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1. Executive Summary 
The 3-year Shared HCI Environment program explored collaboration between humans 
and software agents operating in information-intensive, dynamic command and control 
applications. The project was divided into three separate phases, Baseline, Intermediate, 
and Final. Each phase was designed to answer specific research questions and to build 
upon the results of previous phases. Each of the three phases consisted of five sequential 
subphases: Information Gathering, Scenario Analysis, Architecture Definition, Prototype 
Development, and User-Focused Evaluation.  

Several application domains, (including cardiac care, shipboard fire fighting, and oil 
refinery operations), were considered before deciding upon combat search and rescue 
(CSAR). Since the collaboration technology needs were similar in each of the candidate 
domains, CSAR domain was selected because of its relevance to DARPA, the existence 
of a supportive user community, and the availability of scenarios for system 
development. Over the course of the project, experts from numerous civilian and military 
organizations contributed to a detailed understanding of CSAR operations that influenced 
the vision, design, and implementation of the resulting Search and Rescue Assistant 
(SARA) system. 

A multi-agent architecture, called the Interaction Society (ISociety), was designed for 
SARA that embodies the following capabilities: 

 Automatically retrieve and integrate information relevant to the task at hand, from a 
broad spectrum of diverse data sources, without explicit direction from the user. 

 Maintain and monitor a model of CSAR tasks that describe what the human and 
automated systems are doing, should do, and can do. 

 Dynamically create context-sensitive data visualization displays that reflect the 
current set of goals, ongoing tasks, required and available assets, and incoming 
information. 

In an ISociety, each agent contributes a specialized skill, and, in return, relies on other 
society members to provide information within their specialized spheres of interest. 
Expertise embodied by ISociety agents falls into the following four broad categories. 
First, interaction agents interact with and help the user (physically and mentally) 
collaborate with other agents in the society. Second, domain agents track and perform the 
tasks necessary to support the CSAR domain processes. Third, information agents access 
and interpret external information sources. Finally, dispatcher agents facilitate the 
management of individual and group needs as well as the management of the 
communication between agents. 

Three key technical challenges to implementing the ISociety were identified. First, task 
assistance is required to flexibly divide responsibilities and actions between the computer 
and human users. Second, the multi-agent architecture must allow agents to operate, 
communicate, and collaborate with each other and with humans to successfully complete 
the objectives of the system. Finally, user presentations (i.e., the UI) must adapt to the 
constantly changing situation and task environment.  
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Each challenge was addressed to varying degrees during the program, with dynamic UI 
generation being the primary emphasis. Two prototype demonstration systems were 
implemented to explore and test solutions to these challenges. The first, called the Map-
based SARA Demonstration (or MapDemo), explored the implementation of the multi-
agent architectural concepts required by an ISociety and developed HCI concepts for 
mixed-initiative collaboration to CSAR experts. The second, called the Interaction 
Facilitator Demonstration (InfacDemo), implemented a Honeywell-developed technique 
for dynamic UI generation and served as a testbed for a CSAR ontology (or schema).  

The project gained an understanding of human-agent collaboration in a real-world 
military domain, which led to technical advances in several areas including multi-agent 
architectures and dynamic UI generation. The conclusions reached during this project fall 
into three broad categories:  

 Lessons Learned: The lessons learned cover a range of technical and programmatic 
issues that similar projects should consider. Two are particularly noteworthy. First, 
incorporating the user as an active collaborator, rather than simply a task director, 
proved to be a powerful and novel approach. Second, conducting the research within 
the context of a real-world domain was crucial. The realism and depth that these 
scenarios added to the project were key to establishing requirements for collaboration 
between humans and agents.  

 Operational Development: Expert review indicated that, when implemented, SARA 
would provide order of magnitude improvements to CSAR operations. To realize 
these benefits, follow-on work is required to address four areas. First, the 
infrastructure within which the agents operate must be solidified. Second, a task 
representation to enable efficient task distribution and completion must be defined 
and implemented. Third, the ISociety must be scaled to allow connectivity to a wide 
variety and number of information sources. Finally, automated mission 
documentation, persistence, redundancy and other robustness issues must be 
addressed.  

 Future Research: The mechanics of two types of collaboration, implicit and explicit, 
are particularly intriguing. Implicit collaboration arises from a shared understanding 
of the state of the world including, for example, rules of discourse, semantics, and 
syntax for topics and situations. Explicit collaboration, on the other hand, is 
observable collaboration involving requests, responses, and passing of information. 
Among the interesting research questions is how to share implicit collaboration 
knowledge with an agent attempting to join a society and what is the role of the user 
in facilitating this. This agent does not necessarily share the same knowledge as the 
other agents, may not know its intended role in that society, and may, in fact, possess 
knowledge that contradicts the knowledge of other society members. Unless a proper 
foundation is laid for implicit collaboration, explicit collaboration between these 
agents is very difficult to achieve. 

2. Introduction 
For three years, Honeywell Technology Center in Minneapolis has been under contract to 



 

 

 

3

DARPA through the Human Computer Interaction Program. The goal of the Shared HCI 
Environment project that we performed under this contract was to investigate techniques 
to improve human-computer interaction with multi-agent software systems, emphasizing 
those that involve the human as an active collaborator.  

In recent years the terms “agent” and “multi-agent” have been used quite broadly. For 
our purposes, a software agent is a computer software system characterized by 
situatedness, autonomy, adaptivity, and sociability [Sycara, 1998]. A collection of agents 
interacting to satisfy the objectives of the user is considered multi-agent system. Agents 
within such systems can interact in a number of ways, including using economic models 
to compete for tasks. This research program focused on cooperative collaboration rather 
than competitive collaboration among agents to satisfy the objectives of the user.  

The application domains of interest were those in which the human user must interact 
with and process information from a large number of information sources. We were most 
interested in domains in which the importance and relevance of information vary 
according to the specific situation and task. We selected a single domain, Combat Search 
and Rescue (CSAR), to demonstrate and test our multi-agent architecture. Examples of 
other potential domains include medical diagnosis, industrial control, military command 
and control, and intelligence analysis.  

In such domains, the user frequently does not have the necessary knowledge to access 
and analyze constantly changing information, nor the time to determine which 
information is most relevant to the current situation. On the other hand, the complexity of 
these domains prevents software agents from completely automating all (or even most) of 
the tasks necessary to meet the situation requirements in enough detail to provide specific 
templates in advance. In addition, much of the useful information may not be accessible 
to or interpretable by the agents (e.g., natural language messages or notations, hard copy 
photographs, etc.). This requires the human user to act not only as a supervisor, but also 
as an assistant to the software agents. Software systems such as these, in which human 
users collaborate with multi-agent systems, are categorized as “mixed-initiative” systems. 
The system and user work in a collaborative partnership to adapt to the changing 
situation. The focus of the research performed for the Shared HCI Environment program 
was to develop human computer interaction (HCI) techniques to improve this 
collaboration. 

We first describe our approach to this research problem during each of the project’s three 
phases. Next, we describe the two software demonstration systems produced to develop 
and test our research theories and hypotheses. Finally, we discuss our research 
conclusions and our recommendations for future work.  

3. Approach 
The project was divided into three separate phases. Each phase was designed to answer 
specific research questions and to build upon the results of previous phases. We executed 
a user-centered, rapid prototyping development process that involved user input at every 
stage, and performed a user review at the conclusion of each phase. Each of the three 
phases consisted of the following sequential subphases:  
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1. Information Gathering: Obtained and reviewed progressively more detailed 
information regarding the selected domain to produce a set of scenarios involving 
human computer interactions in that domain. 

2. Scenario Analysis: Determined the functional requirements for a prototype system, 
and detailed the hardware and software requirements placed upon the system. 

