
Fink, Chappell, Turner, O’Donoghue
NSWCDD, Code B 35, Dahlgren, VA

WPDRTS, 15-17 April 2002
Ft. Lauderdale, Florida

Page 1 of 8

A Metrics-Based Approach to Intrusion Detection System Evaluation for
Distributed Real-Time Systems

Authors: G. A. Fink, B. L. Chappell, T. G. Turner, and K. F. O’Donoghue; Information Transfer
Technology Group, Code B35, Naval Surface Warfare Center, Dahlgren Division

Abstract
This paper describes a set of metrics that will help

administrators of distributed, real-time (clustered)
computer facilities to select the best intrusion detection
system for their facilities. The metrics herein are the
subset of our general metric set that particularly impact
real-time and distributed processing issues. We discuss
related works in this field, the role of intrusion detection
in information assurance, some basic classes of intrusion
detection systems, a general architecture of network
intrusion detection systems, and the scorecard metrics
and their application to real-time and distributed
processing systems. Finally we discuss the lessons we
learned using a preliminary version of the metric
scorecard to test three commercial intrusion detection
systems and the opportunities for further work in this
area.

Keywords: Intrusion Detection, Metrics, Evaluation,
Real-Time, Distributed, Security.

1 Introduction

Processing and cost requirements are driving future
naval combat platforms to use distributed, real-time
systems of commercial computers and networking com-
ponents. The shift from specialized components to
interoperable commercial hardware will increase the dif-
ficulty of meeting information security requirements. The
move to distributed engineering and computing, increased
automation, and reduced manning will strain the security
paradigms used in current systems. Numerous subsystems
will have to cooperate securely in an environment where
milliseconds can make a life or death difference.

However, information security services often conflict
with the performance requirements of highly distributed,
real-time systems. As these systems grow more complex,
the timing requirements do not diminish; indeed, they
may become more constrained. Changing requirements
imply re-engineering and continual re-evaluation of sys-
tem security. Unfortunately, the threat to information
systems is continually evolving as well and requires vigil-
ant survey of available technologies to find those that best
fit the information assurance needs of each system.
Changes can always be made, but knowing whether or not
a change will be an improvement is a challenge [1]. The

idea of security itself has changed in this environment.
Security used to be all about keeping “bad guys” out. But
the rising field of information assurance (IA) considers
security as an enabling technology. IA emphasizes that
messages must be delivered without being intercepted or
compromised and that authorized users must have access
while others are denied. The paradigm shift causes re-
evaluation of security engineering in positive as well as
negative terms.

This paper focuses on an IA technology that is
currently popular in the commercial sector: Intrusion
Detection (ID). Like digital signatures and tamper-evident
seals, ID assures integrity by making it clear when access
controls have failed. In this paper, we describe a testing
methodology we developed to evaluate ID products
against a user-definable, dynamically-changing standard.
We review the lessons learned during the development of
this methodology and present an overview of the metric
set we used in a test evaluation of three commercial
products. The key distinctive of our approach is that we
do not compare ID Systems (IDSs) against each other, but
against a standard derived from mapping formalized user
requirements to a standard set of metrics. Using a stand-
ard as the basis for comparison gives us scientific repeat-
ability, and, because the evaluation is against a static set
of metrics, the evaluation may be reused with the metrics
given different weighting according to the needs of the
next customer. Distributed, real-time, weapons-control
systems like those we support have unique requirements
that are seldom considered by market comparisons. This
generalized approach will allow systems with such req-
uirements to tailor evaluation of ID technologies to their
specific needs.

Development of metrics implies some underlying
formal taxonomy of IDSs, but to present one here would
be beyond the scope of this paper. Although some work
has been done in this area [2, 3, 4], nothing definitive has
been accepted by the community at this time. Therefore,
we have used information from these taxonomies
combined with contrasting feature sets of existing IDSs
and desired features from our user community as sources
for our metrics. Surveys of IDSs too numerous to list
have been presented, but reference [5] was particularly
useful in defining terms and for a basic set of metrics for
evaluating candidate IDSs (see [5], Appendix F). This
work was seminal to our project.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
4/1/2002

3. REPORT TYPE AND DATES COVERED
Research Paper 4/1/2002

4. TITLE AND SUBTITLE
A Metrics-Based Approach to Intrusion Detection System
Evaluation for Distributed Real-Time Systems

5. FUNDING NUMBERS

6. AUTHOR(S)
Fink, G.A.; Chappell, B.L.; Turner, T.G.; O'Donoghue, K.F.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

Naval Surface Warfare Center
Dahlgren, VA

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

This paper describes a set of metrics that will help administrators of distributed, real-
time (clustered) comuter facilities to select the best intrusion detection system for their
facilities. The metrics herein are the subset of our general metric set that particularly
impact real-time and distributed processing issues. We discuss related worksin this field,
the role of intrusion detection in information assurance, some basic classes of intrusion
detection systems, a general architecture of network intrusion detection systems, and the
scorecard metrics and their application to real-time and distributed processing systems.
Finally, we discuss the lessons we learned using a preliminary version of the metric
scorecard to test three commercial intrusion detection systems and the opportunities for
furtherwork in this area.

