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Abstract  
      We derive a nonlinear fuel optimal attitude 
control system (ACS) that drives the final state to the 
desired state according to a cost function that weights 
the final state angular error relative to the angular rate 
error.  Control is achieved by allowing the pulse-
width-modulated (PWM) commands to begin and 
end anywhere within a control cycle, achieving a 
pulse width pulse time (PWPT) control.  We show 
through a MATLAB Simulink model that this steady-
state condition may be accomplished, in the absence 
of sensor noise or model uncertainties, with the 
theoretical minimu m number of actuator cycles.  The 
ability to analytically achieve near-zero drift rates is 
particularly important in applications such as station-
keeping and sensor imaging. Consideration is also 
given to the fact that, for relatively small sensor and 
model errors, the controller requires significantly 
fewer actuator cycles to reach the final state error 
than a traditional proportional- integral-derivative 
(PID) controller. The optimal PWPT attitude 
controller may be applicable for a high performance 
kinetic energy kill vehicle. 
 
Introduction 
      In problems related to the attitude control of rigid 
bodies, it is often advantageous to design an attitude 
control system that is optimal in some way relative to 
a set of system constraints.  Most often cited are 
constraints of time and fuel.  A constraint pertinent to 
some systems regards the total number of PWM 
commands sent to the actuators.  In our case that is 
represented by valve commands sent to the ACS jets.  
A PID controller is simple to implement (Wie  1, 
1998), takes few CPU cycles, and usually is robust in 
most applications.  Sliding mode controllers are 
likewise robust and easy to implement (Wertz 2, 
1978).  Both of these control systems share a 
potential common trait, in an environment where 
sensor noise exists, of requesting numerous PWM 
commands while dithering about their phase-plane 
trajectories.  These effects can be minimized by 
introducing deadbands and other nonlinear elements 
at the expense of system response and accuracy.   
 

We derive a single-axis PWPT ACS that minimizes 
the total number of valve commands while  
simultaneously minimizes a cost function dependent 
on the final state errors.  We first apply the single-
axis controller to a 1-DOF simulated system, and 
then to a 3-DOF system, where each axis is 
controlled by the single-axis controller.  This allows 
us to evaluate its effectiveness in the presence of 
coupling through the inertia matrix.  Phase-plane 
plots of angle versus angle rate are given as well as 
plots of the valve commands.  Monte Carlo runs are 
made using Simulink in order to investigate 
controller sensitivities to gyro noise and camera 
noise.  Published results (Garcia  3, 1998) are shown in 
work done previously in support of MicroSat 
pointing and control development at LLNL. 
 
Pulse Width Modulation (PWM) 
      An approximation to an idealized linear 
command may be represented as in Figure-1, and is 
shown to start at the beginning of the control cycle 
and to end within the control cycle, or it may 
continue into the next cycle if the command is 
saturated. 
 
 
 
 
 
 
 
 

Figure-1:  Ideal linear force command shown with 
PWM approximation 

A discrete approximation to the ideal jet turn on time 
request can be made as follows, 
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Figure-2 illustrates a single-axis PWM control loop 
that provides feedback on error and error rate. 
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Figure-2:   Simplified single-axis controller 

      A continuous single-axis system may be 
described by, 
 
 

(1) 

where r is the jet control moment arm, yyI is the 

inertia term, and Fjet is the fixed-amplitude jet force. 
A discrete representation is given by, 
 
 

(2) 

 
where TACS  is the control cycle period, t1 marks the 
beginning of the jet pulse, and p is the pulse width,  p 
=  t2 − t1 , where, t2 marks the end of the pulse width. 

Figure-3 shows the states, θ  and ω  as a function of 
time for a jet pulse occurring over a particular time 
period,  1t to .2t  Note that the beginning of the pulse 

is not shown to coincide with the beginning of the 
control cycle, and it is this feature of both pulse width 
and pulse time that the nonlinear controller relies on 
to satisfy the two error criteria of 0 ,0 →∆→∆ ωθ , 
where Td θθθ −=∆ , Td ωωω −=∆  and, dθ  and 

dω  are the desired end states. 

