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Abstract—In recent years, numerous machinery health 
monitoring technologies have been developed by the U.S. 
Navy to aid in the detection and classification of 
developing machinery faults for various Naval platforms.  
Existing Naval condition assessment systems such as 
ICAS (Integrated Condition Assessment System) employ 
several fault detection and diagnostic technologies 
ranging from simple thresholding to rule-based algorithms. 
 However, these technologies have not specifically 
focused on the ability to predict the future condition 
(prognostics) of a machine based on the current 
diagnostic state of the machinery and its available 
operating and failure history data.  An advanced 
prognostic capability is desired because the ability to 
forecast this future condition enables a higher level of 
condition-based maintenance for optimally managing total 
Life Cycle Costs (LCC).   A second issue is that a 
framework does not exist for “plug ‘n play” integration of 
new diagnostic and prognostic technologies into existing 
Naval platforms.   This paper will outline such Prognostic 
Enhancements to Diagnostic Systems (PEDS) using a 
generic framework for developing interoperable prognostic 
“modules”.  Specific prognostic module examples 
developed for gas turbine engines and gearbox systems 
are also provided.    
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1. INTRODUCTION 

Various prognostics and health monitoring technologies 
have been developed that aid in the detection and 
classification of developing system faults.  However, 

these technologies have traditionally focused on fault 
detection and isolation within an individual subsystem.  Health 
management system developers are just beginning to address 
the concepts of prognostics and the integration of anomaly, 
diagnostic and prognostic technologies across subsystems 
and systems. Hence, the ability to detect and isolate impending 
faults or to predict the future condition of a component or 
subsystem based on its current diagnostic state and available 
operating data is currently a high priority research topic.   

In general, health management technologies will observe 
features associated with anomalous system behavior and then 
relate these features to useful information about the system’s 
condition.  In the case of prognostics, this information relates 
to the condition at some future time.  Inherently probabilistic or 
uncertain in nature, prognostics can be applied to 
system/component failure modes governed by material 
condition or by functional loss.  Like diagnostic algorithms, 
prognostic algorithms can be generic in design but specific in 
terms of application.  Various approaches to prognostics have 
been developed that range in fidelity from simple historical 
failure rate models to high-fidelity physics-based models.  
Figure 1 illustrates the hierarchy of potential prognostic 
approaches in relation to their applicability and relative costs.  
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Figure 1 – Hierarchy of Prognostic Approaches 
 
This paper will discuss some generic prognostic 
implementation approaches and provide some specific 
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applications to various mechanical systems.  The ability to 
predict the time to conditional or mechanical failure (on a 
real-time basis) is of enormous benefit and health 
management systems that can effectively implement the 
capabilities presented herein offer a great opportunity in 
terms of reducing the overall Life Cycle Costs (LCC) of 
operating systems as well as decreasing the 
operations/maintenance logistics footprint. 

 

2. INCORPORATING PROGNOSTIC TECHNOLOGIES 

Health management system architectures must allow for 
the integration of anomaly, diagnostic, and prognostic 
(A/D/P) technologies from the component level all the way 
up through the vehicle or platform level.  In general, A/D/P 
technologies observe features associated with anomalous 
system behavior and relate them to useful information 
about component or system condition.   Before getting 
into some specific examples of diagnostic and prognostic 
techniques applied to different aspects of an air vehicle, a 
brief description of some of the more common technical 
approaches are given.  The software modules are currently 
in prototype development stage. 

Open System Architecture

Sensor Data and Archived Information

Relational and Object Oriented Servers

Application Services and Interface Management

Human Systems Interface (HSI)

To
ol 

La
ye

r
Ve

rtic
al 

To
ols

Plu
g &

 Us
e

A N
ew

 To
ol

“V
ert

ica
l” 

Pr
og

no
sti

cs

Anomaly Detection
Diagnostics

“Horizontal” Prognostics

Operator 
Interface

…

…

Open System Architecture

Sensor Data and Archived Information

Relational and Object Oriented Servers

Application Services and Interface Management

Human Systems Interface (HSI)

To
ol 

La
ye

r
Ve

rtic
al 

To
ols

Plu
g &

 Us
e

A N
ew

 To
ol

“V
ert

ica
l” 

Pr
og

no
sti

cs

Anomaly Detection
Diagnostics

“Horizontal” Prognostics

Operator 
Interface

…

…

 

Figure 2 - PEDS Plug and Play "Toaster" Model 
 
The approach for the PEDS program is to develop 
prognostic software that is modular and could have 
multiple transition opportunities.  The “toaster” model 
(popular in software engineering) illustrates the concept 
for “plug and play” functionality of the modules.  The 
areas in blue are the main focus areas of the current PEDS 
effort. They will be installed in an arrangement where data 
is gathered from equipment or archives and processed by 
the module. The results will be viewable and analyzed by 
both Navy and contractors through developed GUI’s 
(Graphical User Interfaces).   

