
 1

 
 

SARA: Survivable Autonomic Response Architecture 
 

Scott M. Lewandowski, Daniel J. Van Hook, Gerald C. O’Leary, 
Joshua W. Haines, and Lee M. Rossey 

Lincoln Laboratory, Massachusetts Institute of Technology 
244 Wood Street 

Lexington, Massachusetts 02420-9108 
{scl,dvanhook,oleary,jhaines,lee}@sst.ll.mit.edu 

 
Abstract 

This paper describes the architecture of a system being 
developed to defend information systems using 
coordinated autonomic responses. The system will also be 
used to test the hypothesis that an effective defense 
against fast, distributed information attacks requires 
rapid, coordinated, network-wide responses. The core 
components of the architecture are a run-time 
infrastructure (RTI), a communication language, a system 
model, and defensive components. The RTI incorporates a 
number of innovative design concepts and provides fast, 
reliable, exploitation-resistant communication and 
coordination services to the components defending the 
network, even when challenged by a distributed attack. 
The architecture can be tailored to provide scalable 
information assurance defenses for large, geographically 
distributed, heterogeneous networks with multiple 
domains, each of which uses different technologies and 
requires different policies.  The architecture can form the 
basis of a field-deployable system. An initial version is 
being developed for evaluation in a testbed that will be 
used to test the autonomic coordination and response 
hypothesis. 

1. Introduction 

Information assurance tools are designed to defend 
information systems against malicious adversaries. While 
information assurance has been studied for many years, a 
new class of threats involving high speed and broad scale 
attacks has only recently become the subject of formal 
research. To provide consistently high service quality and 
to ensure mission success, an automated system is 
required to counter these threats since humans are not fast 
enough to react to high speed or broad scale attacks 
effectively. 

The DARPA/ISO Autonomic Information Assurance 
(AIA) program studied these new attacks and possible 
ways to defend against them. Two hypotheses resulting 
from the AIA program are: that fast responses are 
necessary to counter advanced cyber-adversaries; and that 
coordinated responses are more effective than local 
reactive responses. 

This paper describes an architecture for autonomic 
information assurance systems and discusses the 
requirements for the decision-making and communication 
that is required to support autonomic information 
assurance. Since no existing system meets all of the 
communication needs of autonomic information 
assurance systems, the Survivable Autonomic Response 
Architecture (SARA), an architecture that does meet these 
needs, is presented. SARA is able to support the decision-
making functions discussed, although it makes no direct 
contribution to this area. The SARA architecture was 
designed for information assurance applications, but it is 
also well-suited for use in a wide variety of 
communication systems outside of the information 
assurance domain. Although the architecture is designed 
for field-deployment, its immediate role will be to support 
experimentation that confirms or refutes the two 
hypotheses listed above. 

1.1. Autonomic response 

Responses taken automatically by a system without 
real-time human intervention are autonomic responses. 
The term “autonomic” is used by analogy to the 
autonomic nervous system, which automatically controls 
and regulates many motor and physiologic functions 
without conscious input from the host. Instead of relying 
on human input while carrying out the response, 
autonomic information assurance systems rely on human 
knowledge and policy that is programmed into the system 
in advance. A perfect autonomic response system would 

 
This work was sponsored by DARPA under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, 
and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force. 

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
3/23/2001

3. REPORT TYPE AND DATES COVERED
Research Paper 3/23/2001

4. TITLE AND SUBTITLE
SARA: Suvivable Autonomic Response Architecture

5.  FUNDING NUMBERS

6. AUTHOR(S)
Lewandowski, Scott M.; Van Hook, Daniel J.; O'Leary, Gerald
C.; Haines, Joshua W.; Rossey, Lee M.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
    REPORT NUMBER

DARPA

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
      AGENCY REPORT NUMBER

IATAC
3190 Fairview Park Drive
Falls Church, VA  22042

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; Distribution unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

This paper describes the architecture of a system being developed to defend information
systems using coordinated autonomic responses. The system will also be used to test the
hypothesis that an effective defense against fast, distributed information attacks requires
rapid, coordinated, network-wide responses. The core components of the architecture are a
run-time infrastructure (RTI), a communication language, a system model, and defensive
components. The RTI incorporates a number of innovative design concepts and provides fast,
reliable, exploitation-resistant communication and coordination services to the components
defending the network, even when challenged by a distributed attack. The architecture can
be tailored to provide scalable information assurance defenses for large, geographically
distributed, heterogeneous networks with multiple domains, each of which uses different
technologies and requires different policies. The architecture can form the
14. SUBJECT TERMS
IATAC Collection, information systems, information attacks

15. NUMBER OF PAGES

12

16. PRICE CODE

17. SECURITY CLASSIFICATION
     OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
     OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
     OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102



 

 2

be able to make rational decisions consistent with goals 
set by humans. The autonomic system should be capable 
of making decisions that help the system meet the goals 
much more quickly and accurately than a human could. 

A system call wrapper is a simple example of an 
autonomic response system. The wrapper intercepts 
system calls made by an application program, thus 
mediating between the application program and the 
operating system. When an application makes a system 
call, the wrapper assumes control and is able to inspect 
the parameters passed to the function and the current 
operating context. This information can be used to match 
the observed call to one or more pre-programmed 
policies. Policies implicitly specify what action the 
wrapper should take. For example, the wrapper could 
allow the system call to proceed per usual, it could 
modify one or more parameters before executing the 
system call, it could fail the system call by returning an 
error code to the calling application, or it could kill the 
calling application. A simple policy might be to forbid 
applications from accessing files in certain directories. 
When an application tries to access the forbidden 
directories, the wrapper could fail the system call by 
returning an “access denied” error to the application.  

