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ABSTRACT 
 
 
     A software defined radio is a much more flexible platform than traditional, 

hardware implemented radios.  By implementing radio functions in software, and putting 

those functions on a Field Programmable Gate Array (FPGA) chip, users will have the 

ability to download mission specific radio capabilities.  This thesis examines a 

fundamental piece of the receiver, the Phase-Lock Loop (PLL), simulates a software 

PLL, and investigates the effects of fixed-point versus floating point mathematics 

required for an FPGA based PLL.  With a fixed-point PLL simulator, figures of merit 

such as lock-time, lock range, and pull-in range are determined for typical signal-to-noise 

ratio (SNR) levels. 
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EXECUTIVE SUMMARY 

 

     The explosion of wireless and PCS services over the last decade has created 

numerous incompatible air interface standards.  A subscriber to one service will find his 

phone rendered useless when roaming in the coverage area of another service, using a 

different standard.   These competing transmission formats each might have their own 

unique modulation type, multiple access technique, error control methods, call set-up and 

handoff protocol and voice compression algorithms.  The military has seen similar 

interoperability of radio standards between tactical radios used by coalition forces in 

Desert Storm. 

The need for a flexible communication platform, capable of interfacing with the 

numerous standards and formats has become apparent.  A software radio, implementing 

traditional radio functions in software, gives the user this flexibility.  The ideal software 

radio shown in Figure (1) would digitize the entire received signal spectrum using a high 

speed Analog-to-Digital Converter (ADC), perform all demodulation, data protocol and 

processing functions using a general-purpose digital signal processor (DSP). 

 
Figure 1.  Ideal Software Defined Radio.  (From Ref. [3].) 
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Due to limitations on A/D conversion speed, sampling the direct RF spectrum is 

not typically an option. A practical software radio will usually incorporate an RF front 

end, which filters and downconverts a portion of the received signal spectrum to much 

lower IF frequency such as 21.4, 70 or 160 MHz. These frequencies can be digitized 

directly with current state of the art A/D converters. This technique is called �IF 

Sampling�.   

The digital signal processing (DSP) functions of the software radio can be 

implemented either with general-purpose DSP chips or with reconfigurable Field 

Programmable Gate Arrays (FPGAs). In either case, the processing functions are in the 

form of software, available for download to the DSP engine.  The resulting unit would 

have the capability to be reconfigured for any radio signal format. This gives the user the 

ability to download mission specific radio requirements, using the same platform for 

numerous radio applications. 

  This thesis will focus on the implementation issues for an important signal 

processing function common to most communications receivers; that is, the Phase-Lock 

Loop (PLL).  The PLL can take several forms such as the Costas Loop for carrier 

recovery and tracking, the early-late gate synchronizer for baud timing recovery, and the 

delay-locked loop (DLL) for spreading sequence tracking in spread spectrum systems. In 

each case, the same PLL loop theory presented in this thesis applies.  

In short, the PLL is a feedback loop device, which locks onto a received signal, 

meaning it synchronizes its output in-phase and frequency with its input.  The PLL can be 

broken down into its three component parts: 1.) the phase detector (PD), 2.) a loop 

lowpass filter, and 3.) a voltage controlled oscillator (VCO) or numerically controlled 

oscillator (NCO), the latter being used in a software PLL version.  Figure 2.shows a 

simple PLL schematically.    
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Figure 2.  Simple Phase-Lock Loop 

 

While a traditional analog receiver implements the PLL components exclusively 

in hardware, a software-defined radio requires these components to be available as 

downloadable software, using a digitized signal as the input.  While a software simulation 

of a PLL has been a reality for some time, the advent of fast Field Programmable Gate 

Array (FPGA) technology makes this a useful concept for high data rate signals (those 

greater than roughly 2 Mbit/sec data rate). Currently, the software components can be 

programmed onto an FPGA and used real-time for DSP functions. 

When deciding on DSP implementations, one must consider whether fixed-point 

or floating point arithmetic and number representation will be used. The benefit of 

floating point is the large dynamic range associated with the floating-point number 

representations. When implementing algorithms in floating point, the designer typically 

does not have to worry about issues such as rounding or truncation error, or numeric 

overflow. The disadvantage of floating point is the increased computational resources 

required and the processing speed limitations. For this reason, floating point 

implementations of receiver algorithms on general purpose DSP are limited to relatively 

low data rate signals.    

One of the reasons FPGAs are fast enough to be used is the fact that they use 

fixed-point representations of numbers rather than floating point.  Fixed-point 

representation is a much more efficient way for a computer to do arithmetic, because its 

essentially a binary representation of a decimal number.  Hence, a computer can do 
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arithmetic at a much faster rate using fixed-point numbers.  With the computationally 

heavy nature of any DSP application, the efficiencies of fixed-point arithmetic add up to 

significant savings in time.  The trade off is that representing numbers in this way either 

reduces the range of the number, or its precision.  As an example, using 8-bit fixed-point 

numbers, a range of �256 to 256 only has a precision of 2.0.  For a precision of .01, the 

range of numbers available are �2 to 2.  This constraint needs to be realized when 

programming using fixed-point arithmetic. 

The aim of this research is to model a software phase-lock loop, observe its 

performance, and convert it into a fixed-point implementation to determine the effects on 

important performance such as lock time and pull-in range.  The questions that required 

answering were 

• How many bits are needed in a fixed-point implementation for acceptable 
performance? 

• What type of errors do a fixed-point implementation introduce into the 
output signal? 

• What effect does fixed-point arithmetic have on figures of merit of a PLL?  

• What kind of signal-to-noise ratios (SNR) are required to lock the PLL in 
an acceptable time 

The source code used initially was MATLAB, but to convert the model into fixed-

point, the MATLAB extension Simulink was used.  The final simulation model used 16-

bit fixed-point arithmetic and locked with acceptable SNR�s, with only small errors to the 

output signal.  Lock time and ranges were not changed, however a smaller pull-in range 

than the floating-point equivalent was encountered.  Errors at the output of the PLL due 

to the fixed-point implementation are observed, but nothing of critical size.  The fixed-

point model performed comparable to an analog or floating-point model in all ways, and 

could used as a basis to build a PLL on a FPGA or DSP chip.   
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I.  INTRODUCTION  

A. BACKGROUND  

The revolution in wireless technology in the last decade has created a need for a fast, 

flexible, and light radio, compatible with the numerous transmission formats and standards.  The 

concept of a software radio has been developed to fill that need.  The ideal software radio 

digitizes the radio spectrum at the receive antenna, providing all demodulation, decryption, and 

signal processing in software.  Such a tool would have the capability to download appropriate 

software, depending on the mission and the transmission format required.  It could be 

reconfigured to accommodate any RF-band modulation or data format or transmission standard, 

capable of operating within any communications network. 

To realize the ideal software radio, the entire signal spectrum would be digitized at the 

antenna by an analog-to-digital converter (ADC).  A practical SW radio will usually incorporate 

an RF front end which filters and downconverts a portion of the received signal spectrum to much 

lower IF frequency which can be digitized directly with current state of the art A/D converters.  

The digital signal processing (DSP) is then performed in software in a reprogrammable Field 

Programmable Gate Array (FPGA).  Finally, the demodulated signal is sent through a digital-to-

analog converter (DAC) to generate the audio or video output if required.  The ideal software 

radio architecture is shown in Figure 1, where the DSP functions are done on an FPGA chip.  The 

radio concept described above could be reprogrammed to accommodate any radio standard or air 

interface by downloading the appropriate software algorithm. 

The signal processing functions required by the software radio includes tuning, filtering, 

demodulation and decryption.  Tuning is accomplished by mixing the digitized signal with a 

digital local oscillator to down-convert the signal to baseband.  This mixer is simply a signed 

multiplier, sample by sample in the digital implementation.  Typically, a complex baseband signal 

representation is used.  The mixer will output the in-phase and quadrature-phase components in 

sine and cosine waveforms.  This mixing process creates unwanted frequencies, specifically at 

twice the receive frequency.  This spectral component is removed using a finite impulse response 

filter (FIR).  The digital filtering also bandlimits the samples to the bandwidth of the signal of 

interest (a process called �channelization�). 
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Demodulation is performed by a variety of methods, depending on the modulation type.  

This research assumes demodulation will be performed by phase locking to the incoming signal.  

An error signal is fed back to the tuner to adjust the local oscillator frequency in a closed loop 

system.  This feedback system is simply a digital or software phase-lock loop (PLL).  The 

implementation of such a PLL is the focus of this research.    

 
1.  The Phase-Lock Loop 

A simple phase-lock loop is pictured in Figure 2 and can be seen to consist of  three 

component parts: 1.) the phase detector, 2.) a loop filter, and 3.) a voltage controlled oscillator 

(VCO) or numerically controlled oscillator (NCO).  Its purpose is to lock on to the frequency and 

phase of the input signal.  In this case, the purpose of the PLL is to create a phase coherent as a 

local oscillator in the receiver for demodulation.   

The phase detector or phase comparator compares the phase between the input signal and 

the output signal.  It generates a signal proportional to the phase error, or difference between the 

two signals phase.  This can be done numerous ways; the simplest is to multiply the two signals 

together. 

The loop filter block is a low-pass filter that removes the high frequency terms the come 

from the multiplication of the input and output signal, leaving only the phase error. 

The NCO takes the phase error from the loop filter output and adjusts its output sinusoidal 

signal to force the error to zero.  This adjusted signal is the feedback signal that goes into the 

phase detector, producing a second phase error and the process repeats. 

This type of PLL is a second-order system.  The error eventually settles to zero, but the 

output is a damped oscillation.  This oscillation is governed by the parameters of the PLL.   

   
 
 
2.  Fixed-Point Arithmetic 

Measurements of physical quantities can take on many numerical representations.  For 

example, the number one thousand can be represented by 1000, 1E3, 103
, or one thousand.  In this 

case, the same quantity is represented using four different syntaxes.  Another example of the same 
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quantity, represented in different scales, is the boiling point of water.  Water boils at 100 degrees 

Celsius, 212 degrees Fahrenheit, 373 degrees Kelvin, or 671.4 degrees Rankine.   

Determining an appropriate scale and representation depends on many factors.  Suppose 

you need to measure the speed of a vehicle.  The numerical values have a limited range for this 

application.  The slowest it can travel is 0 mph at a dead stop and the top speed of the vehicle has 

been determined to be 150 mph.  If an 8-bit unsigned integer is required, values in the range of 0-

255 are possible. 

A typical approach would be to assign one bit per mile-per-hour, making the integer 0 a 

dead stop and 150 the vehicle�s top speed.  This scheme, while easy to convert, neglects the use of 

the integers 151-255, wasting 40% of the number range.   

Another approach would be to set the integer zero to a dead stop and the integer 255 to the 

top speed.  This scale gives us much greater precision, 0.58823 mph per bit, because all 256 

values are used in the vehicle speed.  The conversion, however, requires a division of 1.7, a 

relatively expensive operation for fixed-point processors. 

The trend of recent technology is to implement control systems and digital signal 

processing functions on digital hardware.  Within digital hardware, numbers are represented as 

either floating-point or fixed-point data types.  The number of bits used to represent both data 

types is a fixed word size.  The range of fixed-point representation is much smaller than for 

floating point, thus to avoid overflow and quantization errors, fixed-point representation must be 

scaled.  If floating-point numbers can effectively represent real world values with virtually no 

error, why use a fixed-point based implementation?  The answer, of course, is cost, size and 

processing speed.   

A fixed-point hardware platform is architecturally much simpler than its floating-point 

counterpart.  This means cheaper manufacture of the product.  In addition to manufacturing 

savings, if scaled properly, fixed-point arithmetic can be significantly faster, saving computation 

time. 

Because the logic circuits of fixed-point hardware are less complicated than that of 

floating point, the chip size can be much smaller, reducing power consumption.  This means 
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smaller batteries, and reduced heat as a by-product, removing the need for an expensive and bulky 

heat sink. 

For a software radio, programmed on a FPGA where speed is a critical limitation, and size 

and battery life are a concern, a fixed-point implementation is the only plausible solution. 

 

B.  OBJECTIVES  

This research focused on the effects of fixed-point arithmetic on a simulated PLL, 

specifically, what number of bits are required to successfully implement a PLL, how does this 

affect the figures of merit of a PLL such as pull-in range, lock time, and lock range, and to 

determine the signal-to-noise ratios (SNR) needed for a fixed-point PLL to be effective in a 

software radio. 

   These objectives were accomplished using MATLAB�s Simulink software.  A PLL 

simulation using only fixed-point arithmetic was implemented, taking as input a noisy signal.  

This simulation was done using 16-bit fixed-point arithmetic.  Simulation results were consistent 

with theoretical results, with the fixed-point implementation simply adding �noise� to the signal, 

causing the output signal to have small errors due to the quantization effects of fixed-point 

arithmetic.     

 

C.  RELATED RESEARCH  

The related research is in identifying the feasibility and requirements for other 

components to make a software radio realizable.  Some of this research is being done concurrently 

with this research.  The first is a digital delay lock loop (DDLL); the second is investigating 

digital downconversion and channelization. 

