Smart Structures for Vibration Suppression of Optical Surfaces

Abstract
Our objective addresses the mechanics models needed and the suppression techniques offered by smart materials as applied to optical systems mounted on satellites. The objectives of this research effort are to model the dynamics and control of flexible optical systems for both vibration suppression and shape control using smart materials as the actuation component and sensing component. The specific objective was to model a generic system, select suitable actuation, sensing and control elements, develop a system model, and verify the results against a proof-of-concept experiment. The results of this three-year grant can be summarized as follows:

- **Actuator Material Selection**
- **Ground Testing of an Inflated Torus**
- **Finite Element Modeling**
- **Mechanics Modeling**
- **Comparison of Inflated Torus Models and Tests**
- **Control Analysis**
 - Theoretical Designs
 - Experimental Implementations and Verifications

All of the results developed here center around a thin membrane material (Kapton) formed into an inflated torus. A torus forms one of the basic elements of the perceived inflated satellite reflector system. The research results have focused on generic results applied to the specific case of an inflated torus. The inflated torus was chosen because it is a basic element being considered by AFRL.

Subject Terms
- Inflatable satellites
- Smart materials
- Torus
- Vibration testing
- Active control
- Modeling

Distribution/Availability Statement
Approved for public release; distribution unlimited.
Abstract
Satellite and spacecraft technology is changing rapidly in mission and, hence, in size, configuration and geometry. New satellites with highly precise optical surfaces will vibrate while undergoing rigid motion (repositioning) and as the result of onboard disturbances. These changes require new results in modeling, vibration suppression and ground testing. This effort addresses mechanics models, suppression techniques and ground testing abilities offered by smart materials to provide basic research in support of new satellite designs with optical appendages and made from the new class of inflatable components. Specifically, we focus here on an inflated torus as a basic geometric element of many Air Force satellite systems.

Satellites are becoming smaller, lighter and more flexible, while their performance requirements are becoming more stringent. This is especially true for optical systems and surfaces. Here we examine the support structure for optical surfaces formed from inflated materials and perform research in support of using an inflated torus to retain vibration specifications in view of both rigid body and local disturbances. While we consider both active and passive means, we focused on the use of smart materials to provide the required vibration suppression. Smart materials are most compatible with satellite applications, as they are of low power requirements, unobtrusive and can be fully integrated into a system. Recent construction of inflated torus systems at NASA/AFRL and subsequent ground testing has shown that traditional vibration tests are difficult to perform because of the extreme flexibility of the torus and the rigid body motion of suspended tests coupling with the torus’ flexible modes.

The following is a report of our activities over the life of this grant.
2. Summary of Contributions

Our objective addresses the mechanics models needed and the suppression techniques offered by smart materials as applied to optical systems mounted on satellites. The objectives of this research effort are to model the dynamics and control of flexible optical systems for both vibration suppression and shape control using smart materials as the actuation component and the sensing component. The first year was focused on examining the use of smart materials to control inflated concentrators of an optical system. The specific objective was to model a generic system, select suitable actuation, sensing and control elements, develop a system model, and verify the result against a proof-of-concept experiment. These objectives were met as summarized here.

The results of this three-year grant can be summarized in the following list:

- Actuator Material Selection
- Ground Testing of an Inflated Torus
- Finite Element Modeling
- Mechanics Modeling
- Comparison of Inflated Torus Models and Tests
- Control Analysis
 - Theoretical Designs
 - Experimental Implementations and Verifications

All of the results developed here center around a thin membrane material (Kapton) formed into an inflated torus. A torus forms one of the basic elements of the perceived inflated satellite reflector system. The research results have focused on generic results applied to the specific case of an inflated torus. The inflated torus was chosen because it is a basic satellite component being considered by AFRL.

Technical Details

The technical findings of this research program are summarized in this section. The results have been well received in the technical community so that almost all of the results now appear as journal articles (listed), with the most current results given in the recent conference listings. Several additional journal articles are still out for review.

The first year of this project focused on defining a suitable test structure, determining what available actuation and sensing materials could be integrated into an inflated satellite, and use of commercial finite element codes for modeling. Our major accomplishments on support structures are: a) determining that a “membrane” is NOT a suitable model for patch actuation of an inflated torus; b) that we can use PVDF film in a modal test of an inflated torus; and c) that actuation will be required about every 10° around the torus in order to control vibration modes. All three of these findings have significance to AFRL'S efforts to inflatable satellites as these are all problems faced in everyones’ attempts to produce an inflated collector. During the first year, a number of
materials besides PVDF films were considered for actuation, and these included: shape memory films, shape memory fabrics and conventional accelerometers. The only useful material for sensing turned out to be the PVDF films, partially because commercial grades were readily available. During the first year, only samples of Kapton were used, and our attempt at testing focused on truck tires and a child’s swimming pool as experimental test beds for understanding the dynamics of a torus.

