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Foreword

The Thirteenth International Workshop on Principles of Diagnosis (DX 02) is the
latest in a series of annual workshops that focus on the presentation and exchange
of current results in the field of diagnosis and related areas, including tasks such as
monitoring, fault identification and isolation, testing, reconfiguration and repair. The
workshops are historically centered on approaches from the Artificial Intelligence (AI)
community, but aim at supporting wide range of different techniques and methodolo-
gies, as well as the integration of other research communities such as Process Engi-
neering and FDI.

The papers included in this volume span a wide range of techniques and application
areas, including such domains as complex hardware systems, software and knowledge
bases, secure systems, and design problems, and deal with discrete and continuous,
algebraic, logic-, constraint-, structure-, and probability-based approaches, dynamic
and temporal systems, distribution and abstraction, and non-symbolic methods of di-
agnosis. They bear witness to the continuing existence of fertile ground for further
theoretical and applied research.

The invited talks continue the choice of earlier workshops to bring in new and
varying viewpoints to provide a wider context to the problem area, and address issues
from related and neighboring areas of interest to the diagnosis community: constraint
satisfaction, problem decomposition, and debugging.

We wish to thank the authors of the submitted papers, the program committee
members, at least two of which reviewed each of the submitted full papers, for the
time and effort spent, and the invited speakers for their participation. We especially
wish to thank Sheila McIlraith for her help in organizing the review process.

We would also like to acknowledge the support of our sponsors for their contribu-
tion to the success of this workshop:

� AVL DiTEST

� COLOGNET

� European Office of Aerospace Research and Development, Air Force Office of
Scientific Research, United States Air Force Research Laboratory

� Materna

� OCC’M Software

� Austrian Computer Society (OCS)

� Austrian Artificial Intelligence Society (OEGAI)

� Siemens Austria, PSE PRO, CES Design Services

� TU Graz, IICM - Software Technology

� TU Wien, Institut für Informationssysteme

Markus Stumptner and Franz Wotawa April, 2002
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Particle Filters for Real-Time Fault Detection in
Planetary Rovers

Richard Dearden and Dan Clancy
Research Institute for Advanced Computer Science

NASA Ames Research Center
Mail Stop 269-3 Moffett Field, CA 94035 USA
Email:dearden,clancy@ptolemy.arc.nasa.gov

Abstract.
Planetary rovers provide a considerable challenge for artificial in-

telligence in that they must operate for long periods autonomously,
or with relatively little intervention. To achieve this, they need to
have on-board fault detection and diagnosis capabilities. Traditional
model-based diagnosis techniques are not suitable for rovers due to
the tight coupling between the vehicle’s performance and its envi-
ronment. Hybrid diagnosis using particle filters is presented as an
alternative, and its strengths and weaknesses are examined. We also
present some extensions to particle filters that are designed to make
them more suitable for use in diagnosis problems.

1 Introduction

Planetary rovers provide a considerable challenge for artificial intel-
ligence in that they must operate for long periods autonomously, or
with relatively little intervention. To achieve this, they need (among
other things) to have on-board fault detection and diagnosis capabil-
ities in order to determine the actual state of the vehicle, and decide
what actions are safe to perform. However, as we will discuss be-
low, traditional approaches to diagnosis are unsuitable for rovers, and
we must turn to hybrid approaches. In this paper we describe an ap-
proach to hybrid diagnosis based on particle filters [2, 7, 3]. We show
that the characteristics of diagnosis problems present some difficul-
ties for standard particle filters, and describe an approach for solving
this problem. We will use rovers as a motivating example through-
out this paper, but the techniques we describe can be applied to any
hybrid diagnosis problem.

The diagnosis problem is to determine the current state of a system
given a stream of observations of that system. In traditional model-
based diagnosis systems such as Livingstone [14], diagnosis is per-
formed by maintaining a set of candidate hypotheses (in Livingstone,
a single hypothesis was used) about the current state of the system,
and using the model to predict the expected future state of the system
given each candidate. The predicted states are then compared with
the observations of what actually occurred. If the observations are
consistent with a particular state that is predicted, that state is kept as
a candidate hypothesis. If they are inconsistent, the candidate is dis-
carded. Traditional diagnosis systems typically use a logic-based rep-
resentation, and use monitors to translate continuous-valued sensor
readings into discrete-valued variables. The system can then reason
about the discrete variables, and compare them with the predictions
of the model using constraint propagation techniques.

Unlike the spacecraft domains that Livingstone has been applied
in, rover performance depends significantly on environmental inter-
actions. The on-board sensors provide streams of continuous valued
data that varies due to noise, but also due to the interaction between
the rover and its environment. For example, a rover may have a sen-
sor that reports the current drawn by a wheel. In normal operation,
this quantity may vary considerably, increasing when the vehicle is
climbing a hill, and decreasing on downward slopes. The diagnosis
system needs to be able to distinguish a change in the current drawn
due to the terrain being traversed from a change due to a fault in the
wheel. A second issue for rovers is that their weight and power is
very tightly constrained. For this reason, any on-board diagnosis sys-
tem must be computationally efficient, and should be able to adapt
to variations in processor availability. Ideally, we would also like it
to adapt based on its own performance, spending more time on diag-
nosis when a fault is likely to have occurred, and less time when the
system appears to be operating normally.

A rover’s close coupling with its environment poses a considerable
problem for diagnosis systems that use discrete models. A particular
sensor reading may be normal under certain environmental condi-
tions, but indicative of a fault in others, so any monitor that trans-
lates the sensor reading into a discrete value such as “nominal,” or
“off-nominal high” must be sophisticated enough to take all the en-
vironmental conditions into account. This can mean that the diagno-
sis problem is effectively passed off to the monitors—the diagnosis
system is very simple, but relies on discrete sensor values from ex-
tremely complex monitors that diagnose the interaction between the
system and its environment as part of translating continuous sensor
values into discrete variables. To overcome this problem, we need to
reason directly with the continuous values we receive from sensors.
That is, our model needs to be a hybrid system, consisting of a set of
discrete modes that the system can be in, along with a set of continu-
ous state variables. The dynamics of the system is described in terms
of a set of equations governing the evolution of the state variables,
and these equations will be different in different modes. In addition,
a transition function describes how the system moves from one mode
to another, and an observation function defines the likelihood of an
observation given the mode and the values of the system variables.

This hybrid model can be seen as a partially observable Markov
decision process (POMDP) [1]. POMDPs are frequently used as a
representation for decision-theoretic planning problems, where the
task is to determine the best action to perform given the current es-
timate of the actual state of the system. This estimate, referred to as



the belief state,is exactly what we would like to determine in the di-
agnosis problem, and the problem of keeping the belief state updated
is well understood in the decision theory literature. The belief state
is a probability distribution over the system states—that is, for every
state it gives the probability of being in that state, given our prior be-
liefs about the state of the system, and the sequence of observations
and actions that have occurred so far.

Unfortunately, maintaining an exact belief state is computation-
ally intractable for the types of problem we are interested in. Since
our model contains both discrete and continuous variables, the belief
state is a set of multidimensional probability distributions over the
continuous state variables, with one such distribution for each mode
of the system. These distributions may not even be unimodal, so just
representing the belief state is a complex problem, but updating it
when new observations are made is intractable for hybrid models in
all but the simplest of models (see [8] for an illustration of this).
Therefore, an approximation needs to be made. As we said above,
we will use a particle filter to approximate the belief state and keep
it updated.

A particle filter represents a probability distribution using a set of
discrete samples, referred to as particles, each of which has an associ-
ated weight. The set of weighted particles constitutes an approxima-
tion to the belief state, and has the advantage over other approaches
such as Kalman Filters [6] that it can represent arbitrary distributions.
To update the distribution when a new observation is made, we treat
each particle as a hypothesis about the state of the system, apply the
model to it to move it to a new state, and multiply the weight of the
particle by the likelihood of making the observation in that new state.
To prevent a small number of particles from dominating the proba-
bility distribution, the particles are then resampled, with a new set of
particles, each of weight one, being constructed by selecting samples
randomly based on their weight from the old set.

Particle filters have already proven very successful for a number of
tasks, including visual tracking [7] and robot navigation [4]. Unfor-
tunately, they are less well suited to diagnosis tasks. This is because
the mode transitions that we are most interested in detecting namely
transitions to fault states typically have very low probability of actu-
ally occurring. Thus, there is a risk that there will be no particle in a
fault state when a fault occurs, and the system will be unable to diag-
nose the fault. We propose a solution to this problem by thinking of a
particle filter as a convenient way to divide the computation time that
is available for doing diagnosis between the candidate states that the
system could be in. A conventional particle filter splits the particles
(and hence the computation time) according to how well the states
predict the observations, but with this approach we will also spend
some computation time on fault states that are important to diagnose.
We do this simply by ensuring that there are always some particles
in those states. As we will show, the details of the particle filter algo-
rithm mean that we can add these additional particles without biasing
the diagnosis that results.

In the next section we discuss the hybrid model of the rover in
detail. In Section 3 we describe particle filtering and demonstrate its
weaknesses when applied to diagnosis problems, and in Section 4
we will describe our modifications to the standard particle filter in
detail. In Section 5 we present some preliminary results on real rover
data, using a simple version of our proposed approach. The final sec-
tion looks at the relationship between this work and some previous
approaches to this problem, and discusses some future directions for
this work.

2 Modeling a Planetary Rover

As we said above, we model a rover as a hybrid system. The dis-
crete component of the rover’s state represents the various opera-
tional and fault modes of the rover, while the continuous state de-
scribes the speed of the wheels, the current being drawn by various
subsystems, and so on. Following [13], our rover model consists of a
tuple

���������	�
��������
where the elements of the tuple are as follows:

� �
is the set of discrete modes the system can be in. We assume

that
�

is finite, and write � for an individual system mode.� �
is the set of variables describing the continuous state of the

system.� �
is a transition function that defines how the system moves from

one mode to another over time. We write ��������� � ����� for the
probability that the system moves from mode � to mode � � .
We may also include a second transition function ��� � ��� �! "� � � �
which is used when an action

 
occurs. This gives the probability

of moving from � to ��� when action
 

is executed.� �
is a set of equations that describe the evolution of the continu-

ous variables over time. The equations that apply at a given time
potentially depend on the system mode, so we write

�$#
for the

equations that apply in mode � . These equations will in general
include a noise term to account for random variations in the state
variables. Here we will assume Gaussian noise, with the parame-
ters of the Gaussian determined individually for each equation.� �

is a function mapping the system state into observations. We
will assume that the observable system characteristics are some
subset of the system variables

�
, with their values corrupted by

Gaussian noise (again with parameters that may be a function of
the variable, and the system mode), so we write

� ��% � �&� for the
observed value of some variable % in mode � .

We will also write ���'��()�+* (,� for the probability distribution over
future states ( � given some state ( ,where ( and ( � are hybrid states,
so ���'��( � * (,� includes both the distribution over the future mode given
by ��� � ���-��* �&� ,and the distributions over the continuous variables
given by

�$#
.

The diagnosis problem now becomes the task of determining the
current mode � that the system is in, and the values of all the state
variables in

�
(the results we will present will only show the proba-

bility distribution over discrete modes, but the algorithm produces a
distribution over the full hybrid state).

The experiments we will present in Sections 3 and 5 use actual
telemetry data from NASA Ames Marsokhod rover. The Marsokhod
is a planetary rover built on a Russian chassis that has been used in
field tests from 1993–99 in Russia, Hawaii, and the deserts of Ari-
zona and California. The rover has six independently driven wheels,
and for the experiments we present here, the right rear wheel had a
broken gear, and so rolls passively. The Marsokhod has a number of
sensors, but we will restrict our attention to diagnosing the state of
the broken wheel, and will therefore use only data from the wheel
current and wheel odometry sensors. We will treat each wheel inde-
pendently in the diagnosis. For each wheel, we have a model, taken
from [13], with the following characteristics:

� �
consists of .0/ system modes of which 1�2 are fault states.� �

consists of variables for the wheel current and wheel speed, and
the derivatives of current and speed.� �

is a fairly sparse matrix, with at most six successors for any
given mode. The probability of a transition to a fault state is 354 361
or less. All commands are described by one transition function



for the start and one for the end of a command because the data
doesn’t identify which command occurred.� The state equations in

�
consist of the previous value plus a con-

stant term and noise. The noise is Gaussian with standard devia-
tion in the range 354 30361 to 1 4 3 , and the equations are independent
for each state variable.� The equations in

�
are independent for each variable (but vary

depending on the mode), and include a Gaussian noise term with
a standard deviation that varies from 364 3 351 to 104 3 .

3 Particle Filters

A particle filter approximates an unknown probability distribution
using a weighted set of samples. Each sample or particle consists of
a value for every state variable, so it describes one possible complete
state the system might be in. As observations are made, the transition
function is applied to each particle individually, moving it stochasti-
cally to a new state, and then the observations are used to re-weight
each particle to reflect the likelihood of the observation given the
particle’s new state. In this way, particles that predict the observed
system performance are highly weighted, indicating that they are in
likely states of the system. A major advantage of particle filters is
that their computational requirements depend only on the number of
particles, not on the complexity of the model. This is of huge im-
portance to us as it allows us to do diagnosis in an anytime fashion;
increasing or decreasing the number of particles depending on the
available computation time.

To implement a particle filter, we require three things:

� A probability distribution over the initial state of the system.� A model of the system that can be used to predict, given the cur-
rent state according to an individual particle, a possible future state
of that particle. Since

�
is stochastic, and

�
includes noise terms,

the predictive model selects a new state for the particle in a Monte
Carlo fashion [5], choosing by sampling from the probability dis-
tribution over possible future states.� A way to compute the likelihood of observing particular sensor
values given a state. In our case, this is given by the observation
function

�
.

The particle filtering algorithm is given in Figure 1. Step (i) is the
predictive step, where a new state is calculated in a Monte Carlo way
for each particle, and this new state is then conditioned on the obser-
vations in step (ii) (we call this the re-weighting step). The predictive
step is performed by applying

�
to each particle, and then apply-

ing the appropriate equations from
�

to the state variables, sampling
values from the Gaussian error terms. Once the particles have been
re-weighted, we can then calculate the probability of each mode sim-
ply by summing the weights of the particles in the mode. We refer to
step (b) as the resampling step. For more details on the properties of
particle filters see e.g. [3].

3.1 Problems with Particle Filters for Diagnosis

Unfortunately, there are a number of difficulties in applying particle
filters to diagnosis problems. In particular, the filter must have a par-
ticle in a particular state before the probability of that state can be
evaluated. If a state has no particles in it, its probability of being the
true state of the system is zero. This is a particular problem in diag-
nosis problems because the transition probabilities to fault states are
typically very low, so particles are unlikely to end up in fault states

1. Create a set of � particles where each particle ��� has a state (��
and a weight � � . ( � is sampled randomly from the prior state
distribution, and � ��� 1 .

2. For each time step, do:

(a) Replace each particle ��� with � � � as follows:

i. Select a future state ()� � by sampling from ���'��()� � * ( � � , the
distribution over possible future states given by the model.

ii. Re-weight ��� by multiplying its weight by the probability
of the observations 	 given ( � � as follows:

� �� � ���,�
	 * ( � � ��� �
(b) Resample � new particles �� � 4�4)4 � ��� by copying the � � cur-

rent particles where each particle � �� is added to the new
samples with the following probability:

���,����� � � �� � � � ��� � ��� � � ��

Figure 1. The particle filtering algorithm.

during the Monte Carlo predictive step. This situation is known as
sample impoverishment.

Figure 2 illustrates this problem. Each graph shows the most likely
modes that the wheel is in (the y-axis is the total weight of the parti-
cles in each mode, so a value of 10000 implies that all particles are in
that mode), shown over part of one of the trials in which the wheel is
initially idle, and then at step 12 is commanded to drive forward at a
fixed speed. The graphs on the left show the performance of Wheel 1,
which is operating nominally. The graphs on the right show the per-
formance of Wheel 6, which is faulty. In the top line, the probability
of the fault occurring is 0.1 rather than its true value of 0.01. Here
the fault is quickly detected in Wheel 6. In the bottom line of graphs,
the fault probability is set to its true value, and in this case the fault
is not successfully detected because insufficient particles enter the
fault state. One might expect that once a particle enters the fault state
its weight would be high since it would predict well, and at the re-
sampling step it should lead to several new particles being created.
Unfortunately, this did not occur in this situation because although
some particles did enter the fault state, their continuous parameter
values did not agree with the observations well, so they still had low
weights. The continuous parameters did not match because each of
the particles that entered the fault state came from the COMMANDE-
DRUNNING state, in which the current and wheel speed are expected
to be much higher than the observed values.

4 Importance Sampling

The simplest solution to the sample impoverishment problem is to
increase the number of particles being used. Given the constraints
imposed on on-board systems, this approach is probably unrealistic.
The data presented above was implemented in Java, using 10,000
particles per wheel, and runs in approximately 0.5 seconds per up-
date on a 750MHz Pentium 3. This is probably at the upper limit
of the number of particles we could expect to use on-board a rover
as the time available for diagnosis is longer, but there will be less
computation devoted to diagnosis. Thus running with ten times as
many particles (which is roughly equivalent to multiplying the fault
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Figure 2. Results for Wheel 1 (left side) and Wheel 6 (right side). In the top row, the probability of a fault is ten times its true value, while the bottom row
uses the true probabilities. The fault (GEARANDENCODERFAULTRUNNING) in Wheel 6 is quickly detected in the top row, but is never discovered in the

bottom row due to sample impoverishment.

probability by ten) is probably impractical on the rover, and even
10,000 particles may be unrealistic as the model gets more complex.
This could be somewhat overcome by only increasing the number
of particles when there is some evidence that the system is predict-
ing poorly. In order to achieve this, we need some measure of when
this occurs. The obvious measure is to look at the total weight of the
particles after conditioning on the observations. If no particles are
predicting the observations well the total weight should drop. Un-
fortunately, in practice this is rarely useful because there are a num-
ber of other possible causes for this behavior. For example, particles
moving from a state in which there is high confidence in the sen-
sor readings to a state with more sensor noise will tend to drop in
weight even if they are still predicting the observations well. We see
this in the Marsokhod model because the IDLE mode has relatively
large variance for the observation noise, whereas the COMMANDE-
DRUNNING mode has smaller variance, so the total particle weight
increases when the system moves from the IDLE to the COMMANDE-
DRUNNING mode, even for wheel 6 where COMMANDEDRUNNING

predicts the observations poorly.
Another way to reduce the likelihood of sample impoverishment

is to take advantage of some results from importance sampling (see
e.g. [9]). In importance sampling, we want to sample from some dis-

tribution
�

, but we can’t. Instead, we sample from some other dis-
tribution � , and weight each sample ( by ����� ��(,��������� ��('� , the ratio
of the likelihood of sampling ( from

�
to the likelihood of sampling

it from � . The weighted sample is then an unbiased sample from�
, as long as � is non-zero everywhere that

�
is non-zero. In fact,

importance sampling is exactly what the particle filter algorithm is
doing. For a particle filter, the unknown distribution

�
is the poste-

rior distribution we are trying to compute, � is the prior distribution
(the set of samples before the observation), and the re-weighting step
corresponds to the importance sampling weight computation.

Given that whatever we choose for � , the weighted samples are
an unbiased sample from

�
, we can add arbitrary samples to our

particle filter at the resampling step, and still end up with an unbiased
posterior distribution. We will use this property to ensure that we
have samples in the system modes that are important to us (hence
the name importance sampling). The question then is how to choose
� . We can imagine an oracle that provides a set of candidate states
the system might end up in, given the current distribution over state.
When we resample, we simply make sure that there are always some
particles in the states provided by the oracle. If those states explain
the subsequent observations well, the particles in them will get high
weight, and are likely to be resampled with more particles at the next
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Figure 3. Results for the importance sampled particle filter. All states with
�������

probability were used as starting points for the forward search, and �	� ���
of the particles were assigned to each of the found states. On the left are results for wheel 1, and on the right for wheel 6.

step. On the other hand, if they predict the observations poorly, the
particles will quickly disappear again.

The question that remains is how to implement the oracle. For a
complex system such as a planetary rover, with many components
each with its own set of possible failure modes, there are exponen-
tially many possible failure modes, so this is a non-trivial problem.
However, one approach that seems promising is to use a traditional
model-based diagnosis system such as Livingstone [14]. These dis-
crete systems typically operate more quickly than hybrid approaches,
so can be used to suggest hypotheses without significantly affecting
computation time. We pointed out in the introduction that they are not
in general suitable for diagnosing rovers, but they could be used to
identify sets of likely system modes for the hybrid system to be used
in. The integration of Livingstone with the particle filter approach is
currently work in progress, as it adds a number of additional compli-
cations including building an additional system model, and ensuring
that the discrete and hybrid models agree with one another and can
easily be translated back and forth.

For simpler systems such as the Marsokhod wheel diagnosis we
have used in this paper, the above approach is unnecessary. Instead,
we can use an oracle based on forward search from the current high-
probability states. Since each system mode in this model has at most
six possible successors, and there are typically only two to three high
probability modes at any time, we find in practice that in most cases
a simple one-step look-ahead search adds fewer than five modes to
those that already contain particles.

5 Results

The results we present here are based on the Marsokhod model we
described in Section 2. Dr. Rich Washington supplied the model and
the data, which came from his work on using Kalman filters for rover
diagnosis [13]. The only changes made to the model were to make
it suitable for use with a particle filter; no changes were made to
model parameters or transition probabilities. To demonstrate our ap-
proach we use a small piece of one of the telemetry data files (the
same piece used in Section 3) in which the rover is initially idle, and
then a drive command is issued, resulting in an increase in current to
each wheel, followed by a corresponding increase in speed, and then

a constant speed. As before, wheel 6 is faulty, with a broken gear
(this corresponds to the GEARANDENCODERFAULTRUNNING state
in the model).

Figure 3 shows the results for the importance sampled particle fil-
ter. We used single step forward search from all states with probabil-
ity 
 354 .	� to select the set of bias states. Each of these states was
then guaranteed to receive at least 354 �� of the total number of par-
ticles at each re-sampling step. The left hand graph is the probable
states for Wheel 1, as before. Like the graph in the bottom row of
Figure 2, the PREMATUREACTION state was given high probability
before step 13. This state appears where the effects of an action are
seen before the signal to perform the action, due to problems with the
rover telemetry. In this case it is a spurious result due to the model
of the IDLE state not allowing sufficient noise in the observations. A
small adjustment to the model would remove this problem, which is
only present in the data for two of the wheels. The right hand graph
shows the same data for Wheel 6. In this case, the fault state domi-
nates the probability distribution after step 20, seven steps after the
command to drive the wheel was observed, as compared with three
steps for the model with increased fault probabilities (Figure 2).

6 Discussion and Relation to Other Work

An important thing to note is that standard particle filters treat the
model essentially as a black box, using it only to predict future states
of the system. We have described one approach that exploits the
structure in the model to make diagnosis using particle filters more
effective. This is by no means the only way to exploit that structure,
and we are in the process of looking at other techniques. Possibilities
include making a single-fault assumption (but relaxing it if it predicts
the observations poorly), and taking advantage of independence be-
tween components in the system to reduce the number of samples
needed, or even to diagnose subsystems independently.

One closely related piece of work is Verma et al.’s decision-
theoretic particle filter [11]. Their approach is similar to ours, but
they assign a utility—which corresponds to how important each state
is to diagnose—to every state and multiply the probability of a tran-
sition by the utility of the state that results. This alters the transition
function to favor important states, rather like the approach we took



in Figure 2. For relatively simple diagnosis tasks such as the one
we have presented here, the approaches seem very similar. However,
designing a utility function to produce the right diagnoses, without
causing too many false diagnoses of faults is a difficult task, espe-
cially as any reasonable utility function would give all fault states
a high utility. In [10], they refine this approach, again using a risk
function that scores states by how important it is to diagnose them
correctly, but this time modifying the particle filter algorithm so that
the samples are distributed according to the product of the posterior
probability distribution and the risk factor. This ensures that samples
in high-risk states have higher weights, and the true posterior can be
recovered from the risk-sensitive posterior, but still suffers from the
problem of sample impoverishment. These approaches are orthogo-
nal to the approach described here, and we are currently working on
combining the two.

Another related effort is the work of Washington [13] that applies
Kalman Filters to this problem. In this work, the continuous dynam-
ics in each mode is tracked by a set of Kalman filters. The main
problem with the approach is that the number of filters tends to in-
crease over time because each time a transition is made to a state the
initial conditions for the filter are different, and filters with differ-
ent initial conditions cannot be combined. This is not a problem for
particle filter-based approaches because the particle filters can rep-
resent arbitrary distributions over the parameter values, so particles
entering a state with two different sets of initial conditions will form
a bi-modal distribution. As we said above, we used the model and
data from this paper in our own work. We see fewer errors in the
mode identification with our approach than in Washington’s paper,
although we are sometimes slower to identify the fault, and our com-
putational requirements are somewhat higher.

As we said in the introduction, this paper is intended as a proof
of concept. There is still much work to do on the problem of how
to integrate a model from Livingstone with this system to act as an
oracle. We have demonstrated that a simple look-ahead search per-
forms quite well, but this is clearly inadequate for large diagnosis
problems, particularly as most faults can occur at any time, so the
one step lookahead is unlikely to scale to very large problem. We are
also examining a number of other approaches to improving diagno-
sis with particle filters, such as backtracking when prediction is poor,
and re-sampling past states based on observations that occurred more
recently. Finally, we are investigating how a diagnosis system of this
type would fit with the CLARAty rover architecture [12] being used
for future NASA missions to Mars.
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Abstract

Applying model-based diagnosis techniques to sys-
tems that exhibit hybrid behavior presents an inter-
esting set of challenges that mostly revolve around
interactions of the continuous and discrete compo-
nents of the system. In many real world systems,
the overall physical plant is inherently continuous,
but system control is performed by a supervisory
controller that imposes discrete switching behav-
iors by reconfiguring the system components, or
switching controllers. In this paper, we present a
case study of an aircraft fuel system, and discuss
methodologies for building system models for on-
line tracking of system behavior and performing
fault isolation and identification. Empirical stud-
ies are performed on detection and isolation for a
set of pump and pipe failures.

1 Introduction
Most present-day systems that we use are designed to be re-
pairable. Failures. either physical (hardware) or logical (soft-
ware), and the resulting maintenance are a fundamental part
of the economics of ownership. Fault diagnosis involves the
detection of anomalous system behavior and the isolation and
identification of the cause for the deviant behavior. When the
system includes safety-critical components, failures or faults
in the system must be diagnosed as quickly as possible, and
their effects compensated for so that control and safety can
be maintained. The term, diagnostic capabilities, refers to
the abilities of a system to detect a failure and isolate it to
a failed unit. Quick detection and isolation allows for quick
corrective actions that may include reconfiguration of system
functions to prevent damage and maintain control.

Fault accommodation requires tight integration of online
fault detection, isolation, and identification with the system
control loop that may be designed to take appropriate control
actions to mitigate the effect of the faults and help maintain
nominal system operation. Failure to detect faults reduces
system availability, results in failed or incomplete missions,
and, in some cases, may even lead to catastrophic failures that
lead to loss and destruction of the system. Therefore, fault
diagnosis is critical to achieving system performance and life-
cycle cost objectives.

In general, systems are dynamic, i.e., their behavior
changes over time. Faults impose additional transients on
the dynamic behavior, but that may be difficult to detect and
characterize, especially in the presence of model disturbances
and noisy measurements. Moreover, in physical systems nat-
ural feedback from the system and controller actions may
mask the transient behavior if they are not detected soon after
they occur. This motivates the development and use of online
model-based fault detection and isolation methods. Model-
based techniques employ a model to predict nominal system
behavior. The model must be constructed at a level of detail
where system behavior can be mapped to system components
and parameters. The relations in the model are employed to
map observed deviations between measurements and values
predicted by the model to possible faults in system compo-
nents. Continued monitoring helps establish a unique fault or
set of faults associated with the system.

Most real-life systems are equipped with a limited num-
ber of sensors to track system behavior, and analytic redun-
dancy methods have to be applied to derive non-local in-
teraction between potential faults and observations. These
techniques have been applied to a variety of schemes used
in the diagnosis of discrete [deKleer and Williams, 1987],
discrete event [Lunze, 1999; Sampath et al., 1996] and
continuous systems [Gertler, 1997; Mosterman and Biswas,
1999]. The traditional approach to hybrid system diagno-
sis has been to use a single continuous model with complex
non-linearities, or abstracting the continuous dynamics to a
discrete event model. Complex non-linearities complicate
the analysis and they may introduce numerical convergence
problems. Discrete event abstractions lead to loss of criti-
cal information, such as fault transient characteristics. Fur-
ther, methods to identify the set of events that describe both
nominal and faulty behavior is often a computationally chal-
lenging task bringing to question the scalability of such ap-
proaches. Hybrid system analyses require the use of multi-
ple models of the system. Recent approaches to hybrid sys-
tem diagnosis have incorporated appropriate model selection
and mode estimation techniques at run time to track faulty
behavior and perform fault isolation [McIlraith et al., 2000;
Hofbaur and Williams, 2002; Narasimhan and Biswas, 2001;
2002].

Model-based diagnosis techniques can only be as good as
the models upon which they are based. Incomplete and incor-



rect models cause problems with the tracking and fault isola-
tion tasks. The tracking process may produce false alarms or
worse missed alarms. In the first case, diagnosis is triggered
when there is no fault in the system. In the second situation,
diagnosis is not triggered and a fault may be missed. Fault
isolation with incomplete and inaccurate models may also
produce false candidates and miss true candidates. On the
other hand, building models that include unnecessary detail
may increase computational complexity making online pro-
cessing infeasible. Therefore, a key task in model-based di-
agnosis is to build accurate models at the right level of detail.
This paper focuses on the pragmatics of model building and
fault isolation by performing a case study on the fuel transfer
system of an aircraft.

2 Fuel System Description

High-performance aircraft require sophisticated control tech-
niques to support all aspects of operation, such as flight con-
trol, mission management, and environmental control. An
aircraft’s fuel transfer system maintains the required flow
of fuel to the engines through different modes of operation,
while ensuring that imbalances are not created that affect cen-
ter of gravity of the system. Fig. 1. illustrates a typical fuel
system configuration. The fuel system geometry is symmet-
ric and may be split into left side and right side arrangements.
The overall system can be divided into two main sub-systems:
(i) the engine feed system, and (ii) the transfer system. The
feed system consists of a left and right engine feed tank. The
tanks are connected through pipes with controlled valves so
that fuel can be transferred between the tanks if a fault occurs
in one of the tanks. A boost pump in each of the feed tanks
controls the supply of fuel from the tank to its respective en-
gine. The transfer system moves fuel from the two forward
fuselage and the two wing tanks to the engine feed tanks. The
intent is to keep the engine feed tanks near full at all times so
that sufficient fuel is available on demand, and if failures oc-
cur in the transfer system there is still a significant amount
of fuel available for emergency maneuvers. The fuel trans-
fer sequence is set up in a way that maintains the aircraft’s
center of gravity. To achieve this, pumps located in the fuse-
lage and wing tanks are are turned on in a pre-determined
sequence to transfer their fuel to a common transfer manifold
(set of tubes). The fuel exits the transfer manifold through
level control valves into the feed tanks.

A wide variety of sensors may be included in the fuel
transfer system. Fuel quantity gauging sensors determine the
amount of fuel in a tank. Engine fuel flow meters determine
engine fuel consumption. Pressure transducers measure the
transfer and boost pump pressures. Position sensors deter-
mine the open and closed states of valves. Each sensor comes
at a cost that is determined by its weight, reliability, complex-
ity, and cost. Therefore, designers often try to minimize the
number of sensors while ensuring that the required control
can be achieved.

The transfer system control schedules the pump operation
to match a pre-defined transfer sequence shown in Table 1.
The unit of the amounts in the table is the pound. Initially
one wing pump in each tank is turned on. When a feed tank

Figure 1: Fuel System Schematic

quantity decreases by 100 lbs, the level control valve in that
tank will be opened. The fuel then flows from the transfer
manifold into the feed tank raising its level back to the full
fuel quantity at which point the level control valve will be
closed, stopping the fuel transfer.

Table 1: Fuel Transfer Sequence
Left Wing
Tank

Right
Wing Tank

Left Fuse-
lage Tank

Right Fuse-
lage Tank

2500 2500 3300 3000
2000 2000 3300 3000
2000 2000 3000 3000
1000 1000 2000 2000
0 0 1000 1000
0 0 0 0

The most common failures in this configuration are trans-
fer and boost pump failures, and shutoff valve failures. The
transfer pumps have two primary failure modes. One is a to-
tal loss of pressure caused by the impeller not turning. The
other is a degraded state caused by mechanical wear, leakage,
or electrical failure where the fuel flow rate falls below nom-
inal values. The second failure can lead to the first condition
over time. Faults in the boost pump mirror those in the trans-
fer pumps. Valve failures are stuck-at conditions, i.e., their
positions do not change even when they are commanded to
do so. This can result from mechanical friction/jamming of
the shaft or electrical failure of the motor or power source. In
this work, we also consider partial failures of the valves. A
third class of faults that we consider is leaks in the connecting
pipes. Our goal is to develop an online diagnostic system for
detection, isolation and identification of these faults.

Right Wing Tank 

La       Transfer Pump 

<©      Level Control Valve 

(©     Interconnect Valve 

|BP~1      Boost Pump 

FMI      Flow Meter 

Fuel Quantity Sensor 
Left Wing Tank 



3 Component-based Hierarchical Modeling
for Diagnosis

Complex real-world systems are made up of a number
of subsystems and components. Hierarchical component-
based approaches, e.g., Statecharts [Harel, 1987], 20sim [van
Amerongen, 2000], and Ptolemy [Buck et al., 1994]. are a
practical approach to constructing models of such systems,
We have developed a new methodology for hierarchical com-
ponent based modeling that customizes the graphical Generic
Modeling Environment (GME) with a hybrid bond graph
(HBG) approach for building hybrid models of physical sys-
tems with supervisory controllers. This section reviews our
approach to hybrid bond graph modeling, then presents the
GME methodology for building component-based models for
the aircraft fuel transfer system.

3.1 Hybrid Bond Graphs
Our approach to modeling the fuel system is based on an ex-
tended form of bond graphs [Karnopp et al., 1990], called
Hybrid Bond Graphs (HBG) [Mosterman and Biswas, 1998].
Bond graphs present a methodology for energy-based mod-
eling of physical systems. Generic bond graph components
represent primitive processes, such as the energy storage ele-
ments, inertias and capacitors, and dissipative elements, re-
sistors. Bonds represent the energy transfer pathways in the
system. Junctions, which are of two types: 1 or series, and
0 or parallel, define the component interconnectivity struc-
ture, and impose energy conservation laws. Overall, the bond
graph topology implies system behavior that combines indi-
vidual component behaviors based on the principles of conti-
nuity and conservation of energy.

Extensions to hybrid systems require the introduction of
discrete changes in the model configuration. In the HBG
framework, discontinuities in behavior are dealt with at
a meta level, where the energy model embodied in the
bond graph scheme is suspended in time, and discontinuous
model configuration changes are modeled to occur instanta-
neously. Therefore, the meta level describes a control struc-
ture that causes changes in bond graph topology using ide-
alized switches that do not violate the principles of energy
distribution in the system. Topology changes result in a new
model configuration that defines future behavior evolution.
To ensure physical principles are not violated, we have de-
veloped transformations that derive the initial system state in
the new configuration from the old one. From this point on
behavior evolution is continuous, till another discrete change
is triggered at the meta level.

To keep the overall behavior generation consistent, the
meta-model control mechanism and the energy-related bond
graph models are kept distinct. The switching structure is im-
plemented as localized switched junctions that provide a com-
pact representation of the system model across all its nomi-
nal modes of operation. Instead of pre-enumerating the bond
graph for each mode, the HBG uses individual junctions to
model local mode transitions. The switched 0- and 1- junc-
tions represent idealized discrete switching elements that can
turn the corresponding energy connection on and off. A finite
state machine determines the ON/OFF physical state of the
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Figure 2: Hybrid Bond Graph Example

junctions. The transitions in this automaton depend on both
control signals and internal variable values.

Fig. 2 shows the hybrid bond graph model of a portion of
the fuel system. The dotted subsystem represents the wing
tank, and the dashed subsystem represents the fuselage tank.
In this simplified model, the tank system is modeled as a ca-
pacitor for storage of fuel, pump system as an effort source
to boost the pressure and create an outflow, and pipes as con-
duits with resistive losses. For this configuration with two
switched junctions, the system can be in four different modes.
When the two junctions are off, there is no fuel supplied to the
feed tank, one of the two tanks (wing or fuselage) can supply
fuel to the feed tank, and both tanks may supply fuel to the
feed tank at the same time. Switching of configurations is
achieved by changing the switching signal values. Suppose
the wing tank is supplying fuel, i.e., signal1 = 1 (on) and
signal2 = 0 (off). To switch supplying tanks, we simply set
signal1 = 0 (off) and signal2 = 1 (on). The state equation
model for the new configuration can be easily derived online
using a standard algorithm [Karnopp et al., 1990].

3.2 GME
We have developed an approach for building component-
based system models using a graphical modeling tool called
Generic Modeling Environment(GME) [Ledeczi et al., 2001].
GME is a configurable toolkit for creating domain-specific
modeling and program synthesis environments. The con-
figuration is accomplished through meta-models 1 specifying
the modeling paradigm (modeling language) of the applica-
tion domain. The modeling paradigm contains the syntac-
tic, semantic, and visual presentation information of the do-
main, such as the concepts that form the building blocks for
constructing models, the relationships among these concepts,
how the concepts may be organized and viewed by the mod-
eler, and the rules governing the composition of individual
concepts and sets of concepts to form component and system

1The concept of meta-models in GME differs from the meta level
switching models in HBG.



models. The modeling paradigm defines the family of models
that can be created using the resultant modeling environment.

The meta-models specifying the modeling paradigm are
employed to automatically generate the target domain-
modeling environment, e.g., the HBG environment. The gen-
erated modeling environment is then used to build domain
models that are stored in a model database. The primarily
graphical, domain models can be conveniently stored in stan-
dard formats including XML to be used by specific applica-
tions. We have developed a GME modeling paradigm that
describes the HBG modeling environment.

3.3 Hierarchical and Compositional Modeling in
the fluid domain

Real life systems with embedded control tend to be complex,
and system designers and engineers typically have a lot of
difficulty in generating flat models of the entire system. Hi-
erarchical and compositional modeling are useful tools that
allow the system to be constructed in a structured way by
modeling subsystems independently and composing them to
generate system models. The two main steps in this approach
are: (i) decomposition into subsystems and building mod-
els of subsystems, and (ii) specifying interactions between
subsystems and using composition operators to build system
models. This approach provides a number of advantages,
such as simplicity in model building, independence in build-
ing subsystem models, and modularity and reusability of the
generated components.

To model the fuel transfer system, we develop models of
typical components in the fluid domain, such as tanks, pipes,
and pumps. Pipes may include valves that regulate flow.
Pumps and valves can be turned on and off. We assume that
their switching time constants are much faster than the time
constants in the fluid domain. Therefore, pumps and pipes
with valves are modeled as hybrid systems. In our GME
paradigm, subsystems are modeled as components. Interac-
tions between the components are specified as relations be-
tween their in-ports and out-ports. Components connected
by ports define the system model. The ports can model: (i)
energy transfer between components in the bond graph frame-
work, and (ii) communication of information by signals. Sig-
nals are assumed to have no energy content.

For this work, we build first order linear models2. Tanks
are modeled as a bond graph segment with a capacitor con-
nected to a 0 junction. Each tank component can have multi-
ple in-ports and out-ports. In-ports have energy connections
(bonds) to the 0 junction and out-ports have bonds from the
0 junction. Ports may be marked as in and out based on a
conventional direction for energy flow, but this does not mean
that energy cannot flow in the opposite direction. In case there
is an energy flow in the opposite direction, the corresponding
variable takes on a negative value.

Pipes are modeled as resistors connected to a 1 junction.
Pipes have exactly one in port and one out-port that can be
connected to ports of other tanks and pipes. The switching
on the pipes is achieved by specifying switching signals on
the 1 junction connected to the resistor. As discussed earlier,

2In reality the pressure flow relations are nonlinear.

pumps are modeled as an effort source connected to a trans-
former, which is connected to a 0 junction. Pumps have one
out-port for representing the pressure delivered by the pump.

Figure 3: Hierarchical and Compositional Modeling

As an example, the left wing tank is connected to the left
feed tank by instantiating two tank components, one pipe
component, and one switched pipe component. The switched
pipe controls the flow into the feed tank. The out port of the
first tank (left wing tank) is connected to the in port of the
pipe and out-port of the pipe is connected to the in-port of the
second pipe. Since the pump is modeled to pull fuel out of the
left wing tank, we connect the out port of a pump component
to the in port of the pipe. Fig. 3 illustrates the component
based and hierarchical model of this subsystem and the un-
derlying model of the some of the components.

3.4 Modeling for diagnosis
Models form the core component of the tracking and diag-
nosis algorithms [Biswas and Yu, 1993; Narasimhan et al.,
2000]. The hybrid observer uses quantitative state space
models for tracking nominal system behavior, the fault iso-
lation and identification unit uses temporal causal graphs
(TCG) for qualitative analysis and input output equation
(IOE) models for quantitative parameter estimation. We have
devised schemes to systematically derive these model repre-
sentations from the HBG models created in GME.

Precise tracking of nominal system behavior requires the
component parameter values in the bond graph model be ac-
curately estimated. We describe our parameter estimation
methodology in the next section. For fault isolation and iden-
tification, there has to be a a one to one correspondence be-
tween faults and parameters in the model. For example, if we
abstract a pump model and represent it as an effort source,
we cannot differentiate among faults in the electrical versus
mechanical/fluid part of the pump. Including a transformer
component that models the electrical to fluid energy trans-
formation at an abstract level solves this problem. A partial
fault or degradation in the mechanical part of the pump can
be attributed to a change in the transformation parameter.

Once the model structure has specified and all parame-
ters have been estimated, the hybrid bond graph model of
the complete system is derived by composing the compo-
nent models and flattening out the hierarchy. The designation
of ports as in- and out-ports, and restricting connections to
be from out-ports to in-ports only ensures the consistency of
bond connections when the components are composed. The



Figure 4: Component Model of Fuel System

resulting hybrid bond graph may be used to systematically
derive the state space and temporal causal graph model of the
system. In the bond graph framework, each element describes
equations that need to be satisfied for that component. For ex-
ample, for a 0 junction the pressures on all bonds incident is
equal and net flow of all bonds is equal to zero. The proce-
dure to convert to state space equations may be summarized
as [Karnopp et al., 1990]:

1. Identify state variables (efforts on capacitors and flow on
inductors).

2. identify input variables (effort and flow sources).

3. Use constituent equations of the bond graph components
to derive the relations between the effort and flow vari-
ables in the system.

4. Substitute for all non-state and non-input variables to de-
rive the state equation model. This step is applied repeat-
edly till all unnecessary variables are eliminated.

The algorithm to derive the TCG from the bond graph is de-
scribed in [Mosterman and Biswas, 1999].

3.5 Building Models of the Fuel System
From our discussion in earlier sections, the primary model
building steps are: (i) identify subsystems and model them at
the appropriate level of detail, (ii) compose system models by
specifying interactions among the subsystems, and (iii) esti-
mate parameters of the model.

As discussed earlier, tanks, pipes, and pumps are the main
components of the fuel system model. In addition, we need
to build models for the transfer manifold and the engines. For
the scenarios we deal with, it was sufficient to model the en-
gines as constant flow sources, i.e., a sink. Engines have one
in-port that represents the flow into the engine from the feed
tank. The transfer manifold is modeled as a single capacitor
connected to the 0 junction. The transfer manifold has mul-
tiple in-ports representing flow into, and multiple out-ports
representing flow out of the transfer manifold.

The next step is to determine the complete system config-
uration. For the fuel system we instantiate 6 tanks: 2 wing
tanks, 2 fuselage tanks and 2 engine feed tanks. Each has a
corresponding pump. Since the outlets of the wing and fuse-
lage tanks and the inlet of feed tanks all have valves, we cre-
ated switched pipe components for each of these components.
Two instances of the engine are created, and the transfer man-
ifold component is also included in the model. Fig. 4 depicts
our component-based GME model of the entire fuel system.

The individual components are connected using bond
graph junctions to build the energy model of the overall sys-
tem. The fuselage tanks supply the transfer manifold, where
the flows from the fuselage tanks sum up. This is modeled by
connecting one out-port of the fuselage tank to the in-port of a
pipe, and the out-port of the pipe to the in-port of the transfer
manifold. The pump associated with each tank is also con-
nected to the in port of the pipe. This develops a high pres-
sure at the inlet of the pipe, and hence pulls fuel from the tank
into the pipe. The flow from the wing tanks and the transfer
manifold combine and distribute evenly to the left and right
feed tanks. One out-port of the wing tank is connected to the
in port of a pipe. The out-port from these pipes and the out-
port from the transfer manifold are connected to a 0 junction
to combine the flows. The 0 junction is connected to the in-
port of switched pipes whose out-ports are connected to the
in-ports of the feed tanks. In order to maintain stability when
both feed tanks are closed, a bleed resistor is added to the
piping. This resistor bleeds fuel into the left feed tank. The
out-ports of the feed tanks are connected to the in-ports of the
corresponding engines through pipes.

The next step is to estimate the model parameter values.
For the scenarios we model, the engine fuel consumption rate
is set at g gpm for both engines3. All other parameters are es-
timated from experimental data of an entire fuel burn curve,
where all the fuel from the wing and fuselage tanks was con-

3In this discussion the actual numbers are not used to avoid any
concerns about releasing sensitive data.
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sumed by the engines. We used the rate of depletion of fuel
in the tanks and the flow out of the tanks when the level con-
trol valves are closed to calculate the individual tank capaci-
tances. For the left feed tank the fuel depletion rate is approxi-
mately d lbs/s, and hence we determine the capacitance of the
left feed tank to be cl

ft5sec2

lb . Similarly, the right feed tank ca-

pacitance is estimated to be cr
ft5sec2

lb . We performed similar
calculations to determine the wing and fuselage tank capac-
ities (approximately cw

ft5sec2

lb ). To estimate the resistances,
we used the pressure drop and flow through the pipe corre-
sponding to the resistance to calculate the resistance value.
The pump effort and efficiency values were given nominal,
realistic values.

4 Diagnosis

Figure 5: Software Architecture for Diagnosis

The diagnosis task involves tracking dynamic system be-
havior that includes continuous evolution plus discrete model
changes till the fault detector signals a fault. At this point,
the fault isolation unit is invoked. Discrete mode changes
require dynamic switching of system models, and may also
involve discontinuous changes in the system variables. The
fault isolation unit also needs to consider change in modes
when matching fault signatures with actual system behavior.
This motivates the software architecture for diagnosis, illus-
trated in Fig. 5. The input to the diagnosis system is the model
as an XML file and the experimental data as a text file. Each
line of the data file represents one sample of the data. Al-
though the current version uses a data file as input, replacing
it with data from an actual system does not alter the rest of the
architecture. Each sample of data includes all input values,
all measured output values, and the values of all switching
signals. The output of the diagnosis module is the set of diag-
nostic hypotheses that are consistent with the model and data.
The diagnosis output at each time step can be observed in a
GUI implemented in Python (www.python.org). The active
state model (ASM) is an internal data structure that maintains
information about the system including the current mode, cur-
rent state estimates, and current diagnostic hypotheses. This
structure is updated at each time step from information re-
ceived from the observer and the diagnosis module. The hy-
brid bond graph (HBG) data structure contains the flattened
HBG model of the system after composition of all active com-

ponent subsystems. The HBG model also contains the switch-
ing conditions for mode changes. These are parsed and stored
in the ASM. All the diagnosis algorithms modules were im-
plemented in C++. The SWIG toolkit was used for Python-
C++ interactions.

The parser reads in the model file, interprets it and cre-
ates the HBG data structure. The symbolic equation gener-
ator (SEG) takes the HBG and the current mode of the sys-
tem and derives the state space equation (SSE) model of the
system, which is stored in the ASM. When tracking system
behavior, the hybrid observer reads in the data sample for the
next time step from the data file, and checks to see if any con-
trolled (specified in data file) or autonomous (stored in ASM)
mode changes have occurred. When mode changes occur,
the SEG is invoked to re-calculate the SSE model. To ac-
commodate for model disturbances and measurement noise,
a Kalman filter is built from the current SSE model to track
system behavior. At each time step, the fault detector com-
pares the system output with the observer estimates to deter-
mine if a fault has occurred in the system. When the fault
detector triggers, the diagnosis module is activated. The di-
agnosis module uses propagation algorithms on the TCG to
generate fault candidates that are consistent with the observed
discrepancies. Continued tracking by matching the fault sig-
natures generated for each candidate hypotheses helps refine
the candidate set. For details on the hybrid observer and di-
agnosis algorithms, refer to [Mosterman and Biswas, 1999;
Narasimhan and Biswas, 2002].

In subsequent sections we briefly describe the hybrid ob-
server and the diagnosis modules and illustrate their function-
ing by applying them to a diagnosis problem on the fuel sys-
tem. In the experimental setup, the fuel system is controlled
by the sequence defined in Table 1. The data for the experi-
ments was generated using a Matlab/Simulink simulation that
was developed at Vanderbilt University. We assume pressure
values are measured at the output of each of the six tanks of
the fuel system. The fault introduced is an abrupt decrease in
the left fuselage tank pump efficiency at time step 200. This
occurs in the mode when only the left fuselage tank is sup-
plying fuel, and only the left feed tank is receiving fuel.

4.1 Hybrid Observer and Fault Detector

The hybrid observer tracks the system behavior as it evolves
and the fault detector compares the observer output to the sys-
tem output to determine if a fault is present in the system. The
hybrid observer performs the following tasks:

• Continuous tracking of system behavior in current mode,

• Determining if a mode change has occurred, and

• Initializing the observer in a new mode, with the new
state and new model.

The discrete time form of the SSE models are derived to
track system behavior. To account for model disturbances and
noisy measurements, we use a Kalman filter to track system
behavior. This requires computation of the R and Q matrices
that model the disturbance and noise variances, and K , which



represents the Kalman gain matrix.

˙̂x = Ax̂ + Bu + K(y − ŷ)
ŷ = Cx̂

Ṗ = AP + PAT + BQBT − KRKT

K = PCT R−1

In our experiments, R and Q are diagonal matrices with val-
ues of 0.01 along the diagonal. The Kalman gain (K) is ini-
tialized to a diagonal matrix of arbitrarily high value (100 in
our experiments). This gain matrix typically converges to its
true value in a few time steps.

Mode changes may be of two types: controlled or au-
tonomous. Controller issued switching commands need to
be provided in the data file. These correspond to the con-
trolled mode changes in the system. At each time step, the
observer checks to see if the data set indicates a mode change.
All autonomous change conditions are converted so that they
contain only state and input variables. The observer uses in-
put data and estimated state values to calculate if the con-
ditions for any autonomous change evaluates to true. This
is done at each time step also. For the fuel system, there
are no autonomous changes and hence the data file provides
sufficient information to determine if a mode change has oc-
curred. If a controlled or autonomous mode change is indi-
cated, the observer computes the new mode. The equation
solver is invoked to derive the new SSE model. The ob-
server re-initializes the state based on the reset function spec-
ified, and continues the tracking in the new mode with a new
Kalman filter that is derived from the A and B matrices in the
new mode.

Fig. 6 illustrates a sample run of the hybrid observer for the
experimental setup described earlier. Gaussian noise with a
2% noise variance was generated using the Matlab models as
described earlier. We illustrate the tracking of pressure in the
left fuselage tank. The thick line represents the noisy system
output (it is more like a waveform than a line due to the noise
in the measurements) and the thin line represents the observer
estimates. Until time step 200 (at which point the fault was
introduced) we notice that this line is completely subsumed
by the thick line indicating accurate tracking. However, after
time step 200 the thin line deviates from the thick line indicat-
ing a fault. The fault detector (uses a 5% detection threshold)
flags the fault. In the next section, we describe the fault iso-
lation scheme.

4.2 Fault Isolation and Identification
Our fault isolation and identification methodology, described
in greater detail in [Narasimhan and Biswas, 2002], for hy-
brid systems is broken down into three steps:

1. A fast roll back process using qualitative reasoning tech-
niques to generate possible fault hypotheses. Since the
fault could have occurred in a mode earlier than the cur-
rent mode, fault hypotheses need to be characterized as
a two-tuple (mode, fault parameter), where mode indi-
cates the mode in which the fault occurs, and fault pa-
rameter is the parameter of an implicated component
whose deviation possibly explains the observed discrep-
ancies in behavior.

Figure 6: Hybrid Observer Sample Run

2. A quick roll forward process using progressive moni-
toring techniques to refine the possible fault candidates.
The goal is to retain only those candidates whose fault
signatures are consistent with the current sequence of
measurements. After the occurrence of a fault, the
observer’s predictions of autonomous mode transitions
may no longer be correct, therefore, determining the
consistency of fault hypotheses also requires the fault
isolation unit to roll forward to the correct current mode
of system operation.

3. A real-time parameter estimation process using quan-
titative parameter estimation schemes. The qualitative
reasoning schemes are inherently imprecise. As a result
a number of fault hypotheses may still be active after
Step 2. We employ least squares based estimation tech-
niques on the input-output form of the system model to
estimate consistent values of the fault parameter that is
consistent with the sequence of measurements made on
the system.

The models used in these three steps, temporal causal graph
(TCG) and input output equations (IOE) model, are derived
directly from the hybrid bond graph.

We illustrate the diagnosis algorithms for the experiment
discussed in the previous section. As Fig. 5 illustrates, after
time step 200 the actual pressure in the left fuselage tank is
below the predicted value. The fault detector flags this and
triggers the diagnosis process. We use the roll back proce-
dure to propagate this discrepancy back through our models
to generate the fault candidates. In the current mode, we get
the following candidates: Left Fuselage Pump-, Left Fuselage
Pipe+, Transfer Manifold+, Bleed Resistor+, Left Switched
Pipe+, Left Feed Pump-. Since the left fuselage tank was not
open in any of the previous modes, no candidates are gener-
ated in any previous modes.

The next step rolls forward to check for the consistency
of the effects of the faults hypothesized against actual sys-
tem measurements. Since no autonomous mode changes
are present and we assume that all controller commands are
known, we know exactly what mode the system is in. We
generate signatures (effects of fault) in that mode for all the
above candidates. In the current mode we cannot distinguish
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between the candidates because they have similar signatures.
However, when a mode change occurs (right feed tank is also
opened), we regenerate signatures in the new mode and note
that Left Switched Pipe+ and Left Feed Pump- do not affect
the right feed tank pressure. However, we notice a discrep-
ancy in the right feed tank pressure, hence we can drop these
candidates. We cannot distinguish between the other candi-
dates (Left Fuselage Pump-, Left Fuselage Pipe+, Transfer
Manifold+) with the selected set of measurements. In order
to distinguish between these candidates we need more mea-
surements. For example, we could model the pump in more
detail and add a sensor to measure the current drawn by the
pump motor. This would let us identify faults in the pump as
opposed to faults in pipes that the pump is connected to.

Table 2 lists the different fault classes in the fuel system.
Each fault class represents multiple instances of the faults
in the same component. The fault classes are numbered as
follows: 1) Wing Tank Pump (WTP), 2) Wing Tank Pipe
Resistance (WTR), 3) Fuselage/Transfer Tank Pump (TTP),
4) Fuselage/Transfer Tank Pipe Resistance (TTR), 5) Trans-
fer Manifold Resistance (TMR), 6) Switched Pipe Resistance
(SPR, 7) Feed Tank Pump (FTP), and 8) Feed Tank Pipe Re-
sistance (FTR). The results of our diagnosis experiments for
these sets of faults appear in the table. The

√
mark in row i

and column j indicates that if the roll back process generated
candidates i and j, one of them will be dropped by the roll for-
ward process. The × mark indicates that the current control
sequence and set of measurements are not sufficient to distin-
guish between the pair in question. In general, the algorithm
cannot distinguish between pump and pipe faults associated
with the same tank. We need more detailed models and more
measurements to do this. We also see that we cannot distin-
guish between the transfer manifold and fuselage pipe faults.
We can distinguish between all other fault classes. The abil-
ity to distinguish between all fault classes is critical since the
change in control strategy depends on the fault type.

Table 2: Fuel System Fault Diagnosability
WTP WTR TTP TTR TMR SPR FTP FTR

WTP - × √ √ √ √ √ √
WTR × -

√ √ √ √ √ √
TTP

√ √
- × × √ √ √

TTR
√ √ × - × √ √ √

TMR
√ √ × × -

√ √ √
SPR

√ √ √ √ √
-

√ √
FTP

√ √ √ √ √ √
- ×

FTR
√ √ √ √ √ √ × -

5 Conclusions
We have presented a case study on modeling a real system
and building a diagnosis engine for the system. The key
to successful tracking and diagnosis is to have models that
are topologically correct, with parameter value estimates that
match the nominal observed behavior so as not to generate
false alarms. This can be a difficult and time consuming task,
with a lot of experimental data being required to build accu-

rate models. The presence of noise in the data complicates
the tracking and fault detection task. For the given set of
measurements, our tracking mechanisms worked well with
fault-free data provided the variance of the added Gaussian
noise was limited to 2%. Part of the reason for such low
noise thresholds was the use of a naive threshold-based fault
detector in these experiments. The diagnosis system always
generated the true fault hypothesis, but in a number of cases
the hypothesis set contained more than one fault candidate.
This could be attributed to lack of detail in the models and the
need for more measurements in the analysis. Also, parameter
estimation was not included as part of the experiment. In pre-
vious work [Narasimhan and Biswas, 2002], we have shown
that parameter estimation often helps to isolate the true fault.

In future work, we would like to build more detailed mod-
els of the different components of the fuel system in an at-
tempt to diagnose a larger set of faults. The experiments need
to be extended to run with real data provided from Boeing, as
opposed to simulated Matlab data that we generated at Van-
derbilt University. We would also like to run sensitivity anal-
ysis tests to the diagnosis system performance under varying
noise and disturbance conditions. Finally we would like to
build more robust techniques for fault detection and parame-
ter estimation to combat the effects of noise and disturbance.
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Abstract
We present a distributed model-based diagnostics
architecture for embedded diagnostics. We extend
the traditional model-based definition of diagnosis
to a distributed diagnosis definition, in which we
have a collection of distributed components whose
interconnectivity is described by a directed graph.
Assuming that each component can compute a local
minimal diagnosis based only on sensors internal
to that component and knowledge only of its own
system description, we describe an algorithm that
guarantees a globally sound, complete and minimal
diagnosis for the complete system. By compiling
diagnoses for groups of components based on the
interconnectivey graph, the algorithm efficiently
synthesizes the local diagnoses computed in dis-
tributed components into a globally-sound system
diagnosis using a graph-based message-passing ap-
proach.

1 INTRODUCTION

This article proposes a new technique for diagnosing dis-
tributed systems using a model-based approach. We assume
that we have a system consisting of a set of inter-connected
components, each of which computes a local (component) di-
agnosis.1 We adopt the structure-based diagnosis framework
of Darwiche [8] for synthesizing component diagnoses into
globally-sound diagnoses, where we obtain the structure from
the component connectivity. Unlike previous approaches that
compute diagnoses using the system observations and a sys-
tem description [8; 10], we transform the component diagno-
sis synthesis into the space of minimal diagnoses. Assum-
ing that each component can compute a local minimal diag-
nosis based only on sensors internal to that component and
knowledge only of the component system description, we de-
scribe an algorithm that guarantees a globally sound, com-
plete and minimal diagnosis for the complete system. This

∗Research supported in part by The Office of Naval Research
under contract number N00014-98-3-0012.

1Note that one can compute component diagnoses using any
method which returns a minimal diagnosis (with respect to a speci-
fied minimality criterion).

algorithm uses as input the directed graph (digraph) describ-
ing the connectivity of distributed components,with arc di-
rectionality derived from the causal relation between the the
components. Given that real-world graphs of this type are
either tree-structured or can be converted to tree-structured
graphs, we propose a graph-based message-passing algorithm
which passes diagnoses as messages and synthesizes local di-
agnoses into a globally minimal diagnosis in a two-phase pro-
cess. By compiling diagnoses for collections of components
(as determined by the graph’s topology), we can significantly
improve the performance of distributed embedded systems.
We show how this approach can be used for the distributed
diagnosis of systems with arbitrary topologies by transform-
ing such topologies into trees.

One important point to stress is that this approach synthe-
sizes diagnoses computed locally, and places no restriction on
the technique used to compute each local diagnosis (e.g., neu-
ral network, Bayesian network, etc.), provided that each local
diagnosis is a least-cost or most-likely diagnosis. The syn-
thesis approach takes this set of self-diagnosing sub-systems,
together with the connectivity of these sub-systems, to com-
pute globally-consistent diagnoses.

The approach presented in this article assumes that all
faults are diagnosable (i.e., can be isolated) through a central-
ized algorithm. We examine whether a distributed approach
can diagnose all faults, since a distributed algorithm can iso-
late faults no better than a centralized algorithm. Issues re-
lating to restricted diagnosability of both centralized and dis-
tributed algorithms due to insufficient observable data (e.g.,
when the suite of sensors is insufficient to guarantee complete
diagnosability) are examined in [21].

This article is organized as follows. Section 2 introduces
the application model that we use to demonstrate our ap-
proach. Section 3 introduces our modeling formalism, and
specifies our notion of centralized and distributed model.
Section 4 describes how we diagnose distributed models.
Section 5 surveys some related work on this topic. We sum-
marize our conclusions in Section 6.

2 IN-FLIGHT ENTERTAINMENT
EXAMPLE

Throughout this article we use a simplified example of an



In-Flight Entertainment (IFE) system. Figure 1 shows the
schematic for an IFE system fragment where we have (1) a
transmitter module (Tx) that generates 10 movie channels
(consisting of both video and audio signals) and 10 audio
channels; (2) two area distribution boxes (ADB); and (3) at-
tached to each ADBi we have two passenger units, Pi1 and
Pi2. For ADB j, passenger i, i = 1, 2 has a controller Cji

for selecting a video or audio channel, plus an audio unit α i

and video display υi. Control signal Cji is sent by passenger
i to ADBj and then to the transmitter, which in turn sends an
RF signal (RF) to each passenger.

We adopt a notion of causal influence for describing how
different components affect the value of a signal as it propa-
gates through the system. For example, the RF signal causally
influences the passenger audio and video outputs. In this
model the observables are the control signals, plus for pas-
senger i downstream of ADBj sound (Sji) and video-display
(V Dji). We assign a fault-mode to the transmitter and to each
ADB and passenger unit.

Tx

ADB1

ADB2

C1

RF

C2

P11
S11

VD11

P12
S12

VD12

P21

S21

VD21

P22

S22

VD22

RF1

RF2

C11

C12

C21

C22

Figure 1: Schematic of IFE fragment, showing the main mod-
ules and the directed arcs of data-flows.

Our modeling approach makes the following assumptions.
First, we can specify a system using an object-oriented ap-
proach. In other words, a system can be defined as a col-
lection of components, which are connected together, e.g.,
physically, as in an HVAC system, or in terms of data trans-
mission/reception, as in the IFE example. Our primary com-
ponent consists of a block, which has properties: input set,
output set, fault-mode, and equations. Given the fault-mode
and input set, the equations provide a mapping to the output
set. In other words, the inputs are the only nodes with causal
arcs into the block, and the outputs are the only nodes with
causal arcs out of the block. Typically, we have causal depen-
dence of block outputs ωi on inputs �i, i.e. ωi ∝ �i.2

This distributed model consists of a set of sub-models, or
blocks, which may be connected together. In our IFE exam-
ple, the transmitter block has inputs of control signals C1 and
C2, and output an RF signal.

Second, we assume that each component computes diag-

2The causal function ∝ can be be generalized to include proposi-
tions, relations, probabilistic functions, qualitative differential equa-
tions, etc. We don’t address such a generalization here.

noses based on data local to the component. We do not place
any restrictions on the type of algorithm used to compute the
diagnosis, except that the diagnosis be a least-cost diagno-
sis. We will describe the cost function used by our synthesis
algorithm in the following section.

3 MODEL-BASED DIAGNOSTICS USING
CAUSAL NETWORKS

This section formalizes our modeling and inference approach
to diagnostics and control reconfiguration. We first introduce
the model-based formalism, and then extend these notions to
capture a distributed model-based formalism.

3.1 FLAT (CENTRALIZED) MODELS
We adopt and extend the model-based representation for

diagnosis of Darwiche [8]. We model the system using a
causal network:

Definition 1 A system description is a four-tuple Φ =
(V ,G,Σ), where

• V is a set of variables comprising two variable types:
A is a set of variables (called assumables) representing
the failure modes of the components, V is a set of non-
assumable variables (V ∩ A = ∅) representing system
properties other than failure modes;

• G is a directed acyclic graph (DAG) called a causal
structure whose nodes are members in V∪A and whose
directed arcs represent causal relations between pairs of
nodes;

• and Σ is a set of propositional sentences (called the do-
main axioms) constructed from members in V∪A based
on the topological structure of G.

This definition of system description differs from the stan-
dard definition (called SD in [22]) only in that we include
a graph G to complement the domain axioms set of failure
modes (commonly called COMPS) and non-assumable vari-
ables.

The set of non-assumable variables consists of two exclu-
sive subsets: Vobs (the set of observables) and Vunobs (the
set of unobservables).

We can capture structural properties of the system descrip-
tion using the directed acyclic graph, or DAG, G. 3 For exam-
ple, if an actuator determines if a motor is on or not, we say
that the actuator causally influences the motor. More gener-
ally, A may directly causally influence B if A is a predecessor
of B in G. We use B ∝ A to denote the direct causal influence
of the value of B by the value of A.4 Through transitivity, we
can deduce indirect causal influence. For example, if B ∝ A
and C ∝ B, then A indirectly influences C.

This captures the notion of direct causal influence, i.e., a
node N and those nodes that are directly causally affected by
N , using a clan. We define the notion of the clan of a node N
of a DAG G in terms of graphical relationships as follows:

3In other system description specifications, e.g. [12], these struc-
tural relations are captured using logical sentences.

4This notion of causal influence does not guarantee that A influ-
ences B, but that A may influence B.



Definition 2 (Clan) : Given a DAG G, the clan Y (Ni) of a
nodeNi ∈ G consists of the node Ni together with its children
in G.

We adopt the notion of clan because we are interested in
synthesizing diagnoses computed at a set of distributed nodes
organized in a tree structure. The intuition behind the algo-
rithm is as follows: given local diagnoses, we start at the par-
ents of leaves in the decomposition tree and move up the tree
to the root, identifying if any node’s diagnosis is affected by
the diagnoses of its children, and if so, synthesizing those di-
agnoses. To perform each synthesis operation, we use a clan.

A clan is dual to the well-known notion of family, which
is typically defined as a node together with its parents in G.
This notion is important because we need to synthesize local
diagnostics within tree-structured systems, and the clan pro-
vides a more efficient means for doing so than the family for
tree-structured systems. For simplicity of notation, we will
denote the clan for node Ni, Y (Ni), as Yi.

It is also important to define restrictions of subsets of ob-
servables:

Definition 3 (Restriction) We denote by θi the restriction of
an instantiation θ of variables V to the instantiation of a sub-
set Vi of V . We denote the restriction of variable set T to
variables in sub-system description Φi by TΦi .

One of the key elements of diagnosing a system is the in-
stantiation of observables, since a diagnosis is computed for
abnormal observable instantiations.

Definition 4 (Instantiation) θΦi is an instantiation of ob-
servables Vobs

Φi for system description Φi. ΘΦi denotes the
set of all instantiations of observables Vobs

Φi .

We specify failure-mode instantiations and partition the
possible states into normal states and faulty states as follows:

Definition 5 (Mode-Instantiation) A∗ is an instantiation of
behavior modes for mode-set A. Further, we decomposition
A∗ such that A∗ = AF ∪ A∅, where A∅ denotes normal
system behaviour, i.e. all modes are normal, andAF denotes
a system fault, which may consist of simultaneous faults in
multiple components.

An assumable (behavior-mode variable) specifies the
discrete set of behavior-states that a component can
have, e.g., and AND-gate can be either OK, stuck-at-
0, or stuck-at-1. Our IFE-system, with component-set
{Tx,ABD1, ADB2, P11, P12, P21, P22}, can have a mode-
instantiation in which all components are OK except P11,
which is in audio-fail mode. In this case we have A∅ =
{Tx − mode = OK,ABD1 − mode = OK,ADB2 −
mode = OK,P12−mode = OK,P21−mode = OK,P22−
mode = OK} and AF = {P11 −mode =audio-fail}.

3.2 DISTRIBUTED SYSTEM DESCRIPTIONS
This section describes our distributed formalism, which ap-
plies to collections of interconnected components, or blocks.
We assume that a distributed system description is provided
either by the user or is deduced from the physical constraints
of available local diagnostic agents and physical connectiv-
ity. For example, many engineering systems, such as com-
mercial aircraft, are subdivided into Line-Replaceable Units

(LRUs), based on a number of factors, such as fault-isolation
capabilities, physical constraints, and ease of repair. An LRU
typically consists of a number of connected sub-systems, as
in the Passenger Unit of the IFE example, which consists of
circuit-cards to select audio/video channels and to drive the
audio and video output devices. It is standard practice in
commercial aircraft to isolate faults only to the LRU-level,
and replace faulty components only at the LRU-level.

Definition 6 (Decomposition Function) a decomposition
function is a mapping ψ(Φ) = Φdist that decomposes a
centralized system description Φ into a distributed system
description Φdist = {Φ1, ...,Φm}. The distributed system
description induced by a decomposition function ψ is defined
by a decomposition Π over the system variables V , i.e. a
collection X = {X1, ..., Xm} of nonempty subsets of V such
that (1) ∀i = 1, ...,m, Xi ∈ 2V; (2) V = ∪i(Xi|Xi ∈ Π).
When ξij = Xi ∩Xj �= ∅, we call ξij the separating set, or
sepset, of variables between Φi and Φj .

We can describe a distributed system description in terms
of a decomposition graph. A decomposition graph is a graph-
ical representation of the system model, when viewed as a
collection of connected blocks. In this graph each vertex cor-
responds to a block, and each directed edge corresponds to
a directed (causal) link between two blocks. Figure 2 shows
the decomposition graph for the extended IFE example. 5

A decomposition graph is a directed tree, or D-tree, which
is defined as follows:

Definition 7 A D-tree TD is a directed graph with vertices
V (TD) with a vertex r0, called the root, with the property
that for every vertex r ∈ V (TD) there is a unique directed
walk from r0 to r.

Definition 8 A decomposition graph GX is an edge-labeled
D-tree G(X , E , ξ) with (1) vertices X = {X1, ..., Xm},
where each vertex consists of a collection of variables of G,
(2) directed edges join pairs of vertices with non-empty in-
tersections, and arc direction is specified by the causal direc-
tion of the arcs between blocks in the decomposition graph,
i.e., E = {(Xj, Xk)|Xi ∩ Xj �= ∅, Xk ∝ Xj}, and (3)
edge labels (or separators) defined by the edge intersections,
ξ = {ξij |Xi ∩Xj �= ∅}.

We assume that in a distributed system description, for any
block all sensor data is local, and all equations describing dis-
tributed subsystems refer to local sensor data and local con-
ditions.

3.3 DIAGNOSIS SPECIFICATION

We define the notion of diagnosis as follows:

Definition 9 (Diagnosis) Given a system description Φ with
domain axioms Σ and an instantiation θ of Vobs, a diagnosis
D(θ) is an instantiation of behavior modes AF ∪ A∅ such
that Σ ∪ θ ∪ AF ∪A∅ �|= ⊥.

5We do not show the feedback loops of control requests
(C1, C2, C11..., C22) since all edges concerning observables can be
cut [7].
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Figure 2: Decomposition graph of extended IFE system de-
scription. Here an oval corresponds to a vertex, and a block
corresponds to a sepset. We specify the variables associated
with each vertex in the graph.

This diagnostic framework provides the capability to rank
diagnoses using a likelihood weight κi assigned to each as-
sumable Ai, i = 1, ...,m. Using the likelihood algebra de-
fined in [8], we can compute the likelihood assigned to each
diagnosis for observation θ. We refer to a (diagnosis, weight)
pair using (D(θ), κ). We use the weights to rank diagnoses,
i.e., least-weight diagnoses are the most-likely. This provides
a notion of minimal diagnosis, i.e. a diagnosis of weight κ
such that there exists no lesser-weight diagnosis.

3.4 LOCAL/GLOBAL DIAGNOSTICS
Our methodology rests on the determination of when com-
ponent diagnoses are independent, in which case the global
diagnosis is just the conjunction of the component diagnoses.
We apply the decomposition theorem of [8] to this case of
distributed diagnostics:

Theorem 1 If we have a system description Φ consisting of
two component system descriptions Φ1 and Φ2, and a sys-
tem observation θ, if the variables shared by Φ1 and Φ2 all
appear in θ, then

DΦ(θ) ≡ DΦ1(θ1) ∧DΦ2(θ2).

This theorem states that a diagnosis is decomposable pro-
vided that the system observation contains the variables
shared between Φ1 and Φ2. However, what happens when
the observation θ does not contain all variables shared be-
tween Φ1 and Φ2? One solution [8] is to decompose the com-
putation of DΦ by performing a case-analysis of all shared
variables ξ12. However, this case-analysis approach is expo-
nential in |ξ12|, the number of variables on which we do case-
analysis. Hence if we wanted to embed the diagnostics code,
such a case-analysis might be too time-consuming when per-
formed on a system-level model.

In the following we assume that each component computes
a local diagnosis, i.e., a diagnosis based only on local ob-
servables and on equations containing only local variables. In
contrast a global diagnosis is one based on global observables
and on equations describing all system variables. Our task is

to integrate these local component diagnoses into a globally
sound, minimal and consistent diagnosis, since for many sys-
tems the diagnostics generated locally are either incomplete
or not minimal.

Note that we can obtain global diagnostics for a modular
system by composing local blocks and diagnosing the entire
system model. However, it is true in many cases that global
and local diagnostics may differ. We now define a notion of
correspondence between local and global diagnoses.

The conjunction of the set of distributed system descrip-
tions is defined as Ddist(θ) =

∧
Φk∈B DΦk(θ), and we know

that Ddist(θ) = D(θ) only when θ ≡
⋃

i, jξij .
We can compute the diagnoses for this set of distributed

system descriptions either using an on-line algorithm, or by
pre-computing the set of diagnoses for Ddist(θ). In the fol-
lowing, we outline the compiled method of diagnosis.

We define a table, called a clan table, to specify local and
global diagnoses for collections of blocks. This table com-
piles the local case-analysis required by Theorem 1. We will
show later how to use this table for our diagnosis synthesis
algorithm.

Definition 10 A clan (or local/global diagnosis) table for
block-set B = {Φi, ...Φj} is a table consisting of tuples
(observable-intantiation, global diagnosis, weight) for all ab-
normal instantiations of observables θ in B.

Note that we can use the compositionality of blocks to
show that any time we compose a system description from
multiple blocks, we obtain “global” diagnostics for that com-
posed system description when we compute diagnoses over
the composed system description. Hence the “global” diag-
nosis for each collection of blocks is computed from a system
description generated from the composition of the system de-
scriptions of the blocks in B, using the observables from B.

Example 1 Table 1 contrasts the local and global diagnoses
for a set of scenarios where the set B of blocks is an ADB
with downstream passenger units. In these scenarios, we
compute the (probabilistically) most-likely diagnosis, assum-
ing that all faults are equally likely, i.e., have weight 1. More-
over, in defining a local diagnosis in Table 1, we report the
conjunction of all local diagnoses, i.e. the local diagnosis is
ADB-diagnosis ∧ P1-diagnosis ∧ P1-diagnosis. In scenarios
1, 2 and 4, the local and global diagnoses are identical. How-
ever, in scenarios 3, 5 and 6, they differ: the passenger units
each assume a local fault, whereas the transmitter unit is the
faulty one (since a single transmitter fault is much more likely
the two simultaneous faults, one in each passenger unit). 6

Given this potential for discrepancy between local and
global diagnoses, we map the decomposition graph into a
representation, the clan graph, from which we can synthesize
globally sound and complete minimal diagnoses from local
minimal diagnoses. Figure 3 shows the clan graph for the
extended IFE example.

6These differences arise due to different instantiations of the RF
signal in the local and global diagnosis. We hide the details of the
case-analysis of shared variables for simplicity of presentation.



Scenario ADB1 Unit Pass. Unit11 Pass. Unit12 Diagnosis

C11 C12 S11 V D11 S12 V D12 LOCAL GLOBAL
1 audio audio nom. none nom. none − −
2 audio audio none none nom. none P11-audio-fail P11-audio-fail
3 audio audio none none none none P11-audio-fail∧ P12-audio-fail Xaudio
4 video video nom. nom. nom. none P12-video-fail P12-video-fail
5 video video nom. none nom. none P11-video-fail∧ P12-video-fail Xvideo
6 audio video none none none. none P11-audio-fail∧ P12-video-fail ADB1-fail

Table 1: Diagnostic Scenarios. We denote a nominal passenger output of nominal using nom., and abnormal observable data in
bold-face. Xaudio denotes degraded audio, and Xvideo denotes degrated video.
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Figure 3: Clan graph of extended IFE system description.

Definition 11 (Clan graph) : A clan graph GY of a DAG
G(V,E) of vertices V and edges E is an edge-labeled D-tree
G(Y, E , ξ) defined as follows: (1) vertices Y = {Y1, ..., Ym},
where each node Yi consists of a clan of G; (2) edges de-
fined by non-empty intersections between pairs of vertices
E = {(Yj , Yk)|Yi ∩ Yj �= ∅}; and (3) separators defined
by the edge intersections ξ = {ξij = Yi ∩ Yj}.

The following section shows how we use the clan graph for
distributed diagnosis.

4 DISTRIBUTED MODEL-BASED
DIAGNOSIS

This section describes our distributed model-based diagnosis
algorithm. We first map the directed graph of the system into
a tree using tree-decomposition techniques, and then employ
a message-passing algorithm on the tree.

4.1 TREE-DECOMPOSITION
The work on tree-decomposition stems from work on
treewidth and graph minors [23]. A good review of the liter-
ature can be found in [5]. We define the basic notions below.

Definition 12 A tree decomposition of an undirected graph
G = (V,E) is a pair (X , T ) with T = (I, F ) a tree, and
X = {Xi|i ∈ I} is a family of subsets of V , one for each
node of T , such that

1.
⋃

i∈I Xi = V ;

2. for all edges {v, w} ∈ E there exists an i ∈ I with
v ∈ Xi and w ∈ Xi, and

3. for all i, j, k ∈ I if j is on the path from i to k in T , then
Xi ∩Xk ⊆ Xj .

The last property is known as the running-intersection prop-
erty within the BN community. The clique-tree algorithm

computes a tree-decomposition in which each node of the
tree is a clique, and undirected edges correspond to shared
variables between cliques.

Given a tree-decomposition, inference complexity is based
on the treewidth, defined as follows. The width of a tree de-
composition is maxi∈I |Xi| − 1. The treewidth of a graph G
is the minimum width over all tree decompositions of G. The
treewidth bears close relations to the maximal vertex degree
and maximal clique of a graph, so it provides a measure of
the complexity of diagnostic inference, among other things.
If a graph has a low treewidth then inference on the graph
is guaranteed to be easy. The task of computing treewidth is
NP-hard [2]. Many algorithms exist that, given a graph with n
variables, will compute an optimal treewidth in time polyno-
mial in n but exponential in the treewidth k; see, for example,
[4].

Directed Tree-Decomposition
The difference between the standard literature on tree-

decompositions and the task addressed here is that the stan-
dard literature focuses on undirected graphs, and we focus on
directed graphs. We capture and exploit the directionality of
causal relations during all phases of diagnostic inference. For
example, if we have an abstract hierarchical specification of
a system and compute diagnostics for each abstract hierar-
chical block, we still preserve the directionality of causality
among the abstract blocks. We exploit this directionality us-
ing a diagnostic synthesis algorithm operating on a directed
tree.

Definition 13 A D-tree TD is a directed graph with vertices
VTD and a vertex V0, called the root, with the property that
for every vertex V ∈ VTD there is a unique directed walk from
V0 to V .

The tree-decomposition results have been generalized to
directed graphs in [16], and we make use of some of those
results here. The key change is that we need to preserve or-
dering of edges during the decomposition process. To capture
such properties, we first need to define a notion of variable or-
dering, called Z-normality.

Definition 14 Let G be a digraph and let Z ⊆ V . A set S is Z-
normal if and only if the vertex-sets of the strong components
of G \ Z can be numbered S1, S2, ..., Sd such that

1. if 1 ≤ i ≤ j ≤ d, then no edge of G has a head in S i

and tail in Sj , and

2. either S = ∅ or S = Si∪Si+1 · · ·∪Sj for some integers
i, j with 1 ≤ i ≤ j ≤ d.



Definition 15 A D-tree decomposition of a digraph G =
(V , E) is a pair (X , TD) with TD = (I,F) a D-tree, and
X = {Xi|i ∈ I} is a family of subsets of V , one for each
node of TD , and the edges are numbered J = {1, ..., l} with
F = {Fj : j ∈ J }, such that

1.
⋃

i∈I Xi = V;

2. for all edges {v, w} ∈ E there exists an i ∈ I with
v ∈ Xi and w ∈ Xi, and

3. for all i, j, k ∈ I if j is on the path from i to k in TD ,
then Xi ∩Xk ⊆ Xj;

4. if j ∈ J , then
⋃

i{Xi : i ∈ I, i > j} is Xj-normal.

The width of a tree decomposition is the least integer w such
that for all i ∈ I, |Xi ∪

⋃
Xj | ≤ w + 1, where the union is

taken over all edges j ∈ J incident with i. maxi∈I |Xi| − 1.
The treewidth of a graph G is the least integer w such that G
has a D-tree-decomposition of width w.

For the class of applications addressed in this article, the
input graphs G for the system description are digraphs, and
the decomposition graph and clan graph are both D-tree de-
compositions of G. For more general digraph topologies, by
applying an algorithm for generating D-tree decompositions,
we can convert the digraphs into a decomposition graph, and
apply the diagnostic synthesis approach. Many of the prop-
erties of undirected tree-decompositions hold for the directed
case [16].

