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Abstract. This paper describes development of a set of analytic point source transient free molecule
equations generated to model behavior ranging from molecular effusion to rocket plumes. A brief review
of model performance for step function mass expulsion will be followed by presentation of physical
extensions to include the effects of an ellipsoidal molecular distribution to account for certain types of
thermal nonequilibrium, and response to sources described by pulse as well as step function behavior.

INTRODUCTION

Analysis and simulation of gases expanding from sources into vacuum, or the effects plumes from
these sources create when they interact with solid surfaces, present a considerable challenge to the
scientific and engineering communities. The main difficulty lies in accurately describing a flowfield
that passes from continuum flow at the nozzle exit, through the transition regime, to free molecule
behavior within a relatively short distance downstream.

For rocket engines and chemical thrusters, high velocity levels and relatively high Mach numbers
typically characterize flow at the nozzle exit. Within the plume's core, even in regions where
significant intermolecular collision rates occur, relative velocity levels are low and little thermal
scattering occurs normal to the mainly radial streamlines. Under certain circumstances, such
observations lead one to consider describing the expansion using free molecule theory.

Development of such a model began a few years ago to provide insights for DSMC simulations of
Shuttle/Mir docking scenarios.(l) This paper briefly reviews steady model performance for a variety of
cases, followed by development of physical extensions for an ellipsoidal molecular distribution and
response to sources described by pulse as well as step function behavior.

MODEL FORMULATION

A transient solution of the collisionless Boltzmann equation was developed to describe the
molecular distribution^*,/) for flow from a point source step function Q\, where (1-3)

(1)
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In Eq. (1), Qi represents source flow with a Lambertian thermal distribution superimposed on a
convective exit velocity ue at constant rate m . The v - n factor emphasizes the directional constraint
imposed by the rocket nozzle. Parameter /? = \/^2RT , and A\ is a normalization factor (5) defined as:

A = ' cos A/TT" s cos 0e (l + erf (s cos 0e )) . (2)

Fig. 1 describes the general relationship between important geometric elements in this model.

axis along
exit normal

source location

FIGURE 1: Schematic representation of various quantities and angles used in analytic model.

Speed ratio s = (3 UQ , and n represents the nozzle exit plane. Generally, #e may not be aligned
with it. Angle 0e lies between «e and h, 0 is measured between variable position x (with velocity v) and
/*, and angle 6 is measured between i/e and x. For axisymmetric conditions, 0e

 = 0 and 0 = 9.

The particular solution of Eq. (1) is found using the approach outlined by Bird (6) and Narasimha
(7). The steady-state density field generated in response to a step function in mass flow rate m, with
constant properties across the nozzle exit, is given by (1)

+ — + w2 k/^erfczL
U J I

(3)

where z = a - w, a = f i r / t , and w = s cos 0 . Solving for successive velocity moments, one obtains

expressions for mass flux O, normal momentum flux ("pressure") p^ and translational energy flux

\ 2 /^3
l)e z + —

2
(4)
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In addition, Eqns. (3) - (5) may be combined to obtain expressions for velocity v, translational
temperature rTR, and internal energy flux q^^ for polyatomic molecules with specific heat ratio y.

co

The single source solution is only valid where jc • h > 0 due to the velocity constraint in Eq. (1). It
also assumes constant, averaged properties describe the gas issuing from the nozzle. A more realistic
analysis would incorporate locally varying conditions across the exit. This data would be used to create
a network of point sources to describe the expansion downstream. An even more sophisticated
approach would involve superposition of a source network located on a "freezing surface" downstream
from the nozzle, whose properties have been computed using a coupled CFD/DSMC approach.(l)

CASE REVIEWS

This model was initially applied to a study concerning Shuttle/Mir interactions. Results were used
to adapt DSMC grids for better computational efficiency and to verify collisionless DSMC results.(1)
The following sections describe highlights from other studies using the analytic technique.

Nitrogen Thruster

In a previously unpublished study conducted at NASA Langley Research Center, analytic model
results were compared to three-dimensional direct simulation Monte Carlo computations (NASA-
LaRC's DSMC3 code) for steady flow from a small cold nitrogen gas thruster. Starting conditions
consisted of properties averaged across the thruster's exit plane (n ~ 4 x 1020 /m3, V — 730 m/s, T - 40
K). Analytic results utilized a network of 320 sources superimposed across the nozzle exit area. DSMC
calculations were performed in collisionless and collisional modes to assess this effect on the results.

