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ABSTRACT 
This thesis studies interactions between mid-ocean ridges and mantle plumes using 
geophysics, geochemistry, and geodynamical modeling. Chapter 1 investigates the effects 
of the Marion and Bouvet hotspots on the ultra-slow spreading, highly-segmented 
Southwest Indian Ridge (SWIR). Gravity data indicate that both Marion and Bouvet 
impart high-amplitude mantle Bouguer anomaly lows to the ridge axis, and suggest that 
long-offset transforms may diminish along-axis plume flow. Building upon this 
observation, Chapter 2 presents a series of 3D numerical models designed to quantify the 
sensitivity of along-axis plume-driven mantle flow to transform offset length, spreading 
rate, and mantle viscosity structure. The calculations illustrate that long-offset transforms 
in ultra-slow spreading environments may significantly curtail plume dispersion. Chapter 3 
investigates helium isotope systematics along the western SWIR as well as near a global 
array of hotspots. The first part of this study reports uniformly low ^e/Tie ratios of 
6.3-7.3 R/Ra along the SWIR from 9°-24°E, compared to values of 8+1 Ra for normal 
mid-ocean ridge basalt. The favored explanation for these low values is addition of 
(U+Th) into the mantle source by crustal and/or lithospheric recycling. Although high 
He/He values have been observed along the SWIR near Bouvet Island to the west, there 

is no evidence for elevated 3He/4He ratios along this section of the SWIR. The second part 
of Chapter 3 investigates the relationship between He/Tie ratios and geophysical 
indicators of plume robustness for nine hotspots. A close correlation between a plume's 
flux and maximum HerHe ratio suggests a link between plume upwelling strength and 
origination in the deep, relatively undegassed mantle. Chapter 4 studies 3D mantle flow 
and temperature patterns beneath oceanic ridge-ridge-ridge triple junctions (TJs). In non- 
hotspot-affected TJs with geometry similar to the Rodrigues TJ, temperature and upwelling 
velocity along the slowest-spreading of the three ridges are predicted to increase within a 
few hundred kilometers of the TJ, to approach those of the fastest-spreading ridge. Along 
the slowest-spreading branch in hotspot-affected TJs such as the Azores, a strong 
component of along-axis flow directed away from the TJ is predicted to advect a hotspot 
thermal anomaly away from its deep-seated source. 

Thesis Supervisor: Jian Lin 
Title: Associate Scientist, Woods Hole Oceanographic Institution 
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Chapter 1:    Introduction 

Many of the most prominent bathymetric anomalies on the ocean floor are attributable to 

mantle plumes. Plumes occur in a number of geologic settings, from intraplate (e.g., 

Hawaii), to near a mid-ocean ridge (e.g., Azores, Bouvet, Marion, Galapagos), to atop a 

spreading center (e.g., Iceland). In all of these settings, plumes fundamentally alter the 

character of normal oceanic crust and lithosphere, imparting geological, geophysical and 

geochemical anomalies which can be used to infer underlying plume geodynamics. 

The phenomenology of mantle plumes has been explored for many decades. For 

example, Morgan [1971, 1972] proposed that hotspots are deep-seated upwelling 

anomalies which create quasi-linear, time-transgressive tracks on overriding lithospheric 

plates. Similarly, many studies have addressed the physics of mantle flow at mid-ocean 

ridges. Investigations of ridge processes in the vicinity of a mantle plume can probe the 

geodynamics of both the plume and the ridge. Early geochemical studies around Iceland 

and the Azores (e.g., Hart et al. [1973]; Schilling [1975]; White and Schilling [1978]) 

investigated the length scale over which plume material can be transported along-axis, 

addressing questions such as the balance between horizontal plate-driven flow and vertical 

plume upwelling in the distribution of plume-affected mantle. Building on these 

geochemical results, as well as observations of bathymetric and gravity anomalies around 

hotspots [Vogt, 1976; Ito and Lin, 1995; Small, 1995], laboratory and numerical models 

have explored the governing variables of plume-ridge interaction, including spreading rate, 

plume flux, layered mantle viscosity structure, lithospheric slope, and thermal erosion of 

the lithosphere [Ribe and Christensen, 1994; Feighner and Richards, 1995; Feighner et al., 

1995; Ribe etal., 1995; Ribe, 1996; Ito et al., 1997, 1999].   In this thesis, we investigate 
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the influence of plate boundary geometry on ridge-hotspot interactions, using the combined 

approaches of geophysical data analysis, geochemistry, and geodynamical modeling. 

In Chapter 1, we extend the study of plume-ridge interactions to the Southwest Indian 

Ridge (SWIR). Crustal accretion processes along the SWIR are affected by two near-ridge 

hotspots, Marion and Bouvet. Bouvet is located approximately 300 km to the east of the 

Bouvet Triple Junction in the western portion of the SWIR, while Marion is east of the 

long-offset Andrew Bain Fracture Zone in the central portion of the SWIR. We use gravity 

and bathymetry data to calculate mantle Bouguer and residual mantle Bouguer anomaly 

[Kuo andForsyth, 1988; Lin et al, 1990] for the entirety of the western Indian Ocean, and 

then use these calculations to delineate the sections of the SWIR affected by these two 

hotspots. 

Investigation of ridge-hotspot interactions at the SWIR is important for two reasons. 

First, numerical and laboratory modeling experiments suggest that one of the fundamental 

controls on dispersion of plume material along a mid-ocean ridge is spreading rate. With a 

half-rate of ~0.8 cm/yr along most of its length, the SWIR is the slowest-spreading 

accessible portion of the global mid-ocean ridge system. Only the ice-covered Arctic ridges 

are slower. Thus, the SWIR is an important end-member test of scaling relationships 

involving spreading rate. Second, the SWIR is highly segmented; many transform offsets 

exist in the vicinity of Marion and Bouvet. Earlier analytical studies, such as Vogt and 

Johnson [1975] and Sleep [1996], suggest that transform offsets may limit or diminish 

along-axis flow originating from a mantle plume. Therefore, we examine along-axis 

gravity and bathymetry trends along the SWIR for evidence of this "transform damming" 

effect. 

Whereas Chapter 1 uses observational data to argue for the importance of transform 

offsets in governing plume-ridge interactions, Chapter 2 quantitatively evaluates the effects 
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of ridge offsets in a series of three-dimensional numerical models. We model plume-driven 

flow beneath a segmented ridge system, through a 3D mantle domain with temperature- and 

pressure-dependent viscosity. Our calculations cover a range of spreading rates (from 

ultra-slow to fast), offset lengths (from 0 to 250 km), and mantle viscosity structures to 

determine the sensitivity of along-axis flux to the presence of transform offsets. We then 

compare the numerical model predictions to observed bathymetric anomalies of several 

plume-ridge systems, including Marion/SWIR, Iceland/Mid-AÜantic Ridge, and 

Galapagos/Galapagos Spreading Center, to illustrate the role of large transform faults in 

controlling the spatial extent of plume-ridge interactions. 

Since hotspot plumes affect not only the geological and geophysical characteristics of 

ridge systems, but also the geochemistry, Chapter 3 investigates helium isotopic anomalies 

for the western SWIR as well as the northern Mid-Atlantic Ridge. Because the source of 

primordial He is believed to be the relatively undegassed lower mantle, the ratio of He to 

^He can be used as an indicator of deep-seated mantle plumes [Kurz et al, 1982a]. For 

example, oceanic islands such as Iceland have He/He ratios ranging up to 37, normalized 

to the atmospheric ratio (Ra) [Hilton et al, 2000]. For comparison, normal mid-ocean 

ridge basalt has 3He/4He ratios averaging 8+1 Ra [Kurz and Jenkins, 1981; Kurz et al., 

1982b; Poreda et al, 1993]. The first portion of Chapter 3 presents new helium isotope 

data for the western SWIR, between 9°E and 24°E. Studying helium isotopic variation 

along this portion of the SWIR is valuable for a number of reasons. First, this 

investigation is the first systematic study of helium isotope ratios along an ultra-slow 

spreading ridge. Second, the study region can be divided into two supersegments, one 

oriented at a highly oblique angle to the regional spreading direction (9°-16°E) and the other 

more orthogonal to the spreading direction (16°-25°E). Because of its extreme obliquity, 

the 9°-16°E supersegment has an extremely low effective spreading rate of approximately 
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0.5 cm/yr. Therefore, this significant change in ridge geometry permits investigation of the 

sensitivity of helium isotopic ratios to changes in upwelling rate and mantle temperature at 

extremely low spreading rates. Third, earlier geochemical studies suggest that the western, 

oblique supersegment is affected by the Bouvet plume, more than 700 km away [le Roex et 

ah, 1992]. Since the Bouvet plume has relatively high 3He/THe ratios of approximately 12- 

13 Ra, it is possible to use helium isotopic ratios to trace the influence of Bouvet on the 

oblique supersegment. 

The second portion of Chapter 3 examines the relationship between He/He ratios and 

geophysical indicators of plume influence for a global array of plumes. More specifically, 

we investigate the correlation between the maximum helium isotopic ratio and bathymetric 

anomaly, gravity anomaly, waist width, and inferred plume flux for Iceland, Azores, 

Tristan, Reunion, Bouvet, Galapagos, Easter, and Amsterdam-St. Paul. Such 

investigations yield insight into the coupled geodynamical-geochemical behavior of mantle 

plumes, and support the hypothesis that robust, high-flux plumes might tend to originate in 

the deep, relatively undegassed mantle. 

The geodynamics of mantle flow and heat transfer beneath oceanic ridge-ridge-ridge 

triple junctions is the subject of Chapter 4. Triple junctions in ridge-ridge-ridge 

configuration reflect unusual regions of crustal and lithospheric creation, compared to 

normal spreading systems with divergence of only two plates. We use a three-dimensional 

finite element numerical model to investigate how mantle flow dynamics beneath a triple 

junction differs from that beneath the simpler system of a single straight ridge. We initially 

model a triple junction with geometry resembling the Rodrigues and Galapagos triple 

junctions, to explore large-scale flow and heat transfer around a triple junction that is not 

affected by a nearby mantle plume. For each of the three ridge branches, we quantify how 

the presence of the other two ridge systems affects axial temperature and upwelling velocity 

14 



as a function of along-ridge distance from the triple junction. We then investigate a plume- 

affected triple junction, such as near the Azores Triple Junction, and explore how the 3D 

mantle flow beneath a triple junction can advect plume anomalies. Together, the results of 

this thesis work argue for the strong influence of plate boundary geometry on hotspot-ridge 

interactions. 
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Abstract 

The ultra-slow spreading Southwest Indian Ridge (SWIR) presents a unique environment to study the interactions 
between hotspots and ridges with highly segmented geometry. Using recently available satellite free-air gravity and 
shipboard bathymetry data, we obtain mantle Bouguer (MBA) and residual mantle Bouguer anomalies (RMBA) by 
removing from free-air gravity the attractions of seafloor topography, sediment thickness variations, a reference crust, 
and theoretically predicted effects of lithospheric cooling. The Bouvet hotspot, previously observed to be associated 
with anomalous bathymetry and geochemistry near the Bouvet triple junction, has an MBA axial gravity low of ~ 100 
mGal, implying pronounced localized crustal thickening. Off-axis, the RMBA lows along previously calculated Bouvet 
hotspot tracks are variable in amplitude, suggesting the possibilities that Bouvet flux varies in time or that hotspot 
magmatism is enhanced by proximity to a spreading center. Along-axis geophysical anomalies suggest that the Marion 
hotspot has a significant effect on accretionary processes in the central portion of the SWIR. Importantly, the Marion 
axial anomaly appears to be compartmentalized between the Andrew Bain and Discovery II fracture zones, implying 
that transform offsets play a significant role in governing the distribution of plume material in a highly segmented, 
ultra-slow spreading system.   © 2001 Elsevier Science B.V. All rights reserved. 

Keywords: Bouguer anomalies; hot spots; Southwest Indian Ridge; transform faults; mid-ocean ridges 

1. Introduction mid-ocean ridge system is influenced greatly by 
the presence of nearby mantle plumes. Most stud- 

The accretion of oceanic crust along the global        ies of ridge-hotspot interactions have focused on 
the Atlantic and eastern Pacific ocean basins, 
where relatively abundant data are available. In 
contrast, comparatively poor coverage of conven- 

  tional underway geophysical data has hindered 
the  investigation  of hotspots  in  the  southern 

v * CÄ!Ä7%"' Tf': +I-508^89f ,81; oceans. Recently released satellite-derived gravity Fax: +1-508-457-2187; E-mail: jgeorgen@mit.edu J .... _ , 
E-mail: jlin@whoi.edu M» however, permits the inclusion of southern 
E-mail: hdick@whoi.edu ocean hotspots in global studies of plume-ridge 

0012-821X/01 /$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. 
PII: S0012-821X(01)00293-X 
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interaction. Moreover, recent compilation of the 
GEBCO digital database [2] represents a major 
improvement in bathymetric data coverage in 
the southern oceans. This study combines ship- 
track bathymetry and satellite gravity to deter- 
mine gravity anomalies for the western Indian 
and southern Atlantic oceans. We use mantle 
Bouguer anomaly (MBA) and residual MBA 
(RMBA) to characterize the interactions of the 
Marion and Bouvet hotspots with the Southwest 
Indian Ridge (SWIR) and to provide constraint 
for Marion and Bouvet hotspot tracks. Further, 
we place Marion and Bouvet in a global context 
by comparing them with other spreading center- 
plume systems, and consider the important role of 
transform faults in plume-ridge interactions at 
this ultra-slow spreading rate. 

2. Geological setting 

The SWIR extends ~ 8000 km from the Bouvet 
triple junction (BTJ) in the west to the Rodrigues 
triple junction (RTJ) in the east (Fig. 1). The 
SWIR is among the world's slowest spreading 
ridges, with a full spreading rate close to ~13- 
16 mm/yr along most of its length. Marion Island, 
which is located on 28 Ma crust about 250 km 
from the SWIR [3], marks the current position of 
the Marion/Prince Edward plume (hereafter re- 
ferred to as the Marion plume) [4,5]. Bouvet Is- 
land lies on 7 Ma crust [3], approximately 300 km 
to the east of the BTJ and 55 km from the nearest 
segment of the SWIR. Several recent papers have 
investigated whether Bouvet Island or Spiess Sea- 
mount, located between the BTJ and Bouvet Is- 
land, is the position of the Bouvet plume (e.g. 
[6-8]). However, this question has not yet been 
resolved, so we will place the plume at Bouvet 
Island unless otherwise noted. 

The configuration of the SWIR varies signifi- 
cantly along its strike, and the ridge may be di- 
vided into a number of subsections based on ge- 
ometry and spreading history (Fig. 1). The first 
subsection extends from the BTJ to 10°E and is 
characterized by short ridge segments and closely 
spaced transforms. This geometry is more or less 
mirrored by conjugate sections on the eastern 

American-Antarctic Ridge (AAR). The second 
subsection consists of a 400-km-long length of 
ridge between 10°E and 15°E. This stretch lies 
at a oblique angle to the regional spreading direc- 
tion, resulting in a confused segmentation pattern 
and very low effective spreading rate. The third 
subsection, between 15°E and 25°E, was the focus 
of a detailed geophysical survey by Grindlay et al. 
[9] where SeaBeam multibeam bathymetry, mag- 
netics, and gravity data revealed that the ridge 
consists of a series of short (~ 45 km) segments 
separated by non-transform offsets. The 720-km- 
long Andrew Bain FZ and 150-km-long Du Toit 
FZ, which were also studied in the survey of 
Grindlay et al. [10], significantly displace the trend 
of the SWIR and constitute a fourth subsection. 
Between the Marion and Gallieni FZs, the fifth 
subsection, axial depth is relatively shallow and 
the segmentation pattern is somewhat irregular. 
In contrast, offsets between the Gallieni and At- 
lantis II FZs, subsection six, may be traced con- 
siderable distances off-axis in the satellite gravity 
map (Fig. 1). Subsection seven, the portion of 
ridge between Melville FZ and the RTJ, is char- 
acterized by marked obliquity accommodated by 
second-order segmentation, and has been created 
since 45 Ma by eastward migration of the RTJ 
[11]. An increase in axial depth from 49°E to 
the RTJ, as well as a relative lack of fresh 
volcanic activity as seen in TOBI sidescan sonar 
images, likely reflects amagmatic extension [12- 
14]. 

The highly segmented nature of the SWIR in 
the vicinity of Marion and Bouvet provides a 
unique opportunity to explore plume-ridge inter- 
actions at an ultra-slow spreading ridge. Prior 
studies of plume-ridge interactions have often fo- 
cused on systems with relatively straight ridges. 
For example, both the Galapagos/Cocos-Nazca 
spreading center (CNSC) and the Iceland/Reyk- 
janes Ridge systems have been extensively mod- 
eled (e.g. [15-19]), yet the CNSC is offset by only 
a few major (> 50 km) discontinuities near the 
Galapagos plume (e.g. [20]), and the Reykjanes 
Ridge south of Iceland is characterized by en 
echelon segments [21]. Long offsets in the SWIR 
such as the Andrew Bain FZ may exert important 
control on the dispersal of the Marion plume. 
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Fig. 1. Regional FAA map for the SWIR and part of the Southern Atlantic Ocean (data from [1]). Thick white lines mark the 
location of ridge axes: SWIR = Southwest Indian Ridge, SEIR = Southeast Indian Ridge, CIR = Central Indian Ridge, MAR = 
Mid-Atlantic Ridge, AAR = American-Antarctic Ridge. Locations of significant seafloor features are labeled in white lettering; 
positions of hotspots are marked with filled white circles. The names of prominent fracture zones are labeled as BU = Bullard 
FZ, CO = Conrad FZ, BO = Bouvet FZ, IO = Islas Orcadas FZ, SH = Shaka FZ, DT = Du Toit FZ, AB = Andrew Bain FZ, 
M = Marion FZ, PE = Prince Edward FZ, ES = Eric Simpson FZ, DII-Discovery II FZ, IN = Indomed FZ, GA = Gallieni FZ, 
All = Atlantis II FZ, and MEL = Melville FZ. Thin white lines are 25, 50, and 75 Ma isochrons [3]. Gravity data are plotted at 
5' spacing and an artificial illumination has been imposed on the grid from the NW. Lower panel shows FAA along the axis of 
the SWIR. Regions covering fracture zones are shaded, and the positions of the Marion and Bouvet hotspots are indicated with 
M and B, respectively. 

3. Gravity analysis 

3.1. Data sources 

The primary bathymetry data source of this 
study was the recently released GEBCO digital 
database [2,22]. The GEBCO-97 database offers 
the position of bathymetric contours with depth 
values spaced at an interval of ~l-2 km along 

the contours, which we projected onto a 5' grid 
(Fig. 2). The GEBCO-97 dataset, a compilation of 
accumulated shiptrack data from many sources, 
represents a major improvement in data coverage 
over any previous bathymetric database of the 
southern oceans. Note that shiptrack coverage is 
relatively dense along the ridge axis, especially 
near Marion and Bouvet islands (Fig. 2). To 
guard against overinterpretation of the GEBCO 
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Fig. 2. Bathymetry map for the southwest Indian Ocean based on the GEBCO-97 database [2]. Thin white lines indicate ship- 
track coverage of the bathymetry data in the GEBCO-97 compilation, and red dots mark the locations of hotspots. Grid spacing 
is 5', contour interval is 1500 m, and artificial illumination is from the NW. Lower panel shows SWIR axial bathymetry (pink 
line). Depths constrained by shiptrack lines crossing spreading segments are indicated with black dots, regions covering fracture 
zones are shaded, and fracture zones and hotspots are labeled as in Fig. 1. 

dataset, maps of gravity anomalies calculated us- 
ing the GEBCO data (e.g. Figs. 3 and 5) were also 
projected on a 5' grid and all nodes lacking ship- 
track control within a 15' radius were masked. 

We extracted free-air anomaly (FAA) gravity 
data from the 2' grid spacing global database cal- 
culated by Sandwell and Smith [1] from declassi- 
fied Geosat and ERS-1 altimetry (Fig. 1). Neu- 
mann et al. [23] showed that the 3' grid that 
preceded the current 2' database is coherent 
with bathymetry to wavelengths as short as 
27.5 km for the Mid-Atlantic Ridge between 31° 
and 36°S. Similarly, Rommevaux-Jestin et al. [12] 

found reasonably good correspondence between 
shipboard and satellite FAA for wavelengths 
greater than 30-50 km for the eastern SWIR. 
We analyze this further below. 

Sediment thickness data were extracted from a 
preliminary global database comprising digitized 
isopach maps gridded with 5' spacing [24]. Sedi- 
ment thickness is less than 1000 m for most of the 
region. Maximum thicknesses occur within 5° of 
the African margin (5000 m) and in the southeast- 
ern portion of Fig. 2, east of 50°E and south of 
60°S (4000 m). 

We used the digital age grid of Mueller et al. [3] 
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Fig. 3. Map of MBA, calculated by subtracting from FAA the gravitational effects of the water-sediment, sediment-crust, and 
crust-mantle interfaces assuming a constant 5-km-thick reference crust. The densities for seawater, sediment, crust, and mantle 
are assumed to be 1030, 2300, 2800, and 3300 kg/m3, respectively. Grid nodes without shiptrack control within a 15' radius are 
masked with black. Grid spacing is 5' and contour interval is 100 mGal. Artificial illumination is imposed from the NW. Lower 
panel shows MBA along the axis of the SWIR (pink line). MBA values constrained by shiptrack crossings of the ridge are indi- 
cated with black dots, regions covering fracture zones are shaded, and fracture zones and hotspots are labeled as in Fig. 1. 

for gravity thermal corrections (Fig. 1). Age error 
estimations for more than two-thirds of the sea- 
floor in the area of study are < 3 Myr [3]. Errors 
of such magnitude would have little effect on the 
calculated thermal correction for RMBA, de- 
scribed below. For young (<25 Ma) crust, age 
errors of up to 5-8 Ma occur in isolated areas 
[3], such as the Bouvet FZ, the oblique section 
of ridge between 10°E and 15°E, and the Du 
Toit FZ. Such errors would translate to approx- 
imately 20 mGal in the RMBA thermal correc- 
tion. Off-axis (> 25 Ma), large errors (> 8 Ma) 

are also associated with the seafloor around the 
Shona Chain and between the Shona Chain and 
Shaka Ridge [3]. Such crustal age errors could 
correspond to RMBA thermal correction errors 
of up to 25 mGal. 

3.2. Data analysis 

The free-air gravity map shown in Fig. 1 con- 
tains signals from seafloor topography, sediments, 
and crust and mantle density anomalies. To reveal 
the more subtle crust and mantle anomalies, we 
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subtracted from FAA the theoretical gravity ef- 
fects of the water-sediment, sediment-crust, and 
crust-mantle interfaces assuming a constant den- 
sity 5-km-thick model crust. The densities for sea- 
water, sediment, crust, and mantle were assumed 
to be 1030, 2300, 2800, and 3300 kg/m3, respec- 
tively. The resulting MBA map is shown in Fig. 3. 

The results of our MBA calculations are com- 
pared with those of the detailed geophysical sur- 
vey of Grindlay et al. [9] along the SWIR axis 

between 15.5°E and 25°E (Fig. 4a). The MBA 
results of Grindlay et al. [9] were obtained using 
high-resolution multibeam bathymetry and ship- 
board gravity data that were collected in early 
1996 and were not included in the GEBCO-97 
database. Although differing in detail, the two 
studies yield intermediate- to long-wavelength 
trends that are very similar (Fig. 4a). To quantify 
this similarity, we applied lowpass filters with 
varying cutoff wavelengths to both profiles and 
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Fig. 4. (a) Comparison of axial MBA profiles for 15.5°E-25°E between the results of Grindlay et al. [9] and this study. Filtered 
profile is generated by applying 125-km cutoff lowpass filter to axial data sampled every 10 km. Note the general long-wavelength 
agreement between the two profiles despite differences in detail, (b) RMS difference between lowpass-filtered profiles from Grind- 
lay et al. [9] and this study as a function of lowpass cutoff wavelength. Differences were taken every 10 km along the profile and 
filtered used a Hanning window. 
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Fig. 5. Map of RMBA, created by subtracting from MBA the effects of lithospheric cooling based on an age-correction model. 
Masking is the same as in Fig. 3. Artificial illumination is imposed from the NW. Grid spacing is 5' and contour interval is 
100 mGal. Inset shows RMBA in the immediate vicinity of the BTJ, without shiptrack masking. The lower panel displays along- 
axis RMBA (pink line) with RMBA values constrained by shiptrack crossings of the SWIR shown in black dots. Regions cover- 
ing fracture zones are shaded and fracture zones and hotspots are labeled as in Fig. 1. 

determined the root-mean-square (RMS) differ- 
ence between the filtered data (Fig. 4b). The 
RMS difference decreases quickly with cutoff 
wavelength, reaching a value of approximately 
5 mGal for a cutoff wavelength of 125 km. This 
suggests that intermediate- to long-wavelength 
features, such as hotspot swells, are resolved rea- 
sonably accurately in the present study. 

The second step in gravity data reduction was 
removal of the effects of lithospheric cooling. We 
calculated a three-dimensional (3D) mantle tem- 
perature field based on crustal age from the Muel- 
ler et al. [3] database. For computational ease, 

the plate cooling model [25] with temperature of 
1350°C at the base of a 100-km lithosphere was 
used for crustal ages > 1 Ma, while the half-space 
solution [26] was employed for ages < 1 Ma. The 
gravity signals of this 3D mantle temperature field 
were then calculated and integrated down to 100 
km depth to yield a theoretical estimation of the 
contribution of 3D lithospheric cooling to MBA 
(e.g. [27,28]), assuming a coefficient of thermal 
expansion of 3.5 XlO-5 K~'. An along-axis pro- 
file of the age-based thermal correction is shown 
in Fig. 6a. Subtraction of lithospheric cooling 
from MBA yielded RMBA (Fig. 5). RMBA re- 
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fleets deviations in crustal structure and/or mantle 
temperature from the reference model. Areas with 
low RMBA may result from the combined effects 
of thicker crust, lower density crust, and/or higher 
temperature mantle than surrounding regions. 