4.2 DIAGNOSIS OF SYSTEMS WITH
TREE-STRUCTURED GRAPHS

We now describe an approach to diagnosing systems with
tree-structured decomposition graphs.

We assume that:

• We are provided with the component system descrip-
tions and their connectivity;

• There is a single root in the decomposition graph (which
is a component with no parent-components), and each
leaf is a component with no child-component;

• Nodes have indices starting at the root (X1), increas-
ing based on a breadth-first expansion from the root and
ending at the leaves, labeled Xn−s, ..., Xn;

• Each component computes a local diagnosis based on
local observables.

We base our approach on synthesizing diagnoses, starting
from the leaf components and ending up at the root of the
tree. We first decompose the decomposition graph into a clan
graph. Based on the clan graph we construct a clan table for
each node in the graph.

This algorithm is inspired by the Bayesian network clique-
tree approach of [17], but replaces the clique-tree with
an analogous clan-tree, and passes diagnoses as messages.
Analogous to the clique-tree method’s clique-table pre-
computation, this approach requires pre-computing clan-
tables, but for embedded systems this results in computation-
ally simpler algorithms than those adopted in the past.

Under this scheme, we pre-compute clan tables for each
clan in GY . Given an observation θ for blocks X i, ..., Xk,

where Xi, ..., Xk are members of a clan Y ∈ GY , each block
computes diagnostics locally. We then compute the most
likely fault-mode assignment for Y through a process we call
diagnostics synthesis, which entails table-lookup in the clan
table of the minimal diagnosis given θ. The algorithm synthe-
sizes final diagnoses, going from the leaves to the root. This
guarantees a sound, complete and globally minimum system
diagnosis.

In this approach we first need to pre-compute the clan table,
and then use that table for diagnostic synthesis. We can pre-
compute the clan table from a set of blocks {Φ1, ...,Φk} as
follows:

1. Generate the decomposition graph GX from
{Φ1, ...,Φk}, with indices increasing in a breadth-
first manner from the root.

2. Generate the clan graph GY of GX .
3. Compute the clan table for each clan Yi in GY .
Given an observation θ, the diagnostic synthesis algorithm

is as follows:

1. Given observation θ, each block B i computes its local
diagnosis DΦi(θ) and likelihood κ(DΦi).

2. Mark all nodes Xi, i = 1, ..., n with flag=0;
3. Loop for j = n to 1:

(a) If flag=0 for Xj do:
For each node Xi in the clan Y (Xj), look up
corresponding clan diagnosis DΦY (θ) and weight
κ(DΦY (θ)) in the clan-table;

If κ(DΦY (θ)) <
∑

k:Φk∈Y

κ(DΦk),

• revise fault-mode assignment to nodes in Y (Nj),
by (a) setting the minimum-weight diagnosis
mode-variable; (b) if any local diagnosis D ′ is
synthesized, update D ′.• reassign values to variables in Y based on D and
θ• if reassignment is sound pass message with fault
report DΦY (θ).• Set flag for all Xi ∈ Y (Xj) to 1;

Theorem 2 Given a tree-structured decomposition graph
GX and local component diagnoses, diagnostics synthesis
will compute a sound and globally consistent set of fault
mode assignments for components X ∈ GX within O(|Y|)
message-passing steps, where GY is the clan graph generated
from GX .

Example 2 Diagnosis Synthesis in a Clan: Consider Sce-
nario 3 of Table 1. For this observation θ, the total set of
possible clan diagnoses is: (P11, audio-fail) ∧ (P12, audio-
fail) ∨ (ADB1, Xaudio). The weights of the diagnoses are 2
and 1, respectively.

In computing diagnoses on a purely local basis, the result-
ing diagnosis is (P11, audio-fail) ∧ (P12, audio-fail), with
weight 2. Note however there is a family diagnosis of weight
1, (ADB1, Xaudio), which is selected since it is of lower
weight than the distributed diagnosis. We now instantiate
each local component with θ, and set diagnoses as follows:
(P11, ∅), (P12, ∅), (ADB1, Xaudio). There exists a consistent
set of local variable instantantiations for this assignment, so
no further message-passing is necessary.
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Figure 4: Diagnosis synthesis procedure, Step 1: (a) local
diagnoses synthesized at clans, and (b) clan diagnoses are
passed between families, as noted by dark arrows.

Example 3 Message-Passing: Figure 4 shows the first stage
of this procedure. In the graph we show nodes where the vari-
ables are restricted to fault mode variables, to simplify the
description of message-passing of instantations of mode vari-
ables. First, the local diagnoses are computed at each node
in the decomposition graph: all four passenger units register
a fault, and no other nodes in the decomposition graph reg-
ister faults. As a shorthand, we denote a fault-weight pair
using variable-names for faults, with ∅ denoting a nominal
mode. Then, these faults are synthesized at each clan using
the clan-table: fault-weight pair (P11∧P12, 2) is synthesized
into (ADB1, 1), and fault (P21 ∧P22, 2) is synthesized into
(ADB2, 1). Second, the synthesized faults (ADB1, 1) and
(ADB2, 1) are sent to the adjacent node in the clan graph,
Y1.

ADB1-mode
P11-mode
P12-modeTx-mode

ADB1-mode
ADB2-mode

ADB1-mode

ADB1-mode
P21-mode
P22-mode

ADB2-mode

∅∅∅∅
Local Dx

Family Dx

Local Dx

Family Dx

Local DxADB1∧ ADB2

Tx Family Dx

∅∅∅∅

Y1 Y2

Y3

Figure 5: Diagnosis synthesis procedure, Step 2: global diag-
noses computed following family diagnosis message-passing.

Figure 5 shows the second stage of this procedure. Fault-
weight pair (ADB1 ∧ADB2, 2) is synthesized into (Tx, 1)
at clan Y1, and all other fault-modes are set to nominal. This
is the global minimum-weight fault.

4.3 COMPLEXITY ISSUES
The complexity of logical resolution within a distributed
framework have been discussed in [1]. Here, our task is
model-based diagnosis within a tree-structured topology.

This approach is based on computing diagnoses for the
clans of G. Hence, it never needs to diagnose a system de-
scription for the entire graph G, but only for the clans of G.
As noted in Theorem 2, once the clan tables are computed,
given any local component diagnoses, the algorithm is linear
in the number of nodes in the clan-graph.

The worst-case complexity of computing a clan table is ex-
ponential in the number of variables in the clan table. The
memory requirements for storing the clan tables are defined
as follows. In the worst case, for a clan with mode vari-
ables A1, ...,Am, where each mode variable has |ωAi | faulty
values, a clan table stores an entry for each of the × i|ωAi |
multiple-fault combinations. For single-fault scenarios, a clan
table must store only

∑
i |ωAi | entries.

The main issue is the time-complexity of generating the
clan tables. For tree-structured systems the complexity of di-
agnosing G is exponential in the clan size, and the complexity
is bounded by the largest clan of G. Hence the complexity of
initially computing diagnoses is the same for the centralized
and distributed approaches. However, for embedded applica-
tions, the distributed approach has a complexity advantage,
since only clan-table lookup and simple message-passing are
required.

5 RELATED WORK
Our approach to distributed diagnosis has been preceded by
many pieces of related work, and we review several here.
Note that this review examines the most relevant work, and
does not claim to be exhaustive.

One of the most closely-related pieces of work describes
techniques for distributed logical inference [1; 20]. This work
focuses on how to perform logical reasoning and query an-
swering, proposing sound and complete message passing al-
gorithms, by exploiting the tree structure of distributed theo-
ries. They examine the complexity of computation, propose
specialized algorithms for first-order resolution and focused
consequence finding, and propose algorithms for optimally
partitioning a theory that is not already distributed. In some
ways, our task can be considered a special case of the general
problem that Amir and McIlraith examine. Logical inference
computes a model, whereas diagnostic inference computes a
minimal model in the assumables, a subset of the language
of the theory. We leverage many aspects of the specific diag-
nosis problem in our work, aspects that serve to distinguish
both our approach and our results. These include the notion
of causality, which imposes a directionality on the tree struc-
ture and the inference, and the notion of preference. In ad-
dition, the task of diagnostic inference depends critically on
two classes of distinguished variables, assumables (the liter-
als of interest) and observables (the inputs), and distributed
diagnosability depends on how assumables and observables
are distributed among the collection of blocks. In addition,
if the variables common between two blocks are observable,
then from a distributed diagnostics point of view those blocks
are independent [7].

The approach presented here bears some relation to diag-
nostic approaches on trees. Stumptner and Wotawa [25] have
an algorithm for diagnosing tree-structured systems. This ap-
proach assumes a centralized system defined at the compo-
nent level whereas our approach deals with distributed sys-
tems that can be defined at any level of abstraction. In ad-
dition, our assumption of sub-systems computing their own
diagnoses means that our diagnostic synthesis process is a
single-pass algorithm from the leaves of the tree to the root,



whereas Stumptner and Wotawa need a two-pass approach
since they must first enumerate all component diagnoses. A
second major tree-based method uses a clique-tree decom-
position of a system, e.g., the diagnostic method of [13]. A
clique-tree is a representation that is used for many kinds of
inference in addition to diagnosis, including probabilistic in-
ference and constraint satisfaction. The tree we generate is a
directed tree with a fixed root, and the nodes of the tree are
generated based on the clan property; a clique-tree is undi-
rected (with an arbitrary root), and the nodes of the tree are
generated based on the family property. One can think of
the D-tree as a directed variant of a clique-tree, which is op-
timized for diagnostic inference. In addition, our approach
uses the ordering of the D-tree to require message-passing in
a single direction only; in contrast, message propagation in
clique trees is bi-directional.

Our work also bears some relation to papers describing dis-
tributed solutions to Constraint Satisfaction Problems (CSPs)
[26; 15]. As with the work on distributed logical inference
[1], the task of distributed CSPs is finding a satisfying as-
signment to the variables, when constraints are distributed in
a collection of subsets of constraints. Hence the underlying
tasks of distributed diagnosis and CSP satisfiability are dif-
ferent. One issue in this work that is similar to diagnostic
reasoning is the recording of minimal sets of unsatisfiable
clauses as nogoods [15]. The computation of nogoods is a
key step to computing diagnoses [10].

There have been several proposals for using the ATMS [9]
in a distributed manner, e.g., [11; 19; 3; 18]. Our approach
differs from this work in that our approach uses system topol-
ogy explicitly, whereas these other approaches do not make
as extensive a use of topology.

The compilation approach proposed in this article bears
some relation to prior work.7 [24] presents an empirical com-
parison of centralized compilation techniques as applied to
several areas, of which diagnosis is one. Our future work in-
cludes examining the applicability of these compilation tech-
niques within our distributed framework. Compilation is also
examined in [20], but (as mentioned earlier) as applied to a
different task, logical resolution.

There has been some prior work on distributed model-
based diagnosis. For example, the approach in [14] assumes
that the diagnosis computed by each distributed agent is glob-
ally correct, and examine the case where agents must coop-
erate to diagnose components whose status is unknown. Our
approach makes the more realistic assumption that diagnoses
are not necessarily globally sound, and derives a very differ-
ent global synthesis algorithm.

6 SUMMARY AND CONCLUSIONS

This document has described a mechanism for computing dis-
tributed diagnoses using system topology and observability
properties. This algorithm takes as input minimal diagnoses
computed within distributed components, and uses system
topology to integrate these diagnoses into a globally sound
and minimal system diagnosis.

7A review of compilation can be found in [6].

We are in the process of applying this approach to two real-
world domains, that of In-Flight Entertainment and diagnosis
of HVAC systems.

The approach presented here provides a mechanism for
designing systems with predictable distributed diagnostics
properties. A given decomposition graph can be rated accord-
ing to its diagnosability and efficiency. Additionally, given a
system description, we can apply D-tree decomposition al-
gorithms to the system DAG to assist in identifying small-
treewidth decompositions, if any exist. Further, if a system
has no small treewidth decomposition, one can then recom-
mend system re-design to be facilitate efficiently computing
distributed diagnoses.
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Abstract
The growing importance of on-board diagnosis for
automobiles demands for a close integration of diagnostic
tasks in the entire design process. This report describes
work carried out to date within the European project
„Integrated Design Process for onboard Diagnosis„ (IDD).
It presents an analysis of the current design process and the
model of a new process which allows for a better
integration of diagnosis related tasks, such as
diagnosability analysis, failure-modes-and-effects analysis
(FMEA), on-board diagnosis design, in the overall design
process of mechatronic subsystems. We then discuss in
what way model-based technology can provide tools to
support the actual integration and, in particular, present an
approach to model-based diagnosability analysis..

Introduction
The importance of diagnosis in onboard automotive
systems is constantly growing together with the
complexity of the systems. The average dimension of the
diagnostic code inside a modern electronic control unit
(ECU) is now more than 50% of the whole code. At
present, there is no correspondence between such an
important role of diagnosis in onboard systems and a
similar role that diagnosis could play in the design
process chain.
The correct way of dealing with this situation is to re-
organize the design and development chain so that the
diagnosis is no longer the last task in the design chain.
This goal provides an opportunity and challenge to
model-based systems technology for several reasons.
First, in early design stages, when physical prototypes of
the designed system are not existing, diagnostic reasoning
can only be based on a model. Second, since the design is
subject to revisions, the adaptation of diagnostics and
fault analysis to such revisions has to happen
automatically or, at least, without major efforts. Finally,
the existence and use of (simulation) models for the
development and validation of control design can provide

a basis for the application model-based diagnosis
technology.
The European Fifth Framework project „Integrated
Design Process for onboard Diagnosis“ (IDD) pursues the
goal to formalize and standardize the diagnostic design
process, and to enable the introduction of diagnosis early
in the chain. This methodological goal has to be
combined with another important objective: giving to the
designers a set of model-based tools that can help them in
evaluating and understanding the effects of each choice
on the system being designed. The IDD project was
started February 2000 with a duration of three years and
involves both industrial and academic partners: Fiat CRF
(Torino), Magneti-Marelli SpA (Torino), PSA, Peugeot
Citroen (Paris), Renault (Paris), DaimlerChrysler AG
(Stuttgart), OCC’M Software GmbH (München),
Universita di Torino, Université de Paris Nord, XIII, and
Technische Universität München.
Except for the approach to diagnosability analysis, this
paper does not aim at presenting new model-based
theories or techniques, but rather focuses on describing
the work and intermediate results of this project in order
to increase the awareness of this challenge in the field of
model-based reasoning. Therefore, we start with a
description of the current design process and its
deficiencies. Based on this, a new design process is
proposed in section 3 that introduces the exchange of
models as the major medium for a closer interaction
between control design on the one hand and failure-
modes-and-effects analysis (FMEA) and diagnostic
design on the other hand. Section 4 outlines the
technological and software basis chosen by IDD to
develop the tools that are required to realize this
integrated process. We then present our approach to
model-based diagnosability analysis. Finally, we outline
the remaining work in the project and list the guiding
applications which will be used in the project for
validation of the tools.



Analysis of the Current Process of Design
and Generation of Diagnostics

The current processes of each industrial partners have
been investigated with a focus on the integration of the
diagnostic process and diagnosis-related processes into
the whole design process of mechatronic subsystems.
Starting from these results a „merged process“ has been
developed that is based on the similarities recognized,
ignoring details and small differences. The abstraction of
this process will be used as a comprehensive reference for
the current design processes. This analysis and its
consequences are presented in more detail in [Brignolo et.
al. 01].
In the framework presented here we consider especially
processes related to mechatronic subsystems, such as air
conditioning or engine control systems. These subsystems
involve ECUs as centers of control and diagnostic
functions and the physical system, comprising mechanic,
hydraulic, electric components. Following [Bortolazzi-
Steinhauer 00], Fig. 1 summarizes the overall design,
isolating the different phases and showing in which way
the process for a subsystem, which is the most interesting
one in this project, is related to the entire process.
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Figure 1 Entire Process and subsystem process,
overview

During the ‚strategy phase‘ a first conceptual framework
for the new product is worked out, the ‚technology phase‘
targets the concept approval, the ‚integration phase‘
focuses on the realization of the new product by taking
into consideration technical feasibility and manufacturing
aspects, and, finally, the ‚production phase‘ ensures the
industrial mass production with the correct requirements
of quality.
The IDD approach focuses primarily on the Technology
phase which leads to the first almost complete prototype,
but takes into account that a good amount of diagnostic
development is performed at present in the Integration
phase, as illustrated in Figure 1.

From an abstract point of view, the reference process,
which is focussed on the functional prototyping within the
technology phase, can be modeled as a set of nested
loops:
• Specifications loop: Definition of requirements,

specifications and implementation of the validated
result. In this phase also feedback from after-sales
and customers may be involved. Further
requirements may be added depending on mock-up
observations.

• Outer design loop: Design of the whole system
prototype, involving the definition of the overall
structure of the system, i.e. the selection of the
physical (mechanic, hydraulic, electric) components
and decisions about the overall layout of the system.
This loop terminates when the prototype meets all the
requirements and specifications. The core activities
are design of the system including its control and
diagnosis, comprising a series of inner design loops,
and the hardware development of the physical
system, which runs in parallel.

• Inner design loop: Design of the ECU-based control
system and components. Each iteration involves the
design of the control algorithms, FMEA, diagnostic
development, implementation of the ECU (HW and
SW) and verification of the algorithms, as shown in
Figure 2. The verification step at the end of the first
iterations is performed using models (software/
hardware in the loop), whereas, later, the physical
system is used. Depending on the achieved results,
there are several iterations, each one of them
producing an advanced prototype.
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Figure 2 The reference process,
one iteration of the inner design loop

Three problem areas in the reference design process have
been identified as the essential ones with respect to a
better integration of the diagnostic tasks, mainly in the
inner and the outer design loops.
The first problem concerns the interaction between the
diagnosis design process and the FMEA generation (cf.
upper part of Figure 2).



• FMEA and generation of onboard diagnosis are
separated and sequential tasks.

• Only few tools support the information extraction
process needed for the FMEA, e.g. simulating the
consequences of faults or studying interactions
between faults. Thus, a lot of work is left to the
experience and sensibility of the people that perform
FMEA.

The second problem area concerns the interaction
between FMEA and the development of diagnostics, and
the development and design of control algorithms of the
system (cf. Figure 2).
Currently, these are two substantially separate tasks,
despite the fact that there are important
interdependencies. Examples for possible interactions are:
• a change of the control algorithm may turn a physical

component, that was not very essential before, into a
critical one and, hence require additional diagnostics,

• a change of the control algorithm promotes the
masking of certain faults that were detectable more
easily before. Again, additional diagnostics have to
take this into account,

• a change of the diagnostics aiming at enhancing
diagnosability may exploit additional signals, which
may possibly improve control, as well.

As a consequence, requirements and constraints arising
from one of these tasks can be dealt with by the other
ones only in the next inner design loop, i.e. changes in the
design of control algorithms can have impact on FMEA/
diagnosis only during the next inner design loop and vice
versa, thus causing additional iterations and time delay.
The third problem area concerns the relation between the
design of diagnosis and component selection and layout
definition (cf. left-hand part of Figure 2).
The problem here is, that currently the component
selection task is external to the inner design loop. As a
consequence, for instance the choice or placement of
sensor is often not optimized with respect to diagnosis
purposes, or, if later changes are made, additional (outer
and inner) design loops are needed that cause delays.
An improvement could be reached by performing a
comparative analysis (‚what-if-analysis‘) inside the inner
design step and the integration in the early phases of
control and diagnostic development. Thus, part of the
component selection task is moved inside the inner design
process, and, in particular in the early phases of the inner
design loop, it is possible and cheap to modify component
choices, e.g. sensors, regarding type, sensitivity or
placement and to immediately explore the impact on
control generation, FMEA, diagnosability analysis, and
diagnosis generation.

The New Process
Based on this analysis of the reference process and the
outlined improvements, we propose a frame for a new
process which is closely connected to a new tool
architecture.
In summary, the framework for a new process has to
satisfy the requirement that in the inner design loop of the
process, the designers (the different experts involved in
the design) should be supported in performing different
activities in an interleaved way:
• design of the physical system,
• design of control algorithms, and their simulation (for

quantitative analysis),
• generation of the FMEA of the designed system
• analysis of the diagnosability, i.e. investigation which

faults are detectable and discriminable from each
other,

• derivation of on-board diagnosis (OBD) software for
the system,

• comparative analysis on the current design (physical
system and control), i.e., analysis of the
consequences of applying changes to the design both
from the control and diagnosability point of view,

• comparative analysis of different design alternatives.
Thus, designers and decision makers are supported in the
process of evaluating different designs and in making
choices about the best design of a system.
• Such a tight integration of different activities and the

aim to perform them concurrently require the fast and
reliable exchange of information about any changes
in the design introduced by any of the activities. This
is why we propose that the model of the system
being designed must play a central role in the new
process, as indicated by Figure 3.

• The aims to update FMEA, diagnosability analysis
and OBD generation quickly after a change and to
consider different design alternatives in parallel
establishes the requirement that these tasks can be
effectively supported or automated by computer tools
based on the model, i.e. they have to be model-based
tools.
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Software Support for the New Process
Accordingly, the actual goal is to provide a new set of
functions for supporting the designer, which are realized
as ‚software plug-ins‘ added to the existing software tools
for design. Within the scope of IDD, we are considering
three plug-ins:
• tools for diagnosability analysis
• tools for supporting the FMEA generation (cf. [Price

98])
• tools for supporting the generation of onboard

diagnostics (see e.g. [Bidian et al. 99], [Cascio et al.
99], [Sachenbacher-Struss-Weber 00]).

These tools rely on model-based systems and will be
based on a common set of models and a common model-
based diagnostic system core.
The new process and the respective tools should be
integrated or combined with the simulation tools, that are
currently used for the design of control strategies and
typically based on quantitative models. In IDD, this is
Matlab/Simulink. This requires software that transforms
the models created in these environments into qualitative
diagnostic models that form the basis for the model-based
tools.
Figure 4 summarizes the overall architecture of the new
design support system .
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Figure 4 Tools architecture for the new process

A challenge lies in providing
• a common software platform with components that

are re-usable in different contexts, and
• the harmonization of models used for different tasks.
The latter is ideally to be achieved by automated
transformation routines. In particular the automated
transfer of traditional quantitative models (used e.g. for
simulation and control design) to qualitative models

allowing for automated FMEA and fast, i.e. real-time, on-
board diagnosis, is a central target. If indeed successful,
the re-use of existing model fragments for different tasks
will reduce life cycle costs by a significant amount.
IDD envisions three types of application settings:
• an integrated toolbox with its own graphical user

interface and storage of models. A component-
oriented ontology has been chosen to best address
modeling requirements in the automotive domain.

• a variety of plug-ins to industry-adopted existing
tools. In IDD, we have chosen MatLab/Simulink.
Models will possibly be stored with these tools and a
specific graphical user interface will be limited, if
existent at all. The plug-ins provide additional
functionality, namely diagnosability analysis, FMEA,
and the transformation of design information
captured by the Matlab/Simulink model.

• the (on-board) processing scenario for dedicated
applications such as diagnosis and monitoring. They
are dedicated to a particular variant of a device. A
diagnosis and monitoring application on a ECU is a
typical example.

The IDD toolbox and plug-ins will be running on
Microsoft Windows. Therefore, COM (component object
model) was chosen as a protocol for the interaction of
(binary) components. All the engines, transformers, etc
are implemented obeying this standard. This allows for
the re-use of functionality in different contexts, and, in
particular, the three different application settings. The
second cornerstone is given by the use of XML (extended
markup language) for describing data in a uniform and
exchangeable way. Many of our software components
take XML documents as input and produce such
documents as output.
COM and XML allow us to build task-related
applications that are constructed from components which
themselves are aggregated from even more basic
components. The components in the layer directly under
the application level we call engines, our third
cornerstone. So, there are (re-usable COM) components
that encapsulate a diagnosis engine, an FMEA engine, a
predictive engine, a transformation engine, etc. An
important consequence of the choice of COM, XML, and
engines is that the resulting architecture is an open one,
open at any desired degree down to the level of individual
methods of low level objects.
At the component level, the IDD consortium has chosen
OCC’M’s Raz’r [RAZ’R 02] as a basis for
implementation. It provides state of the art model-based
systems software packaged into COM-components and
supplied with XML-interfaces. This allows for further
extensions as needed by the consortium requirements.
These components include
• an ATMS (Assumption Truth Maintenance System)

which provides fast consistency checking and
handling of time. While still adhering to the basic



framework of assumption-based truth maintenance
[de Kleer 86], the employed technology has changed
substantially making possible the implementation of
on-board systems meeting real-time requirements
([Sachenbacher-Struss-Weber 00]).

• a constraint-based predictive engine which allows
to limit the computational efforts by specifying
appropriate foci of attention.

• a model compiler which produces system
descriptions (XML documents) suitable for
processing by various engines. For representing
constraints, a data structure similar to ordered binary
decision diagrams (OBDD), but also suitable for
direct constraint processing is used as a compact
representation [Bryant 92].

• a diagnosis engine which accepts a system
description and a continuous stream of observations
(measurements) as the input and produces an
assessment of the current situation by listing the best
candidates for diagnosis.

• The model transformation engine is central and
touches on still open research questions. Therefore, it
is a main subject of the consortium’s current
activities. As already pointed out, automated model
transformation is required to obtain qualitative
models. Behavioral and structural descriptions are
extracted from numerical models (developed in
Matlab/Simulink), converted to qualitative models
represented in XML form and possibly transformed
into more abstract descriptions through a process
called task-dependent model abstraction
([Sachenbacher-Struss 01]). The foundations of one
of the implementations and a critical discussion of
the practical experiences are presented in [Struss 02].

In the following, we discuss the foundations for the
diagnosability analysis engine, that forms a specific
contribution of the project, in a little more detail.

Diagnosability Analysis Engine
Diagnosability analysis is expected to answer two
different types of questions:
“For a particular design and a chosen set of sensors,
determine:
• Fault detectability, i.e. whether and under which

circumstances  the possible  faults considered can be
detected (by the ECU)

• Fault (class) discriminability, i.e. whether and
under which circumstances the ECU is able to
distinguish different classes of faults.”

The second question is a generalization of the fault
identification task (“Determine the present fault mode
unambiguously”). This generalization is motivated by on-
board diagnosis requirements: full fault identification is
usually not possible and also not required for on-board
purposes, since there is a limited set of possible recovery
actions that can be performed by the control unit and

which are to be selected dependent on the general type of
fault and its severity rather than the individual fault. For
instance, only certain critical faults may require
immediate shut-off of the engine while others allow
continued operation possibly under certain limitations.
Also off-board diagnosis is appropriately characterized as
fault class discrimination where the classes comprise the
faults of the various smallest replaceable units. More
generally, diagnosis is usually a discrimination task
whose goal is defined by the available “therapy” actions.
Discriminability is the fundamental task, because
detectability can be formulated as discriminability from
the normal behavior.
Although the ultimate goal is to discriminate classes of
behavior modes from each other, the analysis has to based
on the discriminability of each pair of individual faults
taken from any pair of classes, which is unfortunate from
a computational point of view.
In our framework, (fault) behavior modes are represented
as finite relations, and discriminability analysis becomes
the task of computing the observable distinctions between
two relations. So, let Vobs be the set  of observable
variables. In an on-board situation, this corresponds to the
set of actuator and sensor signals. Since we want to
characterize the situations under which detection or
discrimination is possible, we introduce a set of variables
Vcause that are exogenous or  “causal “ variables w.r.t. the
physical system (i.e. the subsystem excluding the ECU).
This set includes the actuator signals but also other
quantities that influence the behavior of the physical
system. Some of the latter may be observables, e.g. the
atmospheric pressure, while other are not (directly)
measurable, such as the load. Since on-board diagnosis
can rely only on what is observable to the ECU, we
define:

Vo-cause =Vobs  ∩  Vcause

and
Vobs\cause = Vobs \ Vcause

as well as the respective projections, PROJobs, PROJo-cause.

The abstract example in Figure 5 will provide an intuition
about possible  answers to the discriminability question.
The vertical axis represents the observable causal
variables and the horizontal axis the remaining
observables. There may be many unobservable variables,
but the shown projection to the space of observables is all
that matters.
Two different fault modes ( or, more generally, behavior
modes) are represented by two relations. As illustrated by
the figure, we can distinguish three different cases:
• In the upper section the relations cover each  other,

i.e. for any causal stimulus in the projection of this
intersection area, the observable set of consistent
tuples for the two behavior modes are the same, and,
hence, they cannot be discriminated from each
other.



• In the lower section, they are totally disjoint, i.e. any
of the respective causal inputs always leads to
different system behavior and, thus,
deterministically discriminates between the two
modes.

• For all other causal inputs, the two modes can
possibly be discriminated,  because the actual
response of the system may be outside one of the
relations, but is not guaranteed to.

Vo-cause

Vobs\cause

Not discriminable
(ND)

Discriminable
(DD)

Possibly discrim.
(PD)

Figure 5 Three categories of discriminability of two
behavior modes

With this translation of the task to the analysis of
relations, we can also support our previous claim, that, in
general, a pairwise comparison of individual modes of
required to determine the discriminability of classes of
modes. Consider the trivial example of one inverter with
two mode classes:

C1 ={output-stuck-0, output-stuck-1},
C2 ={shorted, ok}.

Figure 6 a and b display the four faults in the observable
space i, o, grouped in the two classes.

i o

1

0

0 1a)

1

0

0 1

i

o

i

o

output-
stuck-0

output-
stuck-1 ok shorted

b)

Figure 6 Behavior classes of the inverter for fault
classes C1 (a) and C2 (b)

Obviously, the faults are pairwise discriminable, and,
hence, so are the two classes of faults. However, if we
would try to represent each class as the disjunction of its
modes and associate with it the union of the respective
relations, then both of these class relations cover the
entire behavior space and are not distinguishable. The
deeper reason is that a fault class represents more than a
(exclusive) disjunction of modes. We also make a
persistence assumption, namely that one particular mode
occurs in all inspected situations (i.e. for all inputs).
Before we give formal definitions and computable
expressions for the  concepts, we introduce one last
element: operating conditions. This reflects the common
practice of distinguishing between ranges of internal or
external quantities that result in qualitatively different
behaviors and are often reflected by different states of the
system and its control. Examples are engine idle, clutch
engaged, cold engine, brake pedal pushed.
Often, the analysis of fault effects and diagnosability can
be restricted to certain operating conditions and is futile
for  others. For instance, one may not be extremely
interested in the detectability of a fault in the air intake
system under conditions where the engine is not running
(one has to be cautious with such restrictions, though,
because firstly, there may be a requirement to perform
fault detection beforehand, such as checking the
operability of the airbag system or the ABS, and
secondly, a broken component could affect operating
modes in which it is not intended to be active).
In our approach, an operating condition has to be
expressed as a constraint on a subset of model variables.
Often, but not always, they will refer to exogenous
variables such as the angle of the accelerator pedal or air
temperature, and typically, but not exclusively, they are
observables (the load, for instance, is not directly
observable).
In most cases, the constraint that defines an operating
condition will be a conjunction of restrictions on variable
values to some interval or state like temperature>120°C
or ignition = ON.
Restricting the analysis to certain operating conditions
then boils down to computing the intersection of a
behavior relation with their respective constraints.

Definition 1 (Discriminability of behavior modes)
Let MODELfault1, MODELfault2 be the behavior
relations of two modes,
OPCi an operating condition,
and
SIT⊂ DOM(VO-CAUSE)
a non-empty relation on the observable causal
variables.
For OPCi and SIT, two faults are called
- not discriminable, written

ND(fault1, fault2, OPCi, SIT),
iff



(i)      SIT ⊆ PROJo-cause(OPCi) \ PROJo-cause

(PROJobs (MODELfault1 ∩ OPCi)\
   PROJobs     (MODELfault2 ∩ OPCi)
∪ PROJobs (MODELfault2 ∩ OPCi)\
      PROJobs (MODELfault1 ∩ OPCi))

- deterministically discriminable , written
DD(fault1, fault2, OPCi, SIT),

       iff
(ii)  SIT ⊆ PROJo-cause(OPCi) \

PROJo-cause  (PROJobs (MODELfault1 ∩ OPCi)
                 ∩ PROJobs (MODELfault2 ∩ OPCi))

- possibly discriminable , written
PD(fault1, fault2, OPCi , SIT),

iff
SIT ⊆ PROJo-cause(OPCi) \  (SITND ∪ SITDD),

where SITND  and SITDD are the maximal relations
that satisfy (i) and (ii), respectively.

These definitions characterize the three cases discussed
above w.r.t. Figure 6 in a way that can be computed by
operations on the extensional constraint representation
generated by the model compiler.
Based on the discriminability of modes, discriminability
of fault classes can be defined and computed.

Definition 2 ( Discriminability of mode classes)
Let FCj ={faulti,j}, j =1,2 be two fault classes and
OPCi an operating condition. Let furthermore
SIT-SET = {SITkl} ⊂ P(DOM (Vo-cause))
be a set of non-empty relations of observable causal
variables. FC1, FC2 are called
- not discriminable, written

ND(FC1, FC2, OPCi)
iff there exists a pair of modes that is completely non-
discriminable:

∃ fault1k  ∈  FC1    ∃ fault2l  ∈  FC2

     ND(faultlk, fault 2l,  OPCi, PROJo-cause (OPCi))
- deterministically discriminable, written

ND(FC1, FC2, OPCi, SIT-SET),
iff each pair of modes is deterministically
dicriminable for some element of SIT-SET:

∀ fault1k∈FC1    ∀ fault2l ∈FC2  ∃ SITkl∈SIT-SET
     DD(faultlk, fault 2l,  OPCi, SITkl)

- Possibly discriminable, written
PD(FC1, FC2, OPCi, SIT-SET),

otherwise, iff all SITkl  are in the complement of the
non-discriminable situations:

∀kl SITkl ∩ SITND,kl = ∅

Status and Future Work
As of now, two different alternatives have been
implemented to generate the qualitative diagnosis models
from existing numerical models which both use Matlab
itself to compute the tuples of the modeling relation. In

addition, a library of qualitative models will be created
manually that allows to configure the model based on the
structural description only. Based on a use case analysis,
the core of the diagnosability analysis tool and the model-
based on-board diagnosis engine have been developed.
IDD will use a number of guiding applications with the
goal to demonstrate how the diagnostic tasks described
can be performed by using the new process and the new
tools architecture. Furthermore, we aim to demonstrate
how additional advantages of the new method can be
achieved, e.g. optimization of sensor placement or deeper
diagnostic performance. Thereby, the guiding applications
serve, on the one hand, as case studies for the application
of the new techniques and, on the other hand, as test cases
and demonstrators of the results of the project.
The guiding applications chosen cover on the one hand
different mechatronic systems with central ECU-
functions, and on the other hand the general application of
diagnostic tasks to multiplexed architecture systems. They
include
• The air delivery system for diesel engines (Figure 

7), comprising the exhaust gas turbocharging system
and the exhaust gas recirculation system (EGR. and
the Common Rail Injection System (Fiat and
Magneti-Marelli).

Filter

EGR Actuator

Waste Gate
Actuator

Catalyst

Heat E xchang er

Figure 7 Guiding application:  Air delivery system

• The cooling system (DaimlerChrysler AG),
including an intercooler, which on the one hand
increases the efficiency of the engine by cooling the
compressed air and, hence, increasing the air charge
rate, and on the other hand decreases NOx emissions
by keeping the combustion at lower temperature
(Figure 8).

• The air conditioning system (Peugeot Citroën PSA)
which consists of two loops that supply a cold heat
exchanger and a hot heat exchanger (Figure 9).
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Figure 8 Guiding application: Cooling system
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Figure 9 Guiding application: Air conditioning system

• The multiplexed architecture (Renault) involving
ECUs, sensors, actuators, functions (EF = elementary
functions), busses and data frames (Figure 10). The
design engineer will be enabled to run a program
directly on the representation of a designed
architecture and receive the results of an analysis of
the interdependency of faults and functions in this
architecture.

ECU

EF EF

Sen

Act

EF EF

Frame ECU

Sen

Act

Figure 10 Guiding application: Multiplexed architecture

A first version of models for these guiding applications
has been developed and will be used to validate and
improve the model abstraction module and to evaluate the
tools. By the end of the project in January 2003, we hope
to demonstrate the utility of the tools and the benefits of
the modified design process based on examples that are
close to reality.
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Abstract
A configuration knowledge base is software that needs
debugging during maintenance and can benefit from
consistency-based diagnosis. The paper describes
suggestions and practical experience from the
introduction of this diagnosis technique in the work
flow for maintaining configuration knowledge bases.
Consistency-based diagnosis is suitable for detecting
bugs in knowledge bases, but needs tailoring to fit in
the work flow of the knowledge engineers.

1 Introduction
Configurators have already been applied to different
industry domains. For instance, telecommunication systems
are among the products successfully handled with configu-
rators. The crucial information is in the knowledge bases of
the configurators.

Configurators using declarative constraints [Mittal and
Frayman, 1989] are in everyday use and can generate and
modify configurations with more than 50,000 objects
[Fleischanderl et al., 1998]. Declarative constraints offer
easier maintenance compared to procedural specifications,
but also benefit from effective debugging methods. Con-
sistency-based diagnosis [Reiter, 1987] [Greiner et al.,
1988] is applicable to fault detection in configuration
knowledge bases [Felfernig et al., 2000], which is the topic
of this paper. The extensions towards hierarchical models
[Felfernig et al., 2001] are not discussed here because the
author did not apply this yet.

This paper discusses suggestions and practical experi-
ence from applying diagnosis techniques to the debugging
of declarative knowledge bases for configurators. The
experience ranges from the planning of an engineering
process including diagnosis to the early adoption of diag-
nosis for the debugging of knowledge bases. The require-
ments of the development process for knowledge bases are
compared with the specification of the diagnosis method.

2 Maintaining knowledge bases
Creating and maintaining knowledge bases is essentially a
software engineering process.

After collecting and analyzing new requirements, the
knowledge base is modified and tested. Regression tests are
essential for long-term maintenance. So the results from
replaying regression tests should be fed into a diagnosis
tool if the new output differs from the expected output of a
regression test.

In an ideal world the discrepancies from regression tests
would be analyzed with a diagnosis tool and suggestions be
made which constraints in the knowledge base are
responsible for the discrepancies. Unfortunately this is not
that easy.

3 Preconditions for consistency-based
diagnosis

Consistency-based diagnosis needs a consistency checker,
i.e. a solver that yields conflict sets when a knowledge base
is in contradiction to a positive example. The configurator
kernel COCOS [Stumptner et al., 1998] applied by the
author is a solver that uses declarative constraints for stati-
cally checking or expanding a partial configuration. The
kernel was extended to also yield conflict sets. So a suffi-
ciently powerful consistency checker is available.

The elements that can be faulty have to be identifiable
parts of a knowledge base. In our case the constraints can
be faulty with respect to positive examples and are the
“components” for model-based diagnosis.

4 Requirements and consequences of
consistency-based diagnosis

4.1 Definition of a CKB-diagnosis
A CKB-diagnosis (i.e. diagnosis of configuration knowl-
edge bases) uses the model-based diagnosis paradigm and
is defined as follows [Felfernig et al., 2000].



Definition (CKB-Diagnosis Problem): A CKB-Diagnosis
Problem is a triple (DD,E+,E-) where DD is a configura-
tion knowledge base, E+ is a set of positive and E- of
negative configuration examples. The examples are given
as sets of logical sentences. It is assumed that each example
on its own does not contain inconsistencies.

Definition: A CKB-diagnosis for a CKB-Diagnosis
Problem (DD,E+,E-) is a set S ⊆ DD of sentences such that
there exists an extension EX, where EX is a set of logical
sentences, such that

DD – S ∪ EX ∪ e+ consistent  ∀e+ ∈ E+
DD – S ∪ EX ∪ e- inconsistent  ∀e- ∈ E-

Let NE be the conjunction of all negated negative
examples. This is the most easily found EX.

Proposition: Given a CKB-Diagnosis Problem
(DD,E+,E-), a diagnosis S for (DD,E+,E-) exists iff

∀e+ ∈ E+ : e+ ∪ NE is consistent.
Corollary: S is a diagnosis iff

∀e+ ∈ E+ : DD – S ∪ e+ ∪ NE is consistent.

4.2 Representation of examples
The definition of a CKB-Diagnosis Problem says that the
examples are given as sets of logical sentences. This is
usually not the case in configurator implementations. Yet,
databases or other data representations can easily be trans-
formed into facts, i.e. logical sentences. This transfor-
mation need not be done for the implementation of diag-
nosis for configurator knowledge bases, but is a precon-
dition for the applicability of CKB-diagnosis.

With logical sentences one can define a configuration as
a set of fragments. In configurator applications, configu-
rations are based on an object model, which is usually
defined with UML. All objects usually are reachable from
one entry object. So the positive or negative examples
cannot just be isolated sub-configurations, but must be
connected objects. This is a slight restriction that does not
limit the diagnosis.

This property of configurations ensures that trivial
inconsistencies are avoided, e.g. there cannot be two
modules in the same slot. Therefore each example (i.e. its
structure of objects and connections) does not contain
inconsistencies among its elements.

4.3 Conjunction of negated negative examples
The definition of a CKB-diagnosis requires an extension
EX. The question is: Where does EX come from?

The simplest EX would be the negation of all negative
examples, i.e. NE as defined above. This is not a useful
solution for maintaining configurator knowledge bases in
real life. This would reduce the advantages of declarative
constraints, namely that knowledge bases contain little
redundant information and can be understood easily by
domain experts. Furthermore, the constraints should be
sufficiently general to be applicable to similar situations in
the future. The negation of configurations (i.e. negative
examples) would clutter the knowledge base with facts that

may overlap and would not prevent examples that are
slightly different.

4.4 Diagnosis is part of the existing knowledge
base

According to the definition of CKB-diagnosis, a diagnosis
is a subset of the knowledge base. That means faults are
found among the constraints in the existing knowledge
base. This is useful in real-life projects and makes the con-
sistency-based diagnosis worthwhile. Yet, defining new
constraints (thus extending the knowledge base) has to be
accomplished with other approaches.

5 Integrating consistency-based diagnosis in
the software engineering process

The definitions for consistency-based diagnosis of configu-
ration knowledge bases do not tell a lot about how to
proceed (step by step) to reach a correct knowledge base.
However, the conditions for the correctness check for
knowledge bases are specified.

This section describes how to use diagnosis in the soft-
ware engineering process for knowledge bases.

5.1 Use the examples one by one
Examples, i.e. stored configurations, may be partial or
complete. Due to restrictions coming from the usual object
models in software development, each example is a net-
work of objects that can be reached from an entry object.
Therefore, only one example can be loaded at one time.
This holds for positive and negative examples.

5.2 Negative examples are outsiders
In the diagnosis process discussed here, negative examples
do not yield hints for mistakes in a knowledge base.

We expect that negative examples lead to inconsis-
tencies. If a negative example is consistent with the
knowledge base, the consistency-based diagnosis has no
discrepancy to start from. The practical suggestion then is
to analyze the consistent negative examples "by hand" and
modify the knowledge base to rule out those examples.
This corresponds to finding the mysterious EX in the defi-
nition of CKB-diagnosis.

The good news, however, is that negative examples usu-
ally are modifications of positive examples or previously
positive examples that became negative after a modifica-
tion to the knowledge base. Our experience from mainte-
nance over many years shows that these negative examples
will mostly remain negative examples after more modifi-
cations to the knowledge base.

Help also comes from good practice in software engi-
neering. When knowledge bases are stored in a version
control (configuration management) system, we can find
the latest previous version where some negative example
was still rejected by the knowledge base. Comparing that
older version with the current knowledge base shows the
constraints that were modified or removed in the meantime.
This is of course an excellent starting point for modifying



the current knowledge base such that it again rejects the
negative example.

When all negative examples are rejected by the knowl-
edge base, start looking at the positive examples. So the
negative examples are treated outside the diagnosis step.

5.3 Use the results from regression tests
Like any software, knowledge bases can be maintained
more efficiently by using regression tests and checking
them after a modification.

When a regression test produces an output different from
its reference, find out whether the new output is expected
(after a modification to the knowledge base). Only if the
new output is different from what is expected, feed this
output into diagnosis.

5.4 Do diagnosis and repeat the cycle
Finally, we use consistency-based diagnosis to detect faults
in the knowledge base. This follows the definition of CKB-
diagnosis as described above. The well-defined precon-
ditions and semantics of the method make it particularly
valuable.

After the knowledge base was modified, we must repeat
the cycle of testing and diagnosis until all negative exam-
ples are inconsistent and all positive ones are consistent.

The cycle described here starts with the negative
examples (by modifying or extending the knowledge base)
and continues with the positive examples (by modifying or
reducing the knowledge base). This could be done the other
way round. The "optimal" sequence, however, depends on
the structure of the knowledge base and the expert's
experience and point of view. The objective is to modify
the knowledge base such that it remains easy to maintain
and easy to understand. We are confident that the steps
described above help us get close to this objective.

6 Beyond diagnosis
Beyond the scope of CKB-diagnosis, other methods can be
useful for maintaining knowledge bases.

Automatic generation of test cases would be helpful for
producing a large set of regression test cases. This would
assure the quality of knowledge bases that are maintained
over several years.

If a negative example is consistent, automatic generali-
zation of the negated negative example could yield a non-
redundant modification to the knowledge base. Here the
optimum between introducing too many new constraints
and over-generalization has to be found. For this purpose
the methods for automatic learning of concepts have to be
analyzed with respect to the semantics of the configuration
knowledge base.

7 Summary and conclusion
Consistency-based diagnosis is applicable to the debugging
of configuration knowledge bases. The method is particu-
larly valuable because of its well-defined preconditions and
semantics.

Integrating CKB-diagnosis in the software engineering
process for knowledge bases can be done efficiently and
effectively. There are minor limitations where CKB-
diagnosis cannot be fully applied, i.e. with respect to
automatic suggestions from negative examples. Altogether
the experience from the planning of a debugging process
with diagnosis and from the early adoption is encouraging.
Results from wide usage will follow.
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Consistency-Based Fault Isolation for Uncertain Systems
with Applications to Quantitative Dynamic Models

Colin N. Jones 1 and Gregory W. Bond 2 and Peter D. Lawrence3

Abstract. This paper presents the Probabilistic General Diagnostic
Engine (PGDE), a novel method of offline consistency-based fault
isolation. Many existing proposals require qualitative logic mod-
els for consistency-based diagnosis due to their ability to speed the
search for conflict sets through the use of an ATMS. However, for
many applications, quantitative dynamic models are preferred or al-
ready available. The key strength of the PGDE is that it allows the use
of any modelling language for which an appropriate calculation en-
gine can be written. It also offers graceful degradation in the presence
of uncertainty, commonly caused by noise or modelling errors. Fi-
nally, given perfect knowledge, it can be shown that the PGDE com-
putes the same result as existing consistency-based diagnosis meth-
ods. To demonstrate the performance of the algorithm, we have used
a quantitative dynamic model of the fluid power circuit of a single-
degree of freedom hydraulic test bench and developed an appropri-
ate calculation engine for computing consistency between measured
values and predicted results. Various failures were generated on the
physical test bench and the PGDE isolated the faults with approxi-
mately 85% accuracy.

1 INTRODUCTION

Consistency-based diagnosis has at its heart the search for a subset of
the full model such that predictions made using the subset are con-
sistent with sensor measurements. This search space is exponential
in the number of model components and so a great deal of attention
has been given to developing efficient algorithms. Much progress has
been made by utilizing the properties of propositional logic and qual-
itative models ([10, 8, 1] to name a few) but the problems associated
with more complex dynamic systems have still to be solved in gen-
eral. The Probabilistic General Diagnostic Engine (PGDE) addresses
some of these issues in a general framework that applies to any model
for which an appropriate “consistency measure” can be formulated.

There are many devices for which quantitative dynamic models
either already exist or whose behavior can best be described by a set
of differential equations. The cost of developing qualitative models
exclusively for the purpose of diagnosis is prohibitive, thus making
the adaptation of qualitative methods to quantitative dynamic models
an important topic. Models of this type present two new challenges
to the diagnostician: First, quantitative dynamic models require the
comparison of sets of signals to determine consistency. Due to noise
and modelling errors, it can be difficult to represent the results of
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these comparisons by the discrete values typically used in qualitative
methods. Second, the nature of dynamic systems is that they often
have states which are not directly measurable. When the model is
simulated using only the equations from a few components, it is often
the case that many of the states will become unknown. If no conflict
is observed, we reason that a possible diagnosis has been identified,
however, it is impossible to know if there would have been a conflict
if these states had been known. As a result, the underconstrained na-
ture of dynamic systems reduces the resolution of fault isolation pro-
cedures and this must be taken into account in any diagnostic method
dealing with these models.

The PGDE algorithm attempts to deal with these difficulties by
maintaining a belief distribution for each possible diagnosis. Since
these distributions are not limited to discrete-valued consistency
measures, the PGDE is able to more accurately interpret interme-
diate non-boolean consistency assessments. They are also updated
throughout the duration of the diagnostic procedure, and conclusions
about the consistency of sets of components with observations are
not drawn until sufficient information has been processed. In Sec-
tion 2, the proposed algorithm is laid out in a step-by-step fashion,
including consideration of its computational complexity in Section
2.5. Next, Section 3 presents a non-trivial example hydraulic circuit
and summarizes some diagnostic results obtained by the PGDE. Fi-
nally, the paper closes with a discussion of conclusions and future
directions of research in Section 4.

2 PGDE ALGORITHM

The model used in a consistency-based algorithm is a set of con-
straints on the signals passing through the system. A failure can be
declared when these signals are inconsistent with the constraints. The
goal of the algorithm is then to locate a subset of these constraints,
which when removed from the model, restore consistency between
the predicted and observed behavior. This process can proceed in an
iterative manner, selecting a set of constraints to remove and simu-
lating the system until a feasible set is found.

We begin by defining the system as in [7]:

Definition 1 A system is a triple (SD,COMPS,OBS) where:

1. the components (COMPS) are a finite set of constants
2. the system description (SD) is a set of constraints
3. the observations (OBS) are measurements of the physical device

There is no requirement that there be a one-to-one mapping
from components to constraints and so a partition {SDc}c∈COMPS

is defined covering SD such that
S

c∈COMPS SDc = SD and
SDci

T
SDcj = ∅ ∀ci �= cj . The set of all possible failures is



given by the power set of COMPS and for each element ∆ ⊆
P (COMPS), define SD∆ =

S
c∈∆ SDc. This allows the defi-

nition of components which contain large numbers of constraints or
complex behaviors as well as hierarchies of components. The cardi-
nality of a set of constraints X ⊆ SD is written as |X|; it is a system-
dependent real number, representing the notion of how “large” the set
X is when compared to SD.

Reiter’s original work [7] relies on a ‘theorem prover’,
TP(SD,D(∆, COMPS\∆), OBS), which returns true if the par-
tial model containing only the constraints in the complement of
SD∆, (SD∆)c, is consistent with the observations OBS and false
otherwise; consistency implying that the components ∆ are a possi-
ble diagnosis. Here the theorem prover is redefined to return a contin-
uous measure of how consistent the constraints (SD∆)c are with the
observations OBS. It is possible that the system defined by (SD∆)c

with OBS as inputs may be underconstrained. Thus, for some of the
constraints in (SD∆)c, it is impossible to verify if they have, or have
not, been violated. If this system is consistent then it is not valid to
say that ∆ is a diagnosis as the faults might have been in the con-
straints that could not be tested. This situation is very common in
dynamic systems with state as they are inherently underconstrained
[4]. To deal with this, the constraints which were used during the
simulation of (SD∆)c are returned by TP(·) as defined below.

Definition 2 Let ∆ ∈ P (COMPS). Define the function TP(·, ·) :
SD × OBS → R × SD as:

(µ∆, A∆) = TP((SD∆)c, OBS)

Where:

• µ∆ ∈ [0, 1], 1 implies constraints (SD∆)c are consistent with
the observations OBS, and 0 implies inconsistency

• A∆ ⊆ (SD∆)c are the constraints which TP(·) had sufficient
information to apply during the calculation of µ∆

Two belief distributions over the states {true, false, unknown} are
maintained for each element ∆ ∈ P (COMPS). These are rep-
resented by the probability mass functions BD,∆(x) and BIC,∆(x)
with domains {true, false, unknown}. BD,∆(true) is the belief
that the evidence, provided by calls to TP(·), shows that ∆ is a di-
agnosis. BD,∆(false) is the belief that the evidence does not show
that ∆ is a diagnosis. It does not mean that the evidence does show
that ∆ is not a diagnosis as consistency can only incriminate compo-
nents, it cannot exonerate them [7]. Finally, BD,∆(unknown) is the
probability that it is unknown what the evidence shows, or that there
is no evidence. If µ∆ = 0 then at least one component of ∆c must
be faulty and we call ∆c a conflict set [7] and ∆ an inverse conflict.
BIC,∆(true) is the belief that the evidence shows that ∆ is an inverse
conflict, BIC,∆(false) that it doesn’t and BIC,∆(unknown) that the
evidence is unclear.

Initially, all the beliefs are 100% unknown (BD,∆(x) =
BIC,∆(x) = {0.0, 0.0, 1.0}). In each iteration, a call is made to TP(·)
to check if a new set of constraints (SD∆)c, is consistent with the
observations, OBS. The distributions are then updated to reflect the
simulator’s certainty in the consistency of each set of components,
again with the observations. In this way, the diagnostic engine deter-
mines the components that are most likely to be faulty, as well as a
measure of its confidence in these decisions.

A block diagram of the PGDE is shown in Figure 1. The following
sections deal with each stage of the algorithm in detail in the order:

updating the beliefs (steps 3 and 4), choosing a new set to test for
consistency via TP(·) (step 1), deciding when to stop and interpreting
the final belief distributions (steps 5 and 6).

2.1 Belief update

Once a possible diagnosis, ∆, has been selected, TP(·) is used to find
the consistency measure, µ∆, and the constraints which were used to
compute it, A∆. The goal is to determine what the consistency mea-
sure has shown about each of the subsets of COMPS, using A∆ as
a guide. Assuming no fault models, two properties of constraint sys-
tems allow the consistency measure of the set ∆ to affect the beliefs
of other sets: supersets of diagnoses are diagnoses (removing more
constraints will not make the system inconsistent) and subsets of in-
verse conflicts are inverse conflicts (adding constraints will not make
the system consistent). Using these facts, the supersets of ∆ are first
considered and the information derived from µ∆ and A∆ is used to
update the beliefs that they are diagnoses (BD,∆P

(x) ∀∆P ⊇ ∆).
Similarly, the beliefs that the subsets are inverse conflicts are also
updated (BIC,∆C

(x) ∀∆C ⊆ ∆).

2.1.1 Update belief in diagnosis

We begin by assuming that µ∆ = 1, indicating that the observations
are consistent with the constraints (SD∆)c. The goal is to determine
to what degree this evidence shows that each set is a diagnosis. The
first step is to locate the base set, ∆B , for the set (SD∆)c as defined
below in Definition 3. This is the set with the most components of
which none have had any of their constraints used during the calcula-
tion of µ∆. Referring to Figure 2, in which TP((SD{1,2,3})

c, OBS)
was called, the base node is ∆B = {1, 2, 3, 4}. If ∆ �= ∆B , then the
constraints of at least one component have not been considered due
to the assumption that the components in ∆ were faulty (in Figure
2 this would be component 3). In essence, TP(·) cannot distinguish
between any set ∆′ such that ∆ ⊆ ∆′ ⊆ ∆B , since whenever the
constraints associated with the components in ∆ are not considered,
neither are those of ∆B , which implies that µ∆ = µ∆′ = µ∆B .
This is a limitation of the model and the placement of the sensors; as
a result the best the algorithm can do is incriminate ∆B and inform
the user of this sensor deficiency. Because the consistency measure
would be the same for all of the sets ∆′, such that ∆ ⊆ ∆′ ⊆ ∆B ,
the sets are marked and ignored in subsequent calls to TP(·). For cer-
tain model types these families of sets can be identified a priori and
grouped into single components to speed the algorithm [1, 2].

Definition 3 Let ∆ ⊆ ∆B ⊆ COMPS. Then ∆B is the base set
for ∆ iff

SD∆B

\
A∆ = ∅

∀∆′ ⊃ ∆B , SD∆′
\

A∆ �= ∅

If the constraints associated with ∆B are not considered during
the call to TP(·), those in (A∆)c \SD∆B are not either (in Fig-
ure 2 this would be the unshaded sections of components 5 and
6). These are the constraints which were not considered that do
not make up a full component. The question is: Is the lack of con-
flict during the computation of µ∆ due to the constraints in SD∆B ,
those in (A∆)c \SD∆B , or some combination of the two? The
safest approach would be to say that this evidence can only increase
the belief that some set ∆′ ⊇ ∆B which covers all of (A∆)c is
a diagnosis (∆′ = {1, 2, 3, 4, 5, 6} in the example). However, if
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|(A∆)c \SD∆B | � |SD∆B |, this would be a very conservative ap-
proach, in the sense that a set will never be called a diagnosis if it can-
not completely explain the observed behavior, and multiple compo-
nent failures would be returned more often than they should. In most
cases, designing models which reduce the size of (A∆)c \SD∆B

will increase the precision of the diagnosis and so we make the as-
sumption that most modelers will aim for this characteristic and as a
result assume that |(A∆)c \SD∆B | is small compared to |SD∆B |.

Under the assumption that the majority of the constraints which
were not considered during the computation of µ∆ belong to ∆B ,
this evidence increases the belief that ∆B is a diagnosis. However,
because every superset of a diagnosis is a diagnosis, this evidence
also increases the belief that all of the supersets of ∆B are diagnoses.
Therefore for each set ∆P ⊇ ∆B the probability that the constraints
in SD∆P can account for the lack of conflict during the computation

of µ∆ is:

P (∆P is a diagnosis | A∆ ∧ µ∆ = 1) (4)

=
|(A∆)c

T
SD∆P |

|(A∆)c|

Assuming that faults are equally likely to be anywhere in (A∆)c,
the probability that they are in SD∆P is given by Equation 4, as the
proportion of (A∆)c that is covered by SD∆P . If all of, or more
than, (A∆)c is covered, then the probability that the system will be
consistent is 100%, by the assumption that µ∆ = 1.0.

This probability is computed assuming µ∆ = 1, when in fact it
may well be less than one. The consistency measure describes our
ability to measure how consistent the observations are with the con-
straints A∆. The real components ∆ are either consistent or incon-
sistent with observations and it is only the inability of the model and
sensors to perfectly determine which one is true that causes µ∆ < 1.
Therefore the consistency measure can be interpreted as a probabil-
ity that the real artifact is consistent or inconsistent and we assume a
mapping PC(µ∆) to [0, 1] defined by the modeler which represents
how probable it is that the real artifact is consistent given µ∆.

For each ∆P ⊇ ∆B we define a belief distribution BD,∆P (x;∆)
over the states {true, false, unknown} which represents the belief
that ∆P is a diagnosis given only the information from calling TP(·)
on ∆. The distribution is defined as follows:

BD,∆P (true;∆)

= P (∆P is a diagnosis | A∆ ∧ µ∆ = 1) · PC(µ∆)

BD,∆P (false;∆)

= (1 − P (∆P is a diagnosis | A∆ ∧ µ∆ = 1)) · PC(µ∆)

BD,∆P (unknown; ∆)

= 1 − PC(µ∆) (5)

Equation 5 takes the probability that a set is a diagnosis given A∆ and
that the measure is consistent, and then scales this probability by the
certainty that the call to TP(·) returned consistent. This distribution
is now combined with the current beliefs using Bayes’ Theorem and
the Total Probability Theorem.



Let F be the set {true, false, unknown}. Then the current be-
lief distribution, BD,∆P

(x), is updated by the evidence BD,∆P (x;∆)
to the new belief distribution B+

D,∆P
(x):

B+
D,∆P

(x) = (6)
X

f1,f2∈F

P (B+
D,∆P

(x) | BD,∆P
(f1) = 1 ∧

BD,∆P (f2;∆) = 1) · BD,∆P
(f1) · BD,∆P (f2;∆)

The probabilities P (B+
D,∆P

(x) | BD,∆P
(f1) = 1 ∧

BD,∆P (f2;∆) = 1) in Equation 6 can be represented by a condi-
tional probability table as shown in Table 1. The first two columns
represent f1 and f2 respectively and the last three represent x. The
values in Table 1 are chosen such that if the current belief is very
certain, as defined by the weight of the unknown state, then a new
distribution which is very uncertain, will not strongly influence the
belief, and vice versa. If the new evidence agrees with our current
belief, then this belief is strengthened, and if it does not then it is
weakened.

Table 1. Conditional Probability Table used to update BD,∆P
(x) given

BD,∆P
(x;∆)

P (B+
D,∆P

(x) | BD,∆P
(f1) = 1 ∧ BD,∆P

(f2;∆) = 1)

f1 f2
x

True False Unknown

True True 1.0 0.0 0.0
True False 0.5 0.5 0.0
True Unknown 1.0 0.0 0.0
False True 0.5 0.5 0.0
False False 0.0 1.0 0.0
False Unknown 0.0 1.0 0.0

Unknown True 1.0 0.0 0.0
Unknown False 0.0 1.0 0.0
Unknown Unknown 0.0 0.0 1.0

2.1.2 Update belief in inverse conflict

To update the beliefs BIC,∆(x), much the same procedure is followed
as in the case where the system is consistent, only now the evidence
suggests that the considered sets are inverse conflicts rather than di-
agnoses. As before, the first step is to locate the set ∆B , but now it
is the base set of (A∆)c (∆B = {7, 8, 9} in Figure 2). (∆B)c is the
largest set of components such that all of (SD∆B )c was used to com-
pute µ∆ and we again assume that |(SD∆B )c| � |A∆ \ (SD∆B )c|.
The evidence provided by µ∆ suggests that some of the constraints in
(SD∆B )c have been violated. Since adding constraints will not take
away the fact that some of these have not been met, every superset
of (SD∆B )c also contains broken constraints indicating that every
subset, ∆C , of ∆B is an inverse conflict. As before, the probability
that the set ∆C is an inverse conflict is:

P (∆C is an inverse conflict | A∆ ∧ µ∆ = 0)

=
|A∆

T
(SD∆C )c|
|A∆|

We assume a mapping PIC(µ∆) ∈ [0, 1], defined by the modeler,
which represents the probability that the real artifact is inconsistent
given µ∆. This mapping is then used to compute a distribution,
BIC,∆C (x;∆), over the states {true, false, unknown} which
represents the belief that the set ∆C is an inverse conflict given only

the information from calling TP(·) on ∆.

BIC,∆C (true;∆)

= P (∆C is an inverse conflict | A∆ ∧ µ∆ = 0) · PIC(µ∆)

BIC,∆C (false;∆)

= (1 − P (∆C is an inverse conflict | A∆ ∧ µ∆ = 0))

·PIC(µ∆)

BIC,∆C (unknown; ∆)

= 1 −PIC(µ∆)

This belief distribution is incorporated into our current belief
BIC,∆C

(x) in the same manner as discussed in the previous sec-
tion. The total probability theorem is again used as in Equation 6
to compute the new belief distribution B+

IC,∆C
(x) from the old one

BIC,∆C
(x) and the new evidence BIC,∆C (x;∆) using the conditional

probabilities in Table 1.
The new evidence provided by the call to TP((SD∆)c, OBS) has

now been incorporated into the belief distributions BIC,∆(x) and
BD,∆(x) for all subsets ∆ of COMPS. The next section looks at
how to use these belief distributions to choose the next component to
pass to TP(·).

2.2 Next best set

The order in which the subsets of COMPS are tested is crucial to
the speed at which the algorithm will find the diagnoses. There are,
however, several choices which will produce varying results and so
the choice depends largely on knowledge of the system. The follow-
ing properties can be taken into account when developing a heuristic
search strategy:

• Failure rates: choose sets of components with a history of failure
• Expected knowledge gain: choose sets of components which are

expected to reduce the unknown portions of the belief distributions
the most. (i.e. BD,∆(unknown) and BIC,∆(unknown)). See [5]
for a derivation.

• Current belief: choose the supersets and subsets of the set cur-
rently most likely to be a minimal diagnosis to isolate a single
diagnosis as quickly as possible.

• Principle of Parsimony: choose the sets with the fewest compo-
nents as they are more likely to be diagnoses.

• Execution time: choose the sets with the most components, as
TP(·) will likely take less time to evaluate systems with fewer con-
straints.

2.3 Stop conditions

The certainties in the potential diagnoses returned by the PGDE in-
crease monotonically with each iteration [5]. Thus, the maximum
certainties are achieved when all subsets of P (COMPS) have been
passed to TP(·) for testing. Since this is likely to take too long, a de-
cision needs to be made about when to stop. As it is when choosing
a search algorithm, this decision is mostly heuristic and entirely up
to the modeler. Some examples of criteria are listed here:

• A time limit has been reached
• The sum of all of the subsets of P (COMPS)’s knowledge has

risen above some limit
• The knowledge gained per call to TP(·) has fallen below some

level



• A percentage of the subsets of COMPS have been tested
• At least one minimal diagnosis has been found with some mini-

mum certainty

2.4 Most likely minimal diagnoses

A minimal diagnosis is a diagnosis such that no proper subset of it is
also a diagnosis. They are of interest as the Principle of Parsimony
[7] states that the diagnoses with the fewest components are the most
likely. The minimal diagnoses will have the properties that all of their
supersets will be diagnoses and all of their proper subsets will be
inverse conflicts. The goal is to determine which sets are most likely
to have these properties given the belief distributions BIC,∆(x) and
BD,∆(x).

2.4.1 Combining BD(x) and BIC(x)

The two belief distributions BD(x) and BIC(x) have been kept sepa-
rate, as they represent different types of information. In order to com-
pute the most likely minimal diagnoses, all of the information needs
to be taken into account and as a result they need to be combined.
This is done using the conditional probability table shown as Ta-
ble 2 to compute the combined belief distribution D(x). D∆(true)
represents the probability that ∆ is a diagnosis, while D∆(false)
represents the probability that it is not. Note that this is different
from BD,∆(false) as BD,∆(false) represents the belief that the ev-
idence does not show that ∆ is a diagnosis, whereas D∆(false)
represents the belief that the evidence does show that ∆ is not a di-
agnosis. D∆(unknown), represents the belief that we don’t know
what the evidence shows. The values in Table 2 are chosen such
that if BD,∆(x) and BIC,∆(x) agree that ∆ is a diagnosis and not
a inverse conflict then D∆(true) = 1. However, if they do not
agree, then we are confused about what the evidence has shown and
D∆(unknown) = 1. If neither BD,∆(x) nor BIC,∆(x) have any in-
formation then D∆(unknown) = 1.

Table 2. Conditional Probability Table used to combine BD(x) and
BIC(x) into D(x)

P (D∆(x) | BD,∆(f1) = 1 ∧ BIC,∆(f2) = 1)

f1 f2
x

True False Unknown

True True 0.0 0.0 1.0
True False 1.0 0.0 0.0
True Unknown 1.0 0.0 0.0
False True 0.0 1.0 0.0
False False 0.0 0.0 1.0
False Unknown 0.0 0.0 1.0

Unknown True 0.0 1.0 0.0
Unknown False 0.0 0.0 1.0
Unknown Unknown 0.0 0.0 1.0

2.4.2 Finding the minimal diagnoses

Definition 7 below, defines a distribution DM∆
(x) for each ∆ ∈

P (COMPS) which represents the belief that the set ∆ has the prop-
erties of a minimal diagnosis.

Definition 7 Let ∆ ∈ P (COMPS).
Let ∆Ci ⊂ ∆, i = 1, . . . , m, ∀i �= j ∆Ci �= ∆Cj

Let ∆Pi ⊃ ∆, i = 1, . . . , n, ∀i �= j ∆Pi �= ∆Pj .
Define the distribution ¬D(x) such that:

¬D(true) = D(false)

¬D(false) = D(true)

¬D(unknown) = D(unknown)

Define the operator � such that A�B equals the result of combining
A and B using the conditional probability table 3, then:

DM∆(x) = D∆(x)

� D∆P1
(x) � ... � D∆Pn

(x)

� ¬D∆C1
(x) � ... � ¬D∆Cm

(x)

Table 3. Conditional Probability Table used to compute C = A � B

P (C(x) | A(f1) = 1 ∧ B(f2) = 1)

f1 f2
x

True False Unknown

True True 1.0 0.0 0.0
True False 0.0 1.0 0.0
True Unknown 1.0 0.0 0.0
False True 0.0 1.0 0.0
False False 0.0 1.0 0.0
False Unknown 0.0 1.0 0.0

Unknown True 0.0 0.0 1.0
Unknown False 0.0 0.0 1.0
Unknown Unknown 0.0 0.0 1.0

The result is that DM∆
(x) is true for sets which have all proper-

ties that a minimal diagnosis should have and false or unknown for
all other sets. Because DM(x) is a continuous distribution over the
states {true, false, unknown}, a function is needed which allows
the possible diagnoses to be returned to the diagnostician in order
from most likely to least, along with a measure of the algorithm’s
certainty in the result. The following sorting function is suggested as
a good balance between certainty in the result and the belief that the
set is a minimal diagnosis:

DM∆(true) · �1 − DM∆(unknown)
�

(8)

Minimal diagnoses can now be returned to the diagnostician in or-
der from the one with the largest value for Equation 8 to the small-
est. The probability that a set is a minimal diagnosis is equal to
DM∆

(true)/(1−DM∆
(unknown)) and the certainty in the result

defined by 1 − DM∆
(unknown).

2.5 Complexity considerations

Calling TP(·) on every subset of COMPS is an exponential under-
taking. If the PGDE is run so that the maximum certainty is achieved
in the result, every subset of COMPS would need to be tested and
the algorithm would indeed be exponential in time. However, a trade-
off can be made between certainty and execution time by using some
of the criteria listed in Section 2.3.

Maintaining the distributions BD(x) and BIC(x) is exponential in
space if the entire set P (COMPS) is considered. However, for ex-
ample, we assume that the likelihood of 40 components failing simul-
taneously in a system of 50 components is negligible. Therefore, the
algorithm does not require that the distributions BD(x) and BIC(x)



cover all of P (COMPS), but only up to the level where a reason-
able number of simultaneous faults are considered.

As seen in Figure 1 there are four steps to the algorithm which are
performed in an iterative fashion: choose next set, call TP(·), interpret
the results and update the beliefs BD(x) and BIC(x). This algorithm
is primarily intended for the diagnosis of complex dynamic systems
for which TP(·) will require a period of simulation in order to test for
consistency and so it is assumed that this call will take a significant
period of time. Computing the next set to test can be a function of
P (COMPS), but it is assumed that the TP(·) will take the majority
of the time. Both the interpretation of the results and the updating
of the belief states involve only the supersets and/or subsets of the
set under test, which is a relatively small number when compared to
the size of P (COMPS). The final two steps of the algorithm do
involve the entire set P (COMPS), but as they are not part of the
iterative procedure, their effect on the speed of the algorithm is not
significant.

3 DIAGNOSIS OF A HYDRAULIC CIRCUIT

Figure 4 shows a schematic for a single degree of freedom hydraulic
manipulator used to test the algorithm presented in this paper. The
model is made of eight components as seen in Figure 3: the head-side
port of the main valve, the rod-side port of the main valve, the cylin-
der, the manipulator, the rod-side anti-cavitation valve, the head-side
anti-cavitation valve, the exit filter and the check valve. The behavior
of the components is described by sets of hybrid dynamic equations
which can be found in [6] and [5].

The function TP((SD∆)c, OBS) was implemented using a mod-
ified version of Hybrid Concurrent Constraint programming, or hcc
[3]. The set of hybrid dynamic equations (SD∆)c is passed to the
modified hcc, along with OBS which are the time sequences of the
sensor values. The system made of (SD∆)c and OBS will likely
be over-constrained and the resulting simulation will contain several
discrepancies between measured and simulated values. These resid-
uals (simulated outputs less measured) will also be time sequences
which can be compared to a set of residuals recorded during nor-
mal operation to generate a consistency measure, µ∆. During the
experiments, the system was setup in a position control loop with
a sinusoidal input signal at a frequency of 0.25Hz. A period of six
seconds is recorded, encompassing a single extension and retrac-
tion of the manipulator arm. Six experiments were run, each with
the arm under a different failure condition which is common in a
system such as this [6, 9]. The failures were caused by manual ad-
justment of the three valves and one friction plate shown in Figure
4. The faults are assumed to be permanent and to have occurred
before the measurements are taken. At each iteration the set to be
passed to TP(·) is selected to maximize the expected decrease in
U =

P
∆∈P (COMPS) BIC,∆(unknown) + BD,∆(unknown) and

the algorithm is stopped when the change in U is less than 1% for
more than 10 iterations.

The six failures and the results of fault isolation using the PGDE
are as follows. On average, 99.90% of the time taken is spent in
simulation during the calls to TP(·), while only 0.10% is required for
the PGDE calculations. For details refer to [5].

• Leak in the hose connecting the valve to the head-side of the cylin-
der.

This failure was correctly isolated in all 10 sample runs taking an
average of 54.5 seconds.

• Leak in the hose connecting the valve to the rod-side of the cylin-
der.
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Figure 3. Component model of the hydraulic test bench

This failure was correctly isolated in all 10 sample runs taking an
average of 53.1 seconds.

• Partially clogged return filter.

For two of the five tests run, the filter was returned as the most
likely diagnosis, with the rod-side port of the main valve and the
rod-side anti-cavitation valves together forming a close second.
In the remaining three tests the filter was not returned as a diag-
nosis by itself, but five diagnoses containing the filter and another
component were returned as all being very likely. The average cal-
culation time was 167 seconds.

• Increased friction in manipulator bearing.

For two of the five tests run, the manipulator was returned as the
only likely diagnosis with very high certainty (96%, 100%). In
two more of the tests it was returned as one-half of a double fault
and in the fifth test the algorithm did not get the correct solution.
These calculations took on average 82 seconds to complete.

• Leaks in both hoses connecting the valve to the cylinder.

In all five tests the four double faults: {rod-side anti-cavitation
valve, head-side anti-cavitation valve}, {rod-side anti-cavitation
valve, head-side port}, {head-side anti-cavitation valve, rod-side
port} and {head-side port, rod-side port} were returned as being
equally likely with a high degree of certainty (∼ 85%). For this
situation, these are the correct diagnoses as one component on the
rod-side and one on the head-side that can account for the leaks
is needed to explain this failure. The average calculation time was
140 seconds.

• Partially clogged return filter and a leak in the head-side hose.