 
1.  Digital Delay Lock Loop 

For a fully functional software radio, a real-time, spread-spectrum, signal-processing 

block is desired.  An integral function of a direct sequence spread spectrum receiver is recovering 

the underlying narrowband data through a procedure called dispreading.  The key component of 

dispreading is a DDLL.  A DLL generates an exact replica of the spreading sequence generated at 
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the transmitter, allowing the recovery of the narrowband data.  This research was being conducted 

by Captain Samuel Laboy, USMC. 

 
2.  Digital Downconversion and Channelization 

A basic building block of any all-digital receiver is the downcoversion of a real signal at 

an intermediate frequency to complex in-phase and quadrature-phase components at baseband.  

The downcoversion component of the software radio consists of a complex NCO, local oscillators 

that act as mixers, and digital filter.  Investigation in the feasibility of digital downconversion and 

performance characteristic compared to an analog equivalent is being pursued by Lieutenant 

Michael Snelling, USN.  The aim of this research is to build a working MATLAB model and to 

analyze the results of the simulation.         

 

D.  THESIS ORGANIZATION 

This thesis is organized to mirror the research.  Chapter 2 is an overview of the operation 

of the PLL and derives the figures of merit for analysis of the final model.  Chapter 3 is a tutorial 

on fixed-point arithmetic and explains the advantages that it offers over floating-point arithmetic.  

Chapter 4 is the culmination of this research.  It begins by describing the building of a floating-

point PLL and then the procedures for converting it to a fixed-point model in Simulink.  Analysis 

of the performance of the fixed-point PLL according to the derived figures of merit derived in 

Chapter 2 is also done in Chapter 4.  The conclusions for the feasibility of a FPGA based PLL and 

recommendations for future research are in Chapter 5.  The Appendix gives the MATLAB code 

and Simulink model for the floating-point and fixed-point phase lock loops.  
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II. PHASE LOCK LOOP BASICS 

A. PRINCIPLES OF THE PHASE-LOCK LOOP 

A phase-lock loop is a circuit, or software, designed to track a given Reference signal in 

both frequency and phase.  Its applications are far reaching from AM/FM radio demodulation, to 

television sets, to coders and decoders.  The PLL has the ability to synchronize its output in-phase 

and frequency with an input signal, meaning the phase error between the PLL�s output and the 

input signal is zero, or remains constant.  If a phase error is introduced, by a phase change or a 

frequency change, the PLL�s feedback control mechanism adjusts the oscillator�s output to 

account for it. 

 To get a basic understanding of the PLL, the principles of the linear PLL will be 

examined, which is shown schematically in Figure 3.  It consists of three blocks: the phase 

detector (PD), the loop filter (LF), and the VCO/NCO.  For ease of Reference, the same notation 

and signal names used by [1] will be used here.  Consequently the frequency of 1( )u t  in 

radians/second is 1ω , 2ω  is the frequency of 2 ( )u t and ( )e tθ is the phase error or difference in-

phase of 1 2( ) and ( )u t u t .  With signals defined, a closer look at each functional block is in order. 

 
Figure 3.  Phase-Lock Loop with Signals of Interest 
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1.  Phase Detector (PD) 

The PD takes as its input two signals, the reference signal, 1( )u t , and the output of the 

VCO, 2 ( )u t .  This block simply compares the phases of these two signals and produces a signal 

( )du t  proportional to the phase error eθ , specifically, 

 ( )d d eu t K θ=  Equation Section 2(2.1)  

where dK  is the PD gain in volts.  Obtaining the signal ( )du t  can be as simple as a multiplier.  

The PD adopted in the simulation uses the in-phase and quadrature-phase portions of the input 

and output signal.  To see how this works, lets assume a phase difference between the 1( )u t  and 

( )du t  of eθ .  Defining the in-phase and quadrature-phase components as 1 1 1cos( )I U tω= , 

1 1 1sin( )Q U tω= , 2 2 2cos( )eI U tω θ= + , and 2 2 2sin( )eQ U tω θ= + , so that  

 1 1 1 1

2 2 2 2

( ) (cos( ) sin( ))
( ) (cos( ) sin( ))e e

u t U t i t
u t U t i t

ω ω
ω θ ω θ

= +
= + + +

  

where 1U  and 2U  are the amplitude of the respective signals and is related to the PD gain dK .  

Using the trigonometric identities  

1cos cos [cos( ) cos( )]
2

x y x y x y= + + −  and 1sin sin [cos( ) cos( )]
2

x y x y x y= − − +  

and a little algebra, eθ  can be extracted.  For ease of computation, we assume 1 2ω ω= .  If this is 

not the case, the PD output has an additional frequency error, but this ac component will be 

filtered out by the loop filter explained below. 

1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2

* *
   * [cos( )cos( ) sin( )sin( )]

1   * [cos(( ) ) cos( ) cos( ) cos(( ) )]
2

   * cos( ).

e e

e e e e

e

I I I Q Q
U U t t t t

U U t t

U U

ω ω θ ω ω θ

ω ω θ θ θ ω ω θ

θ

= +
= + + +

= + + + + − + +

=

   (2.2) 

Similarly, 
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 1 2 1 2

1 2

* *
   * sin( ).e

Q I Q Q I
U U θ

= −
=

 (2.3) 

Using equations (2.2) and (2.3),  

 1tan .e
Q
I

θ − � �= −� �
� �

 (2.4) 

As desired, the PD output signal ( )du t  is the phase error.  

  

2.  Loop Filter 

As alluded to earlier, if the frequencies of the two signals differ or alternate PD 

implementations are used, the output signal, ( )du t , of the PD will have an unwanted ac 

component.  This ac signal is superimposed on the desired dc component representing the phase 

error.  To remove the ac component, a simple low pass loop filter is used.   

To implement a loop filter, numerous strategies exist.  While a high-order finite impulse 

response (FIR) filter will ensure the ac component is removed, the delay in response is too great, 

where locking onto a signal as fast as possible is needed.  A first-order low-pass filter has a quick 

response and successfully removes the unwanted oscillations.  The most common loop filter used 

is called an active PI filter (PI = proportional + integral, taken from control theory and named due 

to the fact that it has a pole at s = 0, hence acts as an integrator) [1].  Taken from the 

corresponding RC circuit filters and implemented in software using their transfer functions, the 

filter has the Bode plot depicted in Figure 4 [1].  The transfer function for the PI filter is given by 

 2

1

1( ) sF s
s

τ
τ

+=  (2.5) 

where in the analog circuit world, τ1 and τ2 are RC time constants of the circuit filter and are 

determined by the loop bandwidth of the system, which is in turn a function of the noise. 
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Figure 4.  Bode Plot of Active PI Filter.  (From Ref [1]). 

 

 3.  Voltage Controlled Oscillator / Numerically Controlled Oscillator 

The NCO takes as its input the output from the loop filter, ( )fu t , which is proportional to 

the phase error.  By using an appropriate scaling, or gain constant 0K , of the NCO, we can adjust 

the output, 2 ( )u t , to account for the phase error in the two signals.  The NCO has a center 

frequency.  This is the oscillator frequency without any adjustments.  This value is selected to 

reflect approximate working frequencies of the system.  The PLL will properly lock onto a signal 

within a percentage range of the center frequency.  Call this frequency ω0.  An adjustment made 

on the frequency of the NCO will be an offset from ω0.  Thus the output of the NCO has a 

frequency, 

 2 0 0( ) ( ).ft K u tω ω= +  (2.6) 

The discrete nature of the software system requires the output of the NCO to be a phase, 

as opposed to frequency, and thus by definition the phase is given by the integral over the 

frequency variation, 

 2 0( ) ( ) .ft K u t dtθ = �  (2.7) 

Using a look-up table, the output of the system is taken as 

 2 2

2 2

( ) cos( ( ))
( ) sin( ( ))

InPhase

QuadraturePhase

u t t
u t t

θ
θ

=
=

 (2.8) 
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Either the in-phase or the quadrature-phase can be used as the oscillator, but with the 

implementation described above, both are needed as inputs to the PD. 

 

B.  OPERATION OF THE PHASE LOCK LOOP  

To understand the operation of the PLL and how the blocks work together, assume first 

that the system is initially locked, i.e., 1 2ω ω= , and examine three types of signals at the input:  a 

phase step, a frequency step, and a frequency ramp.  Taken from [1], the signals are shown in 

Figure 5. 

 
Figure 5.  Exciting Functions as Applied to Input of a PLL.  (a)  Phase Step.   

 (b)  Frequency Step.  (c)  Frequency Ramp.  (From Ref [1]). 

 

 The aim is to characterize these signals in terms of their phase, and proceed with analysis 

using a generic phase term in the signal.  We assume an input signal of a sinusoid as previously 

done, so that 1 10 1 1( ) sin( ( ))u t U t tω θ= + , where 1( )tθ  is a generic phase signal that represents the 

various excitation input signals. 

 For the phase step, which represents a phase-modulated signal, 1( )tθ , simply performs a 

step change at 0t = , and is given by, 
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 1( ) ( )t u tθ = ∆Φ  (2.9) 

where 0 2π≤ ∆Φ ≤ is the magnitude of the phase change and ( )u t is the step function. 

The next case is an example of a frequency-modulated signal.  This signal has a step 

change in frequency at 0t = , which is given by the increment ω∆ .   Thus the corresponding input 

signal is given by 

 1 1

1

( ) sin(( ( )))
       sin( ( )).
u t tu t

t tu t
ω ω

ω ω
= + ∆
= + ∆

 

Thus 

 1( ) .t tθ ω= ∆  (2.10) 

This phase signal is just a ramp function for 0t ≥ . 

 The final signal is one whose frequency increases linearly with time.  As shown in Figure 

5, the frequency is a ramp function, and the rate of increase in frequency is the slope of the line.  

If the slope of the ramp function for frequency is ω∆ � , then the total frequency of 1( )u t is 

1 tω ω+ ∆ � .  By definition, the frequency of a signal is the first derivative of its phase with respect 

to time,  

 1
1 .d

dt
θω ω+ ∆ =�  

Thus the phase of the signal at time t is the integral of its angular frequency over the time interval 

0 tτ≤ ≤ , and so the input signal 1( )u t  can be written as 

 
1 1 1

0

2

1 1

( ) sin ( )

       sin .
2

t

u t U d

tU t

ω ωτ τ

ω ω

= + ∆

� �
= + ∆� �

� �

� �

�

 

Consequently, the phase signal is given by 

 
2

1( )
2
ttθ ω= ∆ �  (2.11) 
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1. The Transfer Function1 

It is often helpful in examining the operation of any system to derive and understand the 

transfer function, ( )H s , of the system.  This will be the approach in understanding the dynamic 

operation of the PLL.  The transfer function is defined as the Laplace transform of the output 

divided by the Laplace transform of the input.  For a PLL, we want to relate the phase signals of 

the output and input, thus 

 2

1

( )( )
( )
sH s
s

Θ=
Θ

 (2.12) 

where ( )i sΘ is the Laplace transform of the phase signal ( )i tθ .  To build this mathematical model 

of the system, assume initially the PLL is locked, so that 1 2ω ω= .  This being the case, the output 

of the PD is the phase error 1eθ θ=  times the PD gain constant dK , i.e., 

 ( )d d eu t K θ=  (2.13) 

which implies 

 ( ) .PD dH s K=  (2.14)2 

The next block in the PLL is the loop filter.  The transfer function of the PI active filter 

was already given in Equation (2.5).  The last block to derive the transfer function is the 

VCO/NCO.  Recall that the NCO adjusted the output frequency of 2 ( )u t ,depending on its input 

from the loop filter.  A negative input reduced the output frequency and a positive input increased 

it.  The center frequency of the NCO, 0ω , was the starting point for this adjustment.  The output 

frequency, 2 ( )tω , was defined by 

 2 0 0( ) ( )ft K u tω ω= +  (2.15) 

where 0 ( )fK u t is the variation in the frequency.  However we want the output phase of the signal, 

not its angular frequency.  Using the definition of the phase as the integral over the frequency 

variation, 
                                                 

1 Transfer function analysis and derivation done using [1]. 
2 Note here we assume over a small time period, the phase error does not change dramatically and is thus 

approximated to be a constant. 
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 2 0( ) ( ) ,ft K u t dtθ = �  (2.16) 

The Laplace transform of an integral is 1/s, thus 

 0 0
2 ( ) ( )      ( )f NCO

K Ks U s H s
s s

Θ = � = . (2.17) 

The closed-loop block diagram of the transfer function is shown in Figure 6.   

 
Figure 6.  Block Diagram of PLL Transfer Function 

 

From control theory, the closed loop transfer function for the entire system is given by 

 0

0

( ) ( ) ( ) ( )( )
1 ( ) ( ) ( ) ( )

PD NCO d

PD NCO d

H s F s H s K K F sH s
H s F s H s s K K F s

= =
+ +

. (2.18) 

 

Simplifying this to standard notation, Equation (2.18) becomes 

 

0
2

1

2 0 2 0

1 2

(1 )
( )

d

d d

K K s
H s

K K K Ks s

τ
τ

τ
τ τ

+
=

� �
+ +� �

� �

. (2.19) 

Control theorists put this in terms of natural frequency, nω  and damping factor, ζ , in 

order to use a standard equation which can easily be understood and studied.  The equivalent 

transfer function equation in normalized form is given by 

 
2

2 2

2( ) ,  
2

n n

n n

sH s
s s

ζω ω
ζω ω

+=
+ +

 (2.20) 
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where 

 0

1

d
n

K Kω
τ

= , 

and 

 2

2
nω τζ = . 