 
      The cost function is defined as,  
 

(3) 

 
which, as seen from Eq.-2, allows for two  
degrees of freedom,  1t and p, in order to satisfy the 

two criteria of 0 ,0 →∆→∆ ωθ .  The parameter k 
defines the relative weighting between the position 
and rate error. Note that because of the PWPT 
solution must lie within the next ACS control 
interval, a constrained optimization of Eq. (3) is 
needed.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure-3:  Discrete state transition over one ACS 
control cycle as a function of jet pulse width and 
jet pulse temporal position within the control 
cycle. 

Referring to Figure-3, there are a total of five cases to 
be evaluated: 
 
Case-1:  t1 ≥ 0  and  t2  ≤  TACS ,  where,  p = t2 − t1 

 

 
Case-2: t1 < 0  and  t2  ≤  TACS    ⇒   p = t2

 

 
Case-3: t1 ≥ 0  and  t2  > TACS    ⇒   p = TACS  – t1

 

 

Case-4:  
α
ω∆  � pminimum pulse ⇒   ∆ω ≅ 0,  t1 = 0

 

 
Case-5: t1 < 0  and  t2  > TACS  , large angle saturation.

 

 
      The cost function of Case-1(depicted in Figure-3) 
is an unconstraint case and can be evaluated against 

 1t and p in order to derive expressions for their 

optimal values as follows, 
 
 
 
 
 
 
 

 

(4) 

 
We next seek the optimal value of p by taking the 
derivative of J w.r.t. p. 
 

Nonlinear Controller Derivation
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(5) 

 

      Case-2 implies noncausality, as it would be 
necessary to begin the jet pulse prior to the beginning 
of the current control cycle.  Thus, for Case-2, the 
cost function is evaluated using a causal constraint by 
setting  t�1 = 0, 

 
 
 
 
 
 
 
 
 

 
(6) 

 
 

Eq.-6 shows that it is necessary to solve a cubic 
polynomial; this will also be true of Cases-3 and –4. 
 
      Case-3 corresponds to a jet pulse that is requested 
to turn on during the current ACS period, yet extend 
beyond the period.  A constraint is imposed by 
truncating the desired pulse so that it does not extend 
into the next control cycle (i.e., t2 = TACS   ⇒  p = TACS  

−  t1).  Therefore in Case-3, t1 and p are linearly 
dependent on one another, allowing one degree of 
freedom in which to evaluate the cost function, 
 

 

(7) 

 

      Case-4 pertains to the condition of entering a 
control cycle with an angular rate error that would 
produce a pulse width request that is less than the 
minimum impulse bit of the jet.  For practical 
purposes this implies that p = 0, and by extension, ∆ω 
≅ 0.  For Case-4 a choice is made to begin the valve 
command at the beginning of the control cycle,  t�1 = 
0, which leads to the following equation for 
determining  p∗ , 
 
 

(8) 

      Case-5 is the “large-angle” or saturated case in 
which a solution to the previous four “small-angle” 
solutions does not exist.  Case-5 therefore merely 
serves to bring the system into any of Case-1 through 
Case-4, the cases of our interest.  Thereafter, an 
undisturbed system will remain captured in Cases-1,-
2,-3, or -4.  
 
      Solutions to the cubic equations are computed 
and those that are positive and real are used in the 
evaluation of the cost function.  The root yielding the 
minimum-valued cost function is denoted as p*. 
 
      It should finally be noted that a default “Case-0” 
exists wherein p* < pminimum pulse (i.e., the system state 
has reached equilibrium). 
 
