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Foreword

The Federal Information Processing Standards Publication Series of the National Bureau of Standards
is the official publication relating to standards adopted and promulgated under the provisions of Public Law
89-306 (Brooks Act) and under Part 6 of Title 15, Code of Federal Regulations.  These legislative and
executive mandates have given the Secretary of Commerce important responsibilities for improving the
utilization and management of computers and automatic data processing systems in the Federal
Government.  To carry out the Secretary's responsibilities, the NBS, through its Institute of Computer
Sciences and Technology, provides leadership, technical guidance and coordination of Government efforts
in the development of guidelines and standards in these areas.

As every facet of the Federal Government becomes increasingly dependent upon ADP systems,
concern about the protection, availability, and reliability of Federal agency data and computer applications
has become evident in the executive and legislative branches of the Government as well as in the minds of
individual citizens.  This guideline was developed, as part of an overall Department of Commerce computer
security and risk management program, to provide technical and managerial guidance to Federal agencies
that will enable them to reduce or eliminate unnecessary and excessively high risks that are associated with
the utilization of automated information systems.  NBS is pleased to make these Guidelines for Security of
Computer Applications available for use by Federal agencies.

James H. Burrows, Director
Institute for Computer Sciences

and Technology

Abstract

Security decisions should be an integral part of the entire planning, development, and operation of a computer application.
This guideline describes the technical and managerial decisions that should be made in order to assure that adequate controls are
included in new and existing computer applications to protect them from natural and human-made hazards and to assure that critical
functions are performed correctly and with no harmful side effects.  The multifaceted nature of computer security is described, and
differences in security objectives, sensitivity levels, and vulnerabilities that must be considered are identified.  Fundamental security
controls such as data validation, user identity verification, authorization, journalling, variance detection, and encryption are
discussed as well as security-related decisions that should be made at each stage in the life cycle of a computer application.  These
include questions about security feasibility and risk assessment that should be asked during initial planning, decisions that should be
made during the design, programming and testing phases, controls that should be enforced during the development process, and
security provisions that should be enforced during the day-to-day operation of the system.
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Federal Information Processing Standards Publications are issued by the National Bureau of Standards pursuant to the Federal Property and
Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315,
dated May 11, 1973), and Part of Title 15 CFR (Code of Federal Regulations).

Name of Guideline:   Guidelines for Security of Computer Applications

Category of Guideline: ADP Operations, Computer Security

Explanation: These guidelines describe methods and techniques that can reduce the hazards associated with
computer applications.  They describe the different security objectives for a computer application, explain the control
measures that can be used, and identify the decisions that should be made at each stage in the life cycle of a sensitive
computer application.  Other publications that provide a more exhaustive treatment of specific subjects are referenced.

Approving Authority: Department of Commerce, National Bureau of Standards (Institute for Computer Sciences
and Technology).

Maintenance Agency: Department of Commerce, National Bureau of Standards (Institute for Computer Sciences
and Technology).

Cross Index:

a. Federal Information Processing Standards Publication (FIPS PUB) 31, Guidelines for Automatic Data
Processing Physical Security and Risk Management.

b. Federal Information Processing Standards Publication (FIPS PUB) 39, Glossary for Computer System
Security.

c. Federal Information Processing Standards Publication (FIPS PUB) 41, Computer Security Guidelines for
Implementing the Privacy Act of 1974.

d. Federal Information Processing Standards Publication (FIPS PUB) 46, Data Encryption Standard.
e. Federal Information Processing Standards Publication (FIPS PUB) 48, Guidelines on Evaluation of

Techniques for Automated Personal Identification.
f. Federal Information Processing Standards Publication (FIPS PUB) 65, Guideline for Automatic Data

Processing Risk Analysis.

Applicability: These guidelines apply to the planning, development, and operation of Federal computer applications
which require various degrees of protection due to the nature of the data processed or to the risk and magnitude of loss
or harm that could result from improper operation or deliberate manipulation of the applications.  They are written to
be used by the managers of any organization that depends on, or by the data processing personnel who are involved
with, such applications.  They are especially applicable to the development of new applications and to the revision of
existing applications.  They should be followed from the time of the initial planning for the application or for its
revision.

Implementation: These guidelines should be used by each organization in which new computer applications are
developed and as current applications are improved, particularly when analyzing protection requirements and when
selecting and implementing security safeguards commensurate with calculated risks.  Depending upon differing
operational requirements, applications will require various levels of security protection.  These guidelines, when used
in conjunction with the references at the end of this document, should assist those responsible for the computer
application in making and justifying essential security decisions.
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Specifications: Federal Information Processing Standards Publication (FIPS PUB) 73, Guidelines for Security of
Computer Applications, (affixed).

Qualifications: These guidelines are not intended to satisfy completely the more critical security requirements for
Department of Defense tactical applications or applications that process national security data.  Similarly, they are not
intended to give complete guidance for real-time control applications where signals to control critical processes are
required within a few seconds or less (e.g., aircraft flight control, nuclear power plant control).  While the guidance
contained in this document is applicable to these applications, approaches that are more rigorous than those discussed
in these guidelines are often required to provide adequate levels of protection.

Where to Obtain Copies of the Guideline: Copies of this publication are for sale by the National Technical
Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.  When ordering, refer to Federal
Information Processing Standards Publication 73 (FIPS-PUB-73) and title.  When microfiche is desired, this should be
specified.  Payment may be made by check, money order, or deposit account.
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ACTION SUMMARY

The essential recommendations from these guidelines are summarized here to provide a quick overview of action
items for improving the security of computer applications.  Actions that are part of the minimum requirements for each
agency's computer security program as defined in OMB Circular A-71, Transmittal Memorandum No. 1 (A-71, TM1),
July 27, 1978, are identified by an asterisk.  The sections of this document that give more details about the action are
identified within parentheses; for example, (2) means the whole of section 2, and (2.1) means all of section 2.1.

   I. Determine security objectives, the degree of sensitivity, and the vulnerabilities of the application and its data. (2)

*For applications that are already operational, begin with a risk analysis following the guidance in [FIPSP 79B]. (4.2)

For new applications, assess the risks and the feasibility of securing the application.  This must be done during the
feasibility studies and cost-benefit analyses that are performed before resources are committed to development of the
new application. (5)

   II. For existing applications, a risk analysis usually uncovers some vulnerabilities that need immediate attention.
Often, improved control over the manual procedures and operational practices will reduce the risk significantly, while
more thorough improvements are planned and developed. (7)

The remaining action items all apply to the revision of existing applications as well as to new applications.

*  III.  Define security specifications for the application.  These should be developed as part of the definition of
requirements for the application. (6.1)

   IV. Design the interfaces of the system so that unnecessary vulnerabilities are avoided and so that the risk exposure is
minimized. (6.2)

   V. Include in the system design enough basic controls so the vulnerabilities that cannot be avoided are controlled and
managed. (3)

*  VI.  Conclude the design stage with a detailed design review by a team of experts who were not part of the design
effort.  For any sensitive application, this design review must include an analysis of the risks that will remain in the
new or revised system. (6.2.8)

   VII. Plan and control the programming stage to minimize the danger that errors or deliberate traps in the
programs will be a source of security exposures. (6.3)

*  VIII.  Test the system not only to evaluate whether the desired functionality is implemented correctly but also to
determine how the system will handle unexpected or fraudulent inputs and how it will perform under other unusual
conditions. (6.4)

   IX. Once the system is operational, ensure that planned security procedures are followed in all the manual activities
associated with the system.  The careful planning for security will be wasted if management does not emphasize
security during the day-to-day operation of the system. (7)

*  X.  Contingency plans should be developed to assure the integrity of the data processed and the continuity of the
application's critical functions.  The plan must be implemented (i.e., the prerequisite activities such as training of
personnel, alternate site selection, selection of backup file storage site, determination of critical functions, etc. must be
completed) and maintained in a state of readiness so that responses to emergencies will be timely and successful. (7.6)
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1. INTRODUCTION

Computer security concerns the protection of computers and their services from all natural and human-made
hazards.  As computers perform more and more critical services and as effective human review becomes more difficult,
the most serious security concerns often become a matter of performance assurance-an assurance that the computer
performs its critical functions correctly and that there are no harmful side-effects [PATRR 78].

Computer services must be protected not only from physical threats such as damage and theft but also from
internal vulnerabilities such as programming errors and misuse by authorized users [RCBCG 79].  Previous guidelines
[FIPSP 74] dealt extensively with security against physical threats to the computer facility.  These guidelines extend
[FIPSP 74] by providing more detail on ways to control internal vulnerabilities.
The term "security" is sometimes used in a narrower sense to cover only protection against unauthorized disclosure of
information.  In this document, "security" has a broader meaning and includes most integrity and performance
assurance concerns.

These guidelines focus on controls for use with computer applications.  Inadequacies in the design and operation
of computer applications [BOEHB 73A], [FIFED 77], [MCCAJ 77A], [MCCAJ 77B], [MCCAJ 77C], [YOURE 75],
[MILLH 77] are a very frequent source of harmful effects associated with computers, and in most cases the effort to
improve security should concentrate on the application systems.  An exception occurs when the nation's security or
well-being could be seriously affected.  In such situations, there is a significant danger that flaws inherent in the
operating system could be exploited to avoid controls built into the application system; and for these applications
security should be built in from the bottom up-beginning with the hardware and the operating system.  Until operating
system security improves to the point that operating systems can be trusted, the majority of Federal applications must
coexist with current operating systems.  For these applications, vast improvements in security are usually possible
before inadequacies in the operating system become a limiting factor.

Security concerns should be an integral part of the entire planning, development, and operation of a computer
application.  Much of what needs to be done to improve security is not clearly separable from what is needed to
improve the usefulness, reliability, effectiveness, and efficiency of the computer application.  These guidelines are
compatible with other FIPS guidance and with best current practices for achieving these other goals.  On the other
hand, many tradeoffs must be made between security and other goals.  The tradeoffs need not always be resolved in
favor of security, but security requirements must be appropriately weighed in each tradeoff, and they cannot be
consistently neglected.

Security is given special treatment in these guidelines because it is a new and difficult problem to some users and
managers and it is frequently neglected until it is too late to take the most effective action.  Many of the hazards
associated with computer applications do not occur frequently, and most managers have not had firsthand experience
with them.  It is easy for managers to neglect these hazards and become enmeshed in the smaller, more immediate, and
more obvious problems.

Section 2 describes the multifaceted nature of computer security and identifies the differences in objectives,
sensitivity levels, and vulnerabilities that must be considered.  Section 3 is more technical and describes the basic
controls that are commonly applicable.  Readers who are applying these guidelines to a specific application system may
skim this section and then later use it as reference material on the specific topics that are useful in their application.
The remainder of the document-sections 4 to 7-describe the security-related decisions that should be made at each stage
in the life cycle of a computer application.  Section 4 introduces the life cycle approach to security-both for new
systems and for revisions to existing systems.  Section 5 identifies the questions about security feasibility and risk
assessment that should be asked during the initial planning for an application system.  Section 6 describes the decisions
about security that should be made at each stage of the system development and it describes controls that should be
enforced during the development process.  Section 7 deals with the security provisions to be enforced during the day-
to-day operation of the system.

2. SECURITY OBJECTIVES AND VULNERABILITIES

Computer security is needed because undesirable events during computer processing can have effects such as
denial of benefits due to citizens, unauthorized disclosure of sensitive information, loss of Government money or
resources, human injury or illness, false arrest, and, in extreme cases, loss of life and endangerment of the national
welfare and security.  Since the possible effects are so different, specific security objectives must be determined for
each application.
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This section describes general ways of classifying security objectives and illustrates some of the differences
among various applications.

2.1 Integrity, Confidentiality, and Availability

To identify objectives that are common to many diverse computer applications, it is useful to classify undesirable
events not in terms of their ultimate effects but in terms of their proximate effects on computerized data.  An event may
result in unauthorized or undesirable

* modification or destruction of data,
* disclosure of data,
* unavailability of data or system services.

This classification of undesirable events corresponds to the following three security objectives for computer
systems:

1. DATA INTEGRITY-The state that exists when computerized data is the same as that in the source
documents or has been correctly computed from source data and has not been exposed to accidental or malicious
alteration or destruction.  Erroneous source data and fictitious additions to the data are also considered violations of
data integrity.

2. DATA CONFIDENTIALITY-The state that exists when data is held in confidence and is protected from
unauthorized disclosure.  Misuse of data-by those authorized to use it for limited purposes-is also a violation of data
confidentiality.

3. ADP AVAILABILITY-The state that exists when required ADP services can be obtained within an
acceptable period of time.1

Many controls [RUTHZ 77], [RUTHZ 78], [EDPAF 77], [IIASA 77], [SGCCA 75B], [MAIRW 76] are effective
in meeting all three security objectives; however, some are specific to one objective and may even have a detrimental
effect on other objectives.  For example, the damage resulting from loss or destruction of data (a data integrity
problem) can be reduced by keeping multiple copies of the data-but this makes data confidentiality more difficult.
Thus it is important to determine how much weight must be put on each of the three objectives of data integrity, data
confidentiality, and ADP availability.

2.2 Accidental and Deliberate Events

A second classification of objectives arises from the differences between accidental and deliberate acts.
Accidents, errors, and omissions generally account for more losses than deliberate acts; and thus they should be the
first focus of attention.  Safeguards that reduce the potential for harmful effects from accidents are also a first step
toward reducing the opportunities for fraud and deliberate misuse-a system that tolerates frequent errors is a fertile
ground for criminal activity that can be masked by the errors.

While controls that reduce accidental failings are the first step, many systems must also be protected against
deliberate fraud and misuse [BEQUA 78A], [BEQUA 78B], [ALLEB 76], [PARKD 73], [PARKD 75], [PARKD 76],
[RCBCG 76B], [KRAUL 79].  For some applications, existing legal sanctions2 along with external efforts to identify
criminal activity may be adequate; however, for a growing number of applications, it is necessary to include internal
controls to prevent or at least detect criminal activity within the application.

Controls against deliberate acts must be carefully thought out because deliberate acts can exploit the weakest
points in the control system.  Controls that do not reduce the vulnerability of the weakest points will do little to deter
deliberate acts.  To protect a house against accidental rain damage, each window that is closed reduces the potential
damage; to protect the house against a burglar, it does little good to lock second-story windows unless all the weaker
points on the first story are protected.

Security against deliberate acts must control all the most likely avenues of attack; however, substantial deterence
against fraud and embezzlement can be achieved if a potential perpetrator believes there is a definite, however small,
probability of being detected and apprehended.  Many potential white-collar criminals will be deterred when it is clear
that the act is illegal and that there is no way to commit the crime without some distinct chance of being detected and

                                                  
1 Equipment Security-the protection of the investment in the computer itself and in related equipment-is a fourth area of concern; however, this is
usually separate from the security concerns of the application system [FIPS 74], [RCBCG 76C].
2 Current legal sanctions for computer-related crime are weak and are often difficult to enforce.
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prosecuted.  Unfortunately, even this limited goal is difficult to achieve.  Computers are very predictable and they
follow their programmed instructions with great regularity; these properties are very useful to a criminal in preserving
the appearance of normality while committing a crime.

2.3 Examples of Sensitive Applications

The degree of sensitivity of an application depends on the nature of the data it processes and on the way the
application system is used to support other activities.  Each agency must determine the degree to which its computer
applications are sensitive.  Examples of applications that might be sensitive are given below.  The groupings reflect
systems that have somewhat similar security problems; they do not necessarily reflect increasing levels of sensitivity.

