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PREFACE

This document was prepared for the Defense Advanced Research Projects Agency
under a task entitled “Review and Assessment of Advanced Technologies in Molecular
Biology.”

Many thanks are due to Bert Barrois, Randy Good, Jim Heagy, and Barry Pallotta.
Michael Frank and James Wetmur in particular offered kind guidance and helpful
criticism.

We list several references here which were not cited in the main body of the text
but which are related on some point or other:

Liu, H., et al., “Effect of electrostatic interactions on the structure and dynamics of
a model polyelectrolyte. I. Diffusion,” J. Chem. Phys. 109, 7556 (1998).
Examines the dynamics of a 20 bp dsDNA in light of electrostatic effects.

Chuang, T. J., and Eisenthal, K. B., “Theory of Fluorescence Depolarization by
Anisotropic Rotational Diffusion,” J. Chem. Phys. 57, 5094 (1972). Explains
the basic theory of the standard experimental technique for the quantitative
study of rotational diffusion (notably the origins of the [I||(t)-I^(t)]/[I||(t)+2I^(t)]
expression for the fluorescence polarization anisotropy [FPA] and of the five
decay constants in FPA).

Caspi, A., et al., “Diffusion and directed motion in cellular transport,” Phys. Rev. E
66, 011916 (2002). Discusses the way microtubules give rise to both sub- and
super-diffusion in eukaryotic cells.

Rietman, E. A., Molecular Engineering of Nanosystems, Springer/AIP, New York
(2001). Introduces many of the relevant concepts of thermodynamics and
kinetics in the light of self-assembly.
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EXECUTIVE SUMMARY

The tradeoffs involved in designing and selecting a batch DNA manipulation
(BDM) protocol for DNA synthesis involve

• fault-tolerance threshold (e.g., with respect to propagating mishybridizations)

• engineering complexity (e.g., number of microfluidic interconnects)

• time (e.g., number of [parallel or serial] hybridization/annealing steps).

We develop the tools to evaluate the fault-tolerance threshold while keeping other factors
in mind. In particular, time mandates examination of the kinetic processes involved. In
the course of examining aspects of synthesis protocols, we implicitly find that fault-
tolerance threshold and engineering complexity are the principal considerations: time
affects the others principally through (e.g.) batch size and imperfect annealing, and the
engineering overhead associated with parallelization, respectively.

There appears to be no serious obstacle to successful implementation of the
staggered ligation model for DNA synthesis. A useful test of this claim would be
provided by using DNA for which sequencing by hybridization (SBH) works well, as the
synthesis of such DNAs can also be expected to go well. That said, a significant amount
of fundamental work on the processes involved still needs to be done. For instance, we
find that the ultimate rate-limiting kinetic step of DNA hybridization (i.e., the trans-
lational component of nucleation) is poorly understood. Experiments using molecular
beacons on an ensemble of de Bruijn-type DNAs may offer a way to gain this under-
standing. In any event, this is a crucial molecular-biological process that deserves a
detailed quantitative analysis, which is currently lacking. More generally, it is necessary
to obtain experimental data to enable the quantitative use of error models of the sort
outlined here.
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I. INTRODUCTION

The generic synthesis of long (> 100 base) DNA molecules with specific base
sequences is at present infeasible due to error rates of the typical phosphoramidite
chemical synthesis method.1 On the other hand, two ss (single-stranded) DNAs can be
joined or ligated into a single ds (double-stranded) DNA with an enzyme called DNA
ligase; this technique, therefore, might offer a way to indirectly synthesize very long
(>10!kb) DNAs (by staggered ligation of a batch of ssDNAs) with predetermined base
sequences.2

Indeed, such a strategy was recently patented, and can be expected to represent
the preferred method for the de novo laboratory synthesis of long DNA.3 More generally
there are undoubtedly profound clinical (e.g., gene therapeutic) and technological (e.g.,
DNA nanotechnological)4 applications of long DNAs. Obtaining these DNAs on a
production scale is difficult, however. There is a tradeoff (robustness of design vs.
hybridization affinity, for instance) between the number of ligations that must be

                                                  
1 This solid-phase synthesis method is based on repeatedly adding monomers with protonated

phosphoramidites (essentially, positively charged analogues of the phsophodiester backbones that
comprise the DNA backbone) at their 3¢ ends and protective groups at their 5¢ ends to a growing
polynucleotide anchored to a solid resin support. The 3¢-phosphoramidite+ + 5¢-OH reaction, after
being followed by oxidation via I2 and deprotection of the 5¢ end, results in a longer polymer. The
yield from each step of this method exceeds 98 percent, but (0.99)100 = 0.37, and (0.99)1000 = 4.32⋅10–5.
Isolation of the desired product nominally requires gel separation (although we believe that PCR [see
footnote 7] might conceivably be used in its stead to effect the same result), and as such there must be
a sufficient volume of product for gel extraction. See (e.g.) Stryer, L., Biochemistry, 4th ed.,
WH!Freeman, New York (1995).

2 DNA ligase catalyzes the formation of a covalent phosphodiester bond between two unbonded
nucleotides. See (e.g.) Turner, P. C., et al., Instant Notes in Molecular Biology, Springer-Verlag, New
York (1997). Stryer and Turner are our generic references for biochemistry and molecular biology and
any otherwise unreferenced term or claim may safely be assumed to come from one of these. Similarly,
our generic references for molecular biophysics are Daune, M., Molecular Biophysics, Oxford, New
York (1999), and Cantor, C. R., and Schimmel, P. R., Biophysical Chemistry, Part III: The behavior of
biological macromolecules, W H Freeman, New York (1980). Our generic references for chemical
kinetics are Laidler, K. J., Chemical Kinetics, 3rd ed., Harper & Row, New York (1987), and
van!Santen, R. A., and Niemantsverdriet, J. W., Chemical Kinetics and Catalysis, Plenum, New York
(1995).

3 http://www.maxygen.com/newsview.php?listid=96 (U.S. Patent No. 6,368,861 announced 9 April
2002), Online, Available: 21 November 2002.

4 Winfree, E., et al., “Design and self-assembly of two-dimensional DNA crystals,” Nature 394, 539
(1998) and Seeman, N., et al., “New Motifs in DNA Nanotechnology,” Nanotechnology 9, 257–273
(1998).
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performed to assemble a long DNA and the length (hence the number) of short DNAs to
be ligated (possibly also subject to end cleaving by a few robust sequence-specific exo-
nucleases [which act to truncate certain end sequences]). There are also issues of
thermodynamic and electrochemical homogeneity of the set of short oligonucleotides,
which is a necessary precondition for a robust synthesis process. Many other, subtler
obstacles are also present.

We attempt to address some of these problems here. For convenience, we
consider a simple case (which for later reference we term the baseline protocol) of a
batch of 2n-mer ssDNAs which are to be used to synthesize an N-mer dsDNA (N >> 2n)
with sticky ends (i.e., overhanging portions of ssDNA). Throughout this paper unless
explicitly stated otherwise, we will assume that perfect complementarity is required for
hybridization. For concreteness, let X ≡ vwxy denote a desired 4n-mer. (Throughout this
paper X will denote either a long ssDNA or a product of batch ssDNA assembly [such as
a sticky-ended dsDNA]: context will determine which.) Ideally, we would like to have a
dsDNA X self-assemble from the batch ssDNAs in the presence of DNA ligase, but even
this simple case presents difficulties. In particular, it is vital for some proposed batch
assembly of X that the various batch ssDNAs hybridize as desired and not in some other
fashion.5 Below we depict a notionally successful batch assembly, with complementation
denoted by an overbar.

† 

¢ 3 - w 1ºw n x 1ºx n y 1ºy n z 1ºz n - ¢ 5 
¢ 5 - v1ºvn w1ºwn x1ºxn y1ºyn - ¢ 3 

We use an obvious shorthand for the 2n-mer batch ssDNAs:

† 

5vw3; 5xy3; 5 ˜ z ̃  y 3; 5 ˜ x ̃  w 3
 ˜ u  denotes the reverse complement of u( )

(We will typically drop the 5 and 3 subscripts.) Requiring that batch self-assembly should
produce X places constraints upon the various batch ssDNAs. We consider three
particular types of hybridization for pairs of equal-length batch ssDNAs: type I, in which
there are no sticky ends; type II5 (not to be confused with anything involving restriction
enzymes), in which the sticky ends are both 5¢; and type II3, in which the sticky ends are
both 3¢. Types II5 and II3 are collectively referred to as type II. We further distinguish

                                                  
5 DNAs amenable to SBH can be expected to be similarly amenable to synthesis by staggered annealing

and ligation for combinatorial reasons. See (e.g.) Peuzner, P.A., J. Biomolecular Structure and
Dynamics 7, 63 (1989).
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type II5a and II3a hybridizations (collectively, type IIa), in which the sticky ends are n
bases long.

Now type I hybridizations (which of course are undesirable, though not the
principal obstacles to synthesis for thermodynamic reasons) can be catalogued: recalling
that we assume perfect complementarity for hybridization, a type I hybridization requires
one of the following to hold (Ÿ denotes logical AND):

† 

v = ˜ w ; v = ˜ y ( )Ÿ w = ˜ x ( ); v = y( )Ÿ w = z( ); v = w = x; x = ˜ y ;

x = y = z; w = x = y; y = ˜ z ; w = ˜ z ( )Ÿ x = ˜ y ( ); w = ˜ x 

where we use an underbar to denote a logical clause that appears alone elsewhere in the
listing.

A similar effort yields the following list of identities which would allow for
nontrivial (i.e., undesirable) IIa hybridizations by similar cataloguing:

† 

v = ˜ v ; w = ˜ w ; x = ˜ x ; y = ˜ y ; z = ˜ z ; w = ˜ y ;
v = ˜ x ; w = y; v = z; v = x; x = z; x = ˜ z 

where we use an underbar here to denote an equality that is also contained in some type I
clause.

We can represent all of these potential mishybridization equalities graphically:

  

† 

mis v w x y z ˜ v ˜ w ˜ x ˜ y ˜ z 
v
w
x
y
z
˜ v 
˜ w 
˜ x 
˜ y 
˜ z 

o + o o ¥ o +

o + ¥ o ¥ o +

o o o ¥ o ¥ o

+ o + o ¥ o ¥

o + o + o ¥ o

o ¥ o + o + o

¥ o ¥ o + o +

o ¥ o ¥ o o o

+ o ¥ o ¥ + o

+ o ¥ o o + o

¥ fi type I mishybridization;
+ fi type I mishybridization only with 2 equality clauses,

with clause pairing indicated by dotted lines;
o fi type IIa mishybridization
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Of course, as stated previously, it is the type IIa mishybridizations that are really
of concern, since it ought to be possible to employ a PCR6 protocol in which type I
mishybridizations are at worst a secondary error source (in each cycle any type I
mishybridized dsDNAs will just revert to batch ssDNAs). But we can easily search for
these using the identities above. Of subtler and more persistent concern are generic
mishybridizations which arise because of frame-shifting (in the special case of pairs of
batch ssDNAs [as opposed to semi-ligated “DNA Frankensteins”], these are just type II
mishybridizations): for example, for some number m < n, it might happen that the
terminal m bases of two batch ssDNAs are complementary and a “gapped” mishybridi-
zation takes place. If m were taken to be 1, then this obviously would be an unreasonable
constraint to consider; however, DNA ligase generally requires “footprints” (which we
quantify now by the variable m) of more than a single base for its operation. Usually m
can be considered to be at least 4. Indeed the number of base pairs required to initiate
hybridization nucleation is about three or four, and so happily these constraints are
consistent with reality.

With this in mind, we state a principal constraint of concern to us (a so-called
“frame-shift” constraint): for some m > 1 and arbitrary batch ssDNAs x, y, we ought to
have

x1…xl ≠ y1…yl;

xn-l+1…xn ≠ yn-l+1…yn

for m < l < n. In particular, the frame-shift constraint here requires that any sticky ends of
dsDNAs must be n base pairs long. It is easy to see that it cannot always be satisfied, and
so (at least for now) we must make some assumptions about the structure of X. Probably
the simplest and best one we can make is that the base sequence of X is chosen at random
with respect to the uniform measure.

                                                  
6 PCR (the polymerase chain reaction) serves to amplify dsDNA by repeatedly (1) separating or

denaturing into two ssDNAs at 95 ºC followed by (2) primer annealing at ~55 ºC and (3) primer-
initiated polymerization at 72 ºC in the presence of deoxyribonucleic triphosphates (dNTPs; e.g.,
dATP) and Mg2+. Typically, ~30 PCR cycles are used for amplification.
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II. ANALYSIS OF THE BASELINE PROTOCOL

It appears a reasonable first approximation to the general problem for the baseline
protocol to consider only type IIa mishybridizations, along with the frame-shift
constraint. It also seems reasonable to assume that if k type IIa mishybridizations might
occur, then, as long as 2–k is not prohibitively small, we could simply extract X (which is
presumably assembled and could be isolated by fluorescent probes) from a pool of ≤ 2k

different dsDNAs of the same size (this pool could be obtained via gel electrophoresis,
e.g., although in practice we would only need to isolate a single copy of X, which could
be facilitated by the aforementioned probes), and so we will concentrate on the frame-
shift constraint alone for the remainder of this paper.

Two possible frame-shift scenarios, which we term minus- and plus-shift
hybridizations (MSH and PSHs), of length l are respectively depicted below:

  

† 

¢ 3 - w n-l+1ºw n w l+1ºw n x 1ºx n - ¢ 5 
¢ 5 - v1ºvn w1ºwn-l wn-l+1ºwn

length l<n
1 2 4 3 4 

- ¢ 3 

fi w1ºwl = wn-l+1ºwn;

¢ 3 - v n-l+1ºv n w 1ºw n x n-l ºx n - ¢ 5 
¢ 5 - v1ºvn-l vn-l+1ºvn

length l<n
1 2 4 3 4 

w1ºwn - ¢ 3 

fi vn-l+1ºvnw1ºwn = w1ºwn x1ºxl

   .

Essentially the same conditions are required if we stagger in the opposite direction, that
is, with 3¢ sticky ends, and although both plus and minus shifts are potential bogeymen,
we concentrate on the minus-shift condition, since the ligation mechanism and PCR
cycling will presumably tend to inhibit any deleterious effects of the plus-shift condition
on a synthesis protocol. That is, PSHs are hindered from propagating through later stages
of a batch self-assembly.

Assuming (as we do throughout unless stated otherwise) that the bases of X are
selected independently and uniformly at random,7 it can be shown8 that for a word of
                                                  
7 This is not always a realistic assumption; for example, the Alu and L1 motifs vary fairly little from

instance to instance and together comprise nearly 10 percent of the human genome. Base frequencies
will also (for instance) display correlations stemming from broken symmetries in the genetic code and
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length l—which of course ends (or begins) with probability 4–l at any given symbol
placemarker s—contained in an infinite word, the probability of finding the next
nonoverlapping9 occurrence of the word beginning at placemarker s + t is

† 

4-l 1- 4-l( )
t-1 .

Hence the probability of a possible MSH of length l is

† 

pl ≡ 4-l 1- 4-l( )
n-l-1.

It follows that the probability of M possible MSHs of length l in a batch of B
ssDNAs is

† 

B
M

Ê 

Ë 
Á 

ˆ 

¯ 
˜ pl

M 1- pl( )B-M ;

and we explicitly make the operational assumption that the size of the batch is N/n + 1
(i.e., the batch consists of the 2n-mers intended to self-assemble as X and no other
ssDNAs). To get the probability of at least one possible MSH of length l, we simply sum
over M (which of course gives 1) and subtract the M = 0 term, giving

† 

1- 1- pl( )N n+1.

Suppose for the moment that if an MSH of length l is possible for a pair of
ssDNAs, say as depicted above: then for an MSH of length l + 1 to be possible, it is
necessary and sufficient that the equalities w1 = wn–l and wl+1 = wn hold. But it must also
be the case that w1 = wn–l+1 and wl = wn hold, so that wn–l = wn–l+1 and wl = wl+1. Inductively
we see that it must in fact be the case that wn–l = wn–l+1 = … = wn = wl+1, and it follows that
both the initial and terminal portions of the half-oligo w must be poly(⋅), where ⋅ indicates
some base or its complement. Similarly, for an MSH of length l + l¢ to be possible, it is
necessary and sufficient that both the initial and terminal portions of the half-oligo w
must be poly(⋅), where ⋅ indicates some sequence of length l¢ or its complement. From

                                                                                                                                          
the emergence of structural motifs (both coded by and intrinsic to the DNA itself). More generally,
DNA sequences are often modeled as stationary Markov processes, and these display statistical
periodicities. See Durbin, R., et al., Biological Sequence Analysis, Cambridge University Press,
Cambridge (1998).

8 Percus, J. K., Mathematics of Genome Analysis, Cambridge University Press, Cambridge (1998).
9 The relative impact of self-overlap is not significant, and we neglect it chiefly for simplicity; its

inclusion ought not to change hard numbers by much, and it should not affect order-of-magnitude
estimates at all.
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this we see that there are well-defined least and greatest lengths for a possible MSH
between a given pair of ssDNAs: we denote these lengths by l0 (≥ m) and l•, respec-
tively.10 Finally, we note that if an MSH of length greater than În/2˚ is possible, then the
entire half-oligo w must be of the form poly(⋅).11 With this noted, we neglect such MSHs
for the remainder of the text unless explicitly stated otherwise. Extension to incorporate
self-overlapping words is possible, however.12

For example, if we try to construct a 10,005-mer using 668 30-mer batch ssDNAs,
there is a 92-percent chance of having a possible MSH of length 4; a 47-percent chance
for length 5; a 15-percent chance for length 6; and a 4-percent chance for length 7 (after
this the above formalism breaks down [although it turns out to still be a good approxi-
mation] since then we will have overlapping words).

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

p -

n=15

l=2
l=3
l=4
l=5
l=6
l=7

Figure 1. Probabilities of at least one possible MSH for n = 15 and varying l, N

More generally, suppose that the bases of X are selected at random, but with
respect to a nonuniform probability distribution which is sufficiently well-behaved.
Assume further that W (here a word occurring at an end of some batch ssDNA) is not
self-overlapping (or that the effects of overlap are small and hence neglected). Then the
probability of a possible MSH of length l is

                                                  
10 Heuristically, we might enforce m  = Èlog4B˘. It is convenient that in the regimes we are interested in

(i.e., n ~ 30), the RHS is 4 or 5.
11 Such periodicity will, in general, occur uniformly at random. Structurally significant 3-base

periodicities are typically characteristic of protein-coding regions, and 10.5-base periodicities generally
indicate a-helix coding or structural motifs for DNA incorporation into chromatin. Trifonov, E. N.,
“3-,!10.5-, 200- and 400-base periodicities in genome sequences,” Physica A 249, 511–516 (1998).

12 Percus, Mathematics of Genome Analysis.
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† 

pW = Pr W( ) ⋅ 1- Pr W( )( )n-l-1.