In all five tests the algorithm returned the head-side anti-cavitation
valve or port as the only explanation. The filter causes a much
smaller effect on the system and so it is difficult to recognize it
as faulty when other components are misbehaving. The average
calculation time was 61 seconds.
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Figure 4. Schematic of experimental test bench

4 CONCLUSIONS

This paper has presented a novel approach to consistency-based di-
agnosis which allows for the use of any modelling language. The use
of continuous distributions representing the belief that each set of
components is a diagnosis allows the determination of consistency
or inconsistency to be delayed until supporting evidence has been
collected and for noise in the simulator, TP(·), to be handled. The
demonstration of this algorithm on a non-trivial physical test bench
shows that it can be applied effectively to isolate realistic faults in
real artifacts.
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Ï�Ô�Æ<É¬ÊHÊ�Ð�Ï^È�×<Ê�ÆaÈRÒ�Ä.Ë4ÇÛ>à4È�É�Õ Ï	Ä�Ü�Ça×�É�Ç�Ê�Ë\ÒÑÊÖÑÐ�ÇDÊ�ÆÆÇÓ4È<Ê�Ð�Û Ç�Þ
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ÂNÃ/Ä)Å'Ã9Æ�ÇlÈpÅ0ÄUÆÉÃ9ÊlÄ;ËpÌ Í-ÇlÅ)ÎZÏxÐlÑSÒ�ÎZÓxÑSÔ(Õ9Ö¿ÒB×�Ø ÙBÐdÍ9Ú
Û&Ü�ÊlÃ-ÝZÅ�ÇlÈ
Í-Ç�Í9Þ�ß
à Ç�ÊBÍ9áxÇlâ Ã/Ú à Ã/Þ�ÇBÍ9â ÚpÅPÛ^Þ ã[ÇlÈpÅ0â Ê¢Í9ÜpÜpÌ â áPÍ-Çlâ Ã/ÚäÜ�ÊlÅ à ÅxÊlÝZÅ�â Ä)ÜRÃ9Ê�ÇBÍ9Ú ÇÜ�ÊlÃ/ÜRÅxÊ�Çlâ Å à0å âSæ Å/æ_Þ ã^ÊlÅPÍ à Ã/Úpâ Úpç^Í-Ç&ÇlÈpÅCÍ9Þ à Ç�ÊBÍ9áxÇ�Ì Å0ÝZÅ0Ì}è_Å.Û�Ã/Úé ÇÃ-ÝZÅxÊlÌ Ã Ã/ê�Í9Ú ã�Û�â Í9ç/ÚpÃ à Å à|ë�ì í9î(å�ì ïPð9îÉñ æò Ä)Ã/ÚpçóÇlÈpÅôÊlËpÌ Å à Ü�ÊlÃ/ÜRÃ à ÅPÛõÞ ãõö�Ã/÷0ÅxÇlâ(øá å ÊlËpÌ Å ïUëSù Åxú
Ú�ßÄ)Å0Ú Çxû-á0Ã/Ì Ì Í9Ü à Å&Ã9Æ�Ý/Í9Ì ËpÅ àBñ Í9â Ä à ÅxüpÍ9áxÇlÌ ãýÍ-Ç)Í9Þ à Ç�ÊBÍ9áxÇlâ Úpç à ÅxÇ à Ã9ÆÝ/Í9Ì ËpÅ à Í-ÇCÇlÈpÅýÛ�ÅxÇBÍ9â Ì ÅPÛþÌ Å0ÝZÅ0Ì|â Ú ÇlÃ²Í à â Úpç/Ì ÅVÝ/Í9Ì ËpÅVÍ-Ç¿Í�Ä)Ã9ÊlÅÍ9Þ à Ç�ÊBÍ9áxÇ[Ì Å0ÝZÅ0ÌSæ;ÿ�Ã/Ä)Ü
Í-ÊlÅPÛKÇlÃ6Ã/Ë�ÊýÍ9ÜpÜ�ÊlÃZÍ9áBÈ å ÈpÃPè_Å0ÝZÅxÊ å ÞRÃ9ÇlÈö�Ã/÷0ÅxÇlâ(øá�Í9Ú
Û��nÊlÃ-Ý/Í9Ú£Í à�à ËpÄ)Å�ÇlÈ
Í-ÇnÇlÈpÅ_Í9Þ à Ç�ÊBÍ9áxÇlâ Ã/Ú£â à Û�Ã/ÚpÅ_Ä¢Í9Ú�ßË
Í9Ì Ì ã å Þ ãDÍ£ÈNËpÄ¢Í9Ú�êNÚpÃPè�Ì ÅPÛ�ç/ÅPÍ9ÞpÌ Å;Í9ÞRÃ/Ë�Ç}ÇlÈpÅ à ã à ÇlÅ0Ä�ÞRÅ0È
ÍPÝNâ Ã9Ê
Í9Ú
Û à Ç�ÊlËpáxÇlË�ÊlÅ/æ ö�Ã9ÊlÅ0Ã-ÝZÅxÊ å ÇlÈpÅxã|Ë à Å�ÇlÈpÅ�Í9Þ à Ç�ÊBÍ9áxÇ�Ä)ÃNÛ�Å0Ì à Ã/ÚpÌ ã|â ÚÃ9ÊBÛ�ÅxÊ$ÇlÃ}ÊlÅPÛ�Ëpá0Å_ÇlÈpÅ_á0Ã/Ä)ÜpË�ÇBÍ-Çlâ Ã/Ú
Í9ÌNá0Ã/Ä)ÜpÌ Åxü�â Çqã å ÞpË�Ç à Çlâ Ì Ì�ÊlÅxÇlË�ÊlÚÛ�ÅxÇBÍ9â Ì ÅPÛ�Ì Å0ÝZÅ0Ì�Û�â Í9ç/ÚpÃ à Å à æ
� Ú£Í}ÊlÅ0á0Å0Ú Ç$Ü
Í9ÜRÅxÊ ë�ì �PîÉñBå ÇlÈpÅdÍ9Ë�ÇlÈpÃ9Ê à â Ä)Ü�ÊlÃ-ÝZÅdö�Ã/÷0ÅxÇlâ(øá}Í9ÜpÜ�ÊlÃZÍ9áBÈ
à ÃDÇlÈ
Í-Ç|ÇlÈpÅ¢Èpâ ÅxÊBÍ-ÊláBÈ ã ëSà Çlâ Ì Ì_Ä¢Í9ÚNË
Í9Ì Ì ã¿Ü�ÊlÃ-ÝNâ Û�ÅPÛ ñ â à Í9Ë�ÇlÃ/Ä¢Í-Çlâ ßáPÍ9Ì Ì ãDÊlÅPÍ-Ê�ÊBÍ9Úpç/ÅPÛCÃ/ÚCÍ)áPÍ à Å;Þ ãDáPÍ à Å|Þ
Í à â à â Ú Ã9ÊBÛ�ÅxÊ'ÚpÃ9Ç�ÇlÃ)Èpâ Û�ÅÍ9Ú ã�ÍPÝ/Í9â Ì Í9ÞpÌ Å�Ã/Þ à ÅxÊlÝ/Í-Çlâ Ã/Ú à Æ ÊlÃ/Ä ÇlÈpÅ"Í9Þ à Ç�ÊBÍ9áxÇ}Ì Å0ÝZÅ0Ì à æÂ�Í9áBÈpÅ0ÚNÞ
Í9áBÈpÅxÊ)Í9Ú
Û^Â Ç�ÊlË à�àDë�ì ï��/îÉñ È
ÍPÝZÅ�Û�Åxú
ÚpÅPÛVÍ ÊlÅ0Ì Í-Çlâ Ã/Ú
Í9Ì ßÞ
Í à ÅPÛ¢Í9ÜpÜ�ÊlÃZÍ9áBÈ ë âSæ Å/æ ÇlÈpÅ}ÞRÅ0È
ÍPÝNâ Ã9ÊdÄ)ÃNÛ�Å0Ì
â à ç/â ÝZÅ0Ú&Í à Í"ÊlÅ0Ì Í-Çlâ Ã/Ú
� Í9Ä)Ã/Úpç.ÇlËpÜpÌ Å à Ã9Æ�Ý/Í-Êlâ Í9ÞpÌ Å àBñ ÆÉÃ9ÊDÍ9Ë�ÇlÃ/Ä¢Í-ÇlÅPÛ�Í9Þ à Ç�ÊBÍ9áxÇlâ Ã/Ú²Ã9ÆÝ/Í-Êlâ Í9ÞpÌ Å à Û�Ã/Ä¢Í9â Ú à Í9Ú
Û à ÈpÃPè_ÅPÛCâ Ç à Ë à ÅxÆÉËpÌ ÚpÅ à�à â Ú.ÞpËpâ Ì Û�â Úpç à ã à ßÇlÅ0Ä Ä)ÃNÛ�Å0Ì à Þ ã[á0Ã/Ä)ÜRÃ à â Úpç à ËpÞ�ß à ã à ÇlÅ0Ä¾Ä)ÃNÛ�Å0Ì à Í9Ú
Û[ÇlÈpÅ0Ú^Í9Þ�ß
à Ç�ÊBÍ9áxÇlâ Úpç.Í0èdÍ0ãýÝ/Í9Ì ËpÅ à Û�ÅxÇBÍ9â Ì à ÇlÈ
Í-Ç£Í-ÊlÅ¢ÚpÃ9Ç£Ã9Æ}â Ú ÇlÅxÊlÅ à Ç;â ÚýÇlÈpÅÊlÅ à ËpÌ Çlâ Úpç�Ä)ÃNÛ�Å0ÌSæ � ÚCá0Ã/Ú Ç�ÊBÍ à Ç"ÇlÃ�Ã/Ë�Ê|Í9ÜpÜ�ÊlÃZÍ9áBÈ å ÇlÈpÅ0â Ê'è_Ã9Êlê.Í à ß
à ËpÄ)Å à ÇlÈ
Í-ÇdÍ;Û�Å à â ÊlÅPÛ&Í9Þ à Ç�ÊBÍ9áxÇlâ Ã/Ú��
	 �
��'ÞRÅ}ç/â ÝZÅ0Ú�Í à Ü
Í-Ê�ÇdÃ9Æ�ÇlÈpÅÍ9Þ à Ç�ÊBÍ9áxÇlâ Ã/Ú¿Ü�ÊlÃ/ÞpÌ Å0Ä å ÇlÃ/ç/ÅxÇlÈpÅxÊ"è�â ÇlÈ.ÇlÈpÅ|ÊlÅ à Ç�Êlâ áxÇlâ Ã/Ú à Ã/Ú¿ÍPÝ/Í9â Ì ßÍ9ÞpÌ Å¿Ã/Þ à ÅxÊlÝ/Í-Çlâ Ã/Ú à â Ú�ÆÉÃ9ÊlÄ¢Í-Çlâ Ã/Ú��������DÇlÈ
Í-Ç Í9ÜpÜRÅPÍ-ÊCÍ9Ì à Ã^â Ú6Ã/Ë�ÊÍ9ÜpÜ�ÊlÃZÍ9áBÈæ
� ÊBÍPÝ��Åxß�öDÍ à�à Ë�ã��Å à0å��$à á0Ã/ÞRÅxÇ$Í9Ú
Û|ö�â Ì ÚpÅ ë�ì ï��-îÉñ Û�Åxú
ÚpÅ�Í�ÚpÃ9Çlâ Ã/Ú�Ã9ÆÔÉÖ��9ÔÉÐxÓxÒBÔ! ;ÔÉÖRÎZÏxÔSØ ÔÉÑ#"�Í9Ä)Ã/Úpç)ÆSÍ9ËpÌ ÇlÅPÛ á0Ã/Ä)ÜRÃ/ÚpÅ0Ú Ç à è�Èpâ áBÈCâ à'à Ã/Ä)Åxßè�È
Í-Ç à â Ä)â Ì Í-Ê�ÇlÃDÃ/Ë�Ê�ÚpÃ9Çlâ Ã/Ú¿Ã9Æ'ÔÉÖ��9ÔÉÐlÑSÔÉÖ%$9×NÔÉÐ�&�ÎZÏxÔSØ ÔÉÑ#")Í9Ä)Ã/Úpç�ÞRÅxßÈ
ÍPÝNâ Ã9ÊBÍ9Ì�Ä)ÃNÛ�Å à æ � ÈpÅ0â Ê)è_Ã9Êlê å è�Èpâ áBÈ^â à Þ
Í à ÅPÛVÃ/Ú�Í ÊlÅ0Ì Í-Çlâ Ã/Ú
Í9ÌÄ)ÃNÛ�Å0Ì�Ã9Æ$ÇlÈpÅ à ã à ÇlÅ0Ä å Í9â Ä à Í-Ç à Ëpç/ç/Å à Çlâ Úpç¢ÇlÈpÅ|Í/ÛpÛ�â Çlâ Ã/Ú Ã9Æ à Å0Ú�ß

à Ã9Ê à â Ú�Ã9ÊBÛ�ÅxÊ�ÇlÃ£Ä¢Í9êZÅ'Í9Ì ÌÇlÈpÅ'ÜRÃ à�à â ÞpÌ Å"ÆSÍ9ËpÌ Ç à Û�â à áxÊlâ Ä)â Ú
Í9ÞpÌ Å/æ
� Ú[ÇlÈpâ à Ü
Í9ÜRÅxÊ;è_Å�È
ÍPÝZÅ à ÈpÃPè�ÚVÈpÃPè�Í9Þ à Ç�ÊBÍ9áxÇlâ Ã/Ú�Ã9Æ�Ý/Í-Êlâ Í9ÞpÌ ÅÛ�Ã/Ä¢Í9â Ú à â Ú&Ü�ÊlÃ/ÜRÃ à â Çlâ Ã/Ú
Í9Ì å�' Ë
Í9Ì â ÇBÍ-Çlâ ÝZÅ à ã à ÇlÅ0Ä�Ä)ÃNÛ�Å0Ì à0å áPÍ9Ú à â ç9ßÚpâ ú
áPÍ9Ú ÇlÌ ã¢ÊlÅPÛ�Ëpá0Å�ÇlÈpÅ"ÍPÝZÅxÊBÍ9ç/Å"ÚNËpÄ;ÞRÅxÊdÃ9Æ$Í/Û�Ä)â à�à â ÞpÌ Å�Û�â Í9ç/ÚpÃ à Å àè�ÈpÅ0Ú�Ã/ÚpÌ ãDÍ à ËpÞ à ÅxÇ}Ã9ÆnÃ/Þ à ÅxÊlÝ/Í9ÞpÌ Å à â à ÍPÝ/Í9â Ì Í9ÞpÌ Å/æ

� Èpâ à â à Ü
Í-Ê�Çlâ á0ËpÌ Í-ÊlÌ ã Ë à ÅxÆÉËpÌnâ Ú Ã/Ú�ß�Ì â ÚpÅ;Û�â Í9ç/ÚpÃ à â à0å è�ÈpÅxÊlÅ|Ì â Ä)â ÇBÍ-ßÇlâ Ã/Ú à Ã/Ú^ÇlÈpÅDÚNËpÄ;ÞRÅxÊ)Í9Ú
Û
û-Ã9Ê&ç9ÊBÍ9ÚNËpÌ Í-Êlâ Çqã�Ã9Æ"Ã/Þ à ÅxÊlÝ/Í9ÞpÌ Å à áPÍ9ÚÌ â êZÅ0Ì ãDÍ9ÜpÜpÌ ã æ
� ÈpÅ'Í9Ì ç/Ã9Êlâ ÇlÈpÄUÜ�ÊlÅ à Å0Ú ÇlÅPÛ¢â Ú)ÇlÈpÅ�Ü
Í9ÜRÅxÊdÈ
Í à Í�Ì Í-Êlç/ÅxÊ}Í9ÜpÜpÌ â áPÍ9Þpâ Ì ßâ Çqã[ÇlÈ
Í9ÚVÛ�â à á0Ë à�à ÅPÛ à ÃCÆSÍ-ÊPæ�(pÃ9Ê)ÅxüpÍ9Ä)ÜpÌ Å å â Ç)áPÍ9ÚVÞRÅ&Ë à ÅPÛVÍ à Í
à ËpÜpÜRÃ9Ê�Ç�ÇlÃ Ã/Ì�ÆÉÃ9Ê;Û�â Í9ç/ÚpÃ à Í9Þpâ Ì â ÇqãVÛ�Ë�Êlâ Úpç à ã à ÇlÅ0Ä Ä)ÃNÛ�Å0Ì â Úpç ë âSæ Å/æÇlÈpÅ|Í9Ì ç/Ã9Êlâ ÇlÈpÄ áPÍ9ÚCÜRÃ/â Ú Ç'Ã/Ë�Ç'Û�â à áxÊlÅ0Ü
Í9Úpá0â Å à ÞRÅxÇqè_Å0Å0Ú ÇlÈpÅ�ç9ÊBÍ9Ú�ßËpÌ Í-Êlâ ÇqãäÃ9Æ"ÇlÈpÅ Ä)ÃNÛ�Å0Ì�ÞRÅ0â ÚpçVÛ�Åxú
ÚpÅPÛ�Í9Ú
Û�ÇlÈ
Í-Ç&Ã9Æ�ÇlÈpÅ à ã à ÇlÅ0ÄÃ/Þ à ÅxÊlÝ/Í9ÞpÌ Å àBñ æ
� ÈpÅxÊlÅ}Í-ÊlÅ�Ä¢Í9Ú ã;Û�â ÊlÅ0áxÇlâ Ã/Ú à è_Å}Í-ÊlÅ�á0Ã/Ú à â Û�ÅxÊlâ Úpç"ÆÉÃ9Ê_ÅxüNÇlÅ0Ú
Û�â ÚpçÃ/Ë�Ê�è_Ã9ÊlêRæ � ÈpÅ"á0Ë�Ê�ÊlÅ0Ú Ç}ÝZÅxÊ à â Ã/ÚDÃ9ÆnÇlÈpÅ�Í9Ì ç/Ã9Êlâ ÇlÈpÄõÍ à�à ËpÄ)Å à ÇlÈ
Í-Çâ Ú¿ÇlÈpÅ)Û�Å0ÝNâ á0Å à Ç�ÊlËpáxÇlË�ÊlÅ)ÚpÃNÛ�Å à Í-ÊlÅ)á0Ã/ÚpÚpÅ0áxÇlÅPÛ¿Þ ã¿Í-Ç|Ä)Ã à Ç�Ã/ÚpÅÛ�â ÊlÅ0áxÇlÅPÛ Ü
Í-ÇlÈ å è�Èpâ Ì Å;ÊlÅ0Ü�ÊlÅ à Å0Ú ÇBÍ-Çlâ Ã/ÚCÃ9Æ à Ã/Ä)Å à ã à ÇlÅ0Ä à Ã9Æ�Ü�ÊBÍ9áxßÇlâ áPÍ9Ì�â Ú ÇlÅxÊlÅ à Ç}Û�Ã Å à ÚpÃ9Ç�Ã/ÞRÅxã&ÇlÃ;ÇlÈpâ à ÊlÅ à Ç�Êlâ áxÇlâ Ã/Úæ

) Å�Í9Ì à Ã.á0Ã/ËpÌ ÛýÅxü�ÜpÌ Ã9ÊlÅ&ÈpÃPè Ã/Ë�Ê)Í9Ë�ÇlÃ/Ä¢Í-Çlâ á�Í9Þ à Ç�ÊBÍ9áxÇlâ Ã/ÚVÇlÅ0áBÈ�ßÚpâ ' ËpÅ à áPÍ9Ú^ÞRÅ�ÅxüNÇlÅ0Ú
Û�ÅPÛýâ Ú^Ã9ÊBÛ�ÅxÊ£ÇlÃ.Ä)ÅxÊlç/Å&ÇlÃ/ç/ÅxÇlÈpÅxÊ)á0Ã/Ä)ÜRÃ9ßÚpÅ0Ú Ç à è�ÈpÃ à ÅDá0Ã/Ú Ç�Êlâ ÞpË�Çlâ Ã/Ú à ÇlÃ.ÇlÈpÅDÍPÝ/Í9â Ì Í9ÞpÌ ÅDÃ/Þ à ÅxÊlÝ/Í-Çlâ Ã/Ú à Í-ÊlÅâ Ú
Û�â à áxÊlâ Ä)â Ú
Í9ÞpÌ Å ë âSæ Å/ænâ Ú Ç�ÊlÃNÛ�Ëpá0â Úpç�ÇlÈpÅ)ÚpÃ9Çlâ Ã/Ú[Ã9Æ�â Ú
Û�â à Çlâ Úpç/Ëpâ à È�ßÍ9ÞpÌ Å"á0Ã/Ä)ÜRÃ/ÚpÅ0Ú Ç àBñ æ
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Abstract. When designing model-based fault-diagnosis systems,
the use ofconsistency relations(also called e.g.parity relations) is
a common choice. Different subsets are sensitive to different subsets
of faults, and thereby isolation can be achieved. This paper presents
an algorithm for finding a small set of submodels that can be used to
derive consistency relations with highest possible diagnosis capabil-
ity. The algorithm handles differential-algebraic models and is based
on graph theoretical reasoning about the structure of the model. An
important step, towards finding these submodels and therefore also
towards finding consistency relations, is to find allminimal struc-
turally singular (MSS) sets of equations. These sets characterize the
fault diagnosability. The algorithm is applied to a large nonlinear in-
dustrial example, a part of a paper plant. In spite of the complexity of
this process, a small set of consistency relations with high diagnosis
capability is successfully derived.

1 Introduction

When designing model-based fault-diagnosis systems, using the
principle of consistency based diagnosis [5, 11, 6], a crucial step is
the conflict recognition. As shown in [3], conflict recognition can be
achieved by using pre-computed consistency relations (also called
e.g.analytical redundancy relationsor parity relations). With prop-
erly chosen consistency relations, different subsets of consistency re-
lations are sensitive to different subsets of faults. In this way isolation
between different faults can be achieved.

The systems considered in this paper are assumed to be modeled
by a set of nonlinear and linear differential-algebraic equations. To
find consistency relations by directly manipulating these equations is
a computationally complex task, especially for large and nonlinear
systems. To reduce the computational complexity of deriving consis-
tency relations, this paper proposes a two-step approach. In the first
step, the system is analyzed structurally to find overdeterminedsub-
models. Each of these submodels are then in the second step trans-
formed to consistency relations. The benefit with this two-step ap-
proach is that the submodels obtained are typically much smaller
than the whole model, and therefore the computational complexity
of deriving consistency relations from each submodel is substantially
lower compared to directly manipulating the whole model.

The main contribution and the focus of the paper is a structural al-
gorithm for finding these submodels. Instead of directly manipulating
the equations themselves, the proposed algorithm only deals with the
structural information contained in the model, i.e. which variables
that appear in each equation. This structural information is collected

in a structural model. In addition to finding all submodels that can
be used to derive consistency relations, the algorithm also selects a
small set of submodels that corresponds to consistency relations with
the highest possible diagnosis capability.

In industry, design of diagnosis systems can be very time con-
suming if done manually. Therefore it is important that methods for
diagnosis-system design are as systematic and automatic as possible.
The algorithm presented here is fully automatic and only needs as
input a structural model of the system. This structural model can in
turn easily be derived from for example simulation models.

Structural approaches have also been studied in other works deal-
ing with fault diagnosis. In [10] a structural approach is investi-
gated as an alternative to dependency-recording engines in consis-
tency based diagnosis. Furthermore a structural approach is used in
the study of supervision ability in [2] and an extension to this work
considering sensor placement is found in [12].

In Sections 2 and 3, structural models and their usefulness in fault
diagnosis are discussed. Then in Section 4, a complete description of
the algorithm is given. The algorithm is then in Section 5 applied to
a large nonlinear industrial process, a part of a paper plant. In spite
of the complexity of this process, a small set of consistency relations
with high diagnosis capability is successfully derived.

2 Structural models

The behavior of a system is described with a model. Usually the
model is a set of equations. A structural model [2] contains only the
information of which variables that are contained in each equation.
Let Morig denote the structural model obtained from the equations,
describing the system to be diagnosed. This structural model will
contain three different kinds of variables: known variablesY , e.g.
sensor signals and actuators; unknown variablesXu, for example
internal states of the system; and finally the faultsF . If faults are
decoupled then they will also be included inXu. The differentiated
and non-differentiated version of the same variable are considered to
be different variables. The time shifted variables in the time discrete
case are also considered to be separate variables.

A structural model can be represented by anincidence matrix[4,
1]. The rows correspond to equations and the columns to variables. A
cross in position(i, j) tells that variablej is included in equationi.

Example 1 A simple example is a pump, pumping water into the top
of a tank. The water flows out of the tank through a pipe connected
to the bottom of the tank. The known variables are the pump inputu,
the measured water level in the tankyh, and the measured flow from



the tankyf . One fault denotedfi is assumed to be associated with
each known variable. The actual flows to and from the tank are de-
notedFi, and the actual water level in the tank is denotedh. Without
knowing the exact physical equations describing the analytic model
the structural model can be set up as follows:

equation unknown fault known

F1F2 h ḣ fufyhfyf ḟf u yhyf

e1 X X X
e2 X X X
e3 X X X
e4 X X
e5 X X X
e6 X

(1)

Equatione1 describes the pump,e2 the conservation of volume in
the tank,e3 the water level measurement,e4 the flow from the tank
caused by the gravity,e5 the flow measurement, ande6 a fault model
for the flow measurement faultfyf .

3 Fault Diagnosis Using Structural Models

The task is to find submodels that can be used to form consistency
relations. To be able to draw a correct conclusion about the diagnos-
ability from the structural analysis, it is crucial that for each of these
submodels there is a consistency relation that validates all equations
included in the submodel. The common definition of consistency re-
lation does not ensure this. Therefore the new definition ofconsis-
tency relation for an equation setis introduced that explicitly points
out the submodel considered. Before consistency relation forE is
defined some notation is needed.

Let x andy denote the vectors of variables contained inXu and
Y respectively. ThenE(x,y) denote an equation set that depends on
variables contained inXu andY .

Definition 1 (Consistency Relation forE) A scalar equation
c(y) = 0 is aconsistency relation forthe equationsE(x,y) iff

∃xE(x,y) ⇔ c(y) = 0 (2)

and there is no proper subset ofE that has property (2).

Definition 1 differ from the common definition of consistency re-
lation in two ways, the left implication in (2) and that there is no
proper subset ofE that has property (2). Refer the latter as the min-
imality condition in Definition 1. The following example shows the
importance of the left implication in (2).

Example 2 Consider the modelE = {y1 = x, y2 = x, y3 = x}.
The equationy1−y2 = 0 is not a consistency relation forE, because
it is true even if e.g.y3 6= y1 = y2 and then it is impossible to find
a consistentx in E. Howevery1 − y2 = 0 is a consistency relation
for {y1 = x, y2 = x}.

The expressiony1 + y2 − 2y3 = 0 includesy3. The right im-
plication in (2) holds, but the opposite direction does not hold. The
conclusion is that also this expression is not a consistency relation
for E or any equation subset ofE.

However(y1 − y2)
2 + (y2 − y3)

2 = 0 is a consistency relation
for E.

The minimality condition in Definition 1 is important, because it
guarantees that any invalid equation can infer an inconsistency.

3.1 Basic Assumptions

Basic assumptions are needed to guarantee that the subsets found
only by analyzing structural properties are exactly those subsets that
can be used to form consistency relations. Before the basic assump-
tions are presented, some notation is needed. LetE be any set of
equations andX any set of variables. Then definevarX(E) = {x ∈
X|∃e ∈ E : e containsx} andequE(X) = {e ∈ E|∃x ∈ X : e
containsx}. Also, letvarX(e) andequE(x) be shorthand notations
for varX({e}) and equE({x}) respectively. Ifg is any equation,
function or variable, letg(i) denote thei:th time derivative ofg. Then
definevarX(E) = {undifferentiatedx|∃i(x(i) ∈ varX(E))}, e.g.
varXu∪Y ({y = ẋ}) = {y, x}. Finally, the number of elements in
any setE is denoted|E|.

The first assumption is introduced to ensure that the model be-
comes finitely differentiated in Section 4.1.

Assumption 1 The modelMorig has the property

∀E ⊆ Morig : |E| ≤ |varXu∪Y (E)|. (3)

The meaning of condition (3) is that each subset of equations include
more or equally many different variables, considering derivatives as
the same variable. If condition (1) is not fulfilled and there are no
redundant equations, the model would normally be inconsistent.

As mentioned earlier, the structural model contains less informa-
tion than the analytical model. The next assumption makes it possible
to draw conclusions about analytical properties from the structural
properties.

Assumption 2 There exists a consistency relationc(y) = 0 for the
equation setH iff

∀X ′ ⊆ varXu(H), X ′ 6= ∅ : |X ′| < |equH(X ′)| (4)

According to Assumption 2 the unknown variables inH can be
eliminated if and only if it holds that for each subset of variables in
H the number of variables is less then the number of equations inH
which contain some of the variables in the chosen subset.

The Assumptions 1 and 2 are often fulfilled. For example all sub-
sets of equations found in the industrial example in the end of the
paper satisfy Assumption 2. Even though the ”only if” direction of
Assumption 2 is difficult to validate in an application, the results of
the paper can still be used to produce a lower bound of the actual
detection and isolation capability.

If all subsets of the model fulfill Assumption 2, the structural anal-
ysis will find all subsets that can be used to find consistency relations.

3.2 Finding Consistency Relations via MSS Sets

Now, the task of finding those submodels that can be used to derive
consistency relations will be transformed to the task of finding the
subsets of equations that have the structural property (4). To do this,
two important structural properties are defined [9].

Definition 2 (Structurally Singular) A finite set of equationsE is
structurally singularwith respect to the set of variablesX if |E| >
|varX(E)|.

Definition 3 (Minimal Structurally Singular) A structurally sin-
gular set is aminimal structurally singular(MSS) set if none of its
proper subsets are structurally singular.



For simplicity, MSS will always mean MSS with respect toXu in
the rest of the text. The next theorem tells that it is sufficient and nec-
essary to find all MSS sets to get all different sets that can be utilized
to form consistency relations. The task of finding all submodels that
can be used to derive consistency relations has thereby been trans-
formed to the task of finding all MSS sets.

Theorem 1 Let H ⊆ Morig, whereMorig fulfills Assumption 1.
Further, let H and all Ei fulfill Assumption 2. Then there exists a
consistency relationc(y) = 0 for H(x,y) where|H| < ∞ iff H =⋃

i Ei where for eachi, Ei is an MSS set.

For a proof, see [7].

4 Algorithm for finding and selecting MSS sets

The objective is to find all MSS sets in a differentiated version of the
modelMorig and then choose a small subset of these MSS sets with
the same diagnosability as the full set of MSS sets. The algorithm
can be summarized in the following steps.

Algorithm 1

1. Differentiating the model: Find equations that are meaningful to
differentiate for finding MSS sets.

2. Simplifying the model: Given the original model and the addi-
tional equations found in step (1), remove all equations that can-
not be included in any MSS set. To simplify the next step, merge
sets of equations that have to be used together in each MSS set.

3. Finding MSS sets: Search for MSS sets in the simplified model.
4. Analyzing Diagnosability: Examine the diagnosability of the MSS

sets found in step (3).
5. Decoupling faults: If the diagnosability has to be improved, some

faults have to be decoupled. For decoupling faults, return to
step (1) and consider these faults as unknown variables inXu.

6. Selecting a subset of MSS sets: Select the simplest set of MSS sets
that contains the desired diagnosability.

Note that to avoid searching for all MSS sets decoupling all possi-
ble faults, Algorithm 1 has been organized so that first, the fault free
model is analyzed. Then if it is necessary for achieving higher isola-
bility, faults are decoupled. The following sections discuss each of
the steps in Algorithm 1.

4.1 Differentiating the Model

To handle dynamic models, Algorithm 1 needs a way to deal with
derivatives. In this section an algorithm for handling derivatives is
defined. This algorithm is referred to as Algorithm 2. A small exam-
ple will show what Algorithm 2 must be capable of handling.

Example 3 Consider the modelE = {e1, e2, e3} = {y1 = x, y2 =
ẋ, y3 = x2}. It is obviously impossible to eliminatėx in e2 if dif-
ferentiation of any equation is forbidden. In general, all derivatives
of E have to be considered. IfE(i) denote the set of thei:th time
derivative of each element, the equation set generally considered is
∪∞

i=0E
(i).

Even thoughvarXu(e1) = varXu(e3) = {x} the derivatives of
e1 ande3 contain different sets of variables, becausevarXu(ė1) =
{ẋ} 6= varXu(ė3) = {x, ẋ}. Sincex is linearly contained ine1,
the variablex in ė1 disappears. Knowledge about which of the vari-
ables that are contained linearly in an equation determines the set of
variables in the differentiated equation completely.

For all natural numbersj, y
(j+1)
1 − y

(j)
2 = 0 is a consistency

relation. Most of these consistency relations contain high orders of
derivatives ofy1 andy2. The derivatives of known variables are in
general not known, but they can usually be estimated. The higher
order of derivative, the more difficult it is to estimate the derivative.
Thus it is reasonable to make a limitationm(y) for variabley of the
order of derivative that can be considered as possible to estimate.
Derivatives up tom(y) are then considered to be known and higher
derivatives belong toXu.

To summarize the example, Algorithm 2 must be capable of differ-
entiating equations. To produce a correct structural representation of
differentiated equations, the algorithm must take linearly contained
variables into account. Further, it has to handle the limitationm(y)
for eachy ∈ Y .

Algorithm 2 consists of two parts. The first part is a modification of
Pantelides’ algorithm [9]. LetM =

⋃n
i=1

⋃αi
j=0{e(j)

i }, thenαi is the
highest number of differentiations inM of equationi. ThenM is a
differentiated model ofMorig =

⋃n
i=1{ei}. Let {e(αi)

i |1 ≤ i ≤ n}
be the set of most differentiated equations inM . The highest deriva-
tive of a non-differentiated variablex in the modelM is defined as
max({i|x(i) ∈ varXu(M)}).

Pantelides’ algorithm differentiates equation subsets, so that the
original equations together with the differentiated equations have a
complete matching[4] of the most differentiated equations into the
unknown variables with the highest derivatives.

The modification of Pantelides’ algorithm is that derivatives of
known variables, higher or equal tom(y), are also allowed to be
included in the matching.

Algorithm 2
Input: The original modelMorig, a description of which variables
that are linearly contained, and for eachy ∈ varY (Morig), m(y) <
∞.

(1) Apply the modified Pantelides’ algorithm toMorig and the limits
m(y). The output is the number of times each equation must be
differentiated to find all MSS sets.

(2) Differentiate the equations inMorig the number of times sug-
gested in step (1) and use the description of which variables that
are linearly contained, to get the correct structural description of
the differentiated structural model denotedMdiff .

Output:Mdiff .

It is critical that step (1) in Algorithm 2 terminates, i.e. no equation
should be differentiated an infinite number of times. In Pantelides
(1988) the condition when the algorithm terminates is stated. This
condition can be written as the structural property (3). Since the
modelMorig has this property according to Assumption 1, the al-
gorithm will terminate.

Let nowMSS(M) denote the set of MSS sets found in equations
M andMSSall(M) = MSS(∪∞

i=0M
(i)). Then it is possible to

state the following theorem proven in [7].

Theorem 2 If Assumption 1 is satisfied and for eachy ∈
varY (Morig), m(y) < ∞, then

MSSall(Morig) = MSS(Mdiff )

The consequence of this theorem is that all MSS sets that are possible
to find if the original modelMorig is differentiated an infinite number
of times, can always be found inMdiff .



Example 4 The following example is a continuation of Example 1
with the structural model shown in (1). Letm(u) = m(yf ) = 1
and m(yh) = 0. According to Algorithm 1 the first iteration uses
the fault free model, i.e. all faults are zero. The equatione6 contains
only a fault. Since all faults are at the moment assumed to be zero,
thene6 is not considered. Further, assume that no variable is linearly
contained in any equation. Then no variable will disappear in the dif-
ferentiation. The structural modelMdiff obtained from Algorithm 2
is

equation unknown fault known

F1F2Ḟ2 h ḣ fufyhfyf ḟf u yhyf ẏf

e1 X X X
e2 X X X
e3 X X X
e4 X X
ė4 X X XX
e5 X X X
ė5 X X X X X X

(5)

4.2 Simplifying the Model

It is a complex task to find all MSS sets in a structural model. There-
fore it can be of great help if it is possible to simplify the model. Here
two kinds of simplifications are used.

In a first step, all equations inMdiff that include any variable
that is impossible to eliminate, are removed. This can be done with
Canonical Decomposition [2].

In a second step, variables that can be eliminated without losing
any structural information are found. The rest of this section will be
devoted to a discussion about this second step.

If there is a setX ⊆ Xu with the property1 + |X| =
|equMdiff (X)|, then all equations inequMdiff (X) have to be used
to eliminate all variables inX. Since all unknown variables must be
eliminated in an MSS set this means particularly that all MSS sets
including any equation ofequMdiff (X) has to include all equations
in equMdiff (X). The idea is to find these sets. Then it is possible to
eliminate internal variables, here denotedX, in these sets. Every set
is replaced with one new equation.

This second simplification step finds subsets of variables that are
included in exactly one more equation than the number of variables.
To reduce the computational complexity, a complete search for such
sets is in fact not performed here. Instead only a search for single
variables included in two equations is done. When a variable is in-
cluded in just two equations, these equations are used to eliminate
the variable. If all variables are examined and some simplification
was possible, then all remaining variables have to be examined once
more. When no more simplifications can be made, the simplification
step is finished and the resulting structural model is denotedMsimp.
Note that with this strategy larger sets than two equations will also
be found, since the algorithm can merge sets found in previous steps.

The next theorem ensures that no MSS set is lost in the simplifica-
tion step.

Theorem 3 MSS(Mdiff ) = MSS(Msimp)

For a proof, see [7]. Consider again Example 4 and the output (5)
from the differentiation step. No equations can be removed in the
first simplification step.

The second step searches for variables which belong only to two
equations. In the first search, the algorithm findsF1 in {e1, e2}, Ḟ2 in
{ė4, ė5}, andḣ in the equations produced by{e1, e2} and{ė4, ė5}.

This makes one group of{e1, e2, ė4, ė5}. This search made simplifi-
cations and therefore the search is performed once more. The second
time no simplifications have been done and the simplification step is
therefore complete. The remaining system is

equation unknown fault known

F2 h fufyhfyf ḟf u yhyf ẏf

{e1, e2, ė4, ė5} X X X X X X X X
e3 X X X
e4 X X
e5 X X X

(6)

4.3 Finding MSS Sets

After the simplification step is completed, step (3) in Algorithm 1
finds all MSS sets in the simplified modelMsimp. This section ex-
plains how the MSS sets are found.

The task is to find all MSS sets in the modelMsimp with equations
{e1, · · · , en}. Let Mk = {ek, · · · , en} be the lastn − k + 1 equa-
tions. LetE be the current set of equations that is examined. The set
of MSS sets found is denotedMalg3. Then the following algorithm
finds all MSS sets inMsimp.

Algorithm 3
Input: The modelMsimp.

1. Setk = 1 andMalg3 = ∅.
2. Choose equationek. LetE = {ek} andX = ∅.
3. Find all MSS sets that are subsets ofMk and include equationek.

(a) LetX̃ = varXu(E)\X be the unmatched variables.

(b) If X̃ = ∅, thenE is an MSS set. InsertE into Malg3.

(c) Else take a remaining variablẽx ∈ X̃ and let X = X ∪
{x̃}. Let Ẽ = equMk\E(x̃) be the remaining equations. For
all equationse in Ẽ let E = E ∪ {e} and goto (a).

4. If k < n setk = k + 1 and goto number (2).

Output: The set of MSS sets found, i.e.Malg3.

Algorithm 3 finds all MSS sets inMorig according to the next theo-
rem proven in [7].

Theorem 4 Malg3 = MSS(Msimp)

The following small example with five equations shows how the al-
gorithm works.

x1 x2 x3

1 X X
2 X X
3 X X X
4 X
5 X

This model gives the following time evolution of current equations,
i.e.E in Algorithm 3 is

2 3 2
2 5 5 2 2 3 3 5

3 3 3 3 4 4 4 4 4 4
1 1 1 1 1 1 1 1 1 1 1

4
4 3 3 5

3 3 5 5 5 4 4
2 2 2 2 2 2 3 3 3 4 5

The bold columns represent the MSS sets found. This example
also shows that if there are several matchings including the same
equations, the algorithm finds the same subset of equations several
times.



4.4 Analyzing Diagnosability

When the MSS sets are found, the next step is to analyze their di-
agnosability. The continuation of the example in (6) will be used to
illustrate how this analysis is done. The 4 MSS sets that can be found
in (6) are shown in the left column in Figure 1 (a). The matrix in this
figure is the incidence matrix of the MSS sets in (6). If any equation
in the MSS seti include faultj, the element(i, j) of the incidence
matrix is equal toX. Note that anX in position(i, j) is no guar-
antee for faultj to appear in the MSS seti. For an example of the
interpretation of an incidence matrix, consider the third MSS set in
Figure 1 (a). This MSS set could containfu andfyf , but it is impos-
sible that it could containfyh, sincefyh is only included in equation
e3. For simplicity, the derivatives of the faults are omitted in Figure 1.

If the number of different faults is large it is not easy to see which
faults that can be isolated from each other. The incidence matrix of
the MSS sets show which faults that could be responsible for an in-
consistency of each MSS set, but it is more interesting to see which
faults that can be explained by other faults. Afault matrixshows the
maximum isolation and detection capability of the diagnosis system.
The maximum isolation capability with a diagnosis system designed
with this structural method is obtained if it is assumed that each fault
makes all MSS sets including this fault inconsistent. If faultj is sen-
sitive to at least all MSS sets that faulti is sensitive to, then element
(i, j) of the fault matrix is equal toX. The interpretation of anX in
position(i, j) is that faultfi can not be isolated from faultfj .

The fault matrix corresponding to the incidence matrix in Fig-
ure 1 (a) is shown in Figure 1 (b). Consider the first row of the fault
matrix. Suppose that faultfu is present. Then, the first three MSS
sets are not satisfied in an ideal case. This means thatfu certainly
can explain faultfu, but alsofyf can explain faultfu. Fault fyh

cannot explain faultfu, since iffyh is present, the third MSS set is
satisfied. Note that the fault matrix is not symmetric. For example
fault fyf can explain faultfu but the opposite is not true. The fault
matrix can more easily be analyzed after Dulmage-Mendelsohn per-
mutations [8]. This algorithm returns amaximal matching[4] which
is in block upper-triangular form. The diagonal blocks corresponds
to strong Hall components of the adjacency graph of the fault ma-
trix. The interpretation is that faults in a diagonal block can never
be distinguished with that diagnosis system. In the small example in
Figure 1 (b), the same matrix is returned after Dulmage-Mendelsohn
permutations, which usually is not the case. The diagonal blocks are
the1 × 1 diagonal elements.

MSS fufyhfyf
{e1, e2, e3, e4, ė4, ė5} X X X
{e1, e2, e3, ė4, e5, ė5} X X X
{e1, e2, e4, ė4, e5, ė5} X X
{e3, e4, e5} X X

present interpreted fault
fault fu fyh fyf
fu X X
fyh X X
fyf X

(a) (b)

Figure 1. The incidence matrix of MSS sets is shown in (a). The fault
matrix of (a) is shown in (b).

4.5 Decoupling faults

Suppose that the element(i, j) of the fault matrix is equal toX for
somei 6= j. It could still be possible to isolate faulti from fault
j by trying to decouple fault j. Include faultj among the unknown

variablesXu and search for new MSS sets by applying Algorithm 1
step (1) to the new model obtained. An MSS set that is able to isolate
fault i from fault j has to include at least one equation that includes
fault i. If any such MSS set is found, it has to include an elimination
of fault j. If not, this MSS would have been discovered earlier.

In the example in Figure 1, the fault matrix shows thatfu andfyh

can not be isolated fromfyf . The problem is that there is no MSS set
that decouple faultfyf . But there could be one iffyf is eliminated.
The faultfyf is moved from the faultsF to the unknown variables
Xu. The procedure starts all over from the step (1) in Algorithm 1.
The result is a new MSS set in whichfyf is decoupled. This gives a
possibility to detect and isolate all faults.

4.6 Selecting a Subset of MSS Sets

It is not unusual that the number of MSS sets found is very large.
Many of the MSS sets probably use almost as many equations as un-
known variables in the entire system. These MSS sets usually rely
on too many uncertainties to be usable for fault isolation. Small MSS
sets are more robust and are usually sensitive to fewer faults. There-
fore the goal must be to find the set of most robust MSS sets but with
the same diagnosis capability as the set of all MSS sets.

Start to sort the MSS sets in an ascending order of complexity. The
complexity measure is here the number of equations, even though
more informative measures are also a possibility. The MSS sets are
examined in the rearranged order. If an MSS set increase the diag-
nosability, then select the MSS set. The diagnosability is increased if
some fault becomes detectable or some faulti can be isolated from
some other faultj. This means that for each detection of a fault and
for each isolation between two faults, the smallest MSS sets with this
diagnosis ability will be one of the chosen MSS sets. In this way the
final output from Algorithm 1 will be the most robust set of MSS sets
with highest possible diagnosis capability.

5 Industrial example: A part of a paper plant

This example is a stock preparation and broke treatment system of a
paper plant located in Australia. The system is used for mixing and
purifying recycled paper for production of new paper. An overview
of the system is shown in Figure 2.
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Figure 2. A stock preparation and broke treatment system of a paper plant.



5.1 System Description

Most parts of the system are nonlinear and it is only the tank and the
pulper that are considered to be dynamic. The model has shown to
compare well to real measured data. Because of space considerations,
the details of the model are omitted, but can be found in [7]. The
system has 4 states: the volume and concentration in the pulper and in
the tank. There are 6 sensors in the system. Sensory1 andy3 measure
the water levels of the pulper and the tank respectively,y2 andy4

measure concentration,y5 andy6 measure pressure. The flows and
concentrations into this system are known and the flows out from the
system are also known. There are 6 valves and two pumps that are
actuators with known inputs.

There are 21 faults that are considered. All sensors can have a con-
stant offset fault(f1, . . . , f6). All valves can have a constant offset
in the actuator signal(f7, . . . , f12). Clogging can occur in the pipes
near the valves(f13, . . . , f18) and also directly after the tankf19.
Finally, the pumps can have a constant offset in the actuator signal
(f20, f21).

The system is described by 29 equations. Equations(e1, . . .,
e4) describe the dynamics,(e5, . . . , e14) are pressure loops,e15

relates the concentration in the junction after the tank with the
flows F4 andF6, (e16, e17) describe the two pumps,(e18, . . . , e23)
are valve equations,(e24, . . . , e26) are flow equations, and finally
(e27, . . . , e29) are sensor equations for sensor 1, 2, and 3. The struc-
tural model for these equations can be viewed in the first 29 rows in
the matrices in Figure 3.

5.2 Differentiating the Model

The highest order of derivatives that is known for all known vari-
ables are assumed to be one. If a variable is contained linearly in
an equation the variable disappears in the differentiated expression.
This knowledge is used since the equations are known. Algorithm 2
is applied to the first 29 equations in Figure 3. The result is that all
equations except equation 1, 2, 3, and 4 are differentiated. This re-
sults in additionally 25 differentiated equations shown in the lower
part of Figure 3.
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Figure 3. Structural model of the stock preparation and broke treatment
system.

5.3 Simplifying the Model

In the first step of simplification applied to the left matrix in Figure 3,
the equations{27, 28, 29} include variables belonging only to one
equation, i.e. they cannot be included in any MSS sets.

The second part of the simplification finds that the vari-
ables{9, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31} can be elim-
inated. The equations that form groups are{1, 52}, {2, 53},
{3, 54}, {4, 15, 40}, {32, 41, 44}, {39, 48, 51}, {31, 43}, {35, 45},
{37, 46} and{36, 47}. The simplified structural model is shown in
Figure 4 (a). Note the simplification of the model by comparing Fig-
ure 3 and Figure 4 (a).
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Figure 4. The simplified structural model is shown in (a). The incidence
matrix of the MSS sets is shown in (b)

5.4 Finding MSS sets

Algorithm 3 is then applied to the simplified model. The algorithm
returns 35770 MSS sets that are contained in the simplified model.
The largest MSS set consists of 24 equations.

5.5 Analyzing Diagnosability

The two different fault matrices are seen in Figure 5. The Dulmage-
Mendelsohn permutations gives that the faults{7, 13}, {8, 14},
{9, 15}, {10, 16},{11, 17} and{12, 18} are never distinguishable.
These pairs of faults all belong pairwise to the same valve. This iso-
lation performance for faults concerning valves is in this case ac-
ceptable. To give an example of how elimination of faults is done,
the attention is focused on isolating faults 4, 8, and 14.

5.6 Decoupling faults

Considering Figure 5, it is still important to discover if any MSS set
can decouple fault 2 or 3 and be sensitive to fault 4. It is also neces-
sary to decouple fault 20. Apply Algorithm 1 to the original model,
but where fault 2 now is considered to be an unknown variable. Then
apply the Algorithm 1 to the model where faults 3 is decoupled and
finally also when fault 20 is decoupled. The algorithm finds thereby
additional MSS sets that isolate fault 4, 8, and 14.



5.7 Selecting a subset of MSS sets

The 24 chosen MSS sets are

MSS
1 13
2 2 53
3 6 18
4 11 22
5 1 16 52
6 22 36 47
7 7 16 19
8 8 9 17 24
9 9 10 17 20
10 12 17 21 25
11 16 19 32 41 44
12 8 10 17 20 24
13 12 14 21 23 26
14 14 17 23 25 26
15 17 24 33 34 42 49
26 7 16 19 32 41 44
17 17 21 25 37 42 46 50
18 8 10 12 20 21 24 25
19 17 23 25 26 39 42 48 50 51
20 3 4 15 16 17 24 40 42 49 54
21 1 3 4 15 17 24 40 42 49 52 54
22 3 4 8 10 15 16 20 33 35 40 45 54
23 2 3 4 15 16 17 24 40 42 49 53 54
24 3 4 8 9 15 16 17 24 40 42 49 54

(7)

From these sets and the structural model in Figure 3 the incidence
matrix in Figure 4 (b) is obtained.
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Figure 5. These matrices are the fault matrices before (a) and after (b) the
Dulmage-Mendelsohn permutation.

5.8 Generating Consistency Relations

Consistency relations corresponding to the 24 MSS sets are calcu-
lated by using the function Eliminate in Mathematica. Most of the
equations in the model are polynomial equations. For polynomial
equation-systems, the function Eliminate uses Gröbner Basis tech-
niques for elimination. Each MSS set with 7 or less equations was
easily eliminated to a consistency relation. The consistency relations
from the MSS set 17 and 18 were obtained from the Eliminate func-
tion, but were to complex to be numerically reliable. Elimination of
the unknown variables in MSS sets with 8 or more equations was
computational intractable with the Eliminate function. Therefore, by
using only consistency relations obtained from the 15 first MSS sets,
the isolation capability was reduced slightly. Some further results of
the investigation can be found in [7].

6 Conclusion

This paper has presented a systematic and automatic method for find-
ing a small set of submodels that can be used to derive consistency
relations with highest possible diagnosis capability. The method is
based on graph theoretical reasoning about the structure of the model.
It is assumed that a condition on algebraic independency is fulfilled.

An important idea, towards finding these submodels, is to use the
mathematical conceptminimal structurally singularsets. These sets
have in Theorem 1 been shown to characterize these submodels, i.e.

the consistency relations, which give the fault detection and the fault
isolation capability.

The method is capable of handling general differential-algebraic
non-causal equations. Further, the method is not limited to any spe-
cial type of fault model. Algorithm 1 finds all submodels that can
be used to derive consistency relations and this is proven in Theo-
rem 2, 3, and 4. The key step in Algorithm 1 is step (3) that finds all
MSS sets in the model it is applied to.

Finally the method has been applied to a large nonlinear industrial
example, a part of a paper plant. The algorithm successfully manage
to derive a small set of submodels. In spite of the complexity of this
process, a sufficient number of submodels could be transformed to
consistency relations so that high diagnosis capability was obtained.
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Diagnostic Reasoning with
Multilevel Set-Covering Models

Joachim Baumeister1 and Dietmar Seipel1

Abstract. We consider multilevel set-covering models for diagnos-
tic reasoning: though a lot of work has been done in this field,knowl-
edge acquisitionefforts have been investigated only insufficiently.
We will show how set-covering models can be build incrementally
and how they can be refined by knowledge enhancements or repre-
sentational extensions. All these extensions have a primary charac-
teristic: they can be applied without changing the basic semantics of
the model.

Keywords: set-covering diagnosis; model-based diagnosis; qualita-
tive modeling; knowledge acquisition; abductive reasoning

1 Introduction

In this paper we will present a new interpretation of set-covering
models [1] which is a suitable representation for the manual devel-
opment of knowledge-based systems. Because of its simple seman-
tics set-covering models are rapidly understood by the experts, but
still maintain a well-known model-based interpretation. In [2] we
showed how knowledge-based diagnostic systems can be developed
incrementally with set-covering models, thus supporting rapid pro-
totyping of such systems. In this paper we will extend this approach
to multilevel set-covering models, and we will describe how simple
set-covering models can be enhanced by representational extensions.
Practical experience has shown that these additions facilitated the de-
velopment of a real world example from a medical ICU domain.

A set-covering modelconsists of a set of diagnoses, a set of find-
ings (observations) and covering relations between the elements of
these two sets. There exists a covering relation between a diagnosis
and a finding, iff the diagnosis implies the observation of the find-
ing. We can define covering relations between diagnoses as well, iff
a diagnosis implies the observation of another diagnosis. The basic
idea of set-covering diagnosis is the detection of a reasonable set of
diagnoses which can explain the given observations. To do this, we
propose an abductive reasoning step: Firstly, hypotheses are gener-
ated in order to explain the given observations. Secondly competing
hypotheses are ranked using aquality measure.

Reasoning with set-covering models has got a long tradition in di-
agnostic reasoning: Early work was done by Patil [3] with his sys-
tem ABEL, which implemented a comprehensive set-covering rep-
resentation including causal, associational and grouping relations.
Reggia et al. [1] contributed a formal approach to set-covering mod-
els and addressed the problem of hypothesis generation with a pre-

1 University of Würzburg, Department of Computer Science, Am Hubland,
97074 Ẅurzburg, Germany, email:{baumeister, seipel}@informatik.uni-
wuerzburg.de

cise description ofgenerator sets. Later [4] they introduced the in-
tegration of Bayesian probabilities in set-covering models. With the
system MOLE [5] Eshelman focussed on the problem of acquiring
set-covering knowledge. He proposed an interactive process that al-
lows for refining previously acquired knowledge after a reasoning
step to differentiate between conflicting hypotheses. Console et al.
[6] showed with the system CHECK how to combine heuristic and
causal knowledge. There heuristic knowledge was used to find rea-
sonable hypotheses for a given observation. In a second step the
causal knowledge was used to generate abductive explanations for
the hypotheses. Long [7] extended covering models with probabili-
ties and a rich syntax of temporal and non-temporal causation events.
Since knowledge acquisition is a cost sensitive task, reuse of existing
knowledge is another emerging aspect. Puppe [8] showed how set-
covering knowledge can be combined with other classes of knowl-
edge like heuristic rules, case-based knowledge or decision trees.

Most of these approaches only investigated syntax and semantics of
the reasoning process, but did not consider the knowledge engineer-
ing process. Eshelman’s MOLE system [5] differs from our knowl-
edge acquisition approach, since there knowledge refinement is per-
formed by adding new covering relations to the model. In our paper
we will present (multilevel) set-covering models and show how to
enrich these simple models with knowledge enhancements likesimi-
larities andweightsor representational extensionsfor more complex
covering relations. A primary characteristic of the presented exten-
sions is the incrementality: each extension can be applied indepen-
dently from other enhancements and will not change the basic se-
mantics of the model, but refine special aspects of it.

The rest of the paper is organized as follows: In Section 2 we will
introduce the basic concepts of set-covering models and show how
to enrich set-covering models with additional knowledge like simi-
larities and weights. Beyond that we will introduce representational
extensions of set-covering models in Section 3 that will enable us to
formulate exclusions, necessary relations and complex covering rela-
tions (conjunctions, disjunctions, cardinalities). In Section 4 we will
shortly summarize the problem of hypothesis generation and we will
introduce constraints that shrink the exponentiell size of possible hy-
potheses. We will conclude this paper in Section 5 with an overview
of the work we have done so far and promising directions we are
planning to work on in the future.

2 Set-Covering Models

A set-covering model consists of a set of diagnoses, a set of findings
(observations) and covering relations between the elements of these
two sets. There exists a covering relation between a diagnosis and



a finding, iff the diagnosis predicts the observation of the finding.
Furthermore we can define covering relations between two diagnoses
to state that a diagnosis implies another diagnosis. In this way we
can build acovering-treefor a diagnosis, where we postulate that
the leafs of the covering-tree have to be observable findings. So each
covering path will start with a diagnosis and lead to an observable
finding.

2.1 The Basic Model

The basic idea of set-covering diagnosis is the detection of a reason-
able set of diagnoses which can explain the given observation of find-
ings. In anabductive reasoningstep hypotheses are firstly generated
in order to explain the given observations (hypothesis generation). In
a second step, we define a quality measure for ranking competing hy-
potheses (hypothesis testing). Set-covering models describe relations
like:

A diagnosisD predicts that the parametersA1, . . . , An are
observed with corresponding valuesv1, . . . , vn.
A diagnosisD predicts the diagnosesD1, . . . , Dm.

We call each of these relationscovering relationsand we denote them
by

ri = D → Ai :vi, 1 ≤ i ≤ n,

r′i = D → Di, 1 ≤ i ≤ m.

Covering models can be visually described like in Figure 1. In this

r5

r2r1

Flu

Fever Cold

Skin : SweatingTemp : Increased Nose : Red Cough : Present

r3 r4 r6

Figure 1. Basic set-covering model for diagnosesFlu, FeverandCold.

example the model states that diagnosisFlu implies the observation
of the diagnosesFever andCold. DiagnosisFever itself forces the
observation of the attributesTemperatureandSkinwith their corre-
sponding valuesIncreasedandSweating.

The basic algorithm for set-covering diagnosis is very simple: Given
a set of observed findings, it uses a simple hypothesize-and-test strat-
egy, which generates hypotheses (coined from diagnoses) in the first
step and tests them against the given observations in a second step.
The test is defined by calculating a quality measure, which expresses
the covering degree of the hypothesis regarding the observed find-
ings. The generation and evaluation of the hypotheses is an iterative
process, which stops when a satisfying hypothesis has been found or
all hypotheses have been considered. Usually the algorithm will look
at single diagnoses, compute the corresponding quality measure, and
then it will generate hypotheses with multiple diagnoses, if needed.

In the worst case this procedure will generate2n candidates forn
diagnoses. So heuristics are needed to keep the method computation-
ally tractable (c.f. Section 4).

The basic sets for this task are the following: We defineΩD to be
the set of all diagnoses andΩA the set of all observable parameters
(attributes). To each parameterA ∈ ΩA a rangedom(A) of values
is assigned, andΩV =

⋃
A∈ΩA

dom(A) is the set of all possible
values for the parameters. If a parameterA is assigned to a valuev,
then we callA :v afinding.

ΩF =
{

A :v |A ∈ ΩA, v ∈ dom(A)
}

is the set of all findings. Furthermore we call an elementS ∈ ΩS =
ΩD ∪ ΩF astate.

A covering relationr between a diagnosisD and a stateS (S 6= D)
is denoted byr = D → S. We say that “D predictsS” or that “D
coversS”. Thencr = D is called thecauseander = S is called the
effect. We defineΩR to be the set of all covering relations contained
in the model. ThenD+ ∈ ΩR is the set of all covering relations with
diagnosisD as the cause, i.e.D+ = { r ∈ ΩR | cr = D }. E.g.,
for the model in Figure 1 we obtaincr1 = Flu ander1 = Fever ,
Cold+ = {r5, r6}.
SinceS can be a diagnosis itself, we are able to buildmultilevelset-
covering models. A stateS transitively coversanother stateS′, if
eitherS coversS′ or S covers another stateS′′ that transitively cov-
ersS′.

We callFO ⊂ ΩF the set ofobserved findingsand a setH ⊆ ΩD
of diagnoses ahypothesis. A finding that is not transitively covered
by the hypothesisH is called isolated, and the set of all observed
findings that are isolated will be denoted byF isolated

H,O ⊆ FO. E.g. for
a hypothesisH = {D1} andFO = {A1 : v1, A2 : v2, A4 : v4} we
obtainF isolated

H,O = {A2 :v2}.
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Figure 2. Basic set-covering model for diagnosisD

Now we will describe the computation of the precision of a state for
a given observation. The precisionπ(S) of a stateS provides a real
value between0 and1 to describe the degree of accuracy the covered
states ofS are observed.

Bottom-Up Computation of Precisions.Given the setFO of ob-
served findings, the precisionπ of each state is computed bottom-up
starting with the findings:

π
(
A :v

)
=

{
1, if A :v ∈ FO
0, otherwise

(1)



The precisionπ(D) of a diagnosisD can be computed as soon as the
precisions of all its successorsS are known. For this we define

D+
≥c =

{
r ∈ D+

∣∣ π(er) ≥ c(er)
}
,

D+
>0 =

{
r ∈ D+

∣∣ π(er) > 0
}
,

as the sets of allrelevantcovering relations, i.e. relations that predict
states with a precision greater than a user defined threshold function.

π(D) =


∑

r∈D+
≥c

π(er)

|D+
>0|

, if D+
>0 6= ∅

0, otherwise

(2)

The denominator counts all successor states ofD with a positive pre-
cision, which gives us the maximally achievable score. The nomina-
tor sums up the precision of all successor states with a precision, that
is greater than or equal to the completeness value, which gives us the
actually achieved score.

Thecompleteness valuec(D) of a diagnosis is specified by the mod-
eler and is motivated by the fact, that a covering model for a diagnosis
will contain more states than the diagnosis will cause in an average
case. Nevertheless in most cases the observation of a percentage of
the modeled states will legitimate the validation of this diagnosis. To
emphasize this percentage the modeler has to specify a completeness
valuec(D). Unless this factor is reached by the observation set in
the current case, the diagnosis may neither be considered as a validly
observed state, nor will it be considered as a valid hypothesis candi-
date.

Since we also want to consider multiple faults, i.e. hypotheses con-
taining more than one diagnosis, we define

H+ =
⋃

D∈H

D+ H+
>0 =

⋃
D∈H

D+
>0 H+

≥c =
⋃

D∈H

D+
≥c

The covering relationsr ∈ H+
≥c are calledrelevantfor H. Observe,

that relevancy depends onFO, since the precisions have been com-
puted based onFO.

Quality Measures.The quality measures are used to rank the possi-
ble hypotheses with respect to the given observation. As we already
introduced the precision of a single diagnosis we now will define
the quality of a hypothesis, which can contain multiple diagnoses.
The quality of a hypothesis provides a real value between0 and1
to describe the degree of accuracy with which the hypothesisH can
explain the given observationFO.

Definition 2.1 (Quality Measure) Thequality %(H) of a hypothe-
sisH is given by

%(H) =

∑
r∈H+

≥c

π(er)

|H+
>0|+ | F isolated

H,O |
. (3)

Notice that, in contrast to the precision, the quality measure does not
evaluate a single diagnosis with respect to the transitively observed
predictions, but assesses a hypothesis (containing possibly multiple
diagnoses) on the basis of the transitively predicted and observed
findings and the unexplained (isolated) findings.

We see that%(H) ∈ [0, 1] for any hypothesisH ∈ ΩH: The lower
bound0 is obtained, ifH+

≥c = ∅. The upper bound1 is obtained,

if all predictions are fully observed, i.e.H+
≥c = H+

>0 , and the set

F isolated
H,O = ∅.

Example.For the covering relation given in Figure 2, the set

FO = {A2 :v2, A3 :v3, A4 :v4, A5 :v5, A6 :v6 }

of findings, and the hypothesisH = {D1}, we obtainπ(D2) = 1,
π(D3) = 1 (with c(D2) = c(D3) = 0.7). Since we obtainH+ =
{r1, r2, r3} for hypothesisH we can calculate

H+
≥c = { r1, r2 },

F isolated
H,O =

{
A2 :v2, A3 :v3

}
.

Up to now we presented the basic representation for set-covering
models containing diagnoses and findings connected with cover-
ing relations. Of course this simple representation might not always
meet the requirements of real world applications. Therefore we will
shortly present knowledge extensions of set-covering models. In [2]
we showed how to apply these extensions in an incremental way.

2.2 Extension by Similarities and Weights

Similarities between findings and weights for states provide signifi-
cant knowledge extensions for set-covering models. In the following
we will show how to include these enhancements into the quality
measures given above.

Similarities. Consider a parameterA with the domain

dom(A) = {no, si, mi, hi },

with the meanings normal (no), slightly increased (si), medium in-
creased (mi), and heavily increased (hi), whereA : hi is predicted.
We clearly see that the observationA :mi deserves a better precision
than the observationA :no. Nevertheless the simple quality measure
considers both observations as unexplained findings and makes no
difference between the similarities of the parameter values. For this
reason we want to definesimilaritiesas an extension to set-covering
models.

We define the similarity function

sim : ΩV × ΩV → [0, 1]

to capture the similarity between two values assigned to the same
parameter. The value0 means no similarity and the value1 indicates
two equal values. In cluster analysis problems this function is also
calleddistance function(cf. [9]).
With similarities we need to adapt Equation (1) for computing the
precision of findings.

π
(
A :v

)
= sim

(
ValH(A),ValFO (A)

)
,

whereVal returns the value of a specified attribute contained in a
specified set of states.

Val : 2ΩS × ΩA → ΩV .

If no special similarity is included in the model, then we get the sim-
ple quality measure by defining thedefault similaritysim(v, v′) =
δv,v′ , whereδv,v′ = 1, if v = v′, andδv,v′ = 0, otherwise.

Weights. The introduction of weights for covered states is another
common generalization of the basic covering model. Here we apply



a weight functionw : ΩS → IN+, to emphasize that some states
(findings and diagnoses) have a more significant pathological impor-
tance than other states.
When applying weights to the model we need to adapt Equation (2)
which calculates the precision for a given diagnosis:

π(D) =



∑
r∈D+

≥c

w(er) · π(er)∑
r∈D+

>0

w(er)
, if D+

>0 6= ∅,

0, otherwise.

Like for the precision of a diagnosis, we need to adapt Equation (3)
to calculate the quality of a given hypothesis:

%(H) =

∑
r∈H+

≥c

w(er) · π(er)∑
r∈H+

>0

w(er) +
∑

F∈F isolated
H,O

w(F )

If all states have the same weight, i.e.,w(S) = 1 for all S ∈ ΩS ,
then the model reduces to the simple covering model.

In addition to similarities and weights we already have introduced
uncertain covering relations and causal effect functions as possible
extensions (cf. [2]).

3 Complex Covering Relations

In the previous section we introduced the basic set-covering model
and extensions that allow for the refinement of set-covering knowl-
edge build with basic covering relations. In this section we propose
some further extensions of the representation, AND-, OR- and [MIN ,
MAX ]-relations.

To keep the interpretation of covering models simple, we only al-
low these extensions for covering relations between diagnoses and
(directly observable) findings.

3.1 Conjunction of Covering Relations

It is desirable to be able to represent conjunctions between covering
relations. An AND-covering relation

D →AND {F1, . . . , Fn }

denotes the characteristic, that all covering relationsD → Fi have
to be fulfilled simultaneously.

D
0.5

F
1

F
2

F
3

AND

Figure 3. Covering relationD →AND {F2, F3}

Then the weights of the AND-connected findingsFi will only con-
tribute to the precision ofD if all of these findings are observed.
If not all findings are observed, thenD cannot explain the findings
and we have to check if another diagnosis from the hypothesis can
explain these observations. All remaining findings – so far unex-
plained – will be added to the set of isolated findingsF isolated

H,O . This
will decrease the quality measure for the current hypothesis, since
H+
≥c will not contain relations covering the unexplained observa-

tions. Given an AND-covering relation of the form

r = D →AND {F1, . . . , Fn }

we define for eachFi ∈ {F1, . . . , Fn }:

πr(Fi) =

{
π(Fi), if for all Fj ∈ er : π(Fj) > 0

0, otherwise

We try to explain all findingsFi with πr(Fi) = 0 butπ(Fi) > 0 by
other diagnosesD′ ∈ H \ {D}. All remaining findingsFi, which
cannot be explained by other diagnoses are added toF isolated

H,O .

Example. Assume that we have the covering model of Figure 3,
where c(D) = 0.5, and we observe the setFO = {F1, F2}.
Thenπ(F3) = 0, sinceF3 is not inFO. Therefore not all preci-
sions of the AND-covered findings are greater than0, and we define
πr(F2) = πr(F3) = 0. We obtainF isolated

H,O = {F2} for hypothesis
H = {D}. Notice, thatF3 is not inF isolated

H,O , since it is not observed.

3.2 Disjunction of Covering Relations

We also can express alternative covering relations with disjunc-
tion. Here we can distinguish between inclusive (OR) and exclusive
(XOR) disjunctions.

In Figure 4 we can see two different disjunctive covering relations
for diagnosisD: in the left one the findingsF2, F3 are connected
with the OR-covering relationD →OR {F2, F3}, whereas at the
right side the findings are connected with an XOR-covering relation
D →XOR {F2, F3}. These OR/XOR-relations state, that only one
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Figure 4. OR-/XOR-covering relations.

of the connected finding has to be observed to fulfill the relation.
Of course we need to consider the different semantics in covering
models. When computing the quality measures we have to take the
following three cases into account:

1. If noneof the predicted findings is observed, then nothing has
to be done. The covering relations connected with the OR/XOR-
condition cannot contribute to the quality measure of the parent
state.



2. If oneof the predicted findings is observed, then we simply cut
all other states connected by OR/XOR-relations from the model.
When computing the quality measure we only take the observed
finding into account.

3. If more than oneof the predicted findings are observed (e.g.
{F2, F3} ⊆ FO), then we have to differentiate between OR and
XOR relations. For both we take the finding with the maximal con-
tribution; e.g. regarding the weighted precision

πw(F ) = π(F ) · w(F ).

For OR-relations we simply ignore the remaining observations for
assessing the quality. They will neither contribute to the quality of
the hypothesis nor will they need to be explained by other diag-
noses.
For XOR-relations the observations left over still have to be ex-
plained. Like for the AND-relations we try to explain them with
the other diagnoses contained in the current hypothesis. All re-
maining findings, that cannot be explained by other diagnoses, are
added to the set of isolated findingsF isolated

H,O .

We see that we carefully have to use OR/XOR-relations, because of
their different interpretation of the observation. For example, multi-
ple observations of one XOR-covering relation are taken negatively
into account (i.e., they are assumed to be unexplained findings of the
current hypothesis), whereas in ordinary OR-relations they will not
contribute in any way.

As shown for AND-covering relations we also have to locally define
the precision for OR/XOR-covered findings in context of the given
diagnosis: Consider an OR-relation (analogous for XOR):

r = D →OR {F1, . . . , Fn }.

We select a findingFmax ∈ {F1, . . . , Fn }, such thatπw(Fmax ) =
max

(
πw(Fi), 1 ≤ i ≤ n

)
. Then we say that

πr(Fi) =

{
π(Fi), if Fi = Fmax

0, otherwise.

If there is more than oneFi with maximum weighted precision
πw(Fi), then all but one (randomly selected) finding will set to the
precisionπr(Fi) = 0.
When we compute the precisionπ(D) of a diagnosisD, then the pre-
cisions of the findingsFi that are covered by an OR/XOR-covering
relation contribute with the measureπr(Fi) and not with the usual
precision measureπ(Fi).
For XOR-relations we have to explain the remaining findings by other
diagnoses contained in the hypothesis or add them toF isolated

H,O .

3.3 Cardinalities in Covering Relations

Another enrichment of the set-covering representation is the connec-
tion of covering relations by cardinality constraints. We express such
cardinalities by [MIN, MAX ]-covering relations. Consider the exam-
ple in Figure 5. The covering relation between diagnosisD and the
findingsF1, F2, F3, F4 andF5 means, that between2 and4 of the
predicted findings have to be observed. We denote such relations by

r = D →[2,4] {F1, F2, F3, F4, F5 }.

When we interpret [MIN, MAX ]-relationsr =D →[M IN,MAX ] F , then
we have to consider three possible cases for the numberk = |F ∩
FO| of relevant findings:
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Figure 5. A [M IN, MAX ]-covering relation.

1. If k ∈ [M IN, MAX ], then all findings inF ∩ FO will contribute.
2. If k > MAX , then letFmax ( F ∩ FO be the MAX findings

with the maximum weighted precisions among the findings inF
(i.e. |Fmax| = MAX ). We explain the findings inFmax by D.
Then we try to explain the findings in(F ∩FO) \ Fmax by other
diagnoses also contained in the hypothesis. These findings(F ∩
FO) \ Fmax, which we cannot explain by other diagnosesD′ ∈
H \ {D}, are added toF isolated

H,O .
3. If k < M IN, then we try to explain all findings inF∩FO by other

diagnosesD′ ∈ H \ {D}. Findings, which cannot be explained
by other diagnoses, are added toF isolated

H,O .

We integrate [MIN, MAX ]-relations into set-covering models by lo-
cally defining the precision for findings connected by a [MIN, MAX ]-
relationr =D →[M IN,MAX ] F . Then we say that for eachF ∈ F :

πr(F ) =


0, if k < M IN

or if k > MAX ∧ F /∈ Fmax

π(F ′), if k ∈ [M IN, MAX ]

or if k > MAX ∧ F ∈ Fmax

whereFmax is again the set of the MAX findings with the best
weighted precisions among the findings inF .
When calculating the quality measure for a diagnosis or hypothesis
we apply the precisionπr(F ) for all findingsF connected by the
relationr. FindingsF with πr(F ) = 0 but π(F ) > 0 need to be
explained by other diagnoses contained in the hypothesis or will be
added toF isolated

H,O .

It is worth mentioning that ordinary covering relations for a diagno-
sis are following a similar concept, since we only will consider pre-
dicted findings that are also observed but not all predicted findings of
the diagnosis. But as opposed to [MIN, MAX ]-relations all observed
predictions will contribute to the quality. In [MIN, MAX ]-relations
only MAX observed findings will contribute; more than MAX find-
ings have to be explained by other diagnoses. In general, an ordinary
covering model for a diagnosisD with n covered findings is compa-
rable to a[c(D) · n, n]-relation connecting then findings.

3.4 Bounded Covering Relations

The introduction of similarities for finding values is a useful knowl-
edge extension. Nevertheless in some situations the expert wants to
express that a relation is only fulfilled if a covered parameter is ob-
served with exactly the predicted value, rather than a similar value.
Therefore we supplement necessary covering relations, disjunctive,



conjunctive and constrained covering relations with the optional la-
bel bounded. We obtain the required behaviour by locally defining
thedefault similaritymeasure for bounded relations:

sim
(
ValH(A),ValFO (A)

)
= δValH(A),ValFO (A).

I.e., only if a parameterA is observed with the predicted value, then
1 is assigned to its precision.

4 Constraints for Hypothesis Generation

As mentioned in the introduction of Section 2, the problem of hy-
pothesis generation is exponential, since forn diagnoses we need to
consider about2n hypotheses in the worst case for an observation.
In the following we want to sketch some heuristics to restrict the hy-
pothesis space.

In a first step, we will filter all diagnosesD ∈ ΩD, that arerele-
vant, i.e. having the minimum precision. For this, we define the set
of relevant diagnoses

Ωrel
D =

{
D ∈ ΩD

∣∣ π(D) ≥ c(D)
}
.

Then, only diagnosesD ∈ Ωrel
D will be taken into account, when

generating hypotheses. Before describing concepts to shrink the set
of hypotheses, we will definegeneratorsas a compact representation
for sets of hypotheses, which had been introduced by Reggia et al.
[1].

Definition 4.1 (Generator) A generatorGI = {G1, . . . , Gn} con-
sists of non-empty pairwise-disjoint subsetsGi ⊆ Ωrel

D The hypothe-
sesHGI generated byGI is defined as

HGI =
{
H ⊆ ΩD

∣∣ |H ∩Gi| ≤ 1, for all 1 ≤ i ≤ n
}
.

For GI = ∅, it holds thatHGI = {∅}. We can see, thatHGI is
analogous to a cartesian set product.

For example, for the set-covering model defined in Figure 1 and
FO = {temp : inc, skin : sweat, nose : red}, we obtainG =
{G1,G2} with G1 =

{
{cold}, {fever}

}
andG2 =

{
{flu}

}
. So we

can computeHG =
{
∅, {cold}, {fever}, {cold, fever}, {flu}

}
to be

the set of interesting hypotheses.

A method for computing and updating generator sets is extensively
described in [4]. Generators are used to efficiently generate hypothe-
ses in an incremental manner: In a first step, sets of generators de-
scribing higher level diagnoses (concepts) are created. For hypothe-
ses containing higher level diagnoses and having a high quality mea-
sure, we build sets of generators containing underlying specialized
diagnoses and test them with their corresponding quality measure.
In the following, we introduce two basic knowledge extension, that
additionally shrink the space of generated hypotheses.

4.1 Exclusion Constraints

We can defineexclusion constraintsto filter diagnoses from the pro-
cess of hypotheses generation. In general, two kinds of constraints
are possible:

¬(D ∧ F1 ∧ · · · ∧ Fn)
If findings F1, . . . , Fn are observed, then remove generated hy-
potheses, containing diagnosisD.

¬(D1 ∧ · · · ∧Dm)
Remove generated hypotheses, containing all the diagnoses
D1, . . . , Dm at the same time.

Thus, we create hypotheses using generator sets and check each gen-
erated hypothesis against the available exclusion constraints. If one
exclusion constraint evaluates true, the hypothesis is discarded.

It it worth noticing, that the modification of generator sets with re-
spect to exclusion constraints yields a combinatorial size of gener-
ators and therefore is not reasonable. An evaluation of the gener-
ated hypotheses according to existing exclusion constraints has been
proven to be more efficient.

4.2 Necessary Covering Relations

A stronger type of covering relations arenecessary covering rela-
tions. A necessary covering relation between a diagnosisD and a
finding F1 means, thatD necessarily coversF1 and thatF1 always
has to be observed ifD is hypothesized. We depict a necessary cov-
ering relation withD

nec−→ F1 as shown in Figure 6.
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Figure 6. Necessary Covering relation for a diagnosisD.

For applying necessary covering relations we introduce an adapted
definition of the precisionπnec for each diagnosisD ∈ ΩD:

πnec(D) =


0, if ∃ r ∈ ΩR : r = D

nec−→ F with

F ∈ ΩF ∧ π(F ) < τ

π(D), otherwise

whereτ ∈ [0, 1] is a specified threshold, which defines when a find-
ing is sufficiently observed (e.g.τ = 0.8).

Therefore a diagnosisD does not propagate any contribution to its
parent states until all necessarily covered findings are (sufficiently)
observed. Consequently,D will not appear in any generator and thus
will not be included in any hypothesis.

5 Conclusions and Future Work

After describing the basic structures of set-covering relations we
have shown how to enrich the model with additional knowledge like
similarities or weights. We also considered the computation of qual-
ity measures of these parts. Furthermore, we have shown represen-
tational extensions to the set-covering model to facilitate necessary,
disjunctive, conjunctive or constrained covering relations. An impor-
tant characteristic of all these extensions is the incrementality: some
enhancements can be added to refine special aspects of the model
but will not change its basic semantics; others are used to guide the
process of candidate generation.



In the future we are planning to work on the following fields: In-
cremental development requires restructuring the model from time
to time. We are currently working on restructuring methods for set-
covering models that do not alter the basic semantics but improve the
design of the diagnosis knowledge. In software engineeringrefactor-
ing [10, 11] has been emerged as the corresponding method. In gen-
eral we have to look atvalidation techniquesfor set-covering mod-
els besides simple case testing. Because of the special structure of
the model we also¡ have to consider static verification techniques for
the set-covering representation. For a survey in this field we refer to
[12, 13, 14, 15].
In this paper we presented a hand-driven development of set-covering
models. But it seems to be possible tolearn coarse modelsautomat-
ically from a small number of available cases. Later on these models
should be refined by the developer with additional knowledge. With
such a semi-automatic development step, the initial costs of knowl-
edge acquisition can be reduced conveniently. Some work in this field
has been done by Thompson et al. [16] and Wang et al. [17]. This step
is not considered if we have a sufficiently large set of data, since then
traditional machine learning methods (e.g. learning neural networks,
learning Bayes networks) seem to be more appropriate.
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Computing Minimal Conflicts
for Rich Constraint Languages

Jakob Mauss1 and Mugur Tatar1

Abstract. We address here the following question: Given an
inconsistent theory, find a minimal subset of it responsible for the
inconsistency. Such conflicts are essential for problem solvers that
make use of conflict-driven search (cf. [2, 4, 9]), for interactive
applications where explanations are required (cf. [16, 22]), or as
supporting tools for consistency maintenance in knowledge-bases
(cf. [11]). Conflict computation in AI applications was usually
associated with dependency recording as performed by TMSs (cf.
[2, 3, 18]). This techniques, however, have a rather limited
applicability for languages that go beyond the expressiveness
power of propositional logic. For more powerful languages and
solvers constraint suspension appeared, until now, to be the only
available alternative for the computation of minimal conflicts.

We present here an algorithm for computing minimal conflicts
that can be used with powerful constraint languages, e.g. possibly
including finite and non-finite variable domains, algebraic and FD
constraints, etc. The conflicts are extracted post mortem from the
proof (a tree with inferences of the form A ∧ B ⇒ C) that lead to
the derivation of the inconsistency by an informed search that
computes and generalizes conflicting relations. The algorithm is
based on a simple but powerful principle that allows to recursively
decompose the minimization problem into smaller sub-problems.
This principle can also lay the foundation for efficient constraint
suspension algorithms that can be used in case no intermediary
results are cached during the constraint solving, i.e. in case no
proof structures are available.

1 INTRODUCTION 

For problems expressed using propositional logic or using finite-
domain (FD) constraints there exist some efficient solutions for the
computation of conflicts and explanations (cf. [13, 16, 18]).
Unfortunately, this is not the case for more expressive constraint
languages. Due to the scope of our application interests, namely
supporting engineering tasks such as safety and diagnosability
analysis and also design and configuration (cf. [12, 15, 20, 22]),
we are especially interested in modeling languages adequate for
engineering problems. Such languages have to mix logical and FD
constraints with (more or less) classical systems of linear and non-
linear algebraic or even differential equations. The general purpose
techniques that can be applied in this case for the (minimal)
conflict computation are constraint suspension (cf. [7]) and TMS-
like dependency recording (cf. [3]). Constraint suspension can
guarantee conflict minimality, but it is in many cases too
inconvenient due to the large amount of time required to
recompute many subsets of the initial problem. When applied to
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systems of equations where local value propagation is not enough
for solving, TMS-based architectures usually become a heavy
machinery that consumes considerable amounts of time and
memory (see also [17]) and, in the end, still do not have any
guarantees for conflict minimality – the minimality is (at most)
guaranteed with respect to the propositional clauses that represent
the dependencies and not with respect to the semantic of the
original constraint language. The following example is an attempt
to illustrate this. Consider a system of five algebraic constraints

A1 �[�!�� A3 �y ≥ 2 A5 �[�!���\����
A2 �[���� A4 �\�≤ 2

A solver may process these constraints in 4 steps as shown in
Figure 1. In step ö, they are discovered inconsistent. A minimal
conflict among the given constraints is { A2, A3, A5 }. If the solver
were using dependency recording it would not find the above
minimal conflict – just the trivial {A1, A2, A3, A4, A5} in this case!

A1

x ∈ (4, 5)

x > 4 x < 5

A2

 

x > 5
y = 2

x > 2 y + 1y = 2

y ≥ 2 y ≤ 2

A12

A3 A4

A5A34

A345

�

ó

ì

ö

Figure 1.  Tree for proving the inconsistency of 5 constraints.

Of course, this was a just simple example where no symbolic
variable elimination was required and, for the above example, one
can easily define a strategy to handle correctly the conflict
computation – for instance by maintaining separate dependencies
for lower and upper bounds of intervals as in [6]. However, this
unnecessarily overloads the solving process in case of consistency
and, still, would not solve the problem in general.

In contrast, the key idea of this paper is to do a (guided) post
mortem analysis of the context in order to compute the minimal
conflicts. The algorithm uses the information that A345 is
conflicting with A12 (we say that A345 is a conflicting relation for
A12) and propagates and updates these conflicting relations
through the proof tree in order to select only those parts of it that
are really contributing to the conflict. The paper is organized as
follows: in section 2 we present the basic procedure for extracting
a minimal conflict from a binary proof tree. In section 3 we
describe how a constraint solver can control the inferences in order
to easily provide such trees. In section 4 we report some first
empirical results regarding the performance of the algorithms.
Section 5 concludes the paper with a comparison to related work.



2 COMPUTING MINIMAL CONFLICTS

We assume in the following a relational framework, i.e. constraints
are noted as relations over variables with finite or continuous
domains. These relations may be represented extensionally (as in
Figure 4), or intensionally using formulas (as in Figure 1). In
relational terms, ‘∧’ represents the join (intersection) of relations,
falsity ‘⊥’ is represented by the empty relation, and the implication
A ⇒ B is interpreted as subset relation A ⊆ B. A set of constraints
forms a conflict if it is not satisfiable, i.e. in relational terms, if the
join of the relations representing the constraints is the empty
relation. Given an initial set of inconsistent constraints, we are
interested in extracting a minimal conflict, i.e. a minimal subset
that is still inconsistent. Of course, there can be more than one
minimal conflict in an inconsistent context, but we focus for the
moment on finding just one such minimal conflict. In the
following, we show how to extract a minimal conflict from a
binary proof tree such as the one shown in Figure 2. The initial
constraints appearing as leaves in the proof tree are also called
assumptions in the following.

A B
falsity
conclusion
assumption

Figure 2.  Tree proving the inconsistency of 11 assumptions.

Assume that we have two conflicting relations A, B, none of them
being empty, i.e. A ≠ ⊥, B ≠ ⊥, and A ∧ B ⇒ ⊥. Then we have to
consider two cases.

1. A and B are both assumptions. In this case, {A, B} is the
minimal conflict.

2. At least one of A, B is not an assumption. Assume without loss
of generality that A has been derived from A1 and A2, i.e.
A1 ∧ A2 ⇒ A. Let now: C1 := A1 ∧ B and C2 := A2 ∧ B. We can
then distinguish 4 cases, as shown in Figure 3.

B

A1 A2
A

1. 2. 3. 4.B

A1 A2
A

B

A1 A2
A

B

A1 A2
A

Figure 3.  Four cases distinguished by computing intersections.
Each relation is depicted as a set of variable assignments.

2.1: C1 = ⊥ ∧ C2 ≠ ⊥ In this case, the assumptions leading to the
derivation of A2 do not contribute to the conflict with B.
Consequently, we can prune the whole sub-tree A2 and
continue the conflict search in A1.

2.2: C1 ≠ ⊥ ∧ C2 = ⊥ Analog to case 2.1. A1 can be ignored.

2.3: C1 = ⊥ ∧ C2 = ⊥ There are at least two independent
conflicts with B, at least one in the sub-tree A1, and at least one
in A2. If we want to find just one conflict then we can non-
deterministically decide to skip one of the sub-trees.

2.4: C1 ≠ ⊥ ∧ C2 ≠ ⊥ All minimal conflicts are spread across
both sub-trees. A minimal conflict has to be composed from a
partial solution retrieved from the sub-tree A1 and an
appropriate completion retrieved from the sub-tree A2. If B was
a conflicting relation for A, then C1 is a conflicting relation for
A2 and C2 is a conflicting relation for A1. With these new
conflicting relations we can descend recursively in the A1, A2

sub-trees and collect the sub-conflicts.

This case analysis leads to the following procedure for extracting a
minimal conflict from a proof tree.
Specification: Let

R be a non-empty set of relations (assumptions)
A the root of a binary proof tree with the leaves given by R
B a conflicting relation for A, i.e.: B ≠ ⊥ and A ∧ B = ⊥.

The proof tree satisfies the requirement that, for any non-leaf node
A: left(A) ∧ right(A) ⇒ A.

The procedure XC1(A, B) returns one minimal and non-empty
set M ⊆ R such that (∧M) ∧ B = ⊥. As a consequence, if A is the
root of a refutation tree then XC1(A, T) returns a minimal conflict
from the tree - where T represents the universal relation i.e. the
complement of ⊥.

XC1(A, B)
þ if (isLeaf(A)) return { A }
   A1 ←  left(A)
   A2 ← right(A)
   C1 ← A1 ∧ B
   C2 ← A2 ∧ B
� if (C1 = ⊥ and C2 ≠ ⊥) return XC1(A1,B)
ó if (C1 ≠ ⊥ and C2 = ⊥) return XC1(A2,B)
ì if (C1 = ⊥ and C2 = ⊥) return XC1(A1,B)
                      or return XC1(A2,B)
ö if (C1 ≠ ⊥ and C2 ≠ ⊥)
              M1 ← XC1(A1, C2)
              M2 ← XC1(A2, (∧M1) ∧ B)
              return M1 ∪ M2

In case ö the procedure first descends in the sub-tree A1 with C2

as conflicting relation. Before it descends in the sub-tree A2 we,
however, have to generalize A1 to ∧M1 and C1 to (∧M1) ∧ B. This
is necessary in case we have several minimal conflicts that span
over the sub-trees A1 and A2 in order to select from A2 a sub-
conflict that is part of the same conflict as the sub-conflict that was
non-deterministically chosen (case ì) from the sub-tree A1. Such a
case is also illustrated by the following example.