2.3.1 Applications Providing General Processing Support

MAJOR OBJECTIVES: data integrity

EXAMPLES:

* Engineering calculations used in aircraft design
* Query systems that support health care decisionmaking
* Automated scheduling of safety inspections
* Simulation of the dispersion of toxic substances

In these applications, accidents are a major concern.  Health, safety, welfare, and even lives may depend on the
correctness of the output from these applications.  Thus data integrity-including integrity of the programs-is critical;
however, if the application routinely produces accurate and useful results, the probability of traumatic consequences
from a random error may be low as long as gross errors are likely to be detected manually before they result in serious
harm.  The primary concern is for accidents, errors, and omissions.  Deliberate acts could occur, but there is little
motivation for them, and those responsible for the system may well decide that security efforts will be more effective if
they are concentrated on oversights and errors.  If personal or proprietary data is involved, then data confidentiality is a
concern.  ADP availability will be a requirement for some of these applications.

2.3.2 Funds Disbursement, Accounting, Asset Management Systems

MAJOR OBJECTIVES: data integrity

EXAMPLES:

* Payroll
* Benefits payments
* Accounts payable
* Accounts receivable
* Inventory control

In these applications, deliberate and accidental acts are a major concern.  While errors are the major cause of
losses, these systems must also be protected against fraud, embezzlement, and theft.  These systems frequently involve
personal or other confidential data and thus data confidentiality may also be required.  ADP availability objectives
depend on the consequences of delayed action and on the effectiveness of manual fallback procedures [AACO 78],
[AICPA 77], [PWCO 79].

2.3.3 General-Purpose Information Systems

MAJOR OBJECTIVES: data integrity and data confidentiality.

EXAMPLES:

* Generalized data management systems
* Centralized management information systems
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These applications, which serve large and varied user populations, have the data integrity concerns of any of the
above systems.  Furthermore, the simultaneous use by different user populations makes data confidentiality more
critical, and the accumulation of large quantities of data in the same system may make its misuse more attractive.  The
generality of these systems and their associated security requirements also make it more difficult to design effective
security controls. Availability objectives come from the user groups that are most dependent on the  system  for  their
day-to-day functions [FIPSP 80B].

2.3.4 Automated Decisionmaking Systems

MAJOR OBJECTIVES: rigorous data integrity.

EXAMPLES:

* Fully automated funds disbursement and accounting systems
* Automated inventory reordering
* Automated scheduling for maintenance

In these systems manual review becomes more difficult, so that errors made by the automated system are less
likely to be detected before they lead to serious harm.  The degree of data confidentiality and processing availability
required depends upon the sensitivity of the application's data and upon the consequences of delayed processing
respectively [RCBCG 76A].

2.3.5 Real-Time Control Systems

MAJOR OBJECTIVES: ADP availability and data integrity.

EXAMPLES:

* Air traffic control
* NASA mission control
* Rapid transit system control
* Automated production control

These systems have all the problems of automated decisionmaking systems plus a rigorous requirement for
constant availability and very rapid response times.  The security controls discussed in this document are needed in
these systems, but additional controls including automated fault detection, backup, and recovery along with redundant
hardware support are also needed to meet all their security objectives.

2.3.6 Systems Affecting National Security or Well-Being

MAJOR OBJECTIVES: data integrity, confidentiality, and ADP availability.

EXAMPLES:

* Military command and control
* Management of multilevel classified information
* Integrated electronic funds transfer
* Nuclear material control and accountability

These systems must be protected against hostile acts by unauthorized persons who have considerable resources to
devote to planning ways to compromise them.  The approach to security discussed in these guidelines is not effective
against this kind of threat.  More effective techniques for formal development and verification of controls in both the
operating system and the application, which are emerging from the research community, are necessary for improved
protection in this area [BERST 79], [DODKS 78], [FEIER 79], [LINDT 76C], [MCCAE 79], [NEUMP 77B], [POPEG
78A], [POPEG 79B], [SCHIW 75], [WOODJ 77], [ARMY 78], [JEFFS 76], [NCEFT 77], [WULFW 74B].

2.4 Vulnerabilities
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Information resident on a computer system is vulnerable to a wide variety of hazards. The selection of controls
must be based not only on security objectives but also on all the vulnerabilities of the application.  Some familiarity
with these vulnerabilities is required in order to understand the problems being addressed by these guidelines.  A few
general examples are given below.  The reader is referred to the appendix of [FIPSP 79B] for more extensive examples.

* Input errors-Data may be altered, disclosed, lost, or misidentified during input preparation and incorrect,
misinterpreted, inconsistent, or unreasonable data may be accepted as valid for processing.
* Open system access-There may be no control over who can use the computer application.
* Poorly defined criteria for authorized access-The personnel in direct charge of the application may not know
who should have access to various items of information.
* Unaudited access to data-If individuals can access data knowing that there will be no record of their actions,
then they will feel they cannot be held accountable for their acts.
* Unprotected information-Data may not be protected from unauthorized access.  This applies to on-line files
and also to off-line files such as magnetic tapes.  The latter are sometimes accessible simply by requesting that
they be mounted.
* Dial-in access-Unauthorized persons may obtain access to the system-especially if remote, dial-in access is
allowed.
* Program errors-Programs can contain many undetected errors, especially when they are written with poor
programming practices or are not extensively tested.  A program error may result in undesirable modification,
disclosure, or destruction of sensitive information.
* Mistaken processing of data-Processing requests may update the wrong data; for example, if a tape is
mounted at the wrong time.
* Operating system flaws-Design and implementation errors in operating systems may allow a user to gain
control of the system.  Once in control, the user can disable controls, erase audit trails, and access any information
on the system.
* Subverting programs-Programs containing hidden subprograms that disable security controls can be
submitted.  These programs can copy information into secret or misidentified files for use at a later time, or
perform unauthorized modifications of data.
* Spoofing-Actions can be taken to mislead system personnel or the system software into performing an
operation that appears normal but actually results in unauthorized access.

3. BASIC CONTROLS

This section describes the basic controls that can be used to achieve security objectives.  Selection of the controls
that are applicable and necessary for a given application system depends both on its security objectives and on the
environment in which the system operates.  Guidance on how to make this selection in an orderly way will be given in
sections 4 to 7.

Some controls discussed in this section may be implemented partially by the hardware, by the operating system,
or by the facility management.  Any applicable controls that are already available should be understood and used.
Some controls that are often supported by an operating system are discussed in this section because the boundary
between the operating system and the application system varies considerably and because it is ultimately the
application system designer's responsibility to ensure that the combined effect of all controls is adequate.

Controls that are often expensive are identified as such in their descriptions; however, the actual cost will depend
on many factors unique to each facility.  Since many controls will also improve the manageability and the reliability of
the application, much of their cost should be considered an integral part of the development and operation of an ADP
application.

3.1 Data Validation

PROBLEMS ADDRESSED:

Invalid data leads to erroneous outputs and is usually the proximate cause of harmful human, social, and
economic effects.

Invalid data can destroy the credibility of the system, demoralize those trying to use it, cause excessive system
maintenance costs, and, in extreme cases, cause the system to be unavailable or unusable.
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Data validation involves the examination of computerized data to determine if it is accurate, complete, consistent,
unambiguous, and reasonable.  This section gives an overview of the direct methods that can be used to evaluate data in
order to identify likely errors.  Since these direct evaluation methods are not able to find all errors, data integrity also
depends on the correctness and integrity of all the activities by which the data is collected and processed.  The controls
of sections 3.2 to 3.6 as well as those in sections 6 and 7 must also be used in order to prevent subtle errors from being
introduced into the data.  Data validation is a very basic control, but it should only be expected to detect gross errors
and it will not compensate for poor control over other aspects of the application system.

Data should be validated:

* during data collection and entry-prior to its use by the system; and

* continuously, as new data is generated or used during processing.

Errors should be detected and corrected as soon as possible in order to prevent the propagation of invalid data
throughout the system and the potential contamination of the system data base.

Once invalid data has been identified, it must be corrected.  The process of correcting errors is itself very prone to
further errors, and data validation methods should be applied thoroughly during the correction activity.

Input verification, consisting of operational procedures to assure that source data is accurately transcribed to
machine-readable form, is an important aspect of data validation.  Input verification is discussed in greater detail in
section 7.1 along with other manual information handling controls.

3.1.1  Consistency and Reasonableness Checks. Relationships between data elements that arise from the intended
meaning of the data can be used to identify errors in the source data as well as errors in data preparation and
processing.  Often past records that are already in automated form can be used to predict probable values for current
records.  Any major deviation from expected values can then be flagged for further investigation.  The appropriate
checking to identify suspicious values must be defined by those who are familiar with the application and must be
included in the application's design; it cannot be left up to the programmers.

3.1.2 Validation During Data Entry.  Automated editing and validation should be used in both batch and on-line
systems.  In a batch processing system, validation routines may be run against the input data before it is processed.
Alternately, validation can occur as each transaction is processed with transactions that contain errors being recorded
on a file for correction at a later time.  On-line systems can provide the data entry personnel with immediate validation
information so detected errors can be corrected immediately.  In either system, checks that must also use information
from the data base may not be practical until just before processing.

Basic techniques for editing and validating data during data entry are listed below.  More thorough discussions of
techniques can be found in [MARTJ 73], [MAIRW 76], [JANCE 74], and [IIASA 77].

* Fields can be checked for:

− legitimate characters (format checks),

− proper sequences with respect to corresponding fields in preceding data records,

− reasonableness,

− consistency with other fields in the record,

− values within specified ranges or limits,

− valid items or codes,

− the validity of a self-checking number contained in an extra digit(s) appended to the field, and

− cryptographic check digits (i.e., data authentication information appended to a field which is a
cryptographic function of all the data in the field).

* Records or transactions can be checked for:
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− completeness,

− consistency of fields in the record with items in previous transactions or with other  items  in  the  data
base, and

− valid sequences of transactions.

* A group of records or transactions can be checked by maintaining:

− control totals (e.g., batch, hash, amount, document, running),

− record/transaction counts,

− batch number checks, and

− item/transaction balances.

3.1.3  Validation During Processing. Further checking of input data during processing and validation of data that is
generated by the application system are essential for assuring data integrity.  Many of these techniques are also used by
auditors to audit data integrity.  All of the methods described previously for validation of input data can be applied
during processing.  In addition, the following methods can also be used.  More detailed discussions of these can be
found in [MARTJ 73], [MAIRW 76], [JANCE 74], and [IIASA 77] referenced above.

* Integrated Test Facility (ITF).  The ITF allows the performance of the application system to be monitored by
incorporating dummy master records into the data base.  Once these records are in place, test transactions which
are included with live data can be processed against the dummy records during the normal processing cycle.
Processing results of the test transactions can then be compared to predetermined results.

* System Control Audit Review Files (SCARF).  Specifically designed tests-placed within the application's
code-are performed on the processed data during normal processing.  Some criteria are selected to extract desired
records (e.g., processing exceptions, predetermined samples) and to write them onto a file which can be reviewed
at a later time.

* Tracing provides the ability to follow (trace) specifically marked or tagged transactions as they are processed
by the application system.  It requires additional application codes and an extra field in the transaction for the tag.
During processing, a record or trail is generated for the marked transaction which can be analyzed to determine if
the processing was correct.

* Sampling techniques where portions of the data are inspected to determine their validity.

* Run number controls which account for each run of an application system against a data base.  The run
numbers kept in the data base and in the application program must agree.

* Reconciliation of control files.  Important elements of the data base are identified and a file of transactions is
maintained with a running total.  Periodically, the old balance (taken from the last reconciliation) is added to the
running total and must equal the new balance (taken from the data base).

* Off-line file scanning of direct access files during periods of their inactivity (e.g., at the end of the day) can
be used to balance files.

* Rounding error controls to prevent fractions of cents from being stolen.

3.1.4  Data Element Dictionary/Directory. A data element dictionary/directory (DED/D) is a software tool associated
with data base management systems which can be used to validate data elements in a data base. (In addition to its data
validation function, it can also contain security authorization specifications to control access to data elements, and it
can aid the computer auditing function.)

The DED/D can contain validation and redundancy-checking criteria in the form of formatted descriptive
information defining both legal formats for data elements and expected relationships between data elements in the data
base.  More detailed descriptions of DED/D can be found in [LEONB 77], [ICST 77], and [FIPSP 80A].



FIPS PUB 73

12

3.1.5  Management Considerations. Data validation can be costly, and it may not catch the most subtle errors.
Nevertheless, data validation is basic to good system design; it is not just a security control.  Consequently, data
validation costs should be included in the cost-benefit studies of the total system.

3.2 User Identity Verification

PROBLEMS ADDRESSED:

Identity verification is necessary if access to the system's data and resources is to be controlled.

Users cannot be held accountable for their actions unless they are positively identified.

User identity verification usually involves a two-step process:

* Identification which occurs when the user provides an identifier-the name by which the user is known to the
system.  The user's identifier is unique, is unlikely to change, and need not be kept secret.  It is used during
processing for authorization controls, for variance detection, and for other purposes such as accounting and
billing.
* Verification which occurs when the individual passes some further test which "proves" that the user is
actually the person associated with the identifier.  This is also called user authentication.

3.2.1  Requirements for Identity Verification. Requirements for identity verification depend on the nature of the
interface to the application system.  For batch applications the requirement may be simply for visual identification and
manual logging when the job is submitted.  For applications with on-line users, it is usually necessary to require
automated identity verification.  Highly privileged actions such as modification of the software and changes to
authorization tables usually should be allowed only from a controlled area where redundant visual and automated
identity verification can be required.

Users should be uniquely identified so that they can be held responsible for their subsequent activities-it is usually
not enough just to verify that the user is one of the authorized users.  The only cases where it may not be necessary to
have distinct verification test for each individual occur when:

* All approved users of a given interface are allowed to perform any of a (possibly restricted) set of actions
(i.e., no authorization controls from sec. 3.3 are needed).

* There is no need to keep records of who performed what actions (i.e., no journalling and variance detection
controls from secs. 3.4 and 3.5 are needed).

The second condition is seldom fulfilled. since it implies that any authorized user can misuse the system
anonomously and with very little risk of detection or that recovery from system failure does not require knowledge of
which users performed what prior actions.  Nevertheless, in situations where employees have to share a terminal to
make brief queries, repeated identity verification could be burdensome.  If there are physical and visual controls to
ensure that unauthorized users cannot get to one of the terminals and if a careful analysis shows that journalling and
variance detection on the queries is not cost effective, then unique identification of each user may not be necessary.

3.2.2  Basic Techniques. There are three basic techniques by which an individual can "prove" identity.  The
individual can present for verification:

* Information KNOWN
− password
− numerical combinations
− other information known only to user

* Objects POSSESSED
− magnetically encoded card
− key for a lock

* PHYSIOLOGICAL, BEHAVORIAL, or MORPHOLOGICAL attributes
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− signature
− fingerprints
− voiceprints
− appearance and facial characteristics

Of all three basic techniques, passwords (something KNOWN) are the most commonly used automated method of
verifying a user's identity.  If password generation and password distribution are effectively administered and if
passwords are adequately protected by users and by the system, then passwords can be used to verify identity with a
degree of reliability that is adequate for many applications.  A more thorough discussion of password techniques is
contained in [WOODH 77] and [HOFFL 77].

Of the three techniques, the last two automated approaches are usually more expensive than passwords but may
be somewhat more reliable.  When necessary, they can be used in combination with passwords to obtain a degree of
reliability commensurate with the risks of most applications.  A detailed description and guide for evaluating
automated identity verification techniques can be found in [FIPSP 77B], [HOFFL 77], and [CARRJ 77].