To calculate the time response of the transfer function, the inverse Laplace transform of 

(2.20) is required.  The time domain equivalent equation becomes 

 

( )(
( ))

2 2
2

2 2

1( ) 1 2(1 )cos 1
2( 1)

                                          2 1 sin 1

                                        

n t
n

n

h t e ω ζ ζ ω ζ
ζ

ζ ζ ω ζ

−= + − −
−

+ − −  (2.21) 

which is simply a damped oscillation. 

To get a feel for the dynamic operation of the PLL for the three Reference inputs 

described above, we look at the transient response of the transfer function in normalized form for 

different values of nω and ζ .  Then finding a desired response, values to build the PLL can be 

determined.   

 
a.  Phase Step Applied to Input 

To see a typical transient response, a phase step was applied to the input at 0t = , 

corresponding to the first type of input above, so that 

 1( ) ( )t u tθ = ∆Φ . 

Figure 7 shows the error time response of the transfer function versus time for various values of 

ζ .3  A natural frequency of 200 rad/sec is used.  The value of nω only scales the x-axis, not the 

                                                 
3 The time response can be obtained by taking the inverse Laplace transform of the transfer function.  For this 

transfer function the time response is given by Equation (2.21) 

 

 



16 

response of the system or its characteristics.  To note is the fact that as t → ∞ , the error 

approached zero.  This can also be derived from the transfer function by finding the error transfer 

function, defined by  

 
1 0

( )( )
( ) ( )

e
e

d

s sH s
s s K K F s

Θ= =
Θ +

 (2.22) 

and using the final value theorem of the Laplace transform which states  

 0( ) lim ( ) 0e s es sθ →∞ = Θ = . 

 

 
Figure 7.  Time Response of PLL for different values of ζ and 200nω = . 

 

b.  Frequency Step Applied to Input. 

Again applying the final value theorem, a frequency step corresponds to a transfer 

function input of 

 1( ) /s sωΘ = ∆  
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Performing the same calculation on the phase error transfer function,  

 

2

0 2 2 2

2

( ) lim
2

         

e s
n n

n

s
s s s
ωθ

ζω ω
ω

ω

→
∆∞ =

+ +
∆=

 (2.23) 

  This value approaches zero for small frequency steps and high gain loops, which 

increases the value of nω  

c.  Frequency Ramp Applied to Input 

Using similar techniques for a frequency ramp, the results are less encouraging.  

The error is 2( ) /e nθ ω ω∞ = ∆ � , where ω∆ �  is the rate of change of the input signal frequency.  Thus 

for a large rate of change in frequency, the PLL unlocks.  Experimen-tation with PLL�s has 

shown that a practical design limit to the rate of change in frequency is, 

 
2

2
n

MAX
ωω∆ =� . (2.24) 

 

C.  PERFORMANCE MEASURES OF THE PLL 

For a full derivation of the following key PLL parameters, one is encouraged to see 

Reference [1].  For the purposes of this research, it is sufficient to define the parameters and state 

the results for a given PLL, and shed some light on the competing parameters and their 

interaction.  The focus will be on five key parameters that govern the dynamic performance of the 

PLL 

• The lock range, Lω∆  

• The lock time, TL 

• The pull-in range, Pω∆  

• The pull-in time, TP 

• The pull-out range POω∆ . 

Additionally, a figure of merit for the PLL of loop bandwidth, LB  will be given 

consideration during the study of PLL performance in the presence of noise. 
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1.  The Lock Range 

The lock range is defined as the range of frequency offset between the center frequency of 

the VCO and the reference frequency in which the PLL locks within one single-beat note between 

reference and output frequencies.  We assume that the PLL is initially unlocked and switched on 

at time 0t = .  To derive this figure of merit, we assume a simple PD of multiplying the input 

reference signal and the NCO output signal to produce the phase error.  If this is the case, then for 

a frequency offset of ω∆ , 

 ( ) sin( ) higher-frequency termsd du t K tω= ∆ +  (2.25) 

where the higher-frequency terms are discarded due to the loop filter.  Looking at the output of 

the loop filter, the result, 

 ( ) | ( ) | sin( )f du t K F ω ω= ∆ ∆  (2.26) 

is obtained.  The output of the LF, ( )fu t , is just an ac signal causing a frequency modulation of 

the NCO, with a peak frequency deviation of 0 | ( ) |dK K F ω∆ .  For lock to occur, this peak 

frequency deviation must be less than the frequency offset ω∆ .  If the offset is larger than this 

frequency deviation, lock cannot occur in a single cycle.  The lock range can be determined by 

determining when this peak frequency deviation is just as large as the frequency offset.  Thus the 

equation for locking becomes 

 0 | ( ) |L d LK K Fω ω∆ = ∆ . (2.27) 

This is a non-linear equation, but to solve it a practical approximation can be made.  From the 

Bode plot of the loop filter transfer function in Figure 4, the lock range is greater than the cut-off 

frequencies 11/τ  and 21/τ .  Thus a conservative approximation is 2 1| ( ) | /LF ω τ τ∆ = .  Using 

Equation (2.20), the lock range becomes 

 2L nω ζω∆ ≈ . (2.28) 

Simulations and experiments have shown that this is a conservative approximation and can be 

used confidently in the design process.  Clearly a larger lock range is desirable. 
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1. Lock Time 

Lock time is the time the PLL takes to lock onto a signal when it is initially unlocked, 

given that the reference signal is within the lock range.  When 1ζ < , the transients of the damped 

oscillation die out after one cycle, thus the lock time can be approximated accurately as 

 2
L

n

T π
ω

≈ . (2.29) 

 

2. The Pull-in Range 

The lock range is a subset of the pull-in range, which is defined as the range of frequency 

offset in which the PLL will eventually lock after a number of cycles.  This is dependant on the 

type of loop filter used.  For the active PI filter, the pull-in range is infinite, i.e., 

 pω∆ → ∞ , (2.30) 

thus any reference frequency input to the PLL will eventually be locked onto.  For different types 

of loop filters, with a finite gain at dc, the pull-in range is decreased.  See [1] for further details on 

pull-in range for different filter types. 

 

3. Pull-in Time 

Pull-in time is the time required for a PLL to lock onto a frequency within the pull-in 

range.  Defining 0ω∆  as the frequency offset 1 2ω ω− , the pull-in time is determined to be  
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0
316P
n

T ωπ
ζω
∆=  (2.31) 

Note that, as 0ω∆ → ∞ , the pull-in time approaches infinity.  The larger the offset, the 

longer the pull-in time. 

 

4. The Pull-out Range 

The pull-out range is defined as that frequency step which causes the PLL to unlock if 

applied to the reference input.  Direct calculations of the pull-out range are not possible, but in 

[5], computer simulations have arrived at the following approximation 
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 1.8 ( 1)PO nω ω ζ∆ = + . (2.32) 

The relationship of the frequency ranges is depicted in Figure 8.  Starting from the center 

frequency of the system, the lock-range is the smallest of the range parameters.  Next is the pull-

out range, and finally the pull-in range has the largest.  The range of values outside the pull-in 

range is called dynamically unstable due to the fact when operating dynamically, the system will 

not lock if a reference frequency in that range is encountered.  Inside the pull-in range, and 

outside the lock range is called conditionally stable.  This means the system will eventually lock 

on frequencies in this range, but could unlock temporarily with a reference frequency in this 

range.  

 
Figure 8.  Relationship of frequency ranges of a PLL.  (From Ref. [1].) 
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D.  PERFORMANCE OF THE PLL IN NOISE 

An in-depth analysis of the performance of the PLL in noise is outside the scope of this 

research; however, some insight into what can be expected from a PLL operating in the real world 

is required.  The following definitions are used and assumptions made in this discussion of noise. 

1. ( )10logi S nSNR P P= , where SP  is the reference signal power and nP  is the noise 
power, is the signal-to-noise ratio at the input of the PLL. 

 
2. All noise is assumed to be Additive White Gaussian Noise (AWGN), meaning that it 

has a flat power spectral density. 
 

3. A low-pass pre-filter of bandwidth iB  is implemented prior to the PLL. 
 

4. The noise bandwidth is defined as 2

0

| ( ) | , where ( )LB H j d H jω ω ω
∞

= � is the transfer 

function of the PLL.  Inserting equation (2.20) for ( )H jω , the integral solves to 

 1
2 4

n
LB ω ζ

ζ
� �

= +� �
� �

. (2.33). 

 
5. The signal-to-noise ratio at the output is defined by  

 
2

i
L i

L

BSNR SNR
B

= . (2.34)4 

This figure is helpful in determining how often the PLL unlocks due to noise, and the 
iSNR  required to ensure a lock. 

 

Recall that the lock range, Lω∆ , from Equation (2.28) is proportional to the natural 

frequency and is desired to be as large as possible; hence, theoretically, designing the PLL with a 

nω as large as required is an easy task, but with the introduction of noise, and Equation (2.33), the 

larger nω , the larger is LB .  This suggests a trade-off between reducing the noise sufficiently and 

a larger lock range, which is exactly the case.  To increase the lock range of the system, a larger 

SNR must be used.  If only a small SNR is available, LB  must be made small, which reduces 

Lω∆ . 

                                                 
4 For a derivation of SNRi, one is directed to Ref [1]. 
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The same is true of the lock time.  This parameter is inversely proportional to nω , and thus 

larger values of nω  reduce LT .  Again, by reducing LT , LB  is increased. 

Practical experiments with PLLs have shown that for stable operation, we need an 

6 dBLSNR ≥  [1].  A system could eventually lock with a lower LSNR , but the phase jitter would 

cause frequent unlocks and the system would be of little value.  This leads to the final important 

figure, that of how often a PLL system, on average, will unlock.  avT  is defined as the average 

time interval between two unlocks of the system.  Figure 9 is taken from [2], which depicts avT  as 

a function of LSNR .  For high LSNR , avT is very difficult to find or measure, thus Figure 9 is 

provided to give an idea of the relationship.    

 
Figure 9.  avT  plotted as a function of LSNR , where avT  is normalized to the natural frequency.  

(From Ref. [2].) 
 
 

 

A phase lock loop is a feedback system designed to lock onto the frequency and phase of 

the input reference signal.  This is done using a phase detector, a loop filter, and a numerically 
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controlled oscillator.  This chapter described the operation of these components and derived a 

transfer function for the system.  Using this transfer function a typical time response for the 

system was plotted.  Important figures of merit were defined and derived for the PLL.  These 

performance measures are lock range, lock time, pull-in range, pull-in time and pull-out range.  

Finally a section describing the operation of the PLL in a noisy environment and how a noise can 

affect the figures of merit of a system was included. 

The objectives of this research are to implement the phase lock loop using fixed-point 

arithmetic.  In order  to do this a study of fixed-point arithmetic is needed.  The following chapter 

introduces fixed-point arithmetic and some of the considerations that need to be looked at when 

using this type of representation. 
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III. FIXED-POINT ARITHMETIC 

Real world values are approximated to nearly any degree of error in computers using 

floating-point arithmetic.  While the precision afforded by floating point arithmetic is 

advantageous in numerous applications, the speed at which a computer can calculate and 

manipulate floating-point numbers is a disadvantage.  Binary fixed-point arithmetic takes 

advantage of the processor shift instruction when multiplying or dividing by two to speed up 

arithmetic, simply by representing numbers in a different fashion.  The second advantage to fixed-

point arithmetic is storage space.  If the range of the real world values are known, and does not 

need 32-bits to cover the range adequately, fixed-point numbers can be scaled to cover the range 

and use perhaps half number of bits.  To gain an understanding of how fixed-point arithmetic 

works, an introduction to floating-point representations is given. 

 

A. FLOATING-POINT NUMBERS 

The IEEE standard 754 has dominated most of today�s processors for floating point 

arithmetic.  It specifies four formats, the two most common being single-precision and double-

precision.  Single precision uses 32-bits and double precision uses 64-bits.  Both double and 

single precision formats contain three components:  a sign bit (S), a fraction field (f), and an 

exponent field (e).  Figure 10 shows how the bits are allocated for IEEE standard 754 floating-

point format for both single and double precision.  As the name implies, the fraction field is fixed 

and the radix point, defined by the exponent field as described below, is variable.  Subsequently, 

for small integer number, most of the f field bits are zeros, hence wasted space. 

The exponent field is expressed as 1272e−  for single precision and 10232e−  for double 

precision where e  is a variable between 0 and 256.  The field scales the fraction field and places 

the radix point accordingly.  The range of numbers able to be expressed  
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Figure 10.  IEEE 754 Floating Point Number Format 

is a function of the exponent field, which ranges from 126 382 10− −≈  ( e  = 0) to 128 382 10≈  ( e  = 

256)5. 

The fraction field, as already alluded to, is fixed, and therefore is responsible for the 

precision of the number.  The precision is defined as the distance between two subsequent 

representable numbers.  This is simply 2 f− , where f is the number of bits in the f-field.  For 

single precision floating point, the precision is 23 72 10− −≈ . 