The Phipps Morgan and Forsyth [29] model, 
which calculates mantle flow patterns based on 

ridge-transform geometry, was not used to deter- 
mine the thermal correction for several reasons. 
First, unlike the age-based approach, the Phipps 
Morgan and Forsyth [29] model requires constant 
spreading rate both along the ridge and over time, 
which is an assumption clearly violated here given 
the large area under consideration. Also, the crus- 
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Fig. 6. Along-axis profiles of gravity thermal corrections calculated using (a) the age model and (b) the passive upwelling model. 
The age method assumes thermal cooling based on crustal age [3]. Mantle flow patterns in the passive upwelling model are calcu- 
lated based on ridge-transform geometry, following [29]. The thermal structure resulting from the calculated 3D mantle flow field 
is then translated into density, assuming a coefficient of thermal expansion of 3.4 Xl0~5 K~'. Finally, the FFT technique of 
Parker [45] is used to calculate gravity. The discrepancy in length between the two profiles results from orthogonalizing SWIR 
ridge segments and transforms before input into the passive upwelling code, a requirement of the Phipps Morgan and Forsyth 
[29] technique. Because the passive upwelling method takes into account the 3D nature of flow around transform faults, its pre- 
dicted thermal corrections near long-offset transforms are broader than those calculated by the age method. However, the age 
method is more appropriate for the large area addressed by this study because it allows for non-constant spreading rates and can 
determine the gravity signal around a triple junction. 
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tal age method permits calculation of the 3D ther- 
mal structure for the BTJ and RTJ, which have 
more complex geometry than that allowed by the 
Phipps Morgan and Forsyth [29] approach. The 
use of crustal age rather than passive flow model- 
ing for the calculation of thermal correction, how- 
ever, may lead to an underestimation of the ther- 
mal effects associated with large fracture zones 
such as the Andrew Bain FZ, because the effects 
of reduced upwelling and lateral asthenospheric 
flow were not considered. For example, Fig. 6 
shows thermal corrections calculated using both 
the age and passive upwelling approaches. The 
age-based method yields corrections that are 
much more localized around individual offsets, 
rather than the broader correction of the passive 
upwelling model. This effect is particularly pro- 
nounced for the closely spaced transforms around 
the Andrew Bain FZ. However, the maximum 
values of the thermal corrections at the Andrew 
Bain FZ are similar in the two models (Fig. 6). 

at  50.5°E, 46.2°S) and the Kerguelen  Plateau 
(-294 mGal at 69.08°E, 48.66°S). 

4.2. Along-axis gravity 

MBA shows pronounced intermediate- to long- 
wavelength trends along the SWIR (Fig. 3). From 
west to east, MBA values increase from a regional 
low at Bouvet Island (—181 mGal) to a high at 
the Andrew Bain FZ (62 mGal). Similarly, MBA 
values increase eastward from a regional low near 
Marion Island (—124 mGal) to a high west of the 
Melville FZ. An along-axis profile of RMBA 
shows intermediate- to long-wavelength trends 
similar to those of MBA (Fig. 5). The lowest 
RMBA value west of the Andrew Bain FZ occurs 
near Bouvet Island (26 mGal) while the maximum 
occurs at ~27°E (195 mGal). To the east, RMBA 
values generally increase from a low near Marion 
Island (40 mGal) to a high near the RTJ (~200 
mGal). 

4. Regional and along-axis gravity anomalies 

4.1. Regional gravity patterns 

MBA varies significantly in the western Indian 
Ocean (Fig. 3). The most positive value of MBA 
in the region, 272 mGal, occurs southeast of the 
Crozet Plateau (50.83°E, 52.58°S). The Kerguelen 
Plateau has the lowest MBA value, —321 mGal 
(at 69.08°E, 48.66°S). Prominent MBA lows are 
also found in the vicinity of all oceanic plateaus 
and hotspot features including Tristan, Walvis 
Ridge, Gough, Discovery, Agulhas Ridge, Agul- 
has Plateau, Madagascar Ridge, Del Cano Pla- 
teau, Crozet Plateau, and Conrad Rise. A broad, 
irregular low is roughly centered on the BTJ. 

All prominent MBA lows persist in the RMBA 
map (Fig. 5), indicating that these MBA features 
are not artifacts of lithospheric cooling effects. 
The most positive RMBA values are found near 
the RTJ (294 mGal at 58.75°E, 30.67°S), along 
the AAR (276 mGal at 9.75°W, 57.92°S), and 
along the Andrew Bain FZ (274 mGal at 
30.08°E, 51.25°S). The most negative RMBA val- 
ues correspond to the Crozet Plateau (—231 mGal 

4.3. Marion 

Strict definition of the amplitude and wave- 
length of the Marion axial gravity anomaly is dif- 
ficult. Along-axis profiles show short-wavelength 
variations that are not observed along other hot- 
spot-affected ridges (e.g. the Galapagos spreading 
center [20]) which may be a function of a number 
of effects, including the ultra-slow spreading rate* 
frequent ridge offsets, and relatively sparser data 
coverage. Broad MBA and RMBA anomalies 
bracket the central SWIR between the Andrew 
Bain and Gallieni FZs (Figs. 3 and 5). However, 
we advocate limiting the Marion plume's eastern 
boundary to the Discovery II FZ, for several rea- 
sons. First, the ridge segment bounded by the 
dual-offset Discovery II transform faults has lo- 
cally high MBA. Second, we postulate that the 
long-offset (350 km) Discovery II transform sys- 
tem is sufficiently long to displace segments to the 
east out of the range of Marion plume influence, 
an idea that we develop more thoroughly in a 
later section. The limited number of shiptrack 
crossings of SWIR spreading segments near Mar- 
ion prevents us from assigning an anomaly ampli- 
tude. 
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To the west of Marion, a prominent RMBA 
high occurs in the vicinity of the Marion and 
Prince Edward FZs, and further to the west is 
the pronounced Andrew Bain FZ RMBA high 
(Fig. 7b). Local surveys of the segments between 
the Prince Edward and Marion FZs, and the 
Marion and Andrew Bain FZs, found evidence 
for extremely robust magmatism, uncharacteristic 
of slow spreading segments bounded by well-de- 
veloped transform offsets [10]. It is likely that this 
robust magmatism is due to the Marion plume. 
For this reason, we interpret the Marion hotspot 
axial gravity anomaly to be between the Andrew 
Bain and Discovery II FZs. This yields an along- 
axis anomaly of 510 km without counting inter- 
vening transform offsets, or 1100 km including 
the transform faults. Meanwhile we attribute the 
axial bathymetric high and MBA low between the 
Indomed and Gallieni FZs to another source. 
Although the exact cause is unclear at this point, 
such bathymetric and MBA anomalies could be 
due to (1) the lack of significant offset in this 
length of ridge (Fig. 1) and thus less transform 
cooling effect, (2) remnant effects from the crea- 
tion of the Del Cano Plateau, or (3) excess vol- 
canism due to another off-axis plume source, such 
as the Crozet hotspot. However the latter option, 
linkage to the Crozet hotspot, would require a 
ridge-hotspot conduit of more than 1000 km 
from the Crozet Plateau to the SWIR. 

Geochemical data, although sparse, also sug- 
gest that the Marion effect may be localized. 
For example, Mahoney et al. [30] noted that the 
SWIR immediately west of the Prince Edward FZ 
shows no plume characteristics: it has low 87Sr/ 
86Sr, high 143Nd/I44Nd, and low 206Pb/204Pb. In 
contrast, the segment of ridge between the Prince 
Edward FZ and the Eric Simpson FZ is distin- 
guished by low Ba/Nb and Zr/Nb, which are char- 
acteristics that Mahoney et al. [30] attribute to the 
Marion plume. These data limit the along-axis 
length of the geochemical effects of Marion to 
about 250 km. The adjacent ridge between the 
Eric Simpson FZ and the Discovery II FZ has 
high Ba/Nb, low eNd, high 87Sr/86Sr and unusually 
low 206Pb/204Pb. Although Mahoney et al. [30] do 
not advocate the addition of this length of SWIR 
to the range of Marion geochemical influence, it is 

interesting to note that the spreading centers be- 
tween the Prince Edward and Discovery II FZs 
show both pronounced negative RMBA anoma- 
lies and anomalous geochemistry. Further geo- 
chemical sampling and more shiptrack geophysi- 
cal data will help to resolve some of the questions 
surrounding the Marion plume. 

4.4. Bouvet 

Employing isotope and incompatible element 
data, le Roex et al. [31,32] find evidence for ba- 
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Fig. 7. Along-axis profiles of SWIR MBA and RMBA in the 
vicinity of the Bouvet plume. As in Figs. 3 and 5, black dots 
mark the locations constrained by shiptrack crossings of 
SWIR ridge segments. The location of Bouvet (B) is indi- 
cated with a vertical gray bar. Thick, dark gray lines near 
the Bouvet hotspot indicate the estimated amplitude and 
wavelength of the plume anomaly. 

26 



J.E. Georgen et al. I Earth and Planetary Science Letters 187 (2001) 283-300 293 

salts related to the Bouvet hotspot along the 
SWIR from the BTJ to 14°E. Values of 87Sr/86Sr 
and 143Nd/144Nd are highly scattered from the 
BTJ to ~ 14°E, and Zr/Nb data suggest that en- 
riched, transitional, and normal MORB are jux- 
taposed throughout the length of the affected re- 
gion. Le Roex et al. [31] and Dick [33] suggested 
that since the ultra-slow spreading SWIR repre- 
sents a relatively cold thermal regime, magma 
chambers along the SWIR are both small and 
short-lived, allowing the persistence of local geo- 
chemical heterogeneities originating from the 
Bouvet plume. 

Gravity calculations, on the other hand, suggest 
a considerably more localized anomaly. A high- 
amplitude (~ 100-125 mGal) MBA low is found 
between the Bouvet and Islas Orcadas FZs (Fig. 
7a), yielding an along-axis distance, excluding 
transform offsets, of 260 km. Another pro- 
nounced MBA low between the BTJ and Bouvet 
FZ, of ~75-80 mGal amplitude, is associated 
with Spiess Seamount, possibly also reflecting 
the Bouvet plume. 

A long-wavelength gradient between the Shaka 
and Andrew Bain FZs is a pronounced feature of 
the axial RMBA profile (Fig. 7b). However, it is 
unlikely that this extended gradient should be at- 
tributed to Bouvet. Some component of the gra- 
dient is attributable to underestimation of the 
transform effect by the age-based thermal correc- 
tion method, as compared to the passive upwell- 
ing-based method (Fig. 6). More important, lim- 
ited rock dredging sampling of the section of ridge 
between 15°E and 25°E shows little or no plume 
influence [34]. 

It is interesting to note that there is a high 
degree of symmetry in plate boundary geometry 
between the SWIR and the AAR in the vicinity of 
the BTJ (Fig. 1). The relatively long-offset Bouvet 
FZ on the SWIR is the conjugate of the Conrad 
FZ on the AAR, while the Shaka FZ is analogous 
to the Bullard FZ. Spreading rates along the two 
ridges are also similar, with a 0.9 cm/yr half-rate 
for the AAR. In addition, le Roex et al. [35] 
found a juxtaposition of enriched, transitional, 
and normal MORB along the AAR to approxi- 
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Fig. 8. Axial bathymetric profile along the American-Antarctic (distances <0 km) and Southwest Indian (distances >0 km) 
ridges, from the data source of [2]. Positions of Bullard, Conrad, Bouvet, Moshesh (Mo), Islas Orcadas (IO), and Shaka fracture 
zones are indicated; BTJ is shown with a vertical gray bar at a distance of 0 km. Black dots show locations where shiptracks 
cross ridge axes. 
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mately 18°W. However, although spreading rate, 
ridge geometry, and geochemistry are similar, 
bathymetric profiles of the SWIR and A AR are 
not (Fig. 8). While both ridges show rugged to- 
pography, Bouvet Island and Spiess Seamount 
represent bathymetric anomalies along the 
SWIR that are not paralleled in the AAR. The 
geochemical similarity, but bathymetric discrep- 
ancy, between the AAR and SWIR may support 
the notion that geochemical heterogeneity is an 
inherent feature of south Atlantic mantle, inde- 
pendent of the Bouvet plume source. Another 
possible explanation of the discrepancy is that 
complex 3D mantle flow patterns associated 
with the BTJ may have redistributed the geo- 
chemical anomalies represented by the Bouvet 
plume over a broad area. Geodynamical modeling 
of upwelling in the vicinity of the BTJ would be 
necessary to evaluate this mechanism. 

5. Hotspot tracks 

A prominent linear RMBA low extends from 
Marion Island along the Madagascar Ridge 
(Figs. 5 and 9a). RMBA profiles taken along ship- 
tracks across this roughly N-S striking low are 
shown in Fig. 9b. The profiles are aligned so 
that RMBA minima fall at zero distance. The 
location of each of these minima is marked on 
Fig. 9a and connection of the minima forms an 
off-axis trace of RMBA lows which follow closely 
the calculated hotspot track for Marion based on 
the plate reconstruction of Duncan and Richards 
[36], lending support to the association of thick- 
ened crust with hotspot tracks. In general, RMBA 

anomaly amplitude is greater for profiles on older 
crust than younger, which may suggest a decrease 
in Marion flux over time. However, other explan- 
ations are also possible. For example, seismic and 
gravity studies of the Madagascar Ridge (Fig. 1) 
suggest it is divided into two provinces, with 
strongly anomalous crust to the north of 31°S 
and more normal oceanic crust to the south 
[37]. Correspondingly, RMBA profiles 4 and 5, 
to the north of 31 °S, are considerably higher am- 
plitude than profiles 1 and 2, both south of 31°S. 

Based on a plate reconstruction model of Mor- 
gan [5], Hartnady and le Roex [38] presented a 
solution for the Bouvet hotspot track that extends 
from southern Africa to the west of the Agulhas 
Plateau until its intersection with the northeastern 
Shaka Ridge (Fig. 9a). Hartnady and le Roex [39] 
also proposed an alternative track based on a sin- 
gle rotation about a 64 Ma pole (Fig. 9a). Con- 
necting the local minima in along shiptrack 
RMBA yields a line that agrees well with the 
Morgan-based track for relatively recent times 
(< ~ 30 Ma) and is a little south and east of 
the Hartnady and le Roex [38] track for earlier 
periods (Fig. 9a). 

Shiptrack RMBA anomaly profiles across the 
Bouvet track are shown in Fig. 9c. Interestingly, 
amplitude anomalies are relatively large for pro- 
files 1-4 and 8 and 9, for the most recent and 
earliest time periods, respectively, but consider- 
ably smaller for profiles 5-7 (Fig. 9c). This result 
confirms Morgan's [5] observation that portions 
of the Bouvet hotspot track lack bathymetric ex- 
pression, suggesting at least three possibilities for 
Bouvet plume history, although other explana- 
tions are also possible. First, Bouvet may not rep- 

Fig. 9. (a) Simplified map of RMBA, with regions which have RMBA less than 50 mGal shaded gray. The dashed gray line ema- 
nating from Bouvet shows a hotspot track calculated by Hartnady and le Roex [38] using finite reconstruction poles from Mor- 
gan [5]. The solid gray line from Bouvet shows a track based on rotation about a single, 64 Ma pole [38]. Solid gray line striking 
roughly N-S is the Marion hotspot track given in Duncan and Richards [36], shifted slightly so zero-age plume location corre- 
sponds with Marion Island. Numbered black lines crossing hotspot tracks indicate the locations of RMBA profiles, extracted 
along shiptrack lines, shown in b and c. Black lines connect local minima in the individual RMBA profiles, with the locations of 
the local minima shown as white diamonds, (b) Profiles of filtered (thick gray lines) and unfiltered (thin black lines) RMBA along 
shiptracks crossing the Madagascar Ridge. Profiles are aligned so that local minima fall at roughly zero distance. Crustal ages 
and age error estimates [3] are provided for each profile, as are thin black lines indicating the definition of ARMBA. ARMBA 
amplitudes are shown to the right of the profiles, (c) RMBA profiles along shiptracks to the northeast of Bouvet Island. 'S. 
Track?' in profile 1 may be a portion of the Bouvet track to the south of the SWIR, resulting from ridge-hotspot interactions. 
Profiles 8 and 9 cross the southernmost extent of the Agulhas Plateau. 
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resent a long-lived, deep-seated melting anomaly, 
but instead a more localized, shallow geochemical 
heterogeneity tapped relatively recently (< ~ 30 
Ma) by the SWIR. In this scenario, little or no 
off-axis expression of the hotspot would be ex- 
pected. Second, the flux of the Bouvet plume 
may fluctuate on 10 Myr time scales. Third, it is 
possible that there is a close relationship between 
Bouvet plume volcanism and a nearby triple junc- 
tion. Martin [39] suggests that the paleolocation 
of the Bouvet plume was coincident with a triple 
junction at the Agulhas Plateau sometime in the 
range of 80-100 Ma (Fig. 9c). It may only be 
through coincidence with a spreading center, or 
a triple junction and its unusual mantle upwelling 
patterns, that the weak Bouvet plume develops a 
bathymetric or gravimetric expression. Further 
paleomagnetic reconstruction work detailing the 
position of the triple junction between 90 Ma 
and the present would be required to examine 
this possibility more thoroughly. 

To the south of the SWIR, a linear RMBA low 
strikes NW-SE between approximately 3°E and 
10°E, roughly mirroring the low anomaly to the 
north of the ridge (Fig. 5, inset). The easternmost 
portion of such conjugate lows, at approximately 
10°E, may have been created when Bouvet-related 
volcanism first began along the SWIR (i.e. when 
the plume first started supplying material to the 
ridge). Taken together, the northern and southern 
lows form an RMBA 'wake' which converges on 
the present-day location of the plume, much like 
the Carnegie and Cocos ridges for the Galapagos 
plume. 

6. Plume-ridge interactions 

To examine the effects of ridge offset on ridge- 
hotspot interactions, we compare the Marion/ 
SWIR and Galapagos/CNSC systems depicted in 
Fig. 10. These maps, which have the same scale, 
show that the Marion and Galapagos systems 
have roughly the same ridge-hotspot separation 
distance, 250 km and 200 km, respectively. How- 
ever, the CNSC spreads at more than three times 
the rate of the SWIR (2.8 cm/yr versus 0.8 cm/yr 
half-rate, respectively). Further, over the region in 

30"E 35'E 40"E 45-E 

a) 
5o'e 

b) 

100"W 95'W 90-W 

Fig. 10. (a) Bathymetry for the Marion plume region, with 
depths shallower than 3 km shaded. Selected fracture zones 
are labeled as in Fig. 1, with transform offsets in km. Arrows 
indicate absolute plate motion direction [46], U is half- 
spreading rate, and contours are drawn at 1.5, 3.0, and 4.5 
km depth, (b) Bathymetry of the Galapagos archipelago, 
with depths shallower than 2.75 km shaded. As in (a), se- 
lected ridge offset distances are given in km. Contours mark 
1.75, 2.75, and 3.75 km depth, and arrows indicate absolute 
plate motion [46]. 

Fig. 10, the cumulative ridge offset along the 
SWIR is 1520 km, again approximately three 
times the CNSC cumulative offset distance (560 
km). 

6.1. Plume dispersion along a segmented ridge 

Transform offsets may play an important role 
in ridge-hotspot interactions. Fig. 11 shows two 
possible scenarios for the ridgeward transport of 
plume material for ridge geometries that resemble 
the Galapagos and Marion systems: (1) diffuse 
plume dispersion (Fig. lla,b), as suggested by 
the numerical modeling of Ito et al. [15-17], 
Ribe [18], and Ribe et al. [19]; and (2) channelized 
along-axis flow (Fig.  llc,d), following Morgan 

30 



J.E. Georgen et al. I Earth and Planetary Science Letters 187 (2001) 283-300 297 

c) 
.'; liBiSSa&',". ^<-ä%gJS6!f,£3&t& 

* 

-w. 

d) 

t  1   » 3?rd 

i y • 
\ V 
\ 

ridge 

'     plume conduit 

lateral extent of 
plume dispersion   

Fig. 11. Schematic cartoons of plume-ridge interaction with a segmented ridge, (a) Broad dispersion of plume material at a depth 
below the onset of melting, for a ridge with only a single, small transform offset. Dark gray circle represents the plume conduit, 
light gray shading depicts dispersal of plume material, arrows indicate plume dispersal direction, and thin black lines denote ridge 
geometry. Ridge segments with a plume signature are emphasized with thick, medium gray shading. The length of ridge affected 
by plume 1, or waist width, is W\. (b) As in (a), but for a highly segmented ridge. Although the plume's lateral extent is the 
same as in (a), the resulting waist width W2 is less than W\. Note ambiguity in inferring plume dispersion from W2, since both 
smaller (dashed) and larger (dash-dot) circles will produce the same W2. (c) Schematic illustration of the channelized along-axis 
plume dispersion model for the same ridge geometry as in (a). Arrows indicate flow directed from plume to ridge, and subse- 
quent dispersion along-axis, at depths within the partial melting zone. The resulting waist width is W\. (d) As for (c), but for a 
highly segmented ridge. Note that long-offset transforms act as thermal and mechanical barriers and prevent along-axis disper- 
sion, resulting in a W2 that is less than W\. 

[40], Vogt and Johnson [41], Vogt [42], and Sleep 
[43]. In the scenario of diffuse flow (Fig. lla,b), a 
plume upwells vertically to a depth below the re- 
gion of partial melting, and then spreads radially. 
The style of plume-ridge interaction will differ 
depending on ridge-transform geometry. If the 
ridge offset is small (Fig. 11a), the plume waist 
width will reflect well the width of the plume 
anomaly. For highly segmented geometry (Fig. 
lib), however, transform faults offset the ridge 
out of the area of plume influence, thereby de- 
creasing the waist width. The true lateral extent 
and flux of the plume will be ambiguous, because 
plumes with a somewhat smaller or larger areal 
extent will result in the same waist width. 

In the other end-member geometry of channel- 
ized along-axis flow (Fig. llc,d), mantle flows di- 
rectly from plume to ridge, with subsequent 
along-axis distribution within or above the melt- 
ing zone. Here, transform offsets may act as ther- 
mal and mechanical barriers to along-axis plume 
dispersion. Longer offsets compartmentalize hot- 
spot material more effectively than shorter discon- 
tinuities. In this case, the plume waist width is 
also related to ridge geometry, with waist width 
for a more segmented ridge always less than or 
equal to that of a straight ridge. Importantly, 
therefore, both the diffuse dispersion and channel- 
ized along-axis flow models imply that ridge seg- 
mentation acts to decrease plume waist width. 
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6.2. Marion and Galapagos 

The present paucity of geophysical and geo- 
chemical data for the Marion region, and partic- 
ularly the lack of seismic data, makes it difficult to 
distinguish between the diffuse and channelized 
plume dispersion models. Here we note that two 
prominent transform faults disrupt the SWIR in 
the vicinity of Marion, Andrew Bain (total offset 
of 720 km) and Discovery II (total offset of 350 
km) (Fig. 10a). These transforms appear to brack- 
et the along-axis MBA and RMBA anomalies for 
Marion (Figs. 3 and 5). Therefore, we postulate 
that these two transform systems are long enough 
to limit Marion's waist width, or to act as 'trans- 
form terminators'. We do not presently have 
enough data to conclusively determine if Andrew 
Bain and Discovery II limit Marion's waist width 
by offsetting the SWIR out of Marion's influence 
(diffuse plume model) or damming along-axis flow 
(channelized plume model). 

In contrast to Marion, there are few significant 
ridge discontinuities along the CNSC near the 
Galapagos (Fig. 10b). No discontinuities greater 
than 35 km exist to the west of the Galapagos 
Islands, suggesting that the western half-width 
of the Galapagos anomaly reflects the original 
plume width. The eastern CNSC also has few dis- 
continuities between the Galapagos Islands and 
~85°W; however, a 110-km transform at 85°W 
may terminate the Galapagos anomaly. Taken to- 
gether, the Marion/SWIR and Galapagos/CNSC 
examples illustrate the important influence of 
transform offsets in limiting the lateral extent of 
plume-ridge interaction at a variety of spreading 
rates. Since ultra-slow spreading ridges tend to be 
more highly segmented, the transform effect may 
be most pronounced along the SWIR. The effects 
of transform offset length and spreading rate on 
along-axis flow from a ridge-centered plume are 
quantitatively evaluated through numerical mod- 
eling in a separate study [44]. 

7. Conclusions 

The main results of this study of ridge-hotspot 

interactions along the SWIR include the follow- 
ing: 

1. The Bouvet hotspot, approximately 300 km 
east of the BTJ and 55 km from the nearest 
spreading segment along the SWIR, imparts a 
high-amplitude (~ 100 mGal) mantle Bouguer 
gravity anomaly low to the SWIR, implying 
considerable crustal thickening, anomalously 
warm mantle, or a combination of both. How- 
ever, the Bouvet anomaly is quite localized be- 
tween the Bouvet and Islas Orcadas FZs. In 
comparison, the Marion MBA low is broader, 
and likely limited to the stretch of ridge be- 
tween the Andrew Bain and Discovery II FZs. 

2. There is little off-axis indication of a Bouvet 
hotspot track in crust ~ 30-90 Ma, suggesting 
the possibilities that the flux of the hotspot 
changes with time, or that the hotspot melting 
anomaly is enhanced when it is close to a plate 
boundary. In contrast, a well-defined residual 
gravity low, striking north-south along the 
Madagascar Ridge, corresponds closely with 
published Marion hotspot tracks. 

3. Long-offset transforms, characteristic of ultra- 
slow spreading centers, may play an important 
role in influencing ridge-hotspot interactions. 
Transforms may either act as thermal and me- 
chanical barriers to along-axis plume trans- 
port, or displace ridge segments out of a hot- 
spot-affected region. We postulate that the 
Andrew Bain and Discovery II FZs, with off- 
sets of 720 and 350 km, respectively, act as 
'transform terminators' for the Marion plume. 
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Chapter 3 

The effects of transform faults on along-axis flow of 
plume material:    Implications for plume-ridge interaction 

Jennifer E. Georgen and Jian Lin 

Abstract 
We explore a potentially important variable in controlling ridge-hotspot interaction, the 
effect of transform offsets in limiting along-axis flow of plume material. Transform faults 
may act as barriers to along-axis flow (e.g., Vogt and Johnson [1975], Sleep [1996]), 
particularly at large ridge offsets along slow and ultra-slow spreading ridges. We quantify 
the degree to which transform faults affect axial asthenospheric flow by performing a series 
of 3D numerical experiments. First, 3D mantle viscosity structure for a ridge-transform- 
ridge system is determined based on temperature- and pressure-dependent viscosity laws. 
We consider four half-spreading rates, ranging from ultra-slow (0.75 cm/yr) to fast (7.25 
cm/yr), and six transform lengths, spanning 0 to 250 km in increments of 50 km. We then 
calculate the 3D viscous flow in response to an along-axis pressure gradient corresponding 
to a ridge-centered hotspot. Modeling results predict that transform faults affect along-axis 
mantle material flow in two important ways. First, transforms reduce along-axis flux. The 
longer the transform offset, the more across-transform flux is reduced relative to the zero- 
offset case. Second, transforms deflect shallow asthenospheric along-axis flow. As 
transform offset increases and spreading rate decreases, deflection of along-axis flow 
toward the transform is enhanced. The transform damming effect is most pronounced for 
viscosity which is strictly pressure- and temperature-dependent. Flux reduction effects 
could be reduced for viscosity laws which additionally consider dehydration, melting, and 
change in deformation mechanism. This model predicts that for a given buoyancy of an 
on-axis plume, the along-axis waist width of the plume is less if it interacts with a highly 
segmented slow-spreading ridge than with a fast-spreading ridge. This prediction is 
considerably different from previous fluid dynamical models of a straight ridge interacting 
with a plume that argue for greater waist width at slower spreading rates. 

