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Abstract. A spiral-grooved turbo-molecular pump is widely used in vacuum technology. Available rota-
tional speed of a rotor becomes larger and larger, and reaches 18,000 to 50,000 rpm. The clearance effect
between a rotor and its casing is one of the important problems for the performance prediction of turbo-
molecular pump which operates under very high speed of revolution. Now the pumping performance can
be predicted from the computation of the three-dimensional flows. In the present paper, a flow in a spiral
groove of turbo-molecular pump is simulated on the basis of the NS equations to cover a wide range of
pressure ratio and mass flow rate. A fully three-dimensional analysis is made to take account of the effect of
a gap between a rotor and its casing as well as the centrifugal and Coriolis forces. The pumping performance
is shown in comparison with that of the no-gap flow and the channel flow approximations.

INTRODUCTION

A spiral-grooved turbo-molecular pump as shown in Fig.l is widely used to cover a wide range of pressure
ratio and flow rate in vacuum technology. Available rotational speed of a rotor reaches 18,000 to 50,000 rpm.
The performance of a pump can be now predicted by computational fluid dynamics. The high rotational
speed gives us many problems such as a large clearance between a rotor and its casing. But the flow is in
low density and then may be considered to be laminar. In a very low pressure such as 1 Pa or less, the
flow must be simulated by the DSMC method [1]. In the past, a flow in a groove was simulated by the 3D
channel flow approximation (see Fig.2) by Nanbu et al. [2] in continuum model. The approximation cannot
not exactly predict the performance of a pump for such a high rotational speed, as was suggested by the
BGK model calculation of Kanki [3]. The effect of the centrifugal and Coriolis forces on the performance a
of turbo-molecular pump is simulated by the NS equations (Igarashi [4]), where the effect of gap S in Fig.3
between a rotor and its casing is neglected.

In the present paper, the effect of the clearance on the performance of a pump, that is, pressure and discharge
rate distributions averaged over the cross section and on flow patterns is clarified by the NS equations with
constant temperature approximation.

BASIC EQUATIONS AND CALCULATION METHOD

We consider the motion in the coordinate system fixed on the rotor whose angular velocity is u? with the
components (w, 0, 0). The absolute velocity u is related with the relative one w by the formula u = w + u? X r.
The relative motion is described on the assumption that the temperature change is negligible and then the
pressure p is given by the equation p = RpT(R is the gas constant per unit mass), as was done in the previous
paper [4]. The governing equations are in the cylindrical coordinate system as follows [5,6]:

9U + T(m n b rim dE, 8E2 18E3 H 8S, 552 18S3 S4—— + L(U) = V, where L(U) = __ + __+-__+- -__-__- -__-_ ,
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FIGURE 1. Spiral groove FIGURE 2. Plane view of rotor at the outer
radius r = R^

FIGURE 3. Calculation region of the cross section a?=constant
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It is to be noted that U consists of density and three mass flux components, but has no temperature or energy
term. II,-j in the viscous terms of Si(i = 1 — 4) is the stress tensor, but it does not include pressure term, for
example

where eXiXi is the rate of strain component and the details are given in [5]. The centrifugal and Coriolis forces
are in the term of H.
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The numerical solution of the equations is obtained by use of the Beam- Warming delta form. The approxi-
mate factorization is applied to the form for finding a steady solution as follows:

where AC/ = t/(n+1) - EfW, At = dEi/dU, (i = 1,2,3), that is

-wxwr
-wxwe

0
- wxwr

-w* + RT

0 0 0 1
—wxwo wo 0 W;
—wrwo 0 we w,

-tuf + ET 0 0

The practical method of solution is not for 0 but for the variable 0' = 0 — #0(2?), 0o(#) — (•£ — x)/R2 tana,
where J?2 is the outer radius of the rotor and a the inclination angle of the groove (Fig. 2). Then the
circumferential calculation is independent of x. The boundary conditions are non-slip ones on the rotor and
the casing. But a periodic boundary condition is applied for the gap ends, since only one groove of the rotor
is simulated.

RESULTS AND DISCUSSION

Numerical calculation is performed for one of the spiral grooves. The geometry is as follows (see Figs. 2 and
3) :

outer radius of a rotor J?2 = 68.8 mm, inner radius RI = 64.8 mm and groove height h = 4 mm,
groove width a' = 50.5mm (~ 13.06/ sin a) , 1 pitch on the radius ^2 — 74.14 mm, a = 15°,
gap : 6 = 0.6mm,
axial length L = 115 mm.

Gas is nitrogen with the viscosity coefficient of ju = 1.786 x 10~5Pa-s of the constant temperature 300K. The
number of revolutions per minute n is 18000 rpm. The exit pressure is fixed with the value of p = P^ = 1 Torr.
The inlet pressure is PI = 1, 0.75 and 0.5 Torr.

The number of the grid points in which the reasonable results are obtained is 101 x 70 x 61 in a?,r and 0
directions respectively. The points for the groove region are 101 x 61 x 43 and those for the gap 101 x 9 x 61.
The time step At is determined so that the CFL condition is fully satisfied. In this problem, the flow is
under an adverse pressure gradient. If the CFL number is not very small in comparison with 1, the solution is
immediately broken at some time step. Then we choose Atf = 1.0 x 10~7 sec.

