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Topic 1. Derivation of Imagery-based Reliability Values at Terrain Theme 
and Pixel Levels 

Note- Topic 1 has been distilled from an earlier paper presented at the August 1997 
USACE Surveying Mapping and Remote Sensing Conference, St. Louis, MO (Slocum 
et al, 1997). Renewed interest in terrain data reliability and its impact on tactical 
decision aids provided compelling incentive to revisit our work from the late 1990s 
and repackage it into a cohesive body of research. 

Background 

New digital terrain data are created daily that directly support tactical decision-making. 
These decisions are typically not made with full understanding of the contributing terrain data 
quality. Data are treated as spatially invariable in quality and devoid of any metric measuring 
the underlying certainty of feature classification. 

Digital imagery has become a preferred source from which requisite terrain features are 
extracted. Imagery provides a fast, nonintrusive, nonrestrictive source effectively exploited 
by image processing tools. Supervised classification algorithms are popular processing 
techniques useful for classifying an image into user-defined terrain feature classes. All 
picture elements (pixels) are represented by unique digital values defining the terrain 
conditions within that image space. Pixels are individually assigned to appropriate terrain 
feature classes by image processing algorithms. Commercial-off-the-shelf (COTS) image 
processing packages provide an opportunity to identify terrain classification reliability along 
with the class assignments. However, the opportunity for capturing reliability information is 
typically not passed along into the final terrain class map output nor is it stored as a 
supplementary metadata file. There does exist COTS functionality that specifically addresses 
image classification probability but these algorithms are dependent on a priori knowledge 
about the areas of interest to be mapped, a requirement that is often unattainable, especially 
overseas in denied access areas. In the absence of a priori information, a user may instead 
use the basic image processing capabilities to develop a home-grown pixel reliability method 
developed from a distance-to-means image processing capability. The reliability model 
developed for this paper focused attention on individual pixel distance-to-means values 
within identical terrain feature classes and on the expected separability of the various feature 
classes themselves. 

Image sources, starting from the earliest panchromatic aerial photographs and evolving into 
today's sophisticated satellite imaging systems, present the image analyst with a diverse 
source from which geographic data may be extracted (Avery and Berlin, 1992). Satellite 
imagery introduced the discipline of digital image processing for geographic data 
classification and with it a myriad of techniques have evolved (Jensen, 1996). Identification 
and accurate classification of natural and cultural terrain features is an image processing goal. 
Image sources will continue to be a primary information source for geographic data 
extraction with the advent of new commercial sensor data emerging on the horizon 
demonstrating higher spatial resolution and continued spectral differentiation. 

Potential to spectrally classify more varieties of natural and cultural features from original 
image source is creating profound new impacts on geographic data generation. Attempting to 
increase the number of terrain feature types that are classified implies a greater risk for 
misclassification of a feature. Capabilities are advancing quickly within the mapping 
discipline and with these advances come user-community expectation for accurate 
geographic data, or at least some measure of their reliability. 
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Uncertainty of geographic data is prevalent in today's age of geospatial information 
exchange. The degree of trust to which users associate these data varies widely from naive 
faith to total skepticism. There has not been a concerted effort on the part of past geographic 
data generators to appropriately convey the certainty of natural and cultural features 
classified in digital or hard-copy map space. Accuracy statements, when included with a map 
product, historically have taken on the form of accuracy for an entire map sheet. Variability 
of this accuracy within a map is not conveyed to the user. 

To measure map classification accuracy, truth data of some type must exist. To measure 
reliability, however, there is not the same demand for rigorous truth data. Rather, reliability 
can be realized from statistical expectations that can be measured. A user may gain a 
measure of confidence about terrain data once provided with this information. This 
confidence, or reliability, can be expressed as a value that provides the datauser with 
information previously not included. 

Academia has published fairly extensively on the subject of geographic data uncertainty, yet 
the implementation of these valuable ideas has not materialized in the production cycles of 
major geographic data producers in the private or public sectors (Strahler, 1980; Aronoff, 
1982; Storey and Congalton 1986). Invariably, earlier data uncertainty work expects that 
ground truth is available and used in the final assessment process. With these ground truth 
data, consumer and producer error could be computed. Consumer risk is the probability that 
a map of unacceptable accuracy will pass an accuracy test while producer risk is the 
probability that a map of acceptable accuracy will be rejected (Aronoff, 1985). For practical 
purposes, collection of ground truth data can be considered impractical for areas of the world 
in which access is restricted or denied. 

Why Consider Terrain Data Reliability? 
How reliable are geospatial data that are being generated? For many, data users, this question 
is quite important but mostly unanswered. From a military perspective, commanding officers 
make countless decisions that are based in large part on terrain conditions. Decision 
effectiveness may be vastly improved if those same commanders are provided with additional 
information regarding the reliability of the terrain data. Are certain parts of the map simply 
more reliable than others? 

In the nonmilitary community, decision-making from terrain data that are devoid of reliability 
is equally difficult. Conclusions are drawn daily by civil and military users alike that may 
have serious short- and long-term implications. For example, is location A the suggested 
place for construction of a water runoff retention pond or is location B better? Unfortunately, 
decisions related to models such as site suitability, mobility, and trend analysis continue to be 
made without the benefit of understanding the uncertainties in the underlying data. 

To illustrate the result of a short-term implication occurring because of a site suitability 
decision made without knowledge of spatial geographic data reliability, a military river- 
crossing bridge site selection is examined. A temporary bridge location is to be positioned 
according to "suitable" terrain conditions. All conditions are met for a dozen possible bridge 
crossing sites and ultimately, all conditions being equal, a location is chosen by the 
commanding officer that is logistically nearest to the military unit's present geographic 
coordinates. Information unavailable to the suitability model, and therefore the commander, 
is the amount of certainty that existed in the terrain conditions that ultimately guided the 
selection of the dozen possible locations. To improve this example, all twelve suitable site 
selections can be identified, followed by a prioritization of locations based on the terrain data 
having the highest degree of confidence. In the continuing absence of this knowledge of data 



reliability, a military bridge siting or similar decision may occur at what could be the least 
desirable of the possible locations. 

Objectives 

The ultimate project goal was to develop a measure of reliability that described the 
confidence of terrain classes derived from imagery. Ground truth data were purposefully not 
used in development of a repeatable method of measuring reliability. Rather, a methodology 
was developed to derive terrain feature class reliability and subsequent within-class pixel 
reliability that utilized only the image data available. This does not suggest that ground truth 
data are without value. Undoubtedly, ground truth data should improve feature classification 
but the realization for users in the Armed Forces is that these truth data may not be available, 
yet some measure of data reliability is still demanded for informed decision making. In this 
project, a model to measure terrain data reliability based solely on image data was developed 
as a prototype for Army users, especially those users processing data over denied, restricted, 
or difficult access areas. The model was to be replicable, easy to use, and free of any user 
bias or subjectivity. 

A future research goal will be to evaluate the sensitivity of this model against actual ground 
truth to see how well the model is performing and to evaluate imagery analyst contributions 
to final map output reliability. Use of ground truth data is not intended to become part of any 
future model extensions. Ground truth information is to be used solely to verify and validate 
our present model that uses only image source data in determining reliability. 

Methodology 

Project Site 
The project site is a 3- by 4-kilometer area-of-interest inside the fence line of Fort A.P. Hill, 
located approximately two miles north of Bowling Green, Virginia. The site is considered 
upper coastal plain and is covered by a mix of upland and bottomland deciduous and 
coniferous forest, grassland, and urban built-up area. The installation is used extensively for 
U.S. Army Reserve training. 