3. Architecture Definition: Developed the architectural concepts and defined the 
functional components necessary to satisfy the requirements; evaluated the 
architecture, including a review of relevant government, commercial, and public 
domain software in terms of these requirements. 

4. Prototype Development: Used a rapid development methodology to iterate through 
design/redesign cycles of system components and to integrate those components 
together into a prototype demonstration. 

5. User-Focused Evaluation: Completed the user centered design cycle by validating 
functional requirements through usability testing and user review. Results provided a 
starting point for the subsequent phase.  

The remainder of this section summarizes the goals of each phase followed by sections 
that describe overall project. Details of each specific phase are documented in the System 
Development Document [Nelson et al. 1998] for this program.  

3.1 Baseline Phase (June 1995 — September 1996)  
The goals of this phase were to: 

• Select an application domain that identified an interested and supportive user 
community that included ample scenarios for testing and system development.  

• Gather domain information and perform scenario analysis by iterating with domain 
experts.  

• Develop an early conceptual design for the system that includes user-interface mock-
ups. Present this to the application domain experts. 

• Identify research issues and bottlenecks to fielding the defined system. 

3.2 Intermediate Phase (October 1996 — December 1997) 
The goals of this phase were to: 

• Continue collaboration with domain experts at conferences and meetings. Incorporate 
this knowledge into the system design. 

• Explore each of the research issues identified during the Baseline phase. Extend the 
prototype to implement, test, and evaluate selected candidate solutions. 

• Define and apply metrics to estimate the utility of an operational system for the 
selected domain.  



 

 

 

5

3.3 Final Phase (January 1998 — December 1998) 
The goals of this phase were to: 

• Continue collaboration with domain experts through attendance at conferences and 
knowledge acquisition meetings.  

• Focus research and technical development on the most challenging research issues 
and solidify the overall system design in the process.  

• Document the next steps necessary in developing a system beyond the research 
prototype stage. 

4. Information Gathering 
Several application domains, (including cardiac care, shipboard fire fighting, and oil 
refinery operations), were considered before deciding upon combat search and rescue 
(CSAR). These domains share such characteristics as numerous independent and 
dynamic on-line and off-line information sources, a fluid task environment, and a user 
community skilled in operations, not computers. Since the collaboration technology 
needs were similar in each of the candidate domains, we selected the CSAR domain 
because of its relevance to DARPA, the existence of a supportive user community, and 
the availability of scenarios for system development. 

The decision to focus on CSAR was clear after an initial meeting with the Joint Services 
Survival, Evasion, Resistance, and Escape Agency (JSSA). At the JSSA meeting, CSAR 
experts were interviewed regarding the tasks involved in CSAR, as well as the needs and 
profiles of users. From this interaction, we determined that not only was CSAR an 
excellent match to the project’s research objectives, but that the speed, efficiency, and 
accuracy of CSAR operations could be greatly improved through the application of 
multi-agent collaboration technology. Therefore, a decision was made to direct the efforts 
of this program towards the development of a Search and Rescue Assistant (SARA). 

Subsequent information gathering activities increased the scope of user participation 
through continued interviews with domain experts. We also gathered valuable 
information at presentations and demonstrations at several personnel recovery 
conferences. Of particular note, SARA was presented as part of a vendor display at the 
Department of Defense Personnel Recovery Conference at Carlisle Barracks sponsored 
by the Defense Prisoner of War and Missing Personnel Office (DPMO). During this 
conference, SARA was repeatedly demonstrated to a broad cross section of civilian and 
military CSAR experts. Over the course of the project, experts from the Civilian Air 
Patrol, JSSA, CENTCOM, DPMO, DISA, CISA, Pacific Rescue Coordination Center, 
United States Coast Guard, and others contributed to a detailed understanding of CSAR 
operations. Feedback from these experts at subsequent reviews and conferences indicates 
that this understanding is reflected in the vision, design, and implementation of the 
SARA system. 
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4.1 CSAR Domain Introduction 
The following section provides a justification for the selection of CSAR as the 
application domain and a very brief introduction to military CSAR operations. For more 
detailed information, a list of CSAR-related references is provided in the bibliography 
(Section 10.2).  

CSAR operations are characterized by five distinct tasks. Each of these tasks requires 
access to disparate information sources (satellite photos, status reports, debriefing 
sessions, weather data, digital maps, etc.). The five fundamental CSAR tasks are: 

• Report: Inform relevant personnel that a new CSAR mission is required. 

• Locate: Identify, with high certainty, the most probable position of the isolated 
personnel (the evader) and verify his/her identity. 

• Support: Provide necessary support to the evader to prevent their capture and to 
facilitate a rescue operation. 

• Recover: Plan and execute the recovery of the evader. 

• Repatriate: Return the evader to friendly forces and complete the verification and 
documentation of the actions taken, their results, and lessons learned for future 
operations. 

The scope of the SARA implementation was limited to supporting Joint Search and 
Rescue Center (JSRC) staff during the second task, broadly involving location of the 
evader, to both constrain the work and to demonstrate the benefits of our approach. The 
non-deterministic nature of CSAR incidents makes the relevant information used in 
locating an evader extremely situation-specific, dynamic, and difficult to predict in 
advance. In an ocean search, for example, the water current information is critical, but 
such data is irrelevant when searching small bodies of water like lakes. Furthermore, 
information sources are the most complex, disparate, and distributed in this phase.  

As with other C4I domains, the information is constantly changing the codeword from 
yesterday is not the same as today. Yet this legacy information must be retained for 
operational reasons, not just documentation. Information known to the missing 
individual, particularly security-related information, is current only up to the time they 
became isolated. The correct codeword for them might be from last week. Recalling that 
information can be crucial to verifying the individual’s identity. 

Another difficulty with implementing automated assistance in this domain is the lack of 
access to electronic information. Crucial information is often not on-line, or is in an 
incompatible or non-integrated format. For example, photographs might only be in hard-
copy format, or witness reports might arrive in natural language via email, telephone, or 
fax, requiring human interpretation to ascertain the relevance of this information to 
ongoing operations. 

Not only is the information dynamic and situation-dependent, but the tactics used are also 
strongly situation-dependent and based on dynamically changing higher-level plans and 
goals. In combat situations, for example, search must be accomplished by means other  
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than flying search patterns because the searcher's predictability makes the search craft 
vulnerable to enemy fire. This alters not only the procedures, but also affects the suitable 
information sources. In this case, JSRC personnel must rely more heavily on satellite 
photos and other less intrusive information sources. 

Most C4I domains share these features, but, because of their complexity, are difficult to 
scope for research projects such as this one. CSAR, however, has several unique features 
that make it suitable for such research. CSAR operations are generally smaller in scope 
and are also more standardized than many others are. This manageability, combined with 
representative complexity, makes the CSAR domain and procedures an especially 
productive one for testing the feasibility and design of multi-agent systems. 

5. Scenario Analysis 
The variability of CSAR incidents places several key constraints on the design of a 
collaborative multi-agent system. Since information sources cannot be exhaustively 
enumerated before (or even during) an incident (e.g., it is not possible to identify 
witnesses to an incident before it occurs), it is necessary to separate the high-level 
domain knowledge from the execution details. Thus, a mixture of agents performing 
tasks at various levels is required. In particular, agents that possess knowledge of the 
high-level goals, plans, and strategies should not concern themselves with details of 
completing those tasks. Rather, they should rely on agents skilled in specific tasks (e.g., 
accessing an information source or calculating the most probable search area) to assist 
them.  

Further, because they will participate to varying extents at different times, these agents 
must flexibly interact without a priori knowledge of each other. For example, an agent 
that calculates the likely search area based on a parachute sighting might rely on wind 
speed information supplied by multiple location-dependent sources. Until the location is 
known, this agent has no reason to interact with agents that can supply the wind speed 
and may not even know such agents exist.  