Simple pre-programmed responses to attacks may 
mitigate the direct impact of well-known attacks, but they 
have some undesirable properties. These “knee-jerk” 
responses are predictable and potentially exploitable by 
an adversary. An adversary may be able to circumvent an 
expected response. It is also possible that an adversary 
could induce the system to compromise service quality to 
legitimate users by triggering the response through some 
carefully crafted, but otherwise benign, action that the 
response mechanism interprets as malicious. 

Simple pre-programmed responses are weak because 
they are selected based on local information, which 
provides only a small number of specialized inputs; global 
state is not used by the selection heuristic. Although a 
chosen response may be locally optimal, the dearth of 
information limits the ability of a local response selection 
system to choose the response that most benefits the 
entire system. Many biological autonomic response 
systems also suffer from the inability to account for 
global system awareness. For example, the human 
nervous system responds to many threats based only on 
local information, without regard to global situational 
awareness. An example is the reflexive response of 
pulling away from a hot object. This response happens 
automatically without taking into account, for example, 
other objects that could be struck while pulling away. It is 
also important to incorporate global knowledge when 
choosing local reactions since those local reactions can 
impact other system components. For example, a local 
response selector may decide to block traffic entering and 
leaving its host. If the host is functioning as the DNS 

server for a network, the global impact of the local 
response would cripple the ability of the hosts on the 
network to locate the resources they need to perform the 
mission. 

1.2. Coordinated autonomic response 

Although responses selected based on local 
information are useful in many cases, autonomic 
responses to attacks may be even more effective if they 
were selected based on global knowledge that is not 
available at the local response site. Global information 
could be used to select the responses that best contribute 
to an overall strategy for maintaining service quality. 
Selecting optimal responses requires coordination among 
the components gathering data about and defending an 
information system. Specifically, a decision-making 
entity must be able to gather information about the state 
of a mission and its supporting system to determine which 
countermeasures should be used to counter malicious 
activity. When choosing countermeasures to be deployed, 
a response selection system must account for the manner 
in which resources will be affected and the resulting 
impact on the mission. To effectively select a response, a 
decision-making entity must weigh the costs and benefits 
of all of the possible responses. In addition, special 
attention must be given to the possibility that the event 
being responded to is a misdetection; the ensuing 
repercussions of acting based on inaccurate data must be 
carefully considered. 

Figure 1 Inner and outer loops. 

Response systems that rely only on local information 
are able to act very quickly since they do not need to wait 
for information to be gathered and relayed before making 
a decision. In addition to taking pre-programmed local 
responses, these response components generate 
information describing the threat that was observed and 
what action was taken to counter it. These responses 
constitute a tight “inner-loop” of an overall response 

orchestration

system

defenses

local
responses

local
state

global
state

OUTER
LOOP

INNER
LOOP

coordinated
responses

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 3

system. By coupling detection and response components 
into a single response system, an inner-loop responder can 
implement a response almost immediately after malicious 
activity is observed. Inner-loop response systems are 
unable to leverage global state information to improve the 
quality of response selection. 

The information generated by inner-loop response 
systems can be coupled with system and mission state 
information to facilitate higher-order decision-making and 
response selection. The responses resulting from these 
global decisions are considered “outer-loop” responses. It 
takes longer to choose a response in the outer-loop since 
the decision-making engine must communicate with 
external components to gather the required inputs. 
However, the advantage of outer-loop response selection 
systems is that they can make more effective response 
selections by using data fused from multiple sources. 
Since outer-loop response systems have a global system 
view, they are able to pursue a system-wide defense 
strategy.  

Figure 1 shows the relationship between inner and 
outer-loop responses. Global state is used by an 
orchestrator to effect coordinated responses, whereas 
local state is used to directly effect local responses at the 
behest of simple coordinators. 

It is believed that the coordinated response enabled by 
decision-making in an outer-loop can make better use of 
currently available response mechanisms, especially when 
used to defend against determined adversaries or when 
subjected to diverse attacks. By itself, coordinated 
response can almost certainly contribute to the success of 
autonomic defense systems; the availability of greater 
contextual awareness guarantees that the resulting 
responses will be as good as, if not better than, decisions 
based on local information. However, coordinated 
response is not without cost and risk. It must be 
determined if the benefits of providing coordination 
outweigh the cost of gathering and processing the data 
required to support the coordination functions. In 
addition, coordinated response systems must resist 
exploitation by adversaries; no comprehensive techniques 
for doing this are currently available.  

Some prototype systems for providing coordinated 
response show promise in limited test cases, but they do 
not scale well enough for actual deployment. Many 
systems rely on enumerating all possible system state and 
attacker action combinations and then selecting a 
response based on the state/action pairs. Even if it were 
feasible to enumerate all possible system states for every 
system to be defended, the resulting system would be a 
brittle hierarchy of “if-then-else” statements that would be 
unable to accommodate even slight changes to the 
defended system. Other prototype systems rely on 
machine learning. A primary goal for these systems is to 
be flexible enough to defend information systems that 

change over time. Systems based on machine learning are 
not sufficient stand-alone solutions in the information 
assurance domain, although they may be an important 
component of an overall coordination solution. Attacks 
typically debilitate a system with such speed and vigor 
that learning systems do not have the time to adapt to the 
new threat. If the system is unable to adapt and learn, 
future occurrences of the same attack will be as successful 
as the original instance. Post-mortem learning can 
improve the response to future occurrences of an attack, 
but it is not an adequate solution since an adversary was 
allowed to accomplish his objectives. Of course, learning 
can improve overall system defense if hosts are able to 
protect themselves using knowledge acquired by 
observing other hosts that are under attack; it is 
impossible to provide total system defense, however, 
based only on learning. Another reason that learning is 
not ideally suited for information assurance tasks is that 
learning systems can be exploited by “training” them with 
increasingly malicious activity. As the activity becomes 
more malicious, the learning system continues to accept 
the behavior as benign since it previously observed very 
similar behavior. 

