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Abstract 
This paper describes a set of metrics that will help 

administrators of distributed, real-time (clustered) 
computer facilities to select the best intrusion detection 
system for their facilities.  The metrics herein are the 
subset of our general metric set that particularly impact 
real-time and distributed processing issues. We discuss 
related works in this field, the role of intrusion detection 
in information assurance, some basic classes of intrusion 
detection systems, a general architecture of network 
intrusion detection systems, and the scorecard metrics 
and their application to real-time and distributed 
processing systems. Finally we discuss the lessons we 
learned using a preliminary version of the metric 
scorecard to test three commercial intrusion detection 
systems and the opportunities for further work in this 
area. 

Keywords: Intrusion Detection, Metrics, Evaluation, 
Real-Time, Distributed, Security. 

 

1 Introduction 

Processing and cost requirements are driving future 
naval combat platforms to use distributed, real-time 
systems of commercial computers and networking com-
ponents.  The shift from specialized components to 
interoperable commercial hardware will increase the dif-
ficulty of meeting information security requirements.  The 
move to distributed engineering and computing, increased 
automation, and reduced manning will strain the security 
paradigms used in current systems. Numerous subsystems 
will have to cooperate securely in an environment where 
milliseconds can make a life or death difference. 

However, information security services often conflict 
with the performance requirements of highly distributed, 
real-time systems. As these systems grow more complex, 
the timing requirements do not diminish; indeed, they 
may become more constrained. Changing requirements 
imply re-engineering and continual re-evaluation of sys-
tem security. Unfortunately, the threat to information 
systems is continually evolving as well and requires vigil-
ant survey of available technologies to find those that best 
fit the information assurance needs of each system.  
Changes can always be made, but knowing whether or not 
a change will be an improvement is a challenge [1]. The 

idea of security itself has changed in this environment.  
Security used to be all about keeping “bad guys” out.  But 
the rising field of information assurance (IA) considers 
security as an enabling technology. IA emphasizes that 
messages must be delivered without being intercepted or 
compromised and that authorized users must have access 
while others are denied. The paradigm shift causes re-
evaluation of security engineering in positive as well as 
negative terms. 

This paper focuses on an IA technology that is 
currently popular in the commercial sector: Intrusion 
Detection (ID). Like digital signatures and tamper-evident 
seals, ID assures integrity by making it clear when access 
controls have failed.  In this paper, we describe a testing 
methodology we developed to evaluate ID products 
against a user-definable, dynamically-changing standard.  
We review the lessons learned during the development of 
this methodology and present an overview of the metric 
set we used in a test evaluation of three commercial 
products. The key distinctive of our approach is that we 
do not compare ID Systems (IDSs) against each other, but 
against a standard derived from mapping formalized user 
requirements to a standard set of metrics. Using a stand-
ard as the basis for comparison gives us scientific repeat-
ability, and, because the evaluation is against a static set 
of metrics, the evaluation may be reused with the metrics 
given different weighting according to the needs of the 
next customer.  Distributed, real-time, weapons-control 
systems like those we support have unique requirements 
that are seldom considered by market comparisons.  This 
generalized approach will allow systems with such req-
uirements to tailor evaluation of ID technologies to their 
specific needs. 

Development of metrics implies some underlying 
formal taxonomy of IDSs, but to present one here would 
be beyond the scope of this paper.  Although some work 
has been done in this area [2, 3, 4], nothing definitive has 
been accepted by the community at this time. Therefore, 
we have used information from these taxonomies 
combined with contrasting feature sets of existing IDSs 
and desired features from our user community as sources 
for our metrics.  Surveys of IDSs too numerous to list 
have been presented, but reference [5] was particularly 
useful in defining terms and for a basic set of metrics for 
evaluating candidate IDSs (see [5], Appendix F).  This 
work was seminal to our project. 
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We relied heavily on suggestions and tips from the 
source material for the recently published reference [6] in 
the design of our metrics and testbed. References [7] and 
[8] document extensive work done evaluating IDSs in 
DARPA’s annual testing events. In the authors of these 
studies describe their testbed, LARIAT, and suggest some 
metrics and scoring for IDSs, but they do not present a 
well-define metric set or a way to transform customer req-
uirements to their metrics.  The NSS Group has published 
results of their IDS tests, but while they have standardized 
their tests, they have not presented standard metrics (see 
[9], pp. 164-169). We believe that our work complements 
that of others in the field and we have found no other 
formal, metrics-based evaluation methodology in the 
literature at this writing.   