Finally, the fact that much of the useful information may not be electronically accessible 
or interpretable requires the system to rely on the user not only as a supervisor, but also 
as an assistant. As with everything else in the CSAR domain, this division of labor is 
dynamic. The system and user must form a dynamic collaborative partnership to adapt to 
the changing situation. 

A multi-agent architecture must embody the following capabilities to improve the CSAR 
process: 

• Automatically retrieve and integrate information relevant to the task at hand, from a 
broad spectrum of diverse data sources, without explicit direction from the human 
user. 

• Maintain and monitor a model of CSAR tasks (standard operating procedures) that 
describe what the human and automated systems are doing, should do, and can do. 

• Dynamically create context-sensitive data visualization displays that reflect the 
current set of goals, ongoing tasks, required and available assets, and incoming 
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information. 

Two subtasks of the Location task, SAR Incident Report (SARIR) completion and 
geographic situation awareness, were chosen as examples that highlight many of the 
capabilities above. The first, SARIR completion, is a time consuming task that must be 
completed before other location subtasks can begin. The SARIR is a message format 
found within the United States Message Text Format (USMTF) templates. The SARIR, 
and USTMF in general, has a very complicated and terse format that requires much 
experience to accurately complete and interpret. Not only are there over 45 applicable 
USMTF formats for CSAR operations, but the information required by a particular 
format varies with the situation. Additionally, there are fairly complex constraints on 
allowable entries that require a variety of interface widgets. Metrics, based on this task, 
will be collected to estimate the utility that an operational SARA would provide to CSAR 
Operators, including the time to complete the task and the accuracy of the report 
generated by the task.  

The second task, geographical situation awareness, was selected to provide a test case for 
the multi-agent architecture and its ability to provide mixed-initiative task assistance. In 
particular, techniques for sharing information, specifying requests, handling tasks, and 
presenting information could all be tested using this scenario.  

6. ISociety Architecture Definition 
The requirements of the selected SAR domain led to an architecture consisting of a 
“society” of collaborating agents. In an agent society, each agent is treated as a 
knowledge source; the assistance function is provided by a number of agents interacting 
to solve a problem for the user. In the case of SARA, not only do agents solve problems 
for the user and each other, but the user solves problems for the agent as well.  

To facilitate these collaborative partnerships, the society provides a framework, called 
the Interaction Society (or ISociety) [Penner, 1996], that maintains the needs and goals of 
the participants. In an ISociety group of collaborative agents, each member contributes a 
specialized skill, and, in return, relies on other society members to provide information 
within their specialized spheres of interest.  

ISociety is derived from the societal behaviors of socialized agents embodied in Rieken’s 
M System [1997], which in turn owes much to Minsky’s [1985] earlier conceptual work. 
In particular, agents with differing reasoning processes are integrated via rules, object 
representation networks, scripts, and a blackboard system [Nii, 1986].  

Expertise (and knowledge) embodied by member agents in an ISociety architecture falls 
into four broad categories: 

 Interaction Agents that interact with and help the user (physically and mentally) 
collaborate with other agents in the society,  

 Domain Agents that track and perform the tasks necessary to support the CSAR 
domain processes,  

 Information Agents that access and interpret external information sources, and  
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 Dispatcher Agents that facilitate the management of individual and group needs as 
well as the management of the communication between agents. 

This categorization scheme is similar to Decker’s [1997], which consists of interface 
agents, task agents, and information agents. In addition, we add dispatcher agents to 
enable the collaboration. Dispatcher agents facilitate inter-agent communication by 
routing requests, translating between ontologies, and allowing agents to cooperate 
without a priori knowledge of each other. Dispatcher agents are considered members of 
the society, not simply as an interaction substrate.  

The different types of agents reflect the roles an agent fulfills in the ISociety. Just as in 
human societies, ISociety agents may fill one or more roles. For example, an agent 
providing access to a map database (acting as an information agent) might also display its 
data and the data of other agents (acting as an interaction agent). The role (or roles) an 
agent fills is important for identifying its needs and responsibilities within the larger 
society. This is particularly useful when incorporating legacy systems. A system that 
accesses a database, for example, is incorporated more easily if its role can be limited. 
The following sections describe each of the roles within an ISociety in more detail. 

6.1 Interaction Agents 
The demands on an interaction agent are complex in C4I domains like CSAR. There are 
many possible users, many possible hardware configurations, and many possible software 
languages, architectures, and operating systems. In addition, the domain parameters and 
the tasks that must be performed are fluid, interdependent, and intricate. In a simpler 
domain, the agent can rely on a simple user interface design to manage the collaboration 
between software and human agents. In a complex domain, however, the interaction 
agents must have a more sophisticated basis for reasoning about how to communicate 
with users, and how to support the rapidly changing, situation-dependent task space.  

An emphasis of ISociety is the inclusion of human users who actively collaborate by 
providing the society with areas of expertise not available on-line. Given the non-
deterministic nature of the task and the situation, presenting the relevant actions and 
knowledge of the society in a cogent way, and allowing the human to interact gracefully, 
are key factors in the overall success of ISociety-based systems. In an ISociety, it is the 
interaction agents who are responsible for maintaining the user’s situation awareness and 
meeting the society’s needs for user interaction [Penner, 1996]. 

6.2 Domain Agents 
Domain agents are versed in the tasks, subtasks, and procedures for a particular 
application domain. These agents proactively seek to accomplish tasks in their area of 
expertise. For example, a domain agent versed in the techniques for detecting a CSAR 
incident, like overdue flights, would contain the knowledge and procedures necessary to 
detect and confirm a new incident. Domain agents are inherently mixed-initiative as they 
rely on the society and the user to carry out many of their tasks.  

Typically, as with human-human collaboration, it is not possible to have a single agent 
skilled in all aspects of the application domain. Rather, domain knowledge is distributed 
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among several interacting agents. An agent responsible for documenting the progress of a 
mission may not know when such documentation should be completed. This may be the 
purview of another domain agent that communicates the need for this to the 
documentation agent.  

6.3 Information Agents 
Information agents provide information to the ISociety by accessing one or more 
information sources (e.g., a relational database) and calculating information using data 
provided by other society members. Information agents are associated with information 
sources or information needs; for example, an agent that provides weather forecasts 
might rely on other agents to provide the data necessary for the analysis. By relying on 
the society for this data, the forecasting agent need only focus on calculations in its own 
area of expertise. 

The user is considered the ultimate information agent in the SARA ISociety. If required 
information is not available from any other information agent, the user would be 
requested to provide it. This mixed-initiative approach provides a robust information 
access capability for situations in which the connectivity, access and location 
requirements can vary. For example, military CSAR centers can be located in buildings, 
ships, tents and even airplanes. In each case, the quantity, quality, and access details can 
vary greatly. A CSAR center based at a large air force base might have direct, on-line 
access to databases, while a remote CSAR center may only have a voice link. By 
encapsulating access to this information and providing a transparent means to request 
data from the user, the participating agents need not be concerned with details of a 
particular installation.  

6.4 Dispatcher Agents 
Dispatcher agents address three basic constraints on ISociety implementations: 

• The specific information source (or sources) of information might not be known in 
advance since the situation may alter the availability and relevance of member agents. 

• ISociety agents rely on other members of the society to accomplish tasks and provide 
information.  

• The user is tasked with providing information and/or services when other ISociety 
agents cannot. 

Dispatcher agents resolve conflicts between agents and permit member agents to 
collaborate without the a priori knowledge of other ISociety agents. When agents register 
overlapping interests, for example, the collaboration between agents must either be 
disambiguated by the individuals involved, or disambiguated by an external decision-
maker.  

In addition to providing arbitration, dispatcher agents provide essential society services 
by tracking the current members and their capabilities, knowing how to manage society 
membership, and managing the high-level goals of the society as an entity distinct from 
the individuals who participate in it.  