It follows that the probability of at least one possible MSH of length l in a batch
of ssDNAs is

† 

max
W

1- 1- pW( )N n+1[ ] =1- 1- max pW( )N n+1.

From this we immediately see that the assumption of a uniform random distribution of
bases gives an optimistic answer (i.e., the probability above induced by any other choice
of distribution will inevitably be greater than the earlier estimates). On the other hand, it
allows for a pessimistic estimate also: if we assume that the words comprising the first l
bases of each half of all the batch ssDNAs are all distinct and not self-overlapping, then
we have that

† 

pW £
1

N
n

+1
=

n
N + n

fi Pr at least one MSH of length ≥ l( ) £1-
N

N + n
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

N n+1
.

(However, this is a very crude pessimistic estimate.) For the 10,005-mer with 668 30-mer
batch ssDNAs, it gives .63 as an upper bound on the probability.
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III. GENERALIZED PROTOCOLS

Let us change focus now, and consider a fixed dsDNA X. We want to evaluate the
error rates associated with the self-assembly of X with batch ssDNAs of variable length.
In particular, we want to obtain the optimal (de)composition of X into short ssDNAs
while taking MSH errors into account. Toward this end (but really so that we can write
code that properly treats compositions—see Appendix C), first note the canonical form of
such a composition (a double arrow indicates the reverse of a word, and over/under
arrows are used simply to indicate orientation):

  

† 

w 1[ ]
1 X ≡ ¢ 5 - w 1[ ]

1 w 2[ ]
1 w 1[ ]

2 Kw 2[ ]
B 2-1w 1[ ]

B 2w 2[ ]
B 2 - ¢ 3 ;

X t w 1[ ]
B 2+1 ≡ ¢ 3 - w 2[ ]

1 w 1[ ]
2 w 2[ ]

2 Kw 1[ ]
B 2w 2[ ]

B 2 t w 1[ ]
B 2+1 - ¢ 5 = ¢ 5 - w 1[ ]

B 2+1

w 1[ ]
B 2+1

1 2 3 
˜ w 2[ ]

B 2

w 2[ ]
B 2+1
{

˜ w 1[ ]
B 2

w 1[ ]
B 2+2
{

K ˜ w 2[ ]
2

w 2[ ]
B-1

{
˜ w 1[ ]

2

w 1[ ]
B

{
˜ w 2[ ]

1

w 2[ ]
B

{
- ¢ 3 

≡ ¢ 5 - w 1[ ]
B 2+1w 2[ ]

B 2+1w 1[ ]
B 2+2Kw 2[ ]

B-1w 1[ ]
B w 2[ ]

B - ¢ 3 = ¢ 3 - t w 2[ ]
B t w 1[ ]

B t w 2[ ]
B-1K

t w 1[ ]
B 2+2 t w 2[ ]

B 2+1 t w 1[ ]
B 2+1 - ¢ 5 

fi w 2[ ]
B = ˜ w 2[ ]

1( )Ÿ w 1[ ]
B = ˜ w 1[ ]

2( )Ÿ w 2[ ]
B-1 = ˜ w 2[ ]

2( )ŸKŸ w 1[ ]
B 2+2 = ˜ w 1[ ]

B 2( )Ÿ w 2[ ]
B 2+1 = ˜ w 2[ ]

B 2( )
¤ w h[ ]

B 2+k = ˜ w h[ ]
B 2-k+3-h h,k( ) Œ 1,2{ } ¥ 1,K,B 2{ } \ 1,1( ), 1,B 2 +1( ){ }( )

fi X ≡ ¢ 5 - w 2[ ]
k w 1[ ]

k+1{ }k=1

B 2-1
w 2[ ]

B 2 - ¢ 3 ;

X ≡ ¢ 5 - w 2[ ]
B 2+kw 1[ ]

B 2+k+1{ }
k=1

B 2-1
w 2[ ]

B - ¢ 3 = ¢ 5 - ˜ w 2[ ]
B 2-k+3-h ˜ w h[ ]

B 2-k+2-h{ }
k=1

B 2-1
˜ w 2[ ]

1 - ¢ 3 .

This puts us in position to state the general problem: For X fixed but generic (i.e., with a
uniformly random base distribution) we might consider two problems: the design of
protocols for synthesizing X from a batch with a fixed number of ssDNA species, each of
variable length—but as close to equal length as possible—ssDNAs and from a batch
itself of variable size. The former type of protocol is notionally easier to analyze, whereas
the latter type is easier to design. Given a particular designed protocol, we can use the
earlier analysis in conjunction with a probability distribution on the batch size
characteristics to analyze this protocol.



III-2

  

† 

X =
¢ 3 - w 2[ ]

1 w 1[ ]
2 K K - ¢ 5 

¢ 5 - w 1[ ]
1 w 2[ ]

1 K K - ¢ 3 
.

 
w1                          w2                    w3                                      wB/2 

 wB                   wB-1                wB-2                                wB/2+1 
(notional hairpin) 

Figure 2. Upper: (de)composition of X. Lower: formal treatment of
(dsDNA) X as hairpinned ssDNA.

We begin with the analysis. Let L(w) denote the length of a word. An MSH of
length l between the initial pair of batch ssDNAs can be depicted as

  

† 

¢ 3 - w L w 1[ ]
1 w 2[ ]

1( )-l+1
1 ºw L w 1[ ]

1 w 2[ ]
1( )

1 w L w 1[ ]
1( )+l

1 ºw L w 1[ ]
1 w 2[ ]

1( )
1 w 1

2ºw L w 1[ ]
2( )

2

w 1[ ]
2

6 7 4 4 8 4 4 

- ¢ 5 
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1

w 1[ ]
1

1 2 4 4 3 4 4 
wL w 1[ ]

1( )+1
1 ºwL w 1[ ]

1 w 2[ ]
1( )-l

1 wL w 1[ ]
1 w 2[ ]

1( )-l+1
1 ºwL w 1[ ]

1 w 2[ ]
1( )

1

length l<L w 2[ ]
1( )

1 2 4 4 4 4 4 3 4 4 4 4 4 
- ¢ 3 

fi wL w 1[ ]
1 w 2[ ]

1( )-l+1
1 ºwL w 1[ ]

1 w 2[ ]
1( )

1 = wL w 1[ ]
1( )+1

1 ºwL w 1[ ]
1( )+l

1

,

and the general case is the same after some superscript/subscript replacements.

For a first (probabilistic) stab at it, we will, as before, make the operational
assumption that the batch consists only of the ssDNAs intended to self-assemble as X. As
before, the probability of a possible MSH of length l (l ≤ L/2) at the kth batch oligo/word
(here 1 ≤ k ≤ B/2) is

† 

pl;k ≡ 4-l 1- 4-l( )
L w 1[ ]

k w 2[ ]
k( )-l-1.

Let the number of batch ssDNAs of length L be denoted by #(L). Then the
probability of M possible MSHs of length l in a sub-batch of #(L) ssDNAs of length L is

† 

Pr # MSH l
possible = M( ) =

# L( )
M

Ê 

Ë 
Á 

ˆ 

¯ 
˜ pl;L

M 1- pl;L( )# L( )-M ;

where we abusively write pl;L for all of the pl;k accounted for in the expression (since they
are all equal). Consequently, the probability of at least one possible MSH of length l in
the entire batch is
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† 

Pr # MSHl
possible Œ # L( ){ } > 0( ) =1- 1- pl;L( )# L( )

Pr # MSHl
possible > 0( ) = Pr # MSHl

possible Œ # L wk( )( ){ } > 0Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

=1- 1- pl;L( )# L( )
1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 

⋅ Pr # L wk( )( ){ }Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

L
Â

=
1- 1- pl;L( )# L( )

# L( )L=min L wk( )

max L wk( )
Â =1-

1- pl;L( )# L( )

# L( )L=min L wk( )

max L wk( )
Â ª

1- e- pl;L # L( )

# L( )
.

L=min L wk( )

max L wk( )
Â

Rewriting, this is

† 

Pr # MSHl
possible > 0( ) =1-

1- 4-l 1- 4-l( )
L-l-1Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

# L( )

# L( )L=min L wk( )

max L wk( )
Â ª

1- e
-

# L( )
4 l 1-4- l( )L- l-1

# L( )L=min L wk( )

max L wk( )
Â .

The probability of actually having any MSHs at all (as opposed to possible MSHs
of some fixed length) is considerably more involved, even in this simple approximation,
and requires some gauge of relative hybridization affinities and the actual physics of
hybridization. The reason for this is that we have to have a decent way to weigh MSH
probabilities for various lengths. This brings us into the realm of chemical physics.
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IV. THERMODYNAMIC ASPECTS

The SantaLucia nearest neighbor (NN) model13 for DNA N-mer (proper) duplex
thermodynamics is essentially contained in the formula

DW(D) = ∑kDW(D(k), D(k+1)) + DW∂(D(1)) + DW∂(D(N)) + DWSC⋅d(SC(D)),

where W refers variously to the free energy G, the enthalpy H, or the entropy S. D is a
proper (i.e., strand-strand complement) duplex with kth base pair D(k); the various
component DW(⋅) constants are given in Table 1, and d(SC(D)) is unity if and only if D is
self-complementary and zero otherwise. We can generally ignore the last term in the NN
formula; the second (initiation) and third (termination) terms account for sequence-
independent factors such as counterion condensation.

Table 1. Parameters for the SantaLucia Model (@ 37 ºC, 1 M Na+)

NN
sequence

DG
(kcal mol–1)

DH
(kcal mol–1)

DS
(cal mol–1 K–1)

AA/TT –1.00 –7.9 –22.2
AT/TA –0.88 –7.2 –20.4
TA/AT –0.58 –7.2 –21.3
CA/GT –1.45 –8.5 –22.7
GT/CA –1.44 –8.4 –22.4
CT/GA –1.28 –7.8 –21.0
GA/CT –1.30 –8.2 –22.2
CG/GC –2.17 –10.6 –27.2
GC/CG –2.24 –9.8 –24.4
GG/CC –1.84 –8.0 –19.9

∂(CG) 0.98 0.1 –2.8
∂(AT) 1.03 2.3 4.1
SC 0.43 0 –1.4

The relationship DG  = DH  – TDS allows for extrapolations from the baseline
(37!ºC or 310!ºK), provided that the heat capacity differences between folded and
denatured states are taken into consideration.14 The empirical relationships

                                                  
13 SantaLucia, J., Jr., “A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor

thermodynamics,” Proc. Nat’l Acad. Sci. 95, 1460 (1998).
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DGoligo([Na+]) ~ DG(1 M) – 0.114⋅log([Na+])⋅Lhyb

DGpolymer([Na+]) ~ DG(1 M) – 0.75⋅log([Na+])⋅Lhyb – 0.20

DS([Na+]) ~ DS(1 M) + 0.368⋅log([Na+])⋅Lhyb

allow for extrapolation to different ionic environments.15 The length dependence of the
energetics (i.e., the difference between “oligo” and “polymer”), presumably due to
counterion condensation effects that arise in the polymeric regime, is negligible for
shorter duplexes.

An averaged and simplified form of the SantaLucia model predicts that the Gibbs
free energy of hybridization will be a negative-slope linear function of the hybridization
length l. Using the Gibbs distribution we get that Pr(E1)/Pr(E0) = e–bDE = eCDl, where b =
(kBT)–1, kB is the Boltzmann constant (3.3⋅10–27 kcal K–1), and C is a constant depending on
temperature.16 At 37 ºC b  = 9.8⋅1023 kcal–1. The simplified model predicts that the
addition of a single base pair yields changes in the free energy, enthalpy, and entropy:
·DG37Ò = –1.4 kcal mol–1, ·DH37Ò = –8.3 kcal mol–1, and ·DS37Ò = –22 cal mol–1 K–1,
respectively. We also note that ·DG55Ò is predicted to be –1 kcal mol–1.

Dangling ends and NN (aka stacking) interactions contribute significantly to the
thermodynamic picture for short oligos.17 The incorporation of dangling ends into the
SantaLucia model has been taken into account by Bommarito et al.18 Dangling ends are
typically stabilizing; only adenine dangling ends show much variation in the degree of
(de)stabilization. The NN framework appears to give a good approximation for the
thermodynamic properties of dangling ends. Below we illustrate the magnitudes of the
dangling end NN parameters:

                                                                                                                                          
14 We are loath to do this explicitly: quantitative enthalpic considerations can open a box of worms that

remains closed when dealing with free energies. See Naghibi, H., et al., “Significant differences
between van’t Hoff and calorimetric enthalpies,” Proc. Nat’l Acad. Sci. 92, 5597 (1995).

15 For Mg2+ ions we can use an equivalent Na+ concentration: [Na+]equivalent = 4÷[Mg2+]. Wetmur, J. G.,
cited as a personal communication (1997) in Hartemink, A. J., and Gifford, D. K., “Thermodynamic
Simulation of Deoxynucleotide Hybridization for DNA Computation,” in Wood, D., ed., Proceedings
of the 3rd DIMACS Workshop on DNA Based Computers, June 23–25, 1997, Vol.!48 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, AMS, Providence, R.I. (1999).

16 b will be used to denote both (kBT)–1 and (RT)–1, where R (the ideal gas constant) is roughly 2⋅10–3 kcal
mol–1 K–1. Context (in the guise of molar units) should suffice to determine which is being used.

17 Wetmur, J. G., “Physical Chemistry of Nucleic Acid Hybridization,” in Wood, D., ed., Proceedings of
the 3rd DIMACS Workshop on DNA Based Computers, June 23–25, 1997, Vol.!48 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, AMS, Providence, R.I. (1999).

18 Bommarito, S., et al., “Thermodynamic parameters for DNA sequences with dangling ends,” Nuc.
Acids Res. 28, 1929 (2000).



IV-3

5 10 15 20 25 30
-1

-0.5

0

0.5

(sorted)

D
G0 37

 (k
ca

l/m
ol

)

Gibbs free energies of dangling ends

mean=-0.38

Figure 3. Gibbs parameters from Bommarito et al.

This framework being established, it is reasonable (for uniformly random
ssDNAs) to make the zeroth-order approximation that

† 

Pr MSHl
actual( )

Pr MSH ¢ l 
actual( )

= eCb ⋅ l- ¢ l ( ) .

That is, the hybridization mechanism provides this as a decent ansatz (statisticians might
say Bayesian prior, but we are using physics, and so this has some [albeit tenuous]
footing in reality).

Now, neglecting periodicities that give rise to multiple possible MSHs (their
impact will be negligible anyway), we have the crude estimate (recall the operational
definition of m from Chapter 1)

† 

Pr # MSH actual > 0( ) ª Pr MSHm
actual( ) eCb ⋅ l-m( ) Pr # MSHl

possible > 0( )
l=m

l1
Â

= Pr MSHm
actual( ) eCb ⋅ l-m( )

l=m

l1
Â

1- 1- 4-l 1- 4-l( )
L-l-1Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

# L( )

# L( )L=min L wk( )

max L wk( )
Â .

For a non-uniform distribution of words this will instead take the form

† 

Pr # MSH actual > 0( ) ª Pr MSHm
actual( ) eCb ⋅ l-m( )

l=m

l1
Â

1- 1- max
Wl

Pr Wl( ) ⋅ 1- Pr Wl( )( )L-l-1È 
Î Í 

˘ 
˚ ˙ 

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

# L( )

# L( )L=min L wk( )

max L wk( )
Â .
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Operationally, we might want to minimize this quantity subject to fixed X, B, and
l1, while varying the lengths L. But we have not taken the sequences of the batch ssDNAs
into account at all here, and so this quantity is useful only as a relative estimate of failure
rates. In particular, it gives us no information about the likelihood of error for a particular
composition of a particular dsDNA—only a random dsDNA. The reader will probably
not be surprised to see that this quantity will be minimized for equal lengths L. If the
lengths are all equal, then the inner sum has only one term, and it is easy to see that in
fact the likelihood of success is maximized.

This is not to say that the variable-length composition scheme is less likely to
succeed. Rather, it is a reminder that we want to keep the lengths for a composition as
close to equal as possible: that is, it supports one of our operational constraints. It will
also be a way to minimize MSHs when the assumption of perfect complementarity for
hybridization is weakened. As a penultimate note we remark that for designed sequences
it appears that hybridization errors due to base mismatch will decrease exponentially as a
function of hybridization length, however, and so this should not present much of a
problem in practice.19

 In any case, as Carbone and Gromov put it: “The Gibbs measure does not tell one
how the actual hybridization process develops but only describes the equilibrium stage of
hybridization. Unlike the statistical ensembles usually studied in physics, the relaxation
time (i.e., the time needed to reach equilibrium) in biology is relatively long, and the road
to equilibrium may be very bumpy”20 (emphasis in the original). The equilibrium analysis
paints a deceptively simple picture, one that obscures many important points. With this in
mind, we next consider kinetic processes.

                                                  
19 Deaton, R., and Rose, J. A., “Simulations of Statistical Mechanical Estimates of Hybridization Error,”

Preprint (2000).
20 Carbone, A., and Gromov, M., “Mathematical slices of molecular biology,” Preprint IHES/M/01/03,

2001. This paper also asks the intriguing question, “Consider a random population of strands of
various length, i.e., that is a measure on the sequence space. How does this measure evolve in time…?”
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V. KINETIC ASPECTS
I—INTRODUCTION, OVERVIEW, AND APPROACH

A. INTRODUCTION

In principle, the batch DNA synthesis goes like

  

† 

w{ } ≡ nww
w
Â

batch ssDNAs
1 2 4 4 3 4 4 

´ x{ } ≡ nX X + nMSH MSH
MSH
Â + notherother

other
Â

X , mishybridized partial products, and other waste 
1 2 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 

;

K w{ }́ x{ }
eq

≡ VK w{ }́ x{ }
eq = Zw

-nw

w
’

reactant
contributions

1 2 3 
⋅ ZX

nX ⋅ ZMSH
nMSH

MSH
’ ⋅ Zother

nother

other
’

product
contributions

1 2 4 4 4 4 3 4 4 4 4 
.

Operationally, of course, this picture is useless. Instead, we will deal with a more
concrete picture, focusing chiefly on the pairwise hybridization of ssDNAs.