2 Intrusion Detection Systems 

Even the best packet-filtering, stateful-inspection, 
proxy firewalls can miss many intrusions.  By design, 
firewalls are boundary devices that are oblivious to the 
internal behavior of the network, systems, or users they 
monitor.  ID provides defense-in-depth by double-
checking the effectiveness of other access controls. 

The purpose of an IDS is to detect both external 
attacks on, and internal misuse of computer and network 
resources, or information residing in these resources. 
Intrusions are most often thought of as originating from 
outside a trusted network.  Unauthorized access from 
without may be achieved by traversing a leaky firewall, 
exploiting a security flaw, tunneling in through “benign” 
protocols, or entirely subverting security measures 
through an unprotected link to an external system. Threats 
from malicious “insiders” can materialize from comp-
romised physical security, compromised passwords 
(masquerade), or users attempting to access information 
for which they do not hold the proper credentials. Both 
successful (where the attacker gained what he wanted 
from the system) and attempted attacks are of interest.  
Successful attacks may compromise the integrity, confid-
entiality, or availability of the resources or information. 
Attempted attacks serve as a warning of the threat level 
and of what kinds of resources are threatened.   

ID technologies address an inherently (soft) real-time 
problem.  Data must be analyzed as it arrives, analysis 
must be rapid and complete, and alerts must be issued in a 
timely manner to prevent further damage from intrusions. 
Additionally, IDSs that protect distributed, real-time 
systems must take into account the needs of those sys-
tems. They must not require significant resource overhead 
or introduce bottlenecks in the computing or network 
resources. They must execute deterministically and fail in 
a mode that does not hamper system performance.  

2.1 Classification of an IDS 

An IDS may be categorized by its detection mech-
anism: anomaly-based, signature-based, or hybrid. An 
anomaly-based IDS attempts to detect behavior that is 
inconsistent with “normal” behavior. Thus, these systems 
are sometimes called behavior-based. If an anomaly-
based IDS detected hundreds of login attempts within a 
few seconds, it might generate an alert of suspicious 
activity. A signature-based IDS attempts to detect patterns 
in network traffic that are characteristic of known attacks. 
The terms “knowledge-based” and “misuse-based” are 
synonyms for “signature-based.” This is a similar concept 
to anti-virus software on a PC that scans files and mem-
ory for known patterns of a computer virus. A hybrid IDS 
uses both technologies either in series or in parallel. 

A signature-based IDS has the disadvantage that it 
will only detect previously known attacks, while an 
anomaly-based IDS may be able to detect new attacks. 
Distinguishing between “normal” and “anomalous” beh-
avior, however, is the subject of much research. A 
constrained application environment may help constrain 
the definition of normal behavior making anomaly-based 
systems more appropriate. This maxim may apply to 
distributed, real-time systems such as those used for 
cluster super-computing where the network and protocols 
are tuned for highest performance.  Anomaly-based sys-
tems are uncommon in commercial products where 
signature-based techniques dominate. However, many of 
the research endeavors have implemented a hybrid design. 