14. SUBJECT TERMS
IATAC Collection, intrusion detection, metrics, evaluation, real-
time, distributed, securityu

15. NUMBER OF PAGES

8

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Fink, Chappell, Turner, O’Donoghue
NSWCDD, Code B 35, Dahlgren, VA

WPDRTS, 15-17 April 2002
Ft. Lauderdale, Florida

Page 2 of 8

We relied heavily on suggestions and tips from the
source material for the recently published reference [6] in
the design of our metrics and testbed. References [7] and
[8] document extensive work done evaluating IDSs in
DARPA’s annual testing events. In the authors of these
studies describe their testbed, LARIAT, and suggest some
metrics and scoring for IDSs, but they do not present a
well-define metric set or a way to transform customer req-
uirements to their metrics. The NSS Group has published
results of their IDS tests, but while they have standardized
their tests, they have not presented standard metrics (see
[9], pp. 164-169). We believe that our work complements
that of others in the field and we have found no other
formal, metrics-based evaluation methodology in the
literature at this writing.

2 Intrusion Detection Systems

Even the best packet-filtering, stateful-inspection,
proxy firewalls can miss many intrusions. By design,
firewalls are boundary devices that are oblivious to the
internal behavior of the network, systems, or users they
monitor. ID provides defense-in-depth by double-
checking the effectiveness of other access controls.

The purpose of an IDS is to detect both external
attacks on, and internal misuse of computer and network
resources, or information residing in these resources.
Intrusions are most often thought of as originating from
outside a trusted network. Unauthorized access from
without may be achieved by traversing a leaky firewall,
exploiting a security flaw, tunneling in through “benign”
protocols, or entirely subverting security measures
through an unprotected link to an external system. Threats
from malicious “insiders” can materialize from comp-
romised physical security, compromised passwords
(masquerade), or users attempting to access information
for which they do not hold the proper credentials. Both
successful (where the attacker gained what he wanted
from the system) and attempted attacks are of interest.
Successful attacks may compromise the integrity, confid-
entiality, or availability of the resources or information.
Attempted attacks serve as a warning of the threat level
and of what kinds of resources are threatened.

ID technologies address an inherently (soft) real-time
problem. Data must be analyzed as it arrives, analysis
must be rapid and complete, and alerts must be issued in a
timely manner to prevent further damage from intrusions.
Additionally, IDSs that protect distributed, real-time
systems must take into account the needs of those sys-
tems. They must not require significant resource overhead
or introduce bottlenecks in the computing or network
resources. They must execute deterministically and fail in
a mode that does not hamper system performance.

2.1 Classification of an IDS

An IDS may be categorized by its detection mech-
anism: anomaly-based, signature-based, or hybrid. An
anomaly-based IDS attempts to detect behavior that is
inconsistent with “normal” behavior. Thus, these systems
are sometimes called behavior-based. If an anomaly-
based IDS detected hundreds of login attempts within a
few seconds, it might generate an alert of suspicious
activity. A signature-based IDS attempts to detect patterns
in network traffic that are characteristic of known attacks.
The terms “knowledge-based” and “misuse-based” are
synonyms for “signature-based.” This is a similar concept
to anti-virus software on a PC that scans files and mem-
ory for known patterns of a computer virus. A hybrid IDS
uses both technologies either in series or in parallel.

A signature-based IDS has the disadvantage that it
will only detect previously known attacks, while an
anomaly-based IDS may be able to detect new attacks.
Distinguishing between “normal” and “anomalous” beh-
avior, however, is the subject of much research. A
constrained application environment may help constrain
the definition of normal behavior making anomaly-based
systems more appropriate. This maxim may apply to
distributed, real-time systems such as those used for
cluster super-computing where the network and protocols
are tuned for highest performance. Anomaly-based sys-
tems are uncommon in commercial products where
signature-based techniques dominate. However, many of
the research endeavors have implemented a hybrid design.