During the second year, we were fortunate to have received a 1.5-m diameter, Kapton torus from John Main of the University of Kentucky (see Figure 1). This was indeed a huge improvement over the truck inner tube we had been using, as the wall thickness, torus and ring diameters are key parameters in determining the nature of the dynamics. We constructed a detailed model of a generic torus system as a baseline for researching the smart materials’ applicability to vibration suppression of flexible satellites. In addition, we selected specific smart materials for use in a suppression system and in ground testing. The mechanics modeling to date has focused on dynamic models of an inflated torus with patch piezoceramic-based actuators, PVDF actuators and PVDF sensors. We invented a new PVDF bimorph actuator, obtained a new Macro Fiber Composite™ (MFC) actuator from NASA Langley Research Center, and started our modeling of the torus to include these devices.

![Figure 1. The inflated torus test facility with smart sensors and actuators.](image)

We have successfully ground tested this torus and started the preliminary vibration suppression research. The key finding in the second year was that by using MFC actuators and PVDF sensors, we were able to solve the ground testing problem plaguing all ground tests of large, ultra-flexible inflated structures at both NASA and AFRL.
Vibration ground testing of the AF 10-m torus was not feasible because conventional test hardware (shakers and accelerometers) coupled the flexible modes with the suspension modes of the torus, negating test results. Our approach of using surface-mounted smart materials for both sensing and actuating for vibration testing solved this ground testing problem. Furthermore, because our test article was small (1.5 m instead of 8-10 m), we were able to perform both conventional tests and tests based on smart materials, and show their equivalence in identifying the modal properties of inflated devices.

Year-2 major accomplishments were: a) determining that an MFC patch actuation device can both control and excite an inflated torus; b) the design and implementation of a bimorph PVDF film actuator; c) the comparison of various actuation and sensing schemes using smart materials and structures to traditional vibration actuators and sensors; and d) the successful completion of vibration testing solely using smart materials. All four of these findings have significance to AFRL's efforts to inflatable satellites, as these are all problems faced in any attempt to produce an inflated collector. In addition, we have solved the ground testing issue identified by NASA in its attempt to test an 8-meter inflated torus.

In the last year of support, the major accomplishments were: a) determining that an MFC patch actuation device can both control and excite an inflated torus, producing a viable modal survey of a very flexible inflated object; b) the successful modeling of an inflated shell, showing the need to include geometric nonlinearities in the pre-stressed model; c) the comparison of various actuation and sensing schemes, using smart materials and structures, to traditional vibration actuators and sensors; d) successful modal analysis testing of the torus using multiple sensors and actuators simultaneously; and e) the successful completion of vibration control testing completely using smart materials. This research has successfully developed a multiple-input, multiple-output modal testing technique for large, inflatable structures that extends current laboratory work into real inflatable satellite applications. By using multiple smart sensors and actuators simultaneously, the accurate dynamic analysis and vibration suppression of a true-scale, super structure has been deemed both reliable as well as effective. All of these findings have significance to AFRL's efforts to inflatable satellites as these are all problems faced in everyone's attempts to produce an inflated collector.

Of particular interest during the third year was the comparison and understanding of various FEM results and the modal testing results. An extensive analysis was performed (as part of Akhilesh Jha's PhD dissertation) of the various commercial FEM codes and shell models from the mechanics community. This led to the discovery of the importance of modeling the internal pressure as a follower force and the discovery of the correct geometric nonlinearity for coupling the pre-stress due to the pressure with the dynamic equations of motion. This discovery correctly explains the error made in modeling a freely-suspended torus using AVAQUA, I-DEAS and ANSYS.

In addition, a successful active control experiment was completed on the test structure shown in Figure 1. This test and the subsequent analysis show clearly that smart materials can be used to perform closed loop control and suppress the fundamental modes
of the torus. Studies of hardware location based on controllability concepts tied to the newly-developed dynamic model have also been carried out and are currently under review for publication.

Students Supported:
Graduates: Brett Willliams (MS/PHD), Jake Lewis (MS), Munki Lee (MS), Akhilesh Jha (PHD), Eric Ruggiero (MS/PHD)

Undergraduates: Gil Briand, Matthias Mandin, Marion Sausse, Henry Sodano and Elizabeth Magliula.

Publications Resulting from this Support:

Publications (Journal Articles)

Publications (Proceedings and Conference Papers):

Keynotes, Plenary Addresses and Award Lectures:

Inman, D. J., “Ultra Flexible Spacecraft and Morphing UAVs”, ICAM Workshop on Control and Identification in Honor of Gene Cliff’s Retirement, September 27-28, 2002, Blacksburg, VA.

Other Lectures

(Also presented lectures by the same title at the AFOSR Structural Mechanics review in Columbus Ohio, October, 2000; the review in Washington, DC in October 2001; and again at the review in Roslyn, VA in September, 2002.)