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Simulation of Constrained Multibody Systems Based 
on Orthogonal Decomposition of Generalized Coordinates 

Farhad Aghili and Jean-Claude Piedboeuf 
({farhad.aghili,j ean-claude.piedboeuf}@space.gc.ca) 
Space Technologies, Canadian Space Agency, 6767 Route de l'Aeroport, St-Hubert, 
Quebec, Canada, J3Y 8Y9 

Abstract. This paper presents an efficient dynamic formulation for solving Differ- 
ential Algebraic Equations (DAE) that is demanding in simulation of multibody 
systems containing constraint. The method is based on decomposition of the gener- 
alized coordinate into two orthogonal subspaces representing constraint coordinates 
and "self-motion" coordinate. The equation of motion of the self-motion coordinate 
is derived in an explicit form that is used to obtain the corresponding states as a 
result of numerical integration. The state associated with the constraint coordinates 
are obtained by solving algebraically the constraint equations. 

1.  Introduction 

Dynamics of many mechanical systems is formulated as multibody 
system with closed-loop topology, e.g. manipulators interacting with 
environment, manipulators with closed-kinematic chain, parallel ma- 
nipulators, vehicle a.nd car suspension and steering system. Often one 
need to simulate such a complex dynamical system in real-time, thus 
speed and accuracy are important issues. Mathematically, simulation 
of constraint mechanical systems tantamount to solve a set of n dif- 
ferential equations coupled with a set of m algebraic equations, i.e. 
Differential Algebraic Equations (DAE). Equations describing a DAE 
system can be formally written as 

jMq + h(q,q)+ATA = f. 
\*(q,*) = 0 (Ij 

Where q G TRn is the vector of generalized coordinate, M G JRnxn 

is inertia matrix, h(q, q) G IRn contains Coriolis, centrifugal terms, 
A G Mm is the Lagrangian multiplier corresponding to constraint force, 
f G IRn is vector of generalized force, and A G IRmxn is the Jacobian 
of the constraint equation # G IRm with respect to the generalized 
coordinates, i.e. 

dq 



It should be noted that, in general, the kinematic constraint *fr(q,£) = 0 
is rhoeonomic reflecting the fact that the constraint condition is time- 
varying, i.e. some of the constraint equations depends on time. In 
solving equations (1), it is typically assumed that; (i) the mass matrix 
is invertible and (ii) the constraint equations are independent, i.e. the 
Jacobian matrix is not rank-deficient. 
The survey of the existing techniques to solve DAE may be found in 
[4, 1, 5, 2, 3]. The classical method to deal with DAE is to express the 
constraint condition at acceleration level. This allows to replace the 
original DAE system with an ODE one by consolidating the two set of 
equations in (1), that is 

M Ar 

A    0 
q 
A 

f-h 
-Aq — c + v (2) 

where the augmented mass matrix is invertible if the Jacobian ma- 
trix is full rank, and hence q and A can be obtained uniquely from 
the above matrix equation. Since maintaining the constraint at the 
acceleration level results in a marginally stable system, i.e. 3? = 0, 
the Baumgarte stabilization [2] term v = -Kv4> - Kp<& is used to 
ensure exponentially convergence of the constraint error to zero. The 
problem with this method though is that a very stiff system is required 
- by choosing high gains Kp and Kv - in order to keep small transient 
error in the constraint induced by numerical perturbation or by initial 
condition error. However choosing high gains creates virtually a very 
fast dynamics which slow down the simulation as maintaining stability 
of the integrator demands a small step size. 
The other method is based on coordinate partitioning [8, 7] by making 
use of the fact that the n coordinates are not independent because of the 
m constraint equations. Consequently, at every instant the coordinate 

T"1        .on 

vector is partitioned as qT = [qd ,ql ], where qd e JRm and ql G 
Rn_m are dependent and independent coordinates, respectively. The 
motion of the system described by the independent coordinates can be 
separated using an annihilator operator. Although this method may 
significantly reduce the number of equations, finding the annihilator 
operator is a very complex task [3]. 
In this work, we propose a new method for solving DAEs based on 
decomposing the generalized coordinates into two orthogonal subspaces 
using any generalized inverse of the constraint Jacobian. Unlike in the 
coordinate partitioning method, in this method the decomposed coor- 
dinates have no physical meaning and no order reduction is achieved. 
Nevertheless, automatic decomposition can be easily carried out based 
on any generalized inverse of the Jacobian. This paper is organized 



as follows: section 2 describes the proposed decomposition algorithm. 
An explicit equation of motion describing the evolution of the self- 
motion coordinate is derived in section 3, while section 4 shows how 
the constraint states can be found algebraically from the kinematic 
equations. 

2.   Orthogonal Decomposition of Generalized Coordinate 

By differentiating the constraint with respect to time, we have 

Aq = —c    where    c = -7— (3) 
at 

In (3) there are m set of nonlinear equations and n unknown, where 
m < n. That is there axe fewer equations than unknowns. Therefore 
a family of solutions exist. The theory of linear system of equations 
establishes [6] that the general solution can be expressed by 

q = qc 0 qs 

where qc is particular solution, associated with constraint equation (3), 
and qs is a homogeneous solution which belongs to the null space of 
the Jacobian matrix. 
In this work we proposed a method for solving DAE by decomposing 
the velocity of the generalized coordinate into the two orthogonal sub- 
spaces; qs € A/"(A) (belong to the null space of the Jacobian), and 
qc e <S(A) (belong to the support space of the Jacobian) - where 
5(A) = A/^A) and A/(A)|J5(A) = JRn. In the sequel, the coordi- 
nates associated with qc and qs are called constraint coordinate and 
self-motion coordinate, respectively. 
The projection of the generalized coordinates to the subspaces can be 
carried out by using projection operator 

qs = Pq, (4) 

qc=(I-P)q, (5) 

where 
P = I - A+A (6) 

can be calculated by using pseudo-inverse A+ = AT(AAT)_1 of the 
Jacobian matrix 

1 The pseudo-inverse and the projector operator can be also computed by the 
Singular Value Decomposition method. Suppose the Jacobian is written as A = 
USVT, then the pseudo inverse can be found by A+ = VS_1Ur and the projection 
is P = I - VVT. 



The velocity of the constraint coordinates qc can be obtained directly 
from the constraint equation (3), i.e. 

qc = -A+c(t) (7) 

On the other hand, the homogenous solution, qs belonging to the null 
space, represents all self motion irrespectful of the constraint. However, 
the admissible motion is determined by the equation of motion of the 
self-motion coordinate that will be derived in the followings. 

3.   Equations of motion of the self-motion coordinate 

To obtain equation of the Lagrangian multiplier, equations (1) can be 
solved first for an expression for acceleration 

q = M_1(f-h-ATA) (8) 

which can be then substituted in the acceleration of the constraint 
equation, 

Aq + Aq = -c, 

to obtain 

A = (AM-1 A7)-1 [AM_1(f - h) + Aq + c] (9) 

Now by differentiating equation (4) with respect to time we have 

qfl = Pq+Pq. (10) 

In the following, we derive P in an explicit form that is required to 
calculate the acceleration term of the above equation. By knowing that 
for any invertible matrix B we have 

^(B)-1 = -B^BB-1, 

and that the matrix AAT is invertible (because the Jacobian is full 
rank), we can calculate the time derivative of the Jacobian pseudo- 
inverse as 

j[A+) = PAT(AAT)-1 - A+ÄA+ (11) 

Substituting (11) in the time differentiation of equation (6) yields 

P = -PAT(AAT)-1A + A+A(A+A - I) 

By knowing that PT = P and by defining matrix S = QP, where 

Q = A+A, 



we have 
P = -(ST + S) (12) 

Finally, from equations (8), (10), and (12), we readily arrive at 

qs--PM-1(h-f + ATA)-(ST + S)q. (13) 

This is the equation of acceleration of the self-motion coordinates in a 
closed form. Yet, in the following we rewrite equation (13) in a simpler 
form which has also some useful interpretations. One can show that 
QTP = 0, hence from equation (7) we can say 

QTq = QTqc (14) 
= Rc(t) 

where matrix R is defined such that 

Qr = RA 

Moreover, one can observe that Sq = Sqs, hence equation (13) can be 
rewritten as 

qs M-I(h-f + AJA)-Rc(t)   -Qqs (15) 

which expresses the equation of motion of the self-motion coordinates 
in a compact form. 
It is interesting to point out that the first term and the second term 
of the acceleration (15) are in null space and support space of the 
Jacobian, respectively - note that PQ = 0. Therefor, q5 ^ A/"(A) unless 
the second term is identically zero. In that case the null set becomes 
time-invariant because the evolution of the velocity of the self-motion 
coordinate always takes place within that set. Since A/"(Q) = jV(A), 
we can say that the self-motion coordinate evolves in a time-invariant 
set if 

ff(A) C M(A). 

Then the second acceleration term, i.e. Qqs, is zero. 
Equations (9) and (15) express the constraint force and acceleration of 
the self-motion coordinates in a closed form. Consequently, {qs,q5} can 
be obtained as a result of numerical integration. On the other hand the 
constraint coordinates can be algebraically derived from the constraint 
equation. 



3.1.   Scleronomic systems 

Since jV(R) = 0, then 
0 

is the only condition which vanishes the time-varying term Rc(£). 
Therefor, we can say that the time-varying term of the acceleration 
equation vanishes iff the constraint is time-invariant, i.e. Scleronomic 
constraint. Moreover, for a Scleronomic systems we have qc = qc = 0, 
hence 

?;=? (i6) 

Therefore, the equation of motion of a Scleronomic system can be 
directly expressed in terms of the generalized coordinate, i.e. 

q=-PM_1(h-f + ATA)-Qq (17) 

4.   The states of the constraint coordinate 

Having obtained qs and qs from integration of the acceleration, the 
kinematic constraint can be used to solve for qc and qc. Equation 
(7) gives the velocity of the constraint coordinates qc. In essence, one 
should able to obtain the constraint coordinate from the constraint 
equation if the self-motion coordinate is known, i.e. qc = 17(qs,i). 
However, this explicit relationship may not exist. Hence the explicit 
nonlinear equation 3>(qc,qs,i) should be solved numerically, e.g. the 
Newton-Raphson method, in terms of qc where qs is treated as a known 
parameter. 
The Newton-Raphsom method solves a set of nonlinear equations iter- 
atively based on linearized equations. Before we pay our attention to 
the linearized equation, we present some useful relationship. It can be 
inferred from (4) and (5) that ^ = I-Pand^ = P, hence by 
using the chain rule, we have 

A = 5Fp + 5F<I-p> 
By post multiplying the both sides of the above equation once with A+ 

and once with P, we arrive at two equations: 



The constraint equation can be written in the so-called first-order 
differential form in multi variables, i.e. 

By virtue of (19) and <5qs G A/"(A), one can conclude that the second 
term in the RHS of the above equation is identically zero. This result 
was expected as the constraint condition is not to be affected by the 
self-motion coordinates. Now, by knowing the inverse of the Jacobian 
of the constraint with respect to qc from (18), we can solve the lin- 
earized equation iteratively. The initial condition for the iteration loop 
is calculated by solving the time-varying part, i.e. 

rt+öt 
{qSW - (qc}t +1      A+cdr (20) 

Obviously the second term in the RHS of above equation is zero for 
Scleronomic constraints, that is the initial condition is equal to the 
value of the constraint coordinate at the previous step time. Thus the 
following loop 

q£+1=qc
fc-A+#(qc

fc,q
s,i) (21) 

may be worked out iteratively until the error in the constraint falls into 
an acceptable tolerance, e.g. ||#|| < e. It should be pointed out that the 
initial estimate given by (20) cannot be far from exact solution, because 
the drifting error within a single integration time step is quite small. 
Indeed, experiments have shown that even if the iteration loop (21) is 
called once every few time step, we still achieve a fast convergence. 
Finally, the simulation of a constrained mechanical system based on 
the decomposition method can be proceed as the following steps: 

1. compute the Lagrangian multiplier and the acceleration of self- 
motion coordinates from equations (9) and (15), assuming that the 
initial conditions are known. 

2. obtain the self-motion states {qs,qs} as a result of numerical inte- 
gration 

3. use equations (7) and (21) to obtain the states associated with con- 
straint coordinate {qc,qc}- Having the vectors q and q completely 
known, go to step(l). 



Conclusion 

In this paper we have presented an algorithm for solving DAEs. The 
method is based on orthogonal decomposition of generalized coordi- 
nates into two subspaces; the self-motion coordinates and constraint 
coordinates. Explicit equation of motion governing the dynamics of the 
self-motion coordinate has been derived that is used for simulation. 
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Abstract: 

The paper deals with the design and properties of Generalized Predictive Control 
for path control of the redundant parallel robots. It summarizes classical and root 
minimization of the quadratic criterion and direct and two-step design of actuators 
respectively. As an example, the planar redundant parallel robot is used. Moreover, 
the paper presents several possibilities to use Predictive control for compliance of some 
additional requirements as smooth trends of actuators or fulfillment antibacklash condition. 

1.   Introduction 

Topically, the next development in industrial area is constrained by deficit of powerful 
machines with proportional dynamics and stiffness. At the same time, the new control 
techniques, which would be able to achieve higher accuracy with keeping of dexterity 
of the robot constructions, are missing or, on the other hand, there is no interest for their 
real application during research and development of new machines. 

One of the promising ways of solving mentioned problems is utilization of new robot 
type based on parallel construction [1]. However, this new concept of the constructions 
brings new questions, especially in control area, thus the parallel structures give 
the possibilities to significantly improve mechanical parameters of new machines 
(dexterity, dynamics, stiffness, kinematics' accuracy etc.). 

The aim of this paper is investigation of one potential control approach - Generalized 
Predictive Control (GPC) [2,3] as an example of high-level model-based control. 
This approach firstly offers to achieve higher accuracy (better compliance with technolo- 
gical requirements; i.e. for robots: better compliance of planned trajectory) and at the same 
time effective cooperation of all actuators - drives. Secondly it offers several possibilities 
to realize some additional requirements [4], e.g., requirement on smooth trends 
of actuators - drives or fulfillment antibacklash condition can be mentioned. 

The paper initially focuses on model description of the parallel structure, then continues 
with introduction of predictive control technique and finally shows simulation examples 
and briefly discuses real - time application. 



2.   Description of the robot model 

The robot (manipulator) is a multibody system, which can be described by Lagrange's 
equations, in redundant case, of mixed type. These equations lead to the DAE system 
(the Differential-Algebraic Equations) in the following form: 

Msi - Q>sk = g + Tu 

f(s(/)) = 0 
(1) 

where M is a mass matrix, s is a vector of physical coordinates (their number is higher 
than number of degrees of freedom /DOF/), Os is an overall Jacobian of the system, 
X are Lagrange's multipliers, g is a vector of right sides, matrix T transforms the inputs u 
(n torques) into n drives and f(s(f)) = 0 represents geometrical constrains. 

The physical coordinates s consist of the independent coordinates x (Cartesian 
coordinates of the fix point of the cutting tool or gripper), drives'- actuators' coordinates q, 
and other auxiliary geometrical coordinates q2. 

Let us consider the possibility to transform the model (1) into independent coordinates x 
[5]. As follows, the DAE robot model is transformed to the ordinary differential model 
(ODE). It means that the Lagrange's multipliers disappear and design of the robot control 
becomes considerably simpler. Then the final model of the robot system is the following: 

RrMRx + RrMRx = Rrg + RrTu (2) 

It is very important to note, firstly, that the Jacobian matrix R is the basis of the null space 
of the overall Jacobian Os and thus it satisfies the expression 

j.r 
<DS R = R 0>   = 0 and s = Rx -> si = Rx + Rx (3) 

and, secondly, the Jacobian R can be decomposed into submatrixes Rq„ Rq2 and RX = IX 

Submatrix Rq, (= (RrT)r) defines important relation between q, and x as 

q1=Rq|X  (S -L= R,.-) 
dt dt 

(4) 

which will be useful in section dealing with design of control law in root form. R, can be 
also obtained from geometrical relation q,(x): 

Ri = 
dqiOO      3qi(x) 

dx, 3x„ = number of independert 
coordinates = 

= degrees of freedom 

(5) 

10 



3.    Classical design of control law 

The principal task of control of the robots is accomplishment of their movement along 
a planned trajectory (technological requirements). In some cases, it is very sophisticated 
and difficult for general control approaches like classical PID structures. Therefore, the new 
control approaches, which are being developed, are directly adjusted for concrete system 
(machine, robot). High-level controls, which use knowledge of the mathematical model 
e.g. (1,2), represent suitable approach, which takes into account dynamic trend 
of the controlled system. In this way, it can better comply with mentioned requirements 
from technology. On the basis of the dynamic model, equation (2), high level controls 
globally optimize whole control process and can predict future actions. One of them is 
Generalized Predictive Control (GPC). 

The Predictive control [2,4] is a multi-step control based on local optimization 
of the quadratic criterion, where the linearized equation or state formula is used (i.e. only 
the nearest future control signal is evaluated). This approach admits combination 
of feedback-feedforward parts. 

For design of predictive control law, the nonlinear model (2) must be linearized [5] 
and converted from continuous to discrete time. This described model transformation 
enables us to consider the classical discrete state formula in the following form: 

X(k +1) = A X(k) + B u(k) 

\(k) = C X(k) 
(6) 

T 
where X is composed as X = [x, i] and x agrees with equation (2). Furthermore 

for law derivation, the expression of new unknown output values x from topical state X 
is needed. The following lines imply this expression. 

x(Jfc)        =CX(Jfc) 

X(Jfc + l)  =   A X(*)+ Bu(*) 

x(* + l)   =CA X(k)+C        Bu(fc) 

X(k + N)=   ANX(k)+   A* lBu(k) + — +   Bu(k + N-l) 

x(k + N) = CANX(k) + CAN~lBu(k) + -- + CBu(k + N-l) 

then the prediction of x is the following 

x = f + Gu (7) 

CA 

CA' 

x(k)   and   G = 

B 

CA"
-,

B       CB 
(8) 
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Now we can optimize the quadratic criterion. The criterion is optimized in instant k, 

with using predictions of x (x = [xk+] ■ ■ ■ xk+N f) 

Jk =£ {(x-w)r(x-w) + u3rXu} = 

= £{(Gu + f-w)r(Gu+f-w) + u^u} (9) 

where £ is an operator of mean value, N is a horizon of prediction, x is a vector of outputs, 
w are desired values, X is a penalization of input and u is a vector of robot inputs. 
Considering the condition of optimization 

I 
Jk = min (10) 

for criterion (9), the resultant control law is 

u = (GrG + X)_1Gr(w-f) (11) 

This control law (11) can be already used. It should be noted that only the first element u(jfc) 
from vector u is used. If penalization X is greater than zero, then the matrix GrG is regular 
for all cases, adequately actuated even for redundant cases. Theoretical case of zero pena- 
lization X with redundant robot can be solved by pseudoinversion [6], 

4.    Design of control law in root form 

This chapter aims on derivation of control law for different configuration of elements 
in mathematical model (2), which needs matrices with smaller dimensions. Moreover, 
if the penalization is positive, the computation also holds the redundant properties (if exist)! 
It can be also used for accomplishment of additional control requirements. 

Furthermore, in this chapter, the advantages of the root optimization of quadratic 
criterion (9) are used, marked out by compact notation and good preparation for operations 
with huge matrices. 

Let us proceed from nonlinear differential model (2) and from its simplified form: 

RrMRy + RrMRy = Rr
g + RrTu 

RrMRy + RrMRy = Rrg + FM (12) 

where new vector FM represents new fictitious input to the system so called general forces. 
In equation (12) we can apply the same procedures of linearization [5], discretization 

and use the same composition of prediction formula (chapter 3, x = f + G u, (7)) for future 
output values. 
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The quadratic criterion (9) ( Jk = £ {(x. - w) T(x - w) + u YXu} ) can be rewritten 

in the root form as a product of matrices 

^=[[x-wf,ur] 1      0 1      0 

0     X. 

[x -w] 

u 
JrJ (13) 

Now we can work only with root of the criterion 

X w Gu + f w G 
u + 

f w 

X u 0 X u 0 X 0 0 
0]    (14) 

A     u- 0    (15) 

and consecutively we look for such action u, which minimizes root form (14, 15), i.e. we 
look for u, in order to minimize the norm |J|. If we annul the root of criterion (14), we will 
obtain system of equation (15) with more rows than columns (over-determined system). 

For computation, the triangular-orthogonal decomposition [6] is used. It reduces excess 
rows of the matrix A [(2-N-n)*(N-n)] and elements of vector b [2-N-n] (n is a number 
of DOF) into upper triangle R and shorter vector c, according to the following scheme: 

A 

<=> 

\ R u = Ci 

Cz 0 
(16) 

Vector cz is a loss vector. Its Euclidean norm |c2| is equal to root of quadratic criterion; 
scalar ^7( i.e. J= c/cz). 

For solution, we need only the upper part of the system of equations (16), which can be 
simply solved in view of the vector of actuators u by backward-run procedure. 

Obtained actuators represent fictitious generalized force effects u, from which only 
the first subvector (for k instant) u(fc) = FM is used. It must be recomputed, according to 
substitution in equations (12), to really used actions (drives): 

RrTu (drives) FM (17) 

with the same meaning of matrices R and T as in the system of differential equations (12). 
System (17) generally expresses deficient rank equation system (lower number of rows than 
columns i.e. than unknown real inputs-actions). There is again possibility to use pseudo- 
inverse of the matrix R7!" there. 
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5.    Examples and Conclusions 

This section shows different actuators' trends for different control requirements, applied 
on planar redundant parallel robot (Figure I.), for one selected trajectory. 
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uM [Nm] Figure I. Scheme of the robot and example of the planned trajectory with its characteristics. 
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Figure 2. Trends of four actuators unlimited and limited by antibacklash condition t[s]| 

(sampling Ts = 0.01s; max. error 1 urn; penalization X = 10'12; horizon N = 10). 
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Figure 3. Smoothing of the actuators trends for trajectory from Figure 1. - variation of penalization 
(sampling Ts=0.01s; max. error 2.02 mm; penalization X = 510"8; horizon N= 10). 

The second, root approach is suitable for real application, because it represents less 
mathematical operations than classical approach. At present, it is tested on real laboratory 
model with the same structure as in Figure I. As for result, both the approaches, classical 
and root control designs, are identical. 
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A FIRST STEP TOWARDS FE MODELLING OF ERGONOMICS AND 
COMFORT 
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1.    INTRODUCTION 

Scope. Ergonomie design and comfort of handling objects are often linked to the same 
activity of the human body, expressed in muscle action, depending on the arrangement 
and interaction of man and machine. Riding comfort depends on the mechanical 
aggression a given transport vehicle imparts on the individual, such as noise, vibration 
and harshness. Generally speaking, comfort may be linked to mechanical, acoustic, 
thermal, visual, psychological, etc. factors. Ergonomie and comfort design minimize the 
spent energy to perform an action (handling) and the effects of the inevitable aggression 
of various nature originating from an action (driving, etc.). In both cases fatigue of the 
muscles plays a major role when mechanical factors are involved. Psychological 
fatigue, however, may also play an important role in the actions of daily life and work. 
Here only those aspects of ergonomics and comfort are addressed that can be linked to 
mechanically induced muscle fatigue or to body reactions to external aggression, such 
as sustaining static loads and riding comfort. 

Muscle action. The active forces of the muscles, for example, enable the human body to 
sustain a given position under static loads. These conscious actions also play a major 
role in the dynamic response of the human body subjected to dynamic loads and 
vibrations, such as from driving. In low energy car collisions, the muscle forces are 
known to have an influence on the injuries. A muscle can be kept at a given level of 
activation only for a certain period of time, where after the activation level involuntarily 
drops due to the physiological phenomenon of fatigue. Therefore, the activation levels 
of the muscular system can provide direct physical information towards the evaluation 
of comfort or ergonomics under the given circumstances. The "cost" of muscle action 
can be considered the product (or integral) of muscle force and time of action, which is 
to be minimized for comfort. 

The H-ARB model. ESI has developed a human articulated rigid body (H-ARB™) 
model (Robby™), based on the skeletal geometry from Viewpoint DataLabs and 
corresponding to a 50-th percentile male human body. In a first part of a project, the 
complete muscular system for the arms, shoulders and neck has been implemented into 
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the skeleton. The muscles are represented by bars and are connected to the bones at their 
anatomical locations (points of origin and insertion). Their anatomical cross section, 
which determines the force they can develop at a given activation level, has been taken 
from different sources found in the literature and in anatomical atlases. The so generated 
"muscled" skeleton of the upper body can serve to evaluate the muscle forces for tasks 
involving the upper body. 

PAM-Comfort™. ESI has developed a prototype software, where in the present first step 
of implementation the active force of each modeled muscle is determined for each 
loaded static position as the set of muscle forces that will sustain the imposed position 
in static equilibrium and that will also minimize the amount of spent energy. If dynamic 
inertia forces can be considered as equivalent static forces, solutions can also be found 
in such dynamic cases. Since the problem is statically over determined, direct solutions 
cannot be found. The solutions are therefore determined by an optimization algorithm, 
which calculates the active muscle (and external contact) forces acting on the articulated 
skeleton (design parameters) by minimizing the energy (objective function) under zero 
to full muscle activation levels (bounds) and for static equilibrium (constraints). Extra 
voluntary or involuntary muscle contractions beyond the levels necessary to equilibrate 
the imposed static loads can be taken into account by the elaborated software, when the 
level of extra contraction of the antagonist muscles is specified. Such bracing action 
may stiffen the skeletal kinematical chain, which may be beneficial in anticipation of 
shocks (car accidents) or imminent load peaks (weapon recoil), etc. 

2. METHODOLOGY 

Ergonomics, in its simplest expression, deals with the feasibility and comfort of humans 
performing tasks of quasi-static load carrying. A procedure to evaluate such simple 
scenarios is described. Possible extensions of the methodology can be to evaluate the 
optimal postures for the required task, or to evaluate optimal sequences of motions 
when performing a load carrying task. 

Over-determined system. Since the number of kinematic degrees of freedom of the 
skeleton is far less than the number of muscle segments (bars) that can be activated to 
maintain a given static posture in equilibrium under a given static loading applied to the 
skeleton, the forces acting in each contributing muscle segment cannot be calculated 
from the mechanical conditions of equilibrium alone in a unique fashion. For this reason 
it is necessary to solve an over-determined system of equations by minimizing relevant 
objective functions that express the optimal involvement of each muscle segment that 
contributes to maintain the required posture under the applied static loads. 

Hill's muscle model. The active and passive muscle actions are described by the well- 
known Hill muscle model, Figure 1. This model is valid for quasi-static extensions and 
contractions of skeletal muscles. In the case of suddenly applied loads to the skeleton, 
Hill's basic model is inadequate, because it does not provide for the correct dynamic 
stiffness of activated muscles. The Hill model was therefore augmented to include an 
instantaneous dynamic stiffness under high rates of change of muscle stretch. The 
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introduced stiffness is active for muscle stretch velocities large with respect to the 
fastest voluntary muscle contraction velocities. This stiffness was found roughly equal 
to the stiffness of the muscle tendon material spread over the length of the muscle and 
roughly proportional to the muscle activation level. The dynamic stiffness results from 
the instantaneous locking of the cross connected bridges between the myosine and 
actine fibers of each sarcomere. 

tendon 
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1,51 

L/Lopt 

Figure 1. Hill's muscle model and it's maximal force/length dependency 

Basic simulation methodology. Once the 'muscled' skeleton model has been established, 
positioned in the required static posture and loaded, assumptions are made on the 
intensities of the activated muscle-forces. These intensities are determined by the degree 
of voluntary muscle activation (0-100%) and are proportional to the cross sectional area 
of the considered muscle segment. For this purpose, likely agonists and antagonists 
("prime movers") and synergizers and stabilizers ("assistants") are identified among the 
muscles, which participate in the investigated posture. The identified agonists are the 
main load carrying muscles, while the antagonists, if activated, directly counteract these 
muscles. The synergizers and the stabilizers play a secondary role. They hardly 
contribute to maintain a given posture under pure gravity loading, but assist the 
principal agonists under applied heavy loads. 
A human subject can carry a given load in a given posture under more or less overall 
voluntary muscle contraction (0-100%). This can best be illustrated by the fact that an 
individual can willingly tense its muscles without carrying any load at all. In that case, 
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the agonist and antagonist muscles exactly balance their action on the skeleton, because 
otherwise the static position of zero motion will not be maintained. The load 
independent voluntary activation level of the antagonists can therefore be considered to 
represent the subject's level of voluntary muscle contraction in cases of applied static 
loads. This level of voluntary basic muscle activation can range from zero (most 
relaxed) to 100% (most contracted). 

Optimization procedure. The objective function, assumed here to evaluate the likely 
distribution of the muscle forces to be activated in the principal agonists and secondary 
assistants has the form 

f = {sumyi(ai-c)2\ (1) 

where the sum ranges over all participating muscle segments, i, activation level c is the 
given (average) voluntary level of muscle contraction before the load is applied 
(0-100%), a; is the total activation level of the muscle segments that contribute to the 
task of carrying the load (0-100%) and y; is a switch which has the value "0" for the 
antagonists and the value "1" for the load carrying muscles (agonists, assistants). This 
function can be thought to express the least possible overall level of muscle activation, 
or "energy", to be expended for the task. 
The constraints for the static optimization process are given by the fact that the 
accelerations of the links of the kinematic chain, constituted by the involved parts of the 
skeleton, must all be equal to zero in a position of static equilibrium. These 
accelerations can be calculated simply by performing an explicit analysis with the 
PAMSAFE solver code using the relevant muscled skeleton model with the applied 
loads. In fact one time step at time=0 is enough to determine whether or not the 
"structure" is in static equilibrium. At equilibrium, the internal muscle forces must 
balance the applied loads, and the accelerations, calculated by the solver at the centers 
of gravity of each rigid skeleton link, must be close to or equal to zero. 
The design parameters of the optimization problem at hand are given by the activation 
levels of the participating agonist (and, perhaps more precisely, of the assistant) muscle 
segments. The activation level of a muscle cannot be less than zero and not greater than 
100%. The outlined optimization procedure is applied to a simple one degree of 
freedom system. 

3.    ONE DEGREE OF FREEDOM SYSTEM 

Test setup. Figure 1 shows an elementary one degree of freedom model and test setup of 
the upper and lower arm. The single kinematic degree of freedom consists in the 
rotation of the lower arm about the elbow joint with all other displacements and 
rotations fixed. The upper arm, the shoulder and the local wrist joints are considered 
fixed. From the 22 muscles of the upper and lower arm with a total of 28 segments, only 
the 2 segments of the biceps muscle, plus the brachialis and the brachioradialis muscles 
(4 segments) were retained as the agonists and the 3 segments of the triceps as the 
antagonist muscles. This reduced set constitutes a total of 7 muscle segments for one 
kinematic degree of freedom, i.e., the system to determine the muscle segment forces 



from equilibrium is over-determined by a factor of 6. 
The voluntary test subjects, were asked to pose their right elbow on a support (padded), 
to carry a load, PI, in the right hand and to voluntarily pretension the arm muscles to 
activation levels of zero, about 50% or 100%. At that moment, a second load, P2, 
initially suspended from the ceiling, was liberated by cutting its suspension string, 
whereupon the load P2 suddenly came into action at about the center of the lower arm. 
The subject's involuntary reactions due to this suddenly applied load were recorded on 
video. The reactions ranged from small angular responses (jerks) of the forearm for high 
voluntary muscle contraction to full, uncontrollable (unstable) extension of the forearm 
about the elbow joint for low or zero voluntary muscle contraction. The purpose of this 
test was to determine if the outlined procedure to "optimize" the muscle segment 
contributions in given static positions of equilibrium under applied skeleton loads can 
lead to plausible predictions of the forces, or activation levels, ctj of the agonists, when 
the antagonists undergo a constant pretension of c = 0%, 50% or 100% of their 
maximum activation. Since direct measurements of muscle forces were not possible (no 
electro-myographic apparatus was available), the activation levels could only be 
deduced indirectly by measuring the angular perturbations of the forearm about the 
elbow joint under the suddenly applied loads, P2. It was assumed that, if, for each 
applied load PI and each level of muscular pre-stress, c, the simulation finds the same 
angular perturbations than were found in the tests, then the muscle force predictions can 
be considered accurate. 

1 antagonist muscle 
triceps : 3 segments 

= 3 unknowns 

1 rotation degree 
of freedom : 

= 1 equation 

PROBLEM : 7 segment 
forces to determine and 
only one equation ! => 
Hyperstaticity 

PERTUR3ATION 

Load 

3 agonist muscles 
biceps : 2 segments 
brachialis : 1 segment 
brachioradialis : 1 segment 

= 4 unknowns 

Extra load 

Figure 2. One-degree of freedom model of the elbow, and the usage of the perturbation technique 

Test and simulation results. The preliminary results have shown that the test subject's 
responses to the suddenly applied extra loads could be predicted correctly, ranging from 
small extension angles to uncontrollable extension of the forearm. Since under the 
applied activation levels the simulations exhibited the same angular motions of the 
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forearm under the suddenly applied load of P2=4 kg force, it was concluded that the 
outlined procedure to determine the activation levels of the over-determined skeleton 
muscle system was realistic. 

4.    APPLICATIONS 

Felin project. The outlined preliminary procedure has been applied in the Felin project 
of the French military to evaluate the performance of the musculo-skeletal system of 
humans in given postures under given static loads. Such problems arise when a 
mechanic is asked to hold in place a piece of heavy equipment in a hard to get at place 
(design problem), or when a military combatant is manipulating heavy equipment when 
loaded by unwieldy objects and gear. Based on the outlined procedure, criteria of 
"comfort" and "feasibility" may be deduced from the resulting necessary activation 
levels of the involved muscles. 

Miscellaneous applications. The following pilot applications were investigated with the 
emerging PAM-Comfort ™ prototype numerical simulation tool: Gripping hand. 
Stowing of a bike. Sports. Different driver positions. Manipulating the hand brakes. 

5.    CONCLUSIONS 

This document presents a short overview on the emerging ESI Group comfort and 
ergonomics models of the human body, that are developed to study the activation levels 
of the skeletal muscles, needed to sustain various load conditions. The shown examples 
indicate the wide spectrum of potential fields of application. The numerical 
methodology used to calculate the skeletal muscle forces proves to be remarkably 
efficient and leads in all studied cases to remarkably intuitive results. More validation 
studies must be performed, including electromyography measurements on volunteers. 
The models of the muscled skeleton must be completed for the still missing muscles, 
and scaling and morphing technologies must be used to produce models of different 
sizes. Extensions to dynamic forces and moving subjects are possible. The models are 
part of an emerging library of compute models in computational biomechanics 
("BioLib": H-Model ™, Robby ™, etc.), which contains models of the human body that 
are conceived and validated mainly for studies of occupant safety of transport vehicles, 
comfort, ergonomics and biomedical applications. All models benefit from the synergy 
created from their different fields of application. 
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1. Introduction 

In mechatronic system design - Multi-Body System with drive system, sensor and control system, (e.g. 
robot, CNC machine tool, active suspension of vehicle) - the system model constitutes a virtual prototype 
for the behavior analysis, the validation and the optimization of parameters. But the use of model is not 
restricted with the final stage of design. During all the design process, different models (e.g. functional, 
kinematic, beam models) are used to build a technical solution gradually. This paper aims to describe the 
framework of the model generation of MBS for the process of design. It focus on the geometrical 
description of the open-loop structure, tree-structure and close-loop structure in a systematic way. An 
illustrative example is presented 

2. Modeling system framework 

The goal is to create a modeling tool allowing the description of a solution according to a design process 
stage (from the first stage to the last); the obtained model must be able easily to be modified and 
completed in a systematic way (without regenerating the whole of the model) according to the technical 
choices. Moreover, the model parameters will be used to the component sizing (e.g. cross section of a 
beam, an actuator) or the optimization. Lastly, the model can be used to describe various candidate 
solutions in order to evaluate, compare them and retain the best. The specificities of the modeling method 
described in this article are based on these design process characteristics. 

Firstly, symbolic modeling system is used to fulfill the requirements stipulated before. This approach 
makes it possible to create a versatil tool of modeling for MBS applications [1]. It is convenient to create 
an open system of modeling of mechatronic system which makes it possible by example to complete a 
MBS model by models of particular physical phenomenon. That is appropriate well for the generation of 
control law, e.g. for robotics [2], and thereafter, for the simulation and feedback tuning with a numeric 
toolbox like MatLab [3]. From the point of view of the mechanical design (static, kinematic and dynamic 
criterium for technological choices, component sizing and parameter optimisation) the parameters of a 
symbolic model can be taken as variables of design. 

Moreover, for a easy use by designer, the symbolic model must be obtained by using a systematic 
description method, which implies a nonredundant description and without ambiguity. In particular, the 
geometrical description of the kinematic structure is a crutial stage of modeling which will condition the 
generation of the dynamic model and the design. The Denavit & Hartenberg notation [4] is an efficient 
systematic description method with a minimum set of parameters but limited to the open-loop structure 
like serial robotic chains. This notation extended to tree-structure and close-loop structure by Khalil & 
Kleinfinger [5] is resumed and modified in the following part for the joints with 2, 3 or 4 degrees of 
freedom. 

Lastly, the required goal is to create an object oriented modeling system. A model consists of a set of 
objects which can be modified or replaced by another independently to each other (without modifying the 
totality of the model). A Symbolic toolbox like Maple is an had hoc tool not only for the symbolic 
computation but also for the object oriented modeling [6]. The basic objects are the elementary 
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mechanical part models (building blocks for the description): joint, body, actuator,... The main object of 
the MBS model is the kinematic pair, i.e. a joint plus a body, which is built with the basic objects. 
Its characteristics are fully or not fully defined in the kinematic pair object: 

the subscript of the pair, 
the subscript of the antecedent pair and of the next pairs, 
the kind of joints (revolute, spherical, Universal,... without or with strain and backlash), 
the geometry of the link between joints 
the body characteristics (for a rigid or flexible body) 

This makes it possible to modify or replace easily an object within the kinematic structure during a design 
process. The kinematic topology can be established starting from the reading of the whole kinematic pair 
objects. 

3.    Systematic description of the kinematic structure 

In robotics, there is a great diversity of methods making it possible to describe the position and the 
orientation of the elements of the kinematic chain: Denavit-Hartenberg method[4], formalism of Paul[7], 
modified Denavit-Hartenberg parameters[5], Seth-Uicker notation[8]... 
Each one of these formalisms was developed to describe kinematic chains with one degree of freedom 
joints (revolute or prismatic joint). Our concern was to take again a method not having ambiguity for the 
description of the robot-like chains and very usually used. According to our criteria, the best is the 
Denavit-Hartenberg method[4] modified by Khalil and Kleinfinger[5]. 
The method developed by Khalil et Kleinfinger[5] allows to write systematically and without ambiguity 
all the open-loop, tree and closed-loop structure robots with only one degree of freedom joints. To be able 
to describe the kinematic structures with a minimal parameter set, we have extended this method to 
spherical, universal, cylindrical, helical, prismatic-spherical and spherical-prismatic joints. 

3.1.    DESCRIPTION FOR AN OPEN-LOOP STRUCTURE 

Unlike the other methods, we don't consider that a complex joint is a succession of simple joints with a 
null mass intermediate body. In comparison with Khalil and Kleinfinger method[5], we only add one 
intermediate frame and variable parameters are not more only supported by Z axis. 
Our concern is also to be able to divide the transformation homogeneous matrices into two matrices: one 
to describe the geometry of the body and the second to describe the joint. This is why we have modified 
the initial method so that the subscript (i) of the parameters is relative to the joint (i) and to the body (i). 
The joint (i) named Lj connects the body (i) to its antecedent (k) and the frame Ri(0„ Xi; Y,, Z-) is relative 
to the body (i). For all the joints with more than one degree of freedom, we have to add an additional 
frame named R* (fig. 1). 

kZ;* Z- 

_di^D_ 

Figure 1. Systematic description of a complex joint      ^x 

Z|* and Zi axes will be choosen according to the type of joint (i) or by the user if the joint has no 
particular axis(for a shperical joint, Z,* axis can be parallel to Zk and Zj parallel to   the Z axis of the 
succeding joint). 
X axis is the common perpendicular to Z axis of the same frame and Z* axis of the next frame. 
So, the frame R, is defined with respect to the previous frame Rk by eight parameters : 

ak angle between Zk et Z;* about Xk, 
dk distance between 0k et Z,*, 
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8j* angle between Xk et Xj* about Z;*, 
r* distance between Xk et O;*, 
et;* angle between Z;* et Z; about Xj*, 
d;* distance between Oj* et Z,, dj* is always equal to zero, 
8j angle between Xf* et Xj about about Z-„ 
T{ distance between Xj* et Oj. 

cck and dk parameters are relative to the shape of the body (k) and the other parameters are relative to the 
joint (i). In the next table, we present   particular values of parameters and generalized coordinates 
(relative coordinates) q for four types of joint. 

Table 1 : parameters and generalized coordinates of some complex joints 

Spherical 
3 d.o.f. 

Universal joint 
2 d.o.f. 

Prismatic-spheric 
4 d.o.f. 

Spheric-prismatic 
4 d.o.f. 

<*k 0 or any 0 or any 

4 
9i* qilt,(precession 

euler angle) 
qu qi^precession euler 

angle) 
q,^.(precession 

euler angle) 

r(* 0 or f(ak) q.-.t 0 or f(ak) 
OC;* qie(nutation euler 

angle) 
90° or other qi9(nutation euler 

angle) 
qie(nutation euler 

angle) 
d,* 0 0 0 0 

6i qiiV(rotation euler 
angle) 

q:,2 qi?v(rotation euler 
angle) 

qiv(rotation euler 
angle) 

fi 0 or fCocO 0 or f(cc,) q4 

Ot; 0 or any 0 or any 

di 

3.2.    DESCRIPTION FOR TREE-STRUCTURE AND FOR A CLOSE-LOOP STRUCTURE 

In the case of a tree-structure chain(fig. 2), the body (i) can have several next bodies j and 1. Then there is 
a common perpendicular by successor named Xi0 and Xu, the second subscript indicating the name of the 
next body. So the parameters a; and dj become Ojo and di0 for primary branch. The user chooses one 
common perpendicular, let be (1) and sets up the parameters on this branch as for the simple chains. The 
other common perpendiculars are defined starting from the first by two parameters : 

£j,ndistance between Xi|0 and Xin about Zu 

Yi,n angle betweenXi0 andXin about Z;. 
The other parameters (cciin, di>n) on the secondary 
branches are defined like previously. 

di£ 

Figure 2 : Systematic description of a tree-structure 
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Parameters Oj,0 and dii0 describe the shape of body (i) going to the joint (1) and parameters E0, YM, ctg and 
djj describe the shape of body (i) going to the joint (j). 

In case of a close-loop structure, as Khalil and Kleinfinger [5], we open the loop by cutting a joint to 
define a tree equivalent structure and relations between the joint variables of the closed loop will be 
obtain by expressing the closure equation. 

3.3.    HOMOGENEOUS TRANSFORMATION MATRICES 

For the main branch, the homogeneous transformation matrice !T| between the frame R; and R, (fig. 2) can 
be written as the product of two matrices: 

-     one for the shape of body (i) going to the body (1), named Ci0 function of (a,, 0, d,0), 
one for the joint (1) named L, function of (9,*, r|*,a,*, d,*, e,, r,), 

Ti - Cji0L| (1) 

For the secondary branches, the transformation matrice 'Tj between the frame R; and Rj (fig. 2) can be 
written as the product of two matrices : 

-     the shape of body (i) going to the body (j) matrice Q,, function of (Ej.i,Yi,i, ctj,,, d;,,). 
the joint matrice Lj, function of (Gj*, rj*,aj*, dj*, 9j, rj), 

with: 

c,,o = 

10 0 rf(. 

0   cosfc^) -sin(a() 0 

0   sin(a() cos (a) 0 

0       0 0 1 

"i, I' 

Tj - Q, i Lj 

costy,)   -sin(Y|._,)cos(al.J) sinfy ^sinfc^,) cost^,)^, 

sinty,)    cos(Yj. ,)cos(a(. ,) -COS(Y(. ^sinfa,. ,) sin<Y/ ,)rf,  , 

0 sin(a^,) cos(a(- ,) e. . 

(2) 

(3) 

and, by example for a spherical joint, with : 

cosfy^cos^. v)-sin(?y.^cos(?;. e)sin(,y. y) -cosf^^sin(9j. y)-sin(?/^cos(?y. <,)costy. y) sinf^^sin(9j. „) o' 

sin(,y- ^cosfy v) + cosfy^ cosf^. ß) sin^. y) -si„(?/ ^ si„(9/ y) + c0S(?/ ^cos«?,. e) cos(?/ y) -cosfy ^ sinfy „) 0 

sin(?/9)sin(?y.v)                                                     sinf^.gjcos^.^ cos(?/9) 0 

0                                                                                 0 0 1 

(4) 

4.    Illustrative example of the systematic description 

The four-bar spatial mechanism (fig. 4), with body 9 to 3 and with Revolute, Universal, Spherical and 
Revolute joints, is a closed kinematic structure with one loop. The closed loop is cut on the joint between 
the bodies 0 and 3 in order to set up an equivalent open tree-structure with 2 branches (cf. fig. 3). 

iiiiiiiiiiiiimiiuuiiiuiiiiniiimumiiiiunimiiii 
Fig. 3. open tree-structure corresponding to RUSR mechanism 
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The reference frames linked to each body (fig. 4) are posed in a systematic way in accordance with the 
rules described in part 3. In the same way, the systematic description of the geometry (fig. 5) leads to the 
table 2 of parameters and generalized coordinates. 

Z4, Z5 

X3 - X4, X5 

Fig. 4. Kinematic structure and reference frames of RUSR mechanism 

Table 2 : Set of parameters and generalized coordinates of the open tree-structure 

body 
subscript 

Kind of 
joint 

Joint Body succeding 
body 

subscript 
(6* 
e 

r* 
r 

a) a d 

d,i) ,^"0i'V f (e.i Yi 

0 '%*$;, ,V^?S*»3*?V 
**■ 

"."-, ' >  '"- "0 ~V 
0 

ao.i 

0 

du 
1 
5 

1 R qi h ^■i^'c%W^M ?'- ■ t'i,       • '  t j *  • a, di 2 

2 U qz.i 
32.2 

r2* 
r2 

nil *''< si.- "  ' t 
0 d2 3 

•"-■■    ^V 

3 S qs.o 
q3.v 

0 
0 

q3.e ttfstfiM?!1 
0 d3 ..''V ■*• -^v* 

5 R q5 r5 ': 

The geometrical model of the mechanism is obtained starting from the homogeneous transformation 
matrices (1) and (2) associated with each branch of the tree structure : 

T4 = Co.o Li Ci_o L2 ^2,0 L3 Q.o L4 (5) 

°T5 = Co,,L5 (6) 

with the matrice L4 corresponding to fictitious joint in order to introduce the reference frame R4 linked to 
the body 3. 

L4 = I (7) 

The closure equation is obtained when one express that the reference frames R4 and R5 are identical: 

°T4 = °T5 (8) 
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5.    Conclusion 

In this paper, we have presented a method to describe kinematical structures with more than one degree of 
freedom joints. The advantages of this method is to be systematic and non-ambiguous, and it allows to 
obtain a minimum parameter set in order to be used in the model generation of MBS framework, notably 
to determinate its dynamical model [9] in context of mechatronic design. 

^Z4, Z ■4, ^5 

X4, X5 

Fig. 5. Reference frame and geometric parameters of the RUSR mechanism 
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DYNAMIC    SENSIBILITY    OF    MECHATRONIC    SYSTEMS    WITH 
REDUNDANCY 

G.V. BOIADJIEV, D.B. VASSILEVA 
Institute of Mechanics - Bulgarian Academy of Sciences 
Acad. G. Bonchev Str., bl. 4, 1113 Sofia, Bulgaria 

1. Introduction 

Mechatronic systems as general are hybrid ones, which consist of subsystems having 
different physical nature. Mainly they include mechanical, electrical and electronic parts, 
sensor and computer devices, control system etc. Robot manipulators are typical examples 
for a mechatronic system. Having a complex structure themselves they could be applied for 
various tasks solution, but some other possibilities are not paid attention enough concerning 
the inner resources, the additional storage of the manipulative structures already designed. 
The last traces the way of new constructions and the considerations resulting in very 
interesting characteristics and parameters improving theoretical understanding as well as 
helpful for optimizing the practical applications as a whole. Such characteristics related 
with the mechatronic system state is the sensibility, which is a system quality characteristic 
having several quantity parameters. The presence of redundancy reflects the larger 
possibilities for optimizing the sensibility parameters. 

Purpose. The purpose of the work is sensibility analysis of mechatronic system's 
mechanical subsystem - robot manipulators as well as redundancy influence on kinematic 
and dynamic sensibility parameters for accuracy and energy optimisation. 

2. Kinematic sensibility. 

The kinematic sensibility is a system quality characteristic having as quantity 
parameters corresponding sensibility coefficients and directions. It can be described 
mathematically by transformation x mapping the configuration robot space QeRn to its 
working one R3. The transformation x, is a homomorphism, consisting of two different ones 
xp and xr. They map the neighbourhood AQ round the point (configuration) qeQ into the 
sensibility position and orientation ellipsoids. The center of each of them coincides with the 
point q and their semi-axes, following the sensibility directions, are equal to the sensibility 
coefficients by absolute values. The coefficients and directions are obtained as solutions of 
general task of eigenvectors for both homomorphisms. Obviously, the rank of xp and xr 

does not exceed the dimension of R3. The presence of redundancy reflects the dimension of 
Q, i.e. it becomes bigger. 

2.1. POSITIONING 
Tree-like manipulative  structures  are considered with n degrees  of freedom where 
contiguous bodies are connected by translation and rotational joints. The joint parameters q( 

(i = l,....,n) are chosen as generalized coordinates. The vectors q = (qh...,qn)  belong to the 
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configuration space. An arbitrary point H is fixed in the last structure's body. Two 
coordinate systems are fixed in the support and in the last structure's body. Usually in 
practice the needed state realizes some deviations 8R and 50 having probability behaviour. 
This is due to various reasons - errors in geometry, errors in calculations, compliance, 
sensing, calculations etc. 

In the case of position the deviations are described by the following expression 
8R=A(q)5q, (1) 

Let's consider an e - neighbourhood round a configuration q and assume the vectors 8q 
belong there. It is proved [5], [1] the transformation (1) maps n-dimensoinal ball e in k- 
dimensional sensibility ellipsoid EpeR3, where k = rankA. It is also shown [2], [3] the 
ellipsoid's semi-axes' lengths are upper borders of/8R/ on k orthogonal directions and they 
are obtained as eigenvalues of general task of eigenvectors: (Bp - XC)X = 0. For every state 
q the matrix A(q) from (1) defines a homomorphism xp between configuration space Q and 
working zone Z. The image of TP is the sensibility ellipsoid for positioning [7] and the 
kernel is its orthogonal completing. 

2.2. ORIENTATION 
In the case of orientation the deviations are described by the following expression, which 
is equivalent to (1): 80 = L(q)8q (2) 
For every state qeQ, the matrix L(q) from (2) defines a homomorphism xr between the 
configuration space Q and the working zone Z. 

3.    Dynamic modelling 

In practical application the real motion is going under different force constraints, especially 
the contact tasks. So, the sensibility analysis has to be done for the functions describing the 
structure's dynamics. The last ones are obtained using graph theory and the Orthogonality 
principle [8], [5]. The energy conservation law is the base of the method. The energy has 
two fundamental characteristics - energy flow and energy potential. Thus any physical 
system is characterized by its general power space which combines countable number of 
power subspaces in dependence of the different kinds of energy involved in the concrete 
problem. The parameters (the energy basis) of these power subspaces are specific variables 
expressing the two basic energy characteristics - the power flow and the power potential. 
The power flow variables are called "through" ones and the power potential variables - 
"across" ones. Another important characteristic of every system is its topology. It can be 
described by graph called general system graph. The component physical characteristics are 
expressed by relation of its across and through variables, described by mathematical 
equation which is called terminal equation. Another main class equations are the connection 
equations. These two classes of equations describe the physical characteristics of the 
system. And the system topological characteristics are described by another two groups of 
equations - the cutset and circuit ones. The most general formulation of the Orthogonality 
principle can be given in the following way: 

"If the scalar products of the through and the across variables associated with each 
edge of a system graph are summed over all edges in the graph then the sum will be zero" 

The four groups of equations - the cutset, cirquit, terminal and connection ones, are 
put in the orthogonality principle and after development in accordance with the method's 
algorithm the dynamic equations of motion are obtained. 
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4. Dynamic sensibility 

If a force F is supposed to act at the characteristic point as well as a moment M is applied to 
the last structure link, the dynamic sensibility coefficients and directions can be defined for 
position and orientation respectively: 

ap = (F.5R); ar = (M.5 0); ßp = (Fx5R); ßr = (Mx5 9); (3) 
They are related to the additional energy, forces and moments have to be compensated to 
assure optimal energy environment interaction. Let at first the position dynamic sensibility 
coefficients are considered [12]. The first one - ap = (F.8R), is a scalar and has a dimension 
of energy. Here the question of maximal and minimal values of ctp is important for practice. 
It is clear when force direction is perpendicular to some of the ellipsoid axes then the 
corresponding component of 6R disappears and ap takes lower value. When the kinematic 
sensibility ellipsoid is one- or two-dimensional it is possible to minimize the coefficient ctp 

up to zero. Here the role of redundancy is important because it is related to the problem 
concerning the realization of sensibility directions, following preliminarily given 
orientations. The coefficient ß p expresses the additional moment caused by the force F in 
the presence of 5R. In the same way the kinematic sensibility ellipsoid is modified, i.e. any 
of its axis changes its direction in perpendicular plane. All the moments belong to that 
ellipsoid which will be called dynamic sensibility ellipsoid for position. The dynamic 
sensibility ellipsoid is three-dimensional when the force direction is non-collinear to its 
three axes. The most interesting case is when the kinematic ellipsoid is a segment, collinear 
to the force - then the dynamic ellipsoid disappears, i.e. ß p takes its minimal value - zero. 
The maximal value of ßp is obtained when the force direction is perpendicular to the biggest 
kinematic sensibility ellipsoid axis. In the same way the dynamic sensibility ellipsoid for 
orientation can be defined. 

5. Application 

The sensibility analysis finds a concrete application during the conception of a mechatronic 
system, which will be used in the medicine for drilling operation automation. 
5.1.   KINEMATIC   SENSIBILITY   PARAMETERS   FOR   THE   MANIPULATIVE 
STRUCTURE R//T//R 
The homomorphism xp is described by matrix A and the matrix Bp: The Ker Bp = Ker A is 
described by two basic eigenvectors: 

(o o <n (o o 0^ o   o        x(2) = [i   o   o]r      (4) 

A = 
0 

0   0   0 
0   1    0 

*,= 

Here Ker A is two-dimensional. And Im A is one-dimensional caused by the eigenvector 

X® = [O    1    0]r, corresponding to the positive eigenvalue A,3 = 1. 
The homomorphism Tris described by matrix L and the matrix Br has the form respectively: 

L = 

'000 

0 0 0 

cosfa+?3)   0   cosfo+ft) 

/ \ 

'B. 

cos2(q1+qi)   0   cos (<?,+<?3) 
0 0 0 

v„.2(4,+tf3)    0    cos\ql+q3)J 

(5) 

The Ker Br = Ker L is described by 2 eigenvectors: ^(1) = [0   1   of,^(2)=[-l   0   if 
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Here Ker L is two-dimensional. And Im L is one-dimensional caused by the eigenvector 

A'*3' = [l   0   if, corresponding to the positive eigenvalue X3 = 2 COS (q} + q3) . 