3.2.3  Management Considerations. None of the verification techniques mentioned above are completely reliable
since:

* passwords can be lost, stolen, or revealed,
* cards and keys can be lost, stolen, or duplicated, and
* devices used to recognize physiological attributes will accept a small percentage of impostors and reject a
small percentage of authorized users.
Although strictly enforced administrative controls and user cooperation can greatly enhance the reliability of

verification techniques, high reliability can be costly and entail an inconvenience for users.  Consequently, identity
verification requirements should be tailored to the actual needs of each system interface.

3.3 Authorization

PROBLEMS ADDRESSED:

If several people are to use an application that maintains diverse information, then data confidentiality and data
integrity will not be preserved unless each user is allowed access to only that information which is needed.

Once a user's identity has been verified, the application may still need to check each request for service to
determine whether it is a legitimate request by that user.  Some users may be authorized to perform some functions but
not others and to have access to some data but not to other data [SALTJ 75], [DENND 79B], [REEDS 74], [BERGJ
72], [CARRJ 77].

An elementary level of authorization can be enforced if the application has different interfaces for different
purposes.  For example, if there are different interfaces for entering transactions, for generating reports, for updating
data, and for modifying programs, then each user can easily be authorized to use some but not all of these interfaces.

More complex authorization systems will usually be needed in order to satisfy each user's actual needs without
allowing unneeded access to the application's data, programs, or other resources.  In general, the principle of "least
privilege" should govern.  The less a person using the system is allowed to do (consistent with the work the user is
required to do), the safer will be the application's other users, and the individual's own data and resources.

3.3.1  Authorization Schemes. Authorization schemes will have to be tailored to the needs of the organization being
served by the application.  There are a wide variety of possible authorization schemes described in the literature on
computer security [MARTJ 73], [HOFFL 77], [SALTJ 75], [FABBR 74], [FERNE 75A], [FERNE 75B], [GRAHG
72], [HOFFL 73], [CHAMD 751, [STONM 74], [REEDS 74], and [LINDT 76C].  In general, an authorization scheme
is the means whereby management can control:

* WHO will have
* what MODES OF ACCESS to
* which OBJECTS and resources.

WHO may include not only the human users of the application but also terminals and modules within the
application.  In many cases access to some sensitive objects should only be allowed from certain terminals.  It is also
possible for an authorization system to control the interactions between modules internal to the application software.
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This can greatly enhance the integrity, reliability, and maintainability of the application software [LINDT 76C];
however, this use of authorization is not yet widespread.

The different MODES OF ACCESS typically include read, write, and execute access to data and programs.  The
allowable modes of access can be usefully extended to provide independent control over access to each function
supported by the application or by its internal modules.

The OBJECTS which are candidates for authorization control include:

* Data objects (files, records, libraries, segments, etc.),
* Executable objects (commands, programs, etc.),
* Devices (terminals, printers, etc.),
* Storage media (tape reels, disk packs, etc.),
* Transactions,
* Control data within the application, and
* Named groups of any of the above elements.

The ability to create named groups of system elements is an important way to simplify the administration of an
authorization scheme.

In some cases, the authorization decision may depend not only on WHO is requesting what MODE OF ACCESS
to which OBJECT, but also on other easily testable conditions.  The time of the day, the day of the week, previously
detected security variances, or other concurrent activity might be used to affect the authorization decision.  In some
cases, not only the name of the object but also a current value stored in the object may be used to make the
authorization decision.  This is called data-dependent access control.  Clearly, the more factors that are used in arriving
at an authorization decision, the more complex will be the required mechanism.

An authorization scheme consists of two parts-a set of authorization data or "rules" and a mechanism that uses the
authorization data to decide whether a given access request should be allowed or denied.  The authorization data allows
the authorization system to accommodate to change whereas the authorization mechanism is built in and is usually very
difficult to change.  A careful study may be needed to select an authorization scheme which can accommodate all likely
requirements over the lifetime of the system and yet is not so complex that it is unreliable and hard to manage.

The authorization mechanism generally should be invoked when one named element refers to another (e.g., a user
request for service, a transaction input, a call for execution, an application system call on the operating system).  The
mechanism should be invoked at the point where the controlling process resolves symbolic references.

3.3.2  Delegation of Authority. An authorization system should distinguish the right to interact with an object from the
right to authorize others to interact with it.  In general, the three authority levels:

* ability to interact,
* ability to authorize interactions (delegation), and
* ability to appoint those who may authorize interactions,

should be separately controlled.  None should, except at management option, imply either of the others.  This is
analogous to the distinctly different authorities involved in entering a bank vault, guarding the vault (deciding who may
enter), and appointing the guards.

Policies for delegating authority should be given special attention when designing an automated authorization
system.  Delegation policies that appear to be simple can have surprising secondary effects in an automated system.
For example, consider an individual with authority to access an object and to delegate access rights to others.  If the
user is about to have access authorities rescinded, the consequences must be well understood.  One consequence
(depending upon design) might be that all users whose authority originates from that individual will lose their authority
when the primary user's authority is removed.  This may be acceptable in some cases, and it may be catastrophic in
others.  On the other hand, if the authorities originating from the primary user's authority are undisturbed and
untraceable, this too can be catastrophic.  The authorization mechanism should enable management to discern the
ultimate effects of such removals or modifications of authority.  This requires that the authorization data, including
back-chained or derivative authorities and all grouping relationships, be displayable.

The concept of data "ownership" is often used in security applications.  The "creator" or "custodian" of a data file
is usually considered to be the "owner." Other people who use the data are given the right to read it or to update it
under controlled circumstances.  Access may be granted temporarily or permanently (i.e., a copy may be made and the
recipient becomes the "owner" of the copy).  Security provisions must take into account the desirability of
implementing the concept of "ownership."
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3.3.3  Protecting the Authorization Data. The authorization data must accurately reflect management's intentions
with respect to authorized activities.  The authorization data is the basis for controlling system activity and has great
potential for disruption.

It should be simple for management to grant, modify, or rescind an authorization; and management should be able
to display all the current authorizations.  If these actions are complex or unwieldy, errors will be more likely,
disruptions will be more frequent, and use of the authorization mechanism will be less likely.  In the past, simple and
flexible delegation and display capabilities have been perceived to enhance the manageability of the system quite apart
from any security enhancement (if good management and security are indeed separable).  Where they have not been
offered, management has been reluctant to use the authorization mechanism.

The authorization mechanism, to the extent feasible, should be self-protective.  Erroneous, anomalous, or
inconsistent authorization data entries should be detected and reported as early as possible-hopefully, at the time of
entry and at least at the time they are first used in normal authorization checking.  Clearly, the authorization data must
be carefully protected against any unauthorized modification.

3.3.4  Authorization Schemes for Confidential Data. Authorization is useful to protect data integrity as well as
data confidentiality; however, when the primary concern is for data confidentiality, a relatively simple authorization
scheme is possible [DENND 75], [DENND 76].

Access to confidential data can be controlled by tagging sensitive objects with confidentiality labels.  These tags
or confidentiality labels should be made up so that the same restrictions will be applied to all data with the same labels.
A special case of the concept of confidentiality labels is used to protect national security information.  The
"Confidential," "Secret," and "Top Secret" classification levels as well as other special categories can be thought of as
one form of confidentiality labeling.  For other types of information, different labels can be used; for example, in a
personnel system, the set of labels might include "medical," "psychiatric," "personnel evaluations," "disciplinary
actions," and "payroll." Many different labels may be used and several labels may be associated with any one object.

The term "confidentiality label" is used to avoid confusing the general concept with more specific versions of the
concept.  The general concept is recommended, and it can be tailored to meet a variety of local needs.

Some labels will identify data that is very sensitive, and others will identify data that is less sensitive; for
example, top secret data is more sensitive than secret data, and psychiatric data may be considered more sensitive than
medical data.  On the other hand, the labels need not form a strict hierarchy of sensitivity levels.  The authorization
scheme need not require a decision about whether medical data is more or less sensitive than personnel evaluations.
The decision about who is allowed access to each type of information can be made without determining its relative
sensitivities.

Users are authorized access to information by associating a set of labels with each user-thus establishing access
privileges for the user.  The simple access control rule is that users can access an object only if their set of labels
includes all the labels that are associated with the information.  In some cases it may be desirable to have access
privilege labels for terminals and for internal program modules in order to control the information that they can access.

To implement hierarchic relationships between labels, a user who has a certain label should also have any labels
that are strictly less sensitive; for example, if a user permitted to access psychiatric information is also permitted to
access medical information, then the user's set of labels should include both "psychiatric" and "medical."

The primary advantage of confidentiality labels is that they provide an authorization scheme which is simple
enough so that errors in enforcing the scheme are less likely.  Delegation is especially simple since it is only necessary
to establish confidentiality labels for each user.  Furthermore, the same scheme can be applied throughout all associated
manual activities.  The primary weakness of confidentiality labels is that they are not readily usable to protect data
integrity.

The number of distinct confidentiality labels that can be used will determine the flexibility of the authorization
system.  If there are only a few, centrally administered labels, then administration of the authorization system will be
easy, but it will be limited in its flexibility to enforce the principle of least privilege.  If there are a large number of
labels, and especially if they can be created dynamically, then more flexible control over confidential information is
possible.

Confidentiality labels should be carried along with information whenever it is moved from one location to
another. (Within a software implementation, confidentiality labels need not be stored with the information as long as
they can be determined reliably when needed.) The confidentiality labels should appear on all output, and the
authorization scheme should be applied in all the manual information handling activities associated with the
application.
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3.3.5  Management Considerations. Since damage to the authorization mechanism or data can disable operations,
some bypass mechanism or procedure may need to be available so that management has the option to continue
operations in an unprotected mode.  The designers of authorization mechanisms should not assume that management
uniformly believes that system shutdown is preferable to interrupted or degraded protection.  Any bypass mechanism is
sensitive and dangerous and must be shown to be safe from unauthorized use.

It can be a traumatic experience to transform from a system with little or no authorization control to one that is
heavily controlled.  In some cases, management simply does not possess the required specific information to create the
complete set of authorization data.  Thus, a gradual transition is indicated.  One approach is to include a capability such
that initially, while all checking based on the growing body of authorization data is done normally, authorization
"failures" do not cause denial of the requested interaction.  Instead, a record of the failure is kept for subsequent
analysis.  In this way, management can accumulate the appropriate authorization data without disrupting normal
operations.  As confidence in the authorization data increases over time, the normal authorization failure processing can
be used increasingly until the system has been fully converted.

3.4 Journalling

PROBLEMS ADDRESSED:

It is difficult to detect security violations unless there is a record of system events which can be analyzed.

Users are less likely to engage in malicious activities and to make errors in their day-to-day interaction with the
system if they know that their activities may be recorded.

Recovery from system failures is aided by journalling appropriate events.

The recording of selected events as they occur within a system, referred to as journalling or logging, provides a
basis for identifying and tracing events involved in the processing of data and in the use of computer resources [BJORL
75], [CARRJ 77], [KRAUL 79], [IIASA 77], [MARTJ 73], [HOFFL 77].  Journals of external events in the operational
environment can be maintained manually while journals used to record activities internal to the application system
must be automated.

One or more automated journals may be employed; the system designers should structure the journals to permit
flexibility while minimizing overhead.

Journalling can produce a large volume of data that must be analyzed if it is to be meaningful.  The analysis is
part of variance detection which can be performed either dynamically as the journal is created or after the fact through
a post-processing analysis of the journal.  In addition, the journals gather information that can be used to optimize the
use of system resources, to reconstruct data bases after system failures, and to audit the system by following the history
of a transaction through the system.

3.4.1  Contents of the Journal. From a security standpoint, the ideal journal would include a 100 percent recording of
all events relating to data, software, and system resources.  From a practical standpoint, such a journal may, in some
systems, be out of the question as it could not meet the cost-benefit test3.  The question of what should be included can
only be answered in a general way; the journal must be designed for each individual system and be dependent upon the
security objectives for the system and the environment in which the system operates.

In determining what should be journalled, it is important that security requirements be carefully considered and
reduced to formal statements.  The requirements should be stated in positive terms and include such items as:

* definitions of what kind of data is to be protected and how the system will recognize such data,

* the degree of accuracy that is necessary for various types of data, and

* the definition of  who  is  authorized  to  access  protected  data  and  how  the  system  would  recognize  an
authorized user.

The contents of the journal should be the subject of a comprehensive study that uses the system's mandatory security
specifications as a departure point.  The results should define:

                                                  
3 The most common argument against journalling all events is that it is too expensive.  In some cases it may be worthwhile to journal all events and
retain the journal for only a few days, provided the journal is promptly processed each day after acquisition.
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* the type of information to be recorded,
* the parameters to be applied,
* the analysis to be made,
* the reports to be produced, and
* the retention period of the recorded data.

Selecting the specific data to be captured and journalled is a managerial decision that should be made only after
detailed analysis by both users and data processing personnel.  Journalling and the associated processing of the journals
can impose a performance burden.  Consequently, cost must be considered in relationship to the benefits to be gained.
The type of information typically included in journals is illustrated by the following:

* nature of the event
− input and output of data (e.g., opening and closing of file),
− updating, changing, or modifying data sets of files, and
− system usage or attempted usage (e.g., logons and logoffs).

* identification of all involved elements
− people,
− devices,
− software, and
− data (indexes, directories, files, etc.).

* information about the event
− time and date,
− success or failure,
− authorization status of involved elements,
− transaction numbers,
− system response,
− addresses of items updated,
− contents of items/records before and after creation, update, and deletion,
− programs used,
− results of compatibility and parameter checks, and
− procedural violations.

For automated journals, due consideration must be given to the problems of archiving extensive data for what
may be prolonged periods, even years.  The ability to easily off-load voluminous journal data, to condense it as much
as possible, and to on-load easily the same data for inspection much later in time, perhaps on a different machine
complex, is important.  These capabilities may also be required for other reasons-especially for internal and external
auditing activities.

3.4.2 The Journal as Legal Evidence. The journal can be a valuable indicator for alerting management when an
employee is involved in fraud, embezzlement or other misuse of the system.  In addition, it may be necessary to use
information contained in the automated journals as evidence of the employee's illegal activities.  Under the Federal
Rules of Evidence, computer output (e.g., automated journals) is admissible in both civil and criminal proceedings if it
is determined to be:

* a regularly kept, timely record
* of regularly conducted business activity
* whose preparation has been deemed "trustworthy" by the court.

The first two conditions are relatively easy to establish for a well-run enterprise; the third may present a problem
if it cannot be shown that the records and the recordkeeping process itself are reasonably safe from accidental and
unauthorized intentional interference.  This showing is not only essential to the court's determination of admissibility, it
is also an important defense against attacks upon the credibility of the output.
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3.4.3 Management Considerations. In journalling, the level of detail monitored, the amount and types of data
saved, the length of time the data must be saved, and the complexity of processing the data not only affect the security
effectiveness of this tool, but also influence the cost and hardware requirements of the system.  Care must be exercised
when implementing this tool to prevent the system from being bogged down with journalling to the exclusion of useful
work.

The journalling activity is vulnerable to accidental or deliberate events that can endanger the journalling process
or the journal contents.  Examples include:

* The journal contents may be partially or totally lost in a system crash caused accidentally (e.g., by a power
failure to a volatile storage device) or deliberately (e.g., by someone trying to avoid detection).
* The journalling can be disabled or the journal destroyed by a system penetrator.
It is not always practical or possible to protect completely the journalling activity against such events.  While it

should be protected to the extent possible, management should be aware that the journal may not be available when it is
most needed.

