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ANALYSIS OF A FLUID-LOADED THICK PLATE 

INTRODUCTION 

The physics of a thick plate with fluid loading on both sides provides the theoretical basis for 

insertion loss and echo reduction tests, both of which are typically used to determine how 

efficiently a material transmits or reflects energy. Such testing is conducted by insonifying a 

submerged, slab-shaped sample and then measuring the transmitted and reflected sound pressure. 

Based on the sound pressure level of the incident field, the insertion loss and echo reduction 

quantities can be calculated. When these experiments are performed in a small tank, the wall 

motion of the sample is sometimes measured, with the fluid pressure then calculated based on 

this displacement. The above measurements and corresponding theory are important to the U.S. 

Navy because they help designers develop the most effective acoustic sonar windows, sonar and 

ship baffles, and anechoic marine coatings. 

Central to the study and understanding of insertion loss and echo reduction is plate theory, 

which has been researched extensively for many years. Thin plate theory,1 studied in 1973, is a 

simplified version that fails to accurately incorporate dynamic response when the sample is thick 

compared to a wavelength. In contrast, thick plate theory2 usually incorporates all the dynamics 

of the plate and is normally used when the sample is on the order of a wavelength of energy in 

the structure. More complex investigations have analyzed the dispersion curve for the plate 

without fluid loading3"5 or for the plate in contact with a continuous fluid on one or both sides.6"11 

To a lesser extent, papers have been published that examine plate response to various other 

loading configurations. For example, studies have explored the radiation efficiency of infinite 

fluid-loaded plates subjected to point loads,12 calculated the corresponding transfer functions for 

thin plate models coupled to fluid loading,13 and determined mode shapes for a thick plate with 

finite depth that is loaded by fluid on both sides.14 During these investigations, the response of 

thick-walled plates has been typically left as an open-form solution that involves a matrix inverse 

at a specific wavenumber and frequency. Although closed-form solutions have been previously 

derived, such analyses have been performed only at zero wavenumbers and have not been 

extended to nonzero wavenumbers. 



This report derives the equations of motion of an infinite thick plate coupled on one or both 

sides with fluid loading as it is excited with a continuous forcing function. The equations of 

motion are formulated into a four-by-four system of linear equations with wave propagation 

coefficients as the unknown terms. Once the system matrix is known, the dispersion equations 

— derived in closed-form expressions from the determinant of the matrix — explicitly show the 

effects of the fluid loading. Calculated next are the closed-form transfer functions of plate 

motion divided by source excitation, which contain the plate and the fluid terms separately. 

Based on these transfer functions, the displacement shape of the plate modes is studied with 

respect to fluid loading on one or both sides of the plate. Insertion loss and echo reduction are 

then calculated for the system at nonzero wavenumbers using closed-form solutions of the 

pressure fields that are determined based on plate wall motion, with these results compared to the 

previously available values at zero wavenumber. 

SYSTEM MODEL 

As shown in figures 1 and 2, the system model is a thick plate in contact on one or both sides 

with a fluid that exerts a continuous excitation pressure on the plate. The model configurations, 

referred to as single and double fluid-loaded plates, are based on the following assumptions: 

(1) the forcing function acting on the plate is a plane wave with definite wavenumber and 

frequency content, (2) the corresponding response of the plate is at a definite wavenumber and 

frequency, (3) motion is normal and tangential to the plate in one direction (two-dimensional 

system), (4) the plate has an infinite spatial extent, (5) the particle motion and pressure response 

is linear, and (6) the fluid medium has no loss. For the case where the fluid is on both sides of 

the plate, each fluid has the same acoustic properties. 

For the single and double fluid-loaded plates, the acoustic pressure in the fluid on the 

excitation side of the plate is governed by the wave equation and is written in Cartesian 

coordinates as15 

02
Pl(x,z,t)    d2

Px{x,z,t)     1  d2
Px(x,z,i)    n 

dz2 dx2 c)        0?        ~°' (1) 
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Figure 1. Single Fluid-Loaded Plate 
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Figure 2. Double Fluid-Loaded Plate 

where p1 (x, z, i) is the pressure (N/m2), with the subscript 1 denoting the fluid on the excitation 

side of the plate; z is the spatial location (m) normal to the plate; JC is the spatial location (m) 

tangential to the plate; cf is the compressional wave speed of the fluid (m/s); and t is time (s). 