An IDS may be further characterized as to its mon-
itoring scope.  An IDS may monitor one or more hosts, a 
network, or both. An IDS that monitors a host typically 
examines information available on the host such as log 
files. A multi-host IDS consists of cooperating host-based 
sensors that report raw or refined data to a remote 
analysis engine. An IDS that monitors a network collects 
and analyzes packets from the network. The types of 
resources consumed by the IDS will be determined by this 
characteristic.  Support of host-based IDSs must consume 
some of the monitored host’s resources.  Nominal event-
logging support for host IDSs has been shown to consume 
three to five percent of the monitored host’s resources.  
Logging compliant with Department of Defense C2-level 
(Controlled Access Protection) security requires as much 
as twenty percent of the host’s processing power [3, 10]. 
Obviously this is a concern for real-time systems.  Multi-
host IDSs consume network bandwidth by transmitting 
logging information. Network-based IDSs are often stand-
alone, single-purpose machines that consume no other 
resources, but they may be run on a host that is simul-
taneously used for production work. In this case, they 
may also consume a large portion of the host’s resources.  
Host-based IDSs also face another inherently real-time 
problem: when the host they run on is under attack, they 
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must quickly notify someone and possibly migrate to 
another host before they are compromised or disabled.  

2.2 General Architecture of a Network IDS 

An IDS may be deployed using a centralized or dist-
ributed architecture. In a centralized architecture, the 
collection and analysis of data occurs on the same device. 
The device might even be in-line, becoming a potential 
bottleneck in the network throughput.  In a distributed 
architecture, a load-balancing system might send portions 
of traffic to multiple sensors that in turn send the 
collected data to one or more analysis stations and 
management consoles. Figure 1 shows a generalized 
architecture of network IDSs.   

Load Balancer

Monitoring
Console

InternetBorder Router

LAN
or

WAN

Management
Console

Sensor

Sensor

Sensor Analyzer

Analyzer
Sensor

Traffic Control

Analyzer

 

Figure 1: Generalized network IDS architecture 
ID is a sequential process consisting of five 

subprocesses:  
1. Load balancing: distributing all the network traffic 

among the available sensors 
2. Sensing: separating suspicious from normal traffic 
3. Analyzing: determining the nature and threat of 

suspicious traffic 
4. Monitoring: allowing operator visibility into the 

threat, providing reports, and facilitating operator 
notification 

5. Managing: allowing configuration of the IDS and 
control over incoming traffic in response to threat 
These subprocesses may be engineered to overlap in 

many ways, but they are steps in an intrinsically sequen-
tial process. However, since there are numerous traffic 
flows and the relationship among these subprocesses is 
not one-to-one, many opportunities exist for optimally 
managing the throughput of the system via parallelism 
and distribution of computational load.  Subprocesses one 
and five are optional, but subprocesses two through four 
are essential to network IDSs. 

 

Figure 2 shows the cardinality of the relationships 
between the pairs of subprocesses in the overall 
sequential IDS process.  

Load
Balancer Sensor Analyzer

Manager Monitor

1c:M M:M

M:1

1:1c

1c:M
1c:M

1c:M

 

Figure 2: Relational cardinality of IDS subprocesses 
Load balancing allows the IDS to efficiently utilize 

the processing power of the distributed sensors for 
scalability [11]. Load balancers may be in-line with a 
border router so that all traffic must go through it or all 
traffic may be mirrored to it.  A one-to-many (1:M) 
relationship exists between load balancers and sensors. 
Load balancers may operate in a hierarchy but each 
sensor maps to exactly one load-balancer. This subpro-
cess is optional, so the relationship is actually zero-or-
one-to-many (1c:M, where the “c” indicates the cond-
itional existence of the load balancer subprocess). Load 
balancers typically must be aware of Transmission Cont-
rol Protocol (TCP) sessions so they can consistently send 
connection-oriented traffic to the appropriate sensor. If an 
IDS has no load-balancing component, the load may be 
statically spread out by placing sensors in separate sub-
nets.  Individual, statically placed sensors may overload 
or starve, and the protection of the network will be 
uneven. High-bandwidth load balancers may allow the 
IDS to collect traffic higher up in the network, closer to 
the border router. The result will be more efficient use of 
sensors and better protection for the monitored network.  
Load-balancing metrics are system throughput, cardin-
ality of sensors supported, scalability of load balancers, 
and induced latency of traffic (because the load balancer 
is in-line or because traffic must be mirrored to it). 

