

AFRL-IF-RS-TR-2002-231
Final Technical Report
September 2002

SHARED HUMAN COMPUTER INTERACTION
ENVIRONMENT

Honeywell Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. 8137

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-231 has been reviewed and is approved for publication.

APPROVED:

 BRIAN SPINK
 Project Engineer

 FOR THE DIRECTOR:

 WARREN H. DEBANY, JR., Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Final Jun 95 – Mar 99

4. TITLE AND SUBTITLE

SHARED HUMAN COMPUTER INTERACTION ENVIRONMENT

6. AUTHOR(S)

Kyle S. Nelson, Robin R. Penner, Erik S. Steinmetz, and Stephen D. Whitlow

5. FUNDING NUMBERS
C - F30602-95-C-0177
PE - 62301E
PR - C505
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Honeywell Inc.
3600 Technology Drive
Minneapolis MN 55418

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGB
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-231

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Brian Spink/IFGB/(3135) 330-7596/Brian.Spink@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The Shared Human Computer Interaction Environment program is described with explored collaboration between
humans and software agents operating in information-intensive, dynamic command and control applications. Combat
search and rescue (CSAR) was the specific domain within which this research was conducted. Over the course of the
three-year project, experts from numerous civilian and military organizations contributed to a detailed understanding of
CSAR operations that influenced the vision, design, and implementation of the resulting system, the Search and
Rescue Assistant (SARA). Expert review indicated that, when implemented SARA would provide order of magnitude
improvements to CSAR operations.

15. NUMBER OF PAGES
44

14. SUBJECT TERMS mixed-initiative decision support, software agents, multi-agent
architecture, human computer interaction, dynamic interaction generation, command and
control, combat search and rescue 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Contents
FIGURES ..i

ACKNOWLEDGEMENTS... ii

ACRONYMS ... iii

1. EXECUTIVE SUMMARY .. 1

2. INTRODUCTION .. 2

3. APPROACH.. 3

3.1 BASELINE PHASE (JUNE 1995 — SEPTEMBER 1996) ... 4
3.2 INTERMEDIATE PHASE (OCTOBER 1996 — DECEMBER 1997)... 4
3.3 FINAL PHASE (JANUARY 1998 — DECEMBER 1998) ... 5

4. INFORMATION GATHERING... 5

4.1 CSAR DOMAIN INTRODUCTION.. 6

5. SCENARIO ANALYSIS .. 7

6. ISOCIETY ARCHITECTURE DEFINITION .. 8

6.1 INTERACTION AGENTS .. 9
6.2 DOMAIN AGENTS .. 9
6.3 INFORMATION AGENTS ... 10
6.4 DISPATCHER AGENTS.. 10

7. PROTOTYPE DEVELOPMENT ... 11

7.1 MAP-BASED SARA DEMONSTRATION (MAPDEMO) ... 11
7.1.1 OSARA Agent.. 12
7.1.2 DCW Agent... 13
7.1.3 Dispatcher .. 13
7.1.4 Agent Interaction Scenario... 15
7.1.5 Testing Procedures and Results ... 16

7.2 INTERACTION FACILITATOR DEMONSTRATION (INFACDEMO) .. 16
7.2.1 Dynamic Interaction Generation (DIG) ... 19
7.2.2 Testing Procedures and Results ... 22

8. USER-FOCUSED EVALUATION ... 23

9. CONCLUSIONS ... 23

9.1 LESSONS LEARNED ... 24
9.2 OPERATIONAL DEVELOPMENT RECOMMENDATIONS... 25
9.3 RESEARCH DIRECTIONS .. 25

10. BIBLIOGRAPHY AND REFERENCES.. 27

10.1 TECHNICAL .. 27
10.2 SEARCH AND RESCUE... 28
10.3 STANDARDS AND DATA ... 29

11. APPENDICES... 29

ii

FIGURES
Figure 1: MapDemo Architecture... 12

Figure 2: Data supplied by DCW Agent and rendered by OSARA 13

Figure 3: Mappings within the need-space ... 14

Figure 4: CSAR Schema object rendered by DIG. ... 17

Figure 5: SARIR represented in USMTF format.. 18

Figure 6: InfacDemo Architecture ... 20

Figure 7: Compositional Levels in the Interaction-Space .. 20

Acknowledgements
The authors wish to thank the personnel of the Joint Services Survival Evasion
Resistance and Escape Agency (JSSA) for assisting this program. Their domain
expertise, support, and involvement were instrumental to the success of this project. We
also wish to acknowledge the support and assistance of Dr. Allen Sears and Mr. Tony
Osinski in guiding this project.

iii

Acronyms
ATO Air Tasking Order
C4I Command, Control, Communication, Computers, and Intelligence
CENTCOM United States Central Command
CSAR Combat Search and Rescue
CSARTF CSAR Task Force
CISA C4I Integration Support Activity
COM Component Object Model
COTS Commercial Off-The-Shelf
CSEL Combat Survivor Evader Locator radio
DCW Digital Chart of the World
DIG Dynamic Interaction Generation
DISA Defense Information Services Agency
DMA Defense Mapping Agency (now known as NIMA)
DoD Department of Defense
DPMO Defense Prisoner of War and Missing Personnel Office
GOTS Government Off-The-Shelf
HCI Human-Computer Interaction
ICM Interaction Class Model
JSSA Joint Services SERE Agency
NIMA National Imagery and Mapping Agency
OLE Object Linking and Embedding
RESCAP Rescue Combat Air Patrol
SAR Search And Rescue
SARA Search And Rescue Assistant
SARIR CSAR Incident Report
SERE Survival, Evasion, Resistance, and Escape
UI User Interface
USMTF United States Message Text Format

1

1. Executive Summary
The 3-year Shared HCI Environment program explored collaboration between humans
and software agents operating in information-intensive, dynamic command and control
applications. The project was divided into three separate phases, Baseline, Intermediate,
and Final. Each phase was designed to answer specific research questions and to build
upon the results of previous phases. Each of the three phases consisted of five sequential
subphases: Information Gathering, Scenario Analysis, Architecture Definition, Prototype
Development, and User-Focused Evaluation.

Several application domains, (including cardiac care, shipboard fire fighting, and oil
refinery operations), were considered before deciding upon combat search and rescue
(CSAR). Since the collaboration technology needs were similar in each of the candidate
domains, CSAR domain was selected because of its relevance to DARPA, the existence
of a supportive user community, and the availability of scenarios for system
development. Over the course of the project, experts from numerous civilian and military
organizations contributed to a detailed understanding of CSAR operations that influenced
the vision, design, and implementation of the resulting Search and Rescue Assistant
(SARA) system.

A multi-agent architecture, called the Interaction Society (ISociety), was designed for
SARA that embodies the following capabilities:

 Automatically retrieve and integrate information relevant to the task at hand, from a
broad spectrum of diverse data sources, without explicit direction from the user.

 Maintain and monitor a model of CSAR tasks that describe what the human and
automated systems are doing, should do, and can do.

 Dynamically create context-sensitive data visualization displays that reflect the
current set of goals, ongoing tasks, required and available assets, and incoming
information.

In an ISociety, each agent contributes a specialized skill, and, in return, relies on other
society members to provide information within their specialized spheres of interest.
Expertise embodied by ISociety agents falls into the following four broad categories.
First, interaction agents interact with and help the user (physically and mentally)
collaborate with other agents in the society. Second, domain agents track and perform the
tasks necessary to support the CSAR domain processes. Third, information agents access
and interpret external information sources. Finally, dispatcher agents facilitate the
management of individual and group needs as well as the management of the
communication between agents.

Three key technical challenges to implementing the ISociety were identified. First, task
assistance is required to flexibly divide responsibilities and actions between the computer
and human users. Second, the multi-agent architecture must allow agents to operate,
communicate, and collaborate with each other and with humans to successfully complete
the objectives of the system. Finally, user presentations (i.e., the UI) must adapt to the
constantly changing situation and task environment.

2

Each challenge was addressed to varying degrees during the program, with dynamic UI
generation being the primary emphasis. Two prototype demonstration systems were
implemented to explore and test solutions to these challenges. The first, called the Map-
based SARA Demonstration (or MapDemo), explored the implementation of the multi-
agent architectural concepts required by an ISociety and developed HCI concepts for
mixed-initiative collaboration to CSAR experts. The second, called the Interaction
Facilitator Demonstration (InfacDemo), implemented a Honeywell-developed technique
for dynamic UI generation and served as a testbed for a CSAR ontology (or schema).

The project gained an understanding of human-agent collaboration in a real-world
military domain, which led to technical advances in several areas including multi-agent
architectures and dynamic UI generation. The conclusions reached during this project fall
into three broad categories:

 Lessons Learned: The lessons learned cover a range of technical and programmatic
issues that similar projects should consider. Two are particularly noteworthy. First,
incorporating the user as an active collaborator, rather than simply a task director,
proved to be a powerful and novel approach. Second, conducting the research within
the context of a real-world domain was crucial. The realism and depth that these
scenarios added to the project were key to establishing requirements for collaboration
between humans and agents.

 Operational Development: Expert review indicated that, when implemented, SARA
would provide order of magnitude improvements to CSAR operations. To realize
these benefits, follow-on work is required to address four areas. First, the
infrastructure within which the agents operate must be solidified. Second, a task
representation to enable efficient task distribution and completion must be defined
and implemented. Third, the ISociety must be scaled to allow connectivity to a wide
variety and number of information sources. Finally, automated mission
documentation, persistence, redundancy and other robustness issues must be
addressed.

 Future Research: The mechanics of two types of collaboration, implicit and explicit,
are particularly intriguing. Implicit collaboration arises from a shared understanding
of the state of the world including, for example, rules of discourse, semantics, and
syntax for topics and situations. Explicit collaboration, on the other hand, is
observable collaboration involving requests, responses, and passing of information.
Among the interesting research questions is how to share implicit collaboration
knowledge with an agent attempting to join a society and what is the role of the user
in facilitating this. This agent does not necessarily share the same knowledge as the
other agents, may not know its intended role in that society, and may, in fact, possess
knowledge that contradicts the knowledge of other society members. Unless a proper
foundation is laid for implicit collaboration, explicit collaboration between these
agents is very difficult to achieve.