1.    Introduction 

A significant portion of the mid-ocean ridge system is influenced by mantle plumes 

[Schilling, 1991]. Near- or on-ridge plumes thicken oceanic crust, alter mid-ocean ridge 

geochemistry, and impart a strong signal to seafloor bathymetry, gravity, and geoid. 
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Plumes are linked to ridge geometry reconfiguration, as in the cases of Iceland and 

Amsterdam-St. Paul, where segments jump to remain in close spatial proximity to the 

plumes [Scemundsson, 1974; Jancin et ai, 1985; Conder et ai, 2000a]. Numerous 

investigations have suggested that transform faults influence the distribution of plume 

material, including the Charlie Gibbs FZ for the Iceland hotspot [Vogt and Johnson, 1976] 

and the Agulhas FZ for Discovery hotspot [Douglass et ai, 1995]. The quantitative 

influence of ridge offsets on plume dispersal was first explored analytically by Vogt and 

Johnson [1975] and Vogt [1976]. However, the interaction between plume-driven flow 

and transform faults has only recently been addressed by numerical models. While most of 

the recent plume-ridge numerical experiments generally consider straight ridges, the study 

of Yale and Phipps Morgan [1998] predicts strong focusing of the Kerguelen plume 

towards a segment of the Southeast Indian Ridge (SEIR) that is displaced towards 

Kerguelen, suggesting that ridge segmentation is important in plume-ridge interaction. 

Segmentation is a first-order feature of mid-ocean ridges. Ridges of all spreading rates 

are segmented, although segmentation pattern and the associated mantle dynamics vary 

with spreading rate [e.g., Macdonald, 1982; Schouten et ai, 1985; Lin and Phipps 

Morgan, 1992]. Figure 1 shows examples of the ultra-slow spreading Southwest Indian 

Ridge (SWIR) near the Marion hotspot (Figure la), the slow-spreading Reykjanes Ridge 

south of Iceland (Figure lb), and the intermediate-spreading Cocos-Nazca Spreading 

Center (CNSC) near the Galapagos hotspot (Figure lc). Along the SWIR between 25°- 

45°E, the Andrew Bain and other transform faults cumulatively offset the SWIR by 1520 

km (Figure la), which is roughly three times the cumulative offset (560 km) along the 

CNSC for similar ridge length (Figure lc). In contrast, ridge offsets south of Iceland 

along the Reykjanes and Mid-Atlantic ridges are generally small until the 350-km-long 
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Charlie Gibbs FZ (Figure lb).   Thus ridge offset pattern varies considerably among the 

global ridge systems, creating different conditions for along-axis plume flow. 

In this study we use a hybrid finite difference/finite element 3D numerical model to 

quantify the effects of transform offsets in limiting the along-axis mantle flow driven by an 

on-axis plume. We examine six transform offset lengths, ranging from 0 to 250 km, and 

four spreading rates, from ultra-slow to fast, to investigate the global range of ridge 

geometry. We then examine the sensitivity of the transform effect to mantle viscosity and 

discuss the implications of model results for plume-ridge interactions. 

2.   Numerical Method 

We model mantle flow along a segmented ridge driven by a plume-related pressure 

gradient. The model box consists of two segments, each of length Ls, and an intervening 

transform of length Lt (Figure 2; see Table 1 for definition of model variables). We 

examine values of Lt ranging from 0 km to 250 km in increments of 50 km, spanning most 

transform offset lengths observed in the global ridge system. The model box is 750 km in 

the across-axis, plate-spreading direction (X), 500 km in the along-axis direction (Y), and 

660 km in depth (Z) to coincide with the 660 km mantle discontinuity. A range of half- 

spreading rates, U, were selected to reflect representative cases of plume-ridge systems. A 

rate of U = 0.75 cm/yr corresponds to the ultra-slow spreading SWIR near the Marion 

plume; U = 1.25 cm/yr reflects the slow-spreading Mid-Atlantic Ridge (MAR) near the 

Azores and Iceland plumes; U = 3.0 cm/yr simulates the CNSC near the Galapagos plume 

and the SEIR near Amsterdam-St. Paul; and 7.25 cm/yr corresponds to the fast-spreading 

East Pacific Rise (EPR) and the Easter hotspot. All possible combinations of Lt and U are 
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modeled except Lt = 50 and 100 km for U = 7.25 cm/yr, as calculations showed transform 

offsets less than 150 km have minimal effect on along-axis flow for fast spreading rates. 

Numerical calculations are performed in two steps: (1) We calculate three-dimensional 

(3D) viscosity structure for a given L, and U using the approach of Shen and Forsyth 

[1992]; and (2) we use this 3D viscosity structure as input to a fluid dynamical calculation, 

where a pressure gradient simulating an on-axis plume drives flow along-ridge in the Y- 

direction. This two-step approach significantly simplifies modeling complexity and enables 

us to isolate the purely geometrical effects of viscosity structure on along-axis mantle 

material flow. 

Pressure- and temperature-dependent viscosity is calculated using a hybrid, iterative 

finite element/finite difference approach [Shen and Forsyth, 1992]. First, the velocity field 

for incompressible mantle flow driven by passive plate separation is determined using a 

finite element code with successive overrelaxation. Then, upwind finite differences are 

used to solve for the mantle temperature field in the model box, assuming Tz=2ookm = 

1350°C and Tz^km = 0°C, and viscosity is calculated at each node according to pressure and 

temperature. Finally, velocity, temperature, and viscosity calculations are iterated until a 

stable steady-state solution is reached. The governing equation for viscosity is given by 

t| = A öln exp [ (E+PV)/RT ] (1) 

where A is a pre-exponential constant, n is the stress exponent, E is activation energy, P is 

pressure, V is activation volume, R is the universal gas constant, and T is temperature 

(Table 1). We set n=l (Newtonian fluid) for all calculations, yielding a reference minimum 

viscosity T|ref = AG "n = 10 Pa s. Viscosity varies by ~5 orders of magnitude over the 

model space. For all spreading rates, low viscosity values are predicted for a broad depth 

range with viscosity minima occurring at a depth of approximately 70-75 km (Figure 3a). 

In plan view, the region of lowest viscosity forms a continuous meandering band along- 
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axis, with width proportional to spreading rate (Figure 3b-c). Further details of the 

viscosity modeling calculations can be found in Shen and Forsyth [1992]. 

The 3D viscosity field for each combination of U and L, are then used as input to a 

finite element fluid dynamical code (ADINA, Bathe [1996]) that solves the equation of 

continuity for an incompressible fluid 

V»v = 0 (2) 

and the equation of momentum balance 

VP = V»(n Vv) + pg (3) 

with no heat transfer and no buoyancy-driven flow, where v is velocity vector, P is fluid 

pressure, T| is viscosity, p is mantle density, and g is the acceleration of gravity. The 

driving force for fluid flow is a pressure gradient created by imposing pressure with a 

Gaussian spatial distribution (Figure 2) at Y = Ls and zero pressure at Y = -Ls. The 

pressure at Y = Ls is assumed to be maximum at the ridge axis with a distribution given by 

P(x) = P0 exp [ -0.5*(X/xo)2 ] / (27t),/2x0 (4) 

where P0 is the maximum pressure and x0 is the Gaussian distribution standard deviation 

length. P0 is fixed at a constant value of 15 MPa for all calculations; however, we examine 

the sensitivity of the results to varying both P0 and x0 in a later section. Other boundary 

conditions are zero shear stress at Z = 0 km and Z = Zmax, vz = 0 at Z = Zmax, and zero 

normal stress at Z = 0 km, X = Xmax, and X = -Xmax. Along-axis flux Q of mantle material 

is defined as 

Q(Y) = JvydXdZ (5) 

where vy is along-axis velocity (Table 1) and the integration is taken over the entire X-Z 

plane at constant Y. 

Viscosity is calculated for a box with dimensions Xmax x Ymax x 200 km, and padded to 

a depth of 660 km by extrapolation according to pressure-depth relationships.    The 
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computational grid for viscosity structure is 41 x 30 x 19 nodes, yielding resolution of 18.8 

x 17.2 x 10.5 km. A slightly different nodal grid of 41 x 25 x 21 nodal grid is used for the 

flow velocity calculations. This results in spatial resolution of 18.8 x 20.8 km in the X and 

Y directions, respectively, and variable spacing, from 6 to 60 km, in Z with highest 

resolution near the surface where vertical gradients in viscosity are greatest. Numerical 

results for a benchmark isoviscous channel-flow problem differ by <1% from analytical 

calculations. 

3. Results 

The presence of a transform offset has two general effects on along-axis material flow, 

(1) reduction in mantle material flux across the transform, and (2) deflection of shallow 

mantle flow toward the offset direction. Figure 4 shows both of these effects for the case 

of L, = 100 km and U = 1.25 cm/yr. Deflection of the region of high along-axis velocity is 

evident in Figure 4b, where high velocities follow low-viscosity contours; reduction in 

material flux is evident in tapering of the high-velocity region toward the transform. In 

across-axis section (Figure 4c), the region of high along-axis velocity forms the shape of a 

flattened triangle, again following viscosity contours. This focused region of high-velocity 

flow is in great contrast to the much more diffuse cross-sectional pattern of the along-axis 

velocities calculated for the case of an isoviscous mantle (Figure 5). Along-axis flow 

decreases both in magnitude and in areal extent as either the transform offset is increased or 

the spreading rate is decreased (Figure 6). For the prescribed along-axis pressure gradient 

of 15 MPa over 500 km, the maximum along-axis velocities for L, = 0 km range from -10 

cm/yr for U = 0.75 cm/yr to -20 cm/yr for U = 7.25 cm/yr (Figure 7).     These high 
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velocities are achieved at a depth of approximately 75 km, where minima in viscosity-depth 

profiles are reached (Figure 3a). 

Due to both material flow in the spreading (X) and vertical (Z) directions and viscous 

dissipation, the along-axis flux Q decreases as a function of decreasing Y even in the 

absence of a transform fault (i.e., for L, = 0 km) (Figure 8). For a spreading rate of 1.25 

cm/yr and L, = 0 km, for example, the calculated flux decreases from Q = 3.5 km /yr at Y = 

Ls to Q = 1 kmVyr at Y = 0, corresponding to 70% reduction in Q over a distance of Ls. It 

is also important to note that for the same along-axis pressure gradient, the predicted Q at a 

given distance Y is smaller for slower spreading ridges than faster spreading ridges. Near 

the ridge axis, the calculated mantle temperature is lower and thus viscosity is higher for 

slower spreading ridges, resulting in a volumetrically smaller low-viscosity channel and 

thus smaller along-axis flux Q. For example, for the same transform length (Lt = 200 km), 

the calculated flux Q at Y = 0 km for U = 0.75 cm/yr is only 80% that for U = 1.25 cm/yr 

and 30% that for U = 7.25 cm/yr (Figure 9). 

3.1 Reduction influx across a transform fault 

Figure 10 shows the effects of U and Lt on along-axis flux reduction. For each 

spreading rate, we calculate normalized flux, Q/Qu=o> to highlight the effect of transform 

offsets. The presence of a transform fault is predicted to reduce Q along the entire length of 

the ridge axis both upstream (Y > 0 km) and downstream (Y < 0 km) of the transform 

fault. For example, in the case of U = 0.75 cm/yr and Lt = 250 km (Figure 10a), the 

calculated Q/Qu=o is 0.6 at Y = 0 km, indicating the flux is already reduced substantially 

upstream of the transform fault. The reduction in flux upstream of the transform reflects 

widespread increase in mantle viscosity around the transform due to thermal cooling 

effects. Downstream from the transform fault, the spatial gradient in the reduction of Q is 
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even greater. As a result, the predicted along-axis material flux Q is essentially zero within 

100 km downstream of the transform (Figure 10a). In general, the fluxes are predicted to 

decrease by a greater amount for smaller U and larger L,. 

Gradients in across-transform flux are another measure of the effectiveness of a 

transform as a barrier to along-axis mantle flow (Figure 11). We define AQ/AY to be 

(Q/QLt=o|Y=2o km - Q/QU=O|Y=-2O km)/AY, or the difference between pre-transform and post- 

transform normalized flux over a fixed distance AY of 40 km. For the example of U = 3.0 

cm/yr shown in Figure 11, the calculated reduction gradient in across-transform flux 

AQ/AY for l^ = 200 km is double that for L, = 150 km, which in turn is double that of L, = 

100 km. Compared to U = 3.0 cm/yr, AQ/AY is smaller for all modeled transform offsets 

for U = 7.25 cm/yr, and the increase in AQ/AY for successive increases in Lt is less 

(Figure 11). Therefore, compared to faster spreading rates, transform effects at slower 

spreading rates are more sensitive to increases in L,. 

3.2 Deflection of asthenospheric flow 

Along-axis flow stagnates farther upstream from the transform as L, increases (Figure 

12). At a depth of 72 km, i.e., within the zone of fastest along-axis flow, we define the 

reference velocity vymax as the value of vy at Y = Ls. Ystag is the distance at which vy drops 

below a threshold value of 18.5% of vymax as the mantle flows toward the transform. A 

threshold of 18.5% was selected because it is the characteristic velocity dissipation factor 

for the Lt = 0 case, i.e., vy|Y=Ls = 0.185*vymax. Figure 12 suggests that the longer the 

offset or slower the spreading rate, the farther upstream from the transform fault the high- 

velocity flow is predicted to stop. For example, for L, = 150 km, Ystag = 0.9LS for 3.0 

cm/yr, but Ystag ~ 0.70LS for U = 0.75 cm/yr. 
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In addition to impeding along-axis flow, transform offsets also deflect it in the direction 

of the next ridge segment (Figure 13). The deflection is more pronounced for slower 

spreading rates. Figure 13a shows the path that high-velocity along-axis flow follows at a 

depth of 72 km across a 100-km transform for different spreading rates (U = 0.75, 1.25, 

and 3.0 cm/yr). AD is the distance that this high-velocity flow travels in the X-direction 

between Y = 250 km and Y = 0 km. Note that AD is always smaller than Lt. Figure 13b 

traces the position of high-velocity along-axis flow for different transform offsets at U = 

0.75 cm/yr. Again, AD is smaller than Lt. In general, the faster the spreading rate, the less 

sensitive the predicted asthenospheric flow path is to a transform fault (Figure 13c). 

Because a broader low-viscosity zone is predicted for faster-spreading ridges, flow paths 

are predicted to deviate less from the linear than at slower spreading rates. For example, 

for Lt = 100 km and U = 3.0 cm/yr, AD is only 20 km, but the deflection increases to 

nearly 100 km for U = 0.75 cm/yr (Figure 13c). 

4. Sensitivity of Model Results 

4.1 Pressure gradients 

The effects of different driving pressures on the calculated along-axis flux are evaluated 

in Figure 14. Since channelized viscous flow velocity scales with dP/dY, it is important to 

consider how pressure decays with distance away from a plume. For most calculations, 

we select P0 = 15 MPa, which corresponds to an along-axis pressure gradient dP/dY = 

Po/Ymax = 15 MPa/500 km = 30 kPa/km. The selection of P0 follows two different 

arguments, one relating to plume buoyancy and the other to topographic loading. First, 

following Conder et al. [2000b], we assume that plume-induced differential pressure AP 

scales with buoyancy force: 
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AP ~ pocATgAL, or AP/AL ~ pocATg (6) 

where p is reference mantle density, AT is plume thermal anomaly, AL is upwelling length, 

and a is the coefficient of thermal expansion. If we assume that p = 3300 kg/m3, a = 

3xl0"5K"\ and g = 9.8 m/s2, 

AP/AL ~ AT (7) 

For the on-axis Iceland plume, models suggest AT ~ 50-200 K [ho et al, 1999], yielding 

AP/AL -50-200 kPa/km. This is probably an upper limit for plume-related along-axis 

pressure gradients. AP/AL will be smaller for off-axis plumes and plumes with smaller AT. 

Conder et al. [2000b], for example, model asymmetric flow across the axis of the EPR, 

assuming that mantle material flow is driven by the Pacific superswell. They assume AP = 

100 MPa, yielding dP/dY -30 kPa/km if the pressure gradient is linear and dP/dY -5 

kPa/km if pressure decays radially away from the superswell source. 

If mantle material flow is driven by topographic loading of a lithospheric plate by 

emplacement of a volcanic edifice, AP should scale as 

AP - pgAh, or AP/AL - pgAh/AL (8) 

where Ah is elevation of the topographic anomaly relative to the surrounding seafloor, p = 

2700 kg/m , and g = 9.8 m/s . Based on the plateau heights of the Galapagos, Azores, and 

Iceland hotspots, Ah/AL is approximately 0.8/500, 4/1300, and 1.8/1100 km/km [Ito and 

Lin, 1995a], respectively, yielding AP/AL - 42, 43, and 81 kPa/km. Therefore, these 

hotspot plateaus, if uncompensated, may drive along-axis mantle material flow. If the 

plateau is compensated, the predicted pressure gradient is less. 

Figure 14 shows the sensitivity of the predicted velocity flow fields to the magnitude of 

the driving pressure P0 and the pressure standard deviation x0. Without changing x0, 

increasing the magnitude of the driving force to P0 = 25 MPa (dP/dY = 50 kPa/km) 

changes Q by a constant factor equal to the ratio of 25 MPa/15 MPa.  With P0 = 15 MPa, 
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increasing x0 from 100 km to 150 km increases Q by a factor of 1.2-1.4, as more off-ridge 

mantle material flows along-axis. Conversely, decreasing x0 to 50 km narrows the conduit 

of the high-velocity flow and consequently decreases Q by a factor of approximately 0.6. 

While our model assumes a depth-independent pressure gradient focused on the ridge, 

other spatial distributions and types of driving forces associated with a mantle plume may 

also give rise to along-axis mantle material flow. For example, a pressure that decreases 

with depth may reflect a hotspot whose origin is a relatively shallow geochemical anomaly 

with depth extent much less than 660 km. Also, rather than buoyancy-related pressure 

forces, flow may result from the velocity field of mantle material as it disperses radially 

away from a plume source. 

4.2 Alternative viscosity models 

This study considers viscosity as a function of temperature and pressure. However, 

viscosity is also influenced by other factors including the presence of melt, dehydration 

during melting, and transitions in creep mechanism [Hirth and Kohlstedt, 1995a, 1995b, 

1996; Braun et ai, 2000]. According to the numerical models of Braun et al. [2000], latent 

heat changes during melting increase mantle viscosity at the depths where dry melting 

occurs only by less than an order of magnitude compared to strictly temperature- and 

pressure-dependent viscosity. The retention of a small amount of melt in the mantle matrix 

also has a relatively small effect, decreasing the shallow mantle viscosity by less than an 

order of magnitude. In contrast, dehydration during melting is suggested to increase 

viscosity by approximately two orders of magnitude in the shallow mantle, while transition 

in creep mechanism results in a viscosity decrease of an order of magnitude. The predicted 

combined effect of all four of these processes is to cause a maximum increase in viscosity 

in the dry melting regime (shallow depths) of approximately an order of magnitude, and a 

45 



maximum decrease in viscosity in the wet melting regime (greater depths) of approximately 

an order of magnitude. This effect can be seen in Figure 3a, where the Braun et al. [2000] 

viscosity-depth curve for 1.0 cm/yr has higher magnitude than the corresponding Shen and 

Forsyth [1992] solutions for depths in the range of -25-50 km, but lower viscosities at 

depths greater than approximately 50 km. 

To estimate the potential effects of melting, dehydration, and transition in creep 

mechanism on along-axis velocity, we computed 3D flow fields using the viscosity 

structure predicted by Braun et al [2000] for a ridge with U = 3.0 cm/yr (Figure 15). 

Since Braun et al. [2000] only examined a 2D, axis-perpendicular geometry, we stacked 

their viscosity-depth solution along-axis to generate a 3D viscosity structure with no 

transform offsets. We adjusted the minimum viscosity used by Braun et al. [2000] to match 

T|ref =10 Pa s and refer to this viscosity structure as the "equalized" Braun et al. curve 

(Figure 3a). While maximum vy for the strictly pressure- and temperature-dependent 

viscosity solution occurs at a depth less than 100 km, the maximum vy for the equalized 

Braun et al. viscosity structure is found at a depth slightly less than 200 km (Figure 15a). 

Moreover, for the same pressure gradient, the value of the maximum vy for the equalized 

Braun et al. solution is greater (>30 cm/yr) than that for the strictly pressure- and 

temperature-dependent viscosity solution (-15 cm/yr) (Figure 15a). The calculated Q for 

the equalized Braun et al. viscosity structure is roughly twice that of the strictly pressure- 

and temperature-dependent solution upstream of the transform (Y > 0 km), but is more than 

4 times that of the strictly pressure- and temperature-dependent solution downstream of the 

transform (at Y —100 km) (Figure 15b), suggesting that material is flowing longer 

distances along-axis for the equalized Braun et. al. [2000] viscosity structure. Because 

more flow can be accommodated at greater depth for the equalized Braun et al. [2000] 

model than the strictly pressure- and temperature-dependent model, the shallow "transform 
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damming" effect is predicted to be considerably smaller for the equalized Braun et al. 

[2000] viscosity structure. 

Clearly, the degree to which transform faults impede along-axis flow is greatly 

influenced by the choice of 3D viscosity structure. Since the transform cooling effect is 

greatest at the surface and decreases with depth, transform fault damming is greatest for a 

viscosity structure in which the depth of minimum viscosity is comparable to lithospheric 

thickness. Accordingly, the effects of transform damming are predicted to be significant 

for the Shen and Forsyth [1992] curve in Figure 3a, where the viscosity minimum occurs 

at a depth of -75 km, which is comparable to the thickness of cold lithosphere. In contrast, 

transforms are unlikely to have a significant effect for the Ito et al. [1999] viscosity-depth 

curve including dehydration, because the entirety of the upper -110 km of the mantle has 

high viscosity. In the model of Ito et al. [1999], plume material spreads horizontally at 

depth, and flow is not preferentially channeled along-axis. It is important to note, 

however, that Ito et al. [1999] point out that their calculated dehydration viscosities are 

somewhat higher than viscosities derived from postglacial rebound and post-seismic 

deformation studies [Sigmundsson and Einarsson, 1992; Pollitz and Sacks, 1996]. The 

comparatively large depth extent of the high-viscosity region in Ito et al. [1999] is evident 

in comparison to the Braun et al. [2000] viscosity-depth curve, in which the high-viscosity 

surface layer is limited to significantly shallower depths (Figure 3d). 

4.3 Model limitations 

Our two-step modeling approach of first calculating 3D viscosity field and second 

determining mantle material velocity enables us to obtain relatively simple solutions for 

plume-ridge interactions along a segmented ridge. However, feedback between 

temperature, viscosity, and velocity fields, which were neglected in the present model, are 
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expected to change the results quantitatively. For example, flow away from a thermal 

plume will advect high-temperature material, reducing viscosities and thinning the 

lithosphere. As the anomalously warm plume material approaches a transform, it is likely 

that relatively high viscosities near the offset will be reduced, and the transform will 

experience a form of "thermal erosion" [Vogt and Johnson, 1975] that was not considered 

in the present model. In this way, the transform would present less of a barrier to along- 

axis flow, and across-transform mantle material flux gradients would decrease. Additional 

modeling, coupling the temperature, viscosity, and velocity fields, is required to assess the 

magnitude and importance of these effects. 

4.4 Magnitudes of asthenospheric velocities 

The results of this study predict that for a pressure gradient AP/AL of 30 kPa/km, the 

maximum along-axis velocity ranges from -10 cm/yr (for U = 0.75 cm/yr and L, = 0 km) 

to -20 cm/yr (for U = 7.25 cm/yr and Lt = 0 km). Although such velocities exceed 

spreading rates, they are consistent with estimations of mantle asthenospheric flow in the 

vicinity of plumes. South of both Iceland and the Azores, for example, gravity and 

bathymetry data reveal prominent V-shaped ridges pointing away from the hotspots, which 

can be inferred to result from hotspot-driven axial mantle flow. Vogt [1971a, b] and White 

et al. [1995] estimate along-axis propagation rates for the V-shaped ridges along the 

Reykjanes Ridge to be 7.5 - 20 cm/yr. Similarly, Cannat et al. [1999] infer an along-axis 

propagation rate of 6 cm/yr for Azores V-shaped ridges. However, a number of factors 

make it difficult to compare exactly the model-predicted along-axis velocities and the 

asthenospheric velocity estimated for Iceland and the Azores, including uncertainties in the 

pressure gradients, more complex ridge geometry than was assumed in the modeling, and 

the possibility of time-dependent plume flux.   Nevertheless, the estimates of along-axis 
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velocity by Vogt [1971a, b], White et al. [1995], and Carmat et al. [1999] are of the same 

magnitude as our modeling results. Similarly, Conder et al. [2000b] estimated 

asthenospheric velocities of 17-30 cm/yr from the Pacific superswell to the EPR, a range 

which overlaps our maximum velocity prediction for U = 7.25 cm/yr. 

Further constraints on the magnitude of asthenospheric velocity, albeit not driven by a 

hotspot plume, may be derived from studies of other tectonic settings including the 

Australian-Antarctic Discordance (AAD). The AAD is associated with unusually cool 

mantle, which may give rise to horizontal thermal gradients that drive mantle flow toward 

the discordance {West et al. [1997], and references therein). Investigations of the 

migration rate of geochemical boundaries [Pyle et al., 1992; 1995], off-axis V-shaped 

discontinuities [Marks et al., 1990; 1991], and propagating ridges [Phipps Morgan and 

Sandwell, 1994; Sempere et al., 1997; West et al, 1999], as well as numerical models 

[West et al., 1997] all suggest that the asthenospheric flow velocities towards the AAD are 

approximately 1.5-4.5 cm/yr. These velocities are of the same magnitude as the 

predictions of this study. 