Following Cantor and Schimmel,21 we note that often simple bimolecular reaction
kinetics are adequate to describe a given duplex formation, with relaxation time given by
t-1 = 2kÆ [w] + k¨. Measured relaxation kinetic parameters for several oligonucleotides
(and their complements) at 21–23 ºC are given in the table below.22

The negative forward activation energies imply a decrease of the forward reaction
rate with temperature, provided that the kinetics are Arrhenius, that is, that kÆ =
exp(–bEa). However, the second-order hybridization rate constant is relatively insensitive
to temperature for oligos. More generally, temperature dependence arises implicitly

                                                
21 Cantor, C. R., and Schimmel, P. R., Biophysical Chemistry, Part III: The behavior of biological

macromolecules, WH Freeman, New York (1980).
22 Adapted from Cantor and Schimmel; taken in turn from Riesner, D., and Römer, R., Physico-Chemical

Properties of Nucleic Acids, Vol. 2, ed. J. Duchesne, Academic Press, London (1973).
The association rate constant for duplex formation is strongly dependent on ionic conditions and
apparently is ~ 106–107 s–1 at 25 ºC in 0.25-1 M Na +. This is still much less than the rate constant for a
diffusion-controlled reaction (~ 108–109 s–1). See Reynaldo, L. P., et al., “The Kinetics of
Oligonucleotide Replacements,” J. Mol. Bio. 297, 511 (2000), or Patzel, V., and Sczakiel, G., “Length
Dependence of RNA-RNA Annealing,” J. Mol. Bio. 294, 1127 (1999).
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Table 2. Relaxation kinetic parameters for several oligonucleotides

Sequence kÆ [M–1 s–1] Ea [kcal mol–1] Nucleus length
A9 5.3 ⋅ 105 –8 3
A10 6.2 ⋅ 105 –14 3
A11 5.0 ⋅ 105 –12 3
A14 7.2 ⋅ 105 –17.5 3

A4U4 1.0 ⋅ 106 –6 2–3
A5U5 1.8 ⋅ 106 –4 2–3
A6U6 1.5 ⋅ 106 –3 2–3
A7U7 8.0 ⋅ 105 5 2–3

A2GCU2 1.6 ⋅ 106 3 1–2
A3GCU3 7.5 ⋅ 105 7 1–2
A4GCU4 1.3 ⋅ 105 8 1–2

A5G2 4.4 ⋅ 106 7 1–2
A4G3 4.2 ⋅ 106 9 1–2

through the allowed formation of secondary structure in polymeric ssDNAs.23 This is one
of the first hints that DNA hybridization is more complicated than a garden-variety
bimolecular reaction. Of course, elementary kinetic steps must have nonnegative
activation energies, and resolving this issue quickly leads to a kinetic scheme in which
nucleation is followed by zippering.24 In any event, this illustrates the link between
activation energies and nucleation; in particular, the precise mechanism of nucleation will
depend on the base sequence. We will neglect this dependence for the sake of tractability.

B. OVERVIEW

One of the drawbacks of the all-or-none model (which, broadly speaking, uses the
bimolecular kinetic explanation above and neglects finer scales) is its experimentally
unsupported prediction of a linear increase in forward rate with (hybridization) length for
homologous oligomers. Another drawback (which our approach shares in principle, but
not in practice, owing to the particular nature of our present context) is that one has for
simple second-order kinetics the deceptively complex “C0t relationship”25

[ss]–1 ⋅ ([ss] + [ds]) = 1+ kÆnt ⋅ ([ss] + [ds]).

                                                
23 Wetmur, “Physical Chemistry of Nucleic Acid Hybridization,” and Howorka, S., et al., “Kinetics of

duplex formation for individual DNA strands within a single protein nanopore,” PNAS 98, 12996
(2001).

24 This kinetic scheme is well established. See, e.g., Ross, P. D., and Sturtevant, J. M., “The kinetics of
double helix formation from polyriboadenylic acid and polyribouridylic acid,” PNAS 46, 1363 (1960).

25 A nice discussion of this is in Dieckmann, T., Lecture notes online at h t t p : / / w w w -
chem.ucdavis.edu/courses/W02/107B/ (2002).
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Here n is a factor reflecting the (Shannon) sequence entropy; it is less (respectively,
greater) than unity for high (respectively, low) entropy. This connection between
sequence entropies and renaturation rates has historically been exploited to determine
genetic complexity in experiments. Now the “complexity” N  is given in the present
context by

C0 = 2N ⋅ ([ss] + [ds]),

(hence the “C 0t relationship”) where C0 denotes the total initial concentration of
nucleotides and is consequently proportional to the length of the polynucleotides. More
generally (i.e., when considering the renaturation of a ssDNA fragments obtained from
shearing/fragmenting a single long duplex),

nC0 = 2N ⋅ ([ss] + [ds]).

That is, when considering pairwise hybridization, we should set n = 1 (hence our
previous statement about not sharing the problem in practice); when considering batch
hybridizations in full generality, we should be more careful.

khyb has the empirical form26

khyb = kN¢(Lhyb)1/2N–1,

where kN¢ is the nucleation rate constant (~ 3.5⋅105 M–1s–1 in typical hybridization buffers
~ 1 M NaCl), Lhyb is the hybridization length in nucleotides, and in the present context N
equals Lhyb,27 giving khyb = kN¢(Lhyb)–1/2. The square root dependence is generally presumed
to be due to excluded volume effects, a view which we do not share (we will elaborate on
this point later). Hybridization is effectively an all-or-none process. Mismatching of up to
~10!percent of the bases (see appendix) has little effect on hybridization rates (although it
will surely affect denaturation rates).

In an attempt to make a comprehensive overview (and provide a sanity check) we
mention work done on RNA–RNA annealing.28 At high temperatures the (inverse) square
root functional relationship between length and rate constant is preserved; secondary
structure appears to cause a sharp decrease in the rate constant at lower (i.e., physio-

                                                
26 Wetmur, “Physical Chemistry of Nucleic Acid Hybridization.”
27 Wetmur, J. G. (personal communication, 2002).
28 Patzel, V., and Sczakiel, G., “Length Dependence of RNA-RNA Annealing,” J. Mol. Bio. 294, 1127

(1999).
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logical) temperatures.29 This relationship evidently holds for polynucleotides as short as
14 nucleotides, although deviations from it occur for very short RNAs. (Evidently, khyb

has a minimum between 10–15 nucleotides) DNA–DNA annealing rates are similar to
(although not less than) RNA–DNA or RNA–RNA annealing rates,30 a fact presumably
due to secondary structure effects. For long RNAs and an 800 nucleotide RNA, experi-
ments at physiological ionic strength and temperature (as opposed to, say, PCR regimes)
yielded a relationship of the form khyb = eaL(long)+b.

For oligos a relationship of this form can be obtained through considerations of
ionic interactions between RNAs.31 For longer/polymeric RNAs, Patzel and Sczakiel
considered the scaling of various non-ionic interactions by modeling RNAs as spheres
with some fixed (possibly sequence dependent) fraction of their areas capable of
participating in specific non-ionic interactions (e.g., hybridization nucleation). They
remark that if the non-specific non-ionic interactions behave similarly (and there seems to
be no reason to assume otherwise), then the specific and non-specific non-ionic inter-
actions can be expected to cancel each other out as far as scaling is concerned. In any
case, ionic interactions scale as r–1 (vs. r–6 for nonionic interactions), and so we ought to
expect the ionic character to dominate scaling regardless, despite screening effects and
the like.

The net effect seems to be that square-root dependence arises from what are
generally regarded as excluded-volume effects at high temperatures32—a view we do not
agree with, at least in the regime of interest to us here, whereas the exponential
dependence is explained as arising from the dominant role of ionic interactions. One
explanation offered for an observed rate limit for annealing is in line with Wetmur’s
contention that annealing is hydrodynamically controlled through viscosity (this is clearly

                                                
29 For homopolymeric RNAs (which ought not to have secondary structure) the square-root dependence

was evidently maintained. Cited in Patzel and Sczakiel as Lee, C. H., and Wetmur, J. G., “On the
kinetics of helix formation between complementary ribohomopolymers and deoxyribohomopolymers,”
Biopolymers 11, 549 (1972).

30 Galau, G. A., et al., “Studies on nucleic acid reassociation kinetics: Rate of hybridization of excess
RNA with DNA, compared to the rate of DNA renaturation,” PNAS 73, 1020 (1977), and Galau, G. A.,
et al., “Studies on nucleic acid reassociation kinetics: Retarded rate of hybridization of RNA with
excess DNA,” PNAS 74, 2306 (1977).

31 The so-called “kinetic salt effect” is supposedly manifested through the Brönstedt-Bjerrum relationship
log k µ  zazbI1/2, where za and zb are the charges of reactands and I is the ionic strength. Since the
charges are proportional to the lengths of the RNAs, the claimed exponential dependence on the length
(or on the square root of the ionic strength) follows from this.

32 The role ostensibly played by secondary structure formation in reducing rates seems to us to fall into
the same class of phenomenological considerations.
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true of the zipping mechanism; see below). That said, several authors also point out that
the annealing reaction cannot be diffusion-controlled per se (i.e., the rate constants are
not those of a diffusion-controlled reaction). These two lines of thinking are not
inconsistent, however.

C. APPROACH

We will introduce a transition-state model in which batch ssDNAs with comple-
mentary ends will encounter each other through diffusion. Pairs of batch ssDNAs that are
close enough to interact comprise “proximal complexes,” which can subsequently form
activated-hybrid complexes, and which in turn can form nucleated and finally hybridized
complexes.

A naïve (and ultimately, we believe, misleading) cartoon of the kinetics is as
follows:

  

† 

w + ¢ w 
kdæ Æ æ 

k-d
¨ æ æ æ 

w - ¢ w 

co-located
ssDNAs6 7 8 kÆnuc*æ Æ æ æ æ 
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Í 
Í 
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˙ 

≡R1hyb- nuc
1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 

The component reaction R1hyb-nuc is essentially (though not exactly) a series of
identical reactions (denoted R1) in which individual base pairs are formed. In the course
of each such formation there is a transition state (the reaction going from one transition
state to the next is denoted R1*):

  

† 

R1hyb-nuc ≡ w ¢ w ( )nucL n( )*

bh( )-1
æ Æ æ æ 

bh( )-1e
-bDG n( )Æ n( )*

= bh( )-1e
bDG n( )*Æ n( )

¨ æ æ æ æ æ æ æ n( )
bh( )-1 e

-bDG n( )Æ n +1( )*
æ Æ æ æ æ æ æ æ æ 

bh( )-1¨ æ æ æ 
n +1( )*

R1*; n( )́ n+1( )fiR1
1 2 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 

L w ¢ w ( )hyb :

DG n( )Æ n+1( )* + DG n+1( )*Æ n+1( ) ≡ DG n( )Æ n+1( ) ≡ DG n( )*Æ n+1( )* .

Stable duplexes fi
n( )[ ]

n( )*[ ]
= e-bDG n( )*Æ n( ) >1> e-bDG n( )Æ n +1( )* =

n +1( )*[ ]
n( )[ ]

fi DG n( )*Æ n( ) < 0 < DG n( )Æ n+1( )* .

The natural reaction coordinate here is just the extent of zipping (it is a spatial
coordinate) and the base pairing dipole interaction must have to some (possibly poor)
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approximation a quadratic minimum,33 so we invoke the equipartition theorem to get an
estimate of the energy barrier:

† 

Equipartition fi DG n( )Æ n+1( )* ª
1
2b

= 0.3 kcal/mol

NN DNA model fi DG n( )*Æ n+1( )* =
average

-1.4 kcal/mol

¸ 

˝ 
Ô 

˛ 
Ô 

fi DG n+1( )*Æ n+1( ) ª -1.7 kcal/mol.

A detailed semimicroscopic analysis, on the other hand, predicts a barrier of slightly over
2 kcal/mol at body temperature, with approximately half coming from each of hydrogen
bonding and ss-ds rigidity difference contributions (the latter arise from base-base
stacking interactions).34 However, the level of detail in that analysis is considerably
higher, and the use of one or the other value does not substantively affect any of our
conclusions. In any case, if we could associate a degree of freedom to each of the
hydrogen bonding and base stacking contributions, then the barrier would be roughly
2!kcal/mol. This picture appears to be broadly consistent with the kinetics of hybridiza-
tion. It is also worth noting that at 55 ºC (the annealing temperature in PCR) we get an
estimate of –1.3 kcal/mol for the energy barrier with one effective degree of freedom and
–1.6 kcal/mol with two.

It is important to note that such phenomena as enzymatic activity affects the batch
uniformly (at least before the emergence of heterogenous DNA structures); therefore (for
the purposes of deriving Gibbsian weights), we can (presumably) safely neglect kinetic
features which are common to the entire batch. For instance, the kinetics of ~4 base pairs
nucleation of hybridization between ssDNAs ought not to depend (at least not strongly)
on parts of the ssDNAs distant from the nucleation site. (This view informs our proposed
mechanism for nucleation: see below.) In the uniformly random case (i.e., ours) we
therefore neglect the aspects of the molecular biology and chemical kinetics which do not
vary significantly between instantiations. Our kinetic cartoon is applied with these points
in mind.

                                                
33 Cocco, S., et al., “Force and kinetic barriers to initiation of DNA unzipping,” Phys. Rev. E 65, 041907

(2002).
34 Base pairing interactions are well modeled by a Morse potential D[(e–a(r–R)–1)2–1] with D = 5.84b–1, a =

6.3 Å–1, and R = 10 Å. The quadratic approximation is actually only accurate within about .1–.2 Å of
the minimum (at R). Incorporating the energetic contributions of rigidity/base stacking does not affect
this qualitatively, and the net result ought to be that the formation of an activated complex (i.e.,
achieving partial base stacking without hydrogen bonding) is more energetically unfavorable than
equipartition would suggest, as appears to be the case. See note 33. Also, a 0.2 Kcal/mol increase in
potential energy (arising because hydrogen bonds break on length scales of ~1 Å) comes into play.
(Cocco, S., et al., “Slow nucleic acid unzipping kinetics from sequence-defined barriers,” cond-
mat/0207609 (2002).
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We are motivated by a parallel batch synthesis protocol—a protocol in which the
entire batch of ssDNAs is co-introduced simultaneously. We assume that subprotocols
such as ligation, polymerization, and thermal cycling are performed periodically, and we
consider the resultant (quasi-) equilibrium resulting from such a process. We expect that
the primary mechanism at play is diffusive hybridization.





VI-1

VI. KINETIC ASPECTS
II—DIFFUSION AND CONFIGURATION KINETICS

We begin our discussion in earnest by noting that there is some apparent
inconsistency in the literature about the applicability of models from polymer physics to
short ssDNA dynamics. Ansari et al. offer a resolution indicating that short ssDNAs
exhibit behavior consistent with models of flexible polymers that can exhibit transient
mishybridized loop configurations. Goel et al.35 point out that ssDNA has Kuhn length36

~1.4 nm , and hence persistence length ~.7 nm (whereas the interphosphate distance for
ssDNA is typically ~ .75-1 nm). With these bits of information in hand, we can
consequently model ssDNAs as purely floppy polymers rather than resorting to more
complicated models such as the wormlike chain.37 That said, at physiological conditions,
local helical order should be present in ssDNA, at least in a statistical sense.38 However,
the lack of persistence in this local order allows us to use the floppy model in practice.

On the other hand, double-stranded DNA, is well-described by Hearst’s “weakly
bending rod” model with 3.4 Å rise/bp and 13 Å radius for the helix; its persistence
length39 is ~500 Å (hence its Kuhn length is ~100 nm) according to both the Hearst

                                                  
35 See, e.g., Goddard, N. L., et al., “Sequence dependent rigidity of single stranded DNA,” Phys. Rev.

Lett. 85, 2400 (2000); Ansari, A., et al., “Misfolded Loops Decrease the Effective Rate of DNA
Hairpin Formation,” Phys. Rev. Lett. 88, 069801-1 (2002); Goel, A., et al., “Unifying Themes in DNA
Replication: Reconciling Single Molecule Kinetic Studies with Structural Data on DNA Polymerases,”
J. Biomolecular Structure and Dynamics 19, 1 (2002).

36 The Kuhn length of an N-mer is defined as lK ≡ R2/(a[N-1]), where R2 is its mean square end-to-end
distance and a is the bond or monomer length. It can be shown that lK = 2lp (see next footnote).

37 In the wormlike chain model (WLC) a polymer is modeled as a series of N segments of constant length
a (hence arclength L = Na), each making a fixed angle q with its predecessor but free to rotate about its
predecessor’s axis. (Saitô noted that the conformations of the WLC can be identified with diffusion
paths on the unit sphere.) The (temperature dependent) persistence length lp = bA (A is the stiffness) is
defined as the limiting average length of the projection of the end-to-end distance onto the axis of the
first segment (i.e., lp = a(1-cos q)). It can further be shown that the mean square of the end-to-end
distance satisfies ·R2Ò = 2lp{L – lp[1-exp(-L/lp)]} Æ  2lpL. (See Daune.)

38 Cantor and Schimmel, Biophysical Chemistry.
39 According to Song, L., and Schnurr, J. M., “Dynamic bending rigidity of DNA,” Biopolymers 30, 229

(1990), the persistence length of DNA is determined by lp
 –1 = P(sequence)–1 + P(slow)–1 + P(local)–1,

where the RHS terms refer respectively to sequence-dependent deviations from straight B-DNA,
millisecond-timescale structural variations, and quickly relaxing local elastic deformation
contributions.
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model40 and the “wormlike chain” Zimm model41 (a variation on the nonhydro-
dynamically interacting Rouse model42) which is preferable for longer dsDNAs. For
dsDNAs with more than ~ 600 base pairs the entire spectrum of relaxation times enters
into the intramolecular dynamics, and modeling consequently becomes more difficult.43

A. TRANSLATIONAL DIFFUSION

Using the Stokes-Einstein-Smoluchowski theory we can obtain a diffusive rate
constant. For example, a floppy polymer should have diffusion and diffusive rate
constants governed by its effective radius, and this is indeed the case. For two floppy
polymers of lengths L1 and L2, it is reasonable to assume that their effective radii scale as
the square root of the length,44 and so we obtain (up to a constant steric factor)

† 

kd =
2

3bh

L1
1 2 + L2

1 2( )
2

L1
1 2L2

1 2 .