An IDS may be further characterized as to its mon-
itoring scope. An IDS may monitor one or more hosts, a
network, or both. An IDS that monitors a host typically
examines information available on the host such as log
files. A multi-host IDS consists of cooperating host-based
sensors that report raw or refined data to a remote
analysis engine. An IDS that monitors a network collects
and analyzes packets from the network. The types of
resources consumed by the IDS will be determined by this
characteristic. Support of host-based IDSs must consume
some of the monitored host’s resources. Nominal event-
logging support for host IDSs has been shown to consume
three to five percent of the monitored host’s resources.
Logging compliant with Department of Defense C2-level
(Controlled Access Protection) security requires as much
as twenty percent of the host’s processing power [3, 10].
Obviously this is a concern for real-time systems. Multi-
host IDSs consume network bandwidth by transmitting
logging information. Network-based IDSs are often stand-
alone, single-purpose machines that consume no other
resources, but they may be run on a host that is simul-
taneously used for production work. In this case, they
may also consume a large portion of the host’s resources.
Host-based IDSs also face another inherently real-time
problem: when the host they run on is under attack, they

Fink, Chappell, Turner, O’Donoghue
NSWCDD, Code B 35, Dahlgren, VA

WPDRTS, 15-17 April 2002
Ft. Lauderdale, Florida

Page 3 of 8

must quickly notify someone and possibly migrate to
another host before they are compromised or disabled.

2.2 General Architecture of a Network IDS

An IDS may be deployed using a centralized or dist-
ributed architecture. In a centralized architecture, the
collection and analysis of data occurs on the same device.
The device might even be in-line, becoming a potential
bottleneck in the network throughput. In a distributed
architecture, a load-balancing system might send portions
of traffic to multiple sensors that in turn send the
collected data to one or more analysis stations and
management consoles. Figure 1 shows a generalized
architecture of network IDSs.

Load Balancer

Monitoring
Console

InternetBorder Router

LAN
or

WAN

Management
Console

Sensor

Sensor

Sensor Analyzer

Analyzer
Sensor

Traffic Control

Analyzer

Figure 1: Generalized network IDS architecture
ID is a sequential process consisting of five

subprocesses:
1. Load balancing: distributing all the network traffic

among the available sensors
2. Sensing: separating suspicious from normal traffic
3. Analyzing: determining the nature and threat of

suspicious traffic
4. Monitoring: allowing operator visibility into the

threat, providing reports, and facilitating operator
notification

5. Managing: allowing configuration of the IDS and
control over incoming traffic in response to threat
These subprocesses may be engineered to overlap in

many ways, but they are steps in an intrinsically sequen-
tial process. However, since there are numerous traffic
flows and the relationship among these subprocesses is
not one-to-one, many opportunities exist for optimally
managing the throughput of the system via parallelism
and distribution of computational load. Subprocesses one
and five are optional, but subprocesses two through four
are essential to network IDSs.

Figure 2 shows the cardinality of the relationships
between the pairs of subprocesses in the overall
sequential IDS process.

Load
Balancer Sensor Analyzer

Manager Monitor

1c:M M:M

M:1

1:1c

1c:M
1c:M

1c:M

Figure 2: Relational cardinality of IDS subprocesses
Load balancing allows the IDS to efficiently utilize

the processing power of the distributed sensors for
scalability [11]. Load balancers may be in-line with a
border router so that all traffic must go through it or all
traffic may be mirrored to it. A one-to-many (1:M)
relationship exists between load balancers and sensors.
Load balancers may operate in a hierarchy but each
sensor maps to exactly one load-balancer. This subpro-
cess is optional, so the relationship is actually zero-or-
one-to-many (1c:M, where the “c” indicates the cond-
itional existence of the load balancer subprocess). Load
balancers typically must be aware of Transmission Cont-
rol Protocol (TCP) sessions so they can consistently send
connection-oriented traffic to the appropriate sensor. If an
IDS has no load-balancing component, the load may be
statically spread out by placing sensors in separate sub-
nets. Individual, statically placed sensors may overload
or starve, and the protection of the network will be
uneven. High-bandwidth load balancers may allow the
IDS to collect traffic higher up in the network, closer to
the border router. The result will be more efficient use of
sensors and better protection for the monitored network.
Load-balancing metrics are system throughput, cardin-
ality of sensors supported, scalability of load balancers,
and induced latency of traffic (because the load balancer
is in-line or because traffic must be mirrored to it).

The sensors receive traffic from the load balancer (if
any exists) and separate out the suspicious traffic for
further analysis. Potentially a many-to-many (M:M) rela-
tionship between sensors and analyzers is possible.
Frequently, sensory and analysis subprocesses are com-
bined, reducing this relationship to one-to-one (1:1).
Separating sensing from analysis may allow better
throughput by offloading the analysis burden, but
separation adds network overhead. Throughput may be
improved more directly by efficient load balancing.
Simple sensors are either signature-based or anomaly-
based (see section 2.1). Sensor metrics are detection
mechanism, degree of parallelism, and false positive and
negative detection ratios.