Source Material 
Image source was acquired that was representative of data available to Army terrain analysts. 
SPOT XS multispectral imagery for June 1996 was collected. An orthorectified true color air 
photo mosaic compiled at 1:6000 scale for a January 1996 winter acquisition was also used. 
Ground truth data were acquired in June and July 1997. One hundred-seventy field sites 
were visited and detailed attribute information was recorded. Geographic information system 
(GIS) terrain data also were available for review. 

Image Processing Software 
Three COTS image processing packages were reviewed for their functionality in reliability 
mapping: JDRISI version 2.0, ERDAS Imagine version 8.3, and ENVI (The Environment for 
Visualizing Images version 2.6). The more established classification tools resided within all 
three packages, while newly developed uncertainty mapping capabilities are resident within 
IDRISI, but with a priori conditions necessary to maximize these functions. Three classic 
image processing techniques (Maximum Likelihood, Minimum Distance to Means, and 
Parallelepiped) offer classification probabilities if a priori knowledge is definable/available 
and incorporated into the models. Abrief discussion of each of these tools follows, or may 
be reviewed in Avery and Berlin (1992): 
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Maximum Likelihood- based on a probability density function associated with a 
particular "training site" signature. Training sites are image pixels that are pre- 
assigned into a terrain class by an image analyst. Pixels are assigned to the most 
likely terrain feature class based on a comparison of the probability that they belong 
to each of the remaining signatures being considered. The basic equation assumes 
that all classes have equal probability for pixels to be assigned to. 

Variations on the equation, such as those that occur within ERDAS Imagine, allow 
for the analyst to override the equal class probability and to subjectively assign 
probabilities for each class that sums up to 1.0. 

Minimum Distance to Means—based on the mean reflectance of each band for a 
signature, pixels are assigned to the class with the mean closest to the value ofthat 
pixel. To account for differences in the variability of signatures, minimum distance to 
means allows band-space distances to be normalized. It is commonly used when the 
number of pixels used to define signatures is very small or when training sites are not 
well defined. Within-class variance is not considered for this technique. 

Parallelepiped— based on the minimum and maximum reflectances determined for a 
signature on each band. To be assigned to a particular class, a pixel must exhibit 
reflectances within this minimum - maximum range for every band considered. The 
parallelepiped procedure is potentially the least accurate of these three standard- 
bearers. 

Signature separability can be measured statistically. The greater the distance between the 
means of each signature file, the greater the ability for equations such as Maximum 
Likelihood to correctly classify an image. This suggests that after analysis of the separability 
between individual terrain signatures, an analyst could apply this value into a probability 
coefficient. 

Maximum likelihood is a supervised classification technique that examines the probability 
for each and every pixel signature within an image array to best be categorized within a most 
analogous, previously defined, feature group. The feature groups were the topographic 
features previously "trained" by the image analyst. The better the job completed by the 
image analyst at defining training sites, the greater the chance for an acceptable maximum 
likelihood derived output product. With poor or unreliable training sites one should consider 
the minimum distance to means technique. With variability in feature classes, maximum 
likelihood classifiers can interpret image pixels and classify them into correct feature classes. 

Supervised classification means that some a priori knowledge has been "value-added" to the 
image to better allow the software to automatically characterize the image features. This 
knowledge may be acquired in many ways to include the use of maps, photos, site visits, 
discussions, other imagery sources, and text. Signatures are created from the imagery by 
training on areas that appear to be as homogeneous in cover type as possible. If one is 
confident in characterizing the feature found at a known location, then that location on the 
image may be "trained" as being that identified feature type. Once enough features have 
been geographically identified and located on the image space, supervised classifications 
techniques will look at the signatures of the trained pixels and search for analogous pixels 
within the image. The result is an image that has been better characterized by teaching the 
image "what-is-what" in the image space. The more ancillary data sources available for 
interpretive assistance to the analyst, the more likely the analyst is correctly training the 
image pixels for feature identification. 
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All properties on earth have measurable reflectance characteristics. In the case of living 
organisms, these signatures may change based on the time of year (Verbyla, 1995). 
Reflectance values may be acquired by remote sensing platforms and stored as digital 
numbers within an image array. In a perfect world scenario, each digital number (DN) or 
spectral value would represent the correct feature on the ground that has the corresponding 
reflectance value. Many impediments stand in the way of this one-to-one correlation: 

First, atmospheric conditions affect the ability to collect a pure, unaffected ground 
signature of features. 

Second, mixed pixels, or areas of non-homogeneous ground cover, present an 
averaging of reflectance characteristics. The net result is a spectral signature or 
digital number that is not necessarily representative of the real ground conditions. 

A third consideration is the season for which the data are collected. A spectral 
signature of a vegetation species will change dramatically over the growing season 
(Verbyla, 1995). 

Given these spectral signature constraints, one may still successfully employ the power of 
ground feature signatures in characterizing a landscape. Ground truth collection for an area 
of interest is extremely valuable. Ancillary data are crucial (texts, maps, photos). Shape, 
texture, tone, orientation, pattern, and signature are all interpretive tools available to the 
trained image analyst. However, it is a spectral signature that offers the greatest potential for 
regional, automated interpretations of an image. 

Layer Versus Pixel Reliability Mapping? 
There are several ways in which reliability of terrain data can be considered. One way 
addresses terrain data layers with a reliability score assigned to each terrain theme. For 
example, the theme for vegetation may be divided into forest types pine, hardwood, and 
mixed, but the entire vegetation layer is scored with a single reliability regardless of forest 
type. A second way to focus on terrain data reliability would be to consider individual 
features within a terrain layer, and this may be done in a vector, object, or raster-based 
geographic environment. In the raster environment, which is most convenient for imagery- 
based terrain feature extraction, individual pixels may each contain reliability score. For 
example, a pine forest type within the vegetation layer could be the most accurately classified 
of the three forest types. Pine forest pixels might retain higher confidence, or reliability in 
the classification, than the hardwood or mixed forest. A method that combined terrain layer 
(or theme) and pixel (or within-theme) reliability was selected for investigation. 

Signature Training-Set Development 
SPOT XS imagery and a high-resolution photo mosaic imagery were imported. 
Geographically linking the two image products together was possible after the two products 
were projected to the same coordinate system (i.e., WGS 84). Side-by-side display of a 
SPOT scene and photo mosaic with geographic linking permits identical cursor orientation 
within each image space and facilitates the training signature development. This type of 
direct geo-linking of data sets can be foreseen for an Army analyst working with national 
assets and a commercial multi-spectral image source such as SPOT, Landsat, or IKONOS. 
Even without geo-linking, the process of signature development is not difficult when there 
are sufficient photo-identifiable cultural and/or natural features within the image space for the 
photo analyst to use for registration. 

Photo interpretation of the Fort AP Hill photo mosaic resulted in the assignment of eight 
terrain class training signatures that were to be developed on the corresponding SPOT scene. 
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To minimize any chance that registration between image sources could negatively affect the 
training signature selection, only pixels that originated near the center of terrain theme 
polygons were selected; hard edges and ecotones were avoided. The eight terrain classes 
readily identifiable from the mosaic were 

Pine Forest; 
Hardwood Forest; 
Mixed Forest; 
Grass; 
Urban/Built-Up; 
Pond/Lake; 
Stream/Drain; and 
Road. 

Despite continuing difficulty with delineating a stream/drain theme, all eight classes were 
selected for classification as they match up with specifications for terrain data as dictated by 
the National Imagery and Mapping Agency (NMA) Tactical Terrain Data (TTD) and Feature 
Foundation Data (FFD) requirements. Each terrain class was defined by selecting five 
polygons with continuous pixel size totaling five or more each. The total number of 
"training" pixels per terrain class to be used later within a supervised image classification 
algorithm was approximately 100 to 150. 

