becomes considerably simpler. Then the final model of the robot system is the following:

R'MRx +R"MRx =R g+ R Tu )

It is very important to note, firstly, that the Jacobian matrix R is the basis of the null space
of the overall Jacobian @, and thus it satisfies the expression

® R=R'®] =0 and =Rk - §= Ri + R« 3)

and, secondly, the Jacobian R can be decomposed into submatrixes Rq,, Rq, and R,=1,.
Submatrix Rq, (= (R'T)”) defines important relation between q, and x as

. . dq dx
9, =R x (= 7"= R, ';) 4)

which will be useful in section dealing with design of control law in root form. R, can be
also obtained from geometrical relation q;(x):

_199;,(x)  9q;(x)
R, = . )
axl ox n = number of independent
n coordinates =
= degrees of freedom

10




3. Classical design of control law

The principal task of control of the robots is accomplishment of their movement along
a planned trajectory (technological requirements). In some cases, it is very sophisticated
and difficult for general control approaches like classical PID structures. Therefore, the new
control approaches, which are being developed, are directly adjusted for concrete system
(machine, robot). High-level controls, which use knowledge of the mathematical model
e.g. (1,2), represent suitable approach, which takes into account dynamic trend
of the controlled system. In this way, it can better comply with mentioned requirements
from technology. On the basis of the dynamic model, equation (2), high level controls
globally optimize whole control process and can predict future actions. One of them is
Generalized Predictive Control (GPC).

The Predictive control [2,4] is a multi-step control based on local optimization
of the quadratic criterion, where the linearized equation or state formula is used (i.e. only
the nearest future control signal is evaluated). This approach admits combination
of feedback~feedforward parts.

For design of predictive control law, the nonlinear model (2) must be linearized [5]
and converted from continuous to discrete time. This described model transformation
enables us to consider the classical discrete state formula in the following form:

X(k +1) = A X(k) + B u(k)
x(k) = C X(k)

Q)

where X is composed as X =[x, X]T and x agrees with equation (2). Furthermore

for law derivation, the expression of new unknown output values x from topical state X
is needed. The following lines imply this expression.

x(k)  =CX(k)
X(k+1) = A X(k)+ Bu(k)
x(k+1) =CA X(k)+C  Bu(k)

X(k+N)= AYX(k)+ AY'Bu(k)+---+ Bu(k+N-=1)
%(k+ N) = CAYX(k) + CAV "Bu(k) +---+ CBu(k + N -1)

then the prediction of x is the following

£=f+Gu )

CA C B - 0
f=| : |X(k) and G=| . 8)
ca®” cA™B ... cB
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Now we can optimize the quadratic criterion. The criterion is optimized in instant £,
with using predictions of x (X = [%,,, - %,, 41" )

T =E{G-w) G-w)+u"ru} =
=E{(Gu+T-w) (Gu+f-w)+u’du)} ©)

where £ is an operator of mean value, N is a horizon of prediction, x is a vector of outputs,

w are desired values, A is a penalization of input and u is a vector of robot inputs.
Considering the condition of optimization

!
Jy =min (10)

for criterion (9), the resultant control law is
u= (G G+1)'G" (w-1) (11)

This control law (11) can be already used. It should be noted that only the first element u(k)
from vector u is used. If penalization A is greater than zero, then the matrix G7G is regular
for all cases, adequately actuated even for redundant cases. Theoretical case of zero pena-
lization A with redundant robot can be solved by pseudoinversion [6].

4. Design of control law in root form

This chapter aims on derivation of control law for different configuration of elements
in mathematical model (2), which needs matrices with smaller dimensions. Moreover,
if the penalization is positive, the computation also holds the redundant properties (if exist).
It can be also used for accomplishment of additional control requirements.

Furthermore, in this chapter, the advantages of the root optimization of quadratic
criterion (9) are used, marked out by compact notation and good preparation for operations
with huge matrices.

Let us proceed from nonlinear differential model (2) and from its simplified form:

R'MRj + R"MRy = R"g + R"Tu
R'MRj +R"MRy = R g + FM (12)

where new vector FM represents new fictitious input to the system so called general forces.

In equation (12) we can apply the same procedures of linearization [5], discretization
and use the same composition of prediction formula (chapter 3, X = f + G u , (7)) for future
output values.
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The quadratic criterion (9) ( J, = € {(i —w) T(i - w)+uTxT /8 u} ) can be rewritten

in the root form as a product of matrices

Jk=[[i—-w]r,uT]1 01 O0]|[x—-w] T
o ¥lo | w |77 (13)

Now we can work only with root of the criterion

M B

and consecutively we look for such action u, which minimizes root form (14, 15), i.e. we
look for u, in order to minimize the norm |J|. If we annul the root of criterion (14), we will
obtain system of equation (15) with more rows than columns (over-determined system).

For computation, the triangular-orthogonal decomposition [6] is used. It reduces excess
rows of the matrix A [(2-N-n)x(N'n)] and elements of vector b [2:Nn] (n is a number
of DOF) into upper triangle R and shorter vector ¢, according to the following scheme:

TR . 0
=
(16)

Vector ¢, is a loss vector. Its Euclidean norm |c,| is equal to root of quadratic criterion;
scalar V7 (i.e. J=¢/c,).

For solution, we need only the upper part of the system of equations (16), which can be
simply solved in view of the vector of actuators u by backward-run procedure.

Obtained actuators represent fictitious generalized force effects u, from which only
the first subvector (for k instant) u(k) = FM is used. It must be recomputed, according to
substitution in equations (12), to really used actions (drives):

R'Tu 4y =FM (17)

with the same meaning of matrices R and T as in the system of differential equations (12).
System (17) generally expresses deficient rank equation system (lower number of rows than
columns i.e. than unknown real inputs - actions). There is again possibility to use pseudo-
inverse of the matrix R”T there.
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S. Examples and Conclusions

This section shows different actuators’ trends for different control requirements, applied
on planar redundant parallel robot (Figure 1.), for one sclected trajectory.
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Figure 2. Trends of four actuators unlimited and limited by antibacklash condition _f[_S]_I
(sampling Ts = 0.01s; max. error | pm; penalization A = 10"'; horizon N = 10).
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Figure 3. Smoothing of the actuators trends for trajectory from Figure 1. — variation of penalization
(sampling Ts=0.01s; max. error 2.02 mm; penalization A = 5-10°%; horizon N = 10).

The second, root approach is suitable for real application, because it represents less
mathematical operations than classical approach. At present, it is tested on real laboratory
model with the same structure as in Figure I. As for result, both the approaches, classical
and root control designs, are identical.
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1. INTRODUCTION

Scope. Ergonomic design and comfort of handling objects are often linked to the same
activity of the human body, expressed in muscle action, depending on the arrangement
and interaction of man and machine. Riding comfort depends on the mechanical
aggression a given transport vehicle imparts on the individual, such as noise, vibration
and harshness. Generally speaking, comfort may be linked to mechanical, acoustic,
thermal, visual, psychological, etc. factors. Ergonomic and comfort design minimize the
spent energy to perform an action (handling) and the effects of the inevitable aggression
of various nature originating from an action (driving, etc.). In both cases fatigue of the
muscles plays a major role when mechanical factors are involved. Psychological
fatigue, however, may also play an important role in the actions of daily life and work.
Here only those aspects of ergonomics and comfort are addressed that can be linked to
mechanically induced muscle fatigue or to body reactions to external aggression, such
as sustaining static loads and riding comfort.

Muscle action. The active forces of the muscles, for example, enable the human body to
sustain a given position under static loads. These conscious actions also play a major
role in the dynamic response of the human body subjected to dynamic loads and
vibrations, such as from driving. In low energy car collisions, the muscle forces are
known to have an influence on the injuries. A muscle can be kept at a given level of
activation only for a certain period of time, where after the activation level involuntarily
drops due to the physiological phenomenon of fatigue. Therefore, the activation levels
of the muscular system can provide direct physical information towards the evaluation
of comfort or ergonomics under the given circumstances. The “cost” of muscle action
can be considered the product (or integral) of muscle force and time of action, which is
to be minimized for comfort.

The H-ARB model. ESI has developed a human articulated rigid body (H-ARB™)
model (Robby™), based on the skeletal geometry from Viewpoint Datalabs and
corresponding to a 50-th percentile male human body. In a first part of a project, the
complete muscular system for the arms, shoulders and neck has been implemented into
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the skeleton. The muscles are represented by bars and are connected to the bones at their
anatomical locations (points of origin and insertion). Their anatomical cross section,
which determines the force they can develop at a given activation level, has been taken
from different sources found in the literature and in anatomical atlases. The so generated
“muscled” skeleton of the upper body can serve to evaluate the muscle forces for tasks
involving the upper body.

PAM-Comfort™ ESI has developed a prototype software, where in the present first step
of implementation the active force of each modeled muscle is determined for each
loaded static position as the set of muscle forces that will sustain the imposed position
in static equilibrium and that will also minimize the amount of spent energy. If dynamic
inertia forces can be considered as equivalent static forces, solutions can also be found
in such dynamic cases. Since the problem is statically over determined, direct solutions
cannot be found. The solutions are therefore determined by an optimization algorithm,
which calculates the active muscle (and external contact) forces acting on the articulated
skeleton (design parameters) by minimizing the energy (objective function) under zero
to full muscle activation levels (bounds) and for static equilibrium (constraints). Extra
voluntary or involuntary muscle contractions beyond the levels necessary to equilibrate
the imposed static loads can be taken into account by the elaborated software, when the
level of extra contraction of the antagonist muscles is specified. Such bracing action
may stiffen the skeletal kinematical chain, which may be beneficial in anticipation of
shocks (car accidents) or imminent load peaks (weapon recoil), etc.

2. METHODOLOGY

Ergonomics, in its simplest expression, deals with the feasibility and comfort of humans
performing tasks of quasi-static load carrying. A procedure to evaluate such simple
scenarios is described. Possible extensions of the methodology can be to evaluate the
optimal postures for the required task, or to evaluate optimal sequences of motions
when performing a load carrying task.

Over-determined system. Since the number of kinematic degrees of freedom of the
skeleton is far less than the number of muscle segments (bars) that can be activated to
maintain a given static posture in equilibrium under a given static loading applied to the
skeleton, the forces acting in each contributing muscle segment cannot be calculated
from the mechanical conditions of equilibrium alone in a unique fashion. For this reason
it is necessary to solve an over-determined system of equations by minimizing relevant
objective functions that express the optimal involvement of each muscle segment that
contributes to maintain the required posture under the applied static loads.

Hill’s muscle model. The active and passive muscle actions are described by the well-
known Hill muscle model, Figure 1. This model is valid for quasi-static extensions and
contractions of skeletal muscles. In the case of suddenly applied loads to the skeleton,
Hill’s basic model is inadequate, because it does not provide for the correct dynamic
stiffness of activated muscles. The Hill model was therefore augmented to include an
instantaneous dynamic stiffness under high rates of change of muscle stretch. The
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introduced stiffness is active for muscle stretch velocities large with respect to the
fastest voluntary muscle contraction velocities. This stiffness was found roughly equal
to the stiffness of the muscle tendon material spread over the length of the muscle and
roughly proportional to the muscle activation level. The dynamic stiffness results from
the instantaneous locking of the cross connected bridges between the myosine and
actine fibers of each sarcomere.
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Figure 1. Hill’s muscle model and it’s maximal force/length dependency

Basic simulation methodology. Once the ‘muscled’ skeleton model has been established,
positioned in the required static posture and loaded, assumptions are made on the
intensities of the activated muscle-forces. These intensities are determined by the degree
of voluntary muscle activation (0-100%) and are proportional to the cross sectional area
of the considered muscle segment. For this purpose, likely agonists and antagonists
(“prime movers”) and synergizers and stabilizers ("assistants") are identified among the
muscles, which participate in the investigated posture. The identified agonists are the
main load carrying muscles, while the antagonists, if activated, directly counteract these
muscles. The synergizers and the stabilizers play a secondary role. They hardly
contribute to maintain a given posture under pure gravity loading, but assist the
principal agonists under applied heavy loads.

A human subject can carry a given load in a given posture under more or less overall
voluntary muscle contraction (0-100%). This can best be illustrated by the fact that an
individual can willingly tense its muscles without carrying any load at all. In that case,

17




the agonist and antagonist muscles exactly balance their action on the skeleton, because
otherwise the static position of zero motion will not be maintained. The load
independent voluntary activation level of the antagonists can therefore be considered to
represent the subject's level of voluntary muscle contraction in cases of applied static
loads. This level of voluntary basic muscle activation can range from zero (most
relaxed) to 100% (most contracted).

Optimization procedure. The objective function, assumed here to evaluate the likely
distribution of the muscle forces to be activated in the principal agonists and secondary
assistants has the form

1

£ =sumy, (o, - (1)

where the sum ranges over all participating muscle segments, i, activation level c is the
given (average) voluntary level of muscle contraction before the load is applied
(0-100%), o is the total activation level of the muscle segments that contribute to the
task of carrying the load (0-100%) and ¥; is a switch which has the value "0" for the
antagonists and the value "1" for the load carrying muscles (agonists, assistants). This
function can be thought to express the least possible overall level of muscle activation,
or “energy”, to be expended for the task.

The constraints for the static optimization process are given by the fact that the
accelerations of the links of the kinematic chain, constituted by the involved parts of the
skeleton, must all be equal to zero in a position of static equilibrium. These
accelerations can be calculated simply by performing an explicit analysis with the
PAMSAFE solver code using the relevant muscled skeleton model with the applied
loads. In fact one time step at time=0 is enough to determine whether or not the
“structure” is in static equilibrium. At equilibrium, the internal muscle forces must
balance the applied loads, and the accelerations, calculated by the solver at the centers
of gravity of each rigid skeleton link, must be close to or equal to zero.

The design parameters of the optimization problem at hand are given by the activation
levels of the participating agonist (and, perhaps more precisely, of the assistanf) muscle
segments. The activation level of a muscle cannot be less than zero and not greater than
100%. The outlined optimization procedure is applied to a simple one degree of
freedom system.

3. ONE DEGREE OF FREEDOM SYSTEM

Test setup. Figure 1 shows an elementary one degree of freedom model and test setup of
the upper and lower arm. The single kinematic degree of freedom consists in the
rotation of the lower arm about the elbow joint with all other displacements and
rotations fixed. The upper arm, the shoulder and the local wrist joints are considered
fixed. From the 22 muscles of the upper and lower arm with a total of 28 segments, only
the 2 segments of the biceps muscle, plus the brachialis and the brachioradialis muscles
(4 segments) were retained as the agonists and the 3 segments of the triceps as the
antagonist muscles. This reduced set constitutes a total of 7 muscle segments for one
kinematic degree of freedom, i.e., the system to determine the muscle segment forces
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from equilibrium is over-determined by a factor of 6.

The voluntary test subjects, were asked to pose their right elbow on a support (padded),
to carry a load, P1, in the right hand and to voluntarily pretension the arm muscles to
activation levels of zero, about 50% or 100%. At that moment, a second load, P2,
initially suspended from the ceiling, was liberated by cutting its suspension string,
whereupon the load P2 suddenly came into action at about the center of the lower arm.
The subject's involuntary reactions due to this suddenly applied load were recorded on
video. The reactions ranged from small angular responses (jerks) of the forearm for high
voluntary muscle contraction to full, uncontrollable (unstable) extension of the forearm
about the elbow joint for low or zero voluntary muscle contraction. The purpose of this
test was to determine if the outlined procedure to "optimize" the muscle segment
contributions in given static positions of equilibrium under applied skeleton loads can
lead to plausible predictions of the forces, or activation levels, a; of the agonists, when
the antagonists undergo a constant pretension of ¢ = 0%, 50% or 100% of their
maximum activation. Since direct measurements of muscle forces were not possible (no
electro-myographic apparatus was available), the activation levels could only be
deduced indirectly by measuring the angular perturbations of the forearm about the
elbow joint under the suddenly applied loads, P2. It was assumed that, if, for each
applied load P1 and each level of muscular pre-stress, c, the simulation finds the same
angular perturbations than were found in the tests, then the muscle force predictions can
be considered accurate.

{ antagonist muscle ol
- . PROBLEM : 7 segment
triceps : 3 segments forces to determine and
= 3 unknowns only one equation! =>
? " Hyperstaticity cut

[ PERTURSATION
Load

. 3 agonist muscles
1rotation degree  picons™ 2 segments

_ of freedom : brachialis : 1 segment Extra load
= 1 equation brachioradialis : 1 segment

=4 unknowns
Figure 2. One-degree of freedom model of the elbow, and the usage of the perturbation technique
Test and simulation results. The preliminary results have shown that the test subject's
responses to the suddenly applied extra loads could be predicted correctly, ranging from

small extension angles to uncontrollable extension of the forearm. Since under the
applied activation levels the simulations exhibited the same angular motions of the
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forearm under the suddenly applied load of P2=4 kg force, it was concluded that the
outlined procedure to determine the activation levels of the over-determined skeleton
muscle system was realistic.

4. APPLICATIONS

Felin project. The outlined preliminary procedure has been applied in the Felin project
of the French military to evaluate the performance of the musculo-skeletal system of
humans in given postures under given static loads. Such problems arise when a
mechanic is asked to hold in place a piece of heavy equipment in a hard to get at place
(design problem), or when a military combatant is manipulating heavy equipment when
loaded by unwieldy objects and gear. Based on the outlined procedure, criteria of
“comfort” and “feasibility” may be deduced from the resulting necessary activation
levels of the involved muscles.

Miscellaneous applications. The following pilot applications were investi gated with the
emerging PAM-Comfort ™ prototype numerical simulation tool: Gripping hand.
Stowing of a bike. Sports. Different driver positions. Manipulating the hand brakes.

5. CONCLUSIONS

This document presents a short overview on the emerging ESI Group comfort and
ergonomics models of the human body, that are developed to study the activation levels
of the skeletal muscles, needed to sustain various load conditions. The shown examples
indicate the wide spectrum of potential fields of application. The numerical
methodology used to calculate the skeletal muscle forces proves to be remarkably
efficient and leads in all studied cases to remarkably intuitive results. More validation
studies must be performed, including electromyography measurements on volunteers.
The models of the muscled skeleton must be completed for the still missing muscles,
and scaling and morphing technologies must be used to produce models of different
sizes. Extensions to dynamic forces and moving subjects are possible. The models are
part of an emerging library of compute models in computational biomechanics
(“BioLib”: H-Model ™, Robby ™, etc.), which contains models of the human body that
are conceived and validated mainly for studies of occupant safety of transport vehicles,
comfort, ergonomics and biomedical applications. All models benefit from the synergy
created from their different fields of application.
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1. Introduction

In mechatronic system design — Multi-Body System with drive system, sensor and control system, (e.g.
robot, CNC machine tool, active suspension of vehicle) — the system model constitutes a virtual prototype
for the behavior analysis, the validation and the optimization of parameters. But the use of model is not
restricted with the final stage of design. During all the design process, different models (e.g. functional,
kinematic, beam models) are used to build a technical solution gradually. This paper aims to describe the
framework of the model generation of MBS for the process of design. It focus on the geometrical
description of the open-loop structure, tree-structure and close-loop structure in a systematic way. An
illustrative example is presented

2. Modeling system framework

The goal is to create a modeling tool allowing the description of a solution according to a design process
stage (from the first stage to the last); the obtained model must be able easily to be modified and
completed in a systematic way (without regenerating the whole of the model) according to the technical
choices. Moreover, the rnodel parameters will be used to the component sizing (e.g. cross section of a
beam, an actuator) or the optimization. Lastly, the model can be used to describe various candidate
solutions in order to evaluate, compare them and retain the best. The specificities of the modeling method
described in this article are based on these design process characteristics.

Firstly, symbolic modeling system is used to fulfill the requirements stipulated before. This approach
makes it possible to create a versatil tool of modeling for MBS applications [1]. It is convenient to create
an open system of modeling of mechatronic system which makes it possible by example to complete a
MBS model by models of particular physical phenomenon. That is appropriate well for the generation of
control law, e.g. for robotics 2], and thereafter, for the simulation and feedback tuning with a numeric
toolbox like MatLab [3]. From the point of view of the mechanical design (static, kinematic and dynamic
criterium for technological choices, component sizing and parameter optimisation) the parameters of a
symbolic model can be taken as variables of design.

Moreover, for a easy use by designer, the symbolic model must be obtained by using a systematic
description method, which implies a nonredundant description and without ambiguity. In particular, the
geometrical description of the kinematic structure is a crutial stage of modeling which will condition the
generation of the dynamic model and the design. The Denavit & Hartenberg notation {4] is an efficient
systematic description method with a minimum set of parameters but limited to the open-loop structure
like serial robotic chains. This notation extended to tree-structure and close-loop structure by Khalil &
Kleinfinger [5] is resumed and modified in the following part for the joints with 2, 3 or 4 degrees of

freedom.

Lastly, the required goal is to create an object oriented modeling system. A model consists of a set of
objects which can be modified or replaced by another independently to each other (without modifying the
totality of the model). A Symbolic toolbox like Maple is an had hoc tool not only for the symbolic
computation but also for the object oriented modeling {6]. The basic objects are the elementary
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mechanical part models (building blocks for the description) : joint, body, actuator,... The main object of
the MBS model is the kinematic pair, i.e. a joint plus a body, which is built with the basic objects.
Its characteristics are fully or not fully defined in the kinematic pair object :

- the subscript of the pair,

- the subscript of the antecedent pair and of the next pairs,

- the kind of joints (revolute, spherical, Universal,... without or with strain and backlash),

- the geometry of the link between joints

- the body characteristics (for a rigid or flexible body)

This makes it possible to modify or replace easily an object within the kinematic structure during a design
process. The kinematic topology can be established starting from the reading of the whole kinematic pair
objects.

3. Systematic description of the kinematic structure

In robotics, there is a great diversity of methods making it possible to describe the position and the
orientation of the elements of the kinematic chain: Denavit-Hartenberg method[4], formalism of Paul[7],
modified Denavit-Hartenberg parameters[5], Seth-Uicker notation[8] ...

Each one of these formalisms was developed to describe kinematic chains with one degree of freedom
Joints (revolute or prismatic joint). Our concern was to take again a method not having ambiguity for the
description of the robot-like chains and very usually used. According to our criteria, the best is the
Denavit-Hartenberg method[4] modified by Khalil and Kleinfinger[5].

The method developed by Khalil et Kleinfinger[5] allows to write systematically and without ambiguity
all the open-loop, tree and closed-loop structure robots with only one degree of freedom joints. To be able
to describe the kinematic structures with a minimal parameter set, we have extended this method to
spherical, universal, cylindrical, helical, prismatic-spherical and spherical-prismatic joints.

3.1. DESCRIPTION FOR AN OPEN-LOOP STRUCTURE

Unlike the other methods, we don’t consider that a complex joint is a succession of simple joints with a
null mass intermediate body. In comparison with Khalil and Kleinfinger method[5], we only add one
intermediate frame and variable parameters are not more only supported by Z axis.
Our concern is also to be able to divide the transformation homogencous matrices into two matrices: one
to describe the geometry of the body and the second to describe the joint. This is why we have modified
the initial method so that the subscript (i) of the parameters is relative to the joint (i) and to the body (i).
The joint (i) named L; connects the body (i) to its antecedent (k) and the frame Ry(O;, X, Yi, Z)) is relative
to the body (i). For all the joints with more than one degree of freedom, we have to add an additional
frame named Ri* (fig. 1). 7.

. Z.*

" A~
di*=0

Figure 1. Systematic description of a complex joint X;

Zi* and Z; axes will be choosen according to the type of joint (i) or by the user if the joint has no
particular axis(for a shperical joint, Z* axis can be parallel to Z, and Z; parallel to the Z axis of the
succeding joint).
X axis is the common perpendicular to Z axis of the same frame and Z* axis of the next frame.
So, the frame R; is defined with respect to the previous frame R, by eight parameters :

- oy angle between Z, et Z;* about X,

- dydistance between Oy et Z;*,
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- 0;* angle between Xy et X;* about Z;*,

- r;* distance between X, et O;*,

- 0;* angle between Z;* et Z; about X;*,

- d;* distance between O;* et Z; , d;* is always equal to zero,

- 6; angle between X;* et X; about about Z;,

- r; distance between X;* et O;.
oy and dy parameters are relative to the shape of the body (k) and the other parameters are relative to the
joint (i). In the next table, we present particular values of parameters and generalized coordinates
(relative coordinates) g for four types of joint.

Table 1 : parameters and generalized coordinates of some complex joints

Spherical Universal joint Prismatic-spheric Spheric-prismatic
3dof 2d.o.f. 4d.of 4d.of
o 0 or any 0 or any
dy
6;* q; o(precession i1 qi(precession euler q; o{precession
euler angle) angle) euler angle)
r* 0 or f(oy) it 0 or floy)
o* | g;e(nutation euler | 90° or other q; o(nutation euler q; s(nutation euler
angle) angle) angle)
di* 0 0 0 0
8; | qy(rotation euler Gin2 q;,y(rotation euler q;,y(rotation euler
angle) angle) angie)
5 0 or f(oy) 0 or f(oy) Qs
o 0 or any 0 or any
di

3.2. DESCRIPTION FOR TREE-STRUCTURE AND FOR A CLOSE-LOOP STRUCTURE

In the case of a tree-structure chain(fig. 2), the body (i) can have several next bodies j and 1. Then there is
a common perpendicular by successor named X; and X;, the second subscript indicating the name of the
next body. So the parameters o; and d; become 05 and d;o for primary branch. The user chooses one
common perpendicular, let be (1) and sets up the parameters on this branch as for the simple chains. The

other common perpendiculars are defined starting from the first by two parameters :
- g distance between X and X, about Z;
- Yin angle between X and X; , about Z;.

The other parameters (o, d;,,) on the secondary

branches are defined like previously.

Figure 2 : Systematic description of a tree-structure
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Parameters 0, and d; o describe the shape of body (i) going to the joint (1) and parameters €, ¥, @, and
d;; describe the shape of body (i) going to the joint (j).

In case of a close-loop structure, as Khalil and Kleinfinger [5], we open the loop by cutting a joint to
define a tree equivalent structure and relations between the joint variables of the closed loop will be
obtain by expressing the closure equation.

3.3. HOMOGENEOUS TRANSFORMATION MATRICES

For the main branch, the homogeneous transformation matrice 'T, between the frame R; and R, (fig. 2) can
be written as the product of two matrices :

- one for the shape of body (i) going to the body (1), named C; function of (00, dip),

- one for the joint (1) named L, function of (8,*, r*,04*, d*, 6, ),

iTl = Ci.OLI )]

For the secondary branches, the transformation matrice iTj between the frame R; and R; (fig. 2) can be
written as the product of two matrices :

- the shape of body (i) going to the body (j) matrice Ci.i function of (g;,¥i1, 041, di)).

- the joint matrice L;, function of (6;*, r*,05%, di*, 6;, 1),

‘Tj = Ci.le @)
with:
1 0 0 d,. cos(yi‘ I) —sin(*yi' l)cos(tx[' l) sin(*{i. l)Si"(ai, ]) cos(yl.‘ ])d’.‘ ]
0 cos(a;) -sin{o;) 0 sin(y; 1) cos (Y peos(a; 1) ~cos(Y; psin(a; 1) siny; 4)d; ] (3)
C. = L= ' ' ' ' ! ' '

,0 N
‘ 0 sin(c;) cos(a‘-) 0 ! 0 sin(ai D cos(ai l) £

0 0 0 1 0 0 0 [

and, by example for a spherical joint, with :

C°s(qj,¢)°°s(qj,w)—Si"(qj,o)cos(qj.e)sm(qj.w) 'Cos(qj'¢)Sin(‘7j.\y)_Sin(qj'¢)°°5(qj.0)cos(qj,w) sin(qjvo)sin(qj.e) 0

B Sin(qj.c»)cos(qj.\y]+c°5(qj,¢)°°5(qj,6)Si“(qj,\y) 'Si"(qj,e)Si"(qj,w)+°°5(‘7j.Q)cos(qj,ﬂ)cos(qj.w) ““’5(‘71‘.&“"("/‘,9) 0
=

4
Si"(q/-'e)Si"(‘]j“v) sin(qj’e)cos(qj. v

0 0 0 1

) cos{qj,e) 0

4. Illustrative example of the systematic description

The four-bar spatial mechanism (fig. 4), with body 0 to 3 and with Revolute, Universal, Spherical and
Revolute joints, is a closed kinematic structure with one loop. The closed loop is cut on the joint between
the bodies 0 and 3 in order to set up an equivalent open tree-structure with 2 branches (cf. fig. 3).

TITTTTTTTTTTIT T T T T T T T T T T T T T T T T Ty T T T i T 77777
Fig. 3. open tree-structure corresponding to RUSR mechanism

24




The reference frames linked to each body (fig. 4) are posed in a systematic way in accordance with the
rules described in part 3. In the same way, the systematic description of the geometry (fig. 5) leads to the
table 2 of parameters and generalized coordinates.

Z4, Zs

X3 =X4, Xs

Fig. 4. Kinematic structure and reference frames of RUSR mechanism

Table 2 : Set of parameters and generalized coordinates of the open tree-structure

body | Kind of Joint succeding
subscript | joint (N r* d body
r d;) subscript
0 1
0
do, 5
1 d, 2
2 d; 3
3 ds
5

The geometrical model of the mechanism is obtained starting from the homogeneous transformation
matrices (1) and (2) associated with each branch of the tree structure :

9T4=CooLi Cip Ly Coo L3y Csp Ly ®
Ts=Cou Ls 6)

with the matrice L, corresponding to fictitious joint in order to introduce the reference frame Ry linked to
the body 3.

Li=1 ™
The closure equation is obtained when one express that the reference frames R, and R; are identical :

T, =T ®)
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5. Conclusion

In this paper, we have presented a method to describe kinematical structures with more than one degree of
freedom joints. The advantages of this method is to be systematic and non-ambiguous, and it allows to
obtain a minimum parameter set in order to be used in the model generation of MBS framework, notably
to determinate its dynamical model [9] in context of mechatronic design.

6.

—

Z3* = ZZ
) dy ~3('Zy = Z4

~

qs

X3 = X4, X5

Fig. 5. Reference frame and geometric parameters of the RUSR mechanism
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DYNAMIC SENSIBILITY OF MECHATRONIC SYSTEMS WITH
REDUNDANCY

G.V. BOIADJIEV, D.B. VASSILEVA
Institute of Mechanics — Bulgarian Academy of Sciences
Acad. G. Bonchev Str., bl. 4, 1113 Sofia, Bulgaria

1. Introduction

Mechatronic systems as general are hybrid ones, which consist of subsystems having
different physical nature. Mainly they include mechanical, electrical and electronic parts,
sensor and computer devices, control system etc. Robot manipulators are typical examples
for a mechatronic system. Having a complex structure themselves they could be applied for
various tasks solution, but some other possibilities are not paid attention enough concerning
the inner resources, the additional storage of the manipulative structures already designed.
The last traces the way of new constructions and the considerations resulting in very
interesting characteristics and parameters improving theoretical understanding as well as
helpful for optimizing the practical applications as a whole. Such characteristics related
with the mechatronic system state is the sensibility, which is a system quality characteristic
having several quantity parameters. The presence of redundancy reflects the larger
possibilities for optimizing the sensibility parameters.

Purpose. The purpose of the work is sensibility analysis of mechatronic system's
mechanical subsystem - robot manipulators as well as redundancy influence on kinematic
and dynamic sensibility parameters for accuracy and energy optimisation.

2. Kinematic sensibility.

The kinematic sensibility is a system quality characteristic having as quantity
parameters corresponding sensibility coefficients and directions. It can be described
mathematically by transformation 1 mapping the configuration robot space QeR” to its
working one R®. The transformation 1, is a homomorphism, consisting of two different ones
1, and 1,. They map the neighbourhood AQ round the point (configuration) qeQ into the
sensibility position and orientation ellipsoids. The center of each of them coincides with the
point g and their semi-axes, following the sensibility directions, are equal to the sensibility
coefficients by absolute values. The coefficients and directions are obtained as solutions of
general task of eigenvectors for both homomorphisms. Obviously, the rank of 1, and 1,
does not exceed the dimension of R®. The presence of redundancy reflects the dimension of
Q, i.e. it becomes bigger.

2.1. POSITIONING
Tree-like manipulative structures are considered with n degrees of freedom where
contiguous bodies are connected by translation and rotational joints. The Jomt parameters q;
(i=1,....,n) are chosen as generalized coordinates. The vectors q = (qy,.. .,qn)" belong to the
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configuration space. An arbitrary point H is fixed in the last structure's body. Two
coordinate systems are fixed in the support and in the last structure's body. Usually in
practice the needed state realizes some deviations 6R and 80 having probability behaviour.
This is due to various reasons - errors in geometry, errors in calculations, compliance,
sensing, calculations etc.
In the case of position the deviations are described by the following expression
8R=A(q)dq, (1)
Let's consider an € - neighbourhood round a configuration q and assume the vectors 8q
belong there. It is proved [5], [1] the transformation (1) maps n-dimensoinal ball € in k-
dimensional sensibility ellipsoid EpeR3, where k = rankA. It is also shown [2], [3] the
ellipsoid's semi-axes' lengths are upper borders of /8R/ on k orthogonal directions and they
are obtained as eigenvalues of general task of eigenvectors: (B, - AC)X = 0. For every state
q the matrix A(q) from (1) defines a homomorphism 1, between configuration space Q and
working zone Z. The image of 1, is the sensibility ellipsoid for positioning [7] and the
kernel is its orthogonal completing.
2.2. ORIENTATION
In the case of orientation the deviations are described by the following expression, which
is equivalent to (1): 86 =L(q)dq 2
For every state q € Q, the matrix L(q) from (2) defines a homomorphism 1, between the
configuration space Q and the working zone Z.

3. Dynamic modelling

In practical application the real motion is going under different force constraints, especially
the contact tasks. So, the sensibility analysis has to be done for the functions describing the
structure’s dynamics. The last ones are obtained using graph theory and the Orthogonality
principle [8], [5]. Thé energy conservation law is the base of the method. The energy has
two fundamental characteristics - energy flow and energy potential. Thus any physical
system is characterized by its general power space which combines countable number of
power subspaces in dependence of the different kinds of energy involved in the concrete
problem. The parameters (the energy basis) of these power subspaces are specific variables
expressing the two basic energy characteristics - the power flow and the power potential.
The power flow variables are called "through" ones and the power potential variables -
"across" ones. Another important characteristic of every system is its topology. It can be
described by graph called general system graph. The component physical characteristics are
expressed by relation of its across and through variables, described by mathematical
equation which is called terminal equation. Another main class equations are the connection
equations. These two classes of equations describe the physical characteristics of the
system. And the system topological characteristics are described by another two groups of
equations - the cutset and circuit ones. The most general formulation of the Orthogonality
principle can be given in the following way:

"If the scalar products of the through and the across variables associated with each
edge of a system graph are summed over all edges in the graph then the sum will be zero"

The four groups of equations — the cutset, cirquit, terminal and connection ones, are
put in the orthogonality principle and after development in accordance with the method’s
algorithm the dynamic equations of motion are obtained.
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4. Dynamic sensibility

If a force F is supposed to act at the characteristic point as well as a moment M is applied to
the last structure link, the dynamic sensibility coefficients and directions can be defined for
position and orientation respectively:

0 =(F8R);  o,=(M80); P,=(Fx8R); B,=(Mx36); (3)
They are related to the additional energy, forces and moments have to be compensated to
assure optimal energy environment interaction. Let at first the position dynamic sensibility
coefficients are considered [12]. The first one - o, = (F.8R), is a scalar and has a dimension
of energy. Here the question of maximal and minimal values of a, is important for practice.
It is clear when force direction is perpendicular to some of the ellipsoid axes then the
corresponding component of SR disappears and o, takes lower value. When the kinematic
sensibility ellipsoid is one- or two-dimensional it is possible to minimize the coefficient o,
up to zero. Here the role of redundancy is important because it is related to the problem
concerning the realization of sensibility directions, following preliminarily given
orientations. The coefficient 8 , expresses the additional moment caused by the force F in
the presence of SR. In the same way the kinematic sensibility ellipsoid is modified, i.e. any
of its axis changes its direction in perpendicular plane. All the moments belong to that
ellipsoid which will be called dynamic sensibility ellipsoid for position. The dynamic
sensibility ellipsoid is three-dimensional when the force direction is non-collinear to its
three axes. The most interesting case is when the kinematic ellipsoid is a segment, collinear
to the force — then the dynamic ellipsoid disappears, i.e. B, takes its minimal value — zero.
The maximal value of 8, is obtained when the force direction is perpendicular to the biggest
kinematic sensibility ellipsoid axis. In the same way the dynamic sensibility ellipsoid for
orientation can be defined.

5. Application

The sensibility analysis finds a concrete application during the conception of a mechatronic
system, which will be used in the medicine for drilling operation automation.
5.1. KINEMATIC SENSIBILITY PARAMETERS FOR THE MANIPULATIVE

STRUCTURE R//T//R
The homomorphism 1, is described by matrix A and the matrix B,: The Ker B, = Ker A is

described by two basic eigenvectors:

000 000 ‘
4=|0 0 0> B,=[0 1 o X0=[0 0 [, x®=[t 0 o] @
010 000

Here Ker A is two-dimensional. And Im A is one-dimensional caused by the eigenvector
X® = [0 1 O]T , corresponding to the positive eigenvalue A; = 1.
The homomorphism 1, is described by matrix L and the matrix B, has the form respectively:

0 0 0 cos’(q, +q,) 0 cos’(q,+q,)
L= 0 0 0 ’B, = 0 0 0
cos(g, +q,) 0 cos(g, +4,) Cosz(qn +q,) 0 Cosz(qt +4q;)

T

The Ker B, = Ker L is described by 2 eigenvectors: ¥ =[o 1 o], x®=[-1 0 1]
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Here Ker L is two-dimensional. And Im L is one-dimensional caused by the eigenvector
X®=[1 0 1J, corresponding to the positive eigenvalue A; =2c0s’ (g, +q,) .

5.2. DYNAMIC EQUATIONS FOR THE MANIPULATIVE STRUCTURE R//T//R

The structure was associated with the graph Gy, consisting of two connected elements G,
and G;, which is shown on fig.1. The numbers of the graph edges interpret the following
variables [5], [12]:

Fig. 1. Graph assigned to the mechanical system
For graph Gy: Through variables: D’ Alembert forces Fy , (k=1,2,3), associated with the
arcs 2k; External forces Fyy ,(k=1,2,3), acting on body k; Forces Fy., (k=1,2,3), acting
on the terminal points B;; and the origin of the inertial system. Only F, = 0; Forces F° ,
(I=2nt1, ..., 4n-1; n=3), presenting the interaction between contiguous bodies.
Across variables: Radius-vectors of the mass-centers and the terminal points B; are the
across variables for all arcs starting from 0 and the local radius-vectors of the points Bij,
compared to the mass centers Ci for the remaining arcs. For the formulating tree arcs with
numbers from 1 to 2n (n=3) are chosen and all other arcs are chords.
For graph G;: Through variables: D’Alembert torques T, , associated with arcs 2k
(k=1,2,3); External torques Ty , (k=1,2,3), acting on body k; Torques Ty , (k=1,2,3),
for interaction between the terminal points and the inertial beginning; Torques T}, (1=2n1, ..
,4n-1; n=3) for interaction between contiguous bodies.
Across variables: For arcs beginning from 0 across variables are the absolute angular
speeds of the bodies, to which points those arcs are directed (points B;, are considered as
points of body with number j). Across variables for arcs with number from 7 to 11
describes the relatively angular speeds, as well as across variables with odd numbers are
zeros according to the admission for points Bj; to be in regarded as appliance to body with
number j. For the graph the edges from 1 to 6, which are branches, form a formulation tree
and the remaining edges — chords. With the help of four groups of equations from the
Orthogonality Principle the differential equations are obtained.

De1@ 419 o 1974, I+ Ty
Ai=B, 0 my+my 0 |G, |=|F.+F,+F,| (6)
9 o 1§ 4, T, + Ty

where, m,, m;- the second and third body mass of the mechanical structure;
3
JO == m,4r*+h )
33 80 J( )

1 - the radius of the cone (the cartridge-chamber), h - the height of the cone,
F; - translation joint actuator force, T;, T);- rotation joint actuator moments

2
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F,, Fe - external forces, T¢ - external moment, q, g, qs - joint variables
The notations are in correspondence with the system graph edges numbering which is used
for the differentiation equation derivation.
53. DYNAMIC SENSIBILITY PARAMETERS FOR THE MANIPULATIVE
STRUCTURE R//T//R.
F, T — main vector and main moment of external action on the last body; A,, A, — the non-
zero (positive) eigenvalues for position and orientation; Following the definitions for

dynamic sensibility coefficients, it can be written o, = J’[ Fy0= JT 7. For the considered
P r

structure F consists of gravity force, resistant force (due the contact with the bones) and the
internal active force (translation drive).The last two are on the translation direction and the
first depends on the concrete drilling position. Both coefficients express the additional
power, i.e. energy for unit time the structure needs to compensate the system error, so that it
can be minimized in the case when the gravity is perpendicular to the drilling direction.
The same can not be said for o, — its optimization could be done for the reason of A,, which
is 2cos’(q; +qs). Next, the redundancy influence here appears to maintain the sum of q; +qs
equal or at least close to m/2. As a result the additional energy for orientation error
compensation will be minimal. Finally, the maximal values of o, and a, are obtained by
evaluation of upper borders of F and T, which could be taken from real experimental
results. In the same way the coefficients B, and B, can be analyzed for the considered
structure. As general, they are related to the additional moments, the system needs to
compensate due to corresponding errors. In our case B, is different from zero only for the
gravity force component F', i.e. the additional moment appears when F' is non-collinear to
drilling direction. There is dependence between o and B, due to mutual vectors
disposition. When a, increases, B, decreases at the same time by absolute value. By
analogy, the minimal value (zero) of B, is obtained when the main moment is collinear to
the orientation error vector. The maximal values for 3, and B, also depend on the
appropriate evaluations of main force and moment absolute values.

5.4. COMPUTER SIMULATIONS

The sensibility parameters are visualized using MATLAB package. That helps for error
distribution and energy deviation analysis in dependence of system state. On the first figure
below it is shown that for (q; +qs) = 7/2 the kinematic sensibility coefficient for orientation
A, is approximately zero and it is denoted by ‘*’ lying in the middle of the sensibility
direction for position. The kinematic sensibility directions in the case of position and
orientation lie on the same axes i.e. they are collinear what can be seen on the figure.

..... odentation — - position

Fig.2. Kinematic sensibility directions in the case of position and orientation for the
configurations
q; = 0.7854 rad, g,= 95 mm, g; = 0.8727 rad; and g ; = 0 rad, g, = 5 mm, q; = 0.7854 rad
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6. Conclusions

Kinematic sensibility allows the optimization of system accuracy taking into account the
system state and redundancy. That gives the possibility to choose the state appropriate for
current task execution in accordance with additional criteria. In that sense the sensibility
could be considered as generalizing of accuracy. The sensibility ellipsoids content the real
deviations inside and give information about their distribution in a limited region.

Dynamic sensibility allows the optimization of energy distribution according to the system
state including the external forces and moments interaction in the sense of optimal re-
distribution of internal ones. Dynamic sensibility parameters are defined on the subset of
kinematic ones, which appear during specific task under force constraints. From the other
side that parameters depend also on the external forces and moments variation. For their
analysis and interpretation the dynamic model is used. A concrete example of manipulative
structure is considered and the obtained results are presented. It is a manipulative structure
that will be applied in surgery for drilling operations. For that structure the kinematic and
dynamic analyses are done and its dynamic model is represented.
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STABILITY OF SOLUTIONS OF
DIFFERENTIAL EQUATIONS
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1 Introduction

In the [1] a stability criteria for solutions of systems of differential equations
in critical case of one zero root based on analysis of spectrum of the Jacobi
matrix for the right-hand side of the equation in a neighborhood of solution
is received. This method was generalized in the paper [2] for inverstigation
of stability of differential and difference equations in Banach spaces and in all
possible critical cases. In the paper [3] the Aizerman’s problem was decided for
a self-adjoint matrix. In papers [4]-[7] offered criteries of stability of differential
equations with lateness, differential equations with small parameters attached
to derivative and partial differential equations.

In the second paragraph of the paper we give a short review of these results.
New criteria of stability of differential equations in Banach spases are given in

the third paragraph.
2 Criteries of stability of solutions of differential

and difference equations

2.1 Differential equations

Let us consider a Cauchy problem in a Banach space B:

% = A(z(2), (2.1)
:L‘(O) = Zg. (2'2)

We assume that: 1) the nonlinear operator A has a continuous first Gateaux
derivative; 2) A(0) = 0; and 3) the spectrum of the operator A’(0) lies in the
left complex half-plane and on the imaginary axis.

Let A(A) = limy, 10ﬂﬁﬁ}:ﬂ:—l be a logarithmic norm of the operator A; more-
over, ReA = Ag = (A + A*)/2. Let R(a,r) = [z € B :|| z—a ||< r] and
S(a,r)=[z€ B:|z—al="]
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Theorem 2.1. Let the integral fot A(A'(¢(7)))dr be strictly negative, i.e.
negative and

t
limt.ﬂoo% /O AA($(r))dr = —a < 0,

on an arbitrary differentiable curve ¢(t) in a ball R(0,7) with a sufficiently small
radius 7. Then the trivial solution of equation (2.1) is stable (asymptotically
stable).
Theorem 2.2. Let A(fol Al(Tu)dr) < O(A(fo1 A'(tu)dr) < —a,a > 0) for any
u # 0 belonging to the ball R(0,r) of the space B with a sufficiently small radius
7. Then the trivial solution of equation (2.1) is stable (asymptotically stable).
The proofs of Theorem 2.1 and Theorem 2.2 were printed in the [2].

2.2 Difference equations

Let us consider the difference equation
z(n+1) = A(z(n)) (2.3)

and assume that: 1) the operator A has Gateaux differentiable; 2) A(0) = 0;
and 3) the spectrum of the operator A’(0) lies inside and on the unit circle with
center at the origin.

Theorem 2.3. Let the following conditions hold: 1) the operator A’(u) is
completely continuous at all points u # 0 belonging to the ball R(0,r) with a
sufficiently small radius r; and 2) the s,(u)— numbers of the operators A’(u)
are strictly negative (negative and s,(u) < —a,a > 0) at the points u # 0,
where s,(u) is the maximum of the s— numbers of the operators A’(v). Then
the trivial solution of equation (2.3) is stable (asymptotically stable).

Theorem 2.4. Let H be a unitary space, and for any u # 0 let the spectrum
of the operator A’(u) consists of distinct eigenvalues with algebraic multiplic-
ity 1 and with absolute values less than one. Moveover, let the eigenvectors
corresponding to different eigenvalues be mutually orthogonal. Then the trivial
solution of equation (2.3) is stable.

The proofs of Theorem 2.3 and Theorem 2.4 are given in the [3].

2.3 Differential equations with lateness
Let us consider the system of equations

dz;

d = Ai(flll(t - hil(t)), ce ,fEn(t — hin(t))), 1= 1,2, e, (24)

Let to = 0. We assume that functions h;;(t) are continuous for ¢ > to. Also
we assume that 0 < maz;; | hi;(t) |< H for to <t < 0. For t € [to — H, o]
functions z;(t) are equal to continuous functions ¢i(t),1=1,2,...,n. Let rg =

MAZ1<i<nSUPie(to— H, o) Fi(t) .
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Starting point we write as
(o +0) = (a},...,73) (2.5)

We will inverstigate the Cauchy task in n dimensional space Ry, with one
of the following norms

Iz fla= [ 126 P12 @ llo=mazicicn [ 2: |, | 2 lls= [D_ 1 2 ]
k=1 i=1

We assume that: 1) A;(0,...,0) = 0,i = 1,2,...,n, and 2) functions
Ai(zy,...,2n),5=1,...,n are continuous for z = (z1,...,Zn) # (0,...,0).

Let z(t) be a decision of Cauchy task (2.4)-(2.5).

Let (s1(r),...,sn(r)) be a point that lay on sphere S(0,7). Let us fix an
arbitrary matrix C = [c;5]i,j=1,...,n,Cij — const with vector (City---+Cin),t =
1,2,...,n that lay into sphere S(0,7). Let B(C,7) = [bi;(C,7)]i,j=1,2,....,n, Where

A (0,..., 0, i51Ci,j+15-++,Cin —A; 0,...,0,Ci!' yo-yCin .
by (C,r) = | 2Bt tiludanntal, for 5(r) £0;
0, for s;(r) =0,

1,7 =1,.

Theorem 2 5. Let C' = [cjli,j=1,..,n be an arbitrary nonzero matrix with
vectors (c1,---,Cin) € R(0,7). Assume that for r,ry > 7 > 1o 11— arbitrary
number (r; > 7)) the inequality A(B(C,r)) < 0(A(B(C,r)) < —a < 0) occurs.
Then the solution of equation (2.4) is stable (asymptotically stable).

Proof of this Theorem is given in the [5].

2.4 Differential equations with a small parameters at-
tached to derivative

Let us consider a system of differential equations with a small parameter at-
tached to derivative

im{ = Q("E1yy/f‘)’ (2 6)
pa =Hz,y,u n), '
Where = (mla M '7$n);y = (1/1,-~ 7ym);u = (ula M aum)’u € G’/“L(y’ > O)—
a small parameter. Vector u is a vector of freedom parameters.
Let Q(0,y,u,u) =0,H(z,0,u, ) = 0.
Let B = (b1,...,b,),C = (c1,...,¢n),bi,c;i = const,i = 1,...,n be vectors
with arbitrary components.
Let A(B) = [aij]i,jzl,_“,n, where

Qi(o ,,,,, ) 0 b]y »bn,yu l") Q (01 -0, b_7+1’ 2] b, y,u :P“) fo,r. b ié 0
ai- B —
i(B) { ¢ for B; =0;
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,j=1,...,n.
Let D(C) = [dxi(C)k,1=1,...,n, Where

Hi(z,0,...,0,c1,...,Cm u, 10— Hi (2,0,...,0,C1 41, ,Cm U,
o0 Detntn ) Helebobeinetniitl gy 0 4 0,

dia(C)(B) :{ 66[ forca =0

kil=1,...,m.

Assume that occur the following conditions:

A1) There have place the inequality A(A(B)) < 0 for any nonzero vector
B = (b1,...,by) that belong to the sphere R(0,7) € R,, with a small radius r,
for any vector y = (y1,...,ym) from the sphere R(0,7) € R,,, for any u € G
and for 0 < p < pp.

A2) There have place the inequality A(A(B)) < —a,a = const > 0 with
conditions that was formulated in Al.

A3) There have place the inequality A(D(C)) < 0) for any nonzero vector
C = (c1,.-.,¢cm), that belong to the sphere R(0,7) € R,, with a small radius r,
for any vector z € R, for any u € G and for 0 < p < pg.

A4) There have place the inequality A(D(C)) < ~8,8 = const > 0 with
conditions that was formulated in A3.

Let ﬁl = :B//‘LO»FY = min(a,ﬁl).

Theorem 2.6. Let the conditions Al and A2 occur. Then a domain G is a
domain of stability of solutions of the system of equations (2.6).

Theorem 2.7. Let the conditions A3 and A4 occur. Then a solution of the
system of equations (2.6) is asymptotically stability uniformly by 1,0 < p < pg
and for any u € G.

The proofs of Theorem 2.6 and Theorem 2.7 are given in the [8].