The journal produced by an application system will not log activities not performed by the application system;
e.g., a file opened outside of the application system.

3.5 Variance Detection

PROBLEMS ADDRESSED:

Fraud, embezzlement and other misuse of the system and its data by authorized users of the system.

Undesirable modification or disclosure of information that remains hidden from management review.

The objective of variance detection is to allow management to detect and react to departures from established
rules and procedures that it has determined may constitute hazards.  Variance detection acts as a strong deterrent to
authorized users abusing their privileges since they perceive the risk of detection to be unacceptably high [MARTJ 73],
[CARRJ 77].

Variance detection is useful whenever it is not practical to prevent the undesirable activity by means of an
authorization mechanism.  In many cases there are tradeoffs between preventing and detecting an undesirable activity
with the choice depending on the potential harm that could occur.  In other cases there may be no way to determine in
advance whether an action should be prevented.

Some suspicious activity can only be identified when the journal discloses a highly unusual pattern of activity.  In
such situations, the analysis may involve determining what information an individual has accessed over some period of
time and ascertaining what the individual could be doing with that information.  The complexity of the analysis may
preclude prevention even though the activities can later be identified as suspicious.  An example would be an employee
who obtains a complete listing of sensitive information by piecing together small portions that have been gathered in
repeated requests.  Assuming that the employee is not authorized to obtain a complete listing, only an analysis of the
journal files is likely to uncover the variance.

The mechanisms required to support variance detection are related to mechanisms needed for several other
purposes.  Recovery, accounting, load-balancing, tuning, and the identification of recurring user difficulties all require
some of the same capabilities.  The design may be such that one multipurpose mechanism can accomplish all or most
of these ends.

3.5.1 Management Inspection of Event Journals.To facilitate management inspection of manual journals, it is
important that they be:

* suitably formatted,
* legible,
* complete,
* timely, and
* correct.

For management inspection of automated journals, a post-processing capability should exist that offers both interactive
query and report generation functions.  This capability, often referred to as static monitoring, requires analytical and
retrieval programs that perform functions such as listing:
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* all or selected activity initiated from a given terminal or by a given employee,
* transactions of a predetermined type,
* all events falling outside predetermined parameters,
* attempted accesses to restricted files,
* excess resource usage,
* changes made to access privileges of users,
* program detectable software malfunctions,
* abnormal terminations of job runs, and
* requests for unauthorized use or modification of a program, file, or sensitive system data.

Post-processing analysis can perform complex correlations using the journalled information and the logs of
system activity produced by the operating system.  Patterns often can be determined that direct attention to a particular
terminals, user, time of day, etc., and thus assist in ferreting out an effor-prone or malicious user.

Reports and other output must be as concise as possible, and specifically pinpoint any unusual actions that occur.
Long reports containing large amounts of data may actually decrease detection of security violations as they are tedious
and difficult to use.  While concise information is desirable, details should be available through use of the journals and
retrieval programs.

Management must be able to specify what reports are to be generated periodically.  In addition, special report
generation functions or an interactive query capability to extract information from the journals are useful.  These
retrieval programs should support complex Boolean and arithmetic operations upon data elements, numeric values, and
statistical data derived from the journals.  If management does not have this processing flexibility and power, the
likelihood is that the journal will not be inspected regularly; users will realize this; and the deterrent value will be lost.

3.5.2  External Variance Detection Methods. In addition to inspection of the journals, several other approaches can
be used to detect variances that occur in the manual procedures and practices associated with the application system:

* observations (visual, electronic, photographic),
* employee interviews and questionnaires,
* undercover operations,
* surprise visits, and
* scrutiny of employee reports for anomalies.

3.5.3  Response to Variances. There must be clearly defined responsibilities to investigate security variances once
they have been detected.  Since responsibility for security may be divided among many organizations, there is danger
that no one will be accountable for security variances when the source of a problem has not been clearly identified.  In
order to avoid involving senior management unnecessarily, the responsibility for investigating such security variances
should be assigned to appropriate organizations.  It is reasonable to have the responsibility for investigating security
variances depend on the general type of the failure.  For example, if a data base becomes garbled with errors,
preliminary responsibility may be assigned to the user organization that generated the data unless it is shown that the
data integrity was destroyed by effors in programs, operations, data entry, or other functions that are not the
responsibility of the user organization.  Data confidentiality variances may be assigned to the person who has
responsibility for the system of records under the Privacy Act, and ADP availability failures to the ADP operations
organization.  Responsibility for identifying holes in the overall assignment of responsibilities will naturally fall to the
organizations that assume the responsibility for investigating variances.

While direct responsibility for each aspect of security should be assigned to only one person or organization,
others should have a clearly defined responsibility to report security variances that they can detect.  For example, while
source data accuracy is not the primary responsibility of data base administrators, they should be required to report the
existence of inaccurate or incomplete records.  Similarly, while computer operators may not be responsible for
preventing unauthorized access to the computer room, they should be required to report suspicious activity.

3.5.4 Dynamic Monitoring. Some variances can and should be detected in real time so the response can be
immediate.  Dynamic monitoring is usually integrated with the journalling activity so that suspicious activity is
reported immediately.

A fair amount of logic may have to be built into the application system software if suspicious events are to be
distinguished from normal processing activities.  In general, certain events can be designated as "trigger-events" which
cause the monitoring routines to be invoked.  The monitoring routines can then examine other factors to determine if
the event should be reported or responded to.  Flexibility should be provided to permit monitoring of selected events
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such as all transactions meeting certain criteria, activity initiated from any given terminal, and all or selected
transactions initiated by any given user.  In addition, monitoring routines can be activated periodically to try to identify
unusual values or patterns of activity.

It should be easy for management to establish and change the "trigger-events." To reduce the overhead that is
caused by excessive monitoring, only a limited number of trigger events may be used at any one time.  The deterrence
effect is still substantial as long as management varies the set of trigger events in some random way.

A number of optional reactions to suspected variances can be used; for example:

* real-time alerts to management by the application system software such as a warning bell and a message to a
designated console,

* suspension or termination of an offending process with a message to the user that will not arouse concern
while the variance is investigated,

* automatic invocation of special monitoring such as complete journalling of all activities and interactive traffic
of the offending process, and

* real-time display at a designated console of the full interactive traffic of an offending terminal.

There is some danger that the monitoring software could be used to violate security, and it must be protected from
all unauthorized use.  Controls must be established to ensure that the monitoring activity is conducted only from secure
terminals under the direct supervision of the organizational elements responsible for the monitoring.

3.5.5  Management Considerations. Variance detection is not foolproof, and management should not rely on it as the
only safeguard.  Nevertheless, variance detection can be very useful to encourage a general awareness of security and
to discourage dishonest behavior.

Monitoring of system use can also be employed to identify changes needed to improve efficiency of the work
flow in and around the system.  This utilization can result indirectly in improved security of operations.  If a system
user is advised that management has detected a pattern of frequent effors in the user's conduct of certain activities and
is offering help, there will be increased awareness on the part of the user that such activities are being reviewed.  In this
way, monitoring can be productively employed without the necessity of justifying it on the basis of detecting or
inhibiting dishonesty on the part of the users.

Clearly, management must be very careful about the way monitoring activities are perceived by the employees.  It
must be perceived as necessary and even as helpful.  If an event is investigated as suspicious and no evidence of
wrongdoing is discovered, then the employees must be convinced that there will be absolutely no lasting effects.  No-
fault variances caused by employees should not be counted nor kept in records associated with them.  In most cases, the
employees should not even feel a need to avoid repeating the acts that were identified as a possible variance.

If there is even one instance where monitoring activities are perceived by the employees as being used unjustly to
harm an employee, the effect on employee morale can be devastating.  Unfair usage of monitoring information can
even lead to vindictive acts which destroy everything that was being protected by the entire security program.

3.6 Encryption

PROBLEMS ADDRESSED:

Disclosure and undetected modification of information during its transmission through a potentially hostile
environment, including intermediate nodes in a network.

Disclosure of information when tapes or other storage media are lost or stolen.

Encryption [FEISH 73], [KAHND 67], [POPEG 79A], [SHANC 49], [CARRJ 77], [HOFFL 77] transforms data
into an unintelligible form, typically by the use of an algorithm and a key.  Encrypted data can be decrypted (return to
its original form) only by using a companion algorithm and either the same key in the case of a "secret" key system or a
companion key in the case of a "public" key system [RIVER 78].  A standard "secret" key algorithm for encrypting and
decrypting computer data is specified in [FIPSP 77A].  The key is a very large "secret" number that effectively
prevents decryption of the data by anyone who does not know the specific key.

Encryption is useful to protect computer data while it is being transferred between people or devices authorized to
have the data and while it is inactive in storage.  Encryption protects data from unauthorized disclosure because anyone
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who does not know the correct key is unable to derive intelligible meaning from the encrypted data.  Encryption allows
even slight modification of encrypted data to be easily detected because any modification of the encrypted data will
result in gross and unpredictable distortions of the data in its decrypted form.  Encryption does not protect the data
from destruction-in fact, it increases the chances that the data may be destroyed or unavailable because if the key is
lost, the data encrypted with that key is lost forever!

The applications that are most likely to need encryption are those that transmit highly confidential data across
communication lines.  Applications that transmit financial transactions or other critical data may also need encryption
if someone is likely to derive enough benefit from modifying the data during transmission to compensate for the risk
and the cost of the effort.  Encryption of data in storage is an alternative that may be more cost effective than other
storage security controls-especially when appropriate support for encryption is readily available.

3.6.1  Encrypting Computer Communications. Encryption is the primary control to protect data from the hazards of
communication systems.  It can be used to forestall the consequences of electronic eavesdropping, intentional
modification, misrouting, introduction of spurious messages, spoofing (falsifying the identity of the transmitter),
playback of old messages, and for the authentication of senders and receivers and the protection of acknowledgements
that the message was received or not received correctly.  The primary problems when using encryption for this purpose
are to ensure that the encryption does not interfere with communication protocols and to guarantee that the correct key
is available to all authorized recipients of a message-and to no one else.  For details, see [COLEG 78], [BRAND 78].

3.6.2  Encrypting Off-Line Storage. Encryption of data on tapes and other off-line storage media is an effective way
to protect the confidentiality of the data without having to maintain rigorous physical control over the data storage
media.  Again, the primary problem is to ensure that the correct key will be available to decrypt the data when it is
needed-and that it will not be known to anyone else.  In general, the keys should not be stored on the computer because
then they would be subjected to all the hazards applicable to computer data.

Encryption protects the data if the physical storage media are lost or stolen; however, it may not protect the data
from unauthorized use through the computer system.  Since the data must be decrypted whenever it is to be used, the
encryption will not protect the data from anyone who can masquerade as a legitimate user of the data.

3.6.3  Encrypting On-Line Files.Since encrypted data cannot be processed until it has been decrypted, encryption of
frequently used data will not be very efficient unless the encryption is supported by special features in hardware and in
the operating system.

For encryption of on-line data to be useful, the keys may have to be stored on-line.  Even if the keys themselves
are always encrypted except when they are within the encryption device, it is still necessary to verify the identity of
anyone requesting a key, to determine whether the key has been authorized, to journal the usage of a key, and to detect
any variance in the usage of a key.  In short, the primary controls discussed previously will still be necessary to protect
the keys; however, encryption can reduce the scope of the protection problem because it is no longer necessary to
ensure rigorous control over those areas of computer storage that contain only encrypted data.

3.6.4  Management Considerations.  The cost of hardware that implements the encryption algorithm can be expected
to decrease rapidly throughout the early 1980's.  As more experience is gained in the use of encryption, the costs of
planning for its use and of managing the distribution of keys will also decrease.

Before hardware and software implementations of the standard data encryption algorithm can be procured for
Federal use, manufacturers must obtain a certificate of validation for their product from NBS.

If encryption is to be used at all, it should be used properly.  A poorly planned use of encryption, or a poor system
for managing keys will give a false sense of security.

4. SELECTION OF CONTROLS THROUGHOUT THE SYSTEM LIFE CYCLE

The selection of appropriate security controls depends not only on the sensitivity of the data and the degree of
harm that could result from improper actions, but also on the vulnerabilities that arise in the environment where the
application operates.  Thus far, no standard methodology for selecting controls has been proposed for implementing
applications in an ADP environment.  However, a good discussion of the required considerations for selecting
appropriate security measures is found in [ORCEM 78].

While the selection of controls is still an art based on experience and good judgment, it is possible to make this
selection if it is not overly constrained by poor planning for security.  When compared with the level of security that is
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often found in computer applications, dramatic improvement can be achieved as long as security controls are selected
by experienced personnel who:

1. are familiar with the vulnerabilities  of  the  entire  application  system-including  both  automated  and
manual procedures,

2. can take a system-wide view of the application and have the freedom to locate controls at the most
appropriate points, and

3.  understand common application system control objectives and techniques [IIASA 77], [MAIRW 76],
[BIGGC 80], [AACO 78], [AICPA 77], [EDPAF 77], [SGCCA 75B].

These guidelines will be of direct help in achieving conditions (2) and (3).  Each agency has to rely on its own
personnel to fulfill the first condition and to select the appropriate controls.  The remainder of this document describes
how condition (2) can be achieved as long as security is considered at each step of the application system's life cycle.
While it is common practice for system developers to think of system functionality first and to delay security concerns
until later, many opportunities to include effective controls are lost if security is not considered early.

Basic guidance to fulfill the third condition is contained in section 3. Additional guidance about enforcing
security controls during development and operations is contained in sections 6 and 7.

4.1 The Application System Life Cycle

The life cycle of a computer application consists of three identifiable phases-initiation, development, and
operation [FIPSP 79A], [FIPSP 76A], [FIFED 77].  After some period of operation, the system will have to undergo an
expansion or revision, and the life cycle is then repeated.  It is desirable for the life cycle of the application to be
independent of the life cycles of the computer hardware, of the operating system, of the computer facility, and of
associated applications.

INITIATION PHASE.  The initiation phase establishes the objectives and general requirements of the computer
application.  System planners consider alternative approaches for a target system.  Based upon feasibility studies and
cost-benefit analyses of the potential solutions, a decision to proceed with the development of a specific system is
reached.  If security is not taken into account during this initial planning, feasibility studies and cost-benefit analyses
may be seriously distorted.

DEVELOPMENT PHASE.  The development phase consists of four stages-definition, design, programming,
and testing.  While these are logically independent stages, in practice they may overlap substantially.  Most decisions
about which security controls to include must be made in an orderly way during these stages.  In addition, there are
software development controls that must be applied during these stages to ensure that the desired level of security is
achieved.

OPERATIONAL PHASE.  The operational phase begins once the system has been accepted by its intended
users, and they become dependent on it to fulfill their organization's mission and responsibilities.  Operational security
controls must now be enforced during day-to-day operations.

4.2 Improving Security for Existing Applications

With some minor modifications, the life cycle approach to security applies to computer applications that already exist.
When the system is already in its operational phase, the following three steps are recommended:

RISK ANALYSIS.  It is best to begin with a thorough understanding of the risks and exposures in the present
system.  This should be accomplished by a risk analysis following the methodology of [FIPSP 79B].  The risk analysis
will indicate how urgent and how extensive the revision must be.

IMPROVE OPERATIONAL CONTROLS.  The risk analysis will usually uncover some vulnerabilities that
can be corrected by improving the operational controls described in section 7. The improved operational controls will
be necessary even after the system is revised to improve security, and they will usually reduce the risk significantly
while more thorough improvements are planned and implemented.