 

 

 

11

7. Prototype Development 
Review of the architecture described above identified the following three technical 
challenges to its implementation: 

• Mixed-Initiative Task Assistance: This type of assistance should flexibly divide 
responsibilities and actions between the computer and human user(s). The resulting 
system should allow the human to focus on details of the operation or mission rather 
than details of information search, access, and fusion.  

• Multi-Agent Architecture: The architecture should allow agents to operate, 
communicate, and collaborate with each other and with humans to successfully 
complete the objectives of the system. Agents within this architecture must be 
capable of functioning with little or no a priori knowledge of other agents. 

• Dynamic UI Generation: In a dynamic situation and task environment it is difficult to 
predict what information will be useful at a given time. Consequently, conventional 
user interfaces (UIs) lack the robustness and flexibility required to fully support the 
system. Techniques must be developed to dynamically generate these UIs based on 
the current situation and ongoing tasks.  

To address these challenges, the prototype development was split into two separate 
systems. Although an integrated demo was considered, the mixture of languages (VB, 
VC++, and Java) increased the complexity and difficulty of the implementation without 
shedding any additional light on collaboration issues between agents and humans. The 
decision to produce two separate demonstrations rather than a single integrated one 
provided additional opportunity to explore research issues rather than becoming mired in 
implementation details. 

The first demo, called the Map-based SARA Demonstration (or MapDemo), addressed 
the dual purpose of exploring the implementation of the multi-agent architectural 
concepts required by an ISociety and presenting HCI concepts for mixed-initiative 
collaboration to CSAR experts. The second demo, called the Interaction Facilitator 
Demonstration (InfacDemo), also served a dual purpose. This demo implemented a 
technique for dynamic UI generation and also served as testbed for a CSAR ontology (or 
schema). These demonstration systems are described in the following sections. 

7.1 Map-based SARA Demonstration (MapDemo)  
The MapDemo is a society of agents that fulfill each of the agent roles described in 
section 6. The agents operate as independent executables, communicating with an 
independently running dispatcher agent called the Dispatcher. The agents are written in 
Microsoft’s Visual C++ (VC++) and communicate using Microsoft's Component Object 
Model (COM) via a straightforward OLE Automation interface. These agents, shown in 
Figure 1, cooperate to access and display global map information to the user.  
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Figure 1: MapDemo Architecture  

In the MapDemo, the interaction role is fulfilled by Original SARA (OSARA) which is 
an encapsulated version of the proof-of-concept demonstration developed during the 
baseline phase. The emphasis of this early demonstration was on providing a user-
centered view of the ISociety and demonstrating other system utilities of SARA. 
Consequently, the UI for this demonstration was quite advanced. By encapsulating the 
original system as an agent, the MapDemo capitalized on the benefits of ISociety's 
inclusiveness by reusing a large portion of the original's UI.  

The DCW agent is an information agent responsible for accessing the Defense Mapping 
Agency's (DMA) Digital Chart of the World (DCW) database, a comprehensive database 
of global map information. The DCW Agent fulfills society requests for map information 
including gazetteer information and geographic data. 

Note that an earlier version of MapDemo included a Mission agent that fulfilled the 
domain agent role. This agent contained procedural knowledge necessary to complete the 
SARIR for a new CSAR mission. During the final phase, the Mission agent functionality 
was incorporated into the InfacDemo, and will be described in this report as part of that 
discussion in section 7.2. 

The OSARA demonstration serves as a means to test inter-agent communication and 
communication between agents and humans. In particular, not only does the user task the 
agents (e.g., by selecting the map location and overlays to display), but in some situations 
tasks are requested by an agent that must ultimately be completed by the user (e.g., 
changing a CD in the CD-ROM drive). After describing the major MapDemo 
components, a scenario is described to illustrate this interaction.  

7.1.1 OSARA Agent 
OSARA is a multi-process agent implemented using a combination of VC++ and Visual 
Basic (VB). The University of Michigan's C++ implementation of the Procedural 
Reasoning System (UM-PRS) [Huber et al., 1976] is used to handle multi-processing 
during communications with external agents. The UI functions are provided by a VB 
application with which the VC++ portion communicates.  

OSARA incorporates a screen clutter reduction algorithm that attempts to reduce the 
displayed information to a level that the user can comprehend. Rather than evaluating the 
actual volume of information that must be displayed, this algorithm determines the 
number of layers that have been selected and removes those that are less relevant for the 
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task of perusing a map at a given zoom level. This works well for populated areas (e.g., 
Europe) but not very well for remote areas (e.g., Newfoundland, Canada) because the 
volume of information per layer varies between areas. Finally, SARA's choices can be 
overridden by the user, if SARA defines a view that is not consistent with the user’s task.  

7.1.2 DCW Agent  
The DCW agent encapsulates a legacy system, VPFVIEW, provided by DMA. The fact 
that this agent's role is as an information agent, and not an interaction agent, simplified 
the inclusion of VPFVIEW into SARA. The database manipulation routines were 
virtually untouched while the user interface portions, specialized for older MS-DOS-
based machines, could be excised. 

Figure 2: Data supplied by DCW Agent and rendered by OSARA 

The DCW database is composed of 4 CD-ROMs each capturing a different portion of the 
globe. When the agent receives a map request, the DCW agent determines if the proper 
CD is loaded for the requested grid. If the grid is not supplied, it requests that the original 
requester supply one. If the CD is incorrect it requests that the society provide a path to 
the proper CD and suspends the request until the CD is available, moving on to any other 
pending requests. 

7.1.3 Dispatcher 
The Dispatcher enables anonymous communication between SARA agents. Every SARA 
agent, as it starts up, establishes a communication link with the Dispatcher and informs it 
of the information and services the agent requires from and provides to the society. 
Whenever an agent has a need that it cannot meet, it asks the society for help by posting 
its need to the Dispatcher.  

The Dispatcher determines the set of agents capable of satisfying the need, selects a 
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suitable one, and assigns the need to it. It does this through the creation and maintenance 
of a blackboard data structure called the “need-space”, which it uses to track, assign, and 
monitor the needs of the society as a whole.  

Figure 3: Mappings within the need-space 

Via the need-space, the Dispatcher maintains a mapping from each consumed need to the 
suppliers. This mapping (Figure 3) is contained in a set of request packages. Each request 
package represents an alternative method for satisfying the need. For example, in a 
society with two different sources of road information, a consumer of road information 
might have two request packages, one for each of the agent-based map sources. When an 
agent posts a need to the Dispatcher, the Dispatcher selects one of the possible request 
packages and assigns the need to the appropriate agents. If the assigned agent fails to 
meet the need, the Dispatcher selects another suitable request package. Finally, if none of 
the available request packages meet the need, the Dispatcher assigns the need to the 
default need supplier (OSARA in our case).  

OSARA registers with the Dispatcher as the “default need supplier”. Consequently, any 
need that cannot be satisfied by other SARA agents (e.g., ontological conflicts that are 
not automatically resolved) will be assigned to OSARA. When assigned a need by the 
Dispatcher, the user is requested to enter the desired information, or provide a pointer to 
a file containing that information. The supplied information is then forwarded to the 
requesting agent by the Dispatcher to complete the need. 

In an extension to matchmaking systems [e.g., Cottam et al, 1995], rather than relying on 
direct agent-to-agent communication once a match is made between requester and 
provider, the agents continue to communicate directly with the Dispatcher. This not only 
eliminates the need for a shared ontology among all agents, but also allows agents to 
cooperate without a priori knowledge of other agents in the society. Instead, it lets each 
agent express the information and services it provides and requires in terms that make 
sense to it, but not necessarily any other agent in the society. SARA uses the Dispatcher 
to map between these differences using the need-space.  