Signature Separability 
Training pixel histograms offer a revealing evaluation tool for determining the spectral 
separability of imagery-derived terrain classes. A subjective approach is to plot all 
histograms atop one another and to visually evaluate the overlapping classes. Terrain classes 
that overlap will have greater difficulty distinguishing pixels that are appropriate for those 
classes. An example of a typical overlapping terrain class pair are pine and mixed forest, as 
the pine theme is obviously recognized as a component of the mixed forest signature. An 
analyst may look at a histogram of all the training pixel classes at once to get an 
understanding of the overlap to be expected between particular terrain classes. 

ERDAS Imagine provides the user with a contingency table that reviews training pixel 
signature separability. Training signature separability was determined using the Mahalanobis 
distance decision rule, returning total number and percentage of training pixels classified as 
expected for each terrain class. Pixels with signatures that overlap, or are confused with 
similar terrain theme signatures, are misrepresented in terrain classes for which they are not 
intended. Percentages of training pixels classified as expected into the eight terrain themes 
were recorded and saved. This method is replicable and objective. 

The computed contingency table percentages per terrain class are considered to be 
representative of a best-case scenario for classification since training sample pixels were 
specifically chosen by an image analyst because of their homogeneity and geo-linked match 
to a photo mosaic. This suggests that the entire multi-spectral image domain for the project 
site should be expected to only meet, and not exceed, the individual terrain theme reliability 
percentages unless the training signatures are adjusted. Accordingly, in development of a 
reliability methodology, training sample contingency table percentage values are considered 
as each terrain layer's maximum achievable reliability. Individual image pixels subsequently 
classified into a particular terrain layer would never achieve a reliability measure that 
exceeded an overall terrain layer reliability score. 
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Pixel Distance to Means Processing 
Mahalanobis distance supervised classification was used to process SPOT pixels over the AP 
Hill study site. An important by-product available from a Mahalanobis distance method is a 
distance map. The distance map computed was a one-band, 32-bit continuous raster layer in 
which each data file value represents the result of a spectral distance equation, such as 
Mahalanobis. The equation for the Mahalanobis distance classifier is (ERDAS, 1999) 

D = (X -Mc)T (Cove4) (X- Mc) 

where 

D = Mahalanobis distance 
c = a particular class 
X =      the measurement vector of the candidate pixel 
Mc =    the mean vector of the signature of class c 
Covc=  the covariance matrix of the pixels in the signature of class c 
Covc"1= inverse of Covc 
T= transposition function. 

The pixel is assigned to the class, c, for which D is the lowest value. 

Unlike minimum distance and parallelepiped algorithms, covariances are computed and used 
for the Mahalanobis algorithm to standardize all the variables to the same variance. The 
Mahalanobis technique relies on parametric, or normally distributed data, within each input 
band of spectral data. Upon visual histogram examination, the spectral bands were deemed 
normally distributed. 

Mahalanobis classification depicts all terrain themes in a composite graphic that permits 
examination of within-class pixel reliability through an ERDAS Imagine command: cursor- 
inquire-mode. However, the terrain themes may be analyzed more effectively if segmented 
from one another. Segmentation is accomplished using Imagine's <Image 
Interpreter/Utilities/Mask/Recode> functionality. Mahalanobis distance determines a 
statistical distribution of the pixels within a terrain class by computing a distance to class 
means unit of measure. An image analyst can select any pixel from the on-screen image 
domain and determine its statistical location (or distance) from the mean of its terrain class. 

Histograms of terrain class distance values that have an exceptionally long tail away from the 
mean are an indication of pixel values with widely disparate reliability. Knowledge of a 
pixel's statistical location about the class mean is very useful information from which to 
assign a reliability score that assesses the confidence of each pixel's assigned classification 
category. 

Results and Discussion 

Terrain Class Pixel Thresholding 
Distance images created from Mahalanobis have a Chi-square distribution, not a normal 
symmetrical distribution. Pixels with distances at the tail of the distribution represent pixels 
that are most likely misclassified and also appear to represent isolated pixels in the image 
space (Figure la). A cutoff point along the tail was both visually determined and computed 
statistically by using a Chi-square maximum distance value computed for a user-defined 95% 
confidence level. This level may be interactively adjusted depending on the desired 
confidence level. A visual and statistical approach to histogram tail removal showed that 
they approximate one another in final results. The final statistical approach selected to 
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minimize the outlier pixels along the histogram distribution tail was to use the Chi-square 
method, selected by choosing the "Threshold" command within Imagine's Spatial Modeler 
environment. This method is interactive and allows for changing of the confidence interval 
by the user. A combination of the "Clump" and "Sieve" commands was initially selected for 
statistical removal of individual, or small isolated contiguous pixels (outliers), but this 
approach proved ineffective due to lengthy processing time and inadequate user control over 
the process as compared to the "threshold" technique. 

Pixels that remain after thresholding (removing the distribution tail), along with 
corresponding distance values (Figure lb), constitute the range for new minimum and 
maximum distance measurements in a continuous floating point data structure. With a final 
distance measurement range defined, formulas may be written and applied against the 
individual pixel distances. An algorithm was written using the "Conditional" model 
developer that recalculated terrain class distance values into normalized pixel values with a 
new minimum of 0.001 and maximum of 1.0. This normalization of Mahalanobis distance 
values ensures a comparable metric for reliability scores across all terrain themes. Because 
the range of distance values in effect is always decreased by the threshold command, 
maximum Chi-square values represent outliers with highly suspect pixel classifications. 
Removal of pixels having the greatest distance values ensures that the normalization of the 
remaining pixels returns a reasonable approximation of the original distance values. The 
threshold command was critical, therefore, to the normalization process. 

The algorithm developed for normalization of Mahalanobis distance values was further 
refined. Normalized distance values for each pixel were multiplied by their respective terrain 
class reliability score, computed earlier in the processing as the training sample contingency 
table percentage. Contingency table percent is easily converted to a value between 0.01 and 
1.0, with value 0.01 signifying the maximum distance to class mean and 1.0 representing the 
exact class mean. Normalized pixel reliability values are multiplied with the overall terrain 
class reliability percentage, therefore all pixels assumed a floating point value between 1 and 
100 percent. The following formula is an example of a computation for normalizing a pine 
forest pixel, where the pine terrain layer value was computed earlier from a training sample 
contingency matrix with score 0.8159. This value changes for each terrain layer. 

EITHER 0 IF <filename = 0> OR 0.8159 * {GLOBAL MAX <filename> - <filename> / 
(GLOBAL MAX <filename> - GLOBAL MIN <filename>)} OTHERWISE 

These new pixel values represent the terrain classification reliability. There is a potential to 
overstate the degree of confidence one could place on continuous data reliability scores at the 
pixel level. An analogy might be the erroneous practice of carrying significant digits out 
beyond that which is mathematically supportable. Are continuous reliability data scores 
really needed, or is a degraded qualitative format acceptable (e.g., poor, acceptable, good)? 
That question is probably best answered by the end user. Reliability information should 
probably not be degraded into categories because the original information is then essentially 
lost forever. However, the visual representation of the data could be more easily depicted by 
a reclassification without permanent adjustment to the data themselves. For example, simple 
cartographic presentation of the colors red, yellow, and green can be used to represent pixels 
considered of poor, acceptable, and good reliability. Development of a user interface to 
facilitate the re-classification and display of only those pixels of user-defined reliability is 
achievable within current image processing software packages. 