Here h is the solvent viscosity. Note that more generally, we have a formula like

† 

kd = 4p D1 + D2( )d12

where D1, D 2 denote the two diffusion coefficients, and d12 denotes a critical reaction
distance. The previous formula is based on this one with (statistically) spherical (floppy)
polymers, which react when the spheres defining their statistical extent come in physical
contact. Taking L1 and L2 to be equal, we get a rate constant of 8(3bh)–1 ~ 108–109 s–1 in

                                                  
40 Goel, “Unifying Themes in DNA Replication.”
41 Zimm, B. H. “Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence

and Dielectric Loss,” J. Chem. Phys. 24, 269 (1956).
42 Rouse, P. E., Jr., “A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling

Polymers,” J. Chem. Phys. 21, 1272 (1953).
43 Diekmann, S., et al., “Orientation Relaxation of DNA Restriction Fragments and the Internal Mobility

of the Double Helix,” Biophys. Chem. 15, 263 (1982).
44 In reality, as Kuhn predicted in 1934, floppy polymers do not assume spherical shapes. An experiment

was performed (and reported in Haber, C., et al., “Shape anisotropy of a single random-walk polymer,”
PNAS 97, 10792 [2000]) in which conformations of fluorescently labeled DNA molecules (T2-DNA,
with arclength ~ 56 mm and persistence length ~ 52 nm [and hence ~ 1,075 orientationally uncorrelated
statistical segments]) were optically monitored. In the ensemble the average aspect ratio of an ellipsoid
approximating the T2–DNA conformation was ~ 4.1:2.3:1. We obtained fits to their data suggesting
that the rate (in s–1) of (major/minor) aspect ratio change satisfies an exponential distribution with
decay constant ~ 1.9, and similarly that the rate (in s–1) of angular change (more specifically, the “rate
at which a polymer rotated by more than 90º”) satisfies an exponential distribution with decay constant
~.8. On the other hand, appealing to ergodicity to go between time and ensemble averages indicates
that the spherical assumption is not intrinsically invalid for our purposes. In any case, the relative roles
of sphericity and anisotropy raise a subtle point that we proceed to sweep under the rug with a smile.
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water at normal temperatures. In general, we expect this to be a tight upper bound on the
rate, said to hold in diffusion-controlled reactions.45

Tirado and García de la Torre have laid most of the theoretical groundwork for
diffusion of dsDNA: duplex oligonucleotides can be modeled by rigid rods with
translational diffusion coefficient

D = (log p + dtrans)/(3hbpL),

where p is the axial ratio (length over diameter) and dtrans is a correction factor (which
depends on p).46

Table 3 gives a “dirty-hands” sense of the translational diffusion characteristics of
oligonucleotides:

Table 3. Predicted and measured translational diffusion coefficients
for oligonucleotides47

Translational diffusion coefficient (10–10 m2/s) 8-mer 12-mer 20-mer
Experimental data 1.53 ± 0.05 1.34 ± 0.03 1.07 ± 0.02

Double bead model 1.614 1.362 1.066

B. ROTATIONAL DIFFUSION

The time-scale for rotational relaxation of a dsDNA is tlong axis = 1/(6Q), where Q
is the long-axis rotational diffusion coefficient.48 Tirado and García de la Torre49 obtain a
rotational (tumbling) diffusion coefficient for duplex oligonucleotides, and one also has a
spinning diffusion coefficient:50

Qtumble = 3(log p + dT)/(hbpL3);

Qspin = (3.841hbpLR2(1 + dS))–1 ,

                                                  
45 Exceptions are in promoted reactions (see below with respect to accelerating hybridization kinetics).
46 Tirado, M. M., and García de la Torre, J., “Rotational dynamics of rigid, symmetric top molecules.

Application to circular cylinders,” J. Chem. Phys. 73, 1986 (1980).
47 Reproduced from Banachowitz, E., et al., “Solution Structure of Biopolymers: A New Method of

Constructing a Bead Model,” Biophys. J. 78, 70 (2000), in turn citing Eimer, W., and Pecora, R.,
“Rotational and translational diffusion of short rodlike molecules in solution: Oligonucleotides,”
J.!Chem. Phys. 94, 2324 (1991) and Liu, H., et al., “Effect of electrostatic interactions on the structure
and dynamics of a model polyelectrolyte. I. Diffusion,” J. Chem Phys. 109, 7556 (1998).

48 Diekmann, S., et al., “Orientation Relaxation of DNA.”
49 Tirado and de la Torre, “Rotational dynamics.”
50 Chrico, G., et al., “Rotational dynamics of curved DNA fragments studied by fluorescence polarization

anisotropy,” Euro. Biophys. J. (online 2000).
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where again p is the axial ratio (length over diameter) and the deltas are correction factors
that depend on p. Curvature in dsDNAs (such as is commonplace in, e.g., poly(A)) can be
expected to manifest itself in the rotational dynamics as a decrease in the spin diffusion
coefficient. Roughly equivalently, spin coefficient variations can be accounted for by
larger hydrodynamic radii (which is ~ 9.5 Å for the DNA B-helix).

Eimer and Pecora showed51 that the Tirado-García de la Torre model is valid for
short (8, 12, and 20 base pair) oligonucleotides. Diffusion coefficients at 20 ºC are given
in the table below:

Table 4. Data from Eimer and Pecora. Here D = D0(1+k[oligo]) is an empirical
relationship yielding the second virial coefficient of diffusion.

D0 (10–10 m2 s–1) k (l kg–1) Q (107 s–1) p L (Å)
8-mer 1.53 8.5 5.18 1.43 28.6
12-mer 1.34 8.0 2.61 2.10 42.1
20-mer 1.09 12.9 1.03 3.59 68.8

Data from a separate study52 yielded rotational relaxation times:

Table 5. From Banachowitz et al. The authors considered bead models for B–DNA
hydrodynamics in which identical overlapping beads of radius 5.0 Å were used

for both base and phosphodiesters. Short DNA fragments are slower in
reality than the bead model with parameters for longer fragment

(the authors attribute this to end effects).

Rotational relaxation time (ns) 8-mer 12-mer 20-mer
Experimental data 3.22 ± 0.16 6.39 ± 0.32 16.2 ± 0.8
Double bead model 2.84 5.58 15.2

C. CONFIGURATIONAL KINETICS

Goel et al. point out that as a rule for applying transition state theory, polymer
relaxation times should be much less than the time to cross energy barriers (estimated to
be around 10–100 ms). They also remark that for a dsDNA complex “the relaxation
times…can increase appreciably with its contour length and fraction of dsDNA
composition. Therefore transition state theory must be applied cautiously to describe
reactions.”53 Indeed, a 50-percent dsDNA complex would have comparable relaxation
and reaction times, signaling that transition state theory may begin to fail in this regime.54

                                                  
51 Eimer, W., and Pecora, R., “Rotational and translational diffusion of short rodlike molecules in

solution: Oligonucleotides,” J. Chem. Phys. 94, 2324 (1991).
52 Reproduced from Banachowitz et al.
53 Goel, “Unifying Themes in DNA Replication.”
54 Goel, A., et al., “Tuning DNA ‘strings,’ Modulating the rate of DNA replication with mechanical

tension,” PNAS 98, 8485 (2001).
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This suggests that our point of view for examining batch DNA synthesis may be more
difficult to use for long times and more generally hints at a potential obstacle for attempts
at understanding the self-assembly of DNA structures.
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VII. KINETIC ASPECTS
III—NUCLEATION AND ZIPPING

A. THE GEOMETRY OF NUCLEATION

The formation of an activated complex between two ssDNAs requires something
like nucleation of hybridization. In fact, it happens that nucleation is the rate-limiting step
in the kinetics of DNA hybridization.55 However, there are some indications that if
hybridization is modeled as a single second-order reaction the forward rate is length-
independent (indeed, effectively diffusion-controlled) for very short oligonucleotides56

(hence the reverse/dissociation/off rate ought to vary exponentially with length)57 and is
roughly given by

kforward = Aforward e-bE(forward) ~ 6 ⋅ 105 M–1s–1

where Aforward = 5 ⋅ 108 M–1s–1 and Eforward = 4 kcal mol–1 is the forward activation energy.58

In any event nucleation is the crucial event in the hybridization process. With this
in mind, we identify a symbol for a batch ssDNA with an arclength parametrization (in
units of monomer length, so that a batch ssDNA has a length given by the number of its
constituent bases and so that the tangent vectors have unit norm) beginning at the 5¢ end
of an idealized curve representing the ssDNA. Using s and s¢ to denote a positions along a
pair of ssDNAs that together comprise a potential nucleation site, a plausible geometrical
constraint for nucleation can be written as

† 

˙ w s( ),- ˙ ¢ w ¢ s ( ) ≥1- ehyb .

                                                  
55 Wetmur, “Physical Chemistry of Nucleic Acid Hybridization.”
56 Quartin, R. S., and Wetmur, J. G., “Effect of ionic strength on the hybridization of oligodeoxy-

nucleotides with reduced charge due to methylphosphate linkages to unmodified oligodeoxy-
nucleotides containing the complementary sequence,” Biochem. 28, 1040 (1989).

57 Cocco, S., et al., “Force and kinetic barriers to unzipping of the DNA double helix,” PNAS 98, 8608
(2001).

58 This appears to be at odds with Wetmur’s empirical formula khyb = kN¢(Lhyb)1/2N–1. In this regime, the
“complexity” N and length can be identified, and kN¢  ~ 3.5⋅105 M–1 s–1 gives too low a value. This sort
of conflicting information about the hybridization kinetics of oligonucleotides is commonplace.
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It is not hard to see that

† 

Pr ˙ w ⋅( ),- ˙ ¢ w ⋅( ) ≥1- ehyb( ) =
1
2

ehyb .

The values of the critical hybridization distance and critical hybridization orientation
parameter ehyb are governed by electrochemical factors.

There is a –6 cal mol–1 K–1  empirical initiation entropy which presumably comes
about as the thermodynamic cost of strand alignment.59 We can use this to estimate the
probability of strand alignment:

† 

A= ≡ ˙ w ⋅( ),- ˙ ¢ w ⋅( ) ≥1- ehyb{ }; Pr A=( ) =
1
2

ehyb

A¥ ≡ ˙ w ⋅( ),- ˙ ¢ w ⋅( ) <1- ehyb{ }; Pr A¥( ) ≡1- Pr A=( ).

Pr A=( ) + Pr A¥( ) =1fi Pr A=( ) =1-
1

1+
Pr A=( )
Pr A¥( )

.

Pr A=( )
Pr A¥( )

= e-bDG¥Æ= = eDS¥Æ= R ª e-3 fi Pr A=( ) ª 0.047, ehyb ª 0.095.

.

(This means “alignment” translates to ~ 18º tolerance in the relative orientation of
the strands. Of course, this is meaningless except in a statistical sense.) As we shall see
below, the dynamical time-scale for nucleation (the orientational relaxation time of
~3–4!bases) in the regime we are concerned with should be roughly .8–.9 ns. Now it can
be shown (see Appendix D) that the so-called average fractional heat (or probability)
content of the non-alignment parameter space goes (to first order) as 0.610 + 0.390e–2Qt.
That is (if we do not initially have alignment already),

Pr(mint ft ≤ fhyb) ~ 0.390 ⋅ (1 – e–2Qt).

Using this, we arrive at the total probability of alignment as a function of time as

0.419 ⋅ (1 – 0.889e–.4t)

with t the time in nanoseconds. Can things really be so tractable as this? No—but the
silver lining is that we can use this to gauge what is really going on in the hybridization
process, and we continue with this approach in mind.

                                                  
59 Winfree, E., Algorithmic Self-Assembly of DNA, Ph.D. thesis, California Institute of Technology

(1998). Since this entropy is independent of length, it must be due to either rotational degrees of
freedom or translational ones that do not depend on the length (e.g., strand-strand distances). The latter
case seems unlikely since it cannot be isolated from diffusion proper.
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The first thing to note is that the rate constant in the exponential here is 4 ⋅ 108 s–1,
which immediately rules out alignment as a rate-limiting step (non-rate-limiting
processes such as base-pair addition have constants of 106–107 s–1 [see the discussion
below], and any strand-strand interactions [which along with hydrodynamic effects are
presumably accounted for by the initiation entropy anyway] could only be expected to
speed this alignment process up). Consequently, we can safely assume that translational
constraints (but of a type qualitatively different than those associated with the free
diffusion of noninteracting ssDNAs) are the rate-limiting step in the overall rate-limiting
step of nucleation. Unlike alignment constraints, we can expect these translational
constraints to depend explicitly on the lengths of the ssDNAs involved. To recap, the
overall lesson to draw here is that the kinetics of the nucleation process will probably
exhibit a dependence on DNA length because of translational constraints arising from a
qualitatively different process than free diffusion in solution. This conclusion is
consistent with the commonly held view cited above and derived from Wetmur that
excluded-volume effects are the overall rate-limiting factors in DNA hybridization—but
there is another, potentially better explanation.

B. SEARCH PHASE

We suspect that the excluded-volume view (certainly in spirit even if not quite in
fact) is inappropriate—at least in the regimes that interest us. (For instance, it is unlikely
that excluded-volume effects govern the hybridization kinetics of short ssDNAs.) Instead,
we propose a conceptually simpler picture, in which, much like a polymerase,60 two
ssDNAs shift bases relative to each other, evoking a one-dimensional diffusive process
that continues until nucleation is initiated or the ssDNAs decouple.61

                                                  
60 Guthold, M., et al., “Direct Observation of One-Dimensional Diffusion and Transcription by

Escherichia coli RNA Polymerase,” Biophysical J. 77, 2284 (1999).
61 A similar picture holds for DNA transcription factors: “In their nonspecific binding mode, TFs are still

strongly associated with the DNA but are able to diffuse (i.e., slide) randomly along the genome.”
Gerland, V., et al., “Physical constraints and functional characteristics of transcription factor-DNA
interaction,” PNAS 99, 12015 (2002). Recent work on RAD52 promotion of DNA annealing also
suggests the possibility of such a mechanism: “Once strand annealing is initiated, the two [RAD52-
ssDNA] complexes could roll around each other, driven by the energetically favorable formation of the
DNA duplex until the DNA becomes base-paired…Specificity is achieved therefore by the favorable
energy change that would acompany only the annealing of complementary sequences.” Singleton,
M.R., et al., “Structure of the single-strand annealing domain of human RAD52 protein,” PNAS 99,
13492 (2002).
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Figure 4. Proposed search phase. (L) Portions of two ssDNAs with a single complementary
region indicated by hatch marks form a transient/metastable spatially coherent structure
evocative of dsDNA (“2ssDNA”). The energy barrier to mutual one-dimensional diffusion

along their respective phosphodiester backbones can easily be overcome by thermal
noise. (R) The same two ssDNAs after a brief time period. If the hatch marks line up
then a series of Watson-Crick pairs can be formed (this is just the nucleation step)

and hybridization can occur.

Suppose that l bases are (correctly or incorrectly) paired between two ssDNAs. As
a (very) simple model, suppose that a correct base pairing contributes an energy of ~ 1
unit, and that an incorrect base pairing contributes an energy of << 1 unit. Then (if spatial
and sequence characteristics are taken uniformly at random) a typical 2ssDNA configura-
tion donates an energy of ~ l/4 + (correction) whereas a properly paired configuration
gives an energy of ~ l. As such there will tend to be a single deep energy well for a
proper configuration and a low-energy barrier to one-dimensional relative translations of
the ssDNAs.62

The immediate problem with this picture is that it appears to preclude zipping. In
fact this need not (and should not) be the case. The fraying of ends and overall shifting of
bases noticed in simulations of denaturation dynamics by Drukker at al. lend qualitative
support to an explanation of why this picture (despite its novelty and unorthodoxy) can
explain the kinetics of DNA hybridization.63 More generally it is reasonable to assume

                                                  
62 Others have had these and complementary thoughts:

Amazingly, being random is sometimes advantageous for reconstruction of cleaved strands, due to
the high degree of specification: take a long strand S  and a strand S0¢ which is twin to a
subsegment S0 of S. In the random case, the binding energy between S0¢ and S0 is roughly twice as
great as the energies of other possible bindings of S0¢ to S, since the number of matches of letters
for random pairs of sequences is roughly equal to the number of mismatches. But for pure breed
strands the binding energy is constant for full hybridization and, in general, proportional to the
length of the hybridization overlap. The same consideration applies to the hybridization of two
pieces of a cleaved strand on available ligation sites. Since the energy enters the canonical sum
under the exponent of the Gibbs-Boltzmann factor, it can beat entropy and, depending on
parameters (as temperature, energy, concentration, etc.), the population may evolve towards
strands with repeated random motives. One wonders if the tandem repetitions in genomes can be
explained by mechanisms of this nature. [Carbone, A., and Gromov, M., “Mathematical slices of
molecular biology,” Preprint IHES/M/01/03 (2001).]

63 Drukker, K., et al., “Model simulations of DNA denaturation dynamics,” J. Chem. Phys. 114, 579
(2001).
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that transient 2ssDNA configurations are qualitatively similar to partially denatured
dsDNA configurations—there ought to be “denatured” bubbles, as in the Poland-
Scheraga model.64 This picture allows us to retain the zipper model, albeit in a modified
form: it suggests that the rate-limiting factor in zipping could be the breaking of sterically
unfavorable transient base pairs due to tension in the shorter strand component of the
induced bubble.

Quantitatively, it would be nice to show that this scheme can reproduce observed
kinetics. This is not hard. In fact it is too easy. We list a few sketches, any of which might
turn out to have a kernel of truth:

• By equipartition, the average kinetic energy of the center of mass of an oligo
is constant, and so ·EÒ := mv2/2 defines a mean (positive) velocity which is
consequently proportional to m–1/2—and hence also to L–1/2.65 One expects the
net instantaneous velocity in diffusion to behave similarly. If hydrodynamic
effects turn out to be negliglible, relative thermally driven diffusion of the
strand components of a 2ssDNA complex could be the driving mechanism.
This would be tantamount to treating some point on one of the strand
components as a random walker on a line.

• For long strands, the amount of “denatured” 2ssDNA ought to be roughly
proportional to the number of bases, and the combination of entropic forces
and the lack of a significant energy barrier between random 2ssDNA
configurations (with the same amount of paired bases) would cause the
bubbles to tend to assume random coil configurations. These coils would not
be hydrodynamically screened and would therefore (since the diffusion
coefficient for a random coil is proportional to inverse square root of its
length) bring about observed kinetic forms. Moreover the effective lack of an
energy barrier between 2ssDNA configurations would imply that the
hydrodynamic diffusion (confined to one dimension) is the driving
mechanism.