The sensors receive traffic from the load balancer (if 
any exists) and separate out the suspicious traffic for 
further analysis.  Potentially a many-to-many (M:M) rela-
tionship between sensors and analyzers is possible. 
Frequently, sensory and analysis subprocesses are com-
bined, reducing this relationship to one-to-one (1:1).  
Separating sensing from analysis may allow better 
throughput by offloading the analysis burden, but 
separation adds network overhead. Throughput may be 
improved more directly by efficient load balancing. 
Simple sensors are either signature-based or anomaly-
based (see section 2.1). Sensor metrics are detection 
mechanism, degree of parallelism, and false positive and 
negative detection ratios.  



Fink, Chappell, Turner, O’Donoghue 
NSWCDD, Code B 35, Dahlgren, VA 

WPDRTS, 15-17 April 2002 
Ft. Lauderdale, Florida 

 
Page 4 of 8 

 

Analyzers determine the threat level of the raw data 
collected by the sensors. Suspicious traffic may be either 
classified as an attack of some severity, or it may be 
dismissed as safe. Typically a many-to-one (M:1) 
relationship exists between the analyzers and the monitors 
they report to.  Most IDSs that field multiple sensors 
separate analysis from monitoring. However, second-
order analysis is often done by monitoring components.  
Analysis may be distributed according to scope (breadth 
of coverage) and depth (focus of analysis). Primary 
analysis determines threat severity. Secondary analysis 
determines scope, intent, or frequency of the threat. 
Accurate analysis may require storage of a significant 
amount of historical data that can be used to give context 
to a perceived threat.  Good analysis can correlate one 
attack with another or determine that no such correlation 
is appropriate.  Analysis metrics are scope of analysis 
(breadth), threat correlation capability (depth of analysis), 
and data storage requirements. 

The monitoring subprocess presents a view of the 
threat to the operator.  That view may be graphical or 
textual, and often provides some historical querying 
ability. Monitors are required to notify an operator 
whenever a threat is severe according to a security policy.  
Monitors must be tuned according to the traffic patterns 
of the protected network. Frequent alerts on trivial or 
normal events result in a high false-positive rate (Type I 
error) and lead to the IDS being ignored by the operators.  
On the other hand if the monitor is sufficiently desen-
sitized, it will ignore true threats. False negatives (Type II 
error) will result, and the IDS will provide a misleading 
sense of security.  See Figure 3 for an illustration of the 
meanings of false positive and false negative.   

Transactions (T)

Actual
Intrusions

(A)

IDS
Detected

Intrusions
(D)

Correct
Detections

False
Negatives

Type II

False
Positives
Type I

False Positive Ratio = |D - A| / |T|
False Negative Ratio = |A - D| / |T|

 

Figure 3: False Positive (Type I) and False Negative (Type II) 
Errors 

In general, users should look for systems where the 
IDS’s monitoring sensitivity can be adjusted so equality 
between false positive and false negative error rates can 
be achieved (see Figure 4). Of course the equal error rate 
is not always ideal. Given the choice, users might prefer 
to have lower Type II error at the expense of higher 
Type I error rates. 

 

Equal Error Rate

Sensitivity

%
 E

rr
or

Type I (False Positive)
Type II (False Negative)

 

Figure 4: Error rate curves and Equal Error Rate 
Monitoring components may provide data to a 

management console (if such a console exists) so that the 
detected threat may be dealt with. The relationship bet-
ween a monitoring component and its optional manage-
ment console is one-to-zero-or-one (1:1c). Metrics for the 
monitoring function are clarity of threat presentation, ease 
of policy maintenance, variety and interoperability of 
operator notification, and report generation capability. 

Management consoles allow the operator to configure 
the IDS and to manage the threat by manipulating the in-
coming data stream via external devices like firewalls and 
routers. The management console is an optional feature of 
an IDS since sensor, firewall and router configuration 
may certainly be done in other ways, but the ability to 
automatically and accurately filter out offending traffic is 
key to a real-time response to threats. This is usually 
accomplished by a security policy that maps threats to 
automated actions. Policy must be accurate, for faulty 
policy risks shutting out legitimate users.  The manage-
ment console may also provide a user interface to 
configure the various sensors and other IDS subsystems. 
A 1c:M relationship exists between the management 
console and the various other components of the IDS.  
Without a management console, these components must 
be configured individually, but a console allows numbers 
of them to be configured centrally. Of course, decent-
ralized management introduces network overhead. 
Metrics for the management function are ease of attack 
filter generation, accuracy and effectiveness of the filter, 
interoperability of the console with external devices, and 
component management effectiveness. 