Example  Consider the set R = {A1, …A5} shown in Figure 4.
The constraints are extensionally defined relations in this example.
E.g. A1 � 
�[ = a ∧ y = 1) ∨ (x = b ∧ y = 0)'. R is inconsistent,
actually it contains two minimal conflicts. Figure 5 shows how
XC1 computes one of them. Circled numbers correspond to the
five cases marked in the pseudo code above.

A1

x y z
a 3 4
b 0 0

x y z
a 1 2
b 0 0x y

a 1
b 0

x
a

x z
a 2
b 0

x y
a 3
b 0

x z
a 4
b 0

A2 A3 A4

A5

A6 A7

A8

A9

minimal conflicts

{A1, A3, A5}
{A2, A4, A5}

x y z
b 0 0

 

Figure 4.  A proof tree for R = {A1, A2, A3, A4, A5}
The crucial part of the procedure is handled in case ö, where a
minimal conflict is composed as a disjoined union of two sets M1

and M2 computed using the left and right sub-tree. Note that the
second set M2 depends on the first set M1. During the recursive
call at A6 the procedure non-deterministically decides to select the
conflict containing A1. This decision is reflected in the arguments
of the succeeding call at A7 in order to select the right sub-conflict
- i.e A3 and not A4 which could be erroneously selected if we did
not update the conflicting relation for A7!



Some properties of XC1 that are worth discussing are:
(1) During top-down traversal of the proof tree, only direct fathers
of the nodes contained in the returned minimal conflict are visited.
Sub-trees not involved in the minimal conflict are pruned without
investigating their nodes. The worst-case appears when the pruning
is not effective and we have to inspect the whole tree (always in
case ö). For a tree with n leaves there are no more than 4(n-1)
joins for the worst case (see also the incremental computation of
∧M1 later on). However, the complexity of the conflict
minimization crucially depends on the complexity of the basic join
operations.

XC1(A9,    )
C1 ← A8
C2 ← A5

M1 ←  XC1(A8, A5)

C1 ← A5 ∧ A6 =

C2 ← A5 ∧ A7 =

M1 ←  XC1(A6,                  )
C1 ← 
C2 ← 

return  XC1(A1,                   )
return {A1}

M2 ←  XC1(A7,              )
C1 ← 

C2 ← 

return  XC1(A3,                )
return {A3}

return {A1, A3}

M2 ←  XC1(A5, A8)
return { A5 }

return {A1, A3, A5}

ö

ì

x y z
a 1 2

x y z
a 3 4

x y z
a 3 4

x y z
a 3 4

x y
a 1

x y z
a 1 4

x y
a 1

ö

þ

�

þ

þ

Figure 5.  Trace of computation of a minimal conflict

(2) An inference engine will be unable in general to provide
complete implementations of the join and empty-check operations
- for instance in case we are dealing with systems of non-linear
equations. When used in conjunction with a correct but incomplete
inference engine, XC1 may return a non-minimal conflict. The
conflict ’minimallity’ is only relative to the completeness degree of
the inference services supplied by the solver.

A

D

E

F

C

B

B

A

C

D

Figure 6.  Two minimal conflicts {B, D} and {A, C, D}

(3) The procedure can easily be extended to return several minimal
conflicts instead of only one. Basically, in case ì, one can
continue search in both sub-trees, instead of non-deterministically
choosing one of them. However, this simple extension of XC1 will
not always return all of the minimal conflicts. See Figure 6 for an
example. The second conflict {A, C, D} is missed, when using the
given proof tree. Anyway, the computation of all minimal conflicts
from a context can require significantly more effort and is seldom
justified in practice.

(4) There are several obvious improvements of the efficiency of
XC1 as given above. If the proof structure is a tree then M1 ∪ M2

can be computed as a disjoined union in case ö. If case ì is
always mapped to (say) case � then the computation of C2 is
required only if C1 ≠ ⊥. The repeated ∧ computations ∧M1 can be
avoided if XC1, in addition to returning the set M, also returns the
join ∧M, which allows for an incremental computation of the
conjunction in case ö. Moreover, the generalization of the
conflicting relation C1, i.e. (∧M1) ∧ B in case ö, is required only
if it is a strict generalization, i.e. if M1 is a strict subset of the
leaves of A1.

3 DERIVING PROOF TREES

In the previous section we have seen how to extract one or several
minimal conflicts from a proof structure. In this section we sketch
how a constraint solver operating on a set R of input relations can
control the inference in order to

1. check whether R is consistent, i.e. whether ∧R ≠ ⊥
2. solve R for any variable
3. provide the proof structure required for conflict computation.

Conflict computation using XC1 works however with any well-
formed proof structure, irrespective if the proof was generated by a
solver like the one described in this section or not2.

We note with V(A) the set of variables constrained by a relation
A. π(A, X) denotes the projection of A onto a variable set X. The
projection π(A, X) results from eliminating all variables V(A) \ X
from the relation A. For example, if

A �[2 + y2 < 1 B ��[���2 + y2 < 1
then π(A ∧ B, {x})   =   ’0 < x ∧ x < 1’
and π(A ∧ B, {y})   =   ’-1 < y ∧ y < 1’.

The projection operation is an abstraction (generalization)
operation, i.e. A ⇒ π(A, X). Hence, the computation
C := π(A ∧ B, X) can be seen as an inference of the form
A ∧ B ⇒ C. We call such an inference, i.e. projecting the join of
two relations A and B onto a variable set X, an aggregation.

The computed proofs will contain aggregations as the only kind
of inference. The proof structures will be used to derive minimal
conflicts, or minimal explanations of variable solutions.

The consistency check, may seem trivial to specify. We could
simply ask the solver to compute ∧R to check whether ∧R ≠ ⊥.
However, in the practical applications with which we are
commonly confronted, R may contain hundreds of algebraic and
logical constraints with thousands of variables. In this case, the
intermediate relations created during the computation of ∧R would
be huge. Instead, following [1], after computing a single
conjunction A ∧ B, we eliminate all those variables from the result
that do not occur in the remaining relations. Consequently, the
intermediate relations remain 'small' – the size depending, of
course, on the degree of connectivity of the constraint network.
This works fine, as long as a variable is shared by a relatively small
number of constraints. If the connectivity degree increases (cf.
induced width w* in [5]), then many of the aggregations degrade
to simple joins and the approach is likely to become inappropriate.

                                                                
2 Such proof structures can be recovered, for instance, also from the

well-founded-support recorded by a TMS (cf. [18]) - in which case XC1
could be used for further conflict minimization (recall that a TMS
guarantees minimality only with respect to propositional dependencies and
not with respect to the more expressive constraint language).



The creation of a proof tree for the consistency check is given by
the following procedure.
Specification: Let R be a non-empty set of assumptions, ⊥ ∉ R.
Then the procedure isConsistent(R) returns true, iff R is satisfiable.

isConsistent(R)
  if ( |R|= 1 )
     return true
  else
     choose {A, B} ⊆ R
     S ← R \ {A, B}
     X ← (vars(A) ∪ vars(B)) ∩ (∪ vars(S))
     C ← π(A ∧ B, X)
     if (C = ⊥) return false
     return isConsistent(S ∪ { C })

vars(A)
  if (A is a leaf)
     return V(A)
  else
     return vars(left(A)) ∪ vars(right(A))

Obviously, the procedure isConsistent computes a proof tree
containing aggregations as the only kind of inference. Therefore,
we call this an aggregation tree. If A is the root of an aggregation
tree for an inconsistent set R of assumptions then, as shown in
section 2, XC1(A, T) returns a minimal conflict. To keep the
conflicting relation B small, we may add a projection step
B ← π(B, vars(A)) as first instruction in XC1. The strategy used
to choose a pair of relations for aggregation may for example
minimize the variable set X, or try to achieve a balanced tree.

For checking the consistency of n assumptions, isConsistent
computes n - 1 aggregations. A significant feature of proof trees as
derived above is their ability to support incremental context
analysis. Assume we have performed a consistency check for a set
R of n assumptions, and we want to analyze a second context R’,
constructed by replacing an assumption A in the proof tree for R
by a new assumption B with the same variable set. In order to
check the new context R ∪ {B} \ {A}, we only have to re-compute
the inferences on the path from A to the root of the proof tree, i.e.
if the proof tree is balanced, we only have to compute log(n)
aggregations. As we see next, the computation of variable
solutions can be performed using aggregations as well.

Specification: Let R be a non-empty consistent set of
assumptions, and A the root of an aggregation tree computed by
the procedure isConsistent. Then the procedure solve(A, T)
computes for every variable x in R the solution S[x] := π(∧R, {x}).

solve(A, B)
   if (A is a leaf) return
   B ← π(B, vars(A))
   A1 ←  left(A); A2 ← right(A)
   A12 ← A1 ∧ A2
   X ← vars(A1) ∪ vars(A2) \ vars(A)
   for each x ∈ X

S[x] ← π( A12 ∧ B, {x})
   solve(A1, A12 ∧ B)
   solve(A2, A12 ∧ B)

If we take a closer look at the procedure solve, we note that each
S[x] is the root of a proof structure defined by a sequence of
aggregations. In this case the proof is not purely a tree, it is
actually a DAG because some nodes are used more than once.
Still, the proof is well-formed, i.e. there are no cyclic justifications.
XC1 can be modified to cope with the DAG structure. The
resulting procedure XE1(S[x], ¬S[x]) returns a minimal
supporting set of assumptions for the solution of x, i.e. a minimal
subset E ⊆ R such that S[x] = π(∧E, {x}).

4 APPLICATION AND EMPIRICAL RESULTS

We have recently finished a prototype implementation of a
Relational Constraint Solver (RCS) that follows the principles
described in this paper, including the computation of explanations
and conflicts. RCS is already integrated in our environment for
engineering knowledge management, and its integration in MDS
[12] is planned to follow.

In this section we compare XC1 with the conflict computation
based on naive constraint suspension. Let R be an inconsistent set
of relations. Then the procedure MC(R, {}) returns a minimal
conflict, computed by constraint suspension.

MC(R, M)
  if R = {} return M
  else choose A ∈ R
       if ∧(R ∪ M \ {A}) = ⊥
            return MC(R \ {A}, M)
       else return MC(R \ {A}, M ∪ {A})

The procedure MC resembles Junker’s ROBUSTXPLAIN [8], which
may use a trailing-mechanism not described in [8] to perform
incremental (i.e. fast) consistency checking. If |R| = n and a
consistency check for R requires n aggregations, then MC(R, {})
needs O(n2) aggregations for computing a minimal conflict. In
contrast, XC1 requires only O(n) aggregations for the same task,
given an arbitrary, not necessarily balanced tree. Our
implementation of MC uses an incremental consistency check as
explained in section 3 – thus, a check requires only O(log(n))
instead of O(n) aggregations in the best case.
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Figure 7. An 8-bit full adder

For the empirical comparison, we used a set R of 137 relations,
representing eight 1-bit full adders connected in series as shown in
Figure 7, and the assignments c0 = 1, and for 0 ≤ k ≤ 7: xk = 0,
yk = 1. If we add one more relation of the form ck =  0, then R
becomes inconsistent and contains a minimal conflict M of size
|M| = 2 + 3 k. This gives us 8 different sets Rk of size 138,
containing a minimal conflict M of size 2 + 3 k.

conflict detection MC XC1
|M| n ∧, π ∧ π ∧ π t(XC1)

t(MC)

2 8.5 59.1 95.7 91.6 8.8 3.5 446
5 32.6 120.8 76.2 59.4 31.4 13.9 12
8 52.4 129.1 108.3 80.4 52.5 22.9 6.9

11 70.5 131.5 140.4 103.6 72.8 31.5 6.4
14 93.0 133.6 178.5 130.1 93.9 40.4 5.4
17 107.7 134.9 208.5 151.1 113.5 48.3 4.1
20 122.6 135.8 247.5 179.8 131.3 55.7 2.5
23 134.8 136.7 278.3 201.0 151.8 63.7 1.3

Figure 8. Empirical results

For each k isConsistent(Rk) is run for consistency check and it
returns a refutation tree that is used as input by both MC and XC1.
The leaves of this tree represent an initial (not necessarily minimal)
conflict of size n - see Figure 8. The table gives the average results
obtained for running both algorithms 100 times for all eight Rk.
For each run, we permutated the order of the input relations which
resulted in different structures of the derived aggregation trees. The
columns in the table denote the average number of join and project



operations needed for conflict detection in isConsistent and by the
subsequent minimization call to MC or to XC1. The last column
gives the ratio of the measured runtimes for MC and XC1. For
example, for the case of a minimal conflict of size 2, the average
initial conflict provided by isConsistent has size 8.5 and it takes
59.1 aggregations (join followed by project) to detect the conflict.
MC needs then 95.7 more joins and 91.6 projections to minimize
the initial conflict by suspension, while XC1 is 446 times faster
than MC and needs only 8.8 joins and 3.5 projections for the same
task. The performance gain of XC1 relative to MC depends
strongly on the structure of the proof trees supplied by the solver –
i.e. whether the conflicting assumptions are uniformly spread
among the leaves of the tree or whether they are clustered in a few
sub-trees.

5 RELATED WORK AND DISCUSSION

Dependency recording, like the one performed by TMSs (cf. [2, 3,
18]) works relatively fine as long as we stay in a propositional
framework (or, anyway, in a finite world). In more expressive
frameworks these techniques gradually become both

• very resource consuming (in time and space)
• incomplete with respect to the more expressive framework.

Constraint suspension is another technique used for conflict
computation. It is in general expensive because it relies on
performing the consistency check many times for different subsets
of the initial problem. A recent enhancement to constraint
suspension is the one reported in [8]. The performance of the
conflict computation is improved there in two ways:
(a) by adding the constraints to the solver’s store one after the

other and performing each time a complete consistency check,
one knows that the last constraint added that caused the store
to become inconsistent is part of all conflicts from the already
considered subset; and

(b) by employing an intelligent search, where sets of constraints
are simultaneously suspended and then are binary split if
necessary.

The proof structure corresponding to the control strategy assumed
by Junker is a linear tree. We do not need to enforce the sequential
consistency check as assumed by (a). We can assume any
clustering technique, such as the ones resulting after structure
analysis, e.g. cycle-cutset, hypertree decomposition, etc. (cf. [10]),
and thus take advantage of the performance improvements for
constraint solving enabled by these methods. Our solution suits
better the solvers employing such decompositions or the solvers
that are recording (at least partially) their proof structures in order
to support incremental operation. Although developed
independently and using quite differing notations, the principle
underlying the decomposition of the conflict minimization
problems is the same for our XC1 and for Junker’s QUICKXPLAIN

algorithm. After several years of trying to improve constraint
solving and dependency recording (cf. [15]), the existence of such
simple and general algorithms for minimal conflict computation
came for us as a surprising positive result.

One of our main application areas is model-based diagnosis.
We do not argue here that one should perform diagnosis by always
first computing conflicts and then generating minimal / preferred /
etc. diagnoses. Several authors point out that the direct
computation of diagnoses can be more efficient (cf. [16, 19, 21,
23] ). The ideas from an algorithm such as TREE* (cf. [21]) can be
probably easily adapted to a general relational framework such as

the one of RCS. One weak point, however, of the available
computation techniques that are not based on conflicts is that they
basically address static problems. It would be interesting to see if
the ideas of the temporal decomposition that can be applied for
computing minimal conflicts (cf. [14]) can be also applied for the
direct computation of diagnoses or interpretations.

Although we discussed here about the computation of minimal
conflicts, in practice minimality and completeness have to be
traded against efficiency. Nevertheless, sometimes the definition of
the application (minimisation, compilation, explanation, etc)
require a higher degree of completeness that is more important
than the computation times.
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Abstract

Given the description of a physical system in one
of several forms (a set of constraints, Bayesian net-
work etc.) and a set of observations made, the
task of model-based diagnosis is to find a suitable
assignment to the modes of behavior of individ-
ual components (this notion can also be extended
to handle transitions and dynamic systems [Kurien
and Nayak, 2000]. Many formalisms have been
proposed in the past to characterize diagnoses and
systems. These include consistency-based diag-
nosis, fault models, abduction, combinatorial op-
timization, Bayesian model selection etc. Different
approaches are apparently well suited for different
applications and representational forms in which
the system description is available. In this paper,
we provide a unifying theme behind all these ap-
proaches based on the notion of model counting.
By doing this, we are able to provide a universal
characterization of diagnoses that is independent of
the representational form of the system description.
We also show how the shortcomings of previous ap-
proaches (mostly associated with their inability to
reason about different elements of knowledge like
probabilities and constraints) are removed in our
framework. Finally, we report on the computational
tractability of diagnosis-algorithms based on model
counting.

1 Introduction
Diagnosis is an important component of autonomy for any
intelligent agent. Often, an intelligent agent plans a set of
actions to achieve certain goals and because some conditions
may be unforeseen, it is important for it to be able to recon-
figure its plan depending upon the state in which it is. This
state identification problem is essentially a problem of diag-
nosis. In its simplest form, the problem of diagnosis is to find
a suitable assignment to the modes of behavior of individual
components in a static system (given some observations made
on it). It is possible to handle the case of dynamic systems by
treating the transition variables as components (in one sense)
[Kurien and Nayak, 2000]. The theory developed in this pa-
per is therefore equally applicable to dynamic systems too

(although we omit the discussion due to restrictions on the
length of the paper).

Many approaches have been used in the past to character-
ize diagnoses and systems. Among the most comprehensive
pieces of work are [de Kleer and Williams, 1989], [Reiter,
1987], [Struss and Dressler, 1989], [Console et al., 1989],
[de Kleer et al., 1992], [Poole, 1994], [Kohlas et al., 1998]
and [Lucas, 2001]. The popular characterizations of diag-
noses include consistency-based diagnosis, fault models, ab-
duction, combinatorial optimization, and Bayesian model se-
lection. These approaches are however tailored for different
applications and representational forms in which the system
description is available. They also have one or more short-
comings arising out of their inability to provide for a frame-
work that can incorporate knowledge in different forms like
probabilities, constraints etc.

In this paper, we provide a unifying theme behind all these
approaches based on the notion of model counting. By doing
this, we are able to provide a universal characterization of di-
agnoses independent of the representational form of the sys-
tem description. Because model counting bridges the gap be-
tween different kinds of knowledge elements, the shortcom-
ings of previous approaches are removed.

2 Background
Before we present our characterization of diagnoses based on
model counting, we choose to provide a quick overview of
the previous approaches so that we can compare and contrast
our approach with them.
Definition (Diagnosis System) A diagnosis system is a triple
(
���

, ������� �
, �
	 �

) such that:
1.

���
is a system description expressed in one of several

forms — constraint languages like propositional logic, prob-
abilistic models like Bayesian network etc.

���
specifies both

component behavior information and component structure in-
formation (i.e. the topology of the system).
2. ������� �

is a finite set of components of the system. A
component �������� ( ��������� ������� � � ) can behave in one
of several, but finite set of modes ( � � ). If these modes are
not specified explicitly, then we assume two modes — failed
( ��	�� ������!�#" ) and normal ( $%��	&�'��������#" ).
3. �
	 �

is a set of observations expressed as variable values.
Definition The task in a complete diagnosis call is to find a
“suitable” assignment of modes to all the components in the



system given
���

and �
	 �
. The task in a partial diagnosis

call is to find a suitable assignment of modes to a specified
subset

�
(
�)( ������� �

) of the components in the system
given

���
and �
	 �

.
Unless stated otherwise, we will use the term “diagnosis”

to refer to a complete diagnosis. Later in the paper we will
show that the characterization of partial diagnoses is a simple
extension of the characterization of complete diagnoses.
Definition (Candidate) Given a set of integers
�+*-,.,/,0�21 354-687:9!1 (such that for �;� <=� � ������� � � ,
���>� ?��=� �@?A� ), a candidate �
BDCFE!�'�+*%,.,.,G�21 354:6�759�1H" is

defined as �
BACFE��I�G*-,.,/,+�21 354-6�759�1 "�J)�LK 1 3:4:6�759�1M2N * �'������ M J
� M �'� M "+"+" .
Here, �PO��IQR" denotes the QDS'T element in the set �UO (assumed
to be indexed in some way).
Notation When the indices are implicit or arbitrary, we will
use the symbol V to denote a candidate or a hypothesis i.e.
an assignment of modes to all the components in the system.

Consistency-Based Diagnosis
The task of consistency-based diagnosis can be summarized
as follows. Note that the definition of a diagnosis in this
framework does not discriminate between single and multi-
ple faults.
Definition (Consistency-Based Diagnosis) A candidate V is
a diagnosis if and only if

���XW �
	 �YW V is satisfiable.
There are other characterizations of diagnoses under this

framework called partial diagnoses, prime diagnoses, kernel
diagnoses etc. We will examine these later in the paper.

Fault Models
Consider diagnosing a system consisting of three bulbs
	�*�ZG	\[ and 	\] connected in parallel to the same volt-
age source ^ under the observations `_a_%� 	 * " , `_a_%� 	 [ "
and �C��'	\]/" . ��	&� ^b"�cd��	��'	\]�" is a diagnosis under the
consistency-based formalization of diagnosis if we had con-
straints only of the form $%��	�� 	\]e"-cf$%��	&� ^�"�gh�C��'	\]i" .
Intuitively however, it does not seem reasonable because 	 ]
cannot be �C without ^ working properly. One way to get
around this is to include fault models in the system. These are
constraints that explicitly describe the behavior of a compo-
nent when it is not in its nominal mode (most expected mode
of behavior of a component). Such a constraint in this exam-
ple would be ��	&�'	\]�"�gj`_a_%�'	\]/" . Diagnosis can become
indiscriminate without fault models. It is also easy to see
that the consistency-based approach can exploit fault models
(when they are specified) to produce more intuitive diagnoses
(like only 	�* and 	\[ being abnormal).

Diagnosis as Combinatorial Optimization
The technique of using fault models is associated with the
problem of being too restrictive. We may not be able to model
the case of some strange source of power making 	 ] on etc.
The way out of this is to allow for many modes of behavior
for each component of the system. Every component has a
set of modes (in which it can behave) with associated mod-
els. One of these is the nominal (or normal) mode and the
others are fault modes. Each component has the unknown
fault mode with the empty model. The unknown mode tries
to capture the modeling incompleteness assumption (obscure

modes that we cannot model in the system). Also, each mode
has an associated probability that is the prior probability of
the component being in that mode. Diagnosis can now be cast
as a combinatorial optimization problem of assigning modes
of behavior to each component such that it is not only con-
sistent with

���kW �
	 �
, but also maximizes the product of

the prior probabilities associated with those modes (assuming
independence in the behavior of components).
Definition (Combinatorial Optimization) A candidate V>J
Cand( �G*:,.,.,+�l1 3:4:6�759�1 ) is a diagnosis if and only if

���dW V W
�
	 �

is satisfiable and �m� Vf"fJh�'n 1 354-6�759�1M2N * �m�'������ M J
� M �'� M "+"+" is maximized.

Diagnosis as Bayesian Model Selection
Sometimes we have sufficient experience and statistical in-
formation associated with the behavior of a system. In such
cases, the system description is usually available in the form
of a probabilistic model like a Bayesian network. Given some
observations made on the system, the problem of diagnosis
then becomes a Bayesian model selection problem.
Definition (Bayesian Model Selection) A candidate V
is a diagnosis (for a probabilistic model of the system,���

) if and only if it maximizes the posterior probability
�m�'Vpo ��� Zl�
	 � " .
Diagnosis as Abduction
Yet another intuition behind characterizing diagnoses is the
idea of explanation. Explanatory diagnoses essentially try to
capture the notion of cause and effect in the physics of the
system. The observations are asymmetrically divided into in-
puts ( q ) and outputs ( � ) [de Kleer et al., 1992]. The inputs
( q ) are those observation variables that can be controlled ex-
ternally.
Definition (Abductive Diagnosis): An abductive diagnosis
for (

���
, ������� �

, �
	 � Jrq W � ) is a candidate V such
that

���XW q W V is satisfiable and
����W q W Vsgt� .

3 Probabilities and Model Counting
Before we present our own characterization of diagnoses
based on the notion of model counting, we show an interest-
ing relationship between probabilities and model counting
(see Figure 1). The model counting problem is the problem
of counting the number of solutions to a SAT (satisfiability
problem) or a CSP (constraint satisfaction problem).

Definition (Binary representation of a CPT): The bi-
nary representation of a CPT (Conditional Probability Table)
is a table in which all the floating-point entries of the CPT
are re-written in a binary form (base 2) up to a precision of �
binary digits and the decimal point along with any redundant
zeroes to the left of it are removed.

We provide a set of definitions and results relating the
probability of a partial assignment � to the number of
solutions (under the same partial assignment � ) to CSPs
composed out of the binary representations of the CPTs (see
Figure 1). Basic definitions related to CSPs can be found in
[Dechter, 1992].
Definition (Zero-one-layer of a CPT) The uvS'T zero-one-layer
of a CPT is a table of zeroes and ones derived from the uvS'T
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Figure 1: Shows the conditional probability tables (CPTs) of a Bayes net on the left of the vertical line L. On the right of L are
the binary representations of these CPTs (example shown for 0.4 in decimal = 0.011 in binary). CPTs correspond to families in
the Bayes net and let the number of families be C.

bit position of all the numbers in the binary representation of
that CPT.
Definition (Weight of a zero-one-layer) The u S'T zero-one-
layer of a CPT is defined to have weight wvx M

.
Definition (CSP Compilation of a CPT) The uvS'T CSP
compilation of a CPT is a constraint over the variables of the
CPT that is derived from the uRS'T zero-one-layer of the CPT
such that zeroes correspond to disallowed tuples and ones
correspond to allowed tuples.
Definition (CSP Compilation of Network) The � uv*eZluy[�,.,.,lu 3 "
CSP compilation of the Network is the set of constraints

� Jz�{ �%| { � is the uRS'T� CSP compilation of the �}S'T CPT ~ .
Definition (Weight of a CSP Compilation) The weight of a
� u�*`Z�uA[�,.,/,�u 3 " CSP compilation of a network is defined to be
equal to wRx5� M��0�5Ml���H�H� M2�!�

.
Property There are an exponential number of CSP compi-
lations for a given network. Since each CPT expands into
� zero-one-layers and a CSP for the entire network can be
compiled by taking any of these � layers for each CPT (there
are � CPTs), the total number of CSP compilations possible
is � 3 .
Notation We will use the notation � � ? to mean the <DS'T CSP
compilation of the �#S'T CPT. Let � indicate a complete or
partial assignment to the variables. If � is an assignment
that instantiates all the variables of �
�
� � , then we will use
the notation ��� ? � ��" to indicate whether or not � satisfies
� � ? . If � is a complete assignment for all the variables in

the network, then all variables for all CPTs are instantiated
and we will use the notation � � � � M��l� Ml�.�H�H� M2��� �'��" to indicate
whether � satisfies all the constraints � � Ml� ( �������k� ). If
� is not a complete assignment for all the variables, then we
will use the notation ��� � � � M��2� Ml���H�H� M2�!� �'�\" to indicate the
number of solutions to the � u * Z�u [ ,.,/,Gu 3 " CSP compilation
of the network that share the same partial assignment as � .
Theorem 1 The probability of a complete assignment
��J �I��*�J��a*-,.,/,+�m��J��!�v" is just the sum of the
weights of the different CSP compilations of the network
that are satisfied by this complete assignment. That is,
�m�'�\"�J � � M � � M � �H�H� M � � � � � � M � � M � �H�H� M � � �'�\"+wRx5� M � �5M � �H�H� M � �
(for all ���d����� , ����u � ��� ).
Proof Consider the complete assignment � J �'�&*�J
� * ,.,/,0� � J�� � " for all the variables. The probability of this
assignment is equal to the product of the probabilities defined
locally by each CPT. Now using the fact that the � S'T bit in the
binary representation of this local value has been written out
as an allowed or disallowed tuple in the �+S'T CSP compilation
of that CPT, we can rewrite the local value for � in a CPT
as � 7? N * � � ?A�'�\"+w�x ? . The total probability is then just the

product over all local values = n 3 M2N * � 7? N * � M ?A�'�\"+w�x ? .
Expanding the product, we see that each term is essentially
of the form � � M��l� Ml���H�H� M2��� w�x:� M��}�5Ml���H�H� M2�!� n 3? N * � ? M�  �'��">J
� � M���� Ml�.�H�H� M2�¡� w x:� M��}�:Ml���H�H� M2��� � � � � M � � M � �H�H� M � � � ��" .



Theorem 2 (Model Counting) The marginalized prob-
ability of a partial assignment � to a set of variables�¢( ^ is equal to the product of the weight and the
number of solutions (under the same partial assignment � )
summed over all CSP compilations of the network. That is,
�m�'�\"£J=� � M � � M � �H�H� M � � ��� � � � M � � M � �H�H� M � � �'�\"+wRx5� M � �5M � �H�H� M � �
(for all ���d����� , ����u � ��� ).
Proof From the previous theorem, we know that
the probability of a complete assignment 	 is
� � M���� Ml�.�H�H� M2�¡� � � � � M��2� Ml���H�H� M2�!� �'	�"+w�x:� M��}�:Ml���H�H� M2���

(for all
�¤�¥���¦� , �§�=uA�X�¨� ). Now, the marginalized
probability of a partial assignment � is just the sum of
the probabilities of all complete assignments 	 that agree
with � on the assignment to variables in

�
. That is,

�m�'�\"©J �«ª �m�'	8".�'	&� � "�J ��" . Using the result of
the previous theorem to expand �m� 	8" , we have �m� ��"�J
�¬ª&� � M��2� Ml�2�H�H� M2��� � � � � M��l� Ml���H�H� M2�!� � 	8"Gw�x5� M��0�5Ml�.�H�H� M2�¡� � 	�� � "�J
��" . Switching the two summations and noting that
�¬ª � � � � M��l� Ml���H�H� M2�!� � 	8".�'	�� � " J ��" is the same
as � � M��l� Ml���H�H� M2��� �8� � � � M � � M � �H�H� M � � �'�\" , we get that

�m�'�\"�J¬� � M � � M � �H�H� M � � �8� � � � M � � M � �H�H� M � � �'�\"+wRx5� M � �5M � �H�H� M � �
.

3.1 Probability-Equivalents and Incorporation of
Probabilities

Often, we are given information in many forms. Probabilities
are natural information elements when there is an element of
statistical experience that we want to exploit. In other cases,
constraints may be the most appropriate to use. The general
idea in our framework is to use probabilities when we explic-
itly have them and to use model counting otherwise. We will
use �&� � * Z � [ ,/,.,H" to mean the number of consistent models to
� � * W�� [�,.,.,H" (with respect to the uninstantiated free variables
in

���
). Theorems 1 and 2 establish that model counting is

a weaker form of probabilities and that probabilities provide
only precision information over model counting. Therefore, it
is natural for us to use probabilities (to describe events) when
we have them explicitly, and to use model counting otherwise.
For any event  , we use the expressions ® � 9D¯ � °5�

® � 9D¯ � and �m�'b"
almost equivalently — except that we use the former when
we do not know �m�'b" explicitly. This framework allows us
to reason about both probabilities and constraints.
Definition (Probability Equivalents) The probability equiv-
alent of ��� ��� Z�b" for any event  is defined to be
�m�'8"G�&� ��� " when �m�'8" is given explicitly.

4 Diagnosis as Model Counting
In this section, we characterize diagnoses based on model
counting. We will then show how all the previous approaches
are captured under this formalization. For the first part of
the discussion we will consider only complete diagnoses (an
assignment of modes for all the components).
Definition (Model Counting Characterization) A diagnosis
is a candidate V that maximizes the number of consistent
models to

���sW �
	 ��W V using probability equivalents
wherever necessary.
Notation We will use �k� Vf" to denote �&� ��� Z��
	 � ZGVf"
(the number of consistent models to

���±W �
	 �²W V ) when

���
and �
	 �

follow from context.
Theorem 3 (Capturing Consistency-Based Diagnosis)
Consistency-Based diagnosis is looking for a hypothesis V
for which �k�'Vf" is non-zero.
Proof By definition, consistency-based diagnosis chooses V
such that

����W �
	 �³W V is consistent. In other words, there
exists at least one satisfying assignment for

���«W �
	 ��W V .
Clearly, this is equivalent to saying that �k�'Vf" is non-zero.
Theorem 4 (Capturing Abduction) Abduction chooses a
hypothesis V that maximizes �k�'Vf" assuming uniformity in
prior probabilities �m�'Vf" .
Proof The maximum value of �&� ��� Z��
	 � J´q W ��Z�Vf"
is �&� ��� ZGVYZ�qD" and this happens when V Wf���rW qfg>� .
Given that the input variables are controlled externally, we
know that �&� ��� ZGV@"µJ·¶U�'q�"G�&� ��� ZGVYZ�qD" . Here, ¶d�'q�"
is a constant that measures the number of different values
for the input variables. Since �&� ��� ZGV@" is equivalent to
�m�'V@"G�&� ��� " which we assumed to be a constant for all
V , maximizing �&� ��� Zl�
	 � Z�Vf" is equivalent to finding
a hypothesis V for which q)g � (under

���
). The fact

that abduction requires V to be consistent is also captured,
because if V is inconsistent, then �k�'Vf"²J�¸ and clearly
�k�'V@" will not be maximized.
Theorem 5 (Capturing Bayesian Model Selection) Bayesian
model selection chooses a hypothesis V such that it maxi-
mizes the probability equivalent of �k� Vf" .
Proof The probability equivalent of �k�'Vf" J
�&� ��� Z��
	 � ZGVf" is �m�L�
	 � Z�Vf" . Clearly, if we are
maximizing �m�L�
	 � Z�Vf" then we are maximizing
�m�'Vpo`�
	 � "0�m� �
	 � " . Since �m� �
	 � " is independent
of V , it is equivalent to maximizing �m�'Vpo`�
	 � " which is
exactly what Bayesian model selection does.
Theorem 6 (Capturing Combinatorial Optimization) Com-
binatorial optimization is looking for a hypothesis V which
maximizes �m�'Vf" under the condition that �k�'V@" is non-
zero.
Proof As noted earlier, V is consistent with

���¤W �
	 �
if and only if �k� Vf" is non-zero. We also know that
combinatorial optimization is looking for a consistent V
which maximizes �m�'Vf" . The theorem follows as a simple
consequence of the above two statements. Basically, combi-
natorial optimization maximizes only the prior probabilities
of hypotheses (instead of maximizing the equivalent of the
posterior probabilities) unless they are obviously ruled out
by being inconsistent.

4.1 Consequences (Removing Previous
Shortcomings)

We now show the consequences of formalizing diagnosis as
model counting. In particular, we identify problems with pre-
vious approaches and show how model counting removes all
of them.

Problems with Consistency-Based Diagnosis
One of the problems with consistency-based diagnosis is that
it allows for non-intuitive hypotheses as diagnoses. It pro-
vides only for a necessary but not a sufficient condition on
the hypotheses that can be qualified as diagnoses. By itself, it
is of little value unless we use an elaborate set of fault models



to remove non-intuitive hypotheses that could otherwise be
consistent. Model counting removes these problems because
of its ability to merge and incorporate the notions of both
consistency and probabilities. In one sense, one can think of
model counting as giving us a measure of the degree to which
a hypothesis is consistent with

���
and �
	 �

. Some of these
problems are alternatively addressed in [Kohlas et al., 1998]
and [Lucas, 2001].

Problems with Fault Models
The problem with fault-models is that of over-restriction (as
explained at the beginning of the paper). We need to be able
to reason not only about constraints relating

���
and �
	 �

,
but also about any other kind of information we may have
in the form of probabilities etc. The over-restriction problem
can be removed by introducing probabilities. These proba-
bilities can then be used in the unified framework of model
counting.

Problems with Abduction
Like the consistency-based approaches, explanatory diag-
noses are also unable to incorporate and reason about proba-
bilities. Yet another problem with abduction is that it assumes
we have completely modeled all cause-effect relationships in
our system. This contradicts our modeling incompleteness
assumption and is an unnecessary restriction on

���
. Model

counting removes this problem in a way very similar to how
probabilities were used to deal with the modeling incomplete-
ness assumption. Alternate treatments for these problems
can be found in [Poole, 1994] (which links abduction with
probabilistic reasoning) and [Console et al., 1989] (which ad-
dresses the modeling incompleteness assumption).

Problems with Diagnosis as Bayesian Model Selection
Bayesian model selection agrees with our characterization of
diagnoses — but the only problem it poses is that it requires���

to be in the form of a Bayesian network with known prob-
abilities. Modeling a physical system as a Bayesian network
is in many cases a non-intuitive thing to do. This is especially
so when certain probability terms are hard to get. Parts of
the system may be better expressed in the form of constraints
or automata. In such cases, Bayesian model selection does
not extend in a natural way and model counting is the right
substitute (because it is defined under all frameworks).

Problems with Diagnosis as Combinatorial Optimization
One problem associated with casting diagnosis as a combi-
natorial optimization problem is that of being unable to give
explanatory diagnoses a preference over the rest. Clearly, we
would like to prefer hypotheses that not only maximize the
prior probability �m�'Vf" but that are also explanatory rather
than just being consistent with

���fW �
	 �
. One way to incor-

porate this preference is to find all consistent hypotheses that
maximize �m�'Vf" and to pick an explanatory one among them.
The question that arises then is how we would compare two
hypotheses one of which is explanatory and the other just con-
sistent (but not explanatory), with the latter having a slightly
better prior probability. This question is left unanswered un-
der the combinatorial optimization formulation of diagnoses.
In the model counting framework however, it is easy to see

that we really have to maximize �m� Vf"D® � 9D¯ � 4 ª 9 � ¹º�
® � 9D¯ � ¹º� . The

second factor is maximized for explanatory diagnosis — but
this is as much as the preference we attach for them.

Another problem with the combinatorial optimization for-
mulation is that probabilities are restricted to only behavior
modes of components and only these prior probabilities are
maximized. There is no framework to reason about proba-
bilistic information connected with observation variables.

5 Partial Diagnoses
Sometimes, we are interested in finding a suitable assignment
of modes to a specified subset

�
of the components ������� �

rather than for all components. We argue that our characteri-
zation of diagnoses under the model counting framework re-
mains unchanged.
Definition (Candidate) Given a set of integer tuples
� u * Z+� M � "»,/,.,/�Lu � Z+� Ml¼ " such that for �
�P<m��Cf�X� ������� � � ,
�b�«� M�  �)� � ? � , a candidate �
BDCFE��+� u * ZG� M � "»,/,.,/�Lu � ZG� Ml¼ "+" is
defined as �
BDCFE��+� u * ZG� M � "»,.,/,/� u � ZG� Ml¼ "G"½J©� K �¾ N * � ������ ¾ J
� ¾ �I� M2¿ "+"G" .
Notation When the indices are implicit or arbitrary, we will
use the notation À 9 to denote a candidate or a hypothesis
i.e. a set of mode assignments to all the components in�Á( ������� �

.
Definition (Model Counting Characterization) A partial di-
agnosis for

��( ������� �
is an assignment of modes À 9 to

the components in
�

that maximizes �&� ��� Z��
	 � Z�À 9 " using
probability equivalents wherever necessary.

It is now not hard to verify that all previous approaches are
captured in a way very similar to that for complete diagnoses.
This is essentially a consequence of the theorem that relates
the number of consistent models for � ��� Z��
	 � Z�À 9 " to the
marginalized probability of À 9 (Theorem 2). Instead of pre-
senting the proofs again (and making repetitive arguments),
we choose to allude to another set of characterizations mostly
associated with consistency-based diagnosis. These are the
notions of partial (a different characterization in consistency-
based diagnosis), kernel and prime diagnoses. These notions
have the same kind of drawbacks associated with the general
consistency-based framework [de Kleer et al., 1992] and our
investigation into these notions is just in the spirit of under-
standing their relationship to model counting.
Definition An ��	�Â literal is ��	&�'�." or $%��	&�'�." for some
component � in ������� �

. An ��	�Â clause is a disjunc-
tion of ��	�Â literals containing no complementary pair of
��	�Â literals.
Definition A conflict of � ��� Zl������� � Z��
	 � " is an
��	�Â clause entailed by

���kW �
	 �
. A minimal conflict of

� ��� Z�������� � Zl�
	 � " is a conflict no proper sub-clause of
which is a conflict of � ��� Zl������� � Z��
	 � " .
Definition (Consistency-Based Characterization) The partial
diagnoses of � ��� Z�������� � Zl�
	 � " are the implicants of the
minimal conflicts of � ��� Z�������� � Z��
	 � " .
Theorem 7 A partial diagnosis in the consistency-based
framework identifying an implicant � of the minimal
conflicts of

���¨W �
	 �
, is also a partial diagnosis

in the model-counting framework maximizing �k�0À 9 "�J
�&� ��� Z��
	 � Z�À 9 " for

� J variables of the implicant � , but



with free variables limited to abnormality ( ��	 ) variables.
Proof The implicant � fixes an assignment for the compo-
nents in

�
but leaves ������� �)ÃY�

unassigned. Let the
set of minimal conflicts of

���kW �
	 �
be Ä . Let ��Å ª �'b"

denote the number of consistent models of  restricted to
free variables being from the uninstantiated ��	�Â variables.
Since � is an implicant of Ä , all models of � (restricted to
��	�Â variables) also satisfy Ä and are hence consistent with���kW �
	 �

. This makes � Å ª � ��� Z��
	 � Z+��"�J�� Å ª �I�\" .
In general, since � Å ª � ��� Zl�
	 � ZG��" is upper bounded by
�8Å ª �'��" , the truth of the theorem follows.
Definition (Consistency-based Characterization) A kernel
diagnosis identifies the prime implicants of the minimal con-
flicts of

���XW �
	 �
.

Without a detailed discussion (due to lack of space), we
claim that this notion is related to yet another task in diagno-
sis — that of “representing” complete diagnoses. This task
is orthogonal to “characterizing” them [Kumar, 2002]. There
are other notions of diagnosis called prime diagnoses, irre-
dundant diagnoses etc. [de Kleer et al., 1992] arising mostly
out of the task of “representation” and all of which are cap-
tured in one or the other way by the model counting frame-
work (which we omit in this paper).

6 Related Work on Characterizing Diagnoses
and Model Counting

Related work in trying to unify model-based and probabilis-
tic approaches can be found in [Poole, 1994], [Kohlas et al.,
1998], [Lucas, 1998] and [Lucas, 2001]. [Poole, 1994] links
abductive reasoning and Bayesian networks and general diag-
nostic reasoning systems with assumption-based reasoning.
[Kohlas et al., 1998] shows how to take results obtained by
consistency based reasoning systems into account when com-
puting a posterior probability distribution conditioned on the
observations (the independence assumptions are lifted in [Lu-
cas, 2001]). [Lucas, 1998] gives a semantic analysis of differ-
ent diagnosis systems using basic set theory. The issue of the
modeling incompleteness assumption is referred to in [Con-
sole et al., 1989].

Diagnosis algorithms based on model counting have not
yet been developed. However, the problem of model count-
ing itself has been extensively dealt with. Although this prob-
lem is �8� -complete, there are a variety of techniques that
have been used to make it feasible in practice (including ap-
proximate counting algorithms running in polynomial time,
structure-based techniques etc.). Model counting for a SAT
instance in DNF (disjunctive normal form) is simpler than it is
for CNF (conjunctive normal form). For DNF, there is a fully
polynomial randomized approximation scheme (FPRAS) to
estimate the number of solutions [Karp et al., 1989]. CDP and
DDP are two model-counting algorithms for SAT instances in
CNF [Bayard and Pehoushek, 2000]. A version of RELSAT
has also been used to do model counting on SAT instances in
CNF. If a propositional theory is in a special form called the
smooth, deterministic, decomposable, negation normal form
(sd-DNNF), then model counting can be made tractable and
incremental [Darwiche, 2001].

7 Summary and Future Work
In this paper, we provided a unifying characterization of diag-
noses based on the idea of model counting. In the process, we
compared and contrasted our formalization with the previous
approaches — in many cases, removing the problems asso-
ciated with them. Because model counting bridges the gap
between probabilities and constraints and is well-defined for
many representational forms of information available about
the system, we believe that the model counting characteri-
zation of diagnoses is useful and general in the sense of not
imposing any restrictions on the representational form of the
system description.

As for our future work, we are in the process of investi-
gating and developing computationally tractable algorithms
based on the model counting characterization of diagnoses.
Advances in model counting algorithms (approximate count-
ing, structure-based methods etc.) seem to be encouraging
towards this goal. We are also working on variants of the
diagnosis problem (e.g. when we are interested in a set of
candidate hypotheses rather than just one).
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Computing Minimal Hitting Sets with Genetic

Algorithm

Lin Li1, 2 and Jiang Yunfei1   

Abstract. A set S that has a non-empty intersection with every
set in a collection of sets C is called a hitting set of C. If no
element can be removed from S without violating the hitting set
property, S is considered to be minimal. Several interesting
problems can be partly formulated as ones that a minimal
hitting set or more ones have to be found. Many of these
problems are required for proper solutions, but sometimes the
approximate solutions are enough. A genetic algorithm and
advantaged algorithms were devised for computing minimal
hitting sets. An improvement makes them get most minimal
hitting sets efficiently. Furthermore, they are smaller, i.e. fewer
rules.

1 INTRODUCTION

A lot of theoretical and practical problems, e.g., [1~8], can be
partly reduced to an instance of the minimal hitting set or one
of its relatives, such as the minimum set cover problem, model-
based diagnosis [1~5,7~8], and teachers and courses problem.

Normally speaking, it is a problem of selecting a minimal set
(e.g., of teachers) that has a non-empty intersection with each
set (e.g., list of courses), That is to say, there is, at least, one
teacher who can teach any courses, This is a formulation of the
minimal hitting set problem, which, in general, is NP-hard [6].

Generally, there are a number of hitting sets, but sometimes
we only need one or some of them. There are some algorithms
[1~8] for computing all of the minimal hitting sets, the space
and time efficiency are not ideal. We present a novel method
based on the Genetic Algorithm (in short GA here) for
calculating minimal hitting sets.

 Definition 1. (Hitting sets)
Given a collection C={Si | i

�
 } of sets of elements from

some universe U, a hitting set is a set S ⊆ U such that S Si � ∅
, for all i, i.e., a set which contains, at least, one element

1  Sun Yat-sen university, Guangzhou, China.
2  Jinan university, Guangzhou, China. email:linlionline@21cn.com.

from all sets in C. Let HS(C) denote the collection of all hitting
subsets in HS(C). These are called the minimal hitting sets of
C.

We introduce a minimizing operator µ [5], MHS(C)= µ
(HS(C)). We will use µ  to get minimal conflict(/hitting) sets
from conflict(/hitting) sets.

Determining a minimal cardinality element of MHS(C) is
called the minimal hitting set problem.

Example 1. Model-based diagnosis [1], as shown in Figure
1. Suppose conflict sets are {M1, M2, A1}, {M1, A1, A2, M3}.
The minimal hitting sets (diagnosis) are {M1}, {A1}, {M2,
A2}, {M2, M3}.

{M1}, {A1} are of minimal cardinality.

Figure 1 A simple circuit with 3 multipliers and 2 adders.

A minimal cardinality hitting set is a minimal hitting set of
minimal cardinality.

In case of large sets of conflicts, the computation of the
hitting sets will result both time and space consumption. Shown
in Figure 2.

There are about millions of components, For example, in
vehicles, computer systems, power plants, aircrafts, etc,.
Therefore, we developed a novel efficient GA to compute
minimal hitting sets. When the scale of conflicting sets is
getting large, the GA method can still be used for computing
the minimal hitting sets in a very short time.



2 GENETIC ALGORITHM

Genetic algorithm is a heuristic for the function optimization,
where the extreme of the function (i.e., minimal or maximal)
cannot be analytically established. A population of potential
solution is refined iteratively by employing a strategy inspired
by Darwinist evolution or natural selection. Genetic algorithms
promote “survival of the fittest”. This type of heuristic has been
applied in many different fields, including construction of
neural networks and multi-disorder diagnosis.

For the minimal hitting set problem, a straightforward choice
of population is a set P of elements from 2U, encoded as bit-
vectors, where each bit indicates the presence of a particular
element in the set.

Example 2. (Teacher and course problem) Let C denote a set
cluster containing,

S1={1, 2, 3, 4}, S2={1, 2, 4}, S3={1, 2}, S4={2, 3}, S5={4}.
It means that there are 5 courses {S1, S2, S3, S4, S5 } and 4

teachers 1, 2, 3, 4. Teachers 1, 2, 3 and 4 can teach course S1,
teachers 1, 2, 4 can teach course S2, … , teacher 4 can teach
course S5. We want to find the least teachers who can teach all
of the 5 courses. This is a minimal hitting sets problem, and the
minimal hitting sets are: H1={1, 3, 4}, H2={2, 4}.

We use bi-vectors to represent the sets and their hitting sets,
these bi-vectors are called “chromosomes”, each bit is called
“gene”, and all of the “chromosomes” are called “population”.

If we use chromosome to represent the sets, they are
represented as follow:

S1={1, 1, 1, 1}, S2={1, 1, 0, 1}, S3={1, 1, 0, 0}, S4={0, 1, 1,
0}, S5={0, 0, 0, 1}.

The hitting sets are: H1={1, 0, 1, 1}, H2={0, 1, 0, 1}.
Here, | Si|

�
|

�
Sj|, | Hi|

�
|

�
Sj|, so, the length of chromosomes

equals to |
�

Sj|.
Genetic operations include: “crossover”, “mutation”,

“inversion”, “selection” and “obtain”.
Suppose that minimal conflict sets cluster is C={S1, S2, … ,

Sn}, n=|
�

Sk|.
“Crossover” operator. Suppose that S1={s11, s12, … , s1n},

S2={s21, s22, … , s2n}, are two chromosomes, select that a
random integer number 0<r<n, S3, S4 is offspring of
crossover(S1, S2),

S3={si | if i
�
r, si

�
S1, else si 

�
S2},

S4={si | if i
�
r, si

�
S2, else si 

�
S1}.

“Mutation” operator. Suppose that a chromosome S1={s11,
s12, … , s1n}, selecting a random integer number 0<r

�
n, S3 is

mutation of S1,
S3={si | if i � r, then si=s1i, else si =1-s1i}.
“Inversion” operator. Suppose that chromosome S1={s11,

s12, … , s1r , s1, r+1, … , s1, r+l, s1,r+l+1, … , s1n }, r, l are random
numbers, S2 is the inversion of S1.

S2={s11, s12, … , s1r , s1, r+l, … , s1, r+1, s1,r+l+1, … , s1n }.
“Selection” operator. Suppose that there are m sets, we

select [m/2] sets and eliminate other sets, the sets we selected
are both “fitness” and “minimal”, i.e. first, they intersect more
sets than the other, and second, their cardinality is smaller.

“Obtain” operator. Suppose that there is a singleton set in
the set cluster, then all hitting sets must hits this set, i.e. the
gene stands for this set must be always kept as “1” , we refer to
this operator as “obtain”:

“Obtain” operator has no any influence on the result, it can
improve the efficiency, such as a giraffe obtains “long neck”.
So they can be competed under the “ long neck” condition.
Genetic algorithm.
1. InitializePopulation: Obtain k*|C|*|

�
Si| population

randomly, each chromosome is an n-length array, k is a const
coefficient.

2. Testing if one of the stopping criteria (time, fitness, etc)
holds. If it is yes, the procedure can be stopped, here,100
generations are gotten

3. Selection: Selecting one of chromosome; testing its
fitness, here, being the number of sets it hits. Keeping the most
fitness ones and deleting the bad ones.

4. Applying the genetic operator: such as “crossover”,
“mutation”, “inversion” and “obtain” to the selected parents to
form offspring.

5. Recombining the offspring and current population to form
a new population with “selection” operator.

6. Repeating steps 2-5.
Also, we can use Genetic Algorithm to compute MINIMAL

hitting sets from hitting sets.
In step 3. If we get hitting sets, we can undergo mutation

operator just to change sr from “1” to “0” in order to get its
offspring, else, we undergo mutation operator just to change sr

from “0” to “1” in order to get its offspring. In the next
selection operator we will go on keeping hitting sets because
they are more fitting.

In the end, we will get 4 sets as follow:
1. Minimal hitting sets;
2. Both minimal hitting sets and their super-hitting sets; we

will use operator  to delete the super-hitting sets;
3. Hitting sets, but not minimal, their sub-hitting sets are not

gotten;
4. No hitting sets, these sets will be deleted by “selection”

operator.
But, in fact, the situation 3 is never gotten by GA test

program.
We can get about 95 percent minimal hitting sets with GA.

(shown in Figure 2)

3 COMPARISON

We have written a program to compare among HS-tree, BHS-
tree [8] and GA; the result is shown in Figure 3 and Figure 4.
The elements of every conflict sets are between 1 and 20.

In general, GA can get more than 95 percent minimal hitting
sets in 100 generations, when the set cluster is big, then the HS-
tree and BHS-tree can not run because of “Out of memory”,
but, GA can get almost all minimal hitting sets efficiently.

The space complexity of HS-tree is about O(mn), m is the
average of |Si|, n is |C|, That of BHS-tree is about O(

||2 is∪
),



that of GA is about O(n|
�

Si|). So the efficiency of GA is better
than that of HS-tree and BHS-tree.

Figure 2 Running time among BHS-tree, HS-tree and GA.
(CPU-PII 667, 128M main memory, C++, Windows’98)

Figure 3 The hitting sets number and the percentage of GA
gets.

4 CONCLUSIONS

In this paper, we have improved,
1. When the conflict sets scale gets big, This GA algorithm

may get most of minimal hitting sets in a relative short time
and small memory, but the other algorithm can’t get the hitting
sets because of “out of memory”.

2. The GA algorithm can also get MINIMAL hitting sets. If a
chromosome is not a hitting set, and the “mutation” operator
just changes a random gene from “0” into “1”, else change a
random gene form “1” into “0” so that we can get minimal

hitting set.
Example 3. (Continue to Example 2)
If we get H3={1, 1, 0, 1} and know that it is a hitting set,

then we undergo “mutation” operator to it, however, we only
change “1” into “0” here.

H3={1, 1, 0, 1} {0, 1, 0, 1}, (minimal hitting set)
            {1, 0, 0, 1}, (no hitting set)
            {1, 1, 0, 0}. {no hitting set}
Underlined genes stand for “mutation” from parent genes.
3. Although this algorithm can’t get all of the minimal hitting

sets, but after we replace or repair these components we have
computed, we can do next diagnosis step by step. The next
research is GA used in choice of a repair/replace action on the
set of suspects or choice of a next measurement.

This GA can be used in many other fields, e.g. a librarian can
decide what kind of journals referred by researchers will be
purchased under lack of funds. [6, pp124].
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Abstract.
The Infrastructure of modern society is controlled by software sys-

tems that are vulnerable to attack. Successful attacks on these sys-
tems can lead to catastrophic results; the survivability of such infor-
mation systems in the face of attacks is therefore an area of extreme
importance to society. This paper presents model-based techniques
for the diagnosis of potentially compromised software systems; these
techniques can be used to aid the self-diagnosis and recovery from
failure of critical software systems. It introduces Information Surviv-
ability as a new domain of application for model-baesed diagnosis
and it presents new modeling and reasoning techniques relevant to
the domain. In particular: 1) We develop techniques for the diag-
nosis of compromised software systems (previous work on model-
base diagnosis has been primarily cconcerned with physical compo-
nents); 2) We develop methods for dealing with model-based diagno-
sis as a mixture of symbolic and Bayesian inference; 3) We develop
techniques for dealing with common-mode failures; 4) We develop
unified representational techniques for reasoning about information
attacks, the vulnerabilities and compromises of computational re-
sources, and the observed behavior of computations; 5) We highlght
additional information that should be part of the goal of model-based
diagnosis.

1 Background and Motivation

The infrastructure of modern society is controlled by computational
systems that are vulnerabile to information attacks. The system and
application software of these systems possess vulnerabilities that en-
able attacks capable of compromising the resources used by the soft-
ware systems. A skillful attack could lead to consequences as dire as
those of modern warfare. In every exercise conducted by the govern-
ment so far, the attacking team has managed to completely the target
systems with little difficulty. There is a dire need for new approaches
to protect the computational infrastructure from such attacks and to
enable it to continue functioning even when attacks have been suc-
cessfully launched.

Our presmise is that to protect the infrastructure we need to re-
structure these software systems as Adaptive Survivable Systems. In

1 This article describe research conducted at the Artificial Intelligence Lab-
oratory of the Massachusetts Institute of Technology. Support for this re-
search was provided by the Information Systems Office of the Defense Ad-
vanced Research Projects Agency (DARPA) under Space and Naval War-
fare Systems Center - San Diego Contract Number N66001-00-C-8078.
The views presented are those of the author alone and do not represent
the view of DARPA or SPAWAR.

particular, we believe that a software system must be capable of de-
tecting its own malfunction and it must be capable of repairing itself.
But this means that it must first be able to diagnose the form of the
failure; in particular, it must both localize and characterize the break-
down.

Our work is set in the difficult context in which there is a con-
certed and coordinated attack by a determined adversary. This con-
text places an extra burden on the diagnostic component. It is no
longer adequate merely to determine which component of a com-
putation has failed to achieve its goal, in addition we wish to de-
termine whether that failure is indicative of a compromise to the
underlying infrastructure and whether that compromise is likely to
lead to failures of other computations at other times. Furthermore,
we wish to determine what kind of attack compromised the resource
and whether this attack is likely to have compromised other resources
that share a vulnerability. This paper focuses on the diagnostic com-
ponent of self adaptive survivable systems.

2 Contributions of this Work

We build on previous work in Model-Based diagnosis [2, 3, 4, 5, 8].
However, the context of our research is significantly different from
that of the prior research, leading us to confront several important
issues that have not previously been addressed. In particular, we
present several new advances in representation and reasoning tech-
niques for model-based diagnosis:

1. We develop representation and reasoning techniques for describ-
ing and reasoning about the behaviors and failures of software sys-
tems (most previous work has focussed on hardware, particularly
digital hardware).

2. We develop mixed symbolic and Bayesian reasoning technique
for model-based diagnosis. The statistical component of the tech-
nique utilizes Bayesian networks to calculate accurate posterior
probabilities.

3. We develop a unified framework for reasoning about the failures
of the computations, about how these failures are related to com-
promises of the underlying resources, about the vulnerabilities of
these resources and how these vulnerabilities enable attacks.

4. We develop techniques for reasoning about common-mode fail-
ures. A common-mode failure occurs when the probabilites of the
failure modes of two or more components are not independent.
This issue has not been substantially addressed in the previous lit-
erature on model-based diagnosis.



5. We develop diagnostic techniques that lead to an estimate of the
trustability of the computational resources that are used in a spe-
cific computation. These techniques also help us to assess which
attacks have occurred and the likelihood that specific attacks have
been successful.

These are crucial issues when failure is caused by a concerted and
coordinated attack by a malicious opponent. There are many modes
of attacking computational systems but the most pernicious attack-
ers seek to avoid detection; therefore they attempt to scaffold the at-
tack slowly, at a nearly undetectable rate. These scaffolding actions
will typically appear as minor misbehaviors (i.e. they will cause the
system to behave somewhat outside its normal range), but skillful
attackers will space out the attacks so that the misbehaviors are in-
frequent and they will attempt to make the resulting misbehaviors
seem as close to normal behavior as possible. This makes it crucial
that our diagnostic techniques be capable of extracting information
from low-frequency events that closely resemble normal modes of
operation.

Attackers aim at high leverage points of the infrastructure, such
as operating systems or middleware. This leads to common-mode
faults, because once the operating system has been compromised all
application components can be caused to fail simultaneously.

The paper first briefly reviews the current state of the art in model-
based diagnosis; this work has mainly been concerned with break-
downs caused by the deterioration of hardware components. In par-
ticular, we adopt the framework in [4] where each component has
models for each of several behavioral modes and each model is given
a probability. We will then turn to the question of how to extend these
techniques so as to apply them to the diagnosis of software systems.
We extend our modeling framework to account for the fact that soft-
ware systems are built in layers of infrastructure, with compromises
to one layer affecting all higher levels. A software system has a great
deal of hidden state; what we are actually capable of observing is the
behavior of a specific computation; but this particular computation
uses a variety of resources (e.g. the operating system and middle-
ware, data-sets, etc.). These resources may have been subject to a
variety of compromises, each of which might lead to a different mis-
behavior of the computation. Compromises to the resources occur
because the resources possess vulnerabilities that allow specific at-
tacks to take control of the resources for purposes other than those
intended by the original designers.

We will finally present mixed symbolic and statistical diagnostic
algorithms for assessing the posterior probabilities of the various be-
havior modes of each component in the model. We present an imple-
mentation and show an example of the reasoning process. Finally, we
discuss the demands placed on the diagnostic component by our goal
of self-adaptivity and conclude with suggestions for future research.

3 Related Research

Model-Based Diagnosis is a symptom directed technique; it is driven
by the detection of discrepancies between the observations of actual
behavior and the predictions of a model of the system. Almost all of
the reported work in the area [2, 1, 3, 4, 5, 8] has been concerned
with the diagnosis of physical systems subject to routine breakdown.
Model-based diagnostic systems use simulation models that compute
expected outputs given known inputs; they utilize dependency di-
rected techniques to link each intermediate and final value to the se-
lected behavioral model of any component of the system which was
involved in producing that value.

The completeness of the diagnostic process is dependent on having
bi-directional simulation models for each component of the system.
Such models produce both a set of assertions recording what values
are expected and a dependency network linking these assertions to
one another and to assertions stating which components must be in a
particular behavioral mode for those values to appear.

Our work builds on the framework in Sherlock [4] and on the prob-
abilistic techniques in [8]. In Sherlock the description of a component
includes multiple simulation models, one for each behavioral mode
of the component. One distinguished mode is the normal mode, but
behavioral models for known failure modes may also be provided. It
is also typical to include a null model to account for unknown modes
of behavior. Finally, each of the behavioral modes of a component is
assigned an a priori probability. Sherlock uses these to guide a best
first search for a set of behavioral modes, one for each component,
such that the models for those modes predict the observed behavior.
This is the most likely diagnosis. However, these techniques i de-
pend on the assumption that the failure modes of the components are
independent; as we will see this assumption doesn’t hold in our envi-
ronment. Later work [8] introduced techniques for applying Bayesian
networks in the context of model-based diagnosis, allowing depen-
dencies to be modeled; [10] presents techniques within this frame-
work for generating several likely diagnoses in order of decreasing
likelihood.

Because our focus is on detecting the intentional compromise of
software components we are forced to face a number of new issues.
These include: How to model software components in the spirit of
model-based diagnosis; How to deal with the fact that a compromise
to the computational infrastructure (e.g. the operating system) can
manifest itself in the malfunction of many application components;
How to deal with the fact that compromised components may behave
in ways that are difficult to distinquish from normal behavior; How
to reason about the system so as to extract as much information about
possible compromises as we can. In particular, we deal with how to
use both symbolic and Bayesian techniques.

4 Modeling Software Computations

Model-Based Diagnosis requires completely invertible models of the
components in order to guarantee completeness of its analysis. But
the components of a complex software system rarely have input-
output relationship that are invertible. We therefore look for other,
additional properties, that lead to more complete coverage. In partic-
ular, we concentrate here on descriptions of computational delay (or
other Quality Of Service metrics). In our current implementation we
use an interval of expected delay times (i.e. the computation should
run no slower than x and no faster than y) as the behavioral mod-
els. Figure 1 shows the application of such models in a framework
similar to Sherlock. When propagating in the forward direction we
add the delay interval predicted by the behavioral model to the in-
terval bounding the arrival time of the latest input. In the backward
direction, we use interval subtraction (and only update the bounds
on the last input to arrive). When more than one component predicts
the bounds for a particular value (e.g. when a model for component
A and a model for component C both predict bounds for the value
labeled MID), we take the intersection of the two intervals to ob-
tain the tightest bounds implied by the overall model. A discrepancy
is detected when the lower bound of an interval exceeds the upper
bound.

As in Sherlock we provide several behavioral models for each
component, one characterizing normal behavior, others characteriz-



ing known failure modes and a null model to cover all other unex-
pected behaviors.

Notice that in Figure 1 there are six potential diagnoses, only one
of which involves a single point of failure (in component C). The oth-
ers involve multiple failues with one component running slower than
expected and other components masking the fault at Out1 by run-
ning faster than expected. In the third diagnosis, component A runs
in “negative time”! On the surface, such a diagnosis seems physi-
cally impossible and we might expect the diagnostic algorithm to re-
ject it. But, the diagnosis algorithm is guided by our representational
choices; the reason this diagnosis involves negative time is that the
fast behavioral model of component A predicts a delay interval from
-30 to +2.

Such behavior seems very unlikely, and indeed we assign a low
likelihood to this model; however, it is not impossible. Suppose that
both computations A and C are running on the same computer and
further suppose that the computer has been compromised by an at-
tacker. Under these circumstances, it’s not impossible for component
C to be delayed (because of a parasitic task inserted by the attacker)
while component A has been accelerated, running in less than zero
time because it has been hacked by the attacker to send out reason-
able answers before it receives its inputs.

What we are able to observe is the progress of a computation;
but the computation is itself just an abstraction. What an attacker
can actually affect is something physical: the file representing the
stored version of a program, the bits in main memory representing the
running program, or other programs (such as the operating system)
whose services are employed by the monitored application.

Thus, we require a more elaborated modeling framework detailing
how the behavior of a computation is related to the state of the re-
sources that it uses. In turn, we must represent the vulnerabilities of
these resources and the attacks enabled by these vulnerabilities. Fi-
nally, we must represent how such attacks compromise the resources,
causing them to behave in an undesired manner.

5 Common Mode Failures

A single compromise of an operating system component, such as
the scheduler, can lead to anomalous behavior in several application
components. This is an example of a common mode failure; intu-
itively, a common mode failure occurs when a single fault (e.g. an in-
accurate power supply), leads to faults at several observable points in
the systems (e.g. several transistors misbehave because their biasing
power is incorrect). Another example comes from reliability studies
of nuclear power plants where it was observed that the catostrophic
failure of a turbine blade could sever several pipes as it flies off, lead-
ing to multiple cooling fluid leaks.

Formally, there is a common mode failure whenever the probabili-
ties of the failure modes of two (or more) components are dependent.
Early model-based diagnostic systems have assumed probabilistic in-
dependence of the behavior modes of different components [4] in or-
der to simplify the assessment of posterior probabilities. Later work
[8] allows for probabilistic dependence; however, it does not explore
in detail how to model the causes of this dependence. We deal with
common mode failures by extending our modeling framework to
make explicit the mechanisms that couple the failure probabilites of
different components.

We first extend our modeling framework, as shown in Figure 2,
to include two kinds of objects: computational components (repre-
sented by a set of delay models one for each behavioral mode) and
infrastructural components (represented by a set of modes, but no de-

lay or other behavioral models). Connecting these two kinds of mod-
els are conditional probability links; each such link states how likely
a particular behavioral mode of a computational component would be
if the infrastructural component that supports that component were in
a particular one of its modes (normal or abnormal). Each infrastruc-
tural component mode will usually project conditional probability
links to more than one computational component behavioral mode,
allowing us to say that normal behavior has some probability of be-
ing exhibited even if the infrastructural component has been com-
promised (however, for simplicity, figure 2 shows only a one-to-one
mapping).

The model also includes a priori probabilities for the modes of
the infrastructural components, representing our best estimates of the
degree of compromise in each such piece of infrastructure. Following
a session of diagnostic reasoning, these probabilities may be updated
to the value of the posterior probabilities.

We next observe that resources are compromised by attacks. At-
tacks are enabled by vulnerabilities in the resources. For example,
many systems in the Unix family are vulnerable to buffer-overflow
attacks; most networked systems are vulnerable to packet-flood at-
tacks. An attack is capable of compromising a resource in a variety of
ways; for example, buffer overflow attacks are used both to gain con-
trol of a specific resource and to gain root access to the entire system.
But the variety of compromises enabled by an attack are not equally
likely (some are much more difficult than others). We therefore add
a third tier to our model to describe the ensemble of attacks assumed
to be available in the environment. We connect the attack layer to the
resource layer with Conditional probability links that state the like-
likhood of each mode of the compromised resource once the attack
has been successful.

Our model of the computational environment therefore includes:

• The components of the computation that is being observed
• A set of behavioral models for each component, representing both

normal and failure modes.
• The set of resources available to be used by the computational

components
• A set of behavioral modes for each resource, representing both

normal and compromised modes.
• A map stating which resources are used by each computational

component.
• Conditional probabilties linking the modes of the computations to

the modes of the resources employed by that component.
• A list of vulnerabilities possessed by each computational resource.
• A description of which attacks are enable by each vulnerability.
• A list of attack types that are believed to be active in the environ-

ment.
• A description of which compromised modes of each type of re-

source can be caused by a successful execution of each type of
attack. This is provided as a set of conditional probabilities of the
compromised mode given the execution of the attack.

Given this information, simple rule-based inferencing (imple-
mented in the Joshua inference system) deduces which specific re-
sources might have been compromised and with what probability.
This information is then used to construct a Bayesian network (in the
IDEAL system).

6 Diagnostic Reasoning

Figure 3 shows a model of a fictitious distributed financial system
which we use to illustrate the reasoning process. The system con-



sists of five interconnected software modules (Web-server, Dollar-
Monitor, Bond-Trader, Yen-Monitor, Currency-Trader) utilizing four
underlying computational resources (WallSt-Server, JPMorgan, Bon-
dRUs, Trader-Joe).

For each computational component we show the conditional prob-
ability tables that describe how the behavioral modes of each compu-
tational resource probabilistically depend on the modes of the under-
lying resources (each resource has two modes, normal and hacked).
Note that two computations (Dollar-Monitor and Yen-Monitor) are
supported by a common resource (JPMorgan) and compromises to
this underlying resource are likely to affect both computations. The
failure modes of these two computations are no longer independent;
this is indicated by the conditional probabilities connecting the be-
havior modes of the JPMorgan to those of both Dollar-Monitor and
Yen-Monitor. The specific conditional probabilites supplied describe
the degree of coupling.

Finally we show the a priori probabilities for the modes of the
underlying resources. However, when attacks are present in the en-
vironment what matters is the conditional probabilities of the dif-
ferent modes of the resources given that an attack has taken place.
We hypothesize that one or more attack types are present in the en-
vironment, leading to a three-tiered model as shown in figure 4. In
this example, we show two attack types, buffer-overflow and packet-
flood. Packet-floods can affect each of the resources because they are
all networked systems; buffer-overflows affect only the 2 resources
which are modeled as instances of a system type vulnerable to such
attacks.

As in earlier techniques, diagnosis is initiated when a discrepancy
is detected; in this case this means that the predicted production time
of an output differs from those actually observed after an input has
been presented. The goal of the diagnostic process is to infer as much
as possible about where the computation failed (so that we may re-
cover from the failure) and about what parts of the infrastructure may
be compromised (so that we can avoid using them again until correc-
tive action is taken). We are therefore looking for two things: the
most likely explanation(s) of the observed discrepancies and updated
probabilities for the modes of the infrastructural components.

To do this we use techniques similar to [4, 8]. We first identify all
conflict sets, and then proceed to calculate the posterior probabili-
ties of the modes of each of the computational components. We do
these tasks by a mixture of symbolic and Bayesian techiques; sym-
bolic model-based reasoning is used to predict the behavior of the
system, given an assumed set of behavioral modes. Whenever the
symbolic reasoning process discovers a conflict (an incompatible set
of behavioral modes), it adds to the Bayesian network a new node
corresponding to the conflict (see below). Bayesian techniques are
then used to solve the extended network to get updated probabilities.

This approach involves an exhaustive enumeration of the combi-
nations of the models of the computational components. This allows
us to calculate the exact posterior probabilties. However, this is ex-
pensive and the precision may not be needed. It would be possible
to instead use the techniques in [10] to generate only the most likely
diagnoses and to use these to estimate the posterior probabilities; but
we have not yet pursued this approach.

We instead follow the following approach: We alternate the find-
ing of conflicts with the search for diagnoses. After each “conflict”
node is added to the Bayesian network (see below) the network is
solved; this gives us updated probabilities for each behavioral mode
of each component. We can, therefore, examine the behavioral modes
in the current conflict and pick that component whose current behav-
ioral mode is least likely. We discard this mode, and pick the most

likely alternative; we continue this process of detecting conflicts, dis-
carding the least likely model in the conflict and picking its most
likely alternative until a consistent set is found. This process is a
good heuristic for finding the most likely diagnosis 2.

Our models of computational behavior (the delay models) are used
to predict the behavior of the computational components and to com-
pare the predictions with observations. When a discrepancy is de-
tected, we use dependency tracing to find the conflict set underlying
the discrepancy (i.e. a set of behavioral modes which are inconsis-
tent). At this point a new (binary truth value) node is added to the
Bayesian network representing the conflict as shown in Figure 5.
This node has an incoming arc from every node that participates in
the conflict. It has a conditional probability table corresponding to a
pure ”logical and” i.e. its true state has a probability of 1.0 if all the
incoming nodes are in their true states and it otherwise has probabil-
ity 1.0 of being in its false state.

Since this node represents a logical contradiction, it is pinned in
its false state. Adding this node to the network imposes a logical con-
straint on the probabilistic Bayesian network; the constraint imposed
is that the conflict discovered by the symbolic, model-based behav-
ioral simulation is impossible. We continue to explore other combi-
nations of behavioral modes, until all possible minimal conflicts are
discovered. Each of these conflicts extends the Bayesian network as
before, The set of such conflicts constitutes the full set of logical
constaints on the values taken on within the Bayesian network; thus,
once we have augmented the Bayesian network with nodes corre-
sponding to each conflict, the network has all the information avail-
able. 3.

At this point, we have found all the minimal conflicts and added
conflict nodes to the Bayesian network for each. We therefore also
know all the possible diagnoses since these are sets of behavioral
modes (one for each component) which are not supersets of any con-
flict set. For each of these we create a node in the Bayesian network
which is the logical-and of the nodes corresponding to the behavioral
modes of the components. This node represents the probability of this
particular diagnosis. The Bayesian network is then solved. This gives
us updated probabilities for all possible diagnoses, for the behavioral
modes of the computational components and for the modes of the
underlying infrastructural components. Furthermore, these updated
probabilities are those which are consistent with all the constraints
we can obtain from the behavioral models. Thus, they represent as
complete an assessment as is possible of the state of compromise in
the infrastructure. These posterior estimates can be taken as priors in
further diagnostic tasks and they can also be used as a “trust model”
informing users of the system (including self adaptive computations)
of the trustworthiness of the various pieces of infrastructure which
they will need to use.

7 Results

The sample system shown in Figure 3 was run through several anal-
yses including both those in which the outputs are within the ex-
pected range and those in which the outputs are unexpected. Figure
6 shows the results of an analysis in which the outputs are within the
expected range. Figure 7 and 8 show the results of an analysis of an

2 However since the probabilities of the failure modes of different compo-
nents are not independent, this is only a heuristic

3 [8] builds logical reasoning directly into the Bayesian network system be-
cause the logical inferences needed are simple enough to be accomodated.
However, our inference needs are more complex and not easily amenable
to this approach



abnormal case. Inputs are supplied at times 10 and 15 for the two in-
puts of Web-Server; each of the figures shows the times at which the
the outputs of Currency-Trader and Bond-Trader are observed. There
are four runs for each case, each with a different attack model. In the
first, it is assumed that there are no attacks present and the a priori
values are used for the probabilities of the different modes of each
resource. The second run assumes only a buffer-overflow attack; the
third run assumes only a packet-flood attack. The fourth run assumes
both types of attacks. There are four columns in each of the results
chart, one for each of these runs. The top chart in each figure shows
the a priori and posterior probabilities for each resource being in its
“hacked” mode. The middle chart shows the posterior probabilities
for each mode of each computational component. The bottom bot-
tom chart in each figure shows the posterior probabilites that each of
the two types of attacks have occurred. 4.

There are more than two dozen possible diagnoses in the abnormal
case. It should be noted that even the most likely diagnosis is actually
not all that likely; in addition the next several diagnoses are nearly
equally as likely. The most likely diagnosis is therefore not particu-
larly informative for our two goals of recovering from the failure and
steering away from compromised resources in the future. However,
the posterior probabilities of the modes of the infrastructure compo-
nents are, in fact, useful guides for the second of these goals. The
posterior probabilities of the behavioral modes of the computational
resources are useful guides for the first goal, because these probabili-
ties aggregate the information contained in the individual diagnoses.

The most significant change is the increase in the probabilities that
the resources named JPMorgan and Wallst-server are hacked. This
changes the trustworthiness ordering of the resources: JPMorgan is
a posteriori the least trustworthy resource, while the a priori listing
ranks Trader-Joe followed by Bonds-R-US as the least trustworthy.
This follows from the fact that the JPMorgan resources is utilized
by the computations Yen-Monitor and Dollar-Monitor both of which
are very likely to be in abnormal modes and the most likely expla-
nation is that that JPMorgan causes a common-mode failure. Notice
that in the last two columns when packet-flood attacks are possible,
all the resources are much more likely to be hacked. Qualitatively,
this is because all the resources are vulnerable to the packet-flood
attack. The misbehavior of the computational components provides
evidence that JPMorgan is hacked which in turn provides evidence of
a packet flood attack. But since packet-flood attacks affect all the re-
sources, this increases the likelihood that other resources are hacked
as well. The Bayesian network carries out the quantitative version of
this argument.

It is worth noting that this propagation of trust can carry over to
resources not used in the misbehaving computation. For example,
assume that the environment contains another resource (call it “new-
bie”) that is subject to the same attacks as the ones (e.g. JPMorgan)
that participated in the faulty computation. The misbehavior in the
computation is evidence that JPMorgan is “hacked” and this, in turn,
is evidence that an attacked succeeded. But this would lend weight to
the conclusion that other resources (e.g. Newbie) subject to this same
attack had also been compromised. The Bayesian network would
propagate probabilities in exactly this fashion leading to a posterior
assessment that Newbie has been hacked (although this probability

4 The implementation is in CommonLisp and uses the Joshua [7] rule-based
reasoning system as well as the Ideal system [9] and in particular its imple-
mentation of the algorithm described in [6]. On a 300 MHz powerbook, the
total solution time is under 1 minute. By far, the most expensive part of this
is calculating the probabilities of the complete set of diagnoses. The most
likely diagnosis and all conflict sets are located in less than 10 seconds)

will be lower than the probability that JPMorgan is hacked).

8 Conclusions and Future Work

The example above illustrates how model-based reasoning tech-
niques can be used to extract information from a single run. Our
example is intentionally fanciful since we are at the present con-
centrating on the development of the representational and reasoning
frameworks. In future work we will explore realistic models of real
systems.

The information extracted is probabilistic and it sheds light both
on the question of where the computation might have failed, on what
underlying resources might have been compromised and on what at-
tacks might have succeeded.

It is notable that the identification of the most likely diagnosis is
not particularly informative. For example, in the most likely diag-
nosis Yen-Monitor is in its Normal mode. However, the most likely
behavioral mode for Yen-Monitor is its Slower mode which occurs
in many of the remaining diagnoses. The posterior probabilites of the
behavioral modes aggregate the probabilites from each of the possi-
ble diagnoses, producing an overall assessment that is more informa-
tive than any individual diagnosis. Of course, if there are very few
diagnoses, or the most likely diagnosis is extremely probable, then
the probabilities of its behavioral modes will approximate the overall
posterior probabilities.

It is important to keep in mind why we are interested in the diag-
noses at all. The goal of the system is to recover from the failure and
to steer away from future trouble. To do this it needs to know how
much of the computation has been completed successfully and how
much remains to be done. Given such information the system would
pick a rollback point for recovery that includes no failed part of the
computation. Furthermore, the chosen rollback point would maxi-
mize the probability of continuing the restarted computation to com-
pletion. As we just saw, an individual diagnosis, even the most likely
diagnosis, does not give us the information we need to do this. When
the available evidence supports multiple diagnostic hypotheses, then
our interest should shift from individual diagnoses to aggregate fail-
ure probabilities and this information is conveyed completely by the
posterior probabilities of the failure modes. I.e. if the posterior prob-
ability that Yen-Monitor failed is high, then we don’t actually care
that there are multiple (multiple point of failure) diagnoses involving
this failure nor do we care how likely each of these diagnoses is. In-
stead what we do care about is that it’s very likely that Yen-monitor
didn’t do its job and that we should select a rollback point prior to its
execution. Similarly, in choosing a recovery plan we should avoid us-
ing those resources whose posterior failure probabilities are highest.
5.

This is to say that the goal of the diagnostic process should be to
assess the overall posterior probabilities of the behavioral modes of
the computational and infrastructure components. These give us evi-
dence for which computational resources are to be to be trusted dur-
ing the recovery process and during subsequent computations. This is

5 Of course, gathering further evidence might reduce the number of possible
diagnoses leading to greater resolution. However, in our context there are
two difficulties with attempting to do this. First, it would take time and there
might be tight timeliness contraints on the failed computation (e.g. suppose
the computation was processing sensor data which must be acted on very
quickly). Second, any attempt to gather more data would involve running
the same, or similar, computations again when we know that something is
compromised; this might lead to loss or destruction of data. Making this
tradeoff correctly involves estimating the expected cost of new information
and it expected benefit. It is possible that such and analysis would suggest
that acting on the available diagnostic evidence is the best course of action



a different definition of the goal of diagnostic activity than has been
used in previous research on model-based diagnosis.

We have not yet addressed the details of how the system should
use this information in forming a recovery plan. The general outline
is that when assigning a computation to a resource it should choose
that resource which is most likely to be in n mode that will success-
fully complete the computation. But the probabilities of the modes
of different resources are not independent; they are linked by the
Bayesian network. Having decided to use a particular resource be-
cause it’s likely to be in an acceptable mode, the system should pin
the Bayesian network into a state where the resource is believed to
be in the desired state and re-solve the network. Subsequent choices
should be made in light of the updated probabilities.

We have also not yet addressed the question of what actions the
system might take to obtain more information in future runs. The
Minimum Entropy approach in [3] provides a useful framework.
However, the current context provides more degrees of freedom; in
addition to making new observations, we can also change the assign-
ment of resources to computational components in a way that will
maximize the expected gain in information. The details of this re-
main for future research.
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Abstract

This paper summarizes the work done in the course
of the Jade project, which deals with automatic de-
bugging of Java programs. Besides a brief intro-
duction to the Jade project, models developed to
debug Java programs are evaluated and results are
presented. Furthermore, insights gained from the
results are discussed and topics for further research
are identified.