From an implementation perspective, it is convenient to 
think of prognostics as horizontal or vertical modules in 
the architecture.  This categorical differentiation should 
not be confused with the different prognostic approaches. 
 It is merely a convenient way to define the information 

and interface requirements that the prognostic module may or 
may not have.  For instance, a horizontal module uses anomaly 
detection and failure mode diagnosis information to make a 
prognosis.  This is usually the more accurate method, in which 
we integrate the knowledge about the type of failure and its 
severity into the time series prediction.  The prediction is 
accomplished in a number of ways including: simple trending 
algorithms based on recursive curve fitting, artificial 
intelligence (implicit) predictions, state-space tracking 
algorithms, and higher-fidelity physics of failure algorithms to 
name just a few.  A vertical prognostics module, by contrast, is 
not explicitly dependent on the diagnostics information and 
will either input just time and usage conditions or in addition, 
some measured data.  Experience-based statistical failure 
distributions can be applied to determine the probability of 
failure within a future time period given the prior time/usage 
history.  There exist many lifing models to do this type of 
prediction on turbomachinery components and bearings, for 
instance.  Other vertical methods, such as signal correlation 
and pattern recognition methods, which identify patterns that 
can be projected forward in time, have also been proposed.  
These methods are data-driven and are usually less desirable 
as comprehensive failure examples need to be provided.  This 
is usually not possible to do prior to fielding the system, so 
such algorithms must rely on “on-the-job” training, which is 
not acceptable for critical applications.  Typically, we view 
horizontal prognostics as the preferred path towards more 
accurate predictions and vertical prognostics as a fall back 
position in situations where there does not exist sufficient 
sensor information or justification to develop horizontal 
prognostics.  Either way, there exists a need to provide 
interoperability for both vertical and horizontal prognostics.  

Evolving Open Systems Standards 

Openness is a general concept that denotes free and 
unconstrained sharing of information.  In its broadest 
interpretation, the term “open systems” applies to a systems 
design approach that facilitates the integration and 
interchangeability of components from a variety of sources.  
For a particular system integration task, an open systems 
approach requires a set of public component interface 
standards and may also require a separate set of public 
specifications for the functional behavior of the components.  
The development of the open-systems standards relevant to 
Condition-based Maintenance (CBM) and Prognostics and 
Health Management (PHM) development has been pursued by 
an International Standards Organization (ISO/TC 108/SC 5) 
committee, a consortium of condition monitoring companies 
(MIMOSA), and a DoD Dual-Use Science and Technology 
program (OSA/CBM) lead by Boeing.   

The International Standards Organization (ISO) has formed a 
Subcommittee (SC 5) of the Mechanical Vibrations Technical 
Committee (TC 108). SC 5 “Condition Monitoring and 
Diagnostics of Machines.”  The scope of the committee is the 
“standardization of the procedures, processes and equipment 
requirements uniquely related to the technical activity of 



condition monitoring and diagnostics of machines in 
which selected physical parameters associated with an 
operating machine are periodically or continuously 
sensed, measured and recorded for the interim purpose of 
reducing, analyzing, comparing and displaying the data 
and information so obtained and for the ultimate purpose 
of using this interim result to support decisions related to 
the operation and maintenance of the machine.” 