3 Evaluation Methodology 

3.1 Scorecard Development 

The centerpiece of our testing and evaluation 
methodology is a “scorecard” containing the set of gen-
eral metrics and their definitions (see section 3.2). The 
metrics are general characteristics that we deemed rel-
evant to any IDS. The metrics have been divided into 
three classes: Logistical (class 1), Architectural (class 2), 
and Performance (class 3). The two methods of observing 
each metric value were: analysis (direct observation in a 
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laboratory setting or source code analysis), and open 
source material (specifications, white papers or reviews 
provided by the vendor or users).  

Each metric is designated to be measured by one or 
both of these methods.  The key features of our testing 
methodology are: 

1. Well-defined metrics 
2. Discrete scoring 
3. Flexible weighting 

Well-defined metrics are observable, reproducible, 
quantifiable, and characteristic.  By “characteristic” we 
mean that the metric must clearly differentiate between 
otherwise similar systems.  Discrete scoring simplifies the 
process of assigning values to each metric for a given 
system.  We chose to use scores with the discrete values 
zero through four, with higher scores interpreted as more 
favorable ratings.  Our definition of each metric includes 
examples of low (0), average (2), and high (4) scores.  
Flexible weighting means that any consistent numeric 
system of weights can be used, discrete or continuous 
with upper or lower limits as defined by the scorer.  The 
computation of weighted scores is specified in Figure 5. 
Using a larger range of weighting values will separate the 
field of products more distinctly.  Negative weights may 
also be used to help distinguish where a feature is actually 
counterproductive.   

Sj = ∑j=1,3 [∑i=1,nj (Uij * Wij)] 
where: Sj is the weighted overall score for metric class j 
 Uij is the unweighted score for metric i of class j 
 Wij is a real-valued weight of the ijth metric 
 nj is the number of metrics within class j 
 i is the index of the metrics within the jth class 

j is the metrics class index (logistical = 1, etc) 
Figure 5: Calculation of weighted scores 

3.2 Scorecard Metrics 

On the following pages we will discuss in greater 
detail the metrics we think are most applicable to IDSs in 
real-time environments. The metrics are grouped by class, 
followed by a representative metric from the class that 
includes examples of low, average, and high scores.  For 
brevity’s sake we have not included examples for each 
metric. The current complete scorecard is available from 
the authors. A prototype of this scorecard was used to 
evaluate three commercial IDS products: NFR Security’s 
Network Intrusion Detection (NID) version 5.0 [12], 
Internet Security Systems’ Real Secure version 5.0 [13], 
and Recourse Technology’s Manhunt version 1.2 [14]. 
There was also an initial examination of an IDS from the 
research community, Autonomous Agents for Intrusion 
Detection (AAFID) [15].   

Logistical Metrics.  Logistical metrics measure the 
expense, maintainability, and manageability of an IDS.  
The metrics we have defined that are applicable to real-
time in this area are shown in Table 1. 

Distributed 
Management 

Capability of managing and monitor-
ing the IDS securely from multiple 
possibly remote systems.  

Ease of 
Configuration 

Difficulty in initially installing and 
subsequently configuring the IDS. 

Ease of Policy 
Maintenance 

The ease of creating, updating, and 
managing IDS detection and reaction 
policies. 

License 
Management 

The difficulty of obtaining, updating, 
and extending licenses for the IDS. 

Outsourced 
Solution 

The degree to which the IDS services 
are provided by an external entity.   

Platform 
Requirements 

System resources actually required to 
implement the IDS in the expected 
environment.  