 
B. FIXED-POINT NUMBERS 

As can probably be concluded, fixed-point numbers fix the radix point and the fraction 

field is the variable.  This has two distinct advantages:  1.)  by allowing the fraction to be variable 

in size, the storage space for an integer can be tailored to the range of values need, and 2.)  

arithmetic is essentially integer arithmetic and, when done in binary, this amounts to shifts, rather 

than cumbersome multiplications. 

 

1.  Fixed-point Number Representation 

Fixed-point numbers can be specialized to unsigned and signed integers, or fractionals; 

however, the most general form will be considered here, which is a signed general fixed-point 

number, either an integer, fraction, or combination.  To understand the usefulness of fixed-point 

numbers, a more intuitive look at decimal fixed-point arithmetic will be presented, followed by 

                                                 
5 A bit is needed for the possibility of exceptional numbers such as infinity or NaN. 



27 

the extension to full binary fixed-point arithmetic.  Fixed-point numbers in a processor are 

represented solely as integers.  In order to properly insert the decimal point, a processor has a 

syntax for all numbers.  For instance, if the processor uses a S.3.2 syntax, this means a sign bit 

(S), 3 integer digits, and 2 fractional digits (realize that here a 16-bit range is being used to 

specify the sign bit and the five decimal digits).  The number 238.15 in fixed-point S.3.2 notation 

is represented as the integer 23815.  The original number is multiplied by 102, where the exponent 

two is taken from the third field.  To add two fixed-point numbers, conversion to the notation of 

the number with the largest third field is required.  A numerical example will help to illuminate 

the process.   Suppose we have the number above, 238.15, in S.3.2 notation and want to add the 

number 145.6 in S.4.1 notation.  The processor has the integer numbers 23815 and 1456 stored, 

but to add the two, it must convert both numbers to S.3.2.  The whole process is as follows 

 

100 23815 10 1456238.15   and 145.6
100 100 10 10

23815 1456 23815 1456 10 38365
100 10 100 10 10 100

∗ = ∗ =

+ = + ∗ =

 

which is 383.65 in S.3.2 format.   

The payoff comes when we extend this to binary fixed-point numbers.  Instead of 

multiplying by powers of 10, we multiply by powers of 2.  In a processor, this is accomplished 

with shifts.  Shifts in a processor are extremely fast, thus speeding up computationally heavy 

applications. 

Of course a processor does not keep track of the format as described above, but the actions 

are equivalent.  A fixed-point number is represented by  

 V SQ B= +  Equation Section 3(3.1) 

where V  is the real world number, B is the bias, which is used for signed numbers, Q is the 

integer that encodes V, and  2ES =  is the slope or scaling of the number.  The scaling determines 

where the radix point belongs.  
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2.  Precision and Range in Fixed-point Arithmetic 

The range of a number gives the upper and lower limits of representation, while the 

precision or resolution gives the distance between two successive numbers in the representation.  

In fixed-point numbers these are a function of the scaling, S, and the number of bits used or length 

of V.  The range and precision of a number are in constant competition.  For a large range the 

resolution must be reduced. Conversely, for a high resolution the range is decreased.  To 

understand this relationship, calculations of both of important parameters will be made.  The 

terminology that is used will be a high or large resolution is desirable, which is equivalent to a 

large or high precision.  Often the term large precision indicates that the distance between two 

successive representable numbers is large.  For the purposes of this research, a large precision 

indicates a high degree of accuracy, and a low or small precision indicates a low degree of 

accuracy.   

Precision is determined by the least significant bit (LSB), more specifically, what effect 

changing the LSB from a zero to a one has on the number.  Changing the LSB is the smallest 

increment that can be made, thus the effect of changing the LSB determines the precision.  So 

what does the LSB represent?  The scaling factor, S, determines where the radix point belongs, 

hence, determines what the LSB represents.  Suppose 0E = , i.e., 02S = .  This implies the radix 

point is to the right of the LSB, and thus a change from a zero to a one in the LSB results in a 

change in the number of 1.  The resolution of this scaling is 1.  For a better resolution, E is 

required to be negative.  For 8E = − , the resolution is 82 0.00390625− = .  Generally, the 

precision is defined as the scaling 2ES = . 

This increased precision, however, comes at a price.  Assume we are using n bits to 

represent the fixed-point numbers.  This means that a total of 2n possible numbers can be 

represented.  It should be clear that if a finite number of values can be represented, the greater the 

precision, the lesser the range.  To determine the range, simply multiply the precision by 2n  

which gives the total range of numbers available.  Recall the bias, B, is simply a sliding window 

for the range of numbers.  Hardware represents numbers from 0 to 2n , thus for signed numbers a 

negative bias, 12nB −= − is used, which slides the range between 1 12  and 2n n− −− .  Table 1 shows 

the range and precision of a 16-bit signed and unsigned fixed-point numbers for various scalings 

using a zero bias for the unsigned case and 12nB −=  bias for the signed. 
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Scaling Precision Range of Signed 
Values (low,high) 

Range of Unsigned 
Values (low,high) 

32−  0.125 -4096,4095.875 0,8191.875 

42−  0.0625 -2048,2047.9375 0,4095.9375 

52−  0.03125 -1024,1023.96875 0,2047.96875 

62−  0.015625 -512,511.984375 0,1023.984375 

72−  0.0078125 -256,255.9921875 0,511.9921875 

82−  0.00390625 -128,127.99609375 0,255.99609375 

102−  0.00097656 -32,31.999023 0,63.999023 

122−  0.000244140 -8,7.9997559 0,15.9997559 

152−  0.000030518 -1,0.99996948 0,1.99996948 

Table 1.   Range and Precision of a 16-bit Fixed-point Data Type 

 

3.  Errors in Fixed-point Numbers 

Due to the relationship between range and precision in fixed-point arithmetic, errors occur 

between real world values and fixed-point representations of those values.  Therefore, it is 

important to know the ranges and values of the required numbers and how important accuracy is 

when using fixed-point arithmetic.  Errors can occur in essentially two ways, the value being 

represented is outside the range of the scaling used and error due to a too low resolution. 

The first kind of error is often easier to find.  In an application, an out-of-range error, 

while not necessarily raising an error message flag, can be found through analysis.  Most fixed-

point processors, when encountering a value outside the fixed-point range, saturate the fixed-point 

representation  to the max or min of the range.  This can be a very bad approximation of the real 

world value.  Thus knowing the range of values in an application is vital so that proper scaling 

can be used. 
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A low resolution can also lead to errors which may be difficult to find.  A processor 

representing a number between two successive fixed-point numbers does one of three things: it 

rounds down, rounds up, or rounds to the nearest representable value.  To reduce errors as much 

as possible, rounding to the nearest representable value is preferred.  This reduces the error to half 

the precision and was the approach used for the PLL simulation in Chapter IV.  Care must be 

taken when arithmetic is done in fixed-point because adding, subtracting and multiplying can 

have dramatic effects on the size of numbers.  Subtracting two similar numbers can result in a 

number smaller than the precision, hence equates to zero.  Equally troubling is adding a small 

number to a large number.  The larger number scaling must be used because the larger range is 

required, but this means low precision.  If the small added number is smaller than the precision of 

the larger number, the addition will have no effect.  It will be equivalent to adding zero.   

While increasing the number of bits can increase precision and range to any amount, this 

is not a valid solution for practicality reasons.  In today�s commercial market, 32-bit fixed-point 

processors are the largest available.  Application-specific DSPs are made with a larger number of 

bits, but these are not readily available nor cheap.  Careful consideration of application values and 

ranges must therefore be a priority when using fixed-point mathematics. 

 

Using a fixed-point arithmetic implementation requires knowledge of the range of values 

and precision required for the application.  The range and precision is determined by the scaling 

used.  For the fixed-point PLL in the next chapter, each input and output range was determined 

from the floating-point model, then appropriate scaling used at each level.  The next chapter 

details the procedure in developing the floating-point model and conversion to a fixed-point 

simulation.   
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IV.  FIXED-POINT PLL SIMULATION 

The PLL simulation developed in this research used Mathwork�s Simulink software 

package.  The reasons for choosing Simulink for this application are numerous.  This software is 

designed for control systems and has an imbedded fixed-point blockset.  This feature negated the 

requirement to generate code to simulate fixed-point arithmetic.  Another desirable feature of 

Simulink is the Real Time Workshop, which generates C code from a simulation model.  This 

feature will allow easy implementation on an FPGA as C can be easily converted to VHDL, the 

language required for programming an FPGA.  Finally, the Simulink software was available and 

familiar.  There was no need to buy expensive modeling or simulation software, and because the 

software was familiar, learning a whole new language and set of procedures was negated. 

 
A.  PROCEDURE FOR MODEL 

The procedure for building the model was first to construct a floating-point simulation in 

MATLAB using the design from Reference [1].  Having a working floating-point model gives 

expected results of a PLL simulation and a comparison for the fixed-point model.  The next step 

was to implement the floating-point model in Simulink, the block diagram based simulation 

software by Mathworks.  This done, the Simulink model was converted to a fixed-point version 

where analysis can begin. 

 
1.  Floating-point MATLAB Simulation 

Any software simulation that takes a signal as input must rely on sampling that signal and 

using the discrete data points.  Thus to the software, a vector of data of a 20 hertz signal looks no 

different than a vector of data bits of a 200 kHz signal.  As long as the sampling frequency is 

known and is larger than the Nyquist limit, the actual frequency of the input signal can be 

arbitrary.  The vector representing the input signal is a vector of numbers, regardless of the actual 

frequency of the analog signal it approximates.    
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a. Input signal Assumptions 

For the purposes of the simulation the center frequency, 0F , of the NCO was taken 

to be 2 kHz.  This just means the expected frequency of the input signal is �around� 2 kHz.  A 

sampling frequency sF , of 40 kHz was used.  While a sampling frequency this high is not 

required for a 2 kHz signal, the resulting output is much easier to analyze visually.  The input and 

output amplitudes of the signals were unity, with no DC offset.  This assumption is justified by 

realizing that the input signal can simply be normalized by its amplitude if other than one, and 

any DC offset can be removed by filter prior to input into the PLL.  A Hilbert transform is 

performed on the real input signal creating a complex signal with in-phase and quadrature-phase 

components.  The signal was initially given a random frequency CF , within 2.5% of the center 

frequency of the NCO.  This assured the input signal to be within the lock range.  It was also 

given a random phase between 0 and π .  The signal to noise ratio (SNR) at the input to the PLL 

was assumed to be 15 dBiSNR = .  This noise level assured a lock was possible, but also gave an 

idea of how noise affected the system.  A pre-filter iB , of 1 kHz around the expected input signal 

of 2 kHz was assumed.  This would leave the input signal around 2 kHz undistorted, but reduce 

the effects of noise.  Summarizing the input signal assumptions, 

• 0 2 kHzF = . 
• 20 kHzSF = . 
• 1 kHziB = . 
• 1( ) cos(2 ) sin(2 ) ( )C Cu t F t po i F t po n tπ π= + + + + . 

where [1950,2050]CF ∈ , [0, ]po π∈ , and ( )n t  is the noise with 15 dBiSNR = . 

 

b.  Determination of PLL Parameters 

The first step in developing an algorithm for a software PLL is to determine 

appropriate parameters depending on the application and situation.  Typical communications 

signals have an SNR of 15 dB, thus we are assured that the PLL will lock, although this will be 

verified once all parameters are determined.  With the noise bandwidth, LB , not a factor, 

determining the lock range Lω∆  is required.  If the expected input signal has a frequency of 
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around 2 kHz, a fair estimate is that the actual frequency of the signal will not vary by more than 

5%.  This means we need a lock range of 100 Hz, or 200  rad/sLω π∆ ≥ .  Setting 

200  rad/sLω π∆ =  and using equation (2.28), the natural frequency in terms of the damping factor 

is easily determined.  

 rad/s
2

L
n

ωω
ζ

∆= . Equation Section 4(4.1) 

From control theory, the transfer function of the system is optimally flat for 0.707ζ = , but from 

an analysis of noise, the noise bandwidth as a function of ζ  is flattest for 0.5ζ = , thus a 

compromise of 0.6ζ = .  With this information the resulting natural frequency is 

166.66  rad/snω π= . 

Both PD gain and loop filter gain were set equal to one.  The final parameters to be 

determined were the lead and lag constants of the loop filter.  The transfer function of the loop 

filter was given in Equation (2.5).  To determine the constants, the transfer function needs to be 

related to the time domain input-output.  To do this, the transfer function of Equation (2.5) is 

converted to its equivalent z-transform.  This is done using the bilinear transform, such that, 
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6 For a complete discussion on bilinear transforms see [4]. 
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and 1/S ST F= . 