• In the most general setting, we might have some form of dynamics
corresponding to anomalous diffusion,66 in which we have a relationship of

                                                  
64 Poland, D., and Scheraga, H.A., J. Chem. Phys. 45, 1456 (1966).
65 Frank, M. P., personal communication (2002). This argument does not rely on dimensionality (other

than trivially in changing the constant of proportionality in accord with equipartition).
66 An interesting example of a process giving rise to anomalous diffusion is reptation. The reptation

theory (which is central to the theory of gel electrophoresis—see, e.g., Viovy, J., “Electrophoresis of
DNA and other polyelectrolytes: Physical mechanisms,” Rev. Mod. Phys. 72 , 813, 2000) was
developed by de Gennes to explain the dynamics of polymer gels by considering the motion of
individual polymers in the presence of geometrical constraints imposed by entanglements with other
such polymers. In this setting, a given polymer snakes through a reptation tube that represents these
constraints. Two important relaxation times play roles: the longest Rouse (in this context,
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the form ·x2Ò µ  tg. (If g < 1 we call the behavior subdiffusive [characterized
by long waiting times], whereas if g > 1 we call it superdiffusive [charac-
terized by long steps].) The first passage time (which would govern the
initiation of nucleation) for anomalous diffusion on an interval of length L is
proportional to L2/g.67 It could be the case that different regimes of anomalous
diffusion come into play in separate stages and combine to give the observed
scaling. The excluded-volume interpretation (in which “the longer a DNA
strand, the more difficult it is for a second strand to interpenetrate and find
complementary sites”) may actually imply anomalous dynamics.68

Although we find the first of these explanations by far the most appealing, the
overall moral here is, as every kineticist knows, that we have to actually determine what
the underlying processes and influences are—at present we simply do not have a
sufficient understanding, either experimental or theoretical, of the processes involved in
DNA hybridization. Nothing in the literature clarifies the nature of the rate-limiting
translational component of the (itself rate-limiting) nucleation process, and so all we can
do is guess and offer the suggestion that simulations and experiments using (e.g.) DNAs
with cyclic code or de Bruijn sequences (see Appendix B) and various hybridization
detection techniques or some other real-time hybridization detection mechanisms may
offer a way to conclusively determine what really goes on.69

                                                                                                                                          
hydrodynamic interactions are typically assumed to be screened, and so the polymers obey Rouse
dynamics) relaxation time tR (proportional to the length squared; polymeric viscosity comes about as a
result of dynamics on timescales like tR), and the de Gennes reptation time tdG (proportional to the
length cubed [Peters, F., “Polymers in flow: modeling and simulation,” Ph.D. thesis, Delft (2000)]. In
fact, we have a relationship of the form tdG = 3LtR/a, where a is the characteristic monomer length.
Broadly speaking, we can interpret tR as an intra-polymer relaxation time, and here tdG as a polymer-
polymer relaxation time.). More concretely, reptation theory predicts—and experiments confirm—that
a reptating monomer ought to have a mean square displacement that goes as t1/4 for intermediate
timescales and as t1/2 at other times (versus a displacement that goes as t for diffusion proper).
Diffusion along the tube goes as ·x2Ò µ t/Ltube, which is consistent with a search phase: we might expect
two ssDNAs to diffuse in an effective reptation tube determined by their common backbones. That is,
insofar as we might expect them to reptate along each other until nucleation is initiated. Indeed the
difference between simple one-dimensional diffusion and “reptation” appears to be largely one of
interpretation in this particular context. See de Gennes, P. G., “Reptation of a Polymer Chain in the
Presence of Fixed Obstacles,” J. Chem. Phys. 55, 572 (1971), Ebert, U., et al., “Short Time Behavior in
de Gennes’ Reptation Model,” Phys. Rev. Lett. 78, 1592 (1997), and Smith, D. E., et al., “Self-
Diffusion of an Entangled DNA Molecule by Reptation,” Phys. Rev. Lett. 75, 4146 (1995).

67 Gitterman, M., “Mean first passage time for anomalous diffusion,” Phys. Rev. E, 62, 6065 (2000).
68 Chuang, J., et al., “Anomalous dynamics of translocation,” Phys. Rev. E, 65, 011802 (2001).
69 Tyagi, S., and Kramer, F. R., “Molecular beacons: probes that fluoresce upon hybridization,” Nature

Biotechnology 14, 303 (1996); and McKendry, R., et al., “Multiple Label-Free Detection and
Quantitative DNA-Binding Assays on a Nanomechanical Cantilever Array,” PNAS 99, 9783 (2002).
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The idea of a search phase is not trivially reconcilable with second-order kinetics:
if the two ssDNAs are chemically bound, the reaction is not second-order, whereas if they
are unbound, it is difficult to see how a searching mechanism can come into play.70 That
said, transient base shifting in a 2ssDNA complex could happen through a number of
ways. Ionic contributions of the phosphates tend to destabilize dsDNA, but entropic
effects arising from counterion condensation (not generic entropic effects) tend to
stabilize it.71 These factors compete without a definite outcome and the net result for non-
complementary regions of ssDNAs can be to keep them co-located in a 2ssDNA complex
for a time-scale that would, for energy budgeting reasons, probably have to depend on the
hybridization length.72

There are other, subtler issues that our proposed search phase raises. For one
thing, we ought to expect a prefactor arising from the possible disengagement of
complementary ssDNAs to manifest itself in the hybridization rate. For another, the
nucleation rate is evidently unaffected by circular permutation of linear ssDNAs but is
decreased roughly threefold if one of the ssDNAs is circular.73 We attempt to give a
sketch here of why this is not inconsistent with a search phase. The strands of a 2ssDNA
complex might be hydrodynamically screened relative to each other, or they might not
be. But the circular DNA cannot be hydrodynamically screened from the linear one it
tries to hybridize to, and the moment of inertia can be expected to play a nontrivial role
(especially when compared to the linear-linear case).

For instance (although such an argument is not really appropriate other than as a
cartoon), the moment of inertia of a thin wheel74 with mass M = L and radius r = L/(2p) is
L3/(4p2). If we assume that the linearized angular velocity of the ring equals the linear

                                                  
70 Wetmur, J. G., personal communication (2002).
71 Gelbart, W. M., et al., “DNA-Inspired Electrostatics,” Physics Today 53 (9), 38 (2000).
72 Alternatively, local regions of partial bonding and base stacking could maintain a 2ssDNA complex as

the unbound regions reptated. Although we can expect to see partial bonding and base stacking, we
think it unlikely that such phenomena can maintain 2ssDNA complexes. We consider it much more
likely that electrostatic effects would mediate the putative metastability of (the also basically putative)
2ssDNA complexes.

73 Kinberg-Calhoun, J., and Wetmur, J. G., “Circular, but not circularly permuted, deoxyribonucleic acid
reacts slower than linear deoxyribonucleic acid with complementary linear deoxyribonucleic acid,”
Biochemistry 20, 2645 (1981).

74 Even relaxed (let alone supercoiled) circular DNA will not act like this. Here we might hand-wave and
say that a careful application of the ergodic hypothesis could conceivably justify this, although the
truth or even relevance of this claim is far from clear. Our aim throughout this portion of the discussion
is chiefly to illustrate a potentially feasible alternative to the excluded-volume hypothesis for the rate-
limiting step of DNA hybridization.
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velocity of a rod (or the curvilinear velocity of a suitably well-behaved polymeric object)
with the same length (and hence mass), then the ratio of the rotational kinetic energy of
the ring to the translational kinetic energy of the rod turns out to be approximately 4. (On
the other hand, if the two kinetic energies were equal, then the linearized angular velocity
would be 1/÷2 times the rod’s velocity.) Rescaling one of the time-scales so that the
kinetic energies equal one another (i.e., appealing to equipartition) implies a time dilation
factor of about 2; throwing in a factor of ÷2 to compensate for the velocity gives a net
factor of roughly 3. Of course, this does not actually make any sense. That said, a more
careful non-hand-waving exercise of this sort might be able to explain the decrease in
rate. In any case these arguments alone seem sufficient to justify reasonable doubt of the
excluded volume view.

C. INTERNAL SSDNA RELAXATION DYNAMICS

Goel et al.75 point out that the orientational relaxation time (which is effectively
given as the shortest relaxation time in the Zimm model) for a single segment of ssDNA
is ~ .7 ns. For even moderately long ssDNAs we expect to be in the “non-free-draining”
regime, in which the relaxation times are of the form

† 

tk µ
N
k

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

3 2
1-

1
2pk

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 
-1.

The nucleation sites will be ~ 3–4 bases regardless of the lengths of DNA
involved (which should lead to a zipping rate that is essentially independent of the
lengths)76 and so we expect the nucleation step proper to have a time constant (governed
by if not exactly equal to)

† 

tnuc ª tshort 1+
2.5

N - 2.5
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

3 2.

For N ~ 20–40 this implies a time-scale of ~ .8–.9 ns. Since it seems plausible that
the reverse-nucleation process should have a shorter time constant, we might simply put
it at ~ .7 ns. In any event the small variations in these time-scales indicate that we can
safely dispense with any presumed need for a more detailed model of hybridization
(especially since the zipping stage generally occurs over much longer [microsecond]
time-scales due to hydrodynamic effects [see below]).

                                                  
75 Goel, et al., “Tuning DNA ‘strings.’”
76 Cocco, et al., “Force and kinetic barriers to unzipping of the DNA double helix.”



VII-9

D. SINGLE-MOLECULE DNA HYBRIDIZATION DATA

The only single-molecule study of hybridization kinetics that we are aware of
indicates that two different event types (i.e., two clearly distinct binding timescales) took
place.77 these events were only able to be characterized by two qualitatively different
association/dissociation reactions.78 The longer-lifetime events dominated the equilibrium
constant, and these alone are reflected in the adapted tables (reproduced from the authors
at 20 ºC with 2 M KCl and 12 mM MgCl2 and using association-rate constants of
107!M–1!s–1):

Nanopore data:

Untethered sequence kon [M–1 s–1] Kd [M] DGº [kcal mol–1]
5¢-GGTGAATG-3¢ 1.3 ⋅ 107 9.2 ⋅ 10–8 –9.2
5¢-TACGTGGA-3¢ 2.2 ⋅ 107 1.5 ⋅ 10–7 –8.9
5¢-GGTGAAT-3¢ 1.1 ⋅ 107 1.5 ⋅ 10–6 –7.7

Bulk (melting profile) values (k¢on values assumed by authors):

Untethered sequence k¢on [M–1 s–1] K¢d [M] DG¢º [kcal mol–1]
5¢-GGTGAATG-3¢ 107 3.6 ⋅ 10–8 –9.8
5¢-TACGTGGA-3¢ 107 1.7 ⋅ 10–7 –8.9
5¢-GGTGAAT-3¢ 107 8.3 ⋅ 10–7 –8.0

The hybridization rate constant was found to vary only weakly with temperature. Data
obtained from nanopore recordings can evidently serve as a useful approximator for
kinetic/thermodynamic behavior of DNA in solution. The short-lifetime association
events had rate constants of roughly 106 M–1 s–1 (an order of magnitude less than that of
the long-lived events). These events may or may not correspond to nucleation followed
by dissociation; we think it most likely that they are unsuccessful search phases, but we
cannot support this. That said, it may be possible to use the data on the short-lived events
to reach some quantitative conclusions about the microkinetics of nucleation. This idea is
probably worth examining in some detail.

                                                  
77 Howorka et al., “Kinetics of duplex formation.” It is demonstrated in this paper that data obtained from

nanopore recordings can evidently serve as a useful approximator for kinetic/thermodynamic behavior
of DNA in solution, despite the possible influences of steric constraints, applied electric potential, etc.

78 Although Howorka et al. do not speculate on the explicit nature of these events, it seems clear that the
short and long events could be characterized by the kinetic avenues taken in lieu of and directly after
nucleated hybridization of a few (~3–4) base pairs: to wit, that the short events might correspond to a
search phase which failed to initiate nucleation and hence also hybridization (in view of the
oligonucleotides and experimental protocols they used, we think it conceivable but unlikely that the
short events are bona fide mishybridizations or even transient nucleations), whereas the long events
might correspond to fully zipped duplexes (zipping occurs on a much faster time-scale than nucleation
and indeed could not be resolved by the experiment). This explanation (which is broadly consistent
with the “all-or-none” model) seems especially suitable in the context of transition-state theory.
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E. KINETICS OF ZIPPING

Recall the series of identical reactions R1 in which individual base pairs are
formed:

† 

R1: n( )
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A little work shows that
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A similar calculation gives an expression for the backwards rate constant, in turn giving
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We might compare the overall rate with an expression of the form

† 

1
bh

e-bDGn Æn +1 ª 6.4 ⋅1013 s-1.

Indeed,
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t p ≡ kp + k- p( )-1
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When viewed in light of experimental data (e.g., the base-pair addition rate
constant is a very much smaller 106–107 s–1 at 25 ºC in 0.05–0.10 M Na+ for short
oligos),79 it is clear that hydrogen-bond formation in zipping is not rate-limiting (indeed,
intermediate complexes between Watson-Crick complementary nucleotides with one
hydrogen bond should be very short-lived)80 and therefore does not drive the kinetics of
hybridization.81 This does not render the transition state model useless,82 but rather makes
it clear that the zipping mechanism viewed in light of hydrodynamic effects is more
complex. Viscosity evidently becomes a rate-limiting factor in base pair formation,83 but
does not affect the dynamics of hybridization strongly: addition of viscosity-increasing
agents such as dextran sulfate [or phenol emulsions; see Pontius, B. W., and Berg, P.,

                                                  
79 Pörschke, D., “A direct measurement of the unzippering rate of a nucleic acid double helix,” Biophys.

Chem. 2, 97 (1974).
80 Cantor, and Schimmel, Biophysical Chemistry.
81 If we include the inverse self-diffusion time for a base pair as a prefactor, however, we obgtain

106–107s–1, as required. Cocco, S., et al., “Force and kinetic barriers to initiation of DNA unzipping.”
82 As an amusing aside, the (grossly inaccurate) numbers for base pair-formation without self-diffusion

derived above are essentially the same as the hydrogen-bond vibration time-scales in liquid water.
Hydrogen bonds in both DNA and water have energies of roughly –5 kcal/mol, and although (e.g.)
viscosity clearly retards the kinetics of zipping (which is our main point in this subsection), there is a
decent analogy between DNA hybridization and water freezing. (To further stretch the analogy, we cite
Matsumoto, M., et al., “Molecular dynamics simulation of the ice nucleation and growth process
leading to water freezing,” Nature 416, 409 (2002).) This point of view brings up the issue of
thermodynamic phases. We expect a 2ssDNA complex in the search phase to exhibit glassy behavior
(i.e., a behavior between those liquid and a crystal. Glassy dynamics are typically characterized by
energetic frustration, long time-scales, and significant fluctuations of an order parameter—something
like the density of paired bases—near the glass temperature, some temperature (not too much) higher
than Tm. See Mézard, M., “First Steps in Glass Theory,” cond-mat/0005173, 2000. The notion of
characterizing 2ssDNA as a glass gains some credence from the existence of an RNA glassy phase; see
Pagnani, A., et al., “Glassy transition in a disordered model for the RNA secondary structure,” cond-
mat/9907125, 2000). It is at least conceivable that we could actually describe hybridization as a one-
dimensional glass-to-crystal transition. It is potentially interesting (even if also potentially specious) to
consider hybridizing DNA as a model system for condensed-matter physics—and vice versa—in this
light. See, e.g., Kiang, C. , and Ramos, R., “The Percolation Transition in the DNA-Gold Nanoparticle
system,” physics/0111002 (2001).

83 Wetmur, “Physical Chemistry of Nucleic Acid Hybridization.”



VII-12

PNAS 87, 8403 (1990)] effectively concentrates the reacting strands and thereby
accelerates the hybridization kinetics.84

Finally, it is worth noting that the role of viscosity highlights hydrodynamic
interactions in hybridization. Bearing this in mind, in the excluded-volume interpretation
it is hard to see how length effects could not govern the rate of base-pair formation
(through time-varying moments of inertia as a duplex was zipped, etc.), whereas in the
search-phase interpretation hydrodynamic effects should not lead to length-dependent
kinetics of base-pair formation.

                                                  
84 Similarly, agents which shield repulsive ionic interactions (and also effectively deny the formation of

secondary structure) between the phosphate groups on nucleic acid backbones can speed up
hybridization, as with E. coli. single-stranded DNA binding (SSB) protein (Christiansen, C., and
Baldwin, R. L., J. Mol. Bio. 115, 441 (1977)) and cetyltrimethylammonium bromide (CTAB) (Pontius,
B. W., and Berg, P., PNAS 88, 8237 (1991)). A1 promotes increased associations between unpaired
strands (Pontius, B. W., and Berg, P., PNAS 87, 8403 (1990)), as does p53 for sticky-ended duplexes
(Bakalkin, G. B., et al, PNAS 91, 413 (1990)). There are many more such examples (such as Mg2+,
whose phosphate affinity features prominently in PCR and RAD52 protein [Mortensen, V.H., et al.,
PNAS 93, 10729 (1996) and Sugiyama, T., et al., PNAS 95, 6049 (1998)].
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VIII. KINETIC ASPECTS
IV—UNZIPPING AND DISSOCIATION

Howorka et al.85 give experimental values of denaturation rate (a.k.a. dissociation
rate, thermal off-rate, reverse rate, etc.) constants:

Nanopore data:

Untethered sequence koff [s–1] Kd [M] DGº [kcal mol–1]
5¢-GGTGAATG-3¢ 1.2 9.2 ⋅ 10–8 –9.2
5¢-TACGTGGA-3¢ 3.4 1.5 ⋅ 10–7 –8.9
5¢-GGTGAAT-3¢ 16 1.5 ⋅ 10–6 –7.7

Bulk (melting profile) values (k¢on values of 107 M–1 s–1 assumed by authors):

Untethered sequence k¢off [s–1] K¢d [M] DG¢º [kcal mol–1]
5¢-GGTGAATG-3¢ 0.4 3.6 ⋅ 10–8 –9.8
5¢-TACGTGGA-3¢ 1.7 1.7 ⋅ 10–7 –8.9
5¢-GGTGAAT-3¢ 8 8.3 ⋅ 10–7 –8.0

The denaturation rate constant varied exponentially with temperature, as also
remarked by Reynaldo et al.86 Ionic strength does not appear to influence the unzipping
rate strongly.87

Cantor and Schimmel cite measured relaxation kinetic parameters for comple-
mentary oligonucleotides at 21–23 ºC given in Table 6.88 The large reverse-activation
energies are evidently due to the energy cost of broken base pairs.

The kinetic equations for unzipping are difficult to deal with because of coupling
between phenomena occurring at different relaxation time-scales89 although unzipping of
DNAs with heterogeneous sequences can be expected on theoretical grounds to go

Table 6. Relaxation kinetic parameters (see text)

                                                  
85 Howorka, et al., “Kinetics of duplex formation.”
86 Reynaldo, L. P., et al., “The Kinetics of Oligonucleotide Replacements,” J. Mol. Bio. 297, 511 (2000).
87 Pörschke, “A direct measurement.”
88 Cantor and Schimmel, Biophysical Chemistry. The table is adapted in turn from Riesner, D., and

Römer, R., Physico-Chemical Properties of Nucleic Acids, Vol.!2, ed., J. Duchesne. Academic Press,
London (1973).

89 Pörschke, D., “A direct measurement.”
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Sequence k¨ [s–1] Ea [kcal mol–1]
A9 640 30
A10 175 45
A11 28 53
A14 1 75

A4U4 3000 37
A5U5 150 50
A6U6 8 60
A7U7 0.8 65

A2GCU2 450 33
A3GCU3 3 50
A4GCU4 1.5 26

A5G2 340 43
A4G3 5 44

through L bases in a time tL ~ exp(b÷L).90 Indeed, the dissociative kinetics of DNA as a
whole is still poorly understood, since (as we shall see) the relevant dynamics vary with
length scale. Reynaldo et al. argue that the dissociation of a short duplex should have a
rate constant of the form ~ 2kf (Lhyb –2.5)K1

–L(hyb)+2.5, where kf is the base pair formation
rate constant (~ 106–107 s–1), K1 is the base-pair equilibrium constant (~ 10), and the 2.5
numbers arise from ~3–4 bp for nucleation.91 This model at first seems inconsistent with
data from other experiments as well as theoretical work focusing on dissociation; we (and
they) believe that their model does not apply to oligos of more than ~ 20 base pairs.92

Since their model for the kinetics of oligonucleotide replacement is largely based on this
quantitative underpinning we are loath to use it. That said, Reynaldo et al. obtained
experimental data that we can draw lessons from, and their work can clearly support the
general statement that at physiological temperatures the displacement pathway dominates
the kinetics, although within PCR regimes dissociation should dominate.93

                                                  
90 Lubensky, D. K., and Nelson, D. R., “Single Molecule Statistics and the Polynucleotide Unzipping

Transition,” cond-mat/0107423 (2001). This paper also remarks on the similarities between unzipping
and wetting transitions.