Table 1: Selected Logistical Metrics 
Logistical metrics we have defined but not included 

in this paper are: Quality of Documentation, Ease of 
Attack Filter Generation, Evaluation Copy Availability, 
Level of Administration, Product Lifetime, Quality of 
Technical. Support, Three Year Cost of Ownership, and 
Training Support.  A detailed example of the logistical 
metrics is Distributed Management: 
• Low Score: Management of each node must be done 

at the node. 
• Average Score: Nodes may be remotely managed, but 

either security, or degree of administrative control is 
limited. 

• High Score: Complete management of all nodes may 
be done from any node or remotely.  Appropriate 
encryption and authentication are employed.  
We consider the administrative metrics Ease of 

Configuration, Ease of Policy Maintenance, and License 
Management applicable because products with low scores 
in these areas would be difficult to use in a distributed 
environment with multiple sensors.  An Outsourced 
Solution might not be suitable for real-time or high 
performance environments if the agreement includes 
random vulnerability scanning.  Such scans could disrupt 
system performance in a way that is not locally control-
lable. Platform Requirements give an indication of the 
system resources that will be consumed by the IDS in the 
resource-critical real-time environment. 

Architectural Metrics. Architectural metrics are 
used to compare how well the intended scope and 
architecture of the IDS matches the deployment 
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architecture. The metrics we defined in this area are 
shown in Table 2. 

 

Adjustable 
Sensitivity 

Ability to change the  sensitivity  of 
the IDS to compensate for high false 
positive or false negative ratios. 

Data Pool 
Selectability 

Ability to define the source data to 
be analyzed for intrusions (by proto-
col, source and dest addresses, etc). 

Data Storage Average required amount of storage 
per megabyte of source data. 

Host-based Proportion of IDS input from log 
files, audit trails and other host data. 

Multi-sensor 
Support 

Ability of an IDS to integrate 
management and input of multiple 
sensors or analyzers. 

Network-based Proportion of IDS input from packet 
analysis and other network data. 

Scalable Load-
balancing 

Ability to partition traffic into 
independent, balanced sensor loads, 
and ability of the load-balancing 
subprocess to scale upwards and 
downwards. 

System 
Throughput 

Maximal data input rate that can be 
processed successfully by the IDS.  
Measured in packets per second for 
network-based IDSs and Mbps for 
host-based IDSs. 

Table 2: Selected Architectural Metrics  
Architectural metrics we have defined but not 

included in this paper are: Anomaly Based,  Autonomous 
Learning, Host/OS Security, Interoperability, Package 
Contents, Process Security, Signature Based, and 
Visibility. An illustrative example of an architectural 
metric is Scalable Load-balancing:  
• Low Score: No load balancing 
• Average Score: Load balancing via static methods 

such as placement 
• High Score: Intelligent, dynamic load balancing 

The significance of each metric in Table 2 to dist-
ributed, real-time systems is as follows: Adjustable 
Sensitivity allows tuning the IDS to optimal performance 
for the real-time environment. Data Pool Selectivity 
would allow the IDS to consider only protocols outside 
those typically used within the distributed cluster. Data 
Storage is a predictor of network bandwidth used in a 
distributed IDS. Host-based indicates the proportion of a 
monitored host’s resources that the IDS will use. 
Multi-sensor measures the ability of an IDS to monitor a 
truly distributed system. Network-based IDSs will con-
sume network resources by being in-line or via port 

mirroring. Scalable Load-balancing indicates whether an 
IDS will be able to grow as the system grows. The System 
Throughput metric helps determine whether the IDS will 
become a constraint on the processing ability of a real-
time system.   

Performance Metrics. Performance metrics measure 
the ability of an IDS to do a particular job and to fit 
within the performance constraints of the monitored 
system. The metrics we defined in this area are shown in 
Table 3. 

Analysis of 
Compromise 

Ability to report the extent of damage 
and compromise due to intrusions. 

Error Reporting 
and Recovery 

Appropriateness of the behavior of the 
IDS under error/failure conditions. 

Firewall 
Interaction 

Ability to interact with a firewall. Per-
haps to update a firewall’s block list. 

Induced Traffic 
Latency 

Degree to which traffic is delayed by 
the IDS's presence or operation. 