5.2. DYNAMIC EQUATIONS FOR THE MANIPULATIVE STRUCTURE R//T//R 
The structure was associated with the graph Gh, consisting of two connected elements Gn 

and Gr, which is shown on fig. 1. The numbers of the graph edges interpret the following 
variables [5], [12]: 

Fig. 1. Graph assigned to the mechanical system 
For graph Ga: Through variables: D'Alembert forces F2i< , (k=l,2,3), associated with the 
arcs 2k; External forces F(2k). ,(k=l,2,3), acting on body k; Forces F2k.,, (k=l,2,3), acting 
on the terminal points By and the origin of the inertial system. Only F, = 0; Forces Ff" , 
(l=2n+l,... , 4n-l; n=3), presenting the interaction between contiguous bodies. 
Across variables: Radius-vectors of the mass-centers and the terminal points By are the 
across variables for all arcs starting from 0 and the local radius-vectors of the points Bij, 
compared to the mass centers Ci for the remaining arcs. For the formulating tree arcs with 
numbers from 1 to 2n (n=3) are chosen and all other arcs are chords. 
For graph   Gr: Through variables: D'Alembert torques   T2k   , associated with arcs 2k 
(k=l,2,3); External torques T(2k). , (k=l,2,3), acting on body k; Torques T2k„, , (k=l,2,3), 
for interaction between the terminal points and the inertial beginning; Torques T|C, (l=2nl,.. 
,4n-l; n=3) for interaction between contiguous bodies. 
Across variables: For arcs beginning from 0 across variables are the absolute angular 
speeds of the bodies, to which points those arcs are directed (points Bjk are considered as 
points of body with number j). Across variables for arcs with number from 7 to 11 
describes the relatively angular speeds, as well as across variables with odd numbers are 
zeros according to the admission for points Bjk to be in regarded as appliance to body with 
number j. For the graph the edges from 1 to 6, which are branches, form a formulation tree 
and the remaining edges - chords. With the help of four groups of equations from the 
Orthogonality Principle the differential equations are obtained. 

Aq = B, 

i33 +42) 

o 
i33 

+ /g> 0 

m2 +/w3 

0 

7(3)" 
i33 <7i 

0 '4i = 
A3) 

33 . ßl- 

TT+TV 

=  F, + F6. + F9 

r..+r6. 

(6) 

where,   m2, m3- the second and third body mass of the mechanical structure; 

J ■ —m,\4r2 +h)> 
80   3V ; 

r - the radius of the cone (the cartridge-chamber), h - the height of the cone, 
F9- translation joint actuator force, T7, T,r rotation joint actuator moments, 
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F4-, F6>- external forces, T6- - external moment, q1; q2, q3 -joint variables 
The notations are in correspondence with the system graph edges numbering which is used 
for the differentiation equation derivation. 
5.3. DYNAMIC SENSIBILITY PARAMETERS FOR THE MANIPULATIVE 
STRUCTURE R//T//R. 
F, T - main vector and main moment of external action on the last body; Xp, Xr - the non- 
zero (positive) eigenvalues for position and orientation; Following the definitions for 
dynamic sensibility coefficients, it can be written ctp =JX~F> 

ar ~^[K
T

- ^or ^e considered 

structure F consists of gravity force, resistant force (due the contact with the bones) and the 
internal active force (translation drive).The last two are on the translation direction and the 
first depends on the concrete drilling position. Both coefficients express the additional 
power, i.e. energy for unit time the structure needs to compensate the system error, so that it 
can be minimized in the case when the gravity is perpendicular to the drilling direction. 
The same can not be said for ccr - its optimization could be done for the reason of ^r, which 
is 2cos2(qi +q3). Next, the redundancy influence here appears to maintain the sum of qi +q3 

equal or at least close to TT/2. AS a result the additional energy for orientation error 
compensation will be minimal. Finally, the maximal values of otp and otr are obtained by 
evaluation of upper borders of F and T, which could be taken from real experimental 
results. In the same way the coefficients ßp and ßr can be analyzed for the considered 
structure. As general, they are related to the additional moments, the system needs to 
compensate due to corresponding errors. In our case ßp is different from zero only for the 
gravity force component Fl, i.e. the additional moment appears when F' is non-collinear to 
drilling direction. There is dependence between ap and ßp due to mutual vectors 
disposition. When ap increases, ßp decreases at the same time by absolute value. By 
analogy, the minimal value (zero) of ßr is obtained when the main moment is collinear to 
the orientation error vector. The maximal values for ßp and ßr also depend on the 
appropriate evaluations of main force and moment absolute values. 
5.4. COMPUTER SIMULATIONS 
The sensibility parameters are visualized using MATLAB package. That helps for error 
distribution and energy deviation analysis in dependence of system state. On the first figure 
below it is shown that for (q! +q3) = n/2 the kinematic sensibility coefficient for orientation 
Xr, is approximately zero and it is denoted by '*' lying in the middle of the sensibility 
direction for position. The kinematic sensibility directions in the case of position and 
orientation lie on the same axes i.e. they are collinear what can be seen on the figure. 

Fig.2. Kinematic sensibility directions in the case of position and orientation for the 
configurations 

q, = 0.7854 rad, q2= 95 mm, q3 = 0.8727 rad; and q, = 0 rad, q2 = 5 mm, q3 = 0.7854 rad 
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6. Conclusions 

Kinematic sensibility allows the optimization of system accuracy taking into account the 
system state and redundancy. That gives the possibility to choose the state appropriate for 
current task execution in accordance with additional criteria. In that sense the sensibility 
could be considered as generalizing of accuracy. The sensibility ellipsoids content the real 
deviations inside and give information about their distribution in a limited region. 
Dynamic sensibility allows the optimization of energy distribution according to the system 
state including the external forces and moments interaction in the sense of optimal re- 
distribution of internal ones. Dynamic sensibility parameters are defined on the subset of 
kinematic ones, which appear during specific task under force constraints. From the other 
side that parameters depend also on the external forces and moments variation. For their 
analysis and interpretation the dynamic model is used. A concrete example of manipulative 
structure is considered and the obtained results are presented. It is a manipulative structure 
that will be applied in surgery for drilling operations. For that structure the kinematic and 
dynamic analyses are done and its dynamic model is represented. 
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1 Introduction 

In the [1] a stability criteria for solutions of systems of differential equations 
in critical case of one zero root based on analysis of spectrum of the Jacobi 
matrix for the right-hand side of the equation in a neighborhood of solution 
is received. This method was generalized in the paper [2] for inverstigation 
of stability of differential and difference equations in Banach spaces and in all 
possible critical cases. In the paper [3] the Aizerman's problem was decided for 
a self-adjoint matrix. In papers [4]-[7] offered criteries of stability of differential 
equations with lateness, differential equations with small parameters attached 
to derivative and partial differential equations. 

In the second paragraph of the paper we give a short review of these results. 
New criteria of stability of differential equations in Banach spases are given in 
the third paragraph. 

2 Criteries of stability of solutions of differential 
and difference equations 

2.1    Differential equations 

Let us consider a Cauchy problem in a Banach space B: 

% = A(x(t)), (2.1) 

x(0)=x0. (2.2) 

We assume that: 1) the nonlinear operator A has a continuous first Gateaux 
derivative; 2) ,4(0) = 0; and 3) the spectrum of the operator A'(0) lies in the 
left complex half-plane and on the imaginary axis. 

Let A(,4) = Umhio^
I+h^~1 be a logarithmic norm of the operator A; more- 

over, Re A = AR = (A + A")/2. Let R(a,r) = [z € B :|| z - a ||< r] and 
S(a,r) = [z eB:\\z-a ||= r]. 
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Theorem 2.1.   Let the integral /Q
( A(i4'(^(r)))rfr be strictly negative, i.e. 

negative and 
1   fl 

limt^oc- /  k{Ä(4>(T)))di 
t Jo 

-Q<0, 

on an arbitrary differentiable curve <f>{t) in a ball R(0,r) with a sufficiently small 
radius r. Then the trivial solution of equation (2.1) is stable (asymptotically 
stable). 

Theorem 2.2. Let A(/Q
1 A'(Tu)dr) < 0(A(f* A'(ru)dr) <-a,a> 0) for any 

u ^ 0 belonging to the ball R(0, r) of the space B with a sufficiently small radius 
r. Then the trivial solution of equation (2.1) is stable (asymptotically stable). 

The proofs of Theorem 2.1 and Theorem 2.2 were printed in the [2]. 

2.2 Difference equations 

Let us consider the difference equation 

x(n + 1) = A(x{n)) (2.3) 

and assume that: 1) the operator A has Gateaux differentiable; 2) ,4(0) = 0; 
and 3) the spectrum of the operator A'(0) lies inside and on the unit circle with 
center at the origin. 

Theorem 2.3. Let the following conditions hold: 1) the operator A'(u) is 
completely continuous at all points u ^ 0 belonging to the ball J?(0, r) with a 
sufficiently small radius r; and 2) the s*(u)- numbers of the operators A'(u) 
are strictly negative (negative and s*(u) < -a, a > 0) at the points «^0, 
where s*(it) is the maximum of the s- numbers of the operators A'(u). Then 
the trivial solution of equation (2.3) is stable (asymptotically stable). 

Theorem 2.4. Let H be a unitary space, and for any u ^ 0 let the spectrum 
of the operator A'{u) consists of distinct eigenvalues with algebraic multiplic- 
ity 1 and with absolute values less than one. Moveover, let the eigenvectors 
corresponding to different eigenvalues be mutually orthogonal. Then the trivial 
solution of equation (2.3) is stable. 

The proofs of Theorem 2.3 and Theorem 2.4 are given in the [3]. 

2.3 Differential equations with lateness 

Let us consider the system of equations 

dx' 
-^- = Ai(x1(t-hil(t)),...,xn(t-hin{t))), i = l,2,...,n. (2.4) 

Let t0 = 0. We assume that functions htj(t) are continuous for t>t0. Also 
we assume that 0 < maxi:j \ h^t) \< H for t0 < t < oo. For t € [t0 - H,tQ] 
functions Xi(t) are equal to continuous functions <f>i(t),i = 1,2,... ,n. Let r0 = 
maXl<i<nSUpie[tQ„Hjto]  I (j>i(t) I . 
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Starting point we write as 

x°(to + 0) = (x°1,...,x
0

n) (2.5) 

We will inverstigate the Cauchy task in n dimensional space Rn, with one 
of the following norms 

n n 

|| x \\1= Q2 | xk |2]1/2, II x \\2= maxl<i<n \ xt \, || x ||3= E I Xi U- 

We assume that: 1) A{(0,...,0) = 0,i = l,2,...,n, and 2) functions 
Ai(xi,...,xn),i = l,...,n are continuous for x = (zi,... ,xn) ^ (0,... ,0). 

Let x(t) be a decision of Cauchy task (2.4)-(2.5). 
Let (si(r),...,sn(r)) be a point that lay on sphere 5(0,r). Let us fix an 

arbitrary matrix C = [cij\i,j=\,...,n,Cij -const with vector {ciU... ,cin),i = 
1,2,...,n that lay into sphere 5(0, r). Let B{C, r) = [bij(C, r)]ij=i,2,...,n, where 

(Ai(0,...,0,Cii,Ciji+i,...,Cin)-Ai(Q,...,0,Ci,j+1,...,Cin)      forS(r)^Q- 

i,j = l,...,n. 
Theorem 2.5. Let C = [cij]j}.,=i,...,n be an arbitrary nonzero matrix with 

vectors (en,... ,ci>n) G R(0,r). Assume that for r,n > r > r0 rx- arbitrary 
number (n > r0)) the inequality A(B{C,r)) < 0(A(5(C,r)) < -a < 0) occurs. 
Then the solution of equation (2.4) is stable (asymptotically stable). 

Proof of this Theorem is given in the [5]. 

2.4      Differential equations with a small parameters at- 
tached to derivative 

Let us consider a system of differential equations with a small parameter at- 
tached to derivative 

ß = Q(x,y,fj), (2.6) 
VM = H(x,y,u,ß), 

where z = (xi,... ,xn);y = (yx,... ,ym)\u = {ux,... ,um);u G G,fi(fi > 0)- is 
a small parameter. Vector u is a vector of freedom parameters. 

Let Q(0, y, u, /i) = 0, H(x, 0, u, /z) = 0. 
Let B = (bx,...,bn),C = (c1;... ,cn),buCi = const,i = l,...,n be vectors 

with arbitrary components. 
Let A(B) = [oij]tj=i,...,n. where 

 5j , /or Oj ^ u, 

0 for Bj = 0; 
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i,j = l,...,n. 
Let D(C) = [dki{C)]k,i=i,...,n, where 

(   Hk{x,0,...,0,ci,...,cm,u,ti)-Hir(x,0,...tO,ci + i,...,cm,u,fi)      r , n 

dkl(C)(B)= c-i , forc^O, 
{ 0, for a = 0, 

k,l = 1,... ,m. 
Assume that occur the following conditions: 
Al) There have place the inequality A(A(B)) < 0 for any nonzero vector 

B = (b\,...,bn) that belong to the sphere R(0,r) e fin with a small radius r, 
for any vector y = Q/i,• • •,ym) from the sphere R(0,r) e Rm, for any u e G 
and for 0 < fj, < [JLQ. 

A2) There have place the inequality A(A(B)) < -a, a = const > 0 with 
conditions that was formulated in Al. 

A3) There have place the inequality A(D(C)) < 0) for any nonzero vector 
C = (ci,.. .,Cm), that belong to the sphere i?(0,r) G i?m with a small radius r, 
for any vector x £ Rn, for any u£G and for 0 < ß < HQ. 

A4) There have place the inequality A(D(C)) < -ß,ß = const > 0 with 
conditions that was formulated in A3. 

Let ßi = /ty/zo.7 = min(a,ßi). 
Theorem 2.6. Let the conditions Al and A2 occur. Then a domain G is a 

domain of stability of solutions of the system of equations (2.6). 
Theorem 2.7. Let the conditions A3 and A4 occur. Then a solution of the 

system of equations (2.6) is asymptotically stability uniformly by fi,0 < fj, < no 
and for any u £ G. 

The proofs of Theorem 2.6 and Theorem 2.7 are given in the [8]. 

3    Stability of differential equations in Banach 
spaces 

Reviewed in the previous paragraph Theorems are proved with the definition of 
the following Theorem. 

Let us consider nonlinear operational equation in Banach space B 

dx 
— = A(t,x(t)), >1(*,0) = 0. (3.1) 

Investigate stability of trivial solution of the equation (3.1). Let us set an 
initial disturbance 

x(0) = x0,    x0e B (3.2) 

and consider the Cauchy problem (3.1), (3.2). 
Theorem 3.1. Let us assume that in some solid sphere R(0,5) of the B space 

it is satisfied the following condition: for any (T > 0) and any z G fl(0,8) it is 
found such a linear operator L(T, z)x, that 
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1) logarithmic norm of the operator A(L(T, z)) < 0(AL(T, z) < —a, a > 0 
2) for any arbitrary as much as desired small e(e > 0) there exists such 

neighborhood <5i(e) and such an evaluation AT(e) (for each z is itself), that 
provided \\x(i) — z\\ < 8\ and t e [T, T + AT] there is valid an inequality 

\\A(t,x(t))-L(T,z)x(t)\\<e. 

Then a trivial solution of the equation (3.1) is stable (asymptotic stable). 
Proof. We lead the proof by contradiction. Let be at the moment o a 

trajectory x(t) of Cauchy task (3.1), (3.2) leaves the sphere 5(0, <5)(||xo|| < 5) 
passing through the point z e B. 

By theorem conditions there is found a linear operator L(TQ, z) satisfying 
the conditions 1), 2). Let us present the equation (3.1) as the form of 

— =L(T0,z)x + F(x), (3.3) 

here F(x) = A(t,x(t)) - L(TQ,z). 
As z ^ 0, from the condition 2) of the theorem follows that it will be found 

such a time interval AT* that providing t e [T0,Ti] Ti = T0 + AT* 

\\F(x)\\ < e\\x(t)\\. (3.4) 

Solution of the equation (3.3) for t > T there can be presented as the form 
of 

x(t) = eL^z^-T^x(T0) + I' eL^z^-^F{r)dT. (3.5) 

To 

Passage in the (3.5) to the norm and taking account of the inequality (3.4) 
in the time interval [T0,Ti] we arrive at inequality 

t 

\\x(t)\\ < e-^-^MTon +£y"e-«<*-r>||x(r)||dT. (3.6) 

T 

Using standart methods we have in the time interval [7b, Ti] 

\\x(t)\\<e-(a-eKt~To)\\x(T0)\\. (3.7) 

Therefore the trajectory x(t) does not leave the sphere 5(0,5) and stability 
is proved. 

Let us prove asymptotic stability. By anology with led arguments above we 
build a sequence of points To, T\,..., Tn, • • • such that 

\\x{Tk+1)\\ < e-<a-«><r*+'-T*>||z(rfc)||. (3-8) 
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There are two possibilities: 1)  lim Tn = T*, 2)   lim Tn = oo. 
n—>oo n—»oo 

In the first place passing in the (3.8) to limit providing k —> oo, we have 

\\xCr)\\<e-l*-< >(T*-r°)||x(To)||. 

It follows that x(T*) = 0. Indeed provided x(T*) ^ 0, then by theorem con- 
ditions the trajectory x(t) exists for any t > 0. Therefore is exists providing 
t >T*. Having taken T* as initial approximation and having done over again 
we arrive at contradiction. Therefore x{T*) = 0. 

In the second place tending x(t) to 0 providing t -> oo is obvious. The 
theorem is proved. 

Remark 1. In case investigation of stability is conducted in Hilbert space, 
the condition 1) can be changed to the following: 

1) Re(L(T,z)) < 0(Re(L{T,z)) <-a,a> 0). 
Similar statements are correct and for difference equations. 
The paper is supported by Russian Humanities Science Fund (grant 01-02- 

00147a). 
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Abstract 

This paper concerns the modeling and the integrated numerical simulation of a flexible mechanism 
subject to the action of a digital control system. A general method is proposed, based on the for- 
malism of flexible multibody systems (MBS) using the Finite Element Method (FEM). Nonlinear 
effects in the mechanical structure or in the control system can be taken into account. The numerical 
simulation tool is applied to design an active control system in a hot-dip galvanizing line, which aims 
at reducing the vibrations of the steel strip. 

Keywords: Flexible Multibody Systems, Active Control 

1    Introduction 
Lately, numerous investigations appeared in control of flexible mechanisms such as flexible manipulators, 
high precision machine tools, vehicles and foldable structures [5]. The first task to design a control 
system is to establish the control law defining the relationship between its inputs and its outputs. At 
this stage, a simple model of the mechanism is required and many dynamical effects are neglected or 
roughly estimated. Once the control law is defined, the designers try to build a control system composed 
of actuators, sensors and controllers which will be able to realize the input-output relationship. 
However, the actual control system never matches exactly the theoretical control law. Will the actual 
control system be efficient on the actual mechanism ? Is the control system really optimal for the appli- 
cation ? Often, the answers are obtained through experimental testing and trial-error adjusting of the 
controller parameters. Instead, designers would prefer to simulate the whole mechatronic system, includ- 
ing the structure, the controller, the sensors and the actuators, using the most rigorous dynamical model 
as possible. Many standard simulation tools are available in both fields of flexible multibody systems 
and control systems. But yet, these software packages are usually not able to consider simultaneously 
the structural behaviour and the control system without lost of generality. The purpose of this paper is 
to describe and illustrate a general method for the simulation of mechatronic systems. 
The mechanical model is built in the formalism of flexible multibody systems, using the Finite Element 
Method [2]. This formalism, implemented in the MECANO computer code [4], accounts for nonlinear 
structural flexibility and large displacements. The model of a digital control system is introduced into the 
simulation as a FORTRAN routine called at each sampling instant. This quite general approach allows 
to deal with nonlinear effects either in the mechanical structure or in the control system. 
The simulation tool is applied to design an active control system in a hot-dip galvanizing line, which aims 
at reducing the vibrations of the steel strip. The number of actuators and their configuration is defined 
on the basis of the simulation results. 
The time-integration algorithm is presented in section 2 and the design of the active control system for 
the galvanizing line is described in section 3. 
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2    Simulation of mechatronic systems 

2.1 Multibody dynamics 

The purpose of this paragraph is to recall some concepts of multibody dynamics.  The finite element 
methodology is adopted so that the motion is directly referred to the inertial frame.  The mechanical 
system is made of structural components connected through various kinds of kinematic joints. 
Applying the Lagrangian multipliers method to the Hamilton principle leads to a system of Differential 
Algebraic Equations (DAE) of general form [2] : 

f  M(q)q + BrA-g(q,q,i) = 0 
\ *(q,t) = 0 [2l> 

where one defines t, the time; M, the mass matrix describing the inertia terms proportional to ac- 
celeration; q, the generalized degrees of freedom of the system; g, the sum of external, internal and 
complementary inertia forces; #, the set of holonomic kinematic constraints; A, the set of Lagrangian 
multipliers and B, the matrix of constraint gradients. 
The first set of equations describes the dynamic equilibrium of the system and the second one represents 
the holonomic kinematic constraints. 
The equations (2.1) may be solved through time domain numerical integration with the well known 
Newmark a-family of implicit algorithms. Assuming that the solution is known at time tn, the unknowns 
of the problem are qn+1, qn+1, qn+1 and A,l+1 at time tn+i = tn + h, where h is the time step. The 
Newton-Raphson iterative procedure is applied to converge to the solution by successive linearizations of 
the equations. 

2.2 Simulation of Mechatronic Systems 

A sampled-data control system with a sampling period T can be modelled by the following state equations: 

x!+i - fu(xj,Uj,t,-) (2.2) 

fi+i = f<,(xi,Ui,t.-) (2.3) 

where the subscript i denotes the ith sampling instant, u; the vector of the inputs, x1+1 the state vector of 
the control system, and fi+1 the vector of the outputs applied to the mechanism during the time interval 
[ti,ti+i]. fu and f0 are respectively the update and output functions. In our case, the input data arc 
measured on the mechanical system, and thus are related with its generalized coordinates: u = u(q, q, q). 
The action of the control system on the structure modifies its dynamic equilibrium : 

fM(q)q + BTA-g(q,q1l)=Dfi+l W G Mi+i] ,„ ,v 
1 *(q,*) = 0 (24) 

where D is the influence matrix of the control forces on the generalized coordinates, which is assumed 
to be constant. The integration algorithm of equations (2.4) is illustrated in figure 1. The time step h is 
a divisor of the sampling period T. Inside each sampling period, the time integration of the mechanical 
equations is performed taking into account a constant vector f. At the sampling instants, the control 
routine updates the control forces as well as the state variables. In most cases, the dynamics of the 
control system is faster than the dynamics of the mechanism and a reasonable choice for the time step is 
h = T. 

3    Application of the simulation tool 

3.1     Galvanizing process 

Figure 2 illustrates a continuous hot-dip galvanizing line. The steel strip, of the order of 1 m wide by 
1 mm thick, is preheated and passed at the speed of about 1 m/s through a pot of molten zinc. A zinc 
film is entrained onto the strip as it emerges from the pot. The deposited film solidifies while the strip 
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Figure 1:  Numerical integration algorithm for a mechanical system subject to the action of a digital 
controller. 

Fan cooler 

Electromagnets 

Steel strip 
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. Air-knives 

Stabilizing roller 

Bottom roller 

Figure 2: Galvanizing line. 

41 



Flexion (Hz) Torsion (Hz) 
0.55 0.56 
1.10 1.11 
1.66 1.67 
2.21 2.23 

... 

Table 1: Natural frequencies of the structure. 

runs vertically upwards. After the top roller, the finished product is guided to a delivery section where 
it is coiled and cut. The distance from the stabilizing roller to the top roller is of the order of 50 m. 
Accurate control of the amount of solidified deposit has a great commercial issue: overdeposition results 
m excessive use of zinc which increases the production costs; underdeposition results in an unsatisfactory 
product. Air-knives, consisting of a pair of nozzles, regulate the zinc thickness. However, the vibration 
movement of the steel strip in front of the air-knives leads to variations in the amount of deposit. 
Our purpose is to design a collocated active control system able to reduce those vibrations. Based on the 
information received by a sensor, a digital controller drives an electromagnet acting on the strip. Several 
independent sensor-actuator pairs can thus be installed. 
In the following paragraphs, a mechanical model is first established. Then the design and the modeling 
of the control system is described. Finally, the simulation tool which has been presented above is used 
to estimate the performances of the system. 

3.2    Mechanical modeling 

Although the steel strip is prestressed, the structure remains very flexible and the mechanical excitation 
induced by the fan cooler causes a high vibration level. This section aims at constructing a reliable 
mechanical model able to capture all the significant effects. 

Basic model The steel strip may be assumed to be fixed at the stabilizing roller and at the top roller 
It is modeled with shell finite elements which allows to take the prestressing effect and the gravity field 
into account. As the strip bends, its extension produces modifications of the stresses inside the structure 
which influences its stiffness. This nonlinear phenomenon is well known as geometrical stiffening and was 
considered in a preliminary model. But the results showed that the stress modifications remain small so 
that the geometrical stiffening can be neglected and a linear model is sufficient to describe the dynamic 
behaviour of the steel strip. 
The pressure field produced by the fan cooler is modeled as a white noise excitation in the frequency 
range from 0.2 Hz to 10 Hz, as suggested by experimental data. This excitation appears to be spatially 
uncorrelated. However, to avoid the definition of a time domain excitation function at each node of the 
finite element model, the excitation zone may be decomposed into several independent zones in which 
the nodes are simultaneously excited. 
The natural frequencies were computed for the linear model and the results arc presented in Table 1 
The eigen-frequencies of the torsion modes almost match the eigen-frequencies of the flexion modes. 

Speed of the steel strip The vertical motion of the steel strip during the process may affect the 
vibrations. A two-dimensional finite element model of the moving steel strip has been developed to study 
this phenomenon. The galvanizing line has been replaced by a line enclosing the stabilizing roller and 
the top roller as shown in figure 3. Despite numerical difficulties encountered in the elaboration of this 
model, the eigen-frequencies have been computed for increasing values of the vertical speed. For speed 
values up to 15 m/s, the natural frequencies remain almost unaffected. 
As a conclusion, we can assume that the steel strip is motionless and that both the stabilizing roller and 
the top roller are fixed. 

Model reduction All nonlinear effects were found to be negligible in the structure. Thus assuming 
a linear behaviour, the Craig-Bampton substructuring method can be used to build a reduced model 
containing less degrees of freedom [2].   This method requires the partitioning of the initial degrees of 
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Figure 3: Two-dimensional finite element model of the moving steel strip. 

Displacement on the edge, electromagnet side Displacement on the edge, opposite side : 

E-3 DiGp.(m) 

Figure 4: Displacements in front of the air-knives when a single actuator is located on one edge of the 
steel strip; the active control system is turned on at time t = 20s (sampling period : T = 0.5 ms, gain : 
9 = 100) 

freedom into two groups : the boundary degrees of freedom, which will be retained, and the internal 
degrees of freedom which will not appear explicitly in the reduced model and are considered as free. The 
movement of the structure is described as the superposition of constrained modes describing the static 
behaviour of the boundaries and a few clamped vibration modes obtained when fixing the boundary. 
The degrees of freedom situated on the rollers, in the excitation zone, in front of the electromagnets and 
in front of the air-knives are defined as boundary degrees of freedom. To cover the frequency range of the 
excitation (0.2 Hz - 10 Hz), 50 clamped vibration modes have been kept. As the initial model contains 
2400 degrees of freedom, the reduced one contains only 300 degrees of freedom so that the computation 
time decreases by a factor of 3. 

3.3    Active control system 

This paragraph concerns the design and the modeling of the active control system when a single actuator 
acts on the structure (single input - single output system). In the case of a multiple input - multiple 
output system, a control routine has to be defined for each independent sensor/actuator pair. 

Control law Design methods for active control system are extensively described in the reference [3]. 
This paragraph presents the results of the design procedure. 
A collocated configuration of the actuator and the sensor is chosen in order to maximise the robustness. 
The active damping control law is a direct velocity feedback : 

~9Qj (3.5) 

The desired force ff applied on node j is proportional and opposite to the measured velocity qj, which 
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guarantees energy dissipation and unconditional stability. This control law is thus stabilizing for any 
flexible structure. No matter the dimensions of the steel strip, all vibration modes will be damped. The 
gain g, which defines the impact of the control system on the structure, has to be carefully optimized. 

Actuator placement The performance of the active control depends on the position of the actuator 
on the structure. A method developed by Gawronski [1] has been applied to find the best location of the 
actuator. The detailed description of this method is beyond the scope of this paper. In brief, accounting 
for technological constraints, the optimization yields the following conclusion: the actuator should be 
placed 3.5 m above the stabilizing roller, on the edge of the strip in order to control both flexion and 
torsion modes. 

Actuator modeling The controller drives the electrical current i in the electromagnet. But, the relation 
between the electrical current and the force /, applied on the steel strip is highly nonlinear and dependent 
on the air gap e. An analytical expression of the relation /,-(i, e) has been established to fit experimental 
data. This relation is the non-linear model of the actuator. 

Description of the control routine The control routine receives the input vector u containing two 
components: q, and qj. First, it computes ff according to the control law (3.5). Then, the desired 
electrical current i is adequately estimated. The value of qj is used to compute the air gap e. Finally, 
the actuator model fj(i,e) defines the force f applied on the structure. 

3.4    Results 

A parametric study has been led for several configurations of the actuators and several dimensions of the 
steel strip. For the sake of conciseness, the detailed results are not presented here. Figure 4 illustrates the 
results obtained with mean dimensions of the strip and a single actuator placed on the edge, 3.5 m above 
the stabilizing roller. After 20 seconds, the control system is turned on and the vibrations are efficiently 
attenuated on the actuator side, but not on the other side. Better performances are observed with more 
actuators: three actuators are able to reduce efficiently the vibration level in front of the air-knives. 

4    Conclusion 

The general simulation tool presented in this paper is adapted for the simulation of any flexible mechanism 
subject to the action of any digital control system. It turned out to be really helpful for the design of 
an active control system in a hot-dip galvanizing line. However, one difficulty of the method is its huge 
computational load. 
This too! may be extended to many other kinds of applications as the modeling of machine tools, flexible 
manipulators, foldable structures, vehicles... 
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Abstract. In this paper the effects of unsteady aerodynamic loads on the driving dynamics 
of high speed trains during passing manoeuvres in absence of cross wind have been inves- 
tigated. To this end a co-simulation MBS/CFD was implemented. A linear aerodynamic 
model, the panel method, was applied to the computation of the unsteady flow around the 
driving trailers for the examined manoeuvres. The multibody simulation program SIMPACK 
simulated the dynamic response of the vehicles to the resulting aerodynamic loads. 

Keywords: Multibody dynamics, railway aerodynamics, unsteady aerodynamics, 
co-simulation, coupled systems 

1.   Introduction 

Rapidly growing operative speeds together with the cut off of leading car's 
weight, due to light construction and to the distribution of the traction units 
along the whole train, let today's trains be very sensitive to aerodynamic 
loads. For example, the driving trailers of many recent high speed trains are 
precautionary ballasted in order to reduce their aerodynamic sensitivity. The 
response of vehicles to steady and especially unsteady loads has thus to be 
carefully investigated to ensure the safety of railway operations under extreme 
aerodynamic conditions [1]. 

The most general way to include aerodynamic effects in a multibody system 
is the coupling of the multibody system code with a solver from computational 
fluid dynamics (CFD), see [2, 3]. Such partitioned approach, which is called co- 
simulation or simulator coupling when the coupled codes remain unchanged 
and completely stand-alone and communicate only through appropriate in- 
terfaces at discrete time points, see [4], is capable to describe virtually every 
unsteady aerodynamic phenomenon and to take into account the reciprocal 
interaction between mechanical and aerodynamical system. 

A new application field for this coupled approach is the behavior of ground 
vehicles under unsteady aerodynamic loads, for example due to the interaction 
with other vehicles {interference), see [5, 6]. Such problems can not be handled 
by the conventional approach based on aerodynamic coefficients. The typical 
case of two high speed trains passing by each other is presented below. 

It must be mentioned that the methods of the multibody dynamics and 
their implementation in simulation software offer very efficient tools for the 
analysis of the dynamical behavior of railway vehicles. On the contrary the 
description of unsteady aerodynamic loads through CFD methods or wind 
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tunnel experiments can be still achieved only with great efforts and high costs, 
in most cases with poor accuracy. 

2.   Basic principle of the co-simulation 

The modular structure of coupled problems may be adopted in the simulation 
using for each subsystem its own simulation tool for model setup and time 
integration [7]. Well established standard software tools are used for the in- 
dividual subsystems. In this way the subsystems are integrated by different 
time integration methods such that each of these methods can be tailored to 
the solution behavior of the corresponding subsystem. 

The communication between subsystems is restricted to discrete synchro- 
nization points Tn. In each subsystem all necessary information from other 
subsystems can be provided by interpolation or — if data for interpolation 
are not yet available — by extrapolation from t < Tn to the actual macro step 
Tn -+ Tn+i. But in many cases it is sufficient to keep the value of the coupling 
variables from the other subsystems constant during the whole macro step 
Tn —► Tn+i. The latter is the usual approach used by the multibody system 
tool during the co-simulation. 

Co-simulation techniques are convenient but they may suffer from numerical 
instability. Furthermore, interpolation and extrapolation introduce additional 
discretization errors. In most standard applications stability and accuracy is 
guaranteed if the macro step size H := Tn+\ - Tn is sufficiently small. 

For certain classes of coupled problems the instability phenomenon has been 
analyzed in great detail. Several modifications of the co-simulation techniques 
help to improve its stability, accuracy and robustness also for larger macro 
step sizes [8]. 

3.   Formulation of the coupled problem 

3.1.  MULTIBODY SYSTEM 

The classical topic of interest in multibody dynamics are systems of rigid 
bodies being connected by joints and force elements like springs and dampers 
[9]. The equations of motion are given by 

M(q) q(t)  =  f (i, q, q, A) - GT(t, q) A , (la) 

0  = g(t,q) (lb) 

with q denoting the position coordinates of all bodies. M(q) is the generalized 
mass matrix and f the vector of applied forces. Joints decrease the number 
of degrees of freedom in the system and may result in constraints (lb) that 
are coupled to the dynamical equations (la) by constraint forces -GTA with 
Lagrange multipliers A and G(£, q) := (0g/0q)(t, q). Very efficient numerical 
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methods for the evaluation and for the time integration of (1) have been devel- 
oped and implemented in industrial multibody simulation tools like ADAMS, 
SIMPACK or DADS, see [10, 11]. 

Already in the early days of multibody dynamics these methods have been 
extended to more general mechanical systems that contain e. g. flexible bodies 
or force elements with internal dynamics. On the contrary the extension of 
the simulation scenarios through co-simulation is a recent development which 
is still in progress. 

3.2. AERODYNAMIC SYSTEM 

The flow around high speed trains in absence of cross wind can be assumed 
to be inviscid and irrotational, leading to a linear aerodynamic model. Such a 
flow model is called potential flow and is widely used in aircraft aerodynamics 
but also in railway aerodynamics when cross wind has not to be considered. Its 
discretized numerical formulations, the panel methods [12, 13], lead to small 
computational effort and other benefits compared to nonlinear aerodynamic 
models. 

A potential flow can be merely described by the Laplace equation by 
introducing a scalar field function $: 

V2$ = 0 (2) 

whereby potential function and velocity field are directly connected: 

u = V$ . (3) 

Eq. (2) must be completed with some boundary conditions which are the 
physical interface between multibody and aerodynamical system. Such condi- 
tions are presented in the next section. 

3.3. COUPLED SYSTEM 

The boundary condition for the flow only requires that the normal component 
of the relative velocity on the vehicles walls dtiv vanishes, i. e. that the normal 
component of the absolute velocity u is equal to the velocity of the wall v: 

V$ • n = -v(q) • n       on dtlv (4) 

which shows that the potential $ must depend on the velocity of the vehicles 

Using Green's formula Eq. (2) can be rearranged to obtain an expression for 
the potential $ as integral on the vehicles walls düv of a source distribution a 
divided by the module of the position vector r. A doublet distribution, which 
compares in the general formulation, is not necessary for the case of ground 
vehicles because no special conditions, such as the Kutta-condition, have to 
be satisfied. 
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Since düy depends on the vehicles position, $ depends on q as well: 

$(r,q,q) = -^-/     a^-ds. (5) 

The source distribution o on düy is unknown and has to be determined 
using the boundary condition (4). When o has been computed, $ and u can 
be derived using (5) and (3). 

The Bernoulli Equation can now be applied to obtain the pressure field: 

d$      |u|2     p      Poo , 
~dt + ~2~ + ~o = ~T = COnst     ^     P(r,q,q,*). (6) 

It is finally possible to compute the resulting flow force L/ and torque M/ 
related to the origin O: 

L/(q,q,t)  = - /      p-nds, (7a) 
an V 

M/(q,q1t)  = - /      rxp-nds (7b) 
JdQv 

which couple the flow equations (2) and (4) with the multibody system equa- 
tions (1). 

The used panel method adopts a discretization of the surface integral in (5). 
The finite surface elements are called panels and on each of them the source 
distribution Oi is supposed to be constant. The boundary condition (4) leads 
to an algebraic linear system whose unknown vector is the discrete source 
distribution o\ and whose dimension is thus the number of panels. Eq. (6) 
has also to be discretized: pressure distribution and forces (7) can be finally 
obtained on a discrete time axis. 

In order to minimize the computational effort the number of "aerodynamic" 
time steps must be minimized, as each of these time steps required for a usual 
configuration about 15 minutes. The panel method is capable of very large 
time steps compared to the multibody system part. Furthermore, the flow and 
driving dynamics are quite weakly coupled. For these reasons a co-simulation 
technique has been implemented. In each macro step T„ -+ Tn+1 Eq. (6) is 
discretized once using the macro step size H as time step. The flow field is 
thus resolved only at the synchronization points Tn and kept frozen between 
them. The multibody system part of the coupled problem is integrated by 
standard techniques from multibody dynamics with step size and order control. 
In this way about 30 macro steps are necessary for the simulation of a typical 
manoeuvre. 

4.   Results 

The simulation of a wide range of typical driving manoeuvres (passing on 
open track and at tunnel entrance, tunnel run-in and run-out, etc.) have been 
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performed. Results can be examined in many ways using different criteria but 
none of them can be definitively chosen as representative, as each railway 
company uses its own methods to estimate aerodynamic sensitivity. In the 
following only the lateral displacement of the leading wheelset for the case 
of two ICE trains passing by each other at the same speed on open track is 
reported. 

Results show that, even if the aerodynamic forces grow to the square of the 
driving velocity, the response of the system has only a linear dependence on the 
velocity, see Fig. 1. As a consequence not exclusively very high driving speeds 
are critical. Results plotted in Fig. 1 refer to trains driving on a perfectly 
straight and plane track without rail excitations (ideal case); the values are 
therefore relative small. 

Passing Manoeuvre on open track 

50 55 60 
Driving velocity [m/s] 

Figure 1. Maximal wheelset's lateral displacement during a passing manoeuvre on 
open track (ideal case). 

From the simulations also emerged that the presence of little disturbances 
can amplify the dynamical response of the vehicles. Fig. 2 shows a typical 
situation: a small, low frequency perturbation, which could be caused by cross 
wind or track irregularities, lets the maximal displacement of the wheelset 
reach much larger values than in the ideal case. 

Using the new simulation tool it was also possible to point out that, whereas 
the unsteady aerodynamic loads can exert a very large influence on the driving 
dynamics, the effects of the induced vehicle motion on the surrounding flow 
is of some influence only when the fundamental frequency of the excitation 
approaches the lowest natural frequencies of the car. In the case of symmetri- 
cal passing manoeuvres such condition is satisfied only at very small driving 
velocities, the influence can be thus usually neglected. 
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Passing Manoeuvre on open track 

-0.5 

-- Passing without perturbation 
— Passing with perturbation 
  Perturbation 

1 

mln»-0.51 

min=-0.84 

Time [s] 

Figure 2. Effect of a small perturbation on wheelset's lateral dynamics during a 
symmetrical passing manoeuvre on open track at 80 m/s. 
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EFFICIENT SIMULATION OF RIGID-FLEXIBLE MULTIBODY DYNAMICS: 
SOME IMPLEMENTATIONS AND RESULTS* 

O. N. DMITROTCHENKO 
Department of Applied Mechanics, Bryansk State Technical University 
Bulv. im. 50-letiya Oktyabrya 7, 241035 Bryansk, Russia 
don@bitmcnit.bryansk.su 

Abstract. Known and modified simulation methods, such as composite and articulated 
ones, as well as different finite-element discretization methods are presented. 

1.        Equations of motion 

At first the dynamic equations of a flexible body are considered in the form of the so- 
called [1] semidiscretized equations 

Mrw + Mreü = Qr + Rr, 

MreTw + Meü = Qe + Re, 

where Mr, Mre and Me are the (quasi-)rigid, rigid-elastic and elastic mass matrices; 
the next three 6-columns relate to motion of the body-fixed floating reference frame [2]: 

linear and angular accelerations w = (f äT)T, applied and inertial forces and their 

moments Qr, reaction forces and moments Rr; finally, Qe and Re are the ap- 
plied/inertial and reaction generalized forces relating to dynamics of the generalized 
coordinates u defining the deformed state of the body. 

Now let the motion of the reference frame origin for each body / be defined by 
means of a set of generalized coordinates <?, as follows: 

Here O, are Jacobian matrices. The second discretization of equations (1) by substitution 
of W; and summation over all the bodies in a system lead to the equations 

n 

I 
(=1 

QjM? 
M^t       Mf 

r(ßf-*i>?)l 
-Mfe7w; 

o; M[<s>i o 

o      o 
or, in a compact form, the equations of structural dynamics in generalized coordinates 

(Mr+Me)x = Q. (2) 

*' Supported by the Russian Foundation for Basic Research under the grants 02-01-00364, 02-01-06098 
and by the scientific program "Universities of Russia - Basic Research" (UR.04.01.046). 
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2. Simulation methods 

2.1.     COMPOSITE BODY METHOD 

Effectiveness of simulation of a large system can be estimated for a «-body chain 
(Figure 1). So, a direct method of implementation of the equations (2) is cubic in «. That 

is the computational effort is 0(«3) for the matrix Mr and 0(n2) for Me, Q. 
The composite body method [3] known for rigid multibody systems allows decreas- 

ing the effort to a quadratic one: down to 0{n2) and 0(n) for the matrices above: 

n-i. i 

M*J=    ZcZMr
kck,<t>* = c;]s;.. 

£=max(f,y) 

ck 5;=[0...5,,..0]. '3x3     _r* 

0       /3x3. 

Here /-, is the reference frame origin of the z'-th 
body; 5, is a Jacobian matrix describing the 
local kinematics of two contiguous bodies: 

3x3 

0 
n-\,\ 

^3x3 

n-i +siüi- (3) 

Figure 1. n-body chain 
For a rigid body, w, is a column of local joint 
coordinates in joint /. 

2.2.     ARTICULATED BODY METHOD 

Now an application of the articulated body method [4,5] for a rigid-flexible multibody 
system is considered. The method is linear in « for a «-body chain because it does not 
deal with a global mass matrix at all, but uses a recurrent two-step procedure instead in 
order to eliminate reaction forces from the equations of motion of separate bodies. 

Direct motion. Let us consider two end bodies n and («-1) of the chain in Figure 1. 
Let both bodies n and (n-1) be flexible. Equations (1) for body n are 

M>„ + Mr
n
eün = Qr

n + R„ , 

Mr„eTwn+Me
nün Q'n- 

Body («-1) is subjected to influence of both Rn and R„_{ reaction forces: 

^n-lwn-l + K-l"/,-! = Qn-l + Rn-\ ~ ClRn » 

(4) 

(5) 

(6) 

(7) 
Substitution of R„, u\ and w„ from equations (4),(5),(7) eliminates reactions R„ from 

equations (6). 

Mr
n
eJxwn_{+Me

n_{ün-\=Ql ~SnRn 
Accelerations of the two bodies are coupled analogously to equation (3): 

w„ =C„w„_i +S„ü„ + w„ 
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Let the body n be flexible, but the body (n-1) be rigid. The equation (6) change into 

M n-1 W„ -l=Qn-l+R> 71-1 CnRn (8) 

Due to the ideal constraints in joint n, the following condition holds: 

ST
nRn=0. (9) 

This also leads to eliminating the reaction forces R„ from equation (8). 
Thus, one can turn from body n to (n-1) and go on the process down to body 1. 
Reverse motion. Equation (5) written down for body 1 gives the generalized accel- 

erations u\. Further, with the help of kinematical relation (7), the acceleration w2 of the 

next body 2 can be found, and the process goes on to the end of the chain. 

2.3.     ARTICULATED METHOD FOR CONSTRAINED RIGID-BODY SYSTEMS 

Despite its high effectiveness, the idea of the latter method does not work if closed 
kinematical loops exist. In this case, a modification of the articulated body method was 
proposed [5], which is based on transition to Lagrange multipliers in constraints. 

Let us consider a constrained rigid multibody system. 
The equation (9) can be solved relative to the reaction forces Rn as follows: 

Rn ~ HnKi > then tf„S„=0. (10) 

Here X„ is a column of Lagrange multipliers (independent reactions), Hn = kerSn . 

Figure 2 shows a joint j of a system and some 
contiguous bodies. The joint connects two bodies k 
and /. The previous joint jp connects body / and the 
previous body on the path to body 0 (fixed inertial 
frame). Other joints attached to body i are denoted 
by ij, ..., im, ...; one of them, e.g. im, is joint j, 
obviously. Joints attached to body k are ku ...,kp, ... 

Let us write down the equations similar to (8) for 
the two bodies k and i, and substitute reaction forces 
from equations (10). Then the kinematical relation 
(7) will turn into the equation 

^ .( ^ 

Figure 2. Joint and its environment 

( 
HJAfj;1 Qk+H}XrY£l

kHk\ 
V 

■■HTjCjMlX 
Qi+Hj/jP 

■If H{ 4 +HTjWk. 

This approach results in a system of linear algebraic equations in Lagrange multipli- 
ers Xi for all the joints. The system has a block-three-diagonal symmetric profile for n- 
body chain. The profile width increases for an arbitrary constrained system but never- 
theless the method remains almost linear in n. The method has a unique feature: it 
becomes faster when increasing the number of degrees of freedom (DOF) in joints 
because the number of Lagrange multipliers in a joint is equal to (6-DOF). 

Several examples of n-body pendulums (with various number of DOF per joint) 
were simulated using the Universal Mechanism (UM) software [6]. The results show 
that the direct method is the fastest up to 10-15 rotational DOF in a chain, the composite 
method wins for 15 to 30 DOF, and further the articulated method is the best one. 
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3. Methods of discretization of flexible bodies. Beams and plates 

3.1. FINITE RIGID SEGMENT METHOD 

Following this approach, all flexible part's inertia and elastic properties are distributed 
among finite rigid segments (bodies) [2] and joints with elastic-dissipative joint forces, 
so the result is an ordinary rigid multibody system. The approach can be successfully 
applied to nonlinear cables, beams and also to plates [7], see an example in section 3.3. 

The approach represents well both static and dynamic properties of the flexible part. 
In particular, it is effective for simulation of non-stretchable beams using relative 
rotational degrees of freedom due to eliminating high longitudinal parasitic frequencies. 

3.2. FINITE ELEMENT METHOD 

3.2.1. Floating reference frame formulation 
In order to define an arbitrary 3D position of a plate element shown in Figure 3, one can 

use the following values: the positions rk (denoted by ruv ), £=0...3, the orientations 

(denoted by orientation matrices Ak) and shear deformations yk (not shown) of the four 
plate edges. The orientation matrices can be specified, for example, by Cardan angles. 

In terms of equations (1), the floating reference frame is associated with the edge 0. 
Relative displacements of the rest edges form the vector u of elastic coordinates 

»1 
u - < 

{ MAk) 

r10 

Figure 3. 3D plate finite element 

nonlinear mass matrix and generalized forces 

where a(A) is the vector function returning 
the Cardan angles of the rotation matrix A. 

Assuming that the vector u is small, 
one can compute the strain and kinetic 
energies and derive elastic and inertia 
forces. However,  this leads to  strongly 

3.2.2. Absolute nodal coordinate formulation 
Implementations of the method are known from many papers, e.g. [2,8]. Let us consider 
the plate element shown in Figure 3. In terms of equations (1), no body-fixed reference 
frame is used, but the nodal coordinates include all rigid-body motions of the plate. 

Such a set of nodal coordinates defines an isoparametric plate element: 

..oor „017" .00' .91 J0T 11 ..ior..nr 007" 01r .00'   01' ioTjiT .10' .11' 
" - i r00   t)0   r0b   ^b     r00   r00   'oft   r0b     ra0   ra0   rab   rab     ra0   ra0  rab   rab 

where   rj(, = dl+Jr/6p\dp denote the vectors and their up to 2nd-order 
Pl=u, p2=v 

derivatives specifying the position and orientation of the four edges of the plate. 
Then the position of an arbitrary point of the plate can be found as 
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'-f 

r = Su = [Su,Sn,Si3,Sx4;...;...;S4l,S42,S4i,Su]u, 

where Sy =5,091,a)5y(/?2.*)/3x3 are submatrices of the ma/nx of global shape func- 

tions S depending on 1-dimensional Hermite functions 
sx{p,l) = s,{l-p,l) = \-y;2 + 2e, s3M=3Z2-2t\ 

s2(pJ) = -s4(l-P,i)=l{t-2t2+43),  nM=l(43-Z2), 
used to describe the deformed state for beam finite elements [2]. 

Since the matrix 5 is «-independent, the method leads to a constant mass matrix 

M - l" \h nSTSdpxdp1  and no inertia forces. To obtain elastic forces, the following 

expression for strain energy of an orthotropic plate [9] can be employed: 

n = nw+rwÄ = /2\
a

0 lbQ{DlKf+D24+{DlM2+D2Ml)KlK2+4DnKf2)dPldp2 

+ yh2 Jo J*{D{£I + D2eI + {DM + AM)^2 + A2^2)dpidp2■ 

The preceding expression includes parameters of stiffness and sizes of the plate and 
its transverse and planar curvatures. The explicit expressions for the curvatures are too 
bulky to use them, but with the help of ideas suggested, e.g. in [8], they can be reduced 
to acceptable ones. Then the strain energy expression turns into "almost" quadratic form 
in the nodal coordinates u. 

3.3.     SIMULATION EXAMPLES 

3.3.1.  Cantilever beam subjected to large bending 
This problem was simulated for comparing results obtained using both finite element 
formulations: the floating reference frame and the absolute nodal coordinates. 

As shown in Figure 4 and in the table, the vertical force P causes large displace- 
ments of the beam free end: rotation angle 6, vertical dv and horizontal 8h deflections. 
The rest values are the beam length L and stiffness EJ, the number of finite elements n. 

Cursive values in the table correspond to the exact numerical solution of the elastica 
problem [9] and were obtained by employing the minimal amount of finite elements n. 

-0.2 

-0.4 

-0.6 

-0.8 

/ / 

1 'P 
0    ^S 1 2 

- 

1 - 

1   \ 

V - 

Figure 4. Cantilever beam 

Floating reference Absolute nodal CO- 

PL2 frame formulation ordinate formulation 

~EJ n 
9 

L L n 
6 

ff/2 L L 

0.25 3 0.079 0.083 0.004 2 0.079 0.083 0.004 
1 0.080 0.083 0.000 1 0.076 0.078 0.004 

0.5 6 0.156 0.162 0.016 3 0.156 0.162 0.016 
1 0.159 0.167 0.000 I 0.143 0.138 0.012 

1 7 0.294 0.302 0.056 4 0.294 0.302 0.056 
1 0.318 0.333 0.000 1 0.276 0.239 0.037 

2 12 0.498 0.494 0.160 5 0.498 0.494 0.161 
2 0.523 0.521 0.132 2 0.493 0.479 0.154 

5 22 0.774 0.714 0.388 6 0.774 0.714 0.388 
10 0.777 0.717 0.387 1 0.858 0.590 0.282 

10 12 0.914 0.814 0.554 12 0.911 0.811 0.555 
6 0.921 0.822 0.551 6 0.911 0.807 0.553 
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3.3.2 Motion of a flexible ellipsograph with a rigid pendulum 

r iM— 

-t = 0 

\\ 
\\ 

t = 0.3s 

t = 0.9s 

p 4   > 1   -c *1 .6   ~i 4 \° Ü2 3.6   0.8     1 

N -0.4 
I \ 

k 
t = 0.6 s 

\ = 1 .Os 
-0.8 

-1 .- 

\, \ 
> V t = 0.8s 

Figure 5 demonstrates motion of a simplest 
rigid-elastic multibody system consisting of an 
elastic beam (20 finite elements, absolute nodal 
coordinate formulation) and a rigid pendulum 
attached to the middle point of the beam. 

Parameters of the model are listed below: 
l)beam: length L=\m; density ^ = 7800 

kg/m3; cross section F= 10"4 m2 and area inertia 
^8 

Figure 5. Flexible ellipsograph 

moment J= 10"° m ; Young ratio E = 10° Pa; 
2) pendulum: length L\ = 0.5 m; mass m, 

kg; mass inertia moment J\ = 0.1 kg-m2; 
3) simulation:   step  h = \0~As;  duration 

T= 180 s; CPU Pentium III, 650 MHz. 

0.2 

time 

3.3.3.  Conveyor with hanging belt 
Figure 6 presents a model of a conveyor using UM software [6,7] and two approaches: 

1) rigid multibody system (section 3.1) having about 200 bodies, 500 degrees of 
freedom and 500 algebraic constraint equations; 

2) finite element construction (section 3.2.1) with about 2500 nodal variables. 

Figure 6. Conveyor with hanging belt: MBS and FEM models 
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Efficient corrector iteration for implicit time integration 

in multibody dynamics 

Andreas Fuchs, Martin Arnold 
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Abstract. In the time integration of complex multibody system models the numerical 
effort is dominated by the evaluation of Jacobian matrices. The equations of motion for 
multibody systems result in a special structure of the Jacobian that may be exploited 
to save computing time. In the present paper several methods axe summarized that have 
been made available in the industrial multibody system package SIMPACK. 

Keywords:   corrector iteration, time integration, evaluation of Jacobian 

Abbreviations:   MBS - Multibody systems; DAE - Differential algebraic equation 

1.   Introduction 

The equations of motion of mechanical multibody systems can be derived 
by the principles of classical mechanics. This leads to a differential algebraic 
system 

p' - t;, (1) 
M(p)v' = <2(p,v)-GT{p)\, (2) 

0 = <?(p), (3) 

where p denotes the coordinates, v the velocities, M(p) the mass matrix, 
^{p,v) the vector of applied forces and momenta, G(p) the constraint 
matrix and A are the Lagrange multipliers. 

If the equations of motion are formulated by multibody formalisms, 
which use relative and absolute coordinates p and q, they can be solved 
efficiently. The state of the MBS is completely given by p and p'. The 
absolute coordinates q are defined by 0 = g(p, q). The dynamical equations 
from the Euler-Lagrange formalism together with the second derivative of 
the constraint equations 0 = g(p,q) result in an index-1 system of the 
equations of motion 

/M o r!\ /(?"\     { v\ 
(4) 
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where Tp = dg/dp, Tq = dg/dq and f = Tqtq" + Tptp" + Ttt. The matrices 
rp, rg and M are sparse and therefore (4) can be transformed to a banded 
matrix by row and column transformations. Applying a Cholesky method 
for banded matrices, the resulting system can be solved efficiently [3]. 