3 Stability of differential equations in Banach
spaces

Reviewed in the previous paragraph Theorems are proved with the definition of
the following Theorem.
Let us consider nonlinear operational equation in Banach space B

dr

dt

Investigate stability of trivial solution of the equation (3.1). Let us set an
initial disturbance

(t,z(t)), A(t,0) = 0. (3.1)

z(0) =z9, zp € B (3.2)

and consider the Cauchy problem (3.1), (3.2).

Theorem 3.1. Let us assume that in some solid sphere R(0, §) of the B space
it is satisfied the following condition: for any (T > 0) and any z € R(0,4) it is
found such a linear operator L(T, z)z, that
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1) logarithmic norm of the operator A(L(T, z)) < O(AL(T,2) < —a,a >0

2) for any arbitrary as much as desired small e(e > 0) there exists such
neighborhood 4;(e) and such an evaluation AT (e) (for each z is itself), that
provided ||z(t) — z|| < é; and t € [T, T + AT there is valid an inequality

|A(t, z(t)) — L(T, 2)z(t)|| < e.

Then a trivial solution of the equation (3.1) is stable (asymptotic stable).
Proof. We lead the proof by contradiction. Let be at the moment ¢ a
trajectory z(t) of Cauchy task (3.1), (3.2) leaves the sphere S(0,8)(Jlzol < 9)
passing through the point z € B.
By theorem conditions there is found a linear operator L(Ty, z) satisfying
the conditions 1), 2). Let us present the equation (3.1) as the form of

d
E?f—: = L(Tp, z)z + F(z), (3.3)
here F(z) = A(t,z(t)) — L(To, 2).

As z # 0, from the condition 2) of the theorem follows that it will be found
such a time interval AT™ that providing t € [Tp,T1] T1 = To + AT™

IF (@)l < ellz(®)]]. (34)
Solution of the equation (3.3) for ¢ > T there can be presented as the form

of .
z(t) = el T02)(t=To) (T ) +/6L(TO’Z)(t_T)F(T)dT' (3.5)

To

Passage in the (3.5) to the norm and taking account of the inequality (3.4)
in the time interval [Ty, T1] we arrive at inequality

le@)] < e T (To) + ¢ / &=t 3(r) dr. (3.6)
T

Using standart methods we have in the time interval {Tp, T1]
()] < em T g(Ty)|. 3.7

Therefore the trajectory z(t) does not leave the sphere S(0, ) and stability

is proved.
Let us prove asymptotic stability. By anology with led arguments above we

build a sequence of points Tg, T1,...,Tn, - such that

l2(Tirr)l| < e T =Tj(T) . (3.8)
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There are two possibilities: 1) lim T,, = T*, 2) lim T}, = oo.
n—oo n—oo0

In the first place passing in the (3.8) to limit providing k — oo, we have
l=(T*)[| < e~ (AT =To)iz ().

It follows that z(T™) = 0. Indeed provided z(T*) # 0, then by theorem con-
ditions the trajectory x(t) exists for any ¢ > 0. Therefore is exists providing
t 2 T*. Having taken T* as initial approximation and having done over again
we arrive at contrudiction. Therefore z(T*) = 0.

In the second place tending z(¢) to 0 providing ¢ — oo is obvious. The
theorem is proved.

Remark 1. In case investigation of stability is conducted in Hilbert space,
the condition 1) can be changed to the following:

1) Re(L(T, z)) < O(Re(L(T,2)) < —a,a > 0).

Similar statements are correct and for difference equations.

The paper is supported by Russian Humanities Science Fund (grant 01-02-
00147a).
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Abstract

This paper concerns the modeling and the integrated numerical simulation of a flexible mechanism
subject to the action of a digital control system. A general method is proposed, based on the for-
malism of flexible multibody systems (MBS) using the Finite Element Method (FEM). Nonlinear
effects in the mechanical structure or in the control system can be taken into account. The numerical
simulation tool is applied to design an active control system in a hot-dip galvanizing line, which aims
at reducing the vibrations of the steel strip.

Keywords: Flezible Multibody Systems, Active Conirol

1 Introduction

Lately, numerous investigations appeared in control of flexible mechanisms such as flexible manipulators,
high precision machine tools, vehicles and foldable structures [5]. The first task to design a control
system is to establish the control law defining the relationship between its inputs and its outputs. At
this stage, a simple model of the mechanism is required and many dynamical effects are neglected or
roughly estimated. Once the control law is defined, the designers try to build a control system composed
of actuators, sensors and controllers which will be able to realize the input-output relationship.
However, the actual control system never matches exactly the theoretical control law. Will the actual
control system be efficient on the actual mechanism ? Is the control system really optimal for the appli-
cation ? Often, the answers are obtained through experimental testing and trial-error adjusting of the
controller parameters. Instead, designers would prefer to simulate the whole mechatronic system, includ-
ing the structure, the controller, the sensors and the actuators, using the most rigorous dynamical model
as possible. Many standard simulation tools are available in both fields of flexible multibody systems
and control systems. But yet, these software packages are usually not able to consider simultaneously
the structural behaviour and the control system without lost of generality. The purpose of this paper is
to describe and illustrate a general method for the simulation of mechatronic systems.

The mechanical model is built in the formalism of flexible multibody systems, using the Finite Element
Method [2]. This formalism, implemented in the MECANO computer code (4], accounts for nonlinear
structural flexibility and large displacements. The model of a digital control system is introduced into the
simulation as a FORTRAN routine called at each sampling instant. This quite general approach allows
to deal with nonlinear effects either in the mechanical structure or in the control system.

The simulation tool is applied to design an active control system in a hot-dip galvanizing line, which aims
at reducing the vibrations of the steel strip. The number of actuators and their configuration is defined
on the basis of the simulation results.

The time-integration algorithm is presented in section 2 and the design of the active control system for
the galvanizing line is described in section 3.
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2 Simulation of mechatronic systems

2.1 Multibody dynamics

The purpose of this paragraph is to recall some concepts of multibody dynamics. The finite element
methodology is adopted so that the motion is directly referred to the inertial frame. The mechanical
system is made of structural components connected through various kinds of kinematic joints.

Applying the Lagrangian multipliers method to the Hamilton principle leads to a system of Differential
Algebraic Equations (DAE) of general form [2] :

M(q)d +BTA - g(q,q,t) =0
{ (@4 @(q’t)i(gq) 21)

where one defines ¢, the time; M, the mass matrix describing the inertia terms proportional to ac-
celeration; q, the generalized degrees of freedom of the system; g, the sum of external, internal and
complementary inertia forces; @, the set of holonomic kinematic constraints; A, the set of Lagrangian
multipliers and B, the matrix of constraint gradients.

The first set of equations describes the dynamic equilibrium of the system and the second one represents
the holonomic kinematic constraints.

The equations (2.1) may be solved through time domain numerical integration with the well known
Newmark a-family of implicit algorithms. Assuming that the solution is known at time t,, the unknowns
of the problem are gn+1, Gnt1, Gn+1 and A4 at time tnet = tp + h, where h is the time step. The
Newton-Raphson iterative procedure is applied to converge to the solution by successive linearizations of
the equations.

2.2 Simulation of Mechatronic Systems

A sampled-data control system with a sampling period T' can be modelled by the following state equations:

Xip1 = fu(xi, u, ;) (2.2)
fir1 = L%, ug, 1) (2.3)

where the subscript ¢ denotes the i** sampling instant, u; the vector of the inputs, x;4; the state vector of
the control system, and f;; the vector of the outputs applied to the mechanism during the time interval
[ti,tiy1]. L. and £, are respectively the update and output functions. In our casc, the input data are
measured on the mechanical system, and thus are related with its generalized coordinates: u = u(q, q, §).
The action of the control system on the structure modifies its dynamic equilibrium :

M(q)(’j + BTA - g(q7 fl’ t) = Dfi+1 vte [til ti+l] (2 4)
®(q,t)=0 '

where D is the influence matrix of the control forces on the generalized coordinates, which is assumed
to be constant. The integration algorithm of equations (2.4) is illustrated in figure 1. The time step h is
a divisor of the sampling period T. Inside each sampling period, the time integration of the mechanical
equations is performed taking into account a constant vector f. At the sampling instants, the control
routine updates the control forces as well as the state variables. In most cases, the dynamics of the
control system is faster than the dynamics of the mechanism and a reasonable choice for the time step is
h=T.

3 Application of the simulation tool

3.1 Galvanizing process

Figure 2 illustrates a continuous hot-dip galvanizing line. The steel strip, of the order of 1 m wide by
1 mm thick, is preheated and passed at the speed of about 1 m/s through a pot of molten zinc. A zinc
film is entrained onto the strip as it emerges from the pot. The deposited film solidifies while the strip
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Figure 1: Numerical integration algorithm for a mechanical system subject to the action of a digital

controller.
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Figure 2: Galvanizing line.

41




Flexion (Hz) | Torsion (Hz)
0.55 0.56
1.10 1.11
1.66 1.67
2.21 2.23

Table 1: Natural frequencies of the structure.

runs vertically upwards. After the top roller, the finished product is guided to a delivery section where
it is coiled and cut. The distance from the stabilizing roller to the top roller is of the order of 50 m.
Accurate control of the amount of solidified deposit has a great commercial issue: overdeposition results
in excessive use of zinc which increases the production costs; underdeposition results in an unsatisfactory
product. Air-knives, consisting of a pair of nozzles, regulate the zinc thickness. However, the vibration
movement of the steel strip in front of the air-knives leads to variations in the amount of deposit.

Our purpose is to design a collocated active control system able to reduce those vibrations. Based on the
information received by a sensor, a digital controller drives an electromagnet acting on the strip. Several
independent sensor-actuator pairs can thus be installed.

In the following paragraphs, a mechanical model is first established. Then the design and the modeling
of the control system is described. Finally, the simulation tool which has been presented above is used
to estimate the performances of the system.

3.2 Mechanical modeling

Although the steel strip is prestressed, the structure remains very flexible and the mechanical excitation
induced by the fan cooler causes a high vibration level. This section aims at constructing a reliable
mechanical model able to capture all the significant effects.

Basic model The steel strip may be assumed to be fixed at the stabilizing roller and at the top roller.
It is modeled with shell finite elements which allows to take the prestressing effect and the gravity field
into account. As the strip bends, its extension produces modifications of the stresses inside the structure,
which influences its stiffness. This nonlinear phenomenon is well known as geometrical stiffening and was
considered in a preliminary model. But the results showed that the stress modifications remain small, so
that the geometrical stiffening can be neglected and a linear model is sufficient to describe the dynamic
behaviour of the steel strip.

The pressure field produced by the fan cooler is modeled as a white noise excitation in the frequency
range from 0.2 Hz to 10 Hz, as suggested by experimental data. This excitation appears to be spatially
uncorrelated. However, to avoid the definition of a time domain excitation function at each node of the
finite element model, the excitation zone may be decomposed into several independent zones in which
the nodes are simultaneously excited.

The natural frequencies were computed for the linear model and the results arc presented in Table 1.
The eigen-frequencies of the torsion modes almost match the eigen-frequencies of the flexion modes.

Speed of the steel strip The vertical motion of the steel strip during the process may affect the
vibrations. A two-dimensional finite element model of the moving steel strip has been developed to study
this phenomenon. The galvanizing line has been replaced by a line enclosing the stabilizing roller and
the top roller as shown in figure 3. Despite numerical difficulties encountered in the elaboration of this
model, the eigen-frequencies have been computed for increasing values of the vertical speed. For speed
values up to 15 m/s, the natural frequencies remain almost unaffected.

As a conclusion, we can assume that the steel strip is motionless and that both the stabilizing roller and
the top roller are fixed.

Model reduction All nonlinear effects were found to be negligible in the structure. Thus, assuming
a linear behaviour, the Craig-Bampton substructuring method can be used to build a reduced model
containing less degrees of freedom [2]. This method requires the partitioning of the initial degrees of
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Figure 3: Two-dimensional finite element model of the moving steel strip.
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Figure 4: Displacements in front of the air-knives when a single actuator is located on one edge of the
steel strip; the active control system is turned on at time t = 20s (sampling period : T = 0.5 ms, gain :
g = 100)

freedom into two groups : the boundary degrees of freedom, which will be retained, and the internal
degrees of freedom which will not appear explicitly in the reduced model and are considered as free. The
movement of the structure is described as the superposition of constrained modes describing the static
behaviour of the boundaries and a few clamped vibration modes obtained when fixing the boundary.
The degrees of freedom situated on the rollers, in the excitation zone, in front of the electromagnets and
in front of the air-knives are defined as boundary degrees of freedom. To cover the frequency range of the
excitation (0.2 Hz - 10 Hz), 50 clamped vibration modes have been kept. As the initial model contains
2400 degrees of freedom, the reduced one contains only 300 degrees of freedom so that the computation
time decreases by a factor of 3.

8.8 Active control system

This paragraph concerns the design and the modeling of the active control system when a single actuator
acts on the structure (single input - single output system). In the case of a multiple input - multiple
output system, a control routine has to be defined for each independent sensor/actuator pair.

Control law Design methods for active control system are extensively described in the reference [3].
This paragraph presents the results of the design procedure.

A collocated configuration of the actuator and the sensor is chosen in order to maximise the robustness.
The active damping control law is a direct velocity feedback :

ff=-g4; (3.5)

The desired force f]‘-’ applied on node j is proportional and opposite to the measured velocity ¢;, which
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guarantees energy dissipation and unconditional stability. This control law is thus stabilizing for any
flexible structure. No matter the dimensions of the steel strip, all vibration modes will be damped. The
gain g, which defines the impact of the control system on the structure, has to be carefully optimized.

Actuator placement The performance of the active control depends on the position of the actuator
on the structure. A method developed by Gawronski (1] has been applied to find the best location of the
actuator. The detailed description of this method is beyond the scope of this paper. In brief, accounting
for technological constraints, the optimization yields the following conclusion: the actuator should be
placed 3.5 m above the stabilizing roller, on the edge of the strip in order to control both flexion and
torsion modes.

Actuator modeling The controller drives the electrical current i in the electromagnet. But, the relation
between the electrical current and the force f; applied on the steel strip is highly nonlincar and dependent
on the air gap e. An analytical expression of the relation f;(i,e) has been established to fit experimental
data. This relation is the non-linear model of the actuator.

Description of the control routine The control routine receives the input vector u containing two
components: g; and ¢;. First, it computes f}i according to the control law (3.5). Then, the desired
electrical current ¢ is adequately estimated. The value of g; is used to compute the air gap e. Finally,
the actuator model f;(i, e) defines the force f applied on the structure.

3.4 Results

A parametric study has been led for several configurations of the actuators and several dimensions of the
steel strip. For the sake of conciseness, the detailed results are not presented here. Figure 4 illustrates the
results obtained with mean dimensions of the strip and a single actuator placed on the edge, 3.5 m above
the stabilizing roller. After 20 seconds, the control system is turned on and the vibrations are efficiently
attenuated on the actuator side, but not on the other side. Better performances are observed with more
actuators: three actuators are able to reduce efficicntly the vibration level in front of the air-knives.

4 Conclusion

The general simulation tool presented in this paper is adapted for the simulation of any flexible mechanism
subject to the action of any digital control system. It turned out to be really helpful for the design of
an active control system in a hot-dip galvanizing line. However, one difficulty of the method is its huge
computational load.

This tool may be extended to many other kinds of applications as the modeling of machine tools, flexible
manipulators, foldable structures, vehicles...
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Abstract. In this paper the effects of unsteady aerodynamic loads on the driving dynamics
of high speed trains during passing manoeuvres in absence of cross wind have been inves-
tigated. To this end a co-simulation MBS/CFD was implemented. A linear aerodynamic
model, the panel method, was applied to the computation of the unsteady flow around the
driving trailers for the examined manoeuvres. The multibody simulation program SIMPACK
simulated the dynamic response of the vehicles to the resulting aerodynamic loads.

Keywords: Multibody dynamics, railway aerodynamics, unsteady aerodynamics,
co-simulation, coupled systems

1. Introduction

Rapidly growing operative speeds together with the cut off of leading car’s
weight, due to light construction and to the distribution of the traction units
along the whole train, let today’s trains be very sensitive to aerodynamic
loads. For example, the driving trailers of many recent high speed trains are
precautionary ballasted in order to reduce their aerodynamic sensitivity. The
response of vehicles to steady and especially unsteady loads has thus to be
carefully investigated to ensure the safety of railway operations under extreme
aerodynamic conditions [1].

The most general way to include aerodynamic effects in a multibody system
is the coupling of the multibody system code with a solver from computational
fluid dynamics (CFD), see [2, 3]. Such partitioned approach, which is called co-
simulation or simulator coupling when the coupled codes remain unchanged
and completely stand-alone and communicate only through appropriate in-
terfaces at discrete time points, see [4], is capable to describe virtually every
unsteady aerodynamic phenomenon and to take into account the reciprocal
interaction between mechanical and aerodynamical system.

A new application field for this coupled approach is the behavior of ground
vehicles under unsteady aerodynamic loads, for example due to the interaction
with other vehicles (interference), see [5, 6]. Such problems can not be handled
by the conventional approach based on aerodynamic coefficients. The typical
case of two high speed trains passing by each other is presented below.

It must be mentioned that the methods of the multibody dynamics and
their implementation in simulation software offer very efficient tools for the
analysis of the dynamical behavior of railway vehicles. On the contrary the
description of unsteady aerodynamic loads through CFD methods or wind
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tunnel experiments can be still achieved only with great efforts and high costs,
in most cases with poor accuracy.

2. Basic principle of the co-simulation

The modular structure of coupled problems may be adopted in the simulation
using for each subsystem its own simulation tool for model setup and time
integration [7]. Well established standard software tools are used for the in-
dividual subsystems. In this way the subsystems are integrated by different
time integration methods such that each of these methods can be tailored to
the solution behavior of the corresponding subsystem.

The communication between subsystems is restricted to discrete synchro-
nization points 7;,. In each subsystem all necessary information from other
subsystems can be provided by interpolation or — if data for interpolation
are not yet available — by extrapolation from ¢t < T;, to the actual macro step
T, — Tn+1. But in many cases it is sufficient to keep the value of the coupling
variables from the other subsystems constant during the whole macro step
Ty, — Tny1. The latter is the usual approach used by the multibody system
tool during the co-simulation.

Co-simulation techniques are convenient but they may suffer from numerical
instability. Furthermore, interpolation and extrapolation introduce additional
discretization errors. In most standard applications stability and accuracy is
guaranteed if the macro step size H := T, 1 — T, is sufficiently small.

For certain classes of coupled problems the instability phenomenon has been
analyzed in great detail. Several modifications of the co-simulation techniques
help to improve its stability, accuracy and robustness also for larger macro
step sizes [8].

3. Formulation of the coupled problem

3.1. MULTIBODY SYSTEM

The classical topic of interest in multibody dynamics are systems of rigid
bodies being connected by joints and force elements like springs and dampers
[9]. The equations of motion are given by

M(q)d(t) = £(t,q,4,)) — GT(t,q) A, (1a)
0 = g(t,q) (1b)

with q denoting the position coordinates of all bodies. M(q) is the generalized
mass matrix and f the vector of applied forces. Joints decrease the number
of degrees of freedom in the system and may result in constraints (1b) that
are coupled to the dynamical equations (1a) by constraint forces —GT )\ with
Lagrange multipliers A and G(t,q) := (8g/8q)(t,q) . Very efficient numerical
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methods for the evaluation and for the time integration of (1) have been devel-
oped and implemented in industrial multibody simulation tools like ADAMS,
SIMPACK or DADS, see [10, 11].

Already in the early days of multibody dynamics these methods have been
extended to more general mechanical systems that contain e. g. flexible bodies
or force elements with internal dynamics. On the contrary the extension of
the simulation scenarios through co-simulation is a recent development which
is still in progress.

3.2. AERODYNAMIC SYSTEM

The flow around high speed trains in absence of cross wind can be assumed
to be inviscid and irrotational, leading to a linear aerodynamic model. Such a
flow model is called potential flow and is widely used in aircraft aerodynamics
but also in railway aerodynamics when cross wind has not to be considered. Its
discretized numerical formulations, the panel methods [12, 13], lead to small
computational effort and other benefits compared to nonlinear aerodynamic
models.

A potential flow can be merely described by the Laplace equation by
introducing a scalar field function ®:

V20 =0 (2)
whereby potential function and velocity field are directly connected:
u=Vao. (3)

Eq. (2) must be completed with some boundary conditions which are the
physical interface between multibody and aerodynamical system. Such condi-
tions are presented in the next section.

3.3. COUPLED SYSTEM

The boundary condition for the flow only requires that the normal component
of the relative velocity on the vehicles walls Qv vanishes, i. e. that the normal
component of the absolute velocity u is equal to the velocity of the wall v:

V® -n=-v(G)-n on 00y (4)

which shows that the potential ® must depend on the velocity of the vehicles
q.

Using Green’s formula Eq. (2) can be rearranged to obtain an expression for
the potential ® as integral on the vehicles walls 9§y of a source distribution o
divided by the module of the position vector r. A doublet distribution, which
compares in the general formulation, is not necessary for the case of ground
vehicles because no special conditions, such as the Kutta—condition, have to
be satisfied.
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Since 0§y depends on the vehicles position, ® depends on q as well:

. 1 1
*rad) =z [ ords. (5)
\4

47 r|
The source distribution o on dQy is unknown and has to be determined
using the boundary condition (4). When ¢ has been computed, ® and u can
be derived using (5) and (3).
The Bernoulli Equation can now be applied to obtain the pressure field:

2
0% , |u| PoPo_ const = p(r,q,q,t). (6)

It is finally possible to compute the resulting flow force L s and torque My
related to the origin O:

Lf(q,4,t) = —/ p-nds, (7a)
Ny

M¢(q,q,t) = —/ r X p-nds (7b)
Ny

which couple the flow equations (2) and (4) with the multibody system equa-
tions (1).

The used panel method adopts a discretization of the surface integral in (5).
The finite surface elements are called panels and on each of them the source
distribution o; is supposed to be constant. The boundary condition (4) leads
to an algebraic linear system whose unknown vector is the discrete source
distribution ¢; and whose dimension is thus the number of panels. Eq. (6)
has also to be discretized: pressure distribution and forces (7) can be finally
obtained on a discrete time axis.

In order to minimize the computational effort the number of “aerodynamic”
time steps must be minimized, as each of these time steps required for a usual
configuration about 15 minutes. The panel method is capable of very large
time steps compared to the multibody system part. Furthermore, the flow and
driving dynamics are quite weakly coupled. For these reasons a co-simulation
technique has been implemented. In each macro step T, — Ty Eq. (6) is
discretized once using the macro step size H as time step. The flow field is
thus resolved only at the synchronization points T}, and kept frozen between
them. The multibody system part of the coupled problem is integrated by
standard techniques from multibody dynamics with step size and order control.
In this way about 30 macro steps are necessary for the simulation of a typical
manoeuvre.

4. Results

The simulation of a wide range of typical driving manoeuvres (passing on
open track and at tunnel entrance, tunnel run-in and run-out, etc.) have been
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performed. Results can be examined in many ways using different criteria but
none of them can be definitively chosen as representative, as each railway
company uses its own methods to estimate aerodynamic sensitivity. In the
following only the lateral displacement of the leading wheelset for the case
of two ICE trains passing by each other at the same speed on open track is
reported.

Results show that, even if the aerodynamic forces grow to the square of the
driving velocity, the response of the system has only & linear dependence on the
velocity, see Fig. 1. As a consequence not exclusively very high driving speeds
are critical. Results plotted in Fig. 1 refer to trains driving on a perfectly
straight and plane track without rail excitations (ideal case); the values are
therefore relative small.

Passing Manoeuvre on open track
T . T T T

o
wn
T

o
A
T

Max. Lateral Displacement Wheelset [mm)
<)
2]

30 a5 40 45 50 55 60 65 70 75 80
Driving velocity [m/s]
Figure 1. Maximal wheelset’s lateral displacement during a passing manoeuvre on
open track (ideal case).

From the simulations also emerged that the presence of little disturbances
can amplify the dynamical response of the vehicles. Fig. 2 shows a typical
situation: a small, low frequency perturbation, which could be caused by cross
wind or track irregularities, lets the maximal displacement of the wheelset
reach much larger values than in the ideal case.

Using the new simulation tool it was also possible to point out that, whereas
the unsteady aerodynamic loads can exert a very large influence on the driving
dynamics, the effects of the induced vehicle motion on the surrounding flow
is of some influence only when the fundamental frequency of the excitation
approaches the lowest natural frequencies of the car. In the case of symmetri-
cal passing manoeuvres such condition is satisfied only at very small driving
velocities, the influence can be thus usually neglected.
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Passing Manoeuvre on open track
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Figure 2. Effect of a small perturbation on wheelset’s lateral dynamics during a
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symmetrical passing manoeuvre on open track at 80 m/s.
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EFFICIENT SIMULATION OF RIGID-FLEXIBLE MULTIBODY DYNAMICS:
SOME IMPLEMENTATIONS AND RESULTS*

O. N. DMITROTCHENKO

Department of Applied Mechanics, Bryansk State Technical University
Bulv. im. 50-letiya Oktyabrya 7, 241035 Bryansk, Russia
don@bitmcnit.bryansk.su

Abstract. Known and modified simulation methods, such as composite and articulated
ones, as well as different finite-element discretization methods are presented.

1. Equations of motion

At first the dynamic equations of a flexible body are considered in the form of the so-
called [1] semidiscretized equations

Mw+M™i=Q +R’, )
M w4 M%i=0°%+R®,

where M”, M"® and M* are the (quasi-)rigid, rigid-elastic and elastic mass matrices;
the next three 6-columns relate to motion of the body-fixed floating reference frame [2}):

linear and angular accelerations w = (FT a')T)T , applied and inertial forces and their

moments Q" , reaction forces and moments R”; finally, 0° and R® are the ap-

plied/inertial and reaction generalized forces relating to dynamics of the generalized

coordinates u defining the deformed state of the body.
Now let the motion of the reference frame origin for each body i be defined by

means of a set of generalized coordinates g; as follows:

w; =04 +w;.
Here ®@; are Jacobian matrices. The second discretization of equations (1) by substitution
of w; and summation over all the bodies in a system lead to the equations

gf[epwio, ol 8 - onurl)fil_g of or - w))
=l 0 of [MrTo, mf |Ja) &l of -MITw

or, in a compact form, the equations of structural dynamics in generalized coordinates
(417 + 82¢)2=0. @

*) Supported by the Russian Foundation for Basic R esearch under the grants 02-01-00364, 02-01-06098
and by the scientific program “Universities of Russia — Basic Research” (UR.04.01.046).
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2, Simulation methods

2.1. COMPOSITE BODY METHOD

Effectiveness of simulation of a large system can be estimated for a n-body chain
(Figure 1). So, a direct method of implementation of the equations (2) is cubic in n. That
is the computational effort is O(n®) for the matrix M and O(x?) for M®, Q.

The composite body method [3] known for rigid multibody systems allows decreas-
ing the effort to a quadratic one: down to O(n?) and O(n) for the matrices above:

~ *T * *
M =30 300 My®

*

n
T * 1 *
Y.Ci MiCy, @} =C7's],

Mij=

k=max(i,)

Iy = | o
C, = , S =10...5;...0].
o[ TR s <osi0)

Here #; is the reference frame origin of the i-th
body; S; is a Jacobian matrix describing the
local kinematics of two contiguous bodies:

Bl sa ~fhail|] fia .
= ’ +S;u;.
{a’i} [ 0 I3g :|{C’)i—l} . G)

_ For a rigid body, u; is a column of local joint
Figure . n-body chain coordinates in joint i.

2.2.  ARTICULATED BODY METHOD

Now an application of the articulated body method [4,5] for a rigid-flexible multibody
system is considered. The method is /inear in n for a n-body chain because it does not
deal with a global mass matrix at all, but uses a recurrent two-step procedure instead in
order to eliminate reaction forces from the equations of motion of separate bodies.
Direct motion. Let us consider two end bodies n and (n~1) of the chain in Figure 1.
Let both bodies n and (n-1) be flexible. Equations (1) for body n are
M;Wn'*’Mrrxeﬁn:Q;'*'Rna “

M T, + Mty = O )
Body (n-1) is subjected to influence of both R, and R,_, reaction forces:
. T
My \Wyoy + My iy = Oy + Ry —Cy Ry,

6
T - T
Mr'f—l W1 +]M:—lun--l =QS—-1 —SpRy,.
Accelerations of the two bodies are coupled analogously to equation (3):
Wy = ann-l +Sn‘2n—l +W;1 . (7)

Substitution of R,, #, and w, from equations (4),(5),(7) eliminates reactions R, from
equations (6).
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Let the body n be flexible, but the body (n-1) be rigid. The equation (6) change into

My Wy =05y + Ry ~Cr Ry @®
Due to the ideal constraints in joint n, the following condition holds:
STR, =0. ®

This also leads to eliminating the reaction forces R, from equation (8).

Thus, one can turn from body n to (n—1) and go on the process down to body 1.

Reverse motion. Equation (5) written down for body 1 gives the generalized accel-
erations #; . Further, with the help of kinematical relation (7), the acceleration w; of the

next body 2 can be found, and the process goes on to the end of the chain.
2.3.  ARTICULATED METHOD FOR CONSTRAINED RIGID-BODY SYSTEMS

Despite its high effectiveness, the idea of the latter method does not work if closed
kinematical loops exist. In this case, a modification of the articulated body method was
proposed [5], which is based on transition to Lagrange multipliers in constraints.

Let us consider a constrained rigid multibody.system.

The equation (9) can be solved relative to the reaction forces R, as follows:

R, =H,2,, then HLS,=0. (10)

Here /, is a column of Lagrange multipliers (independent reactions), /, = ker S,,T .

Figure 2 shows a joint j of a system and some
contiguous bodies. The joint connects two bodies
and i. The previous joint j, connects body i and the
previous body on the path to body 0 (fixed inertial
frame). Other joints attached to body i are denoted
by i}, ..., im ...; one of them, e.g. i, is joint j,
obviously. Joints attached to body k are ky, ..., &, ...

Let us write down the equations similar to (8) for
the two bodies k and i, and substitute reaction forces
from equations (10). Then the kinematical relation
(7) will turn into the equation

Figure 2. Joint and its environment

Ty —1 T T 1 T T
HJM; [Qk +Hj/?'j _chkapﬂkp] =Hj C_]Mz— [Q +ij/1.lp —qul_l’mﬂzmj +Hj W/’(
p m

This approach results in a system of linear algebraic equations in Lagrange multipli-
ers J; for all the joints. The system has a block-three-diagonal symmetric profile for n-
body chain. The profile width increases for an arbitrary constrained system but never-
theless the method remains almost linear in n. The method has a unique feature: it
becomes faster when increasing the number of degrees of freedom (DOF) in joints
because the number of Lagrange multipliers in a joint is equal to (6-DOF).

Several examples of n-body pendulums (with various number of DOF per joint)
were simulated using the Universal Mechanism (UM) software [6]. The results show
that the direct method is the fastest up to 10-15 rotational DOF in a chain, the composite
method wins for 15 to 30 DOF, and further the articulated method is the best one.
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3. Methods of discretization of flexible bodies. Beams and plates

3.1.  FINITE RIGID SEGMENT METHOD

Following this approach, all flexible part’s inertia and elastic properties are distributed
among finite rigid segments (bodies) [2] and joints with elastic-dissipative joint forces,
so the result is an ordinary rigid multibody system. The approach can be successfully
applied to nonlinear cables, beams and also to plates [7], see an example in section 3.3.
The approach represents well both static and dynamic properties of the flexible part.
In particular, it is effective for simulation of non-stretchable beams using relative
rotational degrees of freedom due to eliminating high longitudinal parasitic frequencies.

3.2.  FINITE ELEMENT METHOD

3.2.1. Floating reference frame formulation
In order to define an arbitrary 3D position of a plate element shown in Figure 3, one can

use the following values: the positions r, (denoted by );?\9), k=0...3, the orientations

{denoted by orientation matrices 4;) and shear deformations y, (not shown) of the four
plate edges. The orientation matrices can be specified, for example, by Cardan angles.

In terms of equations (1), the floating reference frame is associated with the edge 0.
Relative displacements of the rest edges form the vector « of elastic coordinates

) - __.{A()T(rk —’0)*“}:},

U=<4Uy
aAOTAk

where a(A4) is the vector function returning
the Cardan angles of the rotation matrix 4.

Assuming that the vector u is small,
one can compute the strain and kinetic
energics and derive elastic and inertia
forces. However, this leads to strongly
nonlinear mass matrix and generalized forces.

u3

00
00

Figure 3. 3D plate finite element

3.2.2. Absolute nodal coordinate formulation
Implementations of the method are known from many papers, e.g. [2,8]. Let us consider
the plate element shown in Figure 3. In terms of equations (1), no body-fixed reference
frame is used, but the nodal coordinates include all rigid-body motions of the plate.

Such a set of nodal coordinates defines an isoparametric plate element:

T

T T aoT miT 107 1T (oT 11T T T onT T 1o 11T 1oT 11T

_ 4 00t o1 oot e1f 107 11 1ol 11t oof o1t oof o1 10f 11?7 0T 11
"—{’00 oo %0b Mp 700 700 Tob T0b Ta0 a0 Tab Tab  Ta0 720 tab Yab } )

where r,jf‘,:a”jr/ a\0p4 Ip .y denote the vectors and their up to 2nd-order
1=K, p2=

derivatives specifying the position and orientation of the four edges of the plate.
Then the position of an arbitrary point of the plate can be found as
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r=S8u= [S”,S,z,SB,SM;...;...;SM,S42,S43,S44]u,
where Sj; = si(pl,a)s j(Pz,b) I3, are submatrices of the matrix of global shape func-

tions S depending on 1-dimensional Hermite functions
si(p.)=s5(1- p,1) =136 +2&3, s3(p,1)=3£% -2&3, »

(oD =-ss(i-pD)=1 (-26248), si(p)=1(E-8), !
used to describe the deformed state for beam finite elements [2].
Since the matrix S is u-independent, the method leads to a constant mass matrix

M= j g f }()) uS Ts dpdp, and no inertia forces. To obtain elastic forces, the following

expression for strain energy of an orthotropic plate [9] can be employed:

b(n 2 2 2
T = Mperg +Mgrerct = 5 g Jo (DIKI + D5 +(Dypty + Doty ) 1565 +4D12K12)dP1dP2

a b 2 2 2
+%2 Io 1o (D1€1 +Dye5 +(Dypy + Do) 616, +D12€12)d1’1dp2-

The preceding expression includes parameters of stiffness and sizes of the plate and
its transverse and planar curvatures. The explicit expressions for the curvatures are too
bulky to use them, but with the help of ideas suggested, e.g. in [8], they can be reduced
to acceptable ones. Then the strain energy expression turns into “almost” quadratic form
in the nodal coordinates u.

3.3. SIMULATION EXAMPLES

3.3.1. Cantilever beam subjected to large bending
This problem was simulated for comparing results obtained using both finite element
formulations: the floating reference frame and the absolute nodal coordinates.

As shown in Figure 4 and in the table, the vertical force P causes large displace-
ments of the beam free end: rotation angle 8, vertical J, and horizontal deflections.
The rest values are the beam length L and stiffness EJ, the number of finite elements .

Cursive values in the table correspond to the exact numerical solution of the elastica
problem [9] and were obtained by employing the minimal amount of finite elements n.

Floating reference Absolute nodal co-
"P pI? frame formulation ordinate formulation

X

6 [ I é 5, O
u Q&"“‘* 12 EJ = » Zk —-= xr =
Wx — "m2 L L #2 L L
\\ 0.079 0.083 0.004
J

02 N 025] 3 0.079 0.083 0.004| 2
\\\ 1 0.080 0.083 0.000| 1 0.076 0.078 0.004
04 05 | 6 0.156 0.162 0.016| 3 0.156 0.162 0.016
\ N 1 0.159 0.167 0.000| 1 0.143 0.138 0.012
1 7 0.294 0.302 0.056| 4 0.294 0.302 0.056
06 \ 1 0318 0.333 0.000| 1 0.276 0.239 0.037
\ \ 2 |12 0.498 0.494 0.160| 5 0.498 0.494 0.161
-08 \ 2 0.523 0.521 0.132] 2 0.493 0479 0.154
5 |22 0.774 0.714 0.388] 6 0.774 0.714 0.388
10 0.777 0.717 0.387] 1 0.858 0.590 0.282
g _ 10 |12 0914 0.814 0.554{12 0.911 0.811 0.555
Figure 4. Cantilever beam 6 0.921 0.822 0.551] 6 0.911 0.807 0.553

55




N —

3.3.2 Motion of a flexible ellipsograph with a rigid pendulum

: Figure 5 demonstrates motion of a simplest
uﬂ | rigid-elastic multibody system consisting of an
o \ =0 elastic beam (20 finite elements, absolute nodal
0 % coordinate formulation) and a rigid pendulum
| W—__lt=03s] attached to the middle point of the beam.
(=09s| \ Parameters of the model are listed below:
oGS oo u‘?\} 04 N06 08 1 1) beam: length L=1m; density u=7800
°? \ \l[ kg/m3; cross section F=10" m? and area inertia
" LT f=06s| moment J=10" m*; Young ratio £ = 10® Pg;
=103 P Y | 2) pendulum: length L, = 0.5 m; rrzlass my=02
i -0z 1A YHYE kg; mass inertia moment J; = O.L kg-m*;
-1 s 3) simulation: step h=10"s; duration time

Figure 5. Flexible cllipsograph T= 180 s; CPU Pentium III, 650 MHz.

3.3.3. Conveyor with hanging belt
Figure 6 presents a mode! of a conveyor using UM software [6,7] and two approaches:

1) rigid multibody system (section 3.1) having about 200 bodies, 500 degrees of
freedom and 500 algebraic constraint equations;

2) finite element construction (section 3.2.1) with about 2500 nodal variables.

Figure 6. Conveyor with hanging belt: MBS and FEM models
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Efficient corrector iteration for implicit time integration
in multibody dynamics
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Abstract. In the time integration of complex multibody system models the numerical
effort is dominated by the evaluation of Jacobian matrices. The equations of motion for
multibody systems result in a special structure of the Jacobian that may be exploited
to save computing time. In the present paper several methods are summarized that have
been made available in the industrial multibody system package SIMPACK.

Keywords: corrector iteration, time integration, evaluation of Jacobian

Abbreviations: MBS - Multibody systems; DAE — Differential algebraic equation

1. Introduction

The equations of motion of mechanical multibody systems can be derived
by the principles of classical mechanics. This leads to a differential algebraic
system

p, = U, (1)
M(p)' = ¥(p,v) — G (p)A, (2)
0 = g(p), (3

where p denotes the coordinates, v the velocities, M (p) the mass matrix,
W(p,v) the vector of applied forces and momenta, G(p) the constraint
matrix and A are the Lagrange multipliers.

If the equations of motion are formulated by multibody formalisms,
which use relative and absolute coordinates p and g, they can be solved
efficiently. The state of the MBS is completely given by p and p’. The
absolute coordinates g are defined by 0 = §(p, ¢). The dynamical equations
from the Euler-Lagrange formalism together with the second derivative of
the constraint equations 0 = §(p,q) result in an index-1 system of the
equations of motion

M 0 I‘i q" \
o oTr || ]=]|0 | (4)
Ty Tp O A —£
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where I'; = 03/0p, Ty = 83/0q and £ = T'gq" + T'psp” + T'ye. The matrices
T'p, Tg and M are sparse and therefore (4) can be transformed to a banded
matrix by row and column transformations. Applying a Cholesky method
for banded matrices, the resulting system can be solved efficiently [3].

2. Time integration of constrained mechanical systems

The solution of a differential algebraic system is computed by an approx-
imation yn4) of the analytical exact solution y(t,41) at every time step.
This approximation can be calculated by a modified Newton method using
an approximation of the Jacobian matrix [1].

If complex mechanical systems are described by relative coordinates, the
computational effort in the dynamical simulation is dominated by these
evaluations of the Jacobian of the equations of motion. To reduce the
computing time the special structure of this Jacobian has to be exploited
in time integration.

2.1. TIME INTEGRATION BY DASSL: BASICS

The integrator DASSL [1] is a special implementation of BDF methods
with order and step size control. DASSL is a code for solving index zero
and one systems of differential algebraic equations of the form

F(t,y(8),y'(t)) = 0. (5)

In order to solve this DAE system (5) the derivative y/(t) has to be re-
placed by a difference approximation in every time step, e.g., the first
order backward difference leads to the implicit Euler formula

F(tat1,Yn+1, Qn;:L&) =0, (6)
n+1

where hny1 =tp41 —ts;. In DASSL the derivative y/(t) is approximated by
backward differentiation formula (BDF) of order k with 1 < k < 5.

The solution at time ¢, is calculated by a predictor-corrector method,
i.e., first there is an approximation (y,(,o.au y’ﬁ,"ll) at time ¢, specified and
after that the final numerical solution y,; is determined by a corrector
iteration.

In the corrector iteration the equation

F(tni1,Ynt1,0Ynt1 + 6) =0 (7)
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has to be sohfed with respect to yn4+1, whereas g = y’s)_l)_l - aysg)_l and the
parameter « is a constant, that depends on the step size and order of the

used method.
The solution to (7) is evaluated by a modified Newton iteration which

is given by
1
y,(ﬁf ) = Z‘/S:Z) cJ T F(tnt1, ySH-)laayn-{-—l + B) (8)

with the Jacobian matrix J. The constant ¢ accelerates the corrector iter-
ation and m is a counter of the iterates. The starting value y,(lll is known
from the predictor as an approximation to the solution.

The required Jacobian J can be written as

OF (tnt1,Yn+1,%Ynt1 +B) _ OF + oF 9)

J= = )
OYn+1 ay' 9y

The iteration matrix J is either computed by finite differences, or supplied
directly by the user.

9.2. EFFICIENT JACOBIAN UPDATES IN DASSL

In consequence of the high effort needed for evaluating the Jacobian matrix,
DASSL avoids reevaluations of J if possible. Often the matrices 8F /8y’ and
OF/dy in (9) change very little over the span of several time steps. On the
other hand, however, the parameter o changes whenever the used step size
or order of the method changes.

Instead of reevaluating the iteration matrix J on every step, DASSL uses
the old Jacobian as long as the derivative matrices and the parameter o
have not changed very much since the last computation of J.

The Newton iteration (8) which is used by DASSL in the case of using
an old Jacobian can be written as

y,(ﬂ“fl) = y51+)1 —cJy F(tn+1,yfl+)1, ayﬁ"l)l + ) (10)

where J,q is the old Jacobian, saved from some previous time steps.
If the corrector iteration fails to converge then a new evaluation of the

Jacobian matrix J is required [1].

3. Adapted approximation of the Jacobian in SIMPACK

The standard integrator SODASRT of the industrial MBS simulation tool
SIMPACK [5] is based on the public domain solver DASSL. In order to
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save computing time in SIMPACK several methods have been developed
that exploit the structure of the Jacobian in MBS applications.

3.1. DIFFERENCE APPROXIMATION OF SPARSE JACOBIANS

In SIMPACK there is implemented an adapted version of ” Algorithm 618”
of the Transaction on Mathematical Software (TOMS) [2]. This algorithm
was originally developed for estimating sparse Jacobian matrices, if the
exact sparsity structure of J is known.

In SIMPACK only an approximation of the sparsity structure is avail-
able. The exact structure could be derived from the topology of the observed
model. This, however, is not yet implemented in the present SIMPACK
version 8.5. Therefore, » Algorithm 618” is applied with the approximated
structure.

If the sparsity structure of the Jacobian is given, ” Algorithm 618” divides
the columns of J into groups, such that each column belongs to one and
only one group, and such that no two columns in a group have a nonzero in
the same row position. A partition of the columns of J with this property
is called consistent with the determination of J.

With this approach the Jacobian is not longer approximated by evalu-
ating each column separately but all columns in one group are evaluated
simultaneously by finite differences. Therefore, the approximation of the
entire Jacobian matrix costs only one function call per group instead of one
function call per column in the classical approach.

3.2. PARTITIONED EVALUATION OF JACOBIAN MATRICES

The SIMPACK integrators offer also a partitioned evaluation method for
the Jacobian J, ie., a separate evaluation of 8F/dy’' and 8F/dy in (9).
This is a standard technique in the solution of ordinary differential equa-
tions, but it turned out to be very successful for DAE’s too, since dF /8y
has a simple structure in SIMPACK due to the implemented multibody
formalisms.

The explicit formalism [5] with equations of motion

pl =, (11)
v' = M7 (p)¥(p,p') - M (0)GT (p), (12)
0 = g(p), (13)
leads to a Jacobian of the form
_ _OF OF _ In,4n, O oF
T=agit g =M 0)+ 5 (14
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with the constant @ that is determined by the order and step size of the

integrator.

If a new evaluation Jyey, of the Jacobian matrix is necessary due to step
size or order changes then the full difference approximation may be avoided
whenever at least one approximation Jyq has been computed before:

I0 oF
Jnew = Qnew ( ) + =

00 ay
I0 I0
wanew<0 O>+Jold_aold(0 O)
I0
= (anew—aold)(o O)+Jald- (15)

3.3. MBS MODELS WITH DOMINATING EXTERNAL EXCITATIONS

Recently, the partitioned evaluation was extended to approximately linear
models with dominating external time excitations u(t) [4]-

If joint coordinates are used to set up the equations of motion, then the
time excitations in rheonomic joints appear in the Jacobian matrix J. These
entries of J make the time integration inefficient, because any changes
of u(t) result in a reevaluation of J.

In order to avoid these reevaluations the time dependent entries of J are
updated whenever a partitioned evaluation is enforced, see Section 3.2.

Instead of the formulation in (5) we adapt now the standard notation
of system theory and write F = F(y,y',u(t)). Considering the explicit
formalism as before the Jacobian can be written as

_ OF oF
J = aay,(y,y,U(t)) + % (v, 7/, u(t))
_ I0 oF ,
= o} 8)+ Ewvue). (19)
By Taylor expansion the new update formula is given by
I0
Jnew ~ Jald + (anew — aold) ( O O) +
& 8§ OF
+ ; %’a;(yo, Y05 u(to)) (Ui(tnew) — ui(tod))- (17)

Accordingly, updating the entries of time excitations in J requires ad-
ditional calculation of the n, partial derivatives 0%F/8u;0y once at the
beginning of the integration.
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In SIMPACK the vector u(t) contains not only the time excitations u
themselves but also the first and second derivatives u}(t) and u!(t) for
all u;(t) acting in rheonomic joints. So the additional effort consists of
computing the partial derivatives 0F/8y with respect to u;, u} and u!.

4. Numerical experiments

The different evaluation methods for the Jacobian are tested on various
full vehicle models in SIMPACK [4]. Furthermore they were applied to a
simplified benchmark problem, a chain of mathematical pendulums.

Using the sparsity structure of the Jacobian, see Section 3.1, results in a
reduction of computing time up to 80% applied to the benchmark problem
and up to 30% for full vehicle models in SIMPACK.

The partitioned technique of Section 3.2 yields a saving of up to 60%.
Together with the methods of Section 3.1 the cpu-time may be reduced
even more.

With the new partitioned algorithm of Section 3.3 the cpu-time is re-
duced by up to 90% for a chain of pendulums. As part of an industrial
project the algorithm has been applied as well to a complex automotive
model in SIMPACK resulting in savings up to 40%.
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QUASI-STATIC MOTION OF THE TWO-LINK AND
THREE-LINK MECHANISMS ALONG A HORIZONTAL PLANE
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Academy of Sciences 101-1 Prosp. Vernadskogo, Moscow 119526,
Russia

Abstract.

We investigate the possibility of slow (quasi-static) locomotion of multi-
link systems along a horizontal plane owing to changing their configura-
tions. It has been shown in [1] that by alternating slow and fast phases
of motion two-link system and three-link system with links connected in
series can move along itself, sideways, and rotate on a spot. We prove [2]
that the quasi-static motion of a two-link system is uncontrollable and that
the trajectories of the system’s vertices are uniquely defined by the initial
position of the system. We show that there exist much enough possibilities
for the quasi-static motion of a three-link system with the links connected
in star. One can arrange a slow motion with the central vertex of the system
moving along a prescribed line on the plane.

1. Statement of the problem

We consider a two-link and a three-link systems, both lying on a horizon-
tal rough plane with dry friction force. The control torques are applied at
the system’s joints and directed perpendicularly to the plane. We consider
quasi-static motions of the systems, i.e., the motions with infinitesimal ve-
locity and acceleration. The problem is to investigate the possibilities of
slow locomotion of these systems and to find out how to drive the systems
to an arbitrary position on the plane, if possible.

Three-link system AgA; Ay A3 consists of three identical weightless links
ApA;, i = 1,2,3, connected in star by a joint with two motors generating
the control torques M;3 acting between the links AgAs and AgA;, 71 = 1,2
(Figure 1). Three point masses, each being equal to m, are located at the
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free ends of the system, and the mass equal to mg is located at the vertex
Aq. Denote by p the ratio of the masses, p = 22, and by / the length of
each link AgA;.

Figure 1. Three-link system

Two-link system A;AgA;, consists of two weightless links connected by
a joint with a motor. Let m; be the mass located at the vertex A;, i =0, 1,2
and let [; be the length of the link AgA;, j = 1,2. To avoid an ambiguity
we suppose that myl; # mal,.

We will use the unified notation and equations of motion applying both
to the two-link and to the three-link systems. Let F; be dry friction force
acting at the vertex A;, M; the moment of this force, and v; and v; the
velocity vector of the vertex A; and its modulus, i = 0,1, 2, (3). Dry friction
force obeys Coulomb’s law written in an appropriate system of units as

-vi/vi,, vi#F0 .
Fi= { Ve,le|/< 1, v i 0 1=0, 1’2’ (3) (1)

A necessary equilibrium condition for each of the multi-link system is ex-
pressed as follows:

2(3)

>_Fi=0 (2)
0

2(3)

Y M;=0 (3)
0

If this condition is satisfied, then we can uniquely choose the control
torque for the two-link system (the control torques M;s and Moz for the
three-link system) such that the equilibrium condition for each link of the
system is also satisfied. The velocities of the vertices are subjected to the
following constraints:

(V,’ — Vo, AOAi) =0, = L,2,3 (4)
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The system of equations (1) —~ (4) governs the quasi-static motion of the
two-link (three-link) system. The solution of (1) - (4) is a triple (a four) of
vectors (vg, v, V2, (V3)).

2. Slow Motions of the Two-Link System

Let v be the angle between the vectors AlAé and AOA;, v € [-m,7]. The
projections of the velocities v; onto the axes of a coordinate system attached
to the link AgA; depend only on the angle 7.

Proposition 1. The solution of the quasi-static motion problem (1)-(4)
is uniquely defined by the position of the two-link system.

The trajectories of the system’s vertices are uniquely defined by the
initial position of the system. Let I-, I1-, and I/I-motions be the motions
of the two-link system with 1,2 and 3 moving vertices. Let I*¥ and II*
be I- and II-motions with the vertex A moving, £ = 1,2 (when ITk-
motion occurs, the vertices Ag and Ay are moving). Denote by 'yf“j the angle
separating I*-motion and J*-motion, i.e., such an angle that if v < fyfj then
I*-motion occurs and if 4 > ’yz-kj then J*-motion occurs (quasi-static I*- and
I I3-motions with i # j never follow each other).