Despite the shortcomings of state/action and learning 
systems, they make valuable contributions to the overall 
defense of a system by “raising the bar” for adversaries. 
They increase attacker workload and may deter some 
adversaries completely by shifting the risk/reward curve 
enough so that the attacker pursues other targets. Of 
course, the benefits of the approaches must be balanced 
against their weaknesses, such as the possibility that they 
could unnecessarily deny service to legitimate users. 

Since none of the existing approaches to coordination 
are adequate long-term solutions to the problem, new 
techniques must be developed. Because of the inherent 
problems with learning approaches, it appears that a 
viable solution to the coordination problem must be based 
on system state and observed adversary behavior. The 
challenge is to build a system that abstracts nested “if-
then-else” logic into a model that scales and adapts to 
varied systems. Since exact coordination requirements are 
not known, the SARA architecture is designed to support 
all forms of coordination.  

1.3. A scalable architecture for secure, robust, 
high-performance communication 

Building a system of coordinated components is a 
challenging task that requires a unifying architecture to 
provide a common framework in which components can 
operate. The SARA program is developing an architecture 
that meets these coordination needs. One of the most 
important functions of an architecture for coordinated 
response is providing communication between 
cooperating components. Communication allows 

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 4

components to be integrated with one another to form a 
cohesive defense system.  

Information assurance systems derive efficacy from 
the ability of their components to communicate with each 
other or with external entities. For example, traditional 
network and host-based intrusion detection systems send 
data gathered at multiple network monitoring stations or 
hosts to a central administrator’s console to facilitate data 
aggregation and analysis; without such reporting, the 
benefits of the intrusion detection system would be 
greatly diminished. Alternatively, directives may need to 
flow from an administrator’s workstation to a firewall in 
order to change the filtering rules. 

Coordinated autonomic response is even more reliant 
on communication than typical information assurance 
applications. Most information assurance components will 
continue to provide fairly good protection to a system 
even if they are temporarily unable to communicate. In 
contrast, a coordination engine must have inputs to make 
an informed response selection, and it must ensure that 
another component in the system carries out its selected 
response. Without communication, defense is limited to 
local decisions and reactions based on limited knowledge 
since global decisions cannot be made and coordinated 
responses cannot be taken. 

This paper discusses the SARA architecture, which 
meets the communication needs of autonomic response 
coordination systems. The SARA architecture also 
provides a framework for designing and understanding a 
system protected by coordinated components. The 
architectural requirements for information assurance 
systems (with a focus on autonomic information 
assurance systems) are discussed, and these motivate the 
presentation of the SARA architecture. Substantial 
analysis indicates that the SARA architecture will be 
successful in meetings its goals, but it has not yet been 
instantiated. A more extensive discussion and analysis of 
the issues surrounding the development of an autonomic 
information assurance architecture are being compiled 
into a comprehensive whitepaper. 

2. Architectural requirements 

There are many systems available today that, prima 
facie, are able to support communication and coordination 
in information assurance systems. However, information 
assurance systems, especially those targeting autonomic 
response, have demanding requirements that are not fully 
addressed by the systems available today. There are many 
systems that address a subset of these issues very well, 
but none provides a solution that fully addresses them all 
simultaneously. Furthermore, existing systems do not 
actively protect themselves from exploitation by an 
adversary. 

The following list is a summary of the most important 
requirements for an effective architecture that supports 
autonomic response. The SARA architecture should be: 
• Fast and efficient. Since reacting to fast attacks (such 

as a rapidly propagating virus) is a primary goal of 
autonomic response systems, all system components 
and communication should be optimized to reduce the 
latency between the detection of a malicious event and 
a coordinated response to it. Since attacks may be 
automated, the system must be able to respond in 
“computer time”. In addition, the use of computer and 
network resources must be minimized so the mission 
is not substantially hindered by the defense system. 

• Adaptable and extensible. The architecture must 
accommodate networks that change continuously. It 
must be possible to extend the architecture to new 
problem areas and to introduce new components 
without disrupting the existing structure. 

• Introspective. The architecture must be able to satisfy 
the information needs of the defensive components. 
The architecture must provide a system model that 
describes the physical structure of the network, the 
processes that are running on the network, and the 
mission that is being performed. Current and historical 
information about the entities in the system model 
must be available to defensive components in a timely 
manner to facilitate the analysis of attacks. 

• Secure, fault-tolerant, and non-exploitable. The 
system must meet the security policies of the network 
and mission and it must accommodate different 
security infrastructures. The system must remain 
robust when faults occur; this applies to random faults 
caused by the failure of system elements and to 
malicious faults caused by a deliberate attack on the 
system. Communication must be reliable so that 
defensive components remain fully functional even in 
the face of an attack on the infrastructure. It must not 
be possible for the attacker to exploit defensive 
components to effect an undesirable action. For 
example, the attacker must not be able to trigger a 
response that causes the system to unnecessarily deny 
service to legitimate users.  

• Scalable. The architecture must be able to meet the 
needs of a network consisting of thousands of 
machines distributed over a wide geographic area at a 
reasonable cost. It must also be able to scale down to a 
single sparsely provisioned host. 
Although systems that address these core SARA 

requirements are available, no single system addresses all 
of these requirements adequately. Most systems are not 
intrusion-tolerant; those that are do not offer the low-
latency data exchange required to coordinate autonomic 
response. As a result, a SARA Run–Time Infrastructure 
(RTI) will need to be developed. 