2.   Time integration of constrained mechanical systems 

The solution of a differential algebraic system is computed by an approx- 
imation yn+i of the analytical exact solution y{tn+i) at every time step. 
This approximation can be calculated by a modified Newton method using 
an approximation of the Jacobian matrix [1]. 

If complex mechanical systems are described by relative coordinates, the 
computational effort in the dynamical simulation is dominated by these 
evaluations of the Jacobian of the equations of motion. To reduce the 
computing time the special structure of this Jacobian has to be exploited 
in time integration. 

2.1. TIME INTEGRATION BY DASSL: BASICS 

The integrator DASSL [1] is a special implementation of BDF methods 
with order and step size control. DASSL is a code for solving index zero 
and one systems of differential algebraic equations of the form 

F(t,y(t),y'(t))=0. (5) 

In order to solve this DAE system (5) the derivative y'(t) has to be re- 
placed by a difference approximation in every time step, e.g., the first 
order backward difference leads to the implicit Euler formula 

F(tn+l,yn+uyn+
h
1~Vn) = 0, (6) 

where hn+i — tn+1 - tn. In DASSL the derivative y'(t) is approximated by 
backward differentiation formula (BDF) of order k with 1 < k < 5. 

The solution at time tn+\ is calculated by a predictor-corrector method, 
i.e., first there is an approximation (y^, y'nli) at time tn+i specified and 
after that the final numerical solution yn+1 is determined by a corrector 
iteration. 

In the corrector iteration the equation 

F{tn+1, yn+1, ayn+1 + ß) = 0 (7) 

58 



has to be solved with respect to yn+1, whereas ß = y'^ - ay„+i and the 
parameter a is a constant, that depends on the step size and order of the 
used method. 

The solution to (7) is evaluated by a modified Newton iteration which 
is given by 

Ä!1] = ifö - cJ-lF(tn+u y<$, ay™ + ß) (8) 

with the Jacobian matrix J. The constant c accelerates the corrector iter- 
ation and m is a counter of the iterates. The starting value y^ is known 
from the predictor as an approximation to the solution. 

The required Jacobian J can be written as 

j = dF(tn+uyn+uayn+i + ß) = a<W + 9F_ /gj 
dyn+i dy'     dy' 

The iteration matrix J is either computed by finite differences, or supplied 
directly by the user. 

2.2. EFFICIENT JACOBIAN UPDATES IN DASSL 

In consequence of the high effort needed for evaluating the Jacobian matrix, 
DASSL avoids revaluations of J if possible. Often the matrices dF/dy' and 
dF/dy in (9) change very little over the span of several time steps. On the 
other hand, however, the parameter a changes whenever the used step size 
or order of the method changes. 

Instead of reevaluating the iteration matrix J on every step, DASSL uses 
the old Jacobian as long as the derivative matrices and the parameter a 
have not changed very much since the last computation of J. 

The Newton iteration (8) which is used by DASSL in the case of using 
an old Jacobian can be written as 

y^ = yffl - c^MWi, v& avSS + ß) (io) 

where Jold is the old Jacobian, saved from some previous time steps. 
If the corrector iteration fails to converge then a new evaluation of the 

Jacobian matrix J is required [1]. 

3.   Adapted approximation of the Jacobian in SIMPACK 

The standard integrator SODASRT of the industrial MBS simulation tool 
SIMPACK [5] is based on the public domain solver DASSL. In order to 
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save computing time in SIMPACK several methods have been developed 
that exploit the structure of the Jacobian in MBS applications. 

3.1. DIFFERENCE APPROXIMATION OF SPARSE JACOBIANS 

In SIMPACK there is implemented an adapted version of "Algorithm 618" 
of the Transaction on Mathematical Software (TOMS) [2]. This algorithm 
was originally developed for estimating sparse Jacobian matrices, if the 
exact sparsity structure of J is known. 

In SIMPACK only an approximation of the sparsity structure is avail- 
able. The exact structure could be derived from the topology of the observed 
model. This, however, is not yet implemented in the present SIMPACK 
version 8.5. Therefore, "Algorithm 618" is applied with the approximated 
structure. 

If the sparsity structure of the Jacobian is given, "Algorithm 618" divides 
the columns of J into groups, such that each column belongs to one and 
only one group, and such that no two columns in a group have a nonzero in 
the same row position. A partition of the columns of J with this property 
is called consistent with the determination of J. 

With this approach the Jacobian is not longer approximated by evalu- 
ating each column separately but all columns in one group are evaluated 
simultaneously by finite differences. Therefore, the approximation of the 
entire Jacobian matrix costs only one function call per group instead of one 
function call per column in the classical approach. 

3.2. PARTITIONED EVALUATION OF JACOBIAN MATRICES 

The SIMPACK integrators offer also a partitioned evaluation method for 
the Jacobian J, i.e., a separate evaluation of dF/dy' and dF/dy in (9). 
This is a standard technique in the solution of ordinary differential equa- 
tions, but it turned out to be very successful for DAE's too, since dF/dy' 
has a simple structure in SIMPACK due to the implemented multibody 
formalisms. 

The explicit formalism [5] with equations of motion 

p' = v, (11) 

v' = M-1(p)*(p,p')-M-1(p)GT(p)A, (12) 

0 = g(p), (13) 

leads to a Jacobian of the form 

dF     dF        (In ._    o \     dF 
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with the constant a that is determined by the order and step size of the 
integrator. 

If a new evaluation Jnew of the Jacobian matrix is necessary due to step 
size or order changes then the full difference approximation may be avoided 
whenever at least one approximation J0u has been computed before: 

r       _ (I0} + dF 
"new   —  &new I   n  n   I   > 0 0 ) ^ dy 

(I 0\ _,_ T (I 0 
~ Oinew I o 0 J       old ~ a°ld VOO 

=   {anew ~ Otold) (  0  0 J + J°ld' ^ 

3.3.   MBS MODELS WITH DOMINATING EXTERNAL EXCITATIONS 

Recently, the partitioned evaluation was extended to approximately linear 
models with dominating external time excitations u(t) [4j. 

If joint coordinates are used to set up the equations of motion, then the 
time excitations in rheonomic joints appear in the Jacobian matrix J. These 
entries of J make the time integration inefficient, because any changes 
of u(t) result in a reevaluation of J. 

In order to avoid these revaluations the time dependent entries of J are 
updated whenever a partitioned evaluation is enforced, see Section 3.2. 

Instead of the formulation in (5) we adapt now the standard notation 
of system theory and write F = F(y,y',u(t)). Considering the explicit 
formalism as before the Jacobian can be written as 

-«(i ?)+£<«'•«''■»<'»• (16) 

By Taylor expansion the new update formula is given by 

Jnew   ~   Jold "t" \anew      aold) I  fl  0 / 

+ y/^-^(yo,y'oMt0))(ui(tnew)-ui(told)).       (17) 
fei dui dy 

Accordingly, updating the entries of time excitations in J requires ad- 
ditional calculation of the nu partial derivatives cPF/duidy once at the 
beginning of the integration. 
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In SIMPACK the vector u(t) contains not only the time excitations u 
themselves but also the first and second derivatives u'^t) and u"(t) for 
all Ui(t) acting in rheonomic joints. So the additional effort consists of 
computing the partial derivatives dF/dy with respect to Uj, u\ and u". 

4.   Numerical experiments 

The different evaluation methods for the Jacobian are tested on various 
full vehicle models in SIMPACK [4]. Furthermore they were applied to a 
simplified benchmark problem, a chain of mathematical pendulums. 

Using the sparsity structure of the Jacobian, see Section 3.1, results in a 
reduction of computing time up to 80% applied to the benchmark problem 
and up to 30% for full vehicle models in SIMPACK. 

The partitioned technique of Section 3.2 yields a saving of up to 60%. 
Together with the methods of Section 3.1 the cpu-time may be reduced 
even more. 

With the new partitioned algorithm of Section 3.3 the cpu-time is re- 
duced by up to 90% for a chain of pendulums. As part of an industrial 
project the algorithm has been applied as well to a complex automotive 
model in SIMPACK resulting in savings up to 40%. 
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Abstract. 
We investigate the possibility of slow (quasi-static) locomotion of multi- 

link systems along a horizontal plane owing to changing their configura- 
tions. It has been shown in [1] that by alternating slow and fast phases 
of motion two-link system and three-link system with links connected in 
series can move along itself, sideways, and rotate on a spot. We prove [2] 
that the quasi-static motion of a two-link system is uncontrollable and that 
the trajectories of the system's vertices are uniquely defined by the initial 
position of the system. W7e show that there exist much enough possibilities 
for the quasi-static motion of a three-link system with the links connected 
in star. One can arrange a slow motion with the central vertex of the system 
moving along a prescribed line on the plane. 

1.   Statement of the problem 

We consider a two-link and a three-link systems, both lying on a horizon- 
tal rough plane with dry friction force. The control torques are applied at 
the system's joints and directed perpendicularly to the plane. We consider 
quasi-static motions of the systems, i.e., the motions with infinitesimal ve- 
locity and acceleration. The problem is to investigate the possibilities of 
slow locomotion of these systems and to find out how to drive the systems 
to an arbitrary position on the plane, if possible. 

Three-link system A0AiA2A3 consists of three identical weightless links 
A0Ai, i = 1,2,3, connected in star by a joint with two motors generating 
the control torques M& acting between the links A0A3 and A0A{, i — 1,2 
(Figure 1). Three point masses, each being equal to m, are located at the 
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free ends of the system, and the mass equal to m0 is located at the vertex 
AQ. Denote by // the ratio of the masses, \i = ^, and by / the length of 
each link A0A{. 

Figure 1. Three-link system 
Two-link system AiA0A2 consists of two weightless links connected by 

a joint with a motor. Let m2- be the mass located at the vertex A{, i - 0,1, 2 
and let lj be the length of the link A0Aj, j = 1,2. To avoid an ambiguity 
we suppose that m\l\ ^ 7712/2- 

We will use the unified notation and equations of motion applying both 
to the two-link and to the three-link systems. Let F, be dry friction force 
acting at the vertex A{, M; the moment of this force, and vj and ut- the 
velocity vector of the vertex A{ and its modulus, i = 0,1,2, (3). Dry friction 
force obeys Coulomb's law written in an appropriate system of units as 

F,- = 
-Vi/u,-, 

Ve,|e| < 1, »' = 0,1,2,(3) (1) 

A necessary equilibrium condition for each of the multi-link system is ex- 
pressed as follows: 

2(3) 

£F>' = ° (2) 
0 

2(3) 

EM»- = ° (3) 
0 

If this condition is satisfied, then we can uniquely choose the control 
torque for the two-link system (the control torques Mi3 and M23 for the 
three-link system) such that the equilibrium condition for each link of the 
system is also satisfied. The velocities of the vertices are subjected to the 
following constraints: 

(VJ;- v0, A0Ai) = 0,    t = 1,2,3 (4) 
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The system of equations (1) - (4) governs the quasi-static motion of the 
two-link (three-link) system. The solution of (1) - (4) is a triple (a four) of 
vectors (v0, vi, v2, (v3)). 

2.   Slow Motions of the Two-Link System 

Let 7 be the angle between the vectors A\AQ and A0A2, 7 (E [—7r,7r]. The 
projections of the velocities v,- onto the axes of a coordinate system attached 
to the link AQA\ depend only on the angle 7. 

Proposition 1. The solution of the quasi-static motion problem (l)-(4) 
is uniquely defined by the position of the two-link system. 

The trajectories of the system's vertices are uniquely defined by the 
initial position of the system. Let /-, II-, and ///-motions be the motions 
of the two-link system with 1,2 and 3 moving vertices. Let Ik and IIk 

be /- and //-motions with the vertex Ak moving, k = 1,2 (when IIk- 
motion occurs, the vertices AQ and Ak are moving). Denote by 7^ the angle 
separating /^-motion and Jk-motion, i.e., such an angle that if 7 < 7^ then 
/fc-motion occurs and if 7 > jk; then J^-motion occurs (quasi-static P- and 
ZP-motions with i ^ j never follow each other). 

We omit here the description of the full solution of (l)-(4) and the 
expressions for 7^. We will outline some featuers of the quasi-static mo- 
tion. When quasi-static //-motion occurs, one end vertex A{ moves along a 
straight line such that the distance between the line and another end vertex 
Aj is equal to ^jr2-. When quasi-static ///-motion occurs, the vertices A{ 
move along the straight lines which intersect at one point. The trajectory 
of each vertex consists of the smoothly joining straight line segments and 
the arcs of the circles. The sequence of the motion phases depends on the 
parameters of the system. It may look, for example, as I1 —> II1 or as 
II1 ->■ /// -)• I2 ->■ II2 -> III -> II1 for 7 increasing from 0 to TT. 

Figure 2. Two-link system with equal masses 
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As an example, consider the two-link system with equal masses m1 = 
m0 = m2. Let l2 < h/2. Then 7/2-motion occurs for 7 <E [0,T|3], III- 
motion occurs for 7 <E [723,731], and 72-motion occurs for 7 <E [T^.TT]. The 
trajectories of the vertices for 7 <= [0,TT] and the two-link system positions 
corresponding to 7 = 0,72

2
3,7j,,7r are shown in Figure 2. 

3.   Slow Motions of the Three-Link System 

Consider first slow motions of the three-link system with fixed vertex A0. 
We will not try to describe all such motions but will find only some motions, 
depending on the parameter fi. 

Proposition 2. 
(i) Let in both the initial and the terminal states of the three-link system 

the position of the link A0Ai be the same and let the other two links 
be close enough to each other, i.e., IA2A0A3 < 2arcsinf. Then we can 
quasi-statically drive the system from the initial state to the terminal one, 
with the link AQAX being fixed and the other two links rotating in turns 
remaining close enough to each other. 

(ii) Let in both the initial and the terminal states of the three-link 
system the position of the vertex A0 be the same and let all three links are 
close enough, i.e., for Vi 3j ^ i such that LAIAQAJ < 2arcsin §. Then we 
can quasi-statically drive the system from the initial state to the terminal 
state. At each time instant, one of the links rotates and the other two links 
are fixed, all three links being close enough to each other. 

(iii) Let n > y/3. Then we can quasi-statically drive the three-link sys- 
tem from an initial state to an arbitrary terminal state with the same 
position of the vertex A0, with two link being fixed and one link rotating 
in turns. 

Consider now motions of the three-link system with moving central 
vertex. 

Proposition 3. 
If fJ. > 2, then the quasi-static motion of the three-link system with 

moving central vertex is impossible. If> < 2, then there exists an infinite 
set of solutions of (l)-(4). 

3.1.   EXAMPLE : LOCOMOTION WITH n = y/3 AND n < 1 

Consider the three-link system with // = \/3 and describe its motion with 
the vertex A0 moving along a straight line /„, AQ € l0. First, turn the links 
so that A0A2 1 /o, £A2A0A3 = ^, and the distance from the point A, 

to the straight line A0A2 is equal to 1 - ^ (see Figure 3). Denote by /,- 
the straight lines, A{ 6 /,-, !,il0, h || h, UQl2 = £ and let vt € /,-. Then 
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the equilibrium conditions of (1),(2) are fulfilled, and the vertices can move 
along the lines /,■ while the constraint of (4) is satisfied. The motion comes 
to a complete stop when A0Ax JL l0, the vertices A2, A0, A3 lie on a straight 
line and LAXAQA2 = j$. To shift the vertex A0 along the line Z0 again, one 
should turn the links to bring them to the positions parallel to those before 
the first shift. At any time instant, one can stop the motion and change 
the direction of v0. Hence, the central vertex can move along a prescribed 
broken line on the plane. 

Figure 3. Locomotion along a straight line, fi — v3 

Consider now the three-link system with /i <  1. Let at the starting 
instant the positions of all three links be the same and let us want to shift 
the vertex AQ along a straight line IQ. 

Ao 

^^ 

Figure 4. Locomotion along a straight line, fi < 1 
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First, we turn the links so that all of them lie on /0 and coincide with 
each other. Then we fix the link A0A3 and turn both links A0A1 and A0A2 

to the same position which is opposite to the link A0A3. Then we begin 
to move aside the links A0AX and A0A2 symmetrically with respect to the 
axis /0. While LAXA0A2 < 2arcsin ^, the link A0A3 remains fixed. When 
lAiA0A2 G [2arcsin^,7r] the vertices A{ move along the straight lines 
/,■ and /,-, i = 1,2 and the vertices A0 and A3 move along l0. At the end 
of the motion, the positions of all links are the same again and the motion 
direction may be changed. Using this motion algorithm, one can drive the 
three-link system to any prescribed state on the plane, but the trajectory 
of the central vertex cannot be chosen arbitrarily. 
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KINEMATIC ANALYSIS OF MECHANISMS IN THE NEIGHBOURHOOD OF 
SINGULAR POSITIONS USING GENERAL NUMERICAL CONTINUATION 
METHODS. 

J. FRACZEK 
Warsaw University of Technology 
Nowowiejska 24, 00-665 Warsaw, POLAND 

1. Introduction 

The algorithm of kinematical analysis in absolute coordinates is usually based on the 
trajectory tracing using time as the independent parameter and classical Newton 
iteration scheme [2]. In case of analysis of complicated mechanism, simulation usually 
fails in singular positions and the reason of that cannot be easily detected by the user. 
Simultaneously singular positions analysis can provide interesting information from the 
mechanism synthesis and control system synthesis point of view. 
The paper presents an algorithm of numerical continuation using local parameterization 
instead of time parameterization. The simplest cases of singularities like simple 
bifurcation points or turning points can be detected and analyzed. The main idea is to 
analyze firstly mechanism using time or local parameterization with test function being 
responsible for singularity detection. The trajectory can be investigated in detail in the 
intervals suspected for bifurcation or turning points detected by test function during 
introductory simulation. 
The example of such an algorithm was implemented by author in his test computer 
program. 

2. Classical algorithm of kinematical analysis 

The collection of all constraints induced by the joints present in multibody model is 
denoted by [2], [3]: 

#*(q,0 = 0 (1) 

and q is the vector of absolute generalised coordinates [3]. 
The number of scalar equations in (1) is equal to / and the number of generalized 
coordinates is equal to N=6m where m is the number of rigid bodies (three variables for 
rotation parameterization are used). Typically, 1<N. 
A motion is represented as a time dependent constraint equation (driving constraints): 
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*"(q,0 = 0 (2) 

Revisiting the definition of the position, velocity and acceleration kinematic constraint 
equations, for constraint equations induced by either joints or motions in the most 
general case the following equations must be satisfied at any time t {position level 
analysis): 

*(q.O 
*'(q,0 
*'(q,0 

0 (3) 

and {velocity and respectively acceleration level analysis) 

dt 
d2i> 

= *(q,0 = *qq + *,=0 (4) 

de  =#qq + (*qq)qq + 2*/qq + *„=$qq-r = 0 (5) 

If constraints (3) are independent in the point q0 =[qoT,to]T (regular point) i.e.: 

rank (*,)=# (6) 

then exist unique solutions of linear systems (4) and (5) and nonlinear system (3) in the 
neighbourhood of the point q0 =[qn',to\'. From numerical point of view the kinematical 
analysis of the system described by (3) can be considered as a numerical tracing of a 
trajectory T such that: 

7Mq=[qr,'f:*(q) = 0, q = q(0,     t0<t<tlt qeR"*1 } (7) 

In general, numerical tracing of the trajectories (7) is the subject of numerical 
continuation methods [1]. One of the simplest methods is Euler predictor-Newton 
corrector scheme. Classical Newton corrector can be defined in the form: 

#q(q\/'+,)zJq*+*(qV+,) = 0 (8) 

The iterative algorithm (8) is numerically very efficient under strong assumption that 
condition (6) is fulfilled (i.e. all points of the trajectory are regular) and if good starting 
positions is chosen. In case the trajectory contain singular points, equation (8) becomes 
ill-conditioned and simulation usually fails. 
We will discuss very simple cases of singular configurations and propose algorithm for 
numerical detection of such points. For simplicity it is assumed that redundant 
constraints are eliminated from the system (3). 
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3.   Singular positions - examples. Multilink robot analysis and synthesis 

Practical example of singular behavior is multilink robot structural synthesis and 
analysis. The multilink robot designed in IAAM consists of several sets of bodies called 
segments. The robot was primarily intended to weld car body in places, which are not 
easy to reach. Each segment is built of rigid parts and its kinematical scheme is given in 
the Fig. 1. The segment consists of« rigid parts connected by spherical-translational (II- 
th class) and revolute joints. The mobility of the segment (Grübler number) does not 
depend on number of rigid bodies and is always equal to 2. The segment does not 
contain redundant constraints. The 2,3 4 (generally m) segments with different or equal 
number of bodies can be connected giving manipulator with Grübler count equal to 4,6 
and 8 (2m) respectively. 
The kinematical structure of the robot is investigated for different trajectories of the 
robot tip. The initial position of the robot is known. 

/////?/. 

Figure I. The kinematical scheme of one segment of the multilink robot. The mobility (Grübler number) 
is equal to 2 and does not depend on number of rigid bodies. 

It is assumed that multilink robot is built of three segments (6 DOF total) with different 
number of bodies in each of the segment - equal to 6,8,10,12 and 14 respectively. Robot 
is driven in revolute joints - two driving torques in the lowest revolute joints (at the 
base of the segment) for each segment. The relative positions of kinematical pairs of the 
segments are parameterized in certain range. For kinematical and structural synthesis 
the one of the trajectories obtained from technical specifications of the welding process 
was chosen. 
The kinematical and structural synthesis consists of three tasks: checking whether 
trajectory is accessible for given structure and dimensions of the robot (detection of 
lock-up positions), detection of singular positions of the robot and particularly positions 
where kinematical parameters of robot links are not continuous function of time and 
determining the relative angles in the selected revolute joints (with actuators) as the 
function of time (inverse kinematics). 
Two kinds of singular configurations are shown in the Fig. 2 and Fig. 3. Figure 2 
presents results of simulation of kinematical analysis for robot consisting 6 bodies in 
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each segment carried out with commercial multibody package (ADAMS). The planned 
trajectory is not accessible for that structure of robot due to the lock-up configuration 
detected for time of simulation equal approximately to 1.5s. 

a) 
E*   b*  *••  6*s   S™**   B*—>   M»i   iw* 

b) 

/        \ 
t            \ \ \ 

 .-BWil^CH V*rt,I 

/ 

1 
1 

1 

1 
J 

1 
1 

 "      J 
„»* 

Ä" I  • 

Figure 2. The results of simulation for robot with 3 segments consisting 6 bodies. Lock-up detection: a) 
robot position in lock-up configuration, b) diagrams of velocities and acceleration of cm marker of one of 
the robot body (3rd segment). 

In the Figure 3 the results of simulation of robot with 8 bodies in each segment are 
shown. The diagram of velocities (Fig. 3c) indicates that in time of simulation equal to 
2.54s solution of the kinematical task switches discontinuously from one branch of the 
solution to the another. Figures 3a and 3b show two consecutive positions of the robot 
confirming discontinuity of the solution obtained from simulation with multibody 
package. 

4. Branch tracing using numerical continuation methods 

The Newton corrector (8) can be replaced with more general corrector given by: 

q*+,=q*-*,*(q*)*(q')  i  q°=S'+' 

where (.) + denotes pseudo-inverse matrix (Moore-Penrose) [1]. 

(9) 

Pseudo-inverse matrix can be calculated efficiently using inverse matrix to matrix J 
given by the formula [1]: 

J   = r*n *'l 
-1 

er 
s _ = 

q 

-♦i'*,*-' 
,s = g-eT*-'*,      (10) 
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Figure 3. The results of simulation of multilink with 3 segments consisting 8 bodies. At time=2.54 s 
singular position and switch of the solution from one branch to the another can be observed. 
a),b) The animation sequences of robot in time=2.54s and time=2.55s. c) diagrams of position, velocity 
and acceleration of cm marker (z axis) on one of the robot body (in 3 rd segment). 

In order to trace trajectory (branch) numerically, local parameterization strategy was 
chosen. Instead of the time parameter other parameter is chosen as independent. For 
parameter choice the parameter C, in the formula (10) is responsible. The independent 
parameters are constant in the intervals of time. Moore-Penrose matrix can be calculated 
efficiently with the formula: 

♦ ^(I-ss'XJ-1)* (11) 

where s is tangent vector and (J1^ denotes submatrix of matrix (10) consisting of the 

first N column. 
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It should be pointed out that, in the algorithm of matrix J""1 evaluation, sparsity of the 
matrices can be easy exploited. To detect singular configuration we define two simplest 
cases of singularities - turning point and simple bifurcation point [1]. 

Point q0=[q/,?o]r such that *(q0) = 0 is a: 

1. Turning point (limit point or fold bifurcation) if rank ($q) = N-l and rank (<f> -) 

=Nand there is a parameterisation q(r),   t{t) with q(r0)=q0 and   t(t0)=to , and 
StldfuO. 

2. Simple stationary bifurcation point if rank (* q) = rank (# q) =N-1 and exactly two 

branches of solutions intersect with two distinct tangents. 

If during branch tracing turning point is detected, Jacobian matrix  *    becomes 

singular, but numerical scheme defined by (10) and (11) can still be applied on 
condition that time is not independent parameter. 
For bifurcation point detection the test function £" is introduced which is evaluated 
during the branch tracing. A bifurcation is indicated by a zero of f - that is a branching 
test function satisfies the property f =0 [4].  For the branch tracing given by iterative 

scheme (10) the test function can be proposed in the form    ^ = det q 

VJ   J 
This 

expression can be evaluated very efficiently taking into consideration sparsity of the 
Jacobian matrix 4>  . 

In the close neighborhood of the bifurcation point singular position can be evaluated 
with grater accuracy using direct or indirect method for calculating branch [4]. In direct 
method the equation set can be extended to the new branch system [4]: 

*(Y) = 
*(q,0 ' 

*„(q,0h = 0,  Y = [q',Mi']' (12) 

where h is a tangent vector. 

System (12) can be solved using efficient numerical solvers for sparse matrix equation 
and Newton-like iterative scheme. 
It should be pointed out that presented algorithms can be also used for branch switching 
i.e. calculating one (at least) solution on the emanating branch. If one of one solution is 
situated somewhat close to the bifurcation point then other solution on the emanating 
branch can be found using techniques of perturbations widely used in numerical 
continuation theory [1]. 
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Using general techniques for branch tracing and switching described above the general 
numerical test program was developed. Its idea was based on the research package 
namedBIFPACK[4]. 

5. An example of singular point detection. 

The model of multilink robot was analysed this time in the author computer test 
programme. Kinematics of the robot was described in the absolute coordinates and joint 
constraints. In the Fig. 4 one of the simulation results is shown. The turning point is 
detected, which is geometrical interpretation of the lock-up position of the mechanism. 

coordinate frnml ^^ link 1 base trajecltiy Z c<H!niiitate ] 
— — link -1 return trajectory Z coordinate 
■" ■ • link =1 return trajectory X coordinate 
— • lint: -t bine trajectory X coordinate 

/ 

0.75 
time (s) 

Figure 4. Global coordinates {x, z) of the last link centre of multilink robot. 

6. Conclusion. 

The algorithm based on local parameterisation is proposed in the paper. Two cases of 
singular points like turning point and bifurcation point can be detected with this 
algorithm. Moreover branch switching can be easily implemented. Basing on the 
presented formulas computer test program is built which can be prototype for general 
multibody module intended to detailed analysis of simple singular points. Detection of 
singular position is extremely important e.g. in robotics where control synthesis or 
actuator synthesis requires this type of information. 
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MECHATRONIC APPROACH FOR SIMULATION OF ROBOTS AND 
WALKING MACHINES 

Krassimir E.Georgiev - Assoc. Prof. Dr. Eng., IMEH BAS 
Teodora Ivanova 

ABSTRACT 
This paper present a new mechatronic approach to simulation of complex 

multibody systems, based on virtual modelling of manipulation robots and 
walking machines. Some basic examples concerning to robotized assembly 
systems and devices are described. 

1.INTRODUCTION 

The  typical  mechatronic   system  has   at  least  some  of the  following 
features: [1,2,3] 
■ Immediate effect on the environment by controlled motion or application of 

the technological forces, 
■ Level of adaptivity, flexibility, reprogrammability and inteligence, 
■ Modular structure, built on the basis of optimization criteria for low energy 

consumption, high speed motions and high accuracy of positioning 
■ In-built modules(mechanical, sensor, driving, control) as a system of the 

whole structure.. 
Multysensor robot systems and robotized assembly structures are typical 

objects of mechatronics and are characterized by a great complexity and an 
improved functionality, which is achieved by an integration of mechanical, 
electrical and electronic functional elements. All avaiable physical principles 
are to be considered for an optimal solution. Mechatronic systems achieved 
their performance by integration on two leveles: 
■ Integration of the optimised components, using information processing 

.The design of such systems on the level of transfer and state functions is the 
task of system theory 

■ Integration of the functional components into the structure of the 
mechatronic system, which is optimised as a whole including the 
capabilities of information processing [4,5,6,7,8]. 

2. HIERARCHICAL APPROACH TO INTEGRATION 
OF MECHATRONICAL SYSTEM 

In a complex robotic system the essence of the multisensor (actuator} 
integration is data reduction and data fusion. The creation of a mechatronic 
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system can be viewed as a network of interconnected processing sub-systems, 
by using of various sensors,actuators and processors. From the processing 
subsystem viewpoint the integration consists of: 
-Hardware design of sensors,actuators and processors, 
-Signal and image processing, 
-Dynamic control, 
-Mathematical modelling, 
-Development tools for subsystem design, 
■ Real time operation. 
The following tasks must be solved as algorithmic base   of the suggested 
approach: 
■ knowledge representation of the information and processing , 
■ system satisfaction of real-time constraints imposed by the environment - 

virtual architecture of the mechanical and processing subsystems, 
■ physical architecture of the actuators, sensors and processors, 
■ software (hardware) tools for virtual simulation and optimization 

3. MECHATRONIC UNIT FOR ADAPTIVE  ASSEMBLY 

3.1. Integrated design of structure and control 

MATLAB software package provides powerfull tools for design of 
mechatronic systems. Here we suggest an integrated approach to synthesis by 
applying of kinematic and dynamic components ( offline knowledge base ), 
connected in virtual world, which is displayed on the graphic components. Then 
we create "virtual robots" that simulate the robot, s behavior and 
manufacturing cell as well ( cooperating robots in the tasks of manufacturing ). 
This process is performed in a sequantical way on a power computer with 
graphic vizualization (Fig.l ). 

ir *•$ 

A 

■ÄSMWI 

Figure 1. Virtual simulation of mechatronic structures 
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After off-line simulation of the closed loop, s block diagrams in 
SIMULINK the verification of new control strategies with the real plant can 
be done in a few minutes. 

3.2. Structure of the mechatronic unit for adaptive assembly 

Mechatronic unit for adaptive assembly, consists of mechanical, sensing 
and control subsystems [ 4,5,6 ]. The mechanical system is designed by two 
robots - main and assisting and basic station. The main robot is of PUMA type, 
built from the basic type components and to increase the adaptive possibilities 
of the robot, a mechatronic adaptive device is applied [ Georgiev,1995]. The 
main robot (Mr) is designed to convey the components of the assembled parts 
and to perform the assembly.(Fig.2) 

The assisting robot (Ar) is of SCARA type, designed to provide for fast 
transportation and positioning of the based assembly parts. This robot is 
characterized with two zones of the action - technological (for direct assembly) 
and auxiliary (for feeding manipulations). 

E2 E ^ <► ^ ^^^^ 

.te 

tjp*~ "- 

_S«L_ 

.'»'-»• 

Figure 2. A structure of mechatronic unit 

The basic station (Bs) is coupled with six component force-torque sensor 
and is applying for precize measurements of the contact forces and fine 
positioning during the assembly of the components . 
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The mechanical part influences the environment and so it can be perceived as 
a set of effectors. The mechatronic unit gathers data about the environment by 
using sensors - force and optical, so we assume the unit to be decomposed into 
three subsystems: 
effectors (robot arms,tools and devices ) - E , 
sensors - S, 
control - Q. 

Then the state of the system can be described as: 

U={    E,S,Q   } (1) 

where U, E, S, Q   are usually expressed as state vectors. 

3.3. Modelling of the mechatronic unit 

At the modelling the following assumptions are made: 
-We considered a robot to be a device, which applies desired contact forces in 
a   controlled way. These forces are specified in three translational and three 
rotational directions of some cartesian reference frame. 

In the design and simulation the main object is to create an interactive 
package that can be run in tandem with a physical robotic world. The 
description of the object model is devided into four categories: 
A) The dynamic module, related to forces required to cause motion.lt includes 

data such as internal forces, coriolis forces and the kinetic energy matrix. 
B) The kinematic module includes data, such as joint angles, velocities, the 

jacobians and transformation matricies, which can be used to calculate 
parameters, such as the position and velocity of the robot endeffector 

C) The geometric module stores the geometric description of the assembly 
structures, building the mechatronic unit. 

D) The graphical module determines the visual image of the objects in a 
graphics output. 

For modelling and simulation  it is necessary to compute joint  acceleration 
from joint positions and velocities from the actuator torques 
or forces. The control algoritms also involve the computation  of the dynamic 
model.The common base for this is the Newton - Euler algorithm( formalism ), 
which implies two recursive computations : 
a) forward recursion from the base to the robot endeffector (computing 
the velocity and acceleration of each link), 

b) backward recursion from the effector to the robot base (computing the forces 
and torques to each joint). 
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For fast and accurate motions of main and assisting robots is necessary to 
compute in real time the controlled torques as functions of the coordinates. 

Taking into account the force and moment, acting on the endeffector of the 
main robor Mr - Fas , n as ( assembly force and moment ) as initial 
conditions, we obtain an effective algorithm for the modelling of two robots, as 
a dynamical subsystem of the mechatronic assembly unit. 

3.4. Multiprocessor  control and integration 

As we notice in our approach to integration of mechatronic systems is 
suggested to use multiprocessor control system for assembly robots and basic 
station.In such way is possible to execute several tasks of motion planning and 
fine positioning simultantny , using so called satelite processors and the 
interprocessor comunication. In the case of highprecizely assembly operations 
is necessary to measure on - line a large volume of contact forces, and to 
perform fine positioning by the basic station, using so called active compliance. 
(Georgiev,1994) 

The direct dynamic model is used to simulate the responce of the robots. 
Using the equation : 

T   = A.q   + B(q,q  ) 4 + Q (2) 

where :   B-   represents the centrifugal and coriolis force vector, Q - gravity 
force vector, A - inertia matrix of the robot, T -torque vector. 
We get : 

q= A"'[T   -H(q, q)] (3) 

where : H(q, q) = [ B(q, q ) + Q + JT.Ft +N] (4 ) 
Ff - the friction forces , N - external effort (force and moment) 
also can be written : 

dt 
-A^tH^q)] 

+ 
A 

0 
-l T (5) 

and   y = q ,   y =  X . 

In this representation the state variables are represented by the vector 
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[ q q ], while y = q gives the output in the joint space, and y = X gives the 

output vector in the operational space. The calculation of H (q, q) can be 

obtained by the Newton - Euler algorithm, noting that H(q, q) =T, when q = 0 

4. CONCLUSION 

The multiprocessor control gives a variety of possibilities to determine when 
the tasks start and when they can be stopped. This was done by integrating 
classical control structures with reactive ones and synchronisation schemes of 
the robot tasks.The global control scheme 
is based on the knowledge that robot tasks are made of a connected set of 
elementary tasks (components), for example Jacobian matrix, error vector 
computation, etc. 
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Motivation 

• SPDM Task Verification 
• High Fidelity Simulation 

Regularized Model: Hertz Theory 

Solution derived from the theory of 
elasticity 
Stiffness force models for bodies 
with 
- Non-conforming shapes 
- Smooth surfaces (i.e. no edges) 

For sphere-sphere contact 
fn   =kX„ J n n 

3/2 
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Regularized Model: Hunt-Crossley 

• Hertz model + hysteretic damping 
fn=kxn

p+{Xxn
p)xn 

• Can be re-written as 
fn=kxn

p(l + axn) 

• Where 
1       "5 

a = —=-a       e = —-= l-avi (Goldsmith) 
k    2 v,. 

« = 0.8-0.32  [s/m] 

Regularized Model: New Model for a 

• Solve ODE 

m xn + kxn
p{ 1 + axn) = 0 

• Separation of Variables 

f-is—^+I \kxp
ndx = d 

i\ + axn mi 

- Solve for a in terms of v/s v0 

- Independent of stiffness model exponent 

- Can also solve for x„ «.max 
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Regularized Model: New Model for a 

Solution: 

is 
SO 6 

a = 
ev.. 

02 04 0.6 OS 1 
Coafficiont of Rasbtution 
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1.25 
  Exact 
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- Parameter^ is a dimensionless function of e 

Regularized Model: New Model for a 

• Force response curve 
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Regularized Model: Friction Model 

Rabinovicz experiment 

A/VW^ 

Vectorized bristle model includes: 
• Dahl effect 
• Stri beck effects 
• Stick-Slip Effect 

Dynamic behavior: dwell-time 

Regularized Model: Friction Model 

Rabinovicz experiment 

20 40 60 80        100       120 
Tims (see) 

Slow Motion Fast Motion 
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Hertz Theory: Complete Model 

Simulation results 

_ 10 

s. 
I 
5 

- Bounce: e = 0.5 
- Sticking and rolling 
- Friction direction changes 
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No rolling or 
spinning 
friction! 

Conclusions 

3D Contact model includes 
- Normal force and damping 
- Tangential friction 

New definition for damping coefficient 
- Works for high & low coefficient of restitution 
- Exact solution of the ODE 

New friction model 
- Stick-Slip transition 
- Dhal and Stribeck effects 
- Frictional lag (dynamic friction) 
- Resulting ODE is not stiff (can use explicit solvers) 



MULTI-BODY HUMAN MODEL 

L. HYNCIK 
New Technologies Research Centre 
in the West Bohemian Region 
University of West Bohemia 
Univerzitni 22 
306 14 Plzen 
Czech Republic 

1 Introduction 

In last decades car industry is quickly developing. That is why a strong em- 
phasis is taken into account for the safety of the traffic. Cars are equiped by 
safety belts and recently frontal and even side airbags begin to belong to stan- 
dard equipment of most cars. Those belts and airbags must be validated by 
experimental tests which are expensive. To exchange those tests by simple cal- 
culation was just couple years ago impossible because of considerable extensive 
task. By intense development of the computers is this task possible today. From 
the point of mechanics an available method is chosen and a numerical model 
is implemented by computer. The work shows development of the numerical 
human model which is necessary to improve the car safety in comparison to the 
dummy numerical models which exist since more time but they are not enough 
"biofidelic" to represent the human behavior. 

2 Objectives 

The aim of the human articulated multi-body model was to divide the human 
body model given by meshed geometry into the rigid bodies corresponding to the 
real human body parts including inner major organs and tissues optionally, to 
give them right physical properties, i.e. masses and inertias, and connect them 
with well calibrated joints and contacts. Furthermore a mobile shoulder joint 
was added and improved including passive muscle bars. The human articulated 
rigid body model is structured like existing articulated rigid body dummy model, 
HYBRID III 50% [4]. It uses anthropometric data found in the literature [3]. 
The model is based on the finite elements under the PAM-SAFE ™ system. 
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3    Basic Human Model 

The meshed geometry of skin, skeleton and the surfaces of inner organs and tis- 
sues (optionally) are taken into account based on [5] kindly provided by the ESI 
company. The skin has the importance as the contact surface when running the 
sled test. The skeleton is used rather more for the visual effect, however it helps 
to deduce the approximate joins locations. The organs can predict acceleration 
inside during any human activity and serve as a background for more elaborated 
deformable models. The anthropometric data other than skeletal and outer skin 
geometries, such as segmentation into 15 segments with 9 different segmentation 
planes, 10 different segment origins and coordinate systems, segment centers of 
gravity and principal inertia axes, segment masses and inertias and joint loca- 
tions and axes, ranges of motion and resistance of motion for a mid-sized male 
human were taken from [3]. The skeletal and muscular anatomy of the added 
shoulder joint, including the clavicula, scapula, thorax and humerus bones ge- 
ometry, joint locations, excursions and orientations, as well as the muscles that 
connect the mobile shoulder parts, the scapulae, to the trunk and to the upper 
arm, are based on data found in Kapandji [2] and in Gray's anatomy [6]. 

Figure 1: Car sitting human model 

To detect dynamical properties of inner organs and tissues, a simple experi- 
ment on a mid-sized cadaver was done. After weighting and volume measuring 
of particular organ or tissue, uniform density was computed. The density was 
a input to the Gauss-Ostrogradsky's theorem for dynamical properties compu- 
tation. The theorem was used because of the surface mesh of inner organs and 
tissues. 

All materials except muscles are simplest materials without any resistance 
since the existence of rigid bodies. In order to provide a continuous outer skin 
contact surface under articulated motion, certain sets of facets were introduced 

90 



Those facets do not belong to one single rigid body but they connect corre- 
sponding nodes of skin portions between different articulated rigid body parts. 
That permits the nodes of these facets to move freely with the respective rigid 
body to which they are attached while the connected facets bridge the gaps 
between the skin of adjacent articulated members and can serve as continuous 
freely deformable contact interfaces. 

4    Multi-Body System 

The human geometry has been divided into 9 parts, namely head, neck, upper 
part of body, lumbar spine, lower part of body, left arm, right arm, left leg and 
right leg. The arms and legs contain subparts, namely lower and upper arms, 
hands and lower and upper legs, feet, respectively. The basic model contains 21 
rigid bodies corresponding to parts or subparts mentioned above, namely head, 
neck, upper part of body, lumbar spine/abdomen, lower part of body, left and 
right clavicula, left and right scapula, left and right upper arms, left and right 
lower arms, left and right hands, left and right upper legs, left and right lower 
legs and left and right feet. The centers of gravity, inertia axes, masses and 
principal inertia axis and principal moments of inertia were obtained from [3]. 
There is a contact defined between bodies which are supposed to contact during 
motion. 

Concerning inner organs and tissues, there are brain, larynx, trachea, lungs, 
heart, diaphragm, liver, spleen, gall bladder, stomach, intestines, kidneys, adrenal 
glands, urinary bladder and prostate modelled as 18 particular rigid bodies. 
They are connected by soft and tied conntacts. In order to have proper dy- 
namical characteristics of the outer body parts, they were corrected based on 
dynamical characteristics of inner rigid bodies. 

5    Modelling of Joints and Ligaments 

For the location of joints the dummy described in [3] was used. From the 
HYBRID III 50% data set, the method defining the local frames was used. The 
kinematic joints provided by the PAM-SAFE ™ solver were used for added 
CPU efficiency. The shoulder complex combines two kinds of joints, namely 

anatomical joints, which are defined as joints between two bones, included 
in shoulder, which are controlled mainly by ligaments (the gleno-humeral, 
sterno-clavicular and acromio-clavicular joint), 

physiological joints, which are defined as joints between two bones or 
connected parts without capsula and ligaments and which are controlled 
by contact surfaces, sliding interfaces, ligaments, tendons and muscles 
(the scapulo-thorasic joint and the secondary subdeltoidal, costoclavicu- 
lar joints). 

91 

• 



The anatomical joints can be modelled with a numerical joint element group 
up to 6 degrees of freedom of which are brought in correlation with its anatom- 
ical capacity of motion. We used 3 rotational degrees of freedom. The model 
contains 4 flexion-torsion joints situated in the spinal column and 16 spherical 
joints in shoulders and extremities. It is assumed that their centers of gravity 
are fixed. The different properties of the anatomical joint such as the elasticity 
of the ligaments and capsulae, values for friction, cartilage, damping etc. are 
taken into account in the material properties of the numerical joint elements. 

The physiological joints are controlled by sliding interface surfaces and by 
passive and/or active muscle action. For that joint type muscle modeling be- 
comes important and necessary to simulate their kinematics, resistance and 
excursion. The subdeltoidal joint being just a subsidiary joint in relation to the 
main gleno-humeral joint is not represented in the model. On the other hand, 
the scapulo-thorasic joint is modelled in detail with sliding interfaces situated 
between the anterior surface of the scapula and the posterior surface of the rib 
cage and between the posterior surface of the scapula and the dorsal skin inner 
surface and with muscle bars for all muscles which link the shoulder complex to 
the trunk. 

The ligaments are modelled using tied contacts between particular organs 
and tissues. Soft contacts are added to avoid mutual penetration between par- 
ticular organs and tissues. 

120 140 1BO IM 200 20 40 B0 

Figure 2: Head and thorax accelerations compared to experiment 

6    Validation 

The validation is based on a test conducted by Kallieris [1]. The model is seated 
on a rigid seat and restrained by a three point belt system and an airbag. The 
car interior parts (cushion seat, back seat, floor panel, foot rest, instrumental 
panel, steering and wind screen) are modelled as flat fixed surfaces contacted 
with body parts.  The car interior matches the BMW series 3 car.  The belt 
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system is modelled as assembly of bars. Airbag is modelled as a standard model 
in the PAM-SAFE ™ system. Acceleration measured during experiment was 
applied to all centers of gravity. 

Oms 30 ms 60 ms 

90 ms 120 ms 150 ms 

Figure 3: Sled test computational results 

7 Conclusion 
The model can serve as a basic model for more elaborated human articulated 
rigid body models. The human articulated rigid body model can also serve 
as the locally detailed finite element model of various body parts. If grafted 
onto the human articulated rigid body models, the refined parts can be studied 
under realistic kinematic boundary conditions as they result from the overall 
kinematic motion response of the body. 
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1. Introduction 

The analysis of dynamics of an electromagnetic vibrating drive with a control system is 
represented. The behavior of a system is shown at a modification of magnitude of an exterior 
force. Vibrating technologies is widely used in different industry applications [1,2,3]. 
The research of dynamics is based on the diagrams of bifurcation and Lissajous curves. With 
introduction of a loop of a feed-back the amplitude of oscillations of the executive link of a 
vibrating drive is supported at a constant level at a modification of a technological force. The 
same behavior of a system of an electromagnetic vibrating drive is characteristic at 
magnification of an exterior force up to an installed maximum value obtained in an outcome 
of numerical simulation. At as much as possible maximum safe loads, are observed vibration 
shock modes of operations. 

2. Mathematical model 

In this paper we investigate electromagnetic vibrating drive with nonlinear elastic suspension 
and system of active control of vibrating motion. As usually if we use passive drive the 
amplitude depended on forces that act on the executive element of drive When the loading 
increases the amplitude go down. Sometimes such process is not acceptable. For decision of 
this problem we use active feed back control system. The scheme of drive is shown on fig.l. 
on the scheme we can see vibrating mass m, nonlinear suspension with corresponding 
reological parameters. General coordinate X describes motion of drive. Electromagnetic force 
F acts on the mass from side of electromagnetic coil. Sensor D measure acceleration and 
velocity of mass and gives information to the control system for modification of electrical 
feeding. 
For description of dynamic of motion of this electromechanical system we use Lagrange- 
Maqswell equations. 

mx + ßx + cx = F3JI 

^ + R0(Ä±X)(2 + Ks)=u 
M0Z

2S 
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-acting force of electromagnet; ß- Viscosity of coefficient, c - 

stiffness coefficient; & -magnetic flax; Ks -koefficient which take into consideration 
geometrical parameters of coil; X-air gape between anchor and stator; R -active resistance; /x0 

-magnetic constant; S -cross section square; Z -number of circles of coil; U = f(t,x) - 
electrical feeding depends on time and acceleration of executive element. Fig.2 are shown 
characteristic of elastic force in dependence on displacement. 

i~r-c2 

Figure 2. Characteristic of elastic force in dependence on displacement 
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The system moves with accordance of next procedure: mass m vibrate under action of the 
electromagnetic force. Sensor D is placed on the executive element. Signals from sensor came 
to the control system. We consider very important for practis case when amplitude of 
executive element should be constant and independent on external forces. 
Let electromagnetic force depends on time with accordance of a formula: 

U = UO+Ulsin(kt) (2) 

Where, UO-constant strain of feeding, Ul-amplitude of changeable feeding. 
In this case, we have two parameters of regulation Ul and U2. 
During increasing of forces on executive element , where sensor is placed, amplitude of 
executive element decreases. The control system measures level of middle acceleration and 
changes the parameters of electrical feeding of electromagnet. We investigated different 
control strategies. One of them is shown below. Criterion of quality of control system in this 
case is the function F-minimum of differences between curves on fazes square which we got 
for various loadings. 
Actually we should determine of the lows of changes of regulation parameters U0,U1 in 
dependence on middle acceleration a=l/T. 

U0=Ul(a) (3) 
Ul=U2(a) (4) 

For approximation of formulas (3),(4) are used linear: 

U=ba+c; (5) 

where U={U1,U2}, b={Bl,B2},c={cl,c2} 
and non linear strategy: 

U=c+ba+Da2 (6) 

where D={D1,D2} 
We should to determine parameters of vectors b, c, and D, which minimize the function of 
mistakes F. For decision we used the technology of multi dimensional sound probes in the 
space of changeable parameters b, c, D. On this stage we got analytical dependence of 
function: 

F=F(b,c,d), (?) 

and after getting of a response surface F(b,c,D) we solved a problem of nonlinear 
programming, when we determined parameters b,c,D, which provide minimum of F- function. 

3. Results of calculation 

On the fig. 3 is shown results of investigation and dynamical response of system in a case, 
when loading is absent. The control system if switched off Ul=0,U2=0.In this case we have 
harmonic motion of drive with constant amplitude without of impacts. 
On the fig.4 is shown the motion of drive, when control system switching on but U1=0, only 

one part of regulation strain can change. External force changes in interval from zero to 30N. 
Analysis of   fig.4 shows that during change of loading in interval from P=0 to P=30N 
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amplitude of displacement of executive element practically is constant. At these time 
increasing of electrical feeding U2 brings constant component to electrical strain and as 
consequence lowering of air gape in electromagnetic part of drive, that provide appearance of 
impact regimes, as it is shown on the fig.4 and fig.5. 

Figure 3. Faze characteristic of electromagnetic drive without loading 
1 -the moment of time when electromagnetic drive turn on; 
2 - stabile regime of motion. 

1jO ■- 

0,0 
0,0606 

Figure 4. Fazes characteristic of electromagnetic drive, 

when control system is switching on 

regulation Ul=0,U2=U2(a) 
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Figure 5. Fazes characteristic of electromagnetic drive with control system 

For exception of displacement of zero (statically position of executive element) we used full 
regulation, when Ul=Ul(a) and U2=U2(a). On fig.6,7 is shown results of calculation of 
dynamical motion of system while full control system switching on. We can see that this 
regulation provides practically full independence of parameters of vibration on external 
forces. 

Figure 6. Fazes characteristic of motion while full regulation Ul=Ul(a),U2=U2(a). 
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Figure7. Motion of drive in a case when full control system is switched on 
Ul=Ul(a),U2=U2(a). 

4. Conclusions 

We create the mathematical model, which describe dynamical behavior of electro mechanical 
system with feed back control system. Different control strategies are investigated. The results 
of calculation show that only two dimensional regulation, when Ul=Ul(a) and U2=U2(a) 
provide practically independence of vibrating parameters (amplitude of displacement, 
acceleration, velocity) on external forces. 
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1.    Introduction 

Various force control methods have been developed to meet the requirement of regulating 
the contact force within a specific range. The force control is based on two distinct 
methodologies: pure force control and impedance control (Fig.l.). Pure force control can be 
applied only when the end-effector is in contact with the environment. While in impedance 
control the force is regulated by controlling the position and its relationship with the force, 
i.e. robot mechanical impedance. The impedance control can be realised by three 
approaches [1]. A lot of works developed the first approach for impedance control by 
impedance controller using one of the seventh approaches [2]: constant PD control, model 
based computed torque control, adaptive control, robust saturation-based control, sliding 
mode-based impedance control [3], learning impedance control [15] or quaternion-based 
impedance controller [16]. Generally the developed impedance controllers are characterised 
with the different shortcomings (Fig.l.) which determine the specific practical applications 
of the first approach for impedance control. 
The second approach for impedance control is realised by redundancy of joints. There is 
limited information for development of this approach, so this paper will be an attempt to 
induce collaboration in this field. 
The second approach for impedance control, i.e. by redundancy of joints, is reduced for one 
joint into the third approach for impedance control realised by redundancy of actuators for 
each robot joint. Many researchers developed the third approach for impedance control 
used antagonistically driven robot joints by two actuators via tendons [4,5]. Antagonistic 
stiffness, for which the modelling procedure for a completely general kinematic system 
along with a stiffness formulation technique developed [6], seems to be very unique and 
promising to design and control the robots and mechatronic peripheral devices with high 
precision requirements under various operational impacts and disturbances. 
This paper considers the development of the impedance control method, especially the 
second and third approaches as a way to adapt dynamic behaviour of the mechatronic 
system during its interaction with technological environment in order to improve the 
process quality and to achieve more system functionality. 
The paper is structured into 5 parts. The first part considers the preliminary investigations 
of the second impedance control approach. The impedance-controlled actuators with drive 
redundancy are developed in the second part. Experimental results and discussions is 
subject of the third part. 
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Shortcomings of the 1" Approach Developments; 
the desired impedance can't be maintained due to 
the changes in robot configuration and velocity; 
model-based   computed   torque   control    is   too 
sensitive to uncertainties in the dynamic model used: 
the measurement noise decreases the accuracy of 
the estimation of the dynamic parameters; 
requirement of extensive computation and high gains 
the chattering in the control input and possibly in 
the response due to the use of switching function 

Development of the third approach 
for impedance control by 
redundancy of drives upon the 
electromechanical  actuators  with 
gear transfer mechanisms 

J Mechanical Impedance Control j 
! Method 
\a means to adapt dynamic behaviour 
■of the mechatronic system during its 
'interaction with the technological; 
jenvironment in order to improve the' 
[process quality and to achieve more' 
'system functionality '. 

Figure I: Force Control Methods - Developments of the Impedance Control Method 

2.    Second Approach for Development of Mechanical Impedance Control. 

The second approach for impedance control is realised by redundancy of joints. To apply 
this approach first is necessary to determine the number of redundant joints for the set of 
reference tasks. The second one is how to distribute the control of joints in regarding of the 
kinematic [13] and dynamic sensibility [14] and the task to be performed. 
Let's consider the local structure of robot system that performs technological motions in a 
plane. In tangent direction of the plane trajectory a robot is necessary to control its dynamic 
properties, i.e. to realise impedance control on that direction. In general case 2 DOF local 
structure is necessary for this plane task function. But for the case considered we need 2 
independent robot joints to set up two control sets [1]: the flow source {Sf} = V0(t) and 

the actuator mechanical impedance Z - {Sz} :Z0(Finl,Q), where V0 is end-effector 
velocity, Finl - force interaction, Q - process quality requirements, to realise the mechanical 
impedance control in that direction. So, it is necessary to have a robot structure with 
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minimum one DOF more than the task function. Kinematic chain with three revolute joints 
whose axis are placed perpendicular to each other, i.e. R1RJ.R is taken here as an example. 
Let's consider how can be realise reference trajectory by the second approach for 
impedance control in a simple case of a plane trajectory motion with targeted impedance in 

one direction only. The determining of the vector of orientation error 9(q) for this 

structure where qi -general coordinates, y - angle around the unit vector u [14] is by: 

r 
uy/ ■ 

-[cos(q, -q2)~cos(q, +q2)-cos(q2 -q3) + cos(q2 + q3)]*0 
4 

-[-sin(q2 -q,)-sin(q, +q2) + sin(q2 -q3) + sin(q2 +q3)J* q2 
4 

-(l + cosq2)sin(q,-q3)]*q,-q3 

But from the other side:     S0 = L(q)Sq = d(w), 
V 

dqj Ju=l 

So, the matrix L(q) is obtained as simple matrix in first approximation: 

q2   ii-<i3     9.' 