The coordinate system of this configuration is shown in figure 3. Note that the use of this 

orientation results in b — 0 and a having a value less than zero. Furthermore, the thickness of the 

plate, h, is a positive value, and the motion of the plate is governed by the equation16 

//V2u + (;t + //)VV.u = />!^, (2) 

where p is the density (kg/m3), A and // are the Lame constants (N/m2), • denotes a vector dot 

product, and u is the Cartesian coordinate displacement vector of the plate. For the double 
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Figure 3. Coordinate System of Model 

fluid-loaded plate, the acoustic pressure in the fluid opposite the excitation side of the plate is 

governed by the wave equation and is written in Cartesian coordinates as 

d p2(x,z,t)    d2
Pl{x,z,i)     1  d2

Pl{x,z,t)    A 

dz2 dx2 c)        ~0? ~°' (3> 

where p2(x,z,t) is the pressure (N/m2) and the subscript 2 denotes the fluid opposite the 

excitation side of the plate. For the single and double fluid-loaded plates, the interface between 

the first fluid and the surface of the plate at z = b satisfies the linear momentum equation, which 

is17 

d2ut(x,b,t)      dpx{x,b,i) 
P}       3t2       = ^~ ' W 

where pf is the density of the fluid (kg/m3). For the double fluid-loaded plate, the interface 

between the second fluid and the surface of the plate at z = a also satisfies the linear momentum 

equation and is written as 

d2uz{x,a,i)       dp2(x,a,t) 
Pf        dt2        = ^— ■ (5) 

Equations (1) through (5) are the governing partial differential equations of the single and double 

fluid-loaded plate systems. 



Equations (1) through (3) are now transformed from partial differential equations into 

ordinary differential equations and then into algebraic expressions. The acoustic pressure in 

equation (1) is modeled as a function at definite wavenumber and frequency by 

pl(x,z,t) = Pl(z,kx,co)exp(ikxx)exp(icot) , (6) 

where co is frequency (rad/s), kx is the spatial wavenumber in the jc-direction (rad/m), and i is the 

square root of-1. If the pressure in the fluid is generated by an acoustic plane wave, the spatial 

wavenumber is given by 

kx=—sm(0), (7) 
cf 

where 0 is the angle of incidence (rad) of the incoming acoustic wave, with 0=0 corresponding 

to excitation normal to the plate (or broadside excitation). Wavenumbers larger than colcf are 

possible and are typically generated from turbulent fluid loading or structural wave loading. 

Inserting equation (6) into equation (1) and solving the resulting ordinary differential equation 

yields 

i> (z, kx, co) = H(kx, co) exp(i/z) + Pe (co) exp(-i^z) . (8) 

In equation (8), the first term on the right-hand side represents the reflected (or reradiated) 

pressure field and the second term represents the applied incident pressure field (the excitation or 

forcing function) acting on the plate. To be exact, the term H(kx, co) is the wave propagation 

coefficient of the reflected pressure field, and the term Pe(co) is the excitation (or source) level. 

Furthermore, 

(9) 

where y is the wavenumber of the acoustic pressure in the fluid (rad/m). 



Equation (2) is manipulated by writing the Cartesian coordinate displacement vector u as 

u = < 

ux(x,y,z,t) 

uy(x,y,z,t) 

uz(x,y,z,t) 
(10) 

with v denoting the direction into the plate. The symbol V, from equation (2), is the gradient 

vector differential operator written in three-dimensional Cartesian coordinates as18 

V7     d .     d .     d . 

dx       dy }    dz z (11) 

with ix denoting the unit vector in the x-direction, iy denoting the unit vector in the y-direction, 

and iz denoting the unit vector in the z-direction. The symbol V2 is the three-dimensional 

Laplace operator operating on vector u as 

V2u = V2uxix + V2uyiy + V2uziz (12) 

and on scalar u as 

V2
W      =VVu x,y,z *        '     x,y,z 

d2u„ 

dx1 
",y,z *2«W   ,  <?\y. 

dy> dz1 (13) 

the term V «u is the divergence, which is equal to 

„ dux    du      duz V«u = —- + —- + ■    z 

dx      dy      dz (14) 

The displacement vector u is written as 

(15) 

where <j> is a dilatational scalar potential, x denotes a vector crossproduct, and ij/ is an 

equivoluminal vector potential expressed as 



¥ = 

y/x(x,y,z,t) 

Vy(x,y,z,t) 

y/z(x,y,z,t) 

(16) 

The formulation is a two-dimensional problem; thus, y = 0 and d{^)l dy = 0. Expanding 

equation (15) and breaking the displacement vector into its individual nonzero terms yields 

ux(x,z,t) = 
d<j>(x,z,i)    dy/y(x,z,t) 

dx dz 

and 

,       .     d<j>{x,z,t)    dyy(x,z,t) 
uz(x,z,t)=        ,        +■     y 

dz dx 

(17) 