Dimensionless logarithmic density contour maps are presented in Fig. 2 for over four orders of
magnitude. The uppermost contour map features the analytic model solution, and at center are virtually
identical collisionless DSMC results. The lowest contour map depicts full DSMC results, showing
shorter, slightly broader contours than the collisionless cases as a direct manifestation of collisional
scattering. Overall, analytic model results still produce quite reasonable agreement with the full DSMC
simulation. It became evident post hoc that virtually the entire simulation had been performed within
the Bird continuum breakdown surface signifying the onset of transitional flow deviations from
continuum conditions.(l) Since collisional effects usually dominate such flows, this study provided
particularly harsh conditions for testing the free molecule analytic technique.
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FIGURE 2: Comparison of steady-state density contours for a small N2 axisymmetric thruster. Physical scale in
m, logarithmic dimensionless density scale. Top: analytic results; middle: collisionless DSMC; bottom: full
DSMC (with intermolecular collisions). DSMC calculations performed by Dr. Richard Wilmoth, NASA-LaRC.

Sonic Orifice

Although comparisons made for the previous case were very favorable, solutions were propagated
from a flat profile of macroscopic variables across the nozzle exit. The presence of an annular shear
layer containing thermodynamic properties differing from the core would increase the influence of
collisional scattering, particularly in terms of self-scattered return flux ahead of the nozzle's exit plane.
In another previously unpublished study, comparisons were made between analytic and full DSMC3
results for steady nitrogen gas flow through a sharp-edged sonic orifice in high vacuum. Both
techniques used the same network of conditions mapped on a starting surface created from a previously
generated CFD expansion solution.

Figure 3 shows excellent agreement between the two approaches for density contours over one
order of magnitude. As in the previous case, DSMC results were considered somewhat in error at high
angles off the centerline due to cell resolution limitations. Similar levels of agreement between the two
techniques were found for comparisons of mass flux, normal momentum flux, and velocity.

Bipropellant Thruster

A Messerschmitt-Bolkow-Blohm (MBB) 10 N monomethyl hydrazine/nitrogen tetroxide
(MMH/N2O4) bipropellant thruster was modeled using a single point source (2) to make comparisons
with a relatively comprehensive set of previously published experimental data.(S-ll) Based on a
combination of published and derived information, the necessary average exit conditions were obtained
(5 = 3.11, MW = 26 amu, m =3.5 g/s, specific heat ratio y= 1.322, and velocity UQ = 3056 m/s).(2)
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FIGURE 2: Comparison of steady-state density contours for a small N2 axisymmetric thruster. Physical scale in 
m, logarithmic dimensionless density scale. Top: analytic results; middle: collisionless DSMC; bottom: full 
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FIGURE 3: Steady-state density contours for N2 flow through a sonic orifice. Logarithmic dimensionless density
scale. Top—DSMC; bottom—analytic model. Calculations performed by Dr. Richard Wilmoth, NASA-LaRC.

Model results were compared to distributions for force and contaminant mass fluence (MMH-
nitrate).(2) For relatively high >v, model force and mass flux angular distribution ratios simplify to

F(r,0) p±(r,0)
s w2-.2 (8)

It is evident these ratios are not identical, with m exhibiting more angular sensitivity than/?_L. This
result differs from the Simons model, where one usually assumes all such distributions are described by
/(0)°c cos"0 .(12) For further comparison, normalized angular distributions were also plotted for the
Simons model with n = 8.65, a typical small bipropellant thruster parameter.(12) In Fig. 4, the analytic
model force distribution provides a much more precise fit to the data than does the Simons model.

0 5 10 15 20
ANGLE OFF CENTERLINE [deg ]

FIGURE 4: Normalized experimental and theoretical force distributions for MBB ION thruster.
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Model results were compared to distributions for force and contaminant mass fluence (MMH- 
nitrate).(2) For relatively high w, model force and mass flux angular distribution ratios simplify to 
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4 + 3S
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3 + 2s2 
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It is evident these ratios are not identical, with m exhibiting more angular sensitivity than p±. This 
result differs from the Simons model, where one usually assumes all such distributions are described by 

/(ö)oc cos"0 .(12) For further comparison, normalized angular distributions were also plotted for the 
Simons model with n = 8.65, a typical small bipropellant thruster parameter.(12) In Fig. 4, the analytic 
model force distribution provides a much more precise fit to the data than does the Simons model. 
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Fluence comparisons were complicated by multiphase effects, which noticeably affected
experimental data within 5° of the centerline.(2) A related investigation into thruster contamination
indicated MMH-nitrate deposition may be limited by transport of N2O4, with the contaminant being
formed on target surfaces rather than within the thruster.(2,13) Due to a natural species separation
effect in free molecule flow, it was decided to replace s by ^N2O4 (= 5.85) in the mass flux ratio.