     Figure-4 below illustrates the controller Cases, 
with the single-pulse switching line indicated by 
arrows (the axes have been normalized such that 
θ Max = ω Max , over ∆TACS).  Case-1 includes the area 
in phase-space that can be reached during the current 
control cycle.  Case-2 corresponds to the need to 
have pulsed prior to the current control cycle and 
then extend into the current. Case-3 corresponds to 
the need to first coast, then use a single pulse that 
extends beyond the current control cycle into the 
next.  Case-4 represents ∆ω ≅ 0, and Case-5 
represents the large-angle region. 
 

 

Figure-4:  Controller cases shown in phase-space 

 

      The single-axis controller is applied in a 
deterministic setting (noiseless sensors, ideal 
actuator), and then the controller is applied in a 
stochastic setting in order to evaluate the controller’s 
sensitivities to gyro and camera noise. 

Single-Axis Simulation Results
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Deterministic Scenario 

      A 1-DOF Simulink model was developed to 
evaluate the performance of the single-axis 
controller.  An integration routine with fixed step size 
of ∆T = ½ ms was used and the simulations were run 
for 10 seconds.  Other parameters included a 
minimum valve command of ½ ms, pitch angular 
acceleration α = 0.18 rad/s2, control cycle TACS  = 25 
ms, and cost function weighting factor k  = 2.5 s2.  A 
nonzero initial angle and angle rate was applied to the 
system which was required to drive the final states 
[θf  ωf ]

T to [0  0]T.   Figure-5 shows the jet valve 
commands and Figure-6 shows the corresponding 
closeup of the valve commands for the system once it 
has been captured in the small-angle mode.  Figure-7 
illustrates the case transitions for the system in the 
small angle mode, Figure-8 shows the angle and 
angular rate errors, and the phase plane response is 
shown in Figure-9. 
 
 

“Small Angle” response 

 
Figure-5:  Jet valve commands for single-axis 
model 

 

 
Figure-6:  Closeup of Figure-5 (“Small Angle”) 
on/off commands corresponding to Cases-1,2,3,4 

 

 
Figure-7:  Closeup of case transitions for the 
"Small Angle" modes of Figure -5 

 

 
Figure-8:  System state errors 

 

 
Figure-9:   Phase-plane response of system 

Stochastic Scenario 

      In order to evaluate the controller in less than 
ideal conditions (e.g., model sensor noises) Monte 
Carlo runs (N=100) were made with respect to gyro 
(rate) noise and camera (angle) noise, and the results 
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are compared against the baseline scenario.  The gyro 
noise was chosen as a zero-mean normal distribution, 
with standard deviations of either 50µrad/s 
(baseline), 100µrad/s, or 200µrad/s, and the camera 
noise was chosen as a zero-mean normal distribution 
with standard deviations of either 100µrad (baseline), 
200µrad, or 300µrad.  Random draws were made on 
the initial states [θο  ωο]T of each run such that θο = 
N(0rad, (100mrad)2) and ωο = N(0rad/s, 
(50mrad/s)2), where N(µ,σ2) represents a normal 
distribution with mean µ and standard deviation σ.  
The controller variables-of-interest are the final state 
errors ([∆θ f  ∆ωf]

T) and the total number of pulse 
commands (pMEDIAN, pMAXIMUM).  Figure-9 shows the 
gyro sensitivity curves and Figure-10 shows the 
camera sensitivity curves (all results are summarized 
in Table -1:  Summary of Monte Carlo sensitivity 
studies). 
 
      From Figure -10 it is seen that the variations of the 
final angle error, due to gyro noise, decreased from a 
baseline value of 0.07mrad  to 0.04mrad at maximum 
gyro noise due to the increased number of pulses 
(dithering due to increased noise).  The angle rate 
error increased from a baseline value of 0.04 mrad/s  
to 0.32 mrad/sec at maximum gyro noise.  The 
median and maximum number of pulses increased 
linearly where pMEDIAN varied from a baseline value 
of 8pulses at 50µrad/s to 98pulses at 200µrad/s, and 
pMAXIMUM varied from 29pulses to 152pulses.   
 