(18) 

Equations (17) and (18) are next inserted into equation (2), which results in 

,2v72^/„  _ ^_d2#(x,Z,t) c*V2<f>(x,z,t) = 

and 

cyi
Vry(x,z,t) = 

ßt1 

d2y/y(x,z,t) 

dt1 

(19) 

(20) 

where equation (19) corresponds to the dilatational component and equation (20) corresponds to 

the shear component of the displacement field.19 Correspondingly, the constants c^ and cs are 

the complex dilatational and shear wave speeds, respectively, and are determined by 

c, = 
\A + 2ju 

(21) 

and 

c. =   — (22) 



The relationships of the Lame constants to the Young's (compressional) and shear moduli are 

shown as 

1_         Ev 
(23) (l + u)(l-2u) 

and 

u-G-     E 
(24) 2(1+ u) 

where E is the Young's modulus (N/m2), G is the shear modulus (N/m ), and v is the Poisson's 

ratio of the material (dimensionless). 

The conditions of infinite length and steady-state response are now r imposed, allowing the 

scalar and vector potential to be written as 

<fi(x,z,t) = <&(z)exp(ikxx)exp(itot) (25) 

and 

y/y(x, z, t) = ^(z)exp(ikxx) exp(icot) . (26) 

Inserting equation (25) into equation (19) yields 

^^ + a2O(z) = 0, (27) 

where 

(28) a = Jk*-kl  , 

with 

k  - — Kd ~ 
cd 

(29) 

Inserting equation (26) into equation (20) produces 

8 



—-12+ £'¥(*) = 0, (30) 
dz 

where 

ß = Jk2
s-k2

x   , (31) 

with 

*.=-■ (32) 

The solution to equation (27) is 

O(z) = ^(^,6))exp(iörz) + 5(^,«)exp(-iorz) , (33) 

and the solution to equation (30) is 

W(z) = C(kx, co) exp(i/?z) + D(kx, co)exp(-ißz) , (34) 

where A(kx, co), B(kx, co), C(kx, co), and D(kx, co) are wave propagation constants of the plate 

and are determined below. The displacements, now written as functions of the unknown 

constants using the expressions in equations (17) and (18), are 

ux(x,z,t) = Ux(kx,z,co)exp(ikxx)exp(icot) 

= [A(kx, co)ikx exp(iorz) + B(kx, co)ikx exp(-iarz) 

- C(kx, co)ißexp(ißz) + D(kx, co)ißexp(-i>ffz)]exp(iÄ:;i.x) exp(icot) (35) 

and 

uz(x,z,t) = Uz(kx,z,G>)exp(ikxx)exp(icot) 

= [A(kx, co)ia exp(iarz) - B{kx, co)\a exp(-iarz) 

+ C(kx, co)ikx exp(i/?z) + D(kx, co)\kx exp(-ißz)]exp(ikxx) exp(icot). (35) 



The normal stress at the top of the plate (z = b) is equal to the opposite of the pressure in the 

fluid and is expressed as 

oz dx (37) 

The tangential stress at the top of the plate is zero and is written as 

T2x(x,b,t) = /i 
dux(x,b,t)    duz(x,b,t) 

dz dx 
= 0 (38) 

For the double fluid-loaded plate, the normal stress at the bottom of the plate (z = a) is equal to 

the opposite of the pressure in the fluid. This expression is 

U,fl)0 = (A + 2,)^a^ = -,2(X(fl>0! (39) 

on where p2(x,a,t) represents the transmitted (or radiated) acoustic pressure in the fluid field 

the opposite side of the acoustic excitation. For the single fluid-loaded plate, p2(x,z,t) = 0 in 

equation (39). The tangential stress at the bottom of the plate is zero, with this equation written 

as 

zzx(x,a,t) = p. dux(x,a,t) + duz(x,a,t) 
dz dx 

0 . (40) 

For the double fluid-loaded plate, the acoustic pressure in equation (3) is modeled as a 

function at definite wavenumber and frequency, resulting in 

p2(x,z,t) = P2(z,kx,ü>)exp(ikxx)exp(iü)t) (41) 

Inserting equation (41) into equation (3) and solving the resulting ordinary differential equation 

yields 

P2 (z, kx, co) = K(kx, a) exp(-i/z) , (42) 

10 



which is the transmitted (or outgoing) acoustic energy in the second fluid. The term K(kx, co) is 

the wave propagation coefficient of the transmitted pressure field. Note that there is no incoming 

wave energy on this side of the plate and thus only one exponential term is present. 