2. Introduction
For three years, Honeywell Technology Center in Minneapolis has been under contract to

3

DARPA through the Human Computer Interaction Program. The goal of the Shared HCI
Environment project that we performed under this contract was to investigate techniques
to improve human-computer interaction with multi-agent software systems, emphasizing
those that involve the human as an active collaborator.

In recent years the terms “agent” and “multi-agent” have been used quite broadly. For
our purposes, a software agent is a computer software system characterized by
situatedness, autonomy, adaptivity, and sociability [Sycara, 1998]. A collection of agents
interacting to satisfy the objectives of the user is considered multi-agent system. Agents
within such systems can interact in a number of ways, including using economic models
to compete for tasks. This research program focused on cooperative collaboration rather
than competitive collaboration among agents to satisfy the objectives of the user.

The application domains of interest were those in which the human user must interact
with and process information from a large number of information sources. We were most
interested in domains in which the importance and relevance of information vary
according to the specific situation and task. We selected a single domain, Combat Search
and Rescue (CSAR), to demonstrate and test our multi-agent architecture. Examples of
other potential domains include medical diagnosis, industrial control, military command
and control, and intelligence analysis.

In such domains, the user frequently does not have the necessary knowledge to access
and analyze constantly changing information, nor the time to determine which
information is most relevant to the current situation. On the other hand, the complexity of
these domains prevents software agents from completely automating all (or even most) of
the tasks necessary to meet the situation requirements in enough detail to provide specific
templates in advance. In addition, much of the useful information may not be accessible
to or interpretable by the agents (e.g., natural language messages or notations, hard copy
photographs, etc.). This requires the human user to act not only as a supervisor, but also
as an assistant to the software agents. Software systems such as these, in which human
users collaborate with multi-agent systems, are categorized as “mixed-initiative” systems.
The system and user work in a collaborative partnership to adapt to the changing
situation. The focus of the research performed for the Shared HCI Environment program
was to develop human computer interaction (HCI) techniques to improve this
collaboration.

We first describe our approach to this research problem during each of the project’s three
phases. Next, we describe the two software demonstration systems produced to develop
and test our research theories and hypotheses. Finally, we discuss our research
conclusions and our recommendations for future work.

3. Approach
The project was divided into three separate phases. Each phase was designed to answer
specific research questions and to build upon the results of previous phases. We executed
a user-centered, rapid prototyping development process that involved user input at every
stage, and performed a user review at the conclusion of each phase. Each of the three
phases consisted of the following sequential subphases:

4

1. Information Gathering: Obtained and reviewed progressively more detailed
information regarding the selected domain to produce a set of scenarios involving
human computer interactions in that domain.

2. Scenario Analysis: Determined the functional requirements for a prototype system,
and detailed the hardware and software requirements placed upon the system.

3. Architecture Definition: Developed the architectural concepts and defined the
functional components necessary to satisfy the requirements; evaluated the
architecture, including a review of relevant government, commercial, and public
domain software in terms of these requirements.

4. Prototype Development: Used a rapid development methodology to iterate through
design/redesign cycles of system components and to integrate those components
together into a prototype demonstration.

5. User-Focused Evaluation: Completed the user centered design cycle by validating
functional requirements through usability testing and user review. Results provided a
starting point for the subsequent phase.

The remainder of this section summarizes the goals of each phase followed by sections
that describe overall project. Details of each specific phase are documented in the System
Development Document [Nelson et al. 1998] for this program.

3.1 Baseline Phase (June 1995 — September 1996)
The goals of this phase were to:

• Select an application domain that identified an interested and supportive user
community that included ample scenarios for testing and system development.

• Gather domain information and perform scenario analysis by iterating with domain
experts.

• Develop an early conceptual design for the system that includes user-interface mock-
ups. Present this to the application domain experts.

• Identify research issues and bottlenecks to fielding the defined system.

3.2 Intermediate Phase (October 1996 — December 1997)
The goals of this phase were to:

• Continue collaboration with domain experts at conferences and meetings. Incorporate
this knowledge into the system design.

• Explore each of the research issues identified during the Baseline phase. Extend the
prototype to implement, test, and evaluate selected candidate solutions.

• Define and apply metrics to estimate the utility of an operational system for the
selected domain.

5

3.3 Final Phase (January 1998 — December 1998)
The goals of this phase were to:

• Continue collaboration with domain experts through attendance at conferences and
knowledge acquisition meetings.

• Focus research and technical development on the most challenging research issues
and solidify the overall system design in the process.

• Document the next steps necessary in developing a system beyond the research
prototype stage.

4. Information Gathering
Several application domains, (including cardiac care, shipboard fire fighting, and oil
refinery operations), were considered before deciding upon combat search and rescue
(CSAR). These domains share such characteristics as numerous independent and
dynamic on-line and off-line information sources, a fluid task environment, and a user
community skilled in operations, not computers. Since the collaboration technology
needs were similar in each of the candidate domains, we selected the CSAR domain
because of its relevance to DARPA, the existence of a supportive user community, and
the availability of scenarios for system development.

The decision to focus on CSAR was clear after an initial meeting with the Joint Services
Survival, Evasion, Resistance, and Escape Agency (JSSA). At the JSSA meeting, CSAR
experts were interviewed regarding the tasks involved in CSAR, as well as the needs and
profiles of users. From this interaction, we determined that not only was CSAR an
excellent match to the project’s research objectives, but that the speed, efficiency, and
accuracy of CSAR operations could be greatly improved through the application of
multi-agent collaboration technology. Therefore, a decision was made to direct the efforts
of this program towards the development of a Search and Rescue Assistant (SARA).

Subsequent information gathering activities increased the scope of user participation
through continued interviews with domain experts. We also gathered valuable
information at presentations and demonstrations at several personnel recovery
conferences. Of particular note, SARA was presented as part of a vendor display at the
Department of Defense Personnel Recovery Conference at Carlisle Barracks sponsored
by the Defense Prisoner of War and Missing Personnel Office (DPMO). During this
conference, SARA was repeatedly demonstrated to a broad cross section of civilian and
military CSAR experts. Over the course of the project, experts from the Civilian Air
Patrol, JSSA, CENTCOM, DPMO, DISA, CISA, Pacific Rescue Coordination Center,
United States Coast Guard, and others contributed to a detailed understanding of CSAR
operations. Feedback from these experts at subsequent reviews and conferences indicates
that this understanding is reflected in the vision, design, and implementation of the
SARA system.

6

4.1 CSAR Domain Introduction
The following section provides a justification for the selection of CSAR as the
application domain and a very brief introduction to military CSAR operations. For more
detailed information, a list of CSAR-related references is provided in the bibliography
(Section 10.2).

CSAR operations are characterized by five distinct tasks. Each of these tasks requires
access to disparate information sources (satellite photos, status reports, debriefing
sessions, weather data, digital maps, etc.). The five fundamental CSAR tasks are:

• Report: Inform relevant personnel that a new CSAR mission is required.

• Locate: Identify, with high certainty, the most probable position of the isolated
personnel (the evader) and verify his/her identity.

• Support: Provide necessary support to the evader to prevent their capture and to
facilitate a rescue operation.

• Recover: Plan and execute the recovery of the evader.

• Repatriate: Return the evader to friendly forces and complete the verification and
documentation of the actions taken, their results, and lessons learned for future
operations.

The scope of the SARA implementation was limited to supporting Joint Search and
Rescue Center (JSRC) staff during the second task, broadly involving location of the
evader, to both constrain the work and to demonstrate the benefits of our approach. The
non-deterministic nature of CSAR incidents makes the relevant information used in
locating an evader extremely situation-specific, dynamic, and difficult to predict in
advance. In an ocean search, for example, the water current information is critical, but
such data is irrelevant when searching small bodies of water like lakes. Furthermore,
information sources are the most complex, disparate, and distributed in this phase.

As with other C4I domains, the information is constantly changing the codeword from
yesterday is not the same as today. Yet this legacy information must be retained for
operational reasons, not just documentation. Information known to the missing
individual, particularly security-related information, is current only up to the time they
became isolated. The correct codeword for them might be from last week. Recalling that
information can be crucial to verifying the individual’s identity.

Another difficulty with implementing automated assistance in this domain is the lack of
access to electronic information. Crucial information is often not on-line, or is in an
incompatible or non-integrated format. For example, photographs might only be in hard-
copy format, or witness reports might arrive in natural language via email, telephone, or
fax, requiring human interpretation to ascertain the relevance of this information to
ongoing operations.

Not only is the information dynamic and situation-dependent, but the tactics used are also
strongly situation-dependent and based on dynamically changing higher-level plans and
goals. In combat situations, for example, search must be accomplished by means other

7

than flying search patterns because the searcher's predictability makes the search craft
vulnerable to enemy fire. This alters not only the procedures, but also affects the suitable
information sources. In this case, JSRC personnel must rely more heavily on satellite
photos and other less intrusive information sources.

Most C4I domains share these features, but, because of their complexity, are difficult to
scope for research projects such as this one. CSAR, however, has several unique features
that make it suitable for such research. CSAR operations are generally smaller in scope
and are also more standardized than many others are. This manageability, combined with
representative complexity, makes the CSAR domain and procedures an especially
productive one for testing the feasibility and design of multi-agent systems.

5. Scenario Analysis
The variability of CSAR incidents places several key constraints on the design of a
collaborative multi-agent system. Since information sources cannot be exhaustively
enumerated before (or even during) an incident (e.g., it is not possible to identify
witnesses to an incident before it occurs), it is necessary to separate the high-level
domain knowledge from the execution details. Thus, a mixture of agents performing
tasks at various levels is required. In particular, agents that possess knowledge of the
high-level goals, plans, and strategies should not concern themselves with details of
completing those tasks. Rather, they should rely on agents skilled in specific tasks (e.g.,
accessing an information source or calculating the most probable search area) to assist
them.