Looking at the variations due to camera noise, 
Figure-11 shows that the angle error is roughly flat 
with respect to camera noise, whereas the rate error 
significantly increases with camera noise.  Both 
pMEDIAN and pMAXIMUM fit well to a quadratic curve 
where pMEDIAN increased from a baseline value of 
8pulses at 100µrad to 68pulses at 300µrad, and 
pMAXIMUM increased from 29pulses to 88pulses. 
 
      Conclusions for the 1-DOF simulation can be 
summarized as follows: Assuming a noise-free 
environment and assuming that the controller is 
operating in the small-angle region (Cases-1 through 
–4) it has been shown that the controller can take the 
system from an initial state to a final state in two or 
three pulses, depending on the initial point in angle-
angle rate phase space.  In an environment with noise 
present, the controller is least sensitive with respcet 
to the final angle error, and exhibits considerable 
sensitivities with respect to the final angle rate error 
and the number of pulses required.  
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure-10:  Monte Carlo 1-DOF sensitivities to 
gyro noise 

 
 

 
 
 
 
 
 
 
 
 
 

 

Figure-11:  Monte Carlo 1-DOF sensitivities to 
camera noise 

 

      A fully-coupled 3-DOF Simulink model was 
developed in order to evaluate the performance of the 
single-axis controller when applied to each of the 
three axes independently.  Eq.-9 represents the 
dynamics and illustrates the cross-coupling effects 
that occur among axes.  The inertia matrix was 
chosen to contain only moment-of-inertia terms, and 
six actuator jets were modeled as opposing pairs per 
axis.  Other parameters remained the same as in the 
1-DOF simulation (e.g., minimum valve commands 
of 1.0 ms).  The pitch angular acceleration, αpitch  = 
0.18 rad/s2, remained the same, and roll and yaw 

Three-Axis Monte Carlo Simulation 
Results 
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angular accelerations were arbitrarily chosen as, αroll 
= 0.22 rad/s2 and αyaw = 0.20 rad/s2. 

[ ]

( )( )ωωτω rrr&r
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where, Q
r

 is the attitude quaternion defined as 

[ ]vectorscalar qqQ
rr

= , [ ]Ω  is a skew symmetric matrix 

comprised of elements of the angular rate vector, ω
r

, 
I is the inertia matrix and, τ

r
 is the applied jet 

torques. 
 
      As in the 1-DOF scenario, Monte Carlo runs 
(N=100) were made with respect to gyro noise and 
camera noise, and the results are compared against 
the baseline scenario.  The gyro noise was chosen as 
zero-mean Gaussian, with standard deviations of 
either 50µrad/s (baseline), 100µrad/s, or 200µrad/s 
and the camera noise was also chosen as zero-mean 
Gaussian with standard deviations of either 100µrad 
(baseline), 200µrad, or 300µrad.  Random draws 
were made on the initial states [θο  ωο]T of each run 
such that θο = N(0rad, (100mrad) 2 ) and ωο = 
N(0rad/s,  (50mrad/s) 2 ), and the controller was 
required to drive the angles and angular rates to zero. 
 
      Figures-12 and -13 show the cumulative 
sensitivity results for gyro noise and camera noise, 
respectively.  In this context, “cumulative”, with 
respect to the angle errors and angular rate errors, is 
defined by the norm of the three-axis errors, whereas 
cumulative with respect to the number of pulses is 
defined by the sum of the three-axis pulses.  The 
cumulative 3-DOF pMEDIAN for the baseline scenario 
is 19pulses which, when compared to the 1-DOF 
system’s baseline scenario of 8pulses, is slightly less 
than an ideal increase of a factor-of-three.  Thus, it 
could be speculated that the coupling among axes is 
assumed to be responsible for the unexpected five 
fewer pulses in the 3-DOF system.  Similarly, the 
cumulative 3-DOF pMAXIMUM for the baseline 
scenario is 63pulses which, when compared to the 1-
DOF system’s baseline scenario of 29pulses, is again 
below the ideal increase of a factor-of-three.  A 
similarly consistent pattern holds for the 3-DOF 
angle and angular rate errors as in the 1-DOF system.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-12:  Monte Carlo 3-DOF cumulative 
sensitivities to gyro noise 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure-13:  Monte Carlo 3-DOF cumulative 
sensitivities to camera noise 