Assembling equations (37) through (40); incorporating equations (4), (5), (8), and (42); and 

letting b = 0 yields the four-by-four system of linear equations that model the system as follows: 

Ax = b , (43) 

where the entries of equation (43) are 

AUp = -a2Ä-2a2^i-Äk2 , (44) 

pfco2a 
Au = Aid= —  , (45) 

r 

Au=AUp+Ans, (46) 

Ai2 = Aip ~Ans> (47) 

AsP=2kjM, (48) 

PfO)2kr 

A3s=A3ä=— ~, (49) 
r 

A3 = -A3P+A3S, (50) 

A* — AiP 
+ Ais > (51) 

A2l = -2vkxa , (52) 

^22 = _y^2i > (53) 

A23=Mß2-juk2, (54) 

A24 = A23 , (55) 

11 



A3i = (Aup ~ ^iw)exP(i«a) > (56) 

An = (AnP + 4w)exp(-iaa) , (57) 

^33=(-^i3p-^i3«/)exp(i>ffa) , 

^34 = (^i3/,-^i3rf)exp(-iyfffl) , 

X,, = A(kx (0) , 

x21 = B(kx co) , 

Xj, = C(kx CO) , 

*4I = D(kx ,(*>) , 

iip = -P.( CO) , 

A,„ = -Pe( ®) > 

A„ = KP* Ks   » 

A2) = o, 

A31 = o, 

and 

A41 = 0 . 

(58) 

(59) 

Ai = ^21 exp(iora) , (60) 

A42 = ~A2]exp(-iaa) , (61) 

A4i = A2i exp(i/fo) , (62) 

^44 = ^23 exp(-i^a) , (63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

In equations (44) through (73), the subscriptp corresponds to terms related to the plate, the 

subscript s corresponds to the case of both the single and double fluid-loaded plates, and the 

12 



subscript d corresponds only to the case of the double fluid-loaded plate. To model the behavior 

of the thick plate without the fluid loads, the terms with the subscript s and d are set equal to 

zero. To model the behavior of the fluid plate with a single fluid load, the terms with the 

subscript d are set equal to zero. 

For the single and double fluid-loaded plate, the reflected acoustic field on the excitation side 

of the plate is 

PR{kx,zb,a>) = 
f     2        \ 

G> Pf 

v {r J 
U2(kx,b,co) + l expO/zJ , (74) 

with zb being the position where the field is evaluated (m). The total pressure field on the 

excitation side is a sum of the reflected field and the spatially phase-shifted excitation level. It is 

written as 

PTotai (kx >zbM = PR (kx ,zb,a) + Pe (a) exp(-i/zÄ) (75) 

For the double fluid-loaded plate, the transmitted pressure field on the opposite side of the 

excitation is 

PT(kx,za,a) = 
v   {r   j 

Uz(kx,a,(o) exp(-i/zj , (76) 

with za being the position where the field is evaluated (m). The insertion loss (IL) of the double 

fluid-loaded plate is then calculated using 20 

IL(kx,co) = 20 log 10 
pe(p) 

PT(kx,co) 
(77) 

where IL(kx,co) is in units of decibels. The echo reduction (ER) is calculated using .20 

13 



ER(kx,o)) = 20 log 10 
P.W 

PR(kx,a>) (78) 

where ER(kx,co) is in units of decibels. 

DISPERSION EQUATIONS 

The dispersion equation is an equation whose zeros correspond to single-mode propagation 

in the structure. This function is proportional to the determinant of A in equation (43). For the 

case of the single fluid-loaded plate, the equation is written as 

A Ak, ><») = Pi (K, co) cos(ah) cos(ßh) + /, (kx, co) cos(ah) sin(ßh) 

+ f2 (kx, co) sin(ah) cos(ßh) + p2 (kx, co) sm(ah) sin(ßh) - Pl (kx, co), (79) 

where 

Pl(kx,co) = -Saßk2
x(ß2-k2

x)
2 , 

Mkx,co) = ip/(rpY1cc(ß2 -kl)2{ß2 +k2
x)

2 , 

f2(kx,a>) = 4ip/(rpYia2ßk2
x(ß2 +k2)2 , 

and 

(80) 

(81) 

(82) 

p2(kx,co) = (ß2 -k2)4 +\6a2ßX (83) 

For the case of the double fluid-loaded plate, the equation is written as 

Ad(kx,co) = Pl (kx, co) cos(ah) cos(ßh) + 2fx (kx, co) cos(ah) sm(ßh) 
+ 2/2 (kx, co) sin(ah) cos(ßh) 

+ [p2(kx,co) + f3(kx,co)]sm(ah)sm(ßh)-px(kx,co) , (84) 

14 



where 

UK,0>) = Pf{rpTci\ß1+K) (85) 

In equations (79) and (84), thep constants correspond to the plate and the/constants correspond 

to the fluid loads. In the absence of fluid loading, the/constants are identically zero. 