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 5

3. SARA architecture 

The SARA architecture consists of a set of components 
that provide important capabilities to a system and a set of 
interfaces to those components. The relationships between 
these interfaces and components are shown in Figure 2. 

 

Figure 2 SARA components and interfaces. 

The host platform provides standard services to the 
core of the architecture, the run-time infrastructure (RTI). 
The RTI provides basic services, such as communication, 
to defensive components (SDAR components) via the 
RTI services interface. SDAR components communicate 
with one another using a communication language that is 
able to express ideas about the defended system. 
Information about the defended system is captured in the 
system model. Managers are able to control the system 
through the management interface. 

3.1. Components 

3.1.1. “SDAR” components 

SARA relies on cooperating components to provide 
the information required to coordinate and effect 
responses. The functions of defensive components can be 
classified as follows; note that a single software 
component may assume more than one of these roles: 
• Sensors. Sensors gather data about the system being 

defended and make it available to other components. 
Sensor data consists of reports of events and state. 
Events correspond to things that have occurred and 
state corresponds to the status of some aspect of the 
system. Reports from sensors are considered 
“unbiased” since they do not contain judgment as to 
whether the event or state suggests a threat to the 
system. 

• Detectors. Detectors determine if sensor output (event 
and state data) indicates a threat to the defended 
system by analyzing the sensor output in the context 
of the system being defended. In other words, 
detectors turn raw sensor data into information that 

can be used by decision-making engines. In effect, 
detectors identify alerts and events from sensors that 
suggest suspicious or malicious activity and describe 
the nature of potential threats. 

• Arbitrators. Arbitrators choose appropriate responses 
to be taken to maintain the service quality expected of 
a defended system. Simple arbitrators make pre-
programmed, “knee-jerk” responses, but more 
complex arbitrators use disparate inputs to make 
reasoned decisions based on an overall system defense 
strategy. These inputs can include information 
provided by sensors and detectors as well as system 
state. Depending on the sophistication of the 
arbitrator, it may coordinate multiple components to 
achieve a common goal using explicit directives, or it 
may orchestrate components by providing a high-level 
strategy for system defense that components are 
expected to contribute to. 

• Responders. Responders are used to effect changes in 
the system. They act as the actuators in defended 
systems by taking the actions suggested by arbitrators. 
New components developed for use in the SARA 

architecture will natively participate in a SARA system. 
Legacy components can participate in a SARA system 
through the use of adapters that make non–native 
components function like SDAR components from the 
point of view of the SARA architecture and other SDAR 
components. 

Since the SARA architecture does not restrict the 
relationships that SDAR components can have with each 
other, SDAR components can be arranged to provide the 
strongest possible defense. Of particular interest is how to 
organize the arbitrators. The most straightforward 
approach is for arbitrators to operate independently. 
Abstraction and scalability could be achieved by using 
hierarchies of arbitrators. Avoiding centralized 
coordination by equipping each host with its own 
arbitrator would provide a high degree of fault tolerance; 
each arbitrator could make the same decisions since they 
could perform the same computations on global data. 

3.1.2. Run-time infrastructure 

The Run–Time Infrastructure (RTI) provides 
communication and coordination services to SDAR 
components. As shown in Figure 3, the RTI wraps various 
standard services such as IP, PKI, encryption, 
authentication, persistent storage access, and time 
synchronization in a middleware layer. The RTI provides 
a high–level service interface tailored to information 
assurance. This interface defines the functionality of the 
RTI. The RTI shields its clients from platform 
differences, allows clients to leverage common services, 
and compensates for and/or exploits the characteristics of 
standard services. All inter–SDAR communication should 

System Model

Manager

SDAR

Run Time Infrastructure

Platform (operating system, protocols, etc.)

RTI Services
Interface

Standard Services
Interface

Communication
Language

Management
Interface

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 6

occur via the RTI, although some legacy software may 
need to employ private communication channels. 

Figure 3 Run-time infrastructure. 

The SARA effort will produce an RTI that addresses 
the requirements presented in section 2 and that can serve 
as a platform for testing the autonomic response concept. 
There are many possible RTI implementations that can 
meet these requirements. Each possible approach to 
building the necessary infrastructure favors some 
requirements over the others, requiring tradeoffs to be 
made. No single RTI will be suited for all possible SARA 
deployments since network technology and the desired 
tradeoffs may differ from one deployment to another. The 
initial SARA RTI targets wired networks and provides 
low-latency data exchange that is secure, intrusion and 
fault tolerant, and scalable. To meet these needs, the 
SARA RTI will use several different design approaches, 
some of which are discussed here. 
• Distributed caching. Pertinent data must be cached 

local to a component since components require access 
to information even if they become isolated from their 
peers. Caching data locally also improves information 
retrieval latencies since most of the information 
required by components can be retrieved without 
incurring the overhead of network communication. 

• Widely-disseminated data. Components that get 
disconnected from the rest of the SARA system can 
continue to operate effectively if they have the data 
that they need in their data cache. Therefore, the 
probability of a component remaining effective after 
being disconnected from a network increases as the 
data cache contains more information. Ideally, 
components should have access to all of the 
information exchanged in the system. This allows 
them to maintain global system awareness and to 
provide missing information to hosts that may have 
missed a previous information exchange. Multicast is 
an efficient way to distribute all exchanged 
information to all components; it allows clients to 
share the information they transmit with all of the 
components in a system with minimal network 
utilization. 