The flow rate Q in SCCM unit (standard cubic centimeter per minute : atm-cm3/min) and is expressed by
the equation

Q = ————— / / pwxr drdO,
Po J Js

where 5 is the cross sectional area normal to the ic-axis, p$ the density of nitrogen at the standard condition
and all quantities except Q measured in MKS unit. The mean pressure p over the cross section is also given
by the similar equation as follows:

1 f f
pr drdO.

s
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Calculation was carried out for one of the spiral grooves and the pumping performance of the turbo-molecular
pump was estimated for six grooves.
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FIGURE 4. Averaged flow rate distribution for Pi/P2 = 1

Figure 4 shows the local flow rate distribution averaged over the cross section for PI = P% = 1 Torr at
n = 18000 rpm. Here and what follows, x in the figure means L — x in the basic equations, that is, the inlet
and the exit are x = 0 and L , respectively. It is seen that the flow rate is nearly constant except the inlet
and the exit region. Then we can consider the flow to be steady (see [4]). The detailed inspection shows that
the distribution is oscillating. It is to be noted that a large factor (6 x 106) is multiplied to obtain the flow
rate Q in SCCM. From the figure, the flow rate Q is about 1138 SCCM in the middle region. This is smaller
than that of no-gap flow (1239.7 SCCM) [4]. The area of the calculation region with gap is about 21 % greater
than that without gap. But the flow rate decreases for the configuration with a gap.

Figure 5 shows the pressure distribution p for PI = P% = 1 Torr at n = 18000 rpm. The pressure ratio is
uniform for the whole region, but a little smaller than 1.
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FIGURE 5. Averaged pressure distribution for PI/P^, = 1

Next we show the results of an adverse gradient flow. Figures 6 and 7 show the results of PI = 0.75. The
flow rate distribution is given in Fig.6 and the pressure distribution in Fig.7. From Fig.6, it is seen that the
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distribution is not uniform: the initial decrease followed by the gradual increase in the middle region and the
decrease at the exit. The flow may not be in a steady state. But we may imagine the result of the final state
from the figure. The pressure distribution, on the contrary, shows a gradual increase from 0.75 to 1, as seen
from Fig. 7. Except the inlet and the exit region, a linear increase is seen. But the no-increase region at
the inlet is very small. In fact, for the no-gap flow [4], the region extends to 1/3 of the whole groove and the
sudden pressure rise appears for the region x/L > 0.5. Then the distribution was not linear. As was pointed
by Sawada [7], the initial flat pressure distribution contributes to the flow rate increase and the pressure rise
for the downstream region results in pressure difference.
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Figures 8 and 9 show the results for PI =0.5 Torr. The pressure distribution is given in Fig. 8. A linear
increase in pressure ratio from 0.5 to 1 can be seen from the figure. The flow rate (Fig.9) is wavy and not
uniform. This distribution has a similar one as that for Pi/P<z = 0.75. If we further continue the simulation,
we may consider that the maximum rate at the region of x/L = 0.8 decreases and that at the inlet and the
exit region increases.
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Figures 8 and 9 show the results for Pi = 0.5 Torr. The pressure distribution is given in Fig. 8. A linear 
increase in pressure ratio from 0.5 to 1 can be seen from the figure. The flow rate (Fig.9) is wavy and not 
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Figure 10 shows the pumping performance, that is, the pressure difference versus flow rate for n = 18000 rpm
in comparison with the results of the no-gap flow [4], the channel flow approximation [2] and the experiment
in [2]. The channel flow approximation has a tendency that the flow rate is overestimated especially for larger
pressure difference. The no-gap result shows a larger flow rate for larger pressure difference. The present result
is in a good agreement with the experiment for large pressure difference. If we don't take account of the gap
effect, we estimate a flow rate with 10% larger value for P2 — PI = 0 Torr and 20% one for P^ — PI = 0.5 Torr.

938

1.2 

1   - 

0.8   - 

0.4   - 

0.2 

1 1  

n = 18000 rpm 

P1/P2 =0.5 

_L _L 

0.2 0.4 0.6 

x/L 

0.S 

FIGURE 8. Averaged pressure distribution for P1/P2 = 0.5 

1200 

U 

1000   - 

800   - 

600   - 

400 

200   - 

1 1  

n = 18000 rpm 

P1/P2 =0.5 

>cPcP#0oQ, 

_L _L 

0.2 0.4 0.6 

x/L 

FIGURE 9. Averaged flow rate distribution for P1/P2 = 0.5 

Figure 10 shows the pumping performance, that is, the pressure difference versus flow rate for n = 18000 rpm 
in comparison with the results of the no-gap flow [4], the channel flow approximation [2] and the experiment 
in [2]. The channel flow approximation has a tendency that the flow rate is overestimated especially for larger 
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We conclude that the clearance effect is significant for larger pressure difference. In this calculation, the
number of revolution per minute n is 18000 rpm. As the speed increases, the effect of temperature change as
well as the clearance is also important and must be investigated.
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We conclude that the clearance effect is significant for larger pressure difference. In this calculation, the 
number of revolution per minute n is 18000 rpm. As the speed increases, the effect of temperature change as 
well as the clearance is also important and must be investigated. 
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