91 Reynaldo, et al., “The Kinetics of Oligonucleotide Replacements.”
92 Strunz, T., et al., “Dynamic force spectroscopy of single DNA molecules,” PNAS 96, 11277 (1999),

and Cocco et al., “Force and kinetic barriers to unzipping of the DNA double helix.”
93 Quartin, R. S., et al., “Branch migration mediated DNA labeling and cloning,” Biochem. 28, 8676

(1989), cited in Reynaldo et al.
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Figures 5 and 6. Data taken from Reynaldo et al. Rate constants in
Figure 5 are in units of 10–6 s–1 (k1) and M–1 s–1 (k2).

Table 7. Data from Reynaldo et al.

Activation energies
(kcal mol–1)

12 base pairs
duplex

14 base pairs
duplex

16 base pairs
duplex

Dissociation 85 94 118
Replacement 30 32 39

A treatment of dissociative kinetics more appropriate for scales of interest to us
was given by Strunz et al.94 By performing driven unbinding experiments on DNA and
extrapolating to 0 unbinding force, they sought to determine the thermal off-rate. Cocco
et al. remark that Strunz et al.’s interpreted “thermal off-rate” is really not that at all, but

                                                  
94 Strunz, “Dynamic force spectroscopy.”
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rather is related to the activation energy for dissociation. However, we are interested
chiefly with the scaling of the dissociative kinetic rate, and so their extrapolation is
useful!even in light of this objection. The “thermal off-rate” was found to go as
10[3±1]–[0.5±0.1]L(hyb) s–1; accordingly, the energy gap between the barrier and minimum
increased linearly. A frequency prefactor included in this strongly increases with Lhyb due
to the inclusion of extra degrees of freedom introduced by extra bases. Since the base pair
equilibrium constant is ~ 10 this prefactor is evidently proportional to 10[0.5±0.1]L(hyb) s–1.95

Boundaries between two ss and a single ds region of a dsDNA complex (2ss-ds
boundaries, such as in nucleation of hybridization or a denatured “bubble”) all consist of
approximately four (for an end of a strand) or eight (for an interior segment of a dsDNA
complex, i.e., for denaturated bubbles) base pairs, irrespective of the lengths of DNA
involved. At a 2ss-ds boundary the hydrogen bonds may be broken but partial base-
stacking contributions to the free energy remain.96 Since base stacking contributes
roughly half of the energy barrier, and the base-pair equilibrium constant is ~ 10, we
offer this (combined with the cooperativity of the melting transition) as a “mickey-
mouse” explanation of the observed and predicted ~ 10const-[0.5–0.6]L(hyb) s–1 off rates (which
will conflict with the model used by Reynaldo et al.): Pörschke97 found an off-rate of
108–0.5L(hyb) s–1 for Lhyb ~ 8-18, and Cocco et al. predict an off-rate of 106.3–0.6L(hyb) s–1. The
combination of non-hydrogen bonded bases (and the concomitant high enthalpy contribu-
tion) with high rigidity (and hence low entropy contribution) in a boundary region results
in a large free-energy barrier to unzipping. 98

On shorter scales, off-rates for short oligomers can be computed from the
equilibrium relation kreverse = kforward e–bDG.99 We remark that this must be done consistently;
that is, for oligonucelotides that are short enough that (1) what are generally thought to be
excluded-volume effects do not come into play, (2) the forward reaction is diffusion-
controlled, and (3) the frequency prefactor above does not manifest itself (i.e., there
ought not to be more than a few relaxation modes of the oligos). All in all this tack
appears to work decently, but only up to (at most) ~ 20 base pairs. However, it does offer
an explanation of Reynaldo et al.’s results and theoretical interpretations. It also serves to

                                                  
95 Cocco et al., “Force and kinetic barriers to initiation of DNA unzipping.”
96 Ibid.
97 Cited in several of our references as Pörschke, D. J., Mol. Bio. 62, 361 (1971).
98 Cocco et al., “Force and kinetic barriers to initiation of DNA unzipping.”
99 Winfree, E., Algorithmic Self-Assembly of DNA, and Cocco et al., “Force and kinetic barriers to

unzipping of the DNA double helix.”
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illustrate the differences in dynamics over a fairly narrow length scale of 10–40 base
pairs. Since this is the whole regime in which we are interested, it is important to take all
of these dynamical phenomena into account.
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IX. KINETIC ASPECTS
V—SUMMARY AND CONCLUSIONS

The net result of this is that it is probably necessary to use a more complicated
model of hybridization (with some intermediate 2ssDNA complex100 between proximal
and activated complexes). Now we have the kinetic cartoon
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Neglecting sequence variations, this scheme takes into account three length scales: the
lengths of the two ssDNAs and their overlap. In light of the theory work and the experi-
mental data available, it appears to be the simplest model that can address the framework
of diffusive hybridization in a self-consistent way.

It can in principle be extended to incorporate mixed ss-dsDNA linear structures
by regarding them as  collections of rigid rods joined by floppy springs (although we can
expect such a tactic to meet with some difficulty; see above with respect to the difficulty
of applying transition-state theory to heterogenous ss/dsDNA complexes). Force-
extension measurements on ssDNAs confirm that a WLC model can be used to describe
their elastic response, and by building the force relationship into such a model we could
predict diffusion behavior for mixed structures.101

If the search phase holds, then it is not unreasonable to expect that (since for long
overlaps the search can proceed in either of two directions) two ssDNAs that support a
possible MSH will, in the ensemble, assume the MSH configuration with a probability
not necessarily strictly related to the nominal Boltzmann-Gibbs distribution. For instance,
an ssDNA could be designed that supports multiple possible hybridizations (not, strictly
speaking, MSHs because of the context) but with different free energies. This may be a
way to settle the issue conclusively and can presumably help in the design and evaluation
of hybridization protocols.
                                                  
100 The kinetic avenues to and from which ought to embody our proposed search phase, for example.
101 Bustamante, C., et al., “Single-molecule studies of DNA mechanics,” Curr. Opin. Struct. Biol. 10: 279

(2000).
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It is vital to keep in mind the heretofore implicit disconnect between the
equilibrium/thermodynamic and nonequilibrium/kinetic pictures. We expect that the
MSH probabilities ought to look something like

  

† 

Pr # MSHneq
actual t( ) > 0( ) ª A e-Cl 1-

1
1+ w[ ]0

˜ C t l

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

fraction of ssDNAs 
that have hybridized

1 2 4 4 4 3 4 4 4 

Pr # MSHl
possible > 0( )

l
Â

.

In the limit of long time this gives the equilibrium result, but only experiment can
establish anything—the validity of the model, values of the constants, etc. The crossover
between nonequilibrium and equilibrium regimes (which this formula only begins to hint
at, since the dynamics of the system will change drastically as more batch DNAs anneal
into progressively longer dsDNA complexes) will of course depend on operating
characteristics of any protocol, and so (especially when contemplating microfluidic
systems, as we are implicitly) it is impossible to say in general when one can use the
equilibrium thermodynamic description.

But this is about engineering, so we can live with that sort of uncertainty. In
practice we will want to try to use this to help find a desirable tradeoff between time and
average batch length scales to mitigate error rates in experimental attempts at synthesis.
As an example, we show a function proportional to the probability of actual MSHs as a
function of time and half-word length n (i.e., with a batch of ssDNAs of equal length 2n)
for the synthesis of a 10,000-mer with an initial concentration of 10–5 M, nucleation
constant of 5 ⋅ 105 M–1 s–1, and temperature of 55 ºC.
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Figures 7, 8, 9. Function proportional to the probability of actual MSHs as a function
of time and half-word length n (i.e., with a batch of ssDNAs of equal length 2n)

for the synthesis of a 10,000-mer with an initial concentration of 10–5 M,
nucleation constant of 5 ⋅ 105 M–1 s–1, and temperature of 55 °C.

Time is given in seconds.
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X. OPTIMAL VARIABLE-LENGTH DECOMPOSITIONS

In general, even if we really knew how, finding an optimal variable-length
decomposition appears intractable: there is very good reason to believe, for instance, that
the problem is NP-complete,102 and tricky at that. Without attempting to prove this but
bearing it in mind, we outline a simulated annealing103 algorithm for the variable-length
problem. Let the sticky-ended dsDNA X be represented as a (notionally hairpinned)
ssDNA. Given a partition or composition z of X, we can compute #MSHl(X; z): let initl(X;
z) denote the set of l-prefixes; similarly, let terml(X; z) denote the set of l-suffixes. For
each l-prefix (respectively, l-suffix) arising from the partition z, count the number of
times its reverse complement occurs in initl(X; z) (respectively, terml(X; z)). Then
#MSHl(X; z) is the sum of these counts over both initl(X; z) and terml(X; z). (Depending
on symmetry considerations, we might divide this number by two, but it will not matter
for our purposes here.) Put (for instance)

  

† 

E X;z( ) ≡ F L X;z( ) - L X;z( )( )2
, l⋅# MSHl

possible

l
Â X;z( )

Ê 

Ë 
Á 

ˆ 

¯ 
˜   ,

where F  denotes a nonnegative (possibly nonlinear) functional. With an appropriate
formal energy such as this, a standard simulated annealing procedure will give near-
optimal decompositions (but it will take time). More generally, a functional incorporating
free energies of duplex formation for partial compositions and undesirable configurations
could be implemented in principle.

The problem with such a construction is that it will be inefficient. Indeed, we
might expect it to encounter some of the same difficulties as simulated annealing attacks

                                                  
102 Roughly speaking, this means that we expect (i.e., it is conjectured but unproven that) the difficulty of

finding an optimal decomposition in general ought to increase exponentially with the overall length.
The notion of NP complexity and the conjectures surrouding it are central to theoretical computer
science. See (e.g.) Cormen, T. H., et al., Introduction to Algorithms, MIT, Cambridge, Massachusetts
(1990).

103 Kirkpatrick, S., et al., “Optimization by simulated annealing,” Science 220, 671 (1983). Simulated
annealing works by analogy with the cooling of metals (i.e., annealing) into stable/low-energy ground
states (the optimization part).
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on the (NP-complete) number partition problem (NPP).104 These notorious difficulties
stem from a superabundance of local metastable minima;105 the biological analogy with
energy landscapes in protein folding (for which simulated annealing is similarly problem-
atic) is an appropriate one in this context. Moreover, a common rule of thumb in optimi-
zation is that genetic algorithms will have problems if simulated annealing does; the
consequent “method of last resort” tag attached to evolutionary optimization discourages
its application here (i.e., simulated annealing should work at least as well as genetic
algorithms, and it will run faster). The potential ineffectiveness of simulated annealing
(as of this writing we have not drawn a conclusion on this point, although we have a
simulated annealing implementation in code; see Appendix C) suggests that we consider
heuristic approaches such as the Karmarkar-Karp differencing method.106 In any event, a
refined software implementation taking into account the various dynamical regimes of
hybridization and computational obstructions would probably be very complex and run
very slowly (which is already the case with our code).

                                                  
104 Johnson, D. S., et al., “Optimization by simulated annealing: an experimental evaluation; part II, graph

coloring and number partitioning,” Operations Research 39, 378 (1991).
105 Ferreira, F. F., and Fontanari, J. F., “Probabilistic Analysis of the Number Partitioning Problem,” adap-

org/9801002 (1998).
106 See (e.g.) Cormen, T. H., et al., Introduction to Algorithms, MIT, Cambridge, Massachusetts (1990).



XI-1

XI. CONCLUSION

Despite all the uncertainties, caveats, and differences between relevant regimes,
the overall picture is generally agreed upon. While on the one hand there “is no
satisfactory quantitative theory predicting the statistical distribution of hybridization,”107

at the same time, “the self-assembly of aperiodic [DNA] structures should also be
considered…progress in this field will require detailed knowledge of the physical,
kinetic, structural, dynamic, and thermodynamic parameters that characterize DNA self-
assembly. Additionally, improved methods for error reduction and purification must be
developed.”108 What we have attempted to do here is to show the way forward in a
general light.

With respect to comparing generic synthesis protocols in practice, we can make
some easy qualitative engineering comparisons:

Techniques Advantages Disadvantages

Baseline batch protocol Simple theory and implementa-
tion, somewhat scalable

Slow, fault prone

Parallel baseline (“binary tree”
flow) batch protocol

Simple theory, somewhat
scalable, fast

Somewhat complex
implementation, fault prone

Parallel baseline batch
subprotocols followed by ligation

Simple theory, somewhat
scalable, fast, somewhat fault
tolerant

Complex implementation

Fully variable-length batch
protocol

Scalable, fault tolerant Complex theory and somewhat
complex implementation, slow

Fully variable-length batch
subprotocols followed by ligation

Scalable, fast, fault tolerant Complex theory and
implementation

Ultimately, however, the rubber has to hit the road, and of course everything in
our discussion defers to that central truth. Although MSHs are clearly the preeminent
specter haunting the road to the production-scale synthesis of long DNAs, there is every
reason to expect them to be surmountable as an engineering obstacle, given sufficient
care. Likewise, although (as we have both seen and demonstrated) much of the science

                                                  
107 Carbone, A., and Gromov, M., “Mathematical slices of molecular biology,” Preprint IHES/M/01/03

(2001).
108 Winfree, E., et al., “Design and self-assembly of two-dimensional DNA crystals.”
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behind the engineering is still uncertain, we have tried to outline the key issues—
mathematical, thermodynamic, and kinetic—in such a way that such approaches to
synthesis and generic batch DNA manipulation can be more fully understood.

We conclude with a quotation and a caveat:

The link between computation and SA [self-assembly] may find most use
in defining the structures accessible by SA, both theoretically and
practically. Theoretically, because the mathematics of computation may be
used to classify self-assembled structures…or to analyze the resources…
needed to create a particular structure…. Practically, because tilings that
encode computations provide new synthetic targets—structures more
complex, in general, than any considered by chemists so far. 109

Although taken out of context, this sentiment—as we have seen—is only partially true:
there is more to the analysis of self-assembly than the mathematics of computation.
Despite all the old hype about DNA computation, there is still a need for detailed experi-
mentation to elucidate the nature and parameters of the processes involved in DNA self-
assembly. This is why it has taken the better part of a decade to see any real progress in
DNA computation.110 Although our discussion is generic and may be plagued with simi-
lar missteps, we trust that it sheds some light on the problems that need to be answered to
facilitate the synthesis of long DNAs and of more complex DNA nanostructures.

                                                  
109 Rothemund, P. W. K., “Using lateral capillary forces to compute by self-assembly,” PNAS 97, 984

(2000).
110 Adleman, L. M., “Molecular Computation of Solutions to Combinatorial Problems,” Science 266, 1021

(1994) and Braich, R. S., et al., “Solution of a 20-Variable 3-SAT Problem on a DNA Computer,”
published online in Science Express (10.1126/science.1069197), 14 March 2002.
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APPENDIX A
NOTES ON PERSISTENCE LENGTH AS A STATISTICAL

FUNCTION OF ANGLE VARIANCE

It can be shown that the persistence length depends only on the variance of the
angle distribution of a fixed step-length random walk. We illustrate this for such a
general walk in the plane:

† 

x0 := 0; x1 := e1; q1 := 0

xk+1 := xk + Rqk +1
xk - xk-1( ); Rqk +1

:=
cosqk+1 -sinqk+1
sinqk+1 cosqk+1

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

qk+1 ~ p : -p,p[ ) Æ R s.t. p
-p,p[ )

Ú =1; qk+1 ≡ 0

˙ x k := xk+1 - xk fi ˙ x k = Rqk +1
xk - xk-1( ) = Rq j

j=1

k+1
’ e1 = R

q jj=1
k +1Â( )e1

fi ˙ x k ⋅ ˙ x 0 = R
q jj=1

k +1Â( )e1 ⋅ e1 = cos q jj=1
k+1Â( ) .

Now, by the central limit theorem, we have that

† 
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2
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ˆ 
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2ns p
2
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R
Ú

= ns p
2 exp -
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2

2
Ê 

Ë 
Á 

ˆ 

¯ 
˜ .

(Landau and Lifshitz111 give an elegant calculation which reproduces the
exponential term here and which is more tractable, but which is also more involved.) For
this model we have a correlation function which yields the persistence length and a
concomitant energy functional:

                                                  
111 §151 in Landau, L. D., and Lifshitz, E. M., Statistical Physics, 2nd ed., Addison-Wesley, Reading,

Massachusetts (1969).
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2 k2 s( )
0

L
Ú ds.

(Here, the stiffness would be defined as twice the constant prefactor.)

As for the mean square end-to-end length, we have
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This broadly agrees with the expression in Landau and Lifshitz.
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APPENDIX B
NOTES ON DE BRUIJN SEQUENCES, CYCLIC CODES,

AND FRAME SHIFTS

A de Bruijn sequence112 of order n is a sequence of 2n binary words of length n
such that for any word w in the sequence, the next word is of the form w2…wnz, where z
is a generic Boolean variable. Such sequences can be shown to exist, and in fact their
number can be computed, as we shall see below. For instance, the sequence 000 Æ 001
Æ 010 Æ 101 Æ 011 Æ 111 Æ 110 Æ 100 (alternatively denoted 00010111, in what we
term a block representation) is a de Bruijn sequence of order 3. Indeed any such sequence
can be shown to arise as a Eulerian circuit (i.e., a circuit that traverses every edge exactly
once) on a directed graph113 such as the one below (the de Bruijn graph of order 3):
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Figure B-1. The de Bruijn Graph of Order 3.
Underlined binary words indicate edges.

It is not hard to see that the de Bruijn sequence above defines a Hamiltonian path
(i.e., a path that visits each vertex exactly once) on the graph shown. Similarly, an
Eulerian circuit on this graph will define a de Bruijn sequence of order 4 (e.g., 000 Æ

                                                  
112 See, e.g., van Lint, J. H., and Wilson., A Course in Combinatorics, Cambridge University Press,

Cambridge (1992), or Lempel, A., “On a Homomorphism of the de Bruijn Graph and Its Applications
to the Design of Feedback Shift Registers,” IEEE Trans. Computers 19, (1970).

113 See, e.g., Bollobás, B., Modern Graph Theory, Springer, New York (1998).
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000 Æ 001 Æ 011 Æ 111 Æ 111 Æ 110 Æ 100 Æ 001 Æ 010 Æ 101 Æ 011 Æ 110 Æ
101 Æ 010 Æ 100 Æ 000, which can be denoted 0000111100101101). It is interesting
that the technique of pushing Eulerian circuits (which are easy to deal with) into
Hamiltonian paths (which are notoriously difficult to deal with) on special directed
graphs appears in another context for fault-tolerant batch DNA manipulation—namely, in
the construction of thermodynamically homogeneous oligos that are statistically regular
in a particular sense,114 as well as in the analysis of sequencing by hybridization.115 The
correspondence between Eulerian circuits and Hamiltonian paths is one of the “pointy
sticks” of bioinformatics.