In practice, many multi-agent systems do share an ontology, and requiring the Dispatcher 
(and user) to rebuild this ontology could be cumbersome. A society working in these 
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 domains would use a Dispatcher pre-encoded with this ontology, essentially a partially 
instantiated need-space. That is, these limited ontological assumptions are not meant to 
exclude the use of a shared ontology, but rather to facilitate incorporation of agents that 
do not share the same ontologies.  

For operational use, the current implementation will require many more agents; 
moreover, those agents will undoubtedly be distributed for practicality and robustness 
reasons. SARA agents must connect to and communicate with the Dispatcher; but in a 
large, distributed system this requirement would quickly result in the Dispatcher 
becoming a bottleneck and a single point of failure. Furthermore, the knowledge needed 
to locate and connect to a single, possibly remote, Dispatcher could be extensive. 
Requiring this knowledge of each agent would place unreasonable demands on their 
implementation, particularly for encapsulated legacy systems.  

These observations lead to a planned distributed Dispatcher. With a distributed 
Dispatcher, ISociety agents always connect to and communicate with a local Dispatcher. 
That is, every machine with at least one ISociety agent would also have a Dispatcher. 
Thus, rather than search for a possibly remote Dispatcher, each agent need only check for 
a local Dispatcher or spawn a new Dispatcher if one does not exist. The potentially 
complex knowledge and procedures necessary to communicate with distributed agents is 
encapsulated within the application-independent Dispatcher, making it easily reusable. 

7.1.4 Agent Interaction Scenario 
To make the interactions among agents clear in the MapDemo, consider the case of the 
user selecting a geographic location not accessible from the DCW CD currently loaded in 
the CD-ROM drive. Assume that the CD-ROM drive is a conventional one that requires a 
person to change the CD, i.e., not a jukebox. 

The user selects the new location in the VB portion of OSARA, which causes OSARA to 
clear the current map and post “needs” for new map information. The information 
requested consists of the same map data that was present before the location was 
changed. Each type of map data (e.g., roads, coastlines, etc.) is the subject of a separate 
need posting.  

The Dispatcher receives each of these requests and matches the subject against its Need-
space. Assuming that the DCW agent has been registered, these needs map to a request 
package that can be satisfied by the DCW Agent. In some cases, the need posted by 
OSARA is a generalization of the information provided by the DCW agent. For example, 
OSARA requests “roads” while the DCW agent supplies “multi-lane roads” and “single-
lane roads”. Thus, the request package for “roads” is relayed to the DCW agent as two 
separate requests, one for each of the DCW-specific information types.  

When the DCW receives each of these requests, it checks to see if the requested 
geographic grid (supplied with the original need by OSARA) falls (or partially falls) 
within the extent of the currently loaded CD. If so, it will proceed with collecting and 
returning the information. In this case, however, the CD is not correct. The DCW Agent 
will suspend all of the requests that do not match the current CD and post a single need 
back to the Dispatcher for the proper CD to be loaded which includes the name of the 
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CD.  

Note that the DCW agent does not have knowledge of the agent requesting the 
information nor does it have knowledge of which agent will satisfy its request to change 
CDs. Instead, all communication is done through the Dispatcher. In the case of the CD 
change need, the Dispatcher’s need-space does not have a mapping between this need 
and any supplier agents. In the absence of a successful mapping, the need is assigned to 
the “default need supplier”, which is usually an interaction agent (i.e., the need is 
eventually handled by the user). If, for example, a separate agent administered a CD 
jukebox, this “jukebox-agent” would be assigned the need; otherwise the need would be 
assigned to the default need supplier.  

As the default need supplier, OSARA accepts the need and requests that the user switch 
to the requested CD. At this point, the user types the path to the new CD and informs 
OSARA that s/he is finished. OSARA then relays the information to the Dispatcher that 
subsequently passes it on to the DCW Agent.  

Once the DCW Agent receives word that the CD has been changed, it reactivates the 
suspended needs, verifies that the CD is correct, and collects the requested data. As each 
type of information is collected, the DCW Agent informs the Dispatcher when the data is 
present and to which file the data was saved. As each part of the request package is 
completed, the Dispatcher informs OSARA of the location of the data. Finally, OSARA 
reads the data from the files and renders the map. Note that the information file is a copy 
and OSARA is free to do whatever it wants with it.  Consequently, it is OSARA’s 
responsibility to delete the file when it is finished with it. 

7.1.5 Testing Procedures and Results 
The MapDemo was tested to evaluate the screen clutter reduction algorithm, verify that 
requests for DCW data and associated requests for CD changes were correct and 
consistent, and identify memory leaks and other subtle bugs. The test data included 15 
different latitude and longitude locations that were used as the map center and 8 place 
name locations. These included locations from each of the CDs and some that fell on the 
border between two or more CDs. The specific locations are found in Appendix 1. 

For each location or placename, the location was selected at the map’s standard zoom 
level. Once the map was drawn the map was zoomed out one level, in one level, and back 
to the original zoom level. This resulted in the map being drawn and data being accessed 
5 times for each test. The map layers included oceans, roads, city locations, city names, 
coastlines, and both administrative and international boundaries.  

The testing was effective at eliciting memory leaks and other bugs that occur over 
periods of long use. The serious problems were fixed while those problems that could be 
categorized as benign or as enhancements were considered out of the current scope and 
added to a “wishlist” for subsequent work. 

7.2 Interaction Facilitator Demonstration (InfacDemo) 
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The Java-based InfacDemo, the second demonstration prototype, implements Dynamic 
Interaction Generation (DIG) technology [Penner & Nelson, 1997] and an object-oriented 
CSAR schema. DIG is used to dynamically generate a UI to enter SAR Incident Report 
(SARIR) information for a CSAR Mission. The UI allows the user to create and modify 
CSAR Schema objects which are then used to generate a SARIR (Figure 4) object 
instance which can eventually be “submitted” by exporting it as a text file in the USMTF 

format (Figure 5).  

Figure 4: CSAR Schema object rendered by DIG. 

The CSAR Schema is a loose combination of the Command and Control Schema (C2 
Schema) [Carrico, 1996] that is being constructed to support military-based software 
systems and a model of the Joint Personnel Recover process described in [Fernandez et 
al. 1996]. The collection of instantiated schema objects represents the current CSAR 
situation, entities, and information.  
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The high-level structure of the CSAR Schema consists of six main branches: Situations, 
Information, Entities, Domain Primitives, Task Behaviors, and Plan Objects. The latter 
two of these, Task Behaviors and Plan Objects, are only sketched in and not used in the 
InfacDemo. Consequently, only the Situation, Information, Entity, and Domain Primitive 
branches will be described in any detail. The diagrams of the current CSAR Schema can 
be found in Appendix 2. 

Figure 5: SARIR represented in USMTF format 

The main classes of objects in the CSAR schema include: 

• Entity Objects represent things in the domain such as materiel, organizations, people, 
and locations. Entities can act on or participate in the task and situations found in the 
domain. 

• Situation objects represent the situations and roles that involve the entity objects, 
including objects such as missions, commanders, and pilots. This is separate from the 
entities that participate in the situation, since an individual entity, such as Major 
Jones, can fill multiple roles or participate in multiple situations. 

• Information Objects reflect the factual data about other application objects. For 
example, details of a meteorological phenomenon will be based on one or more 
weather data objects. 

• Domain Primitive Objects encapsulate the mapping to native types (e.g. 
java.lang.String) and other basic data referenced by other CSAR schema objects. 