It is noted that these dispersion curves without the fluid load and with the double fluid load 

have both been previously derived. The plate dispersion curve without fluid loading is known as 

the Rayleigh-Lamb frequency equation for the propagation of waves in a plate, which is given 

as .19 

tan(ffl/2) 
tan(or/z/2) 

+ 
Aaßkl 

2\2 iK-n 

±i 

= 0 (86) 

Equation (79) (or equation (84)) with fn = 0 and equation (86), although not identical, have the 

same zeros that correspond to the branches of the dispersion curves for the plate without fluid 

loading. The plate dispersion curve with the double fluid load for the case of symmetrical wave 

response6 is 

f 2\2 

lc„ 
l--~T 2 c 

coth Kh- x 2 

(     c2^ 

V     cdJ 

111 

(       c2\ 

V CdJ 

1/2 

V       C* J 

111 

coth Kh- x 2 

1/2 

+ Pfcf 

PCs 

2f   r2^ 

\    cf J 

-Ml .4    ( rl\ 

\ Cd J 

111 

„2    2 
CfCs 

= 0, (87) 

and for the case of antisymmetrical response is 

15 



2 c2 tanh 
J 

(     c2^ 
l—4- 

1/2 

/ 
-4 

V        Cd J 

Nl/2 1/2 

tanh 
"2 

V J J 

1/2 

/>/-/ v ,2 \ -1/2 

PCs v   c/y 
2    2 

4   (     c2^ 
1/2 

= 0, 
V 'dj 

(88) 

where 

6> 
C

P = (89) 

Equation (84) and equations (87) and (88), although not identical, have the same zeros that 

correspond to the branches of the dispersion curves for the double fluid-loaded plate. Figures of 

calculated dispersion curves are shown in the numerical example section. 

CLOSED-FORM TRANSFER FUNCTIONS 

The closed-form transfer functions can be determined by solving equation (43) as 

x = A   b , (90) 

then taking the entries of x and inserting them into equations (35) and (36), and finally reducing 

the resultant expressions. For the single fluid-loaded plate, the transfer function of the tangential 

displacement at location z divided by the excitation level is equal to 

U'x(kx,z,to)_U?(kx,z,a>) 
(91) 

where 
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UT
X (kx ,Z,ü)) = /73 {cos(örz) - cos(ßh) cos[a(z + /?)]} 

+ p4 {cos(ßz) - cos(ah) cos[ß(z + /*)]} 

+p5 sin(ah) sw[ß(z + h)] + p6 sin(ßh) sin[a(z + h)], (92) 

with 

Pi(kx,co) = 8iaßk3
x(ß

2-k2), (93) 

pA{kx,w) = -A\aßkx{ß A-KY, (94) 

pJft,ffl) = -16iflr*;, (95) 

and 

p6(kx,co) = 2ikx(ß
2-k2

xf . (96) 

For the single fluid-loaded plate, the transfer function of the normal displacement at location z 

divided by the excitation level is equal to 

Pe(co) juAs(kx,6)) 

where 

(97) 

UT
Z
S (kx ,z,co) = pn (sin(arz) - cos(ßh) sin[cr(z + h)]} 

+ ps {sin(/?z) - cos(ah)sin[ß(z + /*)]} 

+ p9 sin(ah) cos[ß(z + h)] + pw sin(ßh) cos[or(z + h)], (98) 

with 

Pl{kx,a>) = -8a2ßk2(ß2 -k2) , (99) 

ps(kx,a>) = -4ak2(ß2-k2)2 , (100) 

p9(kx,a>) = l6a2ßk4
x , (101) 

and 

pl0(kx,co) = 2a(ß2-k2)3 . (102) 
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The transfer function for the case of no fluid loading is given in equations (91) and (97), with the 

/terms set equal to zero and each equation divided by two. 