The inverse of Equation (4.2) must be found in order to derive the corresponding 

difference equation which will enable the loop filter to be implemented in software.  Recall the 

transfer function in the z-domain, ( )F z , is the input divided by the output.  From Figure 3, the 

input to the loop filter in the sampled digital world is ( )du n  and the output is ( )fu n .  Equation 

(4.2) can be written 

 ( ) ( ) ( )f dU z U z F z= . (4.3) 

Substituting in ( )F z ,  

 
1

1 10 1
1 0 11

1

( ) ( ) ( )(1 ) ( )( )
1f d f d
b b zU z U z U z a z U z b b z

a z

−
− −

−

+= � + = +
+

, (4.4)  

and taking the inverse z-transform back to the time domain, the time difference equation becomes, 

 1 0 1( ) ( 1) ( ) ( 1)f f d du n a u n b u n b u n= − − + + − . (4.5) 

Equation (4.5) lends itself well to a software implementation.  

The topic of noise and whether a sufficient SNR at the input signal is present was 

glossed over previously.  Because of the high noise tolerance of PLL�s, high SNR�s is more of an 

issue in decoding and demodulating the signal than it is in locking onto the signal.  For this reason 

SNR�s for locking are exceeded to get better demodulation and bit error rate (BER) curves.  

However, this topic will be addressed now.   

Recall that the SNR at the input of the PLL, SNR i , is related to SNR L , the SNR at 

the output of the PLL by Equation (2.34).  This relation is a function of two parameters: the 

prefilter bandwidth and the noise bandwidth.  Assuming a typical prefilter bandwidth of 1000 Hz, 

the only variable in the relationship is the noise bandwidth, LB .  The noise bandwidth is related to 

the natural frequency and the damping factor by Equation (2.33).  This equation results in 
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63.5 HzLB = .  Equation (2.34) gives the output SNR 23.9 dBL = .  Experimentation has shown 

that PLL�s will lock with SNR 6 dBL ≥ , thus the PLL with the above parameters should be well 

with the locking limits with regards to noise.  The simulation parameters found are listed below 

for ease of reference.   

• 166.66  rad/s.nω π=  
• 0.6ζ = . 
• 200  rad/s (100 Hz)Lω π∆ = . 
• 6 3

1 23.64 ,   2.3e eτ τ− −= = . 
• 1 0 11,     635.1475,     621.4397a b b= − = = − . 

 
c.  The MATLAB Simulation 

With the parameters established above, the algorithm needed to be determined.  

The feedback loop of the PLL was done using a simple MATLAB for-end loop.  This was done 

for convenience because an input signal of a given length was assumed for the simulation, thus 

the number of times required to �feedback� was known.  This simulated the fact that real radio 

signal will be sent in �blocks� or �packets� in which the length of each packet is known.  Inside 

the loop are the three blocks of the PLL.   

The first block is the phase detector (PD).  This block was implemented exactly the 

way the PD in Chapter 2 was described by using the in-phase and quadrature-phase components 

of the signal and some trigonometric properties.  Instead of continuous signals being multiplied 

and manipulated, the sampled data at corresponding time intervals was manipulated.  The output, 

( )du n , of the PD is the scalar number representing the phase error at time n. 

The signal ( )du n  was then sent to the loop filter to get rid of the higher frequency 

terms from the PD.  The loop filter was implemented directly from Equation (4.5), producing the 

output signal ( )fu n , which is the error in the two signals at the PD. 

The final block in the loop is the NCO.  This block needed to take the output signal 

of the loop filter and make a correction to its oscillation depending on the magnitude of ( )fu n .  

From the discussion of the NCO in Chapter 2.A.3, the phase of the continuous time signal is 

given by Equation (2.7).  In the discrete realm, the phase change of 2 ( )tθ can be determined by  
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 2 0 0( ( ))f SK u n Tθ ω∆ = + . (4.6) 

where 0ω  is the center frequency of the NCO in rad/s.  With the change in phase known, the total 

phase of the signal can be determined by 

 2 2 0 0( 1) ( ) ( ( ))f Sn n K u n Tθ θ ω+ = + + . (4.7). 

If 2θ  is initializd to 2 (0) 0θ = , this computation becomes possible.  Notice that Equation (4.7) is 

iterative and theoretically 2θ  can continue to grow, thus a simple if-then statement is used to 

bound 2θ  between  and π π− .  This is done by subtracting 22  from π θ  whenever 2θ π≥ .  

Because the output of the NCO is required to be the in-phase and quadrature-phase components, a 

look-up table is used to get the desired output, 

 2 2

2 2

( ) cos( ( ))
( ) sin( ( )).

I

Q

u n n
u n n

θ
θ

=
=

 (4.8). 

This signal is now sent to the PD, and the loop is complete.  A complete listing of the code used 

for the MATLAB simulation is given in Appendix A. 

While a full analysis of the performance of the above PLL is not the goal nor 

helpful in this research, confirming the PLL algorithm operated correctly is required.  The input 

signal used had the assumptions described in Subsection 4.A.1.a. However, instead of a random 

frequency, an input signal of 2100 Hz is used.  This signal represents a 5% error in the center 

frequency of the model and the input signal, which is the worst case expected.  Figure 11 shows 

the results of the simulation.  The output frequency of the NCO is shown in (a) and the phase 

error of the two signals is shown in (b).  The output can be seen to oscillate, but is damped and 

settles on the correct frequency.  The error plot can also be seen to oscillate, but dies out and goes 

to zero. 

Evaluating lock-time, recall, 2 0.0120 sL nT π ω= = , which from the plots in 

Figure 11 appear to be accurate.  The oscillations have died out at this time and lock has been 

achieved.   
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Figure 11.  (a) Frequency Time Response of PLL.  (b) Phase Error Time Response of PLL. 

 

Similar evaluations on the pull-in range, which is theoretically infinite, proved to 

be as accurate as testable in the simulation.  The pull-in time of the system is exponential with the 

initial frequency displacement.  Proving this is the case is not plausible for all ranges of 

frequencies.  However, given an initial frequency larger than the lock range of the system, the 

PLL indeed pulled the NCO output to the larger frequency offset and eventually did achieve lock.  

As seen in Figure 12, the output of the PD eventually reaches zero after going through several 

oscillations.  This figure was generated with an input signal of 2350 Hz, which is an offset from 

the center frequency of the system of 350 Hz, clearly outside the lock range of 100 Hz.    From 

Equation (2.31), the pull-in time of the system should be 0.0346 seconds. This is a conservative 

time estimate.  This can be verified from the plot, where the oscillations are completely damped 

out. 
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Figure 12.  Time Response of PLL for an Input Frequency Larger than the Lock Range.  (a).  

Output of System Demonstrating the Signal Locks on a Frequency of 2350 Hz.  (b).  Plot of the 
Error of the System. 

 

This concluded the floating point MATLAB simulation.  The next step was to 

build this system in the control simulation language of Simulink. 

 
2.  Fixed-Point Simulink Model 

The fixed-point blockset in MATLAB is a toolbox used in Simulink.  Simulink is a 

supplement to MATLAB for building models and running simulations, thus ideal for the purposes 

of the PLL.  It uses blocks as functions and mathematical operators.  Implementing the functional 

blocks of the PLL was a matter of translating the MATLAB code to blocks in Simulink.  The 

model can be seen in Appendix A. 

The Simulink model was built using the same parameters as the MATLAB simulation.  As 

expected, its performance was identical to the performance of the MATLAB coded model, thus 

no results will be provided here.   
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3.  Fixed-Point Model 

The point of this thesis was to establish the plausibility of a fixed-point PLL in software 

and to determine what type of performance can be expected from such a system.  This was to be 

achieved by building a model and running simulations to analyze the results.  In building the 

fixed-point model, the same PLL parameters as the floating-point model were used.   

As will be the case throughout the fixed-point process, the design problem faced at the 

input and output of each block is determining an appropriate scaling for the fixed-point number so 

that a large enough range is used, without introducing unacceptable inaccuracies due to a lower 

precision.  As will be explained in Chapter 4.C, a 16-bit fixed-point implementation was used.  

Essentially, the reason for this was while an 11-bit representation was sufficient to run correctly, 

typical FPGA�s and DSP chips use 8-bit, 16-bit, or 32-bit fixed-point arithmetic.  The 8-bit 

representation didn�t give enough precision for the system to lock with any reliability, thus 16-bits 

were used. 

The procedure to convert the floating-point Simulink model to a fixed-point model 

involved looking at each block and determining the range of the signal at the input of the block 

and the range of the signal at the output of the block.  With this information, a scaling appropriate 

for the range can be determined and, subsequently, the precision can be found at that scaling.  If 

the precision was too large, an alternate method must be used, or an increase in the number of bits 

used. 

To begin, the input signal to the PLL needed to be converted to its fixed-point equivalent.  

Recall the input signal was normalized to ±1.  From Table 1, the best fit for this range of numbers 

is using a scaling of 152− .  Because the range at this scaling is exactly the expected range of the 

input, any noise could be amplified, hence a slightly larger range was used, specifically a scaling 

of 142− .  This gives a precision of 56.1035e− , which is still below the noise of the input signal, 

thus is acceptable resolution. 

With the input signal converted to fixed-point, the logical next step was to convert the PD 

to a fixed-point equivalent.  The block diagram of the PD is shown in the Appendix in Figure A2 

(duplicated on the next page for convenience).  Tracing the connections, one can see that this is 

equivalent to the MATLAB code implementation in Appendix A.  The PD takes the input signal 



40 

and multiplies it by the in-phase and quadrature-phase components of the NCO.  In the block 

diagram of Figure A2, In2 (short for input 2) is the phase, 2 ( )nθ , which goes into a look-up table 

for sine and cosine producing the in-phase and quadrature-phase signals.  The multiplication 

mentioned above multiplies two signals with a range of values between �1 and +1, thus the range 

of the output of this block must be within the range of �1 and +1.  As can be seen in Figure A2, 

below the multiplication blocks Product1 through Product4, one can see the scaling is again 142− , 

reflecting the range required at the output of this block.   

 

Figure A2.  Phase Detector Simulink Model.  (Duplicated From the Appendix for Ease of 

Reference.) 

To belabor the point, the next blocks in the PD, Sum1 and Sum2, simply add or subtract the 

output of the multiplication blocks, producing a range of �2 to +2, which is the range of the 

scaling 142− .  As can be surmised, this process of determining the range at every block needs to be 

done, and appropriate scaling of the output determined.  Care must be taken in ensuring that when 

applying the best possible range to the output, a resolution problem isn�t introduced.  This issue 

will be discussed in Section 4.C. and is the reason an 8-bit implementation was not possible.  The 

full block diagram of the Simulink PLL is included in Appendix A, with scaling at each block 

indicated. 
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The LF was designed using the 1 z  block.  Referring back to the z-transform of the 

difference equation established for the MATLAB simulation and rearranging equation (4.4), 

 1 1
1 0 1( ) ( ) ( ) ( )f f d dU z a z U z b U z b z U z− −= − + + ,                                    (4.9) 

where 1z−  is the unit delay operator.  This equation is the one used in the Simulink model for the 

loop filter. 

 The NCO was implemented similarly using constant blocks and multiplier blocks, 

ensuring the range of the inputs and outputs were scaled properly. The complicated circuitry in 

the NCO is due to the fact that 2θ  grows each increment and must be reduced to  to π π− .  This 

was done using a comparator block and a switch.  The output of the switch is the top input, which 

is simply 2θ  for 2θ π< .  If 2θ π> , the comparator resulted in zero, the switch outputs its third 

input vice its first, which is 2 2θ π− . 

 
B.  PERFORMANCE AND ANALYSIS OF SIMULINK PLL MODEL 

The performance of the model was consistent with the MATLAB simulation considered in 

Subsection 4.A.1.c.  For high SNR values, the fixed-point model performed identically to the 

floating-point model in lock range, lock time and pull-in time.  The error of the output signal due 

to the quantization of the fixed-point signal became evident in the fixed-point model. This error in 

effect reduces the SNR of the output signal. 

 

1.  Performance Measures of the Fixed-point Model 

Figure 13 shows the time response of the output of the PD, corresponding to the error in 

the PLL.  It is clear that the error, eθ , dies to zero, thus confirming the PLL achieves lock.  To 

generate this plot a reference frequency of 2100 Hz was used.   
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Figure 13.  (a).  Plot of Fixed-point Model NCO Output.  (b).  Plot of Fixed-point Model Error. 

To establish the performance of the PLL, the theoretical values of the performance 

measures will be computed and then compared to the results obtained by the simulation.  From 

Section 2.C, five key performance measures were derived.  These are lock-range, lock-time, pull-

in range, pull-in time, and pull-out range.  For the parameters used in the simulation, the 

following theoretical values for the fixed-point PLL are calculated. 

1.  200  rad/sLω π∆ = . 
2.  0.0120 sLT = . 
3.  pω∆ = ∞ . 

4.  
22
0
316P
n

T ωπ
ζω
∆= . 

5.  1508 rad/sPOω∆ = . 
 

For the testing of the fixed-point PLL, a worst-case scenario input was adopted.  With this 

in mind, the random phase was dropped in favor of an artificially placed phase offset of 90 

degrees.  This represents the worst possible phase offset and, thus, the most conservative 

measures of performance. 
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a.  Lock Range 

The lock range of the PLL model is the range of frequencies at which the system 

locks in a single operating cycle.  This corresponds to one period of the natural frequency nω .  To 

determine this value experimentally, the input signal frequency was iteratively increased until the 

system did not lock in a single cycle.  This established a bracket, or upper and lower bound on the 

lock range.  By successively narrowing this bracket down, the lock range was determined.  Using 

this procedure the lock range was found, 518  rad/sLω π∆ = , a value over twice as large as the 

theoretical value of 200  rad/sπ .   