The CSAR Schema will enable much of the necessary work to be done automatically, 
when the InfacDemo is integrated as one of many agents in SARA. Each agent will share 
knowledge of the CSAR Schema and perform different aspects of the overall job. Agents 
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will convey the information and services they provide in terms of the CSAR Schema. 
This makes inter-agent collaboration significantly easier, and limits the need for 
ontological synchronization techniques. Information agents that access various databases 
and other information sources will supply and maintain relevant CSAR Schema instances 
(e.g., an ATO-Agent may supply information for ongoing missions). Domain agents will 
provide the higher-level knowledge to filter out and select candidate values from among 
these instances. For example, suppose the user is selecting assets to form a CSAR Task 
Force (CSARTF) to rescue an evader. Rather than displaying the list of all assets, a 
domain agent would screen the list of assets according to the roles that must be filled in 
the CSARTF (e.g., list only those aircraft capable and available to provide Rescue 
Combat Air Patrol (RESCAP)). 

It is easy to see how the CSAR Schema will facilitate agent integration. By focussing on 
certain objects and refining their details, the user is conveying information to the agents. 
Agents use this information to form queries to locate missing information, keep known 
information current, and provide task assistance based on the user’s current focus. For 
example, consider the aforementioned task of selecting assets to provide RESCAP for a 
CSARTF. The CSAR Schema object representing the CsarTaskForce, a subclass of 
CombatMission, consists of, among other things, a RescueCombatAirPatrol submission. 
The requirements of the RescueCombatAirPatrol (e.g., required capabilities of the 
aircraft) together with details of the parent CsarTaskForce object (e.g., location, time 
frame, air threat information, etc.) can be used to form a detailed query specifying the 
requirements of the aircraft needed. An agent that is tracking available assets, for 
example, might satisfy this query. These assets would then be presented to the user who 
could make the final decision. 

As another example, an initial SARIR recipient list could be automatically generated by 
looking at the organizations referenced by other CSAR Schema objects (e.g., the evader’s 
unit, the units of the available CSAR assets, etc.). The user would be able to add and 
remove items from this list and even create objects that represent organizations that are 
not currently known to SARA.  

Furthermore, much of the information for a particular CSAR incident is unknown, 
especially in the early stages. The areas of the domain model that coincide with the users 
current focus (or interest) can be used to automatically generate queries for this unknown 
information. This same mechanism can be used to summarize the currently known and, 
more importantly, unknown information for the user. The summary would be maintained 
as the agents (and humans) provide the unknown information.  

7.2.1 Dynamic Interaction Generation (DIG) 
(DIG) is a Honeywell Technology Center developed technology that enables inclusion of 
the human expert as an active collaborator in a multi-agent system. The current 
implementation (Figure 6) contains an Interaction Facilitator that manipulates an 
Interaction Class Model (ICM). This ICM supports the display of a UI to create and 
define CSAR Schema object instances.  
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Figure 6:  InfacDemo Architecture 

The ICM is a description of the interaction levels that comprise a user interface to a 
complex process. It also contains information about the composition of each level in 
terms of items at the next lower level.  These levels are illustrated in the fragment of the 
ICM that is shown in Figure 7. Each object in the ICM is associated with a real-world 
object called the object’s referent. In the case of InfacDemo, the referent is a CSAR 
Schema instance. As the user changes the focus of the UI, by changing the referent, the 
ICM object adjusts to the details of the newly selected referent. DIG requires knowledge 
of only the upper portion of the CSAR Schema and the Domain Primitives. This portion 
is largely domain independent; thus, DIG can be easily applied to other domains. The 
DIG-required portion of the schema is outlined in Appendix 3.  

At the top level of the ICM is the UIApplication, which represents a collection of tasks 
that are required by a human participating in semi-automated mixed-initiative 
collaboration (e.g., managing the resources of a building (environment, security, 
mechanical) or conducting a combat search and rescue operation). Shown in Universal 
Modeling Language (UML) notation, this top line of the diagram in Figure 7 declares the 
SARApplication to be a specialization of the more general ObjectApplication, which in 
turn is a specialization of the more general UIApplication. 

Figure 7: Compositional Levels in the Interaction-Space  

An application is composed of various UI Tasks, which are roughly analogous to a dialog 
or application window. Figure 7 shows that the DefineTask is a specialization of a 
ViewObjectTask, and is one of the sub-elements (or components) of an 
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ObjectApplication. ViewObjectTask provides the ability to view and interact with the 
details of a domain object (e.g., a CSAR Schema instance); DefineTask is a 
specialization of the ViewObjectTask that enables a user to change as well as view the 
details of the referent, including its properties, children, and associates.  

The next level of the ICM is the Interaction level. Interactions are roughly analogous to a 
subframe within a larger window (e.g., a scrolling panel or menu bar). In Figure 7, 
DefineTask has three Interactions as its sub-components. First, ObjectData is an 
interaction whereby an object’s data is interrogated and modified. Second, 
ObjectSelection allows the object’s children to be selected. Finally, ActionSelection 
provides the actions that can be taken on the object or the view of the object. The 
ObjectSelection and ActionSelection are inherited from ViewObjectTask. As shown by 
the number adornments on the “has-a” links between the task and its interaction, only the 
ObjectData is required. If there are no actions or child objects associated with the current 
referent (such as “Submit” might be for a report, or “Enable” might be for a heating 
system), the ActionSelection interaction is not required.  

Interactions are, in turn, made up of Components, which are roughly analogous in 
function and complexity to UI widgets (e.g., value sliders, trend graphs, entry boxes, 
menu lists). Components are not, however, directly tied to UI widgets; rather they are a 
device-independent representation of the interactions rendered by those widgets. For 
example, a city bus schedule is represented in the ICM as an element based on the 
ItemOverTime class. If it is presented on a display screen at a kiosk at the bus station, it 
would be represented by a different widget (a schedule timeline) than it would be if it is 
delivered over a telephone (a series of times and stops, presented sequentially in spoken 
language).  

Despite their eventual mapping to very different user interface widgets, the interaction 
design required by any bus schedule interaction in the ICM is the same: One which 
conveys the time-event pairs that make up the schedule. Thus, the same ICM objects 
represent both user interfaces. In other words, the ICM can fully specify descriptions of 
the ongoing interaction with the human, without reference to specific hardware. This 
hardware independence allows the ICM to be mapped to whatever hardware is currently 
available, most appropriate, or preferred by the user.  

The lowest level of the ICM provides additional hardware independence that is not 
shown in Figure 7. Components are broken down into interaction Primitives to allow DIG 
to separately handle information and interactors. For example, the name of a choice can 
be separated from the actual choice, contributing to the ability of DIG to compose 
multiple interfaces from the same information. The same ICM representation would be 
used to generate labeled buttons (“Print”) on a CRT, where the information appears on 
the interactor or keypad telephone interactions (“To Print press 1”), where the 
information about the action must come before the name of the interactor.  

An important feature of the ICM is the knowledge it embodies about the process of 
designing interactions that are required to meet task needs [Penner & Nelson, 1997]. The 
information contained in the compostionality of higher levels by lower levels itself 
defines the general design of the interactions for particular tasks and sub tasks. Making  
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this compositionality abstract, rather than concrete provides the responsiveness to 
situations. For example, the Dynamic Component element shown in Figure 7 cannot 
actually be instantiated; instead, it must be specialized into a more concrete element (like 
a state setter dynamic component, or a selector dynamic component). Using the 
situational parameters, like the task in which it occurs or the type of data it represents, a 
Dynamic Component will determine which of its specializations is most appropriate. 

Instances of the ICM are dynamically instantiated, maintained, and destroyed as the user 
changes focus and the domain model is modified. The set of dynamically varying ICM 
instances is referred to as the Interaction Space (ISpace). Within the InfacDemo, the 
Interaction Facilitator manages the ISpace and chooses the specific hardware devices to 
render the ISpace for the user. It does this through communication with one or more 
“Interaction Tech” modules. Each Interaction Tech controls a specific interaction device 
set (e.g., personal digital assistant, keyboard and monitor pair, etc.). The Interaction 
Facilitator partitions the ISpace among the available Techs.  