5. Discussion: Implications for Plume-Ridge Interactions 

5.1 Ultra-slow spreading Southwest Indian Ridge/Marion plume 

The results of this modeling may be used to explore how ridge segmentation affects the 

along-axis length of plume-related geochemical or geophysical anomalies, or waist width 

W. For example, the ultra-slow spreading SWIR is highly segmented in the vicinity of the 

Marion hotspot (Figure la). Based on bathymetric and gravity anomalies, Georgen et al. 

[2001] suggest that the along-axis influence of the Marion hotspot is most prominent 

between the Andrew Bain and Discovery II FZs (Figure la).  Andrew Bain FZ is among 
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the world's longest transform offsets, with a length of -720 km, and Discovery II FZ is a 

dual fracture zone system with a combined offset of approximately 350 km. 

To apply the numerical results obtained in this study to the SWIR, we assume that 

plume-related material flows in a narrow channel [e.g., Morgan, 1978; Yale and Phipps 

Morgan, 1998] between Marion Island and roughly the location of the Eric Simpson FZ 

system, and then disperses along-axis to both sides of the Eric Simpson FZ [Vogt, 1971a, 

1976; Sleep, 1996]. To the east, the first fracture zone encountered by along-axis flow is 

Discovery II. According to Figure 10a, for an offset of length L, = 250 km with U = 0.75 

cm/yr, the along-axis flux at the Discovery II would be reduced by at least 40% compared 

to the case with no transform offset. Within a distance of 100 km beyond the transform, Q 

is predicted to diminish to 0% (Figure 10a). Therefore, modeling results predict that the 

along-axis geophysical expression of the Marion plume would terminate in the vicinity of 

the Discovery II FZ, consistent with the interpretation of Georgen et al. [2001]. 

5.2 Slow-spreading Reykjanes Ridge/Iceland plume 

In contrast to the SWIR, and despite its slow spreading rate, the Mid-Atlantic Ridge 

south of Iceland has few significant offsets until the Charlie Gibbs FZ more than 1000 km 

away from the plume center (Figure lb). Results of this study predict that the Bight FZ, 

with L, ~ 20 km, should have negligible effect on along-axis material transport away from 

the Iceland plume. However, the Charlie Gibbs FZ has more significant offset (L, = 350 

km). Critical to determining to what extent the Gibbs FZ diminishes along-axis mantle 

material flow is knowledge of how far along the Reykjanes Ridge plume-driven flux 

travels. As noted previously, Icelandic pressure gradients may be on the order of 50-200 

kPa/km. Extrapolation of our results to these pressure gradients suggests plume influence 

in the range of 300 km (for 50 kPa/km) to 1270 km (for 200 kPa/km) along-axis from the 
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plume center. A pressure gradient of 50 kPa/km, therefore, is not sufficient to drive along- 

axis flux far enough along the Reykjanes Ridge to reach the Gibbs FZ. In contrast, plume 

material should reach the vicinity of the Gibbs FZ for pressure gradients in the range of 200 

kPa/km. If the Iceland pressure gradient is such that plume material flows to the latitude of 

the Gibbs FZ, the results of Figure 10b suggest that the 350 km offset should be sufficient 

to block any remaining along-axis mantle material flow. 

5.3 Intermediate-spreading Cocos-Nazca Spreading Center/Galapagos plume 

Using bathymetric and gravity anomalies, Ito et al. [1997] propose that the along-axis 

influence of the Galapagos plume extends from approximately 86°W to 95°W, centered 

roughly on the 91°W FZ, an along-axis distance of -1000 km. Since all offsets of the 

CNSC in the immediate vicinity of the Galapagos plume are only of 20-30 km length 

(Figure lc), model results of Figure 10c predict it is unlikely that these small ridge 

discontinuities exert any significant influence on plume-driven axial flow. Similarly, 

investigations of axial magnetization intensity along the CNSC [Wilson and Hey, 1995] 

suggest that small, 20-30 km offsets do not block along-axis flow. Thus the location of the 

western end of the Galapagos anomaly may reflect natural plume dissipation, without 

significant effects of transform damming. 

Meanwhile, the eastern end of the Galapagos anomaly at ~86°W may be the combined 

result of dissipation and the damming effect of two closely spaced transform faults, Inca 

and Ecuador, with offset lengths of 110 km and 160 km, respectively. Although our 

modeling results predict little flux reduction for Lt < 150 km for U = 3.0 cm/yr, these 

results were obtained for a transform fault 250 km away from the plume driving force. 

Since the Inca and Ecuador offsets are located -500 km away from the Galapagos plume, 
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close to the plume's natural termination from dissipation effects, perhaps these relatively 

short offsets are sufficient to block already significantly diminished plume-driven flow. 

For a given spreading rate the plan view shape of the high-velocity region changes as 

spreading rate is increased (Figure 6). For small transform offsets which have relatively 

little effect on axial flux, the downstream termination of the high-velocity region forms a 

rather pointed V-shape (Figure 6d), reflecting gradual along-axis velocity dissipation. 

However, for larger offsets, material ponds upstream of the transform, resulting in a 

smoother, blunter, U-shaped stagnation curve (Figure 6e). The relatively U-shaped 

bathymetric anomaly termination near the Inca FZ, compared to the sharper, more V- 

shaped termination to the west of the Galapagos plume (Figure lc), may reflect blockage of 

Galapagos-driven asthenospheric flow by the Inca FZ. 
v 

Our extrapolated model results predict that, for U = 3.0 cm/yr, a waist width of -1000 

km requires an along-axis pressure gradient of approximately 75 kPa/km. Translating this 

pressure gradient into an axial thermal anomaly yields AT = 75°C, consistent with the upper 

bound of an estimate (50+25°C) by Ito and Lin [1995b] based on bathymetry and gravity 

data. However, more recent data for the CNSC, which combines bathymetric, gravity, and 

seismic constraints, suggest that the present-day Galapagos axial thermal anomaly is closer 

to 30-40°C [Canales et al, 2000]. 

5.4 Plume waist width 

Results of this study predict that long transform offsets along ultra-slow spreading 

ridges may strongly localize along-axis plume anomalies and thus decrease the plume width 

W relative to the case of an unsegmented ridge. Numerical [Ribe et al., 1995; Ito et al, 

1996] and laboratory modeling [Feighner and Richards, 1995] suggests that steady-state 

1/7 
waist width W scales as W ~ c0(Qv/2U)   , where Qv is plume volume flux and c0 is a 
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scaling coefficient between 1.77 and 2.12, predicting W increases with decreasing 

spreading rate U. These studies, however, considered only unsegmented ridges and did 

not take into account the effects of transform offsets. In contrast, our modeling results 

suggest the additional relationship that in the presence of a transform offset, W should be 

reduced more for a slow-spreading than a fast-spreading ridge, predicting W to decrease 

with U for the same Lt. 

The geometric differences between segmented and unsegmented ridges are illustrated in 

Figure 16. We assume that two plumes, plume 1 and plume 2, have the same flux, and 

interact with an unsegmented and segmented ridge, respectively. Because along-axis flux 

is limited by transforms along the segmented ridge, the apparent waist width W2 for plume 

2 will be less than the waist width W! for plume 1. Similarly, the flux inferred from waist 

width for plume 2 will be an underestimate. 

6. Conclusions 

The results from this study indicate that transform faults affect along-axis mantle 

material flow in two important ways: 

(1) Transform faults reduce along-axis flux. The amount of across-transform flux 

reduction increases with increasing transform offset and decreasing spreading rate. 

(2) Transforms deflect shallow asthenospheric along-axis flow toward the direction of 

the next ridge segment. This effect is predicted to be enhanced as spreading rate decreases 

and transform offset increases. This is because the along-axis flow channel defined by low 

viscosities at the ridge is broader and deviates less from linear for fast-spreading than slow- 

spreading ridges. - 
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The degree to which transforms affect along-axis asthenospheric flux is sensitive to 

viscosity structure. The transform damming effect is most pronounced for strictly 

pressure- and temperature-dependent viscosity, because most flow occurs in a region of 

low-viscosity at -75 km depth, approximately the thickness of cold lithosphere. However, 

transform damming effects could be reduced for viscosity structures which additionally 

consider the effects of melting, dehydration, and change in deformation mechanism, since 

such viscosity structures may result in a thick, high-viscosity layer extending to depths 

greater than lithospheric thickness. 

Flows along slower-spreading ridges are predicted to be more sensitive to transform 

offsets than those along faster-spreading ridges. For a given increase in transform offset, 

flux across a transform decreases significantly more for ultra-slow spreading rates than 

fast-spreading ridges. Transform offsets in slow-spreading, highly-segmented ridge 

environments, therefore, are likely to greatly limit the along-axis dispersion of plume 

material, resulting in the prediction of an inverse relationship between spreading rate and 

plume waist width. This prediction is considerably different than those from conventional 

models based on fluid dynamics of a plume interacting with a straight, unsegmented ridge. 
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Table 1: Model Parameters 

Variable Meaning Value Units 

E Activation energy 520 kJ/mol 

V Activation volume 10 x 10"6 m/mol 

n Stress exponent 1 

Umin Minimum viscosity 1019 Pas 

P Mantle density 3300 kg/m3 

g Gravitational acceleration 9.8 m/s 

g Gravity vector 

R Universal gas constant 8.3144 J/molK 

Tz=o Surface temperature 0 °c 
Tz=200 km Mantle temperature 1350 <€ 

a Thermal diffusivity 10"6 m2/s 

X Distance in spreading direction km 

■^max Box length, spreading direction 750 km 
Y Along-axis distance km 
Y Amax Box length, along-axis direction 500 km 
z Depth below surface km 
7 
^max Box depth 660 km 

Ls Segment length 250 km 

Lt Transform length 0, 50, 100, 

150, 200, 250 

km 

U Half-spreading rate 0.75, 1.25, 3.0, 

7.25 

cm/yr 

V Velocity vector cm/yr 

Vx Velocity in spreading direction cm/yr 

vy Along-axis velocity cm/yr 

vz Vertical velocity cm/yr 

Q Along-axis volumetric flux km /yr 

P Pressure Pa 

Po Maximum pressure at Y=LS 15 MPa 

Xo Pressure Gaussian length 100 km 
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Figure 1: a) Bathymetric map of the Southwest Indian Ridge in the vicinity of the 

Marion plume, with depths less than 3 km shaded. Fracture zones abbreviations are AB = 

Andrew Bain FZ, M = Marion FZ, PE = Prince Edward FZ, ES = Eric Simpson FZ, and 

Du = Discovery II FZ. Transform offset lengths are indicated in km, rounded to the 

nearest 10 km. Contours are drawn at 1.5, 3.0, and 4.5 km depth, and a half-spreading 

rate of 0.8 cm/yr is indicated, b) Bathymetry of the Reykjanes Ridge in the northern 

Atlantic Ocean, south of Iceland. CG = Charlie Gibbs FZ and B = Bight FZ. Half- 

spreading rate is 1.0 cm/yr. Contours are drawn at 1, 2.5, and 4 km depth, and regions 

with depths shallower than 2.5 km are shaded, c) Bathymetry of the Cocos-Nazca 

spreading center near the Galapagos plume. Contours mark 1.8, 2.8, and 3.8 km depth, 

and seafloor shallower than 2.8 km is shaded. IN = Inca FZ and EC = Ecuador FZ. Insets 

show blow-ups of the inferred eastern and western termination of the Galapagos plume 

axial bathymetric anomaly. 
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Figure 2: Set-up of the model domain. Two ridge segments, indicated by double lines 

and each of length Ls = 250 km, are offset by a transform fault of length Lt. Our 

experiments examine 1^ ranging from 0 km to 250 km in increments of 50 km. For a given 

L,, half-spreading rate, U, is set equal to 0.75, 1.25, 3.0, or 7.25 cm/yr in the numerical 

experiments. The model box is Xmax = 750 km in the spreading direction, Ymax = 500 km 

in the along-axis direction, and Zn,ax = 660 km in depth. A pressure gradient is imposed by 

applying P(x) = P0 exp(-0.5* (X/x0)2) / (2rc)1/2x0 at Y = Ls and P = 0 at Y = -Ls. This 

pressure gradient drives viscous flow. As shown by shading, the spatial distribution of 

pressure follows a Gaussian distribution, with maximum amplitude P0 = 15 MPa at the 

ridge and standard deviation width x0 = 100 km. The locations of the 1019 Pa s and 1021 Pa 

s viscosity contours are schematically indicated. Other boundary conditions are zero shear 

stress at Z = 0 km and Z = Zmax, vz = 0 at Z = Zmax, and zero normal stress at Z = 0 km. In 

calculating viscosity structure, temperature is set to be 0°C at Z = 0 km and 1350°C at Z = 

200 km. 
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Figure 3: a) Viscosity-depth profiles, using pressure- and temperature-dependent 

viscosity [Shen andForsyth, 1992], for the top 150 km of the model space (black and gray 

lines). Profiles for Lt = 150 km are given for each of the four spreading rates (U = 0.75, 

1.25, 3.0, and 7.25 cm/yr) at mid-segment and mid-transform. Additional profiles 

(colored lines) show viscosity-depth profiles from other modeling studies. The profile 

labeled "Braun et al. equalized" (red line) shows a mid-segment profile for U = 3.0 cm/yr 

when the effects of not only pressure and temperature but also dehydration, melting, and 

deformation mechanism are considered [Braun et al, 2000]. Braun et al. [2000] assume a 
18 mantle potential temperature of 1350°C at 660 km and a reference viscosity of 5x10 Pa s 

at a depth of approximately 115 km. Note that the Braun et al. [2000] solution predicts a 

high-viscosity lid extending to depths of -70 km, the transition from dry to damp melting. 

In contrast, Ito et al. [1999], who also consider the effects of dehydration on viscosity, 

place the boundary of wet and dry melting at approximately 110 km (blue curve). The Ito 

etal. [1999] viscosity-depth profile is taken through the center of a ridge-centered plume. 

Mande potential temperature was assumed to be 1530°C for Z > 240 km, half-spreading 

rate was 0.95 cm/yr, and viscosity was 3.5xl019 Pa s at 200 km depth. For comparison, 

the Ito et al. [1999] viscosity-depth profile without dehydration is plotted in orange, b) 

Viscosity slice at Z = 43 km for U= 1.25 cm/yr and 1^ = 150 km. Viscosity contours are in 

Pa s. c) Same as in panel b), but for U = 3.0 cm/yr. 
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Figure 4: a) Sketch of the model domain, with ridges indicated as double lines and the 

positions of slices in panels b, c, and d shown as purple and gray-shaded planes. The 

magnitude of the plume driving pressure is schematically shown with arrows of varying 

lengths. Calculations are for U = 1.25 cm/yr and Lt = 100 km. b) Slice of vy at Z = 72 

km. Contours show viscosity of 1019 5, 1020, and 10205 Pa s. Note that the high-velocity 

region (blue color) curves as it encounters the transform fault, c) Across-axis slice of vy at 

20 Y = 125 km. Black dot-dash contour delineates T| = 10 Pa s and solid black contour 

shows the position of T| = 1019 5 Pa s. The position of the ridge axis for Y > 0 km is 

marked by a thick white and gray vertical line at X = 0 km. Note that the high-velocity 

region is centered about the ridge axis, d) Across-axis slice of vy at Y = -50 km. 

Viscosity contours are as in b. The vertical white and gray lines at X = 100 km and 0 km 

indicate the position of the ridge axis for Y < 0 km and Y > 0 km, respectively. Note that 

color scale is different from that used in panel b. Also note that the shallowest high- 

velocity region does not coincide with the location of either ridge axis, but instead falls in 

between them. 
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Figure 5: a) Across-axis cross-section of vy at Y = 125 km. Viscosity is pressure- and 

temperature-dependent and ranges from approximately 1019 Pa s to 1024 Pa s in this slice. 

U = 1.25 cm/yr and Lt = 0 km. b) Across-axis slice of vy also at Y = 125 km, but for an 

isoviscous (10 Pa s) model calculation. Note that the high-velocity region is much more 

focused for the variable viscosity case (panel a) than for the isoviscous case (panel b). 
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Figure 6: Plan view slices of along-axis velocity at Z = 72 km. Panels a-c are for U = 

1.25 cm/yr, and panels d-f are for U = 0.75 cm/yr. Offsets vary from 50 km (panels a and 

d) to 100 km (panels b and e) to 150 km (panels c and f). 
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Figure 7: Maximum vy within the model domain for all spreading rates and Lt = 0 km 

under the prescribed along-axis pressure gradient of 15 MPa over 500 km. Note that 

maximum vy for the isoviscous case (diamond, r\ = 10 Pa s) is substantially smaller than 

that for the case of variable viscosity with pressure- and temperature-dependence (circle) 

for U = 1.25 cm/yr. This is because the sloping base of the lithosphere in the variable 

viscosity case channelizes flow along-axis. 
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Figure 8: Along-axis volumetric material flux Q through vertical planes perpendicular to 

the spreading axis, for the case of Lt= 0 km and U = 1.25 cm/yr. Note that flux decreases 

in the along-axis direction away from the plume pressure center at Y = 250 km, even 

without a transform offset. 
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Figure 9:    Flux Q across a transform offset of 200 km for U = 0.75, 1.25, and 3.0 

cm/yr, normalized to the flux across the transform for U = 7.25 cm/yr. 
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Figure 10: a) Normalized flux Q/Qn=o as a function of along-axis distance for U = 0.75 

cm/yr. Normalized flux curves are given for all six L,, ranging from 0 km to 250 km. The 

transform offset is located at Y = 0 km. Note that flux decreases with increasing transform 

length Lt. b-d) Same as for a, but for U = 1.25, 3.0, and 7.25 cm/yr, respectively. 
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Figure 11: Gradients in across-transform flux for U = 3.0 and 7.25 cm/yr. AQ/AY is 

defined to be (Q/QU=O|Y=2O km - Q/QLI=O|Y=-2O kmV AY, or the difference between pre- 

transform and post-transform normalized flux over a fixed distance AY of 40 km (inset). 

Large AQ/AY indicate significant drops in along-axis flux across the transform. Note that 

the effect of increasing transform length on AQ/AY is greater for U = 3.0 cm/yr than for u 

= 7.25 cm/yr. 
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Figure 12: The effects of spreading rate and transform offset length on the along-axis 

dispersal distance of high-velocity flow, a) We define vymax as the maximum along-axis 

velocity within the model box at Z = 72 km, within the zone of fastest along-axis flow. 

Ystag is defined as the distance at which vy|Z=72 km first drops below 18.5% of vymax. A 

threshold of 18.5% was selected because it is the characteristic velocity dissipation factor 

for the Lt = 0 case. That is, vy|Y=o km = 0.185*vy|Y=LS for U = 0.75 cm/yr and Lt = 0 km. 

b) Ystag/Ls for U = 0.75 cm/yr . Note that the longer the transform offset, the shorter the 

distance of the stagnation point from the plume center, c-e) Same as in a, but for U = 

1.25, 3.0, and 7.25 cm/yr, respectively. 
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Figure 13: a) The path of the highest-velocity flow at Z = 72 km for Lt = 100 km and U 

= 0.75, 1.25, and 3.0 cm/yr. Light gray lines indicate ridge axis, with a single gray line 

marking the transform fault at Y = 0 km. AD is defined as the distance between X = 0 km 

and the position of the high-velocity flow at the transform fault at Y = 0 km. b) The path 

of the highest-velocity flow at Z = 72 km for U = 0.75 cm/yr and L, = 0, 50, and 100 km. 

The locations of grid nodes are indicated with light gray dots, c) AD as a function of L, for 

U = 0.75, 1.25, and 3.0 cm/yr. Note that AD is always less than Lt, although AD is closer 

to L( for slower spreading rates than faster spreading rates. 
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Figure 14: Sensitivity of normalized flux Q/Q(p0=i5 MPa, xo=ioo km) to different driving 

pressure P0 and pressure standard deviation length x0. For all of the model runs shown, L, 

= 100 km and U= 1.25 cm/yr. 
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Figure 15: a) A comparison of axial velocity-depth profiles calculated using pressure- 

and temperature-dependent viscosities (this study, black line) based on Shen and Forsyth 

[1992] and the viscosity solution of Braun et al. [2000] (gray line), which considers the 

additional effects of melting, dehydration, and change in deformation mechanism. Velocity 

profiles were taken at X = 0 km and Y = 250 km, for \^ = 0 km and U = 3.0 cm/yr. b) A 

comparison of along-axis flux calculated using the viscosity solutions of this study (based 

on Shen and Forsyth [1992]) and Braun et al. [2000]. 
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Figure 16: Schematic cartoons of plume-ridge interaction for an unsegmented ridge (a) 

and a ridge with significant transform offsets (b). Dark gray circles show plan view of a 

hypothesized vertical plume conduit. The conduit size and flux of plume 1 are assumed to 

equal to those of plume 2. Light gray shading depicts along-axis dispersal of plume 

material along a low-viscosity channel, and the ridge axes with a plume signature are 

emphasized with dark gray lines. The lengths of the ridges affected by the plumes, or waist 

width, are Wi and W2. Because along-axis flux in b is limited by transform faults, W2 < 

WL Thus, flux inferred from waist width will be an underestimate for plume 2 compared 

to the case of an unsegmented ridge. 
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Chapter 4 

Helium isotope systematics of the western Southwest Indian 
Ridge:   Effects of plume influence, spreading rate, and 

source heterogeneity 

Jennifer E. Georgen, Mark D. Kurz, Henry J.B. Dick, and J. Lin 

Abstract 
hie/^He ratios have been measured for a suite of basalt glass samples from the ultra-slow 
spreading (0.8 cm/yr half-rate) western Southwest Indian Ridge. The study area is divided 
into two subregions, a supersegment between 9° and 16°W where poorly-defined ridge 
segments he at a highly oblique angle to the regional spreading direction, and a 
supersegment between 16° and 24°W where ridge segments are nearly orthogonal to the 
spreading direction. Although earlier geochemical studies suggested that the western 
oblique supersegment may be affected by the high 3He/4He Bouvet plume more than 700 
km away, there is no evidence for elevated He/Tie in the region. In fact, He/Tie 
throughout the entire study area ranges from 6.3 - 7.3 Ra, values that are significantly 
below normal mid-ocean ridge basalt helium isotopic ratios of 8 ± 1 Ra. The preferred 
explanation for low 3He/4He ratios is mantle heterogeneity from recycled crustal or 
lithospheric material. Other possible explanations for such consistently low He/ He ratios 
include prior mantle melting and vertical mantle stratification. In addition to low ratios, 
3He/4He measurements for the western Southwest Indian Ridge are characterized by low 
variability, despite earlier studies' predictions of an inverse relationship between spreading 
rate and helium isotope standard deviation. 

To better understand the systematics of 3He/4He variation around hotspots such as 
Bouvet, helium isotopic ratios are compared to geophysical descriptors of plume 
geodynamics such as mantle Bouguer anomaly, waist width, and plume flux. Unlike 
Iceland, where a clear trend of increasing 3He/He ratios toward the hotspot is observed 
along the relatively unsegmented Reykjanes Ridge, 3He/4He systematics near Bouvet are 
influenced by segment-scale processes and the geodynamical effects of long transform 
offsets. Correlations between 3He/4He and mantle Bouguer anomaly amplitude, plume 
waist width, and plume flux for a global array of hotspots may suggest that relatively high- 
flux plumes originate in the comparatively undegassed deep mantle. 

1.    Introduction 

Along the global mid-ocean ridge system, areas affected by hotspots often have distinct 

geochemistry from "normal" mid-ocean ridge basalt (MORB). Analyses of major element, 
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rare earth element, and isotopic data for axial dredge samples can be merged with 

geophysical data such as bathymetry and gravity to delineate portions of ridge influenced 

by a nearby mantle plume [Hart et ai, 1973; Schilling, 1975; Mahoney et ai, 1989; 

Schilling, 1991; Ito and Lin, 1995a, b]. Helium isotopic data are often a sensitive indicator 

of plume influence [Kurz et ai, 1982a, b; Poreda et ai, 1985; Moreira et ai, 1995; 

Graham et ai, 1999]. One assumption commonly made in interpreting noble gas 

geochemical data is that the hotspot source is relatively undegassed lower mantle. Under 

this assumption, high He/He indicates plume-like upwelling, since the deep earth is 

believed to be a source of primordial He with a relatively low time-integrated (U+Th)/He 

ratio. The overall goal of this investigation is to explore the relationship between He/He 

ratios and mid-ocean ridge geophysics, particularly in plume-affected areas. 

Values of 3He/4He for normal MORB generally fall in the range of 8+1, normalized to 

the atmospheric ratio of 1.384x10" (Ra) [Kurz and Jenkins, 1981]. The assumption of a 

normal MORB value of 8±1 Ra has been calculated using along-axis studies [e.g., Kurz et 

ai, 1982b; Graham etal., 1993a; Poreda et ai, 1993], and omitting significant He/ He 

variations near hotspots. More recent studies, incorporating data from a variety of geologic 

settings including ridges, back-arc basins, hotspot-influenced sections of ridge, and near- 

ridge seamounts, have questioned this value and suggest that the global mean He/He ratio 

is 9.1+3.5 Ra [Anderson, 2000]. This estimate, however, suffers from numerous 

statistical effects, including the assumption that He/ He ratios are Gaussian-distributed and 

artifacts from spatial averaging of unevenly distributed data. For the purpose of this study, 

we will assume that normal MORB helium ratios are 8±1 Ra, because it serves as a useful 

reference. However, this study has implications for the definition of global "normal" 

MORB values, particularly for the Southwest Indian Ridge (SWIR). 
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Helium ratios around hotspots are often significantly different from those for normal 

MORB. For example, Hawaii has elevated 3He/T-le, in the range of 8-32 Ra [e.g., Kurz et 

al, 1982a; 1983; 1991; 1996]. In the vicinity of Iceland, ^e/Tie increases from <8 Ra to 

the south of the Gibbs Fracture Zone to -15 Ra on the southern submarine portion of the 

Iceland plateau, to a high of 37 Ra on the island itself [Hilton et al., 2000]. Furthermore, 

Galapagos helium ratios fall between 8.6 and 27 Ra [e.g., Graham et al, 1993a; Kurz and 

Geist, 1999]. Moreover, Reunion Island helium measurements range from 11-14 Ra 

[Graham et al, 1990; Staudacher et al, 1990], and isotopic ratios around the Bouvet 

plume in the southern Atlantic Ocean reach 14.2 Ra [Kurz et al, 1998]. 

There are also ocean islands and ridge segments with 3HeAle ratios lower than 8 Ra. 

Notably, most 3He/4He ratios along the Mid-Atlantic Ridge (MAR) near the Azores range 

from approximately 7 to 10 Ra [Kurz et al, 1982b]. Kurz et al [1982a] and Graham et al. 