Visual Representation of Reliability 
Useful representation of reliability was examined using several approaches. The first attempt 
was to display a full continuum, or gradient, of certainty for a terrain theme; reclassification 
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into categories was not attempted at this point. A full spectrum of 256 colors is available 
within the computer palette and the result is a product that is very difficult to comprehend. 
The second attempt was a cartographic improvement to the first design, where the continuum 
of colors chosen to represent distance values was consolidated into three groups, as described 
in the previous red-yellow-green stoplight color approach. Grouping of pixels into the three 
categories was accomplished by a visual review of the raster attribute editor table for distance 
values and a manual thresholding of the pixels into recoded groups. This technique resulted 
in a map product that was easily produced and readily comprehensible to the user. The third 
and last approach selected for visual display was to use three-dimensional representation of 
reliability where distance from class means was assigned to the z-values and geographic 
location of the pixels was plotted in cartesian coordinate XY space. When plotted, pixels 
farthest from the mean value were shown as the tallest vertical spikes in the image space. 
"Flat terrain" represented pixels very near to the mean. This product was deemed to be an 
ineffective alternative in conveying terrain class reliability. 

Future in Imagery-based Reliability Mapping 
Techniques for image classification are changing. Emphasis on improved classification 
analysis can be seen in packages such as IDRISI where Bayes and Fuz2y analysis techniques 
are available. These newer tools are not nearly as mainstream as maximum likelihood or 
minimum distance but are emerging as viable complements (Foody, 1996). Geostatistics for 
image processing of land cover is also an emerging and promising solution. Each of these 
techniques considers data uncertainty as an important output. Transition of these certainty 
data to the software user into a useable geographic format is critical. Imagery-derived terrain 
data must be GIS supportable and a measure of their reliability is necessary. Probabilistic 
model output is possible if you start out knowing the confidence in the data and in the model 
itself. New models and methods for propagating terrain reliability will be needed in the 
future. 

Conclusion and Summary: Topic 1 

Tools resident within a COTS image processing package were flexible and functional enough 
to permit development of a terrain reliability model that did not demand ground truth. 
Formula development and pixel computations were completed within the spatial modeling 
environment. Formulas developed for this model are not believed to be specific to a 
geographic region or terrain data set. This will be determined in future model testing against 
ground truth. 

The model developed for this project was not overly rigorous or abstract in nature. It was 
designed to be simple and easy to understand. As desired in the initial goal, the entire model 
process is replicable, easy to use, and free of any user bias or subjectivity. Terrain layers are 
still conventionally derived and may look identical to previously compiled terrain data, the 
only significant difference being the value added information detailing pixel reliability This 
reliability information may be kept invisible to the terrain data user as simply pixel 
background information (raster attribute data) or it can be made readily apparent through 
creative cartographic display. Users who prefer to display the terrain reliability information 
have tools available within COTS image processing software to display the data at self- 
determined measures of reliability. Whether displayed or not, reliability information can be 
there when needed. 

Terrain class pixel reliability may be integrated into decision analysis models. The 
confidence that decision-makers have in the decision analysis models will most clearly be 
affected by the reliability of the input terrain data. Terrain reliability integrated into decision 
models is compounded when more than one GIS layer of terrain data is considered. 



16 ERDC/TEC TR-02-1 

Z 

Terrain theme outlier pixels are included. Outlier pixels ("X") impact the terrain theme. 
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Figure 1. (a) Pixels classified within a terrain theme class to which they fall greater 
than three standard deviations from the class mean, (b) Pixels greater than three 
standard deviations from the mean (outliers) have been pruned from the class set, 
thereby decreasing the spectral range of the class, tightening the spectral signature, 
and increasing the chances for spectral separability from spectrally similar terrain 
classes. 
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Topic 2. Incorporation of Imagery-Derived Reliability Data into Tactical 
Decision Aids 

Background 

A tactical decision aid can be roughly defined as an initial and general guide to a 
commander in better understanding the battle conditions and environments and in 
making short-term combat decisions. It minimizes the difficulties of making combat 
decisions that commanders face every day. Over the years, many tactical decision aids 
(TDAs) have been developed and integrated into fielded systems such as the Digital 
Topographic Support System (DTSS) residing on the Combat Terrain and Information 
System (CTIS). Helicopter Landing Zone (HLZ) and Bivouac Sites/Assembly Area 
(BIV) TDAs are helpful in identifying suitable areas for landing helicopters and 
establishing camps, respectively. However, they are products that do not take into 
account reliability of source data. Users have requested knowledge of TDA product 
reliability and suggest a need for propagation of uncertainty through the spatial model 
decision-making process. Resultant output would be a map product that adequately 
portrays reliability to the user community. 

Improved product quality depends not only on accuracy and precision but also on how 
products incorporate uncertainty. Numerous terrain themes can be used in TDAs: 
elevation, soil, vegetation, slope, drains, transportation, natural obstacles, etc. Every 
tactical decision aid requires some combination of themes of terrain data as inputs. 
For example, the HLZ TDA requires soil, slope, and vegetation as inputs. Supervised 
classification has been used to extract desired features from within an image source for 
use as data input to TDAs. However, as discussed in Topic 1, supervised classification 
of remotely sensed imagery will inevitably introduce data uncertainty in the terrain 
classes themselves and within the pixels that constitute the various classes. How does 
this uncertainty contribute, if at all, within the modeling environment? Currently, it is 
not a factor. 

Objective 

A method for reliability assessment and representation is needed that adopts simple-to- 
implement and easy-to-understand logic. Accordingly, the purpose of this study was 
to develop a nontechnical methodology that used individual pixel reliability and, 
subsequently, demonstrated the propagation of this reliability through a spatial, tactical 
decision model. Pixel reliability computed from Topic 1 was regarded as the starting 
point for this effort. 

Methodology 

To integrate reliability pixel values computed earlier into a tactical decision aid, the 
difficult initial step is to determine the importance, or weighting, of each thematic 
terrain data layer in deriving an adequate product. A method of accomplishing this 
step is discussed in Topic 3: Terrain data requirements for HLZ and BIV. Users may 
have little knowledge as to which terrain layer is most important in contributing to a 
decision aid. Therefore, it would be reasonable to assign equal weighting to each 
terrain theme as a default value. For simplicity, an example TDA is described that has 
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three thematic data layers as inputs. Two approaches to mapping terrain layer 
reliability were evaluated: linear combination and fuzzy classification. Linear 
combination is computed by multiplying the reliability values of every pixel within the 
respective thematic data layers by 1/3, then spatially summing all non-zero reliability 
values across the three new value layers (Figure 2). A pixel is assigned to class m 
along with a value measuring its degree of reliability to belong to class m, as 
computed by Mahalanobis distance. Mahalanobis distance is not a probability score, 
nor is it a measure of chance for terrain class m to be found at a particular pixel. This 
approach we have taken is very similar to the work of Zhu (1997), where measures of 
uncertainty are provided with class assignment. 

Figure 2. Linear combination for overall reliability values for TDAs. 

Data layer with associated        Data layer with new 
reliability values values 

In Figure 3, fuzzy classification method is illustrated with the assignment of a pixel to 
more than one class. Generally, fuzzy classification is a methodology to assign a pixel 
to each of a set of classes (more than one class) and to indicate the degree to which the 
pixel belongs. Fuzzy logic models the degree to which a pixel belongs to a class, 
otherwise known as the degree of membership. More specifically, pixel reliability 
assignment comes from the lowest value of the three thematic data layers applied to 
TDA. 