The InfacDemo implements two Interaction Techs. The JavaTech controls a 
monitor/keyboard device set running on a Windows NT system with a Java virtual 
machine. The JavaTech is the primary Tech and was used to generate the screendump 
used in Figure 4. To test the device independence of the ICM, a NewtonTech was 
implemented to map the ISpace to a personal digital assistant (a Newton). The ISpace is 
transmitted to the Newton via a TCP/IP connection and displayed for the user with 
Newton-based widgets.  

7.2.2 Testing Procedures and Results 
The majority of the testing was done using the JavaTech to map the ISpace to the screen. 
Testing consisted of using the DIG-based UI to create and edit objects to complete a 
SARIR report. A subset of CSAR Schema objects was created in advance to simulate 
preexisting instances (e.g., those that are provided by other agents). Since this is a demo 
system, object persistence and change history were not implemented.  

The resulting performance is comparable to conventional user interfaces when run on 
computers with a 200MHz Pentium or faster. Slightly slower performance is seen on a 
90MHz Pentium, but the response is well within human tolerances. Analysis showed that 
while the ISpace modifications happened very quickly, the layout of the resulting Java 
widgets was a considerable time sink. Efficiency improvements of the layout manager 
and general improvements to the Java language interpreters should render any 
performance concerns moot. 

One interesting observation was that the modifications to the ISpace following a change 
to the CSAR Schema instances where proportional to the CSAR Schema change. That is, 
if a small change was made to the domain objects, the ISpace required only a small 
modification whereas a larger change required more modifications. For example, 
changing a primitive (such as the “Message Precedence” in Figure 4) results in an almost 
imperceptible change in the UI, while creating a new object via one of the Actions results 
in a larger change. 
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8. User-Focused Evaluation 
At the conclusion of each phase of the project a user evaluation was conducted. These 
evaluations are summarized here. The SARA Baseline user evaluation was conducted at 
JSSA headquarters at Fort Belvoir, VA on 20 June 1996. Approximately fifteen people  
representing JSSA, AFRL, and other DoD organizations were present. The early SARA 
prototype was demonstrated and feedback and comments were collected.  

The Intermediate phase user evaluation was conducted in two parts. The first, held 15 
October 1997 at JSSA headquarters, Fort Belvoir, VA, focused on quantifying the utility 
of SARA's mixed-initiative assistance for CSAR tasks. The second, held 27-30 October 
1997 during the Dept. of Defense Personnel Recovery Conference at Carlisle Barracks, 
PA, collected more general feedback from the users with a focus on future directions for 
SARA. 

Both reviews met their intended objectives. As a result of the JSSA review, SARA is 
estimated to produce order of magnitude savings in time to complete CSAR tasks for all 
users with comparable or improved accuracy over current procedures. The accuracy 
improvements depend on the experience of the CSAR operator. More experienced 
personnel see comparable accuracy while inexperienced (and, incidentally, more typical) 
operators see marked improvement in accuracy. Finally, we initiated a “future directions” 
requirements document with the information gleaned from the Personnel Recovery 
Community review.   

The final SARA user evaluation was conducted in two parts. The first, held 4 August 
1998 at the Honeywell Technology Center in Minneapolis, MN, evaluated SARA from 
the context of users of the ISociety multi-agent architecture. The second was a CSAR 
expert evaluation conducted by JSSA personnel who have served as domain experts over 
the course of this project. Results of both reviews will be included in plans for future 
SARA development. 

The ISociety user review proved successful in identifying which issues require careful 
consideration when implementing SARA and which are straightforward to solve. It also 
identified more mature areas of research that have addressed similar issues. The results 
from the CSAR expert user review were encouraging but minimal. The software 
successfully loaded and ran, but since only minimal task support was implemented, the 
system had limited operational utility. This is to be expected when the primary focus of 
the project is research rather than system development. The evaluation succeeded in 
underscoring the need for a follow-on program specifically targeted to operational 
development of SARA. 

9. Conclusions 
A multi-year research project applied to a specific and complex domain, such as this 
project, results in a broad range of conclusions. These conclusions are grouped into three 
loosely defined categories: 

• Lessons learned that future projects with similar objectives should consider. 
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• Recommendations for the development of the prototype towards operational use.  

• Directions for continued research. 

9.1 Lessons Learned 
The biggest technical challenges involve developing the instance-level schema 
knowledge, fusing the resulting information (and knowing when we were done), and 
developing a rich query language to support the behaviors SARA needs. Fortunately, 
many of these issues are being addressed to varying extents by other researchers, with 
some approaches being fairly mature and expected to be available commercially in the 
near-term.  

Developing a complete shared ontology, such as the CSAR Schema, is an expensive and 
time-consuming process. For this project, using the existing C2 Schema as a starting 
point made implementation of the CSAR Schema possible within the scope of this 
project. Consequently, not only should future projects spend time to look for existing 
schemata when creating a shared ontology for their agents, but work should continue on 
shared schemas to ensure they evolve into a robust schema generally applicable to 
military systems. 

Incorporating the user as an active collaborator, rather than simply a task director, has 
proved to be a powerful and novel approach. For example, to make data fusion tractable 
in the SARA domains, the human will have to play a role in conflict resolution. As 
“fusion agents” are created, this role may be reduced, but even those agents may reach a 
point that still requires human intervention. Making this assumption enables significant 
task support to be provided to the human without becoming bogged down with trying to 
automate every aspect of the domain (e.g., planning a recovery mission). In complex 
military domains, this simplification is crucial.  

The ontological conflict detection and resolution techniques used by the Dispatcher 
improved the system's robustness and should be extended. However, the lack of ability of 
the system to use a shared ontology needs to be rectified. In practice, many multi-agent 
systems share an ontology and requiring the Dispatcher (and user) to rebuild this 
ontology would be cumbersome. Instead, the Dispatcher should be pre-encoded with a 
shared ontology, essentially a partially instantiated need-space. The conflict resolution 
techniques would then facilitate the incorporation of agents that do not use this shared 
ontology.  

Finally, conducting the research within the context of a real-world domain was crucial. 
The realism and depth that these scenarios added to the project were key to establishing 
requirements for collaboration between humans and agents. In addition, the domain 
should be selected before beginning technical work and all parties should agree. Once 
selected and technical work has begun, it is important to not change domains. 
Furthermore, the non-technical aspects of the domain should not be ignored (e.g., interest 
of the user community). 
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9.2 Operational Development Recommendations 
Due to the project's emphasis on HCI technology development, the resulting SARA 
demonstrations are not intended for operational use. Projected CSAR operations 
improvements can only be realized through additional effort to develop an operational 
system. The following sections describe four general areas that must be addressed.  

Infrastructure - Before further development can proceed, the infrastructure within 
which the SARA agents operate must be solidified. The SARA agents currently function 
within a fragile infrastructure intended only to support the research prototype. It is not, 
for example, intended to be distributed across several computers or to support easy 
addition of new agents. This additional work will apply and/or extend COTS/GOTS 
technology to provide the infrastructure needed for a robust, solid SARA implementation. 

Task Support - A powerful aspect of SARA is the ability for humans and computer 
agents to flexibly share tasks and cooperate to complete them. The current task 
representation is limited to only a small portion of the CSAR domain. The existing 
representation cannot be easily extended to other areas within CSAR, nor can it be 
adapted to other domains. This additional work will develop a formal representation of 
tasks and tests this representation. This representation would enable efficient task 
completion by dynamically assigning responsibilities to one or more human users or 
intelligent agents. 