Figure 5 presents normalized MMH-nitrate fluence distributions deposited during a 40 ms thruster
pulse. The data was arbitrarily increased by 1.6x to account for significant droplet influence within 5°
off centerline. The shifted distribution becomes closely matched for 6 > 5° by model results for
5N Q4 - In addition, theoretical deposition levels based on experimentally reported unburned propellant
fraction were very close to measurements (numerically identical, not accounting for the 1.6x shift).(2)
The experimental data's angular variation precluded similar matching with the Simons model for any
amount of shifting with n = 8.65.

normalized expt. data
current (s_N2O4 = 5.85)

— —Simons (n = 8.65)

0.01
0 5 10 15

ANGLE OFF CENTERLINE [deg.]

FIGURE 5: Normalized experimental and theoretical MMH-nitrate fluence distributions
forMMB ION thruster.

ELLIPSOIDAL DISTRIBUTION

The ellipsoidal thermal distribution assumes one may describe departures from thermal equilibrium
by assigning an effective one-dimensional temperature to each direction in space.(4) It becomes
convenient to modify the constant source term from Eq. (1) in the following manner:

where Al - C0s0e(l cos0e)).(9)

Referring to Fig. 1, subscript 7 denotes the direction along h, with 2 & 3 normal to 7. Thermal
parameter j8/ is affected by the definition of three one-dimensional temperatures to replace T. Tildes in
Eq. (9) denote component nondimensionalization of variables by /?/. This development in turn affects
the description of wave velocity a = (pv)i =(fix)i/t , and it becomes convenient to redefine speed

ratio s as a vector. In addition, normalization parameter A\ becomes modified, and the definition for
angle 9 becomes distorted through nondimensionalization by unlike components of /?/. The latter no
longer represents the physical angle between v and iie but rather:

803

Fluence comparisons were complicated by multiphase effects, which noticeably affected 
experimental data within 5° of the centerline.(2) A related investigation into thruster contamination 
indicated MMH-nitrate deposition may be limited by transport of N204, with the contaminant being 
formed on target surfaces rather than within the thruster.(2,13) Due to a natural species separation 
effect in free molecule flow, it was decided to replace s by SN2O4 (= 5.85) in the mass flux ratio. 

Figure 5 presents normalized MMH-nitrate fluence distributions deposited during a 40 ms thruster 
pulse. The data was arbitrarily increased by 1.6x to account for significant droplet influence within 5° 
off centerline. The shifted distribution becomes closely matched for 8 > 5° by model results for 
SN204 • m addition, theoretical deposition levels based on experimentally reported unburned propellant 

fraction were very close to measurements (numerically identical, not accounting for the 1.6x shift).(2) 
The experimental data's angular variation precluded similar matching with the Simons model for any 
amount of shifting with n = 8.65. 

o 

[i «ii^ 

: 
♦   normalized expt. data 

 current (s_N204 = 5.85) 

— —Simons (n= 8.65) 

1 

0 5 10 15 20 

ANGLE OFF CENTERLINE [deg ] 

FIGURE 5: Normalized experimental and theoretical MMH-nitrate fluence distributions 
forMMB ION thruster. 

ELLIPSOIDAL DISTRIBUTION 

The ellipsoidal thermal distribution assumes one may describe departures from thermal equilibrium 
by assigning an effective one-dimensional temperature to each direction in space.(4) It becomes 
convenient to modify the constant source term from Eq. (1) in the following manner: 
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1       2 
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j , .NH
(10)

Straightforward derivation reveals velocity moments corresponding to the solution of the Boltzmann
equation due to source term Q± . In the following equations, z' = «'->/, a' = |a|,and w' = |s|cos6L
When all three one-dimensional temperatures are equivalent, Eqns. (1 1)-(14) reduce to Eqns. (3)-(6).

(11)

(13)

24 n 7b

+ -w'2+2 VZ'2 + f — + 5w2 + v/4 k/rc w'erfcz' k
2 J [4

When the constant mass rate m is replaced by a Delta function mS(t), a simpler set of velocity
moments is produced. Convolution of these equations at constant strength reproduce Eqns. (13)-(16),
and they reduce to the thermal equilibrium case in an analogous manner when T{ = T2 = T3 = T.

/ x 2mB, BiB-i rcosd) _te_?^ •/ \ px / \ or . , ^ or x „„p(x,t) = ——1 K2K3 y
 e

 (a s > ; <f>(x,t) = -?—; pi_(x,t)= •!---•, qrR(x,t)=Z-^-. (15)
r ' r 2r

CONCLUDING REMARKS

The plume model described herein appears to exhibit a good measure of promise for advancing the
ability to predict neutral gaseous plume expansions under rarefied conditions. In the near future, it is
intended to combine this model with the Bhatnagar-Gross-Krook (BGK) technique (14) in order to
develop a return flux capability for analyzing contamination effects on satellites due to self-scattering
and ambient scattering of rocket plume products.
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