L(q) = o 

(1) 

(2) 

(3) 

Here it has to be pointed out two specific features of the matrix L(q): two rows where are 
placed numbers only; one row with zeroes, i.e. its rank always is smaller then three. So, the 
rank of L(q) is as follows: rank L(q)=2 at q, * q3, q2 - any angle; 1 - at qi=q3, q2- any angle. 
The last means there exist not just isolated points or configurations but whole trajectory we 
are looking for where distribution of orientation vectors of errors is one dimensional field 
[13], which coincides with the direction of eigenvector corresponding to this positive 
eigenvalue. It is just one in this case. The coefficients of dynamic sensibility depend only of 
values of q2 when the system follows the way qi=q3 during orientation like that. In the case 
of just one non zero eigenvalue it is not difficult to find the corresponding eigenvector. It 

has the form 9 = [1,0,-1] T q, (4) 

Here [1,0,-if is a fundamental solution of the system for eigenvectors with q, as a 

parameter. And the last result is the same for whole trajectory q, = q3. 
On the fig.2. is shown a geometric interpretation of a field (plane a.) where the only one 
eigenvector is contained and qi(l=l,2,3) are passed through a unit cube. That field is a 
diagonal intersection of the cube containing the diagonal qt = -q3. Therefore, for every 
force action which is placed in this field (Fig.2.), there exists and can be found such a 

configuration, where the vector 6 will be collinear with it. That means if we have a force 
then there is no additional compensation of energy has to be given by drives of the system. 
But if we have a moment then we need additional energy compensation, which is 
distributed with equal value for q! and q3 and the concrete q2 which assure colinearity 

between the outer moment and the vector 6 . For all vectors perpendicular to the field or 
the part of them whose are projections on this directions the orientation error does not exist 
and corresponding coefficient of dynamic sensibility is zero. So, we can do it for arbitrary 
force or moment action by projection of the vector describing themselves on two 
perpendicular direction and the conclusions just mention above are still hold. 
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Figure 2. Geometrical inlerpretalion (a.) of the distribution of   Figure 3. Sensibility ellipsoid for the considered 
eigenvector corresponding to one eigenvalue and task plane b. structure R1T1T 

As another example let's consider the planar structure R1T1T. Each degree of freedom can 
be taken as redundant one in arbitrary case. The sensibility analysis shows the following 
results for corresponding sensibility coefficients ^,(i = 1....3) and directions X(i>, (i = 1,..,3), 
where h,, p3 are geometrical parameters. 

X,=l, ■■o. Ä3=I + q2
2+(h,+p3+q3)

2 

X <i) _ 

'O)  _ 

9>    1 
hl+Pl+<l3 

J X<2> = 
1 

ß2 

h + P3+13 

12 
1 

(hj+p3+q3)
2 +ql h,+p3+q3 1 

T 

<li 1. 

(5) 

The second coefficient that is zero assures non sensibility on the direction collinear to X(2) 

during the end-effector motion. On the remaining two orthogonal directions the sensibility 
is fixed or variable respectively and following the third one the sensibility depends on the 
robot configuration. It can be realized separately by one generalised coordinate or by both 
of them simultaneously. For example the robot deburring task is considered. The end- 
effector moves on the surface to be deburred. Hence, the non-sensibility direction coincides 
with the surface normal vector. For the remaining directions the robot has some sensibility 
according to the executing trajectory. In our example the reference deburring trajectories 
having these characteristics are arbitrary. If that additional requirement appears, the 
problem of obtaining the desired sensibility arises which could be solved using structures 
with redundancy DOF. The sensibility ellipsoid is visualised (Fig.3.) for the considered 
structure in a limited region of variation of the generalised coordinates. 

3.    Impedance Controlled Mechatronic Actuators with Drive Redundancy. 

The actuators with drive redundancy are a simplified model of the antagonistic drive in the 
living nature. Actuation and kinematic redundancy are the means by which living species 
control the dynamic response and modulate their end-effector stiffness. 
The synthesis of actuators with drive redundancy is based on the motion transition method 
[8]. It consists of two-zone dynamic controlled gearing on the actuator output link through 
the introduction of an antagonistic drive unit, that is identical to the existing one. This 
method also allows eliminating or reducing the influence of uncertainties on the kinematic 
chain of the mechatronic drive due to closed loop structures with the additional drive 
torque. Redundancy actuation causes internal force/torque in the transfer mechanism. This 
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torque does not perform any effective work to the external world. But the actuator joint 
stiffness and damping depend on this internal torque [9-10]. In such way the knot 
mechanical impedance Zo(K,B) [1] can be controlled. Torque of interaction 7] between the 
mechatronic system output link and technological equipment can be expressed as: 

Ti=T(<p,<p)-J^- = K(<pr-cpa) + B(<pr-<pa)-J^- (6) 
at at 

where T{<p,(p) is knot component of the mechatronic system impedance. The dynamics 
of the end-effector of the technological equipment, when it is on ideal rigid body, is: 

J&-T.+T, (7) 
at 

were J£ is inertia tensor of the technological equipment end-effector; Te - unknown 
torques and impacts. The motion equation of the system "mechatronic system actuator joint 
shaft - technological equipment" is: 

T,=nM)-J^ = K(q>r-i>a) + B(q>,-9a)-j42- (8) 

For the feeding operation is most important to assure smooth motion, i.e. dq> I dt « 0. The 

equation (6) will be: 

{Jz+J)^=K(<pr-<p.) + B{<pr-4>.) + T.-J^ (9) 

The equation (9) means that by variation of the actuator knot mechanical impedance Z0 to 

reject the disturbances at some impacts. The desired actuator shaft response <pa(t) and (fir 

to the reference motion <pr and <pr and the external torques Tt is defined by (6). 
Accommodation control of the dynamic accuracy [7] is used. The control scheme consists 
into 2 part. First one is a feed forward controller, constructed off-line using the obtained 
dynamic model [11]. The open-loop impedance control involves off-line planning of the 
targeted actuator mechanical impedance for the desired output link velocity   <fo(t), 

smoothness of motion A<p(t) and expected impacts and disturbances Tt, determining the 
actuator control sets {S, }  and {Sz}. This allows open loop disturbances and impacts 

rejection. The second part is a feedback controller used to compensate on-line small 
perturbation of the expected impacts and non modelled dynamics. Hence, the proposed 
control strategy for control of actuators with drive redundancy does not need large 
computational resources and time in on-line control, while adjusting the knot mechanical 
impedance of the actuator allows open-loop impacts and disturbances rejection. It also does 
not have a time delay, which often deteriorates performance of rapidly changing processes. 

4.    Experimental results and discussion 

Three experimental test beds with drive redundancy have been designed to investigate the 
redundancy actuators with impedance control: 
- rotary table for feeding operations in robot-assisted material removal [10]; 
- barrier actuator for a Langmuir - Blodgett monomolecular film deposition system [10]; 
-harmonic actuator for robot manipulators and peripheral mechatronic devices [12]. 
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The main features of impedance controlled actuators with drive redundancy consist into: 
- controlled modification of the actuator mechanical impedanceflO]; 
- micro motions of the barrier - particularly 1 (im, at a range of motion (350 mm); 
- smooth motion in a wide technological max-to-min velocity ratio (1:10000) regardless of 
the force interaction at adjusting the impedances of actuator and technological equipment. 
- significant linearization of the actuator transfer mechanism [10]. 

5.    Conclusions and future work. 

Three impedance controlled actuators with redundancy have been built in the Mechatronic 
Systems Department as experimental test-beds for various ongoing research activities 
including mechanical and control design, motion control and for calibration procedure 
synthesis purposes. Based on the third approach for impedance control positioning robots 
and peripheral mecharronic devices with such redundant actuators can accomplish very fine 
motion regardless of their dynamic interaction with remaining robotized equipment. 
The second approach for impedance control is under development. The study has to be 
taken into account as the phase of conceptual design of such mechatronic systems. The 
reference task is considered in the terms of kinematic and dynamic sensibility. The number 
of joint redundancy has to be determined on that base. As an aplication the redundancy 
influence on the mechatronic device for driling operations is under investigation. 
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Abstract. Optimization of raultibody systems is presented as a multicriteria optimiza- 
tion problem. The problem of forming goal function is still open due to wide variety of 
conflicting criteria, which as a rule has to be reduced to a scalar function. 
Implementation of an approach for optimizing dynamic systems based on the analytic 
hierarchy process for getting the scalar goal function is considered. The developed 
approach is implemented in program package for simulation of multibody system 
dynamics. 

1.    Introduction 

The development of computing facilities, formalisms for automatic generation of 
equations of motion and numerical methods let increase the effectiveness of program 
packages for simulation of multibody dynamics thus much that it made possible the 
development of program packages for optimization of multibody system. 

Design variables and performance criteria have to be defined for optimization 
problem solving. Such parameters of multibody system as inertia and geometrical data, 
stiffness and damping coefficients might be chosen as design variables. As it mentioned 
in [1, 2, 3] applications to technical problems clearly show that as a rule several 
conflicting technical specifications and goals have to be taken into consideration. Since 
there are several criteria the optimization problem has to be considered as a multi- 
criteria. Due to some disadvantages of multicriteria optimization method strategies, 
which reduce the vector optimization problem to nonlinear programming problems are 
usually used [2]. There are quite a few methods for such reducing based on scalarization 
and hierarchization principles or a combination of them. The implementation of one of 
such methods, so called the analytic hierarchy process, is considered below. 

2.   Formulation of the optimization problem 

Computer aided optimization of mechanical systems should be based on mathematical 
models. The multibody system approach gives us good representation of the system if 
we can neglect small deformations of its parts [1]. A multibody system consists of rigid 

* Supported by RFBR under the grant 02-01-00364 and by scientific program «Universities of Russia - Basic 
Research» 
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bodies and ideal joints. A body may degenerate to a particle or to a body without inertia. 
The ideal joints include the rigid joints, the joints with completely given motion 
(rheonomic constraint) and the vanishing joints (free motion) [3]. 

Multibody system dynamics has been developing already for several decades [4]. 
Computer programs have been developed for automatic generation of equations of 
motion and its numerical solution. The most time-consuming part in an optimization of 
multibody systems is an estimation of scalar or vector goal function, which involves a 
numerical solution of motion equations for some time interval t' < t < r2. An 
optimization strategy takes, in fact, the smaller part of total time efforts. 

It is necessary to distinguish a simulation problem and an optimization problem. The 
optimization problem does not need the most complex model, it needs the most 
appropriate one [2]. 

Mathematical models involve a parameterization. The dynamic behavior of the 
model is completely determined by parameters like the mass and moments of inertia of 
each body, geometrical dimensions, damping and stiffness coefficients. 

Optimization criteria are usually based on dynamical performances obtained as 
results of numerical experiments. Usually it is such performances like accelerations 
(riding comfort), reaction forces (strength in joints), etc. 

There might be a single optimization criterion, but generally there are several 
specifications, goals and restrictions, so the design problem has to be considered as a 
multicriteria optimization problem. 

Generally, optimization of multibody systems takes place during the beginning of 
development of a new technical system. The optimal values of parameters, which are 
found with respect to dynamical performance, however, might not be appropriate due to 
another (technological, cost) reasons. Obviously it might be necessary to involve 
non-dynamical criterions into consideration. 

3.   Multicriteria optimization 

The problem of optimizing dynamic systems with respect to several conflicting criteria 
does not have a single optimal solution [1]. Edgeworth-Pareto (EP-) optimal points can 
be found. EP-optimal solutions are not unique and different points are not comparable. 
The theory of multicriteria optimization has shown that the optimum depends on 
additional decisions of the designer. Therefore, not all multicriteria optimization 
strategies seem to be appropriate for dynamic system design. Strategies which reduce 
the vector optimization problem to non-linear programming problems have proven to be 
very efficient [2]. Several such strategies based on the principles of scalarization, 
hierarchization or a combination of them have been developed [1]. 

In the case of scalarization [2], the objective functions are combined to a new utility 
function u(p), where p is the vector of design variables, which will be optimized instead 
of the vector criterion. 

i'=l Ji i=l 

where wt e [0,1] are weighting coefficients and/* are scaling factors. This well known 
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approach has some disadvantages. Firstly, designer establishes weighting coefficients 
directly that leads to an insufficient validity of weight coefficients. It is shown in [5] 
that people are inclined to shift weight coefficients to the ends of range. Secondly, 
utility function depends on the/(pj#* ratio linearly whereas non-linear dependence may 
corresponds to the optimization goal better . 

Let us consider an approach based on the analytic hierarchy process, which keeps 
advantages of hierarchization and removes disadvantages of scalarization. 

4.    The analytic hierarchy process 

The analytic hierarchy process was developed by Saaty and in [5] detailed information 
is available. 

The method is based on principle of hierarchization, when the main most common 
goal consists of several more detailed sub-goals, each sub-goal of the first level consists 
of corresponding sub-goals of level two and so on. Every sub-goal has only one upper 
goal. Different sub-goals affect the upper goal with the different weight. 

Further, the analytic hierarchy process involves the method to determine the strength 
with which the various elements in one level influence the elements on the next higher 
level, so that we may compute the relative strength of the impacts of the elements of the 
lowest level on the overall objectives. The method can be described as follows. Given 
one goal, e, and its sub-goals of the next level lower, compare the sub-goals pairwise in 
their strength of influence on e. Insert the agreed upon numbers, reflecting the 
comparison, in a matrix and find the eigenvector with the largest eigenvalue. The 
eigenvector provides the priority ordering, and the eigenvalue is a measure of the 
consistency of the judgment [5]. 

To insert the agreed upon numbers the designer has to compare every pair of 
sub-goals and give an answer for the question "how stronger the influence of sub-goal B 
on the upper goal than the influence of sub-goal C on it", this number will be included 
in the {B, Q matrix element. If B and C equally important then the number is 1, if B is 
weakly more important than C then the number is 3 and so on up to number 9 when the 
B is absolutely more important than C. 

5.   Measuring performance 

After describing hierarchy of goals the designer should determine the way to obtain 
the strength (priority, measure of membership) of each alternative relative to each 
element of hierarchy of goals on the lower level. There are several methods. 

The first one is the pairwise comparison, described above. This methods is used for 
measuring non-dynamic performances of systems such as practical feasibility, estimated 
cost, etc (see Figure 2). In this case the designer uses results of scanning for pairwise 
comparisons. This is the most general way, but at the same time the most 
time-consuming method. 

In the cases when criteria have numerical representation obtained from results of 
simulation, its transformation to dimensionless scale [0, 1] can be done with the help of 
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the methods of standards or membership function method. 
The membership function method uses the membership functions to map simulation 

results into dimensionless scale [0, 1]. Some frequently used membership functions are 
given in Figure 1. Here the normalized performance estimation is laid off as abscissa 
and the strength of alternative relative to criterion is laid off as ordinatc. 

a) 
1   o 1   o 

b) 
1   o 

c) 
Figure 1. Frequently used membership functions 

For example, the following comment may be given for the membership function in 
Figure la: "the less performance estimation the worse the strength of alternative, lower 
values are poorly acceptable"; for the Figure lb function: "middle performance 
estimations are most acceptable". 

Scale for membership functions abscissa may be defined in two forms: definite and 
indefinite. Definite scale is used when there is prior information about admissible or 
expected performance estimations. If any alternative has inadmissible performance 
estimation relative any criterion, it is considered as inadmissible due to that criterion 
and does not take part in the further comparison. If relative comparisons of performance 
estimations have no sense, but they all must be within a definite range then the 
membership function shown in Figure lc may be used. 

Indefinite scale is used when the designer has no prior information about the model 
behavior relative to a criterion. Then the minimal performance estimation corresponds 
to 0 abscissa value and the maximal one corresponds to 1. The rest performance 
estimations are distributed within this range proportionally. 

The method of standards is the measuring relative to some standards. It is used when 
there are some standards, which can help us to classify the performances. For example, 
for vertical accelerations we can introduce tree levels: low, medium and high 
acceleration (see Figure 2). Based on results of numerical experiments, the program is 
able to refer alternatives to levels of accelerations. 

6.   Automated approach 

Simulation of multibody systems is supported by program package "Universal 
Mechanism" (UM) and the special module for optimization and decision making is built 
in UM. At the first step the scanning of dynamic behavior of the optimized multibody 
system is fulfilled: variable parameters, parameter ranges and steps are defined, after 
that number of numerical experiments are executed in an automatic mode. It might take 
several hours and even several days. Then dynamic behavior of the system is 
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completely obtained. Then the designer has to make a decision which alternative (which 
point in a parameter space) is the best. It may be done by hand or with the help of the 
built-in module for decision making support. 
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Figure 2. Hierarchy with the different types of measuring performance 
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In the latter case the designer should describe the hierarchy of goals and sub-goals 
(see Sect. 4, Figure 2). Then for each criterion on the last hierarchy level the measuring 
performance method is defined. For the pairwise comparison method (see. Sect. 4) the 
designer has to perform pairwise comparisons for every pair of alternative. For the 
methods of standards the designer defines the standards and assigns their ranges and 
chooses the appropriate functional (see Sect. 5). For the membership function method 
the designer chooses the membership function, define its scale (definite or indefinite) 
and choose the appropriate functional. In order to use a definite or indefinite scale or 
any described standard we have to transform the time history of a dynamical 
performance to a digit. It can be done with the help of one of available functional: 
maximum, minimum, mean, root mean square, etc. 

Further, the strength of each alternative relative to every criterion is automatically 
calculated and results are available. Information about the priority of alternatives 
relative to any goal (including the main one) is available as well. 
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1.   Introduction 

With regard to the selection of system coordinates the methods used 
in the dynamic analysis of multibody systems (MBS) can in general 
be divided into two main approaches (Shabana, 1998). In the first 
approach an expanded system of dependent coordinates, e. g. Carte- 
sian coordinates, is used to describe the system configuration. In the 
second approach, a minimum number of relative coordinates is used 
that corresponds to the mechanical degree of freedom of the system 
(Schiehlen, 1986) and provides a minimum number of ordinary differ- 
ential equations (ODE) for tree-like structures. 

The idea of the method proposed in this paper is to combine the 
advantages of both approaches. Several subsystems that can be rigid 
bodies, flexible bodies or rigid multibody system substructures are as- 
sembled in the global model. Their motion is kinematically constrained 
by mechanical joints or kinematic drivers, both described by nonlin- 
ear algebraic constraint equations. The motion of the elements within 
the substructures is described by using relative coordinates, while the 
relative motion of the subsystems is described in Cartesian space. 

2.   Choice of Coordinates for Multibody Systems 

Two main approaches for the modeling of multibody systems, relative 
or Cartesian coordinates, respectively, are described in Sections 2.1 
and 2.2. Both formulations are combined in Section 2.3 in order to share 
their advantages and overcome specific disadvantages of each method. 

2.1.  MBS DESCRIPTION WITH RELATIVE COORDINATES 

The multibody system approach with relative coordinates is described 
in detail in (Schiehlen, 1986). Relative coordinates lead for open-chain 
configurations to a minimum number of ordinary differential equations, 

113 



using a set of independent generalized coordinates y e Mf correspond- 
ing to the degree of freedom / of the MBS. This is a main advantage in 
comparison to the approach with Cartesian coordinates where differ- 
ential algebraic equations (DAE) of often much higher dimension have 
to be solved. 

A spatial MBS consisting of nb bodies with nc holonomic constraints, 
and hence / = 6n6 - nc degrees of freedom, can be described, ap- 
plying for example d'Alembert's principle, Hamilton's principle or the 
Newton-Euler formalism (Schiehlen, 1986) to the balances of linear and 
angular momentum. This yields the equations of motion 

M(t,y)-y + k(t,y,y)=g(t,y,y) (1) 

with the symmetric, positive definite mass matrix M e Mfxf, the 
generalized centrifugal and Coriolis forces k 6 Mf and the generalized 
applied forces g 6 JRf. 

2.2. MBS DESCRIPTION WITH CARTESIAN COORDINATES 

The application of Cartesian coordinates has the advantage that the 
formulation of the equations of motion even for complex systems is 
straightforward. Beyond that the addition of new complex system com- 
ponents is often relatively easy. This can be, for example, very inter- 
esting when flexible bodies are added to the system. 

A multibody system consisting of nb interconnected rigid bodies, re- 
quires 6 nb coordinates in order to describe the system configuration in 
space, i. e., the positions Rl and orientations Sl of each body's reference 
frame. These coordinates, however, are not independent because of me- 
chanical joints or kinematic drivers between adjacent bodies, described 
by a vector of nc nonlinear kinematic constraint equations 

c(q,t) = 0:    c£Mnc (2) 

where q is the vector of all Cartesian coordinates for all bodies. 
The differential equations of motion of the system follow using La- 

grange's equation or Hamilton's principle, see e.g. (Shabana, 1998), 
EIS 

Mq-CT\ = Qe + Qv. (3) 

Here M e jR6"**6^ is the mass matrix, Cq = dc/dq e JR^x6n6 ig the 

constraint Jacobian matrix, A e ITC is the vector of Lagrange multipli- 
ers, Qe is the vector of externally applied forces and Qv is a quadratic 
velocity vector that arises from differentiating the kinetic energy with 
respect to time and with respect to the generalized coordinates. 
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The differential equations (3) yield together with the algebraic equa- 
tions (2), or respectively their mathematically equivalent first or second 
time derivatives, a DAE describing the global system. 

2.3. APPROACH WITH MIXED RELATIVE AND CARTESIAN 

COORDINATES 

The global system is assembled by ns subsystems as illustrated in Fig- 
ure 1. In correspondence to (1) the equations of motion of the different 
subsystems are given by 

Mi(t,l/)-Vi + ti(t,v\vi)=gi(t,Vi,V(),    t = l,2,...,n,.   (4) 

joint m 
subsystem i        /CmeRnc'm 

y'e Rfi    s-Z'-t. 

Figure 1. Assembly of subsystems forming the global multibpdy system 

The subsystems are connected by nj joints summerized in the global 
constraint vector c <E Mnc. The generalized coordinates are assembled 
in the vector 

q=[y1 y2 ... yn*} eJRn"   with   ng = £ f • (5) 

The equations of motion of the global system can for example be 
derived by application of d'Alembert's principle, here given in the 
formulation of Lagrange (Eberhard, 2000) 

]T (5n ■ (mi m - ft) + 6si ■ (Ii -Oi + üi'Ii-Ui- It)) = 0,     (6) 
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with the global number of bodies in the system n6, the virtual dis- 
placements Sri and rotations Ssi, the externally applied forces /f and 
torques 7f and the skew symmetric matrix w build by the components 
of the angular velocity vector w = [ui, W2, ^3]- 

Equation (6) can after some transformations be split up in terms 
for each subsystem. By application of kinematic relations and further 
transformations the local equations of motion of the subsystems can be 
identified 

<4k + J^-4-Jjwc)-y 

Mi(t,yi) 
ni 

+£ (•»£ ■ <4+J£ -4-4+J£ • «tf ■ 4 • <4) 
1 1 / Jfc=l 

kj(t,yj,yj) 
b 

~ Z^ \JTk " fk   + j3Rk " lk ) 
k=\ 

= 0 (7) 

g'&v'iv') 

where n^ is the number of bodies in subsystem ;' and J^ and J^ are 
the Jacobians of translation and rotation. 

By introduction of the global coordinates vector q from (5) and its 
variation, equation (7) can be summarized 

Sq ■ (M • q + k - g) = 0     V6q : CT
q ■ Sq = 0 (8) 

with the global constraint Jacobian matrix 

c' = | = [(^)r(^)T-(W)T]'eft"^  <9> 
In (8) only fg = nq-nc variations of 8q are independent. By introducing 
a set of Lagrange multipliers A € RUc as in Section 2.2, (8) can be 
written in a way valid for arbitrary variations of q. This gives the 
equations of motion of the global multibody system 

M(t,q)-q + k{t,q,q) - CT
q{t,q)X = g(t,q,q) (10) 

which form a DAE combined with (2), or the analytically equivalent 
first or second time derivatives of (2). 
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3.   Constraint Formulation for the Connection of 
Substructures 

Most of the practically used kinematic constraints can be built by 
setting algebraic relations between vectors defined on the bodies, as 
discussed in detail in (Nikravesh, 1988), (Shabana, 1998), or (Serban 
and Haug, 1988). 

In terms of accuracy and stability of the numerical simulation an in- 
dex 2 DAE formulation performs best (Arnold, 1998), requiring the par- 
tial derivatives dc/dq and the time derivatives c. In order to determine 
these derivatives analytically it is particularly attractive to transform 
the orientation matrix at the connection points to unit quaternions, e. g. 
using the algorithm proposed in (Shoemake, 1994). Unit quaternions 
allow for a proper derivation of mathematical relations for observed 
coordinate frames. Many basic identities and analytical relations are 
given, e.g. in (Nikravesh, 1988). They are described as follows 

p = [e0, e]   with   e0 = cos — ,    e = u sin — , (11) 

where $ is the rotation angle about a axis described by the unit vector 
u with the additional constraint u ■ u = 1 or rather p ■ p — 1 = 0. 

In their paper Serban and Haug (1988) already derived the required 
analytical derivatives for constraint vectors using unit quaternions. For 
the mixed approach presented in this paper additionally the dependen- 
cies of the unit quaternions on the relative coordinates describing the 
rigid body substructures have to be considered. The necessary relations 
are derived in the following section. 

3.1. DERIVATIVES OF QUATERNIONS WITH RESPECT TO THE 

GENERALIZED COORDINATES OF THE GLOBAL SYSTEM 

Without loss of generality, a global system consisting of two subsystems, 
connected at point P, is observed in this section with the generalized 
coordinates q = [yA yB ], as illustrated in Figure 2. The rotation matri- 
ces at the observer frames SQA{yA, t) and S0B(yB, t) on P, described 
on body i and body j, are transformed to quaternions pA(yA, *) and 
PB(VB, *)• 

The time derivative of unit quaternions can be expressed by the 
identity (Nikravesh, 1988) 

p=~GT-u, (12) 
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VW 

Figure 2. Schematic representation of the connection of two subsystems 

with the vector of angular velocity w and the matrix G £ M3x4 defined 
by Nikravesh as 

G:= 
-ei    eo   -e$   e.2 
-e2   e3     e0   -e\ 

L -e3 -e2   ei     eo 
= [-e, e + e0I] . (13) 

Starting from equation (12) the partial derivatives dpA/dq and 
dpB/dq can be determined for both subsystems. The procedure is 
exemplary given here for dpA/dq. It follows from (12) 

PA = 2GA-(jiRA-yA + ÜA) (14) 

where J^ is the Jacobian matrix of rotation of body i in subsystem 
A and <jj\ is the local angular velocity of body i. Since we have the 
dependencies pA = PA{VA^) the vector pA can also be expressed as 

h    _ dPA     ■      ,   dPA 
PA - srr ' VA + (15) 

dyA   "A      dt 

By comparison of the coefficients in equations (14) and (15) it follows 

dpA      1 

9yA 
~ &A ' Jl* RA > (16) 

and hence the partial derivatives with respect to the global generalized 
coordinates q = [yA yB] can written as 

9pA 

dq 

dpB 

dq 

dPA  |  dPA 
9yB 

      9PB_ 

9yA  ' dyB 

dyA 
WpB 

GA • JRA I 0 

A GB'«RB 

(17) 

(18) 
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where (18) can be found utilizing the procedure above for subsystem B. 

4.   Example: Spatial Slider-Crank Mechanism 

In this chapter the proposed approach with mixed Cartesian and rel- 
ative coordinates is verified by application to a spatial slider-crank 
mechanism, similar to an example in (Serban and Haug, 1988), see 
Figures 3 and 4. 

Figure 3. Spatial slider-crank mechanism 

First the slider-crank mechanism is studied using a description with 
pure Cartesian coordinates. In order to verify the performance of the 
mixed approach, in a second step the mechanism is modeled using a 
subsystem described with NEWEUL (Kreuzer, 1991) in relative coor- 
dinates. The subsystem is joined to the inertial body with the loop 
closing translational joint. This leads to a DAE with 7 ODE and 5 
algebraic equations, in comparison to the previous model with 18 ODE 
and 16 algebraic equations. 

In Table I the computation times are compared for the simulation 
time of 20 seconds for both models. It can be seen that even for this 
relatively simple test example the efficiency can be strongly increased 
using the mixed approach. 

1H.B «ft« 

Figure 4- Frames from the animation of the slider-crank mechanism 
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Table I. Comparison of computation times 

model simulation time     computation time 

Cartesian approach 
mixed approach 

20s 
20s 

66.2s 

14.7s 

5.   Conclusions and Outlook 

A mixed coordinate method which combines the efficiency of the rel- 
ative coordinate approach with the generality of the formulation with 
Cartesian coordinates was presented. In order to determine the nec- 
essary derivatives of the constraint vector a transformation to unit 
quaternions was carried out for the reference coordinate frames. In 
addition to analytical derivatives found in literature, the description 
of subsystems in relative coordinates demanded for further derivatives, 
relating the unit quaternions and the generalized coordinates. 

In order to verify the performance of the mixed approach, compu- 
tation times were compared for two different models of a slider-crank 
mechanism. It was found that the efficiency strongly increased using 
the presented approach. 

In the next step of implementation also flexible bodies will be at- 
tached to the systems. Thereby, the implemented description of the 
subsystems will be fully utilized. 
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Forward dynamics of multibody mechanisms using an 
efficient algorithm based on canonical momenta 

Dirk Lefebert Joris Naudet*, Zdravko TerzeUnd Frank Daerden* 

Abstract 
A new method for establishing the equations of motion of multibody mechanisms based on canonical 
momenta is introduced in this paper. In absence of constraints, the proposed forward dynamics for- 
mulation results in a Hamiltonian set of 2n first order ODE's in the generalized coordinates q and 
the canonical momenta p. These Hamiltonian equations are derived based on a recursive Newton- 
Euler formulation. As an example, it is shown how, in case of a serial structure with rotational 
joints, an 0(n) formulation is obtained. The amount of arithmetical operations is considerably less 
than acceleration based 0(n) formulations. 

1    Introduction 

A lot of research has been done during the last decades to find new algorithms, new numerical in- 
tegration techniques and better implementation methods to speed up the calculation of the motion 
of complex multibody mechanisms. Amongst many others, Featherstone [4], Kane and Levinson 
[7], Rosenthal [9] and Vukobratovic [10] put significant efforts in finding efficient order N methods 
to derive the equations of motion. Bayo and Avello [2] developed techniques to integrate these 
equations in a stable and efficient way. Work has also been done to implement algorithms on a 
parallel computing architecture (Bae et al. [1]). All this research and the fast evolution of com- 
puter technology resulted in quite fast simulations nowadays. These simulations, however, involve 
mechanisms of ever increasing complexity (large amount of parts, elasticity, friction, backlash) 
and demand an ever increasing accuracy and, hence, number of computations. It is therefore in- 
teresting to continue this research in order to find more efficient algorithms. This article takes a 
step in that direction and presents a new, canonical momenta based algorithm, which allows a 
speedup of simulations by reducing the number of operations required to obtain the equations of 
motion. Nearly all efficient algorithms, whether they are based on the Newton-Euler equations, the 
Lagrange formulation or the principle of virtual work or virtual power, involve the computation of 
accelerations. This implies calculating the Coriolis and centrifugal forces and the solution of the 
forward kinematics. The canonical momenta based algorithm, however, is derived from a special 
form of the Newton-Euler equations and results in a formulation without accelerations, namely 
a set of Hamiltonian equations. Therefore, the number of arithmetical operations is strongly re- 
duced. A few simplifications are made for the sake of clarity. Only serial structures with perfect 
revolute joints of one degree of freedom are considered. And, as usual, rigid bodies and a fixed 
base is assumed. The case of a floating base can easily be derived. An effort is made to explain the 
essence and details of the algorithm by situating it in the theory of Hamilton. The next section 
is therefore entirely dedicated to a review of Hamilton's equations. Then a special form of the 
Newton-Euler equations allowing a more logical construction of the algorithm is introduced. In 
section 4, the first set of Hamilton's equations is derived. In the subsequent section, the second 
set is found. Conclusions are drawn in the last section. 

•Free University of Brussels, Department of Mechanical Engineering 
t University of Zagreb, Department of Aerospace Engineering 
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2    Hamilton's equations 

Mechanical systems are governed by the principle of least action, which can be formulated by 
means of the well-known Hamiltonian equations (see Goldstein [6]): 

.      dH 
q=äF (la) 

P="&f + Q-*J* (lb) 

*(q,0 = o (ic) 

This is a system of 2n first order differential equations and / kinematic constraint equations. It is 
called a set of mixed differential algebraic equations (DAE). H is the Hamiltonian function, q are 
the generalized coordinates. The vector p represent the so-called canonical momenta, extensions of 
the concept of linear and angular momenta to generalized coordinates. These canonical momenta 
are defined as: 

8L 
P=9q- ^ 

with L the Langrangian function. Functions $ are the kinematic constraint equations. Vector Q 
stands for the known generalized external forces, $q is the Jacobian matrix and A represents the 
Lagrange parameters. DAE's are characterized by a so-called differential index. The acceleration 
based formulations have an index of 3, the Hamiltonian formulation has index 2 [5]. As shown by 
Brenan et al. [3], index 2 DAE's have a better behavior during numerical integration. Hence, the 
use of canonical momenta may be numerically advantageous compared to the use of accelerations. 
In the case of serial structures, and using the joint coordinates as generalized coordinates, no con- 
straint equations (lc) are needed and the last term of (lb) disappears. Rewriting these equations 
in a more general form will ease future comparisons when motivating some steps in the algorithm: 

q = F(q,p,i) (3a) 

P = G(q,p,0 (3b) 

Hamiltonian equations are computationally intensive to derive straightforwardly, for the Hamilton 
function H has to be established from the Lagrangian function L which already requires a lot of 
arithmetical operations. This is probably the reason for the lack of interest in Hamilton's equations 
in the domain of multibody mechanics. In acceleration based 0(n) algorithms, the equations of 
motion are found by recursion. This way the direct derivation of the Lagrangian function L is 
avoided and much faster evaluations of the equations of motion are obtained. However, it also 
seems possible to find an 0{n) algorithm based on canonical momenta. That algorithm, as will 
be shown in the following sections, has a reduced number of operations, compared even to the 
most efficient acceleration based algorithms. This advantage and the improved numerical behavior 
makes it a very promising alternative. 

3    Newton-Euler in relative axes 

The classical formulation of the Newton-Euler equations for a single free moving body is given by 

m-dt = t (4a) 
JG —T£- + u x JGu = mG (4b) 

The first equation is typically written in an inertial reference frame (notation ^), while the second 

is formulated in a frame K fixed to the body (*£). The force and the torque that act on the object 
are represented by f and m. The index G denotes that the momenta are taken with respect to the 
center of mass. The matrix J is the inertia tensor, m is the mass of the body and w the angular 
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velocity refered to the inertial axes. Instead of trying to find an algorithm directly starting from 
the Hamiltonian equations, the Newton-Euler equations (4) are reformulated in relative axes, and 
written with respect to a point on the joint axis (the local 2-axis). Note that the derivative to 
time of a free vector x in a rotating frame is given by: 

d°x 

dt 

dKx 

dt 
+ u> x x (5) 

(a) Kinematics (b) Dynamics 

Figure 1: Notation on body K 

After some mathematical manipulations, equations (4) can be written as: 

m 

mOG 

mGO 
J   J ).CH m 

mOG 

mGO 

J m + mvG x v 

The index K denotes which body of the mechanism is refered to. By convention, all momenta are 
then taken with respect to the point 0K on the joint axis of the body (see figure 1(a)). x stands 

for the time derivative in local axes, e.g. öJK - d £K ■ £ is a skew-symmetric matrix constructed 
from the vector x and is an alternative notation for the cross product. 
The 6-dimensional momentum vector is defined as follows: 

\P«. 
J 

\mOG 

mGO 

J 
= MK (6) 

This is not the same vector as was used in the previous section to denote the canonical momenta 
p. Inspection of P reveals that it is nothing more than a concatenation of the linear (p;) and 
angular (pa) momenta of the rigid body. M is called the mass matrix. Substitution of vector P in 
the equations of motion and observing that p; = mvc results in the following concise formulation: 

(7) 

This expression can be written, since MK = 0. 

4    First set of equations (G) 

In this section we will derive one set of equations depicted in (3), namely the one involving the 
evaluation of the function G. The other set will be discussed in the next section. Rewriting (7) for 
the last body N and splitting the external forces and torques in the known parts f and m and the 
unknown parts r and t —resulting from the interaction with the previous body N - 1— gives 

0 f + r 
m + t (8) PM    +/w    u\    I Pi 

KP«J„    V0   Ö/*\P«>.. 
According to the assumptions made in section 1, each body introduces one degree of freedom 
q. Hence, to describe the motion of the mechanism only one set of two first order differential 
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equations is required for each body. Taking the joint angles 6 to be the generalized coordinates is 
an obvious choice. The direction of the relative movement is defined by the unit vector e* along 
the local z-axis. There is no reaction torque in that direction. Thus, the equation resulting from 
the projection of the angular part of (8) on e, can be computed, provided the linear and angular 
velocities are known. The issue of the unknown velocities will be considered in the next section. 
For the remaining bodies, the equations become more involved, as there are two locations where 
reactions occur. Body K = N - 1 is connected with bodies K - 1 and K + 1. Therefore the 
equations of motion can be written as 

GD.+C9.fc).- f + r 
m + t 

KrrF 
(9) 

Now, besides the reactions resulting from body K - 1, additional reactions -rK+l and -tK+\ 
from body K + 1 act on K (Fig. 1(b)). As we saw, the projection on the z-axis of reaction torque 
tK is zero, but the reaction force -rK+1 is generally not directed towards joint point 0K and 
will therefore produce a torque about the local z-axis. This makes things more complicated. By 
convention, the reactions from body TV are taken with respect to point Os on the joint axis. To 
transmit these reactions to body TV - 1, the transformation matrix T.f is used: 

(10) 

Note that this matrix is constant in the local reference frame. Observe also that the velocities 
transform in a similar way: 

'VA = *7-y (vK \ = (i   0N0,<\ (vK 

W        K Vw*/      lo        I        \UK 
(11) 

K  I 

The relationship between both transformation matrices is given by: 

'%F = TO7' (12) 

The additional reactions along the z-axis cannot be ignored, as in the previous section, but can 
be eliminated by means of the equations of motion for body N (8). Grouping the similar terms 
and remembering to derive with respect to the correct coordinate system using (5) gives 

dt Hfc). + ^&). + G °U(pp:).+<pl 
(13) 

After defining the articulated momentum vectors pj*0 and the accumulated forces and torques f* 
and m* as 

(p:)>(pi+<p:); 

a concise system of equations is obtained with the same appearance as (8): 

VPa/Jc+Vö     ü)K 

f*+r 
m* + t 

(14) 

(15) 

(16) 

Here again, the projection of the angular part on the joint axis ez leads to one of the Hamiltonian 
equations. It can be proved that the element obtained by the same projection of the articulated 
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momentum vector p*K is the canonical momentum conjugated to ÖK- Therefore, this projection 
of the articulated momentum vector will be denoted with pK, in accordance with the notation in 
section 2. The proof is based on the construction of the Langrangian function L and its partial 
derivatives (2). In summary, the function G has been identified, but can only be evaluated with 
known values of the velocities. These will be derived in next section. 

5    Second set of equations (F) 

To obtain the second set of Hamiltonian equations, the one involving the function evaluation F 
(3a), the joint velocities vector 9 need to be expressed as a function of the canonical momenta 
vector p and the joint angles vector 6. This can be done starting from the expression of PN in 
terms of the linear and angular velocities vN and wN (6) and writing the angular velocity as an 

explicit function of 6N- 

uN = u>K + 9NeZN (17) 

Substitution in (6), projection on the angular z-axis and rearranging the terms gives an expression 

for the joint angle: 

JzZN 
P«-(0    el)„^(£) (18) 

The scalar Jzz is a shorter notation for (0 ef) J (0 ez) . The expression is of the required form, 
as the Cartesian and angular velocities are functions of the joint velocities of all inboard links. If 
similar equations are found for all other bodies, the velocities can be computed recursively starting 
from the base. These equations can be obtained by first eliminating 9N from (6), by means of (17) 
and (18), and rearranging the terms: 

„       '»)    =M>JV")+ (*')' (19) 

with 

(20) 

pJ„       JJ"W        Vda 

M' is defined as the reduced mass matrix. D' is a remainder term. Substitution of (19) in (14) 

results in a desired formulation. 

with 

M; = MK+^M'N^        and        »« = {Z)K = KT»{Z)N ^ 
M* is the articulated mass matrix and D the momentum remainder term. We denote the projection 
of the remainder momentum vector on the z-axis with the scalar d. P*K does now have a form 
similar to PN and the joint velocity can be found, just like for body N: 

eK = j±-{(pK-dK)-(0    ej)KM*(j;J] (23) 

pK is the projection of the articulated angular momentum vector p*t on the local z-axis. In case 
of a fixed base, the linear speed vi of point Oi (see Fig. 1(a)) on the joint axis between the fixed 
base and the first body is zero. The angular velocity of the base is also zero. This allows for a very 
simple expression for the joint velocity at link 1, which can be calculated directly: 
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*1 = -(Pi -dl) (24) 

The joint velocity can thereafter be used to compute the angular velocity wx and the Cartesian 
speed v2, by means of the velocity transformation %v. These on their turn enable the calculation 
of the joint velocity 62 and so on. All joint velocities can be found by forward recursion. The 
obtained Cartesian and angular velocities are also used to compute the first set of Hamiltonian 
equations derived in the previous section. So, in a first, backward recursion, the articulated mass 
matrices, the momentum remainder vectors and the accumulated forces are calculated. In a sub- 
sequent, forward recursion, the joint velocities and time derivatives of the canonical momenta are 
computed. Acceleration based algorithms typically need a third recursion step for the forward 
kinematics. This gives an additional advantage to the canonical momenta based method, when 
implemented on a parallel computing architecture. 
In the case of a fixed base, a thorough inspection of the algorithm revealed a maximum of 363 
operations are needed for each body. Due to simplifications at the first and last bodies, this 
amount is reduced with at least 475 operations for the complete mechanism. This can be written: 
363n-475, with n the number of bodies (degrees of freedom). This formula is applicable for n > 3. 
For comparison, a list of acceleration based algorithms and their amount of operations is shown 
in following tabel. 

Algorithm 
Featherstone [4] 
Vukobratovic [10] 
Rein [8] 
Canonical momenta 

Additions 
275n - 18 

231n - 294 
195n - 247 
178n - 230 

Multiplications Total 
336n - 220 611n-238 
249n - 272 480n - 566 
216n-317 411n-669 
185n - 245 363n - 475 

6    Conclusions 

In this paper, a recursive 0(n) algorithm has been introduced for the derivation of a set of 
Hamiltonian equations. The method is very promising compared to acceleration based algorithms 
thanks to: a reduced number of arithmetical operations needed to obtain the equations of motion, a 
potentially advantageous behavior during numerical integration and a reduced number of recursion 
steps. 
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1. Introduction 

Development of geometrically nonlinear plate and shell elements for multibody analysis 
has been the subject of many investigations. Existing finite element solution procedures 
for large rotation and deformation analysis can be categorized as the incremental 
approach [1] or the large rotation vector approach [2, 3]. The incremental methods, that 
were developed for conventional non-isoparametric plate and shell elements, employ 
infinitesimal rotations to define the configuration of the finite element in the global 
inertial frame of reference. This approach leads to linearization of the rigid body 
kinematic equations, and as a consequence the description of rigid body displacements 
may not be exact [4]. In order to overcome this problem, several large rotation vector 
formulations were recently proposed. In these formulations, finite rotation parameters 
are used as nodal coordinates. Continuity conditions are imposed on the displacements 
and the rotation parameters at the element nodes. However, continuity of the finite 
rotations at the nodal points does not guarantee the continuity of the displacement 
gradients at these points. As a result, the centerline or the mid-surface of the element is 
not smooth. Therefore, the obtained solution eventually leads to errors in the 
calculations of the elastic forces and stresses at the nodal points. The large rotation 
vector formulations require interpolation of rotations which must be carefully handled, 
particularly in three-dimensional applications. 

Due to above mentioned facts, existing finite element formulations for multibody 
problems are typically used in the framework of incremental solution procedures. As 
pointed out by Sharf [5], the incremental procedure is cumbersome to use in multibody 
analysis since forces acting on each flexible body are usually not all known. Moreover, 
linearization of finite rotations leads to incorrect integrals of motion and energy drift 
[6]. Therefore, there is a need to develop a new method for large deformation and 
rotation analysis of plates and shells that does not lead to a linearization of the dynamic 
equations and leads to the correct integral of motion. 

The objective of this study is to present a new finite plate and shell elements for the 
multibody analysis based on the absolute nodal coordinate formulation. The absolute 

127 



nodal coordinate formulation was recently developed for large deformation and large 
rotation problems. In the absolute nodal coordinate formulation, only global 
displacement and slope coordinates are used as nodal variables, thereby avoiding 
difficulties that arise when rotations are interpolated in three-dimensional applications. 
By using slopes instead of rotations, no assumptions are made with regard to the 
magnitude of the rotations or the deformation within the element. Moreover, the use of 
slope coordinates ensures continuity of the rotations of the cross section as well as all 
the displacement gradients at the nodal points. The formulation can be used 
systematically to relax some of the assumptions used in the classical Kirchhoff and 
Mindlin plate models. Unlike other existing finite element formulations that lead to 
highly nonlinear inertial forces for three-dimensional elements, the absolute nodal 
coordinate formulation leads to a constant mass matrix, and as a result, the centrifugal 
and Coriolis inertia forces are identically equal to zero. This important property remains 
in effect even in the case of flexible bodies with slope discontinuities. 

2. Geometric and Kinematic Descriptions of the Finite Element 

In the absolute nodal coordinate formulation, the shape function matrix and the nodal 
coordinates can be used to define the element rigid body motion in the global coordinate 
system. Therefore, it is not necessary to use transformation between an element local 
coordinate system and the global coordinate system when the element configuration is 
defined. In the absolute nodal coordinate formulation, the global position vector r'-' of an 
arbitrary point P on an element y of the deformable body / can be written in the global 
coordinate system as follows: 

r» =sV{xHy,z9)tP (1) 
where S'J is the element shape function matrix, e'J is the vector of absolute nodal 
coordinates, xv, y'J and z'J are the spatial coordinates defined in the element coordinate 
system \ij. The global definition of the shape function matrix can be achieved by using 
global displacements and slopes as nodal coordinates. By using the slopes as nodal 
coordinates instead of rotations, no assumptions are made with regard to the magnitude 
of the rotation or deformation within the finite element. The use of slopes also 
circumvents the difficulties that arise when a rotation or unit vector is interpolated in 
three-dimensional applications. In Eq. 1, the element is described as a continuous 
volume, making it possible to relax the assumption of rigid cross sections. Therefore, in 
large deformation problems the element cross section may deform and change its shape. 

The plate element used in this investigation has four nodes each of which has 12 
coordinates. The coordinates e,y*of a node k on the element j of the deformable body i 
can be chosen as follows: 

eijk = rijkT     dr^_ dr^_ dr^_ ,„ 

[ I dx* )     {dy1' )     U* J J 
where the vector r'jk defines the global position vector of node k and the three vectors 
dr'Jk    8r'Jk dr'Jk 

—p, —- and —- define the position vector gradients of node k. The shape function 
dxJ     8yJ dz'J 

matrix  S,;/can be derived by employing a polynomial expansion for the assumed 
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>16I] 
(3) 

displacement field or by using other methods that are commonly used in the finite 
element literature [7]. As an example, the shape function matrix S'y can be written as: 

S?=[S,I   S2I   S3I   54I   S5I   S6I   57I   58I 

SgI   S]0I   Sul   512I   SnI   514I   515I   Sx, 

where I is a 3 x 3 identity matrix and 
51=(2^ + l)(^-l)2(277 + l)(^-l)2, 52=«^-l)2(2^ + l)(7-l)2, ^3 =Z,77(^-1)

2
(2^ + 1)(T7-1)

2
, 

S4 =*£(£-1)(77-1), 55=-^2(2^-3)(27 + l)(77-l)2, 56 = a?(4-l)(2rj + \)(77-if, 

S7=-/3/7£2(2£-3)07-l)2, Sg=-^(J7-1) S9 = z/2^2 (2^-3)(2/7-3), 

S10=-V£2(£-0(2i7-3), 5n--/3^2(7-l)(2^-3), S12=t%t}, 

Su = -rj2 (2£ +1)(£ -1)2 (277 - 3), SH = -^772 (f -1)2 (277 - 3), S15 = brj2 {£ -1)2 (2<f +1) (77 -1), 
S16=-ritf(<J-l) 

where % = x/a, 77 = y/3 and £ = zlt. In the preceding equation, a, b, and * are the length, 

width and thickness of the plate element, respectively. 

3. Slope Discontinuities 

The position vector gradients can be evaluated using any sets of parameters. In order to 
be able to model slope discontinuities using simple linear connectivity conditions that 
lead to a constant mass matrix for the element that undergoes finite rotation and an 
arbitrary large deformations, a body parameterization instead of the local element 
parameters is used. In this representation, the vector eiJk in Eq. 2 is expressed in terms of 
the body parameters x', Yl and Z'. The body coordinates are defined in a selected 
body coordinate system that represents a unique standard for all the finite elements of 
this body as shown in Figure 1. Without any loss of generality, the axes of this body 
coordinate system can be selected to be initially parallel to the axes of the global inertial 
frame of reference. 

Element./' Body i 

Figure 1. Element and body coordinate systems. 

In order to deal with slope discontinuities between the finite elements, the 
transformation that relates the local element parameters x» to the body parameters X' 
need to be obtained. To this end, we note that: 

QrVk        A„Vk   SV'        Pb.Vk   AV>        Ar'Jk dCk dxl   3>f_ör + sr,r dZl 

dxl dX'   dxl        dY'   K        dZ'   dx'n 
where x\ is the n th component of the vector x'7 and rf 

m,n = 1,2,3 (4) 

is the m th component of 
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vector r'jk. The preceding equation leads to nine scalar equations that define the 
transformation between the two sets of position vector gradients. Using these nine 
equations, the following transformation for the element coordinates can be obtained: 

,</'* 

' rijkT ' 

drijk 

dxij 

Brijk 
= 

8y'j 

driJk 

. 8zij . 

0 

J\,\ 
Pj i'jkl it1 

iiJk\ J\,7l 
■ ijk j      -ijk j 

J2.2       Ji,2 

J2,Zl     V3.31. 

rijkT 

3rijk 

dXl 

8rijk 

dY' 
8rijk 

= T'Jkn''k (5) 

where p'-'* is the vector of coordinates of the nodal point k on elementy of body / defined 
using the body parameterization, I is a 3 x 3 identity matrix, T'-' is the transformation 
matrix that relates the two sets of the nodal coordinates at the nodal point k, and jfn is 

the (/,«) th element of the Jacobian matrix that defines the relationship between the 
displacement  gradients  in  the  undeformed  configuration.   In  the  absolute nodal 

coordinate formulation, the vector xyk =[XiJk YiJk Z'Jk] that defines the global 
displacements of the nodal point k in the undeformed configuration can simply be 
written as 

Xijk =S*W;*,z0*)eg' (6) 

where x'jk, y'Jk and zljk are the local coordinates that define the position of the nodal 
point k in the element coordinate system, and e^ is the vector of nodal coordinates in 
the initial configuration. The (/,«) th element of the Jacobian matrix can then be simply 
written as: 

.ijk 
Jl.n 

dS,(X*k,y»k,ziik) 

dxll 
(7) 

where S, is the / th row of the shape function matrix. For a finite element that consists 
of n„ nodes, the element transformation matrix can be written as follows: 

"T^1        0 
JIJ (8) 

0        T^"J 

Using Eqs. 1 and 5, the element configuration in the global coordinate system can be 
expressed as follows: 

r{=s¥p*' (9) 
As previously shown [8], Eq. 9 can be used to describe an arbitrary rigid body motion if 
the transformation matrix TiJ remains constant while changes are made in the vector p'-'. 

4. Dynamic Equations 

The inertia matrix of the element j can be calculated using the following expression of 
the kinetic energy: 

pJ = I jpii rvTrVdV'J (10) 
yv 
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where piJ is the mass density, ViJ is the volume and r'J is the absolute velocity vector 
of the element j. Using the transformation matrix that accounts for the slope 
discontinuities, the absolute velocity vector can be written as follows: 

rV =S»T0pU (11) 

By substituting Eq. 11 into the expression of the kinetic energy, one obtains: 
J. 
2 

where M*' is the element mass matrix defined as: 

[pösüTs9dVü 

TlJ =-pijrMiJ i>v (12) 

MV = VJT 

yj 

VJ (13) 

The mass matrix MiJ depends on the mass density, transformation matrix Ty and 
dimensions of the element. Since jf is a constant matrix whose elements are defined 
using Eq. 7, the mass matrix remains constant despite the discontinuities of the slopes 
and the initial curvature of the element. 

In the absolute nodal coordinate formulation, two different methods can be used 
when the elastic forces within the finite element are defined. In the first approach for 
definition of the elastic forces, a local coordinate system is employed to define the 
element deformations. The use of the local element coordinate system leads, as 
demonstrated in previous publications, to a more complex expression for the elastic 
forces [10]. This approach is not employed in this investigation. A straightforward 
approach for evaluating the elastic forces is to use a continuum mechanics approach. In 
this case there is no need for defining the element deformation in a local element 
coordinate system. This approach leads to the general expression of the elastic forces 
since the nonlinear strain-displacement relationship must be used in order to avoid 
spurious strains. Using a continuum mechanics approach, the global displacement 
gradients can be obtained directly as: 

D   -J  [J0J ^ 
d{$ijTiJ

Pf)' 
dx» 

(14) 

where pg is the vector of nodal coordinates that defines the element initial configuration 
in the body coordinate system. The strain tensor can be obtained using the matrix 
D'y and the Cauchy-Green formula as follows: 

^=i(D^-l) (15) 

where I is a 3x3 identity matrix. The elastic forces of the finite element./ can be derived 
by using the principle of virtual work as follows: 

SWij=- \(ijTEiJS(ijdViJ (16) 
v* 

where Ey is the matrix of elastic coefficients, and £iJ is the vector form of the strain 

tensor t '£. 

5. Summary and Conclusions 

A new plate and shell elements developed using the absolute nodal coordinate 
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formulation are presented in this investigation. In the proposed element formulation, 
only global displacements and slope coordinates are used as nodal variables. The 
proposed formulation circumvents difficulties that arise when rotations are interpolated. 
The absolute nodal coordinate formulation uses a displacement field that defines the 
location of the arbitrary points on the plate or shell element in the global system, not in 
an element coordinate system. Since a displacement field is linear in the nodal 
coordinates, the absolute nodal coordinate formulation leads to a constant mass matrix 
as demonstrated in this study. 