Further, because they will participate to varying extents at different times, these agents
must flexibly interact without a priori knowledge of each other. For example, an agent
that calculates the likely search area based on a parachute sighting might rely on wind
speed information supplied by multiple location-dependent sources. Until the location is
known, this agent has no reason to interact with agents that can supply the wind speed
and may not even know such agents exist.

Finally, the fact that much of the useful information may not be electronically accessible
or interpretable requires the system to rely on the user not only as a supervisor, but also
as an assistant. As with everything else in the CSAR domain, this division of labor is
dynamic. The system and user must form a dynamic collaborative partnership to adapt to
the changing situation.

A multi-agent architecture must embody the following capabilities to improve the CSAR
process:

• Automatically retrieve and integrate information relevant to the task at hand, from a
broad spectrum of diverse data sources, without explicit direction from the human
user.

• Maintain and monitor a model of CSAR tasks (standard operating procedures) that
describe what the human and automated systems are doing, should do, and can do.

• Dynamically create context-sensitive data visualization displays that reflect the
current set of goals, ongoing tasks, required and available assets, and incoming

8

information.

Two subtasks of the Location task, SAR Incident Report (SARIR) completion and
geographic situation awareness, were chosen as examples that highlight many of the
capabilities above. The first, SARIR completion, is a time consuming task that must be
completed before other location subtasks can begin. The SARIR is a message format
found within the United States Message Text Format (USMTF) templates. The SARIR,
and USTMF in general, has a very complicated and terse format that requires much
experience to accurately complete and interpret. Not only are there over 45 applicable
USMTF formats for CSAR operations, but the information required by a particular
format varies with the situation. Additionally, there are fairly complex constraints on
allowable entries that require a variety of interface widgets. Metrics, based on this task,
will be collected to estimate the utility that an operational SARA would provide to CSAR
Operators, including the time to complete the task and the accuracy of the report
generated by the task.

The second task, geographical situation awareness, was selected to provide a test case for
the multi-agent architecture and its ability to provide mixed-initiative task assistance. In
particular, techniques for sharing information, specifying requests, handling tasks, and
presenting information could all be tested using this scenario.

6. ISociety Architecture Definition
The requirements of the selected SAR domain led to an architecture consisting of a
“society” of collaborating agents. In an agent society, each agent is treated as a
knowledge source; the assistance function is provided by a number of agents interacting
to solve a problem for the user. In the case of SARA, not only do agents solve problems
for the user and each other, but the user solves problems for the agent as well.

To facilitate these collaborative partnerships, the society provides a framework, called
the Interaction Society (or ISociety) [Penner, 1996], that maintains the needs and goals of
the participants. In an ISociety group of collaborative agents, each member contributes a
specialized skill, and, in return, relies on other society members to provide information
within their specialized spheres of interest.

ISociety is derived from the societal behaviors of socialized agents embodied in Rieken’s
M System [1997], which in turn owes much to Minsky’s [1985] earlier conceptual work.
In particular, agents with differing reasoning processes are integrated via rules, object
representation networks, scripts, and a blackboard system [Nii, 1986].

Expertise (and knowledge) embodied by member agents in an ISociety architecture falls
into four broad categories:

 Interaction Agents that interact with and help the user (physically and mentally)
collaborate with other agents in the society,

 Domain Agents that track and perform the tasks necessary to support the CSAR
domain processes,

 Information Agents that access and interpret external information sources, and

9

 Dispatcher Agents that facilitate the management of individual and group needs as
well as the management of the communication between agents.

This categorization scheme is similar to Decker’s [1997], which consists of interface
agents, task agents, and information agents. In addition, we add dispatcher agents to
enable the collaboration. Dispatcher agents facilitate inter-agent communication by
routing requests, translating between ontologies, and allowing agents to cooperate
without a priori knowledge of each other. Dispatcher agents are considered members of
the society, not simply as an interaction substrate.

The different types of agents reflect the roles an agent fulfills in the ISociety. Just as in
human societies, ISociety agents may fill one or more roles. For example, an agent
providing access to a map database (acting as an information agent) might also display its
data and the data of other agents (acting as an interaction agent). The role (or roles) an
agent fills is important for identifying its needs and responsibilities within the larger
society. This is particularly useful when incorporating legacy systems. A system that
accesses a database, for example, is incorporated more easily if its role can be limited.
The following sections describe each of the roles within an ISociety in more detail.

6.1 Interaction Agents
The demands on an interaction agent are complex in C4I domains like CSAR. There are
many possible users, many possible hardware configurations, and many possible software
languages, architectures, and operating systems. In addition, the domain parameters and
the tasks that must be performed are fluid, interdependent, and intricate. In a simpler
domain, the agent can rely on a simple user interface design to manage the collaboration
between software and human agents. In a complex domain, however, the interaction
agents must have a more sophisticated basis for reasoning about how to communicate
with users, and how to support the rapidly changing, situation-dependent task space.

An emphasis of ISociety is the inclusion of human users who actively collaborate by
providing the society with areas of expertise not available on-line. Given the non-
deterministic nature of the task and the situation, presenting the relevant actions and
knowledge of the society in a cogent way, and allowing the human to interact gracefully,
are key factors in the overall success of ISociety-based systems. In an ISociety, it is the
interaction agents who are responsible for maintaining the user’s situation awareness and
meeting the society’s needs for user interaction [Penner, 1996].

6.2 Domain Agents
Domain agents are versed in the tasks, subtasks, and procedures for a particular
application domain. These agents proactively seek to accomplish tasks in their area of
expertise. For example, a domain agent versed in the techniques for detecting a CSAR
incident, like overdue flights, would contain the knowledge and procedures necessary to
detect and confirm a new incident. Domain agents are inherently mixed-initiative as they
rely on the society and the user to carry out many of their tasks.

Typically, as with human-human collaboration, it is not possible to have a single agent
skilled in all aspects of the application domain. Rather, domain knowledge is distributed

10

among several interacting agents. An agent responsible for documenting the progress of a
mission may not know when such documentation should be completed. This may be the
purview of another domain agent that communicates the need for this to the
documentation agent.

6.3 Information Agents
Information agents provide information to the ISociety by accessing one or more
information sources (e.g., a relational database) and calculating information using data
provided by other society members. Information agents are associated with information
sources or information needs; for example, an agent that provides weather forecasts
might rely on other agents to provide the data necessary for the analysis. By relying on
the society for this data, the forecasting agent need only focus on calculations in its own
area of expertise.

The user is considered the ultimate information agent in the SARA ISociety. If required
information is not available from any other information agent, the user would be
requested to provide it. This mixed-initiative approach provides a robust information
access capability for situations in which the connectivity, access and location
requirements can vary. For example, military CSAR centers can be located in buildings,
ships, tents and even airplanes. In each case, the quantity, quality, and access details can
vary greatly. A CSAR center based at a large air force base might have direct, on-line
access to databases, while a remote CSAR center may only have a voice link. By
encapsulating access to this information and providing a transparent means to request
data from the user, the participating agents need not be concerned with details of a
particular installation.

6.4 Dispatcher Agents
Dispatcher agents address three basic constraints on ISociety implementations:

• The specific information source (or sources) of information might not be known in
advance since the situation may alter the availability and relevance of member agents.

• ISociety agents rely on other members of the society to accomplish tasks and provide
information.

• The user is tasked with providing information and/or services when other ISociety
agents cannot.

Dispatcher agents resolve conflicts between agents and permit member agents to
collaborate without the a priori knowledge of other ISociety agents. When agents register
overlapping interests, for example, the collaboration between agents must either be
disambiguated by the individuals involved, or disambiguated by an external decision-
maker.

In addition to providing arbitration, dispatcher agents provide essential society services
by tracking the current members and their capabilities, knowing how to manage society
membership, and managing the high-level goals of the society as an entity distinct from
the individuals who participate in it.

11

7. Prototype Development
Review of the architecture described above identified the following three technical
challenges to its implementation:

• Mixed-Initiative Task Assistance: This type of assistance should flexibly divide
responsibilities and actions between the computer and human user(s). The resulting
system should allow the human to focus on details of the operation or mission rather
than details of information search, access, and fusion.

• Multi-Agent Architecture: The architecture should allow agents to operate,
communicate, and collaborate with each other and with humans to successfully
complete the objectives of the system. Agents within this architecture must be
capable of functioning with little or no a priori knowledge of other agents.

• Dynamic UI Generation: In a dynamic situation and task environment it is difficult to
predict what information will be useful at a given time. Consequently, conventional
user interfaces (UIs) lack the robustness and flexibility required to fully support the
system. Techniques must be developed to dynamically generate these UIs based on
the current situation and ongoing tasks.

To address these challenges, the prototype development was split into two separate
systems. Although an integrated demo was considered, the mixture of languages (VB,
VC++, and Java) increased the complexity and difficulty of the implementation without
shedding any additional light on collaboration issues between agents and humans. The
decision to produce two separate demonstrations rather than a single integrated one
provided additional opportunity to explore research issues rather than becoming mired in
implementation details.

The first demo, called the Map-based SARA Demonstration (or MapDemo), addressed
the dual purpose of exploring the implementation of the multi-agent architectural
concepts required by an ISociety and presenting HCI concepts for mixed-initiative
collaboration to CSAR experts. The second demo, called the Interaction Facilitator
Demonstration (InfacDemo), also served a dual purpose. This demo implemented a
technique for dynamic UI generation and also served as testbed for a CSAR ontology (or
schema). These demonstration systems are described in the following sections.

7.1 Map-based SARA Demonstration (MapDemo)
The MapDemo is a society of agents that fulfill each of the agent roles described in
section 6. The agents operate as independent executables, communicating with an
independently running dispatcher agent called the Dispatcher. The agents are written in
Microsoft’s Visual C++ (VC++) and communicate using Microsoft's Component Object
Model (COM) via a straightforward OLE Automation interface. These agents, shown in
Figure 1, cooperate to access and display global map information to the user.