Maximal 
Throughput 
with Zero Loss 

Observed level of traffic that results in 
a sustained average of zero lost pack-
ets or streams. Measured in packets/ 
sec or # of simultaneous TCP streams. 

Network Lethal 
Dose 

Observed level of network or host 
traffic that results in a shutdown/mal-
function of IDS.  Measured in packets/ 
sec or # of simultaneous TCP streams. 

Observed False 
Negative Ratio 

Ratio of actual attacks that are not 
detected to the total transactions. 

Observed False 
Positive Ratio 

Ratio of alarms raised that do not 
correspond to actual attacks to the 
total transactions. 

Operational 
Performance 
Impact 

Negative impact on the host proc-
essing capacity due to the operation of 
the IDS.  Expressed as a percentage of 
processing power. 

Router 
Interaction 

Degree to which the IDS can interact 
with a router. Perhaps it might redirect 
attacker traffic to a honeypot. 

SNMP 
Interaction 

Ability of the IDS to send an SNMP 
trap to one or more network devices in 
response to a detected attack. 

Timeliness 
Average/maximal time between an 
intrusion’s occurrence and its being 
reported. 

Table 3: Selected Performance Metrics  
Performance metrics we have defined but not 

included in this paper are: Analysis of Intruder Intent, 
Clarity of Reports, Effectiveness of Generated Filters, 
Evidence Collection, Information Sharing, Notification: 
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User Alerts, Program Interaction, Session Recording and 
Playback, Threat Correlation, and Trend Analysis. The 
significance of each metric in Table 3 to distributed, real-
time systems is as follows: Analysis of Compromise 
allows an administrator to determine which of the 
distributed systems is compromised for safer resource 
allocation. Error Recovery and Reporting indicates what 
an IDS will do when it fails or is overloaded. Firewall 
Interaction, Router Interaction, and SNMP Interaction all 
help determine what means are available for a near real-
time automated response to an intrusion.  Induced Traffic 
Latency measures the impact an IDS will have on network 
throughput. Maximal Throughput with Zero Loss indic-
ates how effective the IDS will be given the expected 
traffic flow in the network to be protected. Network 
Lethal Dose tells the bandwidth where the IDS will fail to 
operate correctly leaving the system unprotected. 
Observed False Negative Ratio and Observed False 
Positive Ratio measure the accuracy of the IDS and the 
degree that its coverage will need to be extended with 
other security measures. The remaining two metrics have 
obvious bearing on real-time systems. An illustrative 
example of performance metrics is Error Reporting and 
Recovery:  
• Low Score: No notification, no log, no indication that 

an error has occurred.  Fatal errors cause system to 
hang indefinitely. 

• Average Score: Failure is logged and user is notified at 
some point in the future when the IDS is able. Fatal 
errors cause cold reboot of entire machine 

• High Score: Failure is reported near real time  via 
attack notification channels. Fatal errors cause restart 
of application(s) or service(s). 

3.3 Deriving Weights from User Requirements 

To provide meaningful results, the metrics need to be 
weighted carefully according to the intended environment 
where the IDS will function. The weighting of metrics is 
derived from an analysis of the requirements of the 
prospective IDS procurer.  To effectively use the score-
card, the procurer must have clearly defined requirements. 
The actual form of the requirements is flexible. This 
section suggests one possible algorithm for mapping 
requirements to a scorecard weighting (see also Figure 6). 
The user first lists his IDS requirements in a partial 
ordering from least important to most.  Requirements 
should be stated in positive form or converted to the 
positive where possible to reduce unnecessary negative 
weights. Next, the first requirement (least important) 
should be assigned the lowest weight (e.g., one). Other 
requirements may then be assigned increasing weights in 
proportion to their relative importance.  Since the 
ordering of requirements is partial, it is acceptable to have 
duplicate weights. After the requirements are weighted, 

each metric is assigned a weight equal to the sum of the 
weights of the requirements it contributes to.  Weighted 
scores for each IDS under evaluation are computed using 
the formula in Figure 5. 