The general plate and shell element developed in this investigation can describe rigid 
body motion, finite rotations and an arbitrary large deformation. Continuity of all 
displacement gradients at the element mid-surfaces are ensured, thereby, ensuring the 
smoothness of the mid-surface of the structure model. A continuum mechanics approach 
with nonlinear strain-displacement relationships is used to obtain the plate elastic forces 
that account for all geometric nonlinearities and shear deformation. The proposed 
formulation is fundamentally different from the three-dimensional degenerated element 
since the proposed element contains information about all the rotational degrees of 
freedom at the nodes. This property allows using this new formulation in the framework 
of a non-incremental solution procedure. It is shown in this paper that the property of 
the constant mass matrix remains in effect when the absolute nodal coordinate 
formulation is used to model flexible bodies with slope discontinuities. 
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1.   Distributed simulation of MBS dynamics 

The need for high performance simulation of the dynamics of large MBSs is 
a widely recognized issue stimulated by demands from a variety of different 
application areas such as interactive real time virtual reality simulation, 
model based control and of course the design and development process. 
In particular the development of complex mechatronics systems calls for 
highly flexible simulation tools which are reconfigurable and model inde- 
pendent. Several interactive tools for the simulation of MBS dynamics exist 
(Adams, alaska, NewEul, Mobile), which are commonly intended to support 
the design process of one particular model but not for case studies, model 
fitting or even MBS optimizations. Approaches to the optimization of com- 
plex systems have always been tailor made implementation specific to the 
problem at hand. A general treatment was not attempted yet. 

The use of parallel computing facilities (PCF) is well established for the 
numerical simulation of continuum mechanical, fluid mechanical as well as 
electromagnetic field problems. This is because the large number of degrees 
of freedom of the mathematical models can be immediately distributed on 
a parallel computing grid. However, though PCF have not been seriously 
employed in the context of MBS simulations, PCF are also potentially ad- 
vantageous in many respects for the MBS dynamics simulation and op- 
timization. The classical single-model/single-processor simulation systems 
may be extended to evaluate the instantaneous kinematics, kinetics and 
dynamics exploiting the MBS topology for a distributed evaluation of the 
motion equations employing very time efficient parallel O (n) algorithms 
[2]. But the necessary computing resources are not justifiable since it could 
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Evaluation task 
üflstnpbon 

only speed up the dynamics simulation of one MBS model. On the other 
hand the entire dynamics of one MBS model can be simulated per process- 
ing node. In this way autonomous running MBS models constitute a task 
farm. A combination of both approaches, i.e. model instants on this task 
farm use parallel 0 (n) algorithms, is usually not possible with the current 
state of the art technology. 

Such a task farm plus 
a superordinated con- 
troller/processing instant 
constitute a MBS sim- 
ulation grid. The aim 
of the simulation grid 
is to provide MBS sim- 
ulation results and in- 
corporate these in data 
processing tasks. Since 
each node on the task 
farm can be considered 
as a stand-alone simula- 

tion tool this methodology shall feature, the complete functionality of es- 
tablished simulation packages. Consequently a simulation may be every 
combination of possible task that a simulation package could perform, e.g. 
kinematic/dynamic simulation, linear analysis or equilibrium determina- 
tion. In this way it is possible to perform full simulations of several instances 
of a parameterized MBS model in parallel. 

One single controller/processing instant governs the task farm and serves 
the model instants on that task farm with necessary parameters. Incoming 
simulation results are processed by the controller/processing instant, they 
could simply be stored for later use or model parameters could be optimized 
to achieve a desired behavior. 

A simulation grid for MBS was developed at the Edinburgh Parallel 
Computing Center (EPCC), Edinburgh, Scotland, UK in cooperation with 
the University of the Federal Armed Forces, Hamburg, Germany. The MBS 
modelling is supported by the interactive modelling and simulation system 
alaska. This system provides MBS models in a suitable form for the task 
farm. 

2.   Components of a distributed simulation environment 

2.1.  CONTROLLER AND PROCESSING INSTANT (CPI) 

The controller/processing instant (CPI) controls the overall simulation grid. 
It is the only instant of the simulation grid accessible from the external 
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environment. The CPI is the actual data processing unit that provides the 
task farm with model and simulation parameters. MBS simulation results 
are obtained by the simulator instants, the data processing is accomplished 
by the single CPI. 

Typical examples for data processing strategies are the parameter vari- 
ation (collection of simulation results for different parameters) and the op- 
timization of MBS kinematics or dynamics with respect to specified model 
parameters. From the CPI point of view the task farm entries are simply pa- 
rameterized input-output relations. Thus the task farm entries may be any 
instants, not necessary MBS simulators, compliant to the communication 
framework described below. 

2.2.  SIMULATOR AND MODEL INSTANT (SMI) 

Each simulator/model instant (SMI) placed on one node of the farm is a 
composite of the specific MBS model and a simulation engine. Here MBS 
model means C-code which is generated by an interactive simulation tool. 
In this way the code fulfills interface specifications in order to ensure model 
independence. The accompanying simulator can be considered as the sim- 
ulation kernel of a standard simulation packages so that it is able to carry 
out the same simulation tasks as a user might do interactively. The problem 
specific simulation tasks are accomplished by the SMI in batch simulation 
mode and described by a command file which is common to all SMIs on 
the farm. As such the SMI has the full simulation functionality of classical 
stand-alone simulation tools except their interactive modelling capabilities. 
The SMIs appear to the PCI as black boxes and the CPI strictly has no 
information about the particular simulations carried out the PCIs. 

CPI 

Model instantiation, temporary 

SMI1 SMI 2 

MBS code 

S7SMAVSr 

MBS code 

Simulator 1 Simulator 2 

Simulator access protocol (SAP) 

Message passing interface (MPI-2) 

Operating system (OS) 

Parallel computing facilities (PCF) 

Distributed simulation environment, permanent 

SMlp 

MBS code 

-,r--^Al^ "6^B 

Simulator p 
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2.3. SIMULATOR ACCESS PROTOCOL (SAP) 

One of the main challenges of the developed system is the coordination of 
SMIs by the PCI. For the sake of flexibility and generality the PCI and 
SMIs, each being an individual process on a PCF node, communicate via a 
simulator access protocol (SAP). This SAP is based on the MPI-2 frame- 
work for distributed computing systems [8]. The SAP approach ensures 
a maximum flexibility of the system because the actual PCI as well as 
the SMIs can be freely substituted as long as they are compliant with the 
SAP specification. Consequently the data processing of developed simula- 
tion grid is not limited in type and complexity, i.e. parameter variation and 
optimization of MBS are two applications only. It may further cater for the 
distributed simulation of cooperating systems. 

2.4. MODEL ACCESS INTERFACE (MAI) 

The SMIs consist of two parts the MBS model and the simulation engine. 
While the PCI and SMIs are coupled via the SAP (a software protocol) 
the MBS (the model C-code) must be linked to the simulation engines (C- 
library). The general conditions for this intercomiection are defined by a 
model access interface (MAI). This is nothing but a predefined set of C- 
functions with defined calling conventions. Any MBS model fulfilling this 
MAI convention can be linked to the simulator, which are of course MAI 
compliant. 

3.   MBS modeling and code generation 

Crucial for an easy and straight forward implementation of MBS models 
on the task farm is the automatic generation of C-code fulfilling the MAI 
specification. The automatic generation of the model code has several ad- 
vantages in terms of transparency, modularity and safety. One condition 
on the model description to facilitate this is a modular, or consequently 
object oriented, modeling [3,6]. Another condition is that the modelling 
and simulation tool that engineers use for interactive simulations is able to 
'dump' its internal program flow for that MBS at hand in form of portable 
C-code which is also compliant with the MAI specification. This claim was 
achieved during the development of the simulation tool box alaska (www.tu- 
chemnitz.de/ifm). 
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4.   Application: Nanometer coordinate measuring machine 

The developed system was employed for the optimization of a fairly complex 
high precision coordinate measurement device [7] as part of the develop- 
ment process. A nanometer coordinate measuring machine (NCMM) com- 
bines the precision of nanometer measuring devices and the large workspace 
of conventional measuring machines. This is achieved by a novel cascadable 
setup. The machine is equipped with an atomic force microscope (AFM) as 
topography sensor. Obviously, the large scan volume contradicts the tar- 
geted high precision taking into account the used mechanical components. 
That is, the NCMM construction demands the use of high quality compo- 
nents to ensure high mechanical precision and the drive control must be 
able to rapidly reach a target position with very high accuracy. It turned 
out that the control of the NCMM is crucial and cannot be optimized 
by trial-and-error. Therefore the positioning system of an existing NCMM 
prototype was modelled as electromechanical rigid multibody system model 
with the alaska simulation package. 

The controller parameter of the (existing) protype were optimized using 
a genetic algorithm [4,5]. The typical population consisted of 127 SMIs, i.e. 
127+1 processors were in use. The main objective was to minimize the over- 
shooting effect during positioning of the AFM tip. The optimization goal 
was achieved after less then 40 cycles and the optimal controller parame- 
ter constellation now yields 70% less overshooting during the tip approach. 
Also the scan motion precision could be improved. 
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1.   Introduction 

The paper deals with the calculation and administration of the motion 
and the contacts of systems that are comprising many colliding bodies. 
Special attention is paid to the comparison of the efficiency of the employed 
algorithms with respect to calculation time. In order to model the behavior 
of many particles very efficiently, methods from Molecular Dynamics (MD) 
are used. To reduce the high calculation time that is usually spend on the 
collision detection, sophisticated sorting algorithms for neighborship search 
are required. These algorithms are exerted before determining the contact 
forces applied to the particles. This holds especially for large systems with 
many repeatedly colliding particles. In the paper three of such method 
are discussed and compared for both the 2D and the 3D case. In order to 
determine the dynamical behavior of systems consisting of several or rather 
many particles, some fully developed approaches exist. Systems consisting 
of bodies with negligible deformations can be described e.g. by means of the 
multibody system method (MBS), (Schiehlen, 1986). Mass point systems 
may be regarded as a special case of MBS. 
For studies of flexible bodies, usually the Finite-Element-Method (FEM) 
or the Boundary-Element-Method (BEM) are used, compare (Eberhard, 
2000). Each of these methods has its own advantages and disadvantages. 
While the MBS is in general characterized by comparatively short com- 
putation times due to a small number of degrees of freedom, traditionally 
deformations cannot be handled. On the other hand, systems investigated 
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by the FEM possess a large number of degrees of freedom with rather 
complex equations of motion, but deformations are taken into account. 
An expansion of the MBS method for elastic bodies is e.g. shown in (Melzer, 
1994). Hybrid MBS / FEM contact calculations are presented in (Eberhard, 
2000) where colliding bodies are examined by the FEM approach in order 
to incorporate deformations while all the other bodies of the system are 
regarded as rigid. This approach combining FEM and MBS makes use of 
the advantages of both of the methods. However, all of these mentioned 
approaches have one significant drawback for particle systems in common, 
in fact that the number of contacting particles is quite limited. 
Very efficient methods for granular matter exist, that allow the determina- 
tion of motions and contacts of many thousands of particles. For the efficient 
determination especially of systems consisting of a very large number of 
small elements, methods from MD are frequently used. The formulation of 
the contact forces between the different bodies is based on simple models 
in order to keep the calculation times within a feasible range. Here usually 
very small penetrations between the particles are accepted, see e.g. (Luding, 
1998). Forces applied to a particle in MD are for instance gravitational 
forces and contact forces resulting from the boundaries of the system and 
from other particles within the system. The normal contact forces acting 
in opposite direction to the occurring penetrations are modeled as elastic 
restoring forces. The force is proportional to the penetration of the parti- 
cles (Luding, 1998). This corresponds to a penalty force or homogenization 
approach. 
By means of MD basically arbitrary systems such as gas, fluids, molecules 
or charge carriers can be investigated (Luding, 2000). Apart from the above 
mentioned rejecting contact forces also attractive forces, so called long range 
correlating forces, may occur. Further, the potential energy of each particle 
generally also depends on all the other bodies of the system. For example 
for atomic particles this influence is called 'van der Waals' or 'London 
dispersion, see e.g. (Rapaport, 1995). 
In a system with attractive forces each particle influences all the other ones 
within the system. This means, that for a system consisting of n particles 
the required calculation operations for the contact force computation will 
be of order 0{n2). Especially for systems consisting of many particles this 
fact will cause very long calculation times and only very small time intervals 
can be simulated. 
Usually the body distances that are decisive for the major amount oi the 
occurring repulsive forces between two particles are calculated in a double 
loop over all particles. Therefore, the time to examine all bodies with re- 
spect to separation or contact is proportional to n2, see (Allen and Tildesley, 
1987)  leading still to the mentioned 0{n2) behavior. For the investigation 
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of solids the attractions between the particles can be neglected so that just 
the directly contacting and neighboring bodies have an influence on each 
other. In 1967 Verlet suggested a technique which utilized this fact in order 
to improve the calculation speed (Allen and Tildesley, 1987). The idea is to 
generate a list of the neighbors of every body in order to perform collision 
detection not for each existing pair of particles of the system, but only for 
neighboring bodies. These lists need to be updated only from time to time 
and not for every step of the dynamic calculation. Since then many different 
approaches have been developed, in order to reduce the calculation time by 
efficiently extracting the surrounding particles of the bodies. 

2.   Neighbor Search Methods 

In our paper three methods are presented that can be used in order to find 
neighboring bodies of a particle efficiently. The first two of these methods, 
the Verlet neighbor list and the linked cells method, identify the neighboring 
particles of a body by regarding special regions of the system and consid- 
ering all particles within the same region as neighbors. These methods can 
have high advantages, as for some systems it is possible to reduce the calcu- 
lation operations down to an order of 0(n), compare (Muth, 2001). For both 
methods the neighboring zones have to be at least somewhat larger than 
the particles themselves, compare (Allen and Tildesley, 1987) or (Muth, 
2001). Out of that, two problems can arise. Firstly, if the particles within 
the system are polydisperse, that means their sizes differ, then the size of 
the neighboring zones has to conform to the largest particle existing in the 
system. Hence, for highly polydisperse mixtures, the smaller particles may 
increase the average number nc, which might in the worst case even be close 
to n, see (Schinner, 1998). 
As the neighborship zones around the particles are larger than the particles, 
the neighbor lists do not have to be updated in each time step. The size 
of the zones and the necessary update frequency are interdependent and 
not quite easy to guess. Therefore, another problem of both methods is the 
ascertainment of optimal values for both, the update frequency for the lists 
and the size of the zones. If the zones are too small or the update time 
steps too large, the behavior of the system cannot be calculated correctly. 
But, if the zones are too large or the time steps for rebuilding the lists are 
too small, the calculations will be inefficient. The choice of these values is 
therefore very important, and it may take a lot of time getting experience 
with the investigated system. 
The third method presented more detailed, the linked linear list method, 
is based on a totally different approach. It is also a very efficient method, 
used to keep track of neighbors for large systems. In a first step, bounding 
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boxes are laid around each particle, Fig. 1, that are seized in such a way, 
that each particle fits exactly in its box. The edges of each bounding box 
are aligned parallel to the system axes. 

M HI 
i\ 

Figure 1.    Bounding box around each particle. 

In a next step the bounding boxes are projected separately onto the system 
axes. Such a projection onto the x-axis for the situation in Fig. 1 is shown 
in Fig. 2. In the following, only the order of the beginnings 'b' and endings 
'e' of the projections of the bounding boxes along the axes is of interest. 
For this reason the sequences are stored in lists. 
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Figure 2.    Particles projected on the x-axis for two different times, (Schinner, 1998). 

For a 3D system, three different projections are necessary and, therefore, 
three lists will be compiled, each with the length of two times the numbers 
of particles in the system. If there is the beginning, ending, or both, of 
another particle in between the beginning and ending of a particular body, 
then there will be an overlap of the projections of the bounding boxes of 
both particles along this axis. A collision of two bounding boxes exists for 
an overlap of these projections along each axis. 
Checking whether there is some part of a projection in between the be- 
ginning and ending of another projection for each particle along each axis 
still takes a lot of time. But, although these lists have to be updated for 
each time step, the necessary calculation times can be reduced to a number 
proportional to the total number of particles in the system, as there only 
has to be done an update instead of a complete recomputation of the old 
list for each new time step, that corresponds to sorting an already nearly 
sorted list. This update can simply be done by going through the lists 
sequentially and checking for any new changes in the order. The occurring 
changes usually only are permutations, compare e.g. Fig. 2, where e$ and 
64 have been changed. If the order of the beginnings and endings does not 
have to be changed, the collision status of the particles also will remain 
unchanged. While seeking for new colliding bounding boxes, by looking 
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for permutations in the lists, four different cases have to be discerned, 
compare (Schinner, 1998). 

— Two beginnings are changed, which means the bounding boxes have 
been overlapping and will continue to overlap, 

— two endings are changed, which also means the bounding boxes have 
been overlapping and will continue to overlap, 

— a beginning and a proximate ending are changed, which means a so far 
occurring overlap will now have to be removed or 

— an ending and a following beginning of another particle are exchanged, 
which means there will now be a new overlap between their two bound- 
ing boxes. 

For the first two cases nothing has to be done in the lists at all, as the 
collision status between any particle will not change. If a collision along an 
axis has to be removed, or if there is a new collision between two particles 
along an axis, the collision information along the other axes is essential, in 
order to know, whether there is a new collision along all axes and, therefore, 
between the bounding boxes or, on the other hand, there will now be no 
overlap any more between two so far colliding bounding boxes. For this 
reason for the 2D case a second and a third column are added to the 
lists, that store the information of the positions of beginnings and endings 
along the y-axis, compare Fig. 3. In each row, the positions are stored, of 
beginnings (column two) and endings (column three) of the particle of the 
first column. For a 3D system also a fourth and a fifth column have to be 
added with the position information of beginnings and endings along the 
z-axis. 

e2 

tv 

ei 

V 
Figure 3.    Lists containing also the position information along the other axes. 

For example going through the list along axis x, see Fig. 3, leads to the 
potential collision between particles (2/3), (2/4), and (3/4). As the location 
of particle 3 along the y-axis is from position one to three, whereas the end 
of particle 4 has the position two, there is also an overlap of bounding boxes 
3 and 4 along the y-axis and, therefore, real collision of the bounding boxes 

142 



of particles 3 and 4. Therefore, particle 3 and 4 are now considered to be 
neighbors. 
For each method the neighboring particles are stored in lists. Thus, after the 
pre-sorting has been finished, the real collision detection needs to be done 
only for these surely neighboring and potentially colliding bodies. Hence, 
the necessary calculation operations for collision detection can be reduced 
down to an order proportional to the number of particles in the system, 
i.e. 0{n). 
In the paper results for different examples are shown comparing the three 
described methods. It turns out that the Verlet neighborhood lists are 
always quite time consuming while there is no clear 'winner' from the 
other two methods. Depending on the density and polydispersity of the 
investigated system either method has advantages and disadvantages. 
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1.   Introduction 

The generalized coordinates used in this paper to represent the state of 
a mechanical system are Cartesian coordinates for position, and Euler pa- 
rameters for orientation of body centroidal reference frames; i.e., for bodv i 

xuVu zi\ , and pi = [eio, en, e^, ei3] , respectively. The Euler param- 
eters must satisfy the parameterization constraints, pfp; = 1, 1 <i <nb, 
[2], where nb is the number of rigid bodies in the model. The vector of 

generalized coordinates is defined as q = |r?\.      rT     nT        DT
 1     p 

T- L b'     " 1 > ■ ' • ' "nt        c 

din, n = 7nb. To simplify the presentation it is assumed that the joints in 
the model only introduce holonomic constraints. The kinematic constraints 
at the position, velocity, and acceleration levels assume the expression 

*(q,*) = [*l(q,*)    ...    *ro(q,i) }T = 0 (1) 

*q(q,<)q + *t(q,<) = o (2) 

*q(q, t)q + (*q(q, «)q)q q + 2*qt(q, t)q + *„(q, t) = 0 (3) 

If mk represents the number of constraints induced by the joint k, then 
*(q,<) G Um, where m = Ek~imk, with Nj denoting the number of 
joints present in the model. The subscript denotes partial differentiation, 
*q = [d$i/dqj], i = l,...,m, j = l,...,n. It is assumed that the m 
constraint equations are independent; i.e., 4>q has full row rank. 

In what follows, for body i, Sr^ and Sfti represent a virtual translation 
and rotation, respectively, m* is the mass of the body, f; is the vector 
of applied forces, ü{ is the angular velocity represented in the centroidal 
body-fixed reference frame, J; is the inertia tensor, and n* is the applied 
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torque expressed in the local reference frame. The notation convention that 
a vector quantity with an over-bar is represented in a local reference frame 
is observed in what follows. The Lagrange multiplier form of the equations 
of motion assumes the form 

M   0 
0     J 

r 
Ü) 

+ 77T($,q) 
PT(*,q) 

A = n (4) 

where M = diag(Mi, ...,M„6), J = diag (Ji,..., JnJ, r = [rj,. 

*£1T, * Ql
nJ

T, 77 (*, q) = [»7i (*, q), • • •, »7n6 (*, q)], P (*, q) 
[Pi (*, q), • • •, Pnb (*, q)], f = [ff, • • •, fJJT, and n = [nf,..., f£jT, with 
rij = fii - üiJiüi. Note that 77^ (<&, q) and pi(<fr,q) are the linearization 
operators that in the expression of the first order variation of the posi- 
tion constraint equations of Eq.l multiply the virtual translation <5r; and 
rotation «J^; i.e., 6$ - ££1 rji (*, q) ^ + E^i Pi (*> q) <^> f4l- 

The numerical solution of the index 3 DAE of Eq.l and 4 is found using 
an explicit integration formula that integrates a set of state space ordinary 
differential equations (SSODE). The DAE to SSODE reduction is based 
on a partitioning of the generalized positions q in dependent coordinates 
u e 5Rm, and independent coordinates v € $lndof, ndof = n-m, [5]. The 
coordinate partitioning-based approach requires at each integration step 
the acceleration q. Note that if A is available, r and u> are expeditiously 
computed based on Eq.4, and with pi = 0.5 Gfu>i - 0.25 (üfüij p;, [2], 
q eventually becomes available. Thus, the cornerstone of the algorithm is 
the computation of A, which is carried out iteratively as the solution of the 
reduced system EiA = rjM^f + pJ_1n-r. Since the matrices M and J are 
positive definite, the reduced matrix Ei - (pM-1?? + pJ_1pT) G &mxm, 
with 77 - 77 ($, q), p = p (*, q), is also positive definite. 

2.   Preconditioning. A topology-based direct sparse solver 

The preconditioning of the iterative solver for the reduced system is based 
on a direct solution of this system, in which the topology of the model 
is leveraged to efficiently compute Ei, and to perform sparse, low fill-in 
factorization. 

In what follows, two bodies k and bk are called j-adjacent if they are 
connected through joint j. Since there is an ordering relationship among 
the bodies of a model, of the two adjacent bodies one has a lower index, 
and it is called the left-body, or 1-body, while the higher-index body is 
called the r-body. They are denoted by l(j), and r(j), respectively. The 
b{-Connectivity set of body bi is defined as the union of all joints that link 
body bi to other bodies in the system, and it is denoted by C(^)- Tne Joint 

145 



index J(b{) of a body bi is defined as the number of elements in ((b{). 
The topology index J of a mechanism is defined as the largest joint index 
of any body in the mechanism. In this context, it is shown in [4] that an 
upper limit on the number of operations to compute Ei is 72J(J + 1) nb 
additions, and 126J(J+1) n^ multiplications. These numbers refer to block 
matrix operations, and the rule is that each joint leads to operations with 
block matrices of dimension equal to the number of constraint equations 
it induces. Thus, the largest dimension of any block matrix operation is 
6x6, induced by a joint that removes all six relative degrees of freedom 
of a body. It follows that the number of operations only increases linearly 
with the number of bodies, and it is the topology index of the mechanism 
that, from a connectivity stand point, influences the computational effort. 

The direct solution of the reduced system is obtained by repeatedly ap- 
plying a two-stage process, [4], an approach similar to the one proposed 
in [3]. First, a Lagrange multiplier Xj associated with joint ;' is solved for 
in its defining equation (the isolation (I) stage), and then eliminated from 
the defining equations of all joints k G ((l{j)) U C(rC?)) (the elimination 
(E) stage). The two factors that influence the effort to compute the so- 
lution of the reduced system are the elimination order, and the topology 
index of the mechanism. The importance of the elimination order is illus- 
trated in [4], where the direct solution of the reduced system associated 
with the Andrew's squeezing mechanism is analyzed in terms of block ma- 
trix additions (A), multiplications (M), inversions (I), and fill-in (F). The 
results are showed in Table 1, the mechanism and the associated topology 
graph are presented in Fig.l, in which bodies map into the graph's ver- 
tices, while the graph's edges correspond to physical joints. For the good 
elimination sequence 1 2 7 6 5 8 9 3 4 10, the number of additions and 
multiplications is reduced by roughly 70%, compared to the case when a 
bad elimination sequence is employed. Likewise, although this mechanism 
has closed loops, when using the good elimination, the algorithm results in 
no fill-in. It follows that rearranging the ordering of the joints during the 
preprocessing stage of the simulation results in increased solution efficiency 
at each integration step. 

TABLE 1. Andrew's mechanism. Operation count. 

Elimination Sequence           A M       I F 

127658934 10             35 
42356917810            111 

35      21 
130     40 

0 
19 

For a class of topology index 2 mechanisms; i.e., a chain of pendulums, 
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Figure 1.    Seven body mechanism 

it is shown in [4] that the reduced system is solved in O(Nj) effort. How- 
ever, as pointed out in [1], this ceases to be the case for star-like topologies; 
i.e., models with high topology index. These are models in which one body 
is connected to many other bodies in the model. In the limit, the perfor- 
mance of the two stage isolation-elimination (IE) algorithm turns out to 
be O(NJ). The algorithm remains order 0(Nj) though, provided topol- 
ogy index reduction is first applied to the model, [4]. The topology index 
reduction amounts to a virtual break-up of the high index body into an 
appropriate number of smaller virtual bodies connected by fixed joints; i.e., 
joints that remove all relative degrees of freedom. This operation reduces 
the index of the mechanism while increasing the number of unknowns; i.e., 
Lagrange multipliers in the new reduced system. The new bodies and joints 
are called virtual because they do not have a physical counterpart. Their 
effect is a topology change for the sole purpose of leading to an equivalent 
but simpler reduced linear system. The idea behind topology index reduc- 
tion is that a star-like topology should be regarded as the result of a bad 
elimination sequence applied to a virtual mechanism. The effort for com- 
puting the Lagrange multipliers is expected to decrease by going back to 
this virtual mechanism via topology index reduction, and then applying a 
better elimination sequence on its reduced matrix. 

Topology index reduction was applied in [4] to star-like topologies with 
indexes anywhere from 3 to 16. The results indicate that even for this 
type of topology, the number of operations only increases linearly with 
the number of joints in the model, provided the topology index of each 
model is first reduced to 3 or 4. Topology index reduction was also applied 
to a High Mobility Multi-Wheeled Vehicle (HMMWV) in Fig. 2, a model 
with topology index J — 11. The impact of the elimination order and 
topology index reduction are presented in Table 2, where NNZ indicates 
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a.    Picture b.    Topology graph 

Figure 2.    HMMWV example 

TABLE 2.   HMMWV reduced system solution effort. 

Elimination Sequence A M I F NNZ 

Bad 
Good 

Index reduction 

1240 
459 
220 

1336 
469 
233 

195 
109 
90 

96 
10 
13 

99 
99 
77 

the number of non-zero blocks in Ei. The reader is referred to [4] for a 
detailed account of how the topology index reduction was done, and what 
were the "good" and "bad" elimination sequences used for the solution of 
the reduced system. 

3.   The iterative solution of the reduced system 

If W is the preconditioning matrix, the algorithm Preconditioned Conju- 
gate Gradient below guarantees a solution of the reduced system EXA = b 
within m iterations. In this algorithm, the preconditioner is responsible for 
finding cfc, an operation presented in Section 2 and based on a direct so- 
lution of the reduced system. In the context of parallelizing the iterative 
algorithm on a per body basis using a shared memory framework provided 
by the OpenMP standard, the tasks specific to the iterative solver are the 
computation of ek = Eid* e $Rm and ek = dj^d* e 3?, [4]. Defining the 
constraint index of body b{ as C(k) = Zie<{bi) mh it is shown in [4] that the 
number of operations on the thread associated with body b{ during each 
iteration is 12C(&0 + 12 multiplications, and UC(bi)-5J(bi) + 5 additions. 
This indicates that the computational effort per body and per iteration is 
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linear in the body constraint index, and leads to the conclusion that load 
balancing is obtained when the bodies in the model have identical or close 
constraint indexes C(b{). It follows that topology index reduction also helps 
the iterative solver by balancing the thread load, and distributing the work 
to more threads. Note that the performance of the iterative solver is not 
impacted at all by the existence of closed loops in the model. 

Preconditioned Conjugate Gradient. 

k = 0;A fc = 0;efc = b 
while ( Bfc^O) 

Solve Wcfc = efc 
fc = fc + 1 
if (Jfc=l) 

di = c0 

else 

ßk = {el -iCfc-i) / (el- -2cfc- -») 
dfc = efc_ i +/3fcdfc_i 

end 
ak - (efc.xCfc. _x) / (d^Ejd 0 
Afc = Afc_i + «fcdfc 
efc = efc_i - afcEidfc 

enc I 
A = Afc 

The multi-threaded attribute of the algorithm draws upon the mapping 
of each body on a simulation thread, and it is the cornerstone of the pro- 
posed solution method. Each body-thread starts with the computation of 
specific kinetic and kinematic quantities, and continues through the numer- 
ical solution; i.e., through the iterative solvers and numerical integration. 
Additional implementation details, and a discussion on how the iterative 
approach is used in the framework of SSODE integration to compute the 
dependent position and velocity by means of a different reduced matrix E2 

is provided in [4]. 
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Abstract. This paper briefly describes Symofros, the modeling, simulation and control envi- 
ronment developed and used at the Canadian Space Agency for multibody and robotic systems. 
This environment is based on a symbolic modeling and code generation engine supported 
by Maple, and the Matlab/Simulink environment. Symofros serves two main purposes: con- 
trol and real-time implementation, and analysis and design. Applications of the Symofros 
environment in space robotics will also be demonstrated in this paper. 

1.   Introduction 

Multibody dynamics is of central importance in design and analysis of me- 
chanical systems and their controllers. In space systems, multibody mod- 
eling and analysis is the fundamental element in developing and operating 
systems and technologies. Simulations (both non-real-time and real-time) 
are required for space robotics and space systems in general. The Cana- 
dian Space Agency's (CSA) in-house multibody dynamics software package 
Symofros has been developed since 1994. Symofros permits modeling, simu- 
lation and real-time control of multibody systems. The software architecture 
of Symofros is based on the Maple symbolic modeling engine and the Matlab- 
Simulink environment. Symofros is used for various projects in robotics both 
inside and outside CSA. 
This paper describes the integrated virtual environment provided by Symofros. 
This environment allows the user to efficiently model, simulate in non-real- 
time and in real-time, and then do the implementation on a real hardware. 
The paper details the modeling environment based on XML, Maple and on a 
server system. We will then discuss the generation of the functions used for 
the simulation and the controller development. We will describe how a system 
can be simulated using the libraries built in Symofros. The next stage is the 
generation of a real-time simulation. As it will be discussed in the following, 

* Opal-RT Technologies on secondment to Canadian Space Agency 
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the Symofros architecture provides a very flexible environment that allows 
users to perform rapid prototyping. For example, the user can test, in the 
real-time environment, a complex model-based controller using a model of a 
robot, and then by simply clicking on a button, switch to the control of the 
real-hardware. 

2.  Modeling 

Symofros multibody dynamics engine is based on a formulation relying on 
Jourdain's principle. Jourdain's principle provides a physically clear frame- 
work for multibody analysis for both holonomic and nonholonomic systems. 
Jourdain's principle, as a differential variational principle, possesses two very 
important features. It is invariant under transformations from one possible set 
of coordinates to another, and expresses the main principle of constrained 
systems, that the virtual power of constraint forces for admissible velocity 
variations (or virtual velocities in other words) vanishes. These are the two 
fundamental elements upon which the analysis of complex systems can be 
based. The various parts of Symofros' modeling engine have been extensively 
validated by experiments, analytical examples and simulations. 
Complex systems (e.g. closed-loop multibody systems, parallel robots) can 
be split to sub-systems, and the system model can then be assembled by 
employing constraints between the various sub-systems. Open-loop systems 
and sub-systems are modeled using a generic recursive formulation, which 
can consider both rigid and flexible elements in the system (Piedbceuf, 1998). 
In general, the consideration of the system constraints is a key issue in multi- 
body dynamics. Symofros is able to handle both holonomic and nonholo- 
nomic constraints based on the Lagrangian multiplier technique with Baum- 
garte stabilization, and the use of projection and decomposition techniques. 
Work is in progress to develop new advanced methods for handling con- 
strained system dynamics, and to extend the capabilities and include various 
new and existing approaches in the simulation environment. 
The Symofros environment is able to consider rigid and flexible bodies as 
elements of a multibody system. Currently, flexible beams are implemented 
for flexible body modeling with various choices of shape functions. Besides 
the traditional assumed modes approximations, a characteristic modeling ap- 
proach employed is the advanced use of the assumed modes method, where 
the discretization is carried out in a way similar to the finite element method, 
i.e. interpolation functions are generated locally for an element, but then the 
shape functions are represented globally as in the traditional assumed modes 
method. Flexible plate models are planned to be included in the near future. 
Besides body flexibility, the finite stiffness of the mechanical structure of the 
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connecting joints is also a dominant effect in multibody systems. Symofros 
is capable of modeling joint flexibility using discrete stiffness models. 
For contact mechanics modeling, Symofros currently uses the Contact Dy- 
namics Toolkit developed by MacDonald Dettwiler Space and Advanced Ro- 
botics Ltd. Work is in progress to extend the contact-impact modeling capa- 
bilites of the Symofros environment with special attention to the real-time 
aspects. There are two main approaches being investigated in contact dynam- 
ics modeling: the local compliance based models, and the rigid body models 
based on unilateral constraints. 
Dynamic parameter identification is an important area in multibody systems 
simulations, analysis and control. This area is currently being looked at to 
develop an identification toolbox for Symofros The two main purposes of the 
identification toolbox is to facilitate the optimum generation of experimental 
data for identification, and to process the measured data to determine the 
required parameters. This work involves the formulation and analysis of the 
dynamic equations in the form suitable for identification, and the solution 
techniques of these equations for the parameters. 
Symofros also includes a control system toolbox comprising a library of 
Simulink blocks of various control algorithms (e.g. model based control with 
PD compensation). These can be easily linked and tested with the dynamic 
model of a multibody system to form the model of a controlled system. Also, 
new control algorithms can be readily built from the existing primitives. 

3.  Symofros software architecture 

Symofros is based on commercial tools and is composed of three main mod- 
ules for mechanical system description, modeling and simulation (see Figure 
1). 
Creating a model of a mechanical system consists of describing the bodies, 
the joints and the topology of the system. This model description is based on 
the XML language1, a standardized language used to describe any kind of 
data and used for many applications. For mechanical system description, this 
language is also used by researchers in Spain (Rodriguez et al., 2001). 
The Symbolic Model Generator (SMG) comprises modules written in the 
Maple language to perform the symbolic modeling. The input of the module 
is an XML or Maple file describing the properties of the mechanical sys- 
tem. This file is used by the module to compute the kinematic and dynamic 
quantities of the bodies and the joints. From the input file, the topology of 
the mechanical system is analyzed to generate a graph model. Using the 
topology with the body and joint data, the SMG develops the kinematic equa- 

1 www.w3.org 
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Figure 1. Overview of Symofros modules 

tions. Using the kinematic formulation, the SMG builds the dynamic equa- 
tions in various forms, for simulation (forward dynamics), control (inverse 
dynamics), and parameter identification (currently in development). Special 
kinematic quantities are also generated for parallel mechanisms based on the 
approach proposed in (Monsarrat and Gosselin, 2002). The SMG is normally 
used as an automatic model generator, but it is also a powerful tool to analyze 
the dynamic equations and to develop models on-line. More details on the 
symbolic modeling part of Symofros can be found in (Piedbceuf, 1996) and 
(Moore et al., 2002). 
For simulation and real-time implementation, the SMG generates C code to 
represent the multibody system. The code generation requires optimization 
tools to break the complex expressions down to smaller expressions. This also 
helps improving the code efficiency for simulation since sub-expressions ap- 
pearing several times need to be computed only once. The C functions are the 
links between the modeling part of Symofros, and the simulation/real-time 
implementation parts. Therefore, using the model in an advanced simulation 
or in the real-time environment is straightforward. 
The Symofros SMG module can also be called using a server. The user has to 
connect to the server and send the mechanical system description files. These 
files are then processed by the SMG and the C file and processing information 
are sent back to the user. This approach helps protecting the Symofros source 
code, which is located on the Maple server and not accessible by the user. This 
also reduces the maintenance required, since the upgrades and modifications 
have to be carried out on the server only. Also, using the server reduces the 
load on the user's computer ressources. 
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To allow an efficient and convenient use of the mathematical model derived, 
and to enable the numerical simulation, Symofros is directly linked to the 
Matlab/Simulink environment. The Simulink environment allows to create 
complex models and generate complex simulation systems in only a few sim- 
ple steps without the need of advanced programming skills. Special blocks are 
available in the library in order to call the functions generated symbolically 
and written in the x file. As an example, Figure 2 shows how the forward 
dynamics can be computed. In this example, the dark blocks (Mnl, gnl) are 
used to call the functions written in the .c file. Then, using standard Simulink 
blocks, the system of equations is solved to obtain the accelerations, and 
integrated to obtain the generalized velocities and generalized coordinates. 
This block (Forward Dynamics) can then be found in the Symofros library 
and re-used with other models. 

Ä^-nkrlE n 
Figure 2. Simulation model within Simulink 

Real-time simulation and hardware-in-the-loop simulation can be achieved 
by using complementary tools like the Real-Time Workshop and RT-Lab for 
generating real-time simulation code and distributing the computations on 
several computers. More details on this topic can be found in the next section 
and in (L'Archeveque et al, 2000), (Lambert et al., 2001) and (Piedboeuf 
et al., 2001). 

4.  Applications 

Canada's contribution to the International Space Station (ISS) is the Mobile 
Servicing System (MSS) which is composed of the Mobile Transporter, the 
Space Station Remote Manipulator (SSRMS) and the Special Purpose Dex- 
terous Manipulator (SPDM). The SPDM will be used to manipulate Orbital 
Replacement Units (ORUs) or scientific payloads. An important aspect of 
a typical SPDM task is the insertion/extraction of payloads. To support the 
MSS, CSA has developed the STVF2 and the SMP3. Both of these systems 

2 SPDM Task Verification Facility 
System for Maintaining, Monitoring MRO Performance on board the ISS 
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are based on the Symofros engine. These two systems also demonstrate the 
two main application areas of Symofros: model based control, and simulation 
and analysis. 

4.1.  STVF: HARDWARE-iN-THE LOOP SIMULATOR 

Due to the complexity of an SPDM task, a verification of the operation must 
be performed on the ground for each ORU manipulation. The main diffi- 
culty in this validation is verifying the part of the task for which the SPDM 
end-effector or payload undergoes contact with the environment. This part is 
verified using a hardware-in-the-loop simulation (HLS) to generate the real 
contact force using a mockup of the payload that needs to be manipulated. 
The STVF Manipulator Testbed (SMT) (Aghili et al., 1999) is used to per- 
form the HLS. The output of a real-time simulator representing a space robot 
is used as the input to the ground robot controller. The real contact forces are 
measured and fed back to the simulator. This approach is very flexible since 
we can represent not only SPDM but also other space manipulators. 
Figure 3 shows the hardware architecture required for the test-bed. The real- 
time simulation is performed using the MSS Operation and Training Simula- 
tor (MOTS). The simulator includes the dynamics of the mobile base and the 
SSRMS in addition to the two arms of the SPDM. The full model has more 
than 50 degrees of freedom. The dynamic engine (SMT-SIM) is running at 
1 kHz on an Origin 200 machine with four processors. The visualisation is 
running at 25 Hz on a four processors ONYX machine. The real-time control 
of the robot is achieved using a cluster of Pentium processors running QNX, 
and using Simulink Real-Time Workshop with Opal-RT RT-LAB for the code 
generation and multi CPU management. The graphical user interface on the 
SMT-CS is developed using Labview. The communication between Labview 
and the real-time system is managed by RT-LAB. The models required for the 

tbL ii■ yfr^— 

Figure 3. Computer Architecture for the HLS 
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controller and for the simulation on the cluster are generated using Symofros. 
The robot controller in the HLS mode is based on a cartesian feedback lin- 
earisation (de Carufel et al., 2000). For the design and the tune-up phases, 
we developed an equivalent model of the robot using Symofros. This model 
reproduces exactly the same interfaces (in terms of inputs and outputs) as 
the SMT robot has. Therefore, we can choose between the real robot and the 
simulated robot simply by clicking a switch. For the same reason, a simplified 
model with a reduced number of degrees of freedom has been developed for 
the space robot using Symofros. This model uses exactly the same interface as 
SMT-SIM. This flexibility is critical for the development since this allows the 
engineers to develop the overall software architecture in their offices and then 
download the code on the real-time system. There is no re-coding necessary 
between the pure simulation phase and the HLS phase. 

4.2.   SMP SIMULATOR 

Experimental tests and analysis have shown that the capture of free-flyers is 
the most complicated task to be performed by a robotic operator on board 
of the ISS. The understanding of SSRMS and free-flyer dynamics require 
highly qualified and well-trained operators. The dexterity and accuracy of the 
astronauts may decrease over time if they are not trained on-board. It was an 
obvious choice to have a simulator on-orbit to keep the skills of the astronauts 
at the required level. In order to support the training scenarios required by 
the on-orbit training, the SMP 4 simulator has been developed. The main 
objective of the simulator is to determine if an astronaut is ready to perform 
an operation with the real SSRMS. The training scenario, implemented in the 
SMP, consists of capturing a free-flyer with the SSRMS. 
The simulator is composed of four modules, the Graphical User Interface 
(GUI), the Analysis Module, the Visual Renderer (VR) and the Dynamic Sim- 
ulator (SIM). It has the same architecture as the Basic Operations Robotic In- 
structional System (BORIS) simulator used to provide generic robotic train- 
ing to the astronauts (L'Archeveque et al., 2001). 
The GUI has been developed with Labview 6 and runs on Windows operating 
systems. During a training session, the operator is firstly prompted to log into 
the system. Then, he has the choice to start a simulation session, a session 
analysis or a trend analysis. The session analysis provides information such 
as the hand-controller rates, the relative position and velocity between the 
end-effector and the free-flyer, and the capture status. Operational criteria 
and heuristics are used to provide a score, which allows the astronaut to have 
a good picture of his personal progress over time using trend analysis. The 
astronaut can then determine if he needs more training or not. Figure 4 shows 

4 System for Maintaining, Monitoring MRO Performance on board the ISS 
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the VR model of a generic free-flyer as viewed by the SSRMS end-effector 
camera. The VR module has been developed with OpenGL toolboxes. 
Two Symofros models have been used to represent the SSRMS and the free- 
flyer. The SSRMS model has been configured and tuned using real flight 
data (data gathered during SSRMS operations) in order to obtain a realistic 
model. Generic parameters have been established to configure the dynamic 
behavior of the free-flyer. A Simulink diagram, using Symofros toolboxes, 
performs the simulation of the SSRMS, models the attitude control system of 
the free-flyer, interprets the hand-controller input values, handles the capture 
sequence, and gathers session data. The SMP simulator running in soft real- 
time on Windows 2000 has been generated using Real-Time Workshop. The 
experimental system will be launched in January 2003 and will be used by 
several astronauts and cosmonauts. 

Figure 4. SMP Visual Renderer 
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1.    Introduction 

Integration of stiff equations of motion of multibody systems using implicit numeri- 
cal methods, calculation of equilibrium positions, linearization of equations, con- 
structing optimal controls and some other important tasks require computations of 
Jacobian matrices. Evaluations of the matrices by finite differences in the case of 
stiff equations is about 13 times more expensive than that for the mass matrix of the 
system [1]. Decreasing the corresponding computational efforts could improve the 
efficiency of numerical analysis of large multibody systems. In this paper the ana- 
lytic expressions for Jacobian matrices are derived. The method of derivation is 
based on the composite rigid body algorithm [2], which allows considerable reduc- 
ing computational efforts in evaluations of the matrices. Multibody systems with 
holonomic ideal stationary constraints are considered. If a system has closed loops, a 
minimal number of joints must be cut. An ordered numeration l...n of bodies and joints 
is introduced. Let us consider a chain of the system tree, which begins at body 0 (the 
inertial frame). Indices of bodies increase along the chain, i.e. the minimal index has the 
body connected with body 0. Indices of joints in the chain are equal to those of bodies, 
namely joint;' connects bodies i and;', j>i = j~ ■ The following important sets are 

used below: J(k) is the set of indices of joints included in the path from body k to body 
0; B(k) is the set of indices of bodies, so that their paths to body 0 contain joint k. Let 

q = (qf ■■■ ql)T be coordinates of the system, q} is the «yXl matrix of local 

coordinates in joint;', which specifies the position of body; relative to body j~. 

2.   Jacobian matrices of kinematic variables 

Let r- ,Vj,aj,AQj,(öj,Ej be the radius vector, velocity and acceleration of the origin as 
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well as the direction cosine matrix, angular velocity and angular acceleration of a body- 
fixed frame. The following recursive relations are valid: 

0 (9) = ri (9) + r](qj),    A0j (q) = A0i (q)Arj (qj ) , 

Vj = V,- + W,rJ + Vrj,       (Üj = CO; + COy , 

aj = at + \/j + co;co,rj + 2cö,vy + aj,     ey = £,- + cö,co^ + zrj , 

where rj,Aj,Vj,atrj,arj,erj specify the position and motion of body; relative to body 

i, 
vrj=djqj,   (örj=bjqj, 

aj=dj'ij+aj>   £rj=bj<ij+Vj- 
Introducing the global velocities and accelerations 

Vj=(v]   coj)7,    Wj=(a]   eTj)T 

yields the recursive formulas 

Vj = CyVi + Sjqj,    Wj = CijW, + Sjljj + T], 

Cij = 
0      h J s>\>, 

and the explicit expressions 
Vj=&jq,    Wj^Qjq + Vj, 

*j=c0j £$. 
teJ(j) 

Here we introduced the notations, which we use throughout the paper for 6xn • matri- 

ces Xk : Xk = C^Xf,, as well as for mxrtj matrices: 

Xk=(0   •••   0   Xk   0   •••   0). 
To derive the explicit Jacobian matrices for the kinematic variables with respect to 

coordinates q, the variations of coordinates &? are used. Let or,-,ore,- be the corre- 

sponding displacement of the origin and the rotation vector of the body-fixed frame, 
8KJ=5AQJAJO: 

bRj=(5rj    Srff =<PjSq. 

Variations of recursive relations for velocities and accelerations yield: 
8Vj = CijSVi - I^STC,- + Sfäj,  SWj = QyöW,- -ny5co, - n^.&Cy + Sffij, 

n5 = cv _ (d
v-) 
j 

lb?) 
r5>idj+vf 

{     *J     J 
Cl i 

r2rj<oJ 4-2vJ-C 

CO r 
j 

~~ CofrjV 

> 
• 
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n* 
'(©,•5,. + li)rf + 200,-vJ + arA     sa = ((&& + s« )dj + 25,-vy + c 

5^5 +e;        J'    j   {        M/+83 
v'f^dv'j/tf, tf-dn'j/tf, a'^da'j/dq], q=*rjfaTj. 

Here /3 is the 3x3 identity matrix. 
Thus, the Jacobian matrices result from the following expressions: 

Wj=coj £ (if-n^i)^, 

*eJ(y) 

where 
n* =ir;-n£,    nj=(*f  nff=  In*, 

«^O') 

«eJ(;) 

0^=0;-ft*,       ß7 =    Xßm- 
me/(;') 

The next formulas are the variation of the matrix 5} 

SS)=&(c$Sj)=&'S*j + 
(%z 8K j    (Srj+rjSrKj)" 

6Ä, 

d'S*=Q 0; 
ÄQjbb'j)   m=i 

7" 
';«;• 

and the important variation 5(4>jX) for an arbitrary 6x1 matrix X 

mTjX)= 1 sxksq+ I sf  1*^; +    !xrjs 

*€•/(;') 

'Oj* 

MzJUhHk)    J 
5q 

+ S5fcj«. 
tei(j) 

The first summand in this formula contains the matrices  S'xk   with one diagonal 

nkxnk block S'xk = {S'k*?X*   ■■   S'^X*), the second one includes the matrices 

0        (M 
X' 

VA7ty 
•   Xa=|_ Xr     xrr] J 

>   ^jy" _ 

'0 Xr 

U     XrTj + Xjt 

Introducing the variation Sq allows deriving the Jacobian matrices with respect to 

q . The following expressions specify the necessary matrices: 
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keJ(j) 
r2(üidj+darj/dq^ 

<(üibj+derj/dq] )' *j - 

3.   Jacobian matrices for equations of motion 

Here we consider equations of motion of a tree-structured multibody system, derived 
with the help of the Newton-Euler formalism: 

n 

f(q\q,q,t)=YJ
<S>j(q)Gj(q,q,q\t) = 0, 

Gj=Mj(q)Wj(q,q,q) + kj{q,q)-fj(q,q,t), 

(1) 

Mj = 
0 

<n 
* ft i 

JJ 

{   ° 

where mj,Jj is the mass and the inertia tensor of body;', the 6x1 matrix /• contains 

applied forces and moments reduced to the centre of mass. Origins of the body-fixed 
frames are located in the corresponding centres of mass. 

Variation of equations with respect to q and q produces the Jacobian matrices 

5f = Jq8q + Jvbq. 
Application of the results of the previous section as well as rearrangement of summa- 
tions 

Z Z =1 Z . 
7=1 keJ(j)    k=\J€B{k) 

z z  z =zz    z 
j=1keJ(j)m€J(j)    k=\m=\ yeß(max(Jt,m)) 

lead to the explicit expression for a separate block of the matrix /v 

JL=S;T(lB(C+n„Ü-(lQB+(0   k^F)>m+FvJbX), « = max(*,m) 

with the following composite matrices: 

h=   i>J,    1QU=   Z
M
X'.   M* = cZjMjC0j, 

JeB(u) jeB(u) 

jeB(u) 

*Wm=     Z        ZcJ;/;Vl-Coi,      fjVi=Qfj'*>f     dfj/daj). 
jeB(k)ieB{m) 

The expression for the matrix Jq is more cumbrous: 
JL = sGk\k=m + Sf(-VRkm +Gn\mem+Gr\mem_{k])S*m (2) 

162 



+ Sf (((0  k'T^f - Inu + Fnvhn)bm + iu (sr + ß«*«™» + Ka
mbm)) 

+ Sf (((0   Klf - lau )bmmä - FVkm(C + Uv
mbm)), u = max(*, m), 

and includes the following composite and auxiliary matrices: 

S'Gt=(SffGk   ■■   S%Gk),    Gk=   IG;, 
jeBlk) 

FnVkm=    Z       ZCOy//wCo/IIi
v,      FÄte =    X YaCQjf'jRlCW> 

leB(m)jeB(k) jeB(k) leB{m) 

m+n n m+n  / ^ 

Z*?// + Z(*3"-*£<&>*.=°. kLOT= zfe-*>?)> 

k«co= Z*w k'fic=jjij-(jjBjr+a>j(jj®j-(jj<oJr). 
jeB(u) 

If we neglect the expenses for computing the composite matrices ¥Rkm,Fvfon 

(most of the f'jVl. fjRi matrices are usually zeroes), the evaluation of the matrices 

/v, /* for a chain requires 9n2+0(n) and 13.5n2 +0{n) multiplications, 

1.5n2 + 0(n) and lln2+0(n) additions, respectively. 

4.   Jacobian matrices for equilibrium equations 

Calculation of equilibrium positions and subsequent linearization of equations of motion 
is an important part of analysis of many technical multibody systems. 

Consider a multibody system with m closed kinematic loops. If all cut joints are ki- 
nematic pairs with rotational and/or translational degrees of freedom (from 0 to 5 d.o.f.), 
the nonlinear equilibrium equations have the following form: 

n m+n 

2>fr/ + K*r-«M,)X,=o, 
j=\ s-n+1 

SjXs = 0, s = n + l,...,n + m, 

1  3 

rv(q)-ru(q)-AQu(q)r^v(qs)^0, -- YSk^uitiKMs^M^k =°- 
lk=\ 

The last two equations correspond to closure conditions for cut joint s connecting bodies 
u,v, ek are basis vectors of inertial frame; the 6x1 vector Xs contains a reaction force 
and moment reduced to the centre of mass of body v. 

The Jacobian matrix for the constraint equations is <J>V - CUV<PU -Ss.To obtain the 
Jacobian matrix for the first equation with respect to coordinates, reactions should be 
added to applied forces 

Fj=fj- Zcj>s+  5>*. 
seCi(j) seC2(j) 
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where Q(y) and C2(j) are sets of cut joints related to body;'. 
Now the equation becomes 

7=1 

and the Jacobian matrix can be derived as a particular case of Eq.(2). 

'L'^k\k._a+Si^\     +ir\        +FKtm)S'm, Ft= IF; 
>ES(£) 

5. Approximated Jacobian matrices 

Consider an implicit multistep method for numeric integration of Eq.(l) according 
to the following finite differences: 

1i = 1ip + 8fc, <?,- = fc" +8qi/a, qt = 9/ + &7//ß2 , / = 1,2..., (3) 

where the superscript p denotes predictions, &?,■ is the unknown corrector, and the 

coefficients a,ß (index i is omitted) are proportional to the step size hit e.g. for the 
Park method a = ß = 0.6fy [3]. 

Substituting Eq.(3) in Eq.(l) and linearization of the equation yield 

^2f(qi
p,qi

p,t) + J^i=0 

with the Jacobian matrix J =M + Jv$2/a+Ji$2 . 

A useful simplification consists in neglecting the term Ji. Really, if the integra- 

tion step is small and oc« 1, the inequality |/v||/a>>|H| is val'd verv often- In this 

case the approximated matrix can be found as J ~ M + /vß2/a. This formula can be 
useful, if the equations of motion are stiff due to dissipative forces. 

Another important case concerns slow motions of stiff multibody systems, when 
the stiffness of equations of motion is caused by separate applied forces [3]. If the 
system motion is slow, the mass matrix is nearly constant, and inertia forces are 
small. For such cases the calculation of an approximated Jacobian matrix taking 
into account stiff components of applied forces proved to be very efficient. The 
simplified single block of the matrix is 

Jbn=Mkm+ S;T(FVkm F/a + ¥Rkmp)S*m . 
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NONLINEAR CONTROL ALGORITHMS FOR MECHANISMS OF 
PARALLEL STRUCTURE 

L.A. RYBAK 
Moscow State Institute of Steel and Alloys 
Leninsky Pr., 4 
117936 Moscow 
Russia 

1.    Introduction 

Space technological implementation is parallel to the necessity of devices and 
technological systems vibration isolation under space condition. The vibration affects 
and in particular in low frequency and infra-low-frequency spectrum violates a some 
crystal growth processes and microbiology processes. There exist the problems of 
building a special vibration proofing systems of space technological platform. 

2.    Platform Stabilisation System 

The task of stabilization of a technological platform from influence is considered in 
inertial system of coordinates. For control of stabilization the mechanisms of parallel 
structure are used which can be presented as rigid bar varying length on the information 
from sensors. These mechanisms and the platform are shown in fig. 1. All six modules 
have rotated connection with a platform and basement. Different methods can be used to 
change the length of each rigid bar. The task of the control system is to organize the 
operation of six mechanisms so that the position of the platform in inertial system of 
coordinates remains invariable. 

One of the vibration isolation modules is shown on a diagram in fig. 2. The sensor 
of relative moving, accelerometer of the basement and platform are used in system. The 
signals from sensors act on a regulator. The control signal from a regulator is filtered 
and moves on an input of the executive engine. The electric motor through the 
transmission mechanism results a platform in a relative movement. For stabilization of 
speed of rotation of the engine the local feedback of an integrating type is used. 