12

Figure 1: MapDemo Architecture

In the MapDemo, the interaction role is fulfilled by Original SARA (OSARA) which is
an encapsulated version of the proof-of-concept demonstration developed during the
baseline phase. The emphasis of this early demonstration was on providing a user-
centered view of the ISociety and demonstrating other system utilities of SARA.
Consequently, the UI for this demonstration was quite advanced. By encapsulating the
original system as an agent, the MapDemo capitalized on the benefits of ISociety's
inclusiveness by reusing a large portion of the original's UI.

The DCW agent is an information agent responsible for accessing the Defense Mapping
Agency's (DMA) Digital Chart of the World (DCW) database, a comprehensive database
of global map information. The DCW Agent fulfills society requests for map information
including gazetteer information and geographic data.

Note that an earlier version of MapDemo included a Mission agent that fulfilled the
domain agent role. This agent contained procedural knowledge necessary to complete the
SARIR for a new CSAR mission. During the final phase, the Mission agent functionality
was incorporated into the InfacDemo, and will be described in this report as part of that
discussion in section 7.2.

The OSARA demonstration serves as a means to test inter-agent communication and
communication between agents and humans. In particular, not only does the user task the
agents (e.g., by selecting the map location and overlays to display), but in some situations
tasks are requested by an agent that must ultimately be completed by the user (e.g.,
changing a CD in the CD-ROM drive). After describing the major MapDemo
components, a scenario is described to illustrate this interaction.

7.1.1 OSARA Agent
OSARA is a multi-process agent implemented using a combination of VC++ and Visual
Basic (VB). The University of Michigan's C++ implementation of the Procedural
Reasoning System (UM-PRS) [Huber et al., 1976] is used to handle multi-processing
during communications with external agents. The UI functions are provided by a VB
application with which the VC++ portion communicates.

OSARA incorporates a screen clutter reduction algorithm that attempts to reduce the
displayed information to a level that the user can comprehend. Rather than evaluating the
actual volume of information that must be displayed, this algorithm determines the
number of layers that have been selected and removes those that are less relevant for the

OSARA

Digital Chart of the World
Database (CD-ROM)Persistent Need Space

VB Tech Dispatcher
DCW
Agent

OSARA

Digital Chart of the World
Database (CD-ROM)Persistent Need Space

VB Tech Dispatcher
DCW
Agent

13

task of perusing a map at a given zoom level. This works well for populated areas (e.g.,
Europe) but not very well for remote areas (e.g., Newfoundland, Canada) because the
volume of information per layer varies between areas. Finally, SARA's choices can be
overridden by the user, if SARA defines a view that is not consistent with the user’s task.

7.1.2 DCW Agent
The DCW agent encapsulates a legacy system, VPFVIEW, provided by DMA. The fact
that this agent's role is as an information agent, and not an interaction agent, simplified
the inclusion of VPFVIEW into SARA. The database manipulation routines were
virtually untouched while the user interface portions, specialized for older MS-DOS-
based machines, could be excised.

Figure 2: Data supplied by DCW Agent and rendered by OSARA

The DCW database is composed of 4 CD-ROMs each capturing a different portion of the
globe. When the agent receives a map request, the DCW agent determines if the proper
CD is loaded for the requested grid. If the grid is not supplied, it requests that the original
requester supply one. If the CD is incorrect it requests that the society provide a path to
the proper CD and suspends the request until the CD is available, moving on to any other
pending requests.

7.1.3 Dispatcher
The Dispatcher enables anonymous communication between SARA agents. Every SARA
agent, as it starts up, establishes a communication link with the Dispatcher and informs it
of the information and services the agent requires from and provides to the society.
Whenever an agent has a need that it cannot meet, it asks the society for help by posting
its need to the Dispatcher.

The Dispatcher determines the set of agents capable of satisfying the need, selects a

Z* £<M wn B** y°P Mfodow U»lp
■ I • I

»riinico
«ft?

rfüM*

. -••-,„, "TrrMSCMAWWIGAGENCY/SvSTEMCrrjTFB

ILIA SAWTWA tO—*iv>ftPepulai»drv>f»)
■•OH fllfttUSlA -1 jr^LAWlFlF n

rt'"jf'

14

suitable one, and assigns the need to it. It does this through the creation and maintenance
of a blackboard data structure called the “need-space”, which it uses to track, assign, and
monitor the needs of the society as a whole.

Figure 3: Mappings within the need-space

Via the need-space, the Dispatcher maintains a mapping from each consumed need to the
suppliers. This mapping (Figure 3) is contained in a set of request packages. Each request
package represents an alternative method for satisfying the need. For example, in a
society with two different sources of road information, a consumer of road information
might have two request packages, one for each of the agent-based map sources. When an
agent posts a need to the Dispatcher, the Dispatcher selects one of the possible request
packages and assigns the need to the appropriate agents. If the assigned agent fails to
meet the need, the Dispatcher selects another suitable request package. Finally, if none of
the available request packages meet the need, the Dispatcher assigns the need to the
default need supplier (OSARA in our case).

OSARA registers with the Dispatcher as the “default need supplier”. Consequently, any
need that cannot be satisfied by other SARA agents (e.g., ontological conflicts that are
not automatically resolved) will be assigned to OSARA. When assigned a need by the
Dispatcher, the user is requested to enter the desired information, or provide a pointer to
a file containing that information. The supplied information is then forwarded to the
requesting agent by the Dispatcher to complete the need.

In an extension to matchmaking systems [e.g., Cottam et al, 1995], rather than relying on
direct agent-to-agent communication once a match is made between requester and
provider, the agents continue to communicate directly with the Dispatcher. This not only
eliminates the need for a shared ontology among all agents, but also allows agents to
cooperate without a priori knowledge of other agents in the society. Instead, it lets each
agent express the information and services it provides and requires in terms that make
sense to it, but not necessarily any other agent in the society. SARA uses the Dispatcher
to map between these differences using the need-space.

In practice, many multi-agent systems do share an ontology, and requiring the Dispatcher
(and user) to rebuild this ontology could be cumbersome. A society working in these

Consumed Info Request Packages

Rescue_Routes

Water

Roads

Supplier Agents

A1

A2

A3

MultiLane_Roads (MLR)
SingleLane_Roads (SLR)

Navigable_Rivers (NR)
Lakes (LK)

Roads (RD)

Planned_Roads (PR)

MLR, SLR

NR
NRRD

LK, NR

RD
MLR, SLR, PR

Consumed Info Request Packages

Rescue_Routes

Water

Roads

Supplier Agents

A1

A2

A3

MultiLane_Roads (MLR)
SingleLane_Roads (SLR)

Navigable_Rivers (NR)
Lakes (LK)

Roads (RD)

Planned_Roads (PR)

MLR, SLR

NR
NRRD

LK, NR

RD
MLR, SLR, PR

15

 domains would use a Dispatcher pre-encoded with this ontology, essentially a partially
instantiated need-space. That is, these limited ontological assumptions are not meant to
exclude the use of a shared ontology, but rather to facilitate incorporation of agents that
do not share the same ontologies.

For operational use, the current implementation will require many more agents;
moreover, those agents will undoubtedly be distributed for practicality and robustness
reasons. SARA agents must connect to and communicate with the Dispatcher; but in a
large, distributed system this requirement would quickly result in the Dispatcher
becoming a bottleneck and a single point of failure. Furthermore, the knowledge needed
to locate and connect to a single, possibly remote, Dispatcher could be extensive.
Requiring this knowledge of each agent would place unreasonable demands on their
implementation, particularly for encapsulated legacy systems.

These observations lead to a planned distributed Dispatcher. With a distributed
Dispatcher, ISociety agents always connect to and communicate with a local Dispatcher.
That is, every machine with at least one ISociety agent would also have a Dispatcher.
Thus, rather than search for a possibly remote Dispatcher, each agent need only check for
a local Dispatcher or spawn a new Dispatcher if one does not exist. The potentially
complex knowledge and procedures necessary to communicate with distributed agents is
encapsulated within the application-independent Dispatcher, making it easily reusable.

7.1.4 Agent Interaction Scenario
To make the interactions among agents clear in the MapDemo, consider the case of the
user selecting a geographic location not accessible from the DCW CD currently loaded in
the CD-ROM drive. Assume that the CD-ROM drive is a conventional one that requires a
person to change the CD, i.e., not a jukebox.

The user selects the new location in the VB portion of OSARA, which causes OSARA to
clear the current map and post “needs” for new map information. The information
requested consists of the same map data that was present before the location was
changed. Each type of map data (e.g., roads, coastlines, etc.) is the subject of a separate
need posting.

The Dispatcher receives each of these requests and matches the subject against its Need-
space. Assuming that the DCW agent has been registered, these needs map to a request
package that can be satisfied by the DCW Agent. In some cases, the need posted by
OSARA is a generalization of the information provided by the DCW agent. For example,
OSARA requests “roads” while the DCW agent supplies “multi-lane roads” and “single-
lane roads”. Thus, the request package for “roads” is relayed to the DCW agent as two
separate requests, one for each of the DCW-specific information types.

When the DCW receives each of these requests, it checks to see if the requested
geographic grid (supplied with the original need by OSARA) falls (or partially falls)
within the extent of the currently loaded CD. If so, it will proceed with collecting and
returning the information. In this case, however, the CD is not correct. The DCW Agent
will suspend all of the requests that do not match the current CD and post a single need
back to the Dispatcher for the proper CD to be loaded which includes the name of the

16

CD.

Note that the DCW agent does not have knowledge of the agent requesting the
information nor does it have knowledge of which agent will satisfy its request to change
CDs. Instead, all communication is done through the Dispatcher. In the case of the CD
change need, the Dispatcher’s need-space does not have a mapping between this need
and any supplier agents. In the absence of a successful mapping, the need is assigned to
the “default need supplier”, which is usually an interaction agent (i.e., the need is
eventually handled by the user). If, for example, a separate agent administered a CD
jukebox, this “jukebox-agent” would be assigned the need; otherwise the need would be
assigned to the default need supplier.

As the default need supplier, OSARA accepts the need and requests that the user switch
to the requested CD. At this point, the user types the path to the new CD and informs
OSARA that s/he is finished. OSARA then relays the information to the Dispatcher that
subsequently passes it on to the DCW Agent.