[1992a,b] found ratios for Tristan da Cunha, Gough, and St. Helena to be uniformly less 

than 7 Ra. Similarly, Marion Island, near the central SWIR, has ^e/Tie of 6.7-7.7 Ra 

[Kurz etal, 1982a; Mahoney et al, 1989]. Possible explanations for low 3He/4He ratios 

include the addition of low He/(U+Th) material into the mantle source by recycling of 

subducted oceanic crust or delaminated continental lithosphere, and magma chamber or 

post-eruptive degassing followed by radiogenic ingrowth [Kurz et al, 1982b; Hart and 

Zindler, 1986; Sarda et al, 2000]. 

The overall goal of this investigation is to explore the relationship between 3He/4He 

ratios and mid-ocean ridge geophysics, particularly in plume-affected areas. This 

investigation also explores helium isotope systematics for the western SWIR, between 

10.67° and 23.12° E. This study area includes the slowest spreading rates for which 

3He/4He ratios have yet been measured, as well as a section of ridge postulated to be 

affected by the Bouvet plume [le Roex et al, 1992].   Surprisingly, for this ~800-km-long 
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portion of the SWIR, we report 3He/4He ratios that are both remarkably uniform and 

consistently below normal MORB values. 

2. Geological and geochemical setting 

2.1 Ridge geometry 

The SWIR extends -8000 km, from the Bouvet Triple Junction (BTJ) in the west to the 

Rodrigues Triple Junction in the east (Figure 1). Spreading rates along the SWIR are ultra- 

slow and relatively uniform, with half-rates ranging from 0.7-0.9 cm/yr over much of the 

ridge's length. Two near-ridge hotspots, Bouvet and Marion, affect accretionary processes 

along the SWIR [Georgen et al, 2001]. The Bouvet hotspot is located approximately 300 

km east of the BTJ and roughly 50 km from the nearest spreading segment of the SWIR. 

Marion is approximately 250 km south of the ridge axis in the central portion of the SWIR, 

to the east of the Andrew Bain FZ. 

The western SWIR can be divided into three sections based on spreading geometry 

(Figure 1). Between the BTJ and the Shaka FZ, well-defined short ridge segments, 

orthogonal to the regional spreading direction, are offset by relatively long-lived transform 

faults. In contrast, segmentation is poorly defined along the 400-km-long section of ridge 

between 9°E and 16°E. This portion of the SWIR lies at a high angle to the regional 

spreading direction, and consequently is referred to here as the oblique supersegment. 

Because of its obliquity, this SWIR section has an effective spreading rate, or spreading 

rate measured orthogonal to the local ridge trend, of only 0.5 cm/yr. This is the slowest 

rate along the accessible portion of the global ridge system (only the Arctic ridges are 

slower). Between 16°E and 25°E, the SWIR is composed of a series of short (-42 km) 

segments separated by non-transform offsets [Grindlay et al, 1998]. Since ridge segments 
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are locally perpendicular to the regional spreading direction in this area, this portion of the 

SWIR will be referred to as the orthogonal supersegment. The orthogonal supersegment 

was the focus of a detailed geophysical survey by Grindlay et al. [1998], while the recent 

R/V Knorr cruise KN162 (Austral summer 2000-2001) surveyed bathymetry, magnetics, 

and gravity of the oblique supersegment and dredged >50 locations on both the oblique and 

orthogonal supersegments [Dick et al, 2001a]. 

The BTJ is the intersection of the SWIR, American-Antarctic Ridge (AAR), and 

southern MAR. Over the past few million years, half-spreading rates for the AAR and 

MAR have been 0.9 and 1.4 cm/yr, respectively [Mitchell and Livermore, 1998]. Spiess 

Seamount, a large volcanic edifice on the first SWIR segment to the east of the BTJ, may 

reflect recent reorganization of the triple junction and/or the present-day location of the 

Bouvet plume [Ligi et al., 1997; Mitchell and Livermore, 1998]. 

2.2 Geochemistry: Bouvet Triple Junction vicinity and western SWIR 

Values of ^e/He in the immediate vicinity of the BTJ range from 6.5 to 14.2 Ra 

[Kurz et al, 1998]. Along the SWIR, relatively high (9.98 - 12.9 Ra) values were 

obtained for four samples on the ridge segment closest to the Bouvet plume; a single 

measurement for Bouvet Island itself is 12.4 Ra. Ratios for the segments flanking the 

Bouvet Ridge segment are low (7.12 - 7.45 Ra). Surprisingly, however, the highest 

measurements were obtained for the ridge segment between the Islas Orcadas and Shaka 

FZs, where a single dredge haul included rocks with ratios ranging from 7.41 - 14.9 Ra. 

Along the eastern AAR, 3He/4He ratios are systematically higher near the BTJ (8.95 - 9.71 

Ra), compared to lower values between 15°W and 18°W (6.68 - 8.1 Ra). 

Four hotspots are located within 750 km of the southern MAR, Tristan, Gough, 

Discovery, and Shona (Figure 1).  As noted previously, Tristan and Gough are both low 
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^e/^He hotspots, with ratios <7 Ra [Kurz et al, 1982a; Graham et al, 1992a,b]. 

However, both Shona and Discovery are characterized by well-defined axial 3He/4He 

highs, with maximum ^e/^He ratios of 14.7 and 14.2 Ra, respectively [Moreira et al., 

1995; Kurz et al, 1998; Sarda et al, 2000]. To the south of Shona, in the immediate 

vicinity of the BTJ, MAR HeAle ratios return to lower values of 7.11 to 7.66 Ra [Kurz et 

al, 1998]. Note that these values are slightly lower than 8 Ra, the typical value for N- 

MORB. 

Between the BTJ and 11°E along the SWIR, normal, transitional, and enriched MORB 

are juxtaposed with no clear gradient away from the Bouvet plume [le Roex et al, 1983]. 

This geochemical variability is attributed to the ultra-slow spreading rate, which allows the 

persistence of small, localized plume-related heterogeneities without magma mixing or 

homogenization [le Roex et al, 1983; 1992]. To the east, few published geochemical data 

exist for the orthogonal supersegment. However, for the oblique supersegment, isotopic, 

major element, and trace element data are available for six dredge hauls [le Roex et al, 

1992]. Dredged lavas are highly K-enriched, nepheline-normative alkali basalts and 

hawaiites with highly fractionated incompatible element ratios. Le Roex et al. [1992] 

explain these basalts as the products of extremely low percentage melting (<5%) of a 

veined mantle source. They postulate that the isotopically- and trace-element-enriched 

veins result from lateral dispersion of the Bouvet plume more than 700 km away. 

2.3 Study motivation 

This study documents variations in 3He/4He ratios along the western SWIR. Since 

these He/ He measurements correspond to the slowest spreading rates for which helium 

data are currently available, we first determine how 3He/4He values from the oblique and 

orthogonal supersegments compare to measurements at faster spreading ridges.   Second, 
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we evaluate whether 3He/4He measurements differ systematically between the orthogonal 

and oblique supersegments, as a function of both proximity to the Bouvet hotspot and 

change in effective spreading rate. Third, we place the variability of 3He/4He along the 

western SWIR in a global context. In particular, we evaluate the hypothesis that 3He/4He 

variability for this ultra-slow spreading ridge should be high, given the linear relationship 

between reciprocal spreading rate and ^e/He variance proposed by Allegre et al. [1995]. 

Finally, we relate 3HeAle ratios to magmatic robustness by comparing ^e/lle to mantle 

Bouguer anomaly (MBA) calculations, both for the hotspots around the BTJ as well as for 

Iceland and Azores in the north Atlantic. 

3. Samples and analytical procedures 

The samples used in this study primarily came from dredge sampling of the SWIR 

between 10°E and 23°E during Legs 162-7 and 162-9 of R/V Knorr (Austral summer 2000- 

2001) [Dick et al, 2001b]. Samples from Leg ANT IV/4 of the F.S. Polarstern (1986) 

and the 1981 Agulhas Leg 22 cruise supplemented Knorr dredges. Although KN162 

included over 60 dredges along the SWIR axis, the recovered rocks varied in lithology and 

degree of alteration. The samples used in this investigation were selected for the 

availability of fresh basaltic glass. Vesicularities of the measured glasses range from <1% 

to 5%. In general, glasses from the oblique supersegment were more altered than those 

from the orthogonal supersegment. The locations of the analyzed basalts are indicated in 

Figure 1 and Tables 1 and 2. 

Fresh glasses in the 0.5 - 2 mm size fraction were handpicked under magnification and 

cleaned ultrasonically in ethanol and acetone. Helium measurements were generally 

performed by crushing in vacuum, although a few samples were analyzed by melting in a 
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high vacuum furnace. Crushing in vacuo selectively releases helium contained by vesicles, 

and is the preferred method here for two reasons. First, it minimizes post-eruptive 

radiogenic contributions from decay of Th and U, which reside in the solid matrix. 

Second, based on glass-vesicle equilibrium studies, 1-5% vesicularity corresponds to 

vesicle/glass helium concentration ratios of 1 to 100 [Kurz and Jenkins, 1981]. Therefore, 

glass matrix He/He ratios are more susceptible to change by radiogenic ingrowth not only 

because of higher (U+Th), but also because overall gas concentrations are lower. 

Concentrations for selected samples were determined by both crushing and melting of the 

remaining powder. All measurements were performed at Woods Hole Oceanographic 

Institution on a 90° sector mass spectrometer. Extraction lines for crushing and melting, 

mass spectrometry, and blank values are described elsewhere [Kurz et ai, 1987; 1996]. 

He blanks during the course of these measurements were ~6 x 10"11 ccSTP, and 

uncertainties in the concentrations are -1%. 

Associated major element, rare earth element, and isotopic data are not yet available for 

the KN162 samples. Petrographic descriptions, as well as whole rock and glass analyses 

for the Polarstern samples, can be found in le Roex et ai [1992]. Isotopic, major element, 

and trace element data for AG22-9-2 are described in Mahoney et al. [1992]. 

4. Results 

The "Tie concentrations and 3He/4He ratios (R/Ra) are reported in Tables 1 (oblique 

supersegment) and 2 (orthogonal supersegment). Errors for the isotopic ratios are la. 

Concentrations of 4He vary widely, from 0.006447 iiccSTP/g (KN162-9-64-1) to 38.06 

HccSTP/g (KN 162-7-11-25), although it should be noted that this range includes 

measurements by both melting and crushing (Figure 2).    Figure 3 suggests that 4He 
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concentrations for samples from the oblique supersegment are more variable and may 

generally be lower than those from the orthogonal supersegment, although there are 

certainly exceptions to this generalization (e.g., AG22-5-14). Lower concentrations for the 

oblique supersegment may reflect disorganized spreading, allowing for more extensive 

surface degassing. There may be some indication that shallower samples might have lower 

"Tie concentrations (Figure 4). However, these comparisons are preliminary because most 

of the data were obtained by crushing in vacuo, and therefore represent a minimum 

concentration bound. 

Isotopic compositions of samples with extremely low gas contents may have been 

affected by degassing followed by post-eruptive radiogenic ingrowth or seawater 

interaction. To guard against overinterpretation of such data, this discussion focuses on 

samples with "Tie concentrations greater than 0.4 uecSTP/g. Over time scales of < 1 Myr, 

it is unlikely that post-eruptive radiogenic ingrowth of He by U+Th decay would affect the 

•Tie/Tie ratios of samples with concentrations higher than this. After 1 Myr of radiogenic 

ingrowth in a closed system, a sample with a He concentration of 0.4 |XccSTP/g and an 

initial 3HeAle ratio of 8 Ra would decrease by only 10% (Figure 5), assuming a uranium 

concentration [U] of 0.6 ppm [Kurz et al., 1998] and a Th/U ratio of 3 [Jochum et ai, 

1983]. Moreover, -10 Myr would be required for the 3HeAle ratio for a sample with Tie 

= 4 nccSTP/g to decrease by 10%. For 'Tie = 40 jiccSTP/g, approximately the highest 

concentration measured in this suite of basalts, this time scale is on the order of 100 Myr. 

In 1 Myr, the decrease in 3He/4He for 4He = 40 uecSTP/g is smaller than analytical error. 

Therefore, a concentration cutoff of 0.4 |iccSTP/g is very conservative both because the 

samples were dredged at the ridge axis and are most likely < 300 kyr in age, and also 

because these calculations assume fairly high Th+U concentrations. 
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Two samples (PS 86-6-2 and KN162-7-6-2) were analyzed by both crushing and 

melting. For sample KN 162-7-6-2, the ^e/He ratio obtained by crushing (6.80 ± 0.04 

Ra) is statistically indistinguishable from that obtained by melting (6.74 ± 0.05 Ra). In 

contrast, for sample PS86-6-2, the melting-derived ratio of 3.21 ± 0.07 Ra is significantly 

lower than the crushing-derived ratio of 5.98 ± 0.40 Ra, which is consistent with 

radiogenic He in the glass. Graham et al. [1987] determined eruption ages for Pacific 

seamounts using helium disequilibrium suggested by discrepant crushing and melting 

measurements for a given sample. Assuming that the HeAle ratio obtained by crushing is 

representative of the initial isotopic value, [U] = 0.6 ppm [Kurz et al, 1998], Th/U = 3 

[Jochum et al., 1983], helium was in equilibrium at eruption, and the only source of low 

He/ He ratio is radiogenic ingrowth, the eruption age for PS86-6-2 is approximately 106 

ka. If instead the initial isotopic value was equal to the highest He/He ratio along the 

oblique supersegment, 6.94 Ra, the corresponding eruption age is approximately 123 ka. 

These calculations indicate that HerHe ratios for low- He samples can be significantly 

altered by post-eruptive radiogenic ingrowth on -100 kyr time scales, and reinforce the 

necessity of making measurements by crushing in vacuo and using a cutoff concentration. 

It should be noted, however, that uncertainties in parameters such as [U] may contribute 

significantly (-30%) to error in these age calculations. Also, in the absence of other rare 

gas isotopic data, it is difficult to rule out contributions by atmospheric contamination, as is 

suggested by near-atmospheric Tie/Tie ratios in samples such as KN 162-9-33-51 (1.25 

Ra) and KN162-9-61-71 (1.18 Ra). 

For samples with Tie concentrations above 0.4 uxcSTP/g, HerHe ratios vary 

between 6.3 and 7.3 Ra. These values are assumed to represent the mantle and are 

uniformly below the global average of 8 Ra for normal MORB. 3He/*He ratios for the 

oblique supersegment show no systematic trend with longitude (Figure 1).  In contrast, for 
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the eastern portion of the study area, there is a trend of increasing 3He/4He ratios toward the 

Du Toit FZ (Figure 6). Isotopic ratios for the samples east of 16°E are well described by a 

linear relationship between ^e/He and longitude, with r = 0.85. Over this region, 

^e/Tie ratios increase by approximately 0.7 Ra, or approximately 20 times the average la 

measurement error. 

Interestingly, both long-wavelength MBA (Figure 6) and the geoid also increase from 

16° to 24°E. As described in detail in a later section, lower values of MBA indicate 

thickened crust, lower mantle temperatures, and/or lower crustal density. A trend of 

eastward increasing MBA along the orthogonal supersegment is generally consistent with 

the supersegment's position between the thermally warm Bouvet Triple Junction region and 

the cool, long-offset Du Toit and Andrew Bain fracture zones. However, a positive 

correlation between MBA and 3He/4He ratio is unusual in both hotspot-affected (e.g., 

Iceland) and non-hotspot-affected (e.g., Australian-Antarctic Discordance [Graham et al., 

2001]) settings, where the 3HeAle-MBA correlation is often negative. A prominent, 

roughly circular global geoid high, with a diameter of a few thousand kilometers, is 

centered at approximately the location of the Marion plume [Lemoine et al, 1998]. This 

geoid high indicates a deep-seated and spatially extensive planetary density anomaly which 

could contribute to the gravity gradient observed for the orthogonal supersegment. 

5. Discussion 

5.1 Influence of the Bouvet plume on the oblique supersegment 

Despite evidence from major element, trace element, and other isotopic data for 

influence of the Bouvet plume on the oblique supersegment [le Roex et al., 1992], helium 

isotopes do not indicate that a deep-seated, relatively undegassed mantle plume is presently 
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affecting accretionary processes along this portion of the SWIR. Over the oblique 

supersegment, ^e/^He ratios range from 6.26 to 6.94 Ra, significantly below values for 

normal MORB. Since Bouvet is a "high He/He" hotspot, these values do not suggest 

mixing between normal MORB and a Bouvet plume end-member. 

We suggest three possible explanations for the discrepancy between He/^He ratios and 

other geochemical indicators of plume influence along the oblique supersegment. The first 

explanation posits that lateral dispersion of the Bouvet plume away from its vertically 

upwelling plume conduit at Bouvet Island (3°E) is broad. Absolute plate motion of the 

African and Antarctic plates would shear upwelling plume material to the east [Richards and 

Griffiths, 1989], similar to the case of the Galapagos plume [Kurz and Geist, 1999]. For 

Galapagos, Kurz and Geist [1999] postulate that helium is preferentially extracted from the 

vertically upwelling plume, resulting in HeAle values that are high at Fernandina, inferred 

to be directly over the plume conduit, and that decrease rapidly away. In contrast, plume- 

like isotopic ratios of Sr, Nd, and Pb, which are assumed to be less incompatible than He, 

remain in the advected plume mantle farther away from the center of focused upwelling. 

Therefore, samples dredged far from the Bouvet conduit, but still within the range of 

Bouvet influence, could have low He/He ratios but enrichments in other isotopic systems. 

In this way, the oblique supersegment could be influenced by Bouvet but lack high 

He/ He ratios. However, other data suggest that the broad Bouvet plume hypothesis is 

unlikely. For example, integrated analysis of gravity and bathymetry data indicate that the 

Bouvet plume along-axis anomaly is strongly localized between the Bouvet and Islas 

Orcadas fracture zones, -300 km from the oblique supersegment [Georgen et ah, 2001]. 

Although a broad thermal plume should be associated with thickened crust [e.g., Ito and 

Lin, 1995a; Allen et al, 1997], crustal thickness for the oblique segment inferred from 

gravity data is at most that of normal oceanic crust [Georgen and Lin, 1996].   For these 
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reasons, we discount invoking broad plume dispersal to explain the low HerHe values for 

the oblique supersegment. 

A second explanation for the discrepancy between He/He ratios and other 

geochemical indicators of plume influence relates to degassing of a vein assemblage 

emplaced by the Bouvet plume in the oblique supersegment mantle source region >30 Ma. 

Reconstructions suggest that interaction between the Bouvet plume and the SWIR began in 

the vicinity of the Shaka FZ at approximately 30 Ma, although the precise time is poorly 

constrained and could easily vary by as much as ±20 Ma [Hartnady and le Roex, 1985; 

Georgen et al, 2001]. As the SWIR moved eastward over the plume, ridge segments to 

the west of the Shaka FZ progressively acquired a Bouvet plume signature. Assuming that 

basalts along the oblique supersegment are produced solely by preferential melting of the 

enriched vein assemblage, that the vein assemblage represents a closed system, and that the 

initial ^eAle ratio of these veins at the time of emplacement was equal to that observed at 

Bouvet Island today (12.4 Ra) [Kurz et al, 1998], it is possible that pre-eruptive 

radiogenic ingrowth of 4He since the time of emplacement has been sufficient to lower 

^e/Tle ratios to the observed value of ~7 Ra. 

The simplest explanation for the low He/He ratios along the oblique supersegment, 

however, is that the isotopic, major element, and trace element variability observed by le 

Roex et al. [1992] is characteristic of melting of a heterogeneous ambient mantle at ultra- 

slow spreading rates, and does not require a Bouvet plume end member. This suggestion 

is corroborated by similar observations of juxtaposed plume, transitional, and normal 

MORB along the AAR, far from the Bouvet plume source [le Roex et al, 1985]. 

Furthermore, since the mean 3HeAle ratio (6.6 Ra) for the non-plume-influenced 

orthogonal supersegment is very similar to that of the oblique supersegment (6.9 Ra), this 

explanation does not require fortuitous evolution of oblique   HerHe ratios to match 
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orthogonal   HerHe ratios.    However, thorough geochemical analysis of the dredge 

samples from both supersegments is required to evaluate this hypothesis. 

5.2    He/He variability and spreading rate 

Because the SWIR samples were dredged from a portion of ridge with extremely slow 

spreading rate, it is important to compare their 3He/4He ratios to those obtained for samples 

from faster-spreading ridges. Figure 7 shows the locations of all He/ He measurements 

on mid-ocean ridge glasses in the RIDGE PETDB database [Langmuir et ah, 2001], 

supplemented by analyses for the Easter microplate by Poreda et al. [1993] and for the 

Southeast Indian Ridge (SEIR) by Graham et al. [2001]. Analyses are available for 11 

ridge systems, AAR, SWIR, MAR, SEIR, East Pacific Rise, Galapagos Spreading Center, 

Juan de Fuca, Kolbeinsey, Red Sea, Reykjanes Ridge, and Central Indian Ridge. This 

database covers both hotspot- and non-hotspot-affected portions of ridge, but does not 

include data from oceanic islands. 

Comparison of samples from the ultra-slow SWIR to those from the slow-spreading 

MAR and intermediate-spreading SEIR illustrates the effects of spreading rate on 3He/4He 

ratios. Since it is unlikely that the oblique and orthogonal supersegments are hotspot- 

influenced, we cull from the RIDGE PETDB database all samples that occur within a 

plume-affected region. We define plume-affected regions as areas with seafloor > -20% 

shallower or deeper than a local baseline depth, following the methods of ho and Lin 

[1995b] and using ridge topography profiles from Graham et al. [1992b], Ito and Lin 

[1995b], Smith and Sandwell [1997], Minshull et al. [1998], Douglass et al. [1999], 

Graham et al. [1999], and Georgen et al. [2001]. We also eliminate measurements from 

the Australian-Antarctic Discordance (AAD) along the SEIR, an area with unusually cool 
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mantle temperatures. Note that both the MAR and SEIR have a large database of non- 

plume-affected samples, unlike other ridge systems such as the East Pacific Rise. 

Examining similarly filtered data sets from the MAR, SWIR, Central Indian Ridge, 

Juan de Fuca Ridge, and East Pacific Rise, Allegre et al. [1995] suggested a linear 

correlation between 3He/4He standard deviation and reciprocal spreading rate. Figure 8, 

which includes the correlation suggested by Allegre et al. [1995], indicates that this 

relationship may no longer hold true for the larger MAR, SEIR, and SWIR databases that 

have accumulated over the past half-decade. However, it is clear from Figure 8 that the 

samples from 10°-25°E on the SWIR have significantly lower standard deviation than the 

MAR, SEIR, or full SWIR data sets. This relative helium isotopic uniformity is in strong 

contrast to the variability between the BTJ and 7°E, where ratios range from 7.12 to 14.9 

Ra, as well as to the heterogeneity of other isotopic systems, such as Sr/ Sr ratios. Even 

though Sr, Nd, and Pb isotopic data are not yet available for the Knorr samples, six 

^Sr/^Sr values for the oblique supersegment range from 0.70290 to 0.70368 [le Roex et 

al., 1992], ranging from MORB-like to hotspot values [Hart and Zindler, 1989]. 

5.3 Low He/He values 

In addition to low isotopic variability, another salient characteristic of the oblique and 

orthogonal supersegments are 3HeAle ratios that are uniformly below "normal" MORB. 

Figure 9 shows ^e/lie frequency histograms for each of the ridges in Figure 8. 

Compared to the MAR and SEIR, a large fraction of all non-plume-affected SWIR 

measurements are <7.5 (Figure 9b). Moreover, between 10°E and 25°E, all existing 

measurements are <7.5 Ra. Several potential causes of these low 3He/4He ratios are now 

evaluated. 
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Degassing. As discussed in an earlier section, degassing followed by post-eruptive 

radiogenic ingrowth of He by decay of U+Th can lower time-integrated 3He/4He ratios. 

However, the use of a threshold He concentration makes it unlikely that radiogenic 

ingrowth is sufficient to decrease SWIR He/^He ratios by approximately 1-2 Ra, from 8 

Ra to 6-7 Ra. Therefore, degassing alone does not seem to explain the low 3He/4He ratios. 

Preferential melting of clinopyroxene. In a study of Juan de Fuca Ridge 

basalts, Lupton et al. [1993] explain correlations between He/^He ratios, Na8 0, and Feg.o 

by invoking preferential melting of clinopyroxene. They point out that most U and Th in 

peridotite is located in clinopyroxene, and that clinopyroxene melting contributes relatively 

larger proportions to melts formed at lower temperatures. Therefore, they suggest that 

cooler, slower-spreading ridges should systematically have lower He/^He ratios than 

warmer, faster-spreading ridges. Although this explanation is consistent with low 3He/4He 

ratios at the ultra-slow spreading SWIR, rapid He diffusion makes it unlikely that mineral- 

scale isotopic heterogeneity can persist for characteristic time scales of > 100 years [Trull 

and Kurz, 1993]. Thus, preferential melting of clinopyroxene at low mantle temperatures 

cannot explain low 3He/4He ratios. 

Effects of prior melting. The oblique and orthogonal supersegments occupy a 

relatively unique location in the global ridge system, near the three-ridge intersection of the 

Bouvet Triple Junction. Because both the African and Antarctic plates have a significant 

component of eastward motion [Gripp and Gordon, 1990], it is possible that the western 

SWIR directly inherits mantle previously melted by the MAR and AAR. As mantle material 

travels eastward from the MAR and AAR, pre-emptive radiogenic ingrowth of 4He could 

lower He/Tie ratios. 

A series of calculations quantitatively illustrates the effects of mantle aging on 3He/4He 

ratios.   Assuming (1) closed system evolution of the mantle, (2) 4He concentrations in 
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MORB of 0.04, 0.4, 4, and 40 jiccSTP/g (spanning most of the range observed in the 

SWIR sample suite), (3) 10% melting, (4) perfectly incompatible partitioning behavior of 

helium, (5) mantle uranium concentration [U] of 0.006 ppm [Jochum et al, 1983], and (6) 

Th/U = 3 [Jochum et al, 1983], the minimum time required to lower a mantle HerHe 

ratio of 8 Ra by 10% is approximately 100 Myr (Figure 10). For samples with He above 

the cutoff threshold of 0.4 ^.ccSTP/g, this time is roughly 1 Gyr. This time scale becomes 

greater than the age of the Earth for higher 'Tie concentrations, such as 4 and 40 (iccSTP. 

Therefore, prior melting is not a feasible mechanism for lowering He/He ratios from 8 to 

-6-7 Ra on reasonable time scales. 