 
      In the 3-DOF system the angle errors and angular 
rate errors are roughly larger by a factor of 3  as 
compared to those in the 1-DOF system.  Table-1 
summarizes the results of the 1- and 3-DOF 
sensitivity studies for the nonlinear controller as well 
as results for a conventional PID controller (PID 
results are shown in parentheses).  Similar higher- 
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Parameter Variable  1-DOF Baseline 
σGyro=50µrad/sec 
σCamera=100µrad 

1-DOF Max σGyro 
σGyro=200µrad/sec 
σCamera=100µrad 

 3-DOF Baseline 
σGyro=50µrad/sec 
σCamera=100µrad 

3-DOF Max σGyro 
σGyro=200µrad/sec 
σCamera=100µrad 

Gyro ∆θ Final 
(mrad) 

 
      0.07  (0.29* )         0.04  (0.18)        0.16  (1.42)      0.07  (1.05) 

Gyro ∆ωFinal 
(mrad/s)  

 
      0.04  (0.09)         0.32  (0.06)        0.07  (0.14)      0.54  (0.15) 

Gyro pMEDIAN 
(pulses)  

 
      8  (32)       98  (28)      19  (100)  277  (108) 

Gyro pMAXIMUM 
(pulses)  

 
    29  (51)     152  (40)      63  (126)  358  (136) 

 
Parameter Variable  1-DOF Baseline 

σGyro=50µrad/sec 
σCamera=100µrad 

1-DOF Max σCamera 
σGyro=50µrad/sec 
σCamera=300µrad 

 3-DOF Baseline 
σGyro=50µrad/sec 
σCamera=100µrad 

3-DOF Max σCamera 
σGyro=50µrad/sec 
σCamera=300µrad 

Camera ∆θ Final 
(mrad) 

 
      0.07  (0.29)       0.08  (0.14)        0.16  (1.42)      0.14  (1.20) 

Camera ∆ωFinal 
(mrad/s)  

 
      0.04  (0.09)       0.74  (0.05)        0.07  (0.14)      1.10  (0.14) 

Camera pMEDIAN 
(pulses)  

 
      8  (32)     68  (25)      19  (100)  204  (113) 

Camera pMAXIMUM 
(pulses)  

 
    29  (44)     88  (57)      63  (126)  278  (146) 

Table-1-a,b:  Summary of nonlinear controller Monte Carlo sensitivity studies ( *PID controller results 
shown in parentheses) 

 
 
level patterns are seen in the 3-DOF and 1-DOF 
simulations, e.g., final angle errors decrease with 
increasing gyro noise due to dithering, angular rate 
errors increase quadratically for gyro and camera 
noise, median and maximum pulses are linear with 
respect to gyro noise and quadratic with respect to 
camera noise. 
 
Comparison of the Nonlinear and PID 
Controllers 
      Several observations can be extracted from 
Table-1 regarding the relative performance of the 
nonlinear controller with a conventional PID 
controller (used in this paper as a benchmark for 
comparison purposes).  The first observation is that 
the nonlinear controller performs better, with low 
noise sensors (baseline scenario), than the PID 
controller for all four metrics considered (∆θ Final , 
∆ωFinal , pMEDIAN , pMAXIMUM).  Therefore, for low 
noise applications (e.g., gyro noise = 50µrad/s, and 
camera noise = 100µrad), the nonlinear controller 
provides better state control with fewer pulses.  This 
is expected since the nonlinear controller solves for 
precise solutions required to remove state errors.  
However, at higher sensor noise levels (e.g., gyro 

noise = 200µrad/s, and camera noise = 300µrad), 
only the final angular state error, ∆θFinal , is smaller 
for the nonlinear controller.  Conversely, when 
regarding the final angular rate error, ∆ω Final , and 
number of median and maximum actuator pulse 
commands, the PID controller shows superior 
performance in the high noise scenario (shown in 
italics in Tables1-a,-b). 
 