MIMOSA is a not-for-profit trade association founded in 
1994 and incorporated in December of 1996.  Their general 
purpose is the development and publication of open 
conventions for information exchange between plant and 
machinery maintenance information systems.  The core of 
the MIMOSA development activity is the MIMOSA CRIS 
(Common Relational Information Schema).  The second 
version of the CRIS (CRIS V2.1) was released in May 2000 
and is publicly available at the MIMOSA website 
[http://www.mimosa.org /].  The CRIS defines a relational 
database schema for machinery maintenance information.  
The schema provides broad coverage of the types of data 
that need to be managed within the CBM domain.   
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Figure 3 - Outline of the OSA/CBM Architecture 
 
The OSA/CBM development approach was formulated 
based on the assumption that the large body of work that 
constitutes the MIMOSA open standards would be used 
as a basis for development.  The MIMOSA interface 
standards define open data exchange conventions for 
sharing of static information between CBM systems 
(openness at the intra-system level).  The goal of the 
OSA/CBM project is the development of an architecture 
(and data exchange conventions) that enables 
interoperability of CBM components (openness at the 
inter-system level). Within the open systems’ approach, 
the proprietary system solution is addressed using a 
MIMOSA-compliant “wrapper” that exposes a set of 
public MIMOSA compliant server interfaces.  The 
interface set allows external clients open access to the 
information generated within the proprietary system 
solution.  Alternatively, a CBM system can operate openly 

at the inter-system and intra-system levels also.  In this case 
the individual components are exposed at the functional 
component interfaces.  These component interfaces offer 
access to the data and services supplied by the component, 
and provide for open information flow between components 
during system operation.  In addition, components may be 
readily replaced by components with improved capability as 
long as they follow the same public interface standards.   

The components of the OSA/CBM architecture are shown in 
Figure 3.  The primary inputs to the architecture definition are 
the functional description of the layers (as discussed above) 
and the MIMOSA CRIS, along with the general requirements 
described in the section on CBM Architecture.  An object 
oriented data model has been defined (using Unified Modeling 
Language – UML - syntax) based upon a mapping of the 
MIMOSA relational schema to the OSA/CBM layers.  The 
focus is on describing the structure of the information that 
might be of interest to clients of that layer.  In fact, in the same 
way that the MIMOSA interface standard does not impose a 
structure on the components that compris e a MIMOSA 
compliant system, OSA/CBM does not impose any 
requirements on the internal structure of compliant software 
modules.  The architectural constraints are applied to the 
structure of the public interface and to the behavior of the 
modules.  This approach allows complete encapsulation of 
proprietary algorithms and software and is a key enabler to 
prognostic module implementation. 

 

3. REVIEW OF PROGNOSTICS APPROACHES 

For a health management or CBM system to possess 
prognostics implies the ability to predict a future condition.  
Inherently probabilistic or uncertain in nature, prognostics can 
be applied to system/ component failure modes governed by 
material condition or by functional loss.  Like the diagnostic 
algorithms, prognostic algorithms can be generic in design but 
specific in terms of application.   This section briefly describes 
some approaches to prognostics. 

Experienced-Based Prognostics 

In the case where a physical model of a subsystem or 
component is absent and there is an insufficient sensor 
network to assess condition, an experienced-based prognostic 
model may be the only alternative.  This form of prognostic 
model is the least complex and requires the failure history or 
“by-design” recommendations of the component under similar 
operation.  Typically, failure and/or inspection data is compiled 
from legacy systems and a Weibull distribution or other 
statistical distribution is fitted to the data.  An example of these 
types of distributions is given in Figure 4.  Although simplistic, 
an experienced-based prognostic distribution can be used to 
drive interval-based maintenance practices that can then be 
updated on regular intervals.  An example may be the 
maintenance scheduling for a low criticality component that 



has little or no sensed parameters associated with it.  In 
this case, the prognosis of when the component will fail or 
degrade to an unacceptable condition must be based 
solely on analysis of past experience or OEM 
recommendations.  Depending on the maintenance 
complexity and criticality associated with the component, 
the prognostics system may be set up for a maintenance 
interval (i.e. replace every 1000+/-20 Effective Operating 
Hrs) then updated as more data becomes available.   
Having an automated maintenance database is important 
for the application of experience-based prognostics. 

 

Figure 4 - Experienced-Based Approach 
 
Evolutionary Prognostics 

An evolutionary prognostic approach relies on gauging 
the proximity and rate of change of the current component 
condition (i.e. features) to known performance degradation 
or component faults. Figure 5 is an illustration of the 
technique.  Evolutionary prognostics may be implemented 
on systems or subsystems that experience conditional 
failures such as compressor or turbine flow path 
degradation.  Generally, evolutionary prognostics works 
well for system level degradation because conditional loss 
is typically the result of interaction of multiple 
components functioning improperly as a whole.  This 
approach requires that sufficient sensor information is 
available to assess the current condition of the system or 
subsystem and relative level of uncertainty in this 
measurement. Furthermore, the parametric conditions that 
signify known performance related faults must be 
identifiable.  While a physical model, such as a gas path 
analysis or control system simulation, is beneficial, it is 
not a strict requirement for this technical approach.  An 
alternative to the physical model is built in “expert” 
knowledge of the fault condition and how it manifests 
itself in the measured and extracted features.  