1 Introduction
For the last three years the Jade project has examined the ap-
plicability of model-based diagnosis (MBD) techniques to the
software debugging domain. In particular, the goals of Jade
were (1) to establish a general theory of model-based soft-
ware debugging with a focus on object-oriented programming
languages, (2) to describe the semantics of the Java program-
ming language in terms of logical models usable for diagno-
sis, and (3) to develop an intelligent debugging environment
for Java programs based on theoretic results.

The main practical achievement of the Jade project is the
interactive debugging environment, which allows us to effi-
ciently locate bugs in faulty Java programs. Currently, this
debugger is fully functional with regard to nearly all aspects
of the Java programming language and comes complete with
a user-friendly GUI, the diagnosis system being integrated
into a “normal” interactive debugger interface. The Jade
debugger limits the search space of bug candidates by com-
puting diagnoses for a given (incorrect) input/output behav-
ior. This is done by using model-based diagnosis techniques,
which in some cases have been adapted to suit the needs of
an object-oriented debugging environment. Furthermore, the�
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debugger can be used to unambiguously locate faults through
an interactive debugging process, which is based on the iter-
ative computation of diagnoses, measurement selection, and
input of additional observations by the user.

This work is organized as follows: The next section briefly
describes the program models used by the Jade debugging
environment. Section 3 presents results obtained with the
models introduced in Section 2. Section 4 analyzes the results
from Section 3 and discusses some properties of the models.
In Section 5, we point out interesting topics for further re-
search. Section 6 briefly compares our approach to related
work. Finally, we conclude the paper.

2 Program models
Since model-based diagnosis relies on the existence of a
logical model description of the underlying target system,
one of the most important components of the Jade sys-
tem are its models. Currently, the Jade debugger makes
use of two model classes, dependency-based models and
value-based models. This section briefly describes these
model types. More comprehensive descriptions can be found
in [Stumptner et al., 2001; Wieland, 2001; Mayer, 2000;
2001].

Dependency-based models are based on the collection
of all data and control dependencies of a given Java pro-
gram. As an example, we look at a single statement �� ,
e.g., int x=a*b;. Informally, the variable dependencies
arising from this statement can be specified by � ����������������

. A formal logical model can now automatically be
derived from this dependency. For our example it reads��� �"! � �$#&%('*) ! � #&%+'*) ! � #�, '*) ! �-# , where the predicate� � stands for the assumption that a certain statement is in-
correct, i.e., behaves abnormally. The predicate '*) !/. # speci-
fies that the value of variable . is correct without making use
of the concrete value of . . Observations for such a model
can be expressed by specifying the correctness or incorrect-
ness of a certain variable, e.g., � '*) ! �-# in the above example.
In the course of the Jade project different dependency-based
models have been created that vary in their levels of abstrac-
tion and the amount of information used during their creation.
These models are:

ETFDM: A dependency-based model, which makes use of
a concrete execution trace [Wieland, 2001].



# Test series #TC Diagnosis Debugging����� ����� �������
	�� ���� ������
	�� ���� ��� ����� �������
	�� ���� ������
	��
1 Adder 14 17 8.14 48 8.14 48 17 10 3.9 39 3.9 39
2 IfTest 10 3.5 2.2 (1.9) 63 (54) 2.0 57 6.3 4.9 3 61 2.8 57
3 WhileTest 10 5.6 3.3 59 2.5 47 11.7 5.4 5.1 94 3.9 72
4 Numeric 9 4.6 4.6 100 4.6 100 6.2 3.6 4.4 120 5.3 147
5 Trafficlight 4 5 3 60 3 60 14 7.25 6.25 86 6.25 86
6 Library 5 26 20.6 (18) 79 (69) 20 77 33 18.6 7.8 42 7.6 41�

1 10 6.3 (5.9) 63 (59) 6 60 13.4 7.6 4.6 60 4.5 59

Table 1: Diagnosis and debugging results of the dependency-based models

DFDM: A dependency-based model, which only makes use
of static (compile-time) information, such as the Java
source code and the programming language seman-
tics [Stumptner et al., 2001; Wieland, 2001].

SFDM: Another dependency-based model, which is based
on either the ETFDM or the DFDM and involves a
higher level of abstraction by removing the distinction
between object locations and references [Stumptner et
al., 2001; Wieland, 2001].

Value-based models are models which make use of
concrete execution values and propagate these values from
the model’s inputs to its outputs and (if possible) from the
model’s outputs to its inputs. A simple value-based model
for the above example statement reads ��� �"! � �$#�� ��� ��� � ,
where � ,

�
, and

�
stand for concrete variable values as com-

puted at run-time. In the case of value-based models observa-
tions can be expressed by specifying the concrete value of a
certain variable, e.g., ����� in the above example. The Jade
system currently operates on the following two value-based
model types:

VBM: A value-based model, which makes use of not only
the underlying program dependencies, but also concrete
evaluation values and the full programming language se-
mantics [Mayer, 2000].

LF-VBM: A second value-based model, which is based
on the unfolded source code for a particular program
run [Mayer, 2001]. In particular, the loops are expanded
into a set of nested conditional statements, where the
conditional statements are modeled specially in order to
provide better backward reasoning capabilities.

Although the expressiveness of the individual models is not
exactly the same, all models support a considerable subset of
the Java programming language. Currently, exception han-
dling and programs using multiple threads are not supported.
Furthermore, the value-based models do not support recursive
method calls. The models are designed to locate functional
faults, e.g. wrong operators or reversed conditions. They
cannot reliably locate structural faults or more severe defects,
such as wrong algorithms or data structures.

3 Results
In this section we describe results obtained by applying
the models introduced above to a set of example pro-
grams and compare them with respect to their debug-

ging and diagnostic accuracy. The tests were separated
into two test sets, where one test set was used to com-
pare the dependency-based models, whereas the other set
was used to evaluate the value-based models. A compar-
ison between the dependency-based models and the value-
based models can be found in [Stumptner et al., 2001].
Most of the example programs can be obtained from
http://www.dbai.tuwien.ac.at/proj/Jade/.

3.1 Dependency-based models
The first test series aims at evaluating the performance of the
used dependency-based models, i.e., DFDMs, ETFDMs, and
SFDMs. Furthermore, we compare the results scored by these
model types. In particular, the test series has two main goals:
(1) to examine the ability of the Jade debugger to reduce the
search space of bug candidates. In other words, we test which
parts of a Java program can automatically be excluded from
the fault localization process in a single diagnosis step and
which parts of the search space remain for further debugging
actions. (2) to evaluate the debugging performance of the
Jade tool, i.e., determining the amount of user interaction
needed to unambiguously locate a fault in a Java program.

In order to carry out these tests we implement a couple
of test programs demonstrating simple variable dependencies
(simulating a binary adder, numeric examples), making use of
control structures (if and while statements), and finally mul-
tiple objects and instance fields together with linked lists and
general processing (a small library application). We then con-
struct test cases for each program � by specifying the correct
input/output behavior of � and installing a single-fault into
� . Overall 52 test cases are constructed and used for the eval-
uation of the system’s performance. Table 1 shows all tests
carried out with each row summarizing all tests performed in
a single test series. Column  "!$# denotes the number of tests
of the respective test series.

The diagnostic performance of the Jade system in the con-
text of dependency-based models is given in columns 4 to 8
of Table 1. Column % ��& shows the average number of top-
level statements of the tested programs in a single test series.
Since the Jade tool performs hierarchical debugging, only
these top-level statements (this excludes statements nested
in loops and selection statements) can be identified as the
source of a fault in a single diagnosis step. Columns %(' &
and %('*) present the number of top-level statements, which
remain as possible fault candidates after a single diagnosis
step has been performed using DFDMs and ETFDMs, re-



spectively. In other words, the difference between % � & and
%(' & ( %(' ) ) shows the number of statements, which can be
eliminated from the debugging scope in a single diagnosis
step. Columns %(' & ! � # and %('*) ! � # show the number of
remaining statements for both model types in relation to the
total number of top-level statement, i.e., % � & . These columns
present the percentage of statements, which remain as possi-
ble fault candidates for further debugging actions. All tests
are also performed with the simplified versions of the test
programs’ DFDMs. In cases where these tests yield results
different from tests with the full DFDMs, the results obtained
from the SFDMs are given in brackets. Note that no tests are
carried out with simplified versions of ETFDMs, since these
models are not yet fully supported by the Jade debugging
tool.

The right side of Table 1 (columns 9 to 14) depicts the
debugging performance of the Jade debugging environment.
Since we are now interested in the exact localization of faults,
we no longer deal with top-level statement only, but also take
statements nested in loop and selection statements into con-
sideration. Column % � ) shows the average number of all
statements of the respective tested program. Column %�� in-
cludes the average indices of those statements, in which the
single fault has been installed during the test design phase.
If we argue that with traditional debugging tools one has to
step through the code manually statement by statement un-
til the bug is located, the values in column %�� provide a
reasonable reference value for the amount of user interac-
tion needed by the Jade system to exactly locate a fault.
The latter is presented in columns %$!�& (DFDMs) and %$! )
(ETFDMs). Columns %$!�& ! � # and %$! ) ! � # show the av-
erage number of user interaction relative to the average in-
dex of the buggy statement, i.e., %$! & ! � # � %$! &�� %�� and
%$! ) ! � #�� %$! ) � %�� .

3.2 Value-based models
In a second step we test the diagnostic performance of the
more detailed and semantically stronger value-based models,
i.e., VBMs and LF-VBMs. For this task we implement a sec-
ond set of example programs which is designed especially
to investigate the specific advantages and disadvantages of
the value-based model variants. Whereas some examples are
small and specifically designed to demonstrate different as-
pects of the models, most of the example programs imple-
ment well-known algorithms which could be part of larger
programs. For example, programs executing a binary search
procedure, computing the Huffman encoding of an array of
characters, or applying Gauss elimination are part of this test
suite. Similar to the tests carried out with the dependency-
based models, faults were seeded into each program such that
each test case is influenced by one fault. Again, we assume
that the faulty program is a close variant of the correct pro-
gram. We do not deal with wrong choice of algorithms, data
structures or similar major design defects.

The diagnostic experiments are performed by specifying
the inputs of the program together with the expected results
as observations. A summary report of the obtained results
for each example program is depicted in Table 2. Several as-
pects of the examples are listed: ����� denotes the number of

Program Stm VBM LF-VBM
C D % C D H S %

BinSearch 27 16 6 63 43 1 1 2 8
Binomial 76 26 9 42 255 24 1 1 32
BoundedSum 16 14 4 38 19 1 0 2 38
BubbleSort 15 10 6 93 34 7 1 1 47
FindPair 5 4 4 100 10 1 0 2 80
FindPositive2 17 13 3 41 20 2 1 1 12
FindPositive3 17 13 3 41 20 2 1 1 12
Hamming 27 19 11 70 95 9 1 1 33
Huffman 64 22 9 80 161 9 0 (2) (25)
Huffman 64 22 6 59 164 12 1 1 19
Intersection 95 31 12 84 155 8 1 1 5
Library 24 21 6 38 36 5 0 2 34
Matrix 71 21 21 100 127 37 1 1 52
MaxSearch2 21 16 3 38 37 2 0 2 19
MultLoops 21 12 2 19 27 4 2 3 24
MultiSet 97 55 8 28 283 1 0 (2) (11)
Permutation 24 17 14 96 29 3 1 1 13
Permutation0 26 19 12 69 33 1 1 1 4
Permutation1 26 19 12 69 32 8 0 3 100
Permutation2 26 19 15 85 33 9 1 1 35
Permutation3 24 19 12 67 33 2 0 3 50
Polynom 120 64 14 24 189 26 0 (3) (13)
SearchTree 84 41 41 100 140 45 0 (1) (54)
SkipEqual 5 4 4 100 11 2 1 1 40
Stat 23 17 3 39 42 2 0 4 48
Sum 5 4 3 80 10 3 1 1 40
SumPowers 21 12 8 81 36 5 1 1 24
% 39 20 9 65 77 8 0.6 (1.6) (32)

Table 2: Diagnosis results of the value-based models

statements in the program, # represents the number of com-
ponents in the generated model. ' stands for the number
of diagnoses of minimal cardinality that are obtained and 	
represents the number of diagnoses from ' that actually in-
clude the seeded fault. � denotes the cardinality at which
the diagnostic process is stopped because the seeded fault has
been located. Finally, the %-column lists the percentage of
the statements that have to be examined in the worst case un-
til the seeded fault is found. Here it is assumed that the di-
agnoses are presented with increasing cardinality. Note that
these numbers can further be improved by suitable heuristics,
which present the diagnoses according to their ’likelihood’
to explain the faults. For the VBM, the columns 	 and �
are omitted because their value is always equal to one. Num-
bers in parentheses denote cases where the faults cannot be
located because the maximum time allowed for diagnosis is
exceeded. In these cases the numbers are lower bounds to
the actual results that would be obtained when continuing the
diagnostic process to its completion.

4 Discussion
Based on the results from Section 3, in this section we dis-
cuss some important properties of the proposed models and
present insights gained during the Jade project.



From the results it can be seen that the amount of code
that has to be analyzed in order to locate a fault can be re-
duced significantly with all models. If we look at Table 1 we
find that in the test series carried out with dependency-based
models approximately 40% of the top-level statements can be
eliminated from the debugging scope, leaving some 60% for
further debugging actions. Interestingly, the average results
obtained with different dependency-based model types were
quite similar with slight advantages to ETFDMs (in compar-
ison to DFDMs) and full model versions (in comparison to
SFDMs). In the case of value-based models, the results lie
in the same order of magnitude. In particular, between 40
and 80% of all statements have to be checked, with the av-
erage being at 65%. Note that this does not indicate a better
performance of dependency-based models in comparison to
value-based models, since completely different test programs
were used to evaluate the different model types. In particular,
the test series with the value-based variants in general used
longer and more complex test methods. These methods result
in only very few statements being removed from the suspect
code in case of dependency-based models, but still yield re-
markable results with VBMs. For a more detailed comparison
of dependency-based and value-based models see [Stumptner
et al., 2001].

Dependency-based models One major advantage of
dependency-based models is that they can be constructed and
applied to actual diagnosis problems very quickly. This is
also true for medium- to large-size programs. They are also
easier to handle than their value-based counterparts, since
they require observations only to state whether the value of
a certain variable is correct or not, whereas with value-based
models concrete execution values are needed. Generally, the
use of ETFDMs results in fewer single diagnoses, because
concrete execution traces are used during the collection of
the dependencies. This becomes especially apparent for pro-
grams, which include loop and selection statements or recur-
sive method calls. The improved debugging performance of
ETFDMs in comparison to DFDMs comes with longer mod-
eling times, since now the creation of a model not only de-
pends on the underlying source code, but also on the ex-
istence of an execution trace, whose creation requires run-
ning the program. It was also shown that the full versions of
DFDMs and ETFDMs are superior to their simplified coun-
terparts. This is, because they model object locations and
object references by separate model constructs and thus pro-
vide a finer-grained model architecture. On the other hand the
computation of diagnoses with full model versions is compu-
tationally more expensive. Further on, the specification of
observations is easier with simplified model versions.

The Value-Based Model However, dependency-based
models did not prove to be an optimal solution for all tested
programs due to their lack of run-time information. Note
that even ETFDMs do not make use of concrete evaluation
values directly, but only extract information about executed
branches and numbers of iterations of loops from concrete
execution traces. Therefore, the VBM was developed, which
makes use of the full programming language semantics and
propagates concrete evaluation values through the system. As
already mentioned, in many cases VBMs score satisfying re-

sults with programs, which can hardly be diagnosed using
dependency-based approaches only. [Stumptner et al., 2001]
indicates that in general value-based models are superior to
their dependency-based counterparts. Therefore, although
VBMs have the drawbacks of their high computational re-
quirements, VBMs have proved as satisfying general-purpose
alternatives and complements to dependency-based models.

Loop Handling A negative aspect of the dependency-
based models and the VBM is the fact that these models pro-
vide good results for programs without loops but fail to com-
pute satisfying diagnoses for programs that consist of large
loop statements. This is due to the fact that loop statements
are modeled hierarchically and discrimination between state-
ments inside the loops is not possible. To overcome these
problems, the LF-VBM expands loops into a set of nested
conditional statements, with separate assumption variables
for each statement. The number of conditional statements is
derived from the initial execution of the test cases. Therefore,
the model is able to reason about the statements inside the
loop independently, without considering the whole loop as an
entity. This provides a finer-grained resolution, which avoids
the problem of large diagnosis entities mentioned above.

As can be seen in Table 2, switching from the VBM to
the LF-VBM leads to much better results. In particular, the
percentage of statements that has to be considered until the
fault is located is reduced to 32-43%1 on average, which is
quite low compared to the percentage of statements that was
computed by the VBM. For the LF-VBM it is no longer the
case that every faulty statement is included in a diagnosis of
cardinality one (as with the VBM). Therefore, the cardinal-
ity up to which diagnoses have to be computed is likely to
be greater than one, depending on the type of fault and the
program structure. For most example programs the diagnosis
cardinality required to locate a fault is less than or equal to
two, which is usually computationally feasible when consid-
ering small- to medium-sized programs. Another aspect of
the LF-VBM that keeps the model from being blindly appli-
cable is the fact that the strong fault modes of the conditional
statements decouple the selection of the conditional branch
to be executed from the evaluation of the selection condition.
Therefore, faults in the condition cannot be located using the
LF-VBM. Fortunately, such faults can in many cases be found
with the VBM alone and do not require the LF-VBM to be
applied.

In case of dependency-based models additional tests have
been carried out to examine the overall debugging perfor-
mance of the Jade tool. As Table 1 indicates, the average
number of user interactions needed by the Jade tool is sig-
nificantly smaller than the amount of user interactions needed
by traditional debugging tools. On average some 40% of user
interactions can be saved using the Jade tool. In general, the
direct comparison of user interactions is problematic, since
different user interactions require different types of inputs
from the user, which vary in time, complexity, and knowledge

143% is obtained when assuming the whole program has to be
examined for the examples where no exact solution was found. Bet-
ter estimates (37%) are obtained when taking the percentages ob-
tained with the VBM as upper bounds.



needed by the user. The numbers given in Table 1 therefore
include all user interaction performed by the Jade system. If
only variable queries, i.e., the input of a new observation in
the form of the value of a certain variable at a given source
code position, are counted, the average amount of user inter-
action amounts to only 35% of the user interaction needed by
traditional debugging tools. Since strictly speaking all other
kinds of user interactions are not included in the reference
value of traditional debuggers, this lower value probably pro-
vides a more accurate measurement of the debugging perfor-
mance of the Jade system.

Comparison If we compare the results obtained with
the Jade system to results obtained with other approaches
for program analysis, it can be seen that the approaches de-
scribed herein are comparable and in many cases even supe-
rior to other techniques. When comparing our approach to
slicing [Weiser, 1984], we find that with dependency-based
models we yield similar results to those obtained by slicing
techniques. When value-based models are used, our results
are much better, because for most of the example programs
used during the evaluation of the value-based variants, static
slicing is not able to eliminate any statement. This can be
explained by the different levels of abstraction applied by
dependency-based models and slicing on the one hand and
value-based diagnosis techniques on the other hand. The
value-based approach is somewhat closer to the actual execu-
tion semantics of the program than with both, program slicing
and dependency-based models. Another improvement with
respect to slicing is that we can provide more information to
the user, if a loop has to be executed a different number of
times to explain a fault. Those examples where no statements
of the program can be eliminated are programs that are either
very short (consisting of only an initialization statement and
a loop) or programs where almost every part of the program
depends on every other part (for example a binary search tree,
where the program execution depends on the values that were
inserted previously).

5 Ongoing Work
Although the results presented in the previous section are
already promising, there remain topics for further research.
This section discusses possible enhancements of the models,
to avoid some of the drawbacks mentioned in Section 4.

First, no single model is able to efficiently locate faults.
Rather, a combination of models has to be applied to perform
efficient reasoning. This multi-model-reasoning approach is
not only applicable to a single level of abstraction, as in
the case of the VBM and the LF-VBM, but can also be ap-
plied using multiple levels of abstraction or types of models.
For example, the dependency-based models can be used to
narrow the region of interest and then apply combinations
of the VBM and the LF-VBM to exactly locate the fault.
Also, models dealing with structural faults [Jackson, 1995;
Wotawa, 2000] or various special-purpose models (e.g., to
locate faults in loops, selection statements, etc...) could be
incorporated in such a framework.

For this approach to be applicable, suitable strategies to de-
cide under which conditions to apply certain kinds of models

have to be developed and evaluated. Based on these criteria,
the most efficient model can be selected based on the pro-
gram structure, the test cases and the diagnoses computed so
far. This approach overcomes the drawbacks of the models,
as well as reduces the computational complexity of the di-
agnostic process, because models are only instantiated when
needed. To select candidates for further inspection, suitable
criteria for ranking diagnoses according to their likelihood to
explain the fault have to be developed.

As far as the fault classes which can be located with the
Jade environment are concerned, it should already have be-
come clear that we are interested in source code bugs which
become observable as failures or output errors and manifest
themselves as logical faults in the analyzed source code. This
explicitly excludes compile-time and run-time failures as well
as faults leading to the non-termination of a program. For a
discussion about the fault classes handled by the Jade sys-
tem we divide the class of analyzed faults into functional and
structural faults. Functional faults are all faults, which result
in a certain variable storing an incorrect value in at least one
possible evaluation trace. In particular, these faults include
the use of incorrect operators or the specification of incor-
rect literals, such as integer or boolean constants. Since these
faults do not alter the structure of the program, faults belong-
ing to this class can generally be found with the Jade de-
bugging environment, once they become observable through
a test case leading to an incorrect variable value.

Structural faults, on the other hand, are source code bugs
which alter the structure of the underlying program. This is
the case if the dependency graph [Ferrante et al., 1987] of
the program is not structurally equivalent to the dependency
graph of the correct program. The result of these faults is
that the system description, i.e., the model, differs from the
system description obtained by the correct program. At the
moment structural faults can only be located under certain
circumstances. A discussion about different classes of struc-
tural faults and how they are handled by the Jade tool is given
in [Wieland, 2001]. In the future special-purpose models have
to be developed that handle different kinds of structural faults.
As already discussed, these models then have to be combined
with the general-purpose models described herein to increase
not only the performance of the Jade debugger, but also the
number of fault classes handled by the tool.

To aid the programmer in correcting a fault, an intelligent
debugging environment should be able to provide possible
corrections for a faulty part of a program. As described in
[Stumptner and Wotawa, 1999], after a single diagnosis has
been selected for further investigation, possible replacement
expressions for the faulty expression can be inferred and pre-
sented as corrections.

Finally, intuitive means for specifying the expected behav-
ior of a program have to be developed. This includes the
construction of an intuitive graphical user-interface through
which the user can easily switch between different levels of
abstraction, test case specification, and other representations
of the program (e.g., visualizations of heap structures, etc.).



6 Related Work

This section briefly summarizes related research in the area
of program debugging and compares the approaches to our
work.

Weiser’s slicing approach [Weiser, 1984] is probably the
most widely known approach to improve program debugging.
His approach relies on the program dependencies and tries to
eliminate those parts of a program that cannot contribute to an
observed faulty program behavior. This approach is compara-
ble to the dependency-based models presented here. Details
on the relationship between these approaches can be found
in [Wotawa, 2001].

Shapiro [Shapiro, 1983] introduces a theoretical frame-
work for algorithmic program debugging and several algo-
rithms suited to debug logic programs. However, the ap-
proach suffers from heavy user interaction, which is unde-
sirable when debugging larger programs. In addition, the al-
gorithms cannot locate faults inside procedures.

In [Console et al., 1993] the application of model-based di-
agnosis to the software domain has been proposed for the first
time. This paper introduces a way of using MBD by remov-
ing and adding Horn clauses to Prolog programs. Extensions
of this approach were developed in [Bond, 1994].

Liver [Liver, 1994] discusses the use of a functional repre-
sentation in the debugging of software to reduce the problem
of structural faults in software, where statements are missing
or superfluous parts of a program are the source of errors. The
approach relies on symbolic execution of a functional speci-
fication, which has to be provided by the user.

Hunt [Hunt, 1998] applies the idea of MBD to the domain
of object-oriented languages by building models for programs
written in Smalltalk. The model used in this work is based
on dependencies between instance variables and method calls
that modify them. In contrast to our approach, [Hunt, 1998]
is limited to single faults.

MBD concepts have also been applied to VLSI design lan-
guages, in particular VHDL [Friedrich et al., 1999], using pa-
pers describe (abstract) models used for locating a concurrent
statement, e.g., a VHDL process, responsible for a detected
misbehavior. The Jade project builds on this work, but ex-
tends the previous approaches by modeling of object-oriented
features.

Finally, Burnell and Horvitz [Burnell and Horvitz, 1995]
present another approach to program debugging using prob-
ability measurements to guide diagnosis. As this approach
relies on belief networks, which have to be initialized by do-
main experts, it is doubtable whether this approach can be
applied to arbitrary programs.

7 Conclusion

Building intelligent debugging aids for programmers is an im-
portant goal repeatedly attacked by researchers during the last
decades. Unfortunately, no generally applicable solution has
been found so far. In this paper we summarize the work done
during the Jade project and discuss some results obtained
using the introduced model types. Besides the results, spe-
cific advantages and disadvantages of each of the models are

discussed. Incorporating these models in a system with multi-
model reasoning capability and ranking criteria for diagnoses
holds the promise of wider applicability and even better dis-
crimination. As our approach clearly outperforms classi-
cal debugging techniques for many example programs, the
model-based approach can be considered a promising tech-
nique that should be further researched to obtain a generally
applicable debugging tool.
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Hybrid Diagnosis with Unknown Behavioral Modes
Michael W. Hofbaur 1 and Brian C. Williams 2

Abstract. A novel capability of discrete model-based diagnosis
methods is the ability to handleunknown modeswhere no assump-
tion is made about the behavior of one or several components of the
system. This paper incorporates this novel capability of model-based
diagnosis into a hybrid estimation scheme by calculating partial fil-
ters. The filters are based on causal and structural analysis of the
specified components and their interconnection within the hybrid au-
tomaton model. Incorporating unknown modes provides a robust es-
timation scheme that can cope, unlike other hybrid estimation and
multi-model estimation schemes, with unmodeled situations and par-
tial information.

1 Introduction

Modern technology is increasingly leading to complex artifacts with
high demands on performance and availability. As a consequence,
fault-tolerant control and an underlying monitoring and diagno-
sis capability plays an important role in achieving these require-
ments. Monitoring and diagnosis systems that build upon the discrete
model-based reasoning paradigm[8] can cope well with complexity
in modern artifacts. As an example, the Livingstone system[22] suc-
cessfully monitored and diagnosed the DS-1 space probe in flight,
a system with approximately480 modes of operation. However, a
widespread application of discrete model-based systems is hindered
by their difficulty to reason about the continuous dynamics of an ar-
tifact in a comprehensive manner. Continuous behaviors are difficult
to capture by the pure qualitative models that are used by the rea-
soning engines. Nevertheless, additional reasoning in terms of the
continuous dynamics is vital for detecting functional failures, as well
as low-level incipient (i.e slowly developing) faults and subtle com-
ponent degradation.

Hybrid systems theory provides a modeling paradigm that inte-
grates both, continuous state evolution and discrete mode changes
in a comprehensive manner. Recent work in hybrid estimation[14,
16, 24, 9] attempts to overcome the shortcomings of discrete model-
based diagnosis cited above and provides schemes that integrate
model-based approaches with techniques from fault detection and
isolation (FDI)[23, 4] and multi-model adaptive filtering[13, 11, 10].
The hybrid estimation schemes, as well as their FDI and multi-model
filtering ancestors, work well whenever the underlying model(s) are
’close’ mathematical descriptions of the physical artifact. They can
fail severely whenever unforeseen situations occur. Therefore, it is
essential to provide models that capture the entire spectrum of possi-
ble behaviors/modes whenever we use the hybrid estimate for closed
loop control, for instance. Model-based diagnosis, in contrast, does

1 Department of Automatic Control, Graz University of Technology, A-8010
Graz, Austria, email:hofbaur @irt.tu-graz.ac.at

2 MIT Space Systems and AI Laboratories, 77 Massachusetts Ave., Rm. 37-
381, Cambridge, MA 02139 USA, email:williams @mit.edu

not impose such a strong modeling assumption. Its concept of the
unknown modeallows diagnosis of systems where no assumption is
made about the behavior of one or several components of the sys-
tem. In this way, it captures unspecified and unforeseen behaviors
of the system under investigation. This paper provides an approach
to incorporate the concept of an unknown mode into our hybrid es-
timation scheme[9]. As a result we obtain an estimation capability
that can detect unforeseen situations. Furthermore, it allows us to
continue estimation on a degraded basis. We achieve this by causal
analysis[17, 20], structural analysis[7] and decomposition of the sys-
tem.

This paper starts with a brief introduction to our hybrid systems
modeling and estimation scheme. Upon this foundation, we extend
hybrid estimation to incorporate the unknown mode and demonstrate
the underlying structural analysis and decomposition task. Finally, an
experimental evaluation with computer simulated data for a Martian
live support system demonstrates the advantages of this extended hy-
brid estimation scheme.

2 Hybrid Systems

The hybrid automaton model used throughout this paper is based on
[9] and can be seen as a model that merges hidden Markov models
(HMM) with continuous discrete-time dynamical system models (we
present the model on the level of detail sufficient for this work and
refer the reader to the reference cited above for more detail).

2.1 Concurrent Hybrid Automata

Definition 1 A discrete-time probabilistic hybrid automaton (PHA)
A is described as a tuple〈x,w, F, T,Xd, Ts〉:

• x denotes the hybridstate variablesof the automaton3, composed
of x = {xd} ∪ xc. The discrete variablexd denotes themode
of the automaton and has finite domainXd. Thecontinuous state
variablesxc capture the dynamic evolution of the automaton.x
denotes thehybrid stateof the automaton, whilexc denotes the
continuous state.

• The set ofI/O variablesw = ud ∪ uc ∪ yc of the automaton
is composed of disjoint sets of discrete input variablesud (called
command variables), continuousinput variablesuc, and continu-
ousoutput variablesyc.

• F : Xd → FDE ∪ FAE specifies thecontinuous evolutionof the
automaton in terms ofdiscrete-time difference equationsFDE and
algebraic equationsFAE for each modexd ∈ Xd. Ts denotes the
sampling period of the discrete-time difference equations.

3 When clear from context, we use lowercase bold symbols, such asv, to
denote asetof variables{v1, . . . , vl}, as well as avector [v1, . . . , vl]

T

with componentsvi.



• The finite set,T , of transitionsspecifies the probabilistic discrete
evolution of the automaton.

Complex systems are modeled as a composition of concurrently
operating PHA that represent the individual system components. A
concurrent probabilistic hybrid automata (cPHA)specifies this com-
position as well as its interconnection to the outside world:

Definition 2 A concurrent probabilistic hybrid automaton (cPHA)
CA is described as a tuple〈A,u,yc,vs,vo, Nx, Ny〉:

• A = {A1,A2, . . . ,Al} denotes the finite set of PHAs that repre-
sent the componentsAi of the cPHA (we denote the components
of a PHAAi by xdi,xci,udi,uci,yci, Fi,Xdi).

• Theinput variablesu = ud ∪uc of the automaton consists of the
sets of discrete input variablesud = ud1 ∪ . . . ∪ udl (command
variables) and continuous input variablesuc ⊆ uc1 ∪ . . . ∪ ucl.

• Theoutput variablesyc ⊆ yc1 ∪ . . . ∪ ycl specify the observed
output variables of the cPHA.

• The observation process is subject to additive, zero mean Gaussian
sensor noise. Ny : Xd → IRm×m specifies the mode dependent4

disturbancevo in terms of the covariance matrixR = diag(ri).
• Nx specifies additive, zero mean Gaussiandisturbancesthat act

upon the continuous state variablesxc = xc1 ∪ . . . ∪ xcl. Nx :
Xd → IRn×n specifies the mode dependent disturbancevs in
terms of the covariance matrixQ.

Definition 3 The hybrid statex(k) of a cPHA at time-stepk spec-
ifies the mode assignmentxd,(k) of the mode variablesxd =
{xd1, . . . , xdl} and the continuous state assignmentxc,(k) of the
continuous state variablesxc = xc1 ∪ . . . ∪ xcl.

Interconnection among the cPHA componentsAi is achieved via
shared continuous I/O variableswc ∈ uci∪yci only. Fig. 1 illustrates
a simple example composed of 3 PHAs.

A1 A2

uc1

ud1

ud2
CA

wc1

A3

yc2

yc1

Figure 1. Example cPHA composed of three PHAs

A cPHA specifies a mode dependent discrete-time model for a
plant with command inputsud, continuous inputsuc, continuous
outputsyc, modexd, continuous state variablesxc and additive, zero
mean Gaussian disturbancesvs, vo. The discrete-time evolution of
xc andyc is described by the nonlinear system of difference equa-
tions (sampling periodTs)

xc,(k) = f(k)(xc,(k−1),uc,(k−1)) + vs,(k−1)

yc,(k) = g(k)(xc,(k),uc,(k)) + vo,(k).
(1)

The functionsf(k) andg(k) are obtained by symbolically solving5

the set of equationsF1(xd1,(k)) ∪ . . . ∪ Fl(xdl,(k)) given the mode
xd,(k) = [xd1,(k), . . . , xdl,(k)]

T .

4 E.g. sensors can experience different magnitudes of disturbances for differ-
ent modes.

5 Our symbolic solver restricts the algebraic equations and nonlinear func-
tions to ones that can be solved explicitly and utilizes a Gröbner Basis
approach[3] to derive a set of equations of form (1).

Consider the illustrative cPHA in Fig. 1 with

A1 = 〈{xd1}, {ud1, uc1, wc1}, F1, T1, {m11, m12}...〉
A2 = 〈{xd2, xc1}, {ud2, wc1, yc1}, F2, T2, {m21, m22}...〉
A3 = 〈{xd3, xc2, xc3}, {ud2, uc1, yc1, yc2}, F3, T3, {m31}...〉.

F1, F2 and F3 provide for a cPHA mode xd,(k) =
[m11, m21, m31]

T the equations

F1(m11) = {uc1 = 5.0 wc1}
F2(m21) = {xc1,(k) = 0.8 xc1,(k−1) + wc1,(k−1),

yc1 = xc1}
F3(m31) = {xc2,(k) = xc3,(k−1) + yc1,(k−1),

xc3,(k) = 0.4 xc2,(k−1) + 0.5 uc1,(k−1),

yc2 = 2.0 xc2 + xc3}.

(2)

This leads to the discrete-time model:

xc1,(k) = 0.8 xc1,(k−1) + 0.2 uc1,(k−1) + vs1,(k−1)

xc2,(k) = xc1,(k−1) + xc3,(k−1) + vs2,(k−1)

xc3,(k) = 0.4 xc2,(k−1) + 0.5 uc1,(k−1) + vs3,(k−1)

yc1,(k) = xc1,(k) + vo1,(k)

yc2,(k) = 2.0 xc2,(k) + xc3,(k) + vo2,(k)

(3)

2.2 Estimation of Hybrid Systems

To detect the onset of subtle failures, it is essential that a monitoring
and diagnosis system is able to accurately extract the hybrid state of
a system from a signal that may be hidden among disturbances, such
as measurement noise. This is the role of a hybrid observer. More
precisely:

Hybrid Estimation Problem: Given a cPHACA, a sequences
of observations{yc,(0),yc,(1), . . . ,yc,(k)} and control inputs
{u(0),u(1), . . . ,u(k)}, estimate the most likely hybrid state
x̂(k) at time-stepk.

A hybrid state estimatêx(k) consists of acontinuous state esti-
mate, together with the associatedmode. We denote this by the tuple

x̂(k) := 〈xd,(k), x̂c,(k),P(k)〉,

wherex̂c,(k) specifies the mean andP(k) the covariance for the con-
tinuous state variablesxc. The likelihood of an estimatêx(k) is de-
noted by thehybrid belief-stateh(k)[x̂].

We perform hybrid estimation as extended version of HMM-style
belief-state update that accounts for the influence of the continuous
dynamics upon the system’s discrete modes. A major difference be-
tween hybrid estimation and an HMM-style belief-state update, as
well as multi-model estimation, is, however, that hybrid estimation
tracks a set of trajectories, whereas standard belief-state update and
multi-model estimation aggregate trajectories which share the same
mode. This difference is reflected in the first of the following two
recursive functions which define our hybrid estimation scheme:

h(•k)[x̂i] = PT (mi|x̂j,(k−1),ud,(k−1))h(k−1)[x̂j ] (4)

h(k)[x̂i] =
h(•k)[x̂i]PO(yc,(k)|x̂i,(k),uc,(k))∑
j h(•k)[x̂j ]PO(yc,(k)|x̂j,(k),uc,(k))

(5)

h(•k)[x̂i] denotes an intermediate hybrid belief-state, based on tran-
sition probabilities only. Hybrid estimation determines for each



x̂j,(k−1) at the previous time-stepk − 1 the possible transitions,
thus specifying candidate successor states to be tracked. Consecu-
tive filtering provides the new hybrid statêxi,(k) and adjusts the hy-
brid belief-stateh(k)[x̂i] based on the hybrid probabilistic observa-
tion functionPO(yc,(k)|x̂i,(k),uc,(k)). The estimatêxj,(k) with the
highest belief-stateh(k)[x̂j ] = maxi(h(k)[x̂i]) is taken as the hybrid
estimate at time-stepk.

Tracking all possible trajectories of the system is almost always
intractable because the number of trajectories becomes too large after
only a few time-steps. In [9] we present an approximative anytime
anyspace algorithm that copes with the exponential growth, as well as
the large number of modes in a typical concurrent hybrid automaton
model.

Hybrid estimation and other multi-model estimation schemes have
in common that they require models that are ’close’ mathematical de-
scriptions of the system. They can fail severely whenever unforeseen,
i.e. unmodeled, situations occur. As a consequence, we have to pro-
vide models for all operational modes as well as an exhaustive set
of models for possible failure modes. Providing all possible failure
models can be problematic even under the assumption of an exhaus-
tive failure mode effect analysis (FMEA). For instance, consider an
incipient fault in a servo valve that causes the valve to drift off its
nominal opening value. The drift (positive, negative, slow, fast...) is
subject to the fault. It is surely difficult to provide a mathematical
model with the correct parameter values that captures all possible
drift situations. Nor is it helpful to introduce a sufficiently large set
of modes that captures possible situations of the drift fault as this
would introduce additional complexity for hybrid estimation by in-
creasing the number of modes unnecessarily.

This requirement of hybrid mode estimation is in contrast to dis-
crete model-based diagnosis schemes, such as GDE (e.g. [5, 6, 19]).
Model-based diagnosis deduces the possible mode of the system
based on nominal models, and few specified fault models only. The
onset of possible fault scenarios are covered by the so calledun-
known modewhich does not impose any constraints on the system’s
variables.

The next section provides an approach that systematically incor-
porates the concept of the unknown mode into our hybrid estimation
scheme.

3 Estimation with Unknown Modes

The estimation scheme [9] requires a fully specified mode assign-
mentxdi,(k) for each candidate trajectory that is tracked in the course
of hybrid estimation. Only a fully specified mode allows us to deduce
the mathematical model (1) for the overall system. This model is the
basis for the dynamic filter (e.g. extended Kalman filter) that is used
in the course of hybrid estimation.

uc1

yc1

yc2
P
O

xc1

xc2

xc3

MIMO Filter

Figure 2. MIMO filter (e.g. extended Kalman filter) for the cPHA example

For our illustrative 3 component example introduced above
this would mean that hybrid estimation calculates a multi-input

multi-output (MIMO) filter (see Fig. 2) for modexdi,(k) =
[m11, m21, m31]

T based on the mathematical model (3). This filter
provides the hybrid state estimatex̂i,(k) as well as the value for the
hybrid probabilistic observation functionPO(yc,(k)|x̂i,(k),uc,(k))
for the hybrid estimator (see Appendix A for the extended Kalman
filter estimation details).

Let us assume the modexdi,(k) = [?, m21, m31]
T which speci-

fies that component 1 (A1) is in unknown mode. A component in un-
known mode imposes no constraints (equations) among its variables
(uc1 and the internal variablewc1, in our case). As a consequence,
we cannot deduce an overall mathematical model of the form (1) and
fail to provide the basis for the hybrid estimation scheme, the MIMO
filter for modexdi,(k) = [?, m21, m31]

T .
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Figure 3. Example cPHA with explicit noise inputs

However, a close look on the PHA interconnection (Fig. 3 - the
figure extends Fig. 1 by including the implicit noise inputs, as well
as indicating the causality for the internal I/O variables) reveals that
we can still estimate component 3 by its observed outputyc2 and the
observationyc1 as a substitute for the value of its input. This intuitive
approach utilizes a decomposition of the cPHA as shown in Fig. 4.

1

vs1

2

3

vs3

yc2

yc1

vo1

vo2

vo1yc1

uc1
A A

A

vs2

uc1

Figure 4. Decomposed cPHA

The decomposition allows us to treat the concurrent parts of the
system independently and calculate afilter cluster consisting of 2
independent filters. However, when calculating the individual filters
for the cluster, we have to take into account that we use themea-
surementof the input to the third component (yc1) in replacement to
its true value. This can be interpreted as having additional additive
noise at the component’s input as indicated in Fig. 4. The following
modification of the covariance matrixQ3 for the state variables of
A3 takes this into account:

Q̃3 = b3r1b
T
3 + Q3, (6)

wherer1 denotes the variance of disturbancevo1 andb3 = [0, 1]T
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Figure 5. Decomposed filter

denotes the input vector6 of A3 with respect toyc1.
A filter cluster consisting of extended Kalman filters and the

MIMO extended Kalman filter are interchangeable as they provide
the same expected value for the continuous state (E(x̂c)) whenever
the mode of the automaton is fully specified. However, the decom-
posed filter has the advantage that the probabilistic observation func-
tion PO of the overall system is given by

PO =
∏

j

POj , (7)

wherePOj denotes the probabilistic observation function of thej’th
filter in the filter cluster.

This factorization of the probabilistic observation function allows
us to calculate an upper bound forPO whenever one or more com-
ponents of the system are in unknown mode. We simply take the
product over the remaining filters in the cluster. This is equivalent
with considering the upper bounds of the inequalitiesPOj ≤ 1 for
each unknown filterj. In our example with unknown componentA1

this would mean:
PO ≤ PO2,

wherePO2 denotes the observation function for the filter that esti-
mates the continuous state of componentA3.

The following subsection provides a graph-based approach for
filer cluster deduction that grounds the informally introduced decom-
position on a more versatile basis.

3.1 System Decomposition and Filter Cluster
Calculation

Starting point for the decomposition of the system for a cPHA mode
xd is the set of equations

F1(xd1,(k)) ∪ . . . ∪ Fl(xdl,(k)) =: F(xd), (8)

whereFj(xdj,(k)) returns the appropriate set of equations for a com-
ponentAi wheneverxdj,(k) ∈ Xdj or the empty set whenever the
component is in unknown mode, i.e.xdj,(k) =?. Although we still
have to solve the set of equations to arrive at the mathematical
model of form (1) we can interpret the set of equations (8) as the

6 In the general case, we have to calculatebj for a cPHA componentAj
and observed inputsuyc by linearization, more specifically:bj,(k) =

∂fj/∂uyc|x̂cj,(k−1),ucj,(k−1)
, wherefj denotes the right-hand side of

the difference equation for componentAj , uyc refers to the observed
variables that are used as inputs to the component (i.e.uyc ⊂ yc) and
x̂cj,(k−1) as well asucj,(k−1) represent the state estimate and the contin-
uous input for componentAj at the previous time-step, respectively.

raw modelfor the system given modexd. The following decom-
position performs a structural analysis of the raw model-based on
causal analysis[17, 20], structural observability analysis[7] and graph
decomposition[1].

A cPHA model does not impose a fixed causal structure that spec-
ifies directionality of automaton interconnections. Causality is im-
plicitly specified by the set of equations. This increases the expres-
siveness of the modeling framework but requires us to perform a
causal analysis of the raw model (8) as a first step. The deduc-
tion of the causal dependencies is done by applying the bipartite-
matching based algorithm presented in [17]. The resulting directed
graph records the causal dependencies among the variables of the
system (Fig. 6 shows the graph for the the illustrative 3 PHA ex-
ample). Each vertex of the graph represents one equationei ∈ F

uc1 xc1wc1 yc1 xc2 xc3 yc2

Figure 6. Causal graph for the cPHA example

or an exogenous variable specification (e.g.uc1) and is labeled by
its dependent variable which also specifies the outgoing edge (in the
following, we will use the variable name to refer to the correspond-
ing vertex in the graph). Vertices without incoming edges specify the
exogenousvariables.

Definition 4 A causal graphof a cPHACA at a modexd is a di-
rected graph that records the causal dependencies among the vari-
ablesv ∈

⋃
i xci ∪ uci ∪ yci of CA. We denote the causal graph

by CG(CA,xd) and sometimes omit arguments where no confusion
seems likely.

Goal of our analysis is to obtain a set of independent subsystems
that utilize observed variables as virtual inputs. Therefore, we slice
the graph at observed variable vertices with outgoing edges, insert a
new vertex to represent a virtual input and re-map the sliced outgo-
ing edges to this vertex. Fig. 7 demonstrates this re-mapping for the
causal graph of Fig. 6. The observed variables areyc1 andyc2. Only
the vertex with dependent variableyc1 has an outgoing edge, thus we
slice the graph atyc1 → xc2 and re-map the edge to the virtual input
uyc1.

uc1 xc1wc1 yc1

xc2 xc3 yc2
uyc1

Figure 7. Remapped causal graph for the cPHA example

A dynamic filter (e.g. extended Kalman filter) can only estimate
the observable part of the model. Therefore, it is essential to perform



an observability analysis prior calculating the filter so that non ob-
servable parts of the model are excluded. We perform this analysis
on a structural basis7.

Definition 5 We call a variablev of a cPHACA at modexd struc-
turally observable (SO)whenever it is directly observed, i.e.v ∈ yc,
or there exists at least one path in the causal graphCG(CA,xd) that
connects the variablez to an output variableyc ∈ yc of CA.

A filter estimates the state variablesxc of a dynamic system based
on observationsyc and the inputsuc that act upon the state variables
xc. The required knowledge about the inputsuc indicates that the
structural observability criteria is not yet sufficient to determine the
submodel for estimation. We have to make sure, that no unknown ex-
ogenous input influences a variable. To illustrate this, consider again
the 3 PHA example with modexd = [?, m21, m31]

T . Component
1 in unknown mode omits the equation that relates the variablesuc1

andwc1. This leads to a causal graph̃CG (Fig. 8), wherewc1 is la-
beled as exogenous (no incoming edges). This unknown exogenous
input influences the state variablexc1 and, as a consequence, pre-
vents us from estimating it!

uc1 xc1wc1 yc1

xc2 xc3 yc2
uyc1

Figure 8. Remapped causal graph for the cPHA example with unknown
componentA1

We extend our structural analysis of the causal graph by the fol-
lowing criteria:

Definition 6 We call a variablev of a cPHACA at modexd struc-
turally determined (SD)whenever it is an input variable of the au-
tomaton, i.e.v ∈ uc, or there does not exist a path in the causal
graphCG(CA,xd) that connects an exogenous variableue /∈ uc

with v.

Furthermore, it is helpful to eliminate loops in the causal graph
prior checking variables against both structural criteria. For this pur-
pose, we calculate thestrongly connected componentsof the causal
graph[1].

Definition 7 A strongly connected component (SCC)of the causal
graphCG is a maximal setSCC of variables in which there is a path
from any one variable in the set to another variable in the set.

Fig. 9 shows the remapped causal graph for the 3 PHA example after
grouping variables into strongly connected components.

The strong interconnection among variables in an SCC implies
that:

1. Structural observability of variables in an SCC follows directly
from structural observability of at least one variable in the SCC.

7 Throughout the paper we assume that loss of observability is caused by
a structural defect of the model. Otherwise, it is necessary to perform an
additional numerical observability test [18] as structural observability only
provides anecessarycondition for observability.

uc1 xc1wc1 yc1

xc2, xc3 yc2uyc1

Figure 9. Causal SCC graph for cPHA example

2. A variable in an SCC is structurally determined, if and only if all
variables in the SCC are structurally determined.

As a consequence, we can apply our structural analysis to strongly
connected components directly and operate on the SCC graph, i.e
a causal graph without loops. The analysis of a strongly connected
component with respect to structural observability and structural de-
termination (SOD) can be outlined as follows:

function determine-SOD-of-SCC(SCC,uc, k)
whenSOD-undetermined?(SCC)

if exogenous?(SCC)
then vi← independent-var(SCC)

if vi ∈ uc then SD(SCC)← True
elseSD(SCC)← False

else V ← uplink-SCCs(SCC)
loop for SCCi in V

do determine-SOD-of-SCC(SCCi,uc, k)
SO(SCC)← True
SD(SCC)← all-uplink-SCCs-are-SD?(V)
cluster-index(SCC)← k ∪ cluster-indices(V)

SOD-determined(SCC)← True
return Nil

Our structural analysis algorithm determines structural observabil-
ity and determination (SOD) of a variable by traversing the SCC
graph backwards from the observed variables towards the inputs.
In the course of this analysis we label non-exogenous strongly con-
nected components with an index that refers to their cluster mem-
bership. This indexing scheme allows us to cluster the variables into
non-overlapping clusters with respect to the observed variables. The
direct relation between a variable, its determining equation, and the
cPHA component that specified this equation leads to the compo-
nent clusters sought. The structural analysis can be summarized as
follows:

function component-clustering(CA,xd)
returns a set of cPHA component clusters
yc← observed-vars(CA)
C̃G ← remap-causal-graph(CG(CA,xd),yc)
uc← virtual-inputs(C̃G) ∪ input-vars(CA)
CGSCC ← strongly-connected-component-graph(C̃G)
k← 0
loop for SCCi in output-SCCs(CGSCC ,yc)

do determine-SOD-of-SCC(SCCi,uc, k)
k← k + 1

graph-clusters← get-SOD-SSC-clusters(CGSCC )
return automaton-clusters(CA, graph-clusters)



uc1 xc1wc1 yc1

xc2, xc3 yc2uyc1

sod-1 sod-1 sod-1

sod-2 sod-2
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cluster 2

A1{              },A2

A3{      }

Figure 10. Labeled and partitioned causal SCC graph for the 3 cPHA
example

Each component cluster defines the observable and determined
raw model for a subsystem of the cPHA. This raw model can be
solved symbolically and provides the nonlinear system of difference
equations (a model similar to (1), but with the additional virtual in-
puts) that is the basis for the corresponding filter in the filter cluster.
In this way we exclude the unobservable and/or undetermined parts
of the overall system from estimation.

Whenever a state variablexcj becomes unobservable and/or un-
determined (e.g. due to a mode change) during hybrid estimation,
we hold the value for the mean at its last known estimatex̂cj and
increase its varianceσ2

j = pjj by a constant factor at each hybrid
estimation step. This reflects a continuously decreasing confidence
in the estimatêxcj and allows us to restart estimation whenever the
variable becomes observable and determined again8.

4 Example - BIO-Plex

Our application is the BIO-Plex Test Complex at NASA Johnson
Space Center, a five chamber facility for evaluating biological and
physiochemical Martian life support technologies. It is an artificial,
biosphere-type, closed environment, which must robustly provide all
the air, water, and most of the food for a crew of four without in-
terruption. Plants are grown in plant growth chambers, where they
provide food for the crew, and convert the exhaledCO2 into O2. In
order to maintain a closed-loop system, it is necessary to control the
resource exchange between the chambers without endangering the
crew. For the scope of this paper, we restrict our evaluation to the
sub-system dealing withCO2 control in the plant growth chamber
(PGC), shown in Fig. 11.

The system is composed of several components, such as redundant
flow regulators (FR1, FR2) that provide continuousCO2 supply, re-
dundant pulse injection valves (PIV1, PIV2) that provide a means for
increasing theCO2 concentration rapidly, a lighting system (LS) and
the plant growth chamber (PGC), itself. The control system main-
tains a plant growth optimalCO2 concentration of1200 ppm during
the day phase of the system (20 hours/day).

Hybrid estimation schemes are key to tracking system operational
modes, as well as, detecting subtle failures and performing diag-
noses. For example, we simulate a failure of the second flow reg-
ulator. The regulator becomes off-line and drifts slowly towards its
positive limit. This fault situation is difficult to capture by an explicit
fault model as we do not know, in advance, whether the regulator

8 Whenever a state variablexcj is directly observed we also can utilize an
alternative approach suggested in [15] that restarts the estimator with the
observed value, thus improving the observer convergence time.
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Figure 11. BIO-Plex plant growth chamber

drifts towards its postitive or negative limit, nor do we know the mag-
nitude of the drift. A fault of this type, which develops slowly and
whose symptom is hidden among the noise in the system is a typical
candidate for our unknown-mode detection capability. However, we
also provide explicit failure models that describe typical situations.
For example, the PGC has 4 plant trays with one illumination bank
for each tray. A black out of one illumination bank can be interpreted
as a25% loss in light intensity. This situation can be modeled explic-
itly by a dynamical model that takes this reduced light intensity into
account.

In the following we describe the outcome of a simulated experi-
ment where the flow regulator fault with drifting symptom is injected
at time pointk = 700 and an additional light fault, that harms one
of the four illumination banks, is injected atk = 900. The faults are
’repaired’ atk = 1100 andk = 1300 for the flow regulator fault and
the lighting fault, respectively. This experiment illustrates unknown
mode detection and recovery from it, nominal failure mode detection,
and the multiple fault detection capability of our approach.
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Figure 12. BIO-Plex cPHA model

The simulated data is gathered from the execution of a refined sub-
set of NASA’s JSC’s CONFIG model for the BIO-Plex system[12].
Hybrid estimation utilizes a cPHA model that consists of 6 com-
ponents as shown in Fig. 12. To illustrate the complexity of the
hybrid estimation problem we should note, that the concurrent au-
tomaton has approximately56 ≈ 15000 modes. Each mode de-
scribes the dynamic evolution of the chamber system by a third or-
der system of difference equations. For example, the nominal op-
erational condition for plant growth is characterized by the mode



xd = [mr2, mr2, mv1, mv1, ml2, mp2], wheremr2 characterizes
an partially open flow regulator,mv1 a closed pulse injection valve,
ml2 100% light on, andmp2 plant growth mode at1200 ppm, re-
spectively. This mode specifies the raw model:

F1(mr2) = {xc1,(k) = 0.5 uc1,(k−1), yc1 = xc1}
F2(mr2) = {xc2,(k) = 0.5 uc1,(k−1), yc2 = xc2}
F3(mv1) = {wc2 = 0.0}
F4(mv1) = {wc3 = 0.0}
F5(ml2) = {wc1 = 1204.0}
F6(mp2) = {xc3,(k) = xc3,(k−1) + 20.163·

[−1.516 · 10−4f1(wc1,(k−1))f2(xc3,(k−1))+

yc1,(k−1) + yc2,(k−1) + wc1,(k−1) + wc2,(k−1)],

yc3 = xc3},
(9)

wheref1 andf2 denotes

f1(wc1) :=− 7.615 + 0.111 wc1 − 2.149 · 10−5 w2
c1

f2(xc3) := 72.0− 78.89 e−xc3/400.0.
(10)

xc1,(k) andxc2,(k) denote the gas flow ([g/min]) of flow regulator 1
and 2, respectively andxc3,(k) denotes theCO2 gas concentration
([ppm]) in the plant growth chamber.wc1,(k) andwc2,(k) denote the
gas flow ([g/min]) of the pulse injection valves andwc3,(k) denotes
the photosynthetic photon flux ([µ-mol/m2s]) of the lights above the
plant trays. The nonlinear expression

−1.516 · 10−4f1(wc1,(k−1))f2(xc3,(k−1))

approximates theCO2 gas production [g/min] due to photo-
synthesis according to theCO2 gas concentration and chamber
illumination[12]. This raw model defines a third order system of
discrete-time difference equations with sampling periodTs = 1
[min]:

xc1,(k) = 0.5 uc1,(k−1) + vs1,(k−1)

xc2,(k) = 0.5 uc1,(k−1) + vs2,(k−1)

xc3,(k) = xc3,(k−1) + 20.163[−1.041+

1.141e−xc3,(k)/400.0 + xc1,(k−1) + xc2,(k−1)] + vs3,(k−1)

yc1,(k) = xc1,(k) + vo1,(k)

yc2,(k) = xc2,(k) + vo2,(k)

yc2,(k) = xc3,(k) + vo3,(k),
(11)

uc1 xc1

wc3

yc1

xc2 yc2

xc3 yc3

1204.0

wc2

0.0
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Figure 13. Causal graph of the BIO-Plex cPHA raw model (9)

The causal graph (Fig. 13) of the raw model (9) leads to the de-
composition of the system as shown in Fig. 14 (our implementation
of the causal analysis and decomposition algorithms treats constant
values, such as the value 1204.0 for the photosynthetic photon flux,
as known exogenous inputs with constant value). The decomposition
of the model leads to a filter cluster with 3 extended Kalman filters -
one for each flow regulator and one for the remaining system (pulse
injection valves, lighting system and plant growth chamber). This
enables us to estimate the mode and continuous state of the flow reg-
ulators independent of the remaining system. As a consequence, an
unknown mode in a flow regulator does not cause any implications
on the estimation of the remaining system.

uc1 xc1

wc1

yc1

uyc1

cluster 1 {FR1}

xc2 yc2

cluster 2 {FR2}

xc3 yc3

cluster 3 {PIV1, PIV2, LS, PGC}

uyc2

wc2

wc3

1204.0

0.0

Figure 14. Partitioned causal SCC graph of the BIO-Plex cPHA model

Fig. 15 shows the continuous input (control signal)uc1, observed
flow rates for flow regulator 1 and 2 and theCO2 concentration for
the experiment. Both flow regulators provide half of the requested
gas injection rate up tok = 700. At this time point, the second flow
regulator starts to slowly drift towards its positive limit which it will
reach at approximatelyk = 800. The camber control system re-
acts immediately and lowers the control signal in order to keep the
CO2 concentration at the requested 1200 ppm concentration. This
transient behavior causes a slight bump in theCO2 concentration
as shown in Fig. 15-b. Our hybrid mode estimation system detects
this unmodeled fault atk = 727 and declares flow regulator 2 to be
in an unknown mode (we indicate the unknown mode by the mode
number 0 in Fig. 16). The flow regulator modestuck-open(mr5) be-
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Figure 16. Mode estimate detail for flow regulator 2

comes more and more likely as the regulator drifts towards its open
position. Hybrid mode estimation prefers this mode as symptom ex-
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Figure 15. Observed data and continuous estimation of theCO2 concentration in plant growth chamber

planation fromk = 769 onwards, although flow regulator 2 goes
into saturation a little bit later atk = 800.

The light fault atk = 900 is detected almost instantly atk = 904
(ml4). This good discrimination among the pre-specified modes
(failure and nominal) is further demonstrated at the termination
points of the faults. Repairs of the flow regulator 2 and the lighting
system are detected immediately atk = 1101 andk = 1301, re-
spectively. Fig. 17 shows the mode estimation result for the lighting
system and flow regulator 2 over the entire experiment horizon.
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5 Implementation and Discussion

The implementation of our hybrid estimation scheme extends previ-
ous work on hybrid estimation [9] and is written in Common LISP.

The hybrid estimator uses a cPHA description and performs decom-
position and estimation, as outlined above. Decomposition is done
on-line according to the mode hypotheses that are tested in the course
of hybrid estimation. In general, it can be assumed that the the mode
in the system evolves on a lower rate than the hybrid estimation
rate, which operates on the sampling periodTs. Therefore, we cache
recent decompositions and their corresponding filters for re-use as
a compromise between a-priori calculation (space complexity) and
pure on-line deduction (time complexity).

Optimized model-based estimation schemes, such as
Livingstone[22], utilize conflicts to focus the underlying search
operation. A conflict is a (partial) mode assignment that makes a
hypothesis very unlikely. This requires a more general treatment
of unknown modes compared to the filter decomposition task
introduced above. The decompositional model-based learning
system Moriarty[21] introduced continuous variants of conflicts,
so-calleddissents. We are currently reformulating these dissents for
hybrid systems and investigate their incorporation to improve the
underlying search scheme. This will lead to an overall framework
that unifies our previous work on Livingstone, Moriarty and hybrid
estimation.
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A Extended Kalman Filter

The disturbances and imprecise knowledge about the initial state
xc,(0) make it necessary to estimate the state by its meanx̂c,(k)

and covariance matrixP(k). We use an extended Kalman filter[2]
for this purpose, which updates its current state, like an HMM ob-
server, in two steps. The first step uses the model to predict mean
for the statêxc,(•k) and its covarianceP(•k), based on the previous

estimate〈x̂c,(k−1),P(k−1)〉, and the control inputuc,(k−1):

x̂c,(•k) = f(x̂c,(k−1),uc,(k−1)) (12)

A(k−1) =
∂f

∂x

∣∣∣∣
x̂c,(k−1),uc,(k−1)

(13)

P(•k) = A(k−1)P(k−1)A
T
(k−1) + Q. (14)

This one-step ahead prediction leads to a prediction residualr(k)

with covariance matrixS(k)

r(k) = yc,(k) − g(x̂c,(•k),uc,(k)) (15)

C(k) =
∂g

∂x

∣∣∣∣
x̂c,(•k),uc,(k)

(16)

S(k) = C(k)P(•k)C
T
(k) + R. (17)

The second filter step calculates the Kalman filter gainK(k), and
refines the prediction as follows:

K(k) = P(•k)C
T
(k)S

−1
(k) (18)

x̂c,(k) = x̂c,(•k) + K(k)r(k) (19)

P(k) =
[
I−K(k)C(k)

]
P(•k). (20)

The output of the extended Kalman filter, as used in our hybrid esti-
mation system, is a sequence of mean/covariance pairs〈x̂c,(k),P(k)〉
for xc,(k) as well as the hybrid probabilistic observation function

PO(y(k)|x̂(k),uc,(k)) = e
−rT

(k)S
−1
(k)r(k)/2

. (21)
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Abstract. In this paper we propose a component-based hybrid for-
malism, that represents physical phenomena by combining concur-
rent automata with continuous uncertain dynamic models. The for-
malism eases the modeling of complex physical systems, and adds
concurrency to the supervision of hybrid systems. Uncertainties in
the model are integrated as probabilities at the discrete level and in-
tervals at the continuous level. Our modeling framework is rather
generic while focusing on the construction of intelligent autonomous
supervisors by integrating a continuous/discrete interface able to rea-
son on-line in any region of the physical system state-space, for be-
havior simulation, diagnosis and system tracking.

1 INTRODUCTION

In the past few years, numerous works have been presented to model
embedded systems with hybrid models and reason about them for
simulation, diagnosis [9] or verification [1] purposes. The model-
ing framework usually expresses the different operating modes of
the system as a set of finite automata and associates to each mode
continuous knowledge encoded through standard numeric differen-
tial equations. In this paper we propose a component-based hybrid
formalism, that represents physical phenomena by combining con-
current automata with continuous uncertain dynamic models. How-
ever it is not sufficient to add continuous knowledge to automata, be-
cause moving between operating modes requires the automatic con-
struction of the structure of the newly assembled continuous model.
It means computing both the characterization of the region of the
state-space of the operating mode (denoted as aconfiguration), and
a proper causal ordering between the active variables in that mode.
No pre-study of the behavior of the physical system is required to
determine the state-space regions associated with the current sys-
tem configuration(s) because the search at continuous level is casted
into a boolean constraint satisfaction problem. A reasoning continu-
ous/discrete interface (C/D I) is thus added, which provides an on-
line generation of the characterization of the new model structure by
making use of enhanced Truth Maintenance techniques [18] on the
logical model. This is keypoint to achieve the diagnosis of the hy-
brid system for which detection is provided by the continuous layer
and state identification is performed at the discrete logical level by
searching for the current configuration consistent with observations.
At the same time, the logical framework allows the description of
purely discrete component behavior in the same manner as in [17].
Section 2 describes the discrete and the continuous layers; Section 3
presents the interface that integrates both layers together; Section 4

1 This work is supported by CNES (French Space Research Center) and AS-
TRIUM.

2 Laboratory for Analysis and Architecture of Systems, Toulouse, France
3 Laboratory for Analysis and Architecture of Systems, Toulouse, France
4 LIPN - UMR 7030 Universit́e Paris 13, France

presents the algorithms required to reason about hybrid models and
to track multiple trajectories in both simulation and diagnosis; Sec-
tion 5 discusses our research, compares and references some related
work.

2 Hybrid System Formulation

2.1 Hybrid Systems as Transition Systems

The set of all components of the physical system to be modeled is
denoted byComps. Every component in that set is described by a
hybrid transition system. The set of all variables used to describe a
component is denotedV and is partitioned in the following manner:

• Π = ΠM ∪ ΠC ∪ ΠCond ∪ ΠD — set of discrete variables of 4
distinct types (Mode, Command, Conditional, Dependent),

• Ξ = ΞI ∪ ΞD — set of continuous variables of 2 distinct types
(Input, Dependent).

Mode variablesΠM represent components nominal or faulty modes,
such asonor stuck. Command variablesΠC are endogeneous and ex-
ogeneous commands modeled as discrete events to the system (e.g.
software commands). Continuous input variablesΞI are exogeneous
continuous signals to the system determined by its environment (e.g.
known inputs or disturbances). Conditional variablesΠCond are spe-
cific discrete variables that represent conditions on continuous vari-
ables. Discrete and continuous dependent variables are all other vari-
ables. Finally the setObs contains observable variables of the phys-
ical system. Each observable signal has an explicit sampling period.
Our hybrid transition system is an extension of the standard transi-
tion system [8] that adds (qualitative or quantitative) constraints to
the states.

Definition 1 (Hybrid Transition System – HTS) A Hybrid Transi-
tion SystemHTS is a tuple (V , Σ, T , C, Θ) with:

• V = Π ∪ Ξ — set of all variables.∀v ∈ V , the domain ofv
is D[v], finite for variables inΠ, intervals or real values in<
otherwise.

• Σ — set of all interpretations overV .
Each state inΣ assigns a value from its domain to any variable
v ∈ V .

• T — finite set of transition variables.
Each variableτm in T ranges over its domainD[τm] of possible
transitions of the mode variablem ∈ ΠM . Eachτ im in D[τm] is
a functionτ im : Σ→ 2Σ, associated to a mapping functionlτim .

• C — set of (qualitative or quantitative) continuous constraints
overV .
Each constraintc in C at least depends on one mode variable in
ΠM . ∀m ∈ ΠM , we noteC[m] the set of constraints associated
to the variablem.



• Θ — set of initial conditions.
Θ is a set of assertions overV such that they define the set of
initial possible states, i.e. the set of statess in Σ such thats |= Θ.

Note that in aHTS, due to the continuous constraints inC, some
transitions can trigger according to conditions over continuous vari-
ables. At the discrete/continuous interface level, these conditions
have a corresponding discrete variable inΠCond, which captures
their truth value. Throughout this paper we illustrate the formal-

C[open] : ẋ = aQo∆x
C[closed] : ẋ = aQc∆x where∆x = xe − x.
l1 : ẋ = aQc∆x
l2 : ẋ = aQo∆x

Figure 1. roomHTS with unknown mode

C[off] (C[stuck off]) : xe = xext
C[on] (C[stuck on]) : xe = h
l1 : ẋ = aQo/c(h − T.m)

l2 : ẋ = aQo/c(xext − T.M)

Figure 2. thermostatHTS with fault modes

ism and later on the diagnosis operation on a simple example: figure
1 shows theHTS of a roomR submitted to a temperature source.
It has two nominal modes:open (a door or a window is opened),
closed, and a faultyunknownmode. The room temperaturex is influ-
enced by the temperature of the sourcexe according to a first-order
differential equation which accounts for the room characteristicsQc
(closed) andQo (open). The actions that move the room from one
mode to another are modeled as observed single discrete commands
cmd = open andcmd = close. Figure 2 presents the model of a

thermostatT , with faulty modesstuckon, stuckoff andunknown, as
well as required transitions. This thermostat switches according to
the room temperaturex (it should be in itson mode when the tem-
peraturex ≤ m to warm up the room, and back to itsoff mode when
x ≥ M to cool it down).x is hence influenced by the heater setting
temperatureh (in modeon) or by the outside temperaturexext (in
modeoff). The temperature variatioṅx is observed through a sensor
with additive noiseẋnoi. Initially, x = xext, the room isclosedand
the thermostat ison. Variables of bothHTS are:
R.mode ∈ ΠM = (closed, open, unknown)

R.cmd ∈ ΠC = (none, open, close)

R.c ∈ Πcond = (R.x ≤ m,R.x > m ∧ R.x < M ,R.x ≥M)

R.x ∈ ΞD ∈ [−∞,+∞]

R.ẋ ∈ ΞD ∈ [−∞,+∞]

R.∆x ∈ ΞD ∈ [−∞,+∞]

R.ẋnoi ∈ ΞI ∈ [−1, 1]

R.Qc ∈ [0.05, 0.15]

R.Qo ∈ [0.02, 0.05]

R.a ∈ [0.9, 1.1]

R.xext = 4

T.mode ∈ ΠM = (off, on, stuck on, stuck off, unknown)

T.M = 17

T.m = 10

T.h = 20

Obs = {ẋ}

2.1.1 States and Time

Considerations about time are central because both the discrete and
the continuous frameworks use time representations that are differ-
ent. At the continuous level, time is explicit in the equations that
represent the physical system behavior, we call itphysical timeθ.
Physical time is discretized according to the highest frequency sen-
sor, providing theHTS reference sampling periodTs. x(kTs), or
x(k) for short, specifies the value of the continuous vector of state-
variables inΞ at physical timekTs. We callabstract timethe time
at the discrete level. It is dated according to the occurrence of dis-
crete events. At datet, the discrete stateπt of aHTS is the tuple
(Mt, Qt), whereMt is the vector of instances of mode variables, and
Qt the vector of instances of variables ofΠ in qualitative constraints.
Discrete state-variables are inΠ\ΠCond. Abstract time dates are in-
dexed on physical time, which informs about how long a component
has been in a given discrete state. Ift = kTs, then we write the in-
dexed datetk. When there is no ambiguity it is simply denoted byt.
Thehybrid statestk of aHTS is the tuple(πtk , x(k)).

2.1.2 Transitions

Transitions describe changes between modes over time. The transi-
tion variable associated to a mode variablem is denotedτm such that
its domain isD[τm] = {τ im ∈ TN} ∪ {τ jm ∈ TF } ∪ {τ id}, with:

• TN the set ofnominaltransitions that express switches from one
nominal mode to another,

• TF the set offaulty transitions that move theHTS into a faulty
mode,

• τ id the identity transition that allows aHTS to stay in its current
mode.

Because transitions cannot always be considered as instantaneous
against the frequency of the sensors, we introduce delays on nom-
inal transitions. Delaydτim is such that once a transitionτ im is en-
abled it is triggered afterdτimTs, i.e. afterdτim physical time units.



While a transition isenabledand waiting for its delay to expire, it is
said to be instandby. For a matter of simplification, the delay will be
referred asd when there is no ambiguity. A delay on transition can
also be modeled by adding modes and clocks to the hybrid transition
system [4]. We do not use this representation here because we think
that it does not enforce the easy representation of a component as a
transition system by creating modes that are irrelevant for the diag-
nosis purpose. To model faults, we define fault modes of which we
know the behavior, such asstuckon or stuckoff, and a unique mode
unknownthat is rather specific because it has no constraints and cov-
ers all interpretations inΣ. Modeled faults are often abrupt faults in
the sense that they do not represent tenuous parameter changes. Thus
fault transitions have no delay, i.e. their duration is one physical time
unit.

Definition 2 (pre and post assertions)For a given transitionτ im
and a given statestk ∈ Σ, we note assertionspre(τ im) = mj ∧
φiΠC∪Cond andpost(τ im) = mj′ where:

• mj andmj′ are two instances of the mode variablem,
• φiΠC∪Cond is a logical condition over instances of variables of

bothΠC andΠCond.

We refer to theguard of a transition as the condition statement
φiΠC∪Cond that triggers the transition. Only fault transitions can be
spontaneous, so their guard can be always true. Traditionnally, prob-
abilities are also attached to every nominal and faulty transitions. In
our example,T is represented as follows (© is the next operator
from temporal logic):

R.τ
1
nom : R.mode = closed ∧ R.cmd = open © R.mode = open

R.τ
2
nom : R.mode = open ∧ R.cmd = close © R.mode = closed

R.τ
1
fail : R.mode = open ∨ R.mode = closed © R.mode = unknown

T.τ
1
nom : T.mode = off ∧ R.x ≤ m © T.mode = on

T.τ
2
nom : T.mode = on ∧ R.x ≥M © T.mode = off

T.τ
1
fail : T.mode = on ∧ R.x ≥M © T.mode = stuck off

T.τ
2
fail : T.mode = off ∧ R.x ≤ m © T.mode = stuck on

T.τ
3
fail : T.mode = on © T.mode = stuck on

T.τ
4
fail : T.mode = off © T.mode = stuck off

T.τ
5
fail : T.mode = on ∨ T.mode = off © T.mode = unknown

There is no delay when the thermostat (room) switches betweenon
(open) andoff (closed) modes.

2.2 Moving between modes

When a transition triggers, the component switches from one mode
to another, the correspondingHTS needs to transfer its continuous
state vectorx as well. For that reason each transitionτ im is associated
with a mapping functionlτim : Σ → Σ over the dependent variables
in V . It initializes the value of a subset of variables in the hybrid
state resulting from applyingτ im to stk

l
wherel is the abstract time

index. Other variables instk
l

keep their previous value. The iden-

tity mapping function is denotedlid. Triggering a transition is a two
steps operation [1]. First, mode change is performed by applying the
transitionτ im to the current hybrid state and moving to the resulting

mode after its delay has expired (transition relation
τim→):

τ im ∈ T , (stk
l
, s
tk+d
l+1

) ∈ Σ2, stk
l
|= pre(τ im)

stk
l

τim→ s
tk+d
l+1

(1)

Second, initialization is performed by making use of the mapping

function, and physical time goes on (time-step relation
θ→):

(πtl+1 , x(k + d)) = lτim(stk
l
)

(πtl+1 , x(k + d))
θ→ (πtl+1 , x(θ))

(2)

wherex(θ) is the continuous state associated to the discrete state
πtl+1 over the continuous timeθ. In the systems we are interested
in, most of the discontinuities are driven by controller actions and
preserve the state variables continuity. In our example, the tempera-
ture is obviously continuous when the thermostat switches fromon
to off and we use the temperatureT.M at this point to compute
ẋ = aQc(xe − T.M). However it has been shown in [10] that in
specific cases, retrieving a mapping function from the models of both
considered modes is far from trivial and requires deep understanding
of the physics of the phenomena abstracted in the discontinuity.

2.3 Component modes behavior

We described how transitions express component’s dynamics be-
tween modes. At this point we want to represent each intra-mode
behavior with two goals in mind: on the one hand the representation
must encode the available qualitative or quantitative knowledge; on
the other hand it must be suitable for efficient reasoning. For purely
discrete components, usually software drivers as well as complex
electronic devices, the behavioral model is given by a set of boolean
constraints overΠC ∪ΠD that are associated to each mode variable
value in the same manner as in [17]. For continuous components, the
continuous behavior is expressed by discrete-time continuous con-
straints overΞ. Each constraint is attached to a mode of the transition
system. The discrete-time continuous constraints are of the following
standard form:{

x(k + 1) = Ax(k) +
∑

j=0,...,r
Bju(k − j)

y(k + 1) = Cx(k + 1)
(3)

wherex(k), y(k), andu(k) represent the continuous state vector of
dimensionn, ouput (observed) variables vector of dimensionp and
input (control) variables of dimensionq at timekTs, respectively;A,
Bj andC are matrices of appropriate dimensions. To provide a suit-
able framework for reasoning, continuous constraints are encoded in
a specific two levels formalism [15] which includes a causal model
and an analytical constraint level. The causal model is obtained from
equation (3) by expressing it as a set ofcausal influencesamong
the (state, input or output) variables. Influences may be of different
types: dynamic, integral, static and constant. The following definition
expresses first and second order dynamic influences:

Definition 3 (Dynamic influence) A dynamic influenceiij is a tu-
ple (ξi, ξj ,K, Td, Tr, cond) for first order differential relations and
(ξi, ξj ,K, Td, ζ, w, cond) for second order relations with :

• ξi ∈ Ξ and ξj ∈ Ξ are two continuous variables such thatξi
influencesξj ,

• K is the parametergain, representing the static gain of the influ-
ence,

• Td is the parameterdelay, representing the time needed byξj to
react toξi,

• Tr is the parameterresponse timerepresenting the time needed by
ξj to get to a new equilibrium state after having been perturbed,

• ζ is thedamping ratioof the system,
• w is theundamped natural frequencyof the system,



• cond is the parameterconditionwhich specifies the logical con-
dition under which the influence is active.cond ranges over ele-
ments ofV .

The underlying operational model of dynamic influences is provided
by the following equation:

ξj(k+1) =
∑

p=0,...,n−1

apξj(k−p)+
∑

q=0,...,m

bqξi(k+1−q) (4)

whereξi and ξj are continuous variables,n is the influence order
andm ≤ n (causal link). Usually an equation is modeled by a set of
influences. When necessary, uncertainties can be taken into account
in the influence parameters and as additive disturbances. The first are
represented by considering that parametersap andbq have time in-
dependent bounded values, i.e. they are given an interval value. The
latter can be introduced as a bounded value constant influence act-
ing onξj . From the superposition theorem that applies to the linear
case, the computation of the updated value of variableξj ∈ Ξ in
an equationeq consists in processing the sum of the activated influ-
ences fromeq having exerted onξj during the last time-interval. The
prediction update of all the state and observed variablesx(k) and
y(k) from the knowledge of control variablesu(k) and influence
activation conditions is performed along the causal model structure.
Our representation of uncertainties leads to the prediction of contin-
uous variable trajectories in the form of bounded envelopes. In other
words, the system statex(k) at every time instantt = kTs is pro-
vided in the form of a rectangle of dimensionn.

Definition 4 (Causal system description – CD)The causal system
description associated to the set of continuous constraints of aHTS
is a directed graphG = (Ξ, I) whereI is a set of edges supporting
the influences among variables inΞ, with their associated conditions
and delays.

The numerical intervals obtained from equation (4) are refined at the
analytical model level with global constraints by performing a toler-
ance propagation algorithm [6] on the set of variables. Back to the
example, the feasible continuous states ofΣ are specified by the in-
fluences in eachHTS:

R.i1 (static) : if (R.mode = closed) thenR.∆x
gain=Qc−→ R.ẋ

R.i2 (static) : if (R.mode = open) thenR.∆x
gain=Qo−→ R.ẋ

R.i3 (integral) : R.ẋ
gain=a−→ R.x

R.i4 (static) : R.x
gain=−1,delay=1−→ R.∆x

T.i1 (constant) : if (T.mode = on ∨ T.mode = stuck on) then

T.h −→ R.∆x

T.i2 (constant) : if (T.mode = off ∨ T.mode = stuck off) then

R.xext −→ R.∆x

T.i3 (constant) : T.ẋnoi −→ R.ẋ

Influences without explicit conditions are valid in all modes except
in the unknownmode. Figure 3 presents the nominalCD for the
room and the thermostat.

2.4 Hybrid Component System

Once components have been modeled asHTS, constituting a
generic reusable database of models, they need to be assembled in a
Hybrid Component Systemto model the entire physical plant. Com-
ponents are hence instantiated. Within the whole plant model, com-
ponents are concurrent, i.e. able to evolve independently which al-
lows us to reason on subparts of the model.

Figure 3. Causal nominal system description of the thermostat and room
example

Definition 5 (Hybrid Component System – HCS) A Hybrid Com-
ponent SystemHCS is a tuple (Comps, V,Σ, T, C,Θ) with
Comps being a set ofn components modeled as concurrent hybrid

transition systemsHi = (Vi,Σi, Ti, Ci,Θi),
(⋃

i=1,···,n Vi

)
= V ,

Σ ⊆
⊗

i
Σi, T =

⋃
i
Ti, C =

⋃
i
Ci, Θ =

⋃
i
Θi.

We track the evolution of aHCS over a temporal window in the form
of a trajectory as a succession of states. At each time-step, constraints
and commands first synchronize on shared variables inΠD, ΠC and
Ξ (the room and the thermostat share∆x). Shared variables serve
as time-dated communication channels between automata. The au-
tomata must nevertheless synchronize between states. The synchro-
nization uses transitions and is such that given components of the
HCS:

• HTS that received a command synchronize on the corresponding
nominal transition,

• non commandedHTS synchronize on the identity transitionτ id.

When synchronized,HTS instances are introduced into the trajec-
tory whereas otherHTS are not copied at each time-step. Intuitively
we want to only introduce the minimal subset of theHTS necessary
for tracking and diagnosis purposes. In [11] and for discrete-only
models, this subset is computed using a pre-compilation of prime
implicants of mode variables. In our implementation, transitions syn-
chronize a posteriori, and only when needed by the reasoner to oper-
ate. This saves big amounts of memory as when tracking a physical
system in its nominal long-term state, very few components need to
be reintroduced.

The concurrency process is complexified by the introduction of
delays on transitions. Figure 4 presents an example of the synchro-
nization of four concurrentHTS, H1 to H4. Four transitions are
enabled on shared variables at time-steptkl and synchronize over the
three next time-steps with different delays, except fordτ2 anddτ4
that are equal.H1 andH2, as well asH3 andH2 have constraints that
share variables. Due to different commands, the concurrence makes
the fourHTS change mode at timetkl whereas otherHTS in the
model stay inactive (they are not represented on the figure). Then the
synchronization effort takes into account delays of triggered transi-
tions as well as the links betweenHTS through shared variables:

• H2 andH4 have the same delay and thus participate a same hybrid

state at time-stept
k+dτ2
l+1 ,

• H1 andH2 synchronize att
k+dτ1
l+2 . This is done with the identity

transition onH2.
• H1 (or H2) andH4 don’t synchronize att

k+dτ1
l+2 because they

don’t share any variables,

• H1 andH2 share variables butdon’t synchronizeat t
k+dτ2
l+1 be-

causeτ1 is already instandby.