Once the DCW Agent receives word that the CD has been changed, it reactivates the
suspended needs, verifies that the CD is correct, and collects the requested data. As each
type of information is collected, the DCW Agent informs the Dispatcher when the data is
present and to which file the data was saved. As each part of the request package is
completed, the Dispatcher informs OSARA of the location of the data. Finally, OSARA
reads the data from the files and renders the map. Note that the information file is a copy
and OSARA is free to do whatever it wants with it. Consequently, it is OSARA’s
responsibility to delete the file when it is finished with it.

7.1.5 Testing Procedures and Results
The MapDemo was tested to evaluate the screen clutter reduction algorithm, verify that
requests for DCW data and associated requests for CD changes were correct and
consistent, and identify memory leaks and other subtle bugs. The test data included 15
different latitude and longitude locations that were used as the map center and 8 place
name locations. These included locations from each of the CDs and some that fell on the
border between two or more CDs. The specific locations are found in Appendix 1.

For each location or placename, the location was selected at the map’s standard zoom
level. Once the map was drawn the map was zoomed out one level, in one level, and back
to the original zoom level. This resulted in the map being drawn and data being accessed
5 times for each test. The map layers included oceans, roads, city locations, city names,
coastlines, and both administrative and international boundaries.

The testing was effective at eliciting memory leaks and other bugs that occur over
periods of long use. The serious problems were fixed while those problems that could be
categorized as benign or as enhancements were considered out of the current scope and
added to a “wishlist” for subsequent work.

7.2 Interaction Facilitator Demonstration (InfacDemo)

17

The Java-based InfacDemo, the second demonstration prototype, implements Dynamic
Interaction Generation (DIG) technology [Penner & Nelson, 1997] and an object-oriented
CSAR schema. DIG is used to dynamically generate a UI to enter SAR Incident Report
(SARIR) information for a CSAR Mission. The UI allows the user to create and modify
CSAR Schema objects which are then used to generate a SARIR (Figure 4) object
instance which can eventually be “submitted” by exporting it as a text file in the USMTF

format (Figure 5).

Figure 4: CSAR Schema object rendered by DIG.

The CSAR Schema is a loose combination of the Command and Control Schema (C2
Schema) [Carrico, 1996] that is being constructed to support military-based software
systems and a model of the Joint Personnel Recover process described in [Fernandez et
al. 1996]. The collection of instantiated schema objects represents the current CSAR
situation, entities, and information.

18

The high-level structure of the CSAR Schema consists of six main branches: Situations,
Information, Entities, Domain Primitives, Task Behaviors, and Plan Objects. The latter
two of these, Task Behaviors and Plan Objects, are only sketched in and not used in the
InfacDemo. Consequently, only the Situation, Information, Entity, and Domain Primitive
branches will be described in any detail. The diagrams of the current CSAR Schema can
be found in Appendix 2.

Figure 5: SARIR represented in USMTF format

The main classes of objects in the CSAR schema include:

• Entity Objects represent things in the domain such as materiel, organizations, people,
and locations. Entities can act on or participate in the task and situations found in the
domain.

• Situation objects represent the situations and roles that involve the entity objects,
including objects such as missions, commanders, and pilots. This is separate from the
entities that participate in the situation, since an individual entity, such as Major
Jones, can fill multiple roles or participate in multiple situations.

• Information Objects reflect the factual data about other application objects. For
example, details of a meteorological phenomenon will be based on one or more
weather data objects.

• Domain Primitive Objects encapsulate the mapping to native types (e.g.
java.lang.String) and other basic data referenced by other CSAR schema objects.

The CSAR Schema will enable much of the necessary work to be done automatically,
when the InfacDemo is integrated as one of many agents in SARA. Each agent will share
knowledge of the CSAR Schema and perform different aspects of the overall job. Agents

19

will convey the information and services they provide in terms of the CSAR Schema.
This makes inter-agent collaboration significantly easier, and limits the need for
ontological synchronization techniques. Information agents that access various databases
and other information sources will supply and maintain relevant CSAR Schema instances
(e.g., an ATO-Agent may supply information for ongoing missions). Domain agents will
provide the higher-level knowledge to filter out and select candidate values from among
these instances. For example, suppose the user is selecting assets to form a CSAR Task
Force (CSARTF) to rescue an evader. Rather than displaying the list of all assets, a
domain agent would screen the list of assets according to the roles that must be filled in
the CSARTF (e.g., list only those aircraft capable and available to provide Rescue
Combat Air Patrol (RESCAP)).

It is easy to see how the CSAR Schema will facilitate agent integration. By focussing on
certain objects and refining their details, the user is conveying information to the agents.
Agents use this information to form queries to locate missing information, keep known
information current, and provide task assistance based on the user’s current focus. For
example, consider the aforementioned task of selecting assets to provide RESCAP for a
CSARTF. The CSAR Schema object representing the CsarTaskForce, a subclass of
CombatMission, consists of, among other things, a RescueCombatAirPatrol submission.
The requirements of the RescueCombatAirPatrol (e.g., required capabilities of the
aircraft) together with details of the parent CsarTaskForce object (e.g., location, time
frame, air threat information, etc.) can be used to form a detailed query specifying the
requirements of the aircraft needed. An agent that is tracking available assets, for
example, might satisfy this query. These assets would then be presented to the user who
could make the final decision.

As another example, an initial SARIR recipient list could be automatically generated by
looking at the organizations referenced by other CSAR Schema objects (e.g., the evader’s
unit, the units of the available CSAR assets, etc.). The user would be able to add and
remove items from this list and even create objects that represent organizations that are
not currently known to SARA.

Furthermore, much of the information for a particular CSAR incident is unknown,
especially in the early stages. The areas of the domain model that coincide with the users
current focus (or interest) can be used to automatically generate queries for this unknown
information. This same mechanism can be used to summarize the currently known and,
more importantly, unknown information for the user. The summary would be maintained
as the agents (and humans) provide the unknown information.

7.2.1 Dynamic Interaction Generation (DIG)
(DIG) is a Honeywell Technology Center developed technology that enables inclusion of
the human expert as an active collaborator in a multi-agent system. The current
implementation (Figure 6) contains an Interaction Facilitator that manipulates an
Interaction Class Model (ICM). This ICM supports the display of a UI to create and
define CSAR Schema object instances.

20

Figure 6: InfacDemo Architecture

The ICM is a description of the interaction levels that comprise a user interface to a
complex process. It also contains information about the composition of each level in
terms of items at the next lower level. These levels are illustrated in the fragment of the
ICM that is shown in Figure 7. Each object in the ICM is associated with a real-world
object called the object’s referent. In the case of InfacDemo, the referent is a CSAR
Schema instance. As the user changes the focus of the UI, by changing the referent, the
ICM object adjusts to the details of the newly selected referent. DIG requires knowledge
of only the upper portion of the CSAR Schema and the Domain Primitives. This portion
is largely domain independent; thus, DIG can be easily applied to other domains. The
DIG-required portion of the schema is outlined in Appendix 3.

At the top level of the ICM is the UIApplication, which represents a collection of tasks
that are required by a human participating in semi-automated mixed-initiative
collaboration (e.g., managing the resources of a building (environment, security,
mechanical) or conducting a combat search and rescue operation). Shown in Universal
Modeling Language (UML) notation, this top line of the diagram in Figure 7 declares the
SARApplication to be a specialization of the more general ObjectApplication, which in
turn is a specialization of the more general UIApplication.

Figure 7: Compositional Levels in the Interaction-Space

An application is composed of various UI Tasks, which are roughly analogous to a dialog
or application window. Figure 7 shows that the DefineTask is a specialization of a
ViewObjectTask, and is one of the sub-elements (or components) of an

Interaction
Facilitator

CSAR Schema
(Classes and Instances)

ISpace for |
Current Situation

Interaction Class Model

Java Tech

Newton
 Tech

SARApplicationUIApplication

DefineTaskViewObjectTask

ObjectApplication

aDefineTask

ObjectData

aObjectData

1

1

UITask

ActionSelection

aTaskAction

1

0..1

DynamicComponent

SelectionInteractionUIInteraction

nActionComponent

1

n

nDataComponent

1

n

Interaction
Facilitator

CSAR Schema
(Classes and Instances)

ISpace for |
Current Situation

Interaction Class Model

Java Tech

Newton
 Tech

SARApplicationUIApplication

DefineTaskViewObjectTask

ObjectApplication

aDefineTask

ObjectData

aObjectData

1

1

UITask

ActionSelection

aTaskAction

1

0..1

DynamicComponent

SelectionInteractionUIInteraction

nActionComponent

1

n

nDataComponent

1

n

21

ObjectApplication. ViewObjectTask provides the ability to view and interact with the
details of a domain object (e.g., a CSAR Schema instance); DefineTask is a
specialization of the ViewObjectTask that enables a user to change as well as view the
details of the referent, including its properties, children, and associates.

The next level of the ICM is the Interaction level. Interactions are roughly analogous to a
subframe within a larger window (e.g., a scrolling panel or menu bar). In Figure 7,
DefineTask has three Interactions as its sub-components. First, ObjectData is an
interaction whereby an object’s data is interrogated and modified. Second,
ObjectSelection allows the object’s children to be selected. Finally, ActionSelection
provides the actions that can be taken on the object or the view of the object. The
ObjectSelection and ActionSelection are inherited from ViewObjectTask. As shown by
the number adornments on the “has-a” links between the task and its interaction, only the
ObjectData is required. If there are no actions or child objects associated with the current
referent (such as “Submit” might be for a report, or “Enable” might be for a heating
system), the ActionSelection interaction is not required.

Interactions are, in turn, made up of Components, which are roughly analogous in
function and complexity to UI widgets (e.g., value sliders, trend graphs, entry boxes,
menu lists). Components are not, however, directly tied to UI widgets; rather they are a
device-independent representation of the interactions rendered by those widgets. For
example, a city bus schedule is represented in the ICM as an element based on the
ItemOverTime class. If it is presented on a display screen at a kiosk at the bus station, it
would be represented by a different widget (a schedule timeline) than it would be if it is
delivered over a telephone (a series of times and stops, presented sequentially in spoken
language).