We omit here the description of the full solution of (1)-(4) and the
expressions for 'yz’; We will outline some featuers of the quasi-static mo-
tion. When quasi-static //-motion occurs, one end vertex A; moves along a
straight line such that the distance between the line and another end vertex
A;j is equal to Eﬂll—fl When quasi-static ///-motion occurs, the vertices A;
move along the straight lines which intersect at one point. The trajectory
of each vertex consists of the smoothly joining straight line segments and
the arcs of the circles. The sequence of the motion phases depends on the
parameters of the system. It may look, for example, as I' — II! or as
II* » ITT — I?* — II? — I1I — II* for v increasing from 0 to 7.

A,

Figure 2. Two-link system with equal masses
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As an example, consider the two-link system with equal masses m; =
mo = my. Let I < {1/2. Then II*-motion occurs for v € [0,v%], I11-
motion occurs for v € [v}5,73,], and I*-motion occurs for v € [y2,, 7). The
trajectories of the vertices for vy € [0, 7] and the two-link system positions
corresponding to ¥ = 0,72, v2,, 7 are shown in Figure 2.

3. Slow Motions of the Three-Link System

Consider first slow motions of the three-link system with fixed vertex Ajp.
We will not try to describe all such motions but will find only some motions,
depending on the parameter p.

Proposition 2.

(i) Let in both the initial and the terminal states of the three-link system
the position of the link AgA; be the same and let the other two links
be close enough to each other, i.e., LA3ApA3 < 2arcsin £. Then we can
quasi-statically drive the system from the initial state to the terminal one,
with the link AgA; being fixed and the other two links rotating in turns
remaining close enough to each other.

(i) Let in both the initial and the terminal states of the three-link
system the position of the vertex Ao be the same and let all three links are
close enough, i.e., for Vi 35 # i such that LA;AgAj < 2arcsin §. Then we
can quasi-statically drive the system from the initial state to the terminal
state. At each time instant, one of the links rotates and the other two links
are fixed, all three links being close enough to each other.

(iii) Let 4 > /3. Then we can quasi-statically drive the three-link sys-
tem from an initial state to an arbitrary terminal state with the same
position of the vertex Ag, with two link being fixed and one link rotating
in turns.

Consider now motions of the three-link system with moving central
vertex.

Proposition 3.

If p > 2, then the quasi-static motion of the three-link system with
moving central vertex is impossible. If 1 < 2, then there exists an infinite
set of solutions of (1)-(4).

3.1. EXAMPLE : LOCOMOTION WITH = /3 AND p < 1

Consider the three-link system with u = /3 and describe its motion with
the vertex Ao moving along a straight line Iy, Ag € lp. First, turn the links
so that AgA; L ly, LA3A0A; = %’i, and the distance from the point A,

to the straight line AgA; is equal to 1 — 52@ (see Figure 3). Denote by I;

the straight lines, 4; € [;, I, L Iy, I3 | 12, Lloly = g and let v; € [;. Then
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the equilibrium conditions of (1),(2) are fulfilled, and the vertices can move
along the lines /; while the constraint of (4) is satisfied. The motion comes
to a complete stop when AgA; L lp, the vertices Ay, Ag, A3 lieon a straight
line and £A; AgAz = 75. To shift the vertex Ag along the line [y again, one
should turn the links to bring them to the positions parallel to those before
the first shift. At any time instant, one can stop the motion and change
the direction of vo. Hence, the central vertex can move along a prescribed
broken line on the plane.

Figure 8. Locomotion along a straight line, = V3
Consider now the three-link system with g < 1. Let at the starting
instant the positions of all three links be the same and let us want to shift
the vertex Ag along a straight line lo.

Figure 4. Locomotion along a straight line, p <1
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First, we turn the links so that all of them lie on Iy and coincide with
each other. Then we fix the link AgAs and turn both links ApA; and AgA,
to the same position which is opposite to the link AgA3. Then we begin
to move aside the links AgA; and AgA, symmetrically with respect to the
axis ly. While LA AgA, < 2arcsin %ﬁ, the link AgAs remains fixed. When
LA1ApA, € [2arcsin 1%, n] the vertices 4; move along the straight lines

[; and ii, © = 1,2 and the vertices Ay and A3 move along ly. At the end
of the motion, the positions of all links are the same again and the motion
direction may be changed. Using this motion algorithm, one can drive the
three-link system to any prescribed state on the plane, but the trajectory
of the central vertex cannot be chosen arbitrarily.
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KINEMATIC ANALYSIS OF MECHANISMS IN THE NEIGHBOURHOOD OF
SINGULAR POSITIONS USING GENERAL NUMERICAL CONTINUATION

METHODS.

J. FRACZEK
Warsaw University of Technology
Nowowiejska 24, 00-665 Warsaw, POLAND

1. Introduction

The algorithm of kinematical analysis in absolute coordinates is usually based on the
trajectory tracing using time as the independent parameter and classical Newton
iteration scheme [2]. In case of analysis of complicated mechanism, simulation usually
fails in singular positions and the reason of that cannot be easily detected by the user.
Simultaneously singular positions analysis can provide interesting information from the
mechanism synthesis and control system synthesis point of view.

The paper presents an algorithm of numerical continuation using local parameterization
instead of time parameterization. The simplest cases of singularities like simple
bifurcation points or turning points can be detected and analyzed. The main idea is to
analyze firstly mechanism using time or local parameterization with test function being
responsible for singularity detection. The trajectory can be investigated in detail in the
intervals suspected for bifurcation or turning points detected by test function during
introductory simulation.

The example of such an algorithm was implemented by author in his test computer

program.
2. Classical algorithm of kinematical analysis

The collection of all constraints induced by the joints present in multibody model is
denoted by [2], [3]:
$“(q,1)=0 M

and q is the vector of absolute generalised coordinates [3].

The number of scalar equations in (1) is equal to / and the number of generalized
coordinates is equal to N=6m where m is the number of rigid bodies (three variables for
rotation parameterization are used). Typically, /[<N.

A motion is represented as a time dependent constraint equation (driving constraints):

69




$7(q,1)=0 03
Revisiting the definition of the position, velocity and acceleration kinematic constraint
equations, for constraint equations induced by either joints or motions in the most

general case the following equations must be satisfied at any time ¢ (position level
analysis):

¥ (q,1) =["’ (‘*”)} -0 3)

and (velocity and respectively acceleration level analysis)

d—cb;gj"—t)=<i>(q,t)=<l>q<1+<l>,=0 )
d*d (B @) e drd b G e
=24+ (®,4),9+2®,q+®,=% G-T=0 )

If constraints (3) are independent in the point §, =[qq’,20)" (regular point) i.e.:
rank (& )=N ©)

then exist unique solutions of linear systems (4) and (5) and nonlinear system (3) in the
neighbourhood of the point §,=[q,’,#)’. From numerical point of view the kinematical

analysis of the system described by (3) can be considered as a numerical tracing of a
trajectory 7' such that:

T={q=[q",0] :®(@)=0, q=q(t), t,<tr<t, GeR"" } (7

In general, numerical tracing of the trajectories (7) is the subject of numerical
continuation methods [1]. One of the simplest methods is Euler predictor-Newton
corrector scheme. Classical Newton corrector can be defined in the form:

® (q“.1")4q" + @ (q*, ") =0 (8)

The iterative algorithm (8) is numerically very efficient under strong assumption that
condition (6) is fulfilled (i.e. all points of the trajectory are regular) and if good starting
positions is chosen. In case the trajectory contain singular points, equation (8) becomes
ill-conditioned and simulation usually fails.

We will discuss very simple cases of singular configurations and propose algorithm for
numerical detection of such points. For simplicity it is assumed that redundant
constraints are eliminated from the system (3).
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3. Singular positions — examples. Multilink robot analysis and synthesis

Practical example of singular behavior is multilink robot structural synthesis and
analysis. The multilink robot designed in IAAM consists of several sets of bodies called
segments. The robot was primarily intended to weld car body in places, which are not
easy to reach. Each segment is built of rigid parts and its kinematical scheme is given in
the Fig. 1. The segment consists of » rigid parts connected by spherical-translational (II-
th class) and revolute joints. The mobility of the segment (Grubler number) does not
depend on number of rigid bodies and is always equal to 2. The segment does not
contain redundant constraints. The 2,3 4 (generally m) segments with different or equal
number of bodies can be connected giving manipulator with Grubler count equal to 4,6
and 8 (2m) respectively. '

The kinematical structure of the robot is investigated for different trajectories of the
robot tip. The initial position of the robot is known.

Figure 1. The kinematical scheme of one segment of the multilink robot. The mobility (Grubler number)
is equal to 2 and does not depend on number of rigid bodies.

It is assumed that multilink robot is built of three segments (6 DOF total) with different
number of bodies in each of the segment - equal to 6,8,10,12 and 14 respectively. Robot
is driven in revolute joints — two driving torques in the lowest revolute joints (at the
base of the segment) for each segment. The relative positions of kinematical pairs of the
segments are parameterized in certain range. For kinematical and structural synthesis
the one of the trajectories obtained from technical specifications of the welding process
was chosen.

The kinematical and structural synthesis consists of three tasks: checking whether
trajectory is accessible for given structure and dimensions of the robot (detection of
lock-up positions), detection of singular positions of the robot and particularly positions
where kinematical parameters of robot links are not continuous function of time and
determining the relative angles in the selected revolute joints (with actuators) as the
function of time (inverse kinematics).

Two kinds of singular configurations are shown in the Fig. 2 and Fig. 3. Figure 2
presents results of simulation of kinematical analysis for robot consisting 6 bodies in
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each segment carried out with commercial multibody package (ADAMS). The planned
trajectory is not accessible for that structure of robot due to the lock-up configuration
detected for time of simulation equal approximately to 1.5s.
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Figure 2. The results of simulation for robot with 3 segments consisting 6 bodies. Lock-up detection: a)
robot position in lock-up configuration, b) diagrams of velocities and acceleration of cm marker of one of
the robot body (3rd segment).

In the Figure 3 the results of simulation of robot with 8 bodies in each segment are
shown. The diagram of velocities (Fig. 3c) indicates that in time of simulation equal to
2.54s solution of the kinematical task switches discontinuously from one branch of the
solution to the another. Figures 3a and 3b show two consecutive positions of the robot
confirming discontinuity of the solution obtained from simulation with multibody
package.

4. Branch tracing using numerical continuation methods

The Newton corrector (8) can be replaced with more general corrector given by:
¢ =q' -¢;@H®@") i §'=g" ©
where (.) * denotes pseudo-inverse matrix (Moore-Penrose) [1].

Pseudo-inverse matrix can be calculated efficiently using inverse matrix to matrix J
given by the formula [1]:

- [q»q d»,]“ ) r R K YL S K Xa

T - - -
~ste’ ! 5"

Tx -
I },szg——ed’q@, (10)
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Figure 3. The results of simulation of multilink with 3 segments consisting 8 bodies. At time=2.54 s
singular position and switch of the solution from one branch to the another can be observed.

a),b) The animation sequences of robot in time=2.54s and time=2.55s. ¢) diagrams of position, velocity
and acceleration of cm marker (z axis) on one of the robot body (in 3 rd segment).

In order to trace trajectory (branch) numerically, local parameterization strategy was
chosen. Instead of the time parameter other parameter is chosen as independent. For

parameter choice the parameter ¢ in the formula (10) is responsible. The independent
parameters are constant in the intervals of time. Moore-Penrose matrix can be calculated

efficiently with the formula:

5 =@-ss )™y - an

where s is tangent vector and (J7'), denotes submatrix of matrix (10) consisting of the

first N column.
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It should be pointed out that, in the algorithm of matrix J™' evaluation, sparsity of the
matrices can be easy exploited. To detect singular configuration we define two simplest
cases of singularities — turning point and simple bifurcation point [1].

Point q,=[qy",19]" such that $(q,)=01sa:

1. Turning point (limit point or fold bifurcation) if rank (P ¢) =N-1 and rank ($ 3)
=Nand there is a parameterisation q(z), #(7) with q(z%)=qo and #(z)=t, , and
d’t/d7 0.

2. Simple stationary bifurcation point if rank (% ) = rank (& 4) =N-1 and exactly two

branches of solutions intersect with two distinct tangents.

If during branch tracing turning point is detected, Jacobian matrix $, becomes
singular, but numerical scheme defined by (10) and (11) can still be applied on
condition that time is not independent parameter,

For bifurcation point detection the test function ¢ is introduced which is evaluated
during the branch tracing. A bifurcation is indicated by a zero of ¢ - that is a branching
test function satisfies the property ¢=0 [4]. For the branch tracing given by iterative

.
scheme (10) the test function can be proposed in the form ¢ =det(j;‘). This

expression can be evaluated very efficiently taking into consideration sparsity of the
Jacobian matrix & .

In the close neighborhood of the bifurcation point singular position can be evaluated
with grater accuracy using direct or indirect method for calculating branch [4]. In direct
method the equation set can be extended to the new branch system [4]:

®(q,7)
®(Y) = ®,(q,0)h|=0, Y=[q,,h"] (12)
h, -1
where h is a tangent vector.

System (12) can be solved using efficient numerical solvers for sparse matrix equation
and Newton-like iterative scheme.

It should be pointed out that presented algorithms can be also used for branch switching
1.e. calculating one (at least) solution on the emanating branch. If one of one solution is
situated somewhat close to the bifurcation point then other solution on the emanating
branch can be found using techniques of perturbations widely used in numerical
continuation theory [1].
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Using general techniques for branch tracing and switching described above the general
numerical test program was developed. Its idea was based on the research package

named BIFPACK [4].
5. An example of singular point detection.

The model of multilink robot was analysed this time in the author computer test
programme. Kinematics of the robot was described in the absolute coordinates and joint
constraints. In the Fig. 4 one of the simulation results is shown. The turning point is
detected, which is geometrical interpretation of the lock-up position of the mechanism.
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Figure 4. Global coordinates (x, z) of the last link centre of multilink robot.

6. Conclusion.

The algorithm based on local parameterisation is proposed in the paper. Two cases of
singular points like turning point and bifurcation point can be detected with this
algorithm. Moreover branch switching can be easily implemented. Basing on the
presented formulas computer test program is built which can be prototype for general
multibody module intended to detailed analysis of simple singular points. Detection of
singular position is extremely important e.g. in robotics where control synthesis or
actuator synthesis requires this type of information.
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MECHATRONIC APPROACH FOR SIMULATION OF ROBOTS AND
WALKING MACHINES

Krassimir E.Georgiev — Assoc. Prof. Dr. Eng. , IMEH BAS
Teodora Ivanova

ABSTRACT
This paper present a new mechatronic approach to simulation of complex

multibody systems, based on virtual modelling of manipulation robots and
walking machines. Some basic examples concerning to robotized assembly
systems and devices are described.

1.INTRODUCTION

The typical mechatronic system has at least some of the following
features:[1,2,3]

B Immediate effect on the environment by controlled motion or application of
the technological forces ,

W Level of adaptivity, flexibility, reprogrammability and inteligence,

W Modular structure, built on the basis of optimization criteria for low energy
consumption, high speed motions and high accuracy of positioning

W In-built modules(mechanical, sensor, driving, control) as a system of the
whole structure..

Multysensor robot systems and robotized assembly structures are typical
objects of mechatronics and are characterized by a great complexity and an
improved functionality, which is achieved by an integration of mechanical,
electrical and electronic functional elements. All avaiable physical principles
are to be considered for an optimal solution. Mechatronic systems achieved
their performance by integration on two leveles:

M Integration of the optimised components, using information processing
.The design of such systems on the level of transfer and state functions is the
task of system theory

W Integration of the functional components into the structure of the
mechatronic  system, which is optimised as a whole ,including the
capabilities of information processing [4,5,6,7,8].

2. HIERARCHICAL APPROACH TO INTEGRATION
OF MECHATRONICAL SYSTEM

In a complex robotic system the essence of the multisensor (actuator}
integration is data reduction and data fusion. The creation of a mechatronic
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system can be viewed as a network of interconnected processing sub-systems,

by using of various sensors,actuators and processors. From the processing

subsystem viewpoint the integration consists of:

-Hardware design of sensors,actuators and processors,

-Signal and image processing,

-Dynamic control,

-Mathematical modelling,

-Development tools for subsystem design,

B Real time operation.

The following tasks must be solved as algorithmic base of the suggested

approach :

B knowledge representation of the information and processing ,

B system satisfaction of real-time constraints imposed by the environment -
virtual architecture of the mechanical and processing subsystems,

B physical architecture of the actuators, sensors and processors,

B software (hardware) tools for virtual simulation and optimization

3. MECHATRONIC UNIT FOR ADAPTIVE ASSEMBLY

3.1. Integrated design of structure and control

MATLAB software package provides powerfull tools for design of
mechatronic systems. Here we suggest an integrated approach to synthesis by
applying of kinematic and dynamic components ( offline knowledge base ),
connected in virtual world, which is displayed on the graphic components. Then
we create “virtual robots” that simulate the robot, s behavior and
manufacturing cell as well ( cooperating robots in the tasks of manufacturing ).
This process is performed in a sequantical way on a power computer with
graphic vizualization ( Fig.1).

Figure 1. Virtual simulation of mechatronic structures
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After off-line simulation of the closed loop, s block diagrams in
SIMULINK the verification of new control strategies with the real plant can
be done in a few minutes.

3.2. Structure of the mechatronic unit for adaptive assembly

Mechatronic unit for adaptive assembly, consists of mechanical, sensing
and control subsystems [ 4,5,6 ]. The mechanical system is designed by two
robots - main and assisting and basic station. The main robot is of PUMA type,
built from the basic type components and to increase the adaptive possibilities
of the robot, a mechatronic adaptive device is applied [ Georgiev,1995]. The
main robot (Mr) is designed to convey the components of the assembled parts
and to perform the assembly.(Fig.2)

The assisting robot (Ar) is of SCARA type, designed to provide for fast
transportation and positioning of the based assembly parts. This robot is
characterized with two zones of the action - technological (for direct assembly)
and auxiliary (for feeding manipulations).

olojolo}

Figure 2. A structure of mechatronic unit

The basic station (Bs) is coupled with six component force-torque sensor
and is applying for precize measurements of the contact forces and fine
positioning during the assembly of the components .
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The mechanical part influences the environment and so it can be perceived as
a set of effectors. The mechatronic unit gathers data about the environment by
using sensors - force and optical, so we assume the unit to be decomposed into
three subsystems:
effectors ( robot arms,tools and devices ) - E ,
sensors - S,
control - Q.

Then the state of the system can be described as:

U={ ES.Q} (1)
where U, E, S, Q are usually expressed as state vectors.
3.3. Modelling of the mechatronic unit

At the modelling the following assumptions are made:

-We considered a robot to be a device, which applies desired contact forces in

a controlled way. These forces are specified in three translational and three

rotational directions of some cartesian reference frame.

In the design and simulation the main object is to create an interactive
package that can be run in tandem with a physical robotic world. The
description of the object model is devided into four categories:

A) The dynamic module, related to forces required to cause motion.It includes
data such as internal forces, coriolis forces and the kinetic energy matrix.

B) The kinematic module includes data, such as joint angles, velocities, the
jacobians and transformation matricies, which can be used to calculate
parameters, such as the position and velocity of the robot endeffector

C) The geometric module stores the geometric description of the assembly
structures, building the mechatronic unit.

D) The graphical module determines the visual image of the objects in a
graphics output.

For modelling and simulation it is necessary to compute joint acceleration

from joint positions and velocities from the actuator torques

or forces. The control algoritms also involve the computation of the dynamic

model. The common base for this is the Newton - Euler algorithm( formalism ),

which implies two recursive computations :

a) forward recursion from the base to the robot endeffector (computing

the velocity and acceleration of each link ),

b) backward recursion from the effector to the robot base (computing the forces
and torques to each joint).
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For fast and accurate motions of main and assisting robots is necessary to
compute in real time the controlled torques as functions of the coordinates.

Taking into account the force and moment , acting on the endeffector of the
main robor M, - F., n, ( assembly force and moment ) as initial
conditions, we obtain an effective algorithm for the modelling of two robots, as
a dynamical subsystem of the mechatronic assembly unit.

3.4. Multiprocessor control and integration

As we notice in our approach to integration of mechatronic systems is
suggested to use multiprocessor control system for assembly robots and basic
station.In such way is possible to execute several tasks of motion planning and
fine positioning simultantny , using so called satelite processors and the
interprocessor comunication. In the case of highprecizely assembly operations
is necessary to measure on - line a large volume of contact forces, and to
perform fine positioning by the basic station, using so called active compliance.
( Georgiev,1994)

The direct dynamic model is used to simulate the responce of the robots.
Using the equation :

T =Ag +B(q,q)q+Q (2)

where : B- represents the centrifugal and coriolis force vector, Q - gravity
force vector, A - inertia matrix of the robot, T -torque vector.
We get :

q=A [T - H(q q)] (3)

where : H(q, )= [B(q, q )+ Q+J".F +N] (4)
F; - the friction forces , N - external effort ( force and moment )
also can be written :

i[q = q +[ _J.T _ (5)
dt q __1 *

—A"".[H(q,9)]
and y=q, y= X.

In this representation the state variables are represented by the vector
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[qT q T1, while y= q gives the output in the joint space, and y = X gives the
output vector in the operational space. The calculation of H (g, q) can be

obtained by the Newton - Euler algorithm, noting that H(qg, q) =T, when q=0

4 . CONCLUSION

The multiprocessor control gives a variety of possibilities to determine when
the tasks start and when they can be stopped. This was done by integrating
classical control structures with reactive ones and synchronisation schemes of
the robot tasks.The global control scheme
is based on the knowledge that robot tasks are made of a connected set of
elementary tasks (components), for example Jacobian matrix, error vector
computation , etc.

REFERENCES

1.Burr J.,(1990) A theoretical approach to mechatronics design, Institute for
engineering design, Techn. University of Denmark, Lyngby,.

2.Galabov V., et al., (1992) Mechatronic approach to synthesis of mechanisms
in robotics, Proceedings of the 5" Internat. youth summer school ”Application
of mechanics & biomechanics in mechatronics”, Varna

3.Kallenbach E.,(1993), Mechatronic — Systemintegration, Proceedings of the
38 th IWK, Ilmenau, Germany.

4.Georgiev Kr.,(1996), Robotic cell for measurement and adaptive assembly,
Proceedings of 6" International symposium “Measurement and control in
Robotics “,IMEKO , Brussels,

5.Georgiev Kr.,(1995),Development of a mechatronical adaptive device for
assembly robots, Journal of Intelligent Mechatronics, vol 1, No.2, Ankara
6.Georgiev Kr.,(1994), Robotic adaptive unit  for precize  assembly
Proceedings of the seminar of TU-Vienna on “Handling and assembly

of microparts”, November 1994, Vienna.

7.Featherstone R.,(1987),Robot dynamics algorithms, Kluwer Acad. Publ.
8.Honekamp R.et al.,(1997)., Structuring approach for complex mechatronic
systems, Proceedings of ISATA ,Florenz,VI.1997.

82




Yves Gonthier Yves.Gonthicr@space.gc.ca
John McPhee McPhee@real .uwaterloo.ca
Christian Lange Christian.Lange@space.gc.ca
Jean-Claude Piedbceuf Jean-Claude.Piedboeuf@space.ge.ca

A Regularized Contact Model with Asymmetric Damping
and Dwell-Time Dependent Friction

University of Waterloo

&
Canadian Space Agency

CSME Forum 2002, May 21-24, 2002 at Queen's University, Kingston, Canada
http://conn.me.queensu.ca/~csme2002

Presentation Outline

e Motivation

e Contact Model: Hertz Theory

e New Damping Coefficient Definition
e New Friction Model

e Simulation Results

e Conclusion

83




Spectal Purpase Dexveraws Manipulator

Regularized Model: Hertz Theory

e Solution derived from the theory of
elasticity

o Stiffness force models for bodies
with
— Non-conforming shapes
— Smooth surfaces (i.e. no edges)
e For sphere-sphere contact
fi=kx,"
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Regularized Model: Hunt-Crossley

e Hertz model + hysteretic dampihg
fo=kx!+(2x" )s,
e Can be re-written as
f.=kx (+a%x,)
e Where

a=2=2a  e=-Y2=1-av, (Goldsmith)

V.

i

SN
N W

0 =0.8-032 [s/m]

Regularized Model: New Model for a

e Solve ODE
mi +kx'(1+ax,)=0
e Separation of Variables

Jl ja"x'l dx, +i -‘-kx,f’dx =0

— Solve for a in terms of v, v,
— Independent of stiffness model exponent
— Can also solve for x, ...
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Regularized Model: New Model for a

e Solution:

Damping Factord
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Regularized Model: New Model for a

e Force response curve
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Regularized Model: Friction Model

e Rabinovicz experiment

' Q_— O

— Vectorized bristle model includes:
+ Dahl effect
» Stribeck effects
» Stick-Slip Effect

— Dynamic behavior: dwell-time

Position (m)

Friction Force (N)

Regularized Model: Friction Model

e Rabinovicz experiment
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Hertz Theory: Complete Model

e Simulation resuits

yim] 0 08 x[m] 0 ! Yime fs] I
~ Bounce: e=0.5 No rolling or
— Sticking and rolling Sl?in_ning
— Friction direction changes friction!
Conclusions

e 3D Contact model includes
— Normal force and damping
— Tangential friction
o New definition for damping coefficient
— Works for high & low coefficient of restitution
— Exact solution of the ODE
o New friction model
— Stick-Slip transition
— Dhal and Stribeck effects
— Frictional lag (dynamic friction)
— Resulting ODE is not stiff (can use explicit solvers)
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MULTI-BODY HUMAN MODEL
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Univerzitn{ 22

306 14 Plzen

Czech Republic

1 Introduction

In last decades car industry is quickly developing. That is why a strong em-
phasis is taken into account for the safety of the traffic. Cars are equiped by
safety belts and recently frontal and even side airbags begin to belong to stan-
dard equipment of most cars. Those belts and airbags must be validated by
experimental tests which are expensive. To exchange those tests by simple cal-
culation was just couple years ago impossible because of considerable extensive
task. By intense development of the computers is this task possible today. From
the point of mechanics an available method is chosen and a numerical model
is implemented by computer. The work shows development of the numerical
human model which is necessary to improve the car safety in comparison to the
dummy numerical models which exist since more time but they are not enough
"biofidelic” to represent the human behavior.

2 Objectives

The aim of the human articulated multi-body model was to divide the human
body model given by meshed geometry into the rigid bodies corresponding to the
real human body parts including inner major organs and tissues optionally, to
give them right physical properties, i.e. masses and inertias, and connect them
with well calibrated joints and contacts. Furthermore a mobile shoulder joint
was added and improved including passive muscle bars. The human articulated
rigid body model is structured like existing articulated rigid body dummy model,
HYBRID III 50% [4]. It uses anthropometric data found in the literature [3].
The model is based on the finite elements under the PAM-SAFE ™ system.
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3 Basic Human Model

The meshed geometry of skin, skeleton and the surfaces of inner organs and tis-
sues (optionally) are taken into account based on [5] kindly provided by the ESI
company. The skin has the importance as the contact surface when running the
sled test. The skeleton is used rather more for the visual effect, however it helps
to deduce the approximate joins locations. The organs can predict acceleration
inside during any human activity and serve as a, background for more elaborated
deformable models. The anthropometric data other than skeletal and outer skin
geometries, such as segmentation into 15 segments with 9 different segmentation
planes, 10 different segment origins and coordinate systems, segment centers of
gravity and principal inertia axes, segment masses and inertias and joint loca-
tions and axes, ranges of motion and resistance of motion for a mid-sized male
human were taken from [3]. The skeletal and muscular anatomy of the added
shoulder joint, including the clavicula, scapula, thorax and humerus bones ge-
ometry, joint locations, excursions and orientations, as well as the muscles that
connect the mobile shoulder parts, the scapulae, to the trunk and to the upper
arm, are based on data found in Kapandji [2] and in Gray’s anatomy [6].

Figure 1: Car sitting human model

To detect dynamical properties of inner organs and tissues, a simple experi-
ment on a mid-sized cadaver was done. After weighting and volume measuring
of particular organ or tissue, uniform density was computed. The density was
a input to the Gauss-Ostrogradsky’s theorem for dynamical properties compu-
tation. The theorem was used because of the surface mesh of inner organs and
tissues.

All materials except muscles are simplest materials without any resistance
since the existence of rigid bodies. In order to provide a continuous outer skin
contact surface under articulated motion, certain sets of facets were introduced.
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Those facets do not belong to one single rigid body but they connect corre-
sponding nodes of skin portions between different articulated rigid body parts.
That permits the nodes of these facets to move freely with the respective rigid
body to which they are attached while the connected facets bridge the gaps
between the skin of adjacent articulated members and can serve as continuous
freely deformable contact interfaces.

4 Multi-Body System

The human geometry has been divided into 9 parts, namely head, neck, upper
part of body, lumbar spine, lower part of body, left arm, right arm, left leg and
right leg. The arms and legs contain subparts, namely lower and upper arms,
hands and lower and upper legs, feet, respectively. The basic model contains 21
rigid bodies corresponding to parts or subparts mentioned above, namely head,
neck, upper part of body, lumbar spine/abdomen, lower part of body, left and
right clavicula, left and right scapula, left and right upper arms, left and right
lower arms, left and right hands, left and right upper legs, left and right lower
legs and left and right feet. The centers of gravity, inertia axes, masses and
principal inertia axis and principal moments of inertia were obtained from [3].
There is a contact defined between bodies which are supposed to contact during
motion.

Concerning inner organs and tissues, there are brain, larynx, trachea, lungs,
heart, diaphragm, liver, spleen, gall bladder, stomach, intestines, kidneys, adrenal
glands, urinary bladder and prostate modelled as 18 particular rigid bodies.
They are connected by soft and tied conntacts. In order to have proper dy-
namical characteristics of the outer body parts, they were corrected based on
dynamical characteristics of inner rigid bodies.

5 Modelling of Joints and Ligaments

For the location of joints the dummy described in (3] was used. From the
HYBRID III 50% data set, the method defining the local frames was used. The
kinematic joints provided by the PAM-SAFE ™ solver were used for added
CPU efficiency. The shoulder complex combines two kinds of joints, namely

¢ anatomical joints, which are defined as joints between two bones, included
in shoulder, which are controlled mainly by ligaments (the gleno-humeral,
sterno-clavicular and acromio-clavicular joint),

* physiological joints, which are defined as joints between two bones or
connected parts without capsula and ligaments and which are controlled
by contact surfaces, sliding interfaces, ligaments, tendons and muscles
(the scapulo-thorasic joint and the secondary subdeltoidal, costoclavicu-
lar joints).
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The anatomical joints can be modelled with a numerical joint element group
up to 6 degrees of freedom of which are brought in correlation with its anatom-
ical capacity of motion. We used 3 rotational degrees of freedom. The model
contains 4 flexion-torsion joints situated in the spinal column and 16 spherical
joints in shoulders and extremities. It is assumed that their centers of gravity
are fixed. The different properties of the anatomical joint such as the elasticity
of the ligaments and capsulae, values for friction, cartilage, damping etc. are
taken into account in the material properties of the numerical joint elements.

The physiological joints are controlled by sliding interface surfaces and by
passive and/or active muscle action. For that joint type muscle modeling be-
comes important and necessary to simulate their kinematics, resistance and
excursion. The subdeltoidal joint being just a subsidiary joint in relation to the
main gleno-humeral joint is not represented in the model. On the other hand,
the scapulo-thorasic joint is modelled in detail with sliding interfaces situated
between the anterior surface of the scapula and the posterior surface of the rib
cage and between the posterior surface of the scapula and the dorsal skin inner
surface and with muscle bars for all muscles which link the shoulder complex to
the trunk.

The ligaments are modelled using tied contacts between particular organs
and tissues. Soft contacts are added to avoid mutual penetration between par-
ticular organs and tissues.

-
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x(me] il

Figure 2: Head and thorax accelerations compared to experiment

6 Validation

The validation is based on a test conducted by Kallieris (1]. The model is seated
on a rigid seat and restrained by a three point belt system and an airbag. The
car interior parts (cushion seat, back seat, floor panel, foot rest, instrumental
panel, steering and wind screen) are modelled as flat fixed surfaces contacted
with body parts. The car interior matches the BMW series 3 car. The belt
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system is modelled as assembly of bars. Airbag is modelled as a standard model
in the PAM-SAFE ™ gystem. Acceleration measured during experiment was
applied to all centers of gravity.

0 ms 30ms 60 ms

90 ms 120 ms 150 ms

Figure 3: Sled test computational results

7 Conclusion

The model can serve as a basic model for more elaborated human articulated
rigid body models. The human articulated rigid body model can also serve
as the locally detailed finite element model of various body parts. If grafted
onto the human articulated rigid body models, the refined parts can be studied
under realistic kinematic boundary conditions as they result from the overall
kinematic motion response of the body.
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1. Introduction

The analysis of dynamics of an electromagnetic vibrating drive with a control system is
represented. The behavior of a system is shown at a modification of magnitude of an exterior
force. Vibrating technologies is widely used in different industry applications [1,2,3].

The research of dynamics is based on the diagrams of bifurcation and Lissajous curves. With
introduction of a loop of a feed-back the amplitude of oscillations of the executive link of a
vibrating drive is supported at a constant level at a modification of a technological force. The
same behavior of a system of an electromagnetic vibrating drive is characteris;tic at
magnification of an exterior force up to an installed maximum value obtained in an outcome
of numerical simulation. At as much as possible maximum safe loads, are observed vibration

shock modes of operations.

2. Mathematical model

In this paper we investigate electromagnetic vibrating drive with nonlinear elastic suspension
and system of active control of vibrating motion. As usually if we use passive drive the
amplitude depended on forces that act on the executive element of drive When the loading
increases the amplitude go down. Sometimes such process is not acceptable. For decision of
this problem we use active feed back control system. The scheme of drive is shown on fig.1.
on the scheme we can see vibrating mass m, nonlinear suspension with corresponding
reological parameters. General coordinate X describes motion of drive. Electromagnetic force
F acts on the mass from side of electromagnetic coil. Sensor D measure acceleration and
velocity of mass and gives information to the control system for modification of electrical
feeding.

For description of dynamic of motion of this electromechanical system we use Lagrange-

Magswell equations.

mx+ px+cx=F,

In—mazi.

DA Ex)(2+Ks) _
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7S (1)
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Figure 2. Characteristic of elastic force in dependence on displacement
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The system moves with accordance of next procedure: mass m vibrate under action of the
electromagnetic force. Sensor D is placed on the executive element. Signals from sensor came
to the control system. We consider very important for practis case when amplitude of
executive element should be constant and independent on external forces.
Let electromagnetic force depends on time with accordance of a formula:

U = U0+UTsin(kt) )

Where, UO-constant strain of feeding, Ul-amplitude of changeable feeding.

In this case, we have two parameters of regulation Ul and U2.

During increasing of forces on executive element , where sensor is placed, amplitude of
executive element decreases. The control system measures level of middle acceleration and
changes the parameters of electrical feeding of electromagnet. We investigated different
control strategies. One of them is shown below. Criterion of quality of control system in this
case is the function F-minimum of differences between curves on fazes square which we got
for various loadings.

Actually we should determine of the lows of changes of regulation parameters U0,U1 in
dependence on middle acceleration a=1/T.

U0=Ul(a) (3)
U1=U2(a) 4)

For approximation of formulas (3),(4) are used linear:
U=ba+tc; (5)

where U={U1,U2}, b={B1,B2},c={cl,c2}
and non linear strategy:

U=c+ba+Da’ (6)

where D={D1, D2}

We should to determine parameters of vectors b, ¢, and D, which minimize the function of
mistakes F. For decision we used the technology of multi dimensional sound probes in the
space of changeable parameters b, ¢, D. On this stage we got analytical dependence of

function:
F=F(b,c,d), (7)

and after getting of a response surface F(b,c,D) we solved a problem of nonlinear
programming, when we determined parameters b.c.D, which provide minimum of F- function.

3. Results of calculation

On the fig.3 is shown results of investigation and dynamical response of system in a case,
when loading is absent. The control system if switched off U1=0,U2=0.In this case we have
harmonic motion of drive with constant amplitude without of impacts.

On the fig.4 is shown the motion of drive, when control system switching on but U1=0, only
one part of regulation strain can change. External force changes in interval from zero to 30N.
Analysis of fig.4 shows that during change of loading in interval from P=0 to P=30N
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amplitude of displacement of executive element practically is constant. At these time
increasing of electrical feeding U2 brings constant component to electrical strain and as
consequence lowering of air gape in electromagnetic part of drive, that provide appearance of
impact regimes, as it is shown on the fig.4 and fig.5.
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Figure 3. Faze characteristic of electromagnetic drive without loading
1 —the moment of time when electromagnetic drive turn on;
2 — stabile regime of motion.

20

Figure 4. Fazes characteristic of electromagnetic drive,
when control system is switching on

regulation U1=0,U2=U2(a)
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Figure 5. Fazes characteristic of electromagnetic drive with control system

For exception of displacement of zero (statically position of executive element) we used full
regulation, when U1=Ul(a) and U2=U2(a). On fig.6,7 is shown results of calculation of
dynamical motion of system while full control system switching on. We can see that this
regulation provides practically full independence of parameters of vibration on external

forces.
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Figure 6. Fazes characteristic of motion while full regulation U1=U1(a),U2=U2(a).
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Figure7. Motion of drive in a case when full control system is switched on
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4. Conclusions

We create the mathematical model, which describe dynamical behavior of electro mechanical
system with feed back control system. Different control strategies are investigated. The results
of calculation show that only two dimensional regulation, when Ul=Ul(a) and U2=U2(a)
provide practically independence of vibrating parameters (amplitude of displacement,
acceleration, velocity) on external forces.
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DEVELOPMENT OF IMPEDANCE CONTROL METHOD
FOR MECHATRONIC SYSTEMS
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1. Introduction

Various force control methods have been developed to meet the requirement of regulating
the contact force within a specific range. The force control is based on two distinct
methodologies: pure force control and impedance control (Fig.1.). Pure force control can be
applied only when the end-effector is in contact with the environment. While in impedance
control the force is regulated by controlling the position and its relationship with the force,
i.e. robot mechanical impedance. The impedance control can be realised by three
approaches [1]. A Iot of works developed the first approach for impedance control by
impedance controller using one of the seventh approaches [2]: constant PD control, model
based computed torque control, adaptive control, robust saturation-based control, sliding
mode-based impedance control [3], learning impedance control [15] or quaternion-based
impedance controller [16]. Generally the developed impedance controllers are characterised
with the different shortcomings (Fig.1.) which determine the specific practical applications
of the first approach for impedance control.

The second approach for impedance control is realised by redundancy of joints. There is
limited information for development of this approach, so this paper will be an attempt to
induce collaboration in this field.

The second approach for impedance control, i.e. by redundancy of joints, is reduced for one
joint into the third approach for impedance control realised by redundancy of actuators for
each robot joint. Many researchers developed the third approach for impedance control
used antagonistically driven robot joints by two actuators via tendons {4,5]. Antagonistic
stiffness, for which the modelling procedure for a completely general kinematic system
along with a stiffness formulation technique developed [6], seems to be very unique and
promising to design and control the robots and mechatronic peripheral devices with high
precision requirements under various operational impacts and disturbances.

This paper considers the development of the impedance control method, especially the
second and third approaches as a way to adapt dynamic behaviour of the mechatronic
system during its interaction with technological environment in order to improve the
process quality and to achieve more system functionality.

The paper is structured into 5 parts. The first part considers the preliminary investigations
of the second impedance control approach. The impedance-controlled actuators with drive
redundancy are developed in the second part. Experimental results and discussions is
subject of the third part.
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2. Second Approach for Development of Mechanical Impedance Control.

The second approach for impedance control is realised by redundancy of joints. To apply
this approach first is necessary to determine the number of redundant joints for the set of
reference tasks. The second one is how to distribute the control of joints in regarding of the
kinematic [13] and dynamic sensibility [14] and the task to be performed.

Let's consider the local structure of robot system that performs technological motions in a
plane. In tangent direction of the plane trajectory a robot is necessary to control its dynamic
properties, i.e. to realise impedance control on that direction. In general case 2 DOF local
structure is necessary for this plane task function. But for the case considered we need 2

independent robot joints to set up two control sets [1]: the flow source {S 1 1=Vy(t) and
the actuator mechanical impedance Z - (S, }:Z,(F,,,Q), where V, is end-effector

velocity, Fy, - force interaction, Q - process quality requirements, to realise the mechanical
impedance control in that direction. So, it is necessary to have a robot structure with
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minimum one DOF more than the task function. Kinematic chain with three revolute joints
whose axis are placed perpendicular to each other, i.e. RLR1R is taken here as an example.
Let's consider how can be realise reference trajectory by the second approach for
impedance control in a simple case of a plane trajectory motion with targeted 1mpedance in

one direction only. The determining of the vector of orientation error 6( g) for this

structure where q; -general coordinates, y - angle around the unit vector u [14] is by:
1

7 [c05(91 =92 )= cos(q;+4;)=cos(q, =G5 )+ cos(q, +q5)] ~ 0

1

r
~ = il
Oruy=_ ;[‘Si"m.’ —q;)-sin(q, +q;)+sin(q; —qz)+sin(q, +q;)]=q;° M

1 .
-2—(]+cosq2)szn(q1 —~q3)]~q;-

4,
So, the matrix L(q) is obtained as simple matrix in first approximation:
9, 49:793 K

But from the other side:  s9 = L(q)éq = [a(‘/’“) ] @)
i,j=1

2 T2 T2 3)
L(g)=| 0 0 0
1 0 -1

Here it has to be pointed out two specific features of the matrix L(g): two rows where are
placed numbers only; one row with zeroes, i.e. its rank always is smaller then three. So, the
rank of L(q) is as follows: rank L{q)=2 at q; # qs, q; - any angle; 1 - at q;=¢s, q,- any angle.

The last means there exist not just isolated points or configurations but whole trajectory we
are looking for where distribution of orientation vectors of errors is one dimensional field
[13], which coincides with the direction of eigenvector corresponding to this positive
eigenvalue. It is just one in this case. The coefficients of dynamic sensibility depend only of
values of g, when the system follows the way q;=q; during orientation like that. In the case
of just one non zero eigenvalue it 1s not difficult to find the corresponding eigenvector. It

has the form 9= [10-1]"q, 4)
Here [10-1]7 is a fundamental solution of the system for eigenvectors with q; as a
parameter. And the last result is the same for whole trajectory q; = qs.

On the fig.2. is shown a geometric interpretation of a field (plane a.) where the only one
eigenvector is contained and qj(1=1,2,3) are passed through a unit cube. That field is a

diagonal intersection of the cube containing the diagonal q, = -gs. Therefore, for every
force action which is placed in lthis field (Fig.2.), there exists and can be found such a

configuration, where the vector 6 will be collinear with it. That means if we have a force
then there is no additional compensation of energy has to be given by drives of the system.
But if we have a moment then we need additional energy compensation, which is
distributed with equal value for q, and qgland the concrete q, which assure colinearity

between the outer moment and the vector & . For all vectors perpendicular to the field or
the part of them whose are projections on this directions the orientation error does not exist
and corresponding coefficient of dynamic sensibility is zero. So, we can do it for arbitrary
force or moment action by projection of the vector describing themselves on two
perpendicular direction and the conclusions just mention above are still hold.

103




o]

’

2

-.-,
°

2 Qs = -Qs

bt
"‘ ] ~,
N NN Qs 04
N M
AT b, 26
N H
. H o2
. 1 g
Qs U | K =
D 0 & 4 > ¢ 2 40 & &

Figure 2. Geometrical interpretation (a.) of the distribution of  Figure 3. Sensibility ellipsoid for the considered
eigenvector corresponding to one eigenvalue and task plane b, structure RITLT

As another example let's consider the planar structure RLTLT. Each degree of freedom can
be taken as redundant one in arbitrary case. The sensibility analysis shows the following
results for corresponding sensibility coefficients A;(i = 1,..,3) and directions X%, (i = 1,..,3),
where h,, p; are geometrical parameters.

Ap=1, A, =0, 13=1+(I§+(h/+P3+‘73)2
T T
X’”:[O 49 1} , X(-’)=[_l_ _htpitgs 1] , (5)
hy+p;+q; g g,

kd ki T
X3 = _(h/ +p3+q;) +q; _h/ +p3tq; ]
q- q>

The second coefficient that is zero assures non sensibility on the direction collinear to X®
during the end-effector motion. On the remaining two orthogonal directions the sensibility
is fixed or variable respectively and following the third one the sensibility depends on the
robot configuration. It can be realized separately by one generalised coordinate or by both
of them simultaneously. For example the robot deburring task is considered. The end-
effector moves on the surface to be deburred. Hence, the non-sensibility direction coincides
with the surface normal vector. For the remaining directions the robot has some sensibility
according to the executing trajectory. In our example the reference deburring trajectories
having these characteristics are arbitrary. If that additional requirement appears, the
problem of obtaining the desired sensibility arises which could be solved using structures
with redundancy DOF. The sensibility ellipsoid is visualised (Fig.3.) for the considered
structure in a limited region of variation of the generalised coordinates.

3. Impedance Controlled Mechatronic Actuators with Drive Redundancy.

The actuators with drive redundancy are a simplified model of the antagonistic drive in the
living nature. Actuation and kinematic redundancy are the means by which living species
control the dynamic response and modulate their end-effector stiffness.

The synthesis of actuators with drive redundancy is based on the motion transition method
[8]. It consists of two-zone dynamic controlled gearing on the actuator output link through
the introduction of an antagonistic drive unit, that is identical to the existing one. This
method also allows eliminating or reducing the influence of uncertainties on the kinematic
chain of the mechatronic drive due to closed loop structures with the additional drive
torque. Redundancy actuation causes internal force/torque in the transfer mechanism. This
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torque does not perform any effective work to the external world. But the actuator joint
stiffness and damping depend on this internal torque [9-10]. In such way the knot
mechanical impedance Zy(K,B) [1] can be controlled. Torque of interaction 7; between the
mechatronic system output link and technological equipment can be expressed as:

. d ) . do
ﬂ=T(¢,¢)—J—(;,t£=K(<o,—¢a)+B<¢,~<on)—Jd—‘t" ©)

where T(p,9) is knot component of the mechatronic system impedance. The dynamics
of the end-effector of the technological equipment, when it is on ideal rigid body, is:

do
J.—=T +T. 7
Eodt e @

were Jy is inertia tensor of the technological equipment end-effector; 7, - unknown

torques and impacts. The motion equation of the system "mechatronic system actuator joint
shaft - technological equipment" is:
. do . . dg
T,=T(p.0)~J L= K(p,~0.)+ B, ~6,) =T~ ®

For the feeding operation is most important to assure smooth motion, i.e. d¢/dt ~ 0. The
equation (6) will be:

do ) ) d
(Jz+J)d—‘f=1<(<o,—¢a)+B<¢,—¢a)+Te—J—df4 ©)

The equation (9) means that by variation of the actuator knot mechanical impedance Z, to
reject the disturbances at some impacts. The desired actuator shaft response ¢,(7) and o,

to the reference motion ¢, and ¢, and the external torques 7; is defined by (6).

Accommodation control of the dynamic accuracy [7] is used. The control scheme consists
into 2 part. First one is a feed forward controller, constructed off-line using the obtained
dynamic model [11]. The open-loop impedance control involves off-line planning of the
targeted actuator mechanical impedance for the desired output link velocity & (1),

smoothness of motion A¢@(#) and expected impacts and disturbances 7;, determining the
actuator control sets (S} and (S, }. This allows open loop disturbances and impacts

rejection. The second part is a feedback controller used to compensate on-line small
perturbation of the expected impacts and non modelled dynamics. Hence, the proposed
control strategy for control of actuators with drive redundancy does not need large
computational resources and time in on-line control, while adjusting the knot mechanical
impedance of the actuator allows open-loop impacts and disturbances rejection. It also does
not have a time delay, which often deteriorates performance of rapidly changing processes.

4. Experimental results and discussion

Three experimental test beds with drive redundancy have been designed to investigate the
redundancy actuators with impedance control:

- rotary table for feeding operations in robot-assisted material removal {10];

- barrier actuator for a Langmuir - Blodgett monomolecular film deposition system [10];
-harmonic actuator for robot manipulators and peripheral mechatronic devices [12].

105




The main features of impedance controlled actuators with drive redundancy consist into:

- controlled modification of the actuator mechanical impedance[10];

- micro motions of the barrier - particularly 1um, at a range of motion (350 mm);

- smooth motion in a wide technological max-to-min velocity ratio (1:10000) regardless of
the force interaction at adjusting the impedances of actuator and technological equipment.

- significant linearization of the actuator transfer mechanism [10].

5. Conclusions and future work.

Three impedance controlled actuators with redundancy have been built in the Mechatronic
Systems Department as experimental test-beds for various ongoing research activities
including mechanical and control design, motion control and for calibration procedure
synthesis purposes. Based on the third approach for impedance control positioning robots
and peripheral mechatronic devices with such redundant actuators can accomplish very fine
motion regardless of their dynamic interaction with remaining robotized equipment.

The second approach for impedance control is under development. The study has to be
taken into account as the phase of conceptual design of such mechatronic systems. The
reference task is considered in the terms of kinematic and dynamic sensibility. The number
of joint redundancy has to be determined on that base. As an aplication the redundancy
influence on the mechatronic device for driling operations is under investigation.
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Abstract. Optimization of multibody systems is presented as a multicriteria optimiza-
tion problem. The problem of forming goal function is still open due to wide variety of
conflicting criteria, which as a rule has to be reduced to a scalar function.
Implementation of an approach for optimizing dynamic systems based on the analytic
hierarchy process for getting the scalar goal function is considered. The developed
approach is implemented in program package for simulation of multibody system
dynamics.

1. Introduction

The development of computing facilities, formalisms for automatic generation of
equations of motion and numerical methods let increase the effectiveness of program
packages for simulation of multibody dynamics thus much that it made possible the
development of program packages for optimization of multibody system.

Design variables and performance criteria have to be defined for optimization
problem solving. Such parameters of multibody system as inertia and geometrical data,
stiffness and damping coefficients might be chosen as design variables. As it mentioned
in [1, 2, 3] applications to technical problems clearly show that as a rule several
conflicting technical specifications and goals have to be taken into consideration. Since
there are several criteria the optimization problem has to be considered as a multi-
criteria. Due to some disadvantages of multicriteria optimization method strategies,
which reduce the vector optimization problem to nonlinear programming problems are
usually used [2]. There are quite a few methods for such reducing based on scalarization
and hierarchization principles or a combination of them. The implementation of one of
such methods, so called the analytic hierarchy process, is considered below.

2. Formulation of the optimization problem

Computer aided optimization of mechanical systems should be based on mathematical
models. The multibody system approach gives us good representation of the system if
we can neglect small deformations of its parts [1]. A multibody system consists of rigid

* Supported by RFBR under the grant 02-01-00364 and by scientific program «Universities of Russia — Basic
Research»
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bodies and ideal joints. A body may degenerate to a particle or to a body without inertia.
The ideal joints include the rigid joints, the joints with completely given motion
(rheonomic constraint) and the vanishing joints (free motion) [3].

Multibody system dynamics has been developing already for several decades [4].
Computer programs have been developed for automatic generation of equations of
motion and its numerical solution. The most time-consuming part in an optimization of
multibody systems is an estimation of scalar or vector goal function, which involves a
numerical solution of motion equations for some time interval ¢ < ¢ < £. An
optimization strategy takes, in fact, the smaller part of total time efforts.

It is necessary to distinguish a simulation problem and an optimization problem. The
optimization problem does not nced the most complex model, it needs the most
appropriate one [2].

Mathematical models involve a parameterization. The dynamic behavior of the
model is completely determined by parameters like the mass and moments of inertia of
each body, geometrical dimensions, damping and stiffness coefficients.