ERDC/TEC TR-02-1 19 

Data layer with associated 
reliability values 

Suitable 
TDA 

Theme « w-vjr-,y«Ti 
B   mmmBm 

Them 
C 

msm 
Figure 3. Fuzzy logic for overall reliability values for TDAs. 

If thematic data layers are determined by human terrain analysts to play unequally 
important roles as inputs, a user interface should allow the user to set the weighting 
that is considered as appropriate to each of the themes and relative to others. Topic 3 
provides information on how to more objectively define terrain theme weights. 
Knowledge of terrain theme contribution to model output for various physiographic 
domains may better enable a user to weight individual terrain themes over others. 
Altering the weighting of terrain themes results in different output products for 
comparison and analysis. 

We apply the same linear combination method by multiplying the reliability values of 
every thematic data layer with the user-defined weights, and then spatially summing 
the new non-zero reliability values. The weighting range should be 0.0 to 1.0, so that 
addition of individual terrain theme reliability values together sums up to a maximum 
overall reliability value of 1.0. While this type of reliability is not probablistic in 
nature, it does provide a readily computable metric. Once computed, the complete 
range of reliability metrics can be divided into three categories, for example, 
representing good-, fair-, and poor-reliability, or any other user-specified number of 
categories. 

Results and Discussion 

Implementation of Reliability into a Sample Helicopter Landing Zones Model 
A simplified HLZ'TDA requires thematic data layers for soil, slope, and vegetation as 
inputs. Suitable conditions required for landing are as follows: 

■ Soil is gravel or sand 
■ Vegetation is barren, pasture, grassland, or dry agriculture 
■ Slope is within 0 to 3%. 
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Pixels from soil, slope, and vegetation data layers that meet the above selection criteria 
are combined together by using the Boolean AND (INTERSECT) operator within an 
Arc/Info GIS environment. Pixels that do not meet the selection criteria are ignored 
and classified as unsuitable for the particular HLZ TDA. Suitable pixels each carry 
along an associated reliability value computed earlier. It is implied at this point that 
the imagery-derived method for assigning pixel reliability has been used prior to this 
step to define soil and vegetation pixel reliability. Slope reliability values developed 
for this experiment were not computed from the method described in Topic 1 as slope 
was computed from integer data, and vegetation and soil reliability was computed 
from categorical (class) data. Reliability values for all pixels from each terrain theme 
are multiplied by a user-defined weight for that theme to obtain newly derived pixel 
reliability values. The non-zero pixel values are summed across all terrain themes and 
a "Suitable HLZ" product is generated with commensurate reliability values (Figure 
4). It should be clear that terrain themes that are weighted highest (e.g., vegetation at 
0.5) contribute more to the total reliability score than lesser-weighted themes. 

Data layer with associated 
reliability values 

Suitable 
Veg 

Suitable, 
Soil 

Suitable 
Slope 

Data layer with new 
values 

Suitable 
HLZ 

Figure 4. Linear combination of overall reliability values for HLZ. 

As depicted in Figure 4, the vegetation, soil, and slope layers are in raster format and have 5, 
5, and 4 suitable reliability pixels, respectively, associated with each of the original three 
terrain themes. These values were multiplied by weights assigned by a user to each terrain 
theme, in this case, 0.5, 0.3, and 0.2, to obtain the individual reliability value after taking the 
weighting into account. To obtain the overall reliability for suitable HLZ, we would spatially 
sum the new reliability values of the vegetation, soil, and slope layers and note that only 
pixels with non-zero values would be summed. Accordingly, the result was an HLZ product 
that depicts three suitable pixels representing a known location and size. Pixels with large 
reliability values are most desirable. At this point, we could qualitatively divide the overall 
reliability range into a user-specified number of categories such as good, fair, and poor. Thus 
linear combination method with weighting is the technique recommended for incorporating 
reliability data into tactical decision aids. 



ERDCH-EC TR-02-1 21_ 

Code Suggested To Be Used in Arc Macro Language 
Example Arc/Info Arc Macro Language (AML) code is provided that illustrates the 
exact coding mechanics involved in implementing reliability into a TDA. Although 
the code provided is explicitly for an HLZ model, the design should be extendable to 
any suitability-type model. 

■   Pre-reliability code executed in an Arc module for definition of suitable HLZ binary 
product: 

intersect %soil_for_hlz_cov% %veg_for_hlz_cov% %soil_veg_cov% 
intersect %soil_veg_cov% %sel_slp_0_3_cov% %hlz% 

Post-reliability code executed within the Arc/Info Grid module for definition of 
suitable HLZ product displaying a range of suitable values: 

&sv weight_jbr_veg 0.5 /* weights from figure 3 
&sv weight_for_soil 0.3 
&sv weight_for_slp 0.2 
grid 
%weighted_veg% = %veg_for_hlz_cov% * %weight_for_veg% 
%weighted_soil% = %soil_for_hlz_cov% * %weight_for_soil% 
%weighted_slp% = %sel_slp_0_3_cov% * %weight_for_slp% 
%soil_veg_cov% = %weighted_veg% + %weighted_soil%     /* a zero value here is equivalent to 

a NOD ATA value in Arc/Info 
%hlz% = %soil_veg_cov% + %weighted_slp% 

Conclusions and Summary; Topic 2 

A linear combination method, with weighting either subjectively user-defined or 
obtained from a method such as described in topic 3, is a simple technique 
recommended for incorporating reliability data into tactical decision aids. The 
method is replicable, portable, and easily implemented. Data reliability propogates 
through the model and the resultant map output is a satisfactory representation of 
reliability from which a user may make a more informed decision. Fuzzy mapping 
returns a worst possible case interpretation of the data reliability that can be 
misleading. One might get the decided impression that the data are not worth using. 
Linear combination method seems to be a bit more "even-handed" in its results. 
Given a level of disparity in output-pixel reliability, decision-makers are equipped to 
make better informed responses to tactical decisions. Model output reliability as 
directly affected by data input reliability provides critical information that may 
determine the anticipated success or failure of a mission. 
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Topic 3. Terrain data requirements for Helicopter Landing Zone and 
Bivouac Models 

Background 

Army terrain model sensitivity to missing data is not fully understood prior to 
generation of a final map output product. Existing tactical decision models 
accommodate missing data, but at a relatively unknown cost to the overall reliability 
of the final map product. Site suitability models, in particular, such as HLZ and BIV 
sites, might deliver a reasonable output product from a subset of the requested terrain 
input data. Determining an appropriate subset of input terrain data with which a user 
could still expect a reliable model end-product is addressed in the following pages. 

Demand for digital data products continues with the National Imagery and Mapping 
Agency (NIMA), as developer of standardized topographic data, simply unable to 
keep up with the global demand. Soil data are exceptionally rare, and vegetation is 
temporal in nature. Terrain models have been designed to use all pertinent data in 
generating analysis products, and models that compute a map product with partial 
input data sets should provide a measure of the resultant map confidence. This has 
historically not been the case. 

Objective 

The objective of this research was to understand the level of contribution of terrain 
data layers, both individually and in.combination. The research also was designed to 
look for possible climate region correlation of terrain data layers at different study 
sites. 

Methodology 

An experiment was defined in which terrain data for two tactical models were 
evaluated and measured for their overall contribution to the final map products. 
Measuring the contribution to the final map products enabled the prioritization of data 
requirements for each of the two models, which is important due to finite resources 
(e.g., time, money, data, personnel). When evaluating data needs for processing a 
specific terrain analysis model, the most crucial data should be the first data 
considered for collection and processing. 