The last remark is of importance because it relies on the hypothesis
that we cannot track or diagnose a physical component while it is
switching from one mode to another, i.e. when one of its transitions
is in standby, as the required transient models are often unknown or
too complex. The consequence is that components only synchronize
in their non-standby states.

Figure 4. synchronization over 3 states of fourHTS.

3 Continuous/Discrete Interface

3.1 Configurations

Depending on the mode at a given time, aHCS has its hybrid state
that ranges over several continuous regions. These regions are known
to be difficult to determine and compute, if not undecidable. We pro-
pose an on-line mechanism to keep track of the state-space partition
by sheltering every continuous functional piece with a conjunction
of logical conditions we denote as aconfiguration.

Definition 6 (HCS configuration) A configuration for aHCS at
time-steptk is a logical conjunctionδtk = (

∧
i
mi) ∧ (

∧
j

Πj
Cond)

where themi are instanciations of component modes inΠM and the
Πj
Cond are variables ofΠCond.

The configurations are automatically drawn from conditions on both
transition guards and influences that define structural changes in the
model. A configuration can be attached to one or more modes in
ΠM . In our example, the continuous state is easily partitioned by the
thermostat’s transitions into three regions determined by the three
conditions on variablex, defining27 configurations:

C1 : R.mode = closed ∧ T.mode = on ∧ R.x ≤ m
C2 : R.mode = closed ∧ T.mode = on ∧ (R.x > m ∧ R.x < M)

C3 : R.mode = closed ∧ T.mode = off ∧ (R.x > m ∧ R.x < M)

C4 : R.mode = closed ∧ T.mode = off ∧ R.x ≥M
. . .

Whatever the complexity of the conditions defining the regions of
the physical system, it is easy to logically express any condition as a
boolean variable ofΠCond, whose 1/0 corresponds to the condition
and its negation. This however leads to a number of partitions that
is not optimal relatively to the exact number of state-space regions
in which the physical system evolves. Note that the configuration
associated to theunknownmode encompasses the overall state-space.

3.2 Causal ordering for static equations

When switching from one mode to another, some equations and vari-
ables are added or retracted according to the new configuration. Con-
sequently, due to the possible presence of static continuous equations

in the model, a proper causal ordering of variables is to be found
when entering the new mode. A brute force approach would con-
sist in generating a new causal structure for every different mode.
The problem of performing an on-line incremental generation of the
causal structure has been previously addressed [16] but it is solved
here in a slightly different manner. This is done by first casting the
problem into a boolean constraint satisfaction problem: every con-
tinuous equation and variable in theHCS is associated to boolean
variables inΠ whose truth values state if the variables or equations
are active or not. Rules over the boolean variables are automatically
built to represent the conditions of these activations and form a logi-
cal representation of the causal-ordering problem.

3.3 Overview

The previous configuration and causal ordering problems are solved
on-line by using a truth maintenance system (TMS) to reason on the
corresponding boolean constraint satisfaction problems. We use the
context switching algorithms of [18] because we are not interested
in generating all configurations of the physical system but to switch
from one to another as fast as possible. TheHCS reacts to events,
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Figure 5. 3-layers interactions

i.e. observations from sensors as well as commands, and propagates
them to the model’s discrete and continuous levels through the logi-
cal interface and the way back. Figure 5 sums up these interactions.
The C/D I, made of the variables inΠCond associated to influence
conditions and transition guards, as well as the causal ordering log-
ical model, ensures the logical consistency of the changes triggered
by the flow of events.

4 Simulation and Diagnosis of a Hybrid
Component System

4.1 Simulation

A HCS simulation is a run of concurrent hybrid transition systems
that generates possible nominal trajectories of theHCS according
to issued commands and inputs over the time. The uncertainty on
the continuous constraint parameters determines the precision of the
computed envelopes that enclose the observed behavior of the phys-
ical system at each time step.

Sometimes the truth value of a condition in a configuration may
be undetermined when checked against a rectangular enclosing of
the continuous state-variables. The problem arises from the fact that
some variables over which configurations rely are not measured.
When the computed bounds of such a continuous variableξi span
over more than one configuration region relying on that variable, we



say that the currentconfiguration is splitting the continuous state on
variable ξi. Figure 6 shows a configuration split for the thermostat

Figure 6. Transition guard split

example when crossingx = M . The current configuration splits on
regionsx1 andx2 and the two possible trajectories are tracked simul-
taneously. In applications, this situation happens rather frequently
and multiple consecutive splits of a guard on the same variable can
occur because sensor frequencies are usually beneath thetempo-
ral uncertaintyinduced by the envelopes. We first want to split the
continuous state into logical branches then refine consequently the
bounds on all continuous variables in every explored branch. For a
given continuous variableξi, the logical split of a configurationδtk
returns the set of possible configurations to be tracked:

[δtk ](ξi) =
∨
j

(
Πj
Condξi

∧

(∧
n

Πn
Cond

))
(5)

whereΠj
Condξi

are variables ofΠCond relying on ξi and Πn
Cond

other conditions inδtk . Relation (5) is used to compute the splitted
areas because it is much faster than exploring the overall continu-
ous state space. The following algorithm is applied on every tracked
trajectory:

1. The configurationδtk is checked against the rectangular region
defined by variables’ predicted envelopes to find a variableξi over
which it is splitting the state-space,

2. The state-space is logically splitted with relation (5). For each con-
figurationδj

tk
in [δtk ](ξi), its corresponding continuous region is

denotedxjξi(k) and its corresponding discrete stateπj
tk
,ξi .

3. Envelopes over variables inΞ are refined in every regionxjξi(k)
by filtering them on the constraints defined by the conditions in
the configuration [6].

4. (πj
tk
,ξi , x

j
ξi

(k)) constitute new hybrid states enclosed in new tra-
jectories to be tracked.

The three preceding steps are applied for remaining variables on the
growing set of generated trajectories. Finally the resulting set of com-
puted hybrid states is:

[stk ] =
⊗
i,j

(πj
tk
,ξi , x

j
ξi

(k)) (6)

In our example, the thermostat’s configurations only split on the
temperaturex. On figure 6, until time-steptkl , the configuration of
theHCS is

C2 : R.mode = closed ∧ T.mode = on ∧R.x > m ∧R.x < M

At time-steptkl , due to the crossing ofx = M , the current configura-
tion is splitted onx. A new partial hybrid state comes from equation
(5):

R.mode = closed ∧ T.mode = on ∧R.x ≥M

Then bounds of variablex are refined in each configuration by fil-
tering the values with respective constraintsR.x > m ∧ R.x < M
andR.x ≥ M . As transitionT.τ2

nom turnsenabledwith the second
configuration, the configuration is instantaneously (T.τ2

nom has no
delay) updated to:

C4 : R.mode = closed ∧ T.mode = off ∧R.x ≥M (7)

From that point the system tracks two distinct trajectories.

4.2 Fault Detection

The detection algorithm then uses the above prediction of the endo-
geneous continuous variable values to obtain robust decisions about
the existence of faults, based onadaptive thresholdsprovided by the
envelopes’ upper and lower bounds. This is performed by comparing
the predicted and observed values of variables across time. The adap-
tive thresholds principle fairly reduces the possibility of false alarms
when tracking the system. However, to achieve better robustness, we
usually mark a variable as mibehaving after it has been outside of its
bounds for at leastnmisb physical time-steps. After that delay, the
diagnosis operation is triggered.

For dynamic influences, the algorithm sensitivity relies on a mixed
strategy which combines an observer type strategy (closed-loop
mode, i.e. the measure of a variabley at time t is used to elabo-
rate the prediction ofy at timet+ 1) with a pure simulation strategy
(open-loopmode, i.e. the prediction ofy at timet+1 is obtained from
the prediction ofy at timet) to determine the thresholds and further
assess variable states. We call this strategy asemi-closed loop(SCL)
strategy [13]. The mode control (open-loop or closed-loop) depends
on whether the observed value of a variabley is in the predicted en-
velope (normal situation) or out of it (alarming situation). As soon
as the variable becomes alarming, running on a closed-loop mode
might drive the prediction to follow the fault, turning the detection
procedure insensitive to the fault. The prediction temporal window is
hence scaled up by switching to the open-loop mode. Note that the
fault detection mechanism is very efficient at ruling out wrong trajec-
tories issued from multiple successive splits on the same boundary
constraint.

Figure 7 shows three scenarios with faults where detection is ap-
plied. On the first scenario the thermostat fails to switch at time-step
63 and sticks to itsonmode. In the second scenario the constantT.h
is degraded from time-step46 to a lower value, so the heater is slower
to warm the room. Scenario three presents a fault characterized by an
abrupt structural change in the thermostat model. For all scenarios,
nmisb = 1.

4.3 Diagnosis

When a fault is detected, a diagnosis comes back to find the cur-
rent configuration of theHCS according to observations, inputs and
commands. This must be performed over a finite temporal window
[11], but because of the fault detection at a continuous level the prob-
lem of losing solutions is strongly reduced. The temporal window is
usually set up to the physical time that corresponds to the longest
chain of non-repeated transitions. In our example20 physical time-
steps cover anon-off complete sequence.
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(a) Scenario1, x: After detection and diagnosis, a few more time-
steps are necessary for the prediction to catch up with the physical
system. This comes from the fact that the estimation of the time
of the fault is not accurate enough: because of the time uncertainty
due to the envelopes, the estimation is a few time-steps late.
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(b) Scenario1, ẋ: the fault is detected at time-step68.
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(c) Scenario2, x: After the fault is diagnosed, theblind state-
tracking methoduses the nominal behavior of the thermostat and
predicts all possible switches at each time-step: the very wide en-
velope shows that it is not sure if the thermostat isonor off.
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(d) Scenario2, ẋ: The fault is not so abrupt as to be detected in-
stantaneously. Measures goin the predicted bounds again at time-
step69. This is due to the fact that when using theblind state-
tracking method, the thermostat’s controller model is still switch-
ing on valid thresholds.
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(e) Scenario3, x: The thermostat switches on valid thresholds and
theblind state-tracking methodkeeps a relatively good tracking of
the temperature after the fault occured. This is due to the fact that
the physical model of the room is still valid.
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(f) Scenario3, ẋ: After a thermostat’s structure change, the heater
setting temperatureT.h is oscillating. When turnedoff, T keeps
its nominal behavior.

Figure 7. Three fault scenarios



Definition 7 (HCS Diagnosis) A diagnosisdiag(t) overm time-
steps for aHCS is such thatdiag(t) = {δt}t=1,···,m with the con-
sitency of:

HCS ∪Obst=1,...,m ∪

( ⋃
t=1,···,m

δt

)
(8)

Solving relation (8) is a three steps operation. First, existing conflicts
(a set of influences which cannot be unfaulty altogether) are exhib-
ited from the causal system description (CD) of theHCS, each in-
fluence stamped with a temporal label and activation condition. They
are then turned into diagnosis candidates by a failure-time oriented
enhanced version of the hitting set algorithm [14]. Temporal infor-
mation is drawn from maximizing on each components the delays of
the influences downstream the faulty variables inCD.

Second, at the configurations level, the TMS negates the activation
conditions of the conflicting influences and fastly iterates through the
logical remaining configurations to reinsure the consistency. Finally,
every found configuration is checked against the past observations
over the temporal window before being approved as in [11] except
that candidate generation and consistency checks are interleaved and
run from present time back to the beginning of the temporal window.
Configuration solutions to the diagnosis problem contain a mode in-
stanciation of every necessary component in theHTS explaining the
observations. Note that on figure 7, for all three scenarios, the diag-
nosis operation is performed in less than0.1 seconds on a Pentium II
300 Mhz, which is beneath the measures’ frequency, so the detection
time-step is equal to the diagnosis time-step.

4.3.1 Diagnosis example with a fault mode

When applied to the first scenario, the diagnosis starts as soon
as ẋ goes out of its bounds for all currently tracked trajecto-
ries: iterating through the system nominalCD from figure 3, at
timestep68 the influences in conflict areΓ = {T.i3, T.i2, R.i1,
R.i3, R.i4}. Relatively to the current configuration (7) it is equiv-
alent to add the constraintsΓC = {

∨
mi=D[T.mode]

T.mode =

mi, R.mode = closed, T.mode = off ∨ T.mode =
stuck off,

∨
mj∈D[R.mode]

R.mode = mj} which are activation
conditions on the influences in conflict. AsR.i4 has a delay of1, the
elements of the last conflict are stamped with the current physical
time minus1. Other conflicts elements are stamped with the current
physical time.

The TMS then seeks for consistency on both the configurations
and the transition model starting from the current configuration by
inserting the negation of the elements inΓC : Γ¬C = {T.mode =
unknown,R.mode = open ∨ R.mode = unknown, T.mode =
on ∨ T.mode = stuck on ∨ T.mode = unknown,R.mode =
unknown} and returns the following possible configurations ranked
according to the probabilities attached to transitions and to the num-
ber of faults leading to them:

1 : (R.mode = closed) ∧ (T.mode = stuck on) ∧ (R.x ≥M)

2a : (R.mode = closed) ∧ (T.mode = unknown) ∧ (R.x ≥M)

2b : (R.mode = unknown) ∧ (T.mode = stuck on) ∧ (R.x ≥M)

3 : (R.mode = unknown) ∧ (T.mode = unknown) ∧ (R.x ≥M)

Other configurations with the thermostat in modeson, stuckoff, or
the room in modeopenare ruled out during the search process be-
cause there are no transitions or past observations and commands
consistent with these configurations. Diagnosis1 fits with the fault
in the first scenario (thermostat took transitionτ3

fail). The state vec-
tor is reinitialized according to the mapping function ofτ3

fail (lid)
before the tracking continues.

4.3.2 Diagnosis example with the unknown mode

Scenarios2 and3 primarily lead to diagnosis2a where the thermo-
stat is in theunknownmode. This mode is useful at the discrete level
because it assures that there is always a solution to the diagnosis
problem5. At the continuous level however, it has no model, so it is
not possible to track aHTS in that mode. Isolating theunknown
automata so as to continue the prediction of the behavior of others
HTS in the model often leads to tracking based on a wrong model:
in scenario2, once the mode ofT has been diagnosed to beunknown,
influences referring toT are inactive which is equivalent to predict
R’s behavior withT.h = 0. Our current solution to that problem is to
use a dedicatedblind state-tracking methodthat is applicable thanks
to the semi-closed loop fault detection strategy described in subsec-
tion 4.2. When a component is found to be in itsunknownmode, the
nominal model of the component is used instead. The detection mod-
ule runs on open-loop prediction mode until the measures fall into
the envelopes again. This is guaranteed to occur because the open-
loop predicted envelopes widen with time (uncertainty propagation
of interval models). Triggered by this event, the detection module
then switches to closed-loop prediction mode and is able to track the
system until the measures get out of their bounds again, and so on.
This is the method applied on scenarios2 and3 on figure 7. How-
ever in scenario2, an improved solution could be to use parameter
estimation techniques as proposed in [9] because the structure of the
model is still valid. But drawbacks are the additional computational
cost and the fact this would leave the system untracked for a period
of time (proper parameter estimation requires to wait for properly
excited data). More research is needed to integrate existing parame-
ter estimation and model fitting techniques into our framework. Also
note that such faults generally result from the natural degradation of
the monitored physical system and could be taken into account in
causal models [12].

5 Summary, Discussion and Related Work

In this paper we extend previous work on diagnosis in the AI com-
munity by presenting a formalism that merges concurrent automata
with continuous dynamic system models and reasons about its con-
figurations using logical tools. The problem of reasoning about and
diagnosing complex physical plants without computing their contin-
uous reachable state-space is addressed. The approach integrates nu-
merous techniques from different fields into a runnable standalone
application, which is able to deal with real-world problems such as
satellite state-tracking [3]. The modeling, simulation and diagnosis
tools are implemented, including the engine that splits the configu-
rations. The program generates a C++ runtime that is intended to be
demonstrated on an autonomous spacecraft test bench at CNES.

Other formalisms for building comprehensive and tracktable hy-
brid systems include [10] and [4]. But none of these approaches pro-
vide an intuitive component-based framework allowing engineers to
build reusable models of equipments. Moreover the models often in-
clude numerous functional modes that are irrelevant to the diagnosis
task. For instance [4] introduces additional modes to deal with de-
layed transitions, and [10] rather focuses on the expression of the
approximations able to produce sound hybrid models of complex
physical systems. Besides, it examines types of discontinuities that
are rarely encountered in controlled systems. In such systems, most

5 Note that theunknownmode is also a dead-end since no nominal transition
can lead out of this mode.



of the discontinuities are driven by controller actions and preserve
state variables continuity.

Our work takes numerous ideas from the discrete-only work at the
basis of Livingstone [17, 11] and adds and links continuous knowl-
edge to it. The difficult problem of the temporal window that required
aggregating in a history all past states in every tracked trajectory
is now strongly reduced as it is less likely that a wrong trajectory
is tracked without detecting anomalies at the continuous level. [9]
introduced a diagnosis-dedicated hybrid formalism relying on error
bounds for the detection parts, but without concurrence nor transi-
tions triggered autonomously from the continuous level; it uses prob-
abilities, parameter estimation as well as data fitting to refine the di-
agnosis. [20] unifies traditional continuous state observers with hid-
den Markov models belief update in order to track hybrid systems
with noise but do not include concurrent models nor any mapping
function discussion. The approach is interesting because it makes
extensive use of probabilities where we chose to rely on bounded
uncertainties (intervals) at the continuous level and on probabilities
at the discrete level. In fact these are different uncertainties as the
uncertainty is uniformly distributed in the case of intervals whereas
[20] relies on normal laws. In our point of view using probabilities
at the discrete levels allows to prune an otherwise prohibitive search,
but intervals offer a more compact representation of uncertainties on
continuous variables. However, the point would need more discus-
sion and research. Similar approaches also include [21] that com-
bines a Petri net and signal analysis to estimate the discrete modes
and overcome an exponential cost in the number of sensors, but lacks
an efficient diagnosis engine; and [7] that uses a dedicated bayesian
network as well as a method of smoothing that helps successfully di-
agnose faults with a very low belief state. Note that the model check-
ing community has recently investigated the use of interval-based
numerical models [5].

An advantage of our approach is that any type conditions as-
sociated to transitions and influences (e.g. continuous functions as
guards) can be modeled and tracked without being directly observed.
Finally on-line performances can be enhanced as the formalism al-
lows the logical model to be pre-compiled before use by generating
prime-implicants on transition guards [19] and influence conditions.
However it still happens that trajectories cannot be discriminated due
to too much imprecision on parameters that leads to overlapping en-
velopes. A solution to this problem has been to merge such envelopes
and corresponding trajectories. Another remark concerns the splits
that occur and are not linked to any real mode or structure changes
in the model: when starting the thermostat and room models with
external temperaturexext < m, a split occurs when first crossing
at x = m. These splits however are sound and refine the bounds
on continuous variables as they allow the system to reduce temporal
uncertainty at the crossing point.

Further work will focuse on reconfiguration by reasoning on con-
figurations with the same core algorithms as for diagnosis. This will
be done by identifying a set of goal configurations and find under un-
certainty a valid plan made of least costly endogeneous commands
to reach each goal. We think that additive improvements could also
include automatic controller synthesis as in [2] as well as parameter
estimation based on the causal structure of the continuous level in
order to refine the tracking of the system when in itsunknownmode.
In a near future more results are to come out as our implementation is
intended to be tested on spacecraft models and run on-board ground
based satellite hardware.
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Abstract
Model-based diagnosis can be formulated as the
combinatorial optimization problem of finding an
assignment of behavior modes to all the compo-
nents in a system such that it is not only consis-
tent with the system description and observations,
but also maximizes the prior probability associated
with it. Because the general case of this problem
is exponential in the number of components, we
try to leverage the structure of the physical sys-
tem under consideration. Traditional dynamic pro-
gramming techniques based on the underlying con-
straint network (like heuristics derived from maxi-
mum cardinality ordering) do not necessarily sup-
plement or do better than algorithms based on using
truth maintenance systems (like conflict-directed
best first search).
In this paper, we compare the two approaches and
examine how we can incorporate the dynamic pro-
gramming paradigm into TMS-based algorithms to
achieve the best of both the worlds. We describe
an algorithm called hierarchical conflict-directed
best first search (HCBFS) to solve a large diag-
nosis problem by heuristically decomposing it into
smaller sub-problems. We also delve into some of
the implications of HCBFS with respect to (1) pre-
compiling the system description to a form that can
amortize the cost of a diagnosis call and (2) facili-
tating other hybrid techniques for diagnosis.

1 Introduction
Diagnosis is an important component of autonomy for any
intelligent agent. Often, an intelligent agent plans a set of ac-
tions to achieve certain goals. Because some conditions may
be unforeseen, it is important for it to be able to reconfigure
its plan depending upon the state in which it is. This mode
identification problem is essentially a problem of diagnosis.
In its simplest form, the problem of diagnosis is to find a
suitable assignment of modes in which each component of
a system is behaving in, given some observations made on
it. It is possible to handle the case of a dynamic system by
treating the transition variables as components (in one sense)
[Kurien and Nayak, 2000].

Definition (Diagnosis System): A diagnosis system is a triple
(
���

, ������� � , �
	 � ) such that:
1.
���

is a system description expressed in one of several
forms — constraint languages like propositional logic,
probabilistic models like Bayesian network etc.

���
specifies

both component behavior information (
����

) and compo-
nent structure information (i.e. the topology of the system)
(
�����

).
2. ������� � is a finite set of components of the system. A
component ��������� ( �������� ������� � � ) can behave in one
of several, but finite set of modes ( � � ). If these modes are
not specified explicitly, then we assume two modes — failed
( � 	"!#�������$�&% ) and normal ( '(� 	)!*���������&% ).
3. �
	 � is a set of observations expressed as variable values.
The task of diagnosis is to “identify” the modes in which
individual components are behaving given the system de-
scription (

���
) and the observations ( �
	 � ).

Definition (Candidate): Given a set of integers
�,+.-/-0-1�32 465.798;:$2 (such that for �<� =>� � ������� � � ,
�?�@�*A��>� �BAC� ), a candidate �
DFEHG$!*�,+(-/-/-I�32 465;7�86:�2 ) is

defined as �
DJEHG�!K�I+.-/-0-,�32 465.7�86:�2 ) LM!ON 2 465.7�86:�2P3Q + !*������� P L
� P !*� P %,%,% .
Here, �SR�!KTU% denotes the TFV*W element in the set �XR (assumed
to be indexed in some way).

2 Diagnosis as Combinatorial Optimization
Consider diagnosing a system consisting of three bulbs
	 +�Y 	[Z and 	[\ connected in parallel to the same volt-
age source ] under the observations �_^`^(!#	a+�% , �_^`^(!#	 Z %
and ��E�!*	[\0% . � 	)!#]b% cd��	"!*	[\�% is a diagnosis under the
consistency-based formalization of diagnosis [de Kleer et al.,
1992] if we had constraints only of the form '(� 	)!*	
\�%ec
'(� 	)!#]�%df 	 \ Lg��E . Intuitively however, it does not
seem reasonable because 	
\ cannot be ��E without ] work-
ing properly. One way to get around this is to include fault
models in the system [Struss and Dressler, 1989]. These are
constraints that explicitly describe the behavior of a compo-
nent when it is not in its nominal mode (most expected mode
of behavior of a component). Such a constraint in this exam-
ple would be � 	)!*	 \ %�f@�_^`^(!*	 \ % . Diagnosis can become
indiscriminate without fault models. It is also easy to see
that the consistency-based approach can exploit fault models
(when they are specified) to produce more intuitive diagnoses



(like only 	 + and 	[Z being abnormal).
The technique of using fault models however is associated

with the problem of being too restrictive. It may not model
the case of some strange source of power making 	 \ on etc.
The way out of this is to allow for many modes of behavior
for the components of the system. Each component has a set
of modes with associated models — normal modes and fault
modes. Each component has the unknown fault mode with
the empty model. The unknown mode tries to capture the
modeling incompleteness assumption (obscure modes that we
cannot model in the system). Also, each mode has an associ-
ated probability that is the prior probability of the component
behaving in that mode. Diagnosis can now be cast as a com-
binatorial optimization problem of assigning modes of behav-
ior to each component such that it is not only consistent with���Bh �
	 � , but also maximizes the product of the prior prob-
abilities associated with those modes [de Kleer and Williams,
1989]. Note that the combinatorial optimization formulation
of diagnosis assumes independence of the behavior modes of
components.
Definition (Combinatorial Optimization Characterization) A
candidate i Lj�
DFEHG$!*� + -0-/-I�k2 4;5;7�86:�2l% is a diagnosis if
and only if

���mh i h �
	 � is satisfiable and �n!#io%pL
!*q 2 465.798;:$2P3Q + �n!#������� P Lr� P !K� P %,%I% is maximized.

There are many other characterizations of diagnoses based
on the notions of abduction, Bayesian model selection, model
counting [Kumar, 2002] etc. These characterizations (includ-
ing combinatorial optimization) are mostly for choosing the
most likely diagnosis and do not incorporate any notion of
refinement [Lucas, 1997]. The combinatorial optimization
formulation to return the most likely diagnosis is however
justified, practical and suited for a variety of real-life appli-
cations [Kurien and Nayak, 2000]. It also benefits from the
availability of computationally efficient algorithms to solve
combinatorial optimization problems [Williams and Nayak,
1996].

3 Computational Methods
Definition (Combinatorial Optimization Problem): A combi-
natorial optimization problem is a tuple ( ] , ^ , � ) where (1)
] is a set of discrete variables with finite domains. (2) An
assignment maps each T in ] to a value in T ’s domain. (3) ^
is a function that decides feasibility of assignments. (4) � is a
function that returns the cost of an assignment. (5) We want
to minimize �C!#]b% such that ^(!O]b% holds.
In the context of diagnosis, the following correspondences
hold: (1) ]sLt������� � . (2) Domains correspond to modes
of behavior of components (3) An assignment is a candi-
date. (4) � is a simple cost model assuming independence
in behavior modes of components �_!#�����9�`�BL<�S�,!*Tu%I%vLw �yx 8(z|{~}I���/� Q 7 �1z��/���K�8�z|{~},���/� Q 7��&z��3�*� . Here, � � !*TU�y% is the nominal mode of
behavior of �����9� � ; �n!*������� � L�� � !KT��0%I%����n!#������� � L
� � !KTU%,% for any Tg�L�T�� . �C!#�
DFEHG$!*�,+.-/-0-,�32 465.798;:$2l%I%ML� 2 465;7�86:�2P3Q + �_!*�/���9� P L�� P !*� P %,% . (5) ^ is the satisfiability
of
����h �
DJEHG�!K� + -/-/-I�32 465;7�86:�2l% h �
	 � .
A brute-force method of solving such a problem is to use

a simple best first search (BFS) which is clearly exponen-

tial in the number of components. It can however, be poten-
tially improved by leveraging the structure of the system. One
popular method of leveraging structure using the paradigm
of dynamic programming is to use heuristics derived from a
maximum cardinality ordering (m-ordering) [Tarjan and Yan-
nakakis, 1984] over the constraint network relating the vari-
ables of the system. Such techniques have been used in a va-
riety of domains — Bayesian network reasoning, constraint
satisfaction problems [Dechter, 1992] etc. A constraint net-
work on the variables of the system is defined by having
the variables represent nodes and constraints in

���
repre-

sent hyper-edges. Any kind of optimization or satisfaction
defined over the variables can be done in time exponential in
the induced width of the graph [Dechter, 1992]. Although the
induced width itself cannot be found constructively in poly-
nomial time, heuristics derived from m-ordering perform rea-
sonably well in practice. Throughout the rest of this paper,
we will refer to all such heuristics as naive m-ordering (naive
because they do not supplement the power of TMS-based al-
gorithms).

These heuristics however, may not be directly beneficial
or applicable when the number of components is somewhat
lesser than the total number of variables in the system (which
is usually the case). The induced width of the constraint net-
work relating all the variables in a physical system can easily
be much more than the number of components. A further dis-
advantage of such approaches is that often the relationships
between variables are too complex and consistency checks
may involve some kind of a “simulation”. Since dynamic
programming techniques based on these heuristics maintain
and build partial assignments, they are very likely to be costly
processes. Furthermore, in many cases, the number of faulty
components is usually far lesser than the total number of com-
ponents and these techniques do not exploit this significantly
towards computational gains.

One approach that addresses these problems some-
what indirectly is conflict-directed best first search (CBFS)
[Williams and Nayak, 1996]. It is based on the idea of ex-
amining hypotheses in decreasing order of their prior prob-
abilities and using a truth maintenance system (TMS) to
catch minimal conflicts and focus the search. QCBFS [Ku-
mar, 2001] is an extension of CBFS that leverages qualitative
knowledge present in the system. Because hypotheses are ex-
amined in order of their probabilities, diagnoses that entail a
nominal behavior for all but a few components are caught as
soon as possible (unlike in the naive m-ordering case).

A TMS incorporates and uses the following properties: (1)
If a partial assignment to the mode behaviors of a subset of
the components is inconsistent, then any other assignment
that contains this subset unchanged is also inconsistent. (2)
Smaller conflicts result in more pruning of the search space
and therefore, whenever an assignment � is infeasible, a min-
imal infeasible subset of � is returned (using dependency
tracking). (3) Since the hypotheses that we examine differ
only incrementally from one another in the assignments for
behavior modes of components, feasibility checks are made
more efficient (like in ITMS [Nayak and Williams, 1997]).



I1 I2 I3 I4 I5 I6

C3C2C1

F1 F2 F3

C4

O O

C7

T1 T2

C4 C5 C6C3C2C1

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

Figure 1: (a) Shows the worst-case scenario for m-ordering.
(b) Shows the worst-case scenario for CBFS.

3.1 Comparison of naive m-ordering and CBFS

While naive m-ordering exploits the structure of the under-
lying constraint network, it does not exploit the fact that we
are interested in an assignment only to the components of the
system (and not the intermediate variables). This becomes
a liability especially when consistency checks involve “sim-
ulation” and are therefore costly. It performs badly when a
“small” number of components are “tightly” connected. Fig-
ure 1(a) illustrates the bad behavior of m-ordering. There
are 4 components that can possibly behave in different modes
(C1, C2, C3 and C4). F1, F2 and F3 are not modeled as com-
ponents but are some complex mappings (involving simula-
tion) from their inputs to outputs. The number of parents of
C4 is equal to 6 and the combinatorial optimization problem
is exponential in this quantity [Darwiche, 1998]. A TMS-
based algorithm however, would require only a search space
exponential in the number of components (=4). This can be
verified by noting that once a set of modes is assumed for each
component (as in a TMS-based algorithm), verifying that the
current set of inputs lead to the observations is not exponen-
tial but only polynomial in the size of the graph. This is be-
cause any component maps its inputs to a unique output and
we just need to follow the inputs through all the transforma-
tions defined by the components to eventually verify whether
there is a match with the observations. In the case of naive m-
ordering however, combinatorial optimization requires us to
compute and store against all values of communication vari-
ables around a family (also called partition), the most likely
modes of behavior of the components in it. This makes it ex-
ponential in the induced width of the graph. It is also easy to
see (as claimed earlier) that when the diagnosis is quite close
to the nominal behaviors of components, there is no obvious
way of exploiting it with m-ordering.

CBFS on the other hand, exploits the fact that we are inter-
ested in an assignment only for the components of the system,
but does not exploit the structure of the physical setting effi-
ciently. The only indirect way in which the structure comes
into play is in the TMS implementation of f to catch min-
imal conflicts. The problem with CBFS is in large due to
the fact that all inconsistencies are traced back to the compo-
nents. This makes CBFS perform sub-optimally when com-
ponents are “loosely” connected. Figure 1(b) illustrates the
bad behavior of CBFS. An observation of O = 1 when C7 is
an XOR gate entails the conflicts �y�a��L�� Y �[�dL��_� and
�0�b�BL�� Y ���dL���� . Note that T1 = 0, T2 =0, T1 = 1 or
T2 = 1 are not conflicts by themselves. If all inconsisten-
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Figure 2: (A) The physical setting. (B) The graph represen-
tation. (C) The constraint network. (D) The T-Graph.

cies are traced back to the components C1 - C6 however, the
search space over component behavior modes is never pruned
by a minimal conflict of size lesser than 6. If on the other
hand, we split the problem into two (by treating the cases
�0�b�nL�� Y ����L��U� and �0�a�L?� Y ����L��_� separately) the
search space can be reduced to being exponential in 4 vari-
ables (rather than 6).

4 Hierarchical Conflict-Directed Best First
Search (HCBFS)

Before we describe HCBFS as an algorithm that can combine
the best of both the above approaches, we define the follow-
ing notions related to the structure of a physical setting.
Definition (Structural Parameter Set): The structural pa-
rameter set

�
of a physical system is the 4-tuple

� L
!#������� � YI�$Y � Y �[% . Here, � is the set of external inputs,
� is the set of output variables under observation, and � is
the set of intermediate variables in the system which are not
under observation.
Definition (Graph Representation): The graph representa-
tion of a physical system with structural parameter set

�
and

a topology characterized by
���n�

is a graph with nodes corre-
sponding to elements in

�
and undirected edges correspond-

ing to physical connections inferred from
��� �

.
Definition (*-node): A node in the graph representation of a
physical system is a c-node, i-node, o-node or a t-node when
it corresponds respectively to a component, input variable,
output variable or an intermediate variable.
Definition (T-Graph): The T-Graph of a physical system with
structural parameter set

�
and topology

����
is a graph built

out of removing the c-nodes from its graph representation and
directly connecting the inputs to their outputs (in that direc-
tion).

Figure 2 illustrates the above definitions for a simple physi-
cal setting. Note that the graph representation is not the same
as the constraint network specified by

���
. While the con-

straint network is built on the variables of the system (ex-
cluding components) using

���
, the graph representation is

built only out of
��� �

(and includes the components). The
T-Graph represents the causal relationships among the vari-
ables (excluding the components) and it can be observed that
the constraint network is equivalent to the T-Graph moralized
by making a clique out of all the parents of any node [Dechter,
1992].
Notation: Let ��!K�1% be the set of modes in which component
�������$� can behave. Let �/� be the cardinality of this set. Let
�b!*�~% be the set of values an intermediate variable t- EH� GF¡_� can



take. Let ¢1� be the cardinality of this set.
Definition (c-size): The c-size of a sub-graph £ is the product
of the number of modes in which each component it contains
can behave, = q �K¤ 4;5;7�86:¥z�¦;�1� � .
Definition (t-partition): A t-partition of a graph representa-
tion is any collection of vertex induced sub-graphs

� + -/-/- � P
such that for all � Y = with ���d� Y =�¨§ ,

� �¥© � Pbª � .
Definition (t-size): The t-size of a sub-graph in a t-partition
of the original graph is the product of the number of dif-
ferent values each of the t-nodes it shares with other sub-
graphs, can take. In other words, suppose

� +(-/-/- � P form a
t-partition of the original graph. Denote the t-nodes in each
of these sub-graphs by

� � + -0-/- � � P . The t-size of
� � is given

by q A ¤ : � � !K¢ A � «�¬ Y ���p¬��§ Y ¬B�Lp� Y =n® � � W % .
Definition (ct-size): The ct-size of a graph is the product of
its c-size and t-size.

Given the graph representation of a physical system,
its c-size characterizes the size of the search space for
CBFS. The general idea behind HCBFS is to reduce the
effective search space of CBFS using dynamic program-
ming. Suppose we were able to divide the system into two
subsystems that had components �������¯�±°.-/-0-I�������$�|² ° and
������� A °.-/-0-,������� A ²0³ such that E +�´ EHZ
L�� ������� � � . Now,
the search space for each of these two individual partitions
(for CBFS) becomes their respective c-sizes. Calling them
�e+ and � Z respectively, we have �µ+�¶l� Z L·� ( � is the c-size
of the original graph). Of course, the search cannot simply
be done in each of them independently because of the com-
mon variables they share. However, we can apply the idea
of dynamic programming to solve each of these partitions
for all values of the variables they share and then “join” the
two results. If we allow for the common variables to be only
among the t-nodes, then the size of the search space becomes
� + � ´ �¸Z/� ´ � Z ( � is the t-size of the common t-nodes).
� + � ´ �¹Z�� accounts for solving the sub-problems for all
values of the communication variables, and � Z accounts for
“joining” them. It should be noted however, that if consis-
tency checks involve “simulation”, then the � Z term tends to
be negligible (because search over the join-space does not in-
volve simulation). Generalizing the above idea of dynamic
programming, it is also possible to characterize E -way splits
which partition the original graph into E partitions each of
which share communication variables with a subset of the
others.
Definition (Splitting Condition): The splitting condition
holds for a t-partition in a graph £ if the sum of the ct-sizes of
the partitions and the join-size is strictly lesser than the c-size
of £ .

To obtain maximum computational benefits, we have to
find a t-partition that minimizes the sum of the ct-sizes of
the resulting partitions and the join-size. This general E -way
split is NP-hard to find (easy to prove from the fact that find-
ing the induced width is NP-hard). However, HCBFS em-
ploys a heuristic to decompose a large diagnosis problem
into optimal sub-problems based on the topological struc-
ture of the system. It runs in polynomial time and is al-
ways assured of yielding computational benefits (albeit in
sub-optimal amounts). The idea is to examine only a poly-
nomial number of 2-way splits and choose the greediest one

ALGORITHM HCBFS (Graph £�Lº!#] YI» % )
� = T-Graph of £
��¼ = Partition-Tree formed by m-ordering

on moralized �
» = Edges of � ¼
GREEDYSPLIT !*£ Y�» %

END HCBFS

ALGORITHM GREEDYSPLIT (Graph £ ,
Candidate-Splits 	 )½ P = BEST-SPLIT !#£ Y 	9%

IF (SPLITTING-CONDITION !*£ Y ½ P % ) THEN
!#£ +�Y £�Zy% = PARTITION !#£ Y ½ P %
	�+ = � ½ � � ½ � is on the same side of

½ P as £b+ �
	 Z = � ½ � � ½ � is on the same side of

½ P as £ Z �
GREEDYSPLIT !*£ + Y 	 + %
GREEDYSPLIT !*£aZ Y 	�Zy%

END IF
END GREEDYSPLIT

Figure 3: Hierarchical Conflict-Directed Best First Search
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the solutions to diagnosis sub-problems for all values of the
surrounding communication variables.



if it satisfies the splitting condition. Such a splitting process
is performed recursively until there is no more apparent scope
for computational benefits. Interestingly enough, the candi-
date t-partitions that are examined are themselves derived us-
ing the m-ordering heuristics. Figure 3 presents the working
of HCBFS; and Figure 4 illustrates its working on a small
example. The following properties hold true for the HCBFS
algorithm.
Property 1: The edges of � ¼ maintain the running intersec-
tion property [Dechter, 1992] and hence the t-nodes consti-
tuting the communication variables on any edge form a valid
t-partition.
Property 2: Let the c-sizes of the final partitions be
� + -/-0-�� P . The c-size of the original graph is therefore
q � Q6P� Q + � � . The first time we partition £ , it must have been
the case that (because of the splitting having to be satisfied)
q � Q6P� Q + �¸�
¾ �p¿ � ´ � ¿ÁÀ

( � is the size of the communi-
cation;

�
and

À
are the c-sizes of the two resulting partitions

with
�n¿[À Lrq � Q6P� Q + � � ). In later iterations, the effective

�
andÀ

are only made to decrease recursively and this essentially
means that HCBFS is always safe in producing computational
benefits.
Property 3: The total number of splits considered is clearly
linear since they correspond to the edges of �[¼ . Although
there are two recursive calls to GREEDYSPLIT, the can-
didate set of edges that enter them are disjoint and hence
GREEDYSPLIT is called only a linear number of times. This
proves that the running time of HCBFS is polynomial.
Property 4: Choosing certain edges in a tree as splits results
in a set of partitions that themselves form a tree with respect
to the split edges (as illustrated in Figure 4). Since we know
that optimization in a tree structured network is exponential
in the ct-size of the largest partition, the complexity of diag-
nosis using HCBFS is exponential in this parameter.

4.1 Analysis and Implications of HCBFS
We briefly delve into the computational implications of
HCBFS. HCBFS facilitates search in two ways. First, it re-
duces the effective search space by using the dynamic pro-
gramming paradigm. Second, it propagates “easiness” in con-
straint checking. Constraint checking in general may not be
computationally straightforward — it may often involve sys-
tem “simulation” of some kind over an extended period of
time. It can be noticed however, that constraint checking over
the join space is a mere verification that two selected rows of
the partition tables have similar values for their communica-
tion variables. By using HCBFS, the simulation-based con-
straint checks are “pushed” to smaller parts of the system (the
partitions). Even for consistency checks that do not involve
“simulation”, implementing a TMS for each small partition
is more effective (in terms of the complexity of data struc-
tures to be maintained) than one large TMS for the system as
a whole.

HCBFS not only reduces the effective un-amortized search
complexity for a diagnosis call, but also reduces the amor-
tized complexity. The solutions to sub-problems occurring
for diagnosis calls made in the past can be stored and used for
future diagnosis calls when they need to solve the same sub-
problems. Eventually, when all sub-problems for all values

of communication variables have been solved at least once, a
diagnosis call can be answered by doing a search only over
the join-space of the partitions. This too (as argued before) is
computationally easier than “simulation”.

The dynamic programming idea of HCBFS can further be
used to pre-process or compile the system description to fa-
cilitate diagnosis. Consider a partition of the graph represen-
tation of a physical setting. The idea is to solve the diagnosis
problem for this partition for all values of the surrounding in-
termediate variables (t-nodes) and store the results. We can
then treat this partition as a single physical component that
can take any value (mode) corresponding to a combination
of the values for each of its surrounding t-nodes. The as-
sociated probabilities would be derived from the results for
the corresponding diagnosis sub-problems. This kind of pre-
compilation of the system to treat partitions as components
provides computational benefits only if their t-size is lesser
than their c-size (which is often the case).

The space complexity associated with HCBFS has two
components. One is the size of the tables associated with
the sub-problems. This is referred to as the table-space com-
plexity. It is easy to observe that the table space complexity
is equal to the sum of the t-sizes over all partitions. Another
component of the space requirement is the actual space re-
quired for the diagnosis algorithms to build the tables and
compose them to answer a diagnosis call. This space require-
ment is identical to the running time complexities associated
with solving and composing sub-problems. It is worth not-
ing that the cost of implementing dynamic programming in
HCBFS is reflected only in its table-space complexity.

HCBFS also leads to what are called hybrid approaches.
These are techniques that combine conflict-based and
coverage-based approaches [Kumar, to appear] to solve sub-
problems and combine their solutions. Coverage-based algo-
rithms are those that record conflicts and cast the diagnosis
problem as a minimum weight hitting set problem [Kurien
and Nayak, 2000]. Conflict-based approaches refer to the
standard TMS-based algorithms like CBFS and QCBFS. In
general, hybrid approaches do the following: (1) Employ
the hierarchical partitioning algorithm to reduce the effective
search space. (2) Employ one of coverage-based or conflict-
based approaches for the sub-problems and the join space.

5 Comparison with Related Work
Related work on trying to leverage structure into the task of
diagnosis can be found in [Darwiche, 1998], [Autio and Re-
iter, 1998], [Provan, 2001] etc. In [Darwiche, 1998], negation
normal forms (NNF) are used to represent the consequence
of
����h �
	 � . Subsequently, minimal cardinality diagnoses

are extracted from them using a simple cost propagation and
pruning algorithm. For such a procedure to be effective, it is
important to ensure the decomposability of the NNF. Decom-
posability is achieved by partitioning

���
to perform a case

analysis on the shared atoms that do not appear among the
observations. The partitioning choices are inspired by trying
to produce a join-tree of the topological structure of the sys-
tem much like the m-ordering heuristics. The complexity of
the algorithm is exponential in the size of the hyper-nodes of



the join tree and linear in the number of such hyper-nodes.
There are at least three important ways in which this ap-

proach differs from ours. Firstly, this approach does not rea-
son about probabilities but rather looks for minimal diagnoses
(minimizes the number of faulty components). Secondly (and
more importantly), it tries to produce diagnoses (minimal) by
maintaining at each stage, a representation for all the consis-
tent candidates. The optimization phase (of producing mini-
mal candidates) occurs as a separate phase. Usually, we are
not interested in all consistent diagnoses and trying to rep-
resent them at any stage when there could potentially be an
exponentially large number of them can be a bottleneck. In
our approach, the optimization and satisfaction phases are in-
terleaved. This allows us to produce candidates as and when
we want them, in decreasing order of their optimization val-
ues, and to prune the search space using both optimality- and
satisfiability-reasoning. Thirdly, if the number of intermedi-
ate variables is too many, achieving decomposability in the
NNF is exponential in the induced width of the moralized
T-Graph; but since we are interested only in the behavior
modes of components and not that of intermediate variables,
the search space may be significantly reduced using our ap-
proach when the components are “tightly” coupled.

In [Provan, 2001] the idea of hierarchical diagnosis has a
different meaning. It is based on the use of abstraction oper-
ators to define an abstraction hierarchy of the model (a lattice
induced by a set of partitions of the system variables). A
group of components and intermediate variables at a partic-
ular abstraction level are “merged” to form “abstract” com-
ponents at a higher level with appropriately defined inputs,
outputs and constraints relating them. A structural abstrac-
tion sc of subcomponents � + -0-/-�� P defines two modes of be-
havior for Ây� — ��	"!OÂ0�0% and '(� 	)!#Ây�/% with the constraint
that '(� 	)!*� + %¯-0-/-k'(� 	"!#� P %�fÃ'(��	"!#Ây�/% . Such an abstrac-
tion mechanism is useful only for isolating a group of compo-
nents all of which cannot be behaving in their nominal modes
(abstract models isolate diagnoses only at the abstract level,
but more efficiently). At each level of abstraction we only
define the nominal mode of behavior for the abstract compo-
nent. The only other implicit mode is the faulty mode. This
limits the scope of diagnosis even at the abstract levels. Un-
der a combinatorial optimization formulation of the diagnosis
problem, abstraction of �y+.-0-/-,� P to Ây� only defines what hap-
pens when all components � + -0-/-I� P are behaving in their most
probable modes (nominal mode for Â0� ). It does not say any-
thing about what probabilities are associated or what happens
with any of the other remaining exponentially large number
of non-nominal modes. This makes diagnosis not only in-
feasible at more detailed levels, but also information-lossy at
abstract levels.

6 Conclusions

In this paper, we employed the combinatorial optimization
characterization of the diagnosis problem. We compared
two different approaches that exploit different features of
the problem: (1) naive m-ordering exploits the structure of
the system by leveraging the causal dependencies among the
variables (T-Graph) (2) CBFS exploits the fact that the out-

put is uniquely determined for given inputs to a component
behaving in a known mode, and that we are interested only
in an assignment to the component modes of the system. We
observed that naive m-ordering performs poorly when there is
high interconnectedness among components and that CBFS
performs poorly when there is low coupling. We proposed a
computationally feasible algorithm called HCBFS (extending
on CBFS) to achieve the best of both the worlds. HCBFS uses
CBFS in tightly coupled parts of the system and m-ordering
to identify them. We showed that HCBFS has many important
implications on the complexity of diagnosis — reduces the
un-amortized complexity of a diagnosis call, reduces amor-
tized complexity of a diagnosis call by reusing computation
done for sub-problems arising in past diagnosis calls, allows
pre-compilation of the system description to facilitate diag-
nosis, and enhances hybrid algorithms. Finally, we compared
and contrasted our work with somewhat related approaches.
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Abstract. Consistency-based diagnosis is the most widely used ap-
proach to model-based diagnosis within the Artificial Intelligence
community. It is usually carried out through an iterative cycle of be-
havior prediction, conflict detection, and candidate generation and
refinement. Many approaches to consistency-based diagnosis have
relied on some kind of on-line dependency-recording mechanism for
conflict calculation. These techniques have had different problems,
specially when applied to dynamic systems. Recently, off-line com-
pilation of dependencies has been established as a suitable alternative
approach. In this work we compare one compilation technique, based
on thepossible conflictconcept, with results obtained with the clas-
sical on-line dependency recording engine as in GDE. Moreover, we
compare possible conflicts with another compilation technique com-
ing from the FDI community, which is based on analytical redun-
dancy relations. Finally, we study the relationship between possible
conflicts, analytical redundancy relations, and conflicts.

1 Introduction

For more than thirty years different techniques have been applied
to diagnose systems in multiple domains. Diagnosis has been carried
out through knowledge-based systems, case-based reasoning, model-
based reasoning, and so on. This work is focused in the model-based
approach to diagnosis. Moreover, we will only talk about diagnosis
of physical devices [18].

More specifically, consistency-based diagnosis is the most widely
used approach to model-based diagnosis within the Artificial Intelli-
gence community (usually known as DX). It is a research field that
has reported successful results in recent years [39, 7]. This approach
has proven its maturity, both in theory, and in practice. On the one
hand, the diagnosis process and the diagnosis results have been com-
pletely characterized from a logical point of view [32, 12], thus fa-
cilitating further comparison. On the other hand, consistency-based
diagnosis has been successfully applied to a wide variety of domains
such as automotive industry [3, 38], bio-medicine [20], nuclear plants
[24], or ecology [37].

In such a framework, GDE [13] is the most well known imple-
mentation, andde factoparadigm. GDE organizes the diagnosis pro-
cess as an iterative cycle of behavior prediction, conflict detection,
and candidate generation and refinement. But conflict computation
is a non-trivial step, which has deserved a lot of attention from the
consistency-based diagnosis community. In GDE, the set of mini-
mal conflicts is computed by means of an ATMS [11], which records
on-line the set of correctness assumptions, or dependencies, used by
the inference engine. It should be noticed that dependency-recording

can be done forward (whenever new input data are introduced), or
backward (when a discrepancy is found, such as in CAEN [2, 21],
DYNAMIS [6], or TRANSCEND [25]). Another important feature
of the GDE framework is that it calculates labels propagating values
through constraints in every possible direction.

However, one problem related to on-line dependency-recording is
that the set of labels needs to be computed each time a new different
value is introduced. Another problem was found in the combined use
of on-line dependency-recording together with qualitative models for
diagnosing dynamic systems [17, 14]. Mainly for these reasons sev-
eral research groups have looked for alternative methods to such a
kind of on-line dependency-recording. On the one handstate-based
diagnosis[36] has emerged as an alternative tosimulation-based di-
agnosis, just for qualitative models. On the other hand,topological
methodspropose to explicitly use the structural description of the
system to be diagnosed. This information is implicitly stated in the
system description. Within this last approach, we make difference of
two major trends: those methods that use other on-line dependency-
recording than ATMS (by exploring causal-graphs [2, 24], signed
directed graphs [26], or other topological and functional structures
[5]), and those methods that perform off-line dependency-recording.

Last techniques are also known as compilation methods within the
DX community. The main idea supporting this approach is that re-
dundancy within the models can be found off-line. A similar idea
was used in the Control Engineering community (or FDI), where
Staroswiecki and Declerk proposed to use Analytical Redundancy
Relations (ARRs for short), for fault detection and localization [34].
Given such a similarity, there is an ongoing interest from the DX and
the FDI communities in comparing their approaches.

Between the FDI and AI proposals, Lunze and Schiller [23] were
able to perform diagnosis using causal graphs associated with over-
constrained systems. These systems were obtained from the logical
formula in the models of the system.

Within the DX community we have found the following compila-
tion techniques:

• Darwiche and Provan [10] characterized the set of diagnoses using
the consequence concept [9], instead of using the conflict concept.
Analyzing the system structure, those sub-systems which could
lead to a diagnosis can be found off-line.

• Similar information is used by Steele and Leitch [35] to refine the
set of candidates, in an adaptive approach to diagnosis [4].

• In DOGS, Loiez and Taillibert [22] proposed to localize, off-line,
over-constrained sets of equations. They were looking for those
sub-systems capable to become conflicts. The work done is con-



ceptually equivalent to that in [34], as it has been stated in [8].
• Fröhlich and Nejdl [15] used structural information two-fold: they

analyzed the whole set of logical formula in the model to find sub-
sets of formula capable to generate diagnosis, and they benefit
from these sub-sets in order to refine the whole set of diagnosis
candidates.

• Pulido and Alonso [27, 28] proposed to organize consistency-
based diagnosis around thepossible conflictconcept. A possible
conflict is a sub-system in system description which is capable to
become a conflict, within the GDE framework.

In this work we revisit the compilation technique based on thepos-
sible conflictconcept [27, 28]. Initially we summarize the character-
ization of that concept, in order to compare possible conflicts against
real conflicts. Later on, we establish the relationship between pos-
sible conflicts and ARRs. Finally, we revisit the work by Cordier et
al. [8] in order to compare conflicts and ARRs from a computational
point of view.

Due to space limitations we do not compare possible conflicts and
other compilation techniques from the DX community. Such a com-
parison can be found in [28, 30].

2 The possible conflict concept

Main assumptions in this work are that there is no structural fault,
and it is possible to know beforehand the number and placement of
available observations (sensors). An additional assumption is that the
model of the system can be expressed as a set of constraints: quanti-
tative or qualitative, linear or not, algebraic or not.

In Reiter’s framework for model-based diagnosis [32] a minimal
conflict identifies a set of constraints containing enough redundancy
to perform diagnosis. In the most simple case, when constraints are
made up of equations, a minimal conflict would denote a strictly
over-determined system1.

As it was mentioned in the previous Section, shared basis in com-
pilation techniques is: the set of analytically redundant sub-systems,
which can be used for diagnosis purposes, can be computed off-line.
Moreover, it has been proven that GDE provides all the existing
minimal conflicts. Since the set of possible conflicts tries to be a
computational alternative to on-line dependency recording for con-
flict computation, we have imposed an additional requirement: over-
constrained sub-systems should be the same as the set of minimal
conflicts computed by GDE2.

Finding analytical redundancy is a necessary but not a sufficient
condition for a system to be suitable for consistency-based diagnosis
purposes. The system must also be solved using local propagation
alone3. To fulfill both requirements we have split the search process
into two phases. First, we look for over-determined systems. Second,
we check whether these systems can be solved using local propaga-
tion alone. To do so, we just need abstractions of model-description.
For the sake of readability, below we include a summary of defini-
tions the reader can find in [27, 28].

1 In an over-determined system the number of equations,e, is greater than the
number of unknowns,u: e ≥ u + 1. In a strictly over-determined system,
e = u + 1.

2 For this reason, we always assume that we have the same model (system
description orSD in Reiter’s terminology) as GDE has.

3 Current consistency-based diagnosis systems do not impose that constraint
[19]. In [30] we extended the possible conflict concept to deal with such
(cyclical) configurations.

2.1 Searching for over-determined systems

We have represented the model inSD as a hyper-graph:HSD =
{V, R} which is made up of:
• V = {v1, v2, . . . , vn}, the set of variables in the model. It is made

up of observedOBS, and not observed or unknown variables,
NOBS: V = OBS

⋃
NOBS.

• R = {r1, r2, . . . , rm} is a family of sub-sets inV , where eachrk

represents a constraint in the model, and it contains some model
variables, observed and not observed ones.
We have calledEvaluation Chainsthe over-constrained sub-

systems inHSD (in Appendix A the reader can find definitions for
terminology in graphs and hyper-graphs c.f. [16, 1]):

Evaluation chain: Hec ⊆ HSD is a partial sub-hypergraph in
HSD: Hec = {Vec, Rec}, whereVec ⊆ V , Rec ⊆ R, and
Xec = Vec ∩ NOBS is the set of unknowns inVec, andHec

verifies:

1. Hec is a connected hypergraph,

2. Vec ∩OBS 6= ∅,
3. ∀vno ∈ Xec ⇒ dHec(vno) ≥ 2,

4. let G(Hec) be a bipartite graph made up of two kinds of nodes:
x ∈ Xec, andriec ∈ Rec, such that two nodes are linked in
G(Hec) if and only if x∈ riec . Then,G(Hec) has amatching
with maximal cardinalitym′ = |Xec| and|Rec| ≥ m′ + 1.

Figure 1 shows a classical example in consistency-based diagno-
sis. In order to make difference of components and constraints, we
will use capital letters for components, and small letters for con-
straints in their models.mi andaj denote the models of multipliers
and adders, respectively. Each model is made up of just one con-
straint; for instance,m1 = {A, C, X}. Whenever a model has more
than one constraint, indices are used to distinguish them. The related
hyper-graph is

Hpolybox = {{A, B, C, D, E, F, G, X, Y, Z}, {m1, m2, m3, a1, a2}}

M1

M2

M3

A1

A2

[A=3]

[B=3]

[C=2]

[D=2]

[E=3]

F=12

G=12

X

Y

Z

[C=2]

[F=10]

[G=12]

Figure 1. Classical polybox example in the consistency-based diagnosis.
Observed values are in brackets.{X, Y, Z} are non-observed values.

Since we are interested in minimal conflicts, only minimal evalu-
ation chains, MEC for short, are useful.

Minimal Evaluation Chain : Hec is a minimal evaluation chain if
there is no evaluation chainH ′

ec ⊂ Hec.

The set of minimal Evaluation chains, SMEC, is built based on
the algorithms:build-every-mec(), build-mec(), and justify() which
perform depth-first search inHSD using backtracking. All these al-
gorithms can be found in Appendix B. In the polybox example, these



algorithms have found three MECs:

Hec1 = {{A, B, C, D, F, X, Y }, {m1, m2, a1}}
Hec2 = {{B, C, D, E, G, Y, Z}, {m2, m3, a2}}
Hec3 = {{A, C, E, F, G, X, Y, Z}, {m1, a1, a2, m3}}

2.2 Can an evaluation chain be solved?

A minimal conflict is a strictly over-determined system that we want
to solve using local propagation alone. However, the hyper-graph has
not enough information about how each constraint can be solved. To
tackle this problem, we create an AND-OR graph for each minimal
evaluation chain. In such a graph, there is one or more AND-OR
arcs for each hyper-arc in the MEC. Each AND-OR arc represents
one way the hyper-arc could be solved. In fact, to solve a MEC, we
should select one AND-OR arc from each constraint. As a conse-
quence, choosing different AND-OR arcs from the AND-OR graph
generates different ways of solving the MEC. Moreover, the over-
determined system can only be solved using local propagation cri-
teria. Each one of the different ways of solving a MEC is called a
Minimal Evaluation Model, or MEM.

For instance, each constraint (mi or ai) used to model the poly-
box system provides three different interpretations to the AND-OR
graph:

mi(vout, vin1 , vin2 ) ⇒
{

mi1 ≡ vout = vin1 × vin2
mi2 ≡ vin1 = vout/vin2 , if vin2 6= 0
mi3 ≡ vin2 = vout/vin1 , if vin1 6= 0

Interpretations for a constraint are usually obtained when applying
the invertibility criterion. Nevertheless, there are additional criteria.
Appendix D shows constraints used to model a physical system made
up of tanks, pumps and valves. Constraintstr13, t23, tr25 are used
to compute the mass in a tank. In such kind of constraint, just one in-
terpretation is allowed, since we have taken an integration approach:

mT (t) =
∫

m′
T (t− 1)dt + mT (t− 1)

This interpretation can not be reversed. Hence, additional concepts
are necessary to define a Minimal Evaluation Model.

Given the relation betweenriec ∈ Rec, and the set of AND-OR
arcsrikem

, derived fromriec , we can state the following proposition.

Proposition 1 Let AOG(Hec) = {Vem, Rem} be the AND-OR
graph obtained fromHec = {Vec, Rec} applying the local reso-
lution criterion, where:
• Vem = Vec,

• ∀riec ∈ Rec ⇒ ∃rikem
∈ Rem, k ≥ 1

Then,riec ∈ Rec induces a partition inRem.

Proof: Eachriec ∈ Rec induces an equivalence class inRem.
By definition, it induces a partition too.

Leaf node: vi is a leaf node in graphH iff Γ̂−1
vi

= 0.
Discrepancy node: vi is a discrepancy node in graphH iff
• (d−H(vi) ≥ 2 ∧ vi ∈ NOBS), or
• (d−H(vi) ≥ 1 ∧ vi ∈ OBS)

That is, a leaf node has no predecessors, and a discrepancy node
can be found in two different ways: estimating an observed variable,
or doing a double estimation for an unknown variable.

Minimal Evaluation Model : A partial AND-OR graph,Hmem ⊆
AOG(Hec), where Hmem = {Vmem, Rmem}, is a minimal
Evaluation model iff:

1. Rmem is a minimal hitting-set for the partition induced by
riec ∈ Rec in Rem,

2. (∀vi | vi ∈ Vmem andvi is a leaf node)⇒ vi ∈ OBS,

3. ∃1xj ∈ Vmem | xj is a discrepancy node,

4. if xj is a discrepancy node, then there exists a directed and
acyclic path inHmem : {xi, xi+1, . . . , xi+k, xj} from each
nodexi to xj .

Algorithms used to calculate every MEM for each MEC:build-
every-mem(), andbuild-mem(), are given in Appendix C. These al-
gorithms are exhaustive too, since they perform depth-first search
using backtracking. For instance, MECHec1 has a related AND-OR
graph:

AOG(Hec1) = {{A, B, C, D, F, X, Y },
{m11 , m12 , m13 , m21 , m22 , m23 , a11 , a12 , a13}}

Given Hec1 and the set of available interpretations in
AOG(Hec1), algorithmbuild-mem()is able to find seven different
MEMs4:

MEMs Equivalent to evaluate the expression
{m11 , m21 , a11} Fobs ≡ Fpred = A× C + B ×D
{m11 , m21 , a12} Xpred1 = A× C ≡ Xpred2 = F −B ×D
{m12 , m21 , a12} Aobs ≡ Apred = (F −B ×D)/C, if C 6= 0
{m13 , m21 , a12} Cobs ≡ Cpred = (F −B ×D)/A, if A 6= 0
{m11 , m21 , a13} Ypred1 = F − (A× C) ≡ Ypred2 = B ×D
{m11 , m22 , a13} Bobs ≡ Bpred = (F −A× C)/D, if D 6= 0
{m11 , m23 , a13} Dobs ≡ Dpred = (F −A× C)/B, if B 6= 0

It should be noticed that a MEC would provide no MEM if the
over-determined system can not be solved using available interpre-
tations and local propagation. In [31] the reader can find additional
information on how temporal information has been included in this
framework and one example of a MEC which can not provide any
MEM.

Once summarized the possible conflict concept, next section stud-
ies the relationship between MECs, and MEMs, which are computed
off-line, and real conflicts computed on-line.

3 Conflicts and possible conflicts

If evaluated, a MEM could lead to discrepancy, i.e., it could lead to
a conflict. However, the set of MEM is computed off-line, without
any model evaluation. And conflicts would appear only when obser-
vations are introduced and the evaluation model is computed. So, we
have introduced the following concept:

Possible conflict: The set of constraints in a Minimal Evaluation
Chain giving rise to, at least, one Minimal Evaluation Model.

For example, in the polybox system in Figure 1, there
are three possible conflicts:{{m1, m2, a1}, {m1, a1, a2, m3},
{m2, m3, a2}}, because every MEC has, at least, one MEM.

In such a case, where component models are made up of only
one relation, the set of possible conflicts is equivalent to the set of
minimal conflicts in Reiter’s terminology computed on-line by GDE,
whatever the faults and whatever the set of available observations.

At this point it is necessary to answer the following question: is
the set of possible conflicts equivalent to the set of minimal conflicts
computed on-line by GDE? In order to answer, we need additional
definitions:

P (S): is the set of subsets in S;

4 Since the MEM will have the same set of variables as MEC, we just include
the set of interpretations.



model : COMPS → P (RSD): model(C) identifies the family
of relations modellingC behavior;

comp : RSD → COMPS: ri → comp(ri) = {C | ri ∈
model(C)}:
comp(ri) indicates the component containing relationri in its
model.

Proposition 2 Letco be a minimal conflict found by GDE, andco is
related to a discrepancy inv ∈ VSD: there is a minimal evaluation
chain,Hec = {Vec, Rec}, such that:

v ∈ Vec andco =
⋃

ri∈Rec
comp(ri)

Proof: GDE solves a minimal over-determined system to find
a minimal conflict related tov [19]. Sincebuild-every-mec()
performs exhaustive search, it is able to find every minimal
over-determined system inHSD. Hence, it will find that over-
determined system too.

Hence, once GDE finds a minimal conflict,build-every-mec()will
find a MEC containing the same set of constraints which were used
to find a conflict. Those constraints belong to the same set of compo-
nents.

Proposition 3 Letco be a minimal conflict found by GDE, andco is
related to a discrepancy inv ∈ VSD: there is a minimal evaluation
model,Hme = {Vem, Rem}, that can obtain a discrepancy inv, and

v ∈ Vem andco =
⋃

ri∈Rem
comp(ri)

Proof: By proposition 2, there is a MEC related toco, such
that:

co =
⋃

ri∈Rec

comp(ri)

Moreover build-every-mem()performs an exhaustive search
too. Therefore, it will find every MEM related to such MEC,
i.e., every possible way the MEC can be solved. Hence, it will
find the over-determined system used to obtain the minimal
conflict. Also, eachrik ∈ Rem is an interpretation for some
ri ∈ Rec. Hence:

co =
⋃

rik
∈Rem

comp(ri)

At least one of the MEM related to the CEM will find a discrep-
ancy inv, in the same way the GDE does.

Unfortunately, the number of MEMs for each MEC is exponen-
tial in the average number of interpretations for each hyper-arc in the
MEC. Due to practical reasons we just select one MEM related to a
MEC. Based on that MEM, we build an executable model which is
used for fault detection. In [31] the reader can find a detailed descrip-
tion of how possible conflicts can be used to perform consistency-
based diagnosis for both static and dynamic systems.

Nevertheless, it is still possible to claim that the set of possible
conflicts is theoretically equivalent to the set of conflicts found on-
line by means of GDE. We will show this fact in next two proposi-
tions.

Proposition 4 If Hec is a MEC,Hem is one of its MEMs and the
evaluation of the executable model associated toHem generates a
discrepancy inv ∈ Vem, then GDE will find a discrepancy inv.

Proof: There is a discrepancy inv related to the evaluation of a
MEM. The MEM is an strictly over-determined system. More-
over, GDE finds any discrepancy related to any minimal over-
determined system. Hence, it will find the discrepancy inv too.

This proposition always holds. Unfortunately, the converse does
not hold universally, because we can not guarantee for an arbitrary set
of non-linear constraints that every MEM for a MEC will provide the
same solution for a given set of observations [40]. This assumption
should be stated in the following way:

Equivalence assumption : Every MEM in a MEC provides the
same set of solutions for any given set of input observations.

Now, it is possible to define the following proposition:

Proposition 5 If GDE finds a minimal conflict,co, related to a dis-
crepancy inv, andthe equivalence assumption holdsfor a Hec con-
tainingv, then the possible conflict related toHec will be confirmed
as a minimal conflict.

Proof: The proof is straightforward based on propositions 2,
and 3.

4 Comparing possible conflicts, conflicts, and
ARRs

As previously mentioned, there is an on-going research interest from
the DX and FDI communities in comparing their approaches. Re-
cently, Cordier et al. [8] proposed a common framework to com-
pare conflicts and ARRs [34, 33]. In that trend, we compare ARRs
and possible conflicts considering the way they are computed. After-
wards, we discuss results in [8] and extract some conclusions.

4.1 Possible conflicts and ARRs

The set of ARRs is obtained from the unique canonical decomposi-
tion of the structural description of the system into under-determined,
just-determined, and over-determined sets of constraints. The canon-
ical decomposition is based on finding a complete matching, w.r.t.
unknown variables, in the bipartite graph associated to the structural
description of the system. Combination of just-determined systems
together with redundant relations is the basis for anAnalytical Re-
dundancy Relation[34].

Each complete matching can be considered as a causality assign-
ment, but it is necessary to obtain a causal matching for the over-
determined system, from the set of causal matchings satisfying the
invertibility condition [33]. Each ARR can be solved and used for
diagnosis purposes once observed values are introduced.

It should be noticed that all the steps, except the solving one, could
be done off-line. Hence, computing ARRs is a compilation technique
in FDI. And, it seems obvious that strong similarities do exist be-
tween the way ARRs and possible conflicts are computed.

• Both methods search for over-determined sub-systems. Direct or
deduced ARRs can be used to estimate a value for an observed
variable in the system. Moreover, algorithms used for computing
MEC, can be used to obtain the whole set of over-determined sub-
systems5. Hence, the algorithms will find an evaluation chain with
the same set of constraints as of the ARR.

• An ARR need a causal matching, because not every causality as-
signment can be done in the complete matching. In the same way,
AND-OR arcs are introduced to limit the ways an hyper-arc can
be solved. It seems obvious that one of the evaluation models for
an evaluation chain will be equivalent to the causal matching in
the ARR.

5 It is straightforward to modify algorithmJustify() to search for any over-
determined system.



• The set of evaluation models for an evaluation chain are built
based on local propagation criterion, i.e., the evaluation model
does not contain any cycle. This condition has been imposed in
the ARR approach too. For this reason, the ARR is obtained once
graph reduction, by means of loop elimination, has been done in
the causal graph [33]. This step is equivalent to loop elimination
in the possible conflict approach [29].

However, there are some differences:

• Staroswiecki et al. [33] assume that in an over-determined sys-
tem the set of unknowns can be computed in different ways, using
constraints and known values, and “deduced redundancy relations
are obtained writing that all these results have to be the same”.
This assumption is the same as the equivalence assumption in the
previous section.
As mentioned above, that assumption is never done in GDE while
computing minimal conflicts, because the assumption does not
hold universally for physical systems made up of general non-
linear constraints [40]. Therefore, based on propositions 4 and
5, it can not be claimed that model-based diagnosis relying upon
ARRs and consistency-based diagnosis using conflicts will pro-
vide always the same set of results. Results obtained using ARRs
would be the same as of those obtained using just one MEM for
each MEC. These results can be sub-optimal, w.r.t. the number of
detected conflicts, unless the equivalence assumption holds.

• Moreover,build-every-mec()provides the whole set of minimal
evaluation chains, because we look for minimal conflicts. This is
not guaranteed in the original ARR approach, which should be
revised to find just minimal ARRs.

4.2 Discussion

Cordier et al. [8] defined thesupportfor an ARR as “the set of com-
ponents involved in the ARR”. This term was also called “potential
R-conflict”, because of their Proposition 4.1:

“Let OBS be a set of observations for a system modeled by
SM (resp. SD). There is an identity between the set of minimal
R-conflicts for OBS and the set of minimal potential R-conflicts
associated to the ARRs which are not satisfied by OBS.”

As stated in the previous section, we think it is necessary to make
three explicit assumptions to guarantee that such a conclusion holds
universally:
• the equivalence assumption holds,
• the set of ARRs is built based on minimality criteria, and
• we have a component-oriented behavior description of the system,

but minimality is considered w.r.t. sets of constraints.
Regarding first two conditions, it seems obvious that proposition

5 in Section 3 is equivalent to proposition 4.1. in [8] when both as-
sumptions hold. Third assumption must be taken into account when
behavioral models are made up of more than one constraint. Mini-
mality w.r.t. sets of constraints is needed because not every possible
conflict is equivalent to a minimal conflict in Reiter’s framework. We
will illustrate this using the system in Figure 2. The system is made
up of common components in process industry such as tanks, pumps,
valves, and so on.

Figure 2. Scheme of the system to be diagnosed. Measured variables are
flowsFT01 = f∗1 , FT02 = f∗8 , FT03 = f∗7 , andFT04 = f∗11; level of
tankLT05 = h∗TR2, and the value of the control action on valveV2 = u2

at the output of tankTR2.

Its related hyper-graph can be described as:

HSD = {VSD, RSD};
VSD = {OBS ∪NOBS};
OBS = {f∗1 , f∗7 , f∗8 , f∗11, h

∗
TR2};

NOBS = {f9, f10, f12, f14, m
′
TR1 , mTR1 , hTR1 , m′

T2 , mT2 ,
hT2 , m′

TR2 , mTR2 , hTR2 , ∆PP2 , ∆PP3 , P1T R1
, P2T R1

, P1T2
,

P2T2
, P1T R2

, P2T R2
, ucont2}

RSD = {tr11, tr12, tr13, tr14, t21, t22, t23, t24, t25, p21, p22,
p23, p31, p32, p33, v21, v22, tr21, tr22, tr23, tr24, tr25, tr26}

The meaning for each equation above can be found in Appendix
D. We have used common equations for computing mass balances,
overflows, and so on. Analyzing the system we have found three pos-
sible conflicts. The reader should notice thatPC3 is minimal w.r.t.
constraints, but not minimal w.r.t. components.

PCi Components
{tr11, tr12, tr13, tr14, t21, t22, t23, {TR1, T2, P2}
t24, t25, p21, p22, p23}
{tr21, tr23, p31, p32, p33, v21, v22} {TR2, P3, V2}
{tr11, tr12, tr13, tr14, t21, t22, t23, {TR1, T2, P2, TR2,
t25, p23, tr24, tr25, tr26, p33, v21} P3, V2}

5 Conclusions

In this paper we have shown that compilation of dependencies by
means of the possible conflict approach is theoretically equivalent to
on-line dependency recording in GDE. However, it is not possible
to claim that, in practice, consistency-based diagnosis using possible
conflicts provides the same results as GDE does, unless the equiva-
lence assumption holds.

We have found out that the model of an ARR is equivalent to some
evaluation model for an evaluation chain. Since we select just one
MEM for each MEC for practical reasons, we conclude that both
approaches can obtain equivalent results (assuming ARRs are com-
puted based on minimality criteria).

Finally, we have concluded that Proposition 4.1 in [8] need to be
revised taking into account results in propositions 4 and 5, and con-
sidering minimality criteria w.r.t. constraints.
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A Graph and hyper-graph notation
H = [V, E] Hyper-graphH, made upV : nodes, and

E: a family of sub-sets inV
Γi Successors for nodei
Γ−1

i Predecessors for nodei
dH(i) Degree for nodei in H
d+

H(i), d−H(i) Output and input demi-degree for nodei in H

Bipartite graph: G = [V, E] is a bipartite graph if there are two
disjoints parts inV = S ∪ T , and edges inE are always directed
from S to T .

Matching: A matchingM in G = [V, E] is a subset ofE such that
no two arcs inM share a common vertex incident to them.

B Algorithms for computing the set of minimal
evaluation chains

Algorithm build-every-mec (SMEC) is
SMEC: set of MEC;{ Each MEC is a set of constraints}
available, to-be-justified, justified, chain: set of constraints;
R, R2: constraint;

Begin
available := Constraints-in(HSD);
whileavailable6= ∅ do
R := Select-constraint(available);
chain :=∅;
available := available\ {R};
build-mec (SMEC, chain, R, available);

end while
End

Algorithm build-mec (SCEM, chain, R, available)is
Begin
Insert R in chain;
to-be-justified := R.nobs;
justified :=∅;
Justify (SMEC, chain, to-be-justified, justified, available);

End

Algorithm Justify (SMEC, chain, to-be-justified, justified, avail-
able)is

v: unknown variable;
related: set of constraints;

Begin
if to-be-justified =∅ then
if there is no subset of chain in SMECthen
Erase chain supersets from SMEC;
Insert chain in SMEC;

end if{ Only minimal chains are included in SMEC.}
else
v := select-variable (to-be-justified);
related := R| R∈ available and v∈ R.nobs;
while related6= ∅ do
R1 := select-r (related);
related := related\ {R1};
chain2 := chain∪ {R1};
Justified2 := Justified∪{v};
to-be-justified2 := (to-be-justified\ v) ∪ (R1.nobs\ justified2};
available2 := available\ R1;
Justify (SMEC, chain2, to-be-justified2, justified2, available2);

end while
end if

End

C Algorithms for computing the set of minimal
evaluation models

Algorithm build-every-mem (SMEC, SMEM)is
Begin
for chain = each MEC in SMECdo
for R = each constraint in chaindo
for I = each interpretation for Rdo
model :={I};
to-be-justified:= I.nobs;
justified :=∅;
chain := chain\ {R};
build-mem (model, chain, to-be-justified, justified, SMEM);

end for
end for

end for
End

Algorithm build-mem (model, available, to-be-justified, justified,
SMEM) is

Begin
if to-be-justified =∅ and available =∅ and∃1 discrepancy node in
modelthen
Insert model in SMEM;

end if
else
for S = each constraint in availabledo
if S.nobs∩ to-be-justified =∅ then
for I2 = each interpretation for Sdo
if head(I2)∩ to-be-justified6= ∅ then
Insert{I2} in model;
available := available\ {S};
to-be-justified := (to-be-justified\ head(I2))∪ tail(I2).nobs;
Insert head(I2) in justified;
Build-mem (model, available, to-be-justified, justified, SMEM);

end if
end for

end if
end for

end if
End

D Constraints used to model the hydraulic system
Constraints Represent
tr11, t21, tr24 Mass balance in T:m′

T =
∑

fin −
∑

fout

tr12, t22 Overflow in T:fout =
√

k · (hT − hext)

tr13, t23, tr25 Mass:mT (t) =
∫

m′
T (t− 1)dt + mT (t− 1)

tr14, t25, tr26 Height in T: :hT = k1 · mT
AT

t24, tr22 Pressure at bottom:PT1 = k2 · hT + Patm

p21, p32 Pump load curve in P:∆PP = tablePQ(fout)

p22, p31 Outflow in T:fout =

√
k3 · (PT1+∆PP−P2)

k4

p23, p33, v21 Flow out of tank:fin = fout

tr21 Control:u = PID(hT )

v22 Flow through a valve:fout =

√
k5 · (PT2−Patm)

k6+( 100
u

)2
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Abstract. Technical systems are in general not guaranteed
to work correctly. They are more or less reliable. One main
problem for technical systems is the computation of the reli-
ability of a system. A second main problem is the problem of
diagnostic. In fact, these problems are in some sense dual to
each other.

In this paper, we will use the concept of probabilistic ar-
gumentation systems PAS for modeling the system descrip-
tion as well as observation and specifications of behaviour in
one common framework. We show that PAS are a framework
which allows to formulate both main problems easily and all
concepts for these two problems can clearly be defined therein.
Using PAS, reliability and diagnostic can be considered as
dual problems. PAS allows to consider one common strategy
for computing answers to the questions in the different situa-
tions.

1 Introduction and Overview
One main problem for technical systems is the computation
of the reliability of a system. This is studied in reliability
theory (see for example [7, 8]). The reliability depends on
various factors like the quality and the age of components,
complexity of the system, etc. The reliability of a system con-
veys some information about the behavior of the system in
the future, based on information about the components, for
example probabilistic information about the reliability over
time.

A second main problem for technical systems is the prob-
lem of diagnostic. Here, the problem is to explain the behavior
of the system, usually based on measurements and observa-
tions of some parts of the system, together with the system
description in some framework. The actual observations and
the description of the system are the only ingredients for the
computation of the diagnoses. Additionally, if probabilistic
knowledge is available about the different operating modes of
the components, then the likelihood of the system states can
be defined and prior as well as posterior probabilities can be
computed for the set of possible system states.

∗ Research supported by grant No. 2000-061454.00 of the Swiss
National Foundation for Research.
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Figure 1. Reliability versus Diagnostic.

The two main problems depend both on a formalization of
the system in some framework together with either observa-
tions, measurements, or requirements (Fig. 1). Here, we will
use the concept of probabilistic argumentation systems PAS
for modeling the system description as well as observation and
specifications of behaviour in one common framework. The
goal of a PAS is to derive arguments in favor and against the
hypothesis of interest. An argument is a defeasible proof built
on uncertain assumptions, i.e. a chain of deductions based
on assumptions that makes the hypothesis true. If probabilis-
tic information is available, a quantitative judgement of the
situation is obtained by considering the probabilities that the
arguments are valid. The resulting degrees of support and pos-
sibility correspond to belief and plausibility, respectively, in
the Dempster-Shafer theory of evidence [24, 20]. In fact, PAS
combines the strengths of logic and probability in one frame-
work. In this paper we show that probabilistic argumentation
systems are a framework which allows to formulate both main
problems, i.e. reliability and diagnostic, easily and all concepts
therefore can clearly be defined therein. The framework will
especially allow to consider one common strategy for comput-
ing answers to the questions in the different situations. Some
work in this direction but without using PAS has been done
by Provan [22].

The main information for both problems is the description
of the system in some formalism; we will focus here on a for-



malization using logic. In the case of reliability, we may have
a specification which describes the goals which have to be ful-
filled by the system. This information will be used to compute
the structure function from the system description. Different
specifications may lead to different structure functions. Even
in the absence of an explicit specification of a reliability re-
quirement, we may deduce a structure function by assuming
that the system should be functioning at least if all compo-
nents are working.

On the other hand, in the case of diagnostic, some obser-
vations of the system may indicate that the system is not
working as it is supposed to be. This information — together
with the system description — allows then to compute the di-
agnoses of the system, i.e. minimal sets of components whose
malfunctioning “explains” the wrong behaviour of the whole
system.

2 Reliability

2.1 Combinatorial Reliability

In binary combinatorial reliability, a system is assumed to be
composed of a number of different components. Each com-
ponent is either intact or it is down, and so is the whole
system itself, depending on the states of its components. In
order to formulate this, binary variables xi are associated to
components i = 1, 2, . . . , n of the system, where xi = ! if
the component number i works and xi = ⊥ otherwise. Let x
be the vector (x1, x2, . . . , xn) of the component states. This
state-vector has 2n possible values. These values can be de-
composed into two disjoint subsets, the set S" of working
states, for which the system as a whole is assumed to be func-
tioning, and the set S⊥ of down-states, for which the system
is supposed to not work properly. The corresponding system
state is denoted by x. Its dependence on the state-vector x is
described by a Boolean function φ, defined as

x = φ(x) =

{ ! if x ∈ S",
⊥ if x ∈ S⊥.

(1)

The Boolean function φ is called the structure function of the
system. In combinatorial reliability it is assumed to be given
and it forms the base for reliability analysis.