 
Figure 5 - Evolutionary Prognostics 

 
Feature Progression and AI-Based Prognostics 

Utilizing known transitional or seeded fault/failure degradation 
paths of measured/extracted feature(s) as they progress over 
time is another commonly utilized prognostic approach.  In this 
approach, neural networks or other AI techniques are trained 
on features that progress through a failure.  In such cases, the 
probability of failure as defined by some measure of the 
“ground truth” is required as a-priori information as described 
earlier.  This “ground truth” information that is used to train 
the predictive network is usually obtained from inspection 
data.  Based on the input features and desired output 
prediction, the network will automatically adjusts its weights 
and thresholds based on the relationships between the 
probability of failure curve and the correlated feature 
magnitudes.  Figure 6 shows an example of a neural network 
after being trained by some vibration feature data sets.  The 
difference between the neural network output and the “ground 
truth” probability of failure curve is due to error that still exists, 
after the network parameters have optimized, to minimize this 
error.   Once trained, the neural network architecture can be 
used to intelligently predict these same features progressions 
for a different test under similar operating conditions. 

 
Figure 6 - Feature/AI-Based Prognostics  

 
State Estimator Prognostics 

State estimation techniques such as Kalman filters or various 
other tracking filters can also be implemented as a prognostic 
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technique.  In this type of application, the minimization of 
error between a model and measurement is used to predict 
future feature behavior.  Either fixed or adaptable filter 
gains can be utilized (Kalman is typically adapted, while 
Alpha-Beta-Gamma is fixed) within an nth-order state 
variable vector.   For a given measured or extracted feature 
f, a state vector can be constructed as shown below.   

[ ]T
fffx &&&=  

( 1 ) 

Then, the state transition equation is used to update these 
states based upon a model.  A s imple Newtonian model of 
the relationship between the feature position, velocity and 
acceleration can be used if constant acceleration is 
assumed.   This simple kinematic equation can be 
expressed as follows: 

2)(
2
1

)()()1( tnftnfnfnf &&& ++=+  
( 2 ) 

where f is again the feature and t is the time period 
between updates.  There is an assumed noise level on the 
measurements and model related to typical signal-to-noise 
problems and unmodeled physics.  The error covariance 
associated with the measurement noise vectors is typically 
developed based on actual noise variances, while the 
process noise is assumed based on the kinematic model.   
In the end, the tracking filter approach is used to track and 
smooth the features related to the prediction of a given 
failure mode progression, and thus, it is used in 
conjunction with a diagnosis.  

Physics-Based Prognostics 

A physics-based stochastic model is a technically 
comprehensive modeling approach that has been 
traditionally used for component failure mode prognostics. 
 It can be used to evaluate the distribution of remaining 
useful component life as a function of uncertainties in 
component strength/stress or condition for a particular 
fault. The results from such a model can then be used to 
create a neural network or probabilistic-based autonomous 
system for real-time failure prognostic predictions.  Other 
information used as input to the prognostic model 
includes diagnostic results, current condition assessment 
data and operational profile predictions.  This knowledge-
rich information can be generated from multi-sensory data 
fusion combined with in-field experience and maintenance 
information that can be obtained from data mining 
processes. While the failure modes may be unique from 
component to component, the physics-based 
methodology can be applied to many different types of 
mechanical components.  An example of a physical, model-
based prognostic technique is shown in Figure 7 for a 
rotating blade.   

 

 
Figure 7 - Physics-Based Prognostics 

 
 

4. SOME PROGNOSTIC MODULE EXAMPLES 

Gas Turbine Fuel Nozzle Prognostics  

The purpose of this investigation was to identify features that 
could be incorporated in an automated system for diagnosing 
clogged fuel nozzles.  The main focus was diagnostics, but 
there is potential for incorporating a prognostics element given 
sufficient clogging progression data.  This example focuses 
largely on a feature-based approach.  

 

Figure 8 – Clean Nozzle and One with Severe Clogging 

Clogging reduces the efficiency of the combustion process 
and can create potentially damaging hot spots in the 
combustor and turbine sections.  At startup, this is especially 
true to the extent that “hot starts” or “no starts” may be 
produced. For this project, Impact Technologies used test data 
from several start-ups of an Allison 501-K17, taken at NAVSEA 
Philadelphia, comprising both clean and fouled fuel nozzles.   