Optimization criteria are usually based on dynamical performances obtained as
results of numerical experiments. Usually it is such performances like accelerations
(riding comfort), reaction forces (strength in joints), etc.

There might be a single optimization criterion, but generally there are several
specifications, goals and restrictions, so the design problem has to be considered as a
multicriteria optimization problem.

Generally, optimization of multibody systems takes place during the beginning of
development of a new technical system. The optimal values of parameters, which are
found with respect to dynamical performance, however, might not be appropriate due to
another (technological, cost) reasons. Obviously it might be necessary to involve
non-dynamical criterions into consideration.

3. Multicriteria optimization

The problem of optimizing dynamic systems with respect to several conflicting criteria
does not have a single optimal solution [1]. Edgeworth-Pareto (EP-) optimal points can
be found. EP-optimal solutions are not unique and different points are not comparable.
The theory of multicriteria optimization has shown that the optimum depends on
additional decisions of the designer. Therefore, not all multicriteria optimization
strategies seem to be appropriate for dynamic system design. Strategies which reduce
the vector optimization problem to non-linear programming problems have proven to be
very efficient [2]. Several such strategies based on the principles of scalarization,
hierarchization or a combination of them have been developed {1].

In the case of scalarization [2], the objective functions are combined to a new utility
function u(p), where p is the vector of design variables, which will be optimized instead
of the vector criterion.

n n
u(p):Zw,»f'—(,l_)—) ) Zwi =1
i=] fl i=1
where w; € [0,1] are weighting coefficients and f;" are scaling factors. This well known
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approach has some disadvantages. Firstly, designer establishes weighting coefficients
directly that leads to an insufficient validity of weight coefficients. It is shown in [5]
that people are inclined to shift weight coefficients to the ends of range. Secondly,
utility function depends on the fi(p ;" ratio linearly whereas non-linear dependence may
corresponds to the optimization goal better .

Let us consider an approach based on the analytic hierarchy process, which keeps
advantages of hierarchization and removes disadvantages of scalarization.

4. The analytic hierarchy process

The analytic hierarchy process was developed by Saaty and in [5] detailed information
is available.

The method is based on principle of hierarchization, when the main most common
goal consists of several more detailed sub-goals, each sub-goal of the first level consists
of corresponding sub-goals of level two and so on. Every sub-goal has only one upper
goal. Different sub-goals affect the upper goal with the different weight.

Further, the analytic hierarchy process involves the method to determine the strength
with which the various elements in one level influence the elements on the next higher
level, so that we may compute the relative strength of the impacts of the elements of the
lowest level on the overall objectives. The method can be described as follows. Given
one goal, e, and its sub-goals of the next level lower, compare the sub-goals pairwise in
their strength of influence on e. Insert the agreed upon numbers, reflecting the
comparison, in a matrix and find the eigenvector with the largest eigenvalue. The
eigenvector provides the priority ordering, and the eigenvalue is a measure of the
consistency of the judgment [5].

To insert the agreed upon numbers the designer has to compare every pair of
sub-goals and give an answer for the question “how stronger the influence of sub-goal B
on the upper goal than the influence of sub-goal C on it”, this number will be included
in the (B, C) matrix element. If B and C equally important then the number is 1, if B is
weakly more important than C then the number is 3 and so on up to number 9 when the
B is absolutely more important than C.

5. Measuring performance

After describing hierarchy of goals the designer should determine the way to obtain
the strength (priority, measure of membership) of each alternative relative to each
element of hierarchy of goals on the lower level. There are several methods.

The first one is the pairwise comparison, described above. This methods is used for
measuring non-dynamic performances of systems such as practical feasibility, estimated
cost, etc (see Figure 2). In this case the designer uses results of scanning for pairwise
comparisons. This is the most general way, but at the same time the most
time-consuming method.

In the cases when criteria have numerical representation obtained from results of
simulation, its transformation to dimensionless scale [0, 1] can be done with the help of
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the methods of standards or membership function method.

The membership function method uses the membership functions to map simulation
results into dimensionless scale [0, 1). Some frequently used membership functions are
given in Figure 1. Here the normalized performance estimation is laid off as abscissa
and the strength of alternative relative to criterion is laid off as ordinate.

CUKINLDL

Figure 1. Frequently used membership functions

For example, the following comment may be given for the membership function in
Figure 1a: “the less performance estimation the worse the strength of alternative, lower
values are poorly acceptable”; for the Figure 1b function: “middle performance
estimations are most acceptable”.

Scale for membership functions abscissa may be defined in two forms: definite and
indefinite. Definite scale is used when there is prior information about admissible or
expected performance estimations. If any alternative has inadmissible performance
estimation relative any criterion, it is considered as inadmissible due to that criterion
and does not take part in the further comparison. If relative comparisons of performance
estimations have no sense, but they all must be within a definite range then the
membership function shown in Figure 1¢ may be used.

Indefinite scale is used when the designer has no prior information about the model
behavior relative to a criterion. Then the minimal performance estimation corresponds
to O abscissa value and the maximal one corresponds to 1. The rest performance
estimations are distributed within this range proportionally.

The method of standards is the measuring relative to some standards. It is used when
there are some standards, which can help us to classify the performances. For example,
for vertical accelerations we can introduce tree levels: low, medium and high
acceleration (see Figure 2). Based on results of numerical experiments, the program is
able to refer alternatives to levels of accelerations.

6. Automated approach

Simulation of multibody systems is supported by program package “Universal
Mechanism” (UM) and the special module for optimization and decision making is built
in UM. At the first step the scanning of dynamic behavior of the optimized multibody
system is fulfilled: variable parameters, parameter ranges and steps are defined, after
that number of numerical experiments are executed in an automatic mode. It might take
several hours and even several days. Then dynamic behavior of the system is
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completely obtained. Then the designer has to make a decision which alternative (which
point in a parameter space) is the best. It may be done by hand or with the help of the
built-in module for decision making support.

The optimal
variant of a
railway vehicle

=

Influence on the Riding comfort Practical Wear of wheels
railway feasibility
Vertical Lateral

acceleration acceleration

Lateral force in Wprk of friction force
wheelsets (LF) in a contact (WE})
ClSCICICSIC
1 I

| L v

I} i
A1 Az A3
0 fH— A 1 1/5 1/5 0 H—
OKN 120N A, 5 1 1 0% 100%
Definite scale As 5 1 1 Indefinite scale
Functional: Max Functional: Max Functional: Max
3 H H '
a0 E :
e

Figure 2. Hierarchy with the different types of measuring performance
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In the latter case the designer should describe the hierarchy of goals and sub-goals
(see Sect. 4, Figure 2). Then for each criterion on the last hierarchy level the measuring
performance method is defined. For the pairwise comparison method (see. Sect. 4) the
designer has to perform pairwise comparisons for every pair of alternative. For the
methods of standards the designer defines the standards and assigns their ranges and
chooses the appropriate functional (sce Sect. 5). For the membership function method
the designer chooses the membership function, define its scale (definite or indefinite)
and choose the appropriate functional. In order to use a definite or indefinite scale or
any described standard we have to transform the time history of a dynamical
performance to a digit. It can be done with the help of one of available functionals:
maximum, minimum, mean, root mean square, etc.

Further, the strength of each alternative relative to every criterion is automatically
calculated and results are available. Information about the priority of alternatives
relative to any goal (including the main one) is available as well.
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A Formulation for Flexible Multibody Systems
with Mixed Cartesian and Relative Coordinates

Lars Kiibler and Peter Eberhard
Institute of Applied Mechanics, University of Erlangen-Nuremberg, Egerlandstr. 5,
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1. Introduction

With regard to the selection of system coordinates the methods used
in the dynamic analysis of multibody systems (MBS) can in general
be divided into two main approaches (Shabana, 1998). In the first
approach an expanded system of dependent coordinates, e.g. Carte-
sian coordinates, is used to describe the system configuration. In the
second approach, a minimum number of relative coordinates is used
that corresponds to the mechanical degree of freedom of the system
(Schiehlen, 1986) and provides a minimum number of ordinary differ-
ential equations (ODE) for tree-like structures.

The idea of the method proposed in this paper is to combine the
advantages of both approaches. Several subsystems that can be rigid
bodies, flexible bodies or rigid multibody system substructures are as-
sembled in the global model. Their motion is kinematically constrained
by mechanical joints or kinematic drivers, both described by nonlin-
ear algebraic constraint equations. The motion of the elements within
the substructures is described by using relative coordinates, while the
relative motion of the subsystems is described in Cartesian space.

2. Choice of Coordinates for Multibody Systems

Two main approaches for the modeling of multibody systems, relative
or Cartesian coordinates, respectively, are described in Sections 2.1
and 2.2. Both formulations are combined in Section 2.3 in order to share
their advantages and overcome specific disadvantages of each method.

2.1. MBS DESCRIPTION WITH RELATIVE COORDINATES

The multibody system approach with relative coordinates is described
in detail in (Schiehlen, 1986). Relative coordinates lead for open-chain
configurations to a minimum number of ordinary differential equations,
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using a set of independent generalized coordinates y € RS correspond-
ing to the degree of freedom f of the MBS. This is a main advantage in
comparison to the approach with Cartesian coordinates where differ-
ential algebraic equations (DAE) of often much higher dimension have
to be solved.

A spatial MBS consisting of n, bodies with n holonomic constraints,
and hence f = 6n, — n, degrees of freedom, can be described, ap-
plying for example d’Alembert’s principle, Hamilton’s principle or the
Newton-Euler formalism (Schiehlen, 1986) to the balances of linear and
angular momentum. This yields the equations of motion

M(ty) §+k(ty,9) =g0y,7) (1)

with the symmetric, positive definite mass matrix M € Rf*f , the
generalized centrifugal and Coriolis forces k € R/ and the generalized
applied forces g € IR/

2.2. MBS DESCRIPTION WITH CARTESIAN COORDINATES

The application of Cartesian coordinates has the advantage that the
formulation of the equations of motion even for complex systems is
straightforward. Beyond that the addition of new complex system com-
ponents is often relatively easy. This can be, for example, very inter-
esting when flexible bodies are added to the system.

A multibody system consisting of n, interconnected rigid bodies, re-
quires 6 ny, coordinates in order to describe the system configuration in
space, i. e., the positions R* and orientations S° of each body’s reference
frame. These coordinates, however, are not independent because of me-
chanical joints or kinematic drivers between adjacent bodies, described
by a vector of n, nonlinear kinematic constraint equations

c(q,t)=0, ceR™ (2)

where g is the vector of all Cartesian coordinates for all bodies.

The differential equations of motion of the system follow using La-
grange’s equation or Hamilton’s principle, see e.g. (Shabana, 1998),
as

M-§4-C7-2=Q,+Q,. (3)

Here M € R%%*5 g the mass matrix, Cy = 8¢/dq € IR™*% 5 the
constraint Jacobian matrix, A € IR™ is the vector of Lagrange multipli-
ers, Q. is the vector of externally applied forces and Q, is a quadratic
velocity vector that arises from dif ferentiating the kinetic energy with
respect to time and with respect to the generalized coordinates.
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The differential equations (3) yield together with the algebraic equa-
tions (2), or respectively their mathematically equivalent first or second
time derivatives, a DAE describing the global system.

9.3. APPROACH WITH MIXED RELATIVE AND CARTESIAN
COORDINATES

The global system is assembled by 7, subsystems as illustrated in Fig-
ure 1. In correspondence to (1) the equations of motion of the different

subsystems are given by

M (1,97 -5 + K (499F) = ' (t45,57), i=12.ms. ()

b . joint m
subsystem 1 Nem
y'e R ’/ cmE,R

subsystem j -t
yle R 7 ¢ ;

Figure 1. Assembly of subsystems forming the global multibody system
The subsystems are connected by n; joints summerized in the global

constraint vector ¢ € JR™. The generalized coordinates are assembled
in the vector

Ng .
g=[y' ¥ ... y™] € R" with ng=>y f*. (5)
i=1

The equations of motion of the global system can for example be
derived by application of d’Alembert’s principle, here given in the
formulation of Lagrange (Eberhard, 2000)

np
Z((S’l'i- (mia; — f§) +ds;- (I;- i + @ - I - wi -18))=0, (6)
i=1
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with the global number of bodies in the system ny, the virtual dis-
placements é7; and rotations ds;, the externally applied forces fi and
torques I and the skew symmetric matrix & build by the components
of the angular velocity vector w = [wy, wy, ws).

Equation (6) can after some transformations be split up in terms
for each subsystem. By application of kinematic relations and further
transformations the local equations of motion of the subsystems can be
identified

s m;
. o i m
Z[W'(Z(J%%‘miJ%ﬁJh'Ii'Jh)'y’
ji=1 k=1

-

MI(t,y7)

nj
+3 (o e+ oL 1o + 0 B
k=1

7

Kt 7,47

-3 (5% 2’+Jﬁ;-12’)”=0 (7
k=1

v

& (65

where nj is the number of bodies in subsystem j and J%. and J%, are
the Jacobians of translation and rotation.

By introduction of the global coordinates vector g from (5) and its
variation, equation (7) can be summarized

ég-(M-g+k-g)=0 qu:C?-Jq:O (8)

with the global constraint Jacobian matrix

o= 5= ) (&) - ()] ern @

In (8) only fy = ng—n, variations of 8q are independent. By introducing
a set of Lagrange multipliers A € JR"™ as in Section 2.2, (8) can be
written in a way valid for arbitrary variations of g. This gives the
equations of motion of the global multibody system

M(t’ Q) ) q + k(t’ q, (,.I) - Cg(ta q) A= g(t) q, Q) (10)

which form a DAE combined with (2), or the analytically equivalent
first or second time derivatives of (2).
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3. Constraint Formulation for the Connection of
Substructures

Most of the practically used kinematic constraints can be built by
setting algebraic relations between vectors defined on the bodies, as
discussed in detail in (Nikravesh, 1988), (Shabana, 1998), or (Serban
and Haug, 1988).

In terms of accuracy and stability of the numerical simulation an in-
dex 2 DAE formulation performs best (Arnold, 1998), requiring the par-
tial derivatives dc/0q and the time derivatives ¢. In order to determine
these derivatives analytically it is particularly attractive to transform
the orientation matrix at the connection points to unit quaternions, e. g.
using the algorithm proposed in (Shoemake, 1994). Unit quaternions
allow for a proper derivation of mathematical relations for observed
coordinate frames. Many basic identities and analytical relations are
given, e.g. in (Nikravesh, 1988). They are described as follows

p=|[ep, e] with eozcosg, e:using, (11)
where @ is the rotation angle about a axis described by the unit vector
u with the additional constraint 4 -u =1 or rather p-p —1 = 0.

In their paper Serban and Haug (1988) already derived the required
analytical derivatives for constraint vectors using unit quaternions. For
the mixed approach presented in this paper additionally the dependen-
cies of the unit quaternions on the relative coordinates describing the
rigid body substructures have to be considered. The necessary relations
are derived in the following section.

3.1. DERIVATIVES OF QUATERNIONS WITH RESPECT TO THE
GENERALIZED COORDINATES OF THE GLOBAL SYSTEM

Without loss of generality, a global system consisting of two subsystems,
connected at point P, is observed in this section with the generalized
coordinates g = [y 4 ¥ g], as illustrated in Figure 2. The rotation matri-
ces at the observer frames Sy (y 4, t) and Sys(yp, t) on P, described
on body ¢ and body j, are transformed to quaternions p4(y 4, t) and

Dp (yB: t)’
The time derivative of unit quaternions can be expressed by the

identity (Nikravesh, 1988)

i)=%GT~w ; (12)
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subsystem A
y, € R™

Figure 2. Schematic representation of the connection of two subsystems

with the vector of angular velocity w and the matrix G € IR3** defined
by Nikravesh as

—€1 €y —€3 €2
—ey €3 ey —e | = [-*6, €+ eoﬂ . (13)
—€3 —€y €3 ()

G =

Starting from equation (12) the partial derivatives dp4/dq and
Opp/0q can be determined for both subsystems. The procedure is
exemplary given here for dp4/0dq. It follows from (12)

1 i e, i
A=§G£'(JRA'yA+wA) (14)

where J ZR.A is the Jacobian matrix of rotation of body 7 in subsystem
A and @' is the local angular velocity of body i. Since we have the
dependencies p4 = p4(y4,t) the vector p4 can also be expressed as

_Opy . | Opy
—ayA Ya+ o (15)

By comparison of the coefficients in equations (14) and (15) it follows

Pa

Ops _ 1 7 o

A =G5 J 1

ayA 2 A RA» ( 6)
and hence the partial derivatives with respect to the global generalized
coordinates g = [y 4 yp] can written as

0p 4 [ap,, 6pA] [1 T . }
—_— = —_— ———— = -‘G .Jl 0 17
Oq 0y 4 | Oyp g A TRA | (17)
9pp _ [?_P_lz @fz] *[ oar g ]
g ~ oy ' oygl L7 | 565 Thr (18)
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where (18) can be found utilizing the procedure above for subsystem B.

4. Example: Spatial Slider—Crank Mechanism

In this chapter the proposed approach with mixed Cartesian and rel-
ative coordinates is verified by application to a spatial slider-crank
mechanism, similar to an example in (Serban and Haug, 1988), see
Figures 3 and 4.

Figure 3. Spatial slider-crank mechanism

First the slider-crank mechanism is studied using a description with
pure Cartesian coordinates. In order to verify the performance of the
mixed approach, in a second step the mechanism is modeled using a
subsystem described with NEWEUL (Kreuzer, 1991) in relative coor-
dinates. The subsystem is joined to the inertial body with the loop
closing translational joint. This leads to a DAE with 7 ODE and 5
algebraic equations, in comparison to the previous model with 18 ODE
and 16 algebraic equations.

In Table I the computation times are compared for the simulation
time of 20 seconds for both models. It can be seen that even for this
relatively simple test example the efficiency can be strongly increased
using the mixed approach.

Figure 4. Frames from the animation of the slider-crank mechanism
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Table I. Comparison of computation times

model simulation time computation time
Cartesian approach 20s 66.2s
mixed approach 20s 14.7s

5. Conclusions and Outlook

A mixed coordinate method which combines the efficiency of the rel-
ative coordinate approach with the generality of the formulation with
Cartesian coordinates was presented. In order to determine the nec-
essary derivatives of the constraint vector a transformation to unit
quaternions was carried out for the reference coordinate frames. In
addition to analytical derivatives found in literature, the description
of subsystems in relative coordinates demanded for further derivatives,
relating the unit quaternions and the generalized coordinates.

In order to verify the performance of the mixed approach, compu-
tation times were compared for two different models of a slider-crank
mechanism. It was found that the efficiency strongly increased using
the presented approach.

In the next step of implementation also flexible bodies will be at-
tached to the systems. Thereby, the implemented description of the
subsystems will be fully utilized.
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Forward dynamics of multibody mechanisms using an
efficient algorithm based on canonical momenta

Dirk Lefeber* Joris Naudet*, Zdravko Terze'and Frank Daerden*

Abstract

A new method for establishing the equations of motion of multibody mechanisms based on canonical
momenta is introduced in this paper. In absence of constraints, the proposed forward dynamics for-
maulation results in a Hamiltonian set of 2n first order ODE’s in the generalized coordinates g and
the canonical momenta p. These Hamiltonian equations are derived based on a recursive Newton-
Euler formulation. As an ezample, it is shown how, in case of a serial structure with rotational
joints, an O(n) formulation is obtained. The amount of arithmetical operations is considerably less
than acceleration based O(n) formulations.

1 Introduction

A lot of research has been done during the last decades to find new algorithms, new numerical in-
tegration techniques and better implementation methods to speed up the calculation of the motion
of complex multibody mechanisms. Amongst many others, Featherstone [4], Kane and Levinson
[7], Rosenthal [9] and Vukobratovié [10] put significant efforts in finding efficient order N methods
to derive the equations of motion. Bayo and Avello [2] developed techniques to integrate these
equations in a stable and efficient way. Work has also been done to implement algorithms on a
parallel computing architecture (Bae et al. {1]). All this research and the fast evolution of com-
puter technology resulted in quite fast simulations nowadays. These simulations, however, involve
mechanisms of ever increasing complexity (large amount of parts, elasticity, friction, backlash)
and demand an ever increasing accuracy and, hence, number of computations. It is therefore in-
teresting to continue this research in order to find more efficient algorithms. This article takes a
step in that direction and presents a new, canonical momenta based algorithm, which allows a
speedup of simulations by reducing the number of operations required to obtain the equations of
motion. Nearly all efficient algorithms, whether they are based on the Newton-Euler equations, the
Lagrange formulation or the principle of virtual work or virtual power, involve the computation of
accelerations. This implies calculating the Coriolis and centrifugal forces and the solution of the
forward kinematics. The canonical momenta based algorithm, however, is derived from a special
form of the Newton-Euler equations and results in a formulation without accelerations, namely
a set of Hamiltonian equations. Therefore, the number of arithmetical operations is strongly re-
duced. A few simplifications are made for the sake of clarity. Only serial structures with perfect
revolute joints of one degree of freedom are considered. And, as usual, rigid bodies and a fixed
base is assumed. The case of a floating base can easily be derived. An effort is made to explain the
essence and details of the algorithm by situating it in the theory of Hamilton. The next section
is therefore entirely dedicated to a review of Hamilton’s equations. Then a special form of the
Newton-Euler equations allowing a more logical construction of the algorithm is introduced. In
section 4, the first set of Hamilton’s equations is derived. In the subsequent section, the second
set is found. Conclusions are drawn in the last section.

*Free University of Brussels, Department of Mechanical Engineering
t University of Zagreb, Department of Aerospace Engineering
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2 Hamilton’s equations

Mechanical systems are governed by the principle of least action, which can be formulated by
means of the well-known Hamiltonian equations (see Goldstein [6]):

OH

q= Ey (la)
p:-%’—+Q—¢§A (1b)
#(q,t) =0 (1c)

This is a system of 2n first order differential equations and { kinematic constraint equations. It is
called a set of mixed differential algebraic equations (DAE). H is the Hamiltonian function, q are
the generalized coordinates. The vector p represent the so-called canonical momenta, extensions of
the concept of linear and angular momenta to generalized coordinates. These canonical momenta
are defined as:

oL
P= —O—c—l (2)

with L the Langrangian function. Functions & are the kinematic constraint equations. Vector Q
stands for the known generalized external forces, & is the Jacobian matrix and A represents the
Lagrange parameters. DAE’s are characterized by a so-called differential index. The acceleration
based formulations have an index of 3, the Hamiltonian formulation has index 2 [5]. As shown by
Brenan et al. [3], index 2 DAE'’s have a better behavior during numerical integration. Hence, the
use of canonical momenta may be numerically advantageous compared to the use of accelerations.
In the case of serial structures, and using the joint coordinates as generalized coordinates, no con-
straint equations (1c) are needed and the last term of (1b) disappears. Rewriting these equations
in a more general form will ease future comparisons when motivating some steps in the algorithm:

q=F(q,p,t) (3a)
p= G(qa P, t) (3b)

Hamiltonian equations are computationally intensive to derive straightforwardly, for the Hamilton
function H has to be established from the Lagrangian function L which already requires a lot of
arithmetical operations. This is probably the reason for the lack of interest in Hamilton’s equations
in the domain of multibody mechanics. In acceleration based O(n) algorithms, the equations of
motion are found by recursion. This way the direct derivation of the Lagrangian function L is
avoided and much faster evaluations of the equations of motion are obtained. However, it also
seems possible to find an O(n) algorithm based on canonical momenta. That algorithm, as will
be shown in the following sections, has a reduced number of operations, compared even to the
most efficient acceleration based algorithms. This advantage and the improved numerical behavior
makes it a very promising alternative.

3 Newton-Euler in relative axes

The classical formulation of the Newton-Euler equations for a single free moving body is given by

dOVG

m—= = f (4a)
dx

JG—dTw +w X Jogw = mg (4b)

The first equation is typically written in an inertial reference frame (notation ‘;—:), while the second

is formulated in a frame K fixed to the body (%). The force and the torque that act on the object

are represented by f and m. The index G denotes that the momenta are taken with respect to the
center of mass. The matrix J is the inertia tensor, m is the mass of the body and w the angular
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velocity refered to the inertial axes. Instead of trying to find an algorithm directly starting from
the Hamiltonian equations, the Newton-Euler equations (4) are reformulated in relative axes, and
written with respect to a point on the joint axis (the local z-axis). Note that the derivative to
time of a free vector x in a rotating frame is given by:

x _ d*x

i p +wxx (5)

(a) Kinematics (b) Dynamics
Figure 1: Notation on body K

After some mathematical manipulations, equations (4) can be written as:

m  mGO (v) + @ 0) m  mGO (v _ ( f )
mOG J B W/ . 0 w/, \mOG J W/ m+mve Xv/)
The index K denotes which body of the mechanism is refered to. By convention, all momenta are
then taken with respect to the point O, on the joint axis of the body (see figure 1(a)). X stands
for the time derivative in local axes, e.g. wx = d—Kd%K. Z is a skew-symmetric matrix constructed

from the vector x and is an alternative notation for the cross product.
The 6-dimensional momentum vector is defined as follows:

ee=(2) = (i ") (), (2), ®

This is not the same vector as was used in the previous section to denote the canonical momenta
p. Inspection of P reveals that it is nothing more than a concatenation of the linear (p;) and
angular (p,) momenta of the rigid body. M is called the mass matrix. Substitution of vector P in
the equations of motion and observing that p; = mvg results in the following concise formulation:

)+ 2), ()= (w), @

This expression can be written, since My, = 0.

S &

4 First set of equations (G)

In this section we will derive one set of equations depicted in (3), namely the one involving the
evaluation of the function G. The other set will be discussed in the next section. Rewriting (7) for
the last body N and splitting the external forces and torques in the known parts f and m and the
unknown parts r and t —resulting from the interaction with the previous body N — 1— gives

(£),+ G 2), ().~ (a3, .

According to the assumptions made in section 1, each body introduces one degree of freedom
g. Hence, to describe the motion of the mechanism only one set of two first order differential
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equations is required for each body. Taking the joint angles 8 to be the generalized coordinates is
an obvious choice. The direction of the relative movement is defined by the unit vector e, along
the local z-axis. There is no reaction torque in that direction. Thus, the equation resulting from
the projection of the angular part of (8) on e, can be computed, provided the linear and angular
velocities are known. The issue of the unknown velocities will be considered in the next section.
For the remaining bodies, the equations become more involved, as there are two locations where
reactions occur. Body K = N - 1 is connected with bodies K — 1 and K + 1. Therefore the
equations of motion can be written as

(), + G 2), () = (23 () .
x x \Pa/ . .

Now, besides the reactions resulting from body K — 1, additional reactions —rr41 and —tg 4y
from body K +1 act on K (Fig. 1{b)). As we saw, the projection on the z-axis of reaction torque
tx is zero, but the reaction force —rk4; is generally not directed towards joint point O, and
will therefore produce a torque about the local z-axis. This makes things more complicated. By
convention, the reactions from body N are taken with respect to point O, on the joint axis. To
transmit these reactions to body N — 1, the transformation matrix ®T.F is used:

< £

I 0
S o~ 1
T (OKON ,) (10)

Note that this matrix is constant in the local reference frame. Observe also that the velocities
transform in a similar way:

()= (&) = (é Of”;o/") (o) (1)

The relationship between both transformation matrices is given by:

T = (T (12)

The additional reactions along the z-axis cannot be ignored, as in the previous section, but can
be eliminated by means of the equations of motion for body N (8). Grouping the similar terms
and remembering to derive with respect to the correct coordinate system using (5) gives

216, ()6 9,2, 2))
dt |\p./, Pa/ v o), |\Pa/, Pa/,
_ f+l' krF f
= (i), 7 (),

After defining the erticulated momentum vectors P;, and the accumulated forces and torques f*

and m* as
<§l>x <§:>K + T (L")N (14)
(), = (), =7 (2. w9

a concise system of equations is obtained with the same appearance as (8):

(), + (G 2), (), = (=), "

Here again, the projection of the angular part on the joint axis e, leads to one of the Hamiltonian
equations. It can be proved that the element obtained by the same projection of the articulated

(13)

il

i

e &
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momentum vector p;, is the canonical momentum conjugated to @k . Therefore, this projection
of the articulated momentum vector will be denoted with px, in accordance with the notation in
section 2. The proof is based on the construction of the Langrangian function L and its partial
derivatives (2). In summary, the function G has been identified, but can only be evaluated with
known values of the velocities. These will be derived in next section.

5 Second set of equations (F)

To obtain the second set of Harr_liltonian equations, the one involving the function evaluation F
(3a), the joint velocities vector 8 need to be expressed as a function of the canonical momenta
vector p and the joint angles vector 6. This can be done starting from the expression of Py in
terms of the linear and angular velocities vy and wy (6) and writing the angular velocity as an
explicit function of On.

Wy = Wg +éNeZN (17)

Substitution in (6), projection on the angular z-axis and rearranging the terms gives an expression
for the joint angle:

6y = [pN—(O el), My (:z)] (18)

ZZN

The scalar J is a shorter notation for (0 e7)J (0 e z)T. The expression is of the required form,
as the Cartesian and angular velocities are functions of the joint velocities of all inboard links. If
similar equations are found for all other bodies, the velocities can be computed recursively starting
from the base. These equations can be obtained by first eliminating §n from (6), by means of (17)
and (18), and rearranging the terms:

e (), () &),

with

1 0 4\’ 1 0
M = My ~ M T D =) = —pM ) 20
L= -7 N(eZ)N(o ) My and D (d) y— (2 D

M’ is defined as the reduced mass matrix. D' is a remainder term. Substitution of (19) in (14)
results in a desired formulation.

Pi=(7) - (0),+ (@), a

with

M = My +TEMLSTY and Dy = (gl> _ o (g') (22)
¢/ K e/ N

M* is the articulated mass matrix and D the momentum remainder term. We denote the projection
of the remainder momentum vector on the z-axis with the scalar d. P} does now have a form
similar to Py and the joint velocity can be found, just like for body N:

be =[x - - (0 e, 0z (7 )] (23)

zzK

px is the projection of the articulated angular momentum vector p;, on the local z-axis. In case
of a fixed base, the linear speed v; of point O; (see Fig. 1(a)) on the joint axis between the fized
base and the first body is zero. The angular velocity of the base is also zero. This allows for a very
simple expression for the joint velocity at link 1, which can be calculated directly:
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The joint velocity can thereafter be used to compute the angular velocity w; and the Cartesian
speed v3, by means of the velocity transformation 27;". These on their turn enable the calculation
of the joint velocity 6, and so on. All joint velocities can be found by forward recursion. The
obtained Cartesian and angular velocities are also used to compute the first set of Hamiltonian
equations derived in the previous section. So, in a first, backward recursion, the articulated mass
matrices, the momentum remainder vectors and the accumulated forces are calculated. In a sub-
sequent, forward recursion, the joint velocities and time derivatives of the canonical momenta are
computed. Acceleration based algorithms typically need a third recursion step for the forward
kinematics. This gives an additional advantage to the canonical momenta based method, when
implemented on a parallel computing architecture.
In the case of a fixed base, a thorough inspection of the algorithm revealed a maximum of 363
operations are needed for each body. Due to simplifications at the first and last bodies, this
amount is reduced with at least 475 operations for the complete mechanism. This can be written:
363n —475, with n the number of bodies (degrees of freedom). This formula is applicable for n > 3.
For comparison, a list of acceleration based algorithms and their amount of operations is shown
in following tabel.

élz

(Pl - d,) (24)

Algorithm | Additions | Multiplications |  Total

Featherstone [4] 275n - 18 336n —220 | 611n—238
Vukobratovié¢ [10] 23In—294 | 249n-272 | 480n - 566
Rein [8] 195n — 247 | 216n —317 | 411n — 669

Canonical momenta | 178n — 230 185n ~ 245 363n — 475

6 Conclusions

In this paper, a recursive O(n) algorithm has been introduced for the derivation of a set of
Hamiltonian equations. The method is very promising compared to acceleration based algorithms
thanks to: a reduced number of arithmetical operations needed to obtain the equations of motion, a
potentially advantageous behavior during numerical integration and a reduced number of recursion
steps.
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1. Introduction

Development of geometrically nonlinear plate and shell elements for multibody analysis
has been the subject of many investigations. Existing finite element solution procedures
for large rotation and deformation analysis can be categorized as the incremental
approach [1] or the large rotation vector approach [2, 3]. The incremental methods, that
were developed for conventional non-isoparametric plate and shell elements, employ
infinitesimal rotations to define the configuration of the finite element in the global
inertial frame of reference. This approach leads to linearization of the rigid body
kinematic equations, and as a consequence the description of rigid body displacements
may not be exact [4]. In order to overcome this problem, several large rotation vector
formulations were recently proposed. In these formulations, finite rotation parameters
are used as nodal coordinates. Continuity conditions are imposed on the displacements
and the rotation parameters at the element nodes. However, continuity of the finite
rotations at the nodal points does not guarantee the continuity of the displacement
gradients at these points. As a result, the centerline or the mid-surface of the element is
not smooth. Therefore, the obtained solution eventually leads to errors in the
calculations of the elastic forces and stresses at the nodal points. The large rotation
vector formulations require interpolation of rotations which must be carefully handled,
particularly in three-dimensional applications.

Due to above mentioned facts, existing finite element formulations for multibody
problems are typically used in the framework of incremental solution procedures. As
pointed out by Sharf [5], the incremental procedure is cumbersome to use in multibody
analysis since forces acting on each flexible body are usually not all known. Moreover,
linearization of finite rotations leads to incorrect integrals of motion and energy drift
[6]. Therefore, there is a need to develop a new method for large deformation and
rotation analysis of plates and shells that does not lead to a linearization of the dynamic
equations and leads to the correct integral of motion.

The objective of this study is to present a new finite plate and shell elements for the
multibody analysis based on the absolute nodal coordinate formulation. The absolute
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nodal coordinate formulation was recently developed for large deformation and large
rotation problems. In the absolute nodal coordinate formulation, only global
displacement and slope coordinates are used as nodal variables, thereby avoiding
difficulties that arise when rotations are interpolated in three-dimensional applications.
By using slopes instead of rotations, no assumptions are made with regard to the
magnitude of the rotations or the deformation within the element. Moreover, the use of
slope coordinates ensures continuity of the rotations of the cross section as well as all
the displacement gradients at the noda! points. The formulation can be used
systematically to relax some of the assumptions used in the classical Kirchhoff and
Mindlin plate models. Unlike other existing finite element formulations that lead to
highly nonlinear inertial forces for three-dimensional elements, the absolute nodal
coordinate formulation leads to a constant mass matrix, and as a result, the centrifugal
and Coriolis inertia forces are identically equal to zero. This important property remains
in effect even in the case of flexible bodies with slope discontinuities.

2. Geometric and Kinematic Descriptions of the Finite Element

In the absolute nodal coordinate formulation, the shape function matrix and the nodal
coordinates can be used to define the element rigid body motion in the global coordinate
system. Therefore, it is not necessary to use transformation between an element local
coordinate system and the global coordinate system when the element configuration is
defined. In the absolute nodal coordinate formulation, the global position vector r¥ of an
arbitrary point P on an element j of the deformable body i can be written in the global
coordinate system as follows:
ry :Sfi(xil"y']',zfi)eii (1)

where S? is the element shape function matrix, e’ is the vector of absolute nodal
coordinates, x?, y’and z7 are the spatial coordinates defined in the element coordinate

system x7. The global definition of the shape function matrix can be achieved by using
global displacements and slopes as nodal coordinates. By using the slopes as nodal
coordinates instead of rotations, no assumptions are made with regard to the magnitude
of the rotation or deformation within the finite element. The use of slopes also
circumvents the difficulties that arise when a rotation or unit vector is interpolated in
three-dimensional applications. In Eq. 1, the element is described as a continuous
volume, making it possible to relax the assumption of rigid cross sections. Therefore, in
large deformation problems the element cross section may deform and change its shape.

The plate element used in this investigation has four nodes each of which has 12
coordinates. The coordinates e’ of a node k on the element j of the deformable body i
can be chosen as follows:

T e \T T
ot | pikT (&”‘) ar”‘ or )
oxY oY ozY

where the vector r’* defines the global position vector of node k and the three vectors
o’ ort o'

—, —— and —
oy oY
matrix S’can be derived by employing a polynomial expansion for the assumed

define the position vector gradients of node k. The shape function
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displacement field or by using other methods that are commonly used in the finite
element literature [7]. As an example, the shape function matrix 87 can be written as:
SV=[S1 S, 0 S,I S0 SI SgI S;I Sl 3)
Sol Sl ST ST ST Syl Syl Si6l]
where I is a 3 x 3 identity matrix and
§, =@+ D) (E-1Qn+) (-1, S, =alE-D*@n+D (-1, Sy =bn(E -1’ Q@5+ -1)°,
Sy =t0(E-1D)(n-1), S5 ==£2(26-3)2n+1) (n-1)*, Ss=ag*(E-)(2n+1)(n-1)’,
S, ==bng? 26 -3 -1, Sy =-16 (n-1) Sy =1°¢(26-3)(21-3),
S =-an’E* (E-D(@n-3), Sy =-bn’s* (1-1)(2£-3), Sp, =t&n,
Sy =0 QE+1)(E -1 21-3), Si4 =-aén® (-1 (27-3), Sis =bn*(E -1’ ¢ +1D) (-1,
Sis =-tmg(§-1)
where £=x/a, n=y/b and ¢ =z!t. In the preceding equation, a, b, and ¢ are the length,
width and thickness of the plate element, respectively.

3. Slope Discontinuities

The position vector gradients can be evaluated using any sets of parameters. In order to
be able to model slope discontinuities using simple linear connectivity conditions that
lead to a constant mass matrix for the element that undergoes finite rotation and an
arbitrary large deformations, a body parameterization instead of the local element
parameters is used. In this representation, the vector e’ in Eq. 2 is expressed in terms of
the body parameters X, ¥’ and Z‘. The body coordinates are defined in a selected
body coordinate system that represents a unique standard for all the finite elements of
this body as shown in Figure 1. Without any loss of generality, the axes of this body
coordinate system can be selected to be initially parallel to the axes of the global inertial
frame of reference.

Element j

ZZ
X

Figure 1. Element and body coordinate systems.

In order to deal with slope discontinuities between the finite elements, the
transformation that relates the local element parameters x’ to the body parameters X’
need to be obtained. To this end, we note that:

ar,‘;fk =%{k_£+6rgk £+ ar,f{" QZ_’_
i ax' e ov' ol 0z' ol

where x/is the n th component of the vector ¥/ and rJ* is the m th component of

mn=1,2,3 4)
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vector r*, The preceding equation leads to nine scalar equations that define the
transformation between the two sets of position vector gradients. Using these nine
equations, the following transformation for the element coordinates can be obtained:

o]

e | (o st ||

e o=ty iy ggr gt =TT 6)
2l Lo st g ) 2%
_62'7J _:’;ZT_

where p* is the vector of coordinates of the nodal point k on element j of body i defined
using the body parameterization, I is a 3 x 3 identity matrix, T% is the transformation
matrix that relates the two sets of the nodal coordinates at the nodal point &, and ;7% is
the (/,n) th element of the Jacobian matrix that defines the relationship between the
displacement gradients in the undeformed configuration. In the absolute nodal
coordinate formulation, the vector X% =[x# y#* z#*]" that defines the global
displacements of the nodal point &£ in the undeformed configuration can simply be
written as
X = §i (x| ik ik ) e (6)

where x%, y# and % are the local coordinates that define the position of the nodal
point k in the element coordinate system, and e/ is the vector of nodal coordinates in
the initial configuration. The (/,#) th element of the Jacobian matrix can then be simply

written as:
o [as, i 2y
R )
where 8, is the / th row of the shape function matrix. For a finite element that consists
of n, nodes, the element transformation matrix can be written as follows:
T 0
TV = (8)
0 TU(",,)
Using Egs. 1 and 5, the element configuration in the global coordinate system can be
expressed as follows:

ri =§ITipi )
As previously shown [8], Eq. 9 can be used to describe an arbitrary rigid body motion if
the transformation matrix T remains constant while changes are made in the vector p’.

4. Dynamic Equations

The inertia matrix of the element j can be calculated using the following expression of
the kinetic energy:

ri =% [oriimivayy (10)

vi
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where p7 is the mass density, ¥7 is the volume and #¥ is the absolute velocity vector

of the element j. Using the transformation matrix that accounts for the slope
discontinuities, the absolute velocity vector can be written as follows:

PV =SITipY 1D
By substituting Eq. 11 into the expression of the kinetic energy, one obtains:
i = LpiTai pi (12)
2
where M7 is the element mass matrix defined as:
MY =TUT{ foi S"J'TS"J'dVU}T"J' (13)
14

The mass matrix MY depends on the mass density, transformation matrix TV and
dimensions of the element. Since J! is a constant matrix whose elements are defined
using Eq. 7, the mass matrix remains constant despite the discontinuities of the slopes
and the initial curvature of the element.

In the absolute nodal coordinate formulation, two different methods can be used
when the elastic forces within the finite element are defined. In the first approach for
definition of the elastic forces, a local coordinate system is employed to define the
clement deformations. The use of the local element coordinate system leads, as
demonstrated in previous publications, to a more complex expression for the elastic
forces [10]. This approach is not employed in this investigation. A straightforward
approach for evaluating the elastic forces is to use a continuum mechanics approach. In
this case there is no need for defining the element deformation in a local element
coordinate system. This approach leads to the general expression of the elastic forces
since the nonlinear strain-displacement relationship must be used in order to avoid
spurious strains. Using a continuum mechanics approach, the global displacement
gradients can be obtained directly as:

g a(s"fT"f pij) a(s"f’T"f pg’) - (14)
a &Y %

where p is the vector of nodal coordinates that defines the element initial configuration

in the body coordinate system. The strain tensor can be obtained using the matrix

p¥ and the Cauchy-Green formula as follows:

- %(D"J'TD*"' -1) (15)

where I is a 3x3 identity matrix. The elastic forces of the finite element j can be derived
by using the principle of virtual work as follows:
oW =~ [e"Es el av’ (16)
yi
where E7 is the matrix of elastic coefficients, and ¢’ is the vector form of the strain

P
tensor €, .

i

i
€m

5. Summary and Conclusions

A new plate and shell elements developed using the absolute nodal coordinate
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formulation are presented in this investigation. In the proposed element formulation,
only global displacements and slope coordinates are used as nodal variables. The
proposed formulation circumvents difficulties that arise when rotations are interpolated.
The absolute nodal coordinate formulation uses a displacement field that defines the
location of the arbitrary points on the plate or shell element in the global system, not in
an element coordinate system. Since a displacement field is linear in the nodal
coordinates, the absolute nodal coordinate formulation leads to a constant mass matrix
as demonstrated in this study.

The general plate and shell element developed in this investigation can describe rigid
body motion, finite rotations and an arbitrary large deformation. Continuity of ali
displacement gradients at the element mid-surfaces are ensured, thereby, ensuring the
smoothness of the mid-surface of the structure model. A continuum mechanics approach
with nonlinear strain-displacement relationships is used to obtain the plate elastic forces
that account for all geometric nonlinearities and shear deformation. The proposed
formulation is fundamentally different from the three-dimensional degenerated element
since the proposed element contains information about all the rotational degrees of
freedom at the nodes. This property allows using this new formulation in the framework
of a non-incremental solution procedure. It is shown in this paper that the property of
the constant mass matrix remains in effect when the absolute nodal coordinate
formulation is used to model flexible bodies with slope discontinuities.
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1. Distributed simulation of MBS dynamics

The need for high performance simulation of the dynamics of large MBSs is
a widely recognized issue stimulated by demands from a variety of different
application areas such as interactive real time virtual reality simulation,
model based control and of course the design and development process.
In particular the development of complex mechatronics systems calls for
highly flexible simulation tools which are reconfigurable and model inde-
pendent. Several interactive tools for the simulation of MBS dynamics exist
(Adams, alaska, NewEul, Mobile), which are commonly intended to support
the design process of one particular model but not for case studies, model
fitting or even MBS optimizations. Approaches to the optimization of com-
plex systems have always been tailor made implementation specific to the
problem at hand. A general treatment was not attempted yet.

The use of parallel computing facilities (PCF) is well established for the
numerical simulation of continuum mechanical, fluid mechanical as well as
electromagnetic field problems. This is because the large number of degrees
of freedom of the mathematical models can be immediately distributed on
a parallel computing grid. However, though PCF have not been seriously
employed in the context of MBS simulations, PCF are also potentially ad-
vantageous in many respects for the MBS dynamics simulation and op-
timization. The classical single-model/single-processor simulation systems
may be extended to evaluate the instantaneous kinematics, kinetics and
dynamics exploiting the MBS topology for a distributed evaluation of the
motion equations employing very time efficient parallel O (n) algorithms
[2). But the necessary computing resources are not justifiable since it could
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only speed up the dynamics simulation of one MBS model. On the other
hand the entire dynamics of one MBS model can be simulated per process-
ing node. In this way autonomous running MBS models constitute a task
farm. A combination of both approaches, i.e. model instants on this task
farm use parallel O (n) algorithms, is usually not possible with the current
state of the art technology.

Such a task farm plus

S o —~_ a superordinated con-

) 8 S Mode! '":@ troller /processing instant
S p I constitute a MBS sim-
g ulation grid. The aim

' i— "~ of the simulation grid

v e 4 | @;@ is to provide MBS sim-

ulation results and in-
corporate these in data
processing tasks. Since
" each node on the task
farm can be considered
as a stand-alone simula-
tion tool this methodology shall feature the complete functionality of es-
tablished simulation packages. Consequently a simulation may be every
combination of possible task that a simulation package could perform, e.g.
kinematic/dynamic simulation, linear analysis or equilibrium determina-
tion. In this way it is possible to perform full simulations of several instances
of a parameterized MBS model in parallel.

One single controller /processing instant governs the task farm and serves
the model instants on that task farm with necessary parameters. Incoming
simulation results are processed by the controller /processing instant, they
could simply be stored for later use or model parameters could be optimized
to achieve a desired behavior.

A simulation grid for MBS was developed at the Edinburgh Parallel
Computing Center (EPCC), Edinburgh, Scotland, UK in cooperation with
the University of the Federal Armed Forces, Hamburg, Germany. The MBS
modelling is supported by the interactive modelling and simulation system
alaska. This system provides MBS models in a suitable form for the task
farm.

Task farm

2. Components of a distributed simulation environment

2.1. CONTROLLER AND PROCESSING INSTANT (CPI)

The controller /processing instant (CPI) controls the overall simulation grid.
It is the only instant of the simulation grid accessible from the external
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environment. The CPI is the actual data processing unit that provides the
task farm with model and simulation parameters. MBS simulation results
are obtained by the simulator instants, the data processing is accomplished
by the single CPL

Typical examples for data processing strategies are the parameter vari-
ation (collection of simulation results for different parameters) and the op-
timization of MBS kinematics or dynamics with respect to specified model
parameters. From the CPI point of view the task farm entries are simply pa-
rameterized input-output relations. Thus the task farm entries may be any
instants, not necessary MBS simulators, compliant to the communication
framework described below.

2.2. SIMULATOR AND MODEL INSTANT (SMI)

Each simulator/model instant (SMI) placed on one node of the farm is a
composite of the specific MBS model and a simulation engine. Here MBS
model means C-code which is generated by an interactive simulation tool.
In this way the code fulfills interface specifications in order to ensure model
independence. The accompanying simulator can be considered as the sim-
ulation kernel of a standard simulation packages so that it is able to carry
out the same simulation tasks as a user might do interactively. The problem
specific simulation tasks are accomplished by the SMI in batch simulation
mode and described by a command file which is common to all SMis on
the farm. As such the SMI has the full simulation functionality of classical
stand-alone simulation tools except their interactive modelling capabilities.
The SMIs appear to the PCI as black boxes and the CPI strictly has no
information about the particular simulations carried out the PCls.

Model instanciation, temporary

SMI 1 SMi 2 SMi p

Q
MBS code MBS code MBS code 2
]
~ - 73
7 GMALC B e e AL S J F“— '\M@ [ 4
E:
<

CPI Simulator 1 Simulator 2 = s . Simulator p

¥OE)S 00301

Distributed simulation environment, permanent
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2.3. SIMULATOR ACCESS PROTOCOL (SAP)

One of the main challenges of the developed system is the coordination of
SMIs by the PCI. For the sake of flexibility and generality the PCI and
SMIs, each being an individual process on a PCF node, communicate via a
simulator access protocol (SAP). This SAP is based on the MPI-2 frame-
work for distributed computing systems [8]. The SAP approach ensures
a maximum flexibility of the system because the actual PCI as well as
the SMIs can be freely substituted as long as they are compliant with the
SAP specification. Consequently the data processing of developed simula-
tion grid is not limited in type and complexity, i.e. parameter variation and
optimization of MBS are two applications only. It may further cater for the
distributed simulation of cooperating systems.

2.4. MODEL ACCESS INTERFACE (MAT)

The SMIs consist of two parts the MBS model and the simulation engine.
While the PCI and SMIs are coupled via the SAP (a software protocol)
the MBS (the model C-code) must be linked to the simulation engines (C-
library). The general conditions for this interconnection are defined by a
model access interface (MAI). This is nothing but a predefined set of C-
functions with defined calling conventions. Any MBS model fulfilling this
MALI convention can be linked to the simulator, which are of course MAI
compliant.

3. MBS modeling and code generation

Crucial for an easy and straight forward implementation of MBS models
on the task farm is the automatic generation of C-code fulfilling the MAI
specification. The automatic generation of the model code has several ad-
vantages in terms of transparency, modularity and safety. One condition
on the model description to facilitate this is a modular, or consequently
object oriented, modeling (3,6]. Another condition is that the modelling
and simulation tool that engineers use for interactive simulations is able to
"dump’ its internal program flow for that MBS at hand in form of portable
C-code which is also compliant with the MAI specification. This claim was
achieved during the development of the simulation tool box alaska (www.tu-
chemnitz.de/ifm).
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4. Application: Nanometer coordinate measuring machine

The developed system was employed for the optimization of a fairly complex
high precision coordinate measurement device [7] as part of the develop-
ment process. A nanometer coordinate measuring machine (NCMM) com-
bines the precision of nanometer measuring devices and the large workspace
of conventional measuring machines. This is achieved by a novel cascadable
setup. The machine is equipped with an atomic force microscope (AFM) as
topography sensor. Obviously, the large scan volume contradicts the tar-
geted high precision taking into account the used mechanical components.
That is, the NCMM construction demands the use of high quality compo-
nents to ensure high mechanical precision and the drive control must be
able to rapidly reach a target position with very high accuracy. It turned
out that the control of the NCMM is crucial and cannot be optimized
by trial-and-error. Therefore the positioning system of an existing NCMM
prototype was modelled as electromechanical rigid multibody system model
with the alaska simulation package.

The controller parameter of the (existing) protype were optimized using
a genetic algorithm [4,5]. The typical population consisted of 127 SMIs, i.e.
127+1 processors were in use. The main objective was to minimize the over-
shooting effect during positioning of the AFM tip. The optimization goal
was achieved after less then 40 cycles and the optimal controller parame-
ter constellation now yields 70% less overshooting during the tip approach.
Also the scan motion precision could be improved.
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1. Introduction

The paper deals with the calculation and administration of the motion
and the contacts of systems that are comprising many colliding bodies.
Special attention is paid to the comparison of the efficiency of the employed
algorithms with respect to calculation time. In order to model the behavior
of many particles very efficiently, methods from Molecular Dynamics (MD)
are used. To reduce the high calculation time that is usually spend on the
collision detection, sophisticated sorting algorithms for neighborship search
are required. These algorithms are exerted before determining the contact
forces applied to the particles. This holds especially for large systems with
many repeatedly colliding particles. In the paper three of such method
are discussed and compared for both the 2D and the 3D case. In order to
determine the dynamical behavior of systems consisting of several or rather
many particles, some fully developed approaches exist. Systems consisting
of bodies with negligible deformations can be described e.g. by means of the
multibody system method (MBS), (Schiehlen, 1986). Mass point systems
may be regarded as a special case of MBS.