The structure function φ is usually assumed to be mono-
tone. That is, if x1 ≤ x2, then φ(x1) ≤ φ(x2). For a monotone
structure function, a subset P ⊆ {1, 2, . . . , n} of components
is called a path, if φ(x) = ! for all state-vectors x for which
the components of the set P are working, xi = ! for all i ∈ P .
That is, the elements of a path are sufficient to guarantee the
functioning of the system, regardless of the state of the com-
ponents outside the path. We assume that the set {1, 2, . . . , n}
of all components is a path (otherwise the system would never
be functioning). A path P is called minimal, if no proper sub-
set of P is still a path. Since the paths are upwards closed it
is sufficient to know all minimal paths. Let P denote the set
of minimal paths. This set determines the structure function,

φ(x) =
∨

P∈P

∧
i∈P

xi. (2)

This logical formula expresses the fact, the system is working,
if all components of at least one minimal path are working.

orin out

inv

inv

A

B

C
x1

x2

Figure 2. A simple device

Dually, the notion of a cut is defined and C denotes the set of
all minimal cuts.

If for every component i = 1, 2, . . . , n its respective prob-
ability pi of functioning correctly is defined, then the prob-
ability that the system is functioning can be computed (as-
suming the components to be stochastically independent). In
fact, φ(x) is a random variable, and the probability p that the
system is functioning is

p = E(φ(x)) = h(p). (3)

Here, p denotes the vector (p1, p2, . . . , pn) of probabilities.
h(p) is called the reliability function and its computation is
a nontrivial task [1, 16, 5].

2.2 Model-Based Reliability

The structure function describes the conditions under which
a system is functioning, depending on the states of its com-
ponents. It is already a compilation of knowledge about the
system and its structure. In this section we shall illustrate an-
other approach, where a more physical description of a system
is given. Additionally, a specification of the desired behavior
of the system is given. These two elements will then allow the
deduction of a structure function and its associated reliability
function. The discussion in this section will be informal.

Example 1: Detector of Power Failure
(Example adapted from [22])
Consider a simple device which watches a Boolean value in
and reports an output out equal to !, if the value vanishes
(becomes ⊥). A simple version of such a device is depicted
in Figure 2. The functionality of this device can be described
with propositional logic. Let in and out be the variables which
denote the state of the in- and output respectively. Both vari-
ables are binary, i.e. represent the boolean values true or false
respectively. Further, there are two internal variables x1 and
x2, also binary. For every component A, B or C, there is a
respective binary variable okA, okB , and okC which describes
the working mode of the component.

Consider the inverter A: if it works correctly (okA is true),
then its input is the negation of its output, out is true if and
only in is false. We express this by the formula in ↔ ¬x1. So
the entire information is modeled as the logical implication
okA → (in ↔ ¬x1). Note that so far nothing is said about
the behavior of the component, if it is down (okA is false).
There are several possibilities. One is that in this case the
output of the component is always false, i.e. ¬okA → ¬x1.

For the component B, the same specification can be ap-
plied. For the or-gate, if it works correctly, then the output is



true if at least one of its inputs is. So the whole information
about the device is modeled by a set of six implications:

Σ =

 okA → (in ↔ ¬x1), ¬okA → ¬x1,
okB → (in ↔ ¬x2), ¬okB → ¬x2,
okC → (out ↔ x1 ∨ x2), ¬okC → ¬out

 (4)

This is the system description. We add now a specification of
what we expect from the system to this physical description of
the system. We expect, that negative (false) input is detected,
i.e. the output is true. This could be expressed by ¬in → out.
However, this is a weak requirement. It does not exclude that
out becomes true, even if in is true. More stringent would be
the specification ¬in ↔ out. This asks that there is an alarm
(out) if, and only if, in is false.

We may now ask under which states, described by the vari-
ables okA, okB , and okC , each one of these specifications is
fulfilled. This defines the structure function of the system as-
sociated with the corresponding specification of desired sys-
tem behavior. We shall see in the next section, that it is a
well-defined problem of propositional logic to deduce these
structure functions from the system description and the spec-
ifications of desired behavior. )

This example shows how the physical behavior of systems
and the required behavior can be described in the language
of propositional logic. We shall examine this structure in the
following section in a general context.

3 Probabilistic Argumentation Systems
Probabilistic argumentation systems have been developed as
general formalisms for expressing uncertain and partial know-
ledge and information in artificial intelligence. They combine
in an original way logic and probability. Logic is used to derive
arguments and probability serves to compute the reliability or
likelihood of these arguments. These systems can be used for
model-based diagnostics as has been demonstrated in [2, 19].
Here we shall show how they relate to reliability theory.

In this section we give a short introduction into proposi-
tional probabilistic argumentation systems. For a more de-
tailed presentation of the subject we refer to [15]. We remark
also that such systems have been implemented in a system
called ABEL which is available on the internet (cf. [14] for
further information).

3.1 Propositional Logic
Propositional logic deals with declarative statements, called
called propositions, that can be either true or false. Let
P = {p1, . . . , pn} be a finite set of propositions. The sym-
bols pi ∈ P together with ! (tautology) and ⊥ (falsity), are
called atoms. Compound formulas are built by the following
syntactic rules:

• atoms;
• if γ is a formula, then ¬γ is a formula;
• if γ and δ are formulas, then (γ ∧ δ), (γ ∨ δ), (γ → δ), and

(γ ↔ δ) are formulas.

By assigning priority in decreasing ordering to ¬, ∧, ∨, →,
some parentheses can be eliminated. The set LP of all formu-
las generated by the above recursive rules is called proposi-
tional language over P .

A literal is either an atom pi or the negation of an atom
¬pi. A term is either ! or a conjunction of literals where
every atom occurs at most once (but none of ⊥ and !), and
a clause is either ⊥ or a disjunction of literals where every
atom occurs at most once (but none of ⊥ and !). CP ⊆ LP

denotes the set of all terms, and DP the set of all clauses.
NP = {0, 1}n denotes the set of all 2n different interpreta-

tions for P . If γ ∈ LP evaluates to 1 under x ∈ NP , then x is
called a model of γ. The set of all models of γ is denoted by
NP (γ) ⊆ NP .

A propositional sentence γ entails another sentence δ (de-
noted by γ |= δ) if and only if NP (γ) ⊆ NP (δ). Sometimes,
it is convenient to write x |= γ instead of x ∈ NP (γ). Also
we write γ |= ⊥ if γ is not satisfiable. Furthermore, two sen-
tences γ and δ are logically equivalent (denoted by γ ≡ δ), if
and only if NP (γ) = NP (δ).

3.2 Basic Concepts of Argumentation
Systems

Consider two finite sets P = {p1, . . . , pm} and A =
{a1, . . . , an} of propositional variables with A∩P = ∅, the ele-
ments of P are called propositions, the elements of A assump-
tions. We consider a fixed set of formulas Σ ⊆ LA∪P called the
knowledge base, which models the information available; sets
of formulas are interpreted conjunctively, i.e. Σ =

∧{ξ ∈ Σ}.
We assume that this knowledge base is satisfiable. A triple
(Σ, A, P ) is called a propositional argumentation system PAS.

The elements of NA are called scenarios (or system states).
A scenario represents a specification of all values of the as-
sumptions in A. Define now:

Inconsistent Scenarios: CSA(Σ) := {s ∈ NA : s, Σ |= ⊥},
Quasi-Supporting Scenarios of h ∈ LN :

QSA(h, Σ) := {s ∈ NA : s, Σ |= h},
Supporting Scenarios of h ∈ LN :

SPA(h, Σ) := QSA(h, Σ) −CSA(Σ),

Possible Scenarios for h ∈ LN :
PLA(h, Σ) := SPA

c(¬h, Σ).

Inconsistent scenarios are in contradiction with the know-
ledge base and therefore to be considered as excluded by the
knowledge. Supporting scenarios for a formula h are scenar-
ios, which, together with the knowledge base imply h and
are consistent with the knowledge. So, under supporting sce-
narios, the hypothesis h is true. Possible scenarios for h are
scenarios, which do not imply ¬h and thereby do not refute h.
Quasi-supporting scenarios for h are the union of supporting
scenarios and inconsistent scenarios.

Scenarios are the basic concepts of assumption-based rea-
soning. However, sets of inconsistent, quasi-supporting, sup-
porting and possible scenarios may become very large. There-
fore, more economical, logical representations of these sets are
needed. For this purpose, the following concepts are defined:

Set of Supporting Argument for h:
SP(h, Σ) = {α ∈ CA : NA(α) ⊆ SPA(h, Σ)},

The sets of quasi-supporting and of possible arguments are
defined analogously. Remark that supporting arguments are
similar to paths for structure functions in reliability the-
ory. This similarity will be exploited later. These sets are



all upward closed. Hence the sets of arguments are al-
ready determined by their minimal elements. We denote by
µQS(h, Σ), µSP(h, Σ) and µPL(h, Σ) the sets of minimal
quasi-supporting, supporting and possible arguments. Fur-
ther,

Conflict: conf (Σ) :=
∨

α∈µQS(⊥,Σ)

α,

Support of h: sp(h, Σ) :=
∨

α∈µSP(h,Σ)

α,

Quasi-support qs(h, Σ) and possibility pl(h, Σ) are defined
analogously. Clearly, any formula which is logically equivalent
to logical representations above can be used as a representa-
tion.

Example 2: (Cont. of Example 1)
The information of Example 1 is modeled in an argu-
mentation system as follows: A = {okA, okB , okC}, P =
{in, x1, x2, out} and Σ as in (4). There are no incon-
sistent scenarios and for h = ¬in → out we have
QSA(h, Σ) = {(0, 1, 1), (1, 0, 1), (1, 1, 1)} and PLA(h, Σ) =
NA. As CSA(Σ) = ∅, we have QSA = SPA in this situation
and there are some arguments in favor of the hypothesis, but
none against it. Hence, qs(h, Σ) = (okA ∧ okC)∨ (okB ∧ okC)
and pl(h, Σ) = !. )

3.3 Probabilistic Information
On top of the structure of a propositional argumentation sys-
tems, we may easily add a probability structure. Assume that
there is a probability p(ai) = pi for every assumption ai ∈ A
given. Assuming stochastic independence between assump-
tions, a scenario s = (s1, . . . , sn) gets the probability

p(s) =
n∏

i=1

psi
i (1− pi)

1−si . (5)

This induces a probability measure p on LA,

p(f) =
∑

s∈NA(f)

p(s)

for f ∈ LA. A quadruple (Σ, A,P, Π) with Π = (p1, . . . , pn) is
then called a probabilistic (propositional) argumentation sys-
tem PAS.

The problem of computing the probability p(f) is similar to
the problem of computing the reliability of a structure func-
tion, except, that monotonicity cannot be assumed in general;
for algorithms for efficiently computing the probability p(f)
see [20, 9, 13].

Once we have such a probability structure on top of a
propositional argumentation system, we can exploit it to com-
pute likelihoods (or in fact, reliabilities) of supporting and
possible arguments for hypothese h. First, we note, that Σ
imposes that we eliminate the inconsistent scenarios and con-
dition the probability on the consistent ones. In other words,
Σ is an event that restricts the possible scenarios to the set
NA − CSA(Σ), hence their probability has to be conditioned
on the event Σ. This conditional probability is defined by

p′(s) =
p(s)

1− p(qs(⊥,Σ))
.

for consistent scenarios s. p(qs(h, Σ)) = dqs(h) is the so-called
degree of quasi-support for h. Now, the degree of support dsp
for hypotheses h is defined by

dsp(h) = p′(sp(h, Σ)) =
dqs(h, Σ)− dqs(⊥,Σ)

1− dqs(⊥, Σ)
.

This result explains the importance of quasi-support. It is
sufficient to compute degrees of quasi-supports. Further, we
obtain the degree of plausibility of h,

dpl(h) = p′(pl(h, Σ)) =
1− dqs(¬h, Σ)
1− dqs(⊥, Σ)

= 1− dsp(¬h).

Degree of quasi-support dqs(h) and of support dsp(h) corre-
spond in fact to unnormalized and normalized belief in the
Dempster-Shafer theory of evidence [24, 20, 15].

3.4 Computational Theory
Computing quasi-supports is the basic operation in PAS. It
can be based on resolution and variable elimination (forget-
ting) [15, 12, 13]. In the sequel, we will sketch some of the
main concepts for computation.

First, note that the computation of qs(h) can be reduced to
the computation of the conflicts with respect to an updated
knowledge base: qs(h, Σ) = qs(⊥,Σ ∪ {¬h}). So for any hy-
pothesis h, the quasi-supporting arguments qs(h, Σ) can be
determined by computing the conflicts with respect to the
knowledge base Σ ∪ {¬h}. Hence in the sequel, we focus on
the computation of the conflicts with respect to a general
knowledge base.

The ideas presented in the sequel are based on representa-
tions of knowledge in conjunctive normal form (CNF), i.e. a
conjunction of clauses. The main step is based on the princi-
ple of resolution. Let x ∈ A ∪ P . A disjoint decomposition of
Σ is then defined as follows:

Σ+
x = {ξ ∈ Σ : x ∈ Lit(ξ)}

Σ−x = {ξ ∈ Σ : ¬x ∈ Lit(ξ)}
Σ0

x = {ξ ∈ Σ : x /∈ Lit(ξ) and ¬x /∈ Lit(ξ)}
Lit(Σ) denotes the set of all literals occurring in Σ. A literal
is either a (positive) atom or a negated atom.

Consider two clauses ξ+ = x∨ δ+ and ξ− = ¬x∨ δ− in Σ+
x

and Σ−x respectively. The clause ρ(ξ+, ξ−) = δ+ ∨ δ− is called
the resolvent; note that we simplify implicitly the resolvent
so that ρ(ξ+, ξ−) is again a clause, i.e. double occurrences of
atoms etc. are simplified.

Eliminating a variable x ∈ P ∪ A from Σ means now to
compute

Elimx(Σ) = µ(Σ0
x ∪ {ρ(ξ+, ξ−) : ξ+ ∈ Σ+

x , ξ− ∈ Σ−x })
Consider a set Q ⊆ P∪A. We define now, for Q = {q1, . . . , qr},

ElimQ(Σ) = Elimqr (. . . (Elimq2(Elimq1(Σ))) . . .)

The result does not depend on the very order of the elimina-
tion of atoms; yet note that the computations depend criti-
cally on a “good” ordering, see [15] for a discussion as well as
relations to the theory of local computation (in the sense of
Shenoy & Shafer [25]).

This allows then to compute the quasi-supporting argu-
ments of a knowledge base Σ as follows:



Theorem 1 ([15])
QSA(h, Σ) = Nc

A(ElimP (Σ ∪ {¬h}))

In other words, this theorem asserts that

qs(h, Σ) ≡ ¬
∧

ElimP (Σ ∪ {¬h}).

The concept of elimination allows to compute quasi-
supporting and therefore also supporting as well as possible
arguments for hypotheses. This notation connects the con-
cepts presented here to the more general theory of valuation
algebras, a general theory for representing, combining and fo-
cusing pieces of information [18, 21].

4 Reliability Analysis Using Probabilistic
Argumentation Systems

4.1 Reliability based on Requirement
Specification

We discuss now how probabilistic argumentation systems can
be used to formulate and solve reliability problem. The ba-
sic idea is simple: The system behavior is described in terms
of the states of its components. In addition the desired or re-
quired behavior of the system is specified. The system descrip-
tion forms a probabilistic argumentation system. The ques-
tion is then: how likely (probable) is it, that the specified
requirement is satisfied? In order to answer this question, the
specification of required behavior is taken as a hypothesis.
The support of this specification determines then essentially
the structure function of this reliability problem, and the de-
gree of support of the specified requirement is the reliability
of the system with respect to the required behavior. Note
that — depending on different goals a system should attain,
or services it should provide — different requirements may
be formulated. So the corresponding reliability analysis has
to be differentiated, but can be carried out within the same
framework of probabilistic argumentation systems.

Example 3: (Cont. of Example 1)
We have already formulated Σ and two different specifications
δ1 = ¬in → out and δ2 = ¬in ↔ out. We can compute the
supports of these two specifications. It turns out, that both
are the same,

sp(δ1, Σ) = sp(δ2, Σ) = (okA ∧ okC) ∨ (okB ∧ okC).

Note that this is just the path representation of the expected
structure function. In fact this structure function could be
reformulated as (okA ∨ okB) ∧ okC , which shows that it is a
series system composed of component C and a parallel module
of the components A and B. The remarkable fact is, that this
structure function has been automatically deduced from the
system description and the specification of requirements.

The system description is an essential element for this anal-
ysis. If it is changed, then this may influence the results of the
analysis. Suppose that, in contrast to the model above, we do
not know how the faulty components behave. The knowledge
base becomes now

Σ′ =

{
okA → (in ↔ ¬x1), okB → (in ↔ ¬x2),
okC → (out ↔ x1 ∨ x2).

}

With this less complete model, the structure function of the
two specifications above become different,

sp(δ1, Σ
′) = (okA ∧ okC) ∨ (okB ∧ okC),

sp(δ2, Σ
′) = okA ∧ okB ∧ okC .

Now, the stronger requirement δ2 can only be guaranteed if
all three components work correctly (a series system), whereas
the weaker one still has the same redundancy as before. )

In the general case, we have a PAS (Σ, A, P ), where the
assumable symbols in A correspond to the components of the
system. Positive assumptions correspond to working compo-
nents. Accordingly in the context of reliability analysis, we
shall call the scenarios of this argumentation system system
states. The propositional symbols in P are needed to describe
the system behavior. We assume that the system descrip-
tion Σ excludes no system states, that is there are no con-
flicts, QSA(⊥,Σ) = ∅. A knowledge base Σ which satisfies
this is called A-consistent.

The required behavior is specified by a formula δ. Usually δ
will not contain assumptions, but there is no reason to exclude
this in general. δ formulates a reliability goal. There may be
several such goals.

The set of system states SPA(δ, Σ) supporting δ contains all
states guaranteeing the required specification from the sys-
tem description. Its complement SPA

c(δ, Σ) = PLA(¬δ, Σ)
contains the system states where this guarantee is no more
assured. These are the unreliable states. So SPA(δ, Σ) defines
the structure function associated with the specification δ

s = φδ,Σ(s) =

{ ! if s ∈ SPA(δ, Σ),
⊥ if s /∈ SPA(δ, Σ).

(6)

The index Σ in φδ,Σ will be omitted if Σ is clear from the con-
text. Here, s denotes the “system state”, which is !, when the
reliability specification is assured and ⊥ otherwise. Since the
set SPA(δ,Σ) has a logical representation based on minimal
arguments, the same holds for the structure function φδ,

φδ =
∨

α∈µSP(δ,Σ)

α = sp(δ, Σ) (7)

In the same way, based on minimal possible arguments
PL(¬δ,Σ), we obtain

¬φδ =
∨

β∈µPL(¬δ,Σ)

β = pl(¬δ, Σ).

By de Morgan laws this transforms into

φδ =
∧

β∈µPL(¬δ,Σ)

¬β. (8)

Note that ¬β, the negation of a term, is a clause. This is a
second logical representation of φδ.

A comparison with the minimal path and minimal cut rep-
resentation of monotone structure functions (2) shows that
minimal supporting arguments α for δ and minimal possible
arguments β for ¬δ play a role similar to minimal paths and
minimal cuts.

According to our assumption of A-consistency, we have
QSA(⊥, Σ) = ∅. Thus

SPA(δ, Σ) = QSA(⊥, Σ ∪ {¬δ}). (9)



On the other hand, we have also

PLA(¬δ, Σ) = QSA
c(⊥, Σ ∪ {¬δ}). (10)

This shows, that a reliability analysis of a system Σ relative
to a requirement specification δ, requires essentially the com-
putation of the conflict states QSA(⊥, Σ∪{¬δ}). We shall see
below, that this is exactly also what is required for diagnosis.
This is a first hint to the duality between the problems of
reliability and diagnosis.

Once probabilities for the assumptions, i.e. component
availabilities or reliabilities are defined, system reliability rel-
ative to a specification δ is simply the degree of support of δ,
(since QSA(⊥, Σ) = ∅), i.e.

pδ,Σ = dsp(δ,Σ) = dqs(δ, Σ) = p(QSA(⊥, Σ ∪ {¬δ})).

4.2 Implicitly Defined Reliability
A specification δ is called consistent with the system descrip-
tion Σ, if the system state 1 belongs to SPA(δ, Σ). In this sec-
tion we only consider specifications consistent with the system
description.

A system description Σ often contains, besides assumptions,
another set O of special propositional atoms, namely those
which are observable. Then specifications δ can be assumed
to be formulated with observables only, δ ∈ LO. Observables
are typically input and output variables of some system.

Assume now, that in a system description (Σ, P, A) a set
of observable variables O is singled out. Usually, O ⊆ P , i.e.
component states can not be observed directly. But it does no
harm to assume more generally O ⊆ P ∪ A. Then we define
an implicit specification

δ̂ = Elim(A∪P )−O(Σ ∪ {a1 ∧ a2 ∧ · · · ∧ an}).

That is, δ̂ represents all the functionality of the system in
terms of observables which can be obtained from a system
with all components working. We call this the implicit relia-
bility specification with respect to O. Now, the system may be
— with respect to this specification — as good as “new” also
for some states including faulty components. Therefore we
define the implicit structure function by the set of up-states
relative to δ̂, i.e. SPA(δ̂, Σ). Hence, we obtain

φδ̂ =
∨

α∈µSP(δ̂,Σ)

α, or φδ̂ =
∧

β∈µPL(¬δ̂,Σ)

¬β.

Accordingly, the implicit reliability of such a system can be
obtained as the degree of support dsp(δ̂, Σ). This approach
helps to decide whether a system has some implicit redun-
dancy, namely, whether φδ̂ represents simply a series system,

i.e. µSP(δ̂, Σ) has only the set of all assumptions as minimal
supporting argument for δ̂.

Lemma 2 If δ ∈ LO is a consistent specification with respect
to Σ, then δ̂ |= δ.1

This shows that δ̂ is the most stringent, consistent speci-
fication over observables O. For all specifications over O the
implicit specification has least reliability:

1 For proofs see [6].

Lemma 3 If δ ∈ LO is a consistent specification with respect
to Σ, then SPA(δ̂, Σ) ⊆ SPA(δ,Σ).

Corollary 4 If δ ∈ LO is a consistent specification with re-
spect to Σ, then pδ̂ ≤ pδ.

5 Model-Based Diagnostic
5.1 Duality Between Reliability and

Diagnostics
A problem of diagnostics arises if an observation indicates
that a requirement specification δ is violated. Then the ques-
tion is: how can the required functionality be recovered? That
is, one would like to find out those components whose fail-
ure caused the system failure and which have to be fixed or
replaced. This analysis will be based on the system descrip-
tion Σ and on the specification δ which is violated.

In fact, we ask, which system states are compatible or con-
sistent with the system description Σ and the violation of the
specification δ, expressed by ¬δ. Well, these are of course all
states which are consistent with Σ ∪ {¬δ}, that is the set

QSA
c(⊥,Σ ∪ {¬δ}) = PLA(¬δ,Σ). (11)

Remark that this is exactly the set of down states relative to
the specification δ (see (10)). Here we have the basic duality
between reliability analysis relative to a requirement speci-
fication δ and the diagnostic problem relative to the same
specification. The conflict set QSA(⊥, Σ ∪ {¬δ}) is the com-
putational key to both reliability analysis and diagnostics. It
gives the up-states which define reliability and its complement
gives the possible states explaining the violation of the relia-
bility specification, i.e. possible diagnostics. It is well known
in model-based diagnostics that such conflict sets play a key
role [23, 10, 19]. The duality implies that they play an equally
important role for model-based reliability.

If the structure function φδ,Σ is monotone, then to the min-
imal possible arguments β ∈ µPL(¬δ, Σ) correspond the min-
imal cuts ¬β. They represent minimal sets of failed compo-
nents, which explain the violation of the specification δ, inde-
pendently on the state of the other components.

Minimal cuts correspond to kernel diagnoses in model-
based diagnostics [23]. Usually model-based diagnostics goes
not beyond such concepts of diagnostics. It neglects the im-
portant role of probability.2 The observation of the violation
of the specification ¬δ in fact defines the event QSA

c(⊥,Σ ∪
{¬δ}) in the sample space NA. That is, the prior probabilities
p(s) defined on the states have now to be conditioned on this
event. This gives us the posterior probabilities

p(s|¬δ) =
p(s)

1− p(QSA(⊥, Σ ∪ {¬δ})) =
p(s)

dpl(¬δ, Σ)
, (12)

for diagnostic states s ∈ QSA(⊥,Σ ∪ {¬δ}). This underlines
once more the key role of the conflict set QSA(⊥, Σ∪{¬δ}). Its
prior probability is sufficient to compute the posterior proba-
bilities of the possible diagnostic states explaining the viola-
tion of δ.

2 See however [19, 3] for a discussion of this subject, and es-
pecially [19] for the problems of the approach of De Kleer &
Williams [11]. Other approches focus for example on minimal
entropy [26] or on restricting the device to have a Bayesian net-
work model [17].



These posterior probabilities represent important addi-
tional diagnostic information. For example we may look for di-
agnostic states with maximal posterior probability. s̃ is called
a maximal likelihood state, if

p(s̃|¬δ) = max
s∈QSA

c(⊥,Σ∪{¬δ})
p(s|¬δ). (13)

There may be several such states. They represent most likely
states explaining the violation of δ.

Reiter [23] proposed to look especially at possible diagnos-
tic states with a minimal number of faulty components. In-
tuitively this makes sense: The failure should be explained
with a minimal number of down components. If s is a state,
we define s− to be the set of its negative (down) compo-
nents. Then we define a partial order between states: s′ ≤ s
if s′− ⊆ s−. Reiter diagnoses are now those diagnostic states
s ∈ QSA

c(⊥, Σ ∪ {¬δ}), which are minimal with respect to
this partial order. We make the reasonable assumption that
for every component i we have pi > 0.5 such that pi > 1− pi.
I.e. it is more probable that a component works than that
it is down. Then s′ < s implies that p(s′|¬δ) > p(s|¬δ). So
maximum likelihood states are Reiter diagnoses. The inverse
of course does not hold necessarily. Also, if the structure func-
tion φδ is monotone, the s− of Reiter diagnoses correspond to
minimal cuts relative to the specification δ.

The posterior fault probabilities of the components,
p(¬ai|¬δ), are also of interest. The larger this probability,
the more critical is component i for the requirement specifi-
cation δ. So this is a possible importance measure for com-
ponent i relative to the specification (for other importance
measures see [4]).

Example 4: (Cont. of Example 1)
Suppose we observe that, although ¬in, we have also ¬out,
i.e. a power system failure is not detected. Note that ¬in ∧
¬out ≡ ¬δ1 (cf. Example 3). So we consult the minimal cuts
relative to the specification ¬δ1. There are two minimal cuts:
{¬okC} and {¬okA,¬okB}. To any minimal cut corresponds
a Reiter diagnosis, namely, {okA, okB ,¬okC} to the first cut,
and {¬okA,¬okB , okC} to the second one. One of these two
diagnoses must be the maximum likelihood state. The first one
has prior probability 0.99×0.99×0.05 = 0.049, the second one
0.01×0.01×0.95 = 0.000095. So clearly, the first one is by far
the most likely state. The posterior probability is obtained by
dividing the prior probability by the unreliability 0.05 relative
to δ1. We obtain for the maximum likelihood state a posterior
probability of 0.98. )

5.2 Diagnostics Based on Observations of
System Behavior

The actual observation is not necessarily the negation of a sys-
tem requirement, but may be something stronger, which im-
plies the violation of a specification. Indeed, as we saw in Ex-
ample 4 we observed ¬in∧¬out ≡ ¬δ1, but ¬in∧¬out |= ¬δ2.
So, we should reconsider the duality between reliability and
diagnostics. In fact, assume that we make some observation
of the system behavior, expressed in a formula ω over observ-
ables. Then we may test whether ω |= ¬δ̂Σ. If this is the case,
then we have a diagnostic problem, in the sense that at least
one component must be down.

The solution of this diagnostic problem is found along sim-
ilar lines as in the previous section. Possible states are those,
which are consistent with the system description and the ob-
servation. Or, in other words, the states in the conflict set
QSA(⊥, Σ ∪ {ω}) are those which are excluded by the obser-
vation. So, the possible diagnostic states are those of the set
PLA(ω,Σ) = QSA

c(⊥, Σ ∪ {ω}). We see that this diagnostic
problem is dual to a (fictitious) reliability problem with a “re-
quirement” specification ¬ω. Note that the specification ¬ω is
always consistent with Σ, since δ̂Σ is consistent and ω |= ¬δ̂Σ.

Of course, we get a much sharper diagnostic with an ob-
servation ω |= ¬δ̂, than with the information of ¬δ̂ only. This
follows, because according to Lemma 3, we have PLA(ω, Σ) ⊆
PLA(δ̂, Σ). So, the more precise the observation, the more
states are eliminated. A mere statement that a given reliabil-
ity specification is violated is less informative than a precise
observation implying a violation of a requirement specifica-
tion.

6 Combining Diagnostic and Reliability

We conclude this discussion of duality between reliability and
diagnostics by remarking that we may have an observation of
the system behavior which does neither entail a specification δ
nor its violation ¬δ. But still this observation is information
and we can use it to improve reliability analysis and also to
perform a preventive diagnostic analysis (see [6]). For relia-
bility as well as for diagnostic, additional measurements —
or more generally any additional information — can be taken
into account in the framework presented above and helps to
focus the reasoning.

7 Conclusions

In this paper we have shown how closely reliability and model-
based diagnostic are connected. The framework of probabilis-
tic argumentation system appears to be a framework which
covers both approaches. Therefore the generic structure of
PAS can be used for solving problems in both domains. The
approaches can even be combined and the information spec-
ified can be used in the common framework. Further, from
the system description of an argumentation system, we can
derive the appropriate structure function and — if desirable
— take into consideration a reliability requirement. PAS al-
lows to use local computation architectures and approxima-
tion techniques [25, 15]. This complements the computational
theory of reliability theory.
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Far-sighted Diagnosis of Active Systems
Roberto Garatti and Gianfranco Lamperti and Marina Zanella 1

Abstract. Active systems are a class of discrete-event systems
modeled as networks of nondeterministic automata communicating
through either synchronous or asynchronous connection links. The
model-based diagnosis of an active system is carried out by first
reconstructing its behavior based on the observation, from which
faults are later derived. The complexity of behavior reconstruction is
exacerbated by the possibility of queuing events within links, thereby
making essential the simulation of the order in which events are
buffered within links. Unfortunately some sequences of events may
lead to blind alleys in the search space. This is especially critical if
events exchanged among components are assumed to be uncertain,
as the number of alternative sequences of queued events is still
larger. Therefore, behavior reconstruction without any prospection
in the search space is generally bound to detrimental backtracking.
To make diagnosis of active systems more efficient, we present an
off-line technique for processing the models inherent to the system at
hand so as to automatically generate prospection knowledge relevant
to the mode in which events are produced and consumed over links.
Such a knowledge is then exploited on-line, when the diagnostic
engine is running, to guide the search process, thus reducing both
time and space.

1 INTRODUCTION

Diagnosis of discrete-event systems (DESs) is a complex and chal-
lenging task that has been receiving an increasing interest from both
the model-based diagnosis community [9], within the AI area, and
the fault detection and isolation (FDI) community [16, 8, 10], within
the automatic control area. The current shared prospect is that, in
the general case, the specific faults cannot be inferred without first
finding out what has happened to the system to be diagnosed. Once
the system evolution is available, the sets of candidate faults can be
derived from it.

In this respect, in spite of slightly different terminologies, such
as histories [2], situation histories or narratives [4], paths [5], and
trajectories [11, 6], all the distinct approaches describe the evolution
of a DES as a sequence interleaving states and transitions, as the
favorite behavioral models of DESs in the literature are automata.

Based on the method for tracking the evolutions of the system that
explain a given observation, two broad categories of approaches to
diagnosis of DESs can be basically singled out:

² Those that first generate (a concise/partial model of) all possible
evolutions and then retrieve only the evolutions that explain the
observation;

² Those that generate in one shot the evolutions explaining the
observation.

The first category includes some relevant works from both the
automatic control area [19, 20, 7, 15] and the AI area [12, 6].
1 Dipartimento di Elettronica per l’Automazione, Università di Bres-

cia, via Branze 38, 25123 Brescia, Italy, email: garatrob@tin.it, lam-
perti@ing.unibs.it, zanella@ing.unibs.it

Embodied in the second category are some approaches of the AI
area [2, 11, 17].

Since finding out the system evolutions is a computationally ex-
pensive and, therefore, inefficient process (see, for instance, [18]
about the computational difficulties of the diagnoser approach
[19, 20], or the worst case computational complexity analysis in
[2], or the discussion in [11]), most of the approaches exploit a
trade-off between off-line and on-line computation.

Focusing on the second category outlined above, the decentral-
ized diagnoser approach [17] draws off-line a local diagnoser for
each component. Such a diagnoser is an automaton whose states
and (observable) transitions are labeled with compiled knowledge
about unobservable paths and interacting components, respectively.
Each local diagnoser is employed on-line for both a more efficient
reconstruction of all the possible evolutions of the relevant compo-
nent that comply with the observation and a more efficient merging
of the histories of distinct components into global system histories.

This paper applies knowledge compilation to the active system
approach [2, 3], to which purpose it isolates a kind of knowledge,
implicit in the models of the structure and behavior of the system
at hand, that can be compiled off-line in order to speed up on-line
execution. The framework is that of active systems, a class of DESs
modeled as networks of nondeterministic automata communicating
through directed links. If an active system includes one or more
asynchronous buffered links, its reaction to an event coming from
the external world is assumed to continue until there is no event
left in the links. The component that sends events on a link is the
event producer and that extracting them from the link is the con-
sumer. The knowledge we compile is actually that inherent to the
producer-consumer relationships between components. In particular,
we present, by means of an example:

² An extension of both the modeling primitives and the on-line
‘short-sighted’ evolution reconstruction method so as to cope with
uncertain events;

² A method for generating off-line, under the form of a determinis-
tic automaton, called a prospection graph, the model of the way
events are exchanged over one or more links;

² A ‘far-sighted’ method for exploiting prospection graphs on-line
while reconstructing the evolutions of (sub)systems.

Finally, the computational advantages of far-sighted diagnosis are
discussed and some conclusions are hinted.

2 ACTIVE SYSTEMS WITH UNCERTAIN
EVENTS

Topologically, an active system § is a network of components which
are connected to one another through links. Each component is com-
pletely modeled by an automaton which reacts to events either com-
ing from the external world or from neighboring components through
links. Formally, the automaton is a 6-tuple

(S;Ein; I;Eout;O;T)



where S is the set of states, Ein the set of input events, I the set of
input terminals, Eout the set of output events, O the set of output
terminals, and T the (nondeterministic) transition function:

T : S£Ein £ I£ 2Eout£O 7! 2S:

A transition from state S to state S0, which is triggered by the
input event ® = (E; I), E 2 Ein, I 2 I, and generates the set ¯ =
f(E1; O1); : : : ; (En; On)g of output events, Ek 2 Eout, Ok 2 O,
k 2 [1 :: n], is denoted by

S
® j¯¡¡¡! S0:

Components are implicitly equipped with three virtual terminals,
the standard input (In 2 I) for events coming from the external
world, the standard output (Out 2 O) for events directed toward
the external world (messages), and the fault terminal (Flt 2 O) for
modeling faulty transitions.

An event (E;Flt) is a fault event. The approach assumes that
both nominal and faulty behavior of each component are specified in
the automaton. A fault event is not exchanged among components.
Rather, it is a formal artifice to describe the faulty behavior of
components uniformly. The name of fault events are supposed to be
informative as to the specific fault affecting the component when
the relevant transition is performed2.

An event may be uncertain in nature, that is, represented by a
disjunction of possible values. Links are the means of storing the
events exchanged between components.

Each link L is characterized by a 4-tuple

(I;O; Â; P )

where I is the input terminal (connected with a component output
terminal), O the output terminal (connected with a component input
terminal), Â the capacity, that is, the maximum number of queued
events, and P the saturation policy, which dictates the effect of the
triggering of a transition T attempting to insert a new event E into
L when L is saturated, that is, when the length of the queue equals
Â. Three cases are possible:

² LOSE: E is lost;
² OVERRIDE: E replaces the last event in the queue of L;
² WAIT: T cannot be triggered until L becomes unsaturated, that

is, until at least one event in L is consumed.

The queue domain Q of L is the set of possible sequences
(queues) of events in L. The length of the queue Q of events incor-
porated in L is denoted by jQj.

The polymorphic Link function is defined as follows. Let

® = (E; µ)

represent an event relevant to a terminal µ. Then,

Link(®)
def
= L j L is the link connected with µ:

No more than one link can be connected with a component terminal.
If µ is a virtual terminal, then Link(®)

def
= null . Let

¯ = f(E1; µ1); : : : ; (En; µn)g
2 For example, consider a breaker which is in the state open and is expected

to change state to close when it receives a command (nominal behavior).
The possible misbehavior of the breaker can be defined by inserting a
faulty transition, from state open to open, that generates the fault event
(stuckToOpen; F lt).

X Y
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L1O

OI
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X2

x1: (e, In) | (e1, O)

x2: (e, In)

X3x3: (e2, I) | ({e3,e5}, O),(a, Out) X6
x7: (e2, I) | (e5, O),(c, Out)

x9: (e2, I) | ({e3,²}, O)

X4 X5

x8: (e2, I) | (f1, Flt)

x4: (e, In) | (b, Out)
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Y1

y2: ({e1,e3}, I) | (e2, O)

Y2y1: (e1, I) | (e2, O) Y3

y3: (e3, I) | (e2, O),(f2, Flt)

y4: (e5, I) | (e2, O),(d, Out)

Figure 1. System ª and models of components X (top) and Y (bottom).

be a set of events relevant to terminals µi, i 2 [1 :: n], respectively.
Then,

Link(¯)
def
= fL¯ j L¯ = Link(E); E 2 ¯g:

Initially, § is in a quiescent state §0, wherein all links are empty. At
the arrival of an event from the external world, § becomes reacting,
thereby making a series of transitions until a final quiescent state
is reached, wherein all links are empty anew. This reaction yields
a sequence of observable events, the messages, which make up a
system observation OBS(§).

Let §0 denote the initial state of system §. Based on a diagnostic
problem

}(§) = (OBS(§);§0)

a reconstruction of the system reaction is carried out, which yields an
active space, that is, a graph representing the whole set of candidate
histories, each history being a path from §0 to a final state, in
other terms, a sequence of component transitions which explains
OBS(§).

Candidate diagnoses are eventually distilled from the active space,
each diagnosis being a set of faulty components, that is, those com-
ponents which made at least one faulty transition during a candidate
system history.

Example 1. Displayed in the center of Figure 1 is a system ª,
where X and Y are components, while L1 and L2 are links. Both
components are endowed with an input terminal I and an output
terminal O. For both links we assume Â = 1 and P = WAIT . The
behavioral models of X and Y are displayed on the top and on the
bottom, respectively. Accordingly, Y involves three states (Y1 ¢ ¢ ¢
Y3) and four transitions (y1 ¢ ¢ ¢ y4), one of which is faulty (y3)
(states and transitions are denoted by capital and small letters, re-
spectively). For instance, transition y4 is triggered by the input event
(e5; I) and generates the set of output events f(e2; O); (d;Out)g,
where the former is directed toward X on link L2, while the latter
is a message labeled d (y4 is said to be observable). Transition y2

involves the input event (fe1; e3g; I), meaning that y2 may either be
triggered by e1 or e3. Considering the model of X, note that, when
triggered, transition x3 generates the uncertain event (fe3; e5g; O),
meaning that either e3 or e5 is randomly generated (no assump-
tion is made about the likelihood of event generation). Likewise, x9

generates the uncertain event (fe3; ²g; O), meaning that either e3

or nothing is generated (² denotes the null event). 2



3 SHORT-SIGHTED DIAGNOSIS

The main task relevant to the resolution of a diagnostic problem
}(§) = (OBS(§);§0) is the reconstruction of the system reaction
to make up the relevant active space Act(}(§)). A node N in the
search space is identified by three fields, N = (¾;=;Q), where:

² ¾ = (S1; : : : ; Sn) is the record of states of the system compo-
nents, each Si, i 2 [1 :: n], being a state relevant to a component
Ci in § (n is the number of components in §);

² = is the index of OBS(§), that is, an integer ranging from 0 to
the number of messages (length) of OBS(§), which implicitly
denotes the prefix of the observation composed of the first =
messages;

² Q = (Q1; : : : ; Q`) is the record of queues of the ` links in §.

NodeN is said to be final when = equals the length of OBS(§) and
all links are empty. The search for the nodes of the active space is
started at the initial node N0 = (§0; 0; (hi; : : : ; hi)), where all link
queues are empty. Each successor node of a given node is obtained
by applying a component transition that is consistent with both the
system topology and the observation. An applied transition is an
edge of the search space. When the reconstruction process is carried
out in one step (monolithically) without any prospection knowledge
(short-sightedly), it can be described by Algorithm 1, where nodes
and edges generated during the search are stored in variables @ and
E , respectively.

Algorithm 1. (Short-sighted Reconstruction)

1. @ = fN0g; E = ;; (N0 is unmarked)
2. Repeat Steps 3 through 5 until all nodes in @ are marked;
3. Get an unmarked node N = (¾;=;Q) in @;
4. For each i in [1 :: n], for each transition T within the model

of component Ci, if T is triggerable, that is, if its triggering
event is available within the link and T is consistent with both
OBS(§) and the link policy (when T generates output events
on non-virtual terminals), do the following steps:

(a) Create a node (N 0 = (¾0;=0;Q0)) := N ; (N 0 is created as a
copy of N )

(b) ¾0[i] := the state reached by T ;

(c) If T is observable, then = := =+ 1; (a message is generated)

(d) If the triggering event E of T is relevant to an internal link
Lj , then remove E from Q0[j];

(e) Insert the internal output events of T into the relevant queues
in Q0;

(f) If N 062 @ then insert N 0 into @; (N 0 is unmarked)

(g) Insert edge N T¡! N 0 into E;

5. Mark N;
6. Remove from @ all the nodes and from E all the edges that are

not on a path from the initial state N0 to a final state in @.

The algorithm aims to make up all the nodes which are reachable
from the initial node under the given observation. To this end, it con-
siders, one at a time, all the nodes which have been reached already
(those in @) and have not yet been processed (the unmarked ones).
For each of them, it attempts to find a transition that is triggerable
by a component in the corresponding state. If so, it generates the
target node N 0 with the appropriate values ¾0, =0, and Q0. In the
new node was not created already, it is inserted into @ (note that two
nodes which differ in the = field only have to be considered dif-
ferent, as the mode in which messages have been generated differ).
The corresponding edge N T¡! N 0 is inserted into E too. Finally,
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Figure 2. Short-sighted reconstruction space (see Example 2).

when there are no more nodes to be processed (all nodes in @ are
marked), the search space is pruned by eliminating the inconsistent
nodes, that is, those that are on a blind alley.

It is worthwhile highlighting that the search process does not
terminate at a final node. In fact, the system might continue to react
and loop on unobservable paths. In other words, when a final node
is met in the search, it is inserted into @ as an unmarked node like
all other nodes, since in principle, unobservable paths might happen
to leave it.

When uncertain output events are involved, several new nodes
N 0 are to be generated for the same transition T , specifically, one
for each combination of possible values within each disjunction.
For example, since transition x3 in Figure 1 involves the uncertain
output event (fe3; e5g; O), two target nodes will be generated, one
for e3 and one for e5. If the set of output events included several
uncertain events, all possible combinations would be required to be
enumerated.

Example 2. Shown in Figure 2 is the reconstruction space generated
short-sightedly for the diagnostic problem }(ª) = (OBS(ª);ª0),
where ª is the system outlined in Figure 1, OBS(ª) = ha; b; c; di,
and ª0 = (X1; Y1). Each node is depicted by an ellipse, wherein

² ¾ = (Xi; Yj) is the pair of component states;
² = is the prefix of the observation generated so far;
² Q = (Q1; Q2) is the pair of link queues.

Edges are marked by the corresponding component transitions, pos-
sibly qualified by the relevant chosen label when the involved out-
put event is uncertain. Dotted edges denote faulty transitions. Final
nodes are depicted as double ellipses. The dashed part of the graph



corresponds to inconsistent states, which are almost half the search
space. Owing to cycles in the graph (edges marked by x2), the
active space includes an unbound number of candidate histories.
However, only two candidate diagnoses are possible, namely fY g
and fX;Y g. Note that, although not relevant to our example, the
replication of the same faulty transition in a cycle does not change
the diagnosis. A finer-grained diagnosis can be defined, as in [2],
called deep diagnosis. The latter is a set of pairs (C; f), where C is
a component and f a fault event. This way, even if not relevant to
our example where each component model includes a single faulty
transition, it is possible to know all the faulty transitions performed
by each misbehaving component. 2

4 FAR-SIGHTED DIAGNOSIS

The essential problem with short-sighted diagnosis lies in the lack
of any prospection in the search space as to the consistency of the
link queues. In other words, the inability to understand that a given
configuration of Q is bound to a ‘blind alley’ forces the reconstruc-
tion algorithm to uselessly explore possibly large parts of the search
space. In order to overcome this limitation, prospection knowledge
can be automatically generated off-line based on the system model.
Considering Figure 2, such a knowledge will allow the reconstruc-
tion process to avoid entering the inconsistent sub-space through
y2.

The basic idea is to view a link L as a buffer in which a producer
component Cp generates events that are consumed by a consumer
component Cc. That is, L connects an output terminal of Cp to an
input terminal of Cc. The way events are produced and consumed
in L is both constrained by the characteristics of the link (capacity
and saturation policy) and the models of Cp and Cc.

4.1 Prospection graphs

Let L = (I;O; Â; P ) be a link from output terminal Op of com-
ponent Cp to input terminal Ic of component Cc, with queue
domain Q. Let Mp = (Sp;Ep

in; I
p;Ep

out;O
p;Tp) and M c =

(Sc;Ec
in; I

c;Ec
out;O

c;Tc) be the models of Cp and Cc, respec-
tively. Let

M̂pn

= (Ŝpn

; Êpn

; T̂pn

)

be the nondeterministic automaton obtained from Mp in such a way
that

² Ŝpn

= Sp is the set of states;
² Êpn µ Tp [ f²g is the set of events;

² T̂pn

: Ŝpn £ Êpn 7! 2Ŝpn

is the transition function.

The transition function T̂pn

is obtained from Tp as follows:

8T = S
®j¯¡¡! S0 2 Tp

(
S

²¡! S0 2 T̂pn

if L62 Link(¯)

S
T¡! S0 2 T̂pn

otherwise.

Similarly, let
M̂cn

= (Ŝcn

; Êcn

; T̂cn

)

be the nondeterministic automaton obtained from M c in such a way
that

² Ŝcn

= Sc is the set of states;
² Êcn µ Tc [ f²g is the set of events;

² T̂cn

: Ŝcn £ Êcn 7! 2Ŝcn

is the transition function.

The transition function T̂cn

is obtained from Tc as follows:

8T = S
®j¯¡¡! S0 2 Tc

(
S

²¡! S0 2 T̂cn
if L6= Link(®)

S
T¡! S0 2 T̂cn

otherwise.

Let M̂p = (Ŝp; Êp; T̂p) and M̂ c = (Ŝc; Êc; T̂c) be the de-
terministic automata equivalent to M̂pn

and M̂ cn
, respectively. A

prospection state L of L is a triple

L = (Ŝp; Ŝc; Q) 2 Ŝp £ Ŝc £Q:

Let L be a prospection state and Ŝ
T¡! Ŝ0 2 (T̂p [ T̂c), Ŝ 2

fŜp; Ŝcg, T = S
®j¯¡¡! S0 2 (Tp[Tc). Let Q be a queue of events

in L and

² Head(Q) denote the first consumable event in Q;
² Tail(Q) denote the sequence of events in Q following the first

event;
² App(Q; e) denote the queue obtained by appending e to Q;
² Repl(Q; e) denote the queue obtained by replacing the last event

in Q with e.

The Next function yields the set of next prospection states as
follows:

Next(L; T )
def
= fL0 j L0 2 Nextp(L; T ); T 2 Tpg[
fL0 j L0 2 Nextc(L; T ); T 2 Tcg

where

Nextp(L; T )
def
= fL0 j L0 = (Ŝ0; Ŝc; Q0); B = (E;Op) 2 ¯;

e 2 E;Q0 = Ins(Q; e); (jQj < Â or
(jQj = Â; (e = ² or P 2 fLOSE ;OVERRIDEg)))g;

Ins(Q; e)
def
=

8
<
:

App(Q; e) if jQj < Â
Q if jQj = Â; (e = ² or P = LOSE)
Repl(Q; e) if jQj = Â;P = OVERRIDE

and

Nextc(L; T )
def
= fL0 j L0 = (Ŝp; Ŝ0; Q0);

® = (E; Ic); e 2 E;Head(Q) = e;Q0 = Tail(Q)g:
Let C0 = (Sp

0 ; S
c
0) be the pair of initial states for Cp and Cc,

respectively. The spurious prospection graph of L and C0 is the
nondeterministic automaton

e¡n(L; C0) = (eSn;En; eTn; Sn
0 ;S

n
f )

where
eSn = fL j L is a prospection state of Lg is the set of states,
En µ Êp [ Êc µ Tp [Tc is the set of events,
Sn

0 = (Sp
0 ; S

c
0; hi) is the initial state,

Sn
f = fL j L 2 Sn;L = (Sp; Sc; hi)g is the set of final states,
eTn : eSn£En 7! 2

eSn

is the transition function defined as follows:

L T¡! L0 2 eTn iff L0 2 Next(L; T ):

A state of a spurious prospection graph which is not within a path
from the initial state to a final state is an inconsistent state. Similarly,
a transition entering or leaving an inconsistent state of a spurious
prospection graph is an inconsistent transition.

The nondeterministic prospection graph is the nondeterministic
automaton

¡n(L; C0) = (Sn;En;Tn; Sn
0 ;S

n
f )

obtained from e¡n(L; C0) by removing inconsistent states and incon-
sistent transitions.

The prospection graph

¡(L; C0) = (S;E;T; S0;Sf)

is the deterministic automaton equivalent to the nondeterministuic
prospection graph ¡n(L; C0).
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Figure 3. Generation of ¡n(L1; (X1; Y1)) (see Example 3).

Example 3. Shown in the dashed box of Figure 3 are the prospec-
tion models M̂p(X) (top) and M̂ c(Y ) (bottom), inherent to link
L1, which are relevant to the components X and Y displayed in
Figure 1. Depicted on the top of the box is the nondeterministic
automaton M̂pn

(X) equivalent to M̂p(X). The generation of the
nondeterministic prospection graph ¡n(L1; (X1; Y1)) is outlined on
the right of Figure 4, where double ellipses denote final states, while
dashed nodes and edges represent inconsistent states and transitions,
respectively. Note that the latter includes a circular path involving
four states. This situation is similar to that of active systems, where
cycles may stem from (possibly) final states. Within the context of
prospection graphs, cycles represent repetitive patterns of link state
changes (in our example, events e3 and e5 are repeatedly produced
and consumed, that is, inserted into and removed from link L1). 2

Note that, essentially, the generation of a prospection graph is anal-
ogous to the generation of an active space, where

² Component models are substituted by prospection models;
² Only one link is considered;
² No observation index is considered.

4.1.1 Generalized prospection graphs

The notion of the prospection graph of a single link can be naturally
extended to that of a set of links. Let L = fL1; : : : ; Lmg be a set of
links (with queue domains Q1; : : : ;Qm, respectively) connecting a
set C = fC1; : : : ; Ctg of components, where each component Ci,
i 2 [1 :: t], is characterized by model

Mi = (Si;Eini ; Ii;Eouti ;Oi;Ti):

Let M̂n
i = (Ŝn

i ; Ê
n
i ; T̂

n
i ) be the nondeterministic automaton ob-

tained from Mi in such a way that

² Ŝn
i = Si is the set of states;

² Ên
i µ Ti [ f²g is the set of events;

² T̂n
i : Ŝn

i £ Ên
i 7! 2Ŝn

i is the transition function.

The transition function T̂n
i is obtained from Ti as follows:

8T = S
®j¯¡¡! S0 2 Ti

(
S

T¡! S0 2 T̂n
i if Relevant(®; ¯;L)

S
²¡! S0 2 T̂n

i otherwise

where

Relevant(®; ¯;L)
def
= (fLink(®)g [ Link(¯)) \ L6= ;:

Let M̂i = (Ŝi; Êi; T̂i) be the deterministic automaton equivalent
to M̂n

i . A generalized prospection state L of L is a pair

L = (S;Q)

where

S = (Ŝ1; : : : ; Ŝt) 2 (Ŝ1 £ ¢ ¢ ¢ £ Ŝt),
Q = (Q1; : : : ; Qm) 2 (Q1 £ ¢ ¢ ¢ £Qm).

Let L = (S;Q) be a generalized prospection state and

Ŝi
T¡! Ŝ0 2 T̂i, i 2 [1 :: t], T = S

®j¯¡¡! S0.
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Figure 4. Generation of the generalized prospection graph ¡(L;ª0) (see Example 4).

The generalized Next function yields the set of next generalized
prospection states as follows:

Next(L; T )
def
= fL0 j L

0 = (S0;Q0); S0 = (Ŝ01; : : : ; Ŝ
0
t);

Q0 = (Q01; : : : ; Q
0
m); ® = (E®; I®);

((Link(I®)62 L) or
(Link(I®) = Lj; Lj 2 L; e 2 E®;Head(Qj) = e;

Q0j = Tail(Qj)));

L¯ = fL¯ j L¯ = Link(O¯); (E¯; O¯) 2 ¯;L¯ 2 Lg;
8Lh 2 L¯(e 2 E¯; (E¯; O¯) 2 ¯;Lh = Link(O¯);

Q0h = Ins(Qh; e);

(jQhj < Âh or
(jQhj = Âh; (e = ² or Ph 2 fLOSE ;OVERRIDEg)));

8Lk 2 (L¡ (L¯ [ fLink(I®)g)) (Q0k = Qk);

Ŝ0i = Ŝ0;8x 2 [1 :: t]; x6= i (Ŝ0x = Ŝx)g:

Let C0 = (S01 ; : : : ; S0t) be the record of initial states for compo-
nents in C. The generalized spurious prospection graph of L and
C0 is the nondeterministic automaton

e¡n(L;C0) = (eSn;En; eTn; Sn
0 ;S

n
f )

where

eSn = fL j L is a prospection state of Lg is the set of states,
En µ Sti=1Êi µ

St
i=1Ti is the set of events,

Sn
0 = (C0; (hi ¢ ¢ ¢ hi)) is the initial state,

Sn
f = fL j L 2 Sn;L = (S; (hi ¢ ¢ ¢ hi))g is the set of final states,
eTn : eSn£En 7! 2

eSn

is the transition function defined as follows:

L
T¡! L

0 2 eTn iff L
0 2 Next(L; T ):

The generalized nondeterministic prospection graph is the non-
deterministic automaton

¡n(L;C0) = (Sn;En;Tn; Sn
0 ;S

n
f )

obtained from e¡n(L;C0) by removing inconsistent states and in-
consistent transitions.

The generalized prospection graph

¡(L;C0) = (S;E;T; S0;Sf)

is the deterministic automaton equivalent to the ¡n(L;C0).

Example 4. Shown in Figure 4 is the generation of the generalized
prospection graph ¡(L;ª0) relevant to the links in system ª (see
Figure 1), where L = fL1; L2g and ª0 = (X1; Y1). Specifically,
outlined on the left are the prospection models of components X and
Y , namely M̂(X) and M̂(Y ). Shown on the center is the generation
of the generalized nondeterministic prospection graph ¡n(L;ª0)
(the dash part of the graph denotes the inconsistent search space),
where consistent nodes are identified by labels L0 ¢ ¢ ¢L6. Finally,
displayed on the right is the corresponding deterministic prospec-
tion graph ¡(L;ª0). The latter is determined based on the subset
construction algorithm presented in [1], which identifies each node
of the deterministic automaton by means of a subset of nodes of
the nondeterministic one, specifically, those nodes that are reach-
able through the same marking transition. For example, since there
are two edges, leaving the same state L6 in the nondeterministic
automaton, that are marked by the same label x9, the deterministic
automaton will include the node identified by the subset fL3;L7g,
which is reached from fL6g by means of the (unique) edge marked
by x9. According to the algorithm, each node in the deterministic
automaton that includes a final state of the nondeterministic one is
final itself. Nodes of the deterministic automaton are identified by
labels 0 ¢ ¢ ¢ 8. 2



Given a system §, in order to exploit the prospection knowledge in
the reconstruction process, we need to create a set of g prospection
graphs

¡(§) = f¡(L1;C01); : : : ;¡(Lg ;C0g )g
such that

Sg
i=1Li equals the whole set of links in §. ¡(§) is a

prospection coverage of §.

Algorithm 2. (Far-sighted Reconstruction)

The far-sighted reconstruction algorithm is a variation of Algo-
rithm 1. First, the Q field of a node denotes a record of g states
relevant to the g prospection graphs in the prospection coverage
¡(§), namely

Q = (°1; : : : ; °g):

Moreover, in the initial node N0 = (¾0;=0;Q0), Q0 is represented
by the record of the initial states of the corresponding prospection
graphs, namely (°01 ; : : : ; °0g ). Finally, Step 4 of Algorithm 1 is
changed as follows:

For each i in [1 :: n], for each transition T within the model of
component Ci, if T is triggerable, that is, if the following two
conditions hold

(i) T is consistent with OBS(§);

Let ¦(T ) = f¹¡1; : : : ; ¹¡rg be the prospection graphs
in ¡(§) that are relevant to links connected with terminals
on which events are either consumed or generated by T ; let
¹Q(N) = f¹°1; : : : ; ¹°rg be the elements of Q(N) relevant to
¦(T ):

(ii) 8i 2 [1 :: r] (¹°i
T¡! ¹°0i is an edge in ¹¡i),

then do the following steps:

(a) Create a node (N 0 = (¾0;=0;Q0)) := N;

(b) ¾0[i] := the state reached by T ;

(c) If T is observable, then = := =+ 1;

(d) Replace the elements of Q0 relevant to ¹Q(N) with the new
prospection states;

(e) If N 062 @ then insert N 0 into @;

(f) Insert edge N T¡! N 0 into E .

Essentially, Algorithm 2 exploits the knowledge about the consis-
tency of link states by means of the prospection graphs generated
off-line, thereby preventing the search from entering (possibly large)
inconsistent parts of the space. Of course, such a prospection is fi-
nite, thereby not eliminating completely the backtracking. Besides,
it allows for an efficient treatment of nondeterminism caused by
uncertain events. Recall that, in short-sighted reconstruction, such
situations can only be dealt with by mere enumeration of all possible
new link states generated by the collection of output events of the
current transition. For example, if T generated 3 uncertain events
(on three different links), each of which represented by a disjunction
of 2 values, then we would have 8 new nodes. Instead, since the
prospection graphs are deterministic, with far-sighted reconstruction
only one new node is generated, as at most one edge marked by T
can leave each current state of the prospection graphs.

Proposition 1. Let }(§) be a diagnostic problem and kAk denote
the (possibly unbound) set of histories incorporated in an active
space A. Let Acts(}(§)) and Act f(}(§)) denote the active spaces
generated by Algorithm 1 and Algorithm 2, respectively. Then,

kActs(}(§))k = kAct f(}(§))k:
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Figure 5. Far-sighted reconstruction space (see Example 4).

Example 5. Shown in Figure 5 is the reconstruction space for the
diagnostic problem }(ª) = (ha; b; c; di; (X1; Y1)) based on the
generalized prospection graph outlined on the right of Figure 4. It
is striking comparing it with the short-sighted reconstruction (based
on Algorithm 1) displayed in Figure 2. While the number of con-
sistent states (15) is necessarily equal in both reconstructions, the
far-sighted reconstruction space includes one inconsistent state only,
against the 14 inconsistent states of the short-sighted reconstruction
space. In fact, while the two states on top of both graphs are the
same, there is a right branch stemming from the latter of such states
in the short-sighted reconstruction which is missing in the far-sighted
reconstruction. This branching is actually disabled by prospection
graph ¡(fL1; L2g; (X1; Y1)), which constraints the occurrence of
all the transitions involved in event exchange on the links of sys-
tem ª: according to this prospection graph, only transition y1 is
allowed to follow x1, while y2, the responsible for the blind alley
in Figure 2, is not. 2

5 CONCLUSION

Referring to the active system approach [2, 3] to diagnosis of DESs,
this paper has shown how the off-line compilation of knowledge



about event exchange between components brings a computational
advantage on-line in terms of reduction of the number of backtrack-
ing steps performed by the history reconstruction algorithm. This
advantage is expecially tangible when relaxing a strong assumption
of all the state-of-the-art approaches to diagnosis of DESs, namely,
the preciseness of events. In this work, all input and output events
in behavioral models, and not only observable events, as instead
in [14], may have an imprecise value ranging over a set of la-
bels, namely an uncertain value. In presence of uncertain events,
the search performed by short-sighted diagnosis is nondeterministic,
while that carried out with the support of prospection knowledge is
deterministic. Moreover, prospection graphs, once generated off-line,
can be reused several times on-line for different diagnostic problems
inherent to the same system, or even for the same diagnostic problem
in case there are repetitive link patterns in the system structure.

A previous proposal [13], based itself on knowledge compilation,
transforms the active system approach into a spectrum of approaches
which, according to the classification in Section 1, range from a
totally first category version, wherein an exhaustive simulation of
the system evolution is performed off-line, while on-line activities
are limited to rule-checking, to a totally second category version,
i.e. the original approach wherein no computation is performed off-
line. Each approach falling in between consists of both off-line and
on-line processing. The contribution of this paper is orthogonal to
that work, that is, it could be integrated within any version of the
spectrum (with the exception of the exclusively on-line one) in order
to reduce backtracking steps in any reconstruction.

The exchange of events among components dealt with in this
paper, being both asynchronous and buffered, is peculiar only to
the active system approach. One might argue that providing for a
specific modeling primitive, namely the link, for the structural ob-
jects that implement asynchronous buffered communication between
components, along with specific methods for dealing with them, just
increases the expressive power of the method but does not alter its
computational power at all. In fact, each link could be replaced by a
common component, whose behavioral model represents the link be-
havior, and, therefore, synchronous composition of automata would
suffice. This is correct in principle but scarcely feasible in practice,
for many reasons. First, the size of the behavioral model of such a
component depends not only on the capacity of the link buffer but
also on the number of distinct kinds of events that can be transmit-
ted on the link. For instance, let us consider a link with capacity
equal to three, on which four kinds of events, say a; b; c, and d, can
be transmitted. As each state of the component representing the link
is univocally identified by the sequence of events in the buffer, the
behavioral model of such a component has

P3
k=0(4k) = 85 states!

So large a model is a burden for history reconstruction. In fact, the
model may be unduly large as it includes even states that are phys-
ically impossible given the system structure, since corresponding to
sequences of events that cannot be generated.

Besides, as remarked above, such a model depends on the kinds
of events that can be transmitted on the link, that is, it depends on
the producer component of the link at hand. This is somewhat in
contrast with the philosophy of compositional modeling, according
to which individual component models are reciprocally independent.

Instead, in the active system approach and, consequently, in this
paper, a link is just the instantiation of a model, encompassing only
the terminals, capacity, and policy of the link, and such a model is
independent of the structure of the system in which the link is in-
stantiated. Of course, notwithstanding the modeling simplicity, link
states are bound to emerge in the computation, sooner or later. The
methods introduced in this paper are actually aimed at minimizing
the number of physically impossible link states (and, hence, since a
link state is a part of any active system state, the number of active

space states) visited by the history reconstruction search algorithm.
In short-sighted diagnosis, where a link state is represented as a se-
quence of events, not all sequences of events are considered but only
those that can be generated given the system structure. In far-sighted
diagnosis, where the state of one or several links becomes a record
of indexes, the number of visited link states is further reduced: only
those states are generated that can evolve towards a state wherein
the link is empty.
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Model-based Monitoring of Piecewise Continuous
Behaviors using Dynamic Uncertainty Space Partitioning

�
Bernhard Rinner � and Ulrich Weiss �

Abstract. Monitoringgainsimportancefor many technicalsystems
suchas robots,productionlines or anti lock brakes.A monitoring
systemfor technicalsystemsmustbe able to dealwith incomplete
knowledgeof the supervisedsystem,to processnoisy observations
andto reactwithin predefinedtime windows. This paperpresentsa
new approachto monitoring technicalsystemsbasedon imprecise
models.Our approachrepeatedlypartitionstheuncertaintyspaceof
animprecisemodelandchecksthederivedmodel’s statefor consis-
tency with themeasurements.Inconsistentpartitionsarethenrefuted
resultingin asmalleruncertaintyspaceandafasterfailuredetection.
This paperfurther focuseson the extensionof our basicapproach
to monitoringsystemsthatexhibit bothcontinuousanddiscretebe-
haviors. Our monitoringsystemhasbeenimplementedusingCOTS
componentsand hasbeendemonstratedin online monitoring of a
non-trivial heatingsystem.

Keywords: fault detection;hybrid systems;imprecisemodels;
residualgeneration

1 INTRODUCTION

Theprimaryobjective of a monitoringsystemis to detectabnormal
behaviors of a supervisedsystemassoonaspossibleto avoid shut-
down or damage.Technicalsystemssuchasrobots,productionlines
or anti lock brakesprovideavastnumberof challengesfor amonitor-
ing system,i.e., it mustbeableto dealwith incompleteknowledge
aboutthe supervisedsystem,to processnoisy observationsand to
reactwithin predefinedtimewindows.

A particularly importantandwidely-appliedapproachis model-
based monitoring [6, 5] which relies on a comparisonof the pre-
dictedbehavior of a modelwith theobservedbehavior of thesuper-
vised system.Our approachusing dynamicuncertaintyspacepar-
titioning [12] is basedon imprecisemodelswherethe structureof
the modelsis known andthe parametersmay be impreciselygiven
asnumericintervals.Theseparameterintervalsspantheuncertainty
spaceof themodel.Fromanimprecisemodelbasedonintervalsonly
boundson the trajectory(envelopes)can be derived. Dynamicun-
certaintyspacepartitioningkeepstheenvelopessmallby exploiting
the measurementsfrom the supervisedsystemassoonaspossible.
Whenever new measurementsarrive residualsare generatedat the
“cornerpoints”of theuncertaintyspaceandcheckedfor consistency
by comparingtheir signs.This resultsin a fastfault detection[12].

The fundamentalassumptionof dynamicuncertaintyspacepar-
titioning is that the model’s statevaluesare monotonicwithin the�

This work hasbeensupportedby the AustrianScienceFundundergrant
numberP14233-INF. Theauthorsarein alphabeticalorder.�
Institutefor TechnicalInformatics,GrazUniversity of Technology, AUS-
TRIA; email:[rinner,uweiss]@iti.tu-graz.ac.at.

rangeof theuncertaintyspace.Discontinuoustransitionsin thesys-
tem’smodelmayintroducenon-monotonicbehaviorsin thestateval-
uesand,therefore,violateourassumptionfor theconsistency check.
In orderto preserve a conservative monitoringapproachfor hybrid
systems,we have to extendour consistency checkby a monotonic-
ity check. Whenever themonotonicityof thestatevaluesis giventhe
consistency checkcanbe performedpotentiallyresultingin a refu-
tationof the imprecisemodel.If themonotonicityis not known the
consistency checkis simply ignoredandnomodelis refuted.

Theremainderof this paperis organizedasfollows.Section2 de-
scribesthetechnicaldetailsof uncertaintyspacepartitioningandthe
consistency check.Section3 discussesthe necessaryextensionsof
our approachto monitoringsystemswhich exhibit both continuous
anddiscretebehaviors.Section4 presentsexperimentalresultsof our
monitoringapproachin a real-world systemwith severalchangesof
a input value.A discussionanda summaryof relatedwork conclude
thispaper.

2 MONITORING BASED ON UNCERTAINTY
SPACE PARTITIONING

2.1 Overview

Monitoring methodsbasedon imprecisemodelscanreasonwith in-
completeknowledge in the model as well as with noisy measure-
ments.A main drawbackof this approach,however, is that the en-
velopesmay diverge very rapidly which delaysor even inhibits a
fault recognition.We have revisedthis interval approachto model-
basedmonitoring with the primary goal to keep the resultingen-
velopesassmallaspossible.

In ourapproach,weexploit themeasurementsfrom thesupervised
systemassoonaspossibleto refinetheuncertaintyin themodeland
thederivedenvelopes.Thekey stepin ourapproachis to partitionthe
uncertaintyspaceof themodelinto severalsubspaces.Thetrajecto-
ries derived from eachsubspaceare then checked for consistency
with the measurements.Eachinconsistentsubspaceis refutedand
excluded from further investigations.Partitioning and consistency
checkingarecontinuedresultingin asmalleruncertaintyspaceof the
model.Whenall subspacearerefuted,a discrepancy betweenmodel
predictionandobservationhasbeenrecognizedanda fault hasbeen
detected.

2.2 Subspace Partitioning and Consistency
Checking

In general,a technicalsystemcanbemodeledas�����
	������� ����� ��� ����� ��� ��������
������ ��� � � (1)



where � � is the statevectorat discretetime � , � � is the input vec-
tor at time � , � � is the parametervector at time � , ��� is the out-
put vector at time � , and � and 	 are vector functions. In an ex-
act model, � � is a vector of real numbers.However, in a model
with uncertainparameters,� � is replacedby a vector of intervals�� ���! "�$# ��% � � # ��% � �&� �$# �&% � � # �&% � �&�('�'('�� �$# ) % � � # ) % � ��*,+-� where . is the
numberof uncertainparameters.A modelwith uncertainparameters,
i.e.,animprecise model, canthereforebedescribedas:�� � �
	�� �� ��� � ��� �/� � � �� �/� � �������
��� ���� � �� � � (2)

Equation2 is thestartingpoint of our approach.It definesanim-
precisemodelof the supervisedsystemwith . uncertainparame-
ters. Thus, this model has a . -dimensionaluncertaintyspace.In
orderto divide this uncertaintyspacewe have to definea partition�0��1�2 "�3 ��% � � 3 ��% � �&� �3 �&% � � 3 �&% � �&�('('�'(� �3 ) % � � 3 ) % � ��* + with

�04�65 �� � .
A completepartitioningof the uncertaintyspaceat any time � into7

partitionsmustsatisfy the following condition 8:9 �0�; 9=<� � �� �
where > �@? ��A(A(A(� 7 . A modelbasedon a partition of the uncer-
tainty spaceis referredto assubspace model. Fromthedefinitionof
a partition,we canfinally definethestateof a subspacemodel > :��B; 9C<� �
	�� ��B; 9C<��� � ��� ��� � � �0�; 9=<��� � ��� ; 9=<� �D��� �� ; 9=<� � �0 ; 9=<� �&A (3)

With the monotonicityassumptionof 	 and � with regardto the
parameters� � over therangeof theintervals,the(uncertain)stateof
asubspacemodelcanberepresentedby the(exact)stateof thecorner
points of a subspace.Thecornerpointsof a subspacearedefinedas
all combinationsof upperandlowerboundsof apartition

�0FE andcan
berepresentedasset G ; 9C<� �IH �0 ; 9C<� % JLK with M �N? ��A(A�A(��O ) . Thus,an
uncertaintyspaceof dimension. resultsin O ) cornerpoints.The
statesat thecornerpointscanberepresentedasset

P ; 9=<� �QHR� ; 9=<� % JTS � ; 9C<� % J �D	��� ; 9=<��� ��% J ��� ��� ��� 0 ; 9=<�/� ��% J � KU ; 9=<� �QH��-; 9=<� % J S �-; 9C<� % � �V�����; 9=<� % J � 0�; 9=<� % J � K (4)

where0 ; 9C<� % J is anexactparametervectorat time � from thesubspace> andat corner M �W? ��A(A(A(��O ) of this subspace.Note, that � ; 9=<� % J
arestatevectors,andalso � ; 9=<� % J areoutputvectorswith exactvalues.
Note that this approachassumesthat the parametersof the system
areconstant,andarenot varying in time. This assumptionwill be
discussedlater.

This representationof an uncertainstateis directly exploited by
our consistency checkfor a given subspace> . First, a residual is
calculatedfor eachstateat a cornerpoint using the measurements
at time � , i.e., X ; 9=<� % J �Y� � % 9CZ\[�]_^a`�Z\b�c �-; 9C<� % J � where X ; 9=<� % J has the

samedimension d as ��� % 9CZ�[�]_^a`�Z�b and �B; 9=<� % J . Then, the minimum
andmaximumvaluesof theresidualaredeterminedase ; 9=<� % 9 J,fg% h �
i�j"kJ H�e ; 9C<� % J% h K (5)el; 9C<� % 9m[�n % h �
iLoapJ H�el; 9C<� % J% hqK (6)

with M �r? ��A(A(A(��O ) , and s �t? ��A(A(A�� d . Finally, subspacemodel >
is checkedfor consistency simplyby comparingthesignsof e ; 9=<� % 9 J,fg% h
and el; 9C<� % 9m[�n % h . Thesubspacemodel > is consistentwith themeasure-
ments,if f

sgn�e ; 9=<� % 9 Jufl% h �wv� sgn�e ; 9=<� % 9m[�n % h � (7)
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Figure 1. Consistency checkwith oneuncertainparameterx andthree
subspacesyz � , yz � , and yz�{ . Theresidualsat thecornerpointsof subspaceyz �
arebothnegative, therefore,themodelwith thesubspaceyz � is inconsistent

with themeasurement.In subspaceyz � , theresidualsat thecornerpointshave
differentsigns.Thus, yz � is consistent.For theparameterrangeof subspaceyz�{ themonotonicityassumptionis violated.In this case,checkingthe

residuals’signsat thecornerpointsis not feasible.

holdsfor all elementss �I? ��A�A(A(� d .
Informally, Equation7 checkswhetherthezerovectorlies within

the“residualsubspace”(seeFigure1). If thisequationis violated,the
subspacemodel > is refuted.This simpleconsistency checkholds
also if not all elementsof � are includedin the measurements.In
thiscase,acomparisonwith themissingelementsis simply ignored.
Sincethis techniqueis basedon thecalculationof anexactstate(at
cornerpoints),we canusestandardnumericalmethodsfor comput-
ing the solution of differential equations.Note that subspacesare
only refutedwhenthey aregenuinelyinconsistentwith themeasure-
ments.

Dueto theuncertaintyin theparametersthismethodmayresultin
divergingenvelopes.Thisdeviationof thepredictedvalueto the“cor-
rect” valueover time is referredto asaccumulation uncertainty. In
orderto keepthisdeviationsmallwehavealsointroducedadynamic
partitioning of the subspacemodels.During monitoring consistent
subspacesarefurtherpartitionedresultingin smallersubspacemod-
els that potentially describethe supervisedsystemmore precisely
[12].

3 MONITORING PIECEWISE CONTINUOUS
BEHAVIORS

3.1 Monotonicity at Transitions

In orderto extendour approachto monitoringpiecewisecontinuous
behaviors anddiscretetransitions,we musthave a closerlook at our
monotonicityassumption.Rememberthat the result of our consis-
tency checkis only valid if thestatevalueswithin thesubspaceare
monotonic.

In generalthemonotonicityof thestatevalueswith regardto the
parametersis notguaranteedby themonotonicityof thesystemequa-
tions 	 and � . The monotonicityis only given whenthe following
assumptionsalsohold:

1. thesysteminput � doesnotchange,and
2. the initial valuesof a subspacemodelarethesameover its com-

pleteuncertaintyspace.

Both assumptionsareimportantfor monitoringdiscreteandcon-
tinuousbehaviors.Thefirst assumptionisespeciallyrelevantfor tran-
sitionsbecausethey areoften triggeredby stepwisechangesof the



systeminput (e.g.,causedby operatoractions).Suchtransitionsvio-
late,therefore,thefirst assumption.Thesecondassumptionis asim-
pleconsequenceof theintegrationof thegivendifferentialequation:

�B� � � �
���}|m~ ��
��|r��B�� �\� � (8)

If the initial states� ��| aredifferentat somecornersin the sub-
spacemodel,thestatevalues��� maynot bemonotonic(evenif �� is
monotonic).However, monotonicityis guaranteedaftersometime.

As discussedabove discontinuoustransitionsmayresultin a non-
monotonicityof the statevalueswith regardto the parameters(for
a limited periodof time),which in turn leadsto anincorrectconsis-
tency check.Thus,to maintaina correct(andconservative) monitor-
ing techniquewe mustextendtheconsistency checkby a checkfor
monotonicity. If themonotonicityis not guaranteedtheconsistency
check is simply ignoredand this subspacecan not be refuted.At
sometime after the transitionthesubspacemaybecomemonotonic
againandtheconsistency checkcanbeappliedagain.

3.2 Checking for Monotonicity

The monotonicityof the statevaluesfor an individual subspaceis
checkedby thefollowing method.

Wedefinea matrix � � � � � �\��� with theelements� J h � � � � ����� ������ J � � � � �\���� # h � (9)

where � is the time, � the statevector, and � the parametervector
with its elements# h . We alsodefinethe matrix � � � � � �_��� with the
elements �

J h � � � � ����� � � � J � � ������ # h A (10)

Thematrix � � � � � ����� is calculatedby� � � � � � ������ � �D��� � � � ����� � � � � � ����� ~ � � � � � �_���&� (11)

where � ��� � ��� ����� � � (the empty matrix), and the matrix��� � � � ����� is definedas� J h � � � � �_��� �t���� J � � � � ������ � h A (12)

The elements

�
J h � � � � �\��� give us the trend of the statevalue� J � � ����� with regard to the parameter# h . This is exploited by our

monotonicity check: Thestatevaluesof asubspacemodelaremono-
tonic, if f

sgn�
�
J h&% 9 J,f�� � sgn�

�
J h&% 9m[�n � (13)

holds for all statevalues M ��? �(A(A�A���� andall directionsof the
uncertaintyspaces ��? �(A(A�A�� . .

�
J h&% 9 J,f are the appropriateval-

uesof

�
J h � � � � ����� at thecorner >�M�� , and

�
J h&% 9m[(n arethe valuesof

�
J h � � � � �\��� at thecorner > �g� of thatsubspacemodel(asdescribed

with Equations5 and6).
Figure2 depictsthemonotonicitycheck.In general,the informa-

tion at thecornerpointsis not sufficient to decideon monotonicity.
However, assumingthe monotonicityof the functions 	 and � with
regardto theparameter, themonotonicitycheckbecomessufficient.

Thecalculationof themonotonicitycheckimpliesanumericalso-
lution of thedifferentialequation(Equation12).However, sincewe
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Figure 2. Monotonicitycheckwith onestatevalueandoneparameter. To
checkthesubspacemodelfor monotonicity, thegradientsof thestatevalues

with regardto theparametersarecalculatedat thecornerpoints.In this
example,thesubspaceyz � is monotoneandthesubspaceyz � violatesthe

monotonicitycheck.

usealsoa differentialdescriptionof thesystem( 	�� �� ), themono-
tonicity checkdoesnotsignificantlyincreasethecomputationalload.
Notethatmatrix � is constantfor linearsystems.

4 THE MONOTONICITY CHECK IN A
REAL-WORLD SYSTEM

We now examinethe monotonicitybehavior on a “real” technical
systemwhich is comprisedof three heating/coolingcomponents
mountedon a thermal conductive plate. A processcontrol com-
puter (B&R 2003) controls the threeheating/coolingcomponents.
Themeasuredsamplesaswell asthecontrolactionsissuedaretrans-
ferredto themonitoringsystemvia aRS232interface.

Ourmodelwhich includesthethreecomponentswith heatingele-
mentsis givenas

�� � � ��F� �3 J� c � � � � � c � � � c¡� ��� � � � c � � ����� � � ���¢ �3 J,� ~ � ��� � � � c � �(� c¡� � � � � c � � �c£� � { � � � c � { ����� { � ���¤ �3 J { ~ � � { � � � c � { � c¡� { � � { c � � ��� (14)

where
� J is the temperatureof the threecomponents,¥ J is the

massof thecomponents,3 J is theheatflow into thecomponents,� J
the thermalconductivity betweenthecomponentM andtheenviron-
ment, � J h the thermalconductivity betweenthecomponentM and s ,
and

� � thetemperatureof theenvironment.We canreducethecom-
plexity of thismodelby exploiting thesymmetricconstructionof the
heatingsystem( � { � � � , � � { � � ��� , ¥ { � ¥ � ) resultingin a total
of fiveuncertainparameters.

Thestatevectoris givenas �¦�§� � � � � � � � { � + , theinputvectoras� �N�3 J� � 3 J,� � 3 J { � � � � + , andtheoutputvectoras���N� � � ~ � � � � � ~� �¨� � { ~ � { � + , where� J is thenoiseof eachtemperaturesensor. The
noiseparametersarealsoincludedin theuncertaintyspaceresulting
in a total of eight uncertainparameters.Note that noiseparameters
arenot dynamicallypartitionedinto smaller intervals and they are
notconsideredby themonotonicitycheck.

We have measuredthe input valueswith 3(©&ªaª«�¬? A Oa¯® and3 © f �±° lA ²q® (heatingelementis either turnedoff or turnedon).
With an initial refinementstep,we get the parameterintervals as� � �³ � A ? Og� � A ?(° * , � � �! � A ?�´ � � A ? ²a* , � ��� �µ � A ¶¯Og� � A · ° * , ¥ � � ´�? � ´ a* , ¥ � �N ¶ ? ��¶ ´ * . Therefinementstepis performedin a single
continuousbehavior segment[12].

To examine the non-monotonicbehavior in the system,we ob-
serve the systemafter a transition,andcountthe subspacemodels,
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Figure 3. Measurementsfrom theheatingsystemusedfor monotonicitychecking.Theinput ¸ � is generatedby theprocesscontrolcomputerandsentto the
monitoringsystem.

which aremarkedasnon-monotonic.Over time, this givesusa pic-
ture,how thetransitionproducenon-monotonicityin thestatevalues.
Wechoosethefollowing scenario:

Control state 1: Heat
� � until

� � reaches· � . Thengo to state2.
Control state 2: Heat

� � , if
� ��¹t· � . If � ] � [ � Z ��º ?(�q�q»R¼ � , go to

state3.
Control state 3: Heat

� � , if
� � ¹V½ � . If � ] � [ � Z { º ?��¨�¯»�¼

�=¾ � � º½ � , go to state4.
Control state 4: Do notheat.If

� �À¿ ´¨� , go to state1.