Study Sites 
Three geographically unique study sites were selected for evaluation: 

1. Korea (near Changchon-ni) 
2. Ft. Hood, Texas 
3. Camp Pendleton, California. 
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Respective climate regions for these three locations, according to the Koppen-Geiger 
Climate map, are Cwa, Cfa, and Csb1 (Tromblay, 1953). Additional geographic 
locations within these identical climate regions were then selected as test sites. 

Climate Zone Portability 
To assess the potential portability of our research findings, these testing site data were 
to be compared to the original study sites at Korea, Fort Hood, and Camp Pendleton 
to determine if there was portability of data requirements from one climate region to 
another identical region. It was hypothesized that if the data priorities were reported 
as equivalent for each climate region "pair," general rules could be established for 
priority of data acquisition. The examination of climate regions, as opposed to the 
individual topographic variables, sought to look for a general solution to the problem. 

The test sites for Cwa and Dfa climate regions were both located in Korea (site names 
Kor_34202 and Kor_35151, respectively). No test site containing standard digital 
feature data was available within an alternative Csb site to the Pendleton area. 
Accordingly, evaluation and test-site pairs were as follows, with a Pendleton pair 
excluded: 

Study site Test site Climate Region 
1. Camp Pendleton None available Csb 
2. Ft. Hood Korea (Kor_35151) Cfa 
3. Korea Korea (Kor_34202) Cwa 

Data Source 
The data selected for investigation came from Interim Terrain Data (ITD), produced 
as a standard terrain feature product by NIMA, and Digital Topographic Data 
(DTOP), a prototype NIMA feature data base.2 Imagery data also was analyzed over 
Camp Pendleton for an alternate follow-on investigation. The following table lists 
the study and test sites and the data used for their analysis: 

1 The Koppen-Geiger Climate map defines Cwa, Cfa, and Csb as follows: 
First letter      C: sufficient heat and precipitation for growth of high-trunked trees. 
Second letter f: sufficient precipitation in all months. 

s: dry season in summer of the respective hemisphere. 
w: dry season in winter of the respective hemisphere. 

Third letter    a: warmest month mean over 71.6°F (22°C). 
b: warmest month mean under 71.6°F (22°C). At least four months have 
means over 50°F (10°C) (Tromblay, 1953). 

2 Interim Terrain Data (ITD) and Digital Topographic Data (DTOP), a prototype data base, 
provided the feature data used for the HLZ and BIV models. ITD has six thematic layers: 
Slope/Surface Configuration, Soil/Surface Materials, Vegetation, Surface Drainage, Trans- 
portation, and Obstacles, each of which is divided into several features and attributes. 
DTOP has essentially equivalent terrain feature and attributes. 
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Sites Terrain Feature Data   Imagery         Area 
1. Camp Pendieton DTOP                        Landsat TM    451km2 

2. Ft. Hood ITD                                                 677 km2 

3. Korea DTOP                                            744 km2 

4.Korea(Kor_35151) ITD                                                 661 km2 

5. Korea (Kor_34202) ITD                                                 741 km2 

Locating several test sites within geographic areas climatically designated Cwa and 
Cfa was not possible due to the limited ITD coverage. Each of the five sites evaluated 
was approximately equivalent in total size to one 1:50,000-scale map sheet. 

Two terrain analysis models were selected for experimentation: 

1. Helicopter Landing Zones; 
2. Bivouac Areas. 

Both of these site-suitability models were rewritten using Arc Macro Language to 
accept incomplete data sets of ITD and DTOP alike, and they subsequently ran 
successfully within an Arc/Info geographic information system (GIS) environment. 
The Arc Grid module was selected for analysis. Proximity-to-transportation is also 
considered in some models, but because it was not implemented within the TEC- 
fielded DTSS system, it was not incorporated into software re-engineering for this 
project. 

The following features and attributes were used as selection criteria for Helicopter 
Landing Zones: 

Suitable: 
1. Soil - all gravel and sand; 
2. Vegetation-barren, pasture, grassland, dry agriculture; 
3. Slope-0 to 3%. 

Suitable with caution: 
1. Soil - all gravel and sand; 
2. Vegetation-barren, pasture, grassland, dry agriculture; 
3. Slope->3 to 10%. 

An Arc/Info version of the HLZ algorithm was re-coded with the Defense Mapping 
Agency Feature File (DMAFF) and Feature Attribute Coding Catalog (FACC) 
attribute schemes. Helicopter Landing Zone map output was designed to show the 
results from the various combinations of soil, slope, and vegetation. 

The following features and attributes were used as selection criteria for BIV: 

1. Soil — a Smooth Surface, 
or a Smooth Bare Rock, 
or Sand Dunes, Loess, Karst, Leteritic, Permafrost, 
or Stony Soil with Scattered Surface Rock, 
or Scattered Surface Rock, 
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or Alluvial Fans, 
and with Dry Soil Moisture Content Conditions. 

2. Vegetation - Coniferous, Deciduous or Mixed Forest during the summer, 
and with Canopy Closure greater than or equal to 50%, 
and Tree Height greater than or equal to 5 meters, 
and Tree Spacing greater than or equal to 2.5 meters. 

3. Slopes- 0tol0%. 

Bivouac map output was designed to show the results from the various combinations 
of soil, slope, and vegetation. 

Statistical evaluation plan 
A reference map was derived from a combination of soil, slope, and vegetation terrain 
data layers. Ground-truthing was not conducted on the model output. The output 
from all three data layers was considered to be the "reference map." Map output from 
these three terrain layers was assumed to be 100 percent accurate, or a benchmark 
upon which all other combinations of data were to be statistically compared. The 
Arc/Info Boolean operator AND (INTERSECT) was used on the three terrain data 
layers to create six data sets. They are Veg, Soil, Slope, Soil+Slope, Soil+Veg, and 
Veg+Slope. The analysis technique applied was to determine Kappa coefficients for 
each of these six data sets. 

Kappa is a spatial statistics method that measures the randomness in the errors 
between the tested map output and the reference map output. The tested output layers 
and combinations were a) vegetation, b) soil, c) slope, d) soil + slope, e) soil + veg, 
and f) veg + slope. The following values constitute Kappa randomness values: 

0.00 to 0.40 High randomness and therefore little correlation; 
0.41 to 0.75 Moderate randomness and moderate correlation; 
0.76 to 1.00  Little randomness and high correlation (Fleiss, 1981). 

Kappa coefficients were calculated and assigned to each of six combinations of 
terrain data to see how closely the respective output matched the output from the 
reference map. The Kappa coefficients were prioritized based on their value. The 
highest Kappa values represented layers, or layer combinations, with the greatest 
contributions to matching the reference map. Therefore, prioritizing data layers was 
based on the highest Kappa coefficients. 

In order to efficiently compute Kappa scores of comparison between multiple data 
sets, it was necessary to convert the terrain data layers from vector data to raster data. 
Vector data were converted into 30-meter raster data and then the raster data were 
analyzed on pixel-by-pixel basis, always comparing against the reference map. 

Results and Discussion 

Table 1 shows the Kappa coefficients for the HLZ model, which were obtained by 
conducting a quantitative analysis of each of the six subsets in comparison with the 
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reference data set. As would be interpreted by Campbell's work (Campbell, 1987), a 
Kappa value of 0.7722 such as was calculated for the veg + slope category for Korea, 
means that the accuracy of the classification is 77.22 percent better than that from 
random assignment of pixels to categories. Therefore, the larger the Kappa value, the 
larger the contribution of that data layer. Conversely, using the Korea study site 
again, a Kappa value of 0.0170 such as was calculated for soil means this terrain 
layer contributed little to explaining the HLZ output. Independently, and for all sites, 
each terrain layer exhibits a Kappa score of high randomness and little correlation. 