For studies of flexible bodies, usually the Finite-Element-Method (FEM)
or the Boundary-Element-Method (BEM) are used, compare (Eberhard,
2000). Each of these methods has its own advantages and disadvantages.
While the MBS is in general characterized by comparatively short com-
putation times due to a small number of degrees of freedom, traditionally
deformations cannot be handled. On the other hand, systems investigated
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by the FEM possess a large number of degrees of freedom with rather
complex equations of motion, but deformations are taken into account.
An expansion of the MBS method for elastic bodies is e.g. shown in (Melzer,
1994). Hybrid MBS / FEM contact calculations are presented in (Eberhard,
2000), where colliding bodies are examined by the FEM approach in order
to incorporate deformations while all the other bodies of the system are
regarded as rigid. This approach combining FEM and MBS makes use of
the advantages of both of the methods. However, all of these mentioned
approaches have one significant drawback for particle systems in common,
in fact that the number of contacting particles is quite limited.

Very efficient methods for granular matter exist, that allow the determina-
tion of motions and contacts of many thousands of particles. For the efficient
determination especially of systems consisting of a very large number of
small elements, methods from MD are frequently used. The formulation of
the contact forces between the different bodies is based on simple models
in order to keep the calculation times within a feasible range. Here usually
very small penetrations between the particles are accepted, see e.g. (Luding,
1998). Forces applied to a particle in MD are for instance gravitational
forces and contact forces resulting from the boundaries of the system and
from other particles within the system. The normal contact forces acting
in opposite direction to the occurring penetrations are modeled as elastic
restoring forces. The force is proportional to the penetration of the parti-
cles (Luding, 1998). This corresponds to a penalty force or homogenization
approach.

By means of MD basically arbitrary systems such as gas, fluids, molecules
or charge carriers can be investigated (Luding, 2000). Apart from the above
mentioned rejecting contact forces also attractive forces, so called long range
correlating forces, may occur. Further, the potential energy of each particle
generally also depends on all the other bodies of the system. For example
for atomic particles this influence is called ‘van der Waals’ or ‘London’
dispersion, see e.g. (Rapaport, 1995).

In a system with attractive forces each particle influences all the other ones
within the system. This means, that for a system consisting of n particles,
the required calculation operations for the contact force computation will
be of order O(n?). Especially for systems consisting of many particles this
fact will cause very long calculation times and only very small time intervals
can be simulated.

Usually the body distances that are decisive for the major amount of the
occurring repulsive forces between two particles are calculated in a double
loop over all particles. Therefore, the time to examine all bodies with re-
spect to separation or contact is proportional to n2, see (Allen and Tildesley,
1987), leading still to the mentioned O(n?) behavior. For the investigation
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of solids the attractions between the particles can be neglected so that just
the directly contacting and neighboring bodies have an influence on each
other. In 1967 Verlet suggested a technique which utilized this fact in order
to improve the calculation speed (Allen and Tildesley, 1987). The idea is to
generate a list of the neighbors of every body in order to perform collision
detection not for each existing pair of particles of the system, but only for
neighboring bodies. These lists need to be updated only from time to time
and not for every step of the dynamic calculation. Since then many different
approaches have been developed, in order to reduce the calculation time by
efficiently extracting the surrounding particles of the bodies.

2. Neighbor Search Methods

In our paper three methods are presented that can be used in order to find
neighboring bodies of a particle efficiently. The first two of these methods,
the Verlet neighbor list and the linked cells method, identify the neighboring
particles of a body by regarding special regions of the system and consid-
ering all particles within the same region as neighbors. These methods can
have high advantages, as for some systems it is possible to reduce the calcu-
lation operations down to an order of O(n), compare (Muth, 2001). For both
methods the neighboring zones have to be at least somewhat larger than
the particles themselves, compare (Allen and Tildesley, 1987) or (Muth,
2001). Out of that, two problems can arise. Firstly, if the particles within
the system are polydisperse, that means their sizes differ, then the size of
the neighboring zones has to conform to the largest particle existing in the
system. Hence, for highly polydisperse mixtures, the smaller particles may
increase the average number n., which might in the worst case even be close
to n, see (Schinner, 1998).

As the neighborship zones around the particles are larger than the particles,
the neighbor lists do not have to be updated in each time step. The size
of the zones and the necessary update frequency are interdependent and
not quite easy to guess. Therefore, another problem of both methods is the
ascertainment of optimal values for both, the update frequency for the lists
and the size of the zones. If the zones are too small or the update time
steps too large, the behavior of the system cannot be calculated correctly.
But, if the zones are too large or the time steps for rebuilding the lists are
too small, the calculations will be inefficient. The choice of these values is
therefore very important, and it may take a lot of time getting experience
with the investigated system.

The third method presented more detailed, the linked linear list method,
is based on a totally different approach. It is also a very efficient method,
used to keep track of neighbors for large systems. In a first step, bounding
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boxes are laid around each particle, Fig. 1, that are seized in such a way,
that each particle fits exactly in its box. The edges of each bounding box
are aligned parallel to the system axes.

Figure 1. Bounding box around each particle.

In a next step the bounding boxes are projected separately onto the system
axes. Such a projection onto the x-axis for the situation in Fig. 1 is shown
in Fig. 2. In the following, only the order of the beginnings ‘b’ and endings
‘e’ of the projections of the bounding boxes along the axes is of interest.
For this reason the sequences are stored in lists.

Time t 2 Time t+At )

1 3 4 1 3y

T 11 LR =X T T 1 1T T

b, e, byby e3by ey A b, e; by bybe; e, e

Figure 9. Particles projected on the x-axis for two different times, (Schinner, 1998).

For a 3D system, three different projections are necessary and, therefore,
three lists will be compiled, each with the length of two times the numbers
of particles in the system. If there is the beginning, ending, or both, of
another particle in between the beginning and ending of a particular body,
then there will be an overlap of the projections of the bounding boxes of
both particles along this axis. A collision of two bounding boxes exists for
an overlap of these projections along each axis.

Checking whether there is some part of a projection in between the be-
ginning and ending of another projection for each particle along each axis
still takes a lot of time. But, although these lists have to be updated for
each time step, the necessary calculation times can be reduced to a number
proportional to the total number of particles in the system, as there only
has to be done an update instead of a complete recomputation of the old
list for each new time step, that corresponds to sorting an already nearly
sorted list. This update can simply be done by going through the lists
sequentially and checking for any new changes in the order. The occurring
changes usually only are permutations, compare e.g. Fig. 2, where e3 and
by have been changed. If the order of the beginnings and endings does not
have to be changed, the collision status of the particles also will remain
unchanged. While seeking for new colliding bounding boxes, by looking
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for permutations in the lists, four different cases have to be discerned,
compare (Schinner, 1998).

— Two beginnings are changed, which means the bounding boxes have
been overlapping and will continue to overlap,

— two endings are changed, which also means the bounding boxes have
been overlapping and will continue to overlap,

— a beginning and a proximate ending are changed, which means a so far
occurring overlap will now have to be removed or

— an ending and a following beginning of another particle are exchanged,
which means there will now be a new overlap between their two bound-
ing boxes.

For the first two cases nothing has to be done in the lists at all, as the
collision status between any particle will not change. If a collision along an
axis has to be removed, or if there is a new collision between two particles
along an axis, the collision information along the other axes is essential, in
order to know, whether there is a new collision along all axes and, therefore,
between the bounding boxes or, on the other hand, there will now be no
overlap any more between two so far colliding bounding boxes. For this
reason for the 2D case a second and a third column are added to the
lists, that store the information of the positions of beginnings and endings
along the y-axis, compare Fig. 3. In each row, the positions are stored, of
beginnings (column two) and endings {column three) of the particle of the
first column. For a 3D system also a fourth and a fifth column have to be
added with the position information of beginnings and endings along the
z-axis.

1
1
3

5
]

Figure 3. Lists containing also the position information along the other axes.

For example going through the list along axis x, see Fig. 3, leads to the
potential collision between particles (2/3), (2/4), and (3/4). As the location
of particle 3 along the y-axis is from position one to three, whereas the end
of particle 4 has the position two, there is also an overlap of bounding boxes
3 and 4 along the y-axis and, therefore, real collision of the bounding boxes
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of particles 3 and 4. Therefore, particle 3 and 4 are now considered to be
neighbors.

For each method the neighboring particles are stored in lists. Thus, after the
pre-sorting has been finished, the real collision detection needs to be done
only for these surely neighboring and potentially colliding bodies. Hence,
the necessary calculation operations for collision detection can be reduced
down to an order proportional to the number of particles in the system,
ie. O(n).

In the paper results for different examples are shown comparing the three
described methods. It turns out that the Verlet neighborhood lists are
always quite time consuming while there is no clear 'winner‘ from the
other two methods. Depending on the density and polydispersity of the
investigated system either method has advantages and disadvantages.
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ON THE ISSUE OF ITERATIVE LINEAR ALGORITHMS FOR
THE MULTI-THREADED SIMULATION OF MECHANICAL
SYSTEMS REPRESENTED IN CARTESIAN COORDINATES
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2300 Traverwood Drive, Ann Arbor, MI 48105, USA

1. Introduction

The generalized coordinates used in this paper to represent the state of
a mechanical system are Cartesian coordinates for position, and Euler pa-
rameters for orientation of body centroidal reference frames; i.e., for body 1,
ri =[x, ¥, zz-]T, and p; = [es, €;1, €0, ei3]T, respectively. The Euler param-
eters must satisfy thc parameterization constraints, p?pi =1,1<17< my,
[2], where ny is the number of rigid bodics in the model. The vector of
generalized coordinates is defined as q = [rr{,...,rzb, p?,...,pzb]T €
R™, n = Tny. To simplify the presentation it is assumed that the joints in
the model only introduce holonomic constraints. The kinematic constraints
at the position, velocity, and acceleration levels assume the expression

2(q,t) = [ ®1(q,t) ... Bmlqt)]T=0 (1)
Pq(q,t)d+ P4(q,t) =0 (2)
®.(q,1) 8+ (q(q, t))q G + 2Pq(q, t)q + Bu(q,t) = 0 (3)

If my represents the number of constraints induced by the joint &, then
®(q,t) € R™, where m = ZkN:JI my, with N; denoting the number of
Joints present in the model. The subscript denotes partial differentiation,
®q = [09;/0g], i = 1,...,m, § = 1,...,n. It is assumed that the m
constraint equations are independent; i.e., ®4 has full row rank.

In what follows, for body i, ér; and 67; represent a virtual translation
and rotation, respectively, m; is the mass of the body, f; is the vector
of applied forces, @; is the angular velocity represented in the centroidal
body-fixed reference frame, J; is the incrtia tensor, and n; is the applied
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torque expressed in the local reference frame. The notation convention that
a vector quantity with an over-bar is represented in a local reference frame
is observed in what follows. The Lagrange multiplier form of the equations
of motion assumes the form

M O][rf nf(®aq) |, _[f

{0 3][@]+[pT(<I>,Q)]/\_[ﬁ] @)
where M = diag(My, ...,My,), J = diag (J1,...,3n,), £ = [{],...,
vy O )T 0 (R,Q) = [m (2,9) -, Ty (B,9)), 2(R,0) =
(o1 (2,9),. .., pny (®,9Q)], £ = [ff,..., £2]T, and & = [],..., AL, ]7, with
fi; = i; — @J;w;. Note that 7; (®,q) and p; (®,q) are the linearization
operators that in the expression of the first order variation of the posi-
tion constraint equations of Eq.1 multiply the virtual translation dr; and
rotation 07;; i.e., §® = 02, m; (®,q) or; + X2 pi (P, q) 675, [4].

The numerical solution of the index 3 DAE of Eq.1 and 4 is found using
an explicit integration formula that integrates a set of state space ordinary
differential equations (SSODE). The DAE to SSODE reduction is based
on a partitioning of the generalized positions q in dependent coordinates
u € ®™, and independent coordinates v € RS ndof = n — m, [5]. The
coordinate partitioning-based approach requires at each mtegration step
the acceleration §. Note that if X is available, I and @ are expeditiously
computed based on Eq.4, and with p; = 0.5 GTw; — 0.25 (u‘)lT wi) pi, [2],
{§ eventually becomes available. Thus, the cornerstone of the algorithm is
the computation of A, which is carrled out iteratively as the solution of the
reduced system By A = yM™f +pJ~1h —7. Since the matrices M and J are

positive definite, the reduced matriz E; = (nM InT + pJ ’1pT) € g™,
with n =7 (®,q), p = p(®, q), is also positive definite.

2. Preconditioning. A topology-based direct sparse solver

The preconditioning of the iterative solver for the reduced system is based
on a direct solution of this system, in which the topology of the model
is leveraged to efficiently compute E;, and to perform sparse, low fill-in
factorization.

In what follows, two bodies b; and by are called j-adjacent if they are
connected through joint j. Since there is an ordering relationship among
the bodies of a model, of the two adjacent bodies one has a lower index,
and it is called the left-body, or 1-body, while the higher-index body is
called the r-body. They are denoted by 1(j), and r(j), respectively. The
b;—connectivity set of body b; is defined as the union of all joints that link
body b; to other bodies in the system, and it is denoted by ((b;). The joint
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indexr J(b;) of a body b; is defined as the number of elements in ((b;).
The topology index J of a mechanism is defined as the largest joint index
of any body in the mechanism. In this context, it is shown in [4] that an
upper limit on the number of operations to compute E; is 727(J + 1) n,
additions, and 1267 (J +1) n, multiplications. These numbers refer to block
matrix operations, and the rule is that each joint leads to operations with
block matrices of dimension equal to the number of constraint equations
it induces. Thus, the largest dimension of any block matrix opcration is
6 x 6, induced by a joint that removes all six relative degrees of freedom
of a body. It follows that thc number of opcrations only increases linearly
with the number of bodics, and it is the topology index of the mechanism
that, from a connectivity stand point, influences the computational effort.

The direct solution of the reduced system is obtained by repeatedly ap-
plying a two-stage process, [4], an approach similar to the one proposed
in [3]. First, a Lagrange multiplicr ); associated with joint j is solved for
in its defining equation (the isolation (I) stage), and then eliminated from
the defining equations of all joints & € {(1(5)) U {(x(j)) (the elimination
(E) stage). The two factors that influence the effort to compute the so-
lution of the reduced system arc the elimination order, and the topology
index of the mechanism. The importance of the elimination order is illus-
trated in [4], where the direct solution of the reduced system associated
with the Andrew’s squeezing mechanism is analyzed in terms of block ma-
trix additions (A), multiplications (M), inversions (I), and fill-in (F). The
results are showed in Table 1, the mechanism and the associated topology
graph are presented in Fig.1, in which bodies map into the graph’s ver-
tices, while the graph’s edges correspond to physical joints. For the good
elimination sequence 1 2 7 6 5 8 9 3 4 10, the number of additions and
multiplications is reduced by roughly 70%, compared to the case when a
bad elimination sequence is employed. Likewise, although this mechanism
has closed loops, when using the good elimination, the algorithm results in
no fill-in. It follows that rearranging the ordering of the joints during the
preprocessing stage of the simulation results in increased solution efficiency
at each integration step.

TABLE 1. Andrew’s mechanism. Operation count.

Elimination Sequence A M I F
12765893410 35 3 21 0O
42356917810 111 130 40 19

For a class of topology index 2 mechanisms; i.e., a chain of pendulums,
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a. Model b. Topology graph

Figure 1. Seven body mechanism

it is shown in [4] that the reduced system is solved in O(N;) effort. How-
ever, as pointed out in [1], this ceases to be the case for star-like topologies;
i.e., models with high topology index. These are models in which one body
is connected to many other bodies in the model. In the limit, the perfor-
mance of the two stage isolation—elimination (IE) algorithm turns out to
be O(N3). The algorithm remains order O(N;) though, provided topol-
ogy index reduction is first applied to the model, [4]. The topology index
reduction amounts to a virtual break-up of the high index body into an
appropriate number of smaller virtual bodies connected by fixed joints; i.e.,
joints that remove all relative degrees of freedom. This operation reduces
the index of the mechanism while increasing the number of unknowns; i.e.,
Lagrange multipliers in the new reduced system. The new bodies and joints
are called virtual because they do not have a physical counterpart. Their
effect is a topology change for the sole purpose of leading to an equivalent
but simpler reduced linear system. The idea behind topology index reduc-
tion is that a star-like topology should be regarded as the result of a bad
elimination sequence applied to a virtual mechanism. The effort for com-
puting the Lagrange multipliers is expected to decrease by going back to
this virtual mechanism via topology index reduction, and then applying a
better elimination sequence on its reduced matrix.

Topology index reduction was applied in [4] to star-like topologies with
indexes anywhere from 3 to 16. The results indicate that even for this
type of topology, the number of operations only increases linearly with
the number of joints in the model, provided the topology index of each
model is first reduced to 3 or 4. Topology index reduction was also applied
to a High Mobility Multi-Wheeled Vehicle (HMMWYV) in Fig.2, a model
with topology index J = 11. The impact of the elimination order and
topology index reduction are presented in Table 2, where NN Z indicates
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a. Picture b. Topology graph

Figure 2. HMMWYV example

TABLE 2. HMMWYV reduced system solution effort.

Elimination Sequence A M I F NNZ
Bad 1240 1336 195 96 99
Good 459 469 109 10 99
Index reduction 220 233 90 13 77

the number of non-zero blocks in E;. The reader is referred to [4] for a
detailed account of how the topology index reduction was done, and what
were the "good” and "bad” elimination sequences used for the solution of
the reduced system.

3. The iterative solution of the reduced system

If W is the preconditioning matrix, the algorithm Preconditioned Conju-
gate Gradient below guarantees a solution of the reduced system E;A =b
within m iterations. In this algorithm, the preconditioner is responsible for
finding ci, an operation presented in Section 2 and based on a direct so-
lution of the reduced system. In the context of parallelizing the iterative
algorithm on a per body basis using a shared memory framework provided
by the OpenMP standard, the tasks specific to the iterative solver are the
computation of & = E,dx € ™ and é; = d]E,d, € R, [4]. Defining the
constraint index of body b; as C(b;) = 2 1ec(b;) M, it is shown in [4] that the
number of operations on the thread associated with body b; during each
iteration is 12C(b;) + 12 multiplications, and 11C(b;) — 57 (b;) + 5 additions.
This indicates that the computational effort per body and per iteration is
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linear in the body constraint index, and leads to the conclusion that load
balancing is obtained when the bodies in the model have identical or close
constraint indexes C(b;). It follows that topology index reduction also helps
the iterative solver by balancing the thread load, and distributing the work
to more threads. Note that the performance of the iterative solver is not
impacted at all by the existence of closed loops in the model.

Preconditioned Conjugate Gradient.

k=0;A=0;ex=b
while (e, # 0)
Solve Wci = e
k=k+1
if (k=1)
d1 = Cy
else
B = (ei-1ck-1) / (e _zck-2)
di = ex—1 + Ordi—2
end
ar = (ef_ice—1) / (dFE1di)
Ak = Ag—1 + ardi
er = ex_1 — aprE1dy
end
A= Ax

The multi-threaded attribute of the algorithm draws upon the mapping
of each body on a simulation thread, and it is the cornerstone of the pro-
posed solution method. Each body-thread starts with the computation of
specific kinetic and kinematic quantities, and continues through the numer-
ical solution; i.e., through the iterative solvers and numerical integration.
Additional implementation details, and a discussion on how the iterative
approach is used in the framework of SSODE integration to compute the
dependent position and velocity by means of a different reduced matrix Eq

is provided in [4].
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Abstract. This paper briefly describes Symofros, the modeling, simulation and control envi-
ronment developed and used at the Canadian Space Agency for multibody and robotic systems.
This environment is based on a symbolic modeling and code generation engine supported
by Maple, and the Matlab/Simulink environment. Symofros serves two main purposes: con-
trol and real-time implementation, and analysis and design. Applications of the Symofros
environment in space robotics will also be demonstrated in this paper.

1. Introduction

Multibody dynamics is of central importance in design and analysis of me-
chanical systems and their controllers. In space systems, multibody mod-
eling and analysis is the fundamental element in developing and operating
systems and technologies. Simulations (both non-real-time and real-time)
are required for space robotics and space systems in general. The Cana-
dian Space Agency’s (CSA) in-house multibody dynamics software package
Symofros has been developed since 1994. Symofros permits modeling, simu-
lation and real-time control of multibody systems. The software architecture
of Symofros is based on the Maple symbolic modeling engine and the Matlab-
Simulink environment. Symofros is used for various projects in robotics both
inside and outside CSA.

This paper describes the integrated virtual environment provided by Symofros.
This environment allows the user to efficiently model, simulate in non-real-
time and in real-time, and then do the implementation on a real hardware.
The paper details the modeling environment based on XML, Maple and on a
server system. We will then discuss the generation of the functions used for
the simulation and the controller development. We will describe how a system
can be simulated using the libraries built in Symofros. The next stage is the
generation of a real-time simulation. As it will be discussed in the following,

f Opal-RT Technologies on secondment to Canadian Space Agency
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the Symofros architecture provides a very flexible environment that allows
users to perform rapid prototyping. For example, the user can test, in the
real-time environment, a complex model-based controller using a model of a
robot, and then by simply clicking on a button, switch to the control of the
real-hardware.

2. Modeling

Symofros multibody dynamics engine is based on a formulation relying on
Jourdain’s principle. Jourdain’s principle provides a physically clear frame-
work for multibody analysis for both holonomic and nonholonomic systems.
Jourdain’s principle, as a differential variational principle, possesses two very
important features. It is invariant under transformations from one possible set
of coordinates to another, and expresses the main principle of constrained
systems, that the virtual power of constraint forces for admissible velocity
variations (or virtual velocities in other words) vanishes. These are the two
fundamental elements upon which the analysis of complex systems can be
based. The various parts of Symofros’ modeling engine have been extensively
validated by experiments, analytical examples and simulations.

Complex systems (e.g. closed-loop multibody systems, parallel robots) can
be split to sub-systems, and the system model can then be assembled by
employing constraints between the various sub-systems. Open-loop systems
and sub-systems are modeled using a generic recursive formulation, which
can consider both rigid and flexible elements in the system (Piedbceuf, 1998).
In general, the consideration of the system constraints is a key issue in multi-
body dynamics. Symofros is able to handle both holonomic and nonholo-
nomic constraints based on the Lagrangian multiplier technique with Baum-
garte stabilization, and the use of projection and decomposition techniques.
Work is in progress to develop new advanced methods for handling con-
strained system dynamics, and to extend the capabilities and include various
new and existing approaches in the simulation environment.

The Symofros environment is able to consider rigid and flexible bodies as
elements of a multibody system. Currently, flexible beams are implemented
for flexible body modeling with various choices of shape functions. Besides
the traditional assumed modes approximations, a characteristic modeling ap-
proach employed is the advanced use of the assumed modes method, where
the discretization is carried out in a way similar to the finite element method,
i.e. interpolation functions are generated locally for an element, but then the
shape functions are represented globally as in the traditional assumed modes
method. Flexible plate models are planned to be included in the near future.
Besides body flexibility, the finite stiffness of the mechanical structure of the
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connecting joints is also a dominant effect in multibody systems. Symofros
is capable of modeling joint flexibility using discrete stiffness models.

For contact mechanics modeling, Symofros currently uses the Contact Dy-
namics Toolkit developed by MacDonald Dettwiler Space and Advanced Ro-
botics Ltd. Work is in progress to extend the contact-impact modeling capa-
bilites of the Symofros environment with special attention to the real-time
aspects. There are two main approaches being investigated in contact dynam-
ics modeling: the local compliance based models, and the rigid body models
based on unilateral constraints.

Dynamic parameter identification is an important area in multibody systems
simulations, analysis and control. This area is currently being looked at to
develop an identification toolbox for Symofros The two main purposes of the
identification toolbox is to facilitate the optimum generation of experimental
data for identification, and to process the measured data to determine the
required parameters. This work involves the formulation and analysis of the
dynamic equations in the form suitable for identification, and the solution
techniques of these equations for the parameters.

Symofros also includes a control system toolbox comprising a library of
Simulink blocks of various control algorithms (e.g. model based control with
PD compensation). These can be easily linked and tested with the dynamic
model of a multibody system to form the model of a controlled system. Also,
new control algorithms can be readily built from the existing primitives.

3. Symofros software architecture

Symofros is based on commercial tools and is composed of three main mod-
ules for mechanical system description, modeling and simulation (see Figure
1).

Creating a model of a mechanical system consists of describing the bodies,
the joints and the topology of the system. This model description is based on
the XML language', a standardized language used to describe any kind of
data and used for many applications. For mechanical system description, this
language is also used by researchers in Spain (Rodriguez et al., 2001).

The Symbolic Model Generator (SMG) comprises modules written in the
Maple language to perform the symbolic modeling. The input of the module
is an XML or Maple file describing the properties of the mechanical sys-
tem. This file is used by the module to compute the kinematic and dynamic
quantities of the bodies and the joints. From the input file, the topology of
the mechanical system is analyzed to generate a graph model. Using the
topology with the body and joint data, the SMG develops the kinematic equa-

' www.w3.org
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Symofros module

Model
Editor

Symbolic Model
Generator

Simulation Environment

Figure 1. Overview of Symofros modules

tions. Using the kinematic formulation, the SMG builds the dynamic equa-
tions in various forms, for simulation (forward dynamics), control (inverse
dynamics), and parameter identification (currently in development). Special
kinematic quantities are also generated for parallel mechanisms based on the
approach proposed in (Monsarrat and Gosselin, 2002). The SMG is normally
used as an automatic model generator, but it is also a powerful tool to analyze
the dynamic equations and to develop models on-line. More details on the
symbolic modeling part of Symofros can be found in (Piedbceuf, 1996) and
(Moore et al., 2002).

For simulation and real-time implementation, the SMG generates C code to
represent the multibody system. The code generation requires optimization
tools to break the complex expressions down to smaller expressions. This also
helps improving the code efficiency for simulation since sub-expressions ap-
pearing several times need to be computed only once. The C functions are the
links between the modeling part of Symoftos, and the simulation/real-time
implementation parts. Therefore, using the model in an advanced simulation
or in the real-time environment is straightforward.

The Symofros SMG module can also be called using a server. The user has to
connect to the server and send the mechanical system description files. These
files are then processed by the SMG and the C file and processing information
are sent back to the user. This approach helps protecting the Symofros source
code, which is located on the Maple server and not accessible by the user. This
also reduces the maintenance required, since the upgrades and modifications
have to be carried out on the server only. Also, using the server reduces the
load on the user’s computer ressources.
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To allow an efficient and convenient use of the mathematical model derived,
and to enable the numerical simulation, Symofros is directly linked to the
Matlab/Simulink environment. The Simulink environment allows to create
complex models and generate complex simulation systems in only a few sim-
ple steps without the need of advanced programming skills. Special blocks are
available in the library in order to call the functions generated symbolically
and written in the .c file. As an example, Figure 2 shows how the forward
dynamics can be computed. In this example, the dark blocks (Mnl, gnl) are
used to call the functions written in the .c file. Then, using standard Simulink
blocks, the system of equations is solved to obtain the accelerations, and
integrated to obtain the generalized velocities and generalized coordinates.
This block (Forward Dynamics) can then be found in the Symofros library
and re-used with other models.

= ]

integrator Intagratort ]

Figure 2. Simulation model within Simulink

Real-time simulation and hardware-in-the-loop simulation can be achieved
by using complementary tools like the Real-Time Workshop and RT-Lab for
generating real-time simulation code and distributing the computations on
several computers. More details on this topic can be found in the next section
and in (L’Archevéque et al., 2000), (Lambert et al., 2001) and (Piedbceuf
et al,, 2001).

4. Applications

Canada’s contribution to the International Space Station (ISS) is the Mobile
Servicing System (MSS) which is composed of the Mobile Transporter, the
Space Station Remote Manipulator (SSRMS) and the Special Purpose Dex-
terous Manipulator (SPDM). The SPDM will be used to manipulate Orbital
Replacement Units (ORUs) or scientific payloads. An important aspect of
a typical SPDM task is the insertion/extraction of payloads. To support the
MSS, CSA has developed the STVF? and the SMP?. Both of these systems

2 SPDM Task Verification Facility
* System for Maintaining, Monitoring MRO Performance on board the ISS
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are based on the Symofros engine. These two systems also demonstrate the
two main application areas of Symofros: model based control, and simulation
and analysis.

4.1. STVF: HARDWARE-IN-THE LOOP SIMULATOR

Due to the complexity of an SPDM task, a verification of the operation must
be performed on the ground for each ORU manipulation. The main diffi-
culty in this validation is verifying the part of the task for which the SPDM
end-effector or payload undergoes contact with the environment. This part is
verified using a hardware-in-the-loop simulation (HLS) to generate the real
contact force using a mockup of the payload that needs to be manipulated.
The STVF Manipulator Testbed (SMT) (Aghili et al., 1999) is used to per-
form the HLS. The output of a real-time simulator representing a space robot
is used as the input to the ground robot controller. The real contact forces are
measured and fed back to the simulator. This approach is very flexible since
we can represent not only SPDM but also other space manipulators.

Figure 3 shows the hardware architecture required for the test-bed. The real-
time simulation is performed using the MSS Operation and Training Simula-
tor (MOTS). The simulator includes the dynamics of the mobile base and the
SSRMS in addition to the two arms of the SPDM. The full model has more
than 50 degrees of freedom. The dynamic engine (SMT-SIM) is running at
1 kHz on an Origin 200 machine with four processors. The visualisation is
running at 25 Hz on a four processors ONYX machine. The real-time control
of the robot is achieved using a cluster of Pentium processors running QNX,
and using Simulink Real-Time Workshop with Opal-RT RT-LAB for the code
generation and multi CPU management. The graphical user interface on the
SMT-CS is developed using Labview. The communication between Labview
and the real-time system is managed by RT-LAB. The models required for the

SMT Hub
SMT-SIM
100 Mbps Ethernet {Origin 200}
SMT-VIS
(ONYX)

Figure 3. Computer Architecture for the HLS
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controller and for the simulation on the cluster are generated using Symofros.
The robot controller in the HLS mode is based on a cartesian feedback lin-
earisation (de Carufel et al., 2000). For the design and the tune-up phases,
we developed an equivalent model of the robot using Symofros. This model
reproduces exactly the same interfaces (in terms of inputs and outputs) as
the SMT robot has. Therefore, we can choose between the real robot and the
simulated robot simply by clicking a switch. For the same reason, a simplified
model with a reduced number of degrees of freedom has been developed for
the space robot using Symofros. This model uses exactly the same interface as
SMT-SIM. This flexibility is critical for the development since this allows the
engineers to develop the overall software architecture in their offices and then
download the code on the real-time system. There is no re-coding necessary
between the pure simulation phase and the HLS phase.

4.2. SMP SIMULATOR

Experimental tests and analysis have shown that the capture of free-flyers is
the most complicated task to be performed by a robotic operator on board
of the ISS. The understanding of SSRMS and free-flyer dynamics require
highly qualified and well-trained operators. The dexterity and accuracy of the
astronauts may decrease over time if they are not trained on-board. It was an
obvious choice to have a simulator on-orbit to keep the skills of the astronauts
at the required level. In order to support the training scenarios required by
the on-orbit training, the SMP 4 simulator has been developed. The main
objective of the simulator is to determine if an astronaut is ready to perform
an operation with the real SSRMS. The training scenario, implemented in the
SMP, consists of capturing a free-flyer with the SSRMS.

The simulator is composed of four modules, the Graphical User Interface
(GUI), the Analysis Module, the Visual Renderer (VR) and the Dynamic Sim-
ulator (SIM). It has the same architecture as the Basic Operations Robotic In-
structional System (BORIS) simulator used to provide generic robotic train-
ing to the astronauts (L’ Archevéque et al., 2001).

The GUI has been developed with Labview 6 and runs on Windows operating
systems. During a training session, the operator is firstly prompted to log into
the system. Then, he has the choice to start a simulation session, a session
analysis or a trend analysis. The session analysis provides information such
as the hand-controller rates, the relative position and velocity between the
end-effector and the free-flyer, and the capture status. Operational criteria
and heuristics are used to provide a score, which allows the astronaut to have
a good picture of his personal progress over time using trend analysis. The
astronaut can then determine if he needs more training or not. Figure 4 shows

* System for Maintaining, Monitoring MRO Performance on board the ISS
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the VR model of a generic free-flyer as viewed by the SSRMS end-effector
camera. The VR module has been developed with OpenGL toolboxes.

Two Symofros models have been used to represent the SSRMS and the free-
flyer. The SSRMS model has been configured and tuned using real flight
data (data gathered during SSRMS operations) in order to obtain a realistic
model. Generic parameters have been established to configure the dynamic
behavior of the free-flyer. A Simulink diagram, using Symofros toolboxes,
performs the simulation of the SSRMS, models the attitude control system of
the free-flyer, interprets the hand-controller input values, handles the capture
sequence, and gathers session data. The SMP simulator running in soft real-
time on Windows 2000 has been generated using Real-Time Workshop. The
experimental system will be launched in January 2003 and will be used by
several astronauts and cosmonauts.

Figure 4. SMP Visual Renderer
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ON CALCULATION OF JACOBIAN MATRICES IN SIMULATION OF
MULTIBODY SYSTEMS ™

D.Yu. POGORELOV
Bryansk State Technical University
b. 50 let Oktyabrya 7, 241035 Bryansk, Russia

1. Introduction

Integration of stiff equations of motion of multibody systems using implicit numeri-
cal methods, calculation of equilibrium positions, linearization of equations, con-
structing optimal controls and some other important tasks require computations of
Jacobian matrices. Evaluations of the matrices by finite differences in the case of
stiff equations is about 13 times more expensive than that for the mass matrix of the
system [1]. Decreasing the corresponding computational efforts could improve the
efficiency of numerical analysis of large multibody systems. In this paper the ana-
Iytic expressions for Jacobian matrices are derived. The method of derivation is
based on the composite rigid body algorithm [2], which allows considerable reduc-
ing computational efforts in evaluations of the matrices. Multibody systems with
holonomic ideal stationary constraints are considered. If a system has closed loops, a
minimal number of joints must be cut. An ordered numeration 1...n of bodies and joints
is introduced. Let us consider a chain of the system tree, which begins at body 0 (the
inertial frame). Indices of bodies increase along the chain, i.e. the minimal index has the
body connected with body 0. Indices of joints in the chain are equal to those of bodies,

namely joint j connects bodies i and j, j>i= j~. The following important sets are
used below: J(k) is the set of indices of joints included in the path from body & to body
0; B(k)is the set of indices of bodies, so that their paths to body 0 contain joint . Let

g=(q" - ¢I)T be coordinates of the system, g; is the n;x1 matrix of local

coordinates in joint j, which specifies the position of body j relative to body j™.

2. Jacobian matrices of kinematic variables

Let r;,vj.a,A0/,0),€; be the radius vector, velocity and acceleration of the origin as

Supported by the RFBR under grant 02-01-00364 and by the scientific program “Universities of Russia —
basic research” UR.04.01.046
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well as the direction cosine matrix, angular velocity and angular acceleration of a body-
fixed frame. The following recursive relations are valid:

ri(@=r(+ri(q;) Agj(@)=An(9Aj(g;),

c =y 4+ T r L= () T
Vj v,+mlrj+vj, (x)j (1),+(1)J,

=a:+ &1 +0.0:7 +20:.v5 +a" =g + 00" +&"
aj=a;+§rj +Qur; +20;vi+aj, €; =& +0;0; +€; ,

where 1/, A7, v}, w},aj,€’; specify the position and motion of body j relative to body
I
r _ : r—h.n.
vj—djqj, mj—quj,
r—d.5. . r=pb.0: :
aj=djg;j+a;, € bigj+B;.
Introducing the global velocities and accelerations
(T Th\T o aT oTHT
Vj—(vj coj) , WJ~(aj ej)
yields the recursive formulas
=C.V: . =C.W. r
Vi=CVi+S,;q;, W;=CyjW;+S;q;+T};,

Iy -7} dj o)
.= J .= . =
o ) oela) me®)

and the explicit expressions
Vj=q)1q, Wj:d)jq-'_‘}lj’
kel (j)
Here we introduced the notations, which we use throughout the paper for 6xn j matri-

j matrices:

Xp=(0 - 0 X, 0 - 0).
To derive the explicit Jacobian matrices for the kinematic variables with respect to
coordinates g, the variations of coordinates 8q are used. Let &r;,on j be the corre-

ces Xy X§=CylX,, as well as for mxn

sponding displacement of the origin and the rotation vector of the body-fixed frame,
&tl = 6A0] AJO :
= (5T TN\T _
Variations of recursive relations for velocities and accelerations yield:
SVJ = CIJBVI —H.‘;STC, +S}'5qj, SWJ =CU8W1 —QJS(DI —H‘j‘&t, +S;‘5qj s

O F +v7 v ©:d ; r
— ;7] +V; §v o dj _ wzdj+VJ
J o, | 7 |p? ol )
J J J
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((E{) ®; +&)d; +2mv’+a;;J

’r ’r
;0] +e;

- T -
~av" fagh, f =3w; [aqT, a(f = da’; 3], € =3¢ [3qT .
Here I3 is the 3x3 identity mamx.
Thus, the Jacobian matrices result from the following expressions:

8V, =Coj 3 (Sy*—Mby) 89,

ke (J)
SW;=Co; 2. (5 -0 b + @ -T2 B )b
keJ(j)
where
Wy =My -I;,  Wj=@] =fH)f= YI
meJ ()
4, =M% -T0{, = Y[ -Qnl),
meJ(J)
ijzﬂj-—ﬂk, Q = ZQ
meJ (§)

The next formulas are the variation of the matrix S :

L« O (5r +r81t )
55% =3(C51s ;)= asj{ ) s, J 5

- AO e * T
§s*=cC { J ] Z 5% 8q; 8 =g - OGm.)

J 0j jm9 jm>» j ! jn ,
Aojﬁb} I

m=1

and the important variation 8(<I>€X) for an arbitrary 6x1 matrix X

s@Tx)= Y Suds+ X 5 ( > XS+ Zirjé,’;JSq

kelJ (j) kel (j) meJ (k) mel (j)-J (k)
v Y5TCl8X.
keJ(j)

The first summand in this formula contains the matrices S, With one diagonal

n, xny, block S =Sy X*© - S,'C;ZX *y, the second one includes the matrices

* AT X\ 3 0 0 =~ 0 X,
=Cph; X = , X,i= e e, X ~ .
0Jj (xn) 7 (— %, x,rj) A (O X, 7+ Xy

Introducing the variation 8¢ allows deriving the J acobian matrices with respect to
g . The following expressions specify the necessary matrices:

161




V=085, 8W;=Cy Y(S¢-Q;b)8,
ke ()
o _ (de +da} /aq,TJ

T\ @b+t /aqj

3. Jacobian matrices for equations of motion

Here we consider equations of motion of a tree—structured multibody system, derived
with the help of the Newton-Euler formalism:

fG.4.9.0=Y 25 (96 ;(9.4.4.0=0, o))
j=1

G] =MJ(Q)W_,(‘I,(I’CI)‘FICJ(Q,‘I)‘fj(quJ)s

mj13 O 0
Mi=l o 715" e
j ®;J ;)

where m;,J ; is the mass and the inertia tensor of body j, the 6x1 matrix f j contains

j 1
applied forces and moments reduced to the centre of mass. Origins of the body-fixed
frames are located in the corresponding centres of mass.

Variation of equations with respect to ¢ and ¢ produces the Jacobian matrices

O =J9q+J"8q .
Application of the results of the previous section as well as rearrangement of summa-
tions

n n n
jz=1 kelz(j) ) kz=:lj€§(k)’ z=: e;;)m;(n El mzl Jje B(max(k,m))
lead to the explicit expression for a separate block of the matrix J*
I = ,:T(Iu (57 +mem)-—(lm +0 k;g)T)b,,, +Fv,ms;,), u = max(k,m)
with the following composite matrices:
L= XM} lg,= YMQ; M}=C{M,Cy,

JjeB(u) JjeB(u)
Ykjos Ko=83J ;- j0;)",
jeB(u)
Z ZCOJfJVlCOIY ijl_(afJ/avT afj/aﬁ) ).
jeB(k)leB(m)

The expression for the matrix J 7 is more cumbrous:

It = Scklkam + AT (Frin + G| ) )

me J (k) *+G, me B(k)-{k}
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+STO0 k)T — Ty +Frivien)om + L (Smr™ + Loy + Mibyn))
+8TWO0 k2T — X0 by —Foin (Si +Tbyy)), u=max(k,m),

and includes the following composite and auxiliary matrices:
Ser =(S; TGy - Skj,i Gy Gr= DG,

JjeB(k)
Fivn= 2 LCLfmCall), Frim= 2. 2Co;firiCor
le B(m) je B(k) jeB(k) le B(m)
n T m+n T T , ,
YOI+ Y@ -@ICh)h =0, Kimp= X(jr—Kjun%).
j=1 s=n+1 jeB(u)
k;‘(,)= Zk;a), k}-ﬂ=Jj€j~(Jjej)“+c~o]-(Jj(T)j—(ijj)“).
jeB(u)

If we neglect the expenses for computing the composite matrices Frim, Fyim
(most of the fj'-w , fle matrices are usually zeroes), the evaluation of the matrices

J¥, J9 for a chain requires 9n2+O(n) and 13.51% +O(n) multiplications,

7.5n2 + O(n) and 1122 +O(n) additions, respectively.

4. Jacobian matrices for equilibrium equations

Calculation of equilibrium positions and subsequent linearization of equations of motion
is an important part of analysis of many technical multibody systems.

Consider a multibody system with m closed kinematic loops. If all cut joints are ki-
nematic pairs with rotational and/or translational degrees of freedom (from 0 to 5 d.o.f),
the nonlinear equilibrium equations have the following form:

n m+n

Yolfi+ Y@l -olchir, =0,

Jj=1 s=n+l

STA, =0, s=n+l.,n+m,

3
rv(q)—ru(Q)'" A()u (q)r:v (qs) = Oa "';‘{ ZEkAOu(q)Auv(qs)Agv (q) Cr = 0.
k=1

The last two equations correspond to closure conditions for cut joint s connecting bodies
u,v, e are basis vectors of inertial frame; the 6x1 vector A contains a reaction force

and moment reduced to the centre of mass of body v.
The Jacobian matrix for the constraint equations is ®, —C,,®, —S; . To obtain the
Jacobian matrix for the first equation with respect to coordinates, reactions should be

added to applied forces ,
F_] =fj_ ZC}:,XS+ Z}\’S’
seC1(Jj) seCa(J)
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where C;(j) and C,(j) are sets of cut joints related to body j.
Now the equation becomes

< T
Z(DJFJ =0,
j=

and the Jacobian matrix can be derived as a particular case of Eq.(2).

meB(k)—{k}+FRb")Sm’ Fy =ﬁ§(/§j :

’ *T £
‘]l(clm =Sl“k'k=m +Sk "F“|n£](k) +F,

5. Approximated Jacobian matrices

Consider an implicit multistep method for numeric integration of Eq.(1) according
to the following finite differences:

gi=a7 +8q, 4;=q7 +8q; /o, §; =G +8q; /B2, i=12.., (3
where the superscript ¥ denotes predictions, 8¢; is the unknown corrector, and the
coefficients @, (index i is omitted) are proportional to the step size k;, e.g. for the

Park method a =0 =0.6k; [3].
Substituting Eq.(3) in Eq.(1) and linearization of the equation yield

B2f(G;".q;" .0+ J8g; =0
with the Jacobian matrix J =M +J” B2 Jo+ J9B2.

A useful simplification consists in neglecting the term J9. Really, if the integra-
tion step is small and ¢ << 1, the inequality "J "" /oc >> "J 9 " is valid very often. In this

case the approximated matrix can be found as J =M +J vﬁ2 /a. This formula can be

useful, if the equations of motion are stiff due to dissipative forces.

Another important case concerns slow motions of stiff multibody systems, when
the stiffness of equations of motion is caused by separate applied forces [3]. If the
system motion is slow, the mass matrix is nearly constant, and inertia forces are
small. For such cases the calculation of an approximated Jacobian matrix taking
into account stiff components of applied forces proved to be very efficient. The
simplified single block of the matrix is

Jim =M i + ST By B2 f0+ FrpoB2)SE, .
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NONLINEAR CONTROL ALGORITHMS FOR MECHANISMS OF
PARALLEL STRUCTURE
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Russia

1. Introduction

Space technological implementation is parallel to the necessity of devices and
technological systems vibration isolation under space condition. The vibration affects
and in particular in low frequency and infra-low-frequency spectrum violates a some
crystal growth processes and microbiology processes. There exist the problems of
building a special vibration proofing systems of space technological platform.

2. Platform Stabilisation System

The task of stabilization of a technological platform from influence is considered in
inertial system of coordinates. For control of stabilization the mechanisms of parallel
structure are used which can be presented as rigid bar varying length on the information
from sensors. These mechanisms and the platform are shown in fig. 1. All six modules
have rotated connection with a platform and basement. Different methods can be used to
change the length of each rigid bar. The task of the control system is to organize the
operation of six mechanisms so that the position of the platform in inertial system of
coordinates remains invariable.

One of the vibration isolation modules is shown on a diagram in fig. 2. The sensor
of relative moving, accelerometer of the basement and platform are used in system. The
signals from sensors act on a regulator. The control signal from a regulator is filtered
and moves on an input of the executive engine. The electric motor through the
transmission mechanism results a platform in a relative movement. For stabilization of
speed of rotation of the engine the local feedback of an integrating type is used.

The task of stabilization of absolute coordinate of a platform cannot be decided as
trivial by introduction of a feedback. In this case it is necessary to have the sensor of
this coordinate, which in system is not present. Attempt to add such gauge is insoluble if
to consider, for example, that the basement moves together with a platform with
constant speed in some inertial system of coordinates. It is possible to put a task in
another way: it is necessary to supply zero importance of acceleration on a platform.
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Such task has infinite set of the decisions. It is possible to imagine two physical bodies,
which move with different speeds without acceleration. Nevertheless, any of such
decisions really cannot exist, it is necessary to take into account restrictions of a
platform movement.

S x 48 v
PLATFORM ’ At:cuuwmk REGULATOR
u

]
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Fig. 1. Vibration isolation system for Fig 2. One-dimensional vibration
a platform in three-dimensional isolation system.
space

Thus, we come to the following statement of a task: it is required to supply a
minimum of acceleration on object with the limited moving.

To decide a task of synthesis of desirable system we shall proceed to the
simplified model. The assumption is accepted, that all connections absolutely rigid,
weight of a platform does not vary. With absence of a movement the system is tolerant
to dynamic forces enclosed on object, only movement of the basis results a platform in a
relative movement.

Let's solve a task of construction of digital system of stabilization. For a discrete
regulator the control function is constant between the moments of switching. The
executive mechanism is considered ideal. The speed of relative moving of a platform is
proportional to a control signal. Thus, the function of acceleration at the moment of
switching will have indefinitely large breaks. Hence, with transition to digital control it
is necessary to filter a regulator signal. As the filter it is possible to take into account
inertial properties of the executive mechanism, but it can be separate device.

Equation system for a continuous case of initial system has of the form of:

8+.(o,8=0)lu (1

x=0+v
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x - absolute moving a platform,
3 - relative moving a platform,
v - moving a basement,

u - control influence.
After performing a transition to state-space model and introducing variables

0(i) = 8(i), x(i) = x(@), ()= v(i) the following system of the equations is received.

8(i +1) = 8(i) + a,,0(7) + bu(i)
6(i +1) = +a,,0()) + b,u(i) 2)
x(i+1) = a,,0(i) + byu(i) + (i +1)

1 —oT o N
e a, =————(1—e o ), a, =e", a,=-0,Te"",
o,T

bl — —L(I _ e-m]Tl bz =1— e—(DlT’ b3 — (DlTe-(ﬁxT

1

3. Control System Synthesis

Call attention, that the received system (2) is system of the second order. The third
equation is the equation of target value, acceleration on a platform. The function of
acceleration x(7) at the moment of switching control ¢ = iT has break limited on value.
The third equation gives an estimation of acceleration x(i) at moments of time,
following behind switching of control. Therefore to use it for modeling a feedback on
acceleration on a platform it is impossible. It is possible to take advantage of the
following reception. Let program of control is u (i) = kx(i). From system (1) we shall

(¢(?) - ,8(:)). Similarly from some desirable feedback u(i) = k

receive u(i) =

1
0(i) we can proceed

u(i) (o) - x()) 3)

_ k
o,(1-k)

Execute calculation of control, which will ensure invariance to acceleration of
basis x(i+1) = 0. From last system equation (3) received

_ a,0() + @ +1) 4)
b,

u(i) =

To get value of acceleration on the basis ¢(i+1) on the subsequent step it is
possible only with modeling. In real system it is impossible. Therefore it is necessary
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approximately to estimate value @ (i+1) ~ ¢(i+1). The following approximation was
used

@ (i+1) =3 9(i) + 3 (i-1) + ¢(i-2) (5)

The system with the received law of control is unstable. For maintenance of
stability we shall enter into the law of control small amendment A;~0

a;,(1-A)03) +¢ (i +1)
b]

u(i) =~ (©)

The received control function provides a low acceleration level on the basis, but
poorly takes into account the requirement of restriction of relative displacement. To add
into control program more strict requirements to the level of 8, we shall add the
feedback on relative displacement. Let's search for factors of the following control
function

u() = ki 8(i) + k2 0() + k1 @(0) (7)

Find factors ki, ks, k3 proceeding from criterion of optimization
J=p) X*()+> 87 (i) - min, (8)
i=1 i=!

p - weight factor, provided that on system moves harmonic influence with frequency f:
o) =sin n fTi) )

For search of factors the classical gradient algorithm was used.

Results of mathematical modeling are resulted which was calculate with meaning
of parameters o, = ]3,8c'l, T = 0,01c; The numerical values of elements of system (2)
are a,,=0,0093, a2,=0,871, a3,= -12,02, b,=0,00066; b=0,13; b3=2,02. Weight factor
(8) was taken, equal p = 10, influence frequency /= 0,5 Hz (7). The received factors of
control function k= —0,0038, k,=0,0850, k3=0,0839.

The comparative analysis of the control (6) and (7) has shown, that the smaller
acceleration level on a platform is provided with the control program (6), but the control
program (7) provides smaller meaning of relative moving and smaller time on the
established mode. Let's try to use advantages of both of these methods of control. Enter
the following logic of switching. With small relative moving we shall use the control
program (6). If the relative moving leaves from the given border lS(i)|>s, that is
switched control (7). As soon as the relative moving enters into the given corridor
| o(7) | <€, control (6) again is switched. It is obvious, that it is necessary to choose g >
€. Results of simulating for switching borders €, = 2, g, = 0,02, adjustment A;=0,02 and
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with parameters above mentioned, are shown in a fig. 3.

platform acceleration
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Fig 3. Time process for the nonlinear control program.