For the double fluid-loaded plate, the transfer function of the tangential displacement at 

location z divided by the excitation level is equal to 

Ud
x(kx,z,co)    UT

x\kx,z,o>) 

Pe{co) juAd(kx,ü)) 

where 

(103) 

U™ (kx ,z,co) = p3 {cos(az) - cos(/?A) cos[«(z + A)]} 

+ p4 {cos(ßz) - cos(ah) cos[ß(z + A)]} 

+ p5 sin(aA) sin[ß(z + A)] + p6 sin(ßh) sin[a(z + h)] 

+ f4 sin(ah)cos[ß(z + h)] + f5 sin(ßh)cos[a(z + h)], (104) 
with 

Mkx,o>) = 4pf(rpyta2ßkx(ß
2+k2

x)
2 (105) 

and 

f5(kx,ü>) = -2Pf{ypyxakx{ß
2 -k2)(ß2 +k2)2 . (106) 

For the double fluid-loaded plate, the transfer function of the normal displacement at location i 

divided by the excitation level is equal to 

U:(kx,z,co) = U™(kx,z,a>) 

PSco) ^Akx,a>)   ' (107) 

where 

U™ (kx ,z,eo) = p1 {sin(az) - cos(/%) sin[a(z + /?)]} 

+ p% {sin(/?z) - cos(ah) sin[ß(z + /?)]} 

+ p9 sin(ah)cos[ß(z + A)] + pl0 sin(ßh)cos[a(z + A)] 

+/6sin(«A)sin[y9(z + A)] + /7 sin(y9A)sin[a(z + A)], (108) 

with 

f6(kx,co) = -4ipf(rpyla2k2(ß2 +k2)2 (109) 

18 



and 

l„.2/ß2       7,2\/A>2   ,   7,2 \2 f7(kx,co) = -2xpf{yPya\ßl -k')(ß* +%) (110) 

Several specific transfer functions of this system with a further reduced form are listed in the 

appendix. These functions correspond to displacement on one side of the plate divided by the 

displacement on the other side. Figures that compare the transfer functions are shown in the next 

section — A Numerical Example. 

Once the closed-form transfer functions are known, closed-form expressions for the insertion 

loss and echo reduction can be determined by inserting equation (108) into equation (77) for 

insertion loss and into equation (78) for echo reduction. For the insertion loss term, this process 

results in 

IL(kx,to) = 20 log 10 
■iypkdikxM 

fa(kx,CÖ) 
(in) 

where 

fa(kx,co) = pn(kx,co)sin(ah) + pn{kx,co)sin(ßh) , (112) 

with 

pn(kx,co) = Spfa
2ßk2(ß2+k2)2 (113) 

and 

pn(kx,co) = 2pfa(ß2 -k2
xf{ß2 +k2)2 (114) 

For the echo reduction term, this process yields the expression 

ER(kx,co) = 20 log 10 
Ad(kx,a>) 
<j)E{kx,(o) 

(115) 

where 

fa (kx ,&>) = p{ (kx, co) cos(ah) cos(ßh) 

+ [P2 (K M-U (kx, co)} sin(ah) sin(ßh) - px (kx, co) (116) 
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A NUMERICAL EXAMPLE 

A numerical example is discussed to illustrate the effects of fluid loading on a plate. A 

baseline problem is defined that corresponds to a mildly stiff elastomeric solid in contact 

with sea water on one or two sides. The plate material properties are as follows: Young's 

modulus is £ = 108N/m2, density is /? = 1200kg/m3, Poisson'sratio is v= 0.4 (dimension- 

less), and thickness is h = 0.1 m. The sea water has a compressional wave speed of 

cf =1500 m/s and a density of pf = 1025 kg/m3.  The calculated Lame constants are 

A = 1.43xl08N/m2 and // = 3.57xl07N/m2. The calculated dilatational wave speed is 

cd = 423 m/s, and the calculated shear wave speed is cs = 173 m/s. 

Figure 4 compares the dispersion curve (equation (79)) of the plate with a single fluid load 

(solid line) to the dispersion curve of a plate without fluid loading (dashed line). In figure 4 

and the ensuing figures, the abscissa and ordinate have been normalized such that 

7TCS 

and 

hk 
71 

(117) 

(118) 

where Q is nondimensional frequency and tc is nondimensional wavenumber. 

Figure 5 compares the dispersion curve (equation (84)) of the plate with a double fluid load 

(solid line) to the dispersion curve of a plate without fluid loading (dashed line). In general, 

most of the waves tend to be slowed down by the addition of either a single or double fluid load. 

In this figure, the solid line originating at the origin and terminating at approximately Q = 10 and 

K = 1.15 corresponds to a compressional wave in the fluid,* which corresponds to transfer 

function nulls rather than maximum response. 

The dispersion curves shown in figures 4 and 5 are useful for a number of reasons. 