Mantle heterogeneity. 3He/4He ratios as low as 6.2 Ra have been observed for 

basalts from the AAD {Graham et al, 2001]. Analysis of basalts [Klein et al, 1991] and 

numerical modeling work [West et al, 1997] suggest that mantle temperatures may be as 

much as 150°C lower in the AAD than along surrounding sections of the SEIR. Graham et 

al. [2001] note a correlation between ^e/Tle ratios and Fe80, implying that lower 3He/4He 

ratios are associated with shallower depths of melting. Two possible explanations for this 

correlation include a vertically stratified mantle and melting of discrete heterogeneities 

[Graham et al, 2001]. The first explanation assumes that the upper mantle is vertically 

stratified, with relatively more degassed material with lower He/He ratios overlying less 

degassed material. Since melting occurs at shallower depths for thermally cool ridges such 

as the western SWIR and eastern SEIR than for faster-spreading or warmer ridges, melts 

produced at cool ridges should have lower 3HeAie ratios. A good test of this hypothesis 

for the SWIR will come from Fe8.o variation along the orthogonal and oblique 

supersegments, data which are not yet available. Interestingly, the portion of the SWIR 

between the Melville FZ at 61°E and the Rodrigues Triple Junction at 70°E has the greatest 

axial depth along the entirety of the SWIR,  suggesting anomalously  cool  mantle 
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temperatures [Rommevaux-Jestin et al., 1997; Cannat et al, 1999]. However, limited 

investigation of 3He/4He ratios from the eastern SWIR near the Rodrigues Triple Junction 

has yielded values of 7.68, 8.11, and 8.09 Ra [Mahoney et ai, 1989], higher than values 

observed along the orthogonal and oblique supersegments and counter to the predictions of 

the vertically stratified mantle model. Furthermore, three-dimensional thermal modeling 

calculations for passive plate separation predict that for depths within the melting region, 

axial temperature for the oblique supersegment is approximately 50-100°C lower than the 

orthogonal supersegment [Georgen et ai, 1998]. Therefore, if the vertically stratified 

mantle model applies, there should be a systematic difference between relatively low 

He/He ratios along the oblique supersegment and relatively high He/He ratios for the 

orthogonal supersegment. Although the predicted difference between oblique and 

orthogonal supersegment 3He/4He ratios may not be as great as the AAD ^eAle anomaly 

because of the overall colder thermal regime of the SWIR, no such difference was 

observed. 

Preferential melting of discrete mantle heterogeneities with lower solidus temperature 

than surrounding material may also result in low 3He/4He ratios [Graham et al, 2001]. For 

example, if crustal recycling veined the AAD MORB source with low-3He/4He garnet 

pyroxenite, then such veins would form a relatively large proportion of melt generated at 

cool ridges because they melt preferentially to mantle peridotite [Graham et al., 2001]. 

With increasing mantle temperature and depth of melting, mantle peridotite with high 

3He/4He would dilute garnet pyroxenite melts, resulting in MORB with 3He/4He ratios 

closer to 8 Ra. In general, the most likely explanation for low 3He/4He ratios appears to be 

introduction of recycled crustal or oceanic lithospheric material [e.g., Kurz et al, 1982b; 

Graham et al, 1993b; Sarda et al, 2000; Moreira and Kurz, 2001], with relatively high 

(U+Th)/He ratios, into the source region for orthogonal and oblique supersegment MORB. 
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It is important to note, however, that evaluation of this hypothesis requires geochemical 

data from the oblique and orthogonal supersegments that are not yet available. 

Overall, the existence of low 3He/4He ratios over a long portion of the SWIR suggests 

that the average value of 8±1 R/Ra for normal MORB may need to be referenced 

judiciously. It is possible that average MORB 3He/4He ratios vary between ridge systems. 

Currently, well-sampled ridges such as the slow-spreading MAR are over-represented in 

the global 3HeAle ratio database. However, the results of this study suggest that at least 

the ultra-slow spreading SWIR has systematically lower values than 8±1 R/Ra. 

5.4 Helium isotope ratios andhotspotflux 

Although ^eAle ratios for this new SWIR data do not appear to reflect contamination 

by the Bouvet plume, the global 3He/4He data set described above permits comparison 

between 3HeAle ratios and geophysical indicators of plume influence. Such comparisons 

place further constraints on potential causes for 3He/4He variability and comprise an 

independent test of the hypothesis that high 3He/4He ratios come from the deep mantle. 

Here we evaluate the possibility that 3He/4He ratios are correlated with hotspot crustal 

production or flux. Qualitatively, larger-flux hotspots, such as Hawaii and Galapagos, 

appear to have higher 3He/4He ratios than smaller hotspots, such as Shona and Bouvet. As 

a proxy for hotspot flux, we first examine the covariation of mantle Bouguer anomaly and 

^e/^He ratios for the north Adantic (Iceland and Azores) and the south AÜantic (Bouvet 

and Shona). 

Gravity calculations. Calculation of MBA requires well-constrained seafloor 

bathymetry and gravity. The primary bathymetric data source for this study was the 

shiptrack soundings used by Smith and Sandwell [1997] to calculate predicted seafloor 

topography   from   combined   ship   surveys    and   satellite-altimetry-derived   gravity. 
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Advantages of this database include its global coverage and prior editing by Smith and 

Sandwell [1997] to retain only high-quality, well-navigated seafloor depths. Using the 

predicted topography grids to calculate MBA is circular since predicted topography 

calculations include satellite altimetry; this problem was avoided by using only shiptrack 

soundings. Survey data from a number of individual cruises relevant to the areas of 

interest, including Douglass et al. [1995], Detrick et al. [1995], Searle et al. [1998], 

Grindlay etal. [1998], and Ligi et al. [1999], were also added to this database. Shiptrack 

coverage is relatively dense along long portions of the ridge axis. To guard against 

overinterpretation of somewhat sparser bathymetry data off-axis, maps of gravity 

anomalies calculated using shiptrack soundings are masked with white where grid nodes 

lack shiptrack control within a 5' radius. 

We extracted free-air anomaly (FAA) gravity data from the 2' grid spacing global 

database calculated by Sandwell and Smith [1997] from declassified Geosat and ERS-1 

altimetry. Neumann et al. [1993] showed that the 3' grid that preceded the current 2' 

database is coherent with bathymetry to wavelengths as short as 27.5 km for the MAR 

between 31° and 36°S. Similarly, Rommevaux-Jestin et al. [1997] found reasonably good 

correspondence between shipboard and satellite free-air anomaly for wavelengths greater 

than 30-50 km for the eastern SWIR. Further, Georgen et al. [2001] suggest that 

intermediate- to long-wavelength features, such as hotspot swells, are well-resolved in 

gravity calculations based on the satellite altimetry database. 

The free-air gravity data contains signals from seafloor topography as well as crust and 

mantle density anomalies. To reveal the more subtle crust and mantle anomalies, we used 

well-established algorithms for calculating MBA [Kuo and Forsyth, 1988; Lin et al., 1990] 

and subtracted from FAA the theoretical gravity effects of the water-crust and crust-mantle 

interfaces assuming a constant density, 5-km-thick model crust.     The densities  for 
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seawater, crust, and mantle were assumed to be 1030, 2800, and 3300 kg/m3, 

respectively. The resulting mantle Bouguer anomaly maps are shown in Figures 11 and 12 

for the south and north Atlantic, respectively. Although MBA contains signals from 

variations in both crustal thickness and mantle temperature, ho and Lin [1995a] suggest 

that crustal thickness may account for as much as 70% of along-axis MBA. We therefore 

assume that MBA reflects, to first order, hotspot magmatic production or flux, although it 

may also contain information about crustal density variations. 

Correlation between 3He/4He and MBA for the north and south Atlantic. 

Prominent MBA lows exist in the vicinity of Iceland, Azores, Bouvet, and Shona (Figures 

11-13). Around Bouvet, a -75-100 mGal low between the Bouvet and Islas Orcadas FZs 

is well-correlated with high 3He/4He ratios (Figure 11). However, high 3He/4He values 

also exist in areas which lack pronounced MBA lows, including the ridge segment between 

the Islas Orcadas and Shaka fracture zones. In contrast, long-wavelength MBA lows and 

bathymetric highs correspond well to elevated 3He/4He ratios around Iceland (Figure 13). 

Although the MAR axis around the Azores has both shallow depth and low MBA, there 

does not appear to be a systematic correlation with He/He (Figure 13). 

Figure 14 quantifies the relationship between 3HeAle ratios and MBA for these four 

hotspots. The correlation is strongest for Iceland, with an r of 0.69. For a relatively 

limited range in MBA compared to Bouvet, Iceland, and Azores, Shona also has a 

reasonably good correlation between 3HeAle and MBA, with an r of 0.56. However, 

correlations are weak for both Azores (r2 = 0.13) and Bouvet (r = 0.11). 

The lack of significant correlation between MBA and 3He/4He ratio around the Azores 

and Bouvet may be due to several factors, including ridge geometry and source 

geochemistry. Along the Reykjanes Ridge, ridge offsets are generally small; only one 

transform offset occurs between the Charlie Gibbs FZ and Iceland.  This ridge geometry is 
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significantly different from that along the western SWIR, where long transform offsets 

separate relatively short ridge segments. It is possible that much of the variability in MBA 

around Bouvet reflects segment-scale processes, such as magmatic focusing toward the 

center of segments [Magde and Sparks, 1997] and thermal effects of transform cooling 

[Phipps Morgan and Forsyth, 1988]. In the case of the Azores, the lack of correlation 

between MBA and 3He/4He ratios may reflect the absence of a 3He/4He anomaly rather than 

the fidelity of the MBA signal. As noted earlier, low 3He/4He values around the Azores 

may be explained by the addition of (U+Th) into the plume source region by recycled 

subducted oceanic crust [Kurz et al, 1982b]. 

Hotspot flux and He/ He ratios. In order to perform a more global comparison 

between HerHe ratios and geophysical indicators of plume robustness, we explore the 

relationship between geophysical anomaly amplitudes and maximum 3He/*He values for 

various hotspots (Figure 15). To describe a given hotspot, we select 3He/4Hemax rather 

than some statistical average of He/He ratios to avoid ambiguity associated with unequal 

sample numbers and spatial coverage. Where available, 3He/4Hemax is the maximum 

He/ He ratio measured on an oceanic island. However, for hotspots such as Easter where 

such measurements do not exist, 3He/4Hemax is defined as the highest 3He/4He ratio 

observed along a nearby ridge system. ARB, AMBA, and W are employed as described in 

Ito and Lin [1995b] to describe plume residual bathymetry anomaly amplitude, MBA 

anomaly amplitude, and waist width, respectively. W is defined as the length of ridge 

affected by an on- or near-axis plume [Schilling, 1991]. To first order, W reflects a 

balance between vertical plume flux and horizontal plume dispersion. W is well described 

by the scaling relationship 

Q = W2U/c2 (1) 
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where Q is vertical plume flux, U is full-spreading rate, and c is a scaling constant equal to 

approximately 3 [Ribe et al, 1995; Feighner and Richards, 1995; Ito et al, 1996]. 

The correlation between ARB and 3He/4Hemax is relatively weak (r2 = 0.39) (Figure 

15a), possibly because ARB is affected by processes such as isostatic compensation. In 

contrast, AMBA, which reflects integrated crustal and mantle density anomalies over a 

large depth range, correlates more strongly with 3He/4Hemax (r = 0.74). The correlation 

between W and 3He/4Hemax is even closer (r2 = 0.91), while r2 for Q vs 3He/4Hemax is 0.97. 

Note that only "high^He/Tle" hotspots (i.e., hotspots for which most available 

3HeAie ratios are greater than normal MORB) are included in the calculation of regression 

lines for AMBA, W, and Q. Because of the possibility of contamination by subducted 

crustal or lithospheric material, the "low-3He/4He" Azores and Tristan hotsptos are not used 

in the regression calculation. Although it is possible that the "high^He/Tie" hotspots have 

experienced similar contamination, it is difficult to quantify the extent to which this may 

have occurred. For reference, Figure 15d also shows a point representing Hawaii. 

However, since Hawaiian flux was estimated by multiplying the scaling-law-derived flux 

for Iceland by the ratio of the Hawaii and Iceland fluxes derived by Sleep [1990], use of 

Hawaii in calculating the correlation between 3HeAlemax and Q is tenuous and was 

avoided. 

The particularly strong correlation between 3Hd*Hemia and Q may reflect a combination 

of effects. The simplest interpretation of this correlation is that high-flux plumes originate 

at relatively greater mantle depths, where they tap less-degassed mantle material. A deep 

source region for the Iceland plume inferred from 3He/4He data is qualitatively consistent 

with seismic evidence for an Icelandic plume conduit which extends to at least a depth of 

400 km, if not greater [Wolfe et al., 1997; Shen et al, 1998].   However, since similar 
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seismic constraints are lacking for other plumes, such as Galapagos, Reunion, and Bouvet, 

it is difficult to conclusively extend this argument to lower- He/He plumes. 

6.  Conclusions 

The main results of this study of He/He isotope systematics along the western SWIR 

include the following: 

(1) He/ He isotopic ratios are uniformly low along both the oblique supersegment 

(9°E-16°E) and the orthogonal supersegment (16°E-24°E) of the SWIR. Ratios range from 

6.3 to 7.3 Ra, significantly lower than the global MORB average of 8 ± 1 Ra. These low 

ratios show that average values of He/He for "normal" MORB ratios must be used 

carefully, and may suggest that average He/He ratios vary from ridge to ridge. The low 

ratios are not the result of post-eruptive radiogenic ingrowth processes. Possible, although 

unlikely, explanations for low He/He ratios include a vertically stratified mantle or 

melting of mantle which has experienced a prior melting event. The preferred explanation 

is introduction of U+Th into the SWIR mantle source by recycling of crustal or lithospheric 

material, although detailed evaluation of this explanation awaits further geochemical data 

from the oblique and orthogonal supersegments. 

(2) Despite prediction by earlier studies of an inverse relationship between 3He/4He 

variability and spreading rate, 3He/4He ratios between 9°E and 24°E are relatively constant, 

with a standard deviation from the mean of approximately 0.3 Ra. 

(3) Despite a significant difference in ridge orientation between the orthogonal and 

oblique supersegments, there does not appear to be any systematic isotopic difference 

between the two ridge sections. Moreover, there is no evidence from high 3He/4He ratios 

for influence of the high- He/He Bouvet plume on either supersegment.    Along the 
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orthogonal supersegment, 3He/4He ratios increase eastward. Although the overall change 

in 3HeAie along this trend is small, 3He/4He ratios are significantly correlated with 

longitude and MBA. 

(4) Global correlations between 3He/4He ratios and mantle Bouguer anomaly, plume 

waist width, and plume flux suggest that high-flux plumes originate at relatively deep 

mantle depths, where they tap comparatively undegassed mantle. 
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Table 1. Helium data for the western S WIR, oblique supersegment (10°-16°E) 

Sample Lat. Long. Depth He cone. WHe +/ Crush/ 
(°S) (°E) (m) (uecSTP/g) (R/Ra) melt 

KN162-9-28-32 -52.90 10.67 3803 0.0184 5.81 0.26 crush 
KN162-9-31-1 -52.81 11.08 3074 2.02 6.61 0.05 crush 
KN 162-9-28-32 -52.90 10.67 3803 0.0184 5.81 0.26 crush 
KN 162-9-30-12 -52.99 11.16 3587 2.97 6.49 0.04 crush 
KN 162-9-32-11 -52.75 11.22 2720 0.00383 4.71 1.15 crush 
KN162-9-33-51 -52.82 11.39 1462 0.0299 1.25 0.14 crush 
KN 162-9-34-39 -52.86 11.43 2126 2.05 6.52 0.04 crush 
KN 162-9-36-27 -52.75 11.71 4017 13.8 6.94 0.05 crush 
KN 162-9-49-13 -52.48 12.86 4193 1.55 6.80 0.04 crush 
PS86-6-1 -52.35 13.13 -4000 0.0171 3.43 0.16 melt 
PS86-6-2 -52.35 13.3 -4000 0.02819 3.21 0.07 melt 
PS86-6-2-12996 0.00242 5.98 0.40 crush 
KN 162-9-61-71 -52.10 14.60 2282 0.01391 1.18 0.08 crush 
PS86-2-14 -52.22 14.63 -3200 15.92 6.26 0.03 melt 
KN 162-9-64-1 -52.29 15.64 2947 0.006447 6.31 0.34 crush 
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Table 2. Helium data for the western SWIR, orthogonal supersegment (16°-23°E) 

Sample Lat.      Long.   Depth    4Heconc.   3He/4He   +/     Crush/ 
(°S)        (°E)       (m)    (^iccSTP/g)    (R/Ra) melt 

KN162-7-2-1 -52.33 16.23 3855 0.6343 6.77 0.04 crush 
KN162-7-3-27 -52.30 16.51 3481 0.5479 6.57 0.03 crush 
KN 162-7-4-31 -52.36 17.11 3928 2.972 6.67 0.03 crush 
KN 162-7-5-1 -52.42 17.43 3090 1.106 6.64 0.04 crush 
KN162-7-6-2 -52.52 17.70 3582 15.1 6.80 0.04 crush 

10.58 6.74 0.05 melt 
KN162-7-8-5 -52.61 18.34 3702 2.882 6.88 0.03 crush 
AG22-5-2 -52.76 19.10 -3700 0.7269 6.97 , 0.03 melt 
AG22-5-7 -52.76 19.10 -3700 3.541 7.03 0.06 melt 
AG22-5-18 -52.76 19.10 -3700 0.717 6.87 0.03 melt 
AG22-5-14 -52.76 19.10 -3700 0.03521 6.67 0.10 melt 
KN 162-7-11-25 -52.80 19.20 3886 38.06 6.89 0.03 crush 
KN162-7-10-21 -52.75 19.27 3165 3.309 6.90 0.04 crush 
KN162-7-13-29 -52.86 19.91 4071 22.49 6.91 0.04 crush 
KN162-7-14-7 -52.92 20.38 3450 18.33 6.94 0.04 crush 
KN 162-7-18-17 -52.99 21.41 4507 2.822 7.03 0.02 crush 
KN162-7-23-107 -53.17 22.57 3658 20.47 7.28 0.04 crush 
AG22-9-2 -53.13 22.88 -3800 25.53 7.23 0.04 melt 
KN 162-7-25-3 -53.17 23.12 3995 1.478 7.09 0.03 crush 
KN162-7-26-3 -53.21 23.36 . 3325 2.351 7.25 0.06 crush 
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Figure 1: a) Locations of the dredged samples analyzed in this study. Most samples are 

from Knorr cruise 162, legs 7 and 9 (KN162- designation, squares); samples with PS86- 

and AG22- prefixes (triangles) were obtained during leg ANT IV/4 of the F.S. Polarstern 

(1986) and Agulhas Leg 22 (1981), respectively. Filled symbols indicate measurement by 

crushing in vacuo, while open symbols were analyzed by melting. Arrows indicate plate 

spreading direction [De Mets et ah, 1990; 1994]. The ridge axis between 9°E and 16°E is 

referred to as the oblique supersegment because the ridge lies at a high angle to the regional 

spreading direction. In contrast, spreading is nearly perpendicular to the strike of the ridge 

between 16°E and 25°E, referred to as the orthogonal supersegment. Ridge coordinates for 

the orthogonal supersegment are from Grindlay et al. [1998]. Bathymetry data are 

extracted from the global predicted seafloor topography database [Smith and Sandwell, 

1997]. The shallowest seafloor (shaded white) is < 3 km deep; the contour interval is 1 

km. DT FZ and AB FZ are the Du Toit and Andrew Bain fracture zones, respectively. 

Inset shows the regional setting of the study area, just to the east of the Bouvet Triple 

Junction at ~0°E. The Bouvet Triple Junction joins the Southwest Indian Ridge (SWIR), 

American-Antarctic Ridge (AAR), and southern Mid-Atlantic Ridge (MAR). The locations 

of hotspots in the vicinity of the Bouvet Triple Junction are indicated with gray filled 

circles, b) ^e/He ratios along the SWIR between 10°E and 24°E. Horizontal line at 8 

Ra indicates average 3He/4He for normal mid-ocean ridge basalt (N-MORB). Gray line 

shows axial topography, extracted from the predicted topography database [Smith and 

Sandwell, 1997]. 
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Figure 2: Variation of 4He concentration as a function of 3He/4He ratio. Only ^e/He 

ratios for samples with 4He concentrations above a cutoff of 0.4 (XccSTP/g were considered 

representative of the mantle magmatic ratio, since low-^e samples may have been affected 

by degassing and post-eruptive radiogenic ingrowth. For the remaining, high- He 

samples, ^e/^He ratios fall in the range of 6.3 to 7.3 Ra. Symbols are described in the 

caption to Figure 1. The concentration threshold cutoff represented by a horizontal line at 

0.4 [XccSTP/g is explained in Figure 5. 
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Figure 3: Variation of He concentration as a function of longitude. In general, low-4He 

samples appear to occur more frequently along the oblique supersegment than the 

orthogonal supersegment, possibly reflecting the confused segmentation pattern of the 

oblique supersegment. Symbols are described in the caption to Figure 1. The concentration 

threshold cutoff represented by a horizontal line at 0.4 |j.ccSTP/g is explained in Figure 5. 
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Figure 4: Concentration of He as a function of seafloor depth for the Knorr samples. 

THe concentrations for the Polarstern and Agulhas samples were not plotted because depths 

for these samples are poorly constrained. Line indicates a least squares fit to the data, 

which have a correlation coefficient r of 0.3. There is the possibility of a trend toward 

higher tie concentrations at greater depths, although several samples dredged from ~3000 

m or greater have low He. The measurement for the unfilled square was determined by 

melting; all other measurements were obtained by crushing in vacuo. 
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Figure 5: Time-dependent evolution of 3He/4He ratios resulting from post-eruptive 

radiogenic ingrowth of He by decay of U+Th. Curves were calculated for four initial 4He 

concentrations, 0.04, 0.4, 4, and 40 |iccSTP/g, overlapping the concentration range 

observed in the SWIR sample suite. Assumptions include an initial 3He/4He ratio of 8 Ra, 

[U] of 0.6 ppm [Kurz et al, 1998], and a Th/U ratio of 3 [Jochum et al, 1983]. Dashed 

line indicates 10% reduction in initial He/^He ratio. This study interprets only samples 

with concentrations sufficiently high that post-eruptive radiogenic ingrowth does not lower 

their He/He ratio below the 10% threshold for time scales < 1 Myr. This concentration 

threshold corresponds to 0.4 fj,ccSTP/g, and is indicated on Figures 2 and 3. 
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Figure 6: He/ He ratios increase eastward along the orthogonal supersegment. Least- 

squares regression (black line) indicates that 3He/^Ue and longitude are correlated with r2 = 

0.85. There is also a correlation between long-wavelength mantle Bouguer anomaly 

(MBA, gray line) and 3He/4He ratios. The MBA profile was calculated by applying a 150- 

km cutoff lowpass filter to the MBA data in Grindlay et al. [1998], sampled every 10 km. 
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Figure 7: Locations of HerHe measurements on mid-ocean ridge basalt glasses in the 

RIDGE PETDB database [Langmuir et ai, 2001]. Additional samples between the 

Amsterdam-St. Paul Plateau and 120°W along the Southeast Indian Ridge are from Graham 

[2001], and Easter microplate data are from Poreda et al. [1993]. The locations of selected 

plumes are indicated with unfilled circles. 
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Figure 8: Standard deviation of 3He/4He ratios measured on MORB glasses as a function 

of inverse spreading rate for the Mid-Atlantic Ridge (MAR), Southeast Indian Ridge 

(SEIR), and Southwest Indian Ridge (SWIR). To calculate ^eAle variability, we first 

culled all samples lying within a plume-influenced region from the data set shown in Figure 

7. Plume-influenced regions were defined by axial depth anomalies following Ito and Lin 

[1995]. Data from the Australian-Antarctic Discordance along the SEIR, a region with 

unusually cool mantle temperatures [Klein et al., 1991; West et al., 1997], were also 

eliminated. For each ridge, standard deviation was then calculated using all of the 

remaining samples. The relationship suggested by Allegre et al. [1995], correlating high 

3He/4He ratio standard deviation with slow spreading rate, is shown with a black line. The 

points for the SEIR (n=85), MAR (n=96), and SWIR (all, n=34) calculated in this study 

do not strongly support such a correlation, which may reflect the improved global data set 

since 1995. Notably, the standard deviation for samples from 10°E-25°E along the SWIR 

is considerably lower than that for the MAR, SEIR, or total SWIR data sets. 
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Figure 9: Frequency histograms of 3He/4He ratios for non-plume-influenced MORB 

glasses from (a) the Southwest Indian Ridge between 10°E and 25°E, (b) the entire 

Southwest Indian Ridge, (c) the Mid-Atlantic Ridge, and (d) the Southeast Indian Ridge, 

excluding data from the Australian-Antarctic Discordance. Note that all samples available 

for 10°E-25°E SWIR have He/He ratios below 7.5 Ra. As spreading rate increases, the 

peak in He/He ratios appears to become less pronounced and may shift to higher values. 
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Figure 10: Time-dependent evolution of mantle He/He ratios resulting from pre- 

emptive radiogenic decay of U+Th. Curves are shown for four MORB 4He 

concentrations, 0.04, 0.4, 4, and 40 (iccSTP/g. MORB is assumed to result from 10% 

melting of mantle source. Other assumptions include a mantle [U] of 0.006 ppm and Th/U 

of 3 [Jochum etal., 1983], perfect incompatibility of helium during melting, and an initial 

He/ He ratio of 8 Ra. The dashed line at 7.2 Ra indicates a 10% decrease in 3He/4He ratio. 

Note that for MORB 4He concentrations of 4 and 40 (XccSTP/g, ^e^He ratios do not 

decrease below this 10% threshold on time scales less than the age of the Earth (vertical 

line). 
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Figure 11: a) Map of mantle Bouguer anomaly (MBA), calculated by subtracting from 

free-air anomaly the gravitational effects of the water-crust and crust-mantle interfaces 

assuming a constant 5-km-thick reference crust. The densities for seawater, crust, and 

mantle are assumed to be 1030, 2800, and 3300 kg/m3, respectively. Grid nodes without 

shiptrack control within a 5' radius are masked with white. Grid spacing is 5' and contour 

interval is 100 mGal. An artificial illumination is imposed from the NW. Free-air anomaly 

data are from Sandwell and Smith [1997], and bathymetry data are from Smith and 

Sandwell [1997], Douglass et al. [1995], Grindlay et al. [1998], and Ligi et al. [1999]. 