Fink, Chappell, Turner, O’Donoghue
NSWCDD, Code B 35, Dahlgren, VA

WPDRTS, 15-17 April 2002
Ft. Lauderdale, Florida

Page 4 of 8

Analyzers determine the threat level of the raw data
collected by the sensors. Suspicious traffic may be either
classified as an attack of some severity, or it may be
dismissed as safe. Typically a many-to-one (M:1)
relationship exists between the analyzers and the monitors
they report to. Most IDSs that field multiple sensors
separate analysis from monitoring. However, second-
order analysis is often done by monitoring components.
Analysis may be distributed according to scope (breadth
of coverage) and depth (focus of analysis). Primary
analysis determines threat severity. Secondary analysis
determines scope, intent, or frequency of the threat.
Accurate analysis may require storage of a significant
amount of historical data that can be used to give context
to a perceived threat. Good analysis can correlate one
attack with another or determine that no such correlation
is appropriate. Analysis metrics are scope of analysis
(breadth), threat correlation capability (depth of analysis),
and data storage requirements.

The monitoring subprocess presents a view of the
threat to the operator. That view may be graphical or
textual, and often provides some historical querying
ability. Monitors are required to notify an operator
whenever a threat is severe according to a security policy.
Monitors must be tuned according to the traffic patterns
of the protected network. Frequent alerts on trivial or
normal events result in a high false-positive rate (Type I
error) and lead to the IDS being ignored by the operators.
On the other hand if the monitor is sufficiently desen-
sitized, it will ignore true threats. False negatives (Type II
error) will result, and the IDS will provide a misleading
sense of security. See Figure 3 for an illustration of the
meanings of false positive and false negative.

Transactions (T)

Actual
Intrusions

(A)

IDS
Detected

Intrusions
(D)

Correct
Detections

False
Negatives

Type II

False
Positives
Type I

False Positive Ratio = |D - A| / |T|
False Negative Ratio = |A - D| / |T|

Figure 3: False Positive (Type I) and False Negative (Type II)
Errors

In general, users should look for systems where the
IDS’s monitoring sensitivity can be adjusted so equality
between false positive and false negative error rates can
be achieved (see Figure 4). Of course the equal error rate
is not always ideal. Given the choice, users might prefer
to have lower Type II error at the expense of higher
Type I error rates.

Equal Error Rate

Sensitivity

%
 E

rr
or

Type I (False Positive)
Type II (False Negative)

Figure 4: Error rate curves and Equal Error Rate
Monitoring components may provide data to a

management console (if such a console exists) so that the
detected threat may be dealt with. The relationship bet-
ween a monitoring component and its optional manage-
ment console is one-to-zero-or-one (1:1c). Metrics for the
monitoring function are clarity of threat presentation, ease
of policy maintenance, variety and interoperability of
operator notification, and report generation capability.

Management consoles allow the operator to configure
the IDS and to manage the threat by manipulating the in-
coming data stream via external devices like firewalls and
routers. The management console is an optional feature of
an IDS since sensor, firewall and router configuration
may certainly be done in other ways, but the ability to
automatically and accurately filter out offending traffic is
key to a real-time response to threats. This is usually
accomplished by a security policy that maps threats to
automated actions. Policy must be accurate, for faulty
policy risks shutting out legitimate users. The manage-
ment console may also provide a user interface to
configure the various sensors and other IDS subsystems.
A 1c:M relationship exists between the management
console and the various other components of the IDS.
Without a management console, these components must
be configured individually, but a console allows numbers
of them to be configured centrally. Of course, decent-
ralized management introduces network overhead.
Metrics for the management function are ease of attack
filter generation, accuracy and effectiveness of the filter,
interoperability of the console with external devices, and
component management effectiveness.

3 Evaluation Methodology

3.1 Scorecard Development

The centerpiece of our testing and evaluation
methodology is a “scorecard” containing the set of gen-
eral metrics and their definitions (see section 3.2). The
metrics are general characteristics that we deemed rel-
evant to any IDS. The metrics have been divided into
three classes: Logistical (class 1), Architectural (class 2),
and Performance (class 3). The two methods of observing
each metric value were: analysis (direct observation in a

Fink, Chappell, Turner, O’Donoghue
NSWCDD, Code B 35, Dahlgren, VA

WPDRTS, 15-17 April 2002
Ft. Lauderdale, Florida

Page 5 of 8

laboratory setting or source code analysis), and open
source material (specifications, white papers or reviews
provided by the vendor or users).