Specifically, they relate frequency to the wavenumber of propagating waves in an unbounded 

*In figure 4, this compressional wave is represented by the nearly vertical broken line in the first and second 
grids on the left-hand side of the illustration. 
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12 3 4 
Normalized Wavenumber (tc=hk/x) 

Figure 4. Dispersion Curve for a Single Fluid-Loaded Plate 
Compared to a Plate Without Fluid Loading 
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- Double Fluid-Loaded Plate 
- Plate Without Fluid Loading 

12 3 4 
Normalized Wavenumber (ic=hk/a) 

Figure 5. Dispersion Curve for a Double Fluid-Loaded Plate 
Compared to a Plate Without Fluid Loading 
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medium. That is, at any given frequency, the maximum wavenumber of the energy traveling in 

the structure can be determined, which is advantageous for the analysis of turbulence-loaded 

structures where nonacoustic wave energy is present. Additionally, these curves can help in 

finite element models where proper mesh size is related to the wavenumber of energy 

propagation. Furthermore, these plots show the effects of fluid loading for each mode of 

propagation in the structure. 

Figure 6 plots the transfer function of the tangential displacement divided by pressure versus 

normalized wavenumber with a normalized frequency of Q = 5 at location z = -0.04 m.* 

Figure 7 shows the transfer function of the normal displacement divided by pressure versus 

normalized wavenumber with a normalized frequency of Q = 5 at location z = -0.04 m. In both 

figures, the solid line represents the single fluid-loaded plate and the dashed line shows the plate 

without fluid loading. 

Figure 8 plots the transfer function of the tangential displacement divided by pressure versus 

normalized wavenumber with a normalized frequency of Q = 5 at location z = -0.04 m. Figure 9 

shows the transfer function of the normal displacement divided by pressure versus normalized 

wavenumber with a normalized frequency of Q = 5 at location z = -0.04 m. In these two figures, 

the solid line is the double fluid-loaded plate and the dashed line is the plate without fluid loading. 

Figure 10 shows a displacement shape for the n = 1 antisymmetric mode of the double fluid- 

loaded plate, the single fluid-loaded plate, and the plate without fluid loading. The figure on the 

left illustrates plate thickness versus tangential displacement, and the figure on the right shows 

plate thickness versus normal displacement. The solid line is the double fluid-loaded plate, and 

the dashed line represents the single fluid-loaded plate and the plate without fluid loading. The 

displacement shapes were determined by taking a point on the n = 1 branch of each dispersion 

curve for the separate cases and then using these values to compute the displacements. For the 

double fluid-loaded plate, the values of this point were Q = 2.94 and K= 2.50; for the single 

fluid-loaded plate, these values were Q = 3.05 and K= 2.50; and for the plate without fluid 

loading, these values were Q = 3.17 and K= 2.50. Note from equations (91), (97), (103), and 

(107) that the displacement shape is contained entirely in the numerator and that the location of 

*In figures 6 through 9, the top plot is the magnitude and the bottom plot is the phase angle. 
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the mode in the wavenumber-frequency plane is contained entirely in the denominator. 

Additionally, because the single fluid-loaded plate contains no fluid terms in the numerator, it 

has a displacement shape identical to the plate without the fluid load. However, the double fluid- 

loaded plate does contain fluid terms in the numerator, and thus its displacement shape is 

different from both the single fluid-loaded plate and the plate without fluid loading. Comparison 

of displacement shapes at other modes yields similar results to those of the unloaded, single- 

loaded, and double-loaded fluid plate displacement shapes shown in figure 10. 

Figure 11 plots the magnitude of the insertion loss versus normalized frequency for the 

double fluid-loaded plate. The solid line corresponds to an acoustic wave at 45° incident to the 

plate, the dashed line corresponds to an acoustic wave at 0° incident to the plate (broadside), and 

the x's correspond to a closed-form solution given by20 

Ä(0,ö>) = 101og 10 

where 

m = 
PfCf 

2\2 
(i-"Q 

Am2 sm.2{kdh) + \ (119) 

(120) 

Figure 12 shows the magnitude of the echo reduction versus normalized frequency for the 

double fluid-loaded plate. The solid line corresponds to an acoustic wave at 45° incident to the 

plate, the dashed line corresponds to an acoustic wave at 0° incident to the plate (broadside), and 

the x's correspond to a closed-form solution given by20 

ER(0, a) = \0\og 10 

Am2 

[(1-m2) sin (M)] 
+ 1 (121) 

It is noted that equations (119) and (121) are valid solely for excitation at zero wavenumber, 

where only dilatational wave motion is present. They do not account for nonzero wavenumbers, 

where the effects of shear wave motion is present. Also note in figures 11 and 12 that the shear 

wave energy originating at the integer normalized frequencies is present and creates a discontin- 

uous function at the nonzero wavenumber, which is slightly (positively) shifted with respect to 

the frequency. 
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CONCLUSIONS AND RECOMMENDATIONS 