Figure3 plots the resultingmeasurementsfor this scenario.The
heatingflag Á � (generatedby the PCC) is used,to get a discrete
changeof aninput.To implementtheheatingelementcharacteristic,
we assumean additionalmass¥=Â anda thermalconductivity � � Â
betweencomponentO andtheheatingmass:

�� Â � � ?¥=Â ��° O�A ²qO Á � c � � Â � � Â � c � � ��� (15)3 J,� � ? A Oa ~ � � Â � � Â � c � � � (16)

To demonstratethenon-monotoniceffect aftera stepwisechange
of an input, we checkthemonotonicityof all subspacemodels,and
count non-monotonicsubspacemodels, i.e., which violate Equa-
tion 13.Figure4 shows apartof thescenario,wherethetemperature
of component2 is holdat90degree(controlstate3).For thisplot,we
have startedwith 128subspacemodels,andno dynamicpartitioning
is introduced.Dueto thediscretecontrollertheheatingis turnedon
andoff several times.At eachtransitionabout40 subspacemodels
arenon-monotonic.An interestingobservation in this figure is, that
thenon-monotonicsubspacesdisappearquickly, if theheatingflagis
turnedoff only for a shorttime.

Figure5 showsthenumberof thenon-monotonicsubspacemodels
after control state3. Thepeakhereis about30 subspacemodels.It
shows, that non-monotonicsubspacemodelsarealsoexisting for a
“longer” time period(hereabout400seconds)after the lastdiscrete
changeof aninput.

Non-monotonicsubspacemodelsarenot refuted,and,therefore,
do not make any contribution to decreasetheuncertaintyspace.Al-
thoughthenumberof non-monotonicsubspacemodelsarequitehigh
(about50 percentof thecurrentsubspacemodels)for sometimes.it
hasnotasignificantlyinfluenceto therefutation.Thereasonis, how-
ever, thatsuchpeaksdoesnot hold for long time,sotheconsistency
checksoonbecomesvalid again.At thisexamplethenumberof con-
sistentsubspacemodelsat theendof thescenariois about20.
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Figure 5. Thenon-monotonicityaftertheswitchingperiod.Drawn are(as
sameasin figure4) themeasurementandtheenvelopesof Ã � , theheating
flag ¸ � andthenumberof non-monotonicsubspacemodelsÄÆÅ . Some

subspacemodelsarenon-monotonicaftertheheatingperiod.

5 DISCUSSION

In thispaper, wehavepresentedamodel-basedmonitoringapproach
basedon uncertaintyspacepartitioning.The fundamentalassump-
tion of this approachis themonotonicityof thestatevalueswith re-
gardto the rangeof the parameters.In systemswhich exhibit both
discreteandcontinuousbehaviors themonotonicitycannot beguar-
anteedonly by themonotonicityof thevectorfunctions.Thus,in or-
der to applyour basicapproachto monitorhybrid systems,we have
introduceda monotonicitycheckfor thestatevalues.

Note the differenceof monitoring basedon pre-calculateden-
velopeswith our approach.With pre-calculatedenvelopes,the en-
velopesremainconstantover the completemonitoring process.In
ourapproach,theenvelopesmaybecomesmallerthantheinitial ones
due to the refutationof inconsistentsubspacesduring monitoring.
This resultsin anearlierdetectionof faults.However, thereis a sig-
nificantincreasein thecomputationalloadof subspacepartitioning.

Our approachis basedon computingthe envelopesof differen-
tial equations.For complex models,theoverall runtimeof our mon-
itoring algorithmis dominatedby solvingthedifferentialequations,
especiallywhena high-precisemethodsuchasRunge-Kuttais used.
Thecomputationalcomplexity of ouralgorithmfor asingletime-step
canbeestimatedas Ç � 7 O ) �}Èw~ÊÉ ��� (17)

where
7

is thenumberof partitions,. is thenumberof uncertainty
parameters,È is thetime of theRunge-Kuttaalgorithm,and É is the
timeof thematrixmultiplicationaccordingto Equation11.ThetimeÈ stronglydependson thedynamicpropertiesof thesystem,andfor
highdynamicsystems,theassumptionÈLË6É holds.
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Figure 4. Firstoverview of themonotonicityof thetechnicalsystem.Drawn arethemeasuredÃ � with its envelopes,̧ � is theheatingflag for thesecond
component,and ÄÆÅ is thenumberof thenon-monotonesubspacemodels.Thediscretechangeof theinputmakesadirectlyeffect to themonotonicityof the

statevalues.

This approachcanalsobe seenassystem identification, because
refutingsubspacemodelsreducestheuncertaintyspace,resultingin
smallerboundingintervals on the parameters.Measurementnoise
canalsobehandledby introducingadditionaluncertaintyparameters
into themodel.

However, this approachis in contrastto traditionalsystemidenti-
fication wherethe modelspaceis specifiedby a parameterizeddif-
ferentialequation.Identificationselectsnumericalparametervalues
so thatsimulationof themodelbestmatchesthemeasurements.By
usingrefutationinsteadof searchour methodis ableto derive guar-
anteed boundson thetrajectories.

Model-basedmonitoring using uncertaintyspacepartitioning is
relatedto the interval identificationalgorithmof Schaichet al. [13].
In their approachthe consistency check is only performedat the
qualitative level. Thus,valuabledetectiontime is lost,aslong asthe
fault is only manifestedin a quantitative value.PetridisanKehagias
[10] have also developedan algorithm with subspacepartitioning.
The partitioning is only performedin advanceand the consistency
checkis basedon probabilitiesdependingon the noisein the sys-
tem. Other work in monitoring [7, 9, 3] usesmultiple modelsfor
fault detection.Thesemodelsrepresentknown faultsof the super-
visedsystem.From the viewpoint of systemidentification,our ap-
proachis closely relatedto semi-quantitative systemidentification
[8]. Identificationof both approachesare groundedon the refuta-
tion of subspacemodelsthat areknown to be inconsistentwith the
measurements.Semi-quantitative systemidentificationperformsre-
finementat thequalitative andinterval level. Semi-quantitative sys-
tem identificationhasalsobeenappliedto model-basedmonitoring
[11]. BonariniandBontempi[4] have developeda quitesimilar ap-
proachto ourconsistency check.However, they have focusedonun-
certaintyinitial statevalues,which aregiven as intervals. Also re-
latedto our work is Armengolet al. [1, 2]. Thesimulationis based
on modalinterval arithmetics,which producesoverbounded andun-
derbounded envelopesof a technicalsystem.To minimize the rate
of falseandmissedalarms,theuncertaintyspaceis only partitioned
at critical measurements(which arebetweentheunderboundedand
overboundedenvelopes).In comparisonto our approach,we sim-
ulateat eachcornerof the uncertaintyspace,which leadsto exact
envelopes(no falseandmissedalarms,accordingto observability)
for linearsystems.

Directionsfor future work include (i) the incorporationof (un-
known) discontinuoustransitionsin our monitoring approach,(ii)

further investigationson themonotonicitypropertiesaftera discon-
tinuoustransition,especiallyin the context of non-linearsystems,
and (iii) the improvementof the dynamicuncertaintyspaceparti-
tioning.
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Abstract

The object-oriented paradigma is a new but proven technol-
ogy for modelling mechatronics, i.e. multidisciplinary mod-
elling. For many reasons the object-oriented approach is
very much desirable also for qualitative models in system
design, diagnosis or verification. Bayesian networks are a
very robust technology for qualitative probabilistic model-
ling. In this paper we present a first approach in using the
Bayesian networks modelling technique with the quantita-
tive object-oriented method. Analogous to Modelica, an
object-oriented modelling language, we constructed a Baye-
sian network library for modelling hydraulic systems. These
Bayesian networks are called Object Oriented Dynamic
Bayes Nets (OODBNs). Our method is easily transferable to
any other physical domain or logic. In this contribution our
motivation and the construction steps are described. Simula-
tion results for a sample hydraulic system are given.

Introduction

Future system architectures will be characterized by
highly modular and reusable components, and by abstract
description languages widely independent of implementa-
tion details. Typical components of system architectures are
software and hardware (sub-)systems. On the Software side
the object-oriented paradigma is by now (at least in indus-
trial applications) the de facto description or modelling lan-
guage standard, mostly represented by the Unified
Modelling Language (UML). On the Hardware side, which
is our focus here, we have mechatronic hardware compo-
nents, the constituent parts of which are control logics and
controlled physical or chemical systems. Modelling mecha-
tronic systems challenges the engineer due to different
physical domains. In order to reach the goal of a truly uni-
fied description of system architectures comprising Soft-
ware and Hardware systems, the description or modelling
languages of mechatronic systems have to be lifted to a
similar abstract level as their Software counterparts.

Model based techniques play an important role in con-
current and future engineering processes. Models and simu-
lations are a basis for system design and analysis, e.g. for
geometric layout of hydraulic systems. On the other hand,
model based control and model based diagnosis are state of
the art.

Many different philosophies have been developed to sup-
port the modelling task. In the control engineering area
tools like Matlab/Simulink [1] or MatrixX SystemBuild [2]
are widespread. For modelling mechanical systems
ADAMS [3] or SIMPACK [4] are frequently used. For
electronic systems PSPICE [5] is an appropriate tool. Other
specific tools are used to solve modelling tasks in flow
dynamics, thermal flow or chemical processes. Each of
these programs are specially tailored for the specific
domain.

A mechatronic system consists of a control logic, elec-
tronics and a controlled mechanical, hydraulic or any other
physical or chemical system. The entire system is com-
posed of subsystems of different domains. This shows the
restriction of all classical modelling systems, since the con-
trol part can be easily described for example in Matlab/
Simulink, but it is nearly impossible to model an electrical
subsystem. So, a method is needed for a multidisciplinary
modelling.

Methods and tools, e.g. Omola, Dymola or Smile, have
been developed which allow multidisciplinary modelling.
Modelica [6], [7] is the latest step in this direction. It is a
standardized object-oriented modelling language which is
supported by the tool Dymola [8] for example.

Dymola/Modelica comes with libraries for different
physical domains like electrics/electronics, mechanics,
thermal flow or hydraulics, see Figure 1. It also contains a
signal block and a Petri net library. A library consists of a
set of templates for different physical or logical objects.
The user can extend a library for example by inheritance or
can create completely new libraries. A model is described
by an object diagramm. Most tools contain a graphical
interface with a simple drag and drop technique for the tem-
plates and interconnections at the object interfaces. The
interconnections have the meaning of constraints. More
precisely, two types of equations are generated when two
physical objects are connected: a flow and a potential equa-
tion. With the definition of the flow and the potential vari-
ables, the energy flow in the interface is uniquely defined.
This is valid for all lumped parameter systems. The great
advantage is that the system can now be modelled by local
behaviour and not by global analysis [9], which supports
the general idea of modularity.

Qualitative Models and Bayesian Networks
Qualitative modelling offers many well-known advan-

tages for system design, diagnosis or verification, see [14]
for a very extensive survey of techniques and applications.
Some of these advantages are:



• handling of incomplete and imprecise knowledge,
• robustness,
• easy comparison of system alternatives, e.g. parameters

variations,
• direct interpretation of simulation results,
• complexity.

Our vision is an object-oriented method using Bayesian net-
works for modelling physical systems, especially system
dynamics. Bayesian networks are a well-suited method for
handling imprecise knowledge in a consistent way. Efficient
learning and adaption algorithms are known for Bayesian
networks, which is a very interesting option for automatic
model calibration. The definition of a Bayesian network BN
is as follows: BN = {DAG, CPDs}, where DAG is a directed
acyclic graph, consisting of nodes and directed edges or
links, and CPDs are conditional probability distributions.
The nodes in a Bayesian network represent propositional
variables of interest (e.g., the temperature of a device). The
links of a BN represent informational or causal dependencies
among the variables. These dependencies are quantified by
conditional probabilties (the CPDs) for each node given its
parental nodes in the DAG. We do not cite the Bayesian net-
works fundamentals in this paper, but refer to the relevant lit-
erature, see [10] for some Bayesian networks basics or [11]
for an excellent textbook.

Object-oriented Bayesian networks were introduced in
[13], and are now supported by the newest version of the
commercial Software tool HUGIN [12] for example.

Template construction
In this section we describe the conversion steps from

Modelica to Bayesian network templates. The conversion
will proceed in four major steps. First, given a dynamic com-
ponent, the differential equations will be discretized in time
using Euler's rule. Second, the equation part of a Modelica
template will be reformulated with qualitative operators.
Third, the qualitativ landmarks have to be chosen for each
state variable and each parameter. Fourth, the resulting qual-
itative equations will be graphically programmed with Baye-
sian networks.

An fuel reservoir called "VolumeConst" will serve as an
example. The icon used in the Modelica HyLib library [15]
is shown in Figure 2. Note, that the component VolumeConst
has one port (portA) and that the flow into the component
has a positive sign . PortA can be viewed as a real physical
flange with some pressure p and an oil flow q. The behavior
of the component VolumeConst is described in Modelica by
the equation block. Other definition blocks like the graphi-
cal, interfaces or parameter block are omitted. 

Figure 1: The hydraulics library and an object diagram in Dymola.



model VolumeConst
graphical block
interfaces block
parameter block
equation

end VolumeConst

The equation block consists of one differential equation
with beta and volume being fixed parameters defining the
effective bulk modulus of the liquid and the volume in
square meters, respectively. After chosing a time step h the
time discrete version is as follows:

model VolumeConstDiscr
equation

end VolumeConstDiscr

Next, qualitative operators are inserted.

model VolumeConstQual
equation

end VolumeConstQual

Now we have to choose a quantity space, the "landmarks",
for the variables and parameters. For clearness, we choose a
three valued quantity space  for all variables .
Some qualitative calculus has to be defined for the chosen
quantity space. Qualitative addition  for the three valued
quantity space can be defined straightforward [14] as in
Table 1.

The  entry marks the ambiguity of the result, when
the  operator is applied on  and  or vice versa,
respectively.

Now the Bayesian network template for VolumeConst can
be constructed. The basic idea is to identify each qualitative
variable with a Bayesian network node, the qualititative val-
ues with the states of this node, and the qualitative calculus
with CPDs.

We give an example for the operator applied on vari-
ables and . The principle Bayesian network is shown in
Figure 3. The entries in the CPD table in Figure 3 are proba-
bilities, where each column sums to 1. The  entries in
the operator table can be represented by the colomns with the
uniform distribution, i.e. 1/3 for each entry in this case. 

Any other algebraic operation can also be reformulated as
a Bayesian network fragment. In this way the complete tem-
plate for VolumeConst is constructed. The result is shown in
Figure 4.  The port nodes, which correspond to the port vari-
ables in portA are marked with a rectangle. When the Baye-
sian network template is instantiated in a system model only
the input and output nodes, i.e. the port nodes, are visible.
Note that this is a dynamic Bayesian network, because node
PA0 carries the state of the pressure at time slice t-h and PA1
the state at time slice t. The difference is calculated in node
dP01.

Figure 2: The Dymola representation for a fuel reservoir.

           der( portA.p) beta/volume * portA.q;=

           1\h  ( portA.p(t) portA.p(t-h) ) =–
          beta/volume * portA.q(t)( )

            portA.p(t) -portA.p(t-h) =⊕
const portA.q(t)⊗

x -, 0, +{ }∈ x

 ⊕

Table 1: Qualitative addition defined.

  ⊕ x -= x 0= x +=

y -= z -= z -= z ?=

y 0= z -= z 0= z +=

y += z ?= z += z +=

z ?=

 ⊕ x -= y +=

 ⊕
x y

z ?=



What is missing yet are the constraint templates, which
serve as connectors between components. We need two dif-
ferent templates, one expressing that there is equal pressure
at two connected ports, and a second one, expressing that the
flows sum up to zero at a hydraulic node. We present these

two templates with the CPDs in Figure 5 and Figure 6,
respectively. For the pressure we assume three values: zero
pressure (0), low pressure (+), high pressure (++). Note, that
the arcs are directed to the "inner" constraint node, such that
the resulting Bayesian network model is always acyclic. In

Figure 3: Bayesian network fragment and the CPD for the operator.

Figure 4: Bayesian network template for VolumeConst.

 ⊕

Figure 5: Bayesian network template ZeroSumFlows2 for the flow constraint.

Figure 6: Bayesian network template EqPressure2 for the pressure constraint.



Figure 5 and Figure 6 we show the simplest scenario that
two components are connected in series. In Figure 1, on the
right hand side, this is the case for the "ReliefValve" and the
"LineToFilterResistance". In the Bayesian network for this
tank system, the ReliefValve-template and the LineToFilter-
Resistance-template will be connected via the flow con-
straint and the pressure constraint, see also Figure 7. Note
that the table entries are hard 0/1 decisions. Before propagat-
ing the Bayesian network, the "true"-state of the sum_0 and
the eq_p nodes must always be set evident. Doing this, the
pressures on both sides are forced to be equal. The flow con-
straint then simply states, that the mass flow coming out of
the first component equals the mass flow into the second
component. In the general case, where more than two com-
ponents meet, for example the "LineToFilterResistance", the
"FilterResistance" and the "ReliefValveFilter", the flow con-
straint template must be assembled from the -operation
fragment, see Figure 3, and the flow constraint template of
Figure 5. This new object is then called ZeroSumFlows3 and
is shown in Figure 7.

Results
A basic library for constructing simple hydraulic circuits

has been developed. It contains an ideal flow source, a reser-
voir, a hydraulic resistance, a tank, a relief valve, a real flow
source, and the constraint templates. Differing from the pre-

viously discussed three state nodes, each dynamic variable
here has five states. We used the object-oriented Bayesian
network software Hugin. Currently, only discrete valued
nodes are used. This is reasonable, because many mecha-
tronic systems are hybrid or switching. Discrete valued
nodes allow us to model arbitray dynamics, whereas contin-
uous valued node models result in Kalman models, thus lin-
ear models.

We will shortly discuss the hydraulic library. The ideal
flow source has two ports, namely A and B, or a "positive"
and a "negative" port, with only one flow variable which can
be controlled, i.e. set evident. A real flow source called Real-
FuelPump is derived from this ideal flow source. Addition-
ally it contains the volume model, which was described
above. So the port B of RealFlowPump delivers a pump flow
and a pump pressure. The tank model has only a flow vari-
able at the ports A and B. It is dynamic, modelling the
change of the fuel volume over time. 

The relief valve has a switching behaviour in Modelica.
Pressure and flow is specified at the ports. In Modelica the
valve logic is modelled with a state machine. We modelled
this valve logic with a Markov model, having the two states
"open" and "closed". At last, the hydraulic resistance has two
ports specifying pressure and flow. It models laminar flow,
i.e. the pressure drop over a hydraulic line.We used this ele-
ment also to model the resistance of the fuel filter. 

 ⊕

Figure 7: The Bayesian network tank system model.



We present a little hydraulic circuit, that is, a fictitious
tank system. This system was first modelled for reference in
Dymola/Modelica, see Figure 1 on the right hand side. Then
we built this system using the dynamic Bayesian network
templates. The Bayesian network tank system is shown in
Figure 7. For the dynamic simulation, we set evident all con-
straint nodes and the pump flow. All other nodes are hidden,

that is, they were calculated by propagation. The results for
100 time steps are shown in Figure 8, Figure 9, and
Figure 10. These figures show the evolution of the probabil-
ity distributions. The darker the colour bars are, the higher
the probability. We added mean values for conveniance. The
plots were produced using the Qualitative Modelling Tool-
box for Matlab SIMULINK [16].

Conclusion and future work
In this contribution we have motivated the need for intelli-

gent modelling techniques. For system design, diagnosis or
verification qualitative models are a very good choice. We
favor the Bayesian network technology due to their robust-
ness, intuitivity and practicability. 

We seeked a qualitative modelling technique for mecha-
tronic systems, i.e. for dynamic, multidomain systems. The
object-oriented physical modelling technique gave us the
hint for the construction of our OODBNs. The simulation
results encourage us to proceed in this direction. Recent suc-

cess has been made to select the states (the "landmarks")
upon measurements or quantitative simulations, using a sim-
ple heuristic from system identification. Furthermore, learn-
ing respectively adapting the CPDs using HUGINs adaption
API was very promising. 
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Abstract
This paper introduces a concept for building  up
distributed monitoring and diagnostic systems
for complex industrial applications. The diag-
nostic process, from accessing sensor data up to
the visualization within a graphical user inter-
face is described by universal applicable for-
malisms. Generic mechanisms were identified to
improve the quality of a diagnosis by integrating
legacy diagnostic engines and handling different
diagnostic mechanisms in parallel. For this pur-
pose, a modular multi-agent architecture and a
set of development tools were implemented.
This software architecture for monitoring and
diagnosis was developed within the framework
of the EU Esprit Program: “DIAMOND: DIs-
tributed Architecture for MONitoring and Diag-
nosis”.

1 Introduction
To compete within industry, manufacturers are demanded
to optimize their productive processes. In order to
achieve this efficiency, a high value has to be set on the
quality of the industrial equipment as well as on the in-
dustrial process itself. Monitoring and diagnostic systems
(M&D systems) support this objective by predicting fail-
ures, or if a failure occurred, by identifying the reason
for this fault. Thereby it is possible to reduce down-time
costs of the production process. To achieve an overall
reduction of the production costs, the development ex-
pense for a powerful M&D system has to be minimized.
For this purpose, a modular concept was realized that is
based on a distributed multi-agent approach.
A complex industrial application is built by a set of dif-
ferent physical units. These units may be provided by
different vendors, having detailed knowledge about the
behavior of their unit. Furthermore, there are often dif-
ferent diagnostic methods for the same unit available. To
realize a powerful diagnosis, the knowledge about the
different physical units and about various diagnostic
methods should be merged together within an overall
framework. Therefore, new strategies were required to

treat these supplementing diagnostic knowledge about an
industrial process.
This paper presents the generic aspects of the underlying
infrastructure and describes the multi-agent framework.
It is neither deemed to explain any diagnostic algorithms
that may be applied nor to present the methodologies in
detail that are employed to handle different diagnostic
results in parallel.

2 Related work
Interest in recent research on distributed approaches for
diagnostic purposes can currently be seen in Europe,
Japan and in the United States. A general overview about
distributed artificial intelligence in industry is given in
[Par94]. This paper reviews the industrial needs for Dis-
tributed Artificial Intelligence, giving special attention to
systems for manufacturing, scheduling and control. It
gives case studies of several advanced research applica-
tions, actual industrial installations and identifies steps,
need to be taken to deploy these technologies more
broadly.
In [Fro96] there is a distinction between semantically
distributed diagnosis and spatially distributed diagnosis.
Semantically distributed diagnosis refers to a heteroge-
neous group of agents, in which each agent has its own
view of the system. This can either mean that each agent
focuses on a specific area of the system or that the agents
model different aspects of the system or use different
diagnostic methods, e.g. one agent models the structure
of the system and another one models the performance.
Spatially distributed diagnosis refers to a group of agents
which jointly monitor and diagnose a spatially distrib-
uted system with relationships between those equip-
ments. Each agent has detailed knowledge about a small
part of the system.
Different concepts to realize a distributed approach are
proposed in the literature, ranging from classical client
server application over blackboard technologies to a few
multi-agent frameworks. Most distributed applications
employ a classical client server approach with distributed
clients, communicating with a central server. This well
known technology is continuously advanced and applied
to distributed management applications. The standardi-
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zation of distributed management tasks like information
exchange, monitoring and diagnostics is aimed by the
Common Diagnostic Model (CDM), developed within
the “distributed management task force” (DMTF)
[DMTF]. This framework is based on software clients
which perform their tasks nearly automatically and report
information to a central server.
Another concept is based on a blackboard technology. A
central blackboard is used to store all available informa-
tion about an industrial process. These data can be ac-
cessed by other software units, possibly software agents,
in order to perform a diagnosis or to visualize the results.
[Lee97] outlines the conceptual foundations for next
generation industrial remote diagnostics and product
monitoring systems. It extends the multi-agent frame-
work research to include new classes of product popula-
tion and diagnostic agents within a distributed Embedded
Web and Electronic Commerce infrastructure. The prod-
ucts to be diagnosed are for example printers, copiers
and vehicles.
[Ben97] introduces a KQML-CORBA (Knowledge
Query and Manipulation Language) [KQML] based ar-
chitecture to implement a multi-agent system for network
and service management. The paper adopts this archi-
tecture and applies it to diagnosis and monitoring of ma-
chines and components in the production environment by
using a multi-agent approach, combined with semanti-
cally distributed diagnosis. Up to now there are only few
other implementations of KQML, one over TCP/IP in C
which has been developed Lockheed-Martin [Fin99] and
one in JAVA [Fro96]. The use of the agent communica-
tion language developed by FIPA [FIPA98] together with
the CORBA standard for distributed computing is a
widely used strategy to realize an agent interaction
[Orf97].

3 Units of Monitoring and Diagnostic
System

High value and cost effective diagnosis system can be
developed by distinguishing between the tasks that have
to be performed within a M&D system. Some tasks are
general for all monitoring and diagnostic systems, some
are specific for the employed production equipment and
others are specific for the considered production process.
These three units should to be treated in different ways:

3.1  Generic M&D units
Independent to specific requirements of an application
area, a set of tasks are generic for all monitoring and
diagnostic systems. Functionalities like interfacing dif-
ferent units, storing data, formatting measurements and
diagnosis results, configuring the system, managing the
interaction and some more have to be performed in all
M&D systems. It is obviously feasible to reuse a set of
existing software units whenever a specific Monitoring
and Diagnostic system has to be built. This allows the
integration of highly developed and well tested units ex-

tremely fast and low priced. Together with a set of well
defined interfaces, a general architecture for monitoring
and diagnosis becomes realized.

3.2  Specif ic to production equipment
Some parts of monitoring and diagnostic software are
specific to the used production equipment. The way how
to access sensor values and how to use these data to di-
agnose a physical component is specific to the produc-
tion environment. The component manufacturer is inter-
ested to equip its component with monitoring and diag-
nostic capabilities that are compatible with a generic
architecture. The usage of software agents allows to en-
capsulate legacy diagnostic tools in order to become in-
teroperable to the overall system (see section 5). These
parts are reusable whenever the same production equip-
ment is used and should not be developed each time a
M&D system is built from scratch.

3.3  Specif ic to production process
All remaining parts of the complete monitoring and di-
agnosis system are specific to the production process.
The interaction between different physical components,
and adoptions of the operator interface are examples for
units that have to be develop individually.

4 DIAMOND – distributed multi-
agent architecture

The architecture, proposed in this paper, tries to merge
the three different parts to a consistent monitoring and
diagnosis system. All generic units of a M&D system are
realized by the utilization of software agents, each re-
sponsible for a specific task. An integration of all parts
that are specific to the production environment or to the
production process itself is supported by encapsulating
these functionalities into different agents, able to interact
with the overall framework. The DIAMOND architecture
specifies the information that are required to integrate
these parts and supports the development process by of-
fering a set of tools (see section 5).
The structure and the interaction of the software agents
that are able to perform all generic tasks and that are
used to encapsulate all specific tasks are described in the
following chapter.

4.1  Structure of  DIAMOND Agent
All agents that are used within DIAMOND are built of
two different software units. One is responsible for the
communication with other DIAMOND agents within the
M&D framework. This unit is called ‘Wrapper’ and is
identical for all agents. The second software unit is
called ‘Brain’. This part performs all tasks that are spe-
cific for the type of the agent.
The Wrapper is responsible for handling the communi-
cation of this agent with other agents in the M&D system
by applying the CORBA middleware. Information can be
exchanged by applying CORBA events or by using



CORBA call-backs. The wrapper registers its CORBA
objects at the ORB to become visible for other agents.
However, the wrapper does not initiate or analyze any
information exchange with another agent by itself. This
is handled by the brain part.
The agents brain performs all tasks that are specific to
the type of the agent. Some of the agents that are utilized
within the framework perform exclusively generic tasks
that are similar for all industrial environments. The im-
plementation of the brain for these agents is uniform for
each application where DIAMOND is applied. The tasks
that have to be performed by the monitoring and diag-
nostic agents (see next chapter) are partly independent
on the application. One part handles generic monitoring
or diagnostic capabilities. This part of the monitoring
agent brain and the diagnostic agent brain is provided by
the DIAMOND development toolkit (see section 5.4 and
section 5.5). All further capabilities depend on the spe-
cific application and have to be implemented afterwards
individually by accessing well defined interfaces. This
absence of an explicit implementation enables the inte-
gration of legacy monitoring and diagnostic tools inside
the brain of a monitoring agent or inside a diagnostic
agent.

4.2  Agent interaction
The Wrapper of each agent uses CORBA to exchange
messages with other agents. It supports a synchronous
call-back communication and an asynchronous event-
based communication.
The wrapper exposes a CORBA remote interface to other
agents that can use it, whenever they want to send a mes-
sage to this agent by using a CORBA call-back. The

FIPA-Agent Communication Language (FIPA-ACL)
[FIPA98] is used to restrict the interaction between
communicating agents (see figure 1).The REQUEST, the
QUERY-REF the SUBSCRIBE and the CANCEL proto-
col were identified to cover all required agent interac-
tions. The call-back CORBA concept allows the receiv-
ing agent to return an integer value instantly if the struc-
ture of the message is invalid, if the message is not se-

cure, if an unknown protocol was received, if the agent is
to busy to handle the message or if the agent will con-
tinue to process the message. Only in the last case, the
message will be stored in an internal buffer that is part of
the Wrapper. This buffer allows to sort incoming (and
outgoing) messages according to their priority, their
timestamp or in respect to a given time-out. The brain
removes the message from the buffer as soon as it is able
to process it. After processing the message, it specifies
the answer, corresponding to the used protocol. This an-
swer is stored in the internal buffer of the agent and for-
warded to the remote CORBA object.
The message that is sent by an agent contains a set of
pre-defined parameters as it is specified by FIPA. These
parameters are stored within a XML structure. Since a
conversation must not only handle information exchange
but also the exchange of attitude about the information, a
2-layered protocol is applied. The outer layer of a mes-
sage represents the attitude about the information. These
data are processed by the Wrapper. The information it-
self is part of an inner layer which is stored in the con-
tent parameter of a message. The message content, which
is also encoded in the XML syntax, is processed by the
brain of the agent.
If an agent wants to supply data quickly to the overall
multi-agent framework without taking care about the re-
ceiving agents, an asynchronous event-based communi-
cation is more feasible. This mechanism is mainly used
by the monitoring agents to supply measurements to all
diagnostic agents that are interested in. Every agent is
able to supply and to consume events, structured in
XML, by connecting to different event channels. This
CORBA functionality is accessed by the Wrapper.

4.3  Monitoring Agent
The interface between the physical state of the industrial
application and the DIAMOND system is realized by a
Monitoring Agent. This type of agent handles the meas-
urements of the physical components and prepares them
to be treatable by other agents within the framework.
Each Monitoring Agent has to be adjusted to the sensors

Agent A
BRAIN Wrapper

Agent B
BRAINWrapper

CORBA

XML

XML

Figure 1 Agent Interaction



of the industrial equipment that will provide the meas-
urements. Furthermore, the Monitoring Agents are able
to initiate a diagnosis of a component as soon as they
have identified an irregular state of a measurement.

4.4  Diagnostic Agent
Different aspects of distribution are handled within the
DIAMOND framework. First of all, the different tasks
that have to be performed within the monitoring and di-
agnostic process are distributed to different agent types,
each responsible for its specific task. The task that has to
be performed by the Diagnostic Agents is also distrib-
uted again. The Diagnostic Agents are handling the
measurements that are provided by the Monitoring
Agents to identify the functional state of the physical
components. This diagnosis may be performed by differ-
ent Diagnostic Agents, each having a different view of
the industrial application.
• This variation may be related with different temporal

aspects of the behavior of the plant (temporal distri-
bution).

• Often, there are different diagnostic algorithms
available to identify the state of an industrial proc-
ess. A development tool for a flexible M&D system
has to be able to handle various diagnostic mecha-
nisms in parallel. This is identified as a semantical
distribution of the diagnosis.

• The entire diagnostic knowledge about the behavior
of the plant is split to a set of smaller knowledge
units, each associated with a physical part of the
plant, called component. A single Diagnostic Agent
does not know about the behavior of the complete
plant, but about a single component. This knowledge
may be provided by the manufacturer of the compo-
nent. In this manner, the diagnostic task is spatially
distributed.

When distributing the overall diagnostic task regarding
temporal, semantical and spatial aspects, a flexible and
clear framework is feasible. For diagnosing the overall
process, the various diagnostic results, reported by dif-
ferent Diagnostic Agents have to be merged together.
This additional task is performed by the Conflict Reso-
lution Agent.

4.5  Conflict Resolution Agent
A conflict resolution mechanism is required to investi-
gate, whether the diagnostic results, reported by different
Diagnostic Agents are contradicting or completing each
other. The Diagnostic Agents do not communicate with
each other to merge their knowledge, but do report their
diagnosis to a Conflict Resolution Agent. According to
the different types of distribution, temporal, semantical
and spatial conflicts have to be considered. For this pur-
pose, the relations between the components and between
the possible failures which may be related within the
components have to be well known (section 5.1 and 5.3).
The knowledge is represented by a Graph. An adjacent
vector, where each element represents a component is

used to build the graph [ALG94]. Each node (compo-
nent) consists of:
• Vector of topological arcs with other components
• Vector of relationships between the same failure in

different components
• Vector of relationships between different failures in

different components.
The overall conflict resolution process is divided into
different sequential steps:
• The reported failures are assigned to the nodes

(components) of the graph conformed by the infor-
mation specified in the structural knowledge base
(chapter 5.1). This allows to identify semantical con-
flicts.

• Following, spatial and temporal conflicts are investi-
gated in three different levels. Level 1 works with
the topological information specified in the struc-
tural knowledge base, level 2 works with the rela-
tions between the same failure in different compo-
nents (i.e. similar to level 1 but specific for a failure)
and level 3 works with the relations between differ-
ent failures in different components.

Details about these generic algorithms for handling tem-
poral, semantical and spatial conflicts can be found in
[DIAMOND].

4.6  Facil itator Agent
The Facilitator Agent is responsible for networking and
mediating between the agents in the Multi-Agent frame-
work. Large industrial applications may be federal and
hierarchical structured. This structure is adopted to dif-
ferent “domains”. A domain is a subsystem of the
DIAMOND architecture that is responsible for a part of
the industrial application. Each “domain” is associated
with a facilitator agent to facilitate the networking within
this domain and with other Facilitator agents of other
domains. Thus a diagnosis of a single domain as well as
a diagnosis of the complete industrial application is fea-
sible. Furthermore, the Facilitator agent is the mediator
to the Graphical User Interface Agent.

4.7  Blackboard Agent
All diagnosis results that were reported within a well
defined timeframe are stored in a blackboard that is im-
plemented in a Blackboard Agent. Each domain has its
own Blackboard Agent that is mediating with the Con-
flict Resolution Agent. The Blackboard Agent provides
the results, reported by the Diagnostic Agents and trig-
gers the conflict resolution process. The resolved diag-
nostic result that cover the state of all components that
are part of the domain are forwarded to the Facilitator
Agent. The Blackboard Agent is also in charge of storing
all reported diagnostic results permanently.

4.8  Graphical User Interface Agent
The Graphical User Interface Agent is the human gate-
way to the DIAMOND system. The operator uses this



interface to get information about the state of the indus-
trial application, to provide human accessible informa-
tion to the Diagnostic Agent and to initiate diagnostic
processes.

4.9  Overall  Architecture
The hierarchical and federal structure of the industrial
environment that has to be monitored and diagnosed is
transferred to a hierarchical and federal structure of the
software architecture. For this purpose, industrial com-
ponents are grouped together to form a logical superior
unit. A set of agents that are responsible for diagnosing
this set of components are grouped within a “domain”.
Only the Facilitator Agent of each domain is able to
communicate with other Facilitator of other domains or
with the Graphical User Interface Agent.
The main concepts of this DIAMOND architecture are
summarized in figure 2.

All DIAMOND agents that are interacting are pictured as
two colored boxes with the type of the agent written in-
side. The light green box indicates the Wrapper that is
responsible for communication. This part is unique for
all agents. The second box represents the Brain which is
specific for the agents type. The agents are interacting by
using the Object Request Broker (CORBA). This mid-
dleware is pictured as the yellow bar in the middle of the
figure.
The figure indicates three different domains (Domain A,
B and C). These domains are grouping the Diagnostic
Agents, a Blackboard Agent, a Conflict Resolution Agent
and a Facilitator Agent together. The Monitoring Agents
are not associated to one single domain. They are able to

provide measurements that may be used by the Diagnos-
tic Agents of different domains.

5 How to build a monitoring and di-
agnosis system

This chapter describes the steps that are required to build
up a complete monitoring and diagnosis system by using
the results provided by the DIAMOND architecture.

5.1  Identify semantic structure of  the in-
dustrial  application

The first step while building up a monitoring and diagno-
sis system is to define all physical components and their
relations of the automated industrial system that have to
be supervised. There should be no overlap between com-
ponents, nor should there be “white spaces” of the sys-
tem being diagnosed not covered by a component at all.

The components of the industrial application may be hi-
erarchical or federal related with each other. If there is a
set of components that are building a logical unit which
is widely self-contained, they have to be grouped to-
gether into a domain. The knowledge about the compo-
nents and domains is fixed for a specific industrial appli-
cation and will not change during runtime. DIAMOND
provides an ontology that defines the structure and the
possible attributes of any component. This knowledge is
stored in the structural knowledge base in the XML for-
mat.
The possible relations between components are ex-
pressed by the attributes of each “COMPONENT” ele-
ment:

Figure 2 DIAMOND Architecture
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• INPUT_CONNECTED_TO specifies functional or
logical output of another component which effects
the behavior of this component.

• EXCLUSIVE identifies that the faults of both related
components are mutual to each other.

• BELONGING_TO is used to express the topological
relation between “parent” and “child” components.

Further attributes are the certainty of the identified rela-
tion and a possible time delay which describes the tem-
poral behavior of related components.

5.2  Identify measurements
It has to be investigated whether there are any existing
monitoring sources available which are able to access
measurable states of the plant. These sources may be
accessed by a Monitoring Agent. It has to be investi-
gated, which information about the measurable state of
the industrial application is accessible and how to obtain
them. In the case of integrating a legacy application for
accessing the system variables, the interface to these ap-
plications have to be identified. All measurable states
that are practical for a diagnosis have to be described as
a measurement according to a well defined ontology for
MEASUREMENT.
All measurements that will be used have to be associated
with a Monitoring Agent that is able to access it. It is
reasonable to associate all measurements that are pro-
vided by a single data acquisition source or by a specific
mechanism how to access them with the same Monitoring
Agent.

5.3  Identify failure modes
The M&D system is able to identify those potential faults
of the industrial application that were specified in ad-
vance. Therefore, it has to be investigated, which legacy
diagnostic tools may be used and which faults these
modules are able to detect.
Attributes for each failure are specifying the conditions
that have to be fulfilled, the names of rules that are fea-
sible to identify the fault and potential recovery actions.
Another attribute identifies whether the occurrence of
this failure is related with another failure, either in the
same or in another component. This allows to state
whether different faults are contradicting or comple-
menting each other, how they are temporally related and
how a failure propagates.
All these information are stored within an XML struc-
ture. These data are mainly processed by the Conflict
Resolution Agent to solve diagnostic conflicts. The diag-
nostic mechanisms and algorithms to identify the failure
are specific to the industrial process and will be used by
the diagnostic agents.

5.4  Build Monitoring Agents and connect
with industrial  environment

For building the Monitoring Agents, a shell is provided
by DIAMOND that enables the creation of this agent.
The connection with the monitoring and diagnostic infra-

structure is automatically realized. The connection with
the sensors of the industrial application has to be done
afterwards. This task is specific for each application and
for each sensor.
There are several predefined configuration parameters
for a Monitoring Agent. These parameters may be set by
using a DIAMOND toolkit.

5.5  Build Diagnostic Agents and connect
with diagnostic engines

The measurements are used by the Diagnostic Agents to
perform a diagnosis. For this purpose, each Diagnostic
Agent needs to have a diagnostic engine. This may be a
commercial expert system or any other kind of diagnostic
engine to identify failures of the related component. The
connection of the diagnostic engine with the M&D sys-
tem is realized by using a development shell for creating
the Diagnostic Agents. The interface to the diagnostic
engine has to be implemented afterwards individually.
There are only two methods that have to be implemented
for interfacing:
One method enables the diagnostic engine to get a meas-
urement value which is accessed from an internal buffer
of the Diagnostic Agent. The engine does not keep care
where to get the measurement from. All measurements
that were identified in chapter 5.2 are accessible. After
the engine has performed its diagnosis, it provides the
diagnosis result to the Wrapper of the agent by using the
second method of the interface. The Wrapper makes the
result available for the infrastructure for further proc-
essing.
Integrating the diagnostic engine of a legacy diagnostic
tool is possible, if this clear interface is realized. No
further modifications, neither to the DIAMOND frame-
work, nor to the diagnostic engine are required.

6 Evaluation Examples
The functionality of the presented multi-agent architec-
ture was verified by integrating a specific monitoring and
diagnosis system into two operational prototypes.
The first was concerned with the functional process of an
automated welding cell, containing a control system, a
robot with gas-metal arc welding equipment and a posi-
tioning device. To simulate faults that may occur in the
welding system, a simulator was used that emulates the
behavior of the welding equipment for different faulty
situations. The measurements were accessed by using an
ODBC interface and a DCOM interface. Several legacy
case based reasoning engines, each responsible for an-
other component, were applied to identify faulty compo-
nents. This integration was suitable to present the capa-
bility to integrate different data accessing methods and
various diagnostic engines within an integrative moni-
toring and diagnostic system easily. This M&D system
was able to identify spatial conflicts and recognize the
propagation of faults from one component to another
one.



The second evaluation example took an existing expert
system for diagnosing the water-steam cycle chemistry of
a coal fired power plant (called SEQA, based on G2,
Gensym) and re-worked it to operate in a modern diag-
nostic framework. To verify the behavior of the M&D
system outside the power plant, a simulator based on a
neural network model was used to either generate offline
artificial anomalies overlapped to normal patterns or on-
line to provide a set of normal behavior values against
which measurements should be compared. The assimila-
tion of a complete legacy expert system into a  distrib-
uted M&D framework illustrated a complex tasks since
there were many interfaces necessary for accessing data
and for using the legacy diagnostic engines.

7 Conclusion
This paper describes a concept for building a distributed
architecture for monitoring and diagnosing a complex
industrial application. The presented M&D system uses a
multi agent approach which warrants the flexibility, the
extendibility and a cost effective development of the
system.
One main extension to existing solutions is the possibil-
ity to integrate legacy diagnostic tools into the overall
diagnosis system. This requires an extensive and exact
specification of all components, measurements and pos-
sible failures of the industrial application as well as a
specification of their relations to each other. This was
realized by introducing a set of ontologies for the moni-
toring and diagnostic system.
Furthermore, several diagnostic engines can be utilized
in parallel. They may refer to different components of
the industrial application and they may apply different
diagnostic mechanisms. By using different Diagnostic
Agents, related to different components, the diagnostic
knowledge can be provided by the component manufac-
turer. For applying different diagnostic methods, algo-
rithms were developed to handle different diagnosis re-
sults in parallel and to investigate whether they are com-
pleting or contradicting each other.
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Using Supervised Learning Techniques for Diagnosis of 
Dynamic Systems 

Pedro J. Abad1, Antonio J. Suárez1, Rafael M. Gasca2, Juan A. Or tega2 

Abstract.  This paper describes an approach based on supervised 
learning techniques for the diagnosis of dynamic systems. The 
methodology can start with real system data or with a model of 
the dynamic system. In the second case, a set of simulations of 
the system is required to obtain the necessary data. In both cases, 
obtained data will be labelled according to the running conditi ons 
of the system at the gathering data time. Label indicates the 
running state of system: correct working or abnormal functioning 
of any system component. After being labelled, data will be 
treated to add additi onal information about the running of system. 
The final goal is to obtain a set of decision rules by applying a 
classification tool to the set of labelled and treated data. This 
way, any observation on the system will be classified according 
to those decision rules, having a return label indicating the 
currently running state of system. Returned label will be the 
diagnostic. This entire learning task is carried out off -li ne, before 
the diagnosing.12 

1 INTRODUCTION 

Diagnosis determines why a system, correctly designed, doesn't 
work like it was expected.  Explanation, for this erroneous 
behaviour, represents a discrepancy with the system design.  One 
diagnosis task is to determine the system elements that could cause 
the erroneous behaviour according to the system observations. 
Monitoring process is fundamental to avoid non-real faults by 
small alterations in variables values. [1] Proposes a knowledge 
model for dynamic systems monitoring. 

Fault detection consists on determining, starting from the 
system observations, when an incorrect operation of the observed 
system exists. When failure is detected then diagnosis will t ake the 
control to find the reasons of that incorrect behaviour. 

Fault detection and diagnostic of faulty components are very 
important from the strategic point of view of the companies, due to 
the economic demands and environment conservation required to 
remain in competitive markets. This is one of the reasons causing 
that this is a very active investigation field. Components faults and 
process faults can cause systems damages and undesirable halt of 
the system. This causes the increase of costs and decrease of 
production. Therefore developing mechanisms to detect and to 
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diagnose systems faults are needed to maintain the systems in 
levels of security, production and reliabilit y. 

Inside the Artificial Intelli gent community the dynamic systems 
diagnosis task has been approached, in most of the cases, adapting 
the techniques coming from the static systems diagnosis to the 
dynamic behaviour of the systems. This way [2] or [3] try to add 
temporary information to GDE [4]     

On the other hand, qualitative models have also been commonly 
used for this purpose [5] [6].     

In [7] the fundaments of the based-models diagnosis, applied to 
the dynamic systems, are presented, and more recently [8] proposes 
a consistency-based approach with qualitative models.     

    Other techniques, coming from the AI, have also entered in 
the diagnosis field. Following this line, learning techniques tries to 
identify the system behaviour basing on a previous training. 

Lately, some works using learning-based techniques have been 
presented, li ke stochastic methods [9], neural network based 
learning [10] and classification systems [11]. Neural network 
techniques have recently been applied in diverse fields, as 
medicine [12] or power supply [13]. 

Machine Learning techniques, inside the supervised learning 
field, are automated procedures based on logical operations that 
learn a task starting from a suite of examples. In the classification 
field the attention has been centred, concretely, in approaches with 
decision trees [14], where classification is the result of a series of 
logical steps. These approaches are able to represent the most 
complex problems if they have enough data. Applied to the 
diagnosis, we can find these methods used for the classification of 
temporary patterns [15] or in previous works to the current one 
[16] [17]. 

The present work is centred in quantitative models. It uses 
supervised learning techniques to obtain a rules-based model to 
diagnose dynamic systems by recognizing the correct behaviour 
models and faulty behaviour models. An approach to offer several 
fault causes, when there isn’ t an only clear cause, is presented. 

Rest of the document has been organized in the following way: 
in the next section the used methodology will be exposed and the 
form to carry out the diagnosis. Next a problem application 
example is described for the developed approach. To ill ustrate the 
operation of these techniques a wide set of tests is presented. Lastly 
some improvements that are in development process are discussed. 

2 PROPOSED METHODOLOGY 
To carry out diagnosis of dynamic systems a set of decision rules 
should be generated.  It can be done starting from the known 



trajectories of the system or the simulations generated from a 
model. 

Before starting with the methodology some concepts need to be 
defined. 

2.1 Definitions and notation. 

Definition 1: Behaviours Family.  It is a finite group of 
trajectories having a similar behaviour from the point of view of 
the diagnosis.  
Definition 2: Correct behaviour. It is the finite group of 
trajectories belonging to evolutions of the system without any fault 
type. 
Definition 3: Perfect behaviour. It is the trajectory describing the 
system when all parameters take the central values of the ranges 
defined as correct. 
Definition 4: Observation. It is a real trajectory of the dynamic 
system containing values of the observational variables in the 
system. 
Definition 5: Diagnosis. It is the identification of the observed 
behaviour of the system as belonging to a certain behaviour family 
(diagnosis label) and according to decision rules. 

Proposed approach can be generated from two different ways: 
• Rules are generated starting from a group of different 

behaviour models. 
∨ Model (behaviour) ⇒ labelled trajectories 

• Rules are generated starting from a group of experimental 
trajectories of dynamic system for the correct behaviour and 
possible fault behaviour. 

∨ Trajectories (behaviour) ⇒ labelled trajectories. 
Leaving of one of these situations the process can continue like 

that: 

1. Similar trajectories belonging to different behaviours family are 
identified. These trajectories are labelled again as belonging to 
both behaviours family. 

∨ Similar Trajectories (different behaviour family) ⇒ 
relabelled trajectories. 

2. Decision rules are generated using a supervised learning tool. 
∨ Relabelled trajectories ⇒ Decision rules 

3. Diagnosis consists in associating an observation as 
corresponding to behaviours family by using decision rules. 

Classification (observation, rules) ⇒ Diagnostic label 

2.2 Methodology 

Proposed methodology to diagnose is an ampli fication of other one 
developed in [16]. This basic methodology may present some 
problems when the same system behaviours can be associated to 
different fault reasons. In order to don’ t diagnose incorrectly these 
cases, in this new approach, those behaviours will be associated 
with all the possible behaviours family that can cause this concrete 
behaviour. In this way several fault causes will be offered for 
observations that can correspond to different behaviours family. 

Basic idea consists in obtaining a set of classification rules from 
a suite of system data in different behaviours modes: the correct 
behaviour and the faulty behaviours. After, those obtained 
classification rules can be used to associate an observation with 
model behaviour. Thus diagnosis of the observation is obtained. 

Process can start with real system data or with a model of the 
dynamic system. In the second case, a set of simulations of the 
system is required to obtain the necessary data. In both cases, 
obtained data will be labelled according to the running conditions 
of the system at the gathering data time. Label indicates the 
running system state: correct working or abnormal function of any 
system component. Final result consists in a database containing all 
labelled trajectories. 

Obtained database contains very similar trajectories 
corresponding to different behaviour family and therefore with 
different labels. To solve this problem the set of all similar 
trajectories will be relabelled with new labels. This new labels will 
be composed as a mix of the older labels. Thus, relabelled 
trajectories will be associated with anyone of the original 
behaviours family. The problem is to define when two or more 
trajectories are similar. Decision taken is that several trajectories 

Figure 1.   Proposed Methodology 
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are similar when distance between them is lower than a magnitude. 
That magnitude should be specified for each treated system. Used 
distance is Euclidean distance. 

After being labelled and relabelled, trajectories data will be 
treated to add additional information about running of the system. 
This additional information will be very useful when classification 
tool tries to find decision rules, because available information will 
be greater. This additional information should characterize the 
system further than gathering data and it is specified for each 
treated systems.  

A new database, which contains original trajectories plus new 
attributes and the corresponding label, is obtained. 

Final step, to obtain decision rules, is to use a classification tool 
with the labelled and treated database. 

An aspect to highlight is that all process, until this moment, 
have been development off-line, and time needed for this process is 
not important for the diagnosis process. 

Diagnosis process consists on evaluating an observation with 
the obtained decision rules. Time spending to diagnose is only the 
time of evaluating obtained decision rules. Decision rules returns 
the label associated to the behaviour by correspondence between 
training data and observed data. This returned label is offered as 
diagnosis.  

Next a case study will be presented to develop this 
methodology. 

 

 
Figure 2.   The example system 

3 CASE STUDY 
As it has been commented previously, methodology can be used 
with real system data or with obtained data of a model simulation. 
In our case, the methodology will be applied to a model, which is 
an idealized situation, but  it offers us a clear idea of the way to act. 
In case of application on a real system, many difficult aspects, not 
mentioned here (as monitoring or small phase shift), need to be 
taken in account, but with the model we are only trying to present 
the approach. 

As example of dynamic system to diagnose we consider the 
controller electric motor in [18] and  [19]. Figure 2 represents 
treated system. The motor ‘M’, whose rotational speed is ‘w’ , is 
driven through a voltage ‘v’  by the controller ‘C’ which acts based 
on the desired speed ‘d’ and the speed ‘wm’ measured by the 
revolution counter ‘S’. Controller ‘C’ is considered as an I-
controller. 

System can be modelled by the following equations, which 
include a constant for each component that is used to model also 
the faulty behaviour of the component: 
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Where T is the inertia of the motor, cm is the constant of the 
motor; cc is the constant of the controller and cs is the constant of 
the revolution counter. 

Component anomalous operation is caused, mainly, by the 
deviation of the component constant nominal value. These 
constants stray of the considered correct values range 

Some faults represent that constants take values above the 
correct ones and others faults represent that constants take values 
below the correct ones. Diagnosis result should indicate, in 
addition to the faulty component, if taken values for the component 
constant are below correct values or above them. 

Possible fault reasons that we want to identify are therefore: 
‘CmHigh’ when values of Cm are above the correct ones; 
‘CmLow’ when values of Cm are below the correct ones; ‘CsHigh’ 
when values of Cs are above the correct ones; ‘CsLow’ when 
values of Cs are below the correct ones; ‘CcHigh’ when values of 
Cc are above the correct ones and ‘CcLow’ when values of Cc are 
below the correct ones. 

To describe the system correct behaviour, it is considered that 
values of all constants don't have only one correct value, but rather 
they can take values inside an interval that will be considered as 
correct. 

This way, operation flexibility is allowed and system real 
behaviour is better simulated, where there is not a correct value but 
rather correction margins are flexible. This produces that system 
doesn't have an only correct behaviour, but rather a correct 
behaviours family. It represents all possible combinations of the 
constants values that are inside of the defined tolerance limit. 

A correct behaviours family does the diagnosis more difficult, 
because it is necessary to recognize different behaviours as correct, 
but on the contrary it provides a more realistic vision of the system. 

In our model the constant values considered as correct are: 
 

Table 1.  Values for OK behaviours 

Cm [0.98-1.02] 

Cc [0.98-1.02] 

Cs [0.98-1.02] 

 
Other considered characteristics in our system are: 

1. Fault is present from the beginning and it doesn't evolve in the 
time. 

2. Behaviour change occurs instantly and starting from here it 
doesn't change again. 

3. Once the wanted angular speed has been indicated, it doesn't 
change until this angular speed is reached. 
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This way, diagnosis will be carried out when the desired angular 
speed (d) is changed. The way to diagnose is by checking the 
evolution to reach the final speed. It is necessary to keep in mind 
that in spite of existence of a failure in some component, I-
controller is able to act on the motor to reach the required final 
speed. Of course evolution of the system to reach the desired final 
speed will be different. This difference in the behaviour will allow 
the diagnosis. 

 
Figure 3.   Forrester diagram 

 
First step, therefore, is performing system simulations in 

different behaviours modes. In our case, system has been modelled 
as a Forrester diagram [20], to be able to simulate using the 
simulation tool VEMSIM®. Forrester diagram generated for the 
system is presented in figure 3. 

Simulated behaviours will be those that we want to diagnose. 
They will be: OK for correct behaviour and CmHigh, CmLow, 
CsHigh, CsLow, CcHigh, CcLow for each component fault above 
mentioned. 

A behaviour family will represent each one of these behaviours. 
Simulations values are shown in table 2. 
 

Table 2.   System values for simulation 
T 3 

D 10 

W 5 

Time Step 0.1 

 
For the correct behaviour the constant values are into [0.98-

1.02]. Values to simulate behaviours above the correct one are into 
[1.02-5]. Values to simulate behaviours bellow the correct one are 
into [0-0.98]. 

Constants values for simulated behaviours have been elected by 
random with the Monte Carlo method following a uniform 
distribution. Number of simulations per behaviour will be 100. 

Label corresponding to behaviour is placed to each one of the 
trajectories. This way, a database containing 700 labelled 
trajectories is obtained. 

Trajectories are composed with values of the variable ‘wm‘ in 
each time step. Reason to select variable ‘wm’ and not ‘w’  is that 
‘wm’ is the only observable variable in the real system. 

In figures 4, 5 and 6 different system behaviours are shown. 
Obtained database has similar trajectories belong to different 

behaviours. This way several very similar trajectories have 
different labels. This is a problem, because our final goal is to use a 

classification tool to obtain a set of decision rules, and if we have 
similar trajectories with different labels then classifier can’ t 
correctly work; that is to say, those similar trajectories will be 
incorrectly classified. Figure 7 shows an example of this. 

 

 
To solve this problem a new label will be assigned to very 

similar trajectories. A mixture of labels of all similar trajectories 
will compose the new label. This way, next step is to find all 
similar trajectories into the database and assigning a new label. 

Figure 5.   CmHigh Behaviour 

Figure 6.   CcLow Behaviour 

Figure 4.   OK Behaviour 
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It is necessary to define when two or more trajectories are 
similar. Two trajectories are considered similar when distance 
between them is smaller than a magnitude. Distance between 
trajectories is measured as Euclidean Distance and magnitude 
chosen is 10% of the Euclidean distance between the two further 
away trajectories for the correct behaviour. This magnitude in our 
example is 0.45. 

 

 
Figure 7.   Behaviour CcHigh vs CmHigh 

 
After this process we obtain a new database with all similar 

trajectories re-labelled as corresponding with all behaviours of the 
similar trajectories. 

Next step is to calculate new attributes of each trajectory with 
the goal that classifier has more information to generate decision 
rules. These new attributes must be representative for each 
trajectory. 

For each trajectory point next attributes have been calculated: 
• Distance to perfect behaviour. It indicates how far away is 

current trajectory from perfect behaviour (above defined). It 
is calculated as: 

 

 

(4) 

Where Wm[i]  is the treated point in the current trajectory and 
Wmpf[ i]  is the correspondent point in the perfect behaviour. 

• Integral. It is the magnitude returned by numerical integration 
between current point and the precedent one. It represents the 
closed area between them. It is calculated by approximating 
as follow: 

 

 

(5) 

Where Ts is the time step in the simulation, p[i]  is the current 
treated point and p[i-1]  the precedent one. 

In addition next attributes will be calculated for each trajectory: 
• Rise Time (RT). It is the moment in which desired revolution 

speed is reached for first time. 
• Steady state (SS). It is the moment in which desired 

revolution speed is reached definitively. 
• Max speed (MS). It is the value of the highest revolution 

reached speed. 

• Max speed time (MST). It is the moment in which the highest 
revolution speed is reached. 

This way a new database containing trajectories plus new 
attributes is generated. 

Data in new database have the following form: 
RT, SS, MS, MST, Wm[1] , DP[1] , I[1] , …….., Wm[n] , DP[n] , I[n] , 

LABEL 
Final step is performing supervised learning with the obtained 

database. Classification tool selected to perform the supervised 
learning is C4.5 [21]. What is gotten with this tool is to 
characterize each one of the behaviour families according to the 
values of the attributes that have been provided. Result is a 
decision tree and an equivalent set of decision rules. These rules 
will be the way to do the diagnosis. In our example classifier 
obtains 27 rules with an error rate of 1.2%. This mean that 1.2% of 
trajectories are not correctly classified with those rules. 

3.1 Diagnosis 

The way to do the diagnosis is evaluate the observed data with the 
obtained rules. 

Because in rules appear attributes that have been calculated and 
not appear in observed data,  same attributes should be calculated 
for observed data in order to be able to classify with those rules. 

This way in the moment that one observed data is gathered all 
possible attributes should be calculated. After that, decision rules 
are evaluated with two possible results: a label is returned or 
information is insufficient to evaluate all rules. In the first case the 
returned label is the result of the diagnosis. In the second one we 
need to wait more information in further moments. 

If we want to diagnose the system with another running 
conditions, we should have prepared the decision rules set for those 
specific conditions. I. e. if we want to diagnose this system when 
current rotational speed is 12  rad/sec and desired rotational speed 
is 7 rad/sec, we should have generated a set of decision rules  for 
those conditions and we will use them in the diagnosis moment. 

4 RESULTS ON THE EXAMPLE SYSTEM 
To evaluate the proposed methodology a set of tests have been 
done. 

Observational data have been obtained by simulating the system 
with specific conditions for the test. This way a test trajectory is 
obtained and the diagnosis correct result is known, because it must 
be the corresponding to the simulated conditions. 

Conditions of the test are the same above mentioned. We 
remember them in table 3: 

 
Table 3.   Tests conditions 

T 3 

D 10 

W initial 5 

Time Step 0.1 

Values for OK [0.98 - 1.02] 

Values for HIGH [1.02 - 5] 

Values for LOW [0 - 0.98] 

 
In table 4 we can see results for the tests:  
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Table 4.   Tests results 
VALUE OF THE 

CONSTANT 

Cm Cc Cs 

CORRECT 
DIAGNOSIS 

DIAGNOSIS 
WITH SIMPLE 

LABELLED 

DIAGNOSIS 
WITH 
RE-

LABELLED 

1 1 1.03 CS HIGH CS HIGH CS HIGH 
1 1 1.07 CS HIGH CS HIGH CS HIGH 
1 1 1.1 CS HIGH CS HIGH CS HIGH 
1 1 1.5 CS HIGH CS HIGH CS HIGH 
1 1 2 CS HIGH CS HIGH CS HIGH 
1 1 3 CS HIGH CS HIGH CS HIGH 
1 1.03 1 CC HIGH OK OK 

1 1.07 1 CC HIGH CM HIGH 
CC HIGH | 
CM HIGH 

1 1.1 1 CC HIGH CM HIGH 
CC HIGH | 
CM HIGH 

1 1.5 1 CC HIGH CC HIGH CC HIGH 
1 2 1 CC HIGH CC HIGH CC HIGH 
1 3 1 CC HIGH CC HIGH CC HIGH 

1.03 1 1 CM HIGH OK 
OK |  
CS LOW 

1.07 1 1 CM HIGH CM HIGH 
CC HIGH | 
CM HIGH 

1.1 1 1 CM HIGH CM HIGH 
CC HIGH | 
CM HIGH 

1.5 1 1 CM HIGH CM HIGH CM HIGH 
2 1 1 CM HIGH CM HIGH CM HIGH 
3 1 1 CM HIGH CM HIGH CM HIGH 

1 1 0.97 CS LOW OK 
CS LOW | 
OK 

1 1 0.93 CS LOW CS LOW CS LOW 
1 1 0.89 CS LOW CS LOW CS LOW 
1 1 0.85 CS LOW CS LOW CS LOW 
1 1 0.5 CS LOW CS LOW CS LOW 
1 1 0.1 CS LOW CS LOW CS LOW 
1 0.97 1 CC LOW OK OK 

1 0.93 1 CC LOW CC LOW 
CC LOW  | 
CM LOW 

1 0.89 1 CC LOW CC LOW 
CC LOW  | 
CM LOW 

1 0.85 1 CC LOW CC LOW 
CC LOW  | 
CM LOW 

1 0.5 1 CC LOW CC LOW CC LOW 
1 0.1 1 CC LOW CC LOW CC LOW 
0.97 1 1 CM LOW OK OK 

0.93 1 1 CM LOW CC LOW 
CC LOW  | 
CM LOW 

0.89 1 1 CM LOW CM LOW 
CC LOW  | 
CM LOW 

0.85 1 1 CM LOW CM LOW 
CC LOW  | 
CM LOW 

0.5 1 1 CM LOW CM LOW CM LOW 
0.1 1 1 CM LOW CM LOW CM LOW 
0.99 0.98 1.02 OK OK OK 
1 1.02 1.02 OK OK OK 
0.98 1 0.98 OK OK OK 
0.98 1.02 1.02 OK OK OK 
0.99 1.01 1.01 OK OK OK 
1.01 1 0.99 OK OK OK 
 
We can see that diagnosis methodology with simple labelled 

doesn’ t offer a correct diagnostic in tests that are very near of the 
correct behaviour. In those cases the fault is not detected. Other 

times, methodology returns an incorrect diagnosis, but in general 
offered results are acceptable. 

This occurs because there are very similar trajectories belonging 
to different behaviours, and classifier cannot correctly select the 
rules to difference them. 

To solve this problem the new methodology proposes the re-
labelled of all similar trajectories as have been above mentioned. 
Obtained results show that  the new methodology offers a multiple 
diagnosis when the previous one can’ t find the correct fault. 
Among the multiple offered diagnoses, near to all tests return the 
correct one. 

It is important to highlight that, in tests where behaviour is far 
of the correct one, offered diagnosis is the correct one. 

In the set of presented tests the diagnosis is correct in 58.33 % 
of the cases. Correct diagnosis is offered, among others, in 30.55 % 
of the cases. An incorrect diagnosis is offered in 2.7 % of the cases. 
The fault is not detected in 8.33 % of the cases. Otherwise, never 
detect failure when failure doesn’ t exist. 

5 CONCLUSIONS AND FURTHER 
WORKS 

Presented methodology is able to perform diagnosis of dynamic 
systems and it is independent of the system type. In fact, one of 
further works is to apply this methodology to a non-linear dynamic 
system.  

This capacity is due to the fact that the methodology is only 
centred in the evolution characteristics of the system for the correct 
behaviour or faulty behaviours. 

Another characteristic of the methodology is that the diagnosis 
can be performed in a very simple way, and a very littl e 
computational time is required. 

Certain systems, as the presented in the example, can produce 
similar behaviours for different fault reasons.  This is due to 
relationship among variables that govern the system behaviour. 
This relationship, among system variables, can produce that an 
alteration of a variable would be compensated by the alteration of 
another variable in contrary sense. To solve this problem, 
methodology assigns multiple fault reasons to system behaviours 
that could be produced by different fault reasons. This way a 
multiple diagnosis is offered in those situations. 

Another further work is to be able to diagnose dynamic system 
when multiple fault occurs at the same time, is to say, identifying 
system behaviours when more than one component is faulty. 
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Abstract

We investigatethe problemof doing postmortem
fault isolation for concurrentsystemsusing a be-
havioral model. The aim is to isolatethe action
that hascausedthe failure of the system,the root
action. The naive approachwould be to say that
a certainactionis the root actioniff it is a logical
consequenceof themodelandobservationsthatthe
actionis thefirst “badthingto happen”.This,how-
ever, is a strongrequirementandputshighdemand
on the model. In this paperwe describethe con-
cept of strong root candidate, a relaxationof the
naive approach.Theadvantageof determiningthe
strongroot candidatedirectly from modelandob-
servationsis that the set of tracesconsistentwith
modelandobservationsneednotbeexplicitly com-
puted. The propertyof strongroot candidatecan
insteadbedeterminedon-the-fly, thusonlycomput-
ing relevantpartsof thereachablestatespace.

1 Introduction
In this paperwe describea model-based[Hamscheret al.,
1992] approachto fault isolation in object orientedcontrol
software. The work is motivatedby a real industrial robot
control systemdevelopedby ABB Robotics. The systemis
large(theorderof

�����
linesof code),concurrent,hasanob-

jectorientedarchitectureandis highly configurable,support-
ing differenttypesof robotsandcell configurations.Sincethe
systemis time- andsafety-criticalthefirst priority, in caseof
a failure,is to bring thesystemto a safestate;alarmsthatgo
off areloggedandcanbe analyzedwhenthe systemcomes
to a stand-still.Thefaultsconsideredareprimarily hardware
faults,andthereforewerely ontheassumptionthatthefailing
hardwarehassomesoftwarecounterpartthat is affectedby
thefailureof thehardware.In additionwemakethecommon
singlefaultassumption,i.e. thatasystemfailureis causedby
only onefault (but resultingin cascadingalarms).

Thelog thuscontainspartial information abouttheevents
thattookplaceat theapproximatetimeof thesystemfailure.
However, the order in which messagesare loggeddoesnot
necessarilyreflect the way error messagespropagate– the
systemis concurrentandsafetycritical actionsmayhave to
be taken beforeerror reportingtakesplace. Hence,in what

followswe(somewhatconservatively)view thelog asaset of
errormessages.In additionasystemmaycontainanumberof
critical eventsthatareunobservable,but which mayexplain
all observablealarms.

Theultimateaim of our fault isolationmethodis to single
outtheerrormessagethatexplainstheactualcauseof thefail-
ure,or possiblyanunobservablecritical eventexplainingthe
observations.Thatis,weaimtodiscarderrormessageswhich
aredefinitelyeffectsof othererrormessages,while trying to
isolateerror messages(or critical events)which explain all
othermessages.In contrastto messagefiltering, we canthus
find failing componentsthathave not manifestedthemselves
in the error log, if the failing of the componentis a logical
consequenceof the modelandthe observations. Given the
sizeof thesoftwareit is not possibleto usethecodedirectly
– wehaveto rely onamodelof thesoftware.In thispaperwe
considerfinite statemachinemodelsexpressedin a process
algebra.Theprocessalgebrais chosenherebecauseit allows
for morestraightforwardformal reasoningthanfor example
statecharts,but thecontribution of this work - the fault iso-
lation - reliesonly on thelabeledtransitionsystemsemantics
of themodel.In practice,theaimis to useabehavioralmodel
that is anartifactof thesoftwaredevelopmentprocess,such
asstatecharts. Then thereis no extra costassociatedwith
maintainingacorrectmodelwhenthesoftwareevolves,since
thensodoesthemodel.

In standardAI diagnosisliterature,seee.g.[Reiter, 1987],
a diagnosisis a (minimal) setof failedcomponentsexplain-
ing theobservations.But for dynamicsystems(systemswith
state)adiagnosisisoftendefinedasthesetof all traces,or tra-
jectories,consistentwith the observations(seee.g.[Cordier
et al., 2001;Consoleet al., 2000]). However, thisdefinitionis
generallyinsufficient to isolatetheorigin of thefault(s),and
requirespost-processingto pin-point e.g. the faulty compo-
nent(s).Our approachis moredirectandfocuseson finding
the alarm that explains (is consistentwith) all observables:
given the systemdescription,expressedin a simpleprocess
algebra,andtheobservations,we try to infer theorigin of the
fault using propertiesof actionsinvolving the temporalor-
der, expressedin a specificationlanguagebasedon a subset
of the temporallogic CTL, originally developedfor verifi-
cation [Clarke et al., 1999]. This resemblesthe processof
modelcheckingandasin the caseof model-checkingthere
is no needfor calculationof theentirestatespace(obviously



equivalentto thesetof tracesconsistentwith modelandob-
servations)� if the temporallogic formulaeare evaluatedby
constructingthestatespaceon-the-fly.

Ourapproachalsobearssomeresemblanceto thatof Sam-
path et al. [Sampathet al., 1995]. However their work is
mainly concernedwith diagnosabilityin discreteevent sys-
tems;i.e. to detect,within finite delay, whetheracertaintype
of faulthasoccurred.While ourapproachis amenableonly to
post-mortemanalysis,the work reportedin [Sampathet al.,
1995] is mainlyintendedfor monitoringandon-linedetection
anddiagnosis.

The restof the paperis organizedasfollows: In Section
2 we describethebehavior languagethatwill beusedto de-
fine a transitionrelation, that definesthe setof all possible
behaviors (i.e. traces).In Section3 we provide rulesfor en-
tailment of somepredicatesof interestfrom configurations
andthetracesthatcanfollow from them.Finally, we outline
ongoingandfuturework in Section4.

2 A behavior language
A behavior modelcanbeexpressedin differentways,andwe
have chosento usea processalgebra.No matterwhich for-
malismandnotationthat is used,the semanticsshouldpro-
vide a labeledtransitionrelationthatdescribesthestatetran-
sitionsof themodeledsystem.In this sectionwe describea
processalgebrainfluencedby CCS[Milner, 1989] andgive
thenecessarysemantics.

2.1 Processes
Our processlanguageis constructedfrom thefollowing syn-
tacticcategories� a finite set 	 of action labels denotedby 
 in our meta

language.Everyactionlabelis equippedwith anassoci-
atedarity �� � .� a set � of object id’s denotedby � .� a finite set � of states � with associatedarity ��� � .

We considerfour typesof actions (denotedby � in our meta
language).� Sendactionsof theform ��� 
������ , where� is therecipient

object, 
 an � -ary action label and � is an � -tuple of
objectid’sor variables.� Receive actionsof the form 
������ where 
 is an � -ary
actionlabeland � is an � -tupleof variables.� Internalactionsof theform 
 , where
 is anullaryaction
label.� New-actionsof theform ���! "�#��$&%"� where�(')� and %
is a processexpression,definedbelow.

A processis describedby a process expression, denotedby% (andoccasionally* ), andgivenby the following abstract
syntax + �,�.-/�(�����10�2 3�4�56� 387 +
where 9 is a finite index set. Sumsareusuallywritten sim-
ply �;: 7 %;:=<>�@? 7 %A? . We reserve thenullary state BDCFE&G for a

completedprocess.We assumethat every �IHJ�K'L� ( BMCNEOG
excepted)hasadefiningequationof theform�P�#���;QSR8T-U% 7
A process state V is a partialmapfrom � to

+
. TheobjectW � W CX'Y� is calledthe initializing object, the state Z�[ W �\'� is called the main process and the state V^]_�`-ba W � W CdceZ�[ W �Af is calledtheinitial process state.

Let V@�S�ge +
be a processstate, �L'h� and %g' + .

By V;i �jcek%Il we denotethe processstatewhich is almost
identicalto V exceptpossiblyat � . Thatis

V;i �mcen%IlF�#oM�p�`-hq % if or-/�V;�#oM� otherwise

Thebehaviorsof oursystemaredescribedby thelabeledtran-
sition rulesin Figure1. Our transitionsareof theformVtsu enVwv
where � (theobservation)is a setof pairsof the form �#��$O
x�
representingaction 
 occurringin object � .

Therearefour transitionrules,sync, internal, new anddef.
The rule sync allows two objectsto synchronizetheir state
transitionsandoptionallyexchangevalues.In our limited al-
gebra,theonly valuesthatcanbetransmittedareobjectiden-
tifiers. However, theideais not to modelall systembehavior,
but to have a systemmodelthat revealssynchronizationand
systemstructure.Therule internal allows a singleobjectto
performatransitionby itself. Creationof new objectsis han-
dled by the rule new, anddef allows for exchanginga state
with its definition.1

Example
Typically, a systemis describedby creatinga main process
thatsetsup thesystemstructure.Figure2 shows anexample
of sucha system. Processyz
�{N� createsthreeobjectsand
runs |;}�~F��� which tells the objectsabouteachothervia the{N�w{N~ call. This is neededsincewhenstarted,a processdoes
not know anything aboutits environment. After {��w{N~ , each
objectwill actasa peer-to-peernode,asshowedin Figures3
(thesystem)and4 (objectdetails).Objectscansendrequests
to eachother, andsometimestheanswerto a requestis a fail-
ure,andthenthesystemis broughtto a halt by transmission
of ������� messages.

3 Fault Isolation
Theavailableinformationwhendoingfault isolationis asys-
tem modelandan observation (in our casea messagelog).
We usethetermscenario to refer to that information. In the
following we overloadthe termactionin thecontext of sce-
nariosto meanpairs �#��$O
���'�����	 where � is an object
identifier and 
 is an actionlabel. Someof the actionsin a
systemarecritical actions, actionsthat areassociatedwith
systemfailures.

Thus a scenariois a quadruple� u e�$S�I��{N~O$O��������$&�������x� ,
whereu e is aprocessstatetransitionrelation,�I��{N~�������	

1Sincewe rely on a finite statespacemodel,we do not allow
unboundedcreationof objectsvia thenew rule.



sync � V;�#� 3 ��-/%�:6<j���m� 
������ 7 %><j%@?kV;�#������-/%A�p<�
������ 7 */<j%A�V��!� �¢¡F£ ¤!¥N£¦� �¢§O£ ¤!¥©¨u e V;i � 3 cen%IlNi ���ªceb*Pa��AHJ��f�l
internal � V;�©� 3 ��->%;:6<�
 7 %/<�%@?V �!� �&¡N£ ¤!¥©¨u e V;i � 3 ceb%Il

new � V;�#� 3 �6-L%�:6<>���! "�#��$S*"� 7 %�<j%@?«V;i � 3 cen%IlNi �"ceb*IlPsebV vV¬su enV v
def � V;�#� 3 ��->�(������P�����6QSR8T-b% V;i � 3 cen%Pa��AHJ��f�l senV vV¬su enV v
Figure1: Processtransitionrules( � is a vectorof objectid’s)

|6}���®x}��w~!��~8¯°{F±�$Oow$¢²^� QSR8T- o³� ��}�´��#~8¯^{µ±�� 7`¶ 
�{�~!�#~8¯^{µ±�$&o³$¢²^�³<�²D� �J}�´���~8¯°{F±�� 7¦¶ 
�{N~!��~8¯°{µ±·$Oow$&²��&<�J}�´��#�·� 7 �¸��¹º�°�M~µ}x��~8¯°{µ±·$Oow$&²D$O�·�A<j�»���1�6�©� 7¦¼ �����¶ 
�{N~!��~8¯°{µ±�$&ow$&²^� QSR8T- �·½³�©� 7 |;}���®�}��w~!�#~8¯^{µ±�$&o³$¢²^��<¿¾�
»{FÀ¢�©� 7¦Á 
�{FÀ8�#o³$¢²^��¸��¹º�°�M~µ}x��~8¯°{µ±·$Oow$&²D$O�·� QSR8T- ��� �·½w��� 7 |;}���®�}��w~!��~8¯°{µ±�$&ow$&²^��<���� ¾�
�{FÀF�©� 7 |;}���®�}��w~!�#~8¯^{µ±�$&o³$¢²^�Á 
�{FÀ8�©ow$&²�� QSR8T- o³� �»�������©� 7¦Á 
�{FÀ8�#o³$¢²^�³<�²D� ���������©� 7 Á 
�{FÀ8�©ow$&²��¼ ����� QSR8T- |;~µ�O�| QSR8T- {N�w{N~!��~8¯°{µ±�$&ow$&²^� 7 |;}���®x}��w~!��~8¯°{µ±·$Oow$&²��yz
�{N� QSR8T- �³}��P��±J:�$S|6� 7 �³}��P�©±�?�$O|6� 7 �³}��P��±��·$O|6� 7 |6}�~F���A��±J:�$O±�?J$S±����|6}�~F���A�©ow$&²D$OÂ�� QSR8T- o³� {��w{N~S�#o³$¢²M$&Âx� 7 ²M� {N�w{N~S��²M$&Â°$&oM� 7 Â^� {N�w{�~S�©Â^$Oow$¢²^� 7 |�~µ�O�
Figure2: A processalgebraexample



is the set of critical actions, �������z�U�n��	 is the set of
actionsÃ that have beenobserved (i.e. the messagelog), and����� � �Ä�Å��	 is the setof actionsknown not to have oc-
curred(i.e. theobservableactionsnot containedin the mes-
sagelog). Thus, we assumethat a synchronizedaction is
loggedastwo separateactions– onefrom thesendingobject
andone from the receiving. This allows modelingof mes-
sagesendingwith unknown receiver and is no severe limi-
tation sinceit is possibleto expressreceiver informationby
havingamodelwherethedesiredactionlabelsareuniqueand
receiverobjectid thusbecomesunambiguous.

A configuration, denoted� , is thesymbol Æ or apair �©VM$&À©�
where V is a processstateand Àp�Y�Ä��	 is a setof actions.
Thefollowing rulesdefinestheconfiguration transition rela-
tion Ç for a given u e and ����� � .V su ebV v �dÈr����� � -/É�©VM$&À���ÇÊ�#V v $OÀ^Ër���

V su ebV v �dÈr��������Ì-/É�#VM$OÀ©��Ç_Æ
Theconfiguration�Na�{N�w{N~�cenyz
�{N�Af�$OÉ»� is calledtheinitial

configuration. TheconfigurationÆ is calleda forbidden con-
figuration and representconfigurationsthat are allowed by
thebehavioral model,but inconsistentwith theobservations
at hand. We seeconfigurationsas snapshotsof the system
stateof a givenscenario,andtheconfigurationtransitionre-
lation describesthebehavior of thesystem.Fault isolationis
theprocessof findingthefirst critical actionthathasoccurred
in a givenscenario,theroot action. Giventhesinglefaultas-
sumptionanda systemmodelthat is properlydesigned,the
first critical actionto occurin thesystemis thecauseof the
failure.

An action � is present in a scenarioif the systemmodel
andtheobservationentailstheoccurrenceof � . An action �
is an enabled root if the assumptionthat � is root actionis
consistentwith the observationsandthe systemmodel. We
introducetheconceptof strong root candidate, andsaythata
strongroot candidateis anactionthat is bothpresentandan
enabledroot.

3.1 Predicate rules
Givena certainscenario��e>$O�I��{N~O$&��������$O�������^� , we wish to
reasonaboutpropertiesof reachableconfigurations.There-
fore we definepredicates,that correspondto the interesting
properties,by determiningfor whichconfigurationsthey hold
true. Sincewe are interestedin strongroot candidates,we
needto formally definepresentactionsandenabledroot ac-
tions. Thus we definethe predicate�°�J}J±�}��w~!�©�@� that holds
in configurationswhereaction � mustoccursometimein the
futureandthe predicate}��³
xÍ!À©}����J�J��~!�#��� that holdsfor con-
figurationswhereit is consistentto assumethat � maybethe
first critical actionto occur. In definingthesetwo predicates,
wewill needsomehelperpredicates.We will use�·½^}��³� that
holdsin configurationsthat correspondto consistentending
statesof thesystem.An endingstateis astatewherenomore
observableactionsoccur, i.e. whenthesystemhasreacheda
final state.In a configurationwhere� hasoccurred,±�}�}��6�#���

holds,while �³�JÎS��{N~ holdsin configurationswhereno critical
actionhasoccurred. The predicate}��³� holds in configura-
tionswherethereis nonext configuration.

We defineentailmentof logical formulaefrom thefollow-
ing syntax:Ï �,�`- ÏÑÐrÏ 0 ÏYÒXÏ 0·Ó Ï 0JÔ Á � Ï �=0JÔmÕj� Ï �=0J�ªÖ×� Ï �10}��³�X0J�·½�}��³�X0J�³�JÎS��{�~�0±�}�}��6�#���=0O�°�J}J±�}��w~!�©�@�10J}��³
�ÍØÀ#}����J�J��~!�©�@�
In orderto beableto defineentailmentfor thedesiredpredi-
cates,wewill needthefollowing. We use ÙÇ for thereflexive