The diagnosis of fuel nozzle clogging was demonstrated using 
an analysis of gas turbine sensor values.  Features were 
identified from the Fuel Manifold Pressure (FMP), Turbine Inlet 
Temperature (TIT), Engine speed (RPM), and Fuel Flow (Wf).  
Data from the four different tests is shown in histogram plot.  
The baseline data was the December 13th dataset, in which the 
nozzles were known to be clean.  The three other data sets 
indicate progressive clogging conditions.  The diagnostic 
scalars are as follows.  The delta (1) is the time delay between 
the end of the FMP increase, as defined by the baseline, and 
the start of the TIT increase, again defined by the baseline 
(multiplied by 100 for scaling purposes).  The Average FMP vs 
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RPM Difference is the average difference of the actual 
FMP values at a given RPM and the expected FMP values 
for that RPM.  This was calculated for only the FMP 
points associated with the start event.  The max FF/FMP 
ratio is the maximum Fuel Flow (FF) to FMP ratio for the 
start.  The TIT slope is the slope of the TIT line. These 
features appear to be reliable indicators of fuel nozzle 
clogging that can provide ample warning prior to full start. 
  

 
Figure 9 – Feature Diagnostic Scalars at Baseline and 

under Degraded (Fouling) Conditions 
 
Prognostic adaptations focus on the automated 
interpretation of the nozzle clogging projected in time and 
a recommended change threshold based upon the features 
identified.  The prognostic output should be a 
recommended number of starts or operational hours for a 
nozzle change.   

Gas Turbine Compressor Wash Prognostics  

The prognostic model was developed based on data from 
fouling tests taken at NSWCC in Philadelphia, PA and is 
an example of evolutionary prognostics approach.  It is 
based upon some specific features and a simple model for 
compressor efficiency.  In order to simulate the amount of 
salt the typical Navy gas turbine is exposed to on a normal 
deployment, a 9% salt solution was injected into the 
engine intake. Over the course of the entire test (3 days) 
approximately 0.0057m3 of salt was used to induce 
compressor degradation at four different load levels (1/3, 
2/3, standard and full load levels or “bells”).  This method 
of testing was performed on both Allison 501 and LM2500 
Units.  Figure 10 shows a borescope image of the salt 
deposits on the LM2500 1st stage blading.  

 

Figure 10 - Borescopic Image of Salt deposits: 1st stage Blading 
 
In addition to fouling the two engines, testing was also 
performed on the effects of on-line washing for the Allison 501. 
The machine was crank washed and fouling was reinitiated. 
Specifically, at approximately 2% CDP drops, an on-line 
waterwash was performed using detergent. This cycle was 
completed 4 times at four different load levels.   

During the testing, several of the critical parameters were 
monitored and their response to degradation was tended. 
Table 1 contains the measured parameters with their units and 
ranges (Shaft RPM and Ngg are for the LM2500 testing only)  

Table 1 – Recorded Parameters from the Digital Control System 

 
 
When a compressor undergoes fouling, several key 
performance factors are affected.  The most sensitive of these 
factors is the compressor capacity or referred mass flow. 
(Peltier et al, 1995) This is because loss of capacity comes from 
throat blockage and increases in roughness on the suction 
side of the blading.  Unfortunately, in most practical naval 
applications, compressor capacity is not reliably determinable.  
The compressor inlet temperature (CIT), outlet temperature 
(CDT), inlet total pressure (CIPT) and discharge total pressure 
(CDPT) can typically be used to find compressor efficiency. 
(Boyce 1995)  However CDT, CDPT are not standard sensors in 
most Naval platforms.   
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With total pressure measurements absent there is not 
enough information to calculate compressor adiabatic 
efficiency in its strict form (as was shown above). 

Alternately, the following may be used to estimate the 
efficiency.     

( )
( )actualtt

idealtt
adb hh

hh

13

13

−
−

=η  
(4) 

 
Where h is the enthalpy of the discharge (3) or inlet (1) 
condition and the ideal refers to an isentropic process.   