This report has derived the closed-form solution to the expressions for insertion loss and 

echo reduction using a sample insonified at nonzero wavenumbers. Additionally, the closed- 

form transfer functions were derived for plate motion divided by excitation with fluid loading 

on one and both sides. The dispersion equation was also formulated based on the matrix 

equations and was then compared to previously available dispersion equation forms. It was 

shown that the zeros of both dispersion equations were in the same location. Furthermore, the 

displacement shapes of the system modes were determined, and it was found that the 

displacement shapes of the plate modes were identical for a plate with no fluid loading and for 

one with fluid loading on a single side. However, fluid loading on both sides produced a 

different displacement shape. Finally, closed-form transfer functions were derived that 

compared displacement across the plate rather than referenced to excitation levels. It was 

shown that plate dispersion curves were eliminated from the expressions that resulted when 

transfer functions were derived across the plate. 

Future work in this area should investigate finite-sized plates, as well as anisotropic 

response. 
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APPENDIX 

REDUCED-FORM TRANSFER FUNCTIONS OF DISPLACEMENT 

Several reduced-form transfer functions of displacement at one side of the plate divided by 

displacement at the other side of the plate are presented in this appendix. These functions are 

especially useful when the data obtained during a test are accelerometer or laser velicometer data 

rather than fluid pressure data. Note that when the transfer function is formulated in this manner, 

the determinant is divided out of the equations. Moreover, the response of the plate without fluid 

loading is identical to the response of the single fluid-loaded plate. 

The transfer function for the single fluid-loaded plate and the plate without fluid loading 

corresponding to the tangential displacement atz = a divided by the tangential displacement at 

z = b is 

Ux(kx,a,oo) = c^cosjafy-cosißh)]  

Ux (kx, b, co)    cos(j3h) cos(ah) + c2 sin(ßh) sm(ah) -1 

where 

c^)=0k (A-2) 

and 

C>(k"m)-2aß(ß>-kl)(P-lkl)- (A3) 

The transfer function for the single fluid-loaded plate and the plate without fluid loading 

corresponding to the normal displacement at z = a divided by the normal displacement at z = b is 

Uz (kx ,a,a>) _ sin(orA) + c3 (kx, CD) sin(/?/z) 

Uz (kx, b, co)    sin(ah) cos(/%) + c3 (kx, co) cos(ah) sin(ßh) 

where 

A-l 



c3(kx 
4aßk2 (A-5) 

The transfer function for the double fluid-loaded plate corresponding to the tangential 

displacement at z = a divided by the tangential displacement at z = b is 

vx(K 
UAK 

,a,a>)    UaAK,a>) 
,b,a>)    UhAkx,co) ' (A-6) 

where 

uaAkx , a) = c, (kx, a) cos(aA) + dx (kx, a) sm{ah) 

- c, (kx, a) cos(ßh) + d2 (kx, co) sin(ßh), (A-7) 

tf'(*x , a>) = cos(ah) cos(ßh) + d{ (kx, a>) sin(aA) cos{ßh) 

+ d2 (kx, co) cos(ah) sin(ßh) + c2 (kx, co) sm{ah) sin(ßh) -1, (A-8) 

dx{K, 
-ipfa(ß2+k2

x)
2 

rp(ß2-k2)(ß2-3k2)' (A-9) 

and 

d2(kx, 
2rPß(ß2-3k2

x) ' (A-10) 

The transfer function for the double fluid-loaded plate corresponding to the normal 

displacement at z = a divided by the normal displacement at z = b is 

VAK 
UAK 

a,co) _UaAK,(o) 
,b,o>)    UbAkx,co) ' (A-ll) 

where 

u°Akx ^ = c3 (kx, 0)) sin(ßh) + sin(ah) , (A-12) 

A-2 



Ub
z (kx ,co) = c3 {kx, co) cos(ah) sin(ßh) - d3 (kx, co) sin(ah) sin(ßh) 

+ sin(ah) cos(ßh), (A-13) 

and 

2   ,   7,2N2 

d3(kx,a>) = 
ipf{ß

z+K) 
Aypßkl 

(A-14) 

A-3(A-4 blank) 



INITIAL DISTRIBUTION LIST 

Addressee No. of Copies 

Office of Naval Intelligence (ONI 241 - J. Zilius, T. Morgan; 
ONI 263 - S. Brown (2)) 4 

Office of Naval Research (ONR 321 - R. Elswick; ONR 333 - K. Ng) 2 

Defense Technical Information Center 2 

Center for Naval Analyses 1 