At an initial moment of condition zero, program of invariant control (6) is used.
During the time, near 900 tacts, relative displacement gets to borders with the value -2
and is switching control (7). In this moment occurs a growing of platform acceleration,
before this it was nearly is a zero. As soon as a relative displacement reaches borders
with the value -1, at a moment of the time approximately 1600 tacts, is switched control
(6).

Were they above considered two variants of building of regulator and their
combination for the mode of nonlinear switching. Structures of transfer functions of
control in these modes should be chosen based on the commmon sense considerations,
but they may be not optimal. On the basis of analytical calculations [1,2,3] optimal
control function was received for criteria (8)

u(@) = x18(i) + x,8(i—1) + x38(i-2) + x40(7) + x50(-1) + x69(7) +
+ x70(i—1) + x30(i-2) 10)

For searching factors x,, gradient algorithm was also used. Below are the values

found for optimization criteria J = sz (i) > min:
i=0
xi= —0,85, x,=0,156, x3=0,632, xs= —4,30, x5=5,19, x6=0,661, x7= —0,472, xz= —
0,326.
The results of modeling with the zero initial conditions are shown in a fig. 4.
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Fig 4. Time process under optimum transmission functions.

4. Summary

It is necessary to note that the character of behavior of system of stabilization for
different control modes does not carry qualitative distinctions. In any the relative
moving to the initial moment of time considerably leaves the considered variants from a
reference value. With current of time it fades. To supply small relative moving with
small acceleration on a platform essentially it is impossible. In any case the decision
will have compromise character.
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THE PROBLEM OF DYNAMIC CHAOS IN AUTOMATICALLY OPEN ON
ORBIT OF LARGE-DIMENSION FOLDING REFLECTORS SPACE MIRROR
ANTENNAS OF A TRUSS TYPE, EXECUTED AS OF SPATIAL MULTIBODY

SYSTEMS

S.N. SAYAPIN
Mechanical Engineering Research Institute Russian Academy of Sciences

Moscow, Russia, 101830,

One of the main concepts of creation of large-dimension reflectors of space mirror
antennas of a truss type executed as spatial beam link mechanisms with spring drives
and elastic of a material reflecting radio wave, is built on their delivery in a folded
position on the orbit and automatic deployable. The relevant advantage of the given
concept as contrasted to by modular assembly on orbit through an astronaut or
manipulator, is the capability of creation of space mirror antennas with the aperture
from several tens up to several hundreds meters for one delivery by the launcher due to
a high factor of their transformation (from 10 up to 50) [1].

In figure 1 the general view (a) and cyclogramme of deployment (b) on orbit of a large
space mirror antenna is shown. Diameter of the uncovered mirror 1 makes 30 m, folded
-3m.

At a phase / (the figure 1, b) is rotined a transit condition of a design of a space mirror
antenna located under a fairing of a rocket 6. At a phase 2 the deployment of jacknife
trusses of 2 focal unit 3 and their fixing implements. At a phase 3 the rise and fastening
of bearings of 2 focal unit 3 on a jacknife mirror 1 in a transit condition is made. At a
phase 4 opening-ups of a jacknife mirror 1 to automatic deployment, including
deployment of a jacknife framework 5 and moving of a desktop with a jacknife mirror 1
in a transit condition on secure for deployment of a jacknife mirror of 1 spacing interval
is made. At the phase of 5 automatic deployments of a jacknife mirror 1, including
deployment of a jacknife framework of a truss and stretching on a working surface of a
framework of a wireless of a reflecting grid, is made.

In a figure 2 the pieces of a jacknife truss framework with tetrahedral cells 1 in folded
(a) and uncovered (b) positions are rotined. The framework contains jacknife rods 3, 4
and diagonal rods 5, which one paired by knotes 2.

At the same time, very great many of spring drives (more 6000), rods, socket joints
(about 15000) and other configuration items of the antenna in combination to their
irregular heating (cooling) and high difference of operation temperatures (from — 150° C
up to +150° C), effect on pairs of friction of a high vacuum and strong spread of the
characteristics of spring drives, is foregone results in formation of a strongly non-linear
dynamic system and difficulty of maintenance of synchronization of deployment of
configuration items. As a result of strong nonlinearity of properties and violation of
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Figure 1.

motion stability of a system there is a transition to so-called dynamic chaos, the full
unpredictability, contingency (i.e. stochastic process) motion of a system is
characteristic practically for which one. A consequent of this lack is the low reliability
and small probability of full deployment of a folding reflector of a mirror antenna in
conditions of outside space. Thus, apparently, the degree of unpredictability of motion
of a system directly depends on its sizes and, as a consequent, quantity kinematicly
bound among themselves of mobile members.
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The experiments have shown, that the steady automatic deployment of a jacknife truss
framework can be reached at quantity of belts no more than 5, considering from center
of a framework.

It is necessary also to mark, that the reliability of deployment of a jacknife framework
of a mirror antenna depends on speed of its deployment. So, if his automatic
deployment is made without constraining, the breaking of separate developing rods, and
also their inexact deployment is watched as a result of a recoil and folding. And, to the
contrary, in case of constrained deployment, the efforts developed in the final moment
of deployment by spring drives, appeared poor for full deployment of all developing
rods and tension on a framework of a wireless of a reflecting grid.

The introducing in a design of a folding reflector of a space mirror antenna of a truss
type of members of controlled forced constrained deployment as kinematicly bound
with it of a spatial pantograph [2], allows to supply reliable deployment of a system, but
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simultaneously conducts to increase of its weight and consumption of power, that in a
numbers of cases is unacceptable.

In figure 3 general views from above on a jacknife framework of a mirror of the large
space antenna (a) and front elevation (view A) on his central part (6) by the way of
spatial pantograph, is rotined. The jacknife framework of mirror antenna represents
combined frame keeping kinematicly bound among themselves circumferential 1 and
central 2 parts.

The deployment of a circumferential part 1 execute under operating of spring drives in
jacknife rods, but central part 2 from the engine of deployment 3. Thus there is a
constrained deployment of a circumferential part 1, and in case of possible jamming in
her articulated joints - forced deployment, if necessary with reversing. It allows, to
eliminate percussion actions of a circumferential part at her deployment, and to supply
her controlled constrained and forced deployment with a capability of reversing if
necessary. Thus the circumferential part provides to a framework demanded rigidity and
lift capability, and central - constrained - forced deployment.

In the final moment of deployment of a jacknife framework it is required to supply a
tension on his working surface of a wireless of a reflecting grid. For this purpose it is
necessary to make automatic hooking up of padding spring drives. The problem was
resolved as follows. Between each pair of knotes 4 (figure 3, b) working and non-
working surfaces of a central part 2, arranged on one axis, the telescopic rods (central
rods) with the stretched and captured spring (in figure 3, b, are not rotined), the butt
ends which one are attached to inner sides of the conforming knotes 4. At deployment
of a framework there is a rendezvous of inverse knotes 4 and accordingly decreasing of
lengths of telescopic rods. In the final moment of deployment of a jacknife framework,
when it is required to do stretching on his working surface of a wireless of a reflecting
grid, there is an automatic actuating of devices of springs in ready condition, and the
effort on deployment of a framework is sharply increased. In the uncovered position the
mobile rods of telescopic central racks rise on horns, providing padding rigidity of a
central part of the uncovered framework. In a figure 4 the full scale piece of a central
part in processes of experimental improvement are submitted. In a figure 5 the full scale
pieces of a circumferential part (a) of a jacknife framework of an mirror antenna and of
a jacknife truss of bearings of the focal unit (b) in processes of experimental
improvement are submitted. In figure 4 the telescopic rods 1 with the called above
spring drives of a tension of a wireless of a reflecting grid are visible.

The reliability augmentation of deployment of a system can also be reached at the
expense of exception of influencing of pull of a material reflecting radio wave of a
material on process of deployment [2].
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Figure 3.

However, the main source of unpredictability is the folding framework of a reflector of
the antenna.

Figure 4.

175




Figure 5.

Thus, the problem of dynamic chaos in automatically deployable on orbit large-
dimension folding reflectors of space mirror antennas of a truss type is actual.

It is experimentally on breadboards, introduced in figure 4 and other, is rotined, that the
imposing definitely of vibrational effect on a design of the folding mirror space antenna
of a truss type reduces a level of unpredictability and improves reliability also stability
of process her deployment [2].

By the writer it is offered to execute a system of vibrational effect on a bulky space
mirror antenna of a truss type by the way of fissile transient truss of a space vehicle [3].
Thus, the transient truss run ins a view of a fissile gantry Stewart’s [4] with six degrees
of freedom. The conducted full scale experiments have shown good outcomes. The
control of a gantry Stewart’s in real-time mode is made from a neuronal computer [3,
5].
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1. Introduction

The paper deals with the description of design methodology for redundant parallel robots based on
multidisciplinary virtual modelling. The redundant parallel robots means redundantly actuated parallel
robots. The parallel robots have many advantages as low moving masses, higher stiffness by truss
structure, all drives on the frame, but they suffer by many problems like appearance of singularities and
thus smaller workspace, collisions of links. These drawbacks of parallel structures can be removed by the
principle of redundant actuation [4, 1]. This means that the platform is supported and driven by more bars
with drives than the necessary number of DOFs. This principle not only deletes the singularities from
workspace as more combinations of links in number of DOFs are not simultaneously in singular
positions, but it brings further advantages, especially increased and more uniform dynamic capabilities,
stiffness, accuracy.

The design of redundant parallel robots is an example of particularly complex design problem. The
mutual dependencies of all parameters and components are especially large. The successful design
methodology is possible only using virtual models and design complexity decomposition.

The used virtual models cover both mechanical including control and geometric properties. During the
design there are conflicts between geometrical dimensions of robots and corresponding mechanical
properties. The conflict includes collisions of robot links, non-existence of geometrical solutions of
kinematics and insufficiency of mechanical properties like stiffness, dynamics, dexterity, accuracy etc.
The design process has been resolved into three hierarchical levels. Each of these levels is characterized
by certain problem simplification and special design conflict which should be resolved within the level.

2. Design Methodology
The design methodology of redundant parallel robots [1] follows the general engineering design

methodology described in [2]. The design process is a hierarchical process as the technical products

consist of hierarchy of components. The design process repeats the same outline at each design level. It

consists of three nested loops:

o Selecting the lower level components from which the solution will be built.

e Proposing the structural arrangement of the selected components.

e Calculating parameter values so that the solution is complete, i.e. all requirements and constraints are
fulfilled.

These three nested loops of component choice, structural arrangement and parameter choice also

correspond to the nested design iterations and nested design optimisation. The component choice in the

case of parallel robots means the decision about the fully parallel or hybrid concept, about the

redundant/non-redundant concept, about the kind of link actuators, about the planar/spatial version of

joints, about the kind of actuators (electrical/hydraulic, moving screw/direct electrical drive etc.), about

the way of measurement etc. The structural design means the decision about the considered shape of

components, about the way of their interconnections etc. After the structural design all decisions are

transformed into numerical values of parameters. Their values are evaluated in terms of requirements and

constraints.
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The solution uses parts of mechatronic design methodology [3]. The most important methodological
approach is the search for Ideal Final Solution and Conflict Resolution instead of conflict compromise
that solves the given problem despite different conflicting constraints. This approach is looking for
solutions that have advantageous values in criteria previously conflicting instead of just looking for
tolerable compromise. The concept of redundant actuation is an example of such solution that keeps all
advantages of parallel structures, removes problems with singularities and even improves the variations of
main mechanical properties [4 - 6]. Certainly such principle is not found for each design task but in many
cases just the idea of looking for ideal solution helps to overcome the local compromises. All steps of
design and optimisation of robot properties has to be driven by concrete technological target of future
machine from the very beginning state of design process. On the other hand “space of considered
possibilities” should be held as wide as possible.

Specifically in case of redundant parallel robots the design process has been resolved into three
hierarchical levels. Each of these levels is characterized by certain problem simplification and special
design conflict which should be resolved within the level. (Quasi)optimum variants obtained as the best
results of foregoing design optimisation level serve as starting variants for optimisation within the
consecutive level. Certainly in the robot design there is mutual dependence between all parameters and
thus feedback between levels is necessary. However mentioned decomposition into three subsequent
design conflicts enables reasonably to simplify the design process:

* Level of Geometric Conflicts: Important properties of robot being designed besides the geometric
requirements of DOFs, workspace and dexterity are represented by simple geometric conditions. For
example requested limits of stiffness and modal properties are taken into account by some conditions
for robot leg thickness, build-up spaces for real joints or robustness of machine frame. Optimisation
of robot structure and dimensions try to harmonize several geometric requirements that are on the
first try contradictory:

L.~ Workspace without collisions and kinematic singularities should be maximized.

2. Ratio between total build-up space of machine and useful (technological) workspace should
be minimized.

3. Dimensions or build-up spaces of important machine elements should be sufficient.

4. Dexterity should be optimised (maximization and uniformity in workspace).

® Level of Structural Conflicts: The structural conflict comprehends more precisely formulated
conflict between structural (stiffness and modal) properties of the whole machine and accessible
dynamics (velocity, acceleration, jerk) of robot end-effector. Mutual interrelations of these properties
are very complex and in addition other important aims of machine designers (like accuracy for higher
speeds of operations) are heavily influenced by them. Basic requirements are as follows:

Accessible dynamics (velocity, acceleration, jerk) of robot end-effector should be maximal
and uniform for representative trajectories within the workspace.

2. The first eigenfrequencies of the robot should be as high as possible and uniform for all
possible robot positions in the workspace.

3. Cumulative stiffness measured on the end-effector should be maximal and uniform for all
possible robot positions in the workspace.

* Level of Actuation Conflicts: Behaviour of the whole machine depends on dynamic interactions
among mechanical parts, electrical or hydraulic actuators and feedback control loops of actuators.
Simulation of complex mechatronic system must be performed in order to predict potential problems
arising here. Thoroughgoing fulfilment of previous two design levels is crucial for efficiency of final
complex tuning. Basic requirements are as follows:

1. Control loops must be stable without troublesome vibrations.

2. Control loops of actuators must be tuned in order to make drives as dynamic as possible.
Technological times of production should be minimized.

3. Energy consumption of drives necessary for production should be minimized.

4. Accuracy for high speed operations should be maximized.

The applied design methodology is heavily based on the efficient computational tools for mapping
robot design parameters into design criteria (requirements and constraints) and following multiobjective
optimization of the robot parameters like dimensions, drive parameters, control parameters. For
mechanical properties there have been developed computational tools based on global dynamics [7].
There are also very important visualization tools especially for multiobjective design. For the design of
redundant parallel robots the following computational tools are used:
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Workspace, dexterity and collisions evaluation. The crucial property of the robot is the
geometric and kinematic synthesis. The size of workspace limited by geometric and collision
constraints are evaluated and mapped in each position. The efficient analysis of collisions of
arbitrary bodies has been implemented. The basic entities for the collision detection are general
cuboids. The complex bodies are replaced-approximated by the composite bodies composed
from many cuboids. The problem of collisions of cuboids has been solved in two stages. The
first fast step evaluates potential possibility of collision. The second stage is initialised whenever
the collision cannot be excluded. The penetrations of edges of one body and surfaces of second
body have been detected during the second detailed stage of analysis. Collision can be visualized
in 3D or 2D in basic planes of coordinate system. Besides that the occurence of singularity
positions and generally the manipulability of the robot are evaluated. '
Stiffness and eigenfrequency (modal) evaluation. The accuracy is dependent on the robot
stiffness. There are evaluated the maps of robot stiffness and eigenfrequencies.

Dynamic capability evaluation. The limitations of dynamic capabilities of drives are
transformed into the areas of accessible accelerations and velocities at the points of selected
trajectory using methods of global dynamics [7]. Choosing several trajectories like straight lines
with different slopes across the workspace and the circles with different radius enables to map
the overall dynamic capabilities of the robot.

Force transmission evaluation. The accessible accelerations and velocities from previous step
are achieved through particular driving forces. Their determination due to the actuator
redundancy is not straightforward and simple [8]. The driving forces and corresponding reaction
forces in joints and structural elements are transmitted through the robot structure and this force
transmission and distribution is important for dimensioning of robot structural elements.
Kinematic and elastostatic accuracy evaluation. The accuracy is essential robot property. It is
influenced by the properties of encoders and by the robot stiffness in relation to the external
applied forces.

Contro! design. The control design is done by the methodology design by simulation.

Overall simulation. The designed properties are verified within overall simulation where
especially the multibody, elastic and control properties are investigated in deep interaction.
Multiobjective optimization. The above listed performance criteria as well as others are
subjected to the multiobjective optimization using the design parameters of the robot. The Pareto
sets of conflicting criteria are computed and visualized.

3. Design Case Study

The case study is devoted to the investigation of improvement of mechanical properties of Sliding
Delta robot (Fig. 1), also called Uran. The robot Octaslide (Fig. 3), the more complex (6 DOF motion of
end-effector) modification of original robot has been designed as well. The main potential of
improvement is based on the application of principle of redundant actuation. It brings for Sliding Delta
mainly improvement of stiffness and dynamics, for Octaslide especially the elimination of singularities.
The design was performed within many iteration loops. It is difficult to reconstruct the content of all of
them in details. However all three nested levels of design conflicts were investigated and solved as
follows. There were used computational tools mentioned above.

4+—>

+—>

<+—>
Figure 1. Original Sliding Delta (Uran) robot with sliding joints

3.1. GEOMETRIC CONFLICTS AND THEIR SOLUTION

Initially the original structure from Figure I had been extended into the redundant version on

Figure 2a. Then the structural properties of designed robot were represented by simple geometric
conditions. The critical value was the diameter of the legs in order to achieve reasonable stiffness.

179




-

Simultaneously the lengths of legs had to be kept in values comparable with non-redundant version again
due to comparable stiffness. The critical issue was the computation of accessible workspace due to the
collisions and improvement of dexterity. The problems of finding parameters (dimensions of platform
and legs) for simultaneously good workspace and dexterity could not been resolved on the level of
parameter values and have lead finally to the modification of the structure from initial version (Fig. 2a)
into the final one (Fig. 2b).
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Figure 2. The redundant Sliding Delta: initial (a) and final (b) concepts
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Figure 3. Scheme of robot Octaslide

3.2. STRUCTURAL CONFLICTS AND THEIR SOLUTION

The structural design is about the resolving of conflict between stiffness and dynamics. First the
stiffness of both non-redundant and redundant parallel structures are evalvated (Fig. 4). It means the
stiffness in both directions in the plane of motion and in the direction of sliding drives. This clearly
demonstrates the significant improvement of stiffness by almost 50%.

Kafer)

Figure 4. The comparison between stiffness of non-redundant (right) and redundant (left) parallel
structure for one planar section in the workspace

Second there is investigated the dynamic capabilities. The limitations of dynamic capabilities of drives
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are transformed into the areas of accessible accelerations and velocities at the points of selected
trajectory. Choosing circular trajectories with different radius the dynamic capabilities were evaluated at
the radius 0.3 m and at the radius 0.6 m (Fig. 5). There are plotted the accessible accelerations versus
accessible velocities on the circular trajectories for both non-redundant and redundant versions. Again the
redundant actuation has proved significant improvement of dynamics by about 20%.
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Figure 5. The dynamic capabilities of non-redundant (dash lines) and redundant (full line) parallel
structures during the circular motion with radius 0.6 m (accessible acceleration on velocity in 4 positions)

Then the conflict between stiffness (eigenfrequencies) and dynamics of end-effector (mass) for different
variants of dimensions has been solved by multiobjective parameter optimisation. In short on the border
of space of possible solutions (Pareto set) increasing stiffness means increasing mass and decreasing
acceleration capabilities. The genetic algorithms have been used for this task. Each point (Fig. 6)
represents one variant of setting of robot dimensions.

8

x10 Results of several optimisation processes
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Figure 6. Results of multiobjective parameter optimisation of stiffness and dynamics (results of several
optimisation processes displayed together)

3.3. ACTUATION CONFLICTS AND THEIR SOLUTION

The drive concept must be completed from the point of view of required dynamics, kinematics,
dynamic accuracy and control strategy. The simplified scheme (Fig. 7) describes two nested loops for
slider position and motor angular velocity feedbacks. The end-effector position measurement can be
considered for the upper-most feedback loop, nevertheless its practical realisation is not easy. The tuning
of control gains completes the utilization of previously designed mechanical properties. The overall
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simulation is the final test of the whole redundant parallel robot conceptual design.

Desired
motion

vy

Figure 7. Simplified scheme of complex dynamic model including feedback control loops

4. Conclusions

The paper has briefly investigated the role of multidisciplinary virtual modelling for efficient design
of complex mechatronic machines. It has been demonstrated on the design methodology for redundant
parallel robots. The virtual models cover both mechanical and geometric properties. They are based on
multibody models despite they cover different properties. The basis for these virtual models is the
decomposition of design process. The design process has been resolved into three hierarchical levels.
Each of these levels is characterized by certain problem simplification and special design conflict which
should be resolved within the level. Specific virtual models are necessary for each level. The
computational tools related to these virtual models enable to parameterise the main design conflicts and
solve them using multi-objective parameter optimisation. Proposed hierarchical methodology based on
multidisciplinary virtual modelling proved to be useful and efficient for the design of complex
mechatronic machines.

The proposed design methodology based on multidisciplinary virtual modelling has been
demonstrated on the design case study of redundant Sliding Delta and Octaslide robots. They also
demonstrate the application of the principle of redundant actuation that leads to the development of new
robot parallel structures with promising properties.
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NATO Advanced Study Institute on
Virtual Nonlinear Multibody Systems
Prague, Czech Republic, 23 June - 3 July 2002

Scientific Abstract

Multibody system dynamics is based on classical mechanics and its engineering applications ranging from
mechanisms, gyroscopes, satellites and robots to biomechanics and vehicle engineering. Multibody systems
dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. The
simulation of multibody systems demands for adequate dynamic models and takes into account various phe-
nomena. Classical dynamics does not regard all nonlinear effects that appear as a result of the action of multi-
body systems, as well as their mutual interaction. The virtual prototyping and dynamic modeling of such sys-
tems are, from an economical point of view, perspective fields of scientific investigations having in mind the
huge expenses for their design and manufacturing. Complex multibody systems composed of rigid and flexible
bodies performing spatial motion and various complex tasks are up-to-date objects of virtual prototyping. As a
result simulation and animation featuring virtual reality are most important. Recent research fields in multibody
dynamics include standardization of data, coupling with CAD systems, parameter identification, real-time
animation, contact and impact problems, extension to electronic and mechatronic systems, optimal system
design, strength analysis and interaction with fluids. Further, there is a strong interest on multibody systems in
analytical and numerical mathematics resulting in reduction methods for the rigorous treatment of simple
models and special integration codes for Ordinary Differential Equation (ODE) and Differential Algebraic
Equation (DAE) representations supporting the numerical efficiency. New software engineering tools with
modular approaches improve the efficiency still required for the more demanding needs in biomechanics,
robotics and vehicle dynamics. The scientific research in multibody system dynamics is devoted to improve-
ments in modeling considering nonholonomic constraints flexibility, friction, contact, impact and control. New
methods evolved with respect to simulation by recursive formalism, to closed kinematic loops, reaction forces
and torques, and pre- and post-processing by data models, CAD coupling, signal analysis, animation and
strength evaluation. Multibody system dynamics is applied to a broad variety of engineering problems from
aerospace to civil engineering, from vehicle design to micromechanical analysis, from robotics to biomechanics.
In particular, multibody dynamics is considered as the basis of mechatronics, e.g. controlled mechanical sys-
tems. These challenging applications are subject to fundamental research topics which were presented at the

NATO ASI on Virtual Nonlinear Multibody Systems.




1. Datamodels

Within the multibody system community many computer codes have been developed, however, they differ
widely in terms of model description, choice of basic principles of mechanics and topological structure so that a
uniform description of models does not exist. The data exchange permits the alternate use of validated multi-

body system models with different simulation systems.

2. Parameter identification
The parameter identification is an essential part of multibody dynamics. The equations of motion of mechanical
systems undergoing large displacements are highly nonlinear, however, they remain linear with respect to the

system parameters.

3. Optimal design
Due to development of faster computing facilities the multibody system approach is changing from a purely
analyzing method to a more synthesizing tool. Optimization methods are applied to optimize multibody systems

with respect to their dynamic behaviour.

4. Dynamic strength analysis
The results obtained in research on strength analysis of material bodies can be applied and combined with the

multibody system approach.

5. Contact and impact problems
Rigid and/or flexible bodies moving in space are subject to collisions what mechanically means impact and

contact. Contact problems usually include friction phenomena which are modelled by Coulomb's law.

6. Extension to control and mechatronics
The applied forces and torques acting on multibody systems may be subject to control. Then, the multibody
system is considered as the plant for which the controller has to be designed. Today, mechatronics is understood

as an interdisciplinary approach to controlled mechanical systems usually modelled as multibody systems.

7. Nonholonomic systems

The nonholonomic systems are of engineering interest in vehicle dynamics and mobile robots.

8. Integration codes
The dynamic equations of motion are presented as ODE or DAE. Efficient algorithms for numerical integration

of these equations are of major importance.




9. Real time simulation and animation

Efficient and fast simulation is always desirable in computational dynamics but it is really necessary for hard-
ware-in-the loop and operator-in-the-loop applications. There are two approaches to achieve real time simula-
tion: high speed hardware and efficient software. Multibody system dynamics contributes to the efficiency of

the software by recursive and/or symbolic formalism and fast integration codes.

10. Challenging applications

Multibody system dynamics has a broad variety of applications. In biomechanics the walking motion is an
important topic. However, there are much more problem in biomechanics which can be modeled and solved by
multibody dynamics. The applications are ranging from vehicle occupants to sport sciences. Multibody dynam-
ics is also a solid basis for nonlinear dynamics. In particular, impact and friction induced vibrations show
chaotic behaviour. The control aspects in multibody dynamics are getting more and more important. Vehicle,
aircraft and spaceship dynamics and reliability have always been challenging applications. With respect to
transportation systems a challenging application of multibody dynamics is the structural and occupant crash-

worthiness.
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W.-S. Yoo, M.-G. Kim, K.-S. Kim

Modification of Road Profile to Compensate Tire Nonlinearity in Linear Tyre
Model

Session 8 - Chairperson: A. A. Shabana

S. L. Pedersen, J. M. Hansen

A Novel Roller-Chain Drive Mode! Using Multibody Dynamics Analysis Tools
J. Fraczek

Kinematic Analysis of Mechanisms in the Neighbourhood of Singular Positions
Using General Numerical Continuation Methods

D. Lefeber, J. Naudet, Z. Terze, F. Daerden

Forward Dynamics of Multibody Mechanisms Using an Efficient Algorithm
Based on Canonical Momenta




Friday , 28 June 2002

08:30 - 10:30

11:00 - 13:00

14:30 - 14:50

14:50 - 15:10

15:10-15:30

15:30 - 15:50

16:30 - 16:50

16:50 - 17:10

Lecture 9

M. S. Pereira

Optimization of Rigid-Flexible Multibody Systems with Application to Vehicle
Dynamics and Crashworthiness

Lecture 10

H. Lankarani

A Virtual Multibody and Finite Element Analysis Environment in the Field

of Aerospace Crashworthiness

Session 9 - Chairperson: V. Berbyuk

K. E. Georgiev, T. Ivanova

Mechatronic Approach for Simulation of Robots and Walking Mashines
K. Gr. Kostadinov, G. V. Boiadjiev

Development of Impedance Control Method for Mechatronic Systems
S. F. Jatsun, A. S. Zaisev, S. M. Jatsun

Dynamics of Vibrating System with Active Control

O. Brlls, J.-C. Golinval

Simulation of an Active Control System in a Hot-Dip Galvanizing Line

Session 10 - Chairperson: P. Eberhard

R. Kovalev

Optimizing Multibody Systems: Some Implementations And Results

K. Belda, J. B6hm, M. Valasek

State-Space Generalized Predictive Control for Redundant Parallel Robots

Saturday, 29 June 2002

08:30 - 10:30

11:00 - 13:00

Lecture 11

E. Kreuzer

Multibody System Dynamics in Ocean Engineering
Lecture 12

J. McPhee

Graph-Theoretic Modelling of Multibody Systems

Sunday , 30 June 2002

08:30 - 19.00

Excursion - Trip

Monday , 1 July 2002

08:30 - 10:30

11:00 - 13:00

Lecture 13

E. J. Haug .
Virtual Proving Ground Simulation for Highway Safety Research and Vehicle
Design

Lecture 14

M. Valasek

Design of Nonlinear Control of Nonlinear Multibody Systems




14:30 - 14:50

14:50 - 15:10

15:10 - 15:30

15:30 - 15:50

15:50 - 16:10

16:30 - 16:50

16:50 - 17:10

17:10-17:30

Session 11 - Chairperson: E. Haug

G. Schupp

Simulation of Railway Vehicles: Necessities and Applications

A. Carrarini

Coupled Multibody-Aerodynamic Simulation of High-Speed Trains Manoeuvres
J. Pombo, J. Ambrésio

Development of a Roller Coaster Model

S.-S. Kim, M. Won, B. Sohn, K. Song, S. Jung

The Development of a Real-Time Multibody Vehicle Dynamics and Control Model
for '

a Low Cost Virtual Reality Vehicle Simulator: An Application to

Adaptive Cruise Control

P. P. Valentini, L. Vita

David — a Multibody Code to Simulate a Dynamic Virtual Dummy for Vibrational
Comfort Analysis of Car Occupants

Session 12 - Chairperson: D. Bestle

J. Tobolar

Model Reduction Techniques for Vehicle Suspensions in Real-Time Applications
S. K. Agrawal, J. Yan, J. Franch

Dynamics and Control of a Vehicle with Expanding Wheels

Using Differential Flatness

K. Pathak

Model Reformulation in Dynamic Optimization -A Numerical Study-

Planning and Optimization

Tuesday , 2 July 2002

08:30 - 10:30

11:00 - 13:00

14:30 - 14:50

14:50 - 15:10

15:10 - 15:30

15:30 - 15:50

15:50 - 16:10

Lecture 15

W. Blajer

Geometrical Interpretation of Multibody Dynamics: Theory and Implementations
Lecture 16

D. Bestle

Optimization of Passive and Active Dynamic Systems

Session 13 - Chairperson: W. Blajer

M. A. Neto, J. Ambrdsio

Stabilization Methods for the Integration of DAE in the presence

of Redundant Constraints

Z. Terze, D. Lefeber

MBS Time Integration-Projective Constraint Violation Stabilization Methods

on Manifolds

I. V. Boikov, A. |. Boikova

Stability of Solution of Differential Equations

A.Fuchs, M. Arnold

Efficient Corrector Iteration for Implicit Time Integration in Multibody Dynamics
F. Aghili, J.-C. Piedboeuf/ J. Kévecses

Simulation of Constrained Multibody Systems Based on Orthogonal Decomposition
of Generalized Coordinates




16:30 - 16:50

Session 14 - Chairperson: P. Nikravesh

D. Negrut

On the Issue of lterative Linear Algorithms for the Multi-Threaded Simulation
of Mechanical Systems Represented in Cartesian Coordinates

Wednesday, 3 July 2002

08:30 - 08:50

08:50 - 10:35

11:00 - 12:45

12:45 - 13:00

Session 15 - Chairperson: W. Schiehlen

A. Mller
Parallel Computing in the Context of Multibody System Dynamics

Lecture 17

E. Zahariev

Multibody System Contact Dynamics Simulation

Lecture 18

P. Eberhard

Contact Formulations for Finite Elements and Multibody Systems
Closing session
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MULTIBODY SYSTEMS WITH HOLONOMIC AND
NONHOLONOMIC CONSTRAINTS

Kinetics

I. STROE

“Politehnica” University of Bucharest,
77206, Bucharest, Romania
ion.stroe(@rosa.ro

Using Lagrange equations for holonomic and non-holonomic systems the motion of systems
of rigid bodies is studied in this paper.

General problem of kinematics of systems is presented in the first part of the paper.

The motion of systems of rigid bodies with constraints is studied in the last part of the paper.
Motions of rigid bodies with articulation joints are analyzed. Problems of kinematics are
solved for constraints expressed by coordinates. Translation conditions and rotation conditions
are analyzed.

When the motion of a system of bodies which compose a large orbital station is described
with respect to reference frames having origin in the center of attractive body (Earth) the
problem of integration of motion equations presents some difficulties, because some
coordinates (like vector radii) have very great values, and others (like distances between
bodies) have very small values. Some difficulties can be avoided if relative motion of the
system is studied with respect to a reference frame with known motion. Relative motion study
isn’t impose by integration considerations, this is impose by practical aspects.

The problem of kinematics for systems of bodies are solved using analyzes of coupling
mechanism under the aspect of number of degrees-of -freedom. The motion in central
gravitational field is studied with respect a movable reference frame with origin on a circular
orbit. The problem of dynamics of bodies system is solved using Lagrange equations of
motion with multipliers and constraints. The models and the elaborated method allow to solve
a large number of problems of bodies systems dynamics in gravitational field.

1. Kinematics of systems of rigid bodies

Let two bodies (i) and (j) be with constrained motions by a coupling mechanism which is
made precise by points O;, O; (fig.1).

The motion of the body (i) with respect the inertial reference frame OgXoyozo 18

determined by position vector of mass center O,C; and by matrix [A,.o] which gives the
attitude of C;x;y;z; triedron, jointed with (i) body, with respect OgXoyoZo reference frame.

In the same way are defined position vector O,C; and matrix [A jo] for the body ().

Each body, (i) or (j), has 6 degrees-of- freedom, when it is a free body. The number of
degrees-of- freedom is reduced by the number of constrains which are imposed by coupling

mechanism.
If the general motion of bodies (i) and (j) with respect the inertial reference frame Ooxoyozo are

known, then the relative motion of the body (i) with respect (j) can be determined by vector
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0,0,=(0,C; +C0,)-(0,C; +C,0,) (1)
and by matrix [AU} which gives the attitude of (i) body with respect (/) body,
[Aij] = [Am] [Ajo]T (2)

The matrix [A,.O] allows expressing unit vectors of Cix;yiz; trihedron with respect unit vectors
of OgXoYyozo trihedron,

Jit=[40]4d0¢ - 3)

Fig.1 System of rigid bodies

For unit vectors of Cix;y;z; trihedron the bellow relation can be written,

AN
Ji 1= 4] 140 )
k, k,

The attitude of (i) body with respect to (j) body is given by matrix [A. ], with relations

i

i ’
i =[4]54 )
i, k

i J

and the attitude of (j) body with respect (i) is given by [A ﬂ.] matrix from relations

il
it =140y ©)
k. k.

J i

From (5) and (6) relations it follows
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T
4] =[] 0
If (3) relation is multiplied to the left with [4,,]  and (4) is multiplied to the left with

T
[A 0| and the obtained results are compared, the equality

A -
[40]$Ji t=[40] 17, ®)
k.

i J

results, from where, by multiplying to the left with [Aio] , the bellow relation is obtained

i i
Zi = [Aio][AjO] -Zj_ )]
k, k.

i J
From (5) and (9) relations the (1) relation is obtained, which is used to compute the matrix

[A,.j], if the matrices [A,.O] and [A jo] are known. Terms of [A,.O] and [A ,-o] matrices depend
of attitude angles of (i) body and (j) body with respect to inertial reference frame. If the
orientation of (i) body with respect to inertial reference frame is made precise by @z, @2, @31

angles, which correspond to the 1-2-3 sequence of rotations with respect to a parallel reference
frame with inertial reference frame Ogxoyozo , than the bellow matrix

| Cpi C3; 81 89;C3; +85,C; 7€ 85 Cy + 5 Sy
[Aio =[_62is3i =8);85; 83 T C; €3y €18y 83 T8, €y J (10)
Sai =5 €y € Gy

and angular velocity
l_cziCSi S5 O-I Py

{a’io} =|=Cy 8y € 019y (1)
t Sy; 0 IJ Ps;

are obtained.
In the above relations notations of the following form were used:

S =8in@y , ¢, =cosQ, (12)
When constraints are functions of coordinates the motion of systems of rigid bodies can be
studied with Lagrange equations for holonomic systems with dependent variables. Coupling
mechanisms between (/) body and (j) body imposes restrictions on relative motion of (i) body
with respect to ()). ,
Bellow some simple coupling mechanisms for which constraints can be expressed with
functions of coordinates or with functions of velocities are analyzed.

1.1 CONSTRAINTS EXPRESSED BY COORDINATES

1.1.1 “Free” linkage
When the coupling mechanism doesn’t impose restrictions coordinates which are describing

relative motion (displacements and rotations) number of constraints is zero. Each body ( () or
(/) has 6 degrees-of- freedom and the motion is studied considering two free bodies, despite
of the coupling mechanism, which permits, translations with respect three directions and
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rotations about three axes. The case of “free” linkage is a limit case and it presents the
importance only for the case in which a particular coupling mechanism becomes a “free”
linkage. Like an example can be considered the case of tethered bodies for particular situation
of zero tension in the cable.

1.1.2 Fixed linkage
When the relative motion of (i) body with respect to (f) body has zero degrees-of-freedom the
system of two bodies becomes a rigid one and it has

6 + 6 - 6 =6

(Ypody (jody constraints
degrees-of-freedom.
Relative displacement condition, in vectorial form is

OJ.O,. =0, (13)
and conditions of invariable relative orientation are:

Z;=(Z;)o’
iy = (i), - (14)
s}

: J

Index “g” from right part of above relations corresponds to initial moment and it shows that
inner products from left side are constants.
If (5) relation is written in the form

L a, ap A L
Ji =La21 ay; azaJ Jifs (15)
k; Ay Ay Gyl k;
(14) relations become:
i |, i _ |0 i _ {0
ay _(an)o’ ay "(azz)oa as, “(an)o . (16)

1.1.3 Spherical joint
Spherical joint reduces the number of degrees-freedom with three units. Vectorial form of
constraint is (13) condition.

1.1.4 Linkage of translation
When the coupling mechanism allows translations in three some directions the number of
degrees-freedom is reduced with three units and constraints are of the (16) form.

1.1.5 Connection with flexible cable

Coupling mechanism with flexible cable reduces the number of degrees-of-freedom with one
unit. The distance between points of connection of flexible cable is a constant one, and
conditions is

l0,0]=lo,0

Ji J7i

17)

0

186




When constraints are expressed by velocities (velocities of translations or angular velocities)
the motion is described with Lagrange equations for non-holonomic systems. Coupling
mechanism can be analyzed from the point of view of allowed mobility.

1.2 CONSTRAINTS EXPRESSED BY VELOCITIES

1.3.1. Translation conditions
If the coupling mechanism allows translations in three some directions, the number of

constraints which correspond to translations is zero.
If the coupling mechanism allows translations in two directions of vectors ;;( Einestjnyst j,z) and

;;(tﬂx,t oyt ﬂz) with components in the system of (7) body, than the constraint is expressed

by inner product o .
(VOi_VoJ')‘(;j_lejz)zo (18)

1.3.2. Rotation conditions
When the coupling mechanism allows rotations with respect three some directions, the

number of constrains is zero.
If the coupling mechanism allows rotations with respect two determined directions by vectors

;j_l(rju,rj,y,rﬂz) and ;j;(rj“,rﬂy,rﬂz), which are expressed with components in (j) body
reference frame, condition

(@0 = 30) (7 x7) = 0 (19)
can be written.If the coupling mechanism allows one rotation with respect the determined
direction by vector @(;}X,qy,rjz), which is expressed with components in () body reference

frame, than two scalar conditions which are included in vectorial form

=0y = A7 (20)
can be written, or in matric form,
[0} ~{@0} = 217 @1

2. Motion equations

When the motion of a system of bodies which compose a large orbital station is described
with reference frames having origin in the center of attractive body (Earth) the problem of
integration of motion equations presents some difficulties, because some coordinates (like
vector radii) have very great values, and others (like distances between bodies) have very
small values. Some difficulties can be avoided if relative motion of the system is studied with
respect to a reference frame with known motion. Relative motion study isn’t impose by
integration considerations, this is impose by practical aspects.
For a non-holonomic rheonomic system Lagrange equations for z coordinates

d| cE JE 2
E[EJ—E—QJC +;’1iaik>(k "1329"'3}‘) (22)

are completed with constraints,
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h
D apdg, +bdt =0, (i =12, p). (23)
k=1

By solving of the system of / (22) equations and of (23) equations, g, coordinates and A

multipliers are found.
From (22) equations for holonomic system can be obtained by replacement of a; functions.

In the case of a holonomic system constraints are of the form

d)i(‘]h"‘ﬂ/z:t):or(i:1,2;"'P) (24)
and differential form is obtained,
h m)
Y. ——tdg, +bdi=0,(i=12,p) (25)
i1 A,
From (25) and (23) it follows
oD
ay = —=-, (26)
£ ag,
and (22) equations become
d ( an oF 0 &
=% +— ) LD, (k=12 ,h). 27
dt\og,) 0q, ¢ oqy, ; ( )
If the function
p
Uy = Z A, (28)

i=1
1s introduced, than equations (27) can be written in the form
L) g e
dr\0og,/) 0g, P
From the /i above equations and p constraints (24) functions which correspond to /
generalized coordinates, ¢, and to p multipliers A; are determined.
In the figure 2 two jointed bodies by a hinge arc presented. The two bodies are situated in
central gravitational field.
Plane relative motion is described by py, 01, ¢31,02, 0, (33, coordinates.
Constraint

k=12, h) (29)

0,0, =0 (30)
reduces the number of degrees-of-freedom from 6 to 4.
Relation (26) can be write in the form
CM; + M0, - (CM, + M;0,) =0 (31)
and constraints are obtained using components of vectors from (31) on axes of Cx.y. reference
frame:
¢, =pycosO; - p, cosH, + q cos(el +Q3)+b, cos(0, + 93)=0

. (32)
¢y = p; sin®) - p, sin®, + a, sin(6; + 931) + by sin(6, + 03,)=0

From equations (29) and the above constraints equations of motion for the system of two
jointed bodies by one hinge are obtained.
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Fig.2 System of hinged bodies

3. Conclusions

The problem of kinematics for systems of bodies are solved using analyzes of coupling
mechanism under the aspect of number of degrees-of -freedom.

The motion in central gravitational field is studied with respect a movable reference frame
with origin on a circular orbit.

The problem of dynamics of bodies system is solved using Lagrange equations of motion with

multipliers and constraints.
Models and elaborated method allow solving of a great number of problems of bodies systems

dynamics.
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A PARTICLE MODEL FOR MECHANICAL SYSTEMS SIMULATION

A Model Based Overview of Multibody Systems Formulations

D. TALABA
University Transilvania of Brasov
Bd Eroilor 29, 2200-Brasov, Romania

Abstract

This paper presents a model-based overview of the formalisms for the simulation of the mechanical systems.
This approach provides a clear background for any formulation including specific formulas for mobility
computation and finally a proper evaluation of the potential for each of them. A full multi-particle model for
the systems of interconnected rigids is also presented.

1. Introduction

In recent years, multibody analysis computer packages became a usual tool in industry, research and
development areas. The commercially available codes include nowadays a large range of facilities allowing
simulation of sophisticated experiments with virtual prototypes of mechanical systems (mechanisms). The
cutting edge research in this field is currently aiming towards developing new modelling and simulation
facilities related on one hand to including into the analytical formalisms complex non-linearity like flexibility
of the bodies, friction modelling etc and on the other hand to the increasing of the computing speed in order to
enable the real time simulation.

A large number of formalisms have been conceived and implemented in the various computer codes [7].
Some classifications of the methods utilized are taking into account the principle used for the dynamic
formulation establishing two main kind of formalisms: Eulerian and Lagrangian. Usually, the two categories of
methods use different sets of generalized coordinates and subsequently different methodologies for the
kinematics formulation. Other classifications taken into account the type of implementation (i.e. symbolic or
numerical implementation). This paper presents an overview of the formalisms from the model type viewpoint
of the mechanical systems. This classification allows a synthetic picture the various methods (models) and
subsequently an evaluation of the potential for each of them. Each formalism is based on a representation
(model) of the physical system, from which all theoretical developments are derived. As resulting from the
literature [2,3,4,5,6,7,8], two main representations have been assumed for the development of various methods
and dynamic formalisms: the kinematic chain model and the multibody system model. Finally, the multi-
particle model will be developed.

2. The Kinematic chain model

According to this model, the mechanism is represented by a chain of bodies and interconnecting joints with
the role of transmitting and transforming the motion (fig.1,a). The kinematic chain may be serial (open loop) or
parallel (closed loop) and its structure is usually represented by a graph (fig.1,b), which allows automatic
identification of the independent loops. This model
has been implicitly assumed by some authors [6,8],
being very popular especially in robotics.

For the serial mechanisms, the terminal body is
cumulating the degrees of freedom of the preceding
joints (fig.2), the structure mobility relationship
being thus

Figure 1.

M= f. (1)
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In case of the parallel structures, the mobility is calculated in two steps: first the mechanism is converted into a
serial structure by cutting a body in each closed loop. In this way, the mobility can be calculated with the
relation (1). As the number of bodies was artificially increased (fig.3) one have to subtract the degrees of
freedom number that vanish when the original elements are re-constituted as in the initial structure. In this way
the mobility relation become:
M= f-kS, (2)

in which k is the number of the closed loops and S — the motion dimension (S=3 for
planar mechanisms and S=6 for spatial mechanisms). In some cases the same
mechanism could include both planar and spatial loops at the same time. Therefore a
more general formula is:

M= fi-2 5 3)
in which Sy, is the motion dimension of the loop k.
The term Z S, represents the number of constraints due to the closed loops. These
constrajnts provide the same number of algebraic equations, which, together with
the driving motions equations equal the dof allowed by the joints ( Z f; ), according

Figure 2. to the relationship:
Yfi=M+Y S, “
2225, =3 For ~ fthe
4=d4—S =3 kinematics
4 = u formulation,  the
504 2fi=2+3+2=7 motion of the
n 7 M=7-6=1 mechanism

2z

modelled as a
kinematic chain is
characterized by a

set of Z /; kinematic equations.

For example for the mechanism from figure 3, Z fi =7, which means the model has 7 generalized

coordinates (the 7 articulations variables) and the geometric model includes 7 equations: 2x3=6 of them
correspond to the closure conditions of loops I and II and one to the driving motion. According to the various
formalisms, those equations can be written through various methods, most usually with Hartenberg-Denavit
4x4 operators. The set of 7 geometric equations constitutes a non-linear system of equations from which the
values of the generalized coordinates can be obtained by numerical solving (Newton-Raphson). For the other
kinematics equations formulation, recursive methods are well known from the literature [6,8], resulting in 7
velocity equations and 7 acceleration equations written in matricial form as:
®(q,1)=0, D(g,£)=0, D(q,1)=0. o)

For the dynamic analysis, the Newton-Euler formalism is usually involved, which means in principle
writing for each body the equilibrium equations. In 2D space, for each body, 3 equilibrium equations can be
written resulting finally 3n, dynamic equations:

mi=0Q+R, (6)
in which Q stands for the exterior forces and R the joint reactions.
These equations introduce as further unknowns the joint reactions, which are in number of 3n- Z f;, where

is the number of joints. In this way, the differential algebraic equation (DAE) system is obtained as:
d(g,1) =0,
{ Sq ) (7)
mg=0+R.
For the sample mechanism in figure 3, out of the 6 acceleration equations, 15 dynamic equations can be

written for the 5 bodies, introducing further 14 unknown reactions forces. The DAE system includes 6+15=21
equations with 21 unknowns: 7 generalized accelerations and 14 reactions forces that can be obtained by

numerical integration.
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3. The multibody system (MBS) model

According to this model, the mechanism is represented as a collection of bodies, the motion of which is
subject to a set of absolute and relative constraints. Many authors have implicitly assumed this model since
1977 [6,4]. The mobility of the mechanism is obtained by cumulating all body’s degrees of freedom considered
as free bodies, from which the number of joint constraints is subtracted (Gruebler’s formula):

M=6n-2iC,. 8)
in which S is the motion dimension of the space (S=6 for the spatial case and S=3 for the planar case), n is the
number of the mechanism mobile bodies and C; - the number of joints of class i (the class of a joint is given by
the number of constraints introduced).

For illustration, the planar mechanism given in figure 3 have 5 bodies and 7 joints with two geometric
constraints each, that is M = 3-5-7-2 = 1. In the kinematics case this mobility corresponds to the driving motion.

Each body is associated with a Body Reference Frame (BRF) characterized by three generalized
coordinates (the origin coordinates and the orientation angle with respect to the Global Reference Frame —
GRF), the mechanism position being characterized by S-n=3-5= 15 generalized coordinates [3].

Knowing the mechanism position is equivalent with knowing the BRF space position and orientation given
in general by 6 coordinates (three origin coordinates and three orientation coordinates for each BRF). The total
number of generalized coordinates is 6-n and the generalized coordinates vector is:

[q] = [xlyl Zr o1 0] XoY2Zz i XnYn Zn On Wa 0!(]7 (9)

4] = (4192 - god (10)

Not all the coordinates are independent because of the geometrical constraints introduced by the joints.
Each constraint is represented by a geometric condition written mathematically as an algebraic equation linking
the generalized coordinates of the adjacent bodies. For example a tri-mobile joint (f=3, c=3) introduces three
algebraic equations, a mono-mobile joint five algebraic equations etc. In total, the number of equations for all
Joints is Zi-C;, where C; is the numbers of joints of class i.

Consequently, the number of independent generalized coordinates (i.e. which can not be calculated from
the constraint equations) equals the mechanism mobility,

Ni=M=6n-2iC;. (11)

The velocity and acceleration equations are derived generally by differentiation with respect to time of the
position equations yielding relations with the expression (5).

The motion of the mechanism is cinematically determined when each independent generalized coordinate
corresponds to a driving motion expressed by another algebraic equation.

For this kind of model, most usually the dynamic formulation includes 6:n differential equations with the
general form

or

m('j+JTZ.=QeX, (12)
where J is the constraints Jacobian, A the Lagrange multipliers vector and Q,, the generalized external forces.

In order to solve the dynamic equations by numerical integration, one has to constitute the DAE system
with the general form

{ d(g,1) =0, (03

mi+JT A= O,
For the sample mechanism, one could write 15 differential equations and 7-2=14 constraint equations, in
total, a set of 29 equations with 29 unknowns: 15 generalized coordinates and 14 Lagrange multipliers.

4. The multi-particle system (MPS) model

This model considers the mechanism as a collection of particles subject to a set of absolute and relative
constraints. Some principles of this model have been partially utilized in their work by Alexandru et al[l],
Jalon - Bayo [4] and Geradin - Cardona [2].

The mechanism representation includes a particle based model for the rigid body and point contact models
for each type of joint.

The body model consists in a set of particles separated by constant distances, each particle being associated
with a concentrated mass according to the inertial equivalence with the real object. For a body model in 3D
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space (i.e. able to integrally conserve the mass properties of the original solid) minimum 4 particles are needed
and 3 particles for the planar case. Once the position of the particles is established in the body frame, the
concentrated masses can be easily obtained from the inertial equivalence conditions.