The compressor performance prognostic module consists 
of data preprocessing and specific diagnostic/prognostic 
algorithms for assessing the current and future conditions 
of the gas turbine. The data preprocessor algorithms 
examine the unit’s operating data and automatically 
calculate key corrected performance parameters such as 
pressure ratios and efficiencies at specific load levels in 
the fashion already described.  As fouling starts to occur 
in service, probabilistic classifiers match up corresponding 
parameter shifts to fouling severity levels attained from 
these tests with corresponding degrees of confidence. 

A probabilistic-based technique was developed that 
utilizes the known information on how measured 
parameters degrade over time to assess the current 
severity of parameter distribution shifts and project their 
future state.  The parameter space is populated by two 
main components.  These are the current condition and 
the expected degradation path.  Both are multi-variate 
Probability Density Function (PDFs) or 3-D statistical 
distributions.  Figure 11 shows a top view of these 
distributions.  The highest degree of overlap between the 
expected degradation path and the current condition is the 
most likely level of compressor fouling.   

In general, the probability that the current condition (C), 
may be attributed to a given fault (F) is determined by their 
joint probability density function.  If we assume C and F to 
be normally distributed, the probability of association (Pa) 
can be found using: 
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where: 

CF ,  = the mean of the distributions F and C respectively 

cf σσ ,  = the standard deviation of the F and C 

distributions 

The function F (β) is the standard normal cumulative 
distribution.  The notation ß is defined as the fault index.  

Once the current severity level is known with a high degree of 
confidence, a fault-weighted projection is performed using a 
modified double-exponential smoothing technique. This 
approach is more appropriate than a simple multi-variate 
regression because it weights the most recent performance 
degradation trends and evolves the current conditions toward 
the expected degradation path.  

To manipulate the data into the form of this model, the time 
dependency of the test results had to be removed because of 
the unrealistic fouling rates. The percent changes in static 
pressure ratio, fuel flow, and CDT were recast in terms of ¼ % 
pseudo-efficiency drops. This increment was chosen because 
it was the highest resolution that still permitted statistical 
analysis. With the assimilation of the data into these discrete 
bands, the statistical parameters (e.g., mean and standard 
deviation) can be ascertained for use in the prognostic model. 
Figure 11 shows the evolution of the compressor degradation 
for the LM-2500 test at 1% pseudo-efficiency drops (for visual 
clarity).  The top two plots illustrate the distributions of 
pressure ratio and fuel flow respectively while the bottom two 
provide the joint probability distributions.  

 
Figure 11 - Prognostic Model Visualization 

 
Once the statistical performance degradation path is realized 
along with the capability to assess current degradation 
severity, the final step was to implement the predictive 
capability.  The actual unit-specific fouling rate is combined 
with historical fouling rates with a double exponential 
smoothing method. This time series technique weights the two 
most recent data points over past observations.  The following 
equations give the general formulation.  (Bowerman, 1993).  
Figure 12 shows how this technique can give significantly 
different results than standard regression. 

ST=αyT+(1-α)ST-1 (6) 

S[2]
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Figure 12 - Prediction of Degradation Rates 
 
The test data made two essential contributions to the 
development of this prognostic model.  First, it provided a 
means by which to validate an analytical model of how 
performance parameters change as a function of 
compressor fouling.  Secondly, they gave insight into the 
sensitivity and statistical distributions of performance 
parameters as a function of load. Hence, having been 
developed and validated on real data, a large amount of 
knowledge is “built in” to the prognostic model.  

Gearbox Prognostic Module   

Under the Phase I SBIR effort a physics-based model for 
geartooth failure was developed.  It illustrates the physics-
based model approach.  This model was chosen because it 
could be validated and calibrated on transitional (run-to-
failure) data from the MDTB (Mechanical Diagnostics 
Test Bed) at the Penn State Applied Research Lab. 

 

Figure 13 - Gear Model-Based Prognostics 
 
This prognostic module is a near real-time, self-calibrating, 
physics-based statistical RUL predictor of gear tooth 
failure due to tooth spalling or low cycle fatigue (LCF) 

cracking. Figure 13 is a block diagram that illustrates the 
functionality of this module.  