Despite their eventual mapping to very different user interface widgets, the interaction
design required by any bus schedule interaction in the ICM is the same: One which
conveys the time-event pairs that make up the schedule. Thus, the same ICM objects
represent both user interfaces. In other words, the ICM can fully specify descriptions of
the ongoing interaction with the human, without reference to specific hardware. This
hardware independence allows the ICM to be mapped to whatever hardware is currently
available, most appropriate, or preferred by the user.

The lowest level of the ICM provides additional hardware independence that is not
shown in Figure 7. Components are broken down into interaction Primitives to allow DIG
to separately handle information and interactors. For example, the name of a choice can
be separated from the actual choice, contributing to the ability of DIG to compose
multiple interfaces from the same information. The same ICM representation would be
used to generate labeled buttons (“Print”) on a CRT, where the information appears on
the interactor or keypad telephone interactions (“To Print press 1”), where the
information about the action must come before the name of the interactor.

An important feature of the ICM is the knowledge it embodies about the process of
designing interactions that are required to meet task needs [Penner & Nelson, 1997]. The
information contained in the compostionality of higher levels by lower levels itself
defines the general design of the interactions for particular tasks and sub tasks. Making

22

this compositionality abstract, rather than concrete provides the responsiveness to
situations. For example, the Dynamic Component element shown in Figure 7 cannot
actually be instantiated; instead, it must be specialized into a more concrete element (like
a state setter dynamic component, or a selector dynamic component). Using the
situational parameters, like the task in which it occurs or the type of data it represents, a
Dynamic Component will determine which of its specializations is most appropriate.

Instances of the ICM are dynamically instantiated, maintained, and destroyed as the user
changes focus and the domain model is modified. The set of dynamically varying ICM
instances is referred to as the Interaction Space (ISpace). Within the InfacDemo, the
Interaction Facilitator manages the ISpace and chooses the specific hardware devices to
render the ISpace for the user. It does this through communication with one or more
“Interaction Tech” modules. Each Interaction Tech controls a specific interaction device
set (e.g., personal digital assistant, keyboard and monitor pair, etc.). The Interaction
Facilitator partitions the ISpace among the available Techs.

The InfacDemo implements two Interaction Techs. The JavaTech controls a
monitor/keyboard device set running on a Windows NT system with a Java virtual
machine. The JavaTech is the primary Tech and was used to generate the screendump
used in Figure 4. To test the device independence of the ICM, a NewtonTech was
implemented to map the ISpace to a personal digital assistant (a Newton). The ISpace is
transmitted to the Newton via a TCP/IP connection and displayed for the user with
Newton-based widgets.

7.2.2 Testing Procedures and Results
The majority of the testing was done using the JavaTech to map the ISpace to the screen.
Testing consisted of using the DIG-based UI to create and edit objects to complete a
SARIR report. A subset of CSAR Schema objects was created in advance to simulate
preexisting instances (e.g., those that are provided by other agents). Since this is a demo
system, object persistence and change history were not implemented.

The resulting performance is comparable to conventional user interfaces when run on
computers with a 200MHz Pentium or faster. Slightly slower performance is seen on a
90MHz Pentium, but the response is well within human tolerances. Analysis showed that
while the ISpace modifications happened very quickly, the layout of the resulting Java
widgets was a considerable time sink. Efficiency improvements of the layout manager
and general improvements to the Java language interpreters should render any
performance concerns moot.

One interesting observation was that the modifications to the ISpace following a change
to the CSAR Schema instances where proportional to the CSAR Schema change. That is,
if a small change was made to the domain objects, the ISpace required only a small
modification whereas a larger change required more modifications. For example,
changing a primitive (such as the “Message Precedence” in Figure 4) results in an almost
imperceptible change in the UI, while creating a new object via one of the Actions results
in a larger change.

23

8. User-Focused Evaluation
At the conclusion of each phase of the project a user evaluation was conducted. These
evaluations are summarized here. The SARA Baseline user evaluation was conducted at
JSSA headquarters at Fort Belvoir, VA on 20 June 1996. Approximately fifteen people
representing JSSA, AFRL, and other DoD organizations were present. The early SARA
prototype was demonstrated and feedback and comments were collected.

The Intermediate phase user evaluation was conducted in two parts. The first, held 15
October 1997 at JSSA headquarters, Fort Belvoir, VA, focused on quantifying the utility
of SARA's mixed-initiative assistance for CSAR tasks. The second, held 27-30 October
1997 during the Dept. of Defense Personnel Recovery Conference at Carlisle Barracks,
PA, collected more general feedback from the users with a focus on future directions for
SARA.

Both reviews met their intended objectives. As a result of the JSSA review, SARA is
estimated to produce order of magnitude savings in time to complete CSAR tasks for all
users with comparable or improved accuracy over current procedures. The accuracy
improvements depend on the experience of the CSAR operator. More experienced
personnel see comparable accuracy while inexperienced (and, incidentally, more typical)
operators see marked improvement in accuracy. Finally, we initiated a “future directions”
requirements document with the information gleaned from the Personnel Recovery
Community review.

The final SARA user evaluation was conducted in two parts. The first, held 4 August
1998 at the Honeywell Technology Center in Minneapolis, MN, evaluated SARA from
the context of users of the ISociety multi-agent architecture. The second was a CSAR
expert evaluation conducted by JSSA personnel who have served as domain experts over
the course of this project. Results of both reviews will be included in plans for future
SARA development.

The ISociety user review proved successful in identifying which issues require careful
consideration when implementing SARA and which are straightforward to solve. It also
identified more mature areas of research that have addressed similar issues. The results
from the CSAR expert user review were encouraging but minimal. The software
successfully loaded and ran, but since only minimal task support was implemented, the
system had limited operational utility. This is to be expected when the primary focus of
the project is research rather than system development. The evaluation succeeded in
underscoring the need for a follow-on program specifically targeted to operational
development of SARA.

9. Conclusions
A multi-year research project applied to a specific and complex domain, such as this
project, results in a broad range of conclusions. These conclusions are grouped into three
loosely defined categories:

• Lessons learned that future projects with similar objectives should consider.

24

• Recommendations for the development of the prototype towards operational use.

• Directions for continued research.

9.1 Lessons Learned
The biggest technical challenges involve developing the instance-level schema
knowledge, fusing the resulting information (and knowing when we were done), and
developing a rich query language to support the behaviors SARA needs. Fortunately,
many of these issues are being addressed to varying extents by other researchers, with
some approaches being fairly mature and expected to be available commercially in the
near-term.

Developing a complete shared ontology, such as the CSAR Schema, is an expensive and
time-consuming process. For this project, using the existing C2 Schema as a starting
point made implementation of the CSAR Schema possible within the scope of this
project. Consequently, not only should future projects spend time to look for existing
schemata when creating a shared ontology for their agents, but work should continue on
shared schemas to ensure they evolve into a robust schema generally applicable to
military systems.

Incorporating the user as an active collaborator, rather than simply a task director, has
proved to be a powerful and novel approach. For example, to make data fusion tractable
in the SARA domains, the human will have to play a role in conflict resolution. As
“fusion agents” are created, this role may be reduced, but even those agents may reach a
point that still requires human intervention. Making this assumption enables significant
task support to be provided to the human without becoming bogged down with trying to
automate every aspect of the domain (e.g., planning a recovery mission). In complex
military domains, this simplification is crucial.

The ontological conflict detection and resolution techniques used by the Dispatcher
improved the system's robustness and should be extended. However, the lack of ability of
the system to use a shared ontology needs to be rectified. In practice, many multi-agent
systems share an ontology and requiring the Dispatcher (and user) to rebuild this
ontology would be cumbersome. Instead, the Dispatcher should be pre-encoded with a
shared ontology, essentially a partially instantiated need-space. The conflict resolution
techniques would then facilitate the incorporation of agents that do not use this shared
ontology.

Finally, conducting the research within the context of a real-world domain was crucial.
The realism and depth that these scenarios added to the project were key to establishing
requirements for collaboration between humans and agents. In addition, the domain
should be selected before beginning technical work and all parties should agree. Once
selected and technical work has begun, it is important to not change domains.
Furthermore, the non-technical aspects of the domain should not be ignored (e.g., interest
of the user community).

25

9.2 Operational Development Recommendations
Due to the project's emphasis on HCI technology development, the resulting SARA
demonstrations are not intended for operational use. Projected CSAR operations
improvements can only be realized through additional effort to develop an operational
system. The following sections describe four general areas that must be addressed.

Infrastructure - Before further development can proceed, the infrastructure within
which the SARA agents operate must be solidified. The SARA agents currently function
within a fragile infrastructure intended only to support the research prototype. It is not,
for example, intended to be distributed across several computers or to support easy
addition of new agents. This additional work will apply and/or extend COTS/GOTS
technology to provide the infrastructure needed for a robust, solid SARA implementation.

Task Support - A powerful aspect of SARA is the ability for humans and computer
agents to flexibly share tasks and cooperate to complete them. The current task
representation is limited to only a small portion of the CSAR domain. The existing
representation cannot be easily extended to other areas within CSAR, nor can it be
adapted to other domains. This additional work will develop a formal representation of
tasks and tests this representation. This representation would enable efficient task
completion by dynamically assigning responsibilities to one or more human users or
intelligent agents.

Connectivity - SARA will require access to a wide variety of information sources, each
with its own unique requirements. Some information is stored in relatively static
databases, while other information is updated frequently. Some information is
synthesized, e.g., the estimated location of a missing pilot might be synthesized from a
reported parachute sighting, parachute drag rates, and local wind conditions. Other
information is only available from off-line sources and must be supplied by human users,
e.g., hard-copy photographs. In addition, SARA must be capable of handling
contradictory, redundant, or obsolete information, as well as information stored at
multiple security levels. Furthermore, some information sources may not be permanently
available, or be temporarily inaccessible. SARA must also be capable of coping in these
situations. This additional work will focus on SARA's connectivity to this wide variety of
information sources, test the system's scalability, and extend the infrastructure to
accommodate additional requirements.