The names of selected fracture zones are labeled as Bu = Bullard FZ, Co = Conrad FZ, Bo 

= Bouvet FZ, M = Moshesh FZ, IO = Islas Orcadas FZ, and Sh = Shaka FZ. b) MBA, as 

in panel a), but without shiptrack masking. Locations of 'He/'He data are indicated with 

squares (Knorr samples), triangles (Polarstern and Agulhas samples), and circles {Kurz et 

al. [1998] and Moreira et al. [1995]). White stars give the positions of the Bouvet and 

Shona hotspots. c) Axial profile of MBA. Vertical lines indicate the locations of fracture 

zones. B = Bouvet plume, d) Profiles of He/ He ratios (symbols) and axial topography 

(green line, data from Smith and Sandwell [1997]). 
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Figure 12: MBA for the north Atlantic Ocean. MBA is calculated as described in the text 

and caption to Figure 11a. Bathymetry data sources are Smith and Sandwell [1997], 

Detrick et al. [1995], and Searle et al. [1998]. Free-air anomaly are from Sandwell and 

Smith [1997]. Squares mark the locations of 3He/*He data from Kurz et al. [1982], 

Schilling et al, [1999], Poreda et al. [1986], and the RIDGE PETDB database [Langmuir 

et al, 2001]. The Azores and Iceland hotspots are indicated with white stars. As in Figure 

11a, areas lacking shiptrack control within a 5' radius are masked with white. 
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Figure 13: a) Along-axis profile of MBA. A = Azores and I = Iceland. Prominent 

fracture zones are indicated with vertical gray lines and are labeled as At (Atlantis FZ), Ha 

(Hayes FZ), Oc (Oceanographer FZ), Pi (Pico FZ), Ku (Kurchatov FZ), and Gi (Gibbs 

FZ). b) 3He/4He ratios along the Mid-Atlantic and Reykjanes ridges. Data sources are 

provided in the caption to Figure 12. Yellow squares are subaerial samples from Kurz et 

al. [1985]; they were not included in comparison of 3He/4He to MBA (Figure 14b). Green 

line indicates ridge axial depth, extracted from Sandwell and Smith [1997]. 
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Figure 14: a) Comparison of 3He/4He ratios to MBA for the ridge segments around the 

Bouvet (black symbols) and Shona (light gray symbols) plumes. For Bouvet, symbols are 

described in the caption to Figure lib. Note that the correlation between 3He/4He ratios 

and MBA is weak for Bouvet, but stronger for Shona, albeit over a limited range of values 

of MBA. b) As in a), but for the Iceland (black symbols) and Azores (light symbols) 

plumes. Data sources are provided in the captions to Figures 11 and 12. 
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Figure 15: a-d) ARB (residual bathymetry anomaly), AMBA (MBA anomaly), W (waist 

width), and Q (vertical plume flux) vs 3He4Hemax, respectively. 3He/4Hemax, is the 

maximum He/He measurement for the ocean island associated with a given plume, where 

available. Because HerHe ratios are not available for the islands in the Easter/Salas y 

Gomez chain, HerHemax is defined to be the maximum He/ He ratio along the adjacent 

section of the East Pacific Rise. ARB, AMBA, and W are described in the text and used as 

defined in ho and Lin [1995b]. A = Azores, AS = Amsterdam-St. Paul, B = Bouvet, E = 

Easter, G = Galapagos, H = Hawaii, I = Iceland, R = Reunion, and T = Tristan da Cunha. 

In b)-c), regression lines were calculated omitting the Azores and Tristan. In d), U = full 

spreading rate, and regression line was calculated omitting the Azores, Tristan, and 

Hawaii. Flux is estimated for Hawaii by multiplying the scaling-law-derived flux for 

Iceland by the ratio of the Hawaii and Iceland fluxes calculated by Sleep [1990]. 
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Chapter 5 

Three-dimensional passive flow and temperature structure 
beneath oceanic ridge-ridge-ridge triple junctions 

Jennifer E. Georgen and Jian Lin 

Abstract 
Oceanic triple junctions in ridge-ridge-ridge (RRR) configuration reflect unusual regions of 
crustal and lithospheric creation in comparison to normal spreading systems where only 
two plates diverge. This study investigates the characteristics of mantle flow and thermal 
structure in the vicinity of prominent RRR triple junctions, including Rodrigues, Azores, 
and Galapagos. In each of these three triple junctions, the slowest-spreading ridge branch 
intersects the near-collinear faster-spreading branches quasi-orthogonally. We first study a 
triple junction free of influence from a nearby hotspot, similar to the Rodrigues Triple 
Junction. A finite element model was used to calculate the steady-state three-dimensional 
(3D) velocity flow field and temperature patterns resulting from the passive divergence of 
three plates away from the triple junction. Model results predict a strong component of 
along-axis velocity directed away from the triple junction for the slowest-spreading branch. 
Both upwelling velocity and temperature are calculated to increase along the slowest- 
spreading ridge toward the triple junction, approaching the upwelling rate and temperature 
of the fastest-spreading branch. Within 300 km of the triple junction, upwelling velocity is 
predicted to increase more than threefold along the slowest-spreading ridge. In contrast, 
calculated upwelling velocity and temperature for the fastest-spreading branch are not 
significantly different from the case of a single spreading ridge. We next investigate how 
the predicted strong along-axis flow along the slowest-spreading branch can advect the 
thermal anomaly from a plume source originating below the depth of partial melting, such 
as near the Azores Triple Junction. We consider two end-member plume geometries, a 
narrow, hot plume source (radius 100 km and AT = 200°C), and a broad, cooler plume 
source (radius 300 km and AT = 70°C). We locate each of these plume sources either at the 
triple junction or at a fixed distance (200 km) away from the triple junction along the 
slowest-spreading branch. Because of the strong component of along-axis flow along the 
slowest-spreading ridge, model results predict much greater hotspot-induced increases in 
mantle temperature for the slowest-spreading ridge than for the faster spreading branches, 
regardless of plume source position and size. 

1.    Introduction 

Triple junctions, defined as the location where three plate boundaries meet, mark a 

unique and important geological setting along the global mid-ocean ridge system.   Triple 

159 



junctions are geometrically required features of a planet with more than two tectonic plates. 

Because of their unusual configuration, triple junctions provide tectonic windows for 

studying mantle and lithospheric dynamics. For example, at an oceanic ridge-ridge-ridge 

(RRR) triple junction, the upwelling patterns of three spreading centers interact, revealing 

information about mantle dynamics beyond what can be learned from the case of a single 

ridge. 

Several studies have addressed the plate kinematics, geophysics, and seafloor 

morphology of triple junctions. For example, using constraints from GLORIA sidescan 

sonar data, Mitchell and Parson [1993] investigated the long-term evolution of ridge 

segmentation at the Rodrigues Triple Junction (RTJ, Figure la) in the central Indian Ocean. 

Searle [1980] and Searle and Francheteau [1986] used multibeam bathymetry and sidescan 

sonar to investigate the seafloor fabric and history of rift propagation at the Azores Triple 

Junction (ATJ, Figure lb) and Galapagos Triple Junction (GTJ, Figure lc), respectively. 

Sclater et al. [1976] interpreted magnetic data to show that the Bouvet Triple Junction 

(BTJ, Figure Id) in the southern Atlantic Ocean has alternated between RRR and ridge- 

fault-fault (RFF) configuration. 

Numerical geodynamical models of 3D mantle flow for a single ridge system have 

greatly aided our understanding of ridge crustal and mantle geodynamics (e.g., Phipps 

Morgan and Forsyth [1988]; Shen and Forsyth [1992]; Sparks and Parmentier [1993]; 

Rabinowicz et al. [1993]). However, no numerical models of 3D triple junction mantle 

flow have been developed to date. The purpose of this study is to explore long-wavelength 

patterns of mantle flow and temperature beneath oceanic RRR triple junctions. We first 

investigate a generic triple junction geometry, resembling Rodrigues, Azores and 

Galapagos, to determine the essential features of 3D mantle velocity and temperature 

structure beneath an RRR spreading system.    We quantify how the triple junction 
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configuration can induce along-axis flow and cause thermal perturbations. Using the same 

generic geometry, we then investigate how the triple junction flow can advect the thermal 

anomaly of a hotspot plume source located below the depths of partial melting, and discuss 

the implications of this flow for the Azores Triple Junction. 

2.   Triple junction geometry 

Each branch of a triple junction may be a ridge, trench, or transform fault. 

Theoretically, sixteen possible triple junction configurations exist, although not all are 

stable. The velocity vector method used to assess triple junction stability [McKenzie and 

Morgan, 1969] shows that only the RRR configuration is stable for all spreading rates and 

boundary orientations. Because the RRR configuration represents the simplest flow 

geometry of any triple junction, it is appropriate as the topic for this first attempt at 3D 

numerical modeling. This investigation explores long-wavelength flow and thermal 

patterns around a generic RRR triple junction which captures the salient geometrical 

characteristics of three prominent triple junctions, Rodrigues, Azores, and Galapagos. The 

kinematics of each of these three triple junctions is described below. 

2.1 RRR triple junctions 

The RTJ, also referred to as the Indian Ocean Triple Junction, is composed of the 

Southeast Indian Ridge (SEIR), Central Indian Ridge (CIR), and Southwest Indian Ridge 

(SWIR), with half-spreading rates of 2.9, 2.4, and 0.7 cm/yr, respectively [Tapscott et ah, 

1980; Patriat and Parson, 1989] (Figure la). The SEIR and CIR are nearly collinear, and 

are intersected quasi-orthogonally by the SWIR [Tapscott et al., 1980]. The RTJ has been 

stable for at least the last 5-10 myr, and perhaps for as much as 40 myr [Tapscott et al., 

161 



1980; Sclater et al., 1981]. For the last -80 myr, the RTJ has been propagating eastward 

[Patriot et al, 1997]; since 10 Ma, the SWIR and CIR have lengthened by an average of 

2.7 and 1.3 cm/yr, respectively [Tapscott et al., 1980]. The nearest hotspot, Reunion, is at 

present more than 1000 km from the RTJ, and therefore is presumed not to directly affect 

the mantle geodynamics of the RTJ. 

The GTJ marks the intersection of a northern branch of the East Pacific Rise (N. EPR), 

a southern branch of the East Pacific Rise (S. EPR), and the Galapagos Spreading Center 

(GSC) (Figure lc). The GSC opens at a rate of 2.1 cm/yr, while half-rates for the N. EPR 

and S. EPR are 6.9 cm/yr and 6.8 cm/yr, respectively [Hey et al, 1977]. Locally, the 

Galapagos Microplate complicates the tectonics of the GTJ. The Galapagos Microplate has 

an area of 13,000 km and rotates clockwise at 67myr [Lonsdale, 1988]. Although the 

Galapagos plume imparts significant bathymetric, seismic, gravity, and geochemical 

anomalies to the GSC [Schilling et al, 1982; Verma et al, 1983; ho and Lin, 1995a; 

Canales et al, 1997; 2000], it is located more than 1000 km away from the GTJ, making it 

unlikely that it directly influences GTJ geodynamics. 

In contrast to the RTJ and GTJ, both the ATJ and the BTJ are affected by the presence 

of a nearby hotspot. The ATJ (Figure lb) is composed of a northern branch of the Mid- 

Atlantic Ridge (N. MAR, half-rate 1.2 cm/yr), a southern branch of the Mid-Atlantic Ridge 

(S. MAR, half-rate 1.1 cm/yr), and the slow-opening Terceira Rift (Ter. R., half-rate 0.3 

cm/yr). It has evolved from RFF to its present RRR configuration since its formation 45 

Ma [Krause and Watkins, 1970; Searle, 1980]. Searle [1980] pointed out that detailed 

understanding of the evolution of the ATJ is complicated by extremely slow spreading rates 

along the Ter. R. and the resultant lack of identifiable magnetic anomalies. The Azores 

hotspot affects crustal accretion processes at the ATJ. Consistent with the general position 

of abroad S-wave seismic velocity anomaly [Zhang and Tanimoto, 1992], the locations of 
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recent volcanism in the Azores Archipelago suggest that the center of excess hotspot 

magma flux is approximately 100-200 km to the east of the MAR, at approximately the 

location of Faial Island [Schilling et al, 1991]. The Azores hotspot imparts long- 

wavelength bathymetric, geochemical, and gravity gradients over distances -1500-2000 km 

along the MAR, from the Kane FZ to approximately 44°N (e.g., Dosso et al, 1993; Ito and 

Lin, 1995b; Detrick et al, 1995; Goslin et al, 1999; Cannot et al, 1999a). Creation of the 

Azores Plateau north of the Azores may have begun as early as 36 Ma [Campan et al, 

1993]. A significant episode of excess crustal production south of the Azores occurred 

approximately 10 to 4 Ma [Cannat et al, 1999a; Escartin et al, in press]. 

The SWIR, American-Antarctic Ridge (AAR), and MAR join at the BTJ (Figure Id). 

These ridges have half-spreading rates of 0.8, 0.9, and 1.6 cm/yr, respectively, [Sclater et 

al, 1976] and are spaced at nearly equal angles from one another. Sclater et al. [1976] 

suggested that over the past 20 myr, the BTJ has spent 15 myr in an RFF configuration and 

5 myr in the RRR mode, which is the current geometry. Ligi et al. [1997] confirmed that 

the BTJ is locally RRR using high-resolution bathymetric, gravity, and magnetics data. 

The BTJ is associated with three hotspot-like melting anomalies within a 500 km radius, 

the Bouvet and Shona hotspots and Spiess Seamount [Hartnady and le Roex, 1985; 

Douglass et al, 1995; Small et al, 1995; Moreira et al, 1995; Ligi et al, 1997; Mitchell 

and Livermore, 1998; Georgen et al, 2001]. However, the volcanic constructional 

features of all three anomalies are volumetrically small compared to islands such as Hawaii, 

Iceland, and Reunion [e.g., Sleep, 1990] 

Three of the four triple junctions described above have similar geometry. In the RTJ, 

ATJ, and GTJ, the two fastest-spreading ridges have nearly equal spreading rate and are 

roughly collinear, forming a trend which the slowest-spreading ridge intersects quasi- 

orthogonally. This geometric similarity is shown quantitatively in Figure 2, where U], U2, 
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and U3 are the spreading rates of the fastest, intermediate, and slowest-spreading ridges, 

respectively. For all of the RTJ, ATJ, and GTJ, U,/U2 is roughly 1, while U,/U3 is 

approximately 3-4.5. In contrast, the BTJ has considerably different geometry as well as 

significantly different spreading velocity ratios. In this study, we focus only on a generic 

triple junction with geometric characteristics similar to the RTJ, ATJ, and GTJ. 

2.2 Simplified triple junction kinematics 

The primary purpose of this investigation is to examine how the long-wavelength 

mantle dynamics beneath a triple junction differ from that of a single ridge, and thus a 

simplified geometry is used to characterize triple junction plate kinematics. Rather than 

explicitly incorporating local, detailed ridge and transform segmentation patterns, we 

approximate the overall geometry of a given spreading center using a single, straight ridge 

aligned according to its regional, average strike. Diagrams of the simplified RTJ, ATJ, and 

GTJ are shown in Figure 3. This simplification is desirable for illustrating the essential 

features of mantle upwelling patterns beneath a triple junction, and is justified because the 

spatial scale of the long-wavelength mantle flow and temperature structure beneath a triple 

junction is much greater than that of individual segments. This approximation, therefore, 

also ignores features such as microplates, as in the case of the GTJ. Furthermore, for a 

number of triple junctions including the RTJ [Mendel et ah, 2000], the three ridge 

branches fail to meet at a strict "triple point," instead being joined by a zone of diffuse 

deformation near the "virtual" triple junction. The gap distance between the termination of 

well-defined spreading along any given ridge axis and the virtual triple point is less than 

100 km for all of the triple junctions considered here [Ligi et al., 1997; Searle, 1980; 

Mitchell, 1991], again considerably shorter than the much longer wavelength patterns that 

are the subject of this investigation. 

164 



Because the RTJ is not affected by a nearby hotspot, we selected it as the basis for our 

numerical model. In the first model explored (Model 1), the half-spreading rates of the 

three ridge branches are set equal to the spreading rates of the SEIR, CIR, and SWIR. For 

discussion purposes, we refer to the ridge with the relatively fastest spreading rate Ui as 

Ri. Similarly, the ridge with intermediate spreading rate is R2, and the slowest-spreading 

ridge is R3. 

3. Numerical model set-up 

We use a finite element numerical model to solve for the steady-state 3D mantle velocity 

and temperature fields resulting from the surface divergence of three plates. The top 

surface of Model 1 is divided into the African, Antarctic, and Australian plates (Figure 4). 

Figure la shows clear lines of seafloor fabric discontinuities expanding in a V-shape away 

from the RTJ along the SWIR. These seafloor fabric discontinuities bound crust created at 

the SWIR during the eastward propagation of the RTJ. A similar triple junction trace exists 

on the Australian Plate (Figure 4a), but it is not as distinct as the African and Antarctic 

traces because of the similarity in spreading rate and near collinearity of the SEIR and CIR. 

We fix the location of the triple junction in the center of Model 1, and prescribe the 

motions of the three plates with respect to the triple junction according to the RTJ velocity 

triangle calculated by Tapscott et al. [1980]. The component of the plate motion vector 

perpendicular to each ridge is equal to that ridge's spreading direction and velocity. For the 

top model surface, Gzz = 0. For velocity boundary conditions on the vertical sides and the 

bottom of the model box, we prescribe the analytical solution for upwelling and horizontal 

velocity for each grid node as a function of depth and perpendicular distance from the 

appropriate ridge axis,  using  the  2D  formulations  of Reid  and Jackson   [1981]. 
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Temperature is assigned to be 0° and 1350°C on the top and bottom boundaries of the 

model, respectively, and the horizontal temperature gradients are set to zero on the vertical 

sides of the model domain. 

The model box is 2000 km x 2000 km x 200 km (Figure 4b), enabling us to investigate 

mantle flow and thermal fields along at least 1000 km of each ridge. The model box is 

discretized into 41 x 41 x 15 grid nodes, with highest horizontal resolution near the triple 

junction and greatest vertical resolution near the top surface of the box where velocity and 

temperature gradients are greatest. In the horizontal direction, grid spacing ranges from 20 

to 99 km, while vertical grid spacing increases from 5 to 29 km with depth. 

To solve for mantle velocity and temperature, we use a 3D fluid dynamical code 

(ADINA, Bathe [1996]) that solves the equation of continuity for an incompressible fluid 

Vv = 0 (1) 

and the equation of momentum balance with constant viscosity and no buoyancy-driven 

flow 

VP = T|V2v + pg (2) 

where v is velocity vector, P is fluid pressure, t| is viscosity, p is mantle density, and g is 

the acceleration of gravity. In these calculations, mantle viscosity is set to a constant 1021 

Pa s. The steady-state temperature field is solved using 

V2T + vVT = 0 (3) 

where velocity vector v is derived from solution of Equation (2) and T is mantle 

temperature. 
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4. Model results 

4.1 Triple junction velocity and temperature fields 

In Model 1, the divergence of three surface plates away from the triple junction induces 

a component of flow along each of R1} R2, and R3 (Figure 5). This calculated along-axis 

flow is strongest for the slowest-spreading ridge R3 (SWIR), where it is directed away 

from the triple junction. At a representative location within the partial melting zone at 50 

km depth and 300 km away from the triple junction, the magnitude of along-axis velocity is 

predicted to be 90% of upwelling velocity for R3. A moderate component of along-axis 

velocity is present for R2 (OR) as well. For R2, along-axis velocity is 70% of upwelling 

velocity. In contrast, the calculated mantle flow is nearly vertical along Ri (SEIR). Ri 

along-axis velocity magnitude is only 2% that of upwelling velocity at a depth of 50 km, 

300 km away from the triple junction. 

The calculated upwelling velocity increases significantly along R3 towards the triple 

junction (Figure 6). At a far-field distance of 500 km from the triple junction, R3 upwelling 

velocity is approximately equal to the upwelling velocity generated in the simpler case when 

two plates diverge with a half-rate of 0.7 cm/yr. However, within 200 km of the triple 

junction, R3 upwelling velocity increases more than threefold, approaching the upwelling 

velocity along R]. A similar, though less pronounced, increase is also predicted along R2. 

Figure 7a shows the calculated triple junction temperature field at a depth of 32 km, 

within the depths of partial melting. The strong thermal signatures of the faster-spreading 

Ri and R2 are clearly apparent. On the other hand, R3 has lower overall axial temperatures, 

consistent with its ultra-slow spreading rate. However, beneath the axis of R3, mantle 

temperature at 32 km depth is calculated to increase by 70-100°C towards the triple junction 

as a result of enhanced triple junction upwelling (Figure 8a).   In fact, for all depths, the 
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along-ridge temperature increase relative to the case of a single ridge is profoundly greater 

for R3 (Figure 9). 

In general, far from the RTJ (> 500 km), the calculated upwelling velocity and thermal 

fields of R3 and R2 are similar to the case of the simple divergence of two plates with 

corresponding half-spreading rates. However, both upwelling velocity and temperature for 

these two slower-spreading ridges are predicted to increase toward the triple junction to 

approach those of the fastest-spreading ridge. In contrast, upwelling velocity and 

temperature for R3 is little affected by the presence of the other two ridges, maintaining 

upwelling velocity and temperatures fields similar to the simpler two-plate case. Note that 

these model calculations predict little material transfer from the fastest-spreading ridge to 

the two slower-spreading ridges. 

4.2 Effects of absolute magnitude of spreading rates 

To determine the effects of increasing or decreasing the absolute magnitude of 

spreading velocity for the three ridges while keeping their relative ratios unchanged, we 

calculate velocity field and temperature for the same model geometry described in Section 

3, scaling the surface divergence velocities by a factor of either 1/2.4 (Model 2) or 2.4 

(Model 3). Application of these scaling factors roughly yields the spreading rates for the 

ridges of the ATJ and GTJ, respectively. The results of the thermal calculations are shown 

in Figures 7b-c and 8b-c. Because of the overall slower spreading rates for Model 2 as 

compared to Model 1, temperature magnitudes are correspondingly lower at a given depth 

(Figure 7). The calculated temperature increase along the ultra-slow spreading R3 (Ter. R.) 

for Model 2 is dramatic. Within 500 km of the triple junction, temperature within the 

partial melting region is predicted to increase by more than 250°C, approaching the value 

for Ri (N. MAR) (Figure 8b).  Axial temperature is also predicted to increase for R2 (S. 
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MAR), although the magnitude of the increase is considerably less than that of R3 because 

of the similarity in spreading rate between Rj and R2. 

Model 3 (Figure 7c) represents two fast-spreading ridge branches (N. EPR and S. 

EPR) intersected by an intermediate-spreading ridge (GSC). Since all three ridges spread 

at relatively rapid rates, the thermal contrast between them is not as pronounced as for 

Model 1 or Model 2. Correspondingly, no significant along-axis temperature increase is 

predicted for R3 (Figure 8c). Instead, at depths within the partial melting zone (30-80 km), 

all three ridges maintain temperatures close to their temperature far away from the triple 

junction. 

4.3 RTJ thermal topography 

To evaluate how model predictions compare to observed bathymetric trends, we 

examine in detail the thermal structure for R3 in Model 1 and compare it to the SWIR near 

the RTJ. East of the Melville Fracture Zone at 61°E, the SWIR achieves its greatest axial 

depth (Figure 10a). Cannatetal. [1999b] suggest that this extreme depth can be explained 

by mantle temperatures that are significantly cooler than normal, with a concomitant 

decrease in magmatic production. In the immediate vicinity of the RTJ, however, the 

maximum depth of the SWIR axis shallows significantly (Figure 10b). To determine if our 

model predictions are consistent with the observed shallowing, we calculate the topography 

resulting from mantle density variations due to thermal structure, assuming that vertical 

columns of mantle are in isostatic equilibrium at 200 km depth. The topographic variation 

Ah can be calculated as: 

Ah = |apm(T-T0)/(pc-pw)   dy, (4) 

where the coefficient of thermal expansion a = 3xl0"5 °C_1, reference mantle density pm = 

3300 kg/m3, reference crustal density pc = 2700 kg/m3, water density pw = 1030 kg/m3, T 
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is mantle temperature, and reference mantle temperature T0 = 1350°C. Gravity studies 

along the GSC in the vicinity of the Galapagos plume [Ito and Lin, 1995a] and along the 

Reykjanes Ridge near Iceland [Ito et al, 1996] suggest that mantle thermal variations 

contribute approximately 25-30% to the topography and mantle Bouguer gravity signal, 

with the rest attributable to crustal thickness variations. Accordingly, we calculate an 

isostatic topography profile assuming that thermal variations account for 30% the overall 

ridge topography. 

Figure 10b suggests that that the general long-wavelength shallowing of the SWIR axis 

toward the RTJ is consistent with the isostatic topography predicted by the triple junction 

thermal model. We note that high-resolution studies around the RTJ [Mitchell, 1991; West 

et al., 1995] indicate that the detailed local geology is suggestive of a propagator feature 

which terminates -50-100 km west of the triple junction, with a rift tip that is locally 

depressed and supported by dynamic stresses [Phipps Morgan and Parmentier, 1985]. 

Between this anomalously deep rift tip and the triple junction, seafloor depth recovers to 

more average values. These complications prevent more definitive interpretation of the 

SWIR bathymetry near the RTJ. 

Further test of the model prediction of increased axial temperature along the slowest- 

spreading branch of a triple junction could come from regional geochemical studies. For 

example, Model 1 predicts progressively greater extents of melting along the SWIR 

towards the RTJ. Such variations could be detected from Na80 and other geochemical 

systematics [Dick et al., 1984; Klein and Langmuir, 1987]. Currently, however, major 

element data for the SWIR in the immediate vicinity of the RTJ are sparse, and the spatial 

coverage necessary to discern trends on the order of several hundreds of kilometers is 

lacking. 
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4.4 Advection of plume anomaly by along-axis flow 

A major predicted feature of velocity structure beneath a triple junction with the 

geometry of Model 1 is that mantle material flows away from the triple junction along the 

slowest and intermediate spreading branches (Figure 5). To further investigate the 

implications of such along-axis flow for ridge dynamics, we add a hotspot thermal anomaly 

source to the base of the numerical box for Model 2 (ATJ) and examine how this thermal 

anomaly is advected both horizontally and vertically. We follow ho and Lin [1995b] and 

Cannat et al. [1999a] in ascribing the Azores volcanism to elevated mantle temperatures. If 

the Azores plume is of chemical origin [Bonatti, 1990], the detailed melting mechanism 

would differ from that of a thermal plume, but the effects of triple junction flow on 

advecting the plume anomaly would be similar. 