• Encrypted communication. To handle the security 
needs of the system, all information communicated 
between hosts will be encrypted and authenticated. 
This provides confidentiality and ensures data 

integrity. The availability of an infrastructure that 
allows all SARA components to agree on and share a 
common symmetric key is assumed. 

• Fixed-size periodic sends. To avoid traffic analysis 
attacks and to help the RTI manage network 
utilization, a fixed amount of data is sent by every 
component at a regular interval; all inter-component 
communication occurs through these periodic data 
exchanges. Since information is sent to all 
components, an adversary is not able to determine the 
nature of the data that each component is producing or 
consuming or which components are cooperating with 
one another. Communication latency and network 
resource utilization can be traded off at run-time by 
changing the amount of data sent and the frequency at 
which it is sent. 

• Peer-to-peer. Communication provided by the SARA 
architecture occurs in a completely distributed 
manner. Since components communicate directly with 
their peers, there are no “brokers” or “exploders” to 
serve as failure points. The communication subsystem 
has been designed so that an arbitrary number of 
architecture or defense components can fail and the 
remaining components will continue to operate to 
provide the best defense possible. 

• Multi-faceted reliability. SARA components 
communicate using UDP. It would be convenient to 
use TCP to provide reliable communication between 
components. However, TCP is more vulnerable to 
denial of service attacks than connectionless 
protocols, such as UDP. In addition, TCP cannot be 
used with multicast, which contributes to the overall 
efficiency of SARA communication. Since UDP is not 
a reliable protocol, reliability must be provided by 
other means. One of the techniques used by the SARA 
architecture is to selectively resend information. On 
each send cycle, components select data to send to the 
other components. Some of the data sent repeats 
previously transmitted data. If another component 
missed that data when it was originally sent, it will 
likely receive it on a subsequent transmission. If a 
component detects that it has missed some data, it can 
request that other components retransmit that data by 
issuing a negative acknowledgment for it. The 
retransmission of data by arbitrary components is 
possible because of the distributed caching 
mechanism. To mitigate the effects of dropped or 
corrupted UDP packets, which could impact an entire 
information stream, a forward error correction (FEC) 
protocol will be used. This scheme ensures that even if 
several packets are lost, the data contained in them can 
be recreated. This prevents a component from needing 
to wait for an entire information stream to be 
retransmitted. 

SDAR SDARSDAR

Run Time Infrastructure

• • •

COTS/Standard Services (e.g., IP, PKI, authentication,
encryption, database access, time synchronization)

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 7

• Persistent storage. Although the distributed caching 
scheme provides access to most of the previously 
distributed data, historical data may not be in the data 
caches; however, historical data might be needed by 
some SDAR components. To meet this need, a 
persistent storage mechanism makes all information 
exchanged in a SARA system available at later points 
in time. 

• Optimized local communication. Low-latency 
communication between components on a single host 
broadens the responses possible within a high-
performance inner-loop. Fast local communication 
will be achieved by channeling local communication 
through a high-performance inter-process 
communication channel. 
There are many different RTIs that can be constructed 

using the concepts in this list. The RTI can be customized 
based on the characteristics and the requirements of the 
defended system while providing the same interface to the 
client components. 

3.1.3. System model 

The SARA architecture provides a common system 
model to facilitate effective decision-making. The system 
model captures the context of a defended system and 
describes characteristics of the defended system, such as 
the hardware and software used to support the mission. 
An important part of the system model is the relationships 
between components. Relationships represented in the 
system model might include the network topology, the 
application programs that are running on the computers in 
the system, or the current state of the mission. 
Coordination components can leverage the information in 
the system model to increase the quality of their 
decisions. Providing an effective and coherent defense 
requires that all of the entities in a system share a 
common system model; if they do not, coordinators will 
not be able to interpret the state of the system correctly. If 
different system models are used, the information 
exchanged between components will be interpreted 
differently and could result in incompatible actions taking 
place. 

Figure 4 depicts a notional system model. The figure 
shows three entities (represented as planes) linked by the 
relationships implied by the arrows. The bottom plane 
represents the physical hardware in a defended system, 
such as hosts, networks, and disks. The relationships in 
the hardware plane represent concepts such as 
containment, dependence, and connectedness. The middle 
plane contains the cyber-elements that compose a system. 
Examples of cyber-elements include processes, files, 
servers, and SARA components. Relationships between 
cyber-elements include data flow, containment, trust, and 
dependence. The top plane represents a mission and 

contains the applications being defended. The mission is 
described in terms of plans, tasks, goals, and related 
concepts. 

 
 

Figure 4 Notional system model. 

A system model is composed of a system model 
template and a system model instance. The system model 
template consists of class definitions for the entities and 
relationships captured by the model; it is a superset of all 
of the systems SARA is capable of defending. The system 
model instance uses instantiations of the classes defined 
by the system model template to represent the actual 
system being defended. 

The system model is an important but complex 
component of the architecture. Efforts such as CIM [2], 
CCS [1], IDMEF [4], and CISL [5] are applicable to this 
problem, and the work done by these projects will be 
leveraged when designing the system model used by 
SARA systems. 

3.1.4. Managers 

Managers control and monitor SARA systems. They 
provide functions such as status monitoring, status 
reporting, configuration, operator displays, debugging 
services, initialization, finalization, and performance 
tuning. These functions help human operators monitor, 
configure, and make suggestions to a SARA system. 

A “host manager” is a good example of a SARA 
management component. A host manager will execute on 
each host to coordinate component startup and shutdown, 
status reporting, and related functions. It will also ensure 
the continued availability of defensive components by 
maintaining their integrity and restarting failed 
components.  