While a large lock range is desirable, some explanation as to why it is larger than 

predicted is required.  There are two reasons this is the case.  First, when determining the lock 

range, an approximation on the gain of the loop filter at the frequency offset was used.  The 

assumption was that the lock range was larger than the corner frequencies of the two time 

constants, and thus the corner frequency was used as an approximation.  The lock range is indeed 

larger than the corner frequencies, but with the non-linearity of the loop filter transfer function, a 

tighter bound is difficult to calculate, thus the overly conservative loop filter corner frequency is 

used.   

Second, the fact that noise was not a factor in the design of this PLL, the noise 

bandwidth is very small, which means the noise is not hampering the locking of the device.  This 

results in a larger lock range than theoretically calculated. 

b.  Lock Time 

The lock time can be visually seen in the plot of Figure 13, but for a more accurate 

determination, the discrete output values were analyzed and the lock-time determined to be when 

the output entered and remained within 2% of the final value of the system.  This is an accepted 

percentage for the settling time of a system in control theory.  This is equivalent to the time 

required for the error to die down and remain below 0.02.  However, the actual analysis is more 

involved.  With the introduction of noise, a large noise value at any given sample can throw the 

output outside the 2% range, even though the output due to the system is within the 2% range.  

Examining the numerical values at each sample and finding where the output stayed below 0.02, 

the lock-time was found to be at 0.0128 s.  Comparing this value to the theoretical value of 0.0120 

s, the fixed-point representation does not degrade performance in this area significantly.  It must 
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be understood also that the theoretical value of 0.0120 is assuming no noise, and that any 

significant spike in the noise at the output of the system could effect the settling time of the 

system when analyzing the output at each time sample.  However, it should be noted that running 

the simulation several times, the above settling time of 0.0128 was the average of all simulations. 

c.  Pull-in Range 

The pull-in time for the second-order PLL is theoretically infinite, but an analysis 

of the pull-in range of the fixed-point system needs to be done.  At some point, the frequency 

offset will get so large that the fixed-point precision or range will be exceeded and critical errors 

will be introduced.  Incrementally increasing the input frequency, the fixed-point PLL eventually 

obtained lock for a max frequency of 2830 Hz.  This value represents a 41.5% error from the 

center frequency of the PLL.   

The limitation seems to come from the loop filter.  The range or precision, 

depending on the scaling used, is exceeded at the output of the loop filter, causing the input to the 

NCO to be inaccurate.  The same limitation was discovered when attempting to develop an 8-bit 

fixed-point PLL and will be discussed in more detail in Section 4.D. 

d.  Pull-in Time 

The pull-in time, PT , of the system is dependant on the frequency offset from the 

center frequency.  Realize that if the frequency offset is inside the lock range, the lock time is 

used and is the same for any frequency offset, as long as it is smaller than the lock range.  The 

pull-in time varies with the magnitude of the offset.  To get an idea of the performance as related 

to pull-in time, five input frequencies were used and compared to the theoretical values for those 

frequency offsets.  The settling time again was calculated using a 2% tolerance.  Table 2 shows 

the results for the five frequencies.  The pull-in time is given in seconds for the theoretical as well 

as the experimental and the frequency offset is given in Hz.  An initial offset of 300 Hz was 

chosen due to the fact that from the analysis of lock-range, 259 HzLω∆ =  and, thus, a larger 

value than this was needed.  The pull-in range of the system was determined to be 830 Hz, thus 

only values up to 800 Hz were included. 

 

∆ω [Hz] Tp [s] (theoretical) Tp [s] 
(experimental) 
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300 0.0254 0.0210 
400 0.0452 0.0305 
500 0.0707 0.0446 
600 0.1018 0.0640 
700 0.1385 0.0836 
800 0.1810 0.1114 

 
Table 2.   Pull-in Times for Various Frequency Offsets 

 

The disagreement between the theoretical and experimental values, especially as 

the frequency offset increases, cannot entirely be explained by the approximations used in 

deriving PT .  Another explanation lies in the discrete quantization of the fixed-point PLL.  The 

output of the PD, or the error of the system, has a certain precision.  The range of numbers 

required at that block, as described previously, determines this precision.  If the value at the 

output of the PD is smaller than this precision, the value is rounded to zero.  By the nature of the 

second-order PLL, any time two successive outputs fall within the precision limits, the output 

remains at zero.  The above theoretical values assume an analog PLL, where precision is infinite.  

A fixed-point software PLL has quantization error, which in this case, output a zero even though 

the real-world value is larger than that. 

e.  Pull-out Range 

The pull-out range is an important figure because it allows the user to determine 

how large a frequency step can be supplied to the input without unlocking the system.  This 

assumes the system is already in lock and a frequency step occurs, as in an FM system.  This 

value was tested by giving the PLL a signal, allowing lock to occur, then stepping up the 

frequency until it unlocked.  Simulations of the fixed-point PLL agreed with the expected figure, 

which was obtained through computer modelling in Reference [5].  The fixed-point PLL 

experimentally had a pull-out range of 1501 rad/s or 239 Hz, compared to the theoretical value of 

1508 rad/s, or 240 Hz.  Recall that the lock-range of the system was 259 Hz, thus if a frequency 

step larger than the pull-out range, but less than the lock range, the system will again lock in the 

lock-time, or 0.0120 seconds for this system.  If the frequency step is larger than the lock-range, 

the system will acquire lock using the longer pull-in time as described above. 

f.  Frequency drift 
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The magnitude of a frequency drift is of interest because, for a software radio 

implementation and downloadable software radio packages, satellite communication is required.  

As neither satellites nor users are stationary, a frequency drift can occur due to the Doppler shift 

in frequency.  The Doppler shift is governed by two parameters:  the velocity and direction of 

travel relative to the antenna, and the wavelength of the signal.  Specifically, the Doppler shift in 

frequency is, 

 cosd
vf θ
λ

= . (4.10) 

where v = velocity, λ =wavelength or / ,  =speed of lightCc f c , and θ = direction of travel from 

the antenna.  For a frequency drift to occur, the satellite would need to either be changing velocity 

or changing direction.  With an orbital satellite, the direction of movement is constantly changing.  

Therefore, an idea of what kind of drift the PLL can handle is an interesting figure of merit. 

From Subsection 2.B.1.c, the rate of change in a frequency ramp that will cause a 

system to unlock is governed by Equation (2.24).  To test the fixed-point PLL model, a frequency 

ramp was applied to the input after the system was allowed to lock.  The slope of this ramp was 

increased in each run until the system was observed to unlock and to be unable to track the 

frequency change.  The rate at which the PLL was unable to track the frequency ramp was much 

smaller than that predicted by Equation (2.24), but this value was assuming no noise and an 

analog system.  Because of the non-linearity of a frequency ramp, noise and quantization error are 

magnified.  The results of the fixed-point PLL are 15,000MAXω∆ =� , compared to the theoretical 

value of 130,000.  The PLL could maintain lock up to this rate of change for about 0.25 seconds, 

corresponding to about 30 cycles of the system.  From 0.25 seconds on, the large frequencies 

were out of range of the fixed-point representation.  The PLL maintains lock longer for a more 

gradual frequency ramp slope (see example below). The limiting factor is simply the range of 

frequency that must be covered for the case of a frequency drift.  For a fixed-point PLL with a 

center frequency of 2000 Hz, the system unlocked when the reference frequency reached around 

3300 Hz.  For smaller sloped frequency ramps, the system remained locked longer, but once it 

reached the upper bound of 3300 Hz, the system fell apart. 

To understand if this is a limitation for a real world application, an example of a 

moving user is given.  There are two ways a frequency ramp can be seen at the receiver of a PLL 
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due to the movement of a user.  The first is if the user is accelerating in speed.  The second is if 

the user is changing direction.  The second case will be considered first.  The largest change in 

frequency due to a change in direction occurs when θ  goes from 1 to �1.  This represents a user 

turning around and moving in the opposite direction.  The user will be assumed to travel at a 

constant velocity of 60 mph (26.82 m/s).  If the user is assumed to turn-around on a dime, the 

result is a frequency step. The performance of a frequency step was covered in Subsection 

4.B.1.e, therefore a circular path of the user will be assumed, which represents a constant change 

in angle, thus a frequency ramp as the input signal of the PLL.  As shown in Figure 14, the user 

makes a tight circle with a radius of 10 m.  To get anything but negligible values, a high 

frequency signal of 100 MHz is used.  At 26.82 m/s the turnaround would take them 2.34 

seconds.  The value θ  in Equation (4.10) goes from 0 to π  in 2.34 seconds.  This represents a 

slope of the frequency ramp of 48 radians.  A slope of 48 radians would take 170 seconds, or 

almost three minutes for the PLL to unlock.  The frequency ramp is only applied for 2.34 seconds.  

The system can easily handle a frequency ramp of this slope, even with an elevated frequency of 

100 MHz. 

 
Figure 14.  Vehicle Driving 60 mph Around a Tight Curve to Illustrate how the Doppler Shift can 

Cause a Frequency Ramp of a Signal. 
 

The second case is when the user is accelerating.  Suppose the user goes from a 

dead stop to 60 mph in 3.1 seconds (the fastest production car ever built is the Porsche Carrera 

twin turbo which was tested at 0-60 mph in 3.1 seconds).  The resulting frequency ramp has a 

slope of 18.12 radians.  For a slope of 18.12ω∆ =�  rad/s2, the PLL would take 450.78 seconds to 
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unlock.  Even in an accelerating jet, the frequency ramp caused by acceleration is well within the 

limits of the PLL 

For normal operating environments, the PLL can be expected to stay locked for a 

real-world frequency ramp.  If an environment where the frequency ramp is too large, or applied 

for too long is encountered, a second PLL with an appropriate center frequency could be used.     

 

2.  Analysis of PLL 

The performance measures of the PLL discussed in the previous section give a good idea 

of the capabilities of the fixed-point PLL, but two further items concerning the PLL need to be 

analyzed:  the error at the output due to the fixed-point representation, and why an 8-bit system 

failed.  The first will be examined first as it will shed some light on the second.   

 
a.  Errors in the Output of the PLL 

To get an idea of the errors expected at the output of the PLL, an analysis of the 

errors that could possibly accumulate at each stage of the PLL is required.  A full discussion of 

error analysis and propagation of errors is beyond the scope of this research; however, to 

determine the size of errors at the output of the PLL, some error analysis is required.  This will be 

done by looking at the precision at each stage of the PLL and from that precision a worst-case 

error can be determined.  By finding the largest possible error in magnitude at each block, the 

error of the sinusoidal output of the NCO is determined.  Errors at the output of each block are 

due to two factors.  The first is the error at the input of the block.  The second is the error due to 

the fixed-point representation and arithmetic operation of the block.  Adding these two error 

results in the error at the output of the block. 

The input signal was assumed to be normalized to amplitude of 1± , thus the best 

scaling of the fixed-point number that includes that range is 142S −=  (see Chapter 3 on scaling of 

fixed-point numbers).  This results in a precision of 6.10 5E − .  Recall that precision is defined as 

the distance between two successive representable numbers.  If a �round to nearest� 

implementation is used, the largest possible error that can occur is half of this precision or 

3.05 5E − .  The convention of accumulated errorre = will be adopted for the remainder of this 



49 

section.  With this notation, when the real world signal is converted to a fixed-point value, 

3.05 5re E= − . 

For the PD component of the PLL, the input signal is multiplied by the output of 

the NCO.  The initial value of the NCO is zero, but it is sinusoidal in nature.  The assumption will 

be made here that the initial error in the output of the NCO is due only to the precision of the 

fixed-point number representation.  The NCO sinusoid output also has amplitude 1± , thus uses 

the same range and precision.  For multiplication, the error in the product is the sum of the error 

in the two multiplicands.  The error of both multiplicands is the same, thus after the multiplication 

of the reference signal and the NCO, the error due to the input becomes 

2*3.05 5 6.1035 5E E− = − .  Adding the error due to the fixed-point operation yields a value of 

9.1552 5re E= − .    

The next block adds the in-phase and quadrature-phase components in the PD.  

Again, finding the error due to the inputs and adding this value to the error due to the fixed-point 

operation determines the error.  For addition, the error due to the inputs is the sum of the errors.  

This results in a value of 1.8310 4E − .  Adding the resolution error, the output of the summation 

has a possible error of magnitude 1.8310 4 3.0517 5 2.1362 4re E E E= − + − = − .   

The next step of the PD was to divide the in-phase and quadrature-phase signals.  

To determine the error at the output of this operation, assume first that the division operation is 

perfect and that the output error is caused only by the error at the input.  This being the case, the 

error propagates the same as multiplication.  The resulting error is the sum of the errors at the 

input.  Therefore the error at the output due to error at the input is 2*2.1362 4 4.2724 4E E− = − .  