Summary, Conclusions, and 
Recommendations 
 
      It has been demonstrated that the optimal single -
axis nonlinear controller, when applied to a noise-
free 1-DOF model, eliminates the initial state errors 
to within the tolerance of the minimum pulse width 
of the jets and the nonideality introduced by two 
constraints in the controller’s derivation.  The first 
constraint occurred in Case-2, where the cost 
function was evaluated by setting  t�1=0 (which led to 
Eq.-6).  The second constraint occurred in Case-4, 
where the minimum impulse of the jet forced us to 
solve the cubic equation by using ∆ω ≅ 0 (which led 
to Eq.-8).  Irrespective of errors introduced by these 
variations on the ideal solution, the controller was 
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shown to require either two or three pulses to correct 
for initial errors, depending upon the initial phase-
plane state. 
 
      Monte Carlo runs were made using a 1-DOF 
model in order to observe the sensitivity of the 
controller to gyro and camera noise, from which it 
was concluded that final angle errors decrease with 
increasing gyro noise due to dithering and angular 
rate errors increase quadratically for gyro and camera 
noise.  The median and maximum pulses increase 
linearly with respect to gyro noise, and increase 
quadratically with respect to camera noise. 
 
      Monte Carlo runs were also made using a 3-DOF 
model in order to observe the sensitivity of the 
controller to gyro and camera noise, and to 
additionally observe how well the controller 
performed in the presence of a fully -coupled three-
axis model.  It was observed that the coupling among 
axes did not significantly change the characteristics 
of the controller’s response, i.e., it behaved similarly 
as in the 1-DOF model with a linear scaling effect 
created by the fact that there were now three axes. 
 
      A comparison between the nonlinear controller 
and a conventional PID controller was made.  It was 
concluded that the nonlinear controller performed 
better in a lower noise environment with respect to all 
four performance metrics, and also in the higher 
noise environment with respect to the final angular 
error.  However, the PID controller performed better 
in a higher noise environment on three of the four 
metrics (final angular rate error, and median and 
maximum number of pulses). The Monte Carlo 
simulations have demonstrated the usefulness of the 
nonlinear controller in an application where the 
sensor (and by extension the actuator) noise 
characteristics are below some overall system-level-
dependent threshold.  An example of this kind of 
application is the requirement for precis ion pointing 
and station-keeping of an exo -atmospheric satellite. 
 
      One explanation for the seemingly poor 
performance of the PWPT controller, at very high 
angle and angular rate sensor noise, can be attributed 
to the fact that the cost function weighting factor, k , 
did not capture the full relationship between the 
sensor noise characteristics (i.e., sensor covariance 
matrix, R).  The cost function could have been 
reformulated as, 
 

( ) ( )[ ] ( ) ( )[ ]
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We believe with the above new formulation of the 
cost function, the performance of the PWPT 
controller will be improved significantly. 
 
      It should be noted that this controller was derived 
to satisfy the requirement of taking the system from 
an initial to a final point on the phase plane.  Thus, 
the controller does not explicitly address the issue of 
tracking a moving target.  However, a predictive 
filter could be implemented that supplies the 
controller with  nonstationary endpoints at each 
control cycle, thereby allowing the controller to track 
a moving target.  Further studies should be conducted 
to quantify, for this more general scenario (i.e., a 
moving target), the performance of the single-axis 
controller relative to a conventional controller (e.g., 
PID, sliding mode). 
 
      Controller stability as a function of the weighting 
parameter, k  (as shown in Eq.-3) should also be 
studied.  We have not derived a Lyapanov-type 
stability proof.  However, by inspection of Eq.-3 it is 
observed that the controller’s damping is directly 
related to the weighting parameter, k , and that as 
k→0 the system becomes marginally stable. 
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