3.2. Interfaces 

The SARA architecture provides four interfaces that 
can be used to interact with the SARA infrastructure, 
SDAR components, and the defended system. The 
communication language and RTI services interface are 

hosts, networks,
firewalls, CPUs,
memory, displays,
etc.

processes, files,
databases, servers,
etc.

MissionPlane
tasks, plans,
goals, etc.

trust

ordering

authority

flow

composition

connectivity

etc.

Relationships Entities

HardwarePlane

CyberPlane

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 8

used by SDAR component developers to interface with 
other SDAR components and the SARA system. The RTI 
leverages functionality provided by the operating system 
and other COTS/GOTS systems through a standard 
services interface. SARA system administrators are able 
to monitor and control SARA systems through a 
management interface. 

3.2.1. Communication language 

SARA requires a communication language that defines 
the information that SDAR components can communicate 
with one another. Although the communication language 
does not map directly to the system model, it does provide 
facilities that allow SDAR components to communicate 
about many system model objects. It must also allow 
SDAR components to communicate information that is 
not captured in the system model, such as alerts. 

Although the SARA architecture is flexible enough to 
accommodate a wide variety of languages, the selected 
language will be based on a class hierarchy. Representing 
the language as a class hierarchy allows information to be 
communicated as objects and helps organize information 
so that consumers can use it more efficiently. The use of a 
hierarchy also promotes extensibility, since new message 
subtypes can be added without modifying existing SDAR 
components. The top levels of a possible inheritance 
hierarchy for a communication language are shown in 

Figure 5. 

Figure 5 Communication language class hierarchy. 

The need to balance low data exchange latency with 
low resource utilization suggests that partitioning 
information to be communicated into two categories may 
be useful. Indeed, the SARA architecture uses two distinct 
information types: messages and queryables. The primary 
distinction between messages and queryables is how data 
is communicated among components. Messages are sent 
at the discretion of producers: they are pushed. 
Queryables, in contrast, are sent at the request of a 
consumer: they are pulled. Messages provide low data 
exchange latency since information is sent to consumers 
as soon as it is available. Information expressed as a 
queryable must be requested by a consumer. Since 
components request queryable information only when it is 
needed, communication and processing resources are not 
consumed if the data is not required by any components. 

Since consumers do not know when queryable 
information will become available, they must poll for it; 
polling introduces some latency into the information 
exchange process. Because of this latency, queryables are 
not generally suited for communicating information that 
directly invokes a response. Rather, queryables should 
typically be used to communicate information that assists 
in decision making, such as system state. 

There is a great deal of information that needs to be 
conveyed using the language. Components must be able 
to communicate about events that they have observed and 
the state of the system. In particular, they must be able to 
rapidly communicate alerts containing information about 
suspicious activity that has been detected in the defended 
system. Decision-making components must be able to 
issue directives that cause response components to take 
some action. Finally, components must be able to 
acknowledge that they have taken an action in response to 
a directive. There may be information that components 
need to communicate in addition to the items mentioned 
here. The architecture does not constrain the information 
that can be conveyed by the language. 

The characteristics of the language used by SDAR 
components influence the amount and type of knowledge 
that must be distributed in a SARA system. For example, 
the language could communicate very concrete directives 
that request certain components to take specific actions, 
or the directives could be abstract requests that 
components convert into concrete actions that they can 
carry out. The concrete directive approach requires the 
coordinator to understand the capabilities of the SDAR 
components in the system and it tightly couples 
coordinators and the available responders. The abstract 
directive approach does not require the coordinator to 
have very much knowledge, but it requires response 
components to have situational awareness of the system 
so that they can determine how to effect the necessary 
changes without adversely impacting other components. 
The architecture is capable of supporting both types of 
directives equally well. 

Some portions of the language space have been 
addressed by programs such as IDMEF [4], CISL [5], and 
CCS [1]. SARA will use the output of those efforts as the 
basis of its communication language. These language 
efforts are incomplete, however, and do not address some 
of the information that will need to be communicated by 
SDAR components. Notably, the SARA project will need 
to focus on how to express responses in the context of 
existing languages. 

3.2.2. RTI services interface (API) 

The SARA API abstracts the RTI services into a 
collection of classes that give the component developer 
the power and flexibility to develop robust and powerful 

Base

Messages Queryables

DirectivesActionsEvents Alerts

•••

State

•••••• ••••••••••••

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 9

SDAR components independent of the supporting 
infrastructure. The API provides very general support for 
communication between SDAR components and basic 
services that are relevant to all SDAR components. While 
many API services are provided explicitly through 
methods in the client base class, other important 
functionality is provided implicitly.  

The API decouples the interface that component 
developers use to build SDAR components from the 
implementation of that functionality. This allows 
components to remain static even as the SARA system 
evolves. The API constrains clients to defined behaviors 
and semantics, which helps the system meet the 
requirements presented in section 2. 

The services explicitly provided by the API fall into 
the following categories: 
• Creating and destroying SDAR components. Since 

the SARA API is provided as a collection of classes, 
objects corresponding to each SDAR component must 
be created, and then later destroyed. This 
creation/destruction process affects only the 
component’s interface to the RTI; the component 
itself is not affected. 

• Joining and leaving SARA systems. An SDAR 
component must authenticate to and join a SARA 
system before it can communicate with other SDAR 
components. Once a component joins a system, it 
agrees to participate in the system’s defense. 