Connectivity - SARA will require access to a wide variety of information sources, each 
with its own unique requirements. Some information is stored in relatively static 
databases, while other information is updated frequently. Some information is 
synthesized, e.g., the estimated location of a missing pilot might be synthesized from a 
reported parachute sighting, parachute drag rates, and local wind conditions. Other 
information is only available from off-line sources and must be supplied by human users, 
e.g., hard-copy photographs. In addition, SARA must be capable of handling 
contradictory, redundant, or obsolete information, as well as information stored at 
multiple security levels. Furthermore, some information sources may not be permanently 
available, or be temporarily inaccessible. SARA must also be capable of coping in these 
situations. This additional work will focus on SARA's connectivity to this wide variety of 
information sources, test the system's scalability, and extend the infrastructure to 
accommodate additional requirements.  

Robustness - To become operationally useful, the progress made in the previous areas 
will need to be solidified. We must address those issues that are commonly glossed over 
during rapid prototyping and those items that were out of scope. For example, SARA 
requires functionality to document CSAR missions and to access that documentation. 
Furthermore, important task knowledge and information sources that were previously out 
of scope will need to be added. 

9.3 Research Directions  
We have recently become interested in the basic mechanics of the collaborative process. 
It is important to note that there are two types of collaboration, implicit and explicit. 
Implicit collaboration arises from a shared understanding of the state of the world. This 



 

 

 

26

provides a level of society cohesiveness and knowledge synchronization for collaborating 
agents by providing implicitly agreed upon rules of discourse, semantics, and syntax for 
topics and situations. Explicit collaboration, on the other hand, is the collaboration 
between agents that is observable. It involves requests, responses, and passing of 
information. What we are beginning to believe is that, unless a proper foundation is laid 
for implicit collaboration among software agents, explicit collaboration is very difficult 
to achieve without the explicit sharing of information that should be implicit (like meta-
data, language, format, etc.). 

Implicit Collaboration. The implicit collaboration mechanisms that we have been 
developing for software agents in this and related programs is modeled on those of 
human groups and societies. People share a collective understanding of the world around 
them, the behavioral guidelines within which they function, and their respective role(s) in 
that society. Agents exhibit implicit collaboration when they implicitly share information 
about their application domain, goals of the group, and their respective roles. Examples 
of mechanisms for implicit collaboration in agent systems include a shared ontology, 
common communication paradigm, and a shared objective (e.g., to facilitate CSAR 
operations). 

In SARA, agents share a common communication paradigm (the need specification and 
COM) but do not have a shared ontology. The SARA Dispatcher was not pre-encoded 
with a shared ontology or schema. Instead it was built it up over time by employing the 
user to resolve conflicts. While tedious to resolve conflicts initially, subsequent runs of 
SARA required no user interaction to resolve such conflicts due to persistent storage of 
the Dispatcher's need-space. Interestingly, this resulted in an ad hoc ontology for the 
society being created and shared by participating agents.  

What the agents in SARA do share are common views of situations. Collaborating 
agents, like INFAC and a Tech, share a common view of a particular set of things that 
they are both interested in. Certain objects in the view are the responsibility of INFAC 
(changing an interaction design to fit a changing domain object), some are the 
responsibility of a Tech (changing a button state to reflect user input), and each has 
differing interests, but they jointly manage the ISpace and the objects in it. 

An interesting research question is how to share implicit collaboration knowledge with an 
agent attempting to join a society. This agent does not necessarily share the same 
knowledge as the other agents, may not know its intended role in that society, and may, 
in fact, possess knowledge that contradicts the knowledge of other society members. This 
is analogous to a person joining a new human society (e.g. an employee joining a new 
company or an immigrant joining a new culture). Some of the responsibility is placed on 
the new agent (e.g., adopting the communication protocols or ontology) and some is 
placed on the society (e.g., define the new agent's role and provide feedback to the 
agent). Finally, the society bears a responsibility to use the unique view of the new agent 
to modify its collective behavior when appropriate.  

Explicit Collaboration. Explicit collaboration allows agents to directly communicate 
about shared tasks, manage responsibility, and resolve differences. It is through explicit 
collaboration that agents can learn implicit collaboration. To provide this in an agent  
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society, dispatcher agents are needed to facilitate both the management of individual and 
group needs as well as the management of the communication between agents. Such 
mechanisms exist in human societies in the form of news media, postal services, 
secretaries, employment agencies, and so on. 

The explicit collaboration requirements between SARA agents can be viewed as a 
conversation, where the state from previous communicative acts and future 
communicative acts must be taken into account. For example, the Dispatcher might 
communicate with several agents before finding one or more capable of satisfying a 
particular need. The state of the conversation (e.g., which agents were asked and which 
refused) is important to the successful assignment of the need. Research into 
conversation policies that explicitly define the operational semantics of the agent 
communication language (e.g., [Bradshaw et al. 1997]) shows promise as a way to retain 
the state of inter-agent conversations. Future work on the Dispatcher should encapsulate 
conversation semantics relevant to inter-agent communication, allowing it to 
transparently maintain the context of the conversation. 
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 Appendix 1: Test Locations for the Map Demo 
Table of geographic center points to test CD access. 

Test Latitude Longitude DCW Libraries 

1 40 0 EURNASIA 

2 50 -130 NOAMER 

3 50 -70 NOAMER 

4 -50 -70 SOAMAFR 

5 30 50 SASAUS 

6 45 135 EURNASIA, SASAUS 

7 75 100 EURNASIA 

8 35 35 EURNASIA, SASAUS 

9 20 -10 SOAMAFR 

10 10 100 SASAUS 

11 15 -70 NOAMER, SOAMAFR 

12 -30 140 SASAUS 

13 20 -90 NOAMER 

14 40 -10 EURNASIA 

15 -10 30 SOAMAFR 

Table of place names used to test the gazetteer access. 

Test Place name Library 

1 Paris EURNASIA 

2 Turkey EURNASIA 

3 Chicago NOAMER 

4 Seattle NOAMER 

5 Somalia SOAMAFR 

6 Victoria Falls SOAMAFR 

7 Tokyo International SASAUS 

8 Mount Everest SASAUS 
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Appendix 2: CSAR Schema Hierarchy 
Main schema classes 
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Situation Object Hierarchy 
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Entity Object Hierarchy 
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Air Platform Sub-Hierarchy 
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Domain Primitive Hierarchy 
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Enum 

A 

PhysProperty 

I- 

Pattern Outltfy 

-O Physical!) es;> 

State Statw 

FreeTesrt 

CareConcept 

kkrtrter 

PlystcalVdlue 

Im»: 

OataFilc 

Action BooleanPrimrtite 

GenencLut      SimpleR elation** 

Mi oji ITii A: 
I Icvttiu Arc* 

•NN      Humdffy 

IfiMiinj 
Mm« llurton 

Frequency 

iM.l^ll 

Prenure 

Quantity      Temperature     Volume      Location 

Latitude     l.uMftude 

StcCOQN 

fypeOfCloud 

(i   it nun 

'■Hi iilr 

Mes&aoeOuaMief 

SubmtrtneType 

DeclassType 

AMcraftRolf      Ccr Mn yCm I 

Aircraft. OHCMH 

AwcraWype     PenaonndSlatite 

Acövrtylype 

Count ryCode Area Type 

Precedence TurtHitonce 

I ucdliKiOtulrfi Cjitijiifldiit: 

I 
DirectionQualriier 

Classification 
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Appendix 3:  

CSAR Schema Objects Required to Implement 
DIG 

 

 
ActiveObject

Action

target
0..1

ApplicationComponent

0..1

uses

BooleanPrimitive

DataFile

DomainPrimitive

owner
0..1

ApplicationObject

uses

0..1
Enum

FreeText

GenericDomainObject

GenericList

Identifier

Latitude

Longitude

PhysicalValue

Role

SimpleRelationship

subSituations
0..*

SituationObject

0..*
0..1

parentSituation
0..1

Time

Should assume that
DIG/INFAC objects
would access the
other primitives as
well.