Robustness - To become operationally useful, the progress made in the previous areas
will need to be solidified. We must address those issues that are commonly glossed over
during rapid prototyping and those items that were out of scope. For example, SARA
requires functionality to document CSAR missions and to access that documentation.
Furthermore, important task knowledge and information sources that were previously out
of scope will need to be added.

9.3 Research Directions
We have recently become interested in the basic mechanics of the collaborative process.
It is important to note that there are two types of collaboration, implicit and explicit.
Implicit collaboration arises from a shared understanding of the state of the world. This

26

provides a level of society cohesiveness and knowledge synchronization for collaborating
agents by providing implicitly agreed upon rules of discourse, semantics, and syntax for
topics and situations. Explicit collaboration, on the other hand, is the collaboration
between agents that is observable. It involves requests, responses, and passing of
information. What we are beginning to believe is that, unless a proper foundation is laid
for implicit collaboration among software agents, explicit collaboration is very difficult
to achieve without the explicit sharing of information that should be implicit (like meta-
data, language, format, etc.).

Implicit Collaboration. The implicit collaboration mechanisms that we have been
developing for software agents in this and related programs is modeled on those of
human groups and societies. People share a collective understanding of the world around
them, the behavioral guidelines within which they function, and their respective role(s) in
that society. Agents exhibit implicit collaboration when they implicitly share information
about their application domain, goals of the group, and their respective roles. Examples
of mechanisms for implicit collaboration in agent systems include a shared ontology,
common communication paradigm, and a shared objective (e.g., to facilitate CSAR
operations).

In SARA, agents share a common communication paradigm (the need specification and
COM) but do not have a shared ontology. The SARA Dispatcher was not pre-encoded
with a shared ontology or schema. Instead it was built it up over time by employing the
user to resolve conflicts. While tedious to resolve conflicts initially, subsequent runs of
SARA required no user interaction to resolve such conflicts due to persistent storage of
the Dispatcher's need-space. Interestingly, this resulted in an ad hoc ontology for the
society being created and shared by participating agents.

What the agents in SARA do share are common views of situations. Collaborating
agents, like INFAC and a Tech, share a common view of a particular set of things that
they are both interested in. Certain objects in the view are the responsibility of INFAC
(changing an interaction design to fit a changing domain object), some are the
responsibility of a Tech (changing a button state to reflect user input), and each has
differing interests, but they jointly manage the ISpace and the objects in it.

An interesting research question is how to share implicit collaboration knowledge with an
agent attempting to join a society. This agent does not necessarily share the same
knowledge as the other agents, may not know its intended role in that society, and may,
in fact, possess knowledge that contradicts the knowledge of other society members. This
is analogous to a person joining a new human society (e.g. an employee joining a new
company or an immigrant joining a new culture). Some of the responsibility is placed on
the new agent (e.g., adopting the communication protocols or ontology) and some is
placed on the society (e.g., define the new agent's role and provide feedback to the
agent). Finally, the society bears a responsibility to use the unique view of the new agent
to modify its collective behavior when appropriate.

Explicit Collaboration. Explicit collaboration allows agents to directly communicate
about shared tasks, manage responsibility, and resolve differences. It is through explicit
collaboration that agents can learn implicit collaboration. To provide this in an agent

27

society, dispatcher agents are needed to facilitate both the management of individual and
group needs as well as the management of the communication between agents. Such
mechanisms exist in human societies in the form of news media, postal services,
secretaries, employment agencies, and so on.

The explicit collaboration requirements between SARA agents can be viewed as a
conversation, where the state from previous communicative acts and future
communicative acts must be taken into account. For example, the Dispatcher might
communicate with several agents before finding one or more capable of satisfying a
particular need. The state of the conversation (e.g., which agents were asked and which
refused) is important to the successful assignment of the need. Research into
conversation policies that explicitly define the operational semantics of the agent
communication language (e.g., [Bradshaw et al. 1997]) shows promise as a way to retain
the state of inter-agent conversations. Future work on the Dispatcher should encapsulate
conversation semantics relevant to inter-agent communication, allowing it to
transparently maintain the context of the conversation.

10. Bibliography and References

10.1 Technical
J. Ballas, D. McFarlane, L. Achille, J. Stroup, 1996, “Interfaces for Intelligent Control of Data Fusion

Processing”, Naval Research Laboratory report NRL/FR/5513-96-9806.

Bradshaw, S. Dutfield, P. Benoit, and J. Woolley, 1997, "KAoS: Toward an Industrial-Strength Open
Agent Architecture", in Software Agents, J.M. Bradshaw, editor, AAAI Press, Menlo Park, CA.

A. Cheyer and L. Julia, 1995, "Multimodal Maps: An Agent-Based Approach", International Conference
on Cooperative Multimodal Communication, 24-26 May, Eindhoven, The Netherlands.

P. Cohen, A. Cheyer, M. Wang, and S. Baeg, 1994, "An Open Agent Architecture", AAAI Spring
Symposium.

P. Cohen and H. Levesque, 1995, "Communicative Actions for Artificial Agents", in Proc. First
International Conference on Multi-Agent Systems (ICMAS).

H. Cottam, N. Shadbolt, J. Kingston, H. Beck, and A. Tate, 1995, "Knowledge Level Planning in the
Search and Rescue Domain", in Proc. Expert Systems 95 Conference, Cambridge.

K. Decker and V. Lesser, 1995, "Designing a Family of Coordination Algorithms", in Proc. First
International Conference on Multi-Agent Systems (ICMAS).

K. Decker, A. Pannu, K. Sycara, and M. Williamson, 1997, "Designing Behaviors for Information
Agents", in Proc. First International Conference on Autonomous Agents, February.

R. J. Firby, 1987, "An Investigation into Reactive Planning in Complex Domains", in Proc. National Conf.
on Artificial Intelligence, pp. 202-206.

L. Foner, 1997, "Yenta: A Multi-Agent, Referral-Based Matchmaking System", in Proc. First International
Conference on Autonomous Agents, February.

M. P. Georgeff and F. F. Ingrand, 1990, "Real-Time Reasoning: The Monitoring and Control of Spacecraft
Systems", in Proceedings of the Sixth Conference on Artificial Intelligence Application, pp. 198-
204.

J. Gibson, 1979, The Ecological Approach to Visual Perception, Houghton Mifflin.

M. Huber, J. Lee, P. Kenny, E. Durfee, 1996, “UM-PRS V3.0 Programmer and User Guide” University of

28

Michigan.

D. Kuokka and L. Harada, 1995, "Communication infrastructure for concurrent engineering", Artificial
Intelligence for Engineering Design, Analysis, and Manufacturing, vol. 9, pp. 283-297,
Cambridge University Press.

J. Lee, M. Huber, E. Durfee, and P. Kenny, 1994, "UM-PRS: An implementation of the Procedural
Reasoning System for Multirobot Applications", in Proc. AIAA/NASA Conf. On Intelligent
Robots in Field, Factory, Service, and Space, March.

J. McGuire, D. Kuokka, J. Weber, J. Tenenbaum, T. Gruber, and G. Olsen, 1993, "SHADE: Technology
for Knowledge-based Collaborative Engineering", in Concurrent Engineering: Research and
Applications, vol. 1, pp. 137-146.

M. Minsky, 1985, "Society of the Mind", New York, Simon and Schuster.

K. Nelson, K. Krebsbach, D. Musliner, and R. Penner, 1997, "SARA: The Search and Rescue Assistant",
HTC Report #SST-R97-002, January.

K. Nelson, R. Penner, N. Soken, 1998, "SARA: A Multi-Agent System for Collaborative Command and
Control", Proc. of the 31st Hawaii International Conference On System Sciences, January.

K. Nelson, R. Penner, N. Soken, K. Krebsbach, and D. Musliner, 1998, "Interaction Society Collaborative
Agents System Development Document, CDRL A004, Contract #F30602-95-0177, October.

H. Nii, 1986, "Blackboard systems: The blackboard model of problem solving and the evolution of
blackboard architectures", The AI Magazine, V7, n2, Summer.

R. Penner, 1996. “Multi-agent societies for collaborative interaction”, Proceedings of the 40th Annual
Meeting of the Human Factors and Ergonomics Society, Philadelphia, PA, September.

R. Penner and K. Nelson, 1997. User Interface Generation Initiative Final Report. Internal Honeywell
Technology Center publication.

R. Penner, K. Nelson, N. Soken, 1997, "Facilitating Human Interactions in Mixed Initiative Systems",
Proc. IEEE Conference on Systems, Man, and Cybernetics (SMC), October.

D. Riecken, 1997, "The M System" in Software Agents, J. Bradshaw, ed., Cambridge, MIT Press.

J. Searle, 1992, Speech acts: An Essay in the Philosophy of Language, Cambridge University Press,
Library of Congress Number 68-24484.

K. Sycara, 1998, “The Many Faces of Agents”, AI Magazine, pp. 11-12, Vol. 19, No. 2, Summer.

L. Suchman, Plans and Situated Actions: The Problem of Human-Machine Communication, Cambridge
University Press, 1987.

U.S. Air Force, Force Level Execution Advanced Technology Demonstration Software User’s Manual,
1994, Command, Control, and Communications Division, Rome Laboratory.

10.2 Search and Rescue
Clancy, Tom, 1995, “Fighter Wing: A Guided Tour of an Air Force Combat Wing”, Berkley Books, ISBN:

0-425-14957-9; 1995.

CJCSM 6120.05,1997, Manual For Tactical Command and Control Planning Guidance For Joint
Operations, Joint Interface Operational Procedures For Message Text Formats.

Fernandez, D. et al., BDM Federal, 1996, “Joint Search and Rescue Center Information Systems
Modernization and Standardization”, prepared for C4I Integration Support Activity.