The task of stabilization of absolute coordinate of a platform cannot be decided as 
trivial by introduction of a feedback. In this case it is necessary to have the sensor of 
this coordinate, which in system is not present. Attempt to add such gauge is insoluble if 
to consider, for example, that the basement moves together with a platform with 
constant speed in some inertial system of coordinates. It is possible to put a task in 
another way: it is necessary to supply zero importance of acceleration on a platform. 
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Such task has infinite set of the decisions. It is possible to imagine two physical bodies, 
which move with different speeds without acceleration. Nevertheless, any of such 
decisions really cannot exist, it is necessary to take into account restrictions of a 
platform movement. 

PLATFORM 

BASE 

ACTIVE VIBRATION 
ISOLATION MODULE 

Fig. 1. Vibration isolation system for 
a platform in three-dimensional 

space 

Fig 2. One-dimensional vibration 
isolation system. 

Thus, we come to the following statement of a task: it is required to supply a 
minimum of acceleration on object with the limited moving. 

To decide a task of synthesis of desirable system we shall proceed to the 
simplified model. The assumption is accepted, that all connections absolutely rigid, 
weight of a platform does not vary. With absence of a movement the system is tolerant 
to dynamic forces enclosed on object, only movement of the basis results a platform in a 
relative movement. 

Let's solve a task of construction of digital system of stabilization. For a discrete 
regulator the control function is constant between the moments of switching. The 
executive mechanism is considered ideal. The speed of relative moving of a platform is 
proportional to a control signal. Thus, the function of acceleration at the moment of 
switching will have indefinitely large breaks. Hence, with transition to digital control it 
is necessary to filter a regulator signal. As the filter it is possible to take into account 
inertial properties of the executive mechanism, but it can be separate device. 

Equation system for a continuous case of initial system has of the form of: 

8+co, 8 = CD,M 

x = 8+v 
(1) 
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x - absolute moving a platform, 
5 - relative moving a platform, 
v - moving a basement, 
u - control influence. 

After performing a transition to state-space model and introducing variables 

0(0 = 8(0,   *(0 = *(0>   9(0 = v(0 me following system of the equations is received. 

8(/ +1) = 8(0 + a120(0 + 6,w(0 
Q(i + l) = +a22Q(i) + b2u(i) (2) 

x(i +1) = a326(0 + b3u(i) + cp(/ +1) 

a12=—(l-e~m,r)   a22=e-a'T,   a22=-&xTe- -es,T 

bx=\ —(l-e-^T\   b2=l-e-a,r,   b3=<OiTe at{T 

co,r 

3.    Control System Synthesis 

Call attention, that the received system (2) is system of the second order. The third 
equation is the equation of target value, acceleration on a platform. The function of 
acceleration x(t) at the moment of switching control t - iT has break limited on value. 
The third equation gives an estimation of acceleration x(i) at moments of time, 
following behind switching of control. Therefore to use it for modeling a feedback on 
acceleration on a platform it is impossible. It is possible to take advantage of the 
following reception. Let program of control is u (i) = kx(i). From system (1) we shall 

receive u(i) ((p(0-G>,9(0). Similarly from some desirable feedback u(i) = k 
l-k(Oi 

0(0 we can proceed 

u(i) = —^—(<p(0-*(0) (3) 

Execute calculation of control, which will ensure invariance to acceleration of 
basis x(i+l) = 0. From last system equation (3) received 

_ «3,9(0+ <p(i + l) (4) 

b3 

To get value of acceleration on the basis (p(z'+l) on the subsequent step it is 
possible only with modeling. In real system it is impossible. Therefore it is necessary 
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approximately to estimate value (p*(/+l) « <p(/+l). The following approximation was 
used 

<p*(/+l) = 3 <p(z) + 3 cp(/-l) + <p(/-2) (5) 

The system with the received law of control is unstable. For maintenance of 
stability we shall enter into the law of control small amendment A]~0 

...       Ml-A,)e(/) + <p*(/ + l) u(i) = —^ '' y   Y v L (6) 

The received control function provides a low acceleration level on the basis, but 
poorly takes into account the requirement of restriction of relative displacement. To add 
into control program more strict requirements to the level of 8, we shall add the 
feedback on relative displacement. Let's search for factors of the following control 
function 

K(/) = *I 6(0+ *2e(/) + *,<p(/) (7) 

Find factors kh k2, h proceeding from criterion of optimization 

J = pfjX
2(i) + fj6

2(i)^mm, (8) 
i=i 

p - weight factor, provided that on system moves harmonic influence with frequency/: 
(p(0 = sin(2n/T/) (9) 

For search of factors the classical gradient algorithm was used. 
Results of mathematical modeling are resulted which was calculate with meaning 

of parameters to, - 13,8c"1, T= 0,01c; The numerical values of elements of system (2) 
are a12=0,0093, a22=0,871, a22= -12,02, 6,=0,00066; b2=0,U; 63=2,02. Weight factor 
(8) was taken, equal p = 10, influence frequency/= 0,5 Hz (7). The received factors of 
control function *,= -0,0038, £2=0,0850, Jfc3=-O,0839. 

The comparative analysis of the control (6) and (7) has shown, that the smaller 
acceleration level on a platform is provided with the control program (6), but the control 
program (7) provides smaller meaning of relative moving and smaller time on the 
established mode. Let's try to use advantages of both of these methods of control. Enter 
the following logic of switching. With small relative moving we shall use the control 
program (6). If the relative moving leaves from the given border 18(01 >e, that is 
switched control (7). As soon as the relative moving enters into the given corridor 
18(0 I <£2, control (6) again is switched. It is obvious, that it is necessary to choose ei > 

E2. Results of simulating for switching borders s, = 2, e2 = 0,02, adjustment A1=0,02 and 
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with parameters above mentioned, are shown in a fig. 3. 

1000 2000 3000 T 

Fig 3. Time process for the nonlinear control program. 

At an initial moment of condition zero, program of invariant control (6) is used. 
During the time, near 900 tacts, relative displacement gets to borders with the value -2 
and is switching control (7). In this moment occurs a growing of platform acceleration, 
before this it was nearly is a zero. As soon as a relative displacement reaches borders 
with the value -1, at a moment of the time approximately 1600 tacts, is switched control 
(6). 

Were they above considered two variants of building of regulator and their 
combination for the mode of nonlinear switching. Structures of transfer functions of 
control in these modes should be chosen based on the commmon sense considerations, 
but they may be not optimal. On the basis of analytical calculations [1,2,3] optimal 
control function was received for criteria (8) 

«(0 = xi 8(0 + x28(z-l) + *38(/-2) + x49(0 + x5Q(i-l) + *6q>(i) + 
+ x7<p(z-l)+x8(p(/-2) (10) 

For searching factors xm gradient algorithm was also used. Below are the values 
n 

found for optimization criteria J = ]T x2 (z) -» min: 
1=0 

JCI= -0,85, x2=0,156, x3=0,632, x4= -4,30, x5=5,19, x6=0,661, x7= -0,472, x8= - 
0,326. 

The results of modeling with the zero initial conditions are shown in a fig. 4. 
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Fig 4. Time process under optimum transmission functions. 

4.    Summary 

It is necessary to note that the character of behavior of system of stabilization for 
different control modes does not carry qualitative distinctions. In any the relative 
moving to the initial moment of time considerably leaves the considered variants from a 
reference value. With current of time it fades. To supply small relative moving with 
small acceleration on a platform essentially it is impossible. In any case the decision 
will have compromise character. 
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THE PROBLEM OF DYNAMIC CHAOS IN AUTOMATICALLY OPEN ON 
ORBIT OF LARGE-DIMENSION FOLDING REFLECTORS SPACE MIRROR 
ANTENNAS OF A TRUSS TYPE, EXECUTED AS OF SPATIAL MULTIBODY 
SYSTEMS 

S. N. SAYAPIN 
Mechanical Engineering Research Institute Russian Academy of Sciences 
Moscow, Russia, 101830, 

One of the main concepts of creation of large-dimension reflectors of space mirror 
antennas of a truss type executed as spatial beam link mechanisms with spring drives 
and elastic of a material reflecting radio wave, is built on their delivery in a folded 
position on the orbit and automatic deployable. The relevant advantage of the given 
concept as contrasted to by modular assembly on orbit through an astronaut or 
manipulator, is the capability of creation of space mirror antennas with the aperture 
from several tens up to several hundreds meters for one delivery by the launcher due to 
a high factor of their transformation (from 10 up to 50) [1]. 
In figure 1 the general view (a) and cyclogramme of deployment (b) on orbit of a large 
space mirror antenna is shown. Diameter of the uncovered mirror 1 makes 30 m, folded 
-3 m. 
At a phase 1 (the figure 1, b) is rotined a transit condition of a design of a space mirror 
antenna located under a fairing of a rocket 6. At a phase 2 the deployment of jacknife 
trusses of 2 focal unit 3 and their fixing implements. At a phase 3 the rise and fastening 
of bearings of 2 focal unit 3 on a jacknife mirror 1 in a transit condition is made. At a 
phase 4 opening-ups of a jacknife mirror 1 to automatic deployment, including 
deployment of a jacknife framework 5 and moving of a desktop with a jacknife mirror 1 
in a transit condition on secure for deployment of a jacknife mirror of 1 spacing interval 
is made. At the phase of 5 automatic deployments of a jacknife mirror 1, including 
deployment of a jacknife framework of a truss and stretching on a working surface of a 
framework of a wireless of a reflecting grid, is made. 
In a figure 2 the pieces of a jacknife truss framework with tetrahedral cells 1 in folded 
(a) and uncovered (b) positions are rotined. The framework contains jacknife rods 3, 4 
and diagonal rods 5, which one paired by knotes 2. 
At the same time, very great many of spring drives (more 6000), rods, socket joints 
(about 15000) and other configuration items of the antenna in combination to their 
irregular heating (cooling) and high difference of operation temperatures (from - 150 C 
up to +150° C), effect on pairs of friction of a high vacuum and strong spread of the 
characteristics of spring drives, is foregone results in formation of a strongly non-linear 
dynamic system and difficulty of maintenance of synchronization of deployment of 
configuration items. As a result of strong nonlinearity of properties and violation of 
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a) 

Figure I. 

motion stability of a system there is a transition to so-called dynamic chaos, the full 
unpredictability, contingency (i.e. stochastic process) motion of a system is 
characteristic practically for which one. A consequent of this lack is the low reliability 
and small probability of full deployment of a folding reflector of a mirror antenna in 
conditions of outside space. Thus, apparently, the degree of unpredictability of motion 
of a system directly depends on its sizes and, as a consequent, quantity kinematicly 
bound among themselves of mobile members. 
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b) 

a) 

Figure 2. 

The experiments have shown, that the steady automatic deployment of ajacknife truss 
framework can be reached at quantity of belts no more than 5, considering from center 
of a framework. 
It is necessary also to mark, that the reliability of deployment of ajacknife framework 
of a mirror antenna depends on speed of its deployment. So, if his automatic 
deployment is made without constraining, the breaking of separate developing rods, and 
also their inexact deployment is watched as a result of a recoil and folding. And, to the 
contrary, in case of constrained deployment, the efforts developed in the final moment 
of deployment by spring drives, appeared poor for full deployment of all developing 
rods and tension on a framework of a wireless of a reflecting grid. 
The introducing in a design of a folding reflector of a space mirror antenna of a truss 
type of members of controlled forced constrained deployment as kinematicly bound 
with it of a spatial pantograph [2], allows to supply reliable deployment of a system, but 
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simultaneously conducts to increase of its weight and consumption of power, that in a 
numbers of cases is unacceptable. 
In figure 3 general views from above on a jacknife framework of a mirror of the large 
space antenna (a) and front elevation (view A) on his central part (6) by the way of 
spatial pantograph, is rotined. The jacknife framework of mirror antenna represents 
combined frame keeping kinematicly bound among themselves circumferential 1 and 
central 2 parts. 
The deployment of a circumferential part 1 execute under operating of spring drives in 
jacknife rods, but central part 2 from the engine of deployment 3. Thus there is a 
constrained deployment of a circumferential part 1, and in case of possible jamming in 
her articulated joints - forced deployment, if necessary with reversing. It allows, to 
eliminate percussion actions of a circumferential part at her deployment, and to supply 
her controlled constrained and forced deployment with a capability of reversing if 
necessary. Thus the circumferential part provides to a framework demanded rigidity and 
lift capability, and central - constrained - forced deployment. 
In the final moment of deployment of a jacknife framework it is required to supply a 
tension on his working surface of a wireless of a reflecting grid. For this purpose it is 
necessary to make automatic hooking up of padding spring drives. The problem was 
resolved as follows. Between each pair of knotes 4 (figure 3, b) working and non- 
working surfaces of a central part 2, arranged on one axis, the telescopic rods (central 
rods) with the stretched and captured spring (in figure 3, b, are not rotined), the butt 
ends which one are attached to inner sides of the conforming knotes 4. At deployment 
of a framework there is a rendezvous of inverse knotes 4 and accordingly decreasing of 
lengths of telescopic rods. In the final moment of deployment of a jacknife framework, 
when it is required to do stretching on his working surface of a wireless of a reflecting 
grid, there is an automatic actuating of devices of springs in ready condition, and the 
effort on deployment of a framework is sharply increased. In the uncovered position the 
mobile rods of telescopic central racks rise on horns, providing padding rigidity of a 
central part of the uncovered framework. In a figure 4 the full scale piece of a central 
part in processes of experimental improvement are submitted. In a figure 5 the full scale 
pieces of a circumferential part (a) of a jacknife framework of an mirror antenna and of 
a jacknife truss of bearings of the focal unit (b) in processes of experimental 
improvement are submitted. In figure 4 the telescopic rods 1 with the called above 
spring drives of a tension of a wireless of a reflecting grid are visible. 
The reliability augmentation of deployment of a system can also be reached at the 
expense of exception of influencing of pull of a material reflecting radio wave of a 
material on process of deployment [2]. 
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^ 

However, the main source of unpredictability is the folding framework of a reflector of 
the antenna. 

wMms§lmm 

Figure 4. 
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Figure 5. 

Thus, the problem of dynamic chaos in automatically deployable on orbit large- 
dimension folding reflectors of space mirror antennas of a truss type is actual. 
It is experimentally on breadboards, introduced in figure 4 and other, is rotined, that the 
imposing definitely of vibrational effect on a design of the folding mirror space antenna 
of a truss type reduces a level of unpredictability and improves reliability also stability 
of process her deployment [2]. 
By the writer it is offered to execute a system of vibrational effect on a bulky space 
mirror antenna of a truss type by the way of fissile transient truss of a space vehicle [3]. 
Thus, the transient truss run ins a view of a fissile gantry Stewart's [4] with six degrees 
of freedom. The conducted full scale experiments have shown good outcomes. The 
control of a gantry Stewart's in real-time mode is made from a neuronal computer [3, 

References 

l. 

3. 

Gwamichava, A.S. (1981) Ampere-second. Problems of creation of folding space antennas. 
Transactionses CSRIDSC. Moscow, p.p. 29-36. 
Sayapin S.N., Siniov A.V. The problem dynamics of chaos in automatic open of folding reflectors of 
space   mirror   antennas   of  truss   type.   XIII   Symposium   "Dynamics   vibroimpact   (strongly 
nonlinear)systems". Moscow-Zvenigorod 13-19 May 200 ly. Thesis of reports. Moscow-Zvenborod 
2001, p.p. 83-84. 
Sayapin S.N., Siniov A.V., Trubnicov A.G. Way suppress hindrances from oscillations elastic of 
construction space deployable antennas in process exploitation and system for his realization. Patent 
of Russian Federation on invention No. 2161109, international class of inventions- B64G1/00 1/22 
3/00, 1999. 18p. ' 
Stewart D. A platform with six degrees of freedom//Proc. Inst. Eng. 1965-66. Vol 180 Num 15 Pt 
I. Pt 1. P. 371 -386. 
Sayapin S.N., Siniov A.V., Galushkin A.I. "The system of active vibration protection and high- 
precision pointing of high-precision large deployable antennas space radio telescope with application 
neurocomputer control". Works VII All-Russian conference " The neurocomputers and them 
application NCA-2001" with international participation. Moscow 14-16 February 20001 y ISBN 5- 
201-09606-9. Pp. 184-192. 

176 
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1. Introduction 
The paper deals with the description of design methodology for redundant parallel robots based on 

multidisciplinary virtual modelling. The redundant parallel robots means redundantly actuated parallel 
robots. The parallel robots have many advantages as low moving masses, higher stiffness by truss 
structure, all drives on the frame, but they suffer by many problems like appearance of singularities and 
thus smaller workspace, collisions of links. These drawbacks of parallel structures can be removed by the 
principle of redundant actuation [4, 1]. This means that the platform is supported and driven by more bars 
with drives than the necessary number of DOFs. This principle not only deletes the singularities from 
workspace as more combinations of links in number of DOFs are not simultaneously in singular 
positions, but it brings further advantages, especially increased and more uniform dynamic capabilities, 
stiffness, accuracy. 

The design of redundant parallel robots is an example of particularly complex design problem. The 
mutual dependencies of all parameters and components are especially large. The successful design 
methodology is possible only using virtual models and design complexity decomposition. 

The used virtual models cover both mechanical including control and geometric properties. During the 
design there are conflicts between geometrical dimensions of robots and corresponding mechanical 
properties. The conflict includes collisions of robot links, non-existence of geometrical solutions of 
kinematics and insufficiency of mechanical properties like stiffness, dynamics, dexterity, accuracy etc. 
The design process has been resolved into three hierarchical levels. Each of these levels is characterized 
by certain problem simplification and special design conflict which should be resolved within the level. 

2. Design Methodology 
The design methodology of redundant parallel robots [1] follows the general engineering design 

methodology described in [2]. The design process is a hierarchical process as the technical products 
consist of hierarchy of components. The design process repeats the same outline at each design level. It 
consists of three nested loops: 
• Selecting the lower level components from which the solution will be built. 
• Proposing the structural arrangement of the selected components. 
• Calculating parameter values so that the solution is complete, i.e. all requirements and constraints are 

fulfilled. 
These three nested loops of component choice, structural arrangement and parameter choice also 
correspond to the nested design iterations and nested design optimisation. The component choice in the 
case of parallel robots means the decision about the fully parallel or hybrid concept, about the 
redundant/non-redundant concept, about the kind of link actuators, about the planar/spatial version of 
joints, about the kind of actuators (electrical/hydraulic, moving screw/direct electrical drive etc.), about 
the way of measurement etc. The structural design means the decision about the considered shape of 
components, about the way of their interconnections etc. After the structural design all decisions are 
transformed into numerical values of parameters. Their values are evaluated in terms of requirements and 
constraints. 
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The solution uses parts of mechatronic design methodology [3]. The most important methodological 
approach is the search for Ideal Final Solution and Conflict Resolution instead of conflict compromise 
that solves the given problem despite different conflicting constraints. This approach is looking for 
solutions that have advantageous values in criteria previously conflicting instead of just looking for 
tolerable compromise. The concept of redundant actuation is an example of such solution that keeps all 
advantages of parallel structures, removes problems with singularities and even improves the variations of 
main mechanical properties [4 - 6]. Certainly such principle is not found for each design task but in many 
cases just the idea of looking for ideal solution helps to overcome the local compromises. All steps of 
design and optimisation of robot properties has to be driven by concrete technological target of future 
machine from the very beginning state of design process. On the other hand "space of considered 
possibilities" should be held as wide as possible. 

Specifically in case of redundant parallel robots the design process has been resolved into three 
hierarchical levels. Each of these levels is characterized by certain problem simplification and special 
design conflict which should be resolved within the level. (Quasi)optimum variants obtained as the best 
results of foregoing design optimisation level serve as starting variants for optimisation within the 
consecutive level. Certainly in the robot design there is mutual dependence between all parameters and 
thus feedback between levels is necessary. However mentioned decomposition into three subsequent 
design conflicts enables reasonably to simplify the design process: 

• Level of Geometric Conflicts: Important properties of robot being designed besides the geometric 
requirements of DOFs, workspace and dexterity are represented by simple geometric conditions For 
example requested limits of stiffness and modal properties are taken into account by some conditions 
for robot leg thickness, build-up spaces for real joints or robustness of machine frame. Optimisation 
of robot structure and dimensions try to harmonize several geometric requirements that are on the 
first try contradictory: 

1. Workspace without collisions and kinematic singularities should be maximized. 
2. Ratio between total build-up space of machine and useful (technological) workspace should 

be minimized. 
3. Dimensions or build-up spaces of important machine elements should be sufficient. 
4. Dexterity should be optimised (maximization and uniformity in workspace). 

• Level of Structural Conflicts: The structural conflict comprehends more precisely formulated 
conflict between structural (stiffness and modal) properties of the whole machine and accessible 
dynamics (velocity, acceleration, jerk) of robot end-effector. Mutual interrelations of these properties 
are very complex and in addition other important aims of machine designers (like accuracy for higher 
speeds of operations) are heavily influenced by them. Basic requirements are as follows: 

1. Accessible dynamics (velocity, acceleration, jerk) of robot end-effector should be maximal 
and uniform for representative trajectories within the workspace. 

2. The first eigenfrequencies of the robot  should be as high as possible and uniform for all 
possible robot positions in the workspace. 

3. Cumulative stiffness measured on the end-effector should be maximal and uniform for all 
possible robot positions in the workspace. 

• Level of Actuation Conflicts: Behaviour of the whole machine depends on dynamic interactions 
among mechanical parts, electrical or hydraulic actuators and feedback control loops of actuators 
Simulation of complex mechatronic system must be performed in order to predict potential problems 
arising here. Thoroughgoing fulfilment of previous two design levels is crucial for efficiency of final 
complex tuning. Basic requirements are as follows: 

1. Control loops must be stable without troublesome vibrations. 
2. Control loops of actuators must be tuned in order to make drives as dynamic as possible 

Technological times of production should be minimized. 
3. Energy consumption of drives necessary for production should be minimized 
4. Accuracy for high speed operations should be maximized. 

The applied design methodology is heavily based on the efficient computational tools for mapping 
robot design parameters into design criteria (requirements and constraints) and following multiobjective 
optimization of the robot parameters like dimensions, drive parameters, control parameters For 
mechanical properties there have been developed computational tools based on global dynamics Rl 
1 here are also very important visualization tools especially for multiobjective design. For the desien of 
redundant parallel robots the following computational tools are used: 
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1. Workspace, dexterity and collisions evaluation. The crucial property of the robot is the 
geometric and kinematic synthesis. The size of workspace limited by geometric and collision 
constraints are evaluated and mapped in each position. The efficient analysis of collisions of 
arbitrary bodies has been implemented. The basic entities for the collision detection are general 
cuboids. The complex bodies are replaced-approximated by the composite bodies composed 
from many cuboids. The problem of collisions of cuboids has been solved in two stages. The 
first fast step evaluates potential possibility of collision. The second stage is initialised whenever 
the collision cannot be excluded. The penetrations of edges of one body and surfaces of second 
body have been detected during the second detailed stage of analysis. Collision can be visualized 
in 3D or 2D in basic planes of coordinate system. Besides that the occurence of singularity 
positions and generally the manipulability of the robot are evaluated. 

2. Stiffness and eigenfrequency (modal) evaluation. The accuracy is dependent on the robot 
stiffness. There are evaluated the maps of robot stiffness and eigenfrequencies. 

3. Dynamic capability evaluation. The limitations of dynamic capabilities of drives are 
transformed into the areas of accessible accelerations and velocities at the points of selected 
trajectory using methods of global dynamics [7]. Choosing several trajectories like straight lines 
with different slopes across the workspace and the circles with different radius enables to map 
the overall dynamic capabilities of the robot. 

4. Force transmission evaluation. The accessible accelerations and velocities from previous step 
are achieved through particular driving forces. Their determination due to the actuator 
redundancy is not straightforward and simple [8], The driving forces and corresponding reaction 
forces in joints and structural elements are transmitted through the robot structure and this force 
transmission and distribution is important for dimensioning of robot structural elements. 

5. Kinematic and elastostatic accuracy evaluation. The accuracy is essential robot property. It is 
influenced by the properties of encoders and by the robot stiffness in relation to the external 
applied forces. 

6. Control design. The control design is done by the methodology design by simulation. 
7. Overall simulation. The designed properties are verified within overall simulation where 

especially the multibody, elastic and control properties are investigated in deep interaction. 
8. Multiobjective optimization. The above listed performance criteria as well as others are 

subjected to the multiobjective optimization using the design parameters of the robot. The Pareto 
sets of conflicting criteria are computed and visualized. 

3.   Design Case Study 
The case study is devoted to the investigation of improvement of mechanical properties of Sliding 

Delta robot (Fig. 1), also called Uran. The robot Octaslide (Fig. 3), the more complex (6 DOF motion of 
end-effector) modification of original robot has been designed as well. The main potential of 
improvement is based on the application of principle of redundant actuation. It brings for Sliding Delta 
mainly improvement of stiffness and dynamics, for Octaslide especially the elimination of singularities. 
The design was performed within many iteration loops. It is difficult to reconstruct the content of all of 
them in details. However all three nested levels of design conflicts were investigated and solved as 
follows. There were used computational tools mentioned above. 

Figure 1.   Original Sliding Delta (Uran) robot with sliding joints 

3.1. GEOMETRIC CONFLICTS AND THEIR SOLUTION 
Initially the original structure from Figure 1 had been extended into the redundant version on 

Figure 2a. Then the structural properties of designed robot were represented by simple geometric 
conditions. The critical value was the diameter of the legs in order to achieve reasonable stiffness. 
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Simultaneously the lengths of legs had to be kept in values comparable with non-redundant version again 
due to comparable stiffness. The critical issue was the computation of accessible workspace due to the 
collisions and improvement of dexterity. The problems of finding parameters (dimensions of platform 
and legs) for simultaneously good workspace and dexterity could not been resolved on the level of 
parameter values and have lead finally to the modification of the structure from initial version (Fig. 2a) 
into the final one (Fig. 2b). 

(a) (b) 

Figure 2. The redundant Sliding Delta: initial (a) and final (b) concepts 

< ► < ► 

Figure 3. Scheme of robot Octaslide 

3.2. STRUCTURAL CONFLICTS AND THEIR SOLUTION 
The structural design is about the resolving of conflict between stiffness and dynamics. First the 

stiffness of both non-redundant and redundant parallel structures are evaluated (Fig. 4). It means the 
stiffness in both directions in the plane of motion and in the direction of sliding drives. This clearly 
demonstrates the significant improvement of stiffness by almost 50%. 

Figure 4. The comparison between stiffness of non-redundant (right) and redundant (left) parallel 
structure for one planar section in the workspace 

Second there is investigated the dynamic capabilities. The limitations of dynamic capabilities of drives 
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are transformed into the areas of accessible accelerations and velocities at the points of selected 
trajectory. Choosing circular trajectories with different radius the dynamic capabilities were evaluated at 
the radius 0.3 m and at the radius 0.6 m (Fig. 5). There are plotted the accessible accelerations versus 
accessible velocities on the circular trajectories for both non-redundant and redundant versions. Again the 
redundant actuation has proved significant improvement of dynamics by about 20%. 
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Figure 5. The dynamic capabilities of non-redundant (dash lines) and redundant (full line) parallel 
structures during the circular motion with radius 0.6 m (accessible acceleration on velocity in 4 positions) 

Then the conflict between stiffness (eigenfrequencies) and dynamics of end-effector (mass) for different 
variants of dimensions has been solved by multiobjective parameter optimisation. In short on the border 
of space of possible solutions (Pareto set) increasing stiffness means increasing mass and decreasing 
acceleration capabilities. The genetic algorithms have been used for this task. Each point (Fig. 6) 
represents one variant of setting of robot dimensions. 

xio Results of several optim'sation processes 

"0 5 10 15 20 25 30 
end-effector acceleration [rrV§] 

Figure 6. Results of multiobjective parameter optimisation of stiffness and dynamics (results of several 
optimisation processes displayed together) 

3.3. ACTUATION CONFLICTS AND THEIR SOLUTION 
The drive concept must be completed from the point of view of required dynamics, kinematics, 

dynamic accuracy and control strategy. The simplified scheme (Fig. 7) describes two nested loops for 
slider position and motor angular velocity feedbacks. The end-effector position measurement can be 
considered for the upper-most feedback loop, nevertheless its practical realisation is not easy. The tuning 
of control gains completes the utilization of previously designed mechanical properties. The overall 
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Simulation is the final test of the whole redundant parallel robot conceptual design. 

Desired 
motion fu^-h 

Figure 7. Simplified scheme of complex dynamic model including feedback control loops 

4. Conclusions 
The paper has briefly investigated the role of multidisciplinary virtual modelling for efficient design 

of complex mecharronic machines. It has been demonstrated on the design methodology for redundant 
parallel robots. The virtual models cover both mechanical and geometric properties. They are based on 
multibody models despite they cover different properties. The basis for these virtual models is the 
decomposition of design process. The design process has been resolved into three hierarchical levels. 
Each of these levels is characterized by certain problem simplification and special design conflict which 
should be resolved within the level. Specific virtual models are necessary for each level. The 
computational tools related to these virtual models enable to parameterise the main design conflicts and 
solve them using multi-objective parameter optimisation. Proposed hierarchical methodology based on 
multidisciplinary virtual modelling proved to be useful and efficient for the design of complex 
mecharronic machines. 

The proposed design methodology based on multidisciplinary virtual modelling has been 
demonstrated on the design case study of redundant Sliding Delta and Octaslide robots. They also 
demonstrate the application of the principle of redundant actuation that leads to the development of new 
robot parallel structures with promising properties. 
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NATO Advanced Study Institute on 

Virtual Nonlinear Multibody Systems 

Prague, Czech Republic, 23 June - 3 July 2002 

Scientific Abstract 

Multibody system dynamics is based on classical mechanics and its engineering applications ranging from 

mechanisms, gyroscopes, satellites and robots to biomechanics and vehicle engineering. Multibody systems 

dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. The 

simulation of multibody systems demands for adequate dynamic models and takes into account various phe- 

nomena. Classical dynamics does not regard all nonlinear effects that appear as a result of the action of multi- 

body systems, as well as their mutual interaction. The virtual prototyping and dynamic modeling of such sys- 

tems are, from an economical point of view, perspective fields of scientific investigations having in mind the 

huge expenses for their design and manufacturing. Complex multibody systems composed of rigid and flexible 

bodies performing spatial motion and various complex tasks are up-to-date objects of virtual prototyping. As a 

result simulation and animation featuring virtual reality are most important. Recent research fields in multibody 

dynamics include standardization of data, coupling with CAD systems, parameter identification, real-time 

animation, contact and impact problems, extension to electronic and mechatronic systems, optimal system 

design, strength analysis and interaction with fluids. Further, there is a strong interest on multibody systems in 

analytical and numerical mathematics resulting in reduction methods for the rigorous treatment of simple 

models and special integration codes for Ordinary Differential Equation (ODE) and Differential Algebraic 

Equation (DAE) representations supporting the numerical efficiency. New software engineering tools with 

modular approaches improve the efficiency still required for the more demanding needs in biomechanics, 

robotics and vehicle dynamics. The scientific research in multibody system dynamics is devoted to improve- 

ments in modeling considering nonholonomic constraints flexibility, friction, contact, impact and control. New 

methods evolved with respect to simulation by recursive formalism, to closed kinematic loops, reaction forces 

and torques, and pre- and post-processing by data models, CAD coupling, signal analysis, animation and 

strength evaluation. Multibody system dynamics is applied to a broad variety of engineering problems from 

aerospace to civil engineering, from vehicle design to micromechanical analysis, from robotics to biomechanics. 

In particular, multibody dynamics is considered as the basis of mechatronics, e.g. controlled mechanical sys- 

tems. These challenging applications are subject to fundamental research topics which were presented at the 

NATO ASI on Virtual Nonlinear Multibody Systems. 



1. Datamodels 

Within the multibody system community many computer codes have been developed, however, they differ 

widely in terms of model description, choice of basic principles of mechanics and topological structure so that a 

uniform description of models does not exist. The data exchange permits the alternate use of validated multi- 

body system models with different simulation systems. 

2. Parameter identification 

The parameter identification is an essential part of multibody dynamics. The equations of motion of mechanical 

systems undergoing large displacements are highly nonlinear, however, they remain linear with respect to the 

system parameters. 

3. Optimal design 

Due to development of faster computing facilities the multibody system approach is changing from a purely 

analyzing method to a more synthesizing tool. Optimization methods are applied to optimize multibody systems 

with respect to their dynamic behaviour. 

4. Dynamic strength analysis 

The results obtained in research on strength analysis of material bodies can be applied and combined with the 

multibody system approach. 

5. Contact and impact problems 

Rigid and/or flexible bodies moving in space are subject to collisions what mechanically means impact and 

contact. Contact problems usually include friction phenomena which are modelled by Coulomb's law. 

6. Extension to control and mechatronics 

The applied forces and torques acting on multibody systems may be subject to control. Then, the multibody 

system is considered as the plant for which the controller has to be designed. Today, mechatronics is understood 

as an interdisciplinary approach to controlled mechanical systems usually modelled as multibody systems. 

7. Nonholonomic systems 

The nonholonomic systems are of engineering interest in vehicle dynamics and mobile robots. 

8. Integration codes 

The dynamic equations of motion are presented as ODE or DAE. Efficient algorithms for numerical integration 

of these equations are of major importance. 



9. Real time simulation and animation 

Efficient and fast simulation is always desirable in computational dynamics but it is really necessary for hard- 

ware-in-the loop and operator-in-the-loop applications. There are two approaches to achieve real time simula- 

tion: high speed hardware and efficient software. Multibody system dynamics contributes to the efficiency of 

the software by recursive and/or symbolic formalism and fast integration codes. 

10. Challenging applications 

Multibody system dynamics has a broad variety of applications. In biomechanics the walking motion is an 

important topic. However, there are much more problem in biomechanics which can be modeled and solved by 

multibody dynamics. The applications are ranging from vehicle occupants to sport sciences. Multibody dynam- 

ics is also a solid basis for nonlinear dynamics. In particular, impact and friction induced vibrations show 

chaotic behaviour. The control aspects in multibody dynamics are getting more and more important. Vehicle, 

aircraft and spaceship dynamics and reliability have always been challenging applications. With respect to 

transportation systems a challenging application of multibody dynamics is the structural and occupant crash- 

worthiness. 
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Dynamic Analysis of a Light Structure in Space: Short Electrodynamic Tether 
16:50-17:10     S. N. Sayapin 

The Problem of Dynamic Chaos in Automatically Open on Orbit of Large- 
Dimension Folding Reflectors Space Mirror Antennas of a Truss Type, Executed 
as of Spatial Multibody Systems 

17:10 -17:30     Y. Gonthier, J. McPhee, Ch. Lange, J.C. Piedboeuf 
A Regularized Contact Model with Asymmetric Damping and Dwell-Time 
Dependent Friction 

Thursday, 27 June 2002 

08:30-10:30     Lecture 7 
F. Pfeiffer/ K. Funk 
Unilateral Multibody Dynamics 

11:00-13:00     Lecture 8 
V. Berbyuk 
Control and Optimization of Semi-Passively Actuated Multibody Systems 

Session 7 - Chairperson: H. Lankarani 
14:30 -14:50     B. Muth, P. Eberhard 

Collision Detection and Administration for Many Colliding Bodies 
14:50-15:10     I. Zanevskyy 

Mechanical and Mathematical Modelling and Computer Simulation of Vibration 
and Impact Processes in the 'Man and Shooting Device' Systems 

15:10 -15:30     M. Anitescu 
Solving Nonconvex Problems of Multi-Body Dynamics with Contact and Small 
Friction 
by Sequential Convex Relaxation 

15:30-15:50     V. N. Yazykov 
Some Results of Wheel-Rail Contact Modelling 

15:50-16:10     W.-S. Yoo. M.-G. Kim. K.-S. Kim 
Modification of Road Profile to Compensate Tire Nonlinearity in Linear Tyre 
Model 

Session 8 - Chairperson: A. A. Shabana 
16:30-16:50     S. L. Pedersen, J. M. Hansen 

A Novel Roller-Chain Drive Model Using Multibody Dynamics Analysis Tools 
16:50-17:10     J. Fraczek 

Kinematic Analysis of Mechanisms in the Neighbourhood of Singular Positions 
Using General Numerical Continuation Methods 

17:10 -17:30     P. Lefeber. J. Naudet, Z. Terze, F. Daerden 
Forward Dynamics of Multibody Mechanisms Using an Efficient Algorithm 
Based on Canonical Momenta 



Friday, 28 June 2002 

08:30-10:30     Lecture 9 
M. S. Pereira 
Optimization of Rigid-Flexible Multibody Systems with Application to Vehicle 
Dynamics and Crashworthiness 

11:00-13:00     Lecture 10 
H. Lankarani 
A Virtual Multibody and Finite Element Analysis Environment in the Field 
of Aerospace Crashworthiness 

Session 9 - Chairperson: V. Berbyuk 
14:30 -14:50     K. E. Georqiev. T. Ivanova 

Mechatronic Approach for Simulation of Robots and Walking Mashines 
14:50-15:10     K. Gr. Kostadinov, G. V. Boiadiiev 

Development of Impedance Control Method for Mechatronic Systems 
15:10 -15:30     S. F. Jatsun, A. S. Zaisev, S. M. Jatsun 

Dynamics of Vibrating System with Active Control 
15:30 -15:50     O. Brüls. J.-C. Golinval 

Simulation of an Active Control System in a Hot-Dip Galvanizing Line 

Session 10 - Chairperson: P. Eberhard 
16:30-16:50     R. Kovalev 

Optimizing Multibody Systems: Some Implementations And Results 
16:50 -17:10     K. Belda. J. Böhm, M. Valäsek 

State-Space Generalized Predictive Control for Redundant Parallel Robots 

Saturday, 29 June 2002 

08:30-10:30     Lecture 11 
E. Kreuzer 
Multibody System Dynamics in Ocean Engineering 

11:00-13:00     Lecture 12 
J. McPhee 
Graph-Theoretic Modelling of Multibody Systems 

Sunday , 30 June 2002 

08:30 -19.00     Excursion - Trip 

Monday , 1 July 2002 

08:30-10:30     Lecture 13 
E. J. Haug 
Virtual Proving Ground Simulation for Highway Safety Research and Vehicle 
Design 

11:00-13:00     Lecture 14 
M. Valäsek 
Design of Nonlinear Control of Nonlinear Multibody Systems 



Session 11 - Chairperson: E. Haug 
14:30-14:50     G.Schupp 

Simulation of Railway Vehicles: Necessities and Applications 
14:50-15:10     A. Carrarini 

Coupled Multibody-Aerodynamic Simulation of High-Speed Trains Manoeuvres 
15:10-15:30     J. Pombo. J. Ambrosio 

Development of a Roller Coaster Model 
15:30 -15:50     S.-S. Kim. M. Won, B. Sohn, K. Song, S. Jung 

The Development of a Real-Time Multibody Vehicle Dynamics and Control Model 
for 
a Low Cost Virtual Reality Vehicle Simulator: An Application to 
Adaptive Cruise Control 

15:50-16:10     P. P. Valentini, L. Vita 
David - a Multibody Code to Simulate a Dynamic Virtual Dummy for Vibrational 
Comfort Analysis of Car Occupants 

Session 12 - Chairperson: D. Bestie 
16:30-16:50     J. Tobolär 

Model Reduction Techniques for Vehicle Suspensions in Real-Time Applications 
16:50 -17:10     S. K. Aqrawal. J. Yan, J. Franch 

Dynamics and Control of a Vehicle with Expanding Wheels 
Using Differential Flatness 

17:10-17:30     K. Pathak 
Model Reformulation in Dynamic Optimization -A Numerical Study- 
Planning and Optimization 

Tuesday , 2 July 2002 

08:30-10:30     Lecture 15 
W. Blajer 
Geometrical Interpretation of Multibody Dynamics: Theory and Implementations 

11:00-13:00     Lecture 16 
D. Bestie 
Optimization of Passive and Active Dynamic Systems 

Session 13 - Chairperson: W. Blajer 
14:30 -14:50     M. A. Neto. J. Ambrösio 

Stabilization Methods for the Integration of DAE in the presence 
of Redundant Constraints 

14:50 -15:10     Z. Terze, D. Lefeber 
MBS Time Integration-Projective Constraint Violation Stabilization Methods 
on Manifolds 

15:10-15:30     I. V. Boikov, A. I. Boikova 
Stability of Solution of Differential Equations 

15:30 -15:50     A.Fuchs. M. Arnold 
Efficient Corrector Iteration for Implicit Time Integration in Multibody Dynamics 

15:50 -16:10     F. Aghili, J.-C. Piedboauf/J. Kövecses 
Simulation of Constrained Multibody Systems Based on Orthogonal Decomposition 
of Generalized Coordinates 



Session 14 - Chairperson: P. Nikravesh 
16:30-16:50     D. Negrut 

On the Issue of Iterative Linear Algorithms for the Multi-Threaded Simulation 
of Mechanical Systems Represented in Cartesian Coordinates 

Wednesday, 3 July 2002 

Session 15 - Chairperson: W. Schiehlen 

08:30 - 08:50     A. Müller 
Parallel Computing in the Context of Multibody System Dynamics 

08:50-10:35     Lecture 17 
E. Zahariev 
Multibody System Contact Dynamics Simulation 

11:00-12:45     Lecture 18 
P. Eberhard 
Contact Formulations for Finite Elements and Multibody Systems 

12:45 -13:00     Closing session 
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MULTIBODY     SYSTEMS     WITH     HOLONOMIC     AND 
NONHOLONOMIC CONSTRAINTS 

Kinetics 

I. STROE 
"Politehnica" University of Bucharest, 
77206, Bucharest, Romania 
ion.stroe@rosa.ro 

Using Lagrange equations for holonomic and non-holonomic systems the motion of systems 
of rigid bodies is studied in this paper. 
General problem of kinematics of systems is presented in the first part of the paper. 
The motion of systems of rigid bodies with constraints is studied in the last part of the paper. 
Motions of rigid bodies with articulation joints are analyzed. Problems of kinematics are 
solved for constraints expressed by coordinates. Translation conditions and rotation conditions 
are analyzed. 
When the motion of a system of bodies which compose a large orbital station is described 

with respect to reference frames having origin in the center of attractive body (Earth) the 
problem of integration of motion equations presents some difficulties, because some 
coordinates (like vector radii) have very great values, and others (like distances between 
bodies) have very small values. Some difficulties can be avoided if relative motion of the 
system is studied with respect to a reference frame with known motion. Relative motion study 
isn't impose by integration considerations, this is impose by practical aspects. 
The problem of kinematics for systems of bodies are solved using analyzes of coupling 

mechanism under the aspect of number of degrees-of -freedom. The motion in central 
gravitational field is studied with respect a movable reference frame with origin on a circular 
orbit. The problem of dynamics of bodies system is solved using Lagrange equations of 
motion with multipliers and constraints. The models and the elaborated method allow to solve 
a large number of problems of bodies systems dynamics in gravitational field. 

1. Kinematics of systems of rigid bodies 

Let two bodies (/) and (/) be with constrained motions by a coupling mechanism which is 
made precise by points Oi, O, (fig.l). 
The motion of the body (0 with respect the inertial reference frame O0x0yozo is 
determined by position vector of mass center O0C,. and by matrix   [Ai0] which gives the 
attitude of CjXjyiZ; triedron, jointed with (/) body, with respect O0x0yoz0 reference frame. 

In the same way are defined position vector O0Cj and matrix [Aj0\ for the body (/'). 

Each body, (z) or (/'), has 6 degrees-of- freedom, when it is a free body. The number of 
degrees-of- freedom is reduced by the number of constrains which are imposed by coupling 
mechanism. 
If the general motion of bodies (0 and (/) with respect the inertial reference frame Oox0yoZo are 
known, then the relative motion of the body (/') with respect (/) can be determined by vector 
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o,o,. = {oQq + ca) - (o0Cj + cpj) (i) 

and by matrix \Ay\ which gives the attitude of (/) body with respect (/') body, 

W = K]Ko]r (2) 
The matrix [Ai0] allows expressing unit vectors of Qx^Zj trihedron with respect unit vectors 
of Oox0yoZo trihedron, 

H '0 

Ji \ = [Aio}\ Jo 

M k0 

(3) 

f~ ] f — 1 

lJ 'o 

Jj 
•— 

AJ0 
< 
h\ 

M AJ 

Fig.l System of rigid bodies 

For unit vectors of CjXjVjZj trihedron the bellow relation can be written, 

(4) 

The attitude of (0 body with respect to (/') body is given by matrix \AV , with relations 

(5) 

and the attitude of (/') body with respect (/) is given by \A ..] matrix from relations 

(6) 

h IJ 

Ji -KJ- jj 

kJ. 

r—i f -\ 

',■ 
i 

J i 

Jj =K> - 
J) 

w AJ 
From (5) and (6) relations it follows 
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w- (7) 

If (3) relation is multiplied to the left with [Ai0]    and (4) is multiplied to the left with 

A JO and the obtained results are compared, the equality 

M Ji -w\T- jj 

[k'\ M 
(8) 

results, from where, by multiplying to the left with [Ai0], the bellow relation is obtained 

=W[< lj0 (9) 

From (5) and (9) relations the (1) relation is obtained, which is used to compute the matrix 

matrices depend Ay], if the matrices  \A!n\ and \A %J0 
are known. Terms of [Aj0\ and 

of attitude angles of (z) body and (/') body with respect to inertial reference frame. If the 
orientation of (0 body with respect to inertial reference frame is made precise by (plh <p2i, q>3i 
angles, which correspond to the 1-2-3 sequence of rotations with respect to a parallel reference 
frame with inertial reference frame O0x0yoz0 , than the bellow matrix 

k] ~C2i S3i 

hi 

Sli S2i C3i + ^i C\i 

—su s2j s3i +cuc3i 

cu s2j cVl + sxi s3j 

C\i S2i S3i + Sli C3/ (10) 

and angular velocity 

w= 
0 

<Pii 

1^3/ J 

(11) 

are obtained. 
In the above relations notations of the following form were used: 

su =sin<p„.,   cu=cos(pu (12) 
When constraints are functions of coordinates the motion of systems of rigid bodies can be 
studied with Lagrange equations for holonomic systems with dependent variables. Coupling 
mechanisms between (i) body and (j) body imposes restrictions on relative motion of (z) body 
with respect to (/'). 
Bellow some simple coupling mechanisms for which constraints can be expressed with 
functions of coordinates or with functions of velocities are analyzed. 

1.1 CONSTRAINTS EXPRESSED BY COORDINATES 

1.1.1  "Free " linkage 
When the coupling mechanism doesn't impose restrictions coordinates which are describing 
relative motion (displacements and rotations) number of constraints is zero. Each body ((z) or 
(j) has 6 degrees-of- freedom and the motion is studied considering two free bodies, despite 
of the coupling mechanism, which permits, translations with respect three directions and 
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rotations about three axes. The case of "free" linkage is a limit case and it presents the 
importance only for the case in which a particular coupling mechanism becomes a "free" 
linkage. Like an example can be considered the case of tethered bodies for particular situation 
of zero tension in the cable. 

1.1.2 Fixed linkage 
When the relative motion of (/') body with respect to (/') body has zero degrees-of-freedom the 
system of two bodies becomes a rigid one and it has 

6     +     6     -       6       =6 

(ipody   {jpody   constraints 
degrees-o f- freedom. 
Relative displacement condition, in vectorial form is 

Ö, op, 
and conditions of invariable relative orientation are: 

JfJj=(jrJj)0>- 

(13) 

(14) 

krkj k: ■ k, 

Index "o" from right part of above relations corresponds to initial moment and it shows that 
inner products from left side are constants. 
If (5) relation is written in the form 

a, ai2    a 

(14) relations become: 

r — i 
,3 b 
23 

< 
jj 

33- '../' AJ 
(15) 

4=(4)0, 4=(4)0- 06) 

1.1.3 Sph ericaljoint 
Spherical joint reduces the number of degrees-freedom with three units. Vectorial form of 
constraint is (13) condition. 

1.1.4 Linkage of translation 
When the coupling mechanism allows translations in three some directions the number of 
degrees-freedom is reduced with three units and constraints are of the (16) form. 

1.1.5 Connection with flexible cable 
Coupling mechanism with flexible cable reduces the number of degrees-of-freedom with one 
unit. The distance between points of connection of flexible cable is a constant one, and 
conditions is 

' (17) opt op 
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When constraints are expressed by velocities (velocities of translations or angular velocities) 
the motion is described with Lagrange equations for non-holonomic systems. Coupling 
mechanism can be analyzed from the point of view of allowed mobility. 

1.2 CONSTRAINTS EXPRESSED BY VELOCITIES 

1.3.1. Translation conditions 
If the coupling mechanism allows translations in three some directions, the number of 
constraints which correspond to translations is zero. 

If the coupling mechanism allows translations in two directions of vectors tß[tJlx,tjly,tß2J and 

tj2{tj2x>tj2y>tj2z) witn components in the system of (/) body, than the constraint is expressed 

by inner product 

1.3.2. Rotation conditions 
When the coupling mechanism allows rotations with respect three some directions, the 
number of constrains is zero. 
If the coupling mechanism allows rotations with respect two determined directions by vectors 

rilrj\x>rjiy>rju) and rj~i(rj2x>rj2y>rj2z)> which are expressed with components in (/) body 

reference frame, condition 

(^-^)-&x^) = ° (19) 
can be written.If the coupling mechanism allows one rotation with respect the determined 

direction by vector rj(rj]:,rjy,rJz), which is expressed with components in (/) body reference 

frame, than two scalar conditions which are included in vectorial form 

can be written, or in matric form, 

2. Motion equations 

When the motion of a system of bodies which compose a large orbital station is described 
with reference frames having origin in the center of attractive body (Earth) the problem of 
integration of motion equations presents some difficulties, because some coordinates (like 
vector radii) have very great values, and others (like distances between bodies) have very 
small values. Some difficulties can be avoided if relative motion of the system is studied with 
respect to a reference frame with known motion. Relative motion study isn't impose by 
integration considerations, this is impose by practical aspects. 

For a non-holonomic rheonomic system Lagrange equations for h coordinates 

6_ 

dt 

m 

are completed with constraints 

(<E\ |l = a+£Vtt,(* = iA...,Ä)      (22) 
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XaikMk +btdt = 0, (i = 1,2,-p). (23) 
k = \ 

By solving of the system of h (22) equations and of (23) equations, qk coordinates and \ 
multipliers are found. 
From (22) equations for holonomic system can be obtained by replacement of aik functions. 
In the case of a holonomic system constraints are of the form 

^M\.-.qh,t) = 0,{i = \,2,-p) (24) 
and differential form is obtained, 

* <3t> 
YJ-^rdcik+bidt=Q,(i=\x---p)       (25) 

From (25) and (23) it follows 

a iv = 
d<lk 

and (22) equations become 

(26) 

dt 
dE dE      „        d 
T-  -^— = Qk +T—£VM* = U-,A). (27) ,dqkJ     dqk dqkf^',x ' 

If the function 

"♦=!>/«>/ (28) 
=i 

is introduced, than equations (27) can be written in the form 
d ( dE dE      ^      dU,h    ,, . 
6t\dqk)     dqk dqk ' 

From the /? above equations and /? constraints (24) functions which correspond to h 
generalized coordinates, qk and to/? multipliers A,,, are determined. 

In the figure 2 two jointed bodies by a hinge are presented. The two bodies are situated in 
central gravitational field. 
Plane relative motion is described by pu Q u cp3],p2, 62, <p32, coordinates. 
Constraint 

Ö&~2 = Ö (30) 
reduces the number of degrees-of-freedom from 6 to 4. 
Relation (26) can be write in the form 

CM; + M,0, - (CM^ + M202) = Ö (31) 

and constraints are obtained using components of vectors from (31) on axes of Cxcyc reference 
frame: 
<j>, = p, cos 9, - p2 cosQ2 + a, cos(9, + cp31) + b2 cos(Q2 + cp32) = 0 

<|>2 = Pi sin 9, - p2 sin 92 + a, sin(Q] + (p3)) + o2 •"'«(62 + <p32) = 0 

From equations   (29) and the above constraints equations of motion for the system of two 
jointed bodies by one hinge are obtained. 
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Fig.2 System of hinged bodies 

3. Conclusions 

The problem of kinematics for systems of bodies are solved using analyzes of coupling 
mechanism under the aspect of number of degrees-of-freedom. 
The motion in central gravitational field is studied with respect a movable reference frame 
with origin on a circular orbit. 
The problem of dynamics of bodies system is solved using Lagrange equations of motion with 
multipliers and constraints. 
Models and elaborated method allow solving of a great number of problems of bodies systems 
dynamics. 
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A PARTICLE MODEL FOR MECHANICAL SYSTEMS SIMULATION 

A Model Based Overview ofMultibody Systems Formulations 

D. TALABA 
University Transilvania ofBrasov 
Bd Eroilor 29, 2200-Brasov, Romania 

Abstract 
This paper presents a model-based overview of the formalisms for the simulation of the mechanical systems. 
This approach provides a clear background for any formulation including specific formulas for mobility 
computation and finally a proper evaluation of the potential for each of them. A full multi-particle model for 
the systems of interconnected rigids is also presented. 

1. Introduction 

In recent years, multibody analysis computer packages became a usual tool in industry, research and 
development areas. The commercially available codes include nowadays a large range of facilities allowing 
simulation of sophisticated experiments with virtual prototypes of mechanical systems (mechanisms). The 
cutting edge research in this field is currently aiming towards developing new modelling and simulation 
facilities related on one hand to including into the analytical formalisms complex non-linearity like flexibility 
of the bodies, friction modelling etc and on the other hand to the increasing of the computing speed in order to 
enable the real time simulation. 

A large number of formalisms have been conceived and implemented in the various computer codes [7]. 
Some classifications of the methods utilized are taking into account the principle used for the dynamic 
formulation establishing two main kind of formalisms: Eulerian and Lagrangian. Usually, the two categories of 
methods use different sets of generalized coordinates and subsequently different methodologies for the 
kinematics formulation. Other classifications taken into account the type of implementation (i.e. symbolic or 
numerical implementation). This paper presents an overview of the formalisms from the model type viewpoint 
of the mechanical systems. This classification allows a synthetic picture the various methods (models) and 
subsequently an evaluation of the potential for each of them. Each formalism is based on a representation 
(model) of the physical system, from which all theoretical developments are derived. As resulting from the 
literature [2,3,4,5,6,7,8], two main representations have been assumed for the development of various methods 
and dynamic formalisms: the kinematic chain model and the multibody system model. Finally, the multi- 
particle model will be developed. 

2. The kinematic chain model 

According to this model, the mechanism is represented by a chain of bodies and interconnecting joints with 
the role of transmitting and transforming the motion (fig.l.a). The kinematic chain maybe serial (open loop) or 
parallel (closed loop) and its structure is usually represented by a graph (fig.l.b), which allows automatic 

identification of the independent loops. This model 
has been implicitly assumed by some authors [6,8], 
being very popular especially in robotics. 

For the serial mechanisms, the terminal body is 
cumulating the degrees of freedom of the preceding 
joints (fig.2), the structure mobility relationship 
being thus 

<s> 

Figure I. 

M=Zfr     0) 
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In case of the parallel structures, the mobility is calculated in two steps: first the mechanism is converted into a 
serial structure by cutting a body in each closed loop. In this way, the mobility can be calculated with the 
relation (1). As the number of bodies was artificially increased (fig.3) one have to subtract the degrees of 
freedom number that vanish when the original elements are re-constituted as in the initial structure. In this way 
the mobility relation become: 

M = Yf,-kS, (2) 
in which k is the number of the closed loops and S - the motion dimension (S=3 for 
planar mechanisms and S=6 for spatial mechanisms). In some cases the same 
mechanism could include both planar and spatial loops at the same time. Therefore a 
more general formula is: 

in which S^ is the motion dimension of the loop k. 