This model uses American Gear Manufacturer’s Association 
(AGMA) standards for calculation of tooth root stress as a 
function of transmitted load however sophisticated FE 
modeling of gear tooth contact and cracking could also be 
employed.  The primary failure mode in the Penn State MDTB 
data was tooth root cracking which is an LCF phenomena.  The 
mean number of cycles to root crack initiation is given in Eq. 
(1) which relates the LCF damage to localized true stress range. 
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where: 

NflL = the LCF life for the gear (L)  
σL(true) = localized true plastic stress amplitude at a tooth root  
n = cyclic strain hardening exponent 
c = fatigue ductility exponent  
K = cyclic strength coefficient 
Ef= fatigue ductility coefficient 

This tooth root stress formulation accounts for strain 
hardening and residual compressive stresses by completely 
modeling the material’s hysteresis loop. A Monte Carlo 
simulation was used to generate a distribution on the time to 
crack initiation based on uncertainty in mechanical properties 
and operating conditions. Some examples of this uncertainty 
include the load application factor, which is a function of 
manufacturing quality and gear alignment, and the true root 
notch stress.  Handling such uncertainties is an important real-
world necessity when it comes to mechanical failure. 

The damage accumulated due to low-cycle fatigue at a 
particular time is based on a non-linear Miner's rule.  A damage 
level greater than or equal to 1 would represent an initiated 
root crack. 
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where:   

n = number of cycles experienced 
r1 = non-linear damage exponent 
Nf1 = Number cycles to crack initiation 

To be functional as a calibrated prognostic tool, the physics-
based model must also consider crack propagation so it can 
predict the time to gear tooth failure when a diagnostic tool 
discovers that a crack has initiated.  To address crack 
propagation, a fracture mechanics model was created.  The 
fracture mechanics package used was a 2-D version of Franc-
XT.  The 2-D analysis yielded the change in stress intensity 
factor with respect to crack length.  
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The fundamental differential equation used for the rate of 
crack growth per cycle (Paris Law) is: 

mKiC
N
a

∆=
∂
∂  (11) 

 

Where:    

C, m = fracture related empirical constants 
a = crack length 
N = cycle (Low or High)  

The total probability of failure is the combination of two 
independent events; the initiation of a crack and the 
propagation of that crack to failure.  For independent 
events, the total probability is  

)(*)( pPiPPtotal =  (12) 

where: 
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The module considered about 25 vibration features as a 
function of time.  Specific features that correlate with gear 
tooth cracking were used to generate a “Signal-based 
Prob. of Failure” number is based on a fusion (Dempster-
Shafer) combination of these features.  On a parallel path, 
the raw data is evaluated by the physics-based prognostic 
model, which produces its own Prob. of Failure result 
called “Physics-based Prob. of Failure”.  A second 
Dempster-Shafer knowledge fusion process was used to 
combine the signal-based results with the Physics-based 
results.  An “Actual Mean Time To Failure (MTTF)” is 
generated based on the signal information while an 
“Expected MTTF” is estimated based on the operational 
profile (speed and torque) from the physical model.  
Extrapolating past speed and loading profile statistics over 
some future analysis time period provides a future 
probability of failure. 

An aircraft or shipboard gearbox of sufficient importance 
to warrant a dedicated prognostic module would need to 
be linked to a on-line data acquisition system capable of 
extracting vibration, speed and load data.  The module 
would need to contain real world calibrated, physic-based 
algorithms for accumulating the material damage of a gear 
as a function of operating parameters and algorithms for 
processing the vibration data to extract relevant vibration 
features.  It would also need to access past operating 
condition and extrapolate them into the future and allow 
for a simulated future operating profile.  Lastly, a means 
provide an update to the model using a diagnosis of gear 
wear or with failure rates or inspection results from similar 
gearboxes would be necessary. 

5. CONCLUSIONS 

This paper discussed many concepts associated with 
prognostic module development under the PEDS (Prognostic 
Enhancements to Diagnostic Systems) program.  A review of 
prognostic approaches, implementation issues including 
current OSA developments, and several explicit examples were 
provided.  The variations in data, modeling and reasoning for 
the different prognostic approaches was also discussed and 
illustrated with gas turbine fuel nozzle clogging, compressor 
wash interval prediction, and gearbox prognostic module 
developments.  Data availability, dominant failure or 
degradation mode of interest, modeling and system knowledge, 
accuracies required and criticality of the application are some 
of the variables that determines the choice of prognostic 
approach.  The ability to predict the time to conditional or 
mechanical failure (on a real-time basis) is of enormous benefit 
and health management systems that can effectively implement 
the capabilities presented herein offer a great opportunity in 
terms of reducing the overall Life Cycle Costs (LCC) of 
operating systems as well as decreasing the 
operations/maintenance logistics footprint. 
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