REVISE THE APPLICATION SYSTEM FOLLOWING THE LIFE CYCLE APPROACH.  Revisions of
the computer application should pass through the phases of initiation, development, and operation of the revised
system.  The guidelines in each of the following sections should be used for the revision-in an abbreviated and less
formal way when the revision is minor.

When possible, it is best to integrate security improvements with revisions that may be needed for other purposes
to minimize making repeated small modifications which are likely to make a computer application more complex and
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less reliable.  This applies both to the software and to manual procedures.  Even though it may be desirable to
implement the revision as a set of small evolutionary changes, the changes should be planned in a coherent way to
prevent the degeneration of the system.

4.3 Auditor Involvement in the System Life Cycle

The need for effective internal auditing [USGAO 72], [RCBCG 79], [USGAO 74] in Federal agencies has been
recognized by the Congress in a number of laws, particularly the Budget and Accounting Procedures Act of 1950 and
the Inspector General Act of 1978.  An internal audit is an independent appraisal activity within an organization for the
review of operations as a service to management.  It is a managerial control which functions by measuring and
evaluating the effectiveness of other controls.  The responsibility of the internal auditor includes verification and
evaluation of controls, standards, and data processing results.  One aspect of an internal audit, which is particularly
relevant to the security of a computer application, is a computer security audit activity for the purpose of evaluating
controls to ensure:

1. the accuracy and reliability of the data maintained on or generated by an ADP system;
2. the appropriate protection of the organization's information assets (including hardware, software, and data)

from all significant anticipated threats or hazards; and,
3.  the operational reliability and performance assurance of all components of an ADP system.

With the growing dependence of organizations on technically complex ADP systems, it has become increasingly
clear that in order to perform an internal audit and, in particular, a computer security audit, the auditor has had to
modify, extend, and supplement traditional audit approaches to manual systems and to broaden the scope of the audit to
include review during all life cycle phases of computer applications.  As evidence of this, GAO has recently published
three supplemental standards for auditing computer-based systems [USGAO 79] which require that:

"1. The auditor shall actively participate in reviewing the design and development of new data processing
systems or applications, and significant modifications thereto, as a normal part of the audit function.

2. The auditor shall review general controls in data processing systems to determine that (A) controls have
been designed according to management direction and legal requirements, and (B) such controls are operating
effectively to provide reliability of, and security over, the data being processed.

3. The auditor shall review application controls of installed data processing applications to assess their
reliability in processing data in a timely, accurate, and complete manner."

These standards reflect the current belief of the audit community [RUTHZ 77], [RUTHZ 78], [HASA 77],
[RCBCG 79] that adequate and effective security of computer applications can be achieved only by audit review and
evaluation throughout the development and implementation of an application.  This recommended practice ensures
that:

* adequate controls are built-in to the application;
* the capability to adequately track events during systems operation is provided to facilitate future audit
reviews; and
* accepted accounting principles are complied with for financial applications.

5. PLANNING FOR SECURITY DURING THE INITIATION PHASE

Decisions made during the initiation phase [FIPSP 79A], [BIGGC 80] will determine:

* The role of the ADP system and the degree to which the organization will rely on it to fulfill its mission.

* The possibilities for effective manual review of results from the ADP system.

* The nature and sensitivity of the data to be stored in automated form.

Security concerns must not be neglected as these decisions are being made.
In general, the relationship between the computer application and associated manual activities should be planned

so that errors in one activity can be detected by the other.  The computer application should be able to detect erroneous
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or fraudulent manual activity; and, when possible, manual activity should be planned so that critical output from the
automated system is reviewed before final action is approved.

The initiation phase for revising an existing application is different from the initiation phase for a new application.
When controls must be added to an existing system, cost constraints are different and the planners will find that they
have fewer viable options open to them.  Some controls may be reasonably simple additions to the existing system.
Other controls will require major changes in the software design or in the external environment of the application
system; and implementation of these controls will be costly unless a major revision of the system is needed in any case.

Before the planners decide to limit the scope of a revision, they must be sure that the easy controls are the controls
that are needed.  Money spent on simple enhancements might be wasted if the most serious vulnerabilities cannot be
corrected without a more thorough overhaul of the system.  The security feasibility questions of section 5.1 should all
be asked as part of the risk analysis for an existing application.  Some difficult decisions will have to be faced if the
answer to any of these questions is not a clear "yes." Negative answers to these questions usually mean that a major
revision of the computer application should be planned; however, in some cases it may be better to plan a sequence of
revisions that will culminate in a system with a coherent and effective set of controls.

For new systems, there is a serious tendency to neglect security and integrity concerns until the nature of the
system is clearly defined.  Unfortunately, this can lead to systems whose basic characteristics are inconsistent with
appropriate security objectives.  The following two sections will help to identify security problems that are inherent in
a proposed system.  These sections should be used as part of the feasibility studies and the cost-benefit analyses,
respectively.

5.1 Security Feasibility

PROBLEMS ADDRESSED:

Unrealistic plans for a computer application may result in security problems for which there is no cost-effective
solution.

System designers and implementers will not perform miracles-it cannot be taken for granted that they will be able
to build inadequate security controls.  The five questions below cover the major concerns about security feasibility.  If
satisfactory answers are not available for these questions, system development should not proceed according to the
proposed plan.

5.1.1  Source Data Accuracy. Will the data supplied to the ADP system be accurate and complete enough to
support its intended uses without harmful side effects [RCBCG 78C]?

Source data will not be perfect, and additional inaccuracies may be introduced before the data comes under the
control of the ADP system.  Even if the overall error rate is very low, serious harm can result from a few errors if
they have been deliberately introduced or if they involve critical data.

If the proposed system will use the data in the same way as an existing (manual or automated) system, then it
should be relatively easy to evaluate the potential harm from inaccurate or incomplete data.  If the proposed
system uses new data sources or uses present data for new purposes, then a more serious study is needed.

In an automated system, the lack of human review of the data leads to some increased dangers; however, the ADP
system can also contribute to improved data quality to the extent that automated data validation can be used to
detect and reject inaccurate and incomplete data.  The effectiveness of automated data validation techniques in
identifying harmful inaccuracies is very application dependent and must be evaluated for each application system.

5.1.2  User Identity Verification.Can users of the system be adequately identified and authenticated so they can be held
accountable for their actions [FIPSP 77B]?

If former systems did not require users to identify themselves, then a major change in organizational procedures
may be necessary.  Furthermore, can outsiders and other unauthorized individuals be prevented from using the
system? Rigorous control over who uses the system is especially important if the system is to allow access from
dial-in telephone lines.

5.1.3  Restricted Interfaces. Are the user interfaces to the system sufficiently restricted so that adequate security is
feasible [HOFFL 77], [CARRJ 77]?
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If there will be a large number of authorized users, then the proposed system should restrict most users to limited
forms of access to the system.  Data accuracy will be very difficult to maintain if many different people can
update a master data file.  Even query rights to a data base should be examined for consistency with privacy and
security requirements before they are planned for widespread use-especially by persons from outside the
immediate organization served by the application.  Since current operating systems do not prevent a maliciously
written program from bypassing all available security controls, high-risk applications should be planned so that a
very limited number of people will be allowed to submit programs to the computer facility that is running the
sensitive application.

5.1.4  Separation of Duties. Do the boundaries between ADP and related manual activities provide maximum
separation of duties and independent review [IBMCO 76]?

Errors are more likely to be detected and frauds deterred when two or more independent people are involved in all
important actions.  Security is easier if the department supported by the ADP system maintains controls over ADP
and related manual activities.  In most cases, data collection, initiation of transactions, authorization of
expenditures, and physical control of assets can be maintained by the user department.4

5.1.5  Facility Security. Is the proposed processing facility adequately secure [FIPSP 741, [RCBCG 76C]?

Selection of the computer facility need not be done before the design stage; however, if there are any assumptions
or constraints on the possible facilities, they should be reviewed for consistency with security.  Are physical
security measures, operational controls, personnel and administrative procedures, emergency plans, and backup
and recovery procedures at the proposed facility adequate for this application?  Are the availability requirements
of this application consistent with the performance of the proposed facility?  For high-risk applications, is it
acceptable to run the application concurrently with the other applications at the facility?

5.2 Initial Assessment of Risks

PROBLEMS ADDRESSED:

If security risks are not considered, cost-benefit analyses may favor a system plan with unnecessary exposures to
traumatic failures.

A risk analysis [FIPSP 79B], [LOSOT 79], [WONGK 77] determines an annual loss expectancy which should be taken
into account in the cost-benefit analysis.  Furthermore, a risk analysis is a useful first step toward estimating the
maximum tolerable cost of appropriate controls.

When planning revisions for an existing application, a risk analysis for the proposed revision can be obtained by
adjusting the risk analysis for the current system.  The remainder of this section applies primarily to new applications
or to applications undergoing major revisions.

A thorough risk analysis, including safeguard selection, should be performed at the beginning of the design phase
to assure that appropriate cost-effective security controls are integral to the system's design.  The initial assessment of
risk should only estimate the damage that could result from major failures that might occur in spite of controls.  With
appropriate controls, such failures should be rare; however, some possibility of failure will remain.  When possible,
plans for the computer application should be revised to minimize the potential impact of such failures.

A risk analysis involves an estimate of the impact of a security failure and an estimate of its frequency of
occurrence.  The product of these two factors gives an annual loss expectancy.  This annual loss expectancy from major
failures, derived from an initial risk analysis, should be included when considering the cost-benefit tradeoffs between
alternative systems.

5.2.1  Impact of Major Failures.For the purposes of this initial assessment, the impact of a security failure can be
described in any convenient terms-dollar value of loss, extent of inconvenience or hardship to individuals, lives lost, or

                                                  
4 The user department will need some redundant manual records if its controls are to be effective.  These redundant records can also be used for
backup and for auditing; however, paper copies should be kept only if it will be practical to use them when needed or when such retention is required
by law or regulation.
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degree of disruption to the national economy or national security.  As long as major impacts are not being overlooked
or minimized, it is possible for potential impacts to be identified quickly.

The impact of at least the following failures should be assessed for each major body of information that is to be
processed by the proposed system.

* Inaccurate Data. Data (or programs) become corrupted with errors, but the system continues to function
while producing erroneous outputs.  Estimate the potential impact of the erroneous actions that might result
assuming only that the output of the ADP system is not so obviously out of line with reality that the errors would
be noticed.  Consider both the impact of a few very serious errors and the cumulative effect of many small errors.

* Falsified Data. An individual manages to falsify information in order to gain some advantage.  The
falsifications are limited only by the fact that they are subtle enough so they are not detected manually.  Estimate
the total impact that could occur over an extended period of time.  Example: In a funds disbursing system, the
potential impact might be limited to some percentage of the funds being handled.  This limit assumes that losses
over that percentage would be noticed based on budget projections and that such losses would eventually be
corrected.

* Disclosed Data. Sensitive data in the system becomes available publicly or to certain individuals.  The
unauthorized disclosure of the data is not necessarily discovered.

* Lost Data. Data (or programs) used by the application system are destroyed or corrupted.  Backup
versions are nonexistent or not usable, and the data must be reconstructed manually.  Estimate the impact of
losing the data.  If manual reconstruction is obviously not feasible and if backup in depth is anticipated, then
estimate the impact of the inaccuracies and the temporary unavailability that would result while recovering from
an old backup copy on the assumption that all recent backup copies had been destroyed.

* Unavailable Data or Services. The computer hardware or related equipment in the computer facility is
disabled and the system is not available until it can be brought up on another facility.

5.2.2  Frequency of Major Failures. An estimate of the impact of a major security failure is not meaningful
without some estimate of how frequently it might occur.  Unfortunately, during the initial planning for a system, it is
not possible to estimate the frequency of a major failure by evaluating the effectiveness of the controls because those
controls have not yet been designed.  Nevertheless, it is possible to make a very rough estimate of the likelihood of a
major failure.  If the proposed system is generally comparable to other computer applications, then a major security
failure of the sort described above can be estimated to occur about once in a hundred years.  This simple estimate is
based on the following line of reasoning:

Available security controls (if they are managed properly) can prevent major security failures from recurring as
frequently as once every 10 years.  On the other hand, any ADP system has several vulnerabilities against which
there is little defense; most systems can be manipulated by any one of several individuals who are in a position of
trust-programmers, those responsible for security, the computer operators, and others.  There are enough instances
of major security failures in computer applications so that an expected frequency of once in a thousand years is
very optimistic.  The estimate of once in a hundred years is only intended to be accurate to within an order of
magnitude.

This estimate for the frequency of a major security failure can be used to give some perspective on the estimates
about the impact of a failure and to compare the risks of an automated system with those of a manual one.  Since the
estimates of frequency of occurrence used during the initiation phase will be the same for all automated systems, only
the estimates of the impact of a major failure will be useful to differentiate between alternative plans for automated
systems.

6. BUILDING IN SECURITY DURING THE DEVELOPMENT PHASE

Once a decision has been reached to proceed with the development of a proposed application, the development
passes through the stages of definition, design, programming, and testing [FIPSP 76A].  This section describes the
security concerns that must be dealt with at each stage.
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In addition to the specific security concerns described in this section, the security and integrity of an application
system are strongly affected by the overall quality of the development effort [FIPSP 76A], [FIFED 77], [BIGGC 80],
[MCCAJ 77A], [MCCAJ 77B], [MCCAJ 77C], [BOEHB 73B], [MILLH 77].  Effective management of the
development activities is one way to improve security while at the same time reducing costs.  If the software
development effort is poorly organized and depends mostly on debugging and testing for its quality control, then
software controls are not likely to be effective, and development costs are likely to be excessive.  The following
guidance specific to security should be used in conjunction with the more general guidance on managing software
development in [FIFED 77].

6.1 Definition of Security Requirements

PROBLEMS ADDRESSED:

Many security problems can be traced to a poorly thought out security plan or to an inadequate definition of what
the software was supposed to do.

The decisions about what security provisions are needed and to what extent they are to be enforced by software
must be made and documented before the software development can proceed.  The documentation of these security
requirements constitutes the security specification called for in OMB Circular A-71, Transmittal Memorandum number
1, paragraph 4.c(1). This security specification may be incorporated into the functional requirements document and the
data requirements document [FIPSP 76A], or it may be an independent document.

Programmers should not be expected to identify the security concerns that arise from the user's application.
Security requirements should be defined by personnel from the organizations that are to be served by the application
system as well as by computer professionals who have experience developing similar systems.  Internal auditors, who
are responsible for evaluating the adequacy of controls, should be called upon to review the security requirements.  The
proper completion of security requirements definition is more important and more difficult than is usually anticipated.

The term "requirements" can be used at many different levels.  There are very general requirements for any
government system to protect the rights of individual citizens and to manage government resources prudently.  More
detailed requirements come from laws, policy directives, and standards.  The requirements defined at the beginning of
the development phase are even more detailed and include everything that the users and other responsible parties want
to require from the software system.

These requirements should be expressed in a way that allows the software designers to choose the best way of
implementing them.  Selection of software modules, algorithms, and data structures should be left to computer
professionals who are competent to make those decisions; however, the requirements should define all details about the
intended application which are not in the primary domain of knowledge of computer professionals.  For example, in a
financial accounting system the cross-checking of records that is part of standard accounting practice should be a
requirement since it is more in the domain of knowledge of accountants than of computer professionals.  Similarly,
journalling requirements should specify the type of information discussed in section 3.4.1 rather than the algorithms
and data structures for implementing the journals.

Some security controls can be enforced either by software or by physical and administrative procedures.  For
example, data integrity can often be checked either by human review or by automated bounds and consistency checks.
When controls can be implemented in software, there are two reasons why this is preferable:

* Once controls have been automated, their continuing cost is usually lower than if they are enforced manually.