We test two temperature distributions to explore how the anomaly is advected by triple 

junction flow, and how sensitive the advection is to the location and source characteristics 

of the anomaly. In both distributions, a circular thermal anomaly is imposed on the bottom 

of the model box. The anomaly decreases linearly from a maximum of AT at the plume 

center to zero at the radius of the plume source. In the narrow plume source model, AT = 

200°C, and the radius of the anomaly is 100 km. In the broad plume source model, AT = 

70°C, and the anomaly radius is 300 km. Cannat et al. [1999a] estimated that the thermal 

anomaly required to produce the observed bathymetry and gravity anomalies south of the 

Azores Plateau is on the order of 70°C, providing a lower bound for our Azores plume 

anomaly. We place each of the narrow and broad plume sources in two different locations, 

one centered on the triple junction and the other at a fixed distance (200 km) to the east of 

the triple junction along R3 (Ter. R.) (Figure 11). The latter location is consistent with the 

observed focus of Azores volcanism [Schilling et al., 1991] and the center of an upper 
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mantle velocity anomaly imaged by seismic tomography studies [Zhang and Tanimoto, 

1992]. 

A narrow, hot plume source centered on the triple junction (Figure 1 lb) is calculated to 

impart a high-amplitude thermal anomaly which remains relatively confined to the 

immediate vicinity of the triple junction. Flow along R3 distributes the shallow thermal 

anomaly only a short distance (<100 km) along-axis (Figure 12b). In contrast, when the 

narrow plume source is located 200 km off-axis (Figure 1 lc), along-axis flow advects the 

shallow thermal anomaly for more than 200 km of additional distance along-axis (Figure 

12c), carrying the plume signal to a total distance of more than 400 km away from the triple 

junction. At a depth within the partial melting zone of 53 km, the thermal profile for the 

narrow, TJ-centered plume source has a single high which decreases monotonically with 

distance away from the triple junction, while the profile for the narrow, R3-centered plume 

source has an additional high at a distance of approximately 300 km away from the ATJ, 

downstream from the plume source (Figure 13a, d). 

Compared to the narrow plume source case, the thermal anomaly created by the TJ- 

centered broad plume disperses to greater distances along R3 (Figures 12d, 13a, 13d). The 

magnitude of the thermal anomaly at a depth of 53 km imparted by the broad plume source 

is less than that resulting from the narrow plume to distances of approximately 100-150 km 

away from the triple junction, but for greater along-axis distances, the broad plume thermal 

anomaly persists (Figure 13d). 

In general, the plume-imparted thermal anomalies are of smaller magnitude and shorter 

wavelength for Ri and R2 than for R3 (Figures 13b-c). For the narrow, TJ-centered plume 

source, the root-mean-square (RMS) increase in along-R3 temperature at a depth of 53 km 

relative to the no-plume case is 29°C, compared to 24°C for both R, and R2. For the broad, 

TJ-centered plume source, the RMS temperature increases are 27°C, 21°C, and 20°C for 
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R3, R2, and Rj, respectively. The thermal anomaly created by the narrow, TJ-centered 

plume source along Rj and R2 remains confined to only a few hundred kilometers from the 

triple junction. In contrast, the broad, TJ-centered plume is calculated to increase 

temperatures along Ri and R2 over a much longer distance of -300-400 km. Neither the 

broad nor the narrow R3-centered plume significantly affects temperatures for Ri or R2. 

4.5 ATJ thermal topography 

We investigate how model plume sources in various locations with respect to the triple 

junction are able to reproduce long-wavelength bathymetric trends around the ATJ. Figure 

14 shows a map of filtered bathymetry for the ATJ. Salient characteristics of ATJ 

bathymetry include high topography along R3 (Ter. R.) to approximately 200 km away 

from the ATJ, and relatively shallower seafloor along R2 (S. MAR) than R! (N. MAR) for 

a given distance away from the triple junction. Filtered bathymetry profiles along the N. 

MAR, S. MAR, and Ter. R., with transform offsets omitted, are plotted in Figure 15a. 

Figures 15b-e show the isostatic topography resulting from a plume with a radius of 190 

km and a thermal anomaly of 190°C, calculated using the methods described in Section 

4.3. The plume source was placed at a fixed distance of 200 km away from the triple 

junction, and at angular distances ranging from on R3 to 1/15, 1/10, or 1/5 of the angle 

from R3 to R2. As the plume source increases its angular distance away from R3 toward 

R2, the predicted length of the plume bathymetric anomaly increases along R2 while slightly 

decreasing along R3. For nearly all of the plume locations, the predicted topography along 

R3 reaches its shallowest depths a few hundred kilometers away from the triple junction, 

and then increases rapidly for greater distances, roughly in agreement with the observed 

long-wavelength bathymetric trends. Furthermore, to distances within a couple of hundred 

kilometers away from the triple junction, the predicted isostatic topography for R2 is 
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shallower than that for R, for plumes located off of R3. Again, this is in qualitative 

agreement with observations from gravity and seismic tomography which suggest that 

Azores plume influence is stronger along the Mid-Atlantic Ridge to the south of the ATJ 

than to the north [Goslin et al, 1999]. 

5.    Discussion 

The primary goal of this investigation is to quantify the long-wavelength patterns of 

passive mantle upwelling and temperature beneath an RRR triple junction and to contrast 

them with the simpler case of a single ridge. We purposefully select to first focus on 

purely passive upwelling because this approach isolates the simplest physics inherent to the 

triple junction problem. Similar to the incremental approach used in developing single 

ridge models [e.g., Phipps Morgan and Forsyth, 1988; Shen and Forsyth, 1991; Sparks 

andParmentier, 1993; Barnouin-Jha et al, 1997; Braun et al, 2001], subsequent triple 

junction models may progressively investigate the effects of adding variable viscosity, 

thermal buoyancy, melt retention buoyancy, melting, and the like. Future studies may 

further explore the essential predicted triple junction flow features suggested by this 

investigation, such as the predicted strong along-axis flow and increased upwelling rate and 

temperature along the slowest-spreading ridge. In the following paragraphs we 

qualitatively discuss the potential effects of a few factors not incorporated in the present 

models. 

Melting and crustal thickness variations. An important test of the mantle flow 

and thermal fields predicted in this modeling study will come from calculations of the 

resultant patterns of melting and magmatic crustal thickness. However, such calculations 

are complicated because of the highly 3D nature of melt transportation paths expected for 
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the triple junction geometry. For example, predictions of crustal thickness along a single, 

linear ridge have been made by integrating all melt generated in a plane perpendicular to the 

spreading axis [e.g., Phipps Morgan and Forsyth, 1988; Ito and Lin, 1995a]. However, 

for the model geometry considered here, careful account must be made of the partitioning 

of melt between the three spreading branches. Furthermore, because of the inherent 

migration of the triple junction, melt calculations must incorporate the fact that ridge 

systems will tap mantle that has been previously melted. 

Variable viscosity and buoyancy. Earlier modeling studies [e.g., Shen and 

Forsyth, 1992] predict that upwelling for the case of a temperature- and pressure-dependent 

mantle viscosity is both stronger and more localized to the region immediately below the 

ridge axis compared to the case of constant mantle viscosity. For example, the across-axis 

width of the axial high-velocity upwelling zone for temperature- and pressure-dependent 

viscosity is approximately 70-80% that for the constant viscosity case. Thus use of a 

pressure- and temperature-dependent mantle viscosity is likely to more closely confine 

along-axis increases in upwelling velocity and temperature to the immediate vicinity of the 

triple junction. One implication of this localization is that the region over which axial melt 

production is predicted to increase along R3 may be shorter than in the case of constant 

viscosity by -20-30%.. 

Use of variable viscosity may also change the constrast in upwelling velocity magnitude 

between R1 and R3. The increase in upwelling velocity magnitude due to use of a pressure- 

and temperature-dependent viscosity as opposed to constant viscosity is predicted to be 

spreading-rate dependent [Shen and Forsyth, 1992]. For half-spreading rates comparable 

to the SWTR, axial upwelling velocity is predicted to be -85% faster for variable viscosity. 

However, this increase is <40% for SEIR and CIR half-rates. Therefore, the relative 

difference in axial upwelling rates between the SWIR and SEIR may be decreased by the 
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use of variable viscosity, resulting in a smaller predicted along-R3 increase in vertical 

velocity. 

Similarly, buoyancy forces due to thermal, melt retention, and melt depletion effects are 

anticipated to increase upwelling rates and narrow the width of the upwelling zone [Su and 

Buck, 1993; Barnouin-Jha et al, 1997]. Thus it is possible that addition of buoyancy 

forces may decrease the length along R3 over which upwelling velocity and temperature are 

increased due to the triple junction effect. The combined effects of variable viscosity and 

buoyancy in enhancing upwelling in the immediate proximity of the triple junction, 

however, may be counteracted by the effects of diffuse spreading and ridge reorganizations 

described next. 

"Virtual" vs actual triple point. Several high-resolution studies of RRR triple 

junctions have suggested that, rather than meeting at a strict geometrical point, the three 

spreading branches often fail to connect. Evidence for ridge non-connectivity is seen at the 

BTJ [Ligi et al, 1997], ATJ [Searle, 1980], and RTJ [Mitchell, 1991; Mendel et al., 

2000], among others. Commonly, the slowest-spreading branch is separated from a triple 

junction by a zone of diffuse deformation, leading to the suggestion that at a local scale 

(<100 km away from the triple point), spreading at an RRR triple junction may occur in an 

area! fashion rather than linearly along three well-defined ridges [Zonenshain et al, 1980]. 

Observations further suggest that the width of the diffuse spreading zone may vary with 

time. In this case, periods when the triple junction migrates away from the locus of 

spreading termination along one or more ridges alternate with periods of rapid ridge 

propagation, when the ridges extend to reconnect at a point [Searle and Francheteau, 1986; 

Mendel et al, 2000]. Such localized ridge kinematics, which result in less organized 

spreading, are anticipated to reduce upwelling beneath the triple junction. 
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Detailed ridge segment geometry. The models described in this investigation 

purposefully make use of a simplified ridge geometry to isolate the first-order mantle 

dynamics arising from the conjunction of three divergent plates. More detailed ridge 

geometry incorporating segmentation will add local complexity to the 3D flow fields. 

However, we anticipate these effects to be limited only to ridge segment scales. 

6. Conclusions 

The main conclusions of this study of mantle flow and temperature patterns generated 

by passive plate separation at an oceanic RRR triple junction are: 

(1) When the slowest-spreading ridge intersects two nearly-collinear faster-spreading 

ridges quasi-orthogonally, such as at the Rodrigues, Azores, and Galapagos triple 

junctions, the upwelling velocity and temperature along the slowest-spreading branch is 

calculated to increase toward the triple junction, approaching the greater upwelling rate and 

higher temperature of the fastest-spreading branch. For a model geometry resembling the 

SWIR branch of the RTJ, upwelling velocity is predicted to increase more than threefold 

within 300 km of the triple junction. In contrast, the velocity and thermal fields for the 

fastest-spreading ridge are not significantly different from the case where the two slower- 

spreading ridges are not present. 

(2) When a basal thermal anomaly representing a plume source is added to the triple 

junction model, thermal patterns for all three ridge branches are altered. Relative to the case 

with no plume, addition of a plume source anomaly changes the thermal structure of the 

slowest-spreading ridge more than that of the intermediate- or faster-spreading branches. 

The divergence of the surface plates away from the triple junction results in a flow field 

which advects the plume thermal anomaly along the slowest-spreading ridge away from the 
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triple junction. As a result, the location of the maximum along-axis thermal anomaly at a 

given depth is predicted to be farther away from the triple junction than the original plume 

source beneath the depths of partial melting. 
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Figure 1: Location maps for four ridge-ridge-ridge triple junctions, a) Rodrigues, b) 

Azores, c) Galapagos, and d) Bouvet. Ridge coordinates are from Mueller et al. [1997], 

and free-air gravity data were extracted from the global database of Sandwell and Smith 

[1997]. For each triple junction, the location of the 35 mGal contour is indicated, and an 

artificial illumination is applied from the NNW. The position of the nearest hotspot to each 

triple junction is indicated with a white star. Ridge abbreviations are as follows: SWIR = 

Southwest Indian Ridge, CIR = Central Indian Ridge, SEIR = Southeast Indian Ridge, N. 

MAR = Mid-Atlantic Ridge to the north of the Azores Triple Junction, S. MAR = Mid- 

Atlantic Ridge to the south of the Azores Triple Junction, TER. R. = Terceira Rift, N. EPR 

= East Pacific Rise to the north of the Galapagos Triple Junction, S. EPR = East Pacific 

Rise to the south of the Galapagos Triple Junction, GSC = Galapagos Spreading Center, 

and AAR = American-Antarctic Ridge. 
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Figure 2: The geometric similarity of the Rodrigues (RTJ), Azores (ATJ), and 

Galapagos (GTJ) triple junctions is shown by plotting half-spreading rate ratios. For each 

triple junction, half-rates for the three ridges are U,, U2, and U3, with l^ > U2 > U3. In all 

three of the RTJ, ATJ, and GTJ, the two fastest-spreading ridges are nearly collinear, and 

are intersected nearly perpendicularly by the slowest-spreading ridge. The ridge 

configuration is different, however, for the Bouvet Triple Junction (BTJ), where the three 

ridges have nearly equal separation angles from each other. 
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Figure 3: Simplified geometry of the a) Rodrigues, b) Azores, and c) Galapagos triple 

junctions. Simplified geometry reflects the regional trend of each of the spreading branches 

comprising a given triple junction, omitting transform offsets, microplates, and small zones 

of disconnectivity between the three ridges and the triple junction point. The half-spreading 

rate for each of the ridges is indicated, and ridge abbreviations are given in Figure 1. 

Arrows show plate motion with respect to the triple junction, modified from Tapscott et al. 

[1980], Searle [1980], and Searle and Francheteau [1986]. Kx designates the ridge with 

the fastest half-spreading rate, R2 the ridge with intermediate spreading rate, and R3 the 

ridge with the slowest spreading rate. 
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Figure 4: a) The top surface of the set-up for Model 1. Flow within the model box is 

driven by the divergence of the African (AFR), Antarctic (ANT), and Australian (AUS) 

plates. The position of the triple junction is fixed in the model reference frame, and the 

motions of the three plates with respect to the triple junction are indicated by thick black 

arrows. The component of the plate motion vectors perpendicular to R3 (SWIR), R2 

(CIR), or R] (SEIR) is equal to the ridge's half-spreading rate and direction. RTJ traces 

represent accretionary boundaries dividing the crust created at two adjacent ridges. Light 

gray orthogonal lines represent the numerical grid. 
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Figure 4: b) Three-dimensional schematic representation of the model domain. The 

positions of the SEIR, CIR, and SWIR are indicated with lines on the top of the model 

domain, and the divergence of the Australian, Antarctic, and African plates about the 

Rodrigues Triple Junction (star) is indicated by black arrows. The calculated 3D velocity 

field is shown by small green arrows. The model box is 2000 x 2000 km in the horizontal 

direction, and 200 km in depth. 
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Figure 5: Model-predicted mantle velocity, projected onto the planes of the a) R3, b) R2, 

and c) Ri spreading branches. Note the strong component of along-axis velocity for R3 

(SWIR). In contrast, mantle motion is almost completely dominated by vertical upwelling 

for R! (SEIR). Gray shading indicates mantle temperature, with shading changes every 

100°C. 
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Figure 6: The calculated upwelling velocity magnitude along R] (SEIR, solid line), R2 

(CIR, dashed line), and R3 (SWIR, dash-dot line), at a depth of 75 km. For comparison, 

the magnitude of upwelling velocity driven by passive two-plate separation at the 

appropriate half-spreading rate is indicated by a light gray box. Note that the magnitude of 

the upwelling velocity for R3, and to a lesser extent R2, increases toward the triple junction 

to approach Ri upwelling velocity. Note also that Ri upwelling velocity does not appear to 

be significantly changed by the presence of the other two ridges. 
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Figure 7: Plan view of predicted temperature patterns for a) Model 1, b) Model 2, and c) 

Model 3 at a depth of 32 km. Note that for all three triple junctions, the two fastest- 

spreading ridges dominate the thermal structure of the region, while the temperature of the 

slowest-spreading ridge increases toward the triple junction. 
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Figure 8: Along-axis profiles of temperature at a depth of 32 km for a) Model 1, b) 

Model 2, and c) Model 3. Note that in all three panels, the predicted temperature increase 

toward the triple junction is most pronounced for the slowest-spreading branch (dash-dot 

line). 
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Figure 9: The calculated temperature anomaly caused by triple junction flow for a) R3 

(SWIR) b) R2 (CIR) and c) R, (SEIR). Temperature anomaly was calculated by 

subtracting the temperature-depth section calculated for a single ridge case with the 

spreading rate of Ru R2, or R3 from the temperature-depth section calculated for the ridge 

as shown in Figure 5. Note that the slowest-spreading ridge R3 has the most pronounced 

thermal anomaly with respect to the single ridge case, while the predicted thermal increase 

for R2 is small and confined to the immediate vicinity of the triple junction. In contrast, the 

temperature field for R3 in the triple junction configuration is very similar to the single ridge 

case. 
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Figure 10: a) Bathymetry map for the Rodrigues Triple Junction region. Bathymetry 

data were extracted from the Smith and Sandwell [1997] database, and contours delineate 

2.75 and 3.75 km depth. 
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Figure 10: b) Along-axis profile of ridge axis depth for the SWIR compiled from West et 

al. [1995] and Cannatetal. [1995b]. Data gap at a distance of -100 km results from non- 

overlap of the surveys in these two sources. The deepest portion of the SWIR is located to 

the east of the Melville Fracture Zone at 61°E. However, the ridge axis appears to shallow 

within a distance of -150 km from the Rodrigues Triple Junction. Gray curve indicates the 

model-predicted isostatic topography due to mantle thermal variations. Following the 

studies of/to and Lin [1995a] and /to et al. [1996] which suggest that -70-75% of along- 

axis mantle Bouguer gravity and bathymetry signals are attributable to crustal thickness 

variation, we calculate isostatic bathymetry assuming that mantle thermal variations 

contribute 30% to total topographic relief. 
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Figure 11: Plan-view slices of predicted temperature for Model 2. a) No plume is 

present in panel a), b) The white dashed circle indicates a plume with radius 100 km and 

thermal anomaly AT of 200°C that is centered on the triple junction. AT, the maximum 

thermal anomaly with respect to the ambient mantle temperature of 1350°C, is greatest at the 

center of the plume and decreases linearly away. This plume is referred to in the text as a 

narrow, hot plume, c) A narrow, hot plume is located 200 km to the east of the triple 

junction along R3. d) and e) The results of adding a broad (r = 300 km), cool (AT = 70°C) 

plume to the triple junction model. In panel d), the plume is triple-junction-centered, while 

in panel e), the plume center is 200 km to the east of the triple junction along R3, similar to 

the geometry of panel c). For all panels, temperature contours of 100°C are indicated in 

black. 
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Figure 12: Vertical slices of temperature along R3. In panel a), no plume is present. 

Panels b) and c) show a hot, narrow plume centered at the triple junction and 200 km away 

from the triple junction along R3, respectively, corresponding to panels b) and c) of Figure 

11. Similarly, panels d) and e) show model predictions for the triple-junction-centered and 

R3-centered broad, cool plume, respectively. Note the pronounced along-axis advection of 

the thermal anomaly, particularly in panel c). In all panels, the black line indicates the 

1410°C contour. 
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Figure 13: Along-axis temperature profiles at a depth of 32 km for a) R3, b) R2, and c) 

Ri, for each of the five plume configurations shown in Figure 11. In panels b) and c), the 

line for the no plume profile is offset slightly downwards to distinguish it from the line for 

the narrow, R3-centered plume, which it would otherwise overlap. Panel d) shows the 

temperature increase along R3 relative to the case with no plume. 
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Figure 14: Long-wavelength seafloor bathymetry around the Azores Triple Junction. 

Bathymetry map was generated by filtering predicted seafloor topography [Smith and 

Sandwell, 1997] using a lowpass filter with cutoff wavelength of 400 km. Note the 

pronounced long-wavelength bathymetric high over the Terceira Rift which extends to the 

portion of the Mid-Atlantic Ridge immediately to the south of the triple junction. As in 

Figure 1, the inferred center of the Azores plume is indicated with a white star. 
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Figure 15: a) Profiles of along-axis long-wavelength seafloor topography for the 

Terceira Rift, southern Mid-Atlantic Ridge, and northern Mid-Atlantic Ridge, extracted 

from the bathymetry map of Figure 14. Portions of the profile along transform offsets 

have been omitted, b-e) Predicted isostatic topography along Ri, R2, and R3, resulting 

from the addition of a plume with a radius of 190 km and AT of 190°C to Model 2. The 

plumes were located 200 km from the triple junction, at positions of 1/15, 1/10, and 1/5 of 

the angle from R3 to R2. Isostatic topography profiles were calculated assuming that the 

mantle thermal contribution to seafloor bathymetry is 30%. 
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Chapter 6:   Summary 

This thesis explored plume-ridge interactions in geological settings with a variety of 

ridge geometries. We first investigated how a high degree of ridge segmentation along the 

Southwest Indian Ridge (SWIR) influences the dispersal of the near-ridge Marion and 

Bouvet plumes. We next quantified how transform offset length and spreading rate affect 

the along-axis flow of plume-driven mantle. Third, we explored how He/Tie isotopic 

ratios vary along two supersegments of the western SWIR, one that is highly oblique to the 

regional spreading direction and another that is oriented perpendicular to the regional 

spreading direction and that has no transform offsets. Finally, we examined mantle flow 

and heat transfer beneath a triple junction plate boundary to determine how velocity 

structure and temperature patterns differ from the case of a single ridge, and to investigate 

how three-dimensional mantle flow advects a plume thermal anomaly. 

Chapter 2 suggests that both Marion and Bouvet significantly affect crustal accretionary 

processes along the ultra-slow spreading SWIR (half-rate 0.7-0.8 cm/yr). Marion and 

Bouvet are associated with high-amplitude mantle Bouguer anomaly lows, implying 

pronounced crustal thickening and/or elevated mantle temperatures. Whereas Marion's 

influence is apparent over several segments of the central SWIR, the Bouvet gravity signal 

appears to largely be localized between the Bouvet and Islas Orcadas fracture zones, an 

along-axis distance or waist width of only several hundred kilometers. Off-axis, the 

Marion hotspot track inferred from gravity coincides with the Madagascar Ridge, consistent 

with earlier reconstructions of Marion's paleopositions from magnetic studies. In contrast, 

there is little evidence from gravity anomalies for the position of the Bouvet plume for -30 - 

-90 Ma. 
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Motivated by the observation that long-offset transform faults may limit the dispersion 

of the Marion and Bouvet plumes along the SWIR, Chapter 3 uses a 3D numerical model to 

quantify the along-axis flux driven by an on-axis plume as a function of transform offset 

length and spreading rate. Calculations using a pressure- and temperature-dependent 

mantle viscosity predict that the high upper mantle viscosity associated with long transform 

offsets in slow-spreading environments may significantly reduce along-axis asthenospheric 

flux. For example, for a 250-km transform offset and a half-spreading rate of 0.75 cm/yr, 

along-axis plume-driven asthenospheric flux is predicted to be reduced by 40% relative to 

the case with no transform offset. Consistent with earlier analytical studies that suggest 

that ridge offsets may limit axial asthenospheric flow, these model results predict that 

transforms in ultra-slow spreading environments like the SWIR may shorten the waist 

width of a near- or on-axis plume. 

The influence of the Bouvet plume on the SWIR is further explored in Chapter 4. 

Chapter 4 reports more than 30 new helium isotope measurements for the SWIR between 

9°E and 24°E. This portion of the SWIR may be divided into two supersegments, a 

western area between 9°E and 16°E that is oriented at a high angle to the regional spreading 

direction, and an eastern region between 16°E and 24°E that strikes roughly orthogonally to 

the direction of regional spreading. The effective spreading rate for the western oblique 

supersegment, or component of plate separation in the regional spreading direction, is very 

low, -0.5 cm/yr. Despite the difference in effective spreading rate between the oblique and 

orthogonal supersegments, 3He/4He ratios for the two regions are very similar. The 

average He/He ratio for the oblique supersegment is 6.6 R/Ra, whereas that for the 

orthogonal supersegment is 6.9 R/Ra. Overall, 3He/4He ratios through the entirety of the 

study area range from 6.3-7.3 R/Ra, lower than the normal MORB average ratio of 8±1 

R/Ra.  The favored explanation for these low ratios is addition of (U+Th) to the mantle 
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source through crustal and/or sediment recycling. Although earlier studies suggested that 

anomalous geochemistry in basalts dredged from the oblique supersegment may be due to 

influence from the high 3He/4He Bouvet plume, there is no evidence from elevated He/He 

ratios for such influence. 

Finally, Chapter 5 investigates mantle flow and temperature patterns for oceanic ridge- 

ridge-ridge triple junctions using numerical modeling. For triple junctions with a 

configuration similar to the Rodrigues Triple Junction in the central Indian Ocean, 3D 

solutions for passive, plate-driven flow of an isoviscous mantle predict a significant 

influence of the two faster-spreading ridge branches on the slowest-spreading branch. For 

spreading rates representative of the Rodrigues Triple Junction, both temperature and 

upwelling velocity along the slowest-spreading ridge are predicted to increase within a few 

hundred kilometers of the triple junction, to approach the conditions along the fastest- 

spreading ridge. Furthermore, because of the directions of plate divergence away from the 

triple junction, a strong component of along-axis flow, directed away from the triple 

junction, is predicted for the slowest-spreading ridge. When a thermal anomaly 

representing a plume source is added to the base of the model near the triple junction, the 

influence of the thermal anomaly is predicted to be greatest for the slowest-spreading ridge 

because of this along-axis flow. Such calculations help to constrain the deep source 

location of a plume near a triple junction such as the Azores. 

The investigative approaches used in this thesis range from analysis and interpretation 

of bathymetry, gravity, and other geophysical data, to rare gas isotopic measurements, to 

computational geodynamics modeling. This thesis work points out several new lines for 

future investigations. For example, a program which couples seismic refraction 

experiments to measure crustal thickness variations with geochemical analysis of closely 

spaced rock dredges along the three branches of a triple junction could provide a direct test 
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of the mantle temperature and crustal accretion predictions of our models. Similarly, 

detailed axial dredge sampling along plume-affected segments proximal to a long transform 

offset would help to constrain how along-axis plume flow interacts with ridge 

discontinuities. Subsequent models could then incorporate these important constraints to 

further understanding of the complex processes of plume-ridge interactions. 
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TJ, this along-axis flow is predicted to advect a hotspot thermal anomaly away from its deep-seated source. 
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