The term V Sk represents the number of constraints due to the closed loops. These 

constraints provide the same number of algebraic equations, which, together with 
the driving motions equations equal the dof allowed by the joints (]T/}), according 

to the relationship: Figure 2. 

^f,=M + ^Sk (4) 

2 s 2'=> S, = 3 
4s4'=>S„ =3 
£f- =2 + 3 + 2 = 7 
M = 7-6 = l 

Figure 3. 

For the 
kinematics 

formulation, the 
motion of the 

mechanism 
modelled as a 
kinematic chain is 
characterized by a 

set of Vy) kinematic equations. 

For example for the mechanism from figure 3,   £/i=7, which means the model has 7 generalized 

coordinates (the 7 articulations variables) and the geometric model includes 7 equations: 2x3=6 of them 
correspond to the closure conditions of loops I and II and one to the driving motion. According to the various 
formalisms, those equations can be written through various methods, most usually with Hartenberg-Denavit 
4x4 operators. The set of 7 geometric equations constitutes a non-linear system of equations from which the 
values of the generalized coordinates can be obtained by numerical solving (Newton-Raphson). For the other 
kinematics equations formulation, recursive methods are well known from the literature [6,8], resulting in 7 
velocity equations and 7 acceleration equations written in matricial form as: 

9(q,t) = 0,    «(9,0 = 0,    *(?,0 = 0. (V 
For the dynamic analysis, the Newton-Euler formalism is usually involved, which means in principle 

writing for each body the equilibrium equations. In 2D space, for each body, 3 equilibrium equations can be 
written resulting finally 3^ dynamic equations: 

mq = Q + R, (6) 
in which Q stands for the exterior forces and R the joint reactions. 

These equations introduce as further unknowns the joint reactions, which are in number of 3nr ^ ft, where iij 

is the number of joints. In this way, the differential algebraic equation (DAE) system is obtained as: 

j*(?,0 = o, (7) 
\mq = Q + R. 

For the sample mechanism in figure 3, out of the 6 acceleration equations, 15 dynamic equations can be 
written for the 5 bodies, introducing further 14 unknown reactions forces. The DAE system includes 6+15=21 
equations with 21 unknowns: 7 generalized accelerations and 14 reactions forces that can be obtained by 
numerical integration. 
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3.    The multibody system (MBS) model 

According to this model, the mechanism is represented as a collection of bodies, the motion of which is 
subject to a set of absolute and relative constraints. Many authors have implicitly assumed this model since 
1977 [6,4]. The mobility of the mechanism is obtained by cumulating all body's degrees of freedom considered 
as free bodies, from which the number of joint constraints is subtracted (Gruebler's formula): 

M = 6-n - £ i-Q. (8) 
in which S is the motion dimension of the space (S=6 for the spatial case and S=3 for the planar case), n is the 
number of the mechanism mobile bodies and Q - the number of joints of class i (the class of a joint is given by 
the number of constraints introduced). 

For illustration, the planar mechanism given in figure 3 have 5 bodies and 7 joints with two geometric 
constraints each, that is M = 3-5-7-2 = 1. In the kinematics case this mobility corresponds to the driving motion. 

Each body is associated with a Body Reference Frame (BRF) characterized by three generalized 
coordinates (the origin coordinates and the orientation angle with respect to the Global Reference Frame - 
GRF), the mechanism position being characterized by Sn=3-5= 15 generalized coordinates [3]. 

Knowing the mechanism position is equivalent with knowing the BRF space position and orientation given 
in general by 6 coordinates (three origin coordinates and three orientation coordinates for each BRF). The total 
number of generalized coordinates is 6n and the generalized coordinates vector is: 

hi =[x,y,2i <p, y, 0,x:y2z2 x„ynz„ <pn y/„ Of (9) 
or 

[<Ü=[(Ii<l2-<ltf (10) 
Not all the coordinates are independent because of the geometrical constraints introduced by the joints. 

Each constraint is represented by a geometric condition written mathematically as an algebraic equation linking 
the generalized coordinates of the adjacent bodies. For example a tri-mobile joint (f=3, c=3) introduces three 
algebraic equations, a mono-mobile joint five algebraic equations etc. In total, the number of equations for all 
joints is SiQ, where C, is the numbers of joints of class i. 

Consequently, the number of independent generalized coordinates (i.e. which can not be calculated from 
the constraint equations) equals the mechanism mobility, 

Nql = M = 6-n-Zi-Q. (11) 
The velocity and acceleration equations are derived generally by differentiation with respect to time of the 

position equations yielding relations with the expression (5). 
The motion of the mechanism is cinematically determined when each independent generalized coordinate 

corresponds to a driving motion expressed by another algebraic equation. 
For this kind of model, most usually the dynamic formulation includes 6n differential equations with the 

general form 

mq + JTX = Qex, (12) 

where J is the constraints Jacobian, \ the Lagrange multipliers vector and Qex the generalized external forces. 
In order to solve the dynamic equations by numerical integration, one has to constitute the DAE system 

with the general form 

0>{q,t) = 0, 
T (13) 

For the sample mechanism, one could write 15 differential equations and 7-2=14 constraint equations, in 
total, a set of 29 equations with 29 unknowns:  15 generalized coordinates and 14 Lagrange multipliers. 

4.    The multi-particle system (MPS) model 

This model considers the mechanism as a collection of particles subject to a set of absolute and relative 
constraints. Some principles of this model have been partially utilized in their work by Alexandru et al[l], 
Jalon - Bayo [4] and Geradin - Cardona [2]. 

The mechanism representation includes a particle based model for the rigid body and point contact models 
for each type of joint. 

The body model consists in a set of particles separated by constant distances, each particle being associated 
with a concentrated mass according to the inertial equivalence with the real object. For a body model in 3D 
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Space (i.e. able to integrally conserve the mass properties of the original solid) minimum 4 particles are needed 
and 3 particles for the planar case. Once the position of the particles is established in the body frame, the 
concentrated masses can be easily obtained from the inertial equivalence conditions. 

In the 3D space a particle have 3 degrees of freedom (f = 3), therefore maximum three types of constraints 
can be imposed (figure 4): 

(i) Coincidence with a point (or another particle) -> f = 0, c = 
3. 
(ii) Contact with a 3D curve -> f = 1, c = 2. 
(iii) Contact with a 3D surface -> f = 2, c = 1. 
The full body model includes the modelling particles and a set 
of constant distances constraints between them, which 
represent the ideal rigid conditions, according to the usual 
definition of the rigid body. For a body represented by 4 

particles involving 4x3=12 generalized coordinates, a number of 6 distance constraints have to be imposed 
resulting finally only 6 independent coordinates (figure 5): 

HX 

////?// 

Figure 4 

(X 

(xn -xP)
2 +(y» -yP)

2+(zf 

(xPi -xP3)
2 +(yPi -yPi)

2 +(zPi -Zpf =P,P3
2 

2 "~ ~pf=P2Pi2 

(xPi -xPf +(yPi -yPi)
2 +(zP] -zPf=P1P,2 

(xp2 -xPt)
2 +(yP2 -yPi)

2 +{zP2 -zPi)
2 = P2P4

2 

{xPj -xPt)
2 + (yPj -yPi)

2 +(zP3 -zp4)
2 = P3P4

2 

(14) 

The joint model is defined as combination of constraints between the particles composing the two adjacent 
bodies. Each joint could be represented by a set of constraints defined between the particles of the two adjacent 
bodies. The point type contact model allows the definition of practically any type of joints. The models of the 
most usual joints are detailed in table I. With these models defined for body and joint, a new criterion can be 
formulated for the mechanism mobility as: 

M = S-p-ECi, (15) 

in which p is the number of the particles included in the model, S is the space dimension (S=3 for 3D space and 
S=2 for 2D space) and c; is the number of constraints. The generalized coordinates vector has the form: 

[<l] = fxi     yi     z,     x2     y2     z?     x3     y3     z3   ...   xp     yp     zj7,    (16) 

TABLE I. The usual joints representation for the multi-particle system (MPS) model 

Joint type Particle model Constraints Constraints Equation 

Spherical 
joint 3kte P,=Q. 

c = 3 
f=3 

XPI
=

XQI 

ypi=y<2J, 
Z

PI
=

ZQI, 

Cylindrical 
joint 

PieQiChaxis 
P2<s Q1Q2 axis 
c = 4 
f=2 

xPl-xQi     yPj -yQl _zp,-zQl 

X
QI-

X
Q,   y&-yo,   ZQ2-ZQ, 

X
P2~

X
Q,   yp2-yQt   

zp2~
zQt 

X
Q2~

X
Q1   y&-y&   za~za 
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Translation 
joint 

Rcvolute 
joint 

Plane joint 

r\ 
o. x 

"« p. -1-"  c' 

Pi6 QiQ2axis 

P2£ QiQ2axis 
PjeQiQ2Q3 

plane 
c = 5 
f=l 

P26 Q1Q2 axis 
c = 5 
f=l 

PIEQ.Q2Q) 
plane 

P2eQ,Q2Q3 

plane 

P3eQ,Q2Q3 

plane 
c = 3 
f=3 

Idem and 

»3 

<Q> 

Xpi -XQI, ypi -ygi. Zpi -ZQI. 

xß: - XQ 

yp, -y<2,   ZP2~
ZQ] 

yQ? ~ yQ,      ZQ: - zß 

", yp, 

h y& 

'2 yß: 

X
Q> yß, 

i=l,2,3. 

= 0. 

The vector [q] can be obtained by numeric solving of the system of M + Iq algebraic equations corresponding 
to the M driving motions and Ec, joint constraints. It must be noted that for the a MPS model the joint equations 
can take only four possible forms, as resulting also from the table I: 

Distance equation 

(xPi -xPiY+{yPi -yP)
2+(zPi -zP)

2=PxP2 

Coincidence equation 

Co-linearity equations 

Co-planarity equation 

Xpi ~XQI, ypi -yQ], Zpi -ZQI, 

yp, - >'Q, _zpt- ZQS 

xn.  ~ Xf lß? yQl  ~yß,        Zß:  ~Zß, 

(17) 

(18) 

(19) 

Kß, 

yPj 

yßr 
xß, y<2> z<?, l 

= 0. (20) 

In the next step, through successive differentiation, velocity and acceleration equations can be easily derived 
resulting the set of kinematic equations of the general form (5). 

For dynamic simulation, the equations have the same general form as for MBS model - relation (12), in 
which the mass matrix is 

m = diag[     mx    w,    mx    m2    m2    m2    w3    m3    w31    ...   mp    mp    mp].      (21) 

The Sei Lagrange multipliers include the joint reaction forces (including no torques) and also the internal 
cohesion forces between the particles of the bodies. 

For the sample mechanism modelled as in figure 6, the number of particles per body is 2, except bodies 3 
and 5, which are defined with three particles each. The total number of mobile particles is p = 12 (A,, B,, B2, 
C2, C3, D3, E3, E4, F4, F5, G5, H5), that is S-p=2x 12=24 generalized coordinates (two Cartesian coordinates for 
each particle): 

1
=
[XAI   yAi   2Ai   xB1   yBl   zBi   xB2   yB2   zB2   ...   xH5   yHs   zmf,       (22) 

As constraints, there are 9 rigid body constant distances (AB, BC, CD, DE, CE, EF, FG, FH, GH) and 14 
joint constraints, yielding Zci=23, that is M=S-p-Ecj=24-23=l. The constraint equations set is: 
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2 

(xEi-XFt)
2+(yE(-yF4) 

=/4 

{xFi-xGif + {yFi-yGi)
2=l2
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2=l2
FH 
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2 + (yG. - yHs f = 1

CH 
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■£»     ~~ xBl =0,   ^2-^B, =0 

*c3-*c2=°>   ^c3-^c2=° 
*ö3 

-*Z>0 

*£4 -XE, 

-0,   yDi -yo0 

-yE, 

-- 0. (23) 

= 0 

-xFt=0,   yFs-yFA=0 

y^ yGi 

The 24* equation corresponds to the driving motion. 
The velocity and acceleration equations are derived 

by differentiation of the position equations 
Jq = Q. 

Jq = y/' 
where the 24x24 Jacobian matrix J has also a very simple 
expression not given here, for space reasons. 

For the dynamic analysis, one has to take into 
account the particles are acted by external, reaction and 
inertia forces. Each force is applied to a particle such as 

no torque is involved, which is an important simplification. The general matrix form of the differential 
equations is given also by (12), in which the mass matrix is 24x24 
m = diag[   mA    mA    mA    mBx    mBi    mB]    mBi    mBi    mBi   ...   mH$    mHs    w^Jthe    23x24    Jacobian 

matrix corresponds to the joint constraints and constant distances and the Lagrange multiplier vector X has also 
23 components. The DAE system has 47 equations with 47 unknown: 24 generalized coordinates and 23 
Lagrange multipliers. 

Figure 6. 

5. Conclusions 

The model based approach for multibody simulation allows a clear background for any formulation including 
specific formulas for mobility computation and finally a proper evaluation of the potential for each of them. In 
spite of the larger number of equations, the MPS model provides several features with relevance to the non- 
linear multibody simulation: 

The representation of forces and inertial mass properties is significantly simplified. 
- The constraints and the corresponding algebraic equations are of small variety -only four types of 

equations: distance equations, coincidence equations, co-linearity equations and co-planarity 
equations. This is simplifying both constraint and Jacobian matrix formulation. 

- The MPS model allows the extension for the treatment of flexible multibody systems by introducing in 
the RHS of the distance equations the flexibility principles for each body as shown in [2]. 
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T* , M(x)x = Q-(x,x,/), (1) 

1. Unconstrained MBS on manifolds 
Unconstrained multibody system (MBS) is an autonomous Lagrangian system. If n 

DOF is assumed, the system evolution in configuration space Rn is described (by 
definition) by Lagrangian equations [1] 

dt(dx)   dx 

By taking differentiable manifold approach, the configuration space Rn is 
considered to be a manifold Mn covered by coordinate system x(/) (in mathematical 
jargon of modern differential geometry: locally covered by chart x). The solution of (1) 
is a dynamical trajectory T:x'=x''(V) of the system in «-dimensional manifold of 
configuration M. With every point on manifold of configuration, x e M, the n 
dimensional tangent space T}A is affiliated, where system virtual displacements 6x 

and velocities x are contained, 8xe 7;M, dxe 7;M , xe 7;M . The manifold M 
and the union of all tangent spaces at the various points x make another, In 
dimensional,   manifold   called   tangent   bundle,   7M: (J   7;M,   covered   by   the 

XEM" 

coordinates x , x :M = { (x,x): xe M, xe 7;M} [2] (being mathematically not 
very rigorous, tangent bundle can be observed as a velocity phase space known from 
'traditional' approach). Manifold M is not a vector space. By adopting system 
generalized mass matrix M(x) (positive definite) as a Riemannian metric on the 

manifold of configuration [3], a scalar product in the each tangent space T}h is given 
by (y>zW) = yTM(x)z , y ,ze TXM [4]. Now, with the metric so defined, the tangent 

space 7;M ('the fiber of the tangent bundle at point x') becomes a local Euclidean 

vector space spanned by covariant basis gx. By introducing a reciprocal contravariant 

basis g^, the vectors in tangent spaces can be expressed using their contravariant and 

covariant representations x = x'gx , x = [x' J, x = x, g[ , x* = [JC,] . 

2. Geometric properties of constraints 

2.1 Holonomic constraints 

Holonomic constraints 

O(x,/) = 0,   O(x,0:RnxR->Rr , (2) 
that are imposed on the system 

a)        restrict system configuration  space  ('positions'):  a trajectory   T:x'=*'(/) 

'moves'       on       the       n-r      dimensional       constraint       manifold       S""r(0, 

S"-'(0={xeM,<D(x,/) = 0 } , ,>0 , x(/0)6S-r(f0), 
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b)    at the velocity level they induce constraint equation 
<E>\(x,/)x = -<E>, =T (3) 

that is linear in velocities. The constraint matrix <3>*(x,0 can be written in the form 

O*I(x,0 = [(p.'"--><P*J > <&=W» 9.^/g'x • The vectors 9,,...,9, represent 
gradients to the constraint hypersurfaces. They are linearly independent and span r 
dimensional constraint subspace Cx [6]. Kinematically admissible virtual 

displacements 8x are restricted to the n-r dimensional tangent space rxS
n"rthat is 

orthogonal to Cx. Together, subspaces Cx and Tx S
nr span fiber of tangent bundle of 

unconstrained system 7/xM
n at point x:  TxS

n'T f] Cr
x = 0 , 7;Snr U Cx =:rxM

n. 

2.2 Non-holonomic constraints 

If, beside h holonomic constraints (2), the additional nh non-holonomic constraints 
¥(x,x,/)=0 (4) 

are imposed on the system, they do not restrict system configuration space (system 
constraint manifold S"~r maintains the same dimension, r = h ) but impose additional 
velocity   constraints   on   holonomic   constraint   manifold   tangent   bundle    T$, 

xer;-r-"ASn-rcrx"-''Sn-r. 
If non-holonomic constraints are linear in velocities, i.e. can be given in Pfaffian 

form 
Y = B*(v)x-ßM = 0, (5) 

the system constraint equations can be written as follows: 

:<D\   ,  <D*    eR
(A+"A)x\ (6) 

3. Projective constraint stabilization method via coordinates partitioning 

If system governing equations are expressed in descriptor form, a constraint violation 
stabilization method have to be applied during integration procedure. A well known 
method that provides a full constraint stabilization is generalized coordinates 
partitioning procedure [5]. If the system is holonomic and constrained on manifold 
S"~r(?), the 'classical' coordinate partitioning algorithm is based on pivoting operations 

on the constraint matrix ®\, rank (<£*,)=/-, by means of which the subvectors of 

dependent and independent coordinates xd € R'and x' e R""' is extracted. 
With the attempt to provide a further insight into the characteristics of the method, in 

this paper, the coordintes partitioning algorithm will be analysed on manifolds using 
differential geometry approach. 

Criteria for partitioning can be expressed geometrically: basically, every partitioning 
that returns subvector of dependent coordinates xd which basis vectors have non-zero 
projections on the constraint subspace Cx (the corresponding rxr submatrix of 

constraint matrix 0% is non-singular) is correct one and can be used for stabilization 
procedure. Consequently, the basis vectors of variables x' have projections on tangent 
space of constraint manifold 7;Sn-r that is complement to Cx. If the extracted 
subvectors do not satisfy specified conditions, the partition is not a valid one and the 
calculation will fail. 
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After partitioning, time integration results of the system variables x,x are projected 
to the constraint manifold tangent bundle 7$ to assure full satisfaction of the system 
constraints. This can be achieved by correcting dependent coordinates xd to bring the 
configuration coordinates x in accordance with the constraint equation (2) up to the 
required accuracy (a projection on S"~rcan be accomplished by iterative solving of (2), 
while keeping values of independent coordinates unchanged and treating xd as 
unknown variables). The procedure is than repeated at the velocity level by correcting 
xd to bring x in accordance with (3), with the only difference that (3) is linear 
algebraic system and xd can be obtained straightforwardly. 

The main problem that may occur during stabilization procedure is an inadequate 
coordinate partitioning that can have a negative effect on the integration accuracy along 
constraint manifold [7]. Although, as it was explained, every partitioning that returns 
the acceptable subvectors can be used for the stabilization procedure providing the 
constraint stabilization, a non-optimal choice of the subvectors can cause an increase of 
the numerical errors along manifold during stabilization procedure (numerical errors 
along constraint manifold affect system evolution in time i.e. its kinetic motion). It 
means that, in this case, a correction of the constraint violation will be accomplished at 
the expense of the 'kinetic motion' accuracy obtained by the system variables x,x 
ODE integrators. 

3.1. Stabilization of the system configuration constraints 

The 'mechanism' of emerging of the numerical errors along configuration manifold, 
because of an inadequate partitioning during the stabilization procedure of holonomic 
systems, is outlined in Fig. 1, where an illustrative example xe R2, S' is discussed 

S1 

x2 curve   & 

gradO, 

Fig. 1: Correction of the configuration constraint violation 

Assuming that, starting from position ®, an integration of ODE gives result ® 
instead of exact position © (a scleronomic system is assumed), a projection on the 
constraint manifold S1 by adjusting coordinate xl (solving 'position' i.e. configuration 
constraint equation (2) along x1 curve by treating x

l as dependent i.e. unknown 
variable) yields result © that is consistent to the constraint. If instead of JC

1
 , the variable 

x was chosen to be a dependent coordinate, an adjustment of the integration result 
along x2 curve would yield solution <D, which is also consistent to the constraint but 
contains considerable error along the manifold S1. 

A remedy for the problem of an inadequate partitioning has been offered in [8], 
where a projective criterion to the coordinate partitioning method is introduced (for 
application, see [9]). For a given set of coordinates of unconstrained system, the 
criterion allows for the optimal choice of dependent/independent coordinates which, 
consequently, gives opportunity to minimize integration error along manifold. 
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The main idea is to determine those r coordinates which direction vectors g'x deliver 

the biggest relative projections to the C^ and select them as dependent variables which 
will be adjusted during the stabilization procedure. By correcting the coordinates whose 
direction vectors align well with the constraint gradients (that point directions toward 
constraint surfaces and span C,), it is ensured that the correction procedure will shift a 
state-point of the system 'as direct as possible' to the constraint hypersurfaces, 
minimising thus an error along constraint manifold. Along this line, in the example 
shown in Fig. 1, the variable x1 is chosen to be a dependent coordinate since its basis 
vector g, delivers a big projection on C^ = grad[$, = O] (in this illustrative example the 

constraint subspace C, is one-dimensional, spanned by grad[0, = OJ). 

3.2 Stabilization of the velocity constraints 

The projective criterion to the coordinate partitioning method can be utilizied for a 
minimization of the numerical errors in the process of correction of constraint violation 
at the velocity level as well. Here, an application of the criterion enhances a definitness 
of the velocity constraints algebraic system (3), providing thus a better numerical 
accuracy of the stabilization procedure. This feature is illustrated by an example 
xeR3, S2 = {xe R3,<D,(x) = o} , shown in Fig. 2. For seak of simplicity, 

scleronomic system and orthogonal basis g[,gl^l are assumed. If the velocity 
equation (3) is written in the 'vectorial' form, for the analysed case it reads 

grad©,-i = 0   • (7) 
In (7), the components of grad 0, represent coefficients of the linear algebraic system 
that, for a general mathematical model, is given by (3). By applying the projective 
criterion and choosing i3, which direction vector g3 (in this 'academic' illustrative 

situation) is almost collinear to gradO,, as a dependent coordinate, the potential 

numerical errors in independent coordinates xl and x2 would not affect considerably 
the solution x3 « 0 of the velocity constraint equation (7). 
This is because of the small magnitudes of the coordinates of grad O, along the basis 

vectors g^ and g\ (small projections of grad©, on g^ and g\) that multiply x1 and 

x2 while solving (7) for x3. 

x  curve 

Figure 2: Correction of the constraint violation at the velocity level 
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4. Structure of the partitioned subvectors 

To gain a further insight into the partitioning procedure and its characteristics, it is 
illustrative to observe the algorithm of the projective criterion at the tangent bundle 
7M = {(x,x):xe M, xe TXM} of an unconstrained system. As explained, 7M is 
2/j-dimensional Riemannian manifold with a metric M^ = diag(M(x),M(x)), where a 
configuration of the system as well as its velocities can be studied [10]. If constraints 
are present, they are represented in jM by the configuration and velocity 
submanifolds, by means of which the possible states of system are determined. 
Observed at rM, the partitioning procedure for constraints stabilization can be studied 
for each submanifolds separately. By using the projective criterion for both manifolds, 
characteristics of the partitioning procedure that for a given set of coordinates 
xe M, xe ^M provides the optimal dependent/independent subvectors, can be 
learned as follows. 

4.1 Holonomic constraints 

The configuration submanifold S""r is determined by the equation (2) i.e. 

S"-'={xe|VU(x,0=0}. (8) 
The submanifold V" r, by means of which the system velocities x are constrained, is 
defined by (3), thus 

V-r={ie7'IM,*,,(x,/)i = T}. (9) 
If the optimization projective criterion is applied during the partitioning procedure at 

the both configuration and velocity level (which is the most common procedure), the 
criterion itself is based on determination of the gradients to the constraint submanifolds 
S"~rand V""r (as explained, this is because the extraction of the dependent coordinates 
of x and xd depend on the directions of gradients to the hypersurfaces of submanifolds 
S""rand V"~r respectively). 

Since constraint submanifold S""r is determined by (2), the x correction gradient by 
means of which xd is to be extracted is given by 

grad[<D(x,0 = 0]=<D;(x,O. (10) 
Similarly, x correction gradient, decisive for an extraction of xd reads as 

grad[<D\(x,/)x = T]=<X>;(x,/). (11) 
Now, if the expressions (10) and (11) are compared, it is obvious that the both 

hypersurfaces S"~rand V"~r have the same gradients for every point in 7M (in fact, 
the both gradients depend on the current position x e M at the configuration manifold 
and t only, i.e. they are independent on system velocities x). Of course, this stems from 
the fact that, in the case of holonomic systems, the velocity submanifold V"~r is 
determined by algebraic equations (3) (linear in x !) which are, in turn, obtained by 
derivation of the configuration constraints (2). 

Since the gradients to the both hypersurfaces S""rand V"~rare identical, it is clear 
that, for holonomic systems, the optimal coordinate partitioning procedure provides the 
same optimal dependent/independent subvectors at the both configuration and velocity 
level i.e. [xx,x2,...,xj and [xux2,...,xj. This means that, once the partitioning 

procedure is accomplished for the configuration coordinates and subvector xd is 
extracted, it is not needed to be repeated at the velocity level (the subvector xdof the 
same structure is to be chosen for the stabilization of velocities). 
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4.2 Non-holonomic constraints 

A coordinates partitioning procedure can also be applied for stabilization of 
constraint violation of non-holonomic systems. If additional nh non-holonomic 
constraints (4), which are imposed on the system (beside h holonomic constraints (2) 
that define configuration manifold S"r, r = h), are given in linear (Pfaffian form) (5), 
the submanifold \l"-r'nh of the velocity constraints are defined by 

B'{x,t) 
: $„/,* = 

T 

LßJ 
3>     e R (h+nh)xn (12) 

By considering (12), thex correction gradient reads as 

grad $„** = = C(x,0 = 
B*M 

(13) 

Since non-holonomic constraints do not affect configuration manifold S""r, the 
'position' coordinates correction gradient is given by (10). 

By comparing correction gradients (10) and (13) which do not match any more, it 
can be concluded that in the case of non-holonomic systems the optimal coordinates 
partitioning will not 'return' dependent/independent subvectors of the same structure for 
configuration and velocity stabilization. Beside non-equality of dimension of the 

subvectors xd e Rr and xd e Rr"\ their structure will also differ in general case. 
Generally, in the case of non-holonomic systems, a separate partitioning procedure is 
necessary for stabilization at configuration and velocity level. 

This is specially true if the imposed non-holonomic constraints (4) can not be put in 
Pfaffian form. If non-holonomic constraints are non-linear in velocities (this kind of 
constraints can appear as a result of certain controlling actions), it will be necessary to 
determine a completely new correction gradient 

grad[T(x,x,r)=0]=Ti   , (14) 

to accomplish optimal correction of the velocity constraint violation. 
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Abstract. Hardware-in-the-Loop test facilities become a modern tool for testing of active 
systems in the automotive industry. Since real-time models are necessary for the vehicle dynamic 
simulation in HiL various techniques have been developed in the recent years to fasten the time 
integration of multibody system models. 

Nowadays a number of simplifications is well established that help to avoid the time con- 
suming simulation of the suspensions with kinematic closed loops. The so called virtual axle is 
one of these approaches. It is based on tabulated kinematics of a wheel carrier that is evaluated 
during time integration. The virtual axle can be optionally extended with simplified wheel carrier 
elastokinematics as well. 

This paper presents the implementation of the virtual axle method in the multibody simu- 
lation package SIMPACK. Furthermore the accuracy of a vehicle model with the virtual axle is 
compared with a classical model including full suspensions with kinematic closed loops. 

Keywords:   real-time simulation, suspension, virtual axle, model reduction 

Abbreviations:  HiL - Hardware-in-the-Loop; MBS - multibody systems 

1.   Introduction 

To decrease development time and costs in automotive industry the multibody 
dynamic simulation programs are widely used. In many cases the number of ride 
tests can be decreased significatly by using simulation models. 

Since the multibody systems (MBS) simulation of vehicles has become a stan- 
dard simulation tool the essential effort is payed in the recent years to decrease 
the computing time needed for the numerical integration. Especially in case of 
Hardware-in-the-Loop (HiL) tests the computing time is crucial. 

Various MBS-formalisms and simulation techniques have been suggested to 
reduce the computing time in dynamic simulation, see [1-4]. The approaches 
deal with various aspects that can be summarised as follows 

• techniques simplifying the model complexity, 

• descriptor or state-space form of equations of motion, the type of coordinates, 

• selected numerical integration methods and 

• parallelisation techniques and used hardware. 

The present paper is focused on the simplification of complex suspension 
systems. 
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1.1. SIMPLIFICATION OF SUSPENSION MODELS 

The necessity of real-time MBS vehicle models (e.g. for HiL) is the motiva- 
tion to perform significant model simplifications including methods to avoid the 
kinematic closed loops caused by suspension systems. 

The resulting suspension model should be simple and precise at the same 
time. Nevertheless the accuracy is often less important in order to decrease the 
computing time of the real-time model. 

The kinematic loops are caused by suspension design ensuring optimal be- 
haviour of the suspension for the full range of wheel movement. Several ap- 
proaches are used to simplify the full suspension model that generally leads to 
the solution of differential algebraic equations (DAE). The most often used forms 
are the following: 

• Transformation of DAE to ordinary differential equations (ODE). This me- 
thod can lead to numerical problems, see [5]. 

• Precalculation of the wheel carrier movement relative to the vehicle chassis 
and saving of data in table form to avoid the algebraic equations caused by 
kinematic loops, see Section 2. 

• Solution of algebraic equations within the wheel carrier joint. Then the 
resulting equations of the complete vehicle form an ODE (Suspension Com- 
posite Joint description [6]). 

Elastokinematics is a consequence of elastic bushings and compliance of bodies. 
It has a strong influence on the suspension movement if dynamical forces are 
considered that act on the suspension. 

The elastokinematic model of suspension requires the iterative solution of 
a system of non-linear equations to get the resulting position since suspension 
position and compliance depend on each other. Generally the resulting position 
and orientation pi of the i-th wheel carrier is 

Pi =Pi(zi,Qt,*) , (!) 

where z, are independent coordinates and Q» are the acting forces. 
For the real-time models the complex elastokinematics must be strongly simpli- 

fied and for a lot of ride tests it can be even completely neglected. The dependency 
of compliance on the initial position without feedback is often considered to fasten 
the computation. Therefore within one time step (1) simplifies to 

Pt.tfc = Pi(ztf fc i *fc) + Api(zii<fc, Qi.tfc.j, tk). (2) 

The additive term Ap; indicates simplified elastokinematics and it is a non-linear 
function of forces acting on the wheel carrier. The forces Qi,tk^ from previous 
time step tk-i are selected since the actual forces of fc-th step are not known 
during solution of equation (2). The iterative solution is avoided in this way. 

The additive term is often linearised to the form (see [8]) 

Api = Cel(Zi)Qli + Ce2(Zi)Q2i + ■■■ + Ce6(Zi)Q6i, (3) 
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with compliance coefficients cej, j = 1,...,6 and a vector Qf including three 
force Qji, j = 1,..., 3 and three torque Qjh j = 4,..., 6 components. 

2.   Virtual axle 

The virtual axle is characterised by precalculated and tabulated data that is 
evaluated later during the dynamic simulation, see [7], [8]. The presented virtual 
axle has been implemented in the multibody simulation package SIMPACK, see [4]. 
In this simplified axle model the position and orientation p» of the wheel carrier 
are calculated depending on a set of dependent coordinates q* = [qu • ■ ■ q6i]

T 

Pi = Pi(qi)- (4) 

The dependent coordinates q* itself are generally defined by two independent 
coordinates z; that are given by: 

zu ... vertical movement of the wheel carrier rz{ and 

Z2i ... rack rod displacement ryR or steering angle 6. 

The coordinates q< are tabulated based on the data that is obtained from a MBS 
model of full suspension that defines the transformation 

qi=q«(zi). (5) 

During time integration the data is evaluated with cubic tensor product splines 
that interpolate data tables. A lower order of interpolating spline could be se- 
lected but generally this leads to discontinuities and problems during numerical 
integration. 

2.1. KINEMATICS 

The position and orientation pki, velocity vki and acceleration aw of wheel carrier 
relative to vehicle chassis are calculated in the virtual axle 

P« = Pfci(zi,i) (6) 

vw = Vki(zi, Zi, t) = Ji(zi, t)±i + Vi(Zi, t) (7) 

a« = aw(zi,zi,2i,i) = Ji(zf,t)zi + äi(zi,zi,t) (8) 

where the subscript k denotes the (initial) kinematic solution. 
The terms Jj, v\ and a* in equations (7) and (8) include the partial derivatives 

of transformation (5). 

2.2. ELASTOKINEMATICS 

The resulting position can be influenced optionally by the elastokinematic term 
Api 

P. = P«(z, t) + Api(zi, Qiitfc_,, t). (9) 
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with the joint constraint forces Qi^k_t from the previous time step. 
Both tabulated non-linear and linearised Api may be selected. The later needs 

the tabulated coefficients Cej, j - 1,...,6, see Equation (3). The non-linear 
approach is more suitable to have a more exact model. Unfortunately it is rather 
difficult to get the tabulated input data. Therefore the unear method is used 
in general. Although additional error terms are introduced by superimposing 
particular linear terms, the simulation results are often of good approximation. 

Just the quasi-static forces are realised by the precalculation of elastokinemat- 
ics data since it is impossible to include the whole range of dynamical forces. 

3.   Simulation 

In this section the vehicle model using the kinematic solution of virtual axle in 
SIM PACK is described and results of a ride manoeuvre are presented. 

3.1. VEHICLE MODEL AND RIDE MANOEUVRE 

The model of a middle class vehicle has been chosen to compare the accuracy of 
the virtual axle with the complete suspension model. The vehicle has a McPherson 
front suspension (Figure l.a) and a twist-beam rear axle (Figure l.b). These are 
modelled as a complete suspension in the vehicle Model 1. The front suspension 
is substituted by the virtual axle in a simplified vehicle model {Model 2). 

No steering system is considered but the simple time excitation of the rack 
rod displacement z2i. The excitation z2i = z2i(t) is applied directly to the virtual 
axle in the simplified Model 2. 

Both the front and rear anti-roll-bars are treated as torsional springs/dampers. 
The brake assembly and power train are neglected because they are of lower 
importance for the performed manoeuvre. 

The curve entry has been selected for comparison of the models. The initial 
velocity of vehicle is 10 m/s. The displacement of the rack rod (excitation z2i) 
from 0.0 m to 0.033 m is defined in the time interval between 0.5 and 1.0 s. 
The total time of manoeuvre is 7 seconds. 

mmmmmm 

a. Front suspension b. Rear suspension 

Figure 1. Vehicle suspensions of the simulated vehicle. 
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3.2. RESULTS 

Four vehicle models have been compared. The first one is Model 1 the others are 
three variants of Model 2 that differ by the selected interpolation: 

• Model 2a: Cubic spline interpolation of q< in direction zu and linear inter- 
polation in direction z-n. 

• Model 2b: Cubic spline interpolation of q* in both directions. All partial 
derivatives are neglected. 

• Model 2c: Cubic spline interpolation of q* in both directions. All partial 
derivatives are considered. 

The SIM PACK integrator SODASRT with variable time step is used in all com- 
putations. The computations have been performed for three different integration 
tolerances. The computing times of all models are shown in Table I. 

Figure 2 presents the vehicle position during the ride manoeuvre. The diver- 
gence of the results is especially obvious at the end of simulation. To point out 
the differences the selected area of Figure 2.a is focused in Figure 2.b again. 

As can be seen in Figure 2 the results of Model 1 and Model 2c are nearly the 
same. The Model 2b is faster at approximately 15% but it deviates at some 0.5 m 
as compared to Model 2c. The divergence of Model 2a can be seen as well. 

In contrast to the divergence of Model 2a that increases with time the deviation 
of Model 2b changes slightly when the rack rod displacement stays constant and 
it arises mainly during the rack rod movement. 

As can be seen in Table I it was not possible to calculate Model 2a with small 
tolerances because there have been discontinuities in partial derivatives of the 
selected linear interpolation. 

4.   Conclusions 

In this study the virtual axle has been implemented in the SIMPACK simulation 
package. The reduced vehicle model with virtual axle has been compared with 
the full model. The results indicate that the virtual axle with cubic spline inter- 
polation in both directions and partial derivatives is the most suitable solution 
to supply the complex suspension. 

Table I. Computing times of simulated vehicle models [sj. 

Vehicle Tolerance 
model l.io-3 1.10-4 1.10-5 

1 3.57 4.82 6.8 
2a 2.51 aborted aborted 
2b 2.28 3.78 5.24 
2c 3.05 4.33 6.13 
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Figure 2. Position of the vehicle in a horizontal plane. 

The linear interpolation can be used, too, if no discontinuities occur during 
simulation or if the model accuracy is of lower importance. 
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1. Introduction 

Vaulting pole with elastic pole is a continuum communication between athletes and the 
pole during the vault. Kinetic energy introduced at the beginning of the vault can explain 
only 60-70 % of the total energy used to perform the vault. The rest, concerning 30-40 %, 
is introduced by the act of the athletes. In this study the authors wish to make an adequate 
mathematical model to explain the liaison and the power transfer between the vaulter and 
the elastic pole. The model contains a high elastic fiber-glass pole, free to pivot in the 
bottom end and charged with a variable momentum at the upper end. The inertia forces 
are also considered and all these forces subject the pole to a bending momentum and 
compression. The mathematical model is strong non-linear and for this reason involve 
some difficulties in solving the problem. This needs an adequate parameterization of 
deformed pole and the identification of the best modality to introduces power in the 
system. 

In the paper is made an analysis of such complex motion and interaction between 
athletes and the pole in order to identify the parameters that describe the problem. 

2. Mathematical Model 

In the following we will present a proposed model in order to describe the motion of the 
vaulter. An analysis of the dynamic of the pole-vault event must include the effect of the 
highly elastic pole [1]. Hubbard [3],[4] proposed an iterative numerical solution, 
contending that an analytical solution was unknown. Griner [2] use the results proposed 
by Costello and Healey and offer a parametric solution to the pole-vault problem in 
terms of the tabulated elliptic integrals. 

In this paper we use a vector representation [5] to describe the geometry of the 
non-linear pole in order to obtain, finally, the interaction between pole and pole-vaulter. 
We can write: 

where: 
ds     ^3 ds 

ds 
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EL(^]2=F(q-s(Q)+c(Q)+C) 
2{ds) 

0 = a, 
d0 
ds 

2 
P ->C = -F(<jf-s(a)+c(a)) 

The simpler model to describe the athlete is to consider that this is composed by two 
rigid body being in interaction with the pole. This description permit to obtain two kind 
of equations: one containing the elastic description and the other concerning the dynamic 
motion equations considering the two body that compose the athlete. For these two 
bodies we apply the well-known screw theorems. Between these two description exists 
a liaison made by some motion parameters. It is easy to describe the great deflection of 
the pole when is known the force and the torque at the end of the bar. 

Figure 1. Seven successive positions of the vaulter 

The most important things is to find the real values of the screw apply at the and of the 
pole at any moment of time. To determine this is necessary to consider for these *vo 
description two kind of differential equations: in one the variable is a coordinate that 
describe the pole and in the other set is the time. In every moment of time we must 
consider the solution of these two set of equations, the evolutions of the solutions being 

in a strong liaison. 
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Figure 2. The large deflection of the pole in the Hubbard model 

3. Experimental Results 

Griner, in his paper, consider an experiment made by a vaulter. In this experiment he has 
recorded 65 of position. If we consider the athlete compose by two rigid bodies, seven 
position are presented in figure 1. He conclude that exists un vault which negative 
torque, at the end of the trajectory. The seven position are only a "frozen" sequence in a 
succession of all positions recorded. 

Considering these results Griner perform a calculus of the large deflections 
considering the force and the torque adequate to obtain the experimental records. For 
some positions the screw considered to obtain the experimental results are not in a good 
accordance with the situation observed by the athletes. The discrepancy between the 
calculus and observations impose to consider the continuous liaison between athlete and 
pole. 

4. Large Deflections of the Pole 

In our researches we have considered an elastic pole being in a continuous "rigid" 
motion and have in the same time large deflections. The model has considered the 
interaction with the athlete acting at the end of the pole with a force screw (force and 
torque). For this model we have represented the elastic solutions for the succession of the 
seven positions considered. 
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Figure 2. Large deflections of the pole 

5. Conclusions 

The results obtain by calculus and the experimental observations sustain the idea of a 
model of the elastic pole in an interaction with the vaulter. The motion of the vaulter is 
very complex and determine, in decisive manner, the deflection of the pole at any 
moment of time. The strategy of the vaulter is not only to transform the kinetic energy in 
a potential energy but too to use the arms to introduce a force screw in order to made 
higher the vault. To study the motion of the vaulter is necessary to consider the strong 
interaction that exists between the two parts of the system: the pole and the vaulter 
modeled by two rigid bodies. A good description of the motion is possible only in this 
case. 
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DAViD - A MULTIBODY CODE TO SIMULATE A DYNAMIC VIRTUAL DUMMY 
FOR VIBRATIONAL COMFORT ANALYSIS OF CAR OCCUPANTS 

P.P. VALENTIN! 
L.VITA 
University of Rome "Tor Vergata" - Dept. of Mechanical Engineering 
Via del Politecnico, 1 - 00133 - Rome - Italy 
email: valentini&jns. uniroma2. it; vita(a)jng. uniromal. it 

1. Introduction 

The development of virtual simulators can avoid to set-up expensive test rigs, time-consuming 
tests, and is a winning strategy to be more competitive in road-vehicles market. Moreover 
vibrational comfort analysis is an important topic in vehicle design and the possibility to perform 
virtual vibrational tests on the effects of changing some parameters is useful tool for the designer. 
A literature search reveals that most of the simulation models in the field are based on elementary 
linear models. In some cases, finite elements are used, but this approach involves a large amount 
of parameters to be defined and managed. Thus the authors of this paper developed a virtual 
dummy model by means of multibody techniques. The fonnulation is the one described in 
Haugh's text book [4]. The code, named DAViD (the acronym of Dynamic Automotive Virtual 
Dummy), can mimic the non linear behaviour of a 3D human body model and requires a very 
small set of body data. The model is completely parametric and can be automatically scaled to 
simulate a significant portion of population. The code can be also linked to experimental results of 
accelerometers time histories to perform multi-input analysis based on seat input (translational and 
rotational), steer wheel input and pedals input. Driver and occupants can be both simulated. It is 
possible to introduce non linear viscoelastic parameters to match the actual behaviour of cushion 
foams used in the manufacturing of seats. The model provides also an assessment of vibrational 
comfort computed in compliance with international standards. The results of the code DAViD 
have been compared with experimental ones acquired on a vibrational test rig. 

2. Multibody Model 

The developed model is based on a multibody dynamics approach [4]. In particular the whole 
model is made of 15 rigid elements, 12 of which define the dummy, and the remaining 3 describe 
the car environment. The dummy is composed of two feet, two legs, two thighs, the pelvis, two 
arms, two forearms an upper part that is fonned by head, neck, shoulders and chest rigidly 
connected together. The other bodies included in the model are seat, pedals and steering wheel. In 
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order to represent the human body articulations, kinematics constraints and viscoelastic elements 
are used to connect each part of the dummy. There are two spherical joints between pelvis and 
thighs, two revolute joints with transverse axes between thighs and legs, two revolute joints with 
transverse axes between legs and feet, one prismatic joint with longitudinal axis between pelvis 
and upper part, two spherical joints between upper part and arms, two revolute joints with 
transverse axes between arms and forearms. The viscoelastic elements used in the dummy are one 
translational, between pelvis and the upper part to represent the stiffness of torso, and two 
rotational elements, between arm and forearm to reproduce the muscular elasticity of the elbow. 
The dummy interacts with the car environment by means of seat, pedal and steering wheel contact 
simulated by other viscoelastic elements. The contact between hands and steering wheel and feet 
and platform car is simulated with four very stiff springs. The model can automatically scale 
geometric, mass properties and spring locations by means of changing few parameters (such as 
percentile). In fact the code is interlaced with an anthropometrical database. It is also possible to 
modify the backrest inclination and the hip-heel vertical position in order to change the 
configuration of the seat. The code can also manage several inputs at the same time. It can get 
input acceleration time histories acquired by experimental tests, as well as time histories on 
velocities and positions, filtering the signals in order to suppress noise. If necessary, forces and 
torques could be introduced as well as driving constraints. 

Figure 1. Viscoelastic elements (left) and complete 3-D dummy in Visualizer (right) 

2.1 EQUATIONS OF THE MULTD30DY MODEL AND INTEGRATION 

The equations of motion are deduced in the form of differential - algebraic system of index 3 [4] 

[5]: 

1        W = {o} 
where [M] is the global mass matrix; j1?} is the vector of constraint equation; {X} is the vector 

of Lagrangian multipliers; {Fe} is the vector of external generalized forces; {q} is the vector of 

generalized coordinates. In our model there are 15 bodies, and 105 generalized coordinates. The 
spatial location of the i-th body is described with seven parameters (i.e. three for the position of the 

(1) 
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center of mass qv.6,qv.s,qv.4, and the four Eider's parameters q7i_3, qv_2, qn._v qv. The 

constraint equations used in the model can be divided into three groups: 
- the first 15 equations (as many as the number of bodies in the model) are the normalization 

equations of the Eider's parameters (i.e. qv_2 + qli_
2 + qv_2 + q7

2 = 1); 

- the second group of equations is made up of the scleronomic constraints. 
- the last group we include a driving constraint at inclination of pedals 5 w.r.t. the horizontal 

plane (first two of (3)); regarding pelvis we impose no translation along z axis and rotation around 
the same axis (last three of (3)): 

939 = cos (f); ?46=c°s(f);?17=0;?19=0;ft0=0; (3) 

The complete model has 24 d.o.f. The integration of the DAE system, as it is shown in equations 
(1), has been performed rearranging the system as a first order one in the unique unknown v. 
Therefor the system to be integrated is in the following form: 

[*]{/} = {*«} (4) 

7   0   0   0" q {i} 
0/00 

0   0   0   0 
0   0   0   0_ 

;W = - q 

q 

A 

• and {<ß{y)} = - (5) 

where: 

M 

The system (5) is then solved by means of RADAU5. 

3. Experimental set-up tests 

A key point of simulation is the contact between scat and occupant that influences the vibrational 
response of the dummy. For this purpose an experimental procedure has been performed to find 
the seat force - deflection curve. Special mats, equipped with pressure transducers, are put on 
several seats and a jury made by people belonging to different physical groups has sat on the 
instrumented seat. Pressure maps have been acquired. Then spring elements have been introduced 
in the model and anchored to the points of high pressure concentration. For the computation of 
stiffness, appropriate tests have been performed on cushions using standard dynamometer. These 
have shown a non linear behaviour of polyurethane foams in their force/preload characteristic 
curves. A second kind of tests were performed to check the correct dynamic response of dummy. 
Some car have been tested on standard tracks and accelerometers signals have been acquired at 
measurement point (Figure 3). This signals have been replicated in a vibrational test rig, where the 
same seats have been mounted and the same driver has sat on. New signals have been acquired 
from SAE accelerometer pads placed on the cushion and on the backrest. The need for replicating 
these signals is due to obtain the repeatibility, and a standardization of the test procedures. 
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Figure 2. Experimental test rigs. Pressure mats (left) and vibrational shaker (right) 

« D 

I 
Driver seat 

Steering wheel 

Pedals 
Pneumatic actuators at four wheels 

Figure 3. Layout of the experimental multi-input tests 

4. Experimental multi-input tests 

The DAViD code can take directly accelerometers data files to simulate a multi-input 
configurations The user can impose input at the seat (6 d.o.f.), at steer wheel (4 do.f.) and at 
pedals (3 d.o.f). The signals can be pre-processed by filtering. It is possible to run analysis directly 
acquiring data from a four axis shaker experimental test rig on which a car has been placed. The 
pneumatic actuators reproduce the track profiles and give vibrational inputs to the tires, and the 
response signals at six accelerometers has been collected. The accelerometers, all with three axes 
of sensitivity have been placed as shown in Figure 3 three between the seat and the chassis, one on 
the steer column, one on the steer wheel, and one at the pedals. 

5. Graphical User interface and 3-D Visualizer 

The code DAViD is provided with a graphical user interface to simplify input phase. All the 
window interfaces have been developed using Visual Fortran. Many dialogs contain figures and 
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drawings that directly refer to model's parameters. The user can select percentile of occupant 
being simulated, parameters of posture, parameters for all spring - damper elements, kind of 
occupant (driver or passenger), input type, analysis parameters (format of files, simulation time, 
visualization steps) and external forces. Specific databases that contain information about 
anthropometries of the subjects and elastic characterizations of the seats have been implemented 
in the model. The 3-D visualizer is an external code developed in Matlab language (Figure 1) that 
can be run after every analysis. The human body is represented using simple geometrical shapes. 
The visualizer is interlaced with the same percentile rescaling database of the DAViD code. 

6. Comfort assessment and virtual perceiving 

The comfort assessment is important to predict the effect provoked by vibrations on the human 
body. Many car accidents happens because of tiredness, or disturbs to perception, that can be 
avoided decreasing the level of transmitted vibration. Three aspects of vibration are fundamentals: 
the exposure time, the amplitude and the frequency [5]. The consequences of vibration exposure 
are not simple: the perception of motion, the sensations it produces and the interference with 
health and activities are all complex phenomena. Various standards for assessing whole-body 
vibration have been promulgated. These standards attempt to define easy methods of quantifying 
complex vibration conditions, nevertheless no simple standard can offer evaluation procedure 
which can accurately predict all known effects of vibration on the body. However, to estimate 
the comfort of car occupants, the authors have followed the method prompted by BS 6841 norm. 
According to such norm the Vibration Dose Value VDVis defined as follows: 

VDV = 
.'=0 

(6) 

where aH(() is the frequency-weighted acceleration time-history and Tis the period of time over 
which vibration is measured. The evaluation of (6) requires the weighting of acceleration time 
history, that can be approximated, as stated in the norm, with piecewise functions. To compute the 
overall VDV the vibrational signals have to be measured at three points: seat cushion-body 
interface, seat backrest-body interface and ground-feet interface. These time histories are then 
frequency weighted and scaled with a factor variable from 0 to 1.0. For each weighted signals, 
VDV are computed and then an overall VDV is computed using: 

VDV = 
( \ 
YVDV, 

V / 
(7) 

7. Results 

In this section some results obtained running DAViD simulation code are presented and 
compared with those experimentally acquired. The simulated test is a multi-input one. The input 
data have been automatically filtered with a pass-band filter at the beginning of the run. The 
simulation time is 10 seconds. In Figure 4 are compared the FFT of the experimental and 
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computed time histories of pelvis (vertical acceleration) and upper part (horizontal acceleration). 
For the simulation we chose a driver belonging to 50 percentile, posed with the angle between 
legs and thighs of 105 deg, the head inclination of 18 deg, the neck inclination of 8 deg, the angle 
between the arms and the forearms of 42 deg, the pedals are at 20 deg. 

FFT - PELVIS VERTICAL ACCELERATION FFT - UPPER PART HORIZONTAL ACCELERATION 
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Figure 4. Comparison between computed and experimental FFTs 
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1.    Introduction 

A space tether is a long cable used to connect spacecrafts to one another or to other bodies 
(asteroids, space stations, boosters, etc.). One type of tether is the electrodynamic tether. 
This kind of tether interacts with the Earth's magnetic field producing a current in the tether 
itself by Faraday effect. According to the sense of the current, a Lorentz force appears on 
the tether, thrusting or dragging the motion of the system [1]. The stable position of an 
object orbiting in space is with its axis of smallest moment of inertia pointed towards the 
center of the Earth. This paper is a continuation of the work carried out by the authors 
[2] on a prototype of the European Space Agency (ESA) «jailed SET (Short 
Electrodynamic Tether). As opposed to described earlier, the SET should orbit with its 
axis of smallest moment of inertia perpendicular to the plane of its orbit, see Figure 1. 

The SET is composed of a central module from which two tethers extend  each 
about 100 meters in length. Before extension, the tethers are stored in drums A plasma 
contactor can be found at the end of each tether. These contactors will be responsible 
for the emission and absorption of the electrons in the plasma for the production of the 
electric current mentioned earlier,  [1]. Once extended, to maintain the operating 
position, an angular velocity cov„  is applied to the SET around its axis of smallest 

moment of inertia. In this way, if the SET were rigid, the configuration would remain 
stable in the desired position by action of the gyroscopic pairs [3]. However, the SET is 
not rigid. On the contrary, it is a very flexible system that, as a result of the storage and 
extension of the tethers, will also not be perfectly rectilinear, see Figure 2 The system 
is therefore likened to a dynamics problem of unbalanced rotors. According to the 
literature on this subject [3], if the rotary system develops internal damping forces 
(hysteresis), there is a running speed called the "onset speed of instability" or critical 
velocity, above which the system becomes unstable. This onset speed of instability is 
practically equal to the first natural frequency of the rotor. In the case of the SET its 
running speed <aspiii is much larger than its first natural frequency and there is internal 

damping. According to what has been stated earlier, it follows that transversal 
displacement of the contactor should grow without limits, making the SET unstable 
from a structural point of view. In the seventies, Genin & Maybee came to prove that if 
a non-linear model of internal damping and elastic forces is included in the equations 
of motion, the system is stable for any running speed co [4]. In view of this there is 
justification for a more detailed study of the dynamics of the SET. As opposed to the 
model carried out in [2], this study includes elastic and damping forces that retain 
second order and superior terms. As can be seen in the following section the SET is 
modeled as a continuous system with a procedure belonging to multibody system 
dynamics This is also something new in the field of tether dynamics. Figure 2 shows 
the model that has been solved, to which symmetry was applied with respect to the 
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Figure 1. Orbit, orientation of the SET. Figure 2. Model of the tether, 

orbit plane. The angular velocity of the SET around the Earth Q. is much smaller than 
m       so that the axis fixed to the central module of the satellite can be considered 

spin * 

inertial. According to [2], the electromagnetic forces (drag force) are modeled as a 
force distributed throughout the tether, which spins around it at velocity Q .A study of 
this system may prove useful in future tether configurations that act in a similar way. 

2.   Modeling the problem; substructuring and natural coordinates 

The problem to be solved will suffer large elastic displacements. Because of this, a 
substructuring method [5] was used, (Figure 3). The system will be modeled using the 
floating reference frame approach with natural coordinates as reference coordinates [6]. 
The use of this type of coordinates as coordinates of reference in a substructuring 
scheme produces a simple model of the system. This way, the constraints between the 
different substructures are automatically imposed and will not generate algebraic 
constraint equations associated to the rigid connections [6]. 