* Automated controls will be more consistently applied.

Unfortunately, the advantages of software controls can be lost if they are not implemented carefully.  Since
software does not adapt to unforeseen circumstances, there is considerable danger if software controls are incomplete
or if they can be bypassed with unacceptable probability.  Furthermore, if they are added after much of the application
software is already designed or operational, the difficulty of modifying software can make their implementation quite
costly-and can also lead to compromises that affect their effectiveness and reliability.

The following steps can be used to define security requirements and arrive at a detailed security specification:

6.1.1  Application System Interfaces. Identify each job function which is related to the application system.  Consider
each job function which relates to the application in a different way as defining a different interface to the system.
Define the nature of the interaction between each job function and the system.  Also identify and define any interfaces
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to other automated systems.  Include all job functions (or other automated systems) that are to be supported by this
system-even if the people performing those jobs only receive reports from it.  Also include all job functions (or other
automated systems) that supply information to the application system or that support its operation.  Be sure to include
critical job functions such as:

* Source data collection,
* Input preparation,
* Data entry,
* Output dissemination,
* Data base administration,
* System security planning and control,
* Internal audit,
* Application program maintenance,
* Archival or backup data storage,
* Computer operations, and
* System programming.

6.1.2  Responsibilities Associated with Each Interface. For each application system interface, define the
responsibilities of the individuals who interact with the application system through that interface.  Identify the
constraints on the use of each interface that must be enforced if security is to be preserved5.  Consider the likelihood of
errors occurring in the use of the interface and identify their consequences.  Consider the consequences of deliberate
misuse of the interface.  Without appropriate controls, deliberate misuse can even cause the execution of functions that
are entirely unrelated to the intended use of that interface.  Identify the management and administrative controls that
will be available to ensure that the interface is used properly.  Are the requirements on those using the interface and on
their managers realistic? See [FDICO 77] for a general but very extensive example.

6.1.3  Separation of Duties. Examine the interfaces to ensure that security exposures will be minimized even if an
interface is misused.  Ideally, any action that could result in serious harm should be checked or approved from an
independent interface.  For example, no one individual should be able to trigger a disbursement of funds without some
effective form of independent checking or approval. (See sec. 7.2.2.)

Well-planned separation of duties can greatly reduce the life-cycle costs for the background investigations that are
required by OMB Circular A-71, TM1, paragraph 4.b. When there is effective independent checking on the actions of
an individual, the level of personnel screening can be greatly reduced.  Furthermore, independent checking may be
more effective than background investigations to deter fraud.

6.1.4  Sensitive Objects and Operations. Identify the data objects to be processed-include input data, stored
data, and output data6. Determine the sensitivity and asset value of the data objects.  Identify the operations or functions
that users will perform on this data.  Define security requirements for each data object (or group of related data objects)
with respect to the objectives of data integrity, confidentiality, and availability.  Define requirements with respect to
each objective to protect against both accidental and deliberate threats.  If some operations such as updating a critical
value are significantly more sensitive than other operations on the same object, then distinguish the different operations
to be performed on each data object.

6.1.5  Error Tolerance. Determine the application's error tolerance by taking into consideration the expected
reliability and validity of the data and the intended objectives of the application.  For example, funds disbursement or
electronic funds transfer systems may have a low tolerance for data errors since such errors directly translate into
dollars.  Real-time control systems such as air traffic control have virtually no margin for error since human lives may
be lost.  On the other hand, some management information systems, particularly those used to predict future demands
and resource requirements, may not be as susceptible to errors in data since a certain degree of unreliability is expected
in the data, and since statistical estimating techniques are often used which account for variations in the quality of data
by generating ranges or bounds for expected results.  The application's tolerance for errors and the requirements for
maintaining error levels to within acceptable tolerances must be defined in the security requirements.

                                                  
5 While this paragraph assumes that a person is on the other side of the interface, similar comments apply when the system interacts with other
automated systems.  It is usually poor security practice to assume that other automated systems are trustworthy.  Whenever possible, it is better
practice to determine the degree to which they are untrustworthy or to take the necessary action to make them trustworthy.
6 The data objects considered at this point are objects seen by the end users, not all the files or data sets as seen by a programmer.
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6.1.6  Availability Requirements. If serious harm could result because the system is not available for use, then
availability requirements must be defined.  Availability requirements which are more rigorous than those typically
supported by a well-managed computer installation are likely to be expensive.  Depending on user needs, requirements
can be stated in terms of a maximum length for a service interruption or in terms of its frequency of occurrence or as a
combination of both factors.

6.1.7  Requirements for Basic Controls. For each application system interface and/or each data object, define
detailed requirements for each of the basic controls from section 3.

6.1.8  Management Considerations. The requirements should not contain phrases such as "and so forth" or "and the
like." The personnel doing the requirements specification are in a better position to fill in the details than the
programmers will be.

All statements in the requirements specification should be specific enough so that tests can be designed that will
tell whether the requirement is satisfied.  For example, the statement "Data entry personnel should not be able to enter
fraudulent payment vouchers" may be a very general requirement, but it is not specific enough to be a useful
requirement on the software designers.  Software requirements would have to specify the characteristics which can be
used to identify a payment voucher as potentially fraudulent.  The software requirements specification should be
detailed enough to become the basis for the tests to be used during system integration testing.

While requirements definition logically precedes all other development activities, in practice there is often a
substantial overlap, and many requirements must be modified or clarified during the remainder of the development
effort.  Management must establish procedures so that the requirements can be modified in an organized and carefully
controlled way.  The security specification should be kept current throughout the entire life cycle of the application and
no changes to the application system should be permitted unless they either do not affect the security specification or
have been approved and entered as an official modification to it.

Security specifications should be reviewed by all organizations that will be involved in the use or operation of the
application.  For any sensitive application, they must be reviewed and approved by the party responsible for security
and by the organization's internal auditors.

6.2 Designing for Security

PROBLEMS ADDRESSED:

Inadequate security which is difficult to improve without a major redesign of the system.

Excessive costs for administrative controls that are needed only because the system design exposes critical code
and data to unnecessary hazards.

The design stage is the time to make detailed decisions about how the controls of section 3 will be implemented.
Nevertheless, designing for security is not simply a matter of appending controls onto a system design.  Security
concerns must permeate the entire design phase.

It is not necessary for every design decision to take the most secure approach.  There are usually a variety of ways
to achieve an adequate level of security, and it is only necessary that security be given an appropriate weight in each
design tradeoff.  Often a few basic design decisions such as those described below can dramatically reduce the
vulnerabilities of the application and make security much less of a constraint in later design decisions.

A primary source of security problems is an excessively complex design which cannot be implemented correctly,
cannot be maintained, and cannot be audited.  While high performance goals may be an excuse for very complex
designs, when security is a concern it is especially important to follow the age-old maxim "Keep it simple." It should
be noted that performance and simplicity are not mutually exclusive design features.

For any sensitive application, a thorough risk analysis [WONGK 77], [LOSOT 79], including safeguard selection,
should be performed at the beginning of the design phase to assure that appropriate cost-effective controls are integral
to the system's design.  The guidance in [FIPSP 79B] can be tailored for a risk analysis of an application system design.

Designs for each of the basic controls were discussed in section 3. The ideas described here apply to the overall
design effort.

6.2.1  Unnecessary Programming.  Terminals should be interfaced with the application system so as to minimize the
danger that users can get unneeded programming capability.  Users who can execute their own programs usually have
the potential to bypass any security control.  Operating systems attempt to prevent this, but their controls usually can be
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bypassed or avoided by clever user programming.  While most users do not have the knowledge required to break
security in this way, it is a poor security defense to rely on the user's lack of ingenuity.

One should not expect an absolute guarantee that programs cannot be entered from a terminal.  A trap inserted
almost anywhere in the code of the application or of the operating system and triggered by some designated event
could cause data entered from the terminal to be executed as a program.  Thus, the effectiveness of this control depends
on the integrity of the program developers and of others who have had an opportunity to embed traps in the code;
nevertheless, an attempt to reduce the number of people who can enter programs is important because it reduces an
otherwise almost uncontrollable exposure.

6.2.2  Restricted User Interfaces. User interfaces should be tailored as specifically as possible to fulfill the user's
requirements.  Unneeded flexibility makes it more difficult to train users and to get them to accept the system.  Such
flexibility also hurts security.  The greatest danger occurs when users are given unnecessary access to a general purpose
programming language; however, even for a generalized query and update language, it may be very difficult to analyze
all the possible ramifications on security for all the possible user actions.  Once the users' actual needs are understood,
interfaces should be designed to meet these needs as simply as possible with no unnecessary capabilities that
complicate things both for the users and for the security analyst.

6.2.3  Human Engineering.To preserve security and integrity, user interfaces must be designed so they are easy to
understand and use.  This can forestall many user errors, and it decreases the chances that users will neglect or bypass
controls which they view as cumbersome and annoying.  This task is difficult and deserves careful thought.

System responses to the user must be clear and presented in terms of the user's view of the information-not in
terms of internal details intelligible only to a programmer.  Error messages should be tactful and helpful.

The user should not be required to enter excess information or answer questions repeatedly.  When possible,
appropriate security should be provided by default options.  On the other hand, user requests that could have unusually
serious effects should not be executed without having the system explain its interpretation of the request and ask the
user for confirmation.

There should be a user manual for each user interface.  When possible, help in using the system should be
available on-line-a user should be able to type some standard request such as "help" and receive a description of the
actions that are valid in the user's current context.

Human engineering may add to design costs, but if it is done effectively, it should decrease life-cycle costs.

6.2.4  Shared Computer Facilities. It is easier to protect the code and data of the application system if it does
not share computer facilities with other applications.  It is especially useful to exclude all program development
activities from the machine that runs the application-including the development and maintenance of the application's
programs themselves.  For applications that run constantly-and especially for very sensitive applications-it is often cost
effective to run the application on its own computers.  In terms of simple hardware performance, small computers are
now at least as cost effective as larger machines; however, the costs for system software, telecommunications,
peripheral equipment, and facility management must also be considered before making a choice between dedicated
small machines and shared large machines.

6.2.5  Isolation of Critical Code. The code and system data that is critical to security should be well identified so it
can be more easily audited and protected.  When possible, security controls should be isolated in modules that have few
interactions with the rest of the application software.  This makes it easier to audit these modules and protect them from
unauthorized modifications during operations.  Sometimes automated controls can be used to protect these modules:

* Checksums on the object code can be used to try to detect unauthorized changes.

* Hardware protection states or protection domains can protect code and data critical to security [LINDT 76C].

* If the security-critical code always resides in a fixed area of memory, then read-only memory can be used.

* Recent experimental languages, called type safe languages, may soon be available.  Compilers for these
languages can protect modules and their data from unexpected interactions with other modules [LINDT 76A],
[WULFW 76], [LISKB 75], [LAMPB 77B], [AMBLA 76], [AMBLA 77].

Identification and partial isolation of critical code and data are reasonably easy; however, rigorous isolation is
more difficult than it sounds.  Without very careful planning, all system code and data will end up being relevant to
security because errors or deliberate traps elsewhere can still cause security failures. This other software includes:
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* The operating system and other software that supports any of the security functions.

* All parts of the application  system  needed  to  guarantee  that  the  security  controls  are  invoked  at  the
appropriate times.

* Compilers and other software used to develop and maintain any security-relevant software.

When the code relevant to security is rigorously isolated from the bulk of the software, it is called a security kernel.
Security kernels that protect data from unauthorized disclosure are feasible, but they require specially designed
operating systems [WULFW 74B], [BRINP 70], [ARMY 78], [BERST 79], [DODKS 78], [FEIER 79], [LINDT 76C],
[MCCAE 79], [POPEG 78A], [POPEG 79B], [SCHIW 75], [WOODJ 77].

6.2.6  Backup and Recovery. With appropriate contingency planning (see sec. 7.6), the services of a computer
application can usually be restored within a few hours after a failure.  If availability requirements are more rigorous
than that, then automatic backup and recovery mechanisms may need to be included in the application software.  While
such mechanisms are beyond the scope of this guideline, several of the references and additional readings listed at the
end of this document contain discussions of this area.

6.2.7  Use of Available Controls. The operating system and the facility management may already provide a variety
of controls such as:

* User identity verification.
* Authorization for access to system files.
* Journalling of operating system activities.
* Backup and recovery procedures.

While the application system usually needs to supplement these controls, available controls should be used to the
fullest extent possible.  In too many cases, controls are needlessly reimplemented because controls that are already
available are not understood or not utilized.

Since the security controls of an operating system are not absolutely reliable, the application system should use
some data integrity checks to try to identify whether critical data has been altered; however, in general, there is no
reason to believe that controls implemented in the application system will be any more reliable than those already
provided by an operating system.

6.2.8  Design Review. The design review [FAGAM 76A], [FAGAM 76B] is the last reasonable opportunity to
identify weak points in the security plan.  Omissions or inadequacies in the security design which are not identified at
this point will require costly software modifications.

The entire security plan for the application should be reviewed by a group of experts who were not part of the
design effort.  It is especially necessary to review all decisions which cannot be easily altered during the expected life
cycle of the application.

6.3 Programming Practices for Security

PROBLEMS ADDRESSED:

Programming errors that affect security, especially flaws in the implementation of security controls.

Fraudulent additions or changes to the application code by programmers.

Programming practices [WIRTN 73], [DAHLO 72], [WEING 71], [VAND 74], [KERNB 74], [YOURE 75] that
are based on the best software engineering methods are essential to security since programming errors are a common
cause of serious losses.  Furthermore, programming errors or deliberate traps inserted into the code can often be
exploited to carry out a fraud or embezzlement.  Since program errors and traps are difficult to detect, the most
effective approach is to prevent their occurrence.

During the programming stage, the following practices are recommended to enhance the security of the
application system.
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6.3.1  Peer Review. After a programmer has completed a section of the code, review by one or more peers is
requested.  Typically, the reviewers will verify not only that the code does not contain any security errors but also that
it:

* satisfies all design specifications,
* is efficient, and
* is easily maintainable.

Peer review is most effective when at least one other programmer is expected to review the code to the point of
understanding it completely and being made equally responsible with the original programmer for any errors that
remain.  This is the most effective technique for preventing a programmer from making fraudulent modifications to the
code.  Peer review is most practical when programs are coded using programming methodologies such as those
described in [FIFED 77].

6.3.2  Program Library. The program library catalogs and controls access to all versions of program modules as
they are being developed.  These control functions can be carried out by either manual or automated means.

The program library can provide the following types of security controls during the programming stage:

* permit only authorized persons access to program modules,

* record all accesses (especially modifications) to program modules,

* associate control data, such as record and byte counts, with program modules to facilitate detection of
changes, and

* enable comparison of current versions of modules with previous versions to identify code that was changed.

More rigorous controls are needed as the program modules near completion, especially once review and testing has
begun.

6.3.3  Documentation of Security-Related Code. Program documentation is needed during any software development; it
is especially necessary for security if software security controls are to be reviewed for effectiveness and if they are to
remain effective after software maintenance activities.  Security-related modules or sections of code must he clearly
identified and completely documented.  By security-related code is meant:

* code that implements security controls;

* code that performs critical processing (e.g., check disbursement, real-time control); and

* code that has access to critical or sensitive data during its execution.

6.3.4  Programmer Association with Operational System. When possible, programmers should not be in a position to
receive benefits from the system when it becomes operational.  The temptation for programmers to make unauthorized
modifications or insertions to the code will be greater if it will be easy for them to capitalize on these insertions at a
later time.  Programmers excluded from access to the operational system can still conspire with someone else to receive
a benefit, but the conspiracy increases their risk of being detected.