Each metric is designated to be measured by one or
both of these methods. The key features of our testing
methodology are:

1. Well-defined metrics
2. Discrete scoring
3. Flexible weighting

Well-defined metrics are observable, reproducible,
quantifiable, and characteristic. By “characteristic” we
mean that the metric must clearly differentiate between
otherwise similar systems. Discrete scoring simplifies the
process of assigning values to each metric for a given
system. We chose to use scores with the discrete values
zero through four, with higher scores interpreted as more
favorable ratings. Our definition of each metric includes
examples of low (0), average (2), and high (4) scores.
Flexible weighting means that any consistent numeric
system of weights can be used, discrete or continuous
with upper or lower limits as defined by the scorer. The
computation of weighted scores is specified in Figure 5.
Using a larger range of weighting values will separate the
field of products more distinctly. Negative weights may
also be used to help distinguish where a feature is actually
counterproductive.

Sj = ∑j=1,3 [∑i=1,nj (Uij * Wij)]
where: Sj is the weighted overall score for metric class j
 Uij is the unweighted score for metric i of class j
 Wij is a real-valued weight of the ijth metric
 nj is the number of metrics within class j
 i is the index of the metrics within the jth class

j is the metrics class index (logistical = 1, etc)
Figure 5: Calculation of weighted scores

3.2 Scorecard Metrics

On the following pages we will discuss in greater
detail the metrics we think are most applicable to IDSs in
real-time environments. The metrics are grouped by class,
followed by a representative metric from the class that
includes examples of low, average, and high scores. For
brevity’s sake we have not included examples for each
metric. The current complete scorecard is available from
the authors. A prototype of this scorecard was used to
evaluate three commercial IDS products: NFR Security’s
Network Intrusion Detection (NID) version 5.0 [12],
Internet Security Systems’ Real Secure version 5.0 [13],
and Recourse Technology’s Manhunt version 1.2 [14].
There was also an initial examination of an IDS from the
research community, Autonomous Agents for Intrusion
Detection (AAFID) [15].

Logistical Metrics. Logistical metrics measure the
expense, maintainability, and manageability of an IDS.
The metrics we have defined that are applicable to real-
time in this area are shown in Table 1.

Distributed
Management

Capability of managing and monitor-
ing the IDS securely from multiple
possibly remote systems.

Ease of
Configuration

Difficulty in initially installing and
subsequently configuring the IDS.

Ease of Policy
Maintenance

The ease of creating, updating, and
managing IDS detection and reaction
policies.

License
Management

The difficulty of obtaining, updating,
and extending licenses for the IDS.

Outsourced
Solution

The degree to which the IDS services
are provided by an external entity.

Platform
Requirements

System resources actually required to
implement the IDS in the expected
environment.

Table 1: Selected Logistical Metrics
Logistical metrics we have defined but not included

in this paper are: Quality of Documentation, Ease of
Attack Filter Generation, Evaluation Copy Availability,
Level of Administration, Product Lifetime, Quality of
Technical. Support, Three Year Cost of Ownership, and
Training Support. A detailed example of the logistical
metrics is Distributed Management:
• Low Score: Management of each node must be done

at the node.
• Average Score: Nodes may be remotely managed, but

either security, or degree of administrative control is
limited.

• High Score: Complete management of all nodes may
be done from any node or remotely. Appropriate
encryption and authentication are employed.
We consider the administrative metrics Ease of

Configuration, Ease of Policy Maintenance, and License
Management applicable because products with low scores
in these areas would be difficult to use in a distributed
environment with multiple sensors. An Outsourced
Solution might not be suitable for real-time or high
performance environments if the agreement includes
random vulnerability scanning. Such scans could disrupt
system performance in a way that is not locally control-
lable. Platform Requirements give an indication of the
system resources that will be consumed by the IDS in the
resource-critical real-time environment.

Architectural Metrics. Architectural metrics are
used to compare how well the intended scope and
architecture of the IDS matches the deployment

Fink, Chappell, Turner, O’Donoghue
NSWCDD, Code B 35, Dahlgren, VA

WPDRTS, 15-17 April 2002
Ft. Lauderdale, Florida

Page 6 of 8

architecture. The metrics we defined in this area are
shown in Table 2.

Adjustable
Sensitivity

Ability to change the sensitivity of
the IDS to compensate for high false
positive or false negative ratios.

Data Pool
Selectability

Ability to define the source data to
be analyzed for intrusions (by proto-
col, source and dest addresses, etc).

Data Storage Average required amount of storage
per megabyte of source data.

Host-based Proportion of IDS input from log
files, audit trails and other host data.

Multi-sensor
Support

Ability of an IDS to integrate
management and input of multiple
sensors or analyzers.

Network-based Proportion of IDS input from packet
analysis and other network data.

Scalable Load-
balancing

Ability to partition traffic into
independent, balanced sensor loads,
and ability of the load-balancing
subprocess to scale upwards and
downwards.