Table 1. Kappa Coefficients Matrix for the HLZ Mode 
Data Korea 

(Cwa) 
Kor_34202 

(Cwa) 
Ft. Hood 

(Cfa) 
Kor 35151 

(Cfa) 
Pendleton 

(Csb) 

Veg 0.1906 0.2055 0.1220 0.2634 0.2742 
Soil 0.0170 0.0110 0.2468 0.0576 0.2000 
Slope 0.1164 0.3823 0.0945 0.1630 0.4588 
Soil+Slope 0.1836 0.4947 0.6178 0.3982 0.6517 
Soil+Veg 0.2022 0.2857 0.5772 0.4005 0.3607 
Veg+Slope 0.7722 0.5985 0.1587 0.4422 0.6687 

Overall, Table 1 reveals a moderate-to-high dependence from the terrain variable 
combination of Veg + Slope for each Korea study site and for Camp Pendleton. Fort 
Hood relies on soil and slope as the most important variable combination as indicated 
by the 0.6178 value assigned. Individually, the terrain factors of primary importance 
were not consistent. 

The prioritized order of Kappa coefficients of the individual data layers for 
vegetation, soil, and slope from test site Kor_34202 is different from the Korea (Cwa) 
study site, despite the fact that both sites are in the identical climate region. For 
Kor_34202, slope is the most important individual variable, whereas for Korea 
vegetation is the crucial single variable. Similarly, Ft. Hood and test site Kor_35151 
have different terrain data priority and optimum data combination despite their 
identical climate zone (Cfa). Accordingly, climate zone does not appear to be a 
determining factor in data priority for HLZ modeling. 

Soil was the most important individual variable (Kappa 0.2468) at Fort Hood. Slope 
was relatively insignificant as the area is uniformly flat (Kappa 0.0945). Vegetation 
was not particularly important as the majority of Fort Hood is devoid of dense 
vegetation (0.1220). There are only insignificant pockets of vegetation in the riparian 
zones and in the lower southwest corner of the installation. Accordingly, when 
vegetation was removed as an available variable, the percentage of HLZ area 
correctly identified as acceptable was not detrimentally impacted as it was for Korea 
(39.57% versus 3.56%). 

Camp Pendleton has increased Kappa values for each of the individual data themes. 
Kappa coefficients are Vegetation Kappa 0.2742, Soil Kappa 0.2000, and Slope 
Kappa 0.4588. Slope alone shows moderate correlation to the reference map. The 
percentage of HLZ area identified by slope as suitable, with caution, rises to 75.42 
percent. There is considerable landform variability at Camp Pendleton, easily visible 
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to a terrain analyst, helping to explain the importance of slope in locating suitable 
sites for landing helicopters. 

Korea 35151 was a case study that illustrated there is not much difference in the 
correlation between the reference map and either soil+slope, soil+veg, or veg+slope. 
For this area of Korea, any combination of two of the three terrain variables would 
have yielded approximately the same results. Kor_34202 reveals a moderate Kappa 
score for veg+slope (0.5985) and a score of 0.3823 for slope alone. 

A small additional experiment was run for the Camp Pendleton site. DTOP 
vegetation data were exchanged for vegetation data derived from Landsat Thematic 
Mapper, using an unsupervised Normalized Difference Vegetation Index. The result 
was an overall increase of 13 percent in the number of suitable HLZ pixels when 
using the imagery-derived vegetation data layer as opposed to using the more 
outdated DTOP vegetation data. There was a change in vegetation coverage area 
between the DTOP and imagery derived data layers with the newer imagery showing 
that there were fewer treed areas than the DTOP data showed years earlier. 

Table 2 shows the Kappa coefficients for the BIV model, which were obtained by 
conducting a quantitative analysis of each of the six subsets in comparison with the 
reference map. Bivouac Kappa values for Pendleton are not shown because the 
condition for tree stem spacing greater than or equal to 2.5 meters, as required by the 
BIV model criteria, does not exist in the available DTOP for Camp Pendleton. Veg + 
Slope is once again the preferred combination of two terrain factors to be used for 
generating the most reliable BIV model in the Korea study area. A Kappa value of 
0.8528 suggests that the accuracy of the classification is 85.28 percent better than that 
from random assignment of pixels to categories. The Fort Hood study area does not 
identify the terrain layer combination of Soil + Slope as the preferred data pair, as 
chosen previously for HLZ, but instead selects Soil + Veg as evidenced by the 
reported 0.5267 Kappa value. 

Table 2. Kappa Coefficients Matrix for the BIV Model . 
Korea 
(Cwa) 

Kor_34202 
(Cwa) 

Ft. Hood 
(Cfa) 

Kor 35151 
(Cfa) 

Pendleton 
(Csb) 

Veg 0.0605 0.1070 0.2605 0.1511 No data 

Soil 0.0926 0.0186 0.3272 0.1444 No data 

Slope 0.4236 0.3876 0.0689 0.3091 No data 
Soil+Slope 0.8136 0.4891 0.4755 0.7370 No data 

Soil+Veg 0.1066 0.1070 0.5267 0.1721 No data 

Veg+Slope 0.8528 0.9709 0.3244 0.8591 No data 

In Table 2, the prioritized order of the Kappa coefficients of the individual data layers 
for vegetation, soil, and slope of the test site Kor_34202 is similar to the Korea study 
site. Both sites are in climate region Cwa and suggest a Veg + Slope terrain data 
combination is most successful at representing accurate bivouac areas. A major 
misrepresentation could occur, however, if one was to use the successful Kappa 
results for Korea using Soil + Slope (0.8136) and apply these results as anticipated 
reliability for a terrain data set of Soil + Slope for Kor_34202, based on the fact that 
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they have an identical climate zone. Kor_34202 has a much lower Kappa coefficient 
for Soil _ Slope (0.4891) than would have been incorrectly predicted. Likewise, the 
study area pair Fort Hood and Kor_35151, located in climate region Cfa, do not agree 
as to recommended terrain data sets. They have completely different priorities both 
for individual terrain themes and combined terrain data. Fort Hood results are best 
for Soil + Veg (0.5267), while Kor_35151 results are best for Veg + Slope (0.8591). 
This finding is additional evidence that climate regions are not an effective 
controlling factor in determining critical terrain data priorities for individual terrain 
models. 

The prioritized order of combinations of data depends mostly on the prioritized order 
of each individual data layer. The Korea study area clearly illustrates the importance 
of slope as the primary contributor to the model output. Slope and vegetation, in 
combination, return a Kappa coefficient of 0.8528, exhibiting high correlation and 
little randomness in comparison with the reference map. Fort Hood illustrates the lack 
of importance of slope in this area, much like for the HLZ model. Soil takes 
precedence among the individual data layers. Kor_34202 and Kor_35151 show the 
vegetation and slope combination as representing a 0.9709 Kappa score. In this 
geographic area, the addition of soil data adds little to improving the quality of the 
final bivouac suitability output. Lastly, Korea_35151 shows the vegetation and slope 
combination as representing 0.8591 and 0.8591 Kappa scores, respectively. In these 
geographic areas of Korea, also, the addition of soil data is of least importance in 
improving the quality of the final bivouac suitability assessment. 

Conclusions and Summary: Topic 3 

Arc/Info GIS algorithms were recoded for the HLZ and BrV models. Both models 
successfully ran without all requested terrain data layers. 

General comments can be made regarding the study of terrain variables on HLZ 
output. First, in areas where there is significant vegetation, vegetation information is 
a critical terrain layer. Vegetation is a variable that remote sensing technology can 
exploit for rapid data generation. Not surprisingly, in areas devoid of significant 
vegetation (semi-arid land similar to Fort Hood), vegetation inclusion had little 
impact on HLZ output. These common-sense results can be applied to other areas of 
the world for terrain data prioritization. 