• Messaging. The API allows components to push 
messages to other components. These messages are 
communicated as objects since objects are efficient 
and easy to deal with. Messages are not addressed to 
specific components. Instead, a publish and subscribe 
system is used. In a publish and subscribe system, 
messages are implicitly addressed; the sender does not 
need to know the recipients of a message since the 
RTI routes messages to the clients that previously 
requested them. A publish and subscribe scheme 
decouples information producers and consumers and 
reduces the chance of real or artificial dependencies 
being created since there is no mechanism that clients 
can use to communicate with specific components. 
This increases system survivability since the failure of 
a single component will not directly impact other 
components in the system. Decoupling components 
also creates opportunities for components to 
collaborate with other components to achieve common 
goals. A publish and subscribe scheme is simple for 
clients to use and amenable to very efficient 
implementation. Clients are able to express the data 
that they will send and receive using a message 
template system that allows clients to precisely 
specify the messages that they are interested in. When 
a component receives a message that it has subscribed 

to, the RTI signals the component to handle the 
message. 

• Querying. Components are able to pull system state 
information from other components that have agreed 
to provide the required information; this is 
accomplished by issuing a query. Queries consist of 
an object to be filled in with information and an 
identifier that denotes the system object that the 
information is needed about. Once a query has been 
created, the information object can be updated at the 
request of the client. A default “root” object is 
provided to allow components to completely discover 
the entities in the system it is participating in without 
any prior knowledge of the system. Queries are 
answered by components that previously stated that 
they are able to do so.  

• Client/RTI communication. To ensure that SDAR 
components are serviced in an efficient manner, 
information must flow between components and the 
RTI. The RTI may ask clients to adjust their operating 
parameters, or a component may report its current 
state or intent to the RTI so that the RTI can plan to 
accommodate future client actions. The API facilitates 
this information exchange in three ways: clients can 
explicitly pass information to the RTI; the RTI can 
make explicit requests of clients; and the RTI can 
observe client behavior through the client’s use of the 
API.  
The capabilities provided by the API will be adequate 

for most SDAR components, but some components will 
inevitably have specialized needs that are not met by the 
API. Higher–level functionality can be composed from 
the building blocks provided by the RTI. In addition, most 
API functionality can be modified by overriding the 
default implementation of API calls or extending the 
default interface provided by the API. 

3.2.3. Standard services interface 

The standard services interface provides the RTI with 
access to standard services. Examples of standard services 
include services provided by modern operating systems 
(e.g., filesystems, devices, communication, threading, 
IPC), security (e.g., PKI, encryption, authentication), and 
COTS/open source libraries. The specific services relied 
on by any given implementation of the RTI will vary, and 
are therefore not detailed as part of the architecture. 

3.2.4. Management interface 

A management interface supporting the required 
monitoring and control functions will be provided. These 
functions help human operators monitor, configure, and 
make suggestions to a SARA system. Some of these 
functions include monitoring and reporting system or 

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 10

component status, allowing an operator to configure a 
system or view its current configuration, providing 
debugging information to component developers, and 
gathering performance data and allowing performance-
related parameters to be tuned. 

The specific requirements for this interface will be 
determined through experimentation and further analysis 
and may be tailored to specific SARA system 
deployments. 

3.3. SARA component organization 

To this point, the SARA system has been described as 
a collection of individual components and interfaces; 
however, it is advantageous to organize the components 
of the system into a hierarchy. The SDAR components at 
any given level in the hierarchy are said to be a member 
of the same cell. There are three advantages to arranging 
components into hierarchical cells: it allows SARA to be 
scaled to very large networks; it provides convenient 
boundaries at which the information flow can be managed 
so that only relevant information is transmitted to SDAR 
components; and it provides a framework for resolving 
inter-domain incompatibilities in technology, policy, or 
requirements. 

Figure 6 A sample cell. 

The cell is the fundamental unit of abstraction used to 
organize SDAR components. As shown in Figure 6, a cell 
may contain SDAR components, persistent storage, a cell 
boundary controller, and other cells. The Level 0 cell, 
which is usually the lowest-level cell, includes the SDAR 
components associated with a single host computer. Level 
0 cells are grouped into Level 1 cells, Level 1 cells are 
grouped into Level 2 cells, and so on; there is no 
theoretical limit to how deeply cells can be nested, nor is 
there any definition of what cell levels other than Level 0 
correspond to. If the RTI described in this document is 
used, a cell would also be a multicast group, an 

encryption domain, and a common security policy 
domain. Cells at the same level do not overlap; 
components must be a member of exactly one cell. Cell 
boundaries do not have to correspond to any physical 
boundaries, such as subnets, but it is often useful to 
organize cells along such boundaries.  

The cell boundary controller (CBC), which is part of 
the RTI, is a cell member that acts as an intermediary for 
all communication between the components of the CBC’s 
cell and the next higher-level cell. Since the CBC 
logically sits at the boundary between two cells, it is 
ideally situated to filter, route, aggregate, translate, and 
proxy information. As an example of how a CBC 
mediates between cells, consider a Level 0 cell 
(corresponding to the SDAR components associated with 
a host) that is a member of a Level 1 cell. In the Level 0 
cell, all communication between SDAR components is 
through shared memory without encryption since a host is 
assumed to be secure and reliable. However, messages 
that should be passed to the Level 1 cell must be 
forwarded by the CBC. The CBC will ensure that the 
information is communicated using a secure and reliable 
transmission protocol. Similarly, the CBC for the Level 1 
cell relays information, as needed, to the Level 2 cell. 
This will generally involve a change of multicast group 
and encryption keys. 

To promote scalability, the amount of information 
flowing into higher-level cells must be moderated. This 
can be done by aggregating information and restricting 
the information that passes through the CBC to the 
information that contributes to defense and decision 
making in the higher-level cell. This information flow is 
consistent with arranging the SARA coordinators in this 
same hierarchy, thus having the control flow follow the 
main channels of the communication flow. 