The particular quality of de Bruijn sequences that merits attention here is that a
block representation is resistant to frame-shifting; that is, any n consecutive digits in a de
Bruijn sequence of order n are uniquely determined. As such, quaternary de Bruijn
sequences are natural models for ssDNAs that will be resistant to shift hybridizations and
MSHs in particular.116 The number of binary de Bruijn sequences of order n + 1
(equivalently, the number of Eulerian circuits on the graph of order n) is

† 

22n -1-n .

This can be proved by the BEST and matrix-tree theorems.117 For instance, there
are 16 de Bruijn sequences of order 4 (equivalently, Eulerian circuits on the graph
depicted above). The number of quaternary de Bruijn sequences of order n + 1 (hence of
length 4n+1) can be calculated. In any event, it follows that there are 324 quaternary
de!Bruijn sequences of order 1/length 16, which will be the only case of concern to us
here. Even so, the probability that a uniformly random cyclic quaternary sequence of
length 16 is a de Bruijn sequence is 324/268439590 ª 1.207⋅10–6. 118 This is too small to
                                                  
114 Huntsman, S., in preparation.
115 See Pevzner, P. A., “L-tuple DNA sequencing: computer analysis,” J. Biomolecular. Structure and

Dynamics 7, 63 (1989); Kandel, D., et al., “Shuffling Biological Sequences,” Preprint (1995); and
Arratia, R., et al., “Euler circuits and DNA sequencing by hybridization,” Disc. Appl. Math. 104, 63
(2000).

116 Ben-Dor, A., et al., “Universal DNA Tag Systems: A Combinatorial Design Scheme,” Preprint (2000).
117 Bollobás, B., Modern Graph Theory, Springer, New York (1998).
118 By the Burnside-Frobenius lemma, there are (8⋅4 + 4⋅16 + 2⋅256 + 48 + 416)/16 = 268439590 cyclic

quaternary sequences of length 16. See van Lint, J. H. and Wilson, R. M. A Course in Combinatorics.
Cambridge, Cambridge (1992), whose treatment we follow here. The Burnside-Frobenius lemma can
be stated as follows: let G Ã Sn, let a : G ¥ X Æ X be an action on X, write Fixg(a) for the set of fixed
points {x : ag(x) = x} and write Orb(a) for its space of orbits. Then #Orb(a)⋅#(G) = ÂgŒG #Fixg(a).
Consider the set of linear k-ary sequences of length n and the natural action a¢ of Z/nZ on it, so that
Orb(a¢) is the set of cyclic k-ary sequences of length n. Let g denote here a generic element of Z/nZ. If
d|n then #{g : (n, g) = d} = #{h : (n/d, h) = 1} = f(n/d), where the last identity is tantamount to a
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expect to see very often; in particular, we cannot reasonably hope to preempt generic
MSHs by assembling with sticky ends incarnating de Bruijn sequences.

Since there are 324 quaternary de Bruijn sequences of length 16 (and they are
cyclic), there are 16⋅2⋅324 = 10,368 linear sequences of length 8 (vs. 65,536 generic
sequences of length 8) obtained by taking half of a de Bruijn cycle (i.e., 8 consecutive
positions). (It is not clear that these sequences are unique, and we have not determined
this.) Lempel illustrated that the preimage of a binary de Bruijn sequence of order n (with
respect to a homomorphism between de Bruijn graphs) is a pair of disjoint “half-
de!Bruijn sequences” of “order” n+1; operationally this might suggest incorporating these
half-de!Bruijn sequences within sticky ends.119 It is not clear how to proceed along these
lines, however.

Coding theory also bears on the MSH issue. We consider quaternary codes, that
is, codes over an alphabet of four elements and presumably with some internal structure.
For instance, the symbols might be represented by the elements of the finite field with
four elements, GF(4).120 This field has the addition and multiplication tables:

+ 0 1 q s ¥ 0 1 q s

0 0 1 q s 0 0 0 0 0

1 1 0 s q 1 0 1 q s

q q s 0 1 q 0 q s 1

s s q 1 0 s 0 s 1 q

Using these it is not hard to verify that GF(4) is isomorphic to the set {(0, 0), (0, 1),
(1,!0), (1, 1)} (parentheses indicate ordered n-tuples) ≡ {00, 01, 10, 11}, with field
operations given by componentwise addition and multiplication mod 2. That is, GF(4) @
GF(2)⊕GF(2). This early abstraction allows us to deal with binary coding schemes in the

                                                                                                                                          
definition of the Euler function. By inspection, #Fixg(a) = kd, so the Burnside-Frobenius lemma gives
#Orb(a¢) = n-1⋅Âd|n f(n/d)⋅kd.

119 Lempel, A. “On a Homomorphism of the de Bruijn Graph and Its Applications to the Design of
Feedback Shift Registers,” IEEE Trans. Computers 19, (1970). See also Annexstein, F. S., “Generating
de Bruijn sequences: An Efficient Implementation,” IEEE Trans. Computers 46, (1997).

120 The finite field with four elements (GF(4) or, alternatively, F4) is (essentially defined to be)
isomorphic to the splitting field of x2 + x + 1 over GF(2) (the finite field with two elements, which is
itself isomorphic to {0, 1} under addition mod 2 and multiplication). That is, GF(4) is isomorphic to
the set {a + bqa, b Œ GF(2)}, with q a root of x2 + x + 1. Since by definition q2 = q +1, multiplication
goes as (a + bq)(c + dq) = (ac+bd) + (ad+bc+bd)q, where a, b , c, d Œ  GF(2). Dummit, D. S., and
Foote, R. M., Abstract Algebra, Prentice-Hall, Englewood Cliffs, N.J. (1991).
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same context of abstract coding schemes over GF(4).121 If instead of GF(4) we want to
consider Z4 (the group [or ring] of integers mod 4) then we will use the same
correspondence without distinction.

The simplest example of an error-correcting code122 is the binary triplet parity
code: 0 is encoded as the codeword 000 and 1 as 111. A received triplet other than these
is weighted: either it has two zeroes or two ones, according to which it is changed to 000
or 111 accordingly. This is a specific (but trivial) instance (3, 1) of the more general
notion of a linear binary (n, 2k) or (n, 2k, d) code. Here, n (the length) denotes the number
of symbols used to encode a sequence of k symbols (of which there are 2k total—this is
the code’s size, typically denoted by M), and d refers to the minimum distance (from
zero), or number of ones, in a codeword. It can be shown that a linear (n, M, d) code can
correct (d-1)/2 or fewer errors; the (integral) number t of errors a code can correct is
referred to as its weight. Finally, if there is no risk of confusion—or if it is more
convenient—such a code may also be described as an (n, k) code.

Such a code C is specified (for example) by a generator matrix G which can be
assumed to be in the form (Id|A) where Id is the k-by-k identity matrix and A  is a
k-by-(n–k) matrix (equivalently, the dual code C^ may be characterized by the parity
check matrix (–AT|Id)). The rows of the matrix G are then the basis codewords, and a
generic bit string x of length k is encoded by producing the linear combination of basis
codewords whose first k bits equal x.

                                                  
121 An alternative framework using 3-bit base encodings (000, 010, 101, and 111) is outlined in Li, Z.,

“Algebraic properties of DNA operations,” Biosystems 52, 55 (1999). While this is a natural way to
accommodate string reversal in binary form, it does not allow for as tractable a means of leveraging the
well developed theory of binary error-correcting codes.

122 We employ all of the following references without distinction (or further citation) for general results
on coding theory: MacWilliams, F. J., and Sloane, N. J. A., The Theory of Error-Correcting Codes,
North-Holland, Amsterdam (1977); McEliece, R. J., The Theory of Information and Coding, Addison-
Wesley, London (1977); Peterson, W. W., and Weldon, E. J., Jr., Error-Correcting Codes, 2nd ed.,
MIT Press, Cambridge, Massachusetts (1972); and Pless, V., Introduction to the Theory of Error-
Correcting Codes, John Wiley, New York (1982). MacWilliams and Sloane is generally regarded as
the definitive reference; McEliece contains valuable technical results on both coding and Shannonean
information theory proper; Peterson and Weldon is an especially good reference for burst error-
correcting codes; and Pless is an easy introduction to the subject.
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1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

The standard generator matrix of the (7, 16, 3) (or (7, 4, 3) Hamming code.

Hence, a linear code can also be described by the span of its basis codewords.123 It turns
out that the (n-k, k, 3) Hamming and (23, 12, 7) Golay codes are the only nontrivial
binary perfect (i.e., capable of correcting t errors) error-correcting codes. This surprising
fact illustrates that the existence theory of classical error-correcting codes is deep and
complex.

The minus-shift condition will always be satisfied for batch ssDNA halves that
instantiate quaternary cyclic error-correcting codes (i.e., a cyclic permutation of a code-
word is again a codeword); moreover, there are reverse-complement quaternary cyclic
codes with (optimal) parameters as impressive as, for example, (15, 7, 7), (15, 9, 5),
(15,!11, 4), and (15, 13, 2).124 We argued elsewhere125 that ssDNAs instantiating
quaternary cyclic codes are well suited for batch DNA manipulation for physical as well
as mathematical reasons. We briefly sketch some of the ideas behind this claim here.

Any de Bruijn sequence has the same thermodynamic profile (in the NN
framework) as any other, and their cyclic permutations are also de Bruijn sequences. It is
therefore appropriate to consider them (as a class) as a protocode generically formed
from concatenating cyclic protocodes. In this context, it seems that we ought to treat the
quaternary order 2 de Bruijn squences as a quaternary (17, 10) cyclic-invariant set of
words contained in some (17, k, d) code with k close to 10 and d as large as possible.

                                                  
123 The decoding process is generally difficult: each codeword has a large coset of errorwords that (unless

the code were engineered with viable algorithmic decoding schemes, the construction of which is
largely the point of coding theory) has to be exhaustively searched. However, special decoding
techniques exist (e.g., syndrome and Hamming decoding) that can dramatically reduce the
computational effort involved. Still, when n is large enough an (n, k) code is typically infeasible to
implement classically.

124 Bogdanova, G. T., et al., “Error-Correcting Codes over an Alphabet of Four Elements,” preprint
(1999); Marathe, A., Condon, A. E., and Corn, R. M., “On Combinatorial DNA Word Design,” in
Winfree, E., and Gifford, D. K., eds. DIMACS Workshop: DNA Based Computers V, June 14–15,
1999, Vol. 54, American Mathematical Society, Providence, R.I. (2000); and Rykov, V. V., et al.,
“DNA Sequences Constructed on the Basis of Quaternary Cyclic Codes,” Proc. 4th World
Multiconference on Systematics, Cybernetics, and Informatics, SCI 2000/ISAS 2000, (2000).

125 Huntsman, S., in preparation.
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Happily, quaternary cyclic codes of length 16K + 1 are automatically reversible,126

and since the de Bruijn sequences are invariant as a set under complementation, it follows
that a reverse-complementarity constraint holds, at least up to the minimum distance of
any enveloping code. A frame-shift constraint can be subsequently incorporated as
desired by selecting an appropriate subset of the de Bruijn sequences. The net import of
all this is that the de Bruijn sequences appear to provide a natural starting point for
building sequence sets for batch DNA manipulation (if not synthesis proper). Hence both
the batch synthesis and manipulation of DNAs appears to go easier with cyclic coding
schemes involved.

                                                  
126 MacWilliams and Sloane, cited as Theorem 4 in Rykov, V. V., et al., “DNA Sequences Constructed on

the Basis of Quaternary Cyclic Codes,” Proc. 4th World Multiconference on Systematics, Cybernetics,
and Informatics, SCI 2000/ISAS 2000, (2000).
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APPENDIX C
NOTES ON SIMULATED ANNEALING ATTACKS

ON PARTITIONING PROTOCOLS

We first show an example output of the code given below on the clone DNA for
human cystic fibrosis mRNA encoding a presumed transmembrane conductance regulator
(CFTR).127 The < and > marks are spacer nucleotides. Although a value of n!=!35 such as
we used appears to be a reasonable value (even if it implies longer batch ssDNAs than
what we would typically envision), it is inappropriate to regard the output as realistic for
many reasons, of which we list a few.

• It is unclear what the proper values of the coefficients in the energy
functional (assuming that its form is itself generically appropriate) ought to
be; we use equal coefficients.

• Our overlap value of 8 was picked on a whim.

• Our annealing temperature and schedule (logarithmic) are similarly unjusti-
fied, as is our protocol in which the extent of a configuration change depends
explicitly on these factors.

• 256 timesteps are not very many for a batch of 176 ssDNAs.

• We present only a single run here, rather than an ensemble average.

Moreover, our code is computationally expensive (although porting to C would
greatly reduce runtimes): this run took over 2 hours on a desktop computer. We include it
mainly as a proof of principle. Obvious extensions of its functionality would include
incorporating energy terms accounting for type IIa mishybridizations and sequence
particulars.

                                                  
127 Online at http://opal.msu.montana.edu/cftr/cftrsequence.htm
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Figures C-1 and C-2. Results from a Run of dnacompx([human cystic fibrosis
CFTR sequence],35,8,1,1,1,256,12). (See below also.)

Part of the batch decomposition was as indicated:
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAG
GGTTGAGCGGCAGGCACCCAGAGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAG
CAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCTCCAAACTTTTTTT
CAGCTGGACCAGACCAATTTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAA
TCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGAAAGAGAATGGGATAGAGAGCTGGCTTC
…
TAATTTTTATATTTGAAATATTGACTTTTTATGGCACTAGTATTTTTATGAAATATTATGTTAAAACTGG
GACAGGGGAGAACCTAGGGTGATATTAACCAGGGGCCATGAATCACCTTTTGGTCTGGAGGGAAGCCTT
GGGGCTGATCGAGTTGTTGCCCACAGCTGTATGATTCCCAGCCAGACACAGCCTCTTAGATGCAGTTCTGA
AGAAGATGGTACCACCAGTCTGACTGTTTCCATCAAGGGTACACTGCCTTCTCAACTCCAAACTGAC
TCTTAAGAAGACTGCATTATATTTATTACTGTAAGAAAATATCACTTGTCAATAAAATCCATACATTTGTGT

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<ACACAAATGTATGGATTTTATTGACAAGTGATATTTTCTTACA
GTAATAAATATAATGCAGTCTTCTTAAGAGTCAGTTTGGAGTTGAGAAGGCAGTGTACCCTTGATG
GAAACAGTCAGACTGGTGGTACCATCTTCTTCAGAACTGCATCTAAGAGGCTGTGTCTGGCTGGGAATCAT
ACAGCTGTGGGCAACAACTCGATCAGCCCCAAGGCTTCCCTCCAGACCAAAAGGTGATTCATGGCCC
CTGGTTAATATCACCCTAGGTTCTCCCCTGTCCCAGTTTTAACATAATATTTCATAAAAATACTAGTGCCATA
…
GGGCATTAATGAGTTTAGGATTTTTCTTTGAAGCCAGCTCTCTATCCCATTCTCTTTCCAATTTTTCAG
ATAGATTGTCAGCAGAATCAACAGAAGGGATTTGGTATATGTCTGACAATTCCAGGCGCTGTCTGTATCCTT
TCCTCAAAATTGGTCTGGTCCAGCTGAAAAAAAGTTTGGAGACAACGCTGGCCTTTTCCAGAGGCGA
CCTCTGCATGGTCTCTCGGGCGCTGGGGTCCCTGCTAGGGCCGTCTGGGCTCAAGCTCCTAATGCCAAAGACC
TACTACTCTGGGTGCCTGCCGCTCAACCCTTTTTCTCTGACCTGCTGTGATGTCATTTGCTTCCAATT
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Finally, the code:
function y=dnacompx(D,n,m,a,b,T,time,nb)

% Uses simulated annealing to stab at good partitions
% D is a linear ssDNA strand (e.g., ACGTACTA...)
% ...T is the initial 1/beta (i.e., temperature):
% we cool by beta=ln(t+1)/T; time is um, time and
% a and b are constants for the formal energy function

% Calls rc.m for reverse-complementation. For example,
% rc(‘ACGGATCTA’) gives the string TAGATCCGT.

% DIFFERS from dnacomp (an older, buggy version) in that it
% can move multiple bases per SA step. The number of bases per
% step is given as a uniformly random variable on [1,nb/t].

N=length(D);
% We’ll keep the number of batch ssDNAs fixed...
B=2*ceil(N/(2*n));
% Length of notional hairpinned DNA (see below) will be n*B:
% sticky ends therefore 2*n*B/2-N long...

% We can ignore sticky ends of the dsDNA complex;
% the concomitant batch ssDNAs will therefore not really
% be considered here. (Hence the negatives)
% Form a NOTIONAL hairpin:
E=[repmat(‘>‘,[1 n*B-N]),D,repmat(‘<‘,[1 n*B-N]),rc(D)];
% convert E back to a char array (doubles are bad for us)

% Proto-placeholder...
F=[(1:n*B-N),(n*B-N+1:n*B),fliplr(n*B+1:n*B+n*B-N),fliplr(n*B-N+1:n*B)];

% Now divvy up the complex into baseline batch ssDNAs: establish placeholders
for k=1:B

batch{k}=E(2*n*(k-1)+1:2*n*k);
place{k}=F(2*n*(k-1)+1:2*n*k);

end

% here’s the sum of l*MSH(l)...(Evaluate n as a viable upper limit IN GENERAL. Here it’s OK.)

mis=zeros(B,B,n-m+1);
for l=m:n

for j=1:B
ss1=batch{j};
for k=1:B

ss2=batch{k};
init1=ss1(1:l);
init2=ss2(1:l);

rcinit2=rc(init2);

term1=ss1(end-l+1:end);
term2=ss2(end-l+1:end);

rcterm2=rc(term2);

% Is there a 3’-sticky ended mishybridization of length l?
% Only if init1 = rcinit2.
% We could augment this part to check init1 v term2 etc, but not now...
mis3=1;
if strcmp(init1,rcinit2)~=1

mis3=0;
end
mis5=1;
% What about 5’?
if strcmp(term1,rcterm2)~=1

mis5=0;
end
mis(j,k,l-m+1)=mis3+mis5;

end
end

end

% portion of the formal energy coming from mishybridizations
% (which is all there is for the baseline configuration)
% is of the form Hzeta = sum((m:n).*squeeze(sum(sum(mis)))’).
% Don’t worry about the proper hybridizations nominally
% referred to as mishybridizations; their contribution
% is invariant (constant zero point is all we care about).