Based on data analysis of the three Korean sites, data priority for both the HLZ and 
BrV models indicated Veg + Slope as the most critical terrain combination. With 
these two layers, there was moderate correlation to the reference map for the HLZ 
products (0.44 to 0.77), and high correlation with the BIV products (0.85 to 0.97). 
Soil data contributed very little to the final output reliability in this geographic area of 
the world. 

Data analysis of HLZs for Camp Pendleton indicated that Veg + Slope were the most 
critical terrain parameters for portrayal of a moderately reliable HLZ product (0.67). 
The use of Soil + Slope presented a reasonable alternative as the Kappa value was 
only slightly less than that of Veg + Slope (0.65). Lack of needed terrain data 



ERDC/TECTR-02-1 29 

required to run the BIV model prevented the sensitivity testing of terrain data critical 
to Camp Pendleton. 

Fort Hood placed greatest emphasis on soil data in determining both HLZ and BIV 
products. The data priority was to first select Soil + Slope (HLZ = 0.62, BIV = 0.53) 
or alternatively Soil + Veg (HLZ = 0.58, BIV = 0.48) as a close second choice. The 
combination of Veg + Slope did not produce a quality HLZ or BIV product as 
illustrated by low Kappa values associated with each terrain model. A synopsis of the 
research results for crucial individual terrain data needs is found in Table 3. 

Table 3. Data priority for HLZ and Bivouac TDAs, identified by project study site. 

Project Site   HLZ Data Priority BIV Data Priority 
Pendleton   1. Slope N/A 
(Csb) 2. Vegetation N/A 

3. Soil N/A 

Ft. Hood 
(Cfa) 

Korea 
(Cwa) 

LSoil 
2. Slope 
3. Vegetation 

1. Vegetation 
2. Slope 
3. Soil 

Kor_35151   1. Vegetation 
(Cfa) 2. Slope 

3. Soil 

1. Soil 
2. Vegetation 
3. Slope 

1. Slope 
2. Soil 
3. Vegetation 

1. Slope 
2. Vegetation 
3. Soil 

Kor_34202 1. Slope 
(Cwa) 2. Vegetation 

3. Soil 

1. Slope 
2. Vegetation 
3. Soil 

While perhaps intuitive in nature, general rules-of-thumb were gleaned from the 
results of this work: 

1. The smaller the total area of pixels within a terrain data theme that are deemed 
suitable for BTV or HLZ, the more critical and important that data layer becomes. 
In other words, as a terrain theme became more restrictive, its contribution and 
importance grew. 

2. The flatter, more gently sloping study area (Fort Hood), showed little importance 
on inclusion of slope data for either HLZ or BTV model output. Soil was most 
critical. 

3. For sites with more diverse terrain (all except Fort Hood), soil became the least 
important terrain variable for HLZ and BIV. A combination of slope and 
vegetation was the most important terrain combination for HLZ and BIV 

An original goal of this research topic was to determine if there was a relationship 
between the worldwide climate regions and the terrain data priorities required by the 
HLZ and BIV models. 
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Climate zone did not appear to be a determining factor in data priority for either HLZ 
or BIV modeling. This is most likely because the climate regions are too vast in 
geographic area and the physiographic differences are great. Results from this work 
disagree with an investigation completed by Green et al. (date unstated), whereby 
they identify terrain data requirements for a model, also, but contend that climatic 
zones provided a reasonable geographic framework for the portability of model 
results. 

This research provides evidence that there is a basis for recommending terrain data 
layer priorities crucial for adequate production of HLZ and BIV alike. Extrapolation 
of these research findings to other geographic areas of the world would have to be 
done with caution. Some type of "pairing" to analogous physiography (soil, landform, 
vegetation, slope) rather than climate may be a more plausible method for extending 
the above results to a new region of the world. Applying rules-of-thumb appears to 
be a sensible solution to data prioritization during instances when terrain information 
is not available and resources needed for their generation are limited. 
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Overall Conclusions and Summary: Topics 1.2, and 3 

Imagery-based terrain data are crucial for input into tactical decision models in the 
absence of available standard data. This is especially true for many vegetation and 
soil data feature types utilized in numerous Army-fielded models (see Appendix 1). 
Using COTS tools, a terrain layer reliability metric was computed using a training 
sample contingency matrix, and a within-terrain-layer pixel reliability metric was 
computed from a Mahalanobis distance classification tool. A spatial model was then 
prototyped to combine these two metrics into a single pixel reliability value that 
could be passed along with the terrain data as pixel-specific reliability scores. Pixel 
reliability was propogated through an HLZ model to test the generation of a sample 
map reliability product. Output can be categorized into high, moderate, and low- 
reliability zones to assist the decision maker in selecting most appropriate sites. 
Climate zones were not good predictors of terrain data requirements supporting HLZ 
or BIV models. Rather, physiographic regions may be reasonably considered as 
predictors for prioritization of HLZ and BIV input data requirements. Lastly, rules- 
of-thumb based upon similar physiographic study areas appear plausible and could be 
used to suggest terrain variables of highest required priority in fulfilling accurate 
HLZ and BTV modeling output. For example, in the relatively flat semi-arid study site 
of Fort Hood, soil data were the most important contributing variable, whereas 
vegetation and slope combined were the most important variables for HLZ and BIV 
models from the Korea study sites. Collectively, Topics 1 to 3 described a method for 
deriving reliability, integrating the resultant scores into a decision model, determining 
objective terrain theme weights to help drive sample decision models, and 
development of products that have immediate applied use by decision makers. 
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Appendix 1. Vegetation and soil data requirements that pertain to Army Tactical Decision Models (TDAs) 

A B c D E F GH 1 J K L fVNOPQF 
VEGETATION 

Marsh/Swamp 

Marsh/Swamp-Type X 
Barren Ground X X X X 
Cropland X X X 
Cropland-Type Terraced, Shifting Cult, unk X 
Grassland X X X 
Grassland-Type Pasture, grassland w/trees X 
Scrub/Brush 
Scrub/Brush-Density Open-med Spacing, Med-dense X 
Trees-Type Mix, Pine, Hard, Clearing X X X X X X X X X XXX 
Trees-Brush Understory Sparse and Dense X X XXX 
Trees-Canopy 25% categories X X X X X X 
Trees-Predominant 5m categorical X X X X X              XXX 
Trees-Stem Diameter integer >0 to 900cm X X X X X 
Trees-Stem Spacing algorithm for min distance to nearest stem X X X X X X 
Trees-Foliage Height X 
Trees- Penetrable/Impenetrable X 
Vegetation Roughness X 

SOILS 
Soil Depth < or > than 0.5m X X X 
Surface Roughness long detailed X X 
Soil Type 8 texture types/mixtures X X X X X X X          X 
Soil Wetness Condition dry, moist, wet X X X 
Exposed Bedrock long detailed X   

Spreadsheet Legend of Model ITDA Names: 
A. Vegetation 

B. Drop Zone 

C. Helicopter Landing Zones 
D. Avenues of Approach 

E. DMA Mobility 

F. Cross Country Mobility (CCM) 

G. Cover 

H. Concealment 

I. Observation and Field of Fire 

J. Construction Resources 

K. Key Terrain 

L NATO Reference Mobility Model II (NRMMII) 

M. Bivouac 

N. Aerial Concealment 

0. Soil Trafficability 

P. Point to Point Line of Sight 

Q. Masked Area 

R. Aerial Detection 
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