Consider the i-th substructure of the n in which the SET is divided. The set of 
coordinates {r0",u,,v,.,w,.} defines the local axes that will be associated to the 
substructure and that are necessary for its kinematic description. The set of coordinates 
{r(j

+1,u1.+1,v(.+1,w1.+1} will therefore be in excess [6]. The position of any given point is 

r'-rJ+A'fe+ü*,) (1) 

where vector r'u represents the position of that point in local axes in the undeformed 

configuration and vector ü'f represents displacement due to deformation. The variables 

with a bar are expressed in local axes. The rotation matrix is A' =[u,. v,. w,]. The 
Rayleigh-Ritz method will be used in the discretization of the substructure. It should be 
noted that variations of the natural coordinates in excess {rö+l,u(.+1,vHI,w(.+I} will 
deform the substructure. Therefore, a Rayleigh-Ritz discretization with fixed 
boundaries will be carried out. This discretization will have a series of static modes, as 
well as dynamic modes with fixed boundaries (clamped-clamped beam) [6]. Thus, 

*f=£***+!*& (2) 
*=l (=1 
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yY '   K ^^*r 
Figure 3. Substracturing and natural coordinates of the tether 

where ns and nd are the number of static and dynamic modes respectively; <Dt is a 
3x1 vector that contains the static mode in the corresponding row, according to whether 
displacement is produced in x, y o z , ¥, is a vector containing dynamic modes in 
the same way, and r\k  and £, are the amplitudes of the static and dynamic modes 

lerefore be 

(3) 

respectively. The vector of coordinates for the i-th substructure will t 

q'=[r0'r   u/    v,r   w,r   Ti,   ...   r\.t    ^    ...   %nj 

The expression of the elastic forces [6] of a substructure is obtained from the vector 

ü'=?J+ü;=[KX   ü,   üj (4) 
supposing that it behaves as an Euler-Bernoulli beam. 

The inertia forces will be obtained using the co-rotational method proposed by 
Geradin and Cardona, adapted to the use of natural coordinates in [7]. This is way to 
obtain a much simpler expression of the inertia forces than by deriving expression (1). 
Consider the i-th substructure of the SET, see Figure 3. If the substructure is divided in 
p-\ finite elements, the following interpolation in velocities can be made 

r = Nv" (5) 

where v* = [v1 ••- vJ ■■■ \p J is the derivative with respect to the time of the 
nodal displacements in global coordinates (i superscript removed for simplicity). 

If a linear interpolation is considered for expression (5), there will be a good 
approximation of the velocities of the body in relation to the velocity of the nodes. 
Then, linear finite elements will be used. The following expression can be arrived at by 
using expression (5) to obtain the kinetic energy of a substructure 

where MMEF is the mass matrix that appears in the finite element method. Expression 
of kinetic energy is very simple, but it is not expressed in relation to the coordinates of 
the substructure q, see (3). It is necessary to find a relation between v* and q. The 
following is reached by deriving (1) and equaling (5), particularizing at the nodes 

v* = r0 + Äfc +ü;)+ AU} = B(q)q (7) 

where ü^ is obtained particularizing expression (2) at the nodes. B(q) [7] is the 

simple matrix that relates v* and q. Thus, the kinetic energy is 

T = y2q
TBTMMEFBq = /2q

TMq (8) 

220 



In (8), the kinetic energy is expressed in relation to q. There is an adequate 
approximation to the inertia forces and a simple expression of the mass matrix has been 
achieved. Furthermore, the expression of the quadratic velocity vector Qv will be 

Qv=~BrlVWBq (9) 

where the calculation of B is quite simple [7]. 
The hysteretic damping of the material plays an essential role in the stability of the 

system. It has been modeled as viscous damping which introduces the same 
destabilizing effect as hysteretic damping [3]. Internal viscous damping was supposed 
as proportional to modal mass and stiffness. 

The vector of external forces associated to electromagnetic force (distributed force), 
see Figure 2, will be obtained from the following expression 

where r is given by (1) and q by (3). F will be expressed in global axes as 

FT =[Fcos{at)   0   fsin(ß01 (n) 
Once the equations of the different substructures have been put together and the 

pertinent constraints have been imposed, the resulting system of equations will be 
Mq+<D^ = Q;<D(q,0 = 0 (12) 

where M is the mass matrix of the complete system, q is the vector of coordinates in 
the problem, O are the constraints, and Q is a vector containing all the forces acting 
on the system [6]. 

In order to solve the equations of motion, an index-3 Lagrangian method with mass- 
orthogonal projections of the velocities and accelerations to their constraint manifolds 
was used. This formulation is proposed by Bayo et al and revised in [7]. 

3. Results 

Due to the difference between the frequencies associated to longitudinal and 
transversal motions, the system of differential-algebraic equations is stiff. Without lost 
of generality, a longitude of L = 30m is used to integrate the system of equations (12). 
This reduces the size of the problem and the time of computation. The section of the 
tether, hollow and thin-walled, has the following properties: EIx=38Nm2, 

EIZ =2lNm2, area A = 4.16xl0~6 rn . The tether is made of a copper-beryllium alloy 
with the following properties [2]: Young modulus E = 132 GPa , Poisson ratio v = 0.3, 
and internal damping constant £ = 0.05 . The plasma contactor, with a mass of 3 Kg., 
was modeled as a disk with a radius of 0.2 m and thickness of 0.01 m. The 
electromagnetic force will be a distributed force with value F = 40x10"* NI m. The 
tether is initially deformed with a displacement of the contactor about 0.11. The 
running speed will be applied in the central module. 
Following are the results obtained for in three cases: linear model n = 1 ( n = number of 
substructures) and non-linear models n = 3 and n = 6 . The critical velocity of the 
system will be close to its first natural bending frequency co, =0.03rad /s. The 
problem   has   been   solved    for   subcritical    co = 0.02 rad I s    and    supercritical 
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Figure 4. Evolution of the contactor for sub and supercritical velocities 

CO = 0.1 rad Is velocities, starting from zero, gradually reaching the desired velocity in 
10 seconds. Each substructure was divided into 10 finite elements to carry out the 
approximation of the inertia forces (see (5)), and 6 dynamic modes were taken. This 
case requires 36 (n = 1), 108 (n = 3) and 216 (n = 6) coordinates for the description of 
the problem. This gives an idea of the size of the problem and how it grows with an 
increase in the number of substructures. 
Figure 4 shows the evolution of the contactor projected on global axes (see Figure 2) 
for each of the cases analyzed. Figures 4a) and 4b), show how, for subcritical velocity, 
the displacement developed by the contactor remains stable under the value of 8 m in 
direction X (0.26Z,) and 10 m in direction Z (0.331). This is the case for both the 
linear model and the non-linear models. Figures 4c) and 4f) show how for the linear 
model there is no shortening of the tether in direction Y, in spite of the fact that 
displacement of the contactor is different from zero at all moments. This is because in 
the linear model, the bending and tensile-compressive forces are uncoupled and there 
are no forces to excite the axial modes. However, in the non-linear model, an increase 
in the X-Z displacement of the contactor should translate into a decrease in the Y 
displacement of the contactor. The effect produced by this coupling can be observed in 
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Figures 4a) and 4b) in / = 550.* and t = 11505, where linear and non-linear solutions 
are separated. Figures 4d), 4e), and 4f) represent the evolution of the contactor when 
the SET is submitted to supercritical velocity. In the linear model, displacement grows 
rapidly. When displacements are so large (14 m, large elastic displacements) that the 
linear model is no longer valid, the integrator does not converge and it comes to a stop. 
In any case, it is understood that the motion is not stable. On the other hand, motion 
does remain stable in the non-linear model under the value of 5 m (0.16L) in direction 
X and 3 m (0.1L) in direction Z. The non-linearities in elastic and internal damping 
forces seem to stabilize the motion of the SET as predicted in [4].Figure 4 reveals the 
influence of the number of substructures into which the tether is divided. Figures 4d) 
and 4e) indicate how displacement for n = 6 is slightly smaller than for n = 3. The 
larger the number of substructures, the larger the coupling between transversal and 
longitudinal displacements, so that non-linear behavior of the system is simulated with 
greater precision. This explains why displacement for n = 6 is smaller than for n = 3 . 
Moreover, for n = 3 displacement is slowly destabilized; this does not occur for n = 6. 
The solution for n = 6 was considered definite, as it practically coincides with 

solutions found for n > 6 . 

4.     Conclusions and future projects 

This paper carried out a non-linear model of the SET in elastic and internal 
damping forces. The solutions obtained suggest a stable behavior of the system, both at 
supercritical and subcritical velocities. In any case, an in-depth study of the stability of 
the system in order to determine the values of the parameters that characterize the 
movements of the SET for which the system behaves in a stable manner is justified. 
Once these areas of stability are known it will be much easier to work with the SET, 
since prior knowledge of the behavior of the system will be helpful for the analyst. 
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1. Introduction 

In many cases when a study of a multi-bodies system is perform, the basic hypothesis 
used is that all elements are rigid. In reality the elasticity of the components can be large 
enough so that the dynamic response can be not only quantitative but also qualitative 
different. For this reason, in some applications, particularly in the field of robotics and 
high-speed vehicles, is necessary to consider the elasticity of elements and to use 
correspondent models. Generally, the multi-bodies systems have a great complexity and 
a strong non-linearity. To study such systems with the classic mechanics theorems is not 
a practical task because the motion equations have, generally, no analytical solutions. 
For this reason is necessary to use numerical methods and the finite element methods 
(FEM) remains one of the most important tools [l]-[4],[6]-[8],[9],[12]. 

The major difficulty using FEM is the non-linearity of the motion equations. The 
coefficients that appears in equations are position (time) dependent and, in some 
practical application (mechanisms with a periodical motion) they can be period. To solve 
this problem the motion must be considered "frozen" for a very short interval of time. In 
this case the obtained equations can be considered linear. 

It exists two difficult and major problems when is used finite element method: one 
consist in the fact that the equations contain more terms as in the classical procedures 
and the second is that the equations are only incremental valid, for a very short time 
interval; after this interval must generate new coefficient for the motions equations and 
the solutions previously obtained are the initial conditions for the new equations. 

In the paper are established the incremental motion equations for a general multi- 
bodies system with elastic elements being in a three-dimensional motion and are 
analyzed the problems involved using FEM procedures. 

2. Motion Equations 

In the following we will establish the motion equations for an elastic finite element with 
a general motion together with an element of the system. The type of the shape function 
is determined by the type of the finite element. For this reason we will present the 
motion equations in three different situations: for a three-dimensional finite element with 
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a general three-dimensional motion, for a two-dimensional finite element with a plane 
motion and for an one-dimensional element with a general three-dimensional motion. 
We will consider that the small deformations will not affect the general, rigid motion of 
the system. 

We consider that, for the all elements of the system, we know the field of the 
velocities and of the accelerations. We refer the finite element to the local coordinate 
system Oxyz, mobile, and having a general motion with the part of system considered 

(fig.l). We note with v0(X0,Y0,Z0) the velocity and with 5o(X0,70,Zo) the 

acceleration of the origin of the local coordinate system. The motion of the whole system 
is refer to the general coordinate system O'XYZ. By [ R ] is denoted the rotation matrix. 

Figure 1. Finite element in a three-dimensional motion 

We note by  {r'} the position vector MM' with the components in the general coordinate 

system O'XYZ. The point M has a displacement  {/} and become M': 

M={r0hlRl{r'}+{f}) (1) 
where \rM<) is the position vector of point M' with the components express in the global 

reference system. The continuous displacement field {f{x,y,z,t)\ is approximated, in 

FEM, by: 
{/}=[N(x,y,z)lSe(t)} (2) 

where the elements of matrix [N] (the shape functions), are determined by the type of the 
finite element choose. 

The velocity of point M' will be: 

The kinetic energy of the finite element considered is: 

Ec=±[pv2dV = ±[p{vM]T {vM]dV (4) 

The relations between strains and finite deformations are [E] = [a]{f) where [a] is 

a differentiation operator and the deformation energy is: 
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Ep-\[{5e)
T[ke\Se)dV (56) 

where [ke] is the rigidity matrix for the e element: 

[*«]= i[N]T{aY[D?{a\N\lV   . (6) 

If we not with {/?} = [p(x,y,z)} the distributed forces vector, the external work of 
these is: 

* = IU \fW = [[{pY [N\!VJ5e}. (7) 
and the nodal forces \qe} produce an external work: 

re={ae}TM (8) 
The Lagrangean for the considered element is obtain with the relation: 

L = EC-Ep+W + Wc (9) 

If we apply the Lagrange's equations after some algebraic operations we obtain 
the motion equations for a single finite element under the form: 

\ke]+[lNYlRf\R}N]pdv){Se^ 

= kk [[N\p}dv- ([MV^Mfel-J^M'Ml^'W^        do) 
With the notations: 

M-[[N(i)hpdV    ;     {miy}=[[N{i)JypdV;    [miz}= J[tf(„f zpdV    ; 

k]=hi]+k2]+k3] ;  &&)}= lW[nln]{r'}pdv 

km=llN}TlQlN]pdV   ;   k(E)hl[Nf[ElN]pdV 

it result the motion equations for the finite element analyzed, where   Q represent the 

angular velocity and E the angular acceleration with the components in the local 
coordinate system: 
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These motion equations are referred to the local coordinate system and the nodal 

displacement vector {Se} and the nodal force vector {qe} + {?*} are express in the same 

coordinate system. The motion equations are true for the instantaneous position of the 
system. We consider that the system is „frozen" for the moment considered. The 
expression (12) contain some remarkable terms: 
■ 2[ce \se} - represent the accelerations of Coriolis type and the cause of these is the 

relative velocity  {£,} of the nodal coordinates; 

■ ike (E)] + [ke (p2 )J " modify the stiffness matrix and the cause are the relative motion 

express by the angular velocity and angular acceleration; 

k(E)l+ke(p2)} - represent the inertia effects due to the rotation of the local 

coordinate system; 
.      m^tftf {r0} - represent the inertia effects due to the translation of the finite 

element. 
When the two-dimensional finite element is in a plane motion, if we use the same 

procedures, we obtain the motion equations for this case: 

k]fe}+2kF.M*.M*.]-»2kfe}= 
=u+fc}-k(4-fc(n2)}-kk{u       dz) 

In the case of a one-dimensional finite element, there exists some special forms for 
the deformation energy. We must take into account that the second order effects make 
more stiff the element, when this perform a motion with a high speed. Finally we can 
obtain for this situation the motion equations: 

k]fe}+2k]{4}+k]+fc(^)]+k(^)J+kGfe}= 
=fe.}+kl-fcw}-fc^1-kI*}-kKfc}     (j3> 

where matrix LG I take into account the second order effects and the term   pLpJl^} 
describe the influence of the rotation inertia.   The shape functions will determine the 
final form of the matrix considered in these equations. 

3. Assembling Procedures and Liaison Forces Eliminating 

3.1. KINEMATICS 

In the following the authors present an analytic method to justify the assembling 
methods used for this type of systems. The unknowns in the elasto-dynamic analysis of a 
mechanical system with liaisons are the nodal displacements and the liaison forces. By 
assembling the motion equations written for each finite element we try to eliminate the 
liaisons forces and the motion equations will contain only nodal displacements as 
unknowns. The liaison between finite elements are realized by the nodes where the 
displacements can be equal or can exists other type of functional relations between these. 
When two finite elements belong to two different elements (bodies) the liaison realized 
by node can imply relations more complicated between nodal displacement and their 
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derivatives. Generally, the relations between the first order derivative of the nodal 
displacements can be expressed by the linear formulas: 

W=MW (14) 
where by {A}we have noted the nodal displacement vector and by {q} the nodal 
independent displacements. By differentiation ( 4) we obtain: 

{Ä}=Mfe}+M*} (15) 
The transformation relations between the displacements expressed in the global fix 
coordinate system {Ae}and the displacements expressed in the local mobile coordinate 
system {Se} are: 

lK)=kk) (16) 
where index e denote the e-th element. 

3.2. DYNAMIC SYSTEM DESCRIPTION 

For a single finite element that belong to an elastic component of the system that has a 
general three-dimensional rigid motion with the angular velocity ä and the angular 

acceleration e (or D and E in the mobile coordinate system) we consider the motion 
equations obtained by the relation (11). For the other cases the procedures are the same. 

The equations are expressed in the local mobile reference system. If we write these 
equations in the global fix coordinate system, they keep there form- 

= {Qehk^}-feie(E)}-fce{tf)}-[Mi
oe\RY{r0} (17) 

We will note in the following: 

{Qe rrli° = -fa (E)}- {ö'e (D2
 )}- [M'oe \Rf {r0} 

and we can obtain finally the motion equations for the whole structure, referred to the 
global coordinate system, under the form: 

M{ä}+2[C]{A}+^]+[/:(^)]+[^
2
)J)(A}= fe}«' + {Q*Y' +{ß}% +{Qy^e (18) 

If we take into account the relations (18) and (20 ) we can write- 

M <Mfe}+M*}) +2[cl4)+ i«himM"2W4<i}= 
^r+fe'Nfe^+fer* (i9) 

3.3. WORK OF LIAISON FORCES 

It can be shown [10], [11] that the work of the liaison forces for system can be written- 

dL=   {^{Q^dt^YiAJiQf'dt (21) 
But the work due to the liaison forces is null for an ideal system [5], [14] and the 
independence of the nodal coordinates q offer the relation: 

UJ{Q}'eg  =0 (22) 
that is the basic relation in the following. 
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3.4. MOTION EQUATIONS ASSEMBLING 

We consider relation (19) and we pre-multiply this with [J4]   .It result: 

[Aj [MIASMA]7 [M\A}+ 2[cMfe}+ UY (M+ [K(e)]+ W )lAM = 

-UTter MTbTMT{Qts AAY^T+{Q}iner,ie) (23) 
If we take into account the relation (22) the liaison forces (the nodal forces) vanish and it 
result a system of equations without liaison forces and the unknown are only the nodal 
displacements. This result justify the assembling methods used in the case of the 
mechanical systems with liaisons analyzed via finite element method. 

UTMAlg} + ([ATlM{Ä]+ 2[cI4fe} + [AY(K}+ [K(s)]+ kMH) = 

= [AY{Qr'+[AYbT+lAY{Q}iner'ia (24) 
The system of differential equations obtained is nonlinear, the matrix of the left 

term depending on the configuration of the multi-body system. These equations contain 
the "rigid motion" of the system and for these they have one or more singularities. To 
solve the equations the rigid motion must be eliminated. 
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1. Introduction 

Researches into human gait have a wide range of applications in medicine, ergonomics, 
sport science and technology. Most often methods of multibody dynamics are used 
when investigation is focused on mechanical aspects of the gait [1], [2], [15], [17]. 
The inverse dynamics approach is commonly adopted in a human gait analysis. 
Displacements of the human body segments and ground reaction forces are known from 
measurements. The joint reaction forces and muscle net torques (which cannot be 
measured directly) are calculated. Since the ground reaction forces are known it is not 
necessary to model the foot-ground contact. The inverse dynamics approach requires 
measured displacements to be differentiated twice in order to obtain accelerations. The 
choice of filtering and smoothening methods affects significantly the obtained results 
[1], [16]. The errors in alignment of ground reaction force and foot affect the results as 
well [9]. 
In this paper a direct dynamics approach to the human gait analysis is presented. The 
direct dynamics approach is usually taken when a walking machine with its control 
system is investigated. It is seldom used to human gait simulation. 
In the presented model the measurements of displacements of the human body segments 
are treated as a gait patterns (i.e. the patterns of relative motion in joints). The net 
torques (generated in the way that enables realisation of the gait patterns) are applied to 
a mechanical system and the direct problem of dynamics is solved. The foot-ground 
contact is modelled. For the gait stabilisation a simple closed loop control algorithm is 
introduced into the simulational model. 
Though the method presented here is more complicated than the traditional one, there 
are some advantages. It is possible to predict system behaviour, whereas inverse 
dynamics approach is restrained to reconstruction only. Moreover, since accelerations 
are calculated, there is no need to differentiate measured displacements twice. Ground 
reaction forces as well as feet positions are calculated, so the alignment of foot position 
with reaction force is no longer a problem. And finally, the simulation is not limited by 
the number of measured gait cycles (usually one or two), since gait patterns can be 
extrapolated. 
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(MAX(0,-kdz-cvz)       dz<0 
2    [ 0 dz>0 

where: 
dz - z coordinate of the point offeree application, 
vz - z component of velocity (v2 = dz), 

|        k  - stiffness, 
^-^   c  - damping. 

Damping c is a non-linear function of ground penetration 
pz(pz = MAX[0,-dz]): 

c = < 
Figure 2. Ground reaction forces 

acting on foot, 
a) side view, b) top view. 

h 
2       3 

Pz<h 

where: h, cmax - constant values. 
A number of test simulations was performed in order to choose proper values of 
stiffness k of the foot in shoe and proper values of damping parameters h and cmax. The 
ground penetration pz corresponds to the deflection of foot and shoe during walking. 
The maximum value of pz observed during simulation was equal to 2 cm, which agrees 
well with experimental data [7]. The chosen level of damping is high enough to prevent 
the foot from "bouncing" after hitting the ground, which also agrees with experiments. 
The choice of parameters k, cmax and h is not crucial - it was proved that after the 20% 
change of the value the model behaviour has remained almost unchanged. 
The tangent reaction force T is represented in terms of a 
pseudo-Coulomb friction model (in this model of friction 
there is no stiction, i.e. the bodies are moving relative each 
other at a negligibly small velocity). At the beginning 
velocity of sliding is calculated: 

JHz 

Ground surface 

-f- 2+v2 
y 

a) 

where: 
vx - x component of velocity of sliding, 
vy - v component of velocity. 
Then a modulus of friction force is calculated: 

T = ^'FZ 

where: JLI'- non-constant friction coefficient. 
The dependence of//' on vp is given by: 

2 v 
li^H-arctg-2- 

where: 
fx - Coulomb friction coefficient (constant value), 
X - constant value. 
Finally, the tangent force components are calculated: 

v v 
F = -T—*— ,   F„ = -T—y— 

-j»- 
F     F» 

Figure 3.Force and velocity: 
a) side view, b) top view. 

vp+s Vp+S 

Coulomb model 
X= 1/100        [m/s] 
X= 1/1000      [m/s] 
X= 1/10000    [m/s] 

vp [m/s] 

where: s - small constant value. 
0 0.1 0.2 

Figure 4. Friction coefficient 
dependency on the relative velocity. 
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2. Multibody Model 

2.1. BACKGROUND 

There exist various methods for modelling bipedal walking. Some multibody models for 
the gait simulation represent bipeds of a very simple (not anthropomorphic) kinematic 
structure [3]. Other models are limited to two dimensions [8], [11], [12], [18]. 
Walking is a special kind of the multibody system motion with the occurrence of 
impacts, friction and slipping. All these phenomena observed during the foot-ground 
contact have to be introduced into the model to make it realistic. In some multibody 
models of the biped the foot-ground contact is modelled by the additional kinematic 
joint [10], [12] or temporal fixing of the supporting foot to the ground [3]. Different 
models are used for single and double support phases. In this type of models the 
non-slip and non-impact conditions are assumed. 
There is another group of models, in which the forces between foot and ground are 
modelled in a more realistic way [5], [6], [7], [18], [19]. Control of the model of this 
type is more difficult, since the control system must prevent the biped from slipping and 
the biped must absorb the shocks caused by impacts. 
The model presented here is three-dimensional and reflects the kinematic structure and 
mass properties of the human locomotion apparatus. Both the slips and impacts are 
taken into consideration. 

2.2. KINEMATICAL AND MASS PROPERTIES 

The model and its kinematic scheme is presented in the Fig. 1. The model consists of 8 
rigid parts. For the sake of simplicity, the trunk is modelled as two parts connected by 
revolute joint. The inertia properties of head and arms are included in trunk properties. 
Lower parts of human body are modelled 
more realistically. Each leg consists of 3 
parts: thigh, shank and foot. Each hip joint 
is modelled as three consecutive revolute 
joints. These three joints are kinematically 
equivalent to a spherical joint. Each knee 
and each ankle joint is modelled as two 
consecutive revolute joints. The modelled 
biped has 21 degrees of freedom. To 
account for elasticity of human tissues, so- 
called wobbling masses are introduced to 
the model (in this case number of DOF 
increases to 46). 

upper trunk 

ankle 

Figure 1. The general view and kinematic scheme. 

2.3. GROUND REACTION FORCES 

The impact and friction effects are considered in the ground reaction forces modelling. 
The ground is represented by a flat rigid surface. A set of 5 force vectors acting on each 
foot is used to model ground reaction forces. Fig. 2 presents points of force application. 
Normal to the ground (ground surface coincides with xy plane of global coordinate 
system) reaction force Fz is modelled using following function: 
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3. Control System 

3.1. GAIT PATTERNS 

Parameters characterising walk of the subject person were measured. A two-camera 
system was used to cinematographically measure trajectories of selected points of 
human body. The relative angles in each joint were calculated from the measurement 
results. The linear and angular parameters of absolute motion of the lower trunk were 
also calculated. The measured results were discrete. For the simulation purposes, 
however, a continuous and periodical function (periodical function can be easily 
extrapolated) is needed, which was obtained by approximating data by the appropriate 
Fourier series. These functions are called 'gait patterns'. During approximation process 
periodicity and symmetry of the gait were assumed. 

3.2. DRIVING TORQUES 

For the direct dynamics simulation all joints were equipped with actuators. The torque 
M generated by the actuator located in a joint was a function of: the current value of the 
joint angle q> and the desired joint angle value <p0 given by the gait patterns: 

M = K(<p0-<p) + o(<p0-<p) 

where: K, u - constants. 
This formulation of the torque equation (proposed earlier in [14]) ensures that the 
realised relative angle is close to the angle given by the gait pattern. The actuator can be 
treated as a motion generator (that strictly realises the gait pattern) connected in series 
with a spring-damper element. This spring-damper element is necessary to obtain a 
proper response to impacts (the system reaction to the impact is incorporated in the gait 
pattern, however heel strike occurs usually not exactly at the moment prescribed by the 
gait pattern - the system responses to the impact too early or too late). 
Due to both the measurement inaccuracy and additional operations (making it 
symmetric and periodical) the gait pattern suffers from relatively big errors. When gait 
patterns for joints are precisely realised the absolute motion of the trunk is left 
uncontrolled. If the biped started to fall the control system would not react. The only 
way to control the absolute motion of the trunk is to apply a control algorithm, which 
instantaneously modifies the prescribed joint motions to prevent the biped from loosing 
its stability. 

3.3. CONTROL ALGORITHMS 

When the torques applied in joints depended only on current and desired value of the 
joint angle the relative positions of biped links with respect to each other were 
controlled, but the position of the whole biped with respect to the ground was not 
controlled. Therefore an additional external force and torque which supports the trunk 
was introduced. 
The concept of external force was helpful in the process of control algorithm synthesis. 
The proposed control algorithm is a heuristic one. It consists in incorporating some 
feedback information, i.e. some quantities dependent on the current position and 
orientation of the biped trunk (with respect to the ground) into the function defining the 
torques in selected joints. 
The method for the control algorithm construction will be detailed considering a simple 
algorithm for the trunk yaw angle stabilisation. 
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Firstly, the component of the supporting torque that corresponds to the yaw angle was 
set to zero. The remaining components of the supporting force and torque remained 
unchanged. Then the gait simulation was performed. Animation showed that after a few 
steps the biped turned about yaw axis and then fell over. It was not surprising, since the 
yaw angle was not controlled. The heuristic method proposed in this case consisted in 
introducing some changes into the torques that drive left and right hip joints (each hip 
joint consists of three consecutive revolute joints: oti, oc2 and ct3). These changes were 
made in order to prevent the biped trunk from not controlled turning about the yaw axis. 
The functions defining torques in ct2 and a3 joints were modified: 

M0 -a2+sina,A,) + o (ä02-ä2) 

■a3-cosa,A,) + u (ä03-ä3) 
[8 (0O - 9) support phase 

[      0        swing phase 

= K (a02 

where: 90, 6 - yaw angle given by the gait pattern and the current yaw angle, respectively 
In the next few simulations of the biped gait the appropriate (i.e. leading to a stable gait) 
value of £ constant was chosen. 
Similar procedures (the yaw angle stabilisation algorithm is one of the simplest) were 
used for the other components of the supporting force and torque. As a result a stable 
gait without the additional external supporting force was achieved. The stable walking is 
a result of cooperation of several algorithms. The movement realised by the biped is 
slightly different from that given by the gait patterns. These differences are necessary for 
stabilisation of the gait. The utilised control algorithms are rather simple, nevertheless 
they enable the biped to walk. 

4. Simulation Results 

During simulations the integration procedures were changed to ensure that simulation 
results remained unchanged. The multibody model behaviour sensitivity to the control 
algorithm and the model parameters was 
checked. It was shown that positioning of the 
three-component force objects on the feet 
exerts the strongest influence on the model 
behaviour. 
In the direct dynamics approach the ground 
reaction forces are computed (they do not 
play the role of input data). Comparison of 
the measured ground reaction forces with the 
calculated ones was used to validate the 
model. The comparison is illustrated in Fig. 
5a. The calculated and the measured results 
are   similar,   however   there   are   some 
differences.  These  differences are caused 
mostly by the fact that foot is modelled as 
one rigid body and a contact between foot 
and ground is reduced to five points only. To 
obtain better results the model of foot and 

-0.7 
18 18.5 19 19.5 20 
Figure 5. Calculated and measured results: 

a) vertical ground reaction forces, 
b) right hip flexion angle. 
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the model of contact should be made more sophisticated. Approximations of measured 
walk parameters by periodical and symmetric gait patterns is another reason for 
differences - simulated ground reaction forces are much more regular, than measured 
ones. Simplifications made during the modelling process are also factors in obtained 
differences. 
The observed differences between measured and simulated data are less than 15% of 
maximal values, which  is  a decent result when biomechanical  calculations  are 
considered. 
The control algorithms introduce some differences between the simulated motion and 
prescribed gait patterns (see Fig. 5b). These differences are relatively small, however big 
enough to maintain the biped stability. 
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SOME RESULTS OF WHEEL-RAIL CONTACT MODELING* 
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1.  Introduction 

Research of railway vehicle dynamics by means of mathematical models is the neces- 
sary stage for providing the vehicles with improved characteristics. Many problems 
such as dynamic stability, computation of wheel wear and others can be successfully 
solved by using a computer-aided multibody model of the vehicle. Significant part of 
the model is the description of forces at contact between wheel and rail. Computation of 
these forces is one of the most CPU time-consuming operations during the simulation 
process. Mathematical models of the contact forces often lead to stiff equations of mo- 
tion because of high contact stiffness. In this paper an approximate non-stiff method for 
computing the non-elliptical contact problem and some results of its implementation are 
presented. 

2.  Model of rail-wheel contact forces 

2.1.  APPROXIMATE SOLUTION OF THE NORMAL PROBLEM 

The simplest way to solve normal contact problem is to replace the real shapes of bodies 
at contact with quadratic surfaces and then use the Hertzian solution. Though this 
method is very fast, actually the contact patch is often far from elliptical and it is neces- 
sary to use more exact methods than the Hertzian solution (e.g. for conformal contact or 
computation of evolution of a wheel profile due to wear). The corresponding algorithm 
must be fast to be successfully used in simulation of multibody system dynamics. 

The method by Kik and Piotrowski [1] for calculation of normal load and distribu- 
tion of normal pressure is quite fast. But in our opinion the contact force model, in 
which the forces depend on interpenetration of contacting bodies, leads to stiff equa- 
tions of motion. We modified the method by Kik and Piotrowski to decrease the stiff- 
ness of the equations. The parabolic distribution of the normal pressure in the direction 
of rolling instead of elliptic one was also used to decrease calculation efforts. 

Supported by the Russian Foundation for Basic Research under the grants 02 -01-00364 and by the sci- 
entific program "Universities of Russia - Basic Research" (UR.04.01.046). 
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According to paper [1] the approximate contact patch is defined in the foUowmg 
wav The il L the ril are considered as a body of revolufion and a cylmdncal 
See relpectively. The surfaces are interpenetrated in a depth <5 as ngrd bod.es 
C^l ■ ^ tocL „(*,y) specifies the interpenetration of the snrfaees a. the pom. 

(x,y). It satisfies the equation 

u(x,y) = S-z(x,y), z{x,y) = — + Ky), (1) 

where z{x,y) is the function, which specifies the distance between the points for S = 0 , 

R is the wheel radius at the contact point. 

Rolling direction^ 

,   , Fizure 2. Contact patch. 
Figure I. Wheel-rail contact. ri&ur* 

Edge of an approximate contact patch is determined as a line of intersection of the 

SmfThcZg^ of the intersection line on the lateral coordinate is 

a(y,8)=j2$f^yl, (2) 

The roots b{ of the equation 
5 = h(y) W 

der^eÄ - <***—of roots of 
eqU

Ttnrn(aterials of the wheel and the rail are considered to be identical. Assuming that 
the b "s:"l^paceS, the value of S can be estimated. The deflection at 
point (0,0) can be found with the help of the Boussinesq's influence funcUon as 

l-v2^_P^A=dxdy, (4) 
co{0,0) 

TtE 

where rfx,,) is the distribution of normal pressure. Aecordrng to «h assumpfion ab u« 

materials, the wheel and rail deflections at contacting points are equal so S = 2«(0,0^ 
L in the reality the bodies at contact cannot interpenetrate and deflecnonsoccur, so 
te iCe fi^on re ion enCosures «he contact patch if «**"«»*»cfion ,s urn 
direcfiol. Granting this fact the bodies are interpenetrated m depths < * (K,k and 

Piotrowski recommend to take «he value of * equal to 0.55* for «he e.hpuc d.smbu- 
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tion in the direction of rolling). 
We used the assumption about proportionality between the normal pressure p{x,y) 

and function of interpenetration u(x,y) instead of the half-elliptic distribution of the 

pressure in the rolling direction [1]. It leads to decreasing the calculation efforts by re- 
ducing the double integrals to single ones, though such distribution is less accurate. 

So the distribution of the normal pressure is 

P(x,y) = kpu(x,y), (5) 

where kp is a proportionality factor. 

It is supposed, that the normal force N at the contact point is available from solu- 
tion of the dynamic equations. The interpenetration of the bodies is used only to calcu- 
late the normal pressure distribution and contact patch and neglected in the dynamic 
equations. Thus, the normal force depends on the vertical and lateral stiffness of the rail- 
track system and this model is not stiff. 

Using (1) - (5) the interpenetration in the case of single zone in the contact patch is 
x2 

,2    h. a 8 h(y) 
8 = 2<y (0,0)=2—^kp j j      y    _   dxdy= 

b\ -a   yX 
TtE ,x2

+y2 

TtE J 
2^ 

^'  AR 

( 

In 
a+ [a w 

w -Li a2
+y2 

(6) 

dy. 

The normal contact force is calculated as 

hf 
N = Hp(x,y)dxdy = \\kpu{x,y)dxdy = kpl\ 8a-h{y)a- 

C C b\ 
Using (6), (7) we obtain the following nonlinear equation: 

6R 
dy. (V) 

N = - 
8nE 

b2f 

J 
3A 

8a - h(y)a - 
6R 

dy 

20 v2) 2^ 
8-h{y) + 

4R 
In 

a + la 2        2 
+ y 

W -I AR v a
2
+y2 

(8) 

dy 

The solution of (8) is the interpenetration 8. Taking into account that 8Q<8,v/e 

found the approximate contact patch and distribution of normal pressure. Though the 
process of solution is iterative, the convergence of solution requires small number of 
iterations if start 8 values are taken from the previous integration step. The method was 
tested on computer-aided model of the railcar AS-4, which was realized in the program 
package "Universal Mechanism". The interpenetrations and the number of iterations 
necessary for solving the normal contact problem are represented in Figure 3. The mean 
number of iterations required for the vehicle simulation in an even curve is 1.71, in an 
uneven curve 2.63. 
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Figure 3. Simulation results (left - even curve, right - uneven curve). 

2.2. CALCULATION OF TANGENTIAL FORCES 

The most of the tangential force models (so-called creep forces in railway dynamics) are 
based on the assumption that these forces depend on the creepage (£x is the longitudi- 

nal creepage, £, is the lateral creepage) and the spin <p: 

Sx      y '  V      y <p = - 
co, w 

where V™,  Vy   are the corresponding projections of velocities of wheel as a rigid body 

at contact point, co^   is the projection of wheel rotational velocity onto normal to the 
tangential plane, V is the vehicle velocity. 

We used the FASTSIM algorithm [2, 3] to calculate the creep forces at the contact. 
The tangential pressure was found from system of equations 

\dqxldx = {£x-<Py)lL 

[dqy/dx = (£y+fic)L, 

where qx,qy -the components of the tangential pressure, L -flexibility. 
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Figure 4. Simulation results for even curve. 

Creep forces, kN 

t.s 

Figure 5. Simulation results for uneven curve. 

The obtained values of pressure q are tested for satisfying the Coulomb's law. The 
contact patch and the distribution of normal pressure were computed by using the 
method described in Section 2.1. 

To determine the value of flexibility L we calculated an equivalent ellipse such that 
the area of non-elliptic contact patch is equal to the area of the ellipse [4]. The semi-axis 
of the ellipse in the rolling direction a is set equal to the maximal half-length of the 
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non-elliptical patch. The lateral semi-axis of the equivalent ellipse can be found from 

the equation 
vie 

na 

where Ane is the area of the non-elliptical contact patch. 

Figures 4, 5 show calculated creep forces for the simulation of tested vehicle in a 

curve. 
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Abstract 

For the stress and durability analysis of vehicle components with computer simulation, it is necessary to find 

forces acting on the vehicle components due to the road profile undulation. In this study, road profiles are 

regenerated to preserve the same PSD of wheel responses with a linear tire model. The frequency response 

function between road and wheel, the digital signal processing method, and DADS program are used. Simulation 

results of load transfer at suspension components using this virtual road profiles are presented. 

1.   Introduction 

For the analysis of stress and vibration of vehicle components moving on the road, 
experimental or analytical method can be used. In the experimental method, Belgian road or 
cross country road are commonly used as road inputs for durability test. Since the 
experimental methods generally require high cost and considerable time, computer simulation 
method is usually employed for the analysis of reaction forces, vibrations, and durability. In 
the computer simulation, however, it is difficult to assign load conditions and boundary 
conditions properly. Boundary load conditions for the stress or vibration analysis are 
sometimes assumed as the forces on the wheel during braking or bumping. 
Liu and Haug[l,2] used the computer simulation methods for fatigue life estimation of 
machine components. Baek[3,4] suggested the dynamic load history, which is calculated by 
flexible multibody dynamic analysis, for fatigue analysis. In previous researches on road 
profiles, most of their results were focused on the statistical road profile[5,6,7]. Thus, the 
wheel response due to the road input was different from actual response. If it is possible to 
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calculate the same PSD and time signal responses as experimental results, force boundary 
conditions for the analysis could be accurately imposed. In this paper, a new method is 
suggested to match the load conditions at the suspension by regenerating road profiles. The 
tire model and road profile are modified preserving the same PSD of wheel movements as 
experimental ones by the digital signal processing technique. 

2. Process for Road Profile Regeneration 

If it is assumed to be a linear system between road and tire, road profiles could be reproduced 
by PSD(Power Spectral Density) of wheel acceleration and FRF(Frequency Response 
Function) between road input and wheel acceleration. A vehicle is modeled as a MMO 
(multi input multi output) system, in which the outputs represent acceleration, velocity and 
displacement of the vehicle due to the road input. PSD value from the experiment is assigned 
as an objective function, and the PSD from computer simulation is modified to be matched 
the experimental one. 

2.1. GENERAL PROCEDURE 

The general procedures for road profile regeneration are; 
1) Measure the acceleration PSD of the wheel center from experiment. 
2) Calculate FRF of the vehicle model from computer simulation. 
3) Define PSD of the initial road profile for dynamic simulation. 
4) Carry out dynamic simulation with the initial road profile. 
5) Compare PSDs from experiment and computer simulation, and define an error function. 
6) If the magnitude of the error is small enough to accept, then stop. 
7) If not, create a modified road profile by EFRF & IFFT. 
8) Carry out dynamic simulation with the modified road profile, and return to step 4. 

2.2. EXPLANATION OF EACH PROCESS 

2.1.1. Measure acceleration PSD of the wheel center 
For a precise modeling, suspension stiffness and geometry data in quasi-static condition are 
usually measured from the suspension parameter measuring device(SPMD). The acceleration 
PSDs of the wheel center are also measured from the experiment, and are used as an 
objective function to be matched in the computer simulation. 

2.1.2. FRF between road profile and wheel acceleration 
For the computer simulation, a computational vehicle model is developed with the DADS 
program in this research. Model validation in dynamic response can be done by comparison 
between test results and simulation ones. Frequency range for model validation is set as 20Hz 
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in this research, which is usual in the validation of a suspension. To obtain FRF between road 
profile input and wheel acceleration, a white noise signal is applied as a road input. 

(1) 

Auto spectral density(ASD) of road profile, cross-spectral density(CSD) between road profile 
and wheel response, and a FRF matrix between wheel and road are calculated as the 
following equations. 
ASD 

CSD 

FRF 

«,,/VA/ ;=i 2 

w(/)=^4S=^(/)i^M° G.u(/) 

(2) 

(3) 

(4) 

where nd and <j>(f) are data sampling frame and phase of FRF, respectively. 

Since the interesting frequency is within 20Hz, the sampling frequency is set as 100Hz to 

avoid numerical errors at the boundary. The 1024 data are sampled in each frame. Figure 1 

and Figure 2 shows the auto-spectral density of initial road profile and wheel acceleration, 

respectively. Figure 3 shows cross-spectral density of the wheel acceleration and road input. 

10 20 30 40 

Frequency [Hz] 

10 20 30 40 50 

Frequency [Hz] 

Figure 1. Auto-spectral density of initial road profile     Figure 2. Auto-spectral density of wheel acceleration 

In a passenger car, 4-wheel road inputs may generate a 4x4 FRF matrix. If a suspension 
system is independent type, the diagonal terms of FRF matrix are dominant. Then, the FRF 
can be obtained from one suspension. Figure 4 shows the frequency response function of 
road input and wheel acceleration response. 
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Figure 3. Cross-spectral density of wheel 

acceleration and road input 

U- 
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Frequency [Hz] 

Figure 4. Frequency response function of road 

input and wheel acceleration 

2.1.3. Initial Road Profile 
To make the first iteration in computer simulation, PSD of the initial road profile should be 
imposed. In this paper, the initial road profile is assumed to be a white noise as following; 

PSD of initial road profile: G . (/) = aV 

f 
(5) 

where a, V, f, and n are road roughness, vehicle velocity, frequency and exponent, 
respectively. Using this road profile PSD, time signal of the initial road profile is made for 
dynamic analysis. Figure 4 shows the auto-spectral density of the initial road profile. 

2.1.4. Dynamic simulation with initial road profile 
Dynamic analysis is carried out with the initial road profile using DADS program. From the 
dynamic simulation result, wheel acceleration data are obtained and processed to find the 

PSD. 

2.1.5. Error Function 
Comparing the computed PSD with the measured one, error functions are defined at each 

frequency. 

Error function:   E(f)= PSDtest - PSDsimulation (6) 

2.1.6. Regeneration of Road Profile 
Correct response function is defined by the error function and response function of previous 

iteration step. 

Corrected response: p^ = PSD ^ + E^. GAIN (?) 

The wheel accelerations within the prescribed frequency range are measured at the same time. 
Value of the GAIN is set between 0.5 and 1.0 to avoid overdriving and divergence of wheel 
response. Using the corrected function and the FRF of wheel-road input, make the next 

modified driving file as; 

Modified road profile : D(/\ = /r' (/) • P(f),+£>(/),■_, (**) 
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Although many nonlinear components are included in a suspension system, vertical stiffness 
of tire is almost constant when the tire is in contact with the ground. Therefore, tire and road 
profile system can be assumed as linear. 

2.1.7. Convergence of error function 

At each iteration step, the modified road input driving file is linked to DADS suspension 
model. Performing a data processing, the PSD of wheel response is calculated and compared 
with the desired PSD. For the convergence of error function, create a modified road profile 
D(f) and analyze the suspension model repeatedly until the error function is converged within 
the desired range. Figure 5 and Figure 6 show the road profile and vertical acceleration of 
wheel after the first iteration. These graphs show that there are large deviations from the 
original road profile. 
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ß m m to m ty 
O     05- 
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<    -1.0 
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experimental 
after 1st iteration 

,-rW (V 

Time (sec) 

Figure 5. Road profile after the first iteration       Figure 6. Vertical acceleration of wheel after the first iteration 

After the second iteration, the deviations in the road profile and vertical acceleration are 
much decreased as shown in Figure 7 and Figure 8. 
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Figure 7. Road profile after the second iteration 

3.   Conclusions 

Longitudinal Distance (m) 

Figure 8. Vertical acceleration of wheel after 
the second iteration 

1) A road profile regeneration method is proposed to preserve the same PSD level at the 
wheel center with a linear tire model. The proposed road profile technique is linked to a full 
vehicle model to predict the joint reaction forces. These results increase the reliability of 
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stress analysis for durability analysis. 
2) Even though this research uses 1-channel to calculate the vertical directional motion, it can 

extend to 4-channel or 12-channel with the same idea. 
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Abstract 
Theoretical investigation of natural modes and frequencies of bow and arrow vibration has been 
done as a study of a boundary problem for the differential equation of the fourth order. The 
solution of the equation has been found in a form of polynomial series using a method of 
successive approximations. Data results for the first four natural frequencies and modes have 
been obtained and practical conclusions have been drawn. An archer's paradox and the spine 
phenomenon have been explained using the results of mathematical modelling. As a result of 
modelling and computer simulations an engineering method for matching bow and arrow 
parameters has been proposed. Comparative results for the wrong and right combination of these 
parameter values for the modern sport bow and two arrows have been presented. 

1 .Introduction 

The problems of mechanical and mathematical modelling of the 'Man and device (or machine)' 
systems are exceptionally significant for the work environments in different fields of industry, 
agriculture, construction, transport, medicine (orthopaedics, prosthetics, medical engineering)^ 
and sports, for example, skiing, throwing, shootings, different playing with a ball etc.). 
The sports played with mechanical devices represent a big proportion of the human competitive 
and recreational activity. However, the level of our knowledge and understanding of technique in 
these activities seems to lag behind those of other popular activities. There are some somewhat 
obvious reasons for this discrepancy. One of them is a non-sufficiently level of mechanical and 
mathematical modelling and computer simulation in this field. 
A sport of the archery is a good model for a study the mechanical processes in the 'Man and 
device' system. Archery is a sport for people of all ages, and is challenging whether the individual 
is alone or with a group of people, since the competition is between the archer and his or her 
device (bow and arrows). Archery is a mass participation recreational sport such as in modern 
equipment is both necessary and desirable. 
The purpose of the study is to develop the methods for quantitative and operative valid 
performance of the mechanical processes in 'Bow and archer' system. 
The investigation of the archer's paradox was found by using high speed spark photography, 
which was undertook to secure direct evidence of what an arrow does as it leaves the bow [2]! 
The archer's paradox is the phenomenon that an arrow does not fly to its mark along the line 
represented by its axis. The forces acting on the arrow during its release do not quite coincide 
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with this axis, because the string force acts on the arrow in the bow plane. In the starting position 
the arrow does not lie in this plane, as its axis makes an angle of a few degrees with it. Even in 
the case that the nock and head points of the arrow do lie in the bow plane, the longitudinal arrow 
axis of the string force line does not quite coincide with the bow plane because the initial shape 
of the arrow axis is not quite straight. So, the string force line does not coincide with the line of a 
cross-section centre of the arrow. The released string pushes the arrow's nock point in the bow 
plane. Therefore the arrow will move forwards and thereby turn, slightly decreasing the angle 
with this plane. The impulse normal to the axis of the arrow caused by the release of the fingers 
from the string, as well as the column-like force of the string, pushes the arrow during its 
acceleration motion. These results in significant bending of the arrow shaft as it transits the bow. 
All of these factors allow the arrow to oscillate around the bow handle and to follow a straight 
course towards its target without striking the bow handle (Fig. 1). The arrow moves in the x- 
direction. The x-y plane is not horizontal but makes a slope with an angle of a few degrees for 
target archery and about forty-five degrees for flight shooting. 

2.MathematicaI Model 

Potential energy V and kinetic energy T of a transverse motion system perpendicular to the bow 
flatness lateral plane xOy (Fig.2) are: 

pA ](y' - 2u')y'd% + mx{y' - 2u')y' 
0 

dx + V=l\EJ{y")2dx-U 
zo o 

+ \c(y2-yof,  T = -m0y$ +-lpAy2dx + -miy? +-m2j>2,    (1) 

where u is the deflection caused by the initial curvature of the arrow, y is the total deflection of 
an arrow shaft, y0 is the deflection of an arrow tail, yj is the deflection of an arrow head, y2 is the 
transverse displacement of the bow virtual mass, E is Young's modulus of the arrow shaft 
material, J is moment of inertia of an arrow shaft cross-section area, p is mass of a unit volume of 
a shaft material, 1 is the length of an arrow, A is the shaft cross-sectional area, mo is the mass of 
the arrow tail with virtual mass of a string, m, is the mass of the arrow head, m2 is the virtual 
mass of the bow limbs, c is the virtual stiffness of the bow limbs and the string, a is the 
longitudinal acceleration of the arrow motion, (') and (') are derivatives with respect to time t and 
the longitudinal co-ordinate x respectively. For a composite metal and carbon arrow shaft EJ is 
the arrow shaft bending stiffness. The virtual mass of string is equal to 1/3 of the whole mass of 
the string as the arrow leaves it [4]. 

h 

Using Hamilton's principle for the mechanical arrow-bow system S ](T - V)dt = 0, after 
h 

substituting the expressions of T and V from (1) in the last equation we get the differential 

equation: (EJy")   -{FY')  +pA'y = 0, and boundary conditions: 

jc = 0 / = 0, m2y2-c(y-y2) = 0, (EJy'j +(m+ml)aY'+mQy+c(y-y2) = 0; 

x = l y" = 0, (EJy")' +ml(aY'-y) = 0, 

and initial conditions at t = 0   y = 0,  y2 = 0,   y = 0,   y2 = 0 , (2) 
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/ 

where m  = \pAdx is the arrow shaft mass, Y = y + u is the total arrow shaft axis deflection 
0 

/ 
F = -a{mx + ]pAdx) is longitudinal compress force in the arrow shaft body. 

x 
The arrow's constrained lateral vibration can be rated in order of a reduced problem of the system 
with concentrated parameters. We can then introduce the second order Lagrange equations. 
Assuming arrow acceleration at a certain moment is constant, we can write for a cylindrical 
arrow: EJ=const, pF=const. The problem may be solved with the expressions in separated natural 
modes and time functions [3]: 

y = Zxk(x)Tk(t),        y2=lLLkTk{t). Q) 
k k 

where Xk(x) are natural modes (eigenfunctions), Tk(t) are time functions, Lk are bow handle 
amplitudes. 
The solution of a space-time problem (2) has been reduced to the simultaneous boundary problem 
with independent natural modes. Substituting (3) in (2) and making necessary transformations we 
get differential equations for natural modes in a dimensionless form: 

Xr+m + Ml-Z)X'k)'-hXk=0 (4) 

and corresponding boundary conditions, for £=0   : 

f 
x; = o,   x:+(f>(\+Ml)x'i+ V-MA- 

.2 
V 

v ^-M *,=o, h-   vXk 

v-m2Ak 

for £ = 1     X;=0,    Xm
k+<t>^X'k+nAXk=0, where 

z   x niQ n\ rrt2 mal2      n     wim!3 cl3 

*=7,   Aft=-,   H=-,   K=-,    *=—,   4="^-,    v=-, 

dimensionless bow and arrow parameters, wk are natural circular frequencies,  Xk   are the 
eigenvalues. 
Only in the simplest problem on static supported bars loaded by a constant axial force is a 
rigorous solution for lateral buckling known. To get approximate solutions we suggest an 
adoption of some shape for the arrow deflection curve that satisfies boundary conditions in (4). 
Solutions of equation (4) may be found in a form of the polynomial series like [1]: 

n 
Xk=lB^; (5) 

i=0 
where B, are independent coefficients. 

After substituting (5) in (4) and with intermediate transformations we get a linear algebraic 
system of recurrent equations with respect to Lk and B,. 

3.Natural Frequencies and Modes 

Data results for the first four natural circular frequencies (in dimensionless form 6^ = 41 k) and 
modes have been obtained using 21 terms of the series (5) reducing the values of the last terms to 
computer zero when initial coefficients have been adapted with Lk=l. The results in graphical 
form for modern sport bow parameters are presented Fig.3, Fig.4. 
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Looking at the natural frequencies we notice that as the string force <|> increases, the natural 
frequency co decreases (see unbroken lines in the Fig.3). The lowest (named 'zero') frequency 
represents a turning motion of the arrow. Its eigenvalue increases from zero to negative values as 
the string force increases. Therefore, this frequency has zero or imaginary values, which means a 
monotone decrease of the arrow turn. The second natural frequency has only real values. It 
represents periodical oscillations of the bow and arrow system mainly as a system of rigid bodies. 
All other natural frequencies have both real and imaginary values because their eigenvalues have 
positive and negative values. The first (named 'main') circular frequency becomes zero as the 
string force (j)=14-15. At this point the arrow loses its stability, because periodical oscillation 
transforms to a monotone increase of the arrow bend that deviates from the assigned direction. 
The third natural frequency reaches zero, and the point of elastic instability, at §=56-57. The 
higher natural frequencies also decrease, as the force increases and have zero and imaginary 
values. They have not been plotted in Fig.3 because their influence in the whole bow and arrow 
lateral motion is negligibly small [5]. 

Conclusions 

Theoretical investigation of the bow and arrow system can be separated into two parts. An 
arrow's lateral deflection is determined by the order of its longitudinal motion as independent of 
the deflection. The results of the data analysis of this problem show that errors that have been 
caused by a separation of the whole system into two parts do not exceed one percent of the whole 
energy of the system. A bow force increase causes a decrease in arrow natural frequencies. As the 
force reaches the critical value the frequency reduces to zero and the arrow loses its dynamic 
stability. Its periodical oscillations transform to a monotone increase of the arrow bend that 
deviates from the assigned direction. Imaginary values of natural frequencies do not depend on 
the bow parameters. The bow parameters have a significant influence on the real values of the 
arrow natural frequencies. For other equal conditions the bow and string stiffness influences the 
bend oscillations of the arrow more significantly than the bow mass. For proper bow-arrow 
matching, an arrow should have completed nearly one cycle of vibration in the time of its 
common motion with the string. The spine should be directly proportional to the mass of the 
arrow. 
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Figure 1 Diagram of the internal 
ballistics of the arrow: x-y-z is a 
rectangular co-ordinate system; x-z is a 
vertical plane of the bow string; 0, 1,2, 
3, 4, 5 are the successive positions of the 
arrow; 0 - is the initial position when 
archer releases string; 1, 2, and 3 are the 
positions during the common motion of 
the string and the arrow, 4 is the position 
when the arrow leaves the string ; 5 - is 
the position when the arrow leaves the 
bow area. 

Figure 3 Four first natural circular 
frequencies of the arrow-bow system 
with the average sport target archery 
parameters (unbroken lines): u0=0.2, 
Hi=0.25, u2=2.5, u=20. Corresponding 
natural modes marked the same numbers 
have been presented in the Fig.4. The 
two first natural circular frequencies of 
the arrow under the buckling test are 
ploted with the dotted lines. 

Figure 2 Schematic model of the arrow- 
bow system to investigate the lateral 
motion. 

J \. 5; \-_ 9; 

Figure 4 Natural modes of the arrow- 
bow system (see Fig.3) as the arrow 
leaves the string (<j)=0), below the first 
elastic non-stability ((|>=i0) and over that 
(((,=20). 
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