System
Throughput

Maximal data input rate that can be
processed successfully by the IDS.
Measured in packets per second for
network-based IDSs and Mbps for
host-based IDSs.

Table 2: Selected Architectural Metrics
Architectural metrics we have defined but not

included in this paper are: Anomaly Based, Autonomous
Learning, Host/OS Security, Interoperability, Package
Contents, Process Security, Signature Based, and
Visibility. An illustrative example of an architectural
metric is Scalable Load-balancing:
• Low Score: No load balancing
• Average Score: Load balancing via static methods

such as placement
• High Score: Intelligent, dynamic load balancing

The significance of each metric in Table 2 to dist-
ributed, real-time systems is as follows: Adjustable
Sensitivity allows tuning the IDS to optimal performance
for the real-time environment. Data Pool Selectivity
would allow the IDS to consider only protocols outside
those typically used within the distributed cluster. Data
Storage is a predictor of network bandwidth used in a
distributed IDS. Host-based indicates the proportion of a
monitored host’s resources that the IDS will use.
Multi-sensor measures the ability of an IDS to monitor a
truly distributed system. Network-based IDSs will con-
sume network resources by being in-line or via port

mirroring. Scalable Load-balancing indicates whether an
IDS will be able to grow as the system grows. The System
Throughput metric helps determine whether the IDS will
become a constraint on the processing ability of a real-
time system.

Performance Metrics. Performance metrics measure
the ability of an IDS to do a particular job and to fit
within the performance constraints of the monitored
system. The metrics we defined in this area are shown in
Table 3.

Analysis of
Compromise

Ability to report the extent of damage
and compromise due to intrusions.

Error Reporting
and Recovery

Appropriateness of the behavior of the
IDS under error/failure conditions.

Firewall
Interaction

Ability to interact with a firewall. Per-
haps to update a firewall’s block list.

Induced Traffic
Latency

Degree to which traffic is delayed by
the IDS's presence or operation.

Maximal
Throughput
with Zero Loss

Observed level of traffic that results in
a sustained average of zero lost pack-
ets or streams. Measured in packets/
sec or # of simultaneous TCP streams.

Network Lethal
Dose

Observed level of network or host
traffic that results in a shutdown/mal-
function of IDS. Measured in packets/
sec or # of simultaneous TCP streams.

Observed False
Negative Ratio

Ratio of actual attacks that are not
detected to the total transactions.

Observed False
Positive Ratio

Ratio of alarms raised that do not
correspond to actual attacks to the
total transactions.

Operational
Performance
Impact

Negative impact on the host proc-
essing capacity due to the operation of
the IDS. Expressed as a percentage of
processing power.

Router
Interaction

Degree to which the IDS can interact
with a router. Perhaps it might redirect
attacker traffic to a honeypot.

SNMP
Interaction

Ability of the IDS to send an SNMP
trap to one or more network devices in
response to a detected attack.

Timeliness
Average/maximal time between an
intrusion’s occurrence and its being
reported.

Table 3: Selected Performance Metrics
Performance metrics we have defined but not

included in this paper are: Analysis of Intruder Intent,
Clarity of Reports, Effectiveness of Generated Filters,
Evidence Collection, Information Sharing, Notification:

Fink, Chappell, Turner, O’Donoghue
NSWCDD, Code B 35, Dahlgren, VA

WPDRTS, 15-17 April 2002
Ft. Lauderdale, Florida

Page 7 of 8

User Alerts, Program Interaction, Session Recording and
Playback, Threat Correlation, and Trend Analysis. The
significance of each metric in Table 3 to distributed, real-
time systems is as follows: Analysis of Compromise
allows an administrator to determine which of the
distributed systems is compromised for safer resource
allocation. Error Recovery and Reporting indicates what
an IDS will do when it fails or is overloaded. Firewall
Interaction, Router Interaction, and SNMP Interaction all
help determine what means are available for a near real-
time automated response to an intrusion. Induced Traffic
Latency measures the impact an IDS will have on network
throughput. Maximal Throughput with Zero Loss indic-
ates how effective the IDS will be given the expected
traffic flow in the network to be protected. Network
Lethal Dose tells the bandwidth where the IDS will fail to
operate correctly leaving the system unprotected.
Observed False Negative Ratio and Observed False
Positive Ratio measure the accuracy of the IDS and the
degree that its coverage will need to be extended with
other security measures. The remaining two metrics have
obvious bearing on real-time systems. An illustrative
example of performance metrics is Error Reporting and
Recovery:
• Low Score: No notification, no log, no indication that

an error has occurred. Fatal errors cause system to
hang indefinitely.