Unfortunately the errors of this operation do not stop here.  If the denominator in this operation is 

small compared to the numerator, a large number will result.  In fixed-point arithmetic, this means 

a larger range of numbers needs to be represented.  For the division in the PD, the range of 

numbers was determined to be between 128± .  To get this type of range, a scaling of 82S −= is 

needed, which results in a precision of 3.906 3E − .  The worst-case error at this stage is the error 

due to the input plus the error due to fixed-point scaling.  Adding these two errors together, 

2.3804 3re E= − .  
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The next block of the PD is the 1tan ( )x−  function.  This function is asymptotically 

bounded by / 2π± , thus a scaling of 142S −= is used.  Because this is a non-linear function, errors 

do not work exactly the same.  The error will be maximized where the function has a maximum 

derivative.  This is at 0x = .  To find the error at the output, the function must be applied to the 

error at 0x = .  More specifically, if the error at the input of this stage is 2.3804 3re E= − , the 

represented value of the fixed-point system could be 0 or 2.3804 3E − .  If the 1tan−  function in 

the system was perfectly continuous, the error at the output could be as large as 

 
1 1tan (0) tan (2.3804 3)

   2.3804 3.
re E

E

− −= − −
= −

 

Including the error due to the fixed-point representation of 1tan−  function, the error is 

2.3804 3 3.0517 5 2.4109 3re E E E= − + − = − .  As this is the last block of the PD, the total error 

of the phase detector component is , 2.4109 3r PDe E= − . 

The loop filter component is the biggest contributor to error in the system.  This is 

because the loop filter lead-lag constants are large, thus a larger range is needed, reducing 

precision.  The input to the loop filter is the output of the 1tan−  function, which has a range of 

/ 2π± .  This signal is multiplied by the constants 0b  and 1b .  For the PLL model, these two values 

were 635.14 ± 0.015625 and �621.43 ± 0.015625, respectively.  The output of this multiplication 

needed to include the entire range of ( / 2)(635.14) 997π± ≈ ± .  This required a scaling 52S −= , 

which has a precision of 0.03125 or output error of 0.015625.  Adding the error due to the inputs 

of the multiplication to the error from fixed-point multiplication, the accumulated error becomes 

3.3661 2re E= −  on each multiplication.   

The error gets worse when the addition in Equation (4.5) of the loop filter is 

applied.  This addition has three terms in it.  The first term in Equation (4.5) has the same range as 

the output of this addition.  Because of the feedback of the system, a range of 5000±  is needed.  

This results in a precision of 0.25 or error of 0.125.  The error in the three terms are added 

together then added to the precision of the output.  The total error of the loop filter then becomes, 

 , 2*3.3661 2 0.125 0.125 0.2837r LFe E= − + + = . (4.11) 
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The first block in the NCO performs the operation 

 0( ) ( )e S f Sn T u n Tθ ω= + . (4.12) 

The first term in this sum is a constant.  Evaluated to be 0.62831, it is the center frequency of the 

PLL multiplied by the inverse of the sampling frequency.  For this PLL model 

1/ 5 5S ST F E= = − .  The second term varies with the signal ( )fu n ; hence a range of numbers is 

required vice the constant first term.  The range of ( )fu n  is the range of the output of the loop 

filter, which was previously determined to be 5000± .  Thus the range of the second term in the 

sum is 5000* 0.25ST± = ± .  For this small range, a scaling of 152S −=  is used, which increases 

precision.  To determine the error at the output of this multiplication, the error due to the precision 

of the output is added to the largest possible error at the input, ,r LFe  multiplied by ST .  Thus the 

error at the output becomes, 

 15
,

1* 2 2.9442 5
2r r LF Se e T E−= + = − . 

Adding the first term in the sum of Equation (4.12), a new range is needed due to the larger value 

of 0.62831 .  This larger range results in a scaling of 142S −= .  The error due to this precision is 

3.0517 5E − .  Adding the error in the fixed-point representation of 0.62831, the error in the 

second term of 2.9442 5E −  and the error due to the fixed-point operation yields an error of 

9.0476 5re E= − .    

The final possible introduction of errors in the system is due to feedback property 

of the NCO and the continual scaling of the output 2 ( )nθ to keep it between  and π π− .  The 

output phase of the NCO equals, 2 2 0( ) ( 1) ( 1)S f Sn n T u n Tθ θ ω= − + + − .  If 2 ( )nθ  is assumed to 

remain between  and π π− , 2 ( 1)nθ −  must be in this range as well.  The appropriate scaling for 

this sum is 132S −= .  This results in an error of 6.1035 5E − .  The last two terms of the sum have 

a total error of 9.0476 5E − .  Adding the errors due to fixed-point scaling and errors due to the 

feedback input, the resulting error of 2 ( )nθ  is equal to 

9.04756 5 2*6.1035 5 2.1254 4re E E E= − + − = − . 



52 

To keep 2 ( )nθ  bounded, the algorithm adopted was to subtract 2π  whenever it got 

larger than π .  To get an accurate error of the system, this subtraction must be taken into account, 

despite the fact that it occurs infrequently.  To subtract 2π  from the phase whenever it grows 

larger than π  requires converting 2π  to a fixed-point value.  The error in this conversion is 

6.1035 5E − .  Again adding the error due to the inputs to the error due to the fixed-point 

operation, the total error of the NCO is determined to be,  

 , 3.3462 4r NCOe E= − . (4.13). 

The error determined thus far is the error in the phase of the NCO.  The output of 

the NCO is a sinusoid (actually two sinusoids, the in-phase and quadrature-phase components of 

the signal, but the error will be the same for both) with amplitude one.  The scaling used for this 

range is 142S −= .  To determine the output error of this sinusoid, the error at the input must be 

applied to the sinusoid function where its derivative is maximum.  For the sine function, this is at 

zero, thus the error at the output due to the input error is sin(3.3462 4) sin(0) 3.3462 4E E− − = − .  

This value must be added to the error of the sinusoid due to its precision.  With a scaling of 142− a 

fixed-point quantization error of 3.0517 5E −  is found.  Adding these two errors together, the 

total error of the system is determined to be 

 , ,1 3.3462 4 3.0517 5 3.6513 4r TOTe E E E= − + − = − . (4.14) 

The subscript (1) refers to the error after the first iteration of the feedback loop.  At 

the beginning of this analysis, the NCO error was multiplied by the reference signal input.  

Because this is a feedback loop and a start point had to be determined, the NCO input error was 

assumed to be zero.  Now that a figure for the error in the NCO has been found, this assumption 

requires correction.  If the error in the NCO signal is now added and the whole error analysis 

repeated from the PD, the error output after the second iteration is, 

 , ,2 4.5743 4r TOTe E= −  (4.15). 

This error analysis shows that as the feedback system continues to operate, the 

error can grow.  At this point an idea of how fast errors can propagate and grow in the feedback 

system is determined.  By defining, 

 , , 1r r i r ie e e −∆ = − , (4.16) 
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the re∆  for 1i = is 9.2296 5re E∆ = − .  This does not mean that the error will grow at this rate, 

because errors can cancel themselves out.  However this is the maximum rate at which they could 

be expected to grow.  

 Figure 15 shows the output of the fixed-point NCO subtracted from the output of 

the corresponding floating-point NCO.  This difference represents the error in the fixed-point 

implementation.  The error can be seen to oscillate, with a maximum value of around 2.4 3E − .   

 
Figure 15.  Error Plot of the Output of the Fixed-point NCO versus Time 

    

How does this affect the performance of the PLL?    For the SNR 15dBi =  used for 

this simulation, it essentially does not.  Using a maximum error of 2.4 3E − , and the input SNR of 

15 dB, the error reduces this by 0.164 dB.  The new  .  This is not a problem for the PLL 

considered.  The PLL locks consistently and as shown in the sections above, within expected 

theoretical limits.  The quantization error of a fixed-point system could be a concern if 
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implemented in a low SNR system, but for communication purposes, with SNRs over 10 dB, the 

reduction will not impact the performance of the PLL.  

 
 
b.  The 8-bit PLL 

An 8-bit PLL was attempted, but as can be surmised, the 8 bits did not give a large 

enough range or a high enough resolution.  When one parameter was fit to the dynamics of the 

PLL, the other was too small, causing critical errors.  This last section examines why this was the 

case.   

The only component of the PLL that could not be made to fit an 8-bit 

representation is the loop filter.  This is because in this component the largest ranges are 

encountered.  Recall from Equation (4.5), the output of the loop filter is described by  

 0 1( ) ( 1) ( ) ( 1)f f d du n u n b u n b u n= − + + − ,  

where 0 1635.1475 and 621.4397b b= = − . 

The initial cycle of the PLL sets (0) (0) 0f du u= = .  This means 

(1) 635.1475 (1)f du u= .  Assuming the worst possible phase offset between the reference and the 

signal sent from the NCO of / 2π , (1) / 2 1.5du π= ≈ .  From Equation (4.5), 

(1) 635.1475*1.5 982du = ≈ .  If a phase offset of / 2π−  is used, (1) 982du ≈ − , thus at a minimum 

this range must be included.  To achieve this large range with 8-bits requires a scaling of 32S = .  

The corresponding precision for this scaling is 8.  The second iteration comes along and, because 

a correction has been made to the NCO output, the phase error is slightly less, around 1.4.  

Plugging in the formula for fu , 

 (2) 982 933 932 939fu = + − = . 

It is important to notice that the last two terms of this sum add to 1, but with a 

precision of 8, the result is zero, thus (2) 982fu = .  No correction from the second iteration is 

made.  The PLL cannot lock as the corrections to the phase of the NCO frequency cannot be 

realized due to the large range, coupled with the need for high precision.   
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Numerous methods were tested to correct this error, but with little success.  The 

sum was broken down into numerous sums, so that a higher precision could be obtained, but the 

initial loop made this approach unrealizable.  A second more promising approach was to use two 

8-bit numbers in the loop filter, similar to a double floating-point number.  Unfortunately, 

Simulink does not make it easy to implement this type of representation and the resulting circuitry 

and eventual hardware implementation complicated the system more than using 16-bit circuitry. 

c.  Effects of Changing PLL Parameters 

If not already realized, it should be mentioned that the scaling of the fixed-point 

numbers is a crucial step in developing a fixed-point model.  The range of the numbers and 

precision must be considered and evaluated at each step, and when the two conflict, priorities 

must be set to determine a solution.   

It must be realized that changing parameters can result in changing the range or 

precision of certain points in the model.  This is especially true when changing the sampling 

frequency of the system.  The sampling frequency can have a large range in itself and thus a 

dramatic effect on the PLL operation.  For the model considered here, a sampling frequency of 20 

kHz was used.  Reducing the sampling frequency to 14 kHz, the model reluctantly locks, but 

jumps are seen at the output, indicating unlock at certain places due to out of range errors.  Drop 

the sampling frequency down to 12 kHz and the model is nearly useless as a PLL.  The PLL does 

seem to lock, but at the steady state, is unlocked as often as locked.  The output signal of the 

system is extremely jumpy, and useless in a communications application.   

Changing the lock range of the system can also have dramatic effects on the 

system.  Once the lock range is given, the natural frequency is calculated from the given lock 

range.  This value is used to calculate nearly all of the parameters in the PLL.  Changing the lock 

frequency can cause an avalanche of changing values, resulting in a different scaling requirement 

for the fixed-point representation of values.   

 

E.  CONVERSION TO HARDWARE 

To complete the analysis of the fixed-point PLL simulation, converting this model to a 

hardware implementation, either on a DSP or FPGA chip needs to be mentioned.  Mathworks has 

a product that works in conjunction with Simulink to produce C/C++ code from Simulink models.  
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It provides a debugging feature and code optimization package.  This software package is called 

Real-Time Workshop.  At the time of this writing, the software package was not available to the 

author, thus testing the conversion to code was not possible.  The literature suggests that this 

package will translate a Simulink model, whether discrete, continuous, or fixed-point, into a 

portable, working program.   

Once this program, in C/C++ or Ada, has been developed, converting it to a VHDL 

language is simply a matter of syntax (HDL stands for Hardware Description Language).  This 

type of language was adapted as the need for a language that could be used by a program-

controlled machine for generation of final hardware was recognized.  Several commercial HDL 

packages are available today. 

 

 

In this chapter, the procedure for designing the fixed-point PLL model was described.  

This was done by building a floating-point model and converting it to a fixed-point equivalent.  

Analysis was done by comparing the fixed-point simulation results to those obtained from the 

floating-point.  Finally an error analysis was done to determine how large errors could be 

expected to grow due to the fixed-point arithmetic quantization error.  The final chapter deals with 

capabilities, limitations, and future research for a FPGA based PLL. 
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V.  CONCLUSIONS 

 The objectives of this research were to build a fixed-point PLL and analyze the 

performance of the model.  The was accomplished by building a floating-point PLL model and 

converting it to fixed-point arithmetic and comparing the results of the two simulations.  This 

Chapter discusses the capabilities and limitations of the fixed-point model, and concludes with 

recommendations for further research in this area. 