6.3.5  Redundant Computation. Critical computations can be checked by redundant processing to verify the correctness
of the result.  The effectiveness of such checks depends, to a large extent, upon the programmers' experience and
expertise and on the programming practices being used.  Examples of local redundancy checks include:

* recalculation  of a critical result by an alternate method;

* checking a calculated result for reasonableness and consistency with other data items; and

* examining extra attributes in a retrieved data item to assure that the data item found was the one that was
searched for.
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6.3.6  Program Development Tools. The choice of the programming language and of other programming tools can
enhance security by increasing the reliability and correctness of the final products.  Proper selection and utilization of
such tools will help prevent programming errors from entering the source code.  Some specific program development
tools include:

* High Level Programming Languages. Programming languages are especially useful if they support
structured control flow, extensive data definitions facilities, strong type checking, restricted scopes for program
variables, and well-defined module calling conventions.  Compilers for such languages can do extensive checking
to identify program errors [WULFW 76], [LISKB 75], [LAMPB 77B], [AMBLA 76], [AMBLA 77].

* Preprocessors. Many of the advantages of high-level programming language can be accomplished through
a preprocessor.  A preprocessor accepts programs written in an improved dialect of a language and translates them
into the language.  Preprocessors can be used to:

− eliminate some of the more restrictive conditions in an existing language (e.g., allow structured flow in
FORTRAN programs), and

− provide automated quality control by checking that program modules meet the coding standards of this
project.

* Other Tools. Program development tools such as those that reformat source code, produce cross-reference
listings, and aid debugging are useful to help programmers manage the complexities that they must deal with.

6.4 Test and Evaluation of Security Software

PROBLEMS ADDRESSED:

Errors and omissions that affect security, especially flaws in the implementation of security controls.

Test and evaluation [LARSR 75] attempts to demonstrate that a system is:

* reliable,
* meets its specifications, and
* meets the requirements of the user.

Careful and thorough testing and evaluation can improve system security by uncovering errors, omissions and
other flaws in the application system's design and code.  However, even careful and thorough testing and evaluation
cannot assure that all flaws in the system will be found.  Security requirements are usually stated in terms of events that
must not occur under any circumstances.  Testing is less effective in evaluating these negative requirements than it is in
verifying the positive performance of the system under typical circumstances.  Formal proofs of correctness are able to
evaluate whether very general and even negative requirements are fulfilled; however, formal proofs are too difficult for
widespread use at this time.

If security has not been considered throughout the development life cycle and if attempts to avoid flaws have not
been made from the beginning, then the elimination of flaws identified by test and evaluation cannot be expected to
improve security significantly.

6.4.1  Test Plan. A test plan for security should describe what is to be tested and what testing methods or tools will
be needed.  It should include tests that identify the system's response to abnormal, unusual, improbable, and illegal
circumstances that may exist during both data input and processing.

The importance of testing for exceptional conditions is illustrated by the case of an accounts payable system
where the software security control was that for every payment made, a record of the payment was sent to the
appropriate regional office of the organization.  The regional office was responsible for checking the payments
manually.  In this case, an appropriate administrative control was thought to exist and, thus, software responsibility was
minimal.  However, it was learned that a request for payment with a nonvalid (null) regional office identifier was still
processed and a check issued.

The documentation of requirements, if it has been kept up to date, provides the basis for formulating the test plan.

6.4.2  Static Evaluation. These techniques, which involve examination and analysis of the systems documentation
and code, represent the most effective way to detect deliberate traps or other unauthorized modifications.  However,
due to the complexity of most systems and the limitations of automated techniques and tools [HANTS 76], it is not
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currently practical to analyze systems completely using static evaluation methods.  In addition, static evaluation does
not examine the system in a "live" or operational mode so that errors in the execution environment are not detected.
Specific techniques and tools include:

* Code Review. Portions of the source code are evaluated to determine if they implement the design
specifications and are free from errors.  In most cases, it will be impossible to review all of the system's code.
Generally, samples of the code will be reviewed-especially critical modules or critical portions of the code.  The
code review can be done by an internal test and evaluation team that is involved in the system development or by
an independent (third party) team-either internal or external to the organization.  Code review differs from peer
review, discussed in section 6.3.1, in that the code review is performed by individuals who were not involved with
the design and programming of the application.

* Penetration Studies. A few individuals can be challenged to find unknown weaknesses in the security
controls.  If a penetration study [LINDR 75], [LINDT 76B], [HOFFL 77], [HSIAD 79] is to produce useful
results, the context within which the penetrators are to work must be clearly defined.  Penetration studies to
identify programming errors can be expensive and are useful only if someone believes that there are no remaining
errors that can affect security.  The failure of a penetration study does not demonstrate that the application is
secure nor does success mean that the application is totally insecure in any practical sense.

* Source Code Analyzers. These software tools (LYONG 74] aid the evaluation process by providing details
about specific characteristics of the source programs.  Examples include:

− cross reference listings are an aid during code review and may be useful to identify "suspicious"
variables and source statement references.

− the variables which can influence control flow decisions can all be identified or variables which could
be read before any value has been assigned to them can be identified.

6.4.3  Dynamic Testing. These techniques involve executing the application system, or portions of the system, with
test data and comparing the actual results with expected or known results.

Dynamic testing may not detect unauthorized modifications or insertions to the system's code since they can
usually be concealed by a clever programmer.  However, program analyzers (see below) can provide some support in
this area.

During dynamic testing, production data files should not be used as test data.  In addition, all other important data
files should be taken off-line or otherwise protected during the testing period to eliminate the risk of their being
destroyed or their contents inadvertently revealed.

Dynamic testing is only practical for selected test cases.  Fundamental questions such as, "Which test cases should
be chosen?" and "How many test cases are enough?" must be answered.  The answers to these questions depend upon
the system being tested and upon the experience of the testing team.

The following tools can be used to aid the dynamic testing process:

* Program Analyzers. A program analyzer is a computer program that collects data about another program's
operation while that program is executing.  For example, an analyzer can determine whether test inputs have
caused all of a program's statements to be executed, or it can maintain a record of the number of times each
statement of a program was executed.  Program analyzers can be particularly useful for evaluating how
thoroughly the test data has exercised the program being tested.  In addition, they can be used to identify
extraneous code that might be an unauthorized insertion.

* Flaw Hypothesis Method. Security flaws can be hypothesized [LINDR 75], [LINDT 76B], [HSIAD 79]
based on analogous flaws found in other systems and then tested for existence on this system.  This is an effective
approach for selecting test cases that are likely to find security flaws.

7. PRESERVING SECURITY DURING OPERATIONS

Following development and successful acceptance testing, the application will enter the operations phase (i.e., its
production environment).  Even though the primary controls that were imbedded in the application will begin to
function and provide the expected protection, security measures should not be relaxed during this phase.  There are a
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number of procedures and practices which can be used both to supplement and to complement software security
controls [IBMCO 76].  These include protection and control of data during input preparation, off-line storage and
dissemination of output; employee hiring, job assignment, termination and security training; responding to security
variances; software modification; hardware maintenance and advance planning to ensure continuity of critical ADP
services at all times.

7.1  Control of Data

Protection, control and integrity of data is a continuing necessity throughout the stages data passes through in an
automated application.  Primary controls such as data validation and authorization that protect on-line data were
discussed in section 3. This section deals with the controls needed during the various stages of input preparation, data
media storage and output dissemination.

7.1.1  Input Verification. Input verification is the process of assuring accurate transcription of source data to machine-
readable form.  In most cases, the transcription process is accomplished by manually keying the source data at an input
device such as a keypunch machine or a terminal with a CRT display [JANCE 74], [MARTJ 73], [RCBCG 78C].

PROBLEMS ADDRESSED:

If not detected, errors made during source data transcription can be propagated through the data base by additional
processing of that data.  The resulting loss of data integrity can seriously affect agency operations or management
decisions that use this data.

Processing erroneous data can cause unanticipated control flow paths to be taken in the application software
leading to program halts or bringing the application system down.

Specific Techniques:

* Visual Verification. The keyed data is visually compared to source data.  For visual comparison, the keyed
data may be in the form of a punch card with printed characters recorded on it, a human-readable listing, or a
display in a CRT.  Since visual verification is time consuming and subject to human error, it is only practical
when source data is entered on-line for immediate use and where input validation controls exist.

* Key Verification. The source data is keyed a second time and automatically compared with the
transcribed source data previously keyed.  Detected errors are then corrected, rekeyed and reverified.  While key
punch verifiers are the most common devices used for key verification, key-to-tape and key-to-disk devices can
also be used for this purpose and have the additional advantage of recording the source data on a high-speed
storage medium.

* Check Digit.  A source data item contains an extra check digit which is derived from all the other characters
of the item by a special algorithm.  When the source data item is keyed, hardware in the key device calculates the
check digit and compares the result with the check digit that was just keyed as part of the source data item.  If
they are the same, it is assumed that the keying operation was correct.  In general, the check digit is not calculated
when keying data but rather is part of the predetermined alphanumeric code for the item being keyed.  Thus,
check digits apply best to data items whose values range over a known set of values which are not likely to
change frequently (e.g., part number, employee number, department number) [JANCE 74].  Check digits are
particularly useful when entering data on-line or when verifying data read by optical character readers.  They can
also be used to validate data input (see sec. 3.1.2). Although this technique is effective in most cases, it is not
infallible since it is possible to make compensating keying errors in a source data item which do not alter the
check digit.

* Control Totals. To use this technique, the source data is divided into small groups or batches of the same
type of work.  Individual totals are monitored for important items (or all items if desired) in the group and these
totals form an input source record which is keyed along with the group.  After the keying process, the keyed items
are retotaled and the results compared with the source record containing these totals.  A discrepancy indicates a
mistake in the keying operation or a mistake in calculating the original total.  This technique will require
processing capability to reevaluate and compare the control totals.  In addition, there is a trade-off between the
size of the group and the ease of locating the errors since the technique detects an error in a group but does not
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indicate in which record of the group the error occurred.  In an extension of this technique, known as cross-totals,
a group consists of a number of records, each containing the same type of items.  If one thinks of the group as a
matrix, specific (or all) items in the group can be totaled by row and by column and the row and column totals
keyed with the rest of the group.  After the keying process, new row and column totals are calculated, and
compared with the originals.  Unless compensating errors have been made, keying mistakes will cause some of
the new row and column totals to differ from the original row and column totals.  For each pair of new row and
column totals where either one or both of the row or column totals differs from the original, the data item at the
intersection of the corresponding row and column will be in error.

* Machine Readable Source.   Devices which read source data directly, such as optical character readers
[FIPSP 76C], [RCBCG 78C], eliminate the time and expense of key transcription and verification.  Used in
conjunction with check digits, this technique provides a powerful means of verifying the accuracy of source data
entry.

Management Considerations:

Input verification is a costly and time-consuming process.  It is only useful for detecting keying errors and even
when the keyed data is also verified, there is still a possibility of error.

7.1.2  Data Storage Management. Data storage management [IBMCO 76], [CARRJ 77], [BECKR 77] deals with
the maintenance of and access to data storage media.

PROBLEMS ADDRESSED:

Data residing on storage media are subject to accidental and intentional modification, destruction, and
unauthorized disclosure.  An agency's mission could be disrupted if its critical master files or backup and recovery
data were altered or destroyed.

Specific Techniques:

* Controlled access to storage area.  Data storage media, when not in use, should be located and maintained in
an area to which physical access can be controlled.  The only person who should have access is the one having
custody.

* User authorization.  Media should be released only to individuals who have specific authorization for their
use.  Authorization for access to certain sensitive data should not entail access to all sensitive data.

* Accounting procedures.  The movement of data storage media outside the off-line storage area should be
accounted for at all times in a log which includes, at a minimum:

− identifying information,
− destination,
− authorized signature, and
− estimated time of return.

* Backup of sensitive data.  The surest form of protection against destruction and alteration of data is the
maintenance of additional copies at another location.  Deciding which data to backup in this manner is a matter of
management policy, but once that decision has been made, the creation and removal of backup data offsite should
be handled on a routine schedule.

* Data encryption. (See sec. 3.6.2.)

7.1.3  Output Dissemination Control. Controlling the dissemination of the output of programs processing sensitive data
helps to assure continued protection for the data after it leaves the computer.

PROBLEMS ADDRESSED:

If output is not carefully handled, but merely left to users to remove from the printer and separate, it is very easy
for them accidentally to pick up more than they should.  Even if printout is carefully separated, because of the
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similarity of most computer output, it could be confused.  Unless there is some sort of accounting known to users,
there could be a tendency to dispose of unwanted output or even to use like-appearing output for the wrong
purpose.

It is much easier to steal information in hard copy form than out of a computer or from storage media.  Therefore data
is particularly vulnerable at the output dissemination stage.  The following techniques provide some protection:

* Logging receipts.  Limiting the number of copies, numbering each copy, and requiring an authorized
signature for each copy is the only absolute way of assuring that copies of output go to those for whom they are
intended.

* Distribution by mail.  Distributing output through a mail delivery system is another, though less certain, way
of assuring that copies go to those for whom they are intended.

* Labeling.  Automatically marking each page of sensitive output with the appropriate sensitivity classification
will provide a warning to someone who is not authorized to receive a copy.

7.2 Employment Practices

There are a number of practices, most as valid in manual processing environments as in automated ones, which can
serve to lessen the vulnerability of a system to harmful acts perpetrated either accidentally or maliciously by employees
[IBMCO 76], [CARRJ 77].

PROBLEMS ADDRESSED:

Employees who deal directly with data are in a position to reveal it to others as a curiosity or for personal gain or
for revenge.  They are in a position to modify data to the data subject's benefit or detriment.  They may also
accidentally make mistakes which can affect the subject of the data or the organization adversely.  In addition,
employees who deal with financial or other valuable data files are in a position to introduce information which
will make either themselves or others beneficiaries of the system.

Specific areas of employment practices that affect the security of an application include employee hiring,
assignment of responsibilities, and termination.

7.2.1  Hiring Procedures

* Investigation of Criminal Record. The existence of a criminal record may, or may not, indicate that a
person is dishonest.  The risk an organization is willing to take in this area will depend on the sensitivity of its
operation and the duties to be assigned to the employee.

* Checking References.   While poor references can provide ample justification for not hiring an individual,
good references should not be the only criteria for employment.  Characteristics, such as integrity, are not
necessarily invariant over time.  People who have been honest all of their lives can become dishonest if the
conditions are right.  With this understanding, employment, character and credit reference should be checked as
thoroughly as possible.  Employment references can be used to determine an individual's competence to perform,
or to be trained to perform, the tasks required on the job.  Character references can be used to determine such
things as trustworthiness, reliability, and ability to get along with others.  Credit references can be used to
determine a person's financial habits which can, in turn, be an indication of maturity and willingness to accept
responsibility for one's own actions.  The temptation of working with a system which could produce financial
benefits might be more than an individual in financial straits could resist.  Such a person would be easy prey for
external subversion.  Credit references can also be an indication that people in financial difficulty will need to
take a great deal of time away from the job, or will spend a lot of time on the job taking care of their own affairs.

* Security Clearances. The Federal Personnel Manual System FPM Letter 732-2 sets forth the requirements
for security clearances for personnel associated with computer systems in the Federal Government.  Complying
with the requirements of the FPM Letter will result in observing the above hiring procedures.