JIEO Circular 9152, 1995, “Repository of USMTF Program Items for U.S. Implementation Guidance”

Joint Pub 3-50 "National Search and Rescue Manual Volume I: National Search and Rescue System"

29

Joint Pub 3-50.1 "National Search and Rescue Manual Volume II: Planning Handbook"

Joint Pub. 3-50.2 "Doctrine for Joint Combat Search and Rescue"

Joint Pub 3-50.21 "Joint Tactics, Techniques, and Procedures for Combat Search and Rescue [CSAR]"

Joint Pub. 3-50.3 "Joint Doctrine and Joint Tactics, Techniques and Procedures for Evasion and Recovery"

P. LaValla, R. Stoffel, A. Jones, R. Pargeter, “Search Is An Emergency: A Text for Managing Search
Operations”, Fourth Edition, 1995, ISBN: 0-913724-28-9, Emergency Response Institute.

10.3 Standards and Data
T. Carrico, “Command and Control Schema - Revised Draft, Version 0.5.3”, 1996, Object Model Working

Group, sponsored by DARPA.

Defense Mapping Agency Mapping, Charting, and Geodesy Utility Software Environment (DMAMUSE)
Version 1.1, 1995, Defense Mapping Agency.

Digital Chart of the World, Edition 1: Description and CD-ROM, July 1992, Defense Mapping Agency

DoD HCI Style Guide, 30 September 1992

Graphical Techniques for Force Level Planning, September 1991, Rome Laboratory report RL-TR-01-239,

MIL-HDBK-761A, 30 September 1989, Human Engineering Guidelines for Management Information
Systems

MIL-STD-600006, 13 April, 1992, Vector Product Format, Department of Defense.

MIL-STD-2325, 30 September 1994, Common Warfighting Symbology Version 1

MIL-STD-6040, 1997, 1998, USMTF Message Formatting Program

MIL-D-89009, 13 April, 1992, Digital Chart of the World (DCW), Department of Defense.

11. Appendices
The appendices to this document include:

 Appendix 1: Geographic Locations used for testing the SARA MapDemo

 Appendix 2: The classes and hierarchical structure of the CSAR Schema

 Appendix 3: The portion of the CSAR Schema required by DIG.

30

 Appendix 1: Test Locations for the Map Demo
Table of geographic center points to test CD access.

Test Latitude Longitude DCW Libraries

1 40 0 EURNASIA

2 50 -130 NOAMER

3 50 -70 NOAMER

4 -50 -70 SOAMAFR

5 30 50 SASAUS

6 45 135 EURNASIA, SASAUS

7 75 100 EURNASIA

8 35 35 EURNASIA, SASAUS

9 20 -10 SOAMAFR

10 10 100 SASAUS

11 15 -70 NOAMER, SOAMAFR

12 -30 140 SASAUS

13 20 -90 NOAMER

14 40 -10 EURNASIA

15 -10 30 SOAMAFR

Table of place names used to test the gazetteer access.

Test Place name Library

1 Paris EURNASIA

2 Turkey EURNASIA

3 Chicago NOAMER

4 Seattle NOAMER

5 Somalia SOAMAFR

6 Victoria Falls SOAMAFR

7 Tokyo International SASAUS

8 Mount Everest SASAUS

31

Appendix 2: CSAR Schema Hierarchy
Main schema classes

ApplicationComponent
aState : State = new State()
aStatus : DomainPrimitive = new Status()
$ settable : Boolean = new Boolean(false)
aName : Identifier = new Identifier()
aStatusMessage : FreeText = new FreeText()
$ instances : Vector = new Vector()

subEntities
0..*

parentEntity

0..1

subInformations

0..*parentInformation
0..1

associatedInformation0..*

applicationElement1..1

capabilities
0..*

actor1..1
actors

0..*

currentActions

0..*

subActs

0..*
parentAct

0..1

allows

0..1

actions

0..*

subSituations

0 *

parentSituation 0..1

participants0..*

EntityObject

0..*

0..1

situationElement1..1

affordedActions

0..*

situationElement
0..1

associatedInformations

0..*
InformationObject

0..*

0..1

0..*

1..1
situationElement

0..1

subPlans

0..*

parentPlan

1..1

planElement
0..1

behaviors
0..*

TaskBehavior

0..*

1..1

0..*

0..*

0..* 0..1

0..1

0..*

invokedSituations0..*
SituationObject

0 *

0..1

0..*

1..1

0..*

0..1

0..*

0..1

planElement
1..1

evokedPlans0..*
PlanObject

0..*

1..1
0..1

0..*

0..*

1..1

appElement
0..1

ApplicationObject

0..*

0..1

GenericDomainObject

ActiveObject

uses

DomainPrimitive

usesuses

32

Situation Object Hierarchy

CwfcgMlMiflSiUwt.on

Tt»e*Srtn

WerfhcrSi« W«(CTS«n

»■Mffilln

MhUiyEvent

ifii«l:i*

/
ActfvnRole --'ThrwtRoftWuct

SupntoryAotac

SARRoteCoortnÄ* \

oM /T NT^S, Corrnwnocr

OpnrtowlRole
CmrnKfrfr

d

DownedAircr«ft

PasanEvtdng

\
L*n<f v««on

SeiEvMtan

GMMfe*

FncnyR
FiflMrfw«*» | \RocwaerFoiwwdAifContiolla

GrauncJFighBKrfitfi&WChe' SARD0 Requrcrotf
% E*»»urfi«|n*»pre<i¥e Madvrtoml

AirToAiff itf*» | AirToCroundFigrta

Rcsc ucC orrtMt Airf* «trol

AM

**» ' Rtfmrt/
RdMon / Go*

fA.fjUjtllBI

\
LPWPO^V-^. ""^ Focus k ^r \ ObKcti«

33

Entity Object Hierarchy

Human

s \
MilitaryHumaOivili

EntityOtuect

anNonHuman
Squadron

AirPlatfo

C ommH aräv^aCT, mpul ef

?\ }\
Radio TelephoHe \

environmental ntüy

....... . x T 1 landPlatform
f \ / \ \ \ WaterPtatform

SoftwareAgeW pj UnitCommanrfighterSquaWo^P^^0"^1?^ Mom

L iv \ * Command Component uV

Ph j JoIntForce

USAFCompLmt/ / 1 ^„nceptualEnv ^ NaturalEnvir^ent
1.1-L..—1 . EnvPhenomenonl A f \ [ifeform JoIntComponent ^ '

MeterologicalPhen

OceanPhenomenon
Land

ArtficiaEnv

Earthi«WraSUucSlf»cture

4 4^
Trench TransporlfteY,l,in9

?

Handheld

Workstation

Air(orce

A r "V I it et
I T j Region \

LandingZorje EvacPoin^ A S^GeoPosition

AkOperationÄ>itan | Air

34

Air Platform Sub-Hierarchy

Air Platform

Fixed WingAirPlatform

r
ASWAcf

Drone/1 t

Awomedicall vacAi

FighterAttackAcft

CmdAndCntlAcft

Glider

AkRefuelinq Tanker
Cargo Ale ft

Keen Acft

UtiKtyAcft
BomberAcft

LightefThanAkPlatform UnmannedAirPlatforrn RotaryWIngAirPlatform

MiscAcft Utility» Hof «con I Ho

EWAcft

.,
iecon

EWHeh
Trail) erHelo

MineCoiinterMorisurel elo
Trainer/ eft

Spec ialOperations Acft

eralAviationAcft

'"

—r
ASWHdo

ickHtjlo
csc u ell elko

DroneHeli

SpeciaK)perationsHek> AutoGyrosHelo

AiihiMiii'l .iilyW.iiriini|llclii

MedEvacHelo

o
liscMelo

35

Information&biect

ComrrHinicatwn

>. CommandControlComm

ReportComm ^
* K MetaCommunication

' S* ^V^ MapDatT
CSELReportJsm^ verification 1 \ Notation

£ \
UsmtfFieW UsmlfSe!

Identification
ACKNL6

RegionData
EntityData

Held
Ci icelSeJ

Set

OperSet

Reference? et

i UsmtfTemplate

TacticalnteK. ence SOFHti'ollrert)^ARTH«our(»Oala

EnvironmentData

W>Mllu>r(),iU OriMtiData

cr iftlnc le itSet

Mess igelDSet
GroundUicidertS t

"
Arwry,^ T Ä,d«S«

zsa alSet

S iRAssis let

SiRStatusS t

SublncidentSi t

SeaJncidentSet
MeteorologicalSet

SARReport

SAHIR
AckJiovHedgeSet

AvaHabieAssetSet
EnetriyActivitySet

36

Domain Primitive Hierarchy

UomimPnnrtv«

T
Percent

Enum

A

PhysProperty

I-

Pattern Outltfy

-O Physical!) es;>

State Statw

FreeTesrt

CareConcept

kkrtrter

PlystcalVdlue

Im»:

OataFilc

Action BooleanPrimrtite

GenencLut SimpleR elation**

Mi oji ITii A:
I Icvttiu Arc*

•NN Humdffy

IfiMiinj
Mm« llurton

Frequency

iM.l^ll

Prenure

Quantity Temperature Volume Location

Latitude l.uMftude

StcCOQN

fypeOfCloud

(i it nun

'■Hi iilr

Mes&aoeOuaMief

SubmtrtneType

DeclassType

AMcraftRolf Ccr Mn yCm I

Aircraft. OHCMH

AwcraWype PenaonndSlatite

Acövrtylype

Count ryCode Area Type

Precedence TurtHitonce

I ucdliKiOtulrfi Cjitijiifldiit:

I
DirectionQualriier

Classification

37

Appendix 3:

CSAR Schema Objects Required to Implement
DIG

ActiveObject

Action

target
0..1

ApplicationComponent

0..1

uses

BooleanPrimitive

DataFile

DomainPrimitive

owner
0..1

ApplicationObject

uses

0..1
Enum

FreeText

GenericDomainObject

GenericList

Identifier

Latitude

Longitude

PhysicalValue

Role

SimpleRelationship

subSituations
0..*

SituationObject

0..*
0..1

parentSituation
0..1

Time

Should assume that
DIG/INFAC objects
would access the
other primitives as
well.