In the 3D space a particle have 3 degrees of freedom (f = 3), therefore maximum three types of constraints

can be imposed (figure 4):
(i) Coincidence with a point (or another particle) 2 f=0,c =

3.
- / ”;;;"“V-’: (ii) Contact with a 3D curve = f=1,c=2.
/\"y'/ (iii) Contact with a 3D surface > f=2,c=1.
o 1 = The full body model includes the modelling particles and a set
=1 =2

0
« of constant distances constraints between them, which
‘ represent the ideal rigid conditions, according to the usual
Figure 4 definition of the rigid body. For a body represented by 4

particles involving 4x3=12 generalized coordinates, a number of 6 distance constraints have to be imposed
resulting finally only 6 independent coordinates (figure 5):

(xp "x1>2)2 +(yp —YP2)2 +(zp ”215)2 =PIP22
(xp, —xp)" +(vp ~¥p)? +(25 ~25)" = AP’
| Gr =) +(vp, =yp)* + (2, —21,) =RP’ (19
(xp “xp4)2 +(yp —J’R,)Z +(zp _ZP4)2 =PiP42
(g, =2 +(p, = ¥2,)’ +(zp, ~2p,)" = PPy

2
k(xpa "xp,,)z +(yp, ‘)ﬁg)z +(zp —zp, )’ =PP,

The joint model is defined as combination of constraints between the particles composing the two adjacent
bodies. Each joint could be represented by a set of constraints defined between the particles of the two adjacent
bodies. The point type contact model allows the definition of practically any type of joints. The models of the
most usual joints are detailed in table I. With these models defined for body and joint, a new criterion can be

formulated for the mechanism mobility as:
M=Sp-2, (15)

in which p is the number of the particles included in the model, S is the space dimension (S=3 for 3D space and
S=2 for 2D space) and c; is the number of constraints. The generalized coordinates vector has the form:

[q =[x yi z1 X2 Yy» zZz X3 Y3 Z3 .. Xp Yp zl", (16)

TABLE I. The usual joints representation for the multi-particle system (MPS) model

Joint type Particle model Constraints Constraints Equation
Pao—
= Xp1=X
Spherical R —q Pi=Qu 1201
joint & *le=3 Yri=yor,
B, 1 ~e f=3 =
/ B Zpr=2g].
ao- ;‘P,";Ql =;’F1 :J;Ql :Zza '_ZZQ,
P ﬁ/a PIEQIQZ axis Q: Q] Q: Q! Q: Ql
Cylindrical A &\) }P 0, | P2e QiQuaxis
joint T Ol c=4 Xp — X - Zp —2
B =2 p =% _Yr Yo _Zr %0

Xg, ~Xg Yo, “ Vo %0, TZg
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Idem and
P,e Q:Q; axis
P2e QQ axis ¥ Yn o 7 1
Translation P Q,Q, Qs X0, Yo 2 1 _0
joint planc 17
c=5 X0, Yo, Zg,
f=1
X0, Yo, Zp, 1
P=Q Xp1=XQ1,¥YP1=Y01,2P12),
Revolute Pe QiQraxis | x, —x - Zp —2
joint e r"*o _Yn Vo _Zp "%
f=1 *o, ~Xg Yo, "Yo  Zg ~Zg
Pie Qi Q:Qs Xp Yp  Zp 1
planc x z 1
Pe Qi Q2 Qs o Yo a =0,
Plane joint be Slage o Xo, Yo, 29, 1
3 ] 2\
plane Yo, Yo, Zg 1
c=3 .
f=3 i=1,2,3.

The vector [q] can be obtained by numeric solving of the system of M + Zc; algebraic equations corresponding
to the M driving motions and Zc; joint constraints. It must be noted that for the a MPS model the joint equations
can take only four possible forms, as resulting also from the table I:

- Distance equation

(xp =xp)> +(vg —yp)’ +(z5 =25)" = AP’ (17)
- Coincidence equation

XpI=X01. YPi=Yo1.2PI=Z0), (1)
- Co-linearity equations
h "X _Yn Yo _ 2R3, (19)
Yo, "X Yo Yo Zo "7
- Co-planarity equation
Xp yp ozp 1
X ¥, z 1
o Yo “Q 1=0. (20)
Yo, Yo, g,
X, Yo, 7o 1

In the next step, through successive differentiation, velocity and acceleration equations can be easily derived
resulting the set of kinematic equations of the general form (5).

For dynamic simulation, the equations have the same general form as for MBS model - relation (12), in
which the mass matrix is

m=diagl mg m m my; my; my my my omy .. m, m, m,]. (2])

The Zci Lagrange multipliers include the joint reaction forces (including no torques) and also the internal
cohesion forces between the particles of the bodies.

For the sample mechanism modelled as in figure 6, the number of particles per body is 2, except bodies 3
and 5, which are defined with three particles each. The total number of mobile particles is p = 12 (A;, By, B,,

C,, G5, D3, E, By, Fy, Fs, Gs, Hy), that is S-p=2x12=24 generalized coordinates (two Cartesian coordinates for
each particle):

- T
9=[Xu Yu Zu Xm Ve Zm Xe: Ys: Zpr .. Xus Yus zus) (22)

As constraints, there are 9 rigid body constant distances (AB, BC, CD, DE, CE, EF, FG, FH, GH) and 14
Joint constraints, yielding Zci=23, that is M=S.p-Z¢;=24-23=1. The constraint equations set is:
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[ (g =28 + 04 —98) =1}
(x3, 'xc,)z +(¥s, —¥c, ) =l:z2 ’xAl =X4, =0 Y4 Va4, =0
(xc, ’x03)2 +(ye, "J’D,)2 =1 xp, —xp, =0, yp, ~ Vs, =0
(xc, = %£,)> + (e, ~yg,) =l xc, =x¢, =0, y¢,~yc, =0
§ (xp, = *g, )2 +(p, '}’E,)z =13 , 3%p,—%p, =0, yp, ~yp, =0.(23)
Gg, =x5,) + (g, — Ve =1 Xg, —%g, =0, Vg, ~ Vg =
(xF, "sz)z'*‘(yl-‘s")’GS)z:II%‘G xp, = %p, =0 yg, = yr, =0
(xr, —x4,)" + (R, —yu, ) =lin L Yu, =@ Yo, =@
\(xcs ~xH,)2 + (Yo, = Vi, )2 =gy

The 24" equation corresponds to the driving motion.
The velocity and acceleration equations are derived

by differentiation of the position equations

JGg=Q

Jj=y’
where the 24x24 Jacobian matrix J has also a very simple
expression not given here, for space reasons.

For the dynamic analysis, one has to take into
Figure 6 account the particles are a}cted by external, r_eaction and

) inertia forces. Each force is applied to a particle such as

no torque is involved, which is an important simplification. The general matrix form of the differential
equations is given also by (12), in which the mass matrix is 24x24 :
m=diag[ m, m, m, mg mp my mg mp Mp .. My
matrix corresponds to the joint constraints and constant distances and the Lagrange multiplier vector A has also
23 components. The DAE system has 47 equations with 47 unknown: 24 generalized coordinates and 23
Lagrange multipliers.

my,  my Jthe 23x24  Jacobian

5. Conclusions

The model based approach for multibody simulation allows a clear background for any formulation including
specific formulas for mobility computation and finally a proper evaluation of the potential for each of them. In
spite of the larger number of equations, the MPS model provides several features with relevance to the non-

linear multibody simulation:

- The representation of forces and inertial mass properties is significantly simplified.

- The constraints and the corresponding algebraic equations are of small variety -only four types of
equations: distance equations, coincidence equations, co-linearity equations and co-planarity
equations. This is simplifying both constraint and Jacobian matrix formulation.

- The MPS model allows the extension for the treatment of flexible multibody systems by introducing in
the RHS of the distance equations the flexibility principles for each body as shown in [2].
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1. Unconstrained MBS on manifolds
Unconstrained multibody system (MBS) is an autonomous Lagrangian system. If

DOF is assumed, the system evolution in configuration space R" is described (by
definition) by Lagrangian equations [1]
d(dl) oL _. . oo
5(5;) 5[ > M(x) =Q"(x,x,1), )]
By taking differentiable manifold approach, the configuration space R" is
considered to be a manifold M" covered by coordinate system x(¢) (in mathematical
jargon of modern differential geometry: locally covered by chart x). The solution of (1)
is a dynamical trajectory T:x'=x'(¢) of the system in n-dimensional manifold of
configuration M. With every point on manifold of configuration, xe M, the n
dimensional tangent space TxM is affiliated, where system virtual displacements &x

and velocities X are contained, dxe T,M, dxe TM | xe T,M. The manifold M
and the union of all tangent spaces at the various points x make another, 2n
dimensional, manifold called tangent bundle, 7M: U T,M, covered by the

xeM"
coordinates x ,x :7M = { (x,x):xe M, xe .M} (2] (being mathematically not
very rigorous, tangent bundle can be observed as a velocity phase space known from
‘traditional’ approach). Manifold M is not a vector space. By adopting system
generalized mass matrix M(x) (positive definite) as a Riemannian metric on the

manifold of configuration [3], a scalar product in the each tangent space T,M is given
by (y, L)y =Y MX)z , y,ze T,M [4]. Now, with the metric so defined, the tangent
space TxM (‘the fiber of the tangent bundle at point x’) becomes a local Euclidean
vector space spanned by covariant basis g,, - By introducing a reciprocal contravariant
basis g, the vectors in tangent spaces can be expressed using their contravariant and
covariant representations X = %' g, ,x= ], %= 58, ' =[x].

2. Geometric properties of constraints

2.1 Holonomic constraints

Holonomic constraints

<I>(x,t)=0, (D(x,t):R“xR—>R’ , (2)
that are imposed on the system
a) restrict system configuration space (‘positions’): a trajectory T:x' =x'(r)

‘moves’ on the  n-r  dimensional constraint  manifold S""(t) ,

Sy ={xe M,0(x,1)=0}, 120, x(1,)e Sy,
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b) at the velocity level they induce constraint equation
O (x,1)k=-®, =1 3)
that is linear in velocities. The constraint matrix @, (x,f) can be written in the form

O r(x,) = [(p{,....,(p:] , o =lp], & =98 . The vectors @,,..,p, represent
gradients to the constraint hypersurfaces. They are linearly independent and span r
dimensional constraint subspace (! [6]. Kinematically admissible virtual

displacements 8x are restricted to the n-r dimensional tangent space T.S5"" that is
orthogonal to C’. Together, subspaces C’ and 7,5 span fiber of tangent bundle of
unconstrained system 7,M" at point x: 7,3 C.=o0,75 U C =, M".

2.2 Non-holonomic constraints

If, beside 4 holonomic constraints (2), the additional nk non-holonomic constraints
¥(x,%,¢)=0 )
are imposed on the system, they do not restrict system configuration space (system
constraint manifold S”” maintains the same dimension, r =) but impose additional
velocity constraints on holonomic constraint manifold tangent bundle 78,
e Txn-r-nhSn-r c T;n—rSn-r .
If non-holonomic constraints are linear in velocities, i.e. can be given in Pfaffian
form
¥ =B (x,)k —B(x,7)=0, (5)

the system constraint equations can be written as follows:

[@;(X,t):lx _ [;} ’ {(I);(x,t)] - (I’;"h , (I):nh c R(h+nh))<n ) (6)

B'(x,2) B'(x,?)

3. Projective constraint stabilization method via coordinates partitioning

If system governing equations are expressed in descriptor form, a constraint violation
stabilization method have to be applied during integration procedure. A well known
method that provides a full constraint stabilization is generalized coordinates
partitioning procedure [5]. If the system is holonomic and constrained on manifold
Srr (t), the “classical’ coordinate partitioning algorithm is based on pivoting operations
on the constraint matrix ®'x, rank (dfx):r, by means of which the subvectors of
dependent and independent coordinates x* € R”and x'e R"" is extracted.

With the attempt to provide a further insight into the characteristics of the method, in
this paper, the coordintes partitioning algorithm will be analysed on manifolds using

differential geometry approach.
Criteria for partitioning can be expressed geometrically: basically, every partitioning

that returns subvector of dependent coordinates x° which basis vectors have non-zero
projections on the constraint subspace C; (the corresponding rxr submatrix of
constraint matrix ®'x is non-singular) is correct one and can be used for stabilization
procedure. Consequently, the basis vectors of variables x' have projections on tangent
space of constraint manifold TXS“" that is complement to Cr. If the extracted
subvectors do not satisfy specified conditions, the partition is not a valid one and the
calculation will fail.
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After partitioning, time integration results of the system variables x,x are projected
to the constraint manifold tangent bundle 7S to assure full satisfaction of the system

constraints. This can be achieved by correcting dependent coordinates x° to bring the
configuration coordinates x in accordance with the constraint equation (2) up to the

required accuracy (a projection on S” can be accomplished by iterative solving of (2),

while keeping values of independent coordinates unchanged and treating x° as

unknown variables). The procedure is than repeated at the velocity level by correcting

x? to bring x in accordance with (3), with the only difference that (3) is linear

algebraic system and x° can be obtained straightforwardly.

The main problem that may occur during stabilization procedure is an inadequate
coordinate partitioning that can have a negative effect on the integration accuracy along
constraint manifold [7]. Although, as it was explained, every partitioning that returns
the acceptable subvectors can be used for the stabilization procedure providing the
constraint stabilization, a non-optimal choice of the subvectors can cause an increase of
the numerical errors along manifold during stabilization procedure (numerical errors
along constraint manifold affect system evolution in time i.e. its kinetic motion). It
means that, in this case, a correction of the constraint violation will be accomplished at
the expense of the ‘kinetic motion’ accuracy obtained by the system variables x,x

ODE integrators.
3.1. Stabilization of the system configuration constraints

The ‘mechanism’ of emerging of the numerical errors along configuration manifold,
because of an inadequate partitioning during the stabilization procedure of holonomic

systems, is outlined in Fig. 1, where an illustrative example xe R?, S' is discussed.

Fig. 1: Correction of the configuration constraint violation

Assuming that, starting from position @, an integration of ODE gives result @
instead of exact position @ (a scleronomic system is assumed), a projection on the
constraint manifold S' by adjusting coordinate x' (solving “position’ i.e. configuration
constraint equation (2) along x'curve by treating x' as dependent i.. unknown
variable) yields result @ that is consistent to the constraint. If instead of x', the variable
x* was chosen to be a dependent coordinate, an adjustment of the integration result
along x* curve would yield solution ®, which is also consistent to the constraint but
contains considerable error along the manifold S'.

A remedy for the problem of an inadequate partitioning has been offered in [8],
where a projective criterion to the coordinate partitioning method is introduced (for
application, see [9]). For a given set of coordinates of unconstrained system, the
criterion allows for the optimal choice of dependent/independent coordinates which,
consequently, gives opportunity to minimize integration error along manifold.
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The main idea is to determine those r coordinates which direction vectors g, deliver

the biggest relative projections to the C; and select them as dependent variables which

will be adjusted during the stabilization procedure. By correcting the coordinates whose
direction vectors align well with the constraint gradients (that point directions toward

constraint surfaces and span C; ), it is ensured that the correction procedure will shift a

state-point of the system ‘as direct as possible’ to the constraint hypersurfaces,
minimising thus an error along constraint manifold. Along this line, in the example

shown in Fig. 1, the variable x' is chosen to be a dependent coordinate since its basis
vector §. delivers a big projection on C: = grad[d)1 = 0] (in this illustrative example the

constraint subspace C; is one-dimensional, spanned by grad[(D, = O]).

3.2 Stabilization of the velocity constraints

The projective criterion to the coordinate partitioning method can be utilizied for a
minimization of the numerical errors in the process of correction of constraint violation
at the velocity level as well. Here, an application of the criterion enhances a definitness
of the velocity constraints algebraic system (3), providing thus a better numerical
accuracy of the stabilization procedure. This feature is illustrated by an example

xeR?, $*={xe R’ 0,(x =0} , shown in Fig. 2. For seak of simplicity,
scleronomic system and orthogonal basis gl,82,8) are assumed. If the velocity
equation (3) is written in the ‘vectorial’ form, for the analysed case it reads
grad @, -x=0 . @)

In (7), the components of grad @, represent coefficients of the linear algebraic system
that, for a general mathematical model, is given by (3). By applying the projective
criterion and choosing x°, which direction vector g, (in this ‘academic’ illustrative
situation) is almost collinear to grad ®,, as a dependent coordinate, the potential
numerical errors in independent coordinates %' and x* would not affect considerably

the solution x* = 0 of the velocity constraint equation (7).
This is because of the small magnitudes of the coordinates of grad @, along the basis

vectors §. and §? (small projections of grad @, on g, and g’) that multiply x' and

%? while solving (7) for %°.

Figure 2: Correction of the constraint violation at the velocity level
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4. Structure of the partitioned subvectors

To gain a further insight into the partitioning procedure and its characteristics, it is
illustrative to observe the algorithm of the projective criterion at the tangent bundle
™= {(x,x):xe M, e T,M} of an unconstrained system. As explained, TM is
2n-dimensional Riemannian manifold with a metric M, = diag(M(x),M(x)), where a
configuration of the system as well as its velocities can be studied [10]. If constraints
are present, they are represented in 7M by the configuration and velocity
submanifolds, by means of which the possible states of system are determined.
Observed at 7M, the partitioning procedure for constraints stabilization can be studied
for each submanifolds separately. By using the projective criterion for both manifolds,
characteristics of the partitioning procedure that for a given set of coordinates
xeM, xe T,‘M provides the optimal dependent/independent subvectors, can be
learned as follows.

4.1 Holonomic constraints

The configuration submanifold S" is determined by the equation (2) i.e.
S ={xeM,®(x,1)=0} . (8)

The submanifold V""', by means of which the system velocities x are constrained, is
defined by (3), thus

Ver={keTM, &' (x,)x =1 } . )
If the optimization projective criterion is applied during the partitioning procedure at
the both configuration and velocity level (which is the most common procedure), the
criterion itself is based on determination of the gradients to the constraint submanifolds

S and V" (as explained, this is because the extraction of the dependent coordinates
of x* and x° depend on the directions of gradients to the hypersurfaces of submanifolds
S and V" respectively).

Since constraint submanifold S” is determined by (2), the x correction gradient by
means of which x? is to be extracted is given by

grad [®(x,1)=0]= @ (x,7). (10)
Similarly, x correction gradient, decisive for an extraction of x? reads as
grad [0, (x,1) x = 1)= @ (x,1). (1)

Now, if the expressions (10) and (11) are compared, it is obvious that the both
hypersurfaces 3" and V" have the same gradients for every point in TV (in fact,
the both gradients depend on the current position xe M at the configuration manifold
and 7 only, i.e. they are independent on system velocities x ). Of course, this stems from
the fact that, in the case of holonomic systems, the velocity submanifold V" is
determined by algebraic equations (3) (linear in x ') which are, in turn, obtained by
derivation of the configuration constraints (2).

Since the gradients to the both hypersurfaces S""and V" "are identical, it is clear
that, for holonomic systems, the optimal coordinate partitioning procedure provides the
same optimal dependent/independent subvectors at the both configuration and velocity
level i.e. [Jc,,xz,...,xd]r and [)'cl,fcz,...,icd]r. This means that, once the partitioning

procedure is accomplished for the configuration coordinates and subvector x° is

extracted, it is not needed to be repeated at the velocity level (the subvector x?of the
same structure is to be chosen for the stabilization of velocities).
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4.2 Non-holonomic constraints

A coordinates partitioning procedure can also be applied for stabilization of
constraint violation of non-holonomic systems. If additional nk non-holonomic
constraints (4), which are imposed on the system (beside / holonomic constraints (2)

that define configuration manifold S", r=h), are given in linear (Pfaffian form) (5),
the submanifold V" of the velocity constraints are defined by

(I):(x,t) . x| T * (h+nh)xn

By considering (12), thex correction gradient reads as

e Tl 40 _CD;(x,t)
grad [Cbnhx = [BH =@, (x,0)= [B'(x,t)} . (13)

Since non-holonomic constraints do not affect configuration manifold S», the
‘position’ coordinates correction gradient is given by (10).

By comparing correction gradients (10) and (13) which do not match any more, it
can be concluded that in the case of non-holonomic systems the optimal coordinates
partitioning will not ‘return’ dependent/independent subvectors of the same structure for
configuration and velocity stabilization. Beside non-equality of dimension of the

subvectors xe R” and x%e R, their structure will also differ in general case.
Generally, in the case of non-holonomic systems, a separate partitioning procedure is
necessary for stabilization at configuration and velocity level.

This is specially true if the imposed non-holonomic constraints (4) can not be put in
Pfaffian form. If non-holonomic constraints are non-linear in velocities (this kind of
constraints can appear as a result of certain controlling actions), it will be necessary to
determine a completely new correction gradient

grad[¥(x,x,7)=0]="¥, , (14)

to accomplish optimal correction of the velocity constraint violation.
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Abstract. Hardware-in-the-Loop test facilities become a modern tool for testing of active
systems in the automotive industry. Since real-time models are necessary for the vehicle dynamic
simulation in HiL various techniques have been developed in the recent years to fasten the time
integration of multibody system models.

Nowadays a number of simplifications is well established that help to avoid the time con-
suming simulation of the suspensions with kinematic closed loops. The so called virtual axle is
one of these approaches. It is based on tabulated kinematics of a wheel carrier that is evaluated
during time integration. The virtual axle can be optionally extended with simplified wheel carrier
elastokinematics as well.

This paper presents the implementation of the virtual axle method in the multibody simu-
lation package SIMPACK. Furthermore the accuracy of a vehicle model with the virtual axle is
compared with a classical model including full suspensions with kinematic closed loops.

Keywords: real-time simulation, suspension, virtual axle, model reduction

Abbreviations: HiL - Hardware-in-the-Loop; MBS - multibody systems

1. Introduction

To decrease development time and costs in automotive industry the multibody
dynamic simulation programs are widely used. In many cases the number of ride
tests can be decreased significatly by using simulation models.

Since the multibody systems (MBS) simulation of vehicles has become a stan-
dard simulation tool the essential effort is payed in the recent years to decrease
the computing time needed for the numerical integration. Especially in case of
Hardware-in-the-Loop (HiL) tests the computing time is crucial.

Various MBS-formalisms and simulation techniques have been suggested to
reduce the computing time in dynamic simulation, see [1-4]. The approaches
deal with various aspects that can be summarised as follows

¢ techniques simplifying the model complexity,

¢ descriptor or state-space form of equations of motion, the type of coordinates,
¢ selected numerical integration methods and

e parallelisation techniques and used hardware.

The present paper is focused on the simplification of complex suspension
systems.

202




1.1. SIMPLIFICATION OF SUSPENSION MODELS

The necessity of real-time MBS vehicle models (e.g. for HiL) is the motiva-
tion to perform significant model simplifications including methods to avoid the
kinematic closed loops caused by suspension systems.

The resulting suspension model should be simple and precise at the same
time. Nevertheless the accuracy is often less important in order to decrease the
computing time of the real-time model.

The kinematic loops are caused by suspension design ensuring optimal be-
haviour of the suspension for the full range of wheel movement. Several ap-
proaches are used to simplify the full suspension model that generally leads to
the solution of differential algebraic equations (DAE). The most often used forms
are the following:

e Transformation of DAE to ordinary differential equations (ODE). This me-
thod can lead to numerical problems, see [5].

e Precalculation of the wheel carrier movement relative to the vehicle chassis
and saving of data in table form to avoid the algebraic equations caused by
kinematic loops, see Section 2.

o Solution of algebraic equations within the wheel carrier joint. Then the
resulting equations of the complete vehicle form an ODE (Suspension Com-
posite Joint description [6]).

Elastokinematics is a consequence of elastic bushings and compliance of bodies.
It has a strong influence on the suspension movement if dynamical forces are
considered that act on the suspension.

The elastokinematic model of suspension requires the iterative solution of
a system of non-linear equations to get the resulting position since suspension
position and compliance depend on each other. Generally the resulting position
and orientation p; of the i—th wheel carrier is

p: = pi(2;, Qs 1), (1)

where z; are independent coordinates and Q; are the acting forces.

For the real-time models the complex elastokinematics must be strongly simpli-
fied and for a lot of ride tests it can be even completely neglected. The dependency
of compliance on the initial position without feedback is often considered to fasten
the computation. Therefore within one time step (1) simplifies to

Pit, = Pi(zi,tk, tk) + Ap‘i(zi,t“ Qi,tk_p tk) (2)

The additive term Ap; indicates simplified elastokinematics and it is a non-linear

function of forces acting on the wheel carrier. The forces Qi,_, from previous

time step tx—; are selected since the actual forces of k-th step are not known

during solution of equation (2). The iterative solution is avoided in this way.
The additive term is often linearised to the form (see [8])

APp; = Ce1(2:)Qui + Cea(Z:)Qai + - - - + Ces(2:) Qi (3)
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with compliance coefficients ce;, j = 1,...,6 and a vector Q; including three
force Qji, j =1,...,3 and three torque Qji, j =4,...,6 components.

2. Virtual axle

The virtual axle is characterised by precalculated and tabulated data that is
evaluated later during the dynamic simulation, see (7], [8]. The presented virtual
axle has been implemented in the multibody simulation package SIMPACK, see [4].
In this simplified axle model the position and orientation p; of the wheel carrier
are calculated depending on a set of dependent coordinates q; = lgri +-- qsi]T

P: = pi(qi). 4)

The dependent coordinates q; itself are generally defined by two independent
coordinates z; that are given by:

21; -..vertical movement of the wheel carrier r,; and
23 ...rack rod displacement ryp or steering angle 6.

The coordinates q; are tabulated based on the data that is obtained from 2 MBS
model of full suspension that defines the transformation

qi = qi(z). (5)

During time integration the data is evaluated with cubic tensor product splines
that interpolate data tables. A lower order of interpolating spline could be se-
lected but generally this leads to discontinuities and problems during numerical
integration.

2.1. KINEMATICS

The position and orientation py;, velocity vi; and acceleration a; of wheel carrier
relative to vehicle chassis are calculated in the virtual axle

Pki = Pki(2i, t) (6)
Vii = Viil2i, 2, t) = Ji(24,8)2; + Vi(zi, t) (7)
Bki = Aki(2i, 2i, Zi, t) = Ji(2i,0)2; + 22, 24, 1) (8

where the subscript k denotes the (initial) kinematic solution.
The terms J;, ¥; and &; in equations (7) and (8) include the partial derivatives
of transformation (5).

2.2. ELASTOKINEMATICS

The resulting position can be influenced optionally by the elastokinematic term
Ap;
Pi= Pki(z:t) + Api(zia Qi,tk_n t)' (9)
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with the joint constraint forces Qs ,_, from the previous time step.

Both tabulated non-linear and linearised Ap; may be selected. The later needs
the tabulated coefficients cej, j = 1,...,6, see Equation (3). The non-linear
approach is more suitable to have a more exact model. Unfortunately it is rather
difficult to get the tabulated input data. Therefore the linear method is used
in general. Although additional error terms are introduced by superimposing
particular linear terms, the simulation results are often of good approximation.

Just the quasi-static forces are realised by the precalculation of elastokinemat-
ics data since it is impossible to include the whole range of dynamical forces.

3. Simulation

In this section the vehicle model using the kinematic solution of virtual axle in
SIMPACK is described and results of a ride manoeuvre are presented.

3.1. VEHICLE MODEL AND RIDE MANOEUVRE

The model of a middle class vehicle has been chosen to compare the accuracy of
the virtual axle with the complete suspension model. The vehicle has a McPherson
front suspension (Figure 1.a) and a twist-beam rear axle (Figure 1.b). These are
modelled as a complete suspension in the vehicle Model 1. The front suspension
is substituted by the virtual axle in a simplified vehicle model (Model 2).

No steering system is considered but the simple time excitation of the rack
rod displacement zy;. The excitation zg; = 29;(t) is applied directly to the virtual
axle in the simplified Model 2.

Both the front and rear anti-roll-bars are treated as torsional springs/dampers.
The brake assembly and power train are neglected because they are of lower
importance for the performed manoeuvre.

The curve entry has been selected for comparison of the models. The initial
velocity of vehicle is 10 m/s. The displacement of the rack rod (excitation 22i)
from 0.0 m to 0.033 m is defined in the time interval between 0.5 and 1.0 s.
The total time of manoeuvre is 7 seconds.

a. Front suspension b. Rear suspension

Figure 1. Vehicle suspensions of the simulated vehicle.
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3.2. RESULTS

Four vehicle models have been compared. The first one is Model 1 the others are
three variants of Model 2 that differ by the selected interpolation:

e Model 2a: Cubic spline interpolation of q; in direction z3; and linear inter-
polation in direction zy;.

e Model 2b: Cubic spline interpolation of q; in both directions. All partial
derivatives are neglected.

® Model 2c: Cubic spline interpolation of q; in both directions. All partial
derivatives are considered.

The SIMPACK integrator SODASRT with variable time step is used in all com-
putations. The computations have been performed for three different integration
tolerances. The computing times of all models are shown in Table .

Figure 2 presents the vehicle position during the ride manoeuvre. The diver-
gence of the results is especially obvious at the end of simulation. To point out
the differences the selected area of Figure 2.a is focused in Figure 2.b again.

As can be seen in Figure 2 the results of Model 1 and Model 2¢ are nearly the
same. The Model 2b is faster at approximately 15% but it deviates at some 0.5 m
as compared to Model 2c. The divergence of Model 2a can be seen as well.

In contrast to the divergence of Model 2a that increases with time the deviation
of Model 2b changes slightly when the rack rod displacement stays constant and
it arises mainly during the rack rod movement.

As can be seen in Table I it was not possible to calculate Model 2¢ with small
tolerances because there have been discontinuities in partial derivatives of the
selected linear interpolation.

4. Conclusions

In this study the virtual axle has been implemented in the SIMPACK simulation
package. The reduced vehicle model with virtual axle has been compared with
the full model. The results indicate that the virtual axle with cubic spline inter-
polation in both directions and partial derivatives is the most suitable solution
to supply the complex suspension.

Table 1. Computing times of simulated vehicle models [s]-

Vehicle Tolerance

model 1.1073 1.104 1.107%
1 3.57 4.82 6.8
2a 2.51 aborted - aborted
2b 2.28 3.78 5.24
2c 3.05 4.33 6.13
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Figure 2. Position of the vehicle in a horizontal plane.

The linear interpolation can be used, too, if no discontinuities occur during
simulation or if the model accuracy is of lower importance.
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1. Introduction

Vaulting pole with elastic pole is a continuum communication between athletes and the
pole during the vault. Kinetic energy introduced at the beginning of the vault can explain
only 60-70 % of the total energy used to perform the vault. The rest, concerning 30-40 %,
is introduced by the act of the athletes. In this study the authors wish to make an adequate
mathematical model to explain the liaison and the power transfer between the vaulter and
the elastic pole. The model contains a high elastic fiber-glass pole, free to pivot in the
bottom end and charged with a variable momentum at the upper end. The inertia forces
are also considered and all these forces subject the pole to a bending momentum and
compression. The mathematical model is strong non-linear and for this reason involve
some difficulties in solving the problem. This needs an adequate parameterization of
deformed pole and the identification of the best modality to introduces power in the
system.

In the paper is made an analysis of such complex motion and interaction between
athletes and the pole in order to identify the parameters that describe the problem.

2. Mathematical Model

In the following we will present a proposed model in order to describe the motion of the
vaulter. An analysis of the dynamic of the pole-vault event must include the effect of the
highly elastic pole [1]. Hubbard [3],[4] proposed an iterative numerical solution,
contending that an analytical solution was unknown. Griner [2] use the results proposed
by Costello and Healey and offer a parametric solution to the pole-vault problem in
terms of the tabulated elliptic integrals.

In this paper we use a vector representation [5] to describe the geometry of the
non-linear pole in order to obtain, finally, the interaction between pole and pole-vaulter.
We can write:

3
B9 g, dr
ds (g3 ds
where:
ar _q
ds
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deo 1
0=aq, -JS-:_ §
P C=-F(q-s(e)+cla))

—l:;—l(ggjz = F(q-s(6)+c(6)+C)

The simpler model to describe the athlete is to consider that this is composed by two
rigid body being in interaction with the pole. This description permit to obtain two kind
of equations: one containing the elastic description and the other concerning the dynamic
motion equations considering the two body that compose the athlete. For these two
bodies we apply the well-known screw theorems. Between these two description exists
a liaison made by some motion parameters. It is easy to describe the great deflection of
the pole when is known the force and the torque at the end of the bar.

1
-2

Figure 1. Seven successive positions of the vaulter

The most important things is to find the real values of the screw apply at the and of the
pole at any moment of time. To determine this is necessary to consider for these two
description two kind of differential equations: in one the variable is a coordinate that
describe the pole and in the other set is the time. In every moment of time we must
consider the solution of these two set of equations, the evolutions of the solutions being
in a strong liaison.
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Figure 2. The large deflection of the pole in the Hubbard model

3. Experimental Results

Griner, in his paper, consider an experiment made by a vaulter. In this experiment he has
recorded 65 of position. If we consider the athlete compose by two rigid bodies, seven
position are presented in figure 1. He conclude that exists un vault which negative
torque, at the end of the trajectory. The seven position are only a “frozen” sequence in a
succession of all positions recorded.

Considering these results Griner perform a calculus of the large deflections
considering the force and the torque adequate to obtain the experimental records. For
some positions the screw considered to obtain the experimental results are not in a good
accordance with the situation observed by the athletes. The discrepancy between the
calculus and observations impose to consider the continuous liaison between athlete and
pole.

4. Large Deflections of the Pole

In our researches we have considered an elastic pole being in a continuous “rigid”
motion and have in the same time large deflections. The model has considered the
interaction with the athlete acting at the end of the pole with a force screw (force and
torque). For this model we have represented the elastic solutions for the succession of the
seven positions considered.
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Figure 2. Large deflections of the pole

5. Conclusions

The results obtain by calculus and the experimental observations sustain the idea of a
model of the elastic pole in an interaction with the vaulter. The motion of the vaulter is
very complex and determine, in decisive manner, the deflection of the pole at any
moment of time. The strategy of the vaulter is not only to transform the kinetic energy in
a potential energy but too to use the arms to introduce a force screw in order to made
higher the vault. To study the motion of the vaulter is necessary to consider the strong
interaction that exists between the two parts of the system: the pole and the vaulter
modeled by two rigid bodies. A good description of the motion is possible only in this

casc.
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1. Introduction

The development of virtual simulators can avoid to sct-up expensive test rigs, time-consuming
tests, and is a winning strategy to bc more competitive in road-vehicles market. Moreover
vibrational comfort analysis is an important topic in vehicle design and the possibility to perform
virtual vibrational tests on the effects of changing some parameters is useful tool for the designer.
A literature scarch reveals that most of the simulation models in the ficld are based on clementary
linear modcls. In some cascs, finite elements arc used, but this approach involves a large amount
of parameters to be defined and managed. Thus the authors of this paper developed a virtual
dummy model by means of multibody techniques. The formulation is the one described in
Haugh’s text book [4]. The code, named DAVID (the acronym of Dynamic Automotive Virtual
Dummy), can mimic the non linear behaviour of a 3D human body model and requires a very
small sct of body data. The model is completely parametric and can be automatically scaled to
simulatc a significant portion of population. The code can be also linked to cxperimental results of
accclerometers time histories to perform multi-input analysis based on seat input (translational and
rotational), steer wheel input and pedals input. Driver and occupants can be both simulated. It is
possible to introduce non linear viscoelastic parameters to match the actual behaviour of cushion
foams used in the manufacturing of seats. The model provides also an assessment of vibrational
comfort computed in compliance with interational standards. The results of the code DAVID
have been compared with experimental ones acquired on a vibrational test rig.

2. Multibody Model

The developed model is based on a multibody dynamics approach [4]. In particular the whole
model is made of 15 rigid elements, 12 of which define the dummy, and the remaining 3 describe
the car environment. The dummy is composed of two feet, two legs, two thighs, the pelvis, two
arms, two forcarms an upper part that is formed by head, neck, shoulders and chest rigidly
connected together. The other bodies included in the model are seat, pedals and steering wheel. In

212




order to represent the human body articulations, kinematics constraints and viscoelastic elements
are used to connect each part of the dummy. There are two spherical joints between pelvis and
thighs, two revolute joints with transverse axes between thighs and legs, two revolute joints with
transverse axes between legs and feet, one prismatic joint with longitudinal axis between pelvis
and upper part, two spherical joints between upper part and arms, two revolute joints with
transverse axes between arms and forearms. The viscoelastic elements used in the dummy are one
translational, between pelvis and the upper part to represent the stiffness of torso, and two
rotational elements, between arm and forearm to reproduce the muscular elasticity of the elbow.
The dummy interacts with the car environment by means of seat, pedal and steering wheel contact
simulated by other viscoelastic elements. The contact between hands and steering wheel and fect
and platform car is simulated with four very stiff springs. The model can automatically scale
geometric, mass properties and spring locations by means of changing few parameters (such as
percentile). In fact the code is interlaced with an anthropometrical database. It is also possible to
modify the backrest inclination and the hip-heel vertical position in order to change the
configuration of the seat. The code can also manage several inputs at the same time. It can get
input acceleration time histories acquired by experimental tests, as well as time histories on
velocities and positions, filtering the signals in order to suppress noise. If necessary, forces and
torques could be introduced as well as driving constraints.

Figure 1. Viscoelastic elements (left) and complete 3-D dummy in Visualizer (right)
2.1 EQUATIONS OF THE MULTIBODY MODEL AND INTEGRATION

The equations of motion are deduced in the form of differential — algebraic system of index 3 [4]

5]
X T
{[M]{q}+[wq] (1}=(r) "
{w}={0}
where [ M] is the global mass matrix; {¥} is the vector of constraint equation; {A} is the vector
of Lagrangian multipliers; {F } is the vector of external generalized forces; {g} is the vector of

e

generalized coordinates. In our model there are 15 bodies, and 105 generalized coordinates. The
spatial location of the i-th body is described with seven parameters (i.e. three for the position of the
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center of mass q,, ¢, 45,5, ,_4» and the four Euler’s parameters ¢, ,, ¢,, 5, ¢5,;» g,;- The
constraint equations used in the model can be divided into three groups:

- the first 15 equations (as many as the number of bodies in the model) are the normalization
equations of the Euler's parameters (i.e. ¢, +¢,,," + ...,  + ¢, =1);

- the second group of equations is made up of the scleronomic constraints.

- the last group we include a driving constraint at inclination of pedals & w.r.t. the horizontal
plane (first two of (3)); regarding pelvis we impose no translation along z axis and rotation around
the same axis (last three of (3)):

93 = COS(%); Ga6 = COS(%); 97 =05 6,5 =0; g5 =0; €)
The complete model has 24 d.o.f. The integration of the DAE system, as it is shown in equations
(1), has been performed rearranging the system as a first order one in the unique unknown .
Therefor the system to be integrated is in the following form:

(K]0} = (e} o
where:
1000 7 ' iqi )
071 00 ; g
Kl=15 o o of3 U= Z and {¢(y)} = {[M]{éj}+[‘Pq]’{A}~{Fe}}’(5)
00 00 A {/1}

The system (5) is then solved by means of RADAUS.

3. Experimental set-up tests

A key point of simulation is the contact between scat and occupant that influences the vibrational
response of the dummy. For this purpose an experimental procedure has been performed to find
the seat force - deflection curve. Special mats, equipped with pressure transducers, are put on
several scats and a jury made by people belonging to different physical groups has sat on the
instrumented seat. Pressure maps have been acquired. Then spring elements have been introduced
in the model and anchored to the points of high pressure concentration. For the computation of
stiffness, appropriate tests have been performed on cushions using standard dynamometer. These
have shown a non linear behaviour of polyurethane foams in their force/preload characteristic
curves. A second kind of tests were performed to check the correct dynamic response of dummy.
Some car have been tested on standard tracks and accelerometers signals have been acquired at
measurement point (Figure 3). This signals have been replicated in a vibrational test rig, where the
same seats have been mounted and the same driver has sat on. New signals have been acquired
from SAE accelerometer pads placed on the cushion and on the backrest. The need for replicating
these signals is due to obtain the repeatibility, and a standardization of the test procedures.

214




PADS

ACCELEROMETERS

SHAKER

e

eental test rigs. Pressure mats (left) and vibrational shaker (right)

Driver scat

Steering wheel

Pedals

Pncumatic actuators at four wheels

Figure 3. Layout of the experimental multi-input tests

4. Experimental multi-input tests

The DAVID code can take directly accelerometers data files to simulate a multi-input
configurations The user can impose input at the seat (6 d.o.f), at steer wheel (4 d.o.f) and at
pedals (3 d.o.f)). The signals can be pre-processed by filtering. It is possible to run analysis directly
acquiring data from a four axis shaker experimental test rig on which a car has been placed. The
pneumatic actuators reproduce the track profiles and give vibrational inputs to the tires, and the
response signals at six accelerometers has been collected. The accelerometers, all with three axes
of sensitivity have been placed as shown in Figure 3 three between the seat and the chassis, one on
the steer column, one on the steer wheel, and one at the pedals.

5. Graphical User interface and 3-D Visualizer

The code DAVID is provided with a graphical user interface to simplify input phase. All the
window interfaces have been developed using Visual Fortran. Many dialogs contain figures and
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drawings that directly refer to model’s parameters. The user can select percentile of occupant
being simulated, parameters of posture, parameters for all spring — damper elements, kind of
occupant (driver or passenger), input type, analysis parameters (format of files, simulation time,
visualization steps) and external forces. Specific databases that contain information about
anthropometrics of the subjects and elastic characterizations of the seats have been implemented
in the model. The 3-D visualizer is an extemal code developed in Matlab language (Figure 1) that
can be run after every analysis. The human body is represented using simple geometrical shapes.
The visualizer is interlaced with the same percentile rescaling database of the DAVID code.

6. Comfort assessment and virtual perceiving

The comfort assessment is important to predict the effect provoked by vibrations on the human
body. Many car accidents happens because of tiredness, or disturbs to perception, that can be
avoided decreasing the level of transmitted vibration. Three aspects of vibration are fundamentals:
the exposure time, the amplitude and the frequency [5). The consequences of vibration exposure
are not simple: the perception of motion, the sensations it produces and the interference with
health and activities are all complex phenomena. Various standards for assessing whole-body
vibration have been promulgated. These standards attempt to define easy methods of quantifying
complex vibration conditions, nevertheless no simple standard can offer evaluation procedure
which can accurately predict all known effects of vibration on the body. However, to estimate
the comfort of car occupants, the authors have followed the method prompted by BS 6841 norm.
According to such norm the Vibration Dose Value VDV is defined as follows:

=T %
VDV:[ [a (t)dt} ©6)

1=0
where a,(1) is the frequency-weighted acceleration time-history and T is the period of time over
which vibration is measured. The evaluation of (6) requires the weighting of acceleration time
history, that can be approximated, as stated in the norm, with piecewise functions. To compute the
overall VDV the vibrational signals have to be measured at three points: seat cushion-body
interface, seat backrest-body interface and ground-feet interface. These time histories are then
frequency weighted and scaled with a factor variable from 0 to 1.0. For each weighted signals,
VDV are computed and then an overall VDV is computed using:

A
VDV=[ZVDV,) @)

7. Results

In this section some results obtained running DAViD simulation code are presented and
compared with those experimentally acquired. The simulated test is a multi-input one. The input
data have been automatically filtered with a pass-band filter at the beginning of the run. The
simulation time is 10 seconds. In Figure 4 are compared the FFT of the experimental and
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computed time histories of pelvis (vertical acceleration) and upper part (horizontal acceleration).
For the simulation we chose a driver belonging to 50 percentile, posed with the angle between
legs and thighs of 105 deg, the head inclination of 18 deg, the neck inclination of 8 deg, the angle
between the arms and the forearms of 42 deg, the pedals are at 20 deg.
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Figure 4. Comparison between computed and experimental FFTs
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1. Introduction

A space tether is a long cable used to connect spacecrafis to one another or to other bodies
(asteroids, space stations, boosters, etc.). One type of tether is the electrodynamic tether.
This kind of tether interacts with the Earth’s magnetic field producing a current in the tether
itself by Faraday effect. According to the sense of the current, a Lorentz force appears on
the tether, thrusting or dragging the motion of the system [1]. The stable position of an
object orbiting in space is with its axis of smallest moment of inertia pointed towards the
center of the Earth. This paper is a continuation of the work carried out by the authors
[2] on a prototype of the European Space Agency (ESA) galled SET (Short
Electrodynamic Tether). As opposed to described earlier, the SET should orbit with its
axis of smallest moment of inertia perpendicular to the plane of its orbit, see Figure 1.
The SET is composed of a central module from which two tethers extend, each
about 100 meters in length. Before extension, the tethers are stored in drums. A plasma
contactor can be found at the end of each tether. These contactors will be responsible
for the emission and absorption of the electrons in the plasma for the production of the
electric current mentioned earlier, [1]. Once extended, to maintain the operating
position, an angular velocity @, is applied to the SET around its axis of smallest

moment of inertia. In this way, if the SET were rigid, the configuration would remain
stable in the desired position by action of the gyroscopic pairs [3]. However, the SET is
not rigid. On the contrary, it is a very flexible system that, as a result of the storage and
extension of the tethers, will also not be perfectly rectilinear, see Figure 2. The system
is therefore likened to a dynamics problem of unbalanced rotors. According to the
literature on this subject [3], if the rotary system develops internal damping forces
(hysteresis), there is a running speed called the “onset speed of instability” or critical
velocity, above which the system becomes unstable. This onset speed of instability is
practically equal to the first natural frequency of the rotor. In the case of the SET, its
running speed ®,,, is much larger than its first natural frequency and there is internal

damping. According to what has been stated earlier, it follows that transversal
displacement of the contactor should grow without limits, making the SET unstable
from a structural point of view. In the seventies, Genin & Maybee came to prove that if
a non-linear model of internal damping and elastic forces is included in the equations
of motion, the system is stable for any running speed @ [4]. In view of this, there is
Justification for a more detailed study of the dynamics of the SET. As opposed to the
model carried out in [2], this study includes elastic and damping forces that retain
second order and superior terms. As can be seen in the following section, the SET is
modeled as a continuous system with a procedure belonging to multibody system
dynamics. This is also something new in the field of tether dynamics. Figure 2 shows
the model that has been solved, to which symmetry was applied with respect to the
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Figure 1. Orbit, orientation of the SET. ' Figure 2. Model of the tether.
orbit plane. The angular velocity of the SET around the Earth Q is much smaller than
®,,;,, SO that the axis fixed to the central module of the satellite can be considered

inertial. According to [2], the electromagnetic forces (drag force) are modeled as a
force distributed throughout the tether, which spins around it at velocity Q. A study of
this system may prove useful in future tether configurations that act in a similar way.

2. Modeling the problem; substructuring and natural coordinates

The problem to be solved will suffer large elastic displacements. Because of this, a
substructuring method [5] was used, (Figure 3). The system will be modeled using the
floating reference frame approach with natural coordinates as reference coordinates [6].
The use of this type of coordinates as coordinates of reference in a substructuring
scheme produces a simple model of the system. This way, the constraints between the
different substructures are automatically imposed and will not generate algebraic

constraint equations associated to the rigid connections [6].
Consider the i-th substructure of the n in which the SET is divided. The set of

coordinates {r,u,,v,,w,} defines the local axes that will be associated to the

substructure and that are necessary for its kinematic description. The set of coordinates
i ., Vi, Wiy} Will therefore be in excess [6]. The position of any given point is

r=r+A'F +1)) )

where vector Ef represents the position of that point in local axes in the undeformed

configuration and vector i} represents displacement due to deformation. The variables

with a bar are expressed in local axes. The rotation matrix is A'=[u, v, w,]. The
Rayleigh-Ritz method will be used in the discretization of the substructure. It should be
noted that variations of the natural coordinates in excess {Fy" W,V , Wy} Will

deform the substructure. Therefore, a Rayleigh-Ritz discretization with fixed
boundaries will be carried out. This discretization will have a series of static modes, as
well as dynamic modes with fixed boundaries (clamped-clamped beam) [6]. Thus,

ng ng
W=y o, + ) ¥ @
k=1 {=1
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Figure 3. Substructuring and natural coordinates of the tether
where n, and n, are the number of static and dynamic modes respectively; @, is a
3x1 vector that contains the static mode in the corresponding row, according to whether
displacement is produced in X, y o Z, -‘I—’, is a vector containing dynamic modes in
the same way, and n, and &, are the amplitudes of the static and dynamic modes
respectively. The vector of coordinates for the i-th substructure will therefore be

r
a=ln w v wonm .on & . g,d]’ 3)
The expression of the elastic forces [6] of a substructure is obtained from the vector
w=r+u,=fn, @, @] )
supposing that it behaves as an Euler-Bernoulli beam.

The inertia forces will be obtained using the co-rotational method proposed by
Géradin and Cardona, adapted to the use of natural coordinates in {7]. This is way to
obtain a much simpler expression of the inertia forces than by deriving expression (1).
Consider the i-th substructure of the SET, see Figure 3. If the substructure is divided in
p—1 finite elements, the following interpolation in velocities can be made

r=Nv o)
where v’ = [v'T oy v"T]r is the derivative with respect to the time of the

nodal displacements in global coordinates (i superscript removed for simplicity).

If a linear interpolation is considered for expression (5), there will be a good
approximation of the velocities of the body in relation to the velocity of the nodes.
Then, linear finite elements will be used. The following expression can be arrived at by
using expression (5) to obtain the kinetic energy of a substructure

r=y2.[5’idm=%v"mmv‘ (6)

where M, is the mass matrix that appears in the finite element method. Expression
of kinetic energy is very simple, but it is not expressed in relation to the coordinates of
the substructure q, see (3). It is necessary to find a relation between v" and q. The
following is reached by deriving (1) and equaling (5), particularizing at the nodes

v =k +Af, +T) )+ AU, = B(q) Q)
where i} is obtained particularizing expression (2) at the nodes. B(q) [7] is the

simple matrix that relates v’ and q. Thus, the kinetic energy is

T=Y,d"B My, Bd= ¥54"Mq @®)
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In (8), the kinetic energy is expressed in relation to q. There is an adequate
approximation to the inertia forces and a simple expression of the mass matrix has been
achieved. Furthermore, the expression of the quadratic velocity vector Q, will be

Q, = —BTMMEFB‘.] &)

where the calculation of B is quite simple [7].
The hysteretic damping of the material plays an essential role in the stability of the

system. It has been modeled as viscous damping which introduces the same
destabilizing effect as hysteretic damping [3]. Internal viscous damping was supposed

as proportional to modal mass and stiffness.
The vector of external forces associated to electromagnetic force (distributed force),

see Figure 2, will be obtained from the following expression
Q= [F" X (10
dq
where r is given by (1) and q by (3). F will be expressed in global axes as
_ F' =[Fcos(Qt) 0 Fsin(Qr)] (11)
Once the equations of the different substructures have been put together and the
pertinent constraints have been imposed, the resulting system of equations will be
M+ @2 =Q; ®(q.0)=0 12)
where M is the mass matrix of the complete system, q is the vector of coordinates in

the problem, @ are the constraints, and Q is a vector containing all the forces acting

on the system [6].
In order to solve the equations of motion, an index-3 Lagrangian method with mass-

orthogonal projections of the velocities and accelerations to their constraint manifolds
was used. This formulation is proposed by Bayo et al and revised in [7].

3. Results

Due to the difference between the frequencies associated to longitudinal and
transversal motions, the system of differential-algebraic equations is stiff. Without lost
of generality, a longitude of L =30m is used to integrate the system of equations (12).
This reduces the size of the problem and the time of computation. The section of the

tether, hollow and thin-walled, has the following properties: EI, =38 Nm®,

EI, =21Nm®, area A=4.16x10" m”. The tether is made of a copper-beryllium alloy
with the following properties [2): Young modulus E =132 GPa, Poisson ratio v=10.3,
and internal damping constant& = 0.05 . The plasma contactor, with a mass of 3 Kg.,
was modeled as a disk with a radius of 0.2 m and thickness of 0.01 m. The
electromagnetic force will be a distributed force with value F =40x10° N/m. The

tether is initially deformed with a displacement of the contactor about 0.1L. The
running speed will be applied in the central module. '

Following are the results obtained for in three cases: linear model n =1 ( n=number of
substructures) and non-linear models n=3 and n=6. The critical velocity of the
system will be close to its first natural bending frequency «, = 0.03rad /s. The

problem has been solved for subcritical @=0.02rad/s and supercritical
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Figure 4. Evolution of the contactor for sub and supercritical velocities

0=0.1rad / s velocities, starting from zero, gradually reaching the desired velocity in

10 seconds. Each substructure was divided into 10 finite elements to carry out the
approximation of the inertia forces (see (5)), and 6 dynamic modes were taken. This
case requires 36 (n=1), 108 (n =3) and 216 (n = 6 ) coordinates for the description of
the problem. This gives an idea of the size of the problem and how it grows with an
increase in the number of substructures.