 

Im
portance  

Requirement 
Weights 

Metric  
Weights 

1 

2.5 

3 

5 

3 

3 

6.5 

0 

8 

0 

 
Figure 6: Requirement to Metric Weighting Example 
Mapping of requirements to metric weights is an area 

where we hope to do more work in the future.  A concrete 
mapping example will do much to mature both the 
scorecard and the mapping process. Mapping these req-
uirements to numeric weights will always be somewhat 
subjective, but as long as the weighting accurately and 
consistently reflects the goals of the procurer’s organiz-
ation, the scorecard methodology will work effectively. 

No security problem is purely technical, and much of 
determining the user’s requirements has more to do with 
policy decisions than anything else. An organizational 
security policy that states the goals, acceptable uses, and 
constraints on the system in terms of security is critical. 
Without this organizational agreement, it will be impos-
sible to determine what to monitor, when or whom to 
alert, or the degree of threat a potential intrusion presents 
[16].  

The goal of the weighting strategy should be to ref-
lect accurately the importance of each metric relative to 
the others for the system to be protected.  For real-time 
systems, emphasis should be placed on speed and accur-
acy of attack recognition and on the ability of the IDS to 
automatically react via firewall, router, Simple Network 
Management Protocol (SNMP), etc. For distributed sys-
tems, care should be taken to consider the impact of trust 
among the component hosts.  When one host is comprom-
ised, other systems that trust it may be very easily 
compromised in ways that may look like normal inter-
actions between hosts.  The result is an exploit that is 
difficult to detect and nearly impossible to root out.  In 
this situation it is critical to catch the initial compromise 
of the first component host and isolate it. Distributed 
systems then, should put emphasis on reducing the false 
negative ratio to the lowest possible level accepting an 
increased false positive alert ratio in the process. Logging 
of historical traffic is also key to ex post facto unraveling 
the compromise of a complex distributed system. 
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4 Lessons Learned and Future Work 

During the early stages of the evaluation, we learned 
several important lessons as we applied the testing 
methodology. First, to collect performance related metrics 
of an IDS, a simple flooding of the network being 
monitored with meaningless data is not sufficient [6]. 
Such a method is sufficient for determining the maximum 
throughput of a network device such as a switch or a 
router, but for an IDS, the data portion of an IP packet 
should have realistic content. The reason is that while 
some IDSs analyze only the header of the IP packet (e.g., 
source and destination address, port number, etc.), others 
also analyze the data portion of the packet. If packets with 
random data are used to generate background traffic, then 
the IDS that analyzes both the header information and 
message data will not be realistically tested. IDSs perform 
differently in the presence of different kinds of network 
traffic.  Distributed systems with high levels of inter-host 
trust on a high-speed LAN will have distinctive traffic 
compared to that of a web server in an e-commerce shop.  
Commercial IDSs will often be geared toward the latter 
and not perform well in the former situation. The best 
way to evaluate any IDS is to use real traffic (live or 
recorded) from the site where the IDS is expected to be 
deployed [6]. Continual re-evaluation is especially 
important since vendors rapidly update their products.   

A second lesson learned is that a few of the formal 
metrics we defined are very difficult (perhaps impossible) 
to observe. One such metric is the “observed false 
negative ratio.” The user may never be aware of an 
instance of the IDS failing to detect an attack. To 
overcome this we replayed canned data with known attack 
content on the test network. However, even the definition 
of an attack is not always clear. What may be viewed as a 
single attack by one classification system may be 
legitimately seen as several attacks in another. 

Potential future work includes weighting the score-
card metrics with respect to the environment of a working 
distributed, real-time system; evaluating the current 
direction of IDS work in the research and development 
community; and a continued evolution of the metrics and 
testing methodology. The metrics and their definitions are 
best refined as lessons are learned while evaluating 
systems. We would like to expand the scorecard metrics 
to capture the human dimension of IDS as well. We hope 
to collaborate in the future with others who have fielded 
extensive IDS testbeds and adapt our metric set to their 
testing activities.  Finally, we hope that our work will be 
of service to the growing population of IDS users and 
procurers. 
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