7.2.2  Assignment Procedures
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* Assignment in writing. All tasks assigned to an individual should be enumerated and specified in writing,
and the employee should be asked to acknowledge understanding of the assignment in writing.

* Separation of duties. The precedent for separation of duties comes from the pre-automation era, but that is
not an excuse for abandoning this well-established concept now that most operations are automated.  It is still a
very effective risk reduction technique.  An example of such separation, originating in manual operations but
continuing into automatic operations, is the segregation of the responsibility for preparing payment vouchers from
the responsibility for approving payments.  The responsibility for each of the functions listed below should, to the
extent possible, be assigned to separate individuals.  If such separation is not possible, an attempt should be made
to separate closely related functions such as applications programming, program design review, program test and
evaluation, and program maintenance.  It is also important to define each function clearly so that there will be no
overlap in responsibility from one function to another.

− Data collection
− Data preparation
− Data entry
− Data base administration
− Authorization to use data for specific purposes
− Custody of automated data
− ADP operations
− Systems programming
− Applications programming
− Program design review
− Program test and evaluation
− Program maintenance
− Security of ADP facility and equipment, including remote terminals
− Data communications
− Output dissemination
− Privacy requirements not covered above
− Internal audit
− Security coordination and planning

* Acting in concert. A requirement for having two or more individuals performing distinct parts of the
same task, usually within a specified time limit, is a further refinement of the concept of separation of duties.  It
requires certain individuals, in separate locations or possessing separate keys or having separate means of access
to the same resource, each following certain assigned procedures independently of the other individuals
concerned, so that the culmination of their activity will be the desired event.  For tasks that are susceptible to
fraudulent or other unauthorized activity, the probability of such activity successfully occurring is reduced when
collusion between employees is required.

* Enforced vacations. It is well known that vacations contribute to the health of employees by relieving the
tensions and anxieties that typically develop from long periods of work unbroken by extended time off.  Tense,
anxious employees are more likely to have accidents or make errors and omissions in performing their duties.  In
addition, if all employees are forced to take vacations, there will be less possibility that one of them can set up a
fraudulent scheme which depends on the employee's presence either for continuity or for secrecy.  Even if the
employee's presence is not necessary to the scheme, enforced vacations can be a deterrent to embezzlement
because the perpetrator would always fear discovery during the employee's absence.

* Job rotation. Moving employees from one job to another at random intervals will have the same deterrent
effect on fraud that a policy of enforced vacations will.  There will be the additional benefit of having employees
who can take each other's places in cases of illness or termination.

* Account limitation. Placing upper limits on the amount of funds which can be handled by an employee or
billed to a project account and on the computer time that may be used by a project account will deter attempts by
employees at embezzlement as well as their attempts to use computer time for their own use or to sell it as a
commodity.
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* Limitation of physical access. Physical access to a computer facility should be carefully controlled by
barriers so that an individual who is there for only casual reasons such as submitting a job or picking up output
cannot move freely around the area.  In particular, programmers, who usually feel they have a right to be there,
should be denied access to the computer room.

* Limitation of data authorization.  Access to data should be granted with deliberation of each individual's need
for such access, rather than according to rank or position or precedent.  Group authorizations should be avoided
except when there is adequate justification.

* Observation by supervisor.  Neither the fact that an employee has a security clearance nor the fact that the
employee is a long-time trusted employee should obviate the need for continuing observation by a supervisor who
knows the employee well and who is able to observe signs of stress or aberrant behavior.

7.2.3  Termination Procedures. These practices should be observed upon the departure of any employee regardless of
the conditions or mood of the termination.  Under certain conditions, when the employee is likely to develop feelings
of resentment, it is probably better to grant severance pay and terminate the employee's contact with the organization
immediately.  In other cases, when the parting of ways is on friendly terms, the authorization necessary for the
employee to wind up the job can be continued in effect.

* Revoking all authorizations.  All authorizations which have been granted to a departing employee (e.g.,
authorization to sign for sensitive data, authorization to access certain data files) should be revoked, a letter to that
effect should be written and the employee's name should be removed from all lists of such authorizations.  If the
departing employee's authorizations included the granting of authorizations to others, these should also be
reviewed.  In most cases, there will be no need to revoke such authorizations, but some agency's regulations may
require that such authorizations be granted under the signature of the responsible individual.  However, it is
possible that an authorization review may uncover unnecessary or erroneous authorizations due to changes in job
functions of employees without corresponding corrections to the authorization data.

* Retrieving all keys, badges, etc.  All keys, badges and other devices which are used to gain access to
premises or information or equipment should be retrieved from a departing employee.

* Changing locks.  The combinations of all locks known to a departing employee should be changed
immediately.  Periodic changes, which should also be performed, are not sufficient.

* Deleting passwords.  Not only should departing employees' passwords be revoked, they should also be
removed from the list of effective passwords so that the deleted password cannot be reused.

* Reviewing employee's obligations to the organization.  If there are special conditions to the employment,
such as denial of right to use certain information, these should be reviewed with the departing employee and a
letter to that effect should be acknowledged by the employee in writing.

7.3 Security Training

Security training refers to the training that is necessary to indoctrinate personnel in the performance of assigned
security tasks and to security awareness training [FIPSP 74], which addresses the possible threats which can occur,
what to do about them, and how to prevent them.  While such training might seem to deal with the obvious and self-
evident, every organization which has instituted such training reports very favorable results.

PROBLEMS ADDRESSED:

When employees are not informed of management's interest in security, they are not likely to take steps to prevent
the occurrence of violations.

Employees cannot be expected to assume responsibility for assuring security unless they are trained in the steps to
take and encouraged to do so.
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7.3.1  Task Training. Task training in specific security responsibilities should include all the skills and detailed outlines
of the steps to take to adequately perform security related duties, such as operating fire extinguishers or notifying
management or restarting the computer after a power failure.

7.3.2  Security Awareness Training. This should be a part of the indoctrination for all new employees whether or not
they also are assigned specific security responsibilities.  It should also be a continuing effort, addressing new subjects
as the state of the art progresses and including periodic reviews of the need for security.  Initial topics should include
management's emphasis on security, universal responsibility of all employees, data sensitivity (privacy, confidentiality,
etc.), and the effect of delays in operations on the agency's mission.  Later sessions could include such things as
physical security, variance reporting and response, and contingency planning but should never become so technical that
the audience will be lost.

7.4 Responses to Security Variances

The possibilities for security variances to occur in the operations area are multitudinous and, therefore, very
difficult to describe.  They can range from an unauthorized individual attempting to get into the computer room, to a
fire extinguisher that does not work, to a door that has been propped open for convenience, to faulty water sprinkler
heads.  Anything in conflict with existing rules or anything that cannot be explained or anything that is otherwise
unusual should not be ignored but should be reported immediately to a supervisor or other designated individual to
minimize risks to the organization and to the safety and well-being of the employees.

There should be a means of reporting such situations in confidence and without the stigma of "whistle-blowing."
The procedure should be simple and should not encumber the reporting individual or tie up the employee's time in the
follow-up.  The need for such reporting should be stressed in awareness training and examples presented of what could
happen if certain occurrences passed without notice, such as failure to check the credentials of an employee attempting
to enter a restricted area merely because the checking individual is familiar with the employee and knows that the
employee has had the appropriate authorization in the past.  If the procedures for variance reporting are convenient and
employees are continually encouraged to make use of them, the follow-up of incidents can be revealing to management
and lead to the establishment of workable procedures for correcting potentially serious security situations.  The
emphasis in reporting variances should be on the circumstances rather than on the people who take advantage of them.
In spite of management's encouragement to employees to report security variances, management should not expect
employees to cooperate completely, particularly when such cooperation may require employees to report on the
activities of their friends and co-workers.

7.5 Software Modification and Hardware Maintenance

Software modification and hardware maintenance [CARRJ 77] are necessary to the continuing usefulness of any
system, but it should be recognized that performance of these activities increases the risk that errors, accidents, and
intentional acts can occur.

7.5.1  Modification of Software

PROBLEMS ADDRESSED:

While changes or additions to code are being made, errors could be admitted to a program which could destroy
data, or modify it to the extent that it would not be usable, or code could be inserted to perpetrate fraudulent
activity.

The same programming practices for security described in section 6.3 above apply when modifying software in an
applications system.  In addition, observing the following practices will provide additional protection for the system
while making the changes.

* Code reconciliation. New code to be inserted should be compared to code being replaced and to
specifications for the change.

* Availability of old code. The code which is being replaced should be kept readily available in the program
library for a reasonable period of time (at least 4-6 weeks) in case trouble develops in using the new code.
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* Documentation.  All changes should be thoroughly documented, including the intended result, the reason for
ordering the change, any special effect on data or output and, especially, any change produced in configuration.

* Use of test data.  All changes should be subjected to testing for predicted and desired results but production
data should not be used for this.  Special test data which simulates production data should be maintained and
updated for testing purposes.  A copy of production data can be used as test data if it does not contain sensitive
information.

* Use of original tests. The modified software should be subjected to the same testing as the original software.
The tests described in section 6.4 should be repeated on the modified software and the results compared.

7.5.2  Maintenance of Hardware

PROBLEMS ADDRESSED:

During the time hardware is being maintained, any data which is on-line could be inadvertently destroyed or
sensitive data could be revealed to maintenance personnel.

Specific Techniques:

* Removing live data. All production data should be taken off-line for the duration of maintenance.

* Clearing memory.  The main memory should be zeroed to remove all traces of data and applications
software.

* Regular Preventive Maintenance.  Preventive maintenance should be performed on a regularly scheduled
basis rather than on an "as needed" basis in order to prevent the kind of errors which stem from poor maintenance.

7.6 Contingency Planning

Contingency planning [CANNR 72], [FIPSP 74], [IBMCO 76], [CARRJ 77], [BECKR 77], [MARTJ 73],
[SCOML 75] consists of the advance plans and arrangements which are necessary to ensure continuity of the critical
functions the data base or physical facility.  Such planning should include procedures and availability of equipment for
both automated and manual procedures.

OMB Circular A-71, Transmittal Memorandum Number 1, July 27, 1978, requires all Federal agencies to develop
and maintain "appropriate contingency plans." Viewed from one perspective, contingency planning is a valuable
computer security safeguard which can be selected as a result of a risk analysis to satisfy some of the agency's
protective needs.  In fact, a risk analysis should be the basis upon which an agency determines the levels and extent of
contingency planning "appropriate" to its situation.  Consequently, the following discussion of the kinds of planning
relevant to application system emergencies assumes that such planning will be initiated following the performance of a
risk analysis of the specific application system.

PROBLEMS ADDRESSED:

An agency can be prevented from carrying out its mission in a timely manner due to the inability to process data
or to recover information vital to management decisions.

The two situations to which application systems are generally vulnerable are loss of processing availability and
damage to data.  It follows that the kinds of contingency planning required are:

1.  what to do if the network or computing system serving the application is down, and

2. what to do if the data base becomes so fraught with errors as to preclude further use without compounding
the damage.

In both instances, the criticality of the mission supported and the urgency of the requirement for system output
must be considered.  The less delay a system can countenance, the more extensive will the planning need to be.  All
plans must be carefully and extensively documented, kept current, and disseminated to all personnel who will be
affected by them.  Personnel must be trained in their assigned tasks and plans must be tested for feasibility.
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The following kinds of planning are relevant for application system emergencies:

7.6.1  Identification of Critical Functions. The functions in an applications system which are critical to an agency's
mission should be identified by performing a risk analysis, which will indicate not only which functions are
immediately critical but also the time periods after which other functions may also become critical.

7.6.2  Alternate Site Operations.Another organization should be found which uses the same or compatible equipment
and, which, during an emergency, would be able to allot time for critical functions.  Such an arrangement will usually
be reciprocal.  It should be effected on a formal basis between the organizations involved, not left to a friendly
arrangement between individuals.  Planning should extend to ensuring the readiness at the alternate site of up to date,
tested software and sufficient preprinted forms and any other special supplies (envelopes, stamps, binders, display
devices, storage facilities, etc.) to last through one reorder cycle.  In addition, a method must be devised for
communicating with the alternate site (telephone lines, messenger, etc.). Adequate transportation facilities may have to
be provided and specific personnel must be designated and trained.

7.6.3  Manual Replacement of Limited Processing. It may be possible that processing of critical functions can revert to the
procedures used prior to automation of the application.  Certain types of data are amenable to manual processing for
short periods of time; for others, only a severely streamlined version of the function can be accomplished.  When
continuity is important, any special equipment required for manual operation must be close at hand.  Necessary
particulars include working space, availability of timely data, page copies of source data, conversion of data to manual
use, special equipment, preprinted forms, communications, transportation, selection and training of personnel, and a
process for recording all manual transactions.

7.6.4  Backup of Data.  The easiest way to ensure against loss of data is to keep additional copies in readily
accessible and/or secure places.  Decisions concerning how many copies to keep, where to store them, and how long to
keep them, will depend on the criticality of the application, the vulnerability of the data, and the size of the data bases.

7.6.5  Recovery of Data. Sometimes data which has been either accidentally or intentionally modified will be so
altered that further transactions will only compound the damage.  In order to meet such an eventuality, a list of key
personnel for each data base should be prepared so that they can be summoned without delay when needed.  The
individuals concerned would probably be senior systems programmers and senior applications programmers.  In
addition, the list should include the security officer or someone else who could authorize the substitution of
extraordinary procedures if necessary, such as access to the computer room if not ordinarily granted, access to
computer resources not ordinarily authorized and use of unapproved programs on live data.  All personnel who might
be involved in such a situation, including the computer operator, should be instructed in emergency measures in
advance.  Lists of such personnel should be kept up to date and should contain names of alternates as well.  A priority,
based on experience, should be established for checking the source of the errors and a small data base should be
maintained for testing recovery procedures.

7.6.6  Restoration of the Facility. If a computer facility is destroyed or damaged, there must be not only plans for
continued operation, but also plans for the restoration or relocation of the facility.  Recovery from destruction can
include locating space or real estate; building or remodeling existing buildings; procuring hardware, supplies, office
furnishings, and ancillary equipment; and transferring operations from the emergency site to the permanent one.  Such
plans will normally be the direct responsibility of facility management but applications systems management may well
be called on for support especially in the areas of workload planning, space requirements, equipment requirements and
moving operations.  Advance preparation and periodic updating of the information necessary to these activities will
ensure its completeness and timeliness.

Management Considerations:

* Even if contingency plans are documented, kept up to date, disseminated, and tested, and personnel are well
trained, there may still be unanticipated or unfamiliar situations that require an emergency response in a time
frame that is difficult to respond to adequately.  Recognizing this, management should require that personnel who
are responsible for security in general and contingency planning in particular maintain an awareness of accidents,
disasters, emergencies, etc. that have afflicted automated systems in other Federal agencies or private
organizations in order to minimize the possibility of similar events occurring at their facilities.  The sprinkler
system accident which occurred at the Bureau of the Census in 1979 is a case in point.  Line personnel
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responsible for reacting to emergency situations should be briefed on those experiences that are relevant and
discussions should be held to ascertain how similar incidents could be handled, should they occur.  At a
minimum, personnel should be constantly aware of the location and purpose of all emergency control switches.

* Management should also recognize that in some situations personnel will not have time to stop and read the
procedures.  Even well-trained personnel who have been active in periodic testing of contingency planning
procedures cannot be expected to memorize all of them.  Although it is obvious that more frequent testing will
improve employees' familiarity with the plan and their readiness to handle emergency situations, it is also evident
that additional costs will be incurred.  One of the major cost benefit considerations in contingency planning is
balancing adequacy of testing against the cost.
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