Figure 4 shows the evolution of the contactor projected on global axes (see Figure 2)
for each of the cases analyzed. Figures 4a) and 4b), show how, for subcritical velocity,
the displacement developed by the contactor remains stable under the value of 8 m in
direction X (0.26L) and 10 m in direction Z (0.33L). This is the case for both the
linear model and the non-linear models. Figures 4c) and 4f) show how for the linear
model there is no shortening of the tether in direction Y, in spite of the fact that
displacement of the contactor is different from zero at all moments. This is because in
the linear model, the bending and tensile-compressive forces are uncoupled and there
are no forces to excite the axial modes. However, in the non-linear model, an increase
in the X-Z displacement of the contactor should translate into a decrease in the Y
displacement of the contactor. The effect produced by this coupling can be observed in

222




Figures 4a) and 4b) in ¢ =550s and ¢=1150s, where linear and non-linear solutions
are separated. Figures 4d), 4e), and 4f) represent the evolution of the contactor when
the SET is submitted to supercritical velocity. In the linear model, displacement grows
rapidly. When displacements are so large (14 m, large elastic displacements) that the
linear model is no longer valid, the integrator does not converge and it comes to a stop.
In any case, it is understood that the motion is not stable. On the other hand, motion
does remain stable in the non-linear model under the value of 5 m (0.16L) in direction
X and 3 m (0.1L) in direction Z. The non-linearities in elastic and internal damping
forces seem to stabilize the motion of the SET as predicted in [4].Figure 4 reveals the
influence of the number of substructures into which the tether is divided. Figures 4d)
and 4e) indicate how displacement for n=6 is slightly smaller than for n=3. The
larger the number of substructures, the larger the coupling between transversal and
longitudinal displacements, so that non-linear behavior of the system is simulated with
greater precision. This explains why displacement for n=6 is smaller than for n=3.
Moreover, for n=3 displacement is slowly destabilized; this does not occur for n = 6.
The solution for n=6 was considered definite, as it practically coincides with

solutions found for n> 6.

4. Conclusions and future projects

This paper carried out a non-linear model of the SET in elastic and internal
damping forces. The solutions obtained suggest a stable behavior of the system, both at
supercritical and subcritical velocities. In any case, an in-depth study of the stability of
the system in order to determine the values of the parameters that characterize the
movements of the SET for which the system behaves in a stable manner is justified.
Once these areas of stability are known it will be much easier to work with the SET,
since prior knowledge of the behavior of the system will be helpful for the analyst.
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SOME ASPECTS OF FINITE ELEMENT ANALYSIS OF FLEXIBLE MULTI-
BODIES SYSTEMS
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1. Introduction

In many cases when a study of a multi-bodies system is perform, the basic hypothesis
used is that all elements are rigid. In reality the elasticity of the components can be large
enough so that the dynamic response can be not only quantitative but also qualitative
different. For this reason, in some applications, particularly in the field of robotics and
high-speed vehicles, is necessary to consider the elasticity of elements and to use
correspondent models. Generally, the multi-bodies systems have a great complexity and
a strong non-linearity. To study such systems with the classic mechanics theorems is not
a practical task because the motion equations have, generally, no analytical solutions.
For this reason is necessary to use numerical methods and the finite element methods
(FEM) remains one of the most important tools [1]-[4],(6]-[8],[91.[12].

The major difficulty using FEM is the non-linearity of the motion equations. The
coefficients that appears in equations are position (time) dependent and, in some
practical application (mechanisms with a periodical motion) they can be period. To solve
this problem the motion must be considered “frozen” for a very short interval of time. In
this case the obtained equations can be considered linear.

It exists two difficult and major problems when is used finite element method: one
consist in the fact that the equations contain more terms as in the classical procedures
and the second is that the equations are only incremental valid, for a very short time
interval; after this interval must generate new coefficient for the motions equations and
the solutions previously obtained are the initial conditions for the new equations.

In the paper are established the incremental motion equations for a general multi-
bodies system with elastic elements being in a three-dimensional motion and are
analyzed the problems involved using FEM procedures.

2. Motion Equations
In the following we will establish the motion equations for an elastic finite element with
a general motion together with an element of the system. The type of the shape function

is determined by the type of the finite element. For this reason we will present the
motion equations in three different situations: for a three-dimensional finite element with
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a general three-dimensional motion, for a two-dimensional finite element with a plane
motion and for an one-dimensional element with a general three-dimensional motion.
We will consider that the small deformations will not affect the general, rigid motion of
the system.

We consider that, for the all elements of the system we know the field of the
velocities and of the accelerations. We refer the finite element to the local coordinate
system Oxyz, mobile, and having a general motion with the part of system considered

(fig.1). We note with v (X,,, D,Z ) the velocity and with a (Xo, a,Z ) the

acceleration of the origin of the local coordinate system. The motion of the whole system
is refer to the general coordinate system O’XYZ. By [ R ]is denoted the rotation matrix.

AZ

v

Figure 1. Finite element in a three-dimensional motion

We note by {r'} the position vector MM’ with the components in the general coordinate
system O’XYZ. The point M has a displacement { f } and become M’:

)=o)+ [RK}+ () )
where {rM.} is the position vector of point M’ with the components express in the global
reference system. The continuous displacement field { f(x,p,2, t)} is approximated, in

FEM, by:
{r}=Ney.2f6.0) @
where the elements of matrix [N] (the shape functions), are determined by the type of the

finite element choose.
T he ve1001ty of Tomt M’ will be:

o [kl + (=) [R17 = )+ o)+ e, o RIV DG, )

The kinetic energy of the finite element considered is:

=L [ty =1 [ ploned B @

The relations between strains and finite deformations are { } [a]{r } where [a] is
a differentiation operator and the deformation energy is:
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T
E, =% [ .} kYo Jav (56)
where [k,_,] is the rigidity matrix for the e element:
T
[ke]= [IN] [a] [T [aW}v . )
If we not with {p} = {p(x, ¥, z)} the distributed forces vector, the external work of
these is:
T
w= [} v =( [ o Vv )., Q
and the nodal forces { e} produce an external work:
we={g.} 6.} ®)
The Lagrangean for the considered element is obtain with the relation:
L=E -E,+W+WF* %)

If we apply the Lagrange’s equations after some algebraic operations we obtain
the motion equations for a single finite element under the form:

([T Wloav Yo b2 [ INT IRF [elwloav Y. }+
+(le)+ (VT [R] [RINW)

=fa.}+ [Wlpav - ( L[N]fpcw) MR /ey o)
With the notations:
{mu}=“N(f)]TdeV ; “N(:) ypdv; {m, J.,[N(x)]ZPdV ;

[my]=_[N<i>N(Tf)PdV ; {‘1} ﬂN] L
[me]-—-[ml.h[mnh[m ;i) L[Nﬂolnl{r}pdv
@)1= [V laIvloar 5 [k (e)]= [ ] [ELvloav
ko) [T laleIvloar 5 bi(e)= [(WF (e )oar

it result the motion equations for the finite element analyzed, where Q represent the

angular velocity and E the angular acceleration with the components in the local
coordinate system:

[ J6 1+ 2le. 6. 1+ (b J+ B () e 22 s, ) =
={g.}+ }{q E)}- (02 ) bt JRY ;) an
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These motion equations are referred to the local coordinate system and the nodal
displacement vector {56} and the nodal force vector { e}+ {q:} are express in the same
coordinate system. The motion equations are true for the instantaneous position of the
system. We consider that the system is ,frozen” for the moment considered. The
expression (12) contain some remarkable terms:

o 2, ]{5‘8} - represent the accelerations of Coriolis type and the cause of these is the

relative velocity {Je} of the nodal coordinates;

. [ke (E)]+ [ke (QZ)J - modify the stiffness matrix and the cause are the relative motion

express by the angular velocity and angular acceleration,
. {4; (E)}+ {quQz)} - represent the inertia effects due to the rotation of the local

coordinate system;
. [m:;e IR ]T {'r'o} - represent the inertia effects due to the translation of the finite
element.

When the two-dimensional finite element is in a plane motion, if we use the same
procedures, we obtain the motion e?;ations for this case:

b 6+ 2le. 6. b+ (k. ]+ elk. ]- 02 [m, o, =
o)+l @) b)) JRT ) (12)

In the case of a one-dimensional finite element, there exists some special forms for
the deformation energy. We must take into account that the second order effects make
more stiff the element, when this perform a motion with a high speed. Finally we can
obtain for this situation the motion ecﬁlations:

[ 15, 2l J6. )+ (e o e )1+ e )+ 2 D} =
-+ bbb e r ) 09
where matrix lkeG ] take into account the second order effects and the term  |my, II ]{E }

describe the influence of the rotation inertia. The shape functions will determine the
final form of the matrix considered in these equations.

3. Assembling Procedures and Liaison Forces Eliminating

3.1. KINEMATICS

In the following the authors present an analytic method to justify the assembling
methods used for this type of systems. The unknowns in the elasto-dynamic analysis of a
mechanical system with liaisons are the nodal displacements and the liaison forces. By
assembling the motion equations written for each finite element we try to eliminate the
liaisons forces and the motion equations will contain only nodal displacements as
unknowns. The liaison between finite elements are realized by the nodes where the
displacements can be equal or can exists other type of functional relations between these.
When two finite elements belong to two different elements (bodies) the liaison realized
by node can imply relations more complicated between nodal displacement and their
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derivatives. Generally, the relations between the first order derivative of the nodal
displacements can be expressed by the linear formulas:

=14k} (14)

where by {A}we have noted the nodal displacement vector and by {q} the nodal
independent displacements. By differentiation (14i{ we obtain:

(&)= (ko) + [afa) (15)
The transformation relations between the displacements expressed in the global fix
coordinate system {Ae}and the displacements expressed in the local mobile coordinate

system {52} are:

{a.}=[rJo.) (16)

where index e denote the e-th element.
3.2. DYNAMIC SYSTEM DESCRIPTION

For a single finite element that belong to an elastic component of the system that has a
general three-dimensional rigid motion with the angular velocity @ and the angular

acceleration £ (or Q and E in the mobile coordinate system) we consider the motion
equations obtained by the relation (11). For the other cases the procedures are the same.

The equations are expressed in the local mobile reference system. If we write these
equations in the global fix coordinate system, they keep there form:

prfa e 2le b, b+ (ke k@) K, 07 o) -
=)+~ @)l o2)- [ frT ) a7)

We will note in the following:

{0, ymertia _ _{Qie (E)}-— {Qie(Qz)}__ [Mioe IR]T i)
and we can obtain finally the motion equations for the whole structure, referred to the
global coordinate system, under the form:

[a}a}+ 2fcKal+ (x]+ [k )]+ [k 02 o) = {0} + {0 ) + o) + fo)memie 15y

If we take into account the relations (18) and (20 ) we can write:
] delad+[afah +olclalale (il (ke)+ o) at) =
- {Q}exl + {Q-}exl + {Q}Ieg + {Q}inertie (19)
3.3. WORK OF LIAISON FORCES

It can be shown [10], [11] that the work of the liaison forces for system can be written:

d= (] (o} ar = )T [4T ()= a Q1)

But the work due to the liaison forces is null for an ideal system [5], [14] and the
independence of the nodal coordinates q offer the relation:

[4] {0} =0 (22)

that is the basic relation in the following.
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3.4. MOTION EQUATIONS ASSEMBLING

We consider relation (19) and we pre-multiply this with [A]T . It result:
(AT DLk} QD Ll 2TV T (Do [ il -
_ [A]T {Q}axl +[A]T {Q* }w + [A]T {Q}Ieg + [A]T ({Q‘ }leg 4 {Q}inertie) 23)

If we take into account the relation (22) the liaison forces (the nodal forces) vanish and it
result a system of equations without liaison forces and the unknown are only the nodal
displacements. This result justify the assembling methods used in the case of the
mechanical systems with liaisons analyzed via finite element method.

(4] T4l + (AT [ 2cTablo+ [aF (x1+ [k )]+ [x{o? allg} =
_ [A]T {Q}m +[A]T {Q*}m +[A]T {Q}inertia 24)

The system of differential equations obtained is nonlinear, the matrix of the left
term depending on the configuration of the multi-body system. These equations contain
the “rigid motion” of the system and for these they have one or more singularities. To
solve the equations the rigid motion must be eliminated.
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1. Introduction

Researches into human gait have a wide range of applications in medicine, ergonomics,
sport science and technology. Most often methods of multibody dynamics are used
when investigation is focused on mechanical aspects of the gait (1], [2], [15]), [17].

The inverse dynamics approach is commonly adopted in a human gait analysis.
Displacements of the human body segments and ground reaction forces are known from
measurements. The joint reaction forces and muscle net torques (which cannot be
measured directly) are calculated. Since the ground reaction forces are known it is not
necessary to model the foot-ground contact. The inverse dynamics approach requires
measured displacements to be differentiated twice in order to obtain accelerations. The
choice of filtering and smoothening methods affects significantly the obtained results
[1], [16]. The errors in alignment of ground reaction force and foot affect the results as
well [9].

In this paper a direct dynamics approach to the human gait analysis is presented. The
direct dynamics approach is usually taken when a walking machine with its control
system is investigated. It is seldom used to human gait simulation.

In the presented model the measurements of displacements of the human body segments
are treated as a gait patterns (i.e. the patterns of relative motion in joints). The net
torques (generated in the way that enables realisation of the gait patterns) are applied to
a mechanical system and the direct problem of dynamics is solved. The foot-ground
contact is modelled. For the gait stabilisation a simple closed loop control algorithm is
introduced into the simulational model.

Though the method presented here is more complicated than the traditional one, there
are some advantages. It is possible to predict system behaviour, whereas inverse
dynamics approach is restrained to reconstruction only. Moreover, since accelerations
are calculated, there is no need to differentiate measured displacements twice. Ground
reaction forces as well as feet positions are calculated, so the alignment of foot position
with reaction force is no longer a problem. And finally, the simulation is not limited by
the number of measured gait cycles (usually one or two), since gait patterns can be
extrapolated.
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. MAX(0,-kd,—cv)) d, <0
o 0 d, >0

where:

== d, -z coordinate of the point of force application,
= : _

v, -z component of velocity (v, =d.),

k - stiffness,
= ¢ - damping.

Damping ¢ is a non-linear function of ground penetration
pz (p. = MAX[0, —d,]):

3 . 2 3
c= cmax(;l?pz —sz) p, < h

i S—

N

o

Figure 2. Ground reaction forces
acting on foot. Cronx P. zh
a) side view, bytopview.  where: h, cmax - constant values.

A number of test simulations was performed in order to choose proper values of
stiffness k of the foot in shoe and proper values of damping parameters / and Cpar. The
ground penetration p, corresponds to the deflection of foot and shoe during walking.
The maximum value of p, observed during simulation was equal to 2 cm, which agrees
well with experimental data [7]. The chosen level of damping is high enough to prevent
the foot from “bouncing” after hitting the ground, which also agrees with experiments.
The choice of parameters &, cyqx and 4 is not crucial — it was proved that after the 20%
change of the value the model behaviour has remained almost unchanged.
The tangent reaction force 7T is represented in terms of a

pseudo-Coulomb friction model (in this model of friction .~ F F.
there is no stiction, i.e. the bodies are moving relative each f N
other at a negligibly small velocity). At the beginning i"s . X
velocity of sliding is calculated: Ground surface >
v, =V, + v, a) . :
where: v
vx - x component of velocity of sliding,
vy - y component of velocity. v v
Then a modulus of friction force is calculated: .y .
- TErl b)i e
where: p'- non-constant friction coefficient. e F o
The dependence of 2’ on v, is given by: Figure 3.Force and velocity:
' 2 XB. a) side view, b) top view.
H=H" arctg 2
where: ' [-]
p - Coulomb friction coefficient (constant value), K
A - constant value. (ﬁ """"" Coulomb model

A=1/100  [mfs]
A=1/1000  [m/s]
A=1/10000 [ms]

Finally, the tangent force components are calculated:

F=-T—2 | F =-T—2
x Vp +s > y Vp te 0 Vp [m/sL
0 0.1 02
where: € - small constant value. Figure 4. Friction coefficient

dependency on the relative velocity.
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2. Multibody Model
2.1. BACKGROUND

There exist various methods for modelling bipedal walking. Some multibody models for
the gait simulation represent bipeds of a very simple (not anthropomorphic) kinematic
structure [3]. Other models are limited to two dimensions [8], [11], [12], [18].

Walking is a special kind of the multibody system motion with the occurrence of
impacts, friction and slipping. All these phenomena observed during the foot-ground
contact have to be introduced into the model to make it realistic. In some multibody
models of the biped the foot-ground contact is modelled by the additional kinematic
Joint [10], [12] or temporal fixing of the supporting foot to the ground [3]. Different
models are used for single and double support phases. In this type of models the
non-slip and non-impact conditions are assumed.

There is another group of models, in which the forces between foot and ground are
modelled in a more realistic way [5], [6], [7], [18], [19]. Control of the model of this
type is more difficult, since the control system must prevent the biped from slipping and
the biped must absorb the shocks caused by impacts.

The model presented here is three-dimensional and reflects the kinematic structure and
mass properties of the human locomotion apparatus. Both the slips and impacts are
taken into consideration.

2.2. KINEMATICAL AND MASS PROPERTIES

The model and its kinematic scheme is presented in the Fig. 1. The model consists of 8
rigid parts. For the sake of simplicity, the trunk is modelled as two parts connected by
revolute joint. The inertia properties of head and arms are included in trunk properties.
Lower parts of human body are modelled 5

more realistically. Each leg consists of 3 l“PPW trunk
parts: thigh, shank and foot. Each hip joint i

is modelled as three consecutive revolute h‘P‘i‘\’]Emier trunk
joints. These three joints are kinematically R
equivalent to a spherical joint. Each knee
and each ankle joint is modelled as two
consecutive revolute joints. The modelled
biped has 21 degrees of freedom. To
account for elasticity of human tissues, so-
called wobbling masses are introduced to

l_[he model (11‘1 this case number of DOF F1~g;|;c~l'l'hcgeneralwcwand kinematic scheme.
increases to 46).

2.3. GROUND REACTION FORCES

The impact and friction effects are considered in the ground reaction forces modelling.
The ground is represented by a flat rigid surface. A set of 5 force vectors acting on each
foot is used to model ground reaction forces. Fig. 2 presents points of force application.
Normal to the ground (ground surface coincides with xy plane of global coordinate
system) reaction force F, is modelled using following function:
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3. Control System
3.1. GAIT PATTERNS

Parameters characterising walk of the subject person were measured. A two-camera
system was used to cinematographically measure trajectories of selected points of
human body. The relative angles in each joint were calculated from the measurement
results. The linear and angular parameters of absolute motion of the lower trunk were
also calculated. The measured results were discrete. For the simulation purposes,
however, a continuous and periodical function (periodical function can be easily
extrapolated) is needed, which was obtained by approximating data by the appropriate
Fourier series. These functions are called ‘gait patterns’. During approximation process
periodicity and symmetry of the gait were assumed.

3.2. DRIVING TORQUES

For the direct dynamics simulation all joints were equipped with actuators. The torque
M generated by the actuator located in a joint was a function of: the current value of the
joint angle @ and the desired joint angle value @, given by the gait patterns:

M = (@, — @) +V(P, — P)
where: k, v - constants.
This formulation of the torque equation (proposed earlier in [14]) ensures that the
realised relative angle is close to the angle given by the gait pattern. The actuator can be
treated as a motion generator (that strictly realises the gait pattern) connected in series
with a spring-damper element. This spring-damper element is necessary to obtain a
proper response to impacts (the system reaction to the impact is incorporated in the gait
pattern, however heel strike occurs usually not exactly at the moment prescribed by the
gait pattern - the system responses to the impact too early or too late).
Due to both the measurement inaccuracy and additional operations (making it
symmetric and periodical) the gait pattern suffers from relatively big errors. When gait
patterns for joints are precisely realised the absolute motion of the trunk is left
uncontrolled. If the biped started to fall the control system would not react. The only
way to control the absolute motion of the trunk is to apply a control algorithm, which
instantaneously modifies the prescribed joint motions to prevent the biped from loosing
its stability.
3.3. CONTROL ALGORITHMS

When the torques applied in joints depended only on current and desired value of the
joint angle the relative positions of biped links with respect to each other were
controlled, but the position of the whole biped with respect to the ground was not
controlled. Therefore an additional external force and torque which supports the trunk
was introduced.

The concept of external force was helpful in the process of control algorithm synthesis.
The proposed control algorithm is a heuristic one. It consists in incorporating some
feedback information, i.e. some quantities dependent on the current position and
orientation of the biped trunk (with respect to the ground) into the function defining the
torques in selected joints. '

The method for the control algorithm construction will be detailed considering a simple
algorithm for the trunk yaw angle stabilisation.
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Firstly, the component of the supporting torque that corresponds to the yaw angle was
set to zero. The remaining components of the supporting force and torque remained
unchanged. Then the gait simulation was performed. Animation showed that after a few
steps the biped turned about yaw axis and then fell over. It was not surprising, since the
yaw angle was not controlled. The heuristic method proposed in this case consisted in
introducing some changes into the torques that drive left and right hip joints (each hip
joint consists of three consecutive revolute joints: a, o, and o). These changes were
made in order to prevent the biped trunk from not controlled turning about the yaw axis.
The functions defining torques in o, and a3 joints were modified:

M, =x (o, -a,+sina,A)+v (G, —4,) {6 (6, —6) support phase
F’ —_

M, =x (0 —0; —cosayA, )+ (G, ~aLy) 0 swing phase

where: 8o, 6 - yaw angle given by the gait pattern and the current yaw angle, respectively
In the next few simulations of the biped gait the appropriate (i.e. leading to a stable gait)
value of J constant was chosen.

Similar procedures (the yaw angle stabilisation algorithm is one of the simplest) were
used for the other components of the supporting force and torque. As a result a stable
gait without the additional external supporting force was achieved. The stable walking is
a result of cooperation of several algorithms. The movement realised by the biped is
slightly different from that given by the gait patterns. These differences are necessary for
stabilisation of the gait. The utilised control algorithms are rather simple, nevertheless
they enable the biped to walk.

4. Simulation Results

During simulations the integration procedures were changed to ensure that simulation
results remained unchanged. The multibody model behaviour sensitivity to the control
algorithm and the model parameters was
checked. It was shown that positioning of the
three-component force objects on the feet
exerts the strongest influence on the model
behaviour. 600
In the direct dynamics approach the ground 400
reaction forces are computed (they do not
play the role of input data). Comparison of 0 .
the measured ground reaction forces with the 0 0.5 1 "
calculated ones was used to validate the  o.3%Hip flexion [rad)
model. The comparison is illustrated in Fig. ﬂ'g:ﬁg‘{;ﬁm
Sa. The calculated and the measured results
are similar, however there are some
differences. These differences are caused
mostly by the fact that foot is modelled as 05
one rigid body and a contact between foot .07 . - - t[:]
) . 18 18.5 19 19.5 20
and ground 1s reduced to five points On]y' To Figure 5. Calculated and measured results:

obtain better results the model of foot and a) vertical ground reaction forces,
b) right hip flexion angle.

1000 4 Force [N]

800 |

-0.1
-0.3
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the model of contact should be made more sophisticated. Approximations of measured
walk parameters by periodical and symmetric gait patterns is another reason for
differences - simulated ground reaction forces are much more regular, than measured
ones. Simplifications made during the modelling process are also factors in obtained

differences.
The observed differences between measured and simulated data are less than 15% of

maximal values, which is a decent result when biomechanical calculations are

considered.
The control algorithms introduce some differences between the simulated motion and

prescribed gait patterns (see Fig. 5b). These differences are relatively small, however big
enough to maintain the biped stability.
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SOME RESULTS OF WHEEL-RAIL CONTACT MODELING'

V.N. YAZYKOV
Bryansk State Technical University
Bulv. im. 50-letiya Oktyabrya, 7, 241035, Bryansk, Russia

1. Introduction

Research of railway vehicle dynamics by means of mathematical models is the neces-
sary stage for providing the vehicles with improved characteristics. Many problems
such as dynamic stability, computation of wheel wear and others can be successfully
solved by using a computer-aided multibody model of the vehicle. Significant part of
the model is the description of forces at contact between wheel and rail. Computation of
these forces is one of the most CPU time-consuming operations during the simulation
process. Mathematical models of the contact forces often lead to stiff equations of mo-
tion because of high contact stiffness. In this paper an approximate non-stiff method for
computing the non-elliptical contact problem and some results of its implementation are
presented.

2. Model of rail-wheel contact forces
2.1. APPROXIMATE SOLUTION OF THE NORMAL PROBLEM

The simplest way to solve normal contact problem is to replace the real shapes of bodies
at contact with quadratic surfaces and then use the Hertzian solution. Though this
method is very fast, actually the contact patch is often far from elliptical and it is neces-
sary to use more exact methods than the Hertzian solution (e.g. for conformal contact or
computation of evolution of a wheel profile due to wear). The corresponding algorithm
must be fast to be successfully used in simulation of multibody system dynamics.

The method by Kik and Piotrowski [1] for calculation of normal load and distribu-
tion of normal pressure is quite fast. But in our opinion the contact force model, in
which the forces depend on interpenetration of contacting bodies, leads to stiff equa-
tions of motion. We modified the method by Kik and Piotrowski to decrease the stiff-
ness of the equations. The parabolic distribution of the normal pressure in the direction
of rolling instead of elliptic one was also used to decrease calculation efforts.

* Supported by the Russian Foundation for Basic Research under the grants 02 -01-00364 and by the sci-
entific program “Universities of Russia — Basic Research” (UR.04.01.046).
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According to paper [1] the approximate contact patch is defined in the following
way. The wheel and the rail are considered as a body of revolution and a cylindrical
surface, respectively. The surfaces are interpenetrated in a depth S as rigid bodies,
Figure 1. The function u(x,y) specifies the interpenetration of the surfaces at the point

(x,y). It satisfies the equation
2

x
u(x,y)=6-2(x,), 2(x,) =—2§+h(y)’ (1)
where z(x,y) is the function, which specifies the distance between the points for 6§ =0,

R is the wheel radius at the contact point.
Ay

A b,
wheel
a

v

b,

Rolling direction
e ————

Figure 1. Wheel-rail contact. Figure 2. Contact patch.

Edge of an approximate contact patch is determined as a line of intersection of the

surfaces, Figure 2. ,
The dependence of the intersection line on the lateral coordinate is

aly,8)=2R(E - h(Y)) . 2)
The roots b; of the equation
5=h(y) ©)
determine the length of the patch along the lateral axes.
The number of separate zones of contact is equal to half of the number of roots of
equation (3).
The materials of the wheel and the rail are considered to be identical. Assuming that
the bodies at contact are half-spaces, the value of & can be estimated. The deflection at
point (0,0) can be found with the help of the Boussinesq's influence function as

2
o00)= 12 [y @)

nE \/72 2

Cax"+Yy
where p(x,y) is the distribution of normal pressure. According to the assumption about

materials, the wheel and rail deflections at contacting points are equal, S0 6 =2w(0,0) .

But in the reality the bodies at contact cannot interpenetrate and deflections occur, so
the interpenetration region enclosures the contact patch if the influence function is uni-
directional. Granting this fact the bodies are interpenetrated in depth dp < S (Kik and

Piotrowski recommend to take the value of &, equal to 0.556 for the elliptic distribu-
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tion in the direction of rolling).

We used the assumption about proportionality between the normal pressure p(x, y)
and function of interpenetration u(x, y)instead of the half-elliptic distribution of the
pressure in the rolling direction [1]. It leads to decreasing the calculation efforts by re-

ducing the double integrals to single ones, though such distribution is less accurate.
So the distribution of the normal pressure is

p(x,y) =kpu(x,y), )
where k, is a proportionality factor.

It is supposed, that the normal force N at the contact point is available from solu-
tion of the dynamic equations. The interpenetration of the bodies is used only to calcu-
late the normal pressure distribution and contact patch and neglected in the dynamic
equations. Thus, the normal force depends on the vertical and lateral stiffness of the rail-
track system and this model is not stiff.

Using (1) - (5) the interpenetration in the case of single zone in the contact patch is

- 2k jfa__z_h(y)dd
r—— xdy=
(6)

2 b 2 /2 2
yhd kpbjl (5—h@)+i’—R}1 i”—% —%1/a2+y2 dy.

5=20(0,0)=2

The normal contact force is calculated as

b 3
N= Hp(xy)dxdy Hk u(x,y)dxdy = k 2][&1 h(y)a——R-]dy, (7

b
Using (6), (7) we obtain the followmg nonlinear equation:
by a3
| [é'a h(y)a - — ]dy
__0onE b OR @)
20-v?) & 2 [2. 2
h 4R Iyl 4RV

The solution of (8) is the interpenetration & . Taking into account that 0y <J, we

found the approximate contact patch and distribution of normal pressure. Though the
process of solution is iterative, the convergence of solution requires small number of
iterations if start & values are taken from the previous integration step. The method was
tested on computer-aided model of the railcar AS-4, which was realized in the program
package "Universal Mechanism". The interpenetrations and the number of iterations
necessary for solving the normal contact problem are represented in Figure 3. The mean
number of iterations required for the vehicle simulation in an even curve is 1. 71, in an
uneven curve 2.63.
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Figure 3. Simulation results (left — even curve, right — uneven curve).

2.2. CALCULATION OF TANGENTIAL FORCES

The most of the tangential force models (so-called creep forces in railway dynamics) are
based on the assumption that these forces depend on the creepage (&, is the longitudi-

nal creepage, &), is the lateral creepage) and the spin ¢ :

w
vy Vy o _on

NS TS S
Sx V,éy o 9=

where 7", Vyw are the corresponding projections of velocities of wheel as a rigid body

at contact point, w,; is the projection of wheel rotational velocity onto normal to the

tangential plane, ¥ is the vehicle velocity.
We used the FASTSIM algorithm [2, 3] to calculate the creep forces at the contact.
The tangential pressure was found from system of equations

{aqx/ax =& -p)L
og, Jox =€, + ) L,

where ¢,,q, —the components of the tangential pressure, L — flexibility.
X1y
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Figure 4. Simulation results for even curve.

Creep forces, kN
80 4 -
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40 |

Figure 5. Simulation results for uneven curve.

The obtained values of pressure g are tested for satisfying the Coulomb's law. The

contact patch and the distribution of normal pressure were computed by using the
method described in Section 2.1.

To determine the value of flexibility L we calculated an equivalent ellipse such that
the area of non-elliptic contact patch is equal to the area of the ellipse [4]. The semi-axis
of the ellipse in the rolling direction a is set equal to the maximal half-length of the
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non-elliptical patch. The lateral semi-axis of the equivalent ellipse can be found from
the equation

na

where 4, is the area of the non-elliptical contact patch.
Figures 4, 5 show calculated creep forces for the simulation of tested vehicle in a
curve.
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Abstract

For the stress and durability analysis of vehicle components with computer simulation, it is necessary to find
forces acting on the vehicle components due to the road profile undulation. In this study, road profiles are
regenerated to preserve the same PSD of wheel responses with a linear tire model. The frequency response
function between road and wheel, the digital signal processing method, and DADS program are used. Simulation
results of load transfer at suspension components using this virtual road profiles are presented.

1. Introduction

For the analysis of stress and vibration of vehicle components moving on the road,
experimental or analytical method can be used. In the experimental method, Belgian road or
cross country road are commonly used as road inputs for durability test. Since the
experimental methods generally require high cost and considerable time, computer simulation
method is usually employed for the analysis of reaction forces, vibrations, and durability. In
the computer simulation, however, it is difficult to assign load conditions and boundary
conditions properly. Boundary load conditions for the stress or vibration analysis are
sometimes assumed as the forces on the wheel during braking or bumping,

Liu and Haug[1,2] used the computer simulation methods for fatigue life estimation of
machine components. Baek[3,4] suggested the dynamic load history, which is calculated by
flexible multibody dynamic analysis, for fatigue analysis. In previous researches on road
profiles, most of their results were focused on the statistical road profile[5,6,7]. Thus, the
wheel response due to the road input was different from actual response. If it is possible to
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calculate the same PSD and time signal responses as experimental results, force boundary
conditions for the analysis could be accurately imposed. In this paper, a new method is
suggested to match the load conditions at the suspension by regenerating road profiles. The
tire model and road profile are modified preserving the same PSD of wheel movements as
experimental ones by the digital signal processing technique.

2. Process for Road Profile Regeneration

If it is assumed to be a linear system between road and tire, road profiles could be reproduced
by PSD(Power Spectral Density) of wheel acceleration and FRF(Frequency Response
Function) between road input and wheel acceleration. A vehicle is modeled as a MIMO
(multi input multi output) system, in which the outputs represent acceleration, velocity and
displacement of the vehicle due to the road input. PSD value from the experiment is assigned
as an objective function, and the PSD from computer simulation is modified to be matched
the experimental one.

2.1. GENERAL PROCEDURE

The general procedures for road profile regeneration are;
1) Measure the acceleration PSD of the wheel center from experiment.
2) Calculate FRF of the vehicle model from computer simulation.
3) Define PSD of the initial road profile for dynamic simulation.
4) Carry out dynamic simulation with the initial road profile.
5) Compare PSDs from experiment and computer simulation, and define an error function.
6) If the magnitude of the error is small enough to accept, then stop.
7) If not, create a modified road profile by IFRF & IFFT.
8) Carry out dynamic simulation with the modified road profile, and return to step 4.

2.2. EXPLANATION OF EACH PROCESS

2.1.1. Measure acceleration PSD of the wheel center

For a precise modeling, suspension stiffness and geometry data in quasi-static condition are
usually measured from the suspension parameter measuring device(SPMD). The acceleration
PSDs of the wheel center are also measured from the experiment, and are used as an
objective function to be matched in the computer simulation.

2.1.2. FRF between road profile and wheel acceleration

For the computer simulation, a computational vehicle model is developed with the DADS
program in this research. Model validation in dynamic response can be done by comparison
between test results and simulation ones. Frequency range for model validation is set as 20Hz
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in this research, which is usual in the validation of a suspension. To obtain FRF between road
profile input and wheel acceleration, a white noise signal is applied as a road input.

X(f)=AX, =M S x, exp[%v”—’fﬁ] )
n=0

Auto spectral density(ASD) of road profile, cross-spectral density(CSD) between road profile
and wheel response, and a FRF matrix between wheel and road are calculated as the
following equations.

N (2)
G.(f)= ,,NA ZI (ﬁ)] 1
CSD a)
.)(fo- LX) YU k:o,l..g
FRF ) o,)m_ oy @
H(f)————Gu(f)-]ll(fﬂ 800

where n, and ¢(f) are data sampling frame and phase of FRF, respectively.

Since the interesting frequency is within 20Hz, the sampling frequency is set as 100Hz to
avoid numerical errors at the boundary. The 1024 data are sampled in each frame. Figure 1
and Figure 2 shows the auto-spectral density of initial road profile and wheel acceleration,

respectively. Figure 3 shows cross-spectral density of the wheel acceleration and road input.
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Figure 1. Auto-spectral density of initial road profile ~ Figure 2. Auto-spectral density of wheel acceleration

In a passenger car, 4-wheel road inputs may generate a 4x4 FRF matrix. If a suspension
system is independent type, the diagonal terms of FRF matrix are dominant. Then, the FRF
can be obtained from one suspension. Figure 4 shows the frequency response function of
road input and wheel acceleration response.
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Figure 3. Cross-spectral density of wheel Figure 4. Frequency response function of road
acceleration and road input input and wheel acceleration

2.1.3. Initial Road Profile
To make the first iteration in computer simulation, PSD of the initial road profile should be

imposed. In this paper, the initial road profile is assumed to be a white noise as following;

PSD of initial road profile: ¢_( ry= 2_ (5)

z fN
where a, V, f, and n are road roughness, vehicle velocity, frequency and exponent,
respectively. Using this road profile PSD, time signal of the initial road profile is made for

dynamic analysis. Figure 4 shows the auto-spectral density of the initial road profile.

2.1.4. Dynamic simulation with initial road profile
Dynamic analysis is carried out with the initial road profile using DADS program. From the
dynamic simulation result, wheel acceleration data are obtained and processed to find the

PSD.

2.1.5. Error Function
Comparing the computed PSD with the measured one, error functions are defined at each

frequency.

Error function: E(f)= PSDtest — PSDsimulation 6)

2.1.6. Regeneration of Road Profile
Correct response finction is defined by the error function and response function of previous

iteration step.
Corrected response: P(f), = PSD,, + E(f), GAIN @)

The wheel accelerations within the prescribed frequency range are measured at the same time.
Value of the GAIN is set between 0.5 and 1.0 to avoid overdriving and divergence of wheel
response. Using the corrected function and the FRF of wheel-road input, make the next

modified driving file as;
Modified road profile : p(r), = H'(f)- P(/),+ D)y ®
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Although many nonlinear components are included in a suspension system, vertical stiffness
of tire is almost constant when the tire is in contact with the ground. Therefore, tire and road
profile system can be assumed as linear.

2.1.7. Convergence of error function

At each iteration step, the modified road input driving file is linked to DADS suspension
model. Performing a data processing, the PSD of wheel response is calculated and compared
with the desired PSD. For the convergence of error function, create a modified road profile
D(f) and analyze the suspension model repeatedly until the error function is converged within
the desired range. Figure 5 and Figure 6 show the road profile and vertical acceleration of
wheel after the first iteration. These graphs show that there are large deviations from the
original road profile.
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Figure 5. Road profile after the first iteration ~ Figure 6. Vertical acceleration of wheel after the first iteration

After the second iteration, the deviations in the road profile and vertical acceleration are
much decreased as shown in Figure 7 and Figure 8.
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Figure 7. Road profile after the second iteration Figure 8. Vertical acceleration of wheel after

the second iteration
3. Conclusions

1) A road profile regeneration method is proposed to preserve the same PSD level at the
wheel center with a linear tire model. The proposed road profile technique is linked to a full
vehicle model to predict the joint reaction forces. These results increase the reliability of
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stress analysis for durability analysis.
2) Even though this research uses 1-channel to calculate the vertical directional motion, it can

extend to 4-channel or 12-channel with the same idea.

Acknowledgments

This research was supported by the NRI(National Research Laboratory) project by the
Korean government.

References

10.
11.

12.

T.Liu, (1986) Ph.D. Thesis, Computational Methods for Life Prediction of mechanical
Components of Dynamic System, The Univ. of Iowa, Jowa City, lowa

E.J.Haug, T.S.liu, LJohnson, W.K.Baek, et. Al (1986) Progress in Flexible system
Dynamics and Vehicle Life Prediction, The Univ. of lowa ,Technical Report 86-20

W K Baek, R.1Stephens, and B.Dopker (1993) Integrated Durability Analysis, Trans. of
the ASME, Journal of Engineerinf for Industry, Vol.115, No.4, pp.492-499

W.XKBack (1990) Ph.D. Thesis, Computational Life Prediction Methodology for
Mechanical Systems Using Dynamic Simulation, Finite Element Analysis, and Fatigue
Life Prediction Methods, , The Univ. of Towa, Iowa City, Iowa

C.JDodds, J.D.Robinson (1973) The Description of Road Surface Roughness, J. of

Sound and Vibration, Vol. 31, No. 2, pp.175~183
K.M.A Kamash, J.D.Robinson (1978) The Application of Isotropy in Road Surface

Modeling, J. of Sound and Vibration, Vol. 57, No. 1, pp-89~100

AN.Heath (1989) Modeling and Simulation of Road Roughness, Proceedings of 11th
TAVSD Symp. The Dynamics of Vehicles on Roads and on Tracks, pp.275-284, August
21-25

J.G.Wendenborn (1966) The Irregularities of Farm Field Roads and Fields as Sources of

Farm Vehicle Vibration, 1. of Terramechanics, Vol. 3, No. 3, pp.9~40

AN.Heath (1987) Application of the Isotropic Road Roughness Assumption, J. of Sound
and Vibration, Vol.115, No.1, pp.131-144

ISO/TC108/SC2/WG4 N57 (1982)  Reporting Vehicle Road Surface Irregularities
Y.M.Pevzner and A.A.Tikhonov (1964) Spatial Description of the Micro-Profile of
Automotive Roads, Automobil'naya Promyshienmost, Vol.30, No.1, pp.9-14

JSBendat and A.GPiersol (1986) Random Data : Analysis and Measurement
Procedures, John Wiley & Sons, New York

247




MECHANICAL AND MATHEMATICAL MODELLING AND COMPUTER
SIMULATION OF VIBRATION AND IMPACT PROCESSES IN THE 'MAN
AND SHOOTING DEVICE' SYSTEMS

Applications in the archery and other relevant sports and physical exercises

I. ZANEVSKYY
Lviv State Institute of Physical Culture
Kostyushko str. 11, Lviv 79000, Ukraine

Abstract

Theoretical investigation of natural modes and frequencies of bow and arrow vibration has been
done as a study of a boundary problem for the differential equation of the fourth order. The
solution of the equation has been found in a form of polynomial series using a method of
successive approximations. Data results for the first four natural frequencies and modes have
been obtained and practical conclusions have been drawn. An archer’s paradox and the spine
phenomenon have been explained using the results of mathematical modelling. As a result of
modelling and computer simulations an engineering method for matching bow and arrow
parameters has been proposed. Comparative results for the wrong and right combination of these
parameter values for the modern sport bow and two arrows have been presented.

1.Introduction

The problems of mechanical and mathematical modelling of the 'Man and device (or machine)'
systems are exceptionally significant for the work environments in different fields of industry,
agriculture, construction, transport, medicine (orthopaedics, prosthetics, medical engineering),
and sports, for example, skiing, throwing, shootings, different playing with a ball etc.).

The sports played with mechanical devices represent a big proportion of the human competitive
and recreational activity. However, the level of our knowledge and understanding of technique in
these activities seems to lag behind those of other popular activities. There are some somewhat
obvious reasons for this discrepancy. One of them is a non-sufficiently level of mechanical and
mathematical modelling and computer simulation in this field.

A sport of the archery is a good model for a study the mechanical processes In the 'Man and
device' system. Archery is a sport for people of all ages, and is challenging whether the individual
is alone or with a group of people, since the competition is between the archer and his or her
device (bow and arrows). Archery is a mass participation recreational sport such as in modemn
equipment is both necessary and desirable.

The purpose of the study is to develop the methods for quantitative and operative valid
performance of the mechanical processes in 'Bow and archer' system.

The investigation of the archer's paradox was found by using high speed spark photography,
which was undertook to secure direct evidence of what an arrow does as it leaves the bow [2].
The archer's paradox is the phenomenon that an arrow does not fly to its mark along the line
represented by its axis. The forces acting on the arrow during its release do not quite coincide
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with this axis, because the string force acts on the arrow in the bow plane. In the starting position
the arrow does not lie in this plane, as its axis makes an angle of a few degrees with it. Even in
the case that the nock and head points of the arrow do lie in the bow plane, the longitudinal arrow
axis of the string force line does not quite coincide with the bow plane because the initial shape
of the arrow axis is not quite straight. So, the string force line does not coincide with the line of a
cross-section centre of the arrow. The released string pushes the arrow’s nock point in the bow
plane. Therefore the arrow will move forwards and thereby turn, slightly decreasing the angle
with this plane. The impulse normal to the axis of the arrow caused by the release of the fingers
from the string, as well as the column-like force of the string, pushes the arrow during its
acceleration motion. These results in significant bending of the arrow shaft as it transits the bow.
All of these factors allow the arrow to oscillate around the bow handle and to follow a straight
course towards its target without striking the bow handle (Fig. 1). The arrow moves in the x-
direction. The x-y plane is not horizontal but makes a slope with an angle of a few degrees for
target archery and about forty-five degrees for flight shooting.

2.Mathematical Model

Potential energy V and kinetic energy T of a transverse motion system perpendicular to the bow
flatness lateral plane xOy (Fig.2) are:

l I X
1 a
= EIEJ(y")zdx —EJ. pA _[(y’—2u')y'd;(+ m(y'—2u'")y" |dx +
0 0 0

1 2 1 ., 1k 1 ., 1
+5c(y2—y0) s T=Emoyg+EIpAy2dx+5m]y12+5m2y%, €))
0

where u is the deflection caused by the initial curvature of the arrow, y is the total deflection of
an arrow shaft, yo is the deflection of an arrow tail, y, is the deflection of an arrow head, y, is the
transverse displacement of the bow virtual mass, E is Young’s modulus of the arrow shaft
material, J is moment of inertia of an arrow shaft cross-section area, p is mass of a unit volume of
a shaft material, [ is the length of an arrow, A is the shaft cross-sectional area, my is the mass of
the arrow tail with virtual mass of a string, m; is the mass of the arrow head, m; is the virtual
mass of the bow limbs, ¢ is the virtual stiffness of the bow limbs and the string, a is the

longitudinal acceleration of the arrow motion, (*) and () are derivatives with respect to time t and
the longitudinal co-ordinate x respectively. For a composite metal and carbon arrow shaft EJ is
the arrow shaft bending stiffness. The virtual mass of string is equal to 1/3 of the whole mass of

the string as the arrow leaves it [4].

Using Hamilton’s principle for the mechanical arrow-bow system O t]‘(T - V)dt = (), after
substituting the expressions of T and V from (1) in the last equation v;le get the differential
equation: (EJy ”)" —(FY ’)' + pAy =0, and boundary conditions:
x=0 37 =0, m,§,—cy—y,)=0, (EF') +(m+m)a¥'+my 5+c(y=y,) =0
x=1 y"=0, (EJy")' +my(aY’ —3)=0,

and initial conditionsat f=0 y=0, y,=0, y=0, y,=0, 2)
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1
where m = prdx is the arrow shaft mass, ¥ =y + u is the total arrow shaft axis deflection,
0
!
F=-a(m + f PAdy) is longitudinal compress force in the arrow shaft body.
X
The arrow’s constrained lateral vibration can be rated in order of a reduced problem of the system
with concentrated parameters. We can then introduce the second order Lagrange equations.
Assuming arrow acceleration at a certain moment is constant, we can write for a cylindrical
arrow: EJ=const, pF=const. The problem may be solved with the expressions in separated natural
modes and time functions [3]:

y:%Xk(x)Tk(t), y2=%Lka(1)- 3)

where X,(x) are natural modes (eigenfunctions), Ti(t) are time functions, L, are bow handle
amplitudes.

The solution of a space-time problem (2) has been reduced to the simultaneous boundary problem
with independent natural modes. Substituting (3) in (2) and making necessary transformations we
get differential equations for natural modes in a dimensionless form:

XU+ g+ - X3 - 4. X, =0 @)

and corresponding boundary conditions, for £=0 :

” m ' V2 VXk
Xe=0, X7+g(+ )X+ v-pody ———ro X, =0, L, =—%—;
V=4, v—m,A,
for &=1 X/=0, X'+ouX,+pA X, =0, where
2 2 3 3
X my m ) mal wiml cl
oz e :—-—’ :—, :—, = y = . . V:——,
e U Rl e EI are
dimensionless bow and arrow parameters, w; are natural circular frequencies, A, are the
eigenvalues.

Only in the simplest problem on static supported bars loaded by a constant axial force is a
rigorous solution for lateral buckling known. To get approximate solutions we suggest an
adoption of some shape for the arrow deflection curve that satisfies boundary conditions in (4).
Solutions of equation (4) may be found in a form of the polynomial series like {1]:

Xy = .ZOB"‘fi , (5)

where B, are independent coefficients.
After substituting (5) in (4) and with intermediate transformations we get a linear algebraic
system of recurrent equations with respect to L and B,.

3.Natural Frequencies and Modes

Data results for the first four natural circular frequencies (in dimensionless form W, = Ja ) and

modes have been obtained using 21 terms of the series (5) reducing the values of the last terms to
computer zero when initial coefficients have been adapted with L,=1. The results in graphical
form for modern sport bow parameters are presented Fig.3, Fig.4.
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Looking at the natural frequencies we notice that as the string force ¢ increases, the natural
frequency o decreases (see unbroken lines in the Fig.3). The lowest (named ‘zero’) frequency
represents a turning motion of the arrow. Its eigenvalue increases from zero to negative values as
the string force increases. Therefore, this frequency has zero or imaginary values, which means a
monotone decrease of the arrow turn. The second natural frequency has only real values. It
represents periodical oscillations of the bow and arrow system mainly as‘a system of rigid bodies.
All other natural frequencies have both real and imaginary values because their eigenvalues have
positive and negative values. The first (named ‘main’) circular frequency becomes zero as the
string force ¢=14-15. At this point the arrow loses its stability, because periodical oscillation
transforms to a monotone increase of the arrow bend that deviates from the assigned direction.
The third natural frequency reaches zero, and the point of elastic instability, at $=56-57. The
higher natural frequencies also decrease, as the force increases and have zero and imaginary
values. They have not been plotted in Fig.3 because their influence in the whole bow and arrow
lateral motion is negligibly small [5].

Conclusions

Theoretical investigation of the bow and arrow system can be separated into two parts. An
arrow's lateral deflection is determined by the order of its longitudinal motion as independent of
the deflection. The results of the data analysis of this problem show that errors that have been
caused by a separation of the whole system into two parts do not exceed one percent of the whole
energy of the system. A bow force increase causes a decrease in arrow natural frequencies. As the
force reaches the critical value the frequency reduces to zero and the arrow loses its dynamic
stability. Its periodical oscillations transform to a monotone increase of the arrow bend that
deviates from the assigned direction. Imaginary values of natural frequencies do not depend on
the bow parameters. The bow parameters have a significant influence on the real values of the
arrow natural frequencies. For other equal conditions the bow and string stiffness influences the
bend oscillations of the arrow more significantly than the bow mass. For proper bow-arrow
matching, an arrow should have completed nearly one cycle of vibration in the time of its
common motion with the string. The spine should be directly proportional to the mass of the

arrow.
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Figure | Diagram of the internal
ballistics of the arrow: x-y-z is a
rectangular co-ordinate system; x-z is a
vertical plane of the bow string; 0, 1, 2,
3,4, 5 are the successive positions of the
arrow; O - is the initial position when
archer releases string; 1, 2, and 3 are the
positions during the common motion of
the string and the arrow, 4 is the position
when the arrow leaves the string ; 5 - is
the position when the arrow leaves the
bow area.

Figure 2 Schematic model of the arrow-
bow system to investigate the lateral
motion.
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Figure 3 Four first natural circular
frequencies of the arrow-bow system
with the average sport target archery
parameters (unbroken lines): p,=0.2,
1=0.25, 1,y=2.5, v=20. Corresponding
natural modes marked the same numbers
have been presented in the Fig.4. The
two first natural circular frequencies of
the arrow under the buckling test are
ploted with the dotted lines.
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Figure 4 Natural modes of the arrow-
bow system (see Fig.3) as the arrow
leaves the string (¢=0), below the first
elastic non-stability (¢=10) and over that

(¢=20).