The SARA architecture can be adapted to 
heterogeneous networks with different domains. For 
example, one part of a defended system may employ 
different technologies (e.g., wired or wireless) or impose 
different requirements (e.g., mission, security policy, 
administrative control) than other parts. The cell structure 
provides a convenient way to deal with the requirements 
of the different domains in a defended system. The 
deployment and organization of the SDAR components in 
any cell may differ among domains of the defended 
system, but each cell provides a standard interface to the 
cells above and below it, even if those cells differ in 
internal organization. By aligning cell boundaries with 
administrative and policy boundaries, the system designer 
can devise and implement the appropriate algorithms for 
the cells of each domain and customize the 
communication between domains. 

Certain components, such as persistent storage 
controllers, may serve many cells. It is most convenient to 
locate these components in a cell that spans the entire 

boundary
controllercell level n+1

persistent
store

sensor

cell level n

detector

responder

arbitrator

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 11

domain of the component. However, there are other ways 
of handling these special cases as well. 

4. Proof of concept experiments 

With a SARA architecture researched and designed, 
the SARA project must focus on demonstrating that the 
architectural principles in this document are sound and 
can be adapted and extended so that field–deployable 
SARA systems can be built. In 2001, the SARA 
architecture will be partially instantiated and used in a 
series of “proof of concept” experiments to demonstrate 
the validity of the SARA approach and to serve as the 
basis for further autonomic defense research. To 
demonstrate the capabilities of the SARA architecture and 
the autonomic defense approach, the experiments will 
require an RTI, a language, SDAR components, and 
scenarios. The core pieces of the architecture that need to 
be tested in the POC experiments are: 
• Intra–host communication based on an efficient IPC 

mechanism that communicates information using 
objects. 

• Inter–host communication that communicates data 
among hosts as objects and is based on UDP multicast 
and a reliability mechanism that uses periodic 
transmission, forward error correction, and selective 
retransmission. 

• Partitioning that organizes SARA system 
components into cells to facilitate scaling, resolution 
of inter-domain issues, and overlaying SARA on a 
system to be defended. 

• Messaging that uses a publish and subscribe system to 
distribute data to cell members and that can selectively 
forward messages across cells. 

• Querying that distributes queries to all components in 
a cell and routes an appropriate response back to the 
querying component. 

• Security that provides protection against traffic 
analysis and can integrate with an external COTS or 
GOTS system to provide confidentiality and 
authentication. 

• Persistent storage that facilitates access to historical 
SARA data. 
A set of well-defined experiments that show the true 

value of coordinated autonomic response in a realistic 
environment will test and demonstrate the SARA concept. 
Some of these experiments must be based on scenarios 
that demonstrate the ability of a coordinated system 
relying on the SARA architecture to provide a stronger 
defense than is possible without relying on global 
coordination. In addition to testing the SARA architecture 
using scenarios, live red-team experiments should be 
conducted to verify the functionality of the RTI. 

5. Summary and next steps 

Coordinating autonomic detection and response 
systems is a promising approach for improving the quality 
of defense provided to information systems. An 
architecture is one of the two important elements required 
to build a system that provides coordination. The SARA 
architecture meets the communication requirements of 
systems that facilitate coordination among separate 
components working to defend a single information 
system; it can also be used to facilitate robust 
communication for systems outside of the information 
assurance domain. The SARA architecture defines the 
roles of components that can sense, detect, arbitrate, and 
respond to suspicious activity and it provides a run-time 
infrastructure that enables these SDAR components to 
interoperate. A communication language and system 
model help components communicate with one another 
and reason about the current state of the system. A simple 
API allows components to harness the functionality 
provided by the RTI. Components are organized into cells 
to meet administrative and functional requirements and to 
allow SARA to be scaled to defend very large systems. 
The SARA concept and architecture will be tested in a 
series of “proof of concept” experiments scheduled to 
occur in 2001. These experiments will use an RTI 
implementation based on the principles outlined in this 
document. The results of the experiments will shape 
future versions of the RTI, but the API that clients use to 
participate in the system will remain constant. 

Future architecture research will be based on the 
outcome of the proof of concept experiments and will 
likely focus on increasing the ability of the architecture to 
adapt itself to the system it is defending. Other important 
areas of research include designing systems to facilitate 
robust communication in resource constrained 
environments, developing a standard language that SDAR 
components can use to communicate, defining the 
contents of an effective system model, developing 
response techniques suited for autonomic defense, and 
defining a model for scalable and adaptive response 
selection and coordination. 

6. Acknowledgments 

This work has been shaped by many of the ideas and 
concepts developed by the SARA Working Group. The 
following organizations contributed to this work through 
their involvement in the SARA Working Group: BBN 
Technologies, DARPA, Integrated Management Services, 
Inc., Sandia National Laboratory, SPAWAR, Syntek, and 
Telcordia Technologies. 

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE



 

 12

7. References 

[1] Information on CCS may be found at the 3GS web site at 
https://archive.ia.isotic.org/. 
[2] The CIM specification and related documents and tutorials 
may be found at the Distributed Management Task Force web 
site http://www.dmtf.org/. 
[3] Cyber Panel Mission Model Working Group, “Strawman 
Mission Model Version 1.0,” 4 December 2000. 
[4] Internet drafts and related information on IDMEF may be 
found at IETF web site at 
http://www.ietf.org/html.charters/idwg-charter.html. 
[5] R. Feiertag, C. Kahn, P. Porras, D. Schnackenberg, S. 
Staniford–Chen, and B. Tung, “A Common Intrusion 
Specification Language (CISL),” 11 June 1999. 

ISBN 0-7695-1212-7/01 $10.00 (C) 2001 IEEE


	DISCEX 2001
	Return to Main Menu