Hzeta=sum((m:n).*squeeze(sum(sum(mis)))’);
energy(1)=a*Hzeta;
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% The thermal noise will be chunks of bases going from one batch
% ssDNA to another: at each timestep, a single batch ssDNA is
% selected uniformly at random, and then one of its ends is
% selected with probability 1/2 (unless we’re supposed to be
% at the end of the dsDNA construct), and then it yoinks a chunk
% of bases (the size of the chunk is proportional to the effective
% temperature: i.e., prop. to 1/t...see annealing schedule below)
% from its neighbor (we make sure the neighbor really does
% lose the base that our fella gains). We don’t allow moves that
% leave sticky ends of fewer than m bases...

% We also try to be (a little bit) clever: only the two altered batch
% ssDNAs are reevaluated for mishybridizations. This means, however,
% that we’ve gotta keep mishybridization counts in memory (see above):
% for each batch ssDNA, we have an array like [mis_m(batch{k}) ... ].
% This is tough too, since we’ve gotta remember what an MSH means
% (i.e., we’ve gotta keep our placeholders straight). So OK here goes:

% initial batch is the baseline decomposition:
initialbatch=batch;
initialplace=place;

for t=1:time
numbases=ceil(nb*rand/t);

yoinker=ceil(B*rand);
if yoinker==1

yoinkee=2;
ind=2;

elseif yoinker==B/2
yoinkee=B/2-1;
ind=1;

elseif yoinker==B/2+1
yoinkee=B/2+2;
ind=2;

elseif yoinker==B
yoinkee=B-1;
ind=1;

else
ind=ceil(2*rand);
nei=[yoinker-1,yoinker+1];
yoinkee=nei(ind);

end

batchyr=batch{yoinker};
placeyr=place{yoinker};
batchye=batch{yoinkee};
placeye=place{yoinkee};

if ind==1 % yoinker comes after yoinkee
bases=batchye(end-numbases+1:end);
placebases=placeye(end-numbases+1:end);
batchyr=[bases, batchyr]; % It is better to receive
placeyr=[placebases, placeyr];
batchye(end-numbases+1:end)=[];
placeye(end-numbases+1:end)=[];

else % yoinker comes before yoinkee
bases=batchye(1:numbases);
placebases=placeye(1:numbases);
batchyr=[batchyr, bases]; % It is better to receive
placeyr=[placeyr, placebases];
batchye(1:numbases)=[];
placeye(1:numbases)=[];

end

batch{yoinker}=batchyr;
place{yoinker}=placeyr;
batch{yoinkee}=batchye;
place{yoinkee}=placeye;

% Now if 1≤k≤B/2, batch{k} is supposed to join up with batch{B-k+1} and batch{B-k+2}.
% Similarly, if B/2+1≤k≤B, batch{k} joins up with...batch{B-k+1} and batch{B-k+2}.
% Just watch out for the ends!
% We gotta make sure, therefore, that batch{k} overlaps both of these
% other batch ssDNAs by at least m bases...
% ...but this happens iff the placeholders have m or more common values...
if yoinker==1

if length(intersect(place{2},place{B})) < m
% just gotta check place{B} and place{2} when yoinker=1
batch=initialbatch;
place=initialplace;

else
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end
elseif yoinker==B/2+1

if length(intersect(place{B/2},place{B/2+2})) < m
% just gotta check place{B/2} and place{B/2+2} when yoinker=B/2+1
batch=initialbatch;
place=initialplace;

else
end

elseif yoinkee==1
if length(intersect(place{1},place{B})) < m % etc

batch=initialbatch;
place=initialplace;

else
end

elseif yoinkee==B/2+1
if length(intersect(place{B/2},place{B/2+1})) < m % etc

batch=initialbatch;
place=initialplace;

else
end

elseif length(intersect(place{yoinkee},place{B-yoinkee+1})) < m
% Now by presumption we had OK sticky ends last time, so just check yoinkee
batch=initialbatch;
place=initialplace;

elseif length(intersect(place{yoinkee},place{B-yoinkee+2})) < m % etc
batch=initialbatch;
place=initialplace;

else %%%% This else added recently.
 %%%% We could put the rest of the for loop in here but it’d be obscure %%%%

end

% Now tweak entries in mis:
batchyr=batch{yoinker};
batchye=batch{yoinkee};
for l=m:n

inityr=batchyr(1:l);
termyr=batchyr(end-l+1:end);
initye=batchye(1:l);
termye=batchye(end-l+1:end);

% check yoinker, (esp. [here meaning only]) for 3’ sticky ends (hence init);
% and check yoinkee, (esp. [here meaning only]) for 5’ (hence term)
for j=1:B

ss=batch{j};

initss=ss(1:l);
rcinitss=rc(initss);
termss=ss(end-l+1:end);
rctermss=rc(termss);

mis3er=1;
if strcmp(inityr,rcinitss)~=1

mis3er=0;
end
mis3ee=1;
if strcmp(initye,rcinitss)~=1

mis3ee=0;
end
mis5er=1;
if strcmp(termyr,rctermss)~=1

mis5er=0;
end
mis5ee=1;
if strcmp(termye,rctermss)~=1

mis5ee=0;
end
mis(j,yoinker,l-m+1)=mis3er+mis5er;
mis(yoinker,j,l-m+1)=mis3er+mis5er;
mis(j,yoinkee,l-m+1)=mis3ee+mis5ee;
mis(yoinkee,j,l-m+1)=mis3ee+mis5ee;

end
end

Hzeta=sum((m:n).*squeeze(sum(sum(mis)))’);
% Now compute the lengths of the batch ssDNAs (part of the energy biz);
for j=1:B

L(j)=length(batch{j});
end

newbatch=batch;
newplace=place;
% the energy is

    energy(t+1)=a*Hzeta+b*var(L);
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    % if the change in energy is positive, make the move according to a B-G likelihood;
% or, if the change in energy is negative, make the move automatically
if rand(1) > exp(-(energy(t+1)-energy(t))*log(t+1)/(log(2.71828)*T)) % reject the move
energy(t+1)=energy(t);
else

initialbatch=newbatch;
initialplace=newplace;

end

end

y=batch;

figure;plot(energy)
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APPENDIX D
NOTES ON ROTATIONAL DIFFUSION

Here we look at the nucleation process in the context of rotational diffusion of
~!3–4 nt segments. As a shorthand in this discussion we take “nuclear satisfaction” to
mean satisfaction of the angular constraint on nucleation for which rotational diffusion
comes into play. We fix one of these ssDNA segments with orientation given by the
standard basis vector e3 and denote the (antisense or reverse) orientation of the other as a
function of time by xt. Let q denote the standard azimuthal/longitudinal coordinate, and
let f denote the standard polar/colatitudinal coordinate. Put fhyb := cos–1(1–ehyb) and ft :=
cos–1(e3⋅xt). We might assume that f0 ~ U[S2]: that is, that f0 is a random variable with
uniform density on the unit sphere. However, without loss of generality, we assume that
x0 lies in the plane q  = 0. Finally, we put

L0 :={(q, f) Œ S2: cos f ≥ 1 – ehyb}.

Now the quantity we want to get a handle on is

Pr(maxt cosft ≥ 1-ehyb) = Pr(cos mint ft ≥ 1-ehyb) = Pr(mint ft ≤ fhyb).

The way to get there from here is via the rotational diffusion or heat equation, which has
the same form as the translational diffusion equation (aka the heat equation), but using
the Laplacian on the sphere S2:

  

† 

DRn = ∂rr +
n -1

r
∂r +

1
r2 DSn-1 :

DR3 =
1
r2 ∂r r2∂r( )

=∂rr +
2
r

∂r

1 2 4 3 4 
+

1
r2 sinf

∂f sinf ⋅ ∂f( ) +
1

r2 sin2 f
∂qq

=
1

r2 D
S 2

1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 

.

The well-known connection of the heat/diffusion equation with the theory of random
walks is useful to us: we will use the solution to a heat equation to tackle the problem.
The formal attack on the initial value problem goes through just as for the diffusion
equation on Rn.128 In that case one uses Fourier analysis to transform differentiation into

                                                  
128 Taylor, M., Partial Differential Equations. Basic Theory, Springer, New York (1996).
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multiplication, yielding an ordinary differential equation for the Fourier transform of the
solution, which is given by a momentum-space Gaussian times the Fourier transform of
the initial value function.129 The inverse Fourier transform turns this multiplication into
convolution, and if the initial value problem is

† 

∂t p x,t( ) = DRn p x,t( ); p x,0( ) := f x( )  ,

then the (unique/nice) solution is given by the convolution of the initial condition by the
heat kernel:

† 

e- ⋅ 2 4 t

4pt( )n 2 * f .

It turns out that the appropriate way to generalize this approach is by using the
spectral theory (i.e., eigenstuff) of the Laplacian and the formal identity for the heat
kernel (which we will just write and not try to explain)130

† 

etDd ⋅( ) =
e- ⋅ 2 4 t

4pt( )n 2 fi etD f = p.

The convolution bit follows from this. Following these lines for the spherical diffusion
equation, we recall the spherical harmonics (i.e., the eigenfunctions of the spherical
Laplacian):131

  

† 

DS2Yl,m = -l l,mYl,m = -l l +1( )Yl,m : l Œ Z; m Œ -l,-l +1,K,l -1,l{ }

Yl,m q,f( ) := -1( )m 2l +1
4p

l - m( )!
l + m( )!

Pl
m( ) cosf( )eimq,

where Pl
m( ) x( ) := 1- x2( )

m 2
Dx

mPl x( ) and Pl x( ) := 1
2l l!

Dx
l x2 -1( )

l
.

Using this we obtain a solution to the initial value problem by the superposition principle
(for the diffusion equation is linear):

                                                  
129 Dym, H., and McKean, H. P., Fourier Series and Integrals, Academic Press, San Diego (1972).
130 See, e.g., Rosenberg, S., The Laplacian on a Riemannian Manifold, Cambridge, Cambridge (1997).
131 Arfken, G., Mathematical Methods for Physicists. Academic Press, Orlando (1985); see also Egorov,

Yu. V., and Shubin, M. A., Foundations of the Classical Theory of Partial Differential Equations,
Springer, Berlin (1998).
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† 

∂t p q,f,t( ) = QDS2 p q,f,t( ); p q,f,0( ) =
(wlog)

df0
:= d 0,f0( );

p ≡ pf0
q,f,t( ) = e-tQll ,m df0

,Yl,m
l,m
Â Yl,m =

formally
e

tQD
S 2 df0

.

This gives us an idea of how to proceed in earnest. Enforcing a Dirichlet
(absorbing) boundary condition at f = fhyb will ensure that the resultant diffusion equation
will give us what we want.132 Indeed, the probability of nuclear satisfaction will be one
minus the probability of its negation, or one minus the integral of the density over
M!:=!S2\L0. Depending on f0, the probability of nuclear satisfaction should either begin
(and stay) at unity, or begin at zero and increase over time. Developing the framework to
characterize this is our ultimate goal here.

Separation of variables gives us

† 

1
sinf

∂f sinf ⋅ ∂f( ) +
1

sin2 f
∂qq

Ê 

Ë 
Á 

ˆ 

¯ 
˜ h f( )eimq = -lh f( )eimq

¤ ¢ ¢ h f( ) +
cosf
sinf

¢ h f( ) + -
m2

sin2 f
+ l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ h f( ) = 0.

b.c. h Œ C2 fhyb,p[ ]( ); h f = fhyb( ) := 0; ¢ h f = fhyb( ) ≠ 0.

(The last boundary condition is not really as vague as it seems, since the equation is
linear and we will normalize its solutions anyway.) The functions h can be obtained
numerically and used to get an orthonormal basis of eigenfunctions {Yl,m} of the
Laplacian DM on M . By construction, the eigenvalues of DM are identical to those of the
spherical Laplacian; that is, we have that the truncated spherical harmonics satisfy

    

† 

DMYl,m = -l l,mYl,m = -l l +1( )Yl,m : l Œ Z; m Œ -l,-l +1,K,l -1,l{ };

Yl,m ≡ Cl,mhl,m f( )eimq; hl,m 2 ≡ hl,m f( )
2

fhyb

p
Ú sinfdf

Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ 

1 2

:=1.

Yl,m
*Yl,m d

M
Ú S2 = Cl,m

2 hl,m
*hl,m d

M
Ú S2 = 2p Cl,m

2
fi Cl,m =

1
2p

.

As before, we have that

  

† 

∂t p q,f,t( ) = QDM p q,f,t( ); p q,f,0( ) =
(wlog)

df0
;

p ≡ pf0
q,f,t( ) = e-tQl l+1( ) df0

,Yl,m
l,m
Â Yl,m =

formally
etQDM df0

.

                                                  
132 Heagy, J., unpublished notes (2001).
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We recall the unit measures

† 

dM
2p 2 - ehyb( )M

Ú =1; sinfdf
2 - ehybfhyb

p
Ú =1.

With these firmly in hand, we define the average heat content: 133

† 

q t( ) := 1
2 - ehyb

1
2p 2 - ehyb( )

p
M
Ú dM

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ fhyb

p
Ú sinf0df0.

This quantity will give us a handle on the probability of nuclear satisfaction. But most
(i.e., those Yl,m with m≠0) of the truncated spherical harmonics trivially integrate to zero,
and it is easy to show that the average heat content is given by

† 

q t( ) =
1

2p 2 - ehyb( )2 e-tQl l+1( )

l
Â hl,0

fhyb

p
Ú f( )sinfdf

Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ 

2

.

Thus we see that the decay of the heat content is determined by the principal eigenvalues
of the Laplacian.134 (However, this observation alone would not have told us anything.)
For completeness we list computed values of the squared integrals from the expression
above:

l –1, 0 –2, 1 –3, 2 –4, 3 –5, 4 –6, 5

[Úhl,0(f) sinf df]2 1.5241 0.8759 0.0048 0.0657 0.0096 0.0107

Numerical weights for the average heat content.

We note in passing that self-consistent numerical analysis of the heat equation on
the sphere via eigenmethods is nontrivial.135 Below we depict the fractional average heat
content.

                                                  
133 McDonald, P., and Meyers, R., “Dirichlet spectrum and heat content,” math.SP/0205098 (2002), and

Desjardins, S., “Asymptotic expansions for the heat content,” Pacific J. Math. 183, 279 (1998).
134 Burchard, A., and Schmuckenschläger, M., “Comparison theorems for exit times,” Geometric and

Functional Analysis 11, 651 (2001).
135 For such a technique, see Le Gia, Q. T., et al., “Solving parabolic PDEs on unit spheres by

collocation,” Preprint (2001).
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Figure D-1. Fractional average heat content as a function of
time and diffusion coefficient

The MATLAB code we used is included below:
function hc=heatcontent(n, D, tmax, steps);
% Calculates heat content for a truncated sphere
% w/ delta ic w/ phi = phi and theta = 0 (wlog).
% D is the diffusion coefficient. Time runs in
% steps number of steps from time=0 to 1

a=acos(.905); % a=0.4394
phispan=[a 3.14]; % don’t use pi for the numerics...
time=linspace(0,tmax,steps);
phi=linspace(0,pi,4*2^n);
marker=ceil( (a/pi) *4*2^n);

% no error handling for phi less than a
dphi=max(diff(phi));

ylm=zeros(steps,4*2^n,4*2^n);
p=zeros(steps,4*2^n,4*2^n);

for l=-n:n
yo=[0;1]; % By linearity/L^2 normalization it doesn’t

% matter what we set the derivative ic to
    options = odeset(‘RelTol’,1e-5,’AbsTol’,1e-8);

[t,y]=ode45(‘myodef’,phispan,yo,[],l,0,a); 
% get something associated-Legendreish

yy=interp1(t,y(:,1),phi);
% interpolate to linearly spaced points
nanyy=find(isnan(yy));
nyy=find(~isnan(yy));
yy(nanyy)=max(yy(nyy));

% kill any ODE solver NaNs

yy(1:marker)=0;

l2y=sum((yy.^2).*sin(phi)*dphi);
yy=yy/sqrt(l2y); % normalize to unit norm in L^2:
iy2=(sum(yy.*sin(phi)*dphi))^2 % read these off

for t=1:steps
f(l+n+1,t)=exp(-time(t)*D*l*(l+1))*iy2;

end

end

hc=squeeze(sum(f,1));

%- - - - - - - - - - - - -

function ydot = myodef(phi,y,flag,l,m,a)
% called to generate truncated spherical harmonics
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if isempty(flag)
ydot = [y(2);( (m.*csc(phi)).^2 - l*(l+1) ).*y(1) - cot(phi).*y(2)]; % use for phi

else
‘error’

end
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APPENDIX E
NOTES ON SINGLE BASE MISMATCHES

In a series of papers,136 the SantaLucia NN model137 of Watson-Crick paired DNA
thermodynamics was successfully extended to incorporate mismatched base pairs.
Several features of interest besides the thermodynamic parameters were noted: firstly, the
idea of testing the NN model by using (what turn out to be members of) de!Bruijn
equivalence classes of DNA sequences;138 secondly, that mismatches at positions near the
ends of duplexes can induce fraying at the ends and that this is a stabilizing effect (in
particular, terminal, penultimate, and “penpenultimate” mismatches can typically all be
treated as terminal mismatches, whereas mismatches any further within the duplex
structure contribute independently of their exact position, and in line with the generalized
NN formalism).

The overall trend (in order of decreasing stability) is

G⋅C > A⋅T > G⋅G > G⋅T ~ G⋅A > A⋅C+ > T⋅T ~ A⋅A ~ C⋅C+ > T⋅C ≥ A⋅C ≥ C⋅C.

The first six of these are (broadly speaking) stabilizing, and the last six destabilizing. In
general, it is probably fair to say that a generic single base mismatch will have a
negligible net contribution to duplex stability, whereas properly matched bases will
enhance duplex stability. The picture rapidly deteriorates past the NN framework: one
recent paper explicitly remarks that “we do not understand the basic physics of [single
mismatch] hybridization.”139

                                                  
136 Allawi, H., and SantaLucia, J., Jr., “Thermodynamics and NMR of Internal G⋅T Mismatches in DNA,”

Biochemistry 36, 10581 (1997); “Nearest Neighbor Thermodynamic Parameters for Internal G⋅A
Mismatches in DNA,” Biochemistry 37, 2170 (1998); “Nearest Neighbor Thermodynamics of Internal
A⋅C Mismatches in DNA: Sequence Dependence and pH Effects,” Biochemistry 37, 9435 (1998);
“Thermodynamics of internal C⋅T mismatches in DNA,” Nuc. Acids. Res. 26, 2694 (1998); and
“Nearest-Neighbor Thermodynamics and NMR of DNA Sequences with Internal A⋅A, C⋅C, G⋅G, and
T⋅T Mismatches,” Biochemistry 38, 3468 (1998).

137 SantaLucia, “A unified view.”
138 Cited in particular as Kierzek, R., et al., Biochemistry 25, 7840 (1986), and Sugimoto, N., et al.,

Biochemistry 34, 11211 (1995).
139 Naef, F., et al., “DNA hybridization to mismatched templates: a chip study,” Phys. Rev. E 65, 040902

(2002).
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