• Average Score: Failure is logged and user is notified at
some point in the future when the IDS is able. Fatal
errors cause cold reboot of entire machine

• High Score: Failure is reported near real time via
attack notification channels. Fatal errors cause restart
of application(s) or service(s).

3.3 Deriving Weights from User Requirements

To provide meaningful results, the metrics need to be
weighted carefully according to the intended environment
where the IDS will function. The weighting of metrics is
derived from an analysis of the requirements of the
prospective IDS procurer. To effectively use the score-
card, the procurer must have clearly defined requirements.
The actual form of the requirements is flexible. This
section suggests one possible algorithm for mapping
requirements to a scorecard weighting (see also Figure 6).
The user first lists his IDS requirements in a partial
ordering from least important to most. Requirements
should be stated in positive form or converted to the
positive where possible to reduce unnecessary negative
weights. Next, the first requirement (least important)
should be assigned the lowest weight (e.g., one). Other
requirements may then be assigned increasing weights in
proportion to their relative importance. Since the
ordering of requirements is partial, it is acceptable to have
duplicate weights. After the requirements are weighted,

each metric is assigned a weight equal to the sum of the
weights of the requirements it contributes to. Weighted
scores for each IDS under evaluation are computed using
the formula in Figure 5.

Im
portance

Requirement
Weights

Metric
Weights

1

2.5

3

5

3

3

6.5

0

8

0

Figure 6: Requirement to Metric Weighting Example
Mapping of requirements to metric weights is an area

where we hope to do more work in the future. A concrete
mapping example will do much to mature both the
scorecard and the mapping process. Mapping these req-
uirements to numeric weights will always be somewhat
subjective, but as long as the weighting accurately and
consistently reflects the goals of the procurer’s organiz-
ation, the scorecard methodology will work effectively.

No security problem is purely technical, and much of
determining the user’s requirements has more to do with
policy decisions than anything else. An organizational
security policy that states the goals, acceptable uses, and
constraints on the system in terms of security is critical.
Without this organizational agreement, it will be impos-
sible to determine what to monitor, when or whom to
alert, or the degree of threat a potential intrusion presents
[16].

The goal of the weighting strategy should be to ref-
lect accurately the importance of each metric relative to
the others for the system to be protected. For real-time
systems, emphasis should be placed on speed and accur-
acy of attack recognition and on the ability of the IDS to
automatically react via firewall, router, Simple Network
Management Protocol (SNMP), etc. For distributed sys-
tems, care should be taken to consider the impact of trust
among the component hosts. When one host is comprom-
ised, other systems that trust it may be very easily
compromised in ways that may look like normal inter-
actions between hosts. The result is an exploit that is
difficult to detect and nearly impossible to root out. In
this situation it is critical to catch the initial compromise
of the first component host and isolate it. Distributed
systems then, should put emphasis on reducing the false
negative ratio to the lowest possible level accepting an
increased false positive alert ratio in the process. Logging
of historical traffic is also key to ex post facto unraveling
the compromise of a complex distributed system.

Fink, Chappell, Turner, O’Donoghue
NSWCDD, Code B 35, Dahlgren, VA

WPDRTS, 15-17 April 2002
Ft. Lauderdale, Florida

Page 8 of 8

4 Lessons Learned and Future Work

During the early stages of the evaluation, we learned
several important lessons as we applied the testing
methodology. First, to collect performance related metrics
of an IDS, a simple flooding of the network being
monitored with meaningless data is not sufficient [6].
Such a method is sufficient for determining the maximum
throughput of a network device such as a switch or a
router, but for an IDS, the data portion of an IP packet
should have realistic content. The reason is that while
some IDSs analyze only the header of the IP packet (e.g.,
source and destination address, port number, etc.), others
also analyze the data portion of the packet. If packets with
random data are used to generate background traffic, then
the IDS that analyzes both the header information and
message data will not be realistically tested. IDSs perform
differently in the presence of different kinds of network
traffic. Distributed systems with high levels of inter-host
trust on a high-speed LAN will have distinctive traffic
compared to that of a web server in an e-commerce shop.
Commercial IDSs will often be geared toward the latter
and not perform well in the former situation. The best
way to evaluate any IDS is to use real traffic (live or
recorded) from the site where the IDS is expected to be
deployed [6]. Continual re-evaluation is especially
important since vendors rapidly update their products.

A second lesson learned is that a few of the formal
metrics we defined are very difficult (perhaps impossible)
to observe. One such metric is the “observed false
negative ratio.” The user may never be aware of an
instance of the IDS failing to detect an attack. To
overcome this we replayed canned data with known attack
content on the test network. However, even the definition
of an attack is not always clear. What may be viewed as a
single attack by one classification system may be
legitimately seen as several attacks in another.