 

A.  CAPABILITIES AND LIMITATIONS 

The fixed-point model developed was able to lock onto a given reference input signal with 

comparable performance to the floating-point or analog equivalent.  Lock-ranges and lock-times 

in the model were equivalent.  The model proved to be able to track a drifting frequency, lock 

onto a frequency step larger than the theoretical value, and a phase step with accuracy and within 

theoretical limits.  As a fixed-point implementation, it is a viable option for use on a FPGA or 

DSP chip, fulfilling the requirement for a PLL in a software radio package.  The reason this is the 

case is because the fixed-point operations are much faster than the IEEE floating point standard, 

allowing real-time radio in a downloadable software-like format.  The second major advantage of 

the fixed-point implementation is the memory storage required.  Because the range of the 

numbers is known, 16-bits can be used and scaled appropriately to represent each number as 

opposed to 32-bits or 64-bits of floating point.  This reduces the amount of memory required by 

50% or 66%, a valuable commodity on a small DSP chip. 

The cost of fast operation and memory savings is a trade-off in precision and range.  Using 

only 16-bits means the range of numbers or the precision much be sacrificed.  The limitation of 

the fixed-point model is the parameter specific operation of a given model.  The point behind 

using 16-bits and a fixed-point operation is that the range of numbers is known, and the window 

of numbers that 16-bits can represent can slide to accommodate that range.  The other side of this 

is that, if parameters are changed and that window requiring representation changes, the fixed-

point model could fail.   To have a completely portable model, the scaling of the fixed-point 

numbers needs to be variable.  By allowing the scaling to be variable, any change in parameters 
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can be accounted for by changing the scaling, hence sliding the window of fixed-point 

representation to match the changing range. 

The 16-bit fixed-point model introduced error into the PLL that otherwise would not be 

there.  This is seen in the quantization error in representing a number.  To speed up arithmetic 

operation, fixed-point numbers are represented in a way that makes binary arithmetic � the 

arithmetic a processor uses � much faster.  This representation is not optimal for representing 

real-world values.  As was shown in Chapter 4, this error resulted in a reduction of the SNR of 

around 0.16 dB.  For radio communication purposes, this is not an obstacle, but for applications 

using a small SNR, limitation on fixed-point representation needs to be considered. 

As mentioned numerous times, fixed-point implementation has a smaller range of 

representable numbers, given a certain precision.  For the loop filter used, a certain precision is 

required to make sure small additions have an effect on the output.  This results in the precision 

being the priority and, hence, the range suffers.  Two limitations are the cause of this limited 

range.   

First, an 8-bit PLL was not realizable.  By using 8-bits, the range was decreased to the 

point that numbers were over 50% outside the representable range.  This produced critical failure 

errors in the feedback loop, preventing the PLL from locking.  Several solutions were attempted 

and could hold promise, but a 16-bit fixed-point implementation was preferred. 

The second limitation of the reduced range is that the pull-in range of the system was 

reduced.  While a second-order analog or floating-point PLL with an active P-I loop filter should 

have unlimited pull-in range, the fixed-point counterpart did not.  This was due to the range 

restrictions imposed by the fixed-point representation.  Because only a limited range could be 

represented, when a frequency outside that range was encountered, the value could not be 

approximated in the fixed-point scaling.  This inevitably prevented the system from locking. 

 

 
B.  RECOMMENDATIONS FOR FURTHER RESEARCH 

The main area for further research is to actually build a phase lock loop on an FPGA or 

DSP chip.  This step will have two steps.  First, the PLL model must be converted to useable 
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code.  The Mathworks Real Time Workshop is ideal for this purpose.  Research into this program 

and the how code is produced from a Simulink model needs to be done.  This research would 

require understanding how different parameters in Real Time Workshop affect the generated 

code, and how to optimize the final program. 

The second step would involve translation to an HDL .  While there are several 

commercially available HDL�s, including Interactive Design Language (IDL) from IBM, 

Instruction Set Processor Specification (ISPS), Test Generation and Simulation (TEGAS), Texas 

Instruments HDL (TI-HDL), and ZEUS, created at General Electric Corporation, the most 

promising language was developed in 1983.  Contracted by the DoD, VHDL 2.0 was released in 

late 1983.  In 1987, VHDL became the IEEE standard for HDL.  It is sufficiently rich for 

designing digital systems and supports a hierarchical description of hardware.  This means it can 

be used to describe programs from systems to gates, or even the switch level [7].  To continue this 

research, an understanding of an HDL and a conversion from the present Simulink model needs to 

occur.  This process is not as easy as a simple conversion from C/C++.  From the C/C++ code, a 

Preliminary Design Description (PDD) is typically generated prior to VHDL coding.  Once an 

acceptable PDD is complete, VHDL coding can commence [3].     

Analysis on what type of FPGA or DSP is needed to satisfy the requirements of a software 

radio needs to be done.  This would include figures of merit such as speed and memory.  If the 

radio requires GHz operation, but an FPGA can only handle MHz, a real-time system is not 

feasible.  This is not the case, as �IF Sampling� can bring the operational frequency down, but 

research on the trade-off between high speed and affordability is required.  Research into how 

much memory would be required to not only put the PLL on the chip, but the other component 

parts of a radio such as a demodulator, decoder, or delay lock loop (DLL).   

 
C.  FINAL COMMENTS 

The final goal of this and related research is to build a software radio on a DSP or 

preferable an FPGA chip.  The idealized software radio would allow the user the flexibility to 

download software packages related to their mission at that time.  This platform would be a 

general-purpose radio.  Instead of using several radios for different situations, modulation 

formats, or radio protocol, a single unit, capable of communicating with all formats by a 
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downloadable software package would be used.  By doing all the demodulation, and signal 

processing in software, this goal can be achieved.  A typical radio signal would be digitized at the 

antenna, or more likely, an analog frequency translator would be used to shift the RF signal to an 

intermediate frequency to reduce the sample rate requirement of the A/D converter.  With the 

signal digitized, all radio processing function are done in software.  An integral part of this radio 

function is the PLL.  To realize these functions on an FPGA chip, fixed-point arithmetic is 

required.  For reasons already specified such as memory space and speed, DSP and FPGA chips 

use fixed-point representation rather than floating point.  Thus a fixed-point PLL model was 

developed. 

The fixed-point PLL model simulated in this research performed comparable to an analog 

or floating-point equivalent.  The fact that it was implemented using fixed-point arithmetic makes 

it ideal for conversion to an FPGA or DSP chip. 

The limitations introduced by the fixed-point arithmetic must be considered in designing 

the final product.  Understanding the nature of fixed-point scaling and how parameters can affect 

the ranges of an application are essential.  For the model in this research, a 16-bit fixed-point 

representation was assumed.  An 8-bit model would have been ideal, but the limitation on range 

and precision of only 8-bits caused a deferment to 16-bits.  Fortunately, DSP and FPGA chips 

come in 16-bit and even as high as 32-bit on the commercial market, making the 16-bit 

implementation a practical solution. 
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APPENDIX A 

This Appendix gives the code for the MATLAB floating-point PLL and the fixed-point 

Simulink model used for simulation.   

Floating Point MATLAB code 

For ease of reference, the variables used in the code will be matched to the notation used 

in the text. 

• sigI = in-phase component of 1u . 

• sigQ = quadrature-phase component of 1u . 

• zeta = ζ . 

• nWl = ,  Wn = Lω ω . 

• 1 2tau1 = ,  tau2 = τ τ . 

• 2phi = θ . 

• theta = eθ . 

• F1 = output frequency of 2u . 

The following is the code generated for PLL model. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ADPLL2 (All-Digital Phase Lock Loop) %
% % %
% Implements a phase lock loop assuming a complex in-phase and %
% quadrature-phase input signal. Adapted from Reference [1]. %
% % %
% Michael Johannes % %
% 12 September, 2002 % %
% % %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialize signal parameters

Fc = 2100; % Input Reference signal frequency
U10 = 1; % Input Reference signal amplitude
U20 = 1; % Output NCO signal amplitude
F0 = 2000; % Center Frequency of NCO

Fs = 40000 % Sampling freqency
Ts = 1/Fs; % Sampling duration

% Construction of Reference signal sigI and sigQ

SNRdb = 15; % Input Signal to Noise ratio in dB
BW = 1000; % Prefilter bandwidth
pod = rand*360; % Randomize phase offset in degrees
por = pod*pi/180; % Convert random phase offset to rad/sec
t = 0:Ts:50/Fc; % Vector of time samples

% Calculate noise power from SNR and prefilter bandwidth

sigma = sqrt(.5/(10^(SNRdb/10))/BW)
sigma = sqrt(.5/10^(SNRdb/10)/BW);

% Signal construction with noise added

sigI = U10*cos(2*pi*Fc*t+pi);
sigQ = U10*sin(2*pi*Fc*t+pi);
sigI = sigI+sigma*randn(size(t));
sigQ = sigQ+sigma*randn(size(t));

% Calculation of PLL parameters

zeta = .6; % Damping factor
Wl = 200*pi; % Lock range defined according to expected

% input characteristics

Wn = Wl/2/zeta % Natural frequency calculated from lock range
Kd = 1; % Phase detector gain
Ko = 1; % Loop filter gain

% Loop filter constants and lead-lag gain constants calculated
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tau1 = Ko*Kd/(Wn^2);
tau2 = 2*zeta/Wn;
a1 = -1;
b0 = (Ts/(2*tau1))*(1+1/(tan(Ts/(2*tau2)))); % Lead constant gain
b1 = (Ts/(2*tau1))*(1-1/(tan(Ts/(2*tau2)))); % Lag constant gain

% Initialization for first cycle of feedback loop

phi = 0; % Output phase of the NCO
theta = 0; % Phase error of the two signals
Uf=0; % Output signal of the loop filter
thetaI = 0; % Error of in-phase signal
thetaQ = 0; % Error in quadrature-phase signal
F1 = 2*pi*F0 % Output frequency of NCO

% General case phase lock loop

for n = 2:length(sigI)

phi(n) = phi(n-1)+F1(n-1)*Ts; % Phase error from current cycle
% added to the phase of the
% output signal

% Subtract 2*pi whenever the phase is larger than pi to keep the
% phase bounded

if phi(n) > pi
phi(n) = phi(n) - 2*pi;

end

% Implementation of phase detector
thetaI(n) = sigI(n)*cos(phi(n))+sigQ(n)*sin(phi(n));
thetaQ(n) = sigI(n)*sin(phi(n))-sigQ(n)*cos(phi(n));
theta(n) = atan(-thetaQ(n)/thetaI(n));

% Loop filter equation.
% Implements the transfer function 1+s*tau1
% --------
% s*tau2

Uf(n) = -a1*Uf(n-1)+b0*theta(n)+b1*theta(n-1);

% Implements the equation for the NCO Wo+Uf(n)
F1(n) = 2*pi*F0+Uf(n);

end % for loop
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Fixed-point Simulink Model 

The Simulink model was broken down into its component parts:  Phase Detector, Loop 

Filter, and Numerically Controlled Oscillator.  Figure A1 shows all components in the PLL 

system.  Figures A2-A4 show the Simulink block structure for each component.  The scaling of 

the fixed-point representation for each block is shown next to that block at the lowest level.   

 
Figure A1.  Phase-Lock Loop Simulink Model 

 

The PD takes three inputs.  The inputs In1 and In2 are the in-phase and quadrature-phase 

reference signals, depicted by the [ ],t sigI′ ′  and [ ],t sigQ′ ′ , respectively.  These signals are 

generated in the MATLAB workspace, and imported into Simulink using the From Workspace 

blocks.  The t  input of that block simply tells the model it is a sampled signal and the duration 

between samples.  The input In2 is the phase error feedback from the NCO.   

The FixPtGateway Out blocks take the fixed-point value and convert it back to a double 

floating-point representation so that it can be graphed versus time in the Scope block. 

Figure A2 is the phase detector block structure embedded in Figure A1.  The three input 

lines are seen at the left of the figure.  Inputs In1 and In3 are the sampled signal and immediately 

go into a FixPtGateway In block that converts the floating-point values to a fixed-point 

representation.  The final input, In2, is the total phase of the NCO.  It serves as input to a block 

labeled sin/cos.  This block takes the phase and by use of a look-up table, outputs the sine and 

cosine of the input phase.  The output, Out1, of the PD is the phase error of the system plus higher 

frequency terms.   
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Figure A2.  Phase Detector Simulink Model 

  

The next block from Figure A1 is the loop filter.  This block is shown in detail in Figure 

A3.  The constants 635.146 and �621.44 are the lead-lag constants 0 1and bb .  The 1/z blocks 

signify a unit time delay.  This block saves the output from the last sample time and outputs it at 

the current time sample.  The output of this component is the phase error of the system.  
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Figure A3.  Simulink Active P-I Loop Filter 

 

The final component block of Figure A1 is the NCO.  This subsystem is shown in Figure 

A4.  It takes as input the error from the loop filter and calculates the total phase error of the 

system.  This phase error is fed back to the phase detector, and the process repeats until the error 

is forced to zero.  The complicated circuitry at the end of the NCO is a comparator and switch 

combination that compares the phase output to π .  If the output is less than π , the switch outputs 

its top input, which is just the signal.  If the phase is greater than π , the switch outputs the bottom 

input, which is the signal minus 2π .  This circuitry keeps the phase from growing unbounded or 

out of range of the fixed-point model. 
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Figure A4.  Simulink Numerically Controlled Oscillator 
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