Potential future work includes weighting the score-
card metrics with respect to the environment of a working
distributed, real-time system; evaluating the current
direction of IDS work in the research and development
community; and a continued evolution of the metrics and
testing methodology. The metrics and their definitions are
best refined as lessons are learned while evaluating
systems. We would like to expand the scorecard metrics
to capture the human dimension of IDS as well. We hope
to collaborate in the future with others who have fielded
extensive IDS testbeds and adapt our metric set to their
testing activities. Finally, we hope that our work will be
of service to the growing population of IDS users and
procurers.

5 References

[1] Brett Chappell, Glenn Fink, Karen O’Donoghue, David
Marlow, Intrusion Detection and Response for Real-time
Distributed Naval Systems, Parallel and Distributed
Computing Practices – Special Issue: Security for Mission
Critical Real-Time Systems, October, 2001.

[2] Stefan Axelsson, Intrusion Detection Systems: A Survey and
Taxonomy, Technical report, Computer Engr Dept,
Chalmers Univ of Technology, Goteborg, Sweden, 2000

[3] Hervé Debar, Marc Dacier, Andreas Wespi, Towards a
Taxonomy of Intrusion-Detection Systems, Computer
Networks, Vol 31, 1999, pp. 802-822.

[4] Lawrence R. Halme and R. Kenneth Bauer. AINT
misbehaving - a taxonomy of anti-intrusion techniques. In
Proceedings of the 18th National Information Systems
Security Conference, pages 163-172, October 1995

[5] Julia Allen, Alan Christie, William Fithen, John McHugh,
Jed Pickel, Ed Stoner, State of the Practice of Intrusion
Detection Technologies, CMU/SEI-99-TR-028, SEI, Carn-
egie Mellon Univ., Pittsburgh, PA 15213, Document
available on the web at http://www.sei.cmu.edu/publications/
documents/99. reports/99tr028/99tr028abstract.html.

[6] Marcus Ranum, Experiences Benchmarking Intrusion
Detection Systems, http://www.nfr.com/forum/white-papers/
Benchmarking-IDS-NFR.pdf, 2001.

[7] Rossey, Cunningham, Fried, Rabek, Lippmann, Haines, and
Zissman, Lincoln Laboratory, Massachusetts Institute of
Technology, LARIAT: Lincoln Adaptable Real-time
Information Assurance Testbed, IEEEAC paper #033, 2001

[8] Haines, Rossey, Lippmann, and Cunning-ham, Lincoln
Laboratory, Massachusetts Institute of Technology,

[9] Intrusion Detection Systems, Group Test (Edition 2),
Published by the NSS Group, Oakwood House, Wenning-
ton, Cambridgeshire, PE28 2LX, England, 2001. Document
available on the web at http://www.nss.co.uk/ default.htm.

[10] The Department of Defense Trusted Computer System
Evaluation Criteria, DOD-5200.28-STD, US DoD, 1985

[11] Top Layer Networks, Inc.,2400 Computer Drive, West-
boro, MA 01581, 2002. Document available on the web at:
http://www.toplayer.com/pdf/ iss_tln_GigResults.pdf.

[12] Network Flight Recorder, Inc., NFR NID, see product
brochure at the company’s website: http://www.nfr.com/
products/NID.

[13] Internet Security Systems, RealSecure, see product
brochure at the company’s website: http://www.iss.net/
securing_e-business/security_products/intrusion_detection/

[14] Recourse Technologies, Inc., ManHunt, see product
brochure at the company’s website: http://www.recourse.com/
products/manhunt/hunt.html

[15] E. H. Spafford, D. Zamboni, Intrusion Detection using
Autonomous Agents, Computer Networks 34, 2000. See also
http://www.cerias. purdue.edu/ homes/aafid/

[16] Rebecca Gurley Bace, Intrusion Detection, Macmillan,
2000, pp. 217-227.

For further information, or to obtain a copy of the IDS metric
scorecard, please contact Glenn Fink at finkga@nswc.navy.mil
or Brett Chappell at chappellbl@nswc.navy.mil.

http://www.nfr.com/products/NID
http://www.nfr.com/products/NID
http://www.iss.net/securing_e-business/security_products/ intrusion_detection/
http://www.iss.net/securing_e-business/security_products/ intrusion_detection/
http://www.recourse.com/products/manhunt/hunt.html
http://www.recourse.com/products/manhunt/hunt.html
http://www.cerias.purdue.edu/homes/aafid/

	Introduction
	Intrusion Detection Systems
	Classification of an IDS
	General Architecture of a Network IDS

	Evaluation Methodology
	Scorecard Development
	Scorecard Metrics
	Deriving Weights from User Req˜uire˜ments

	Lessons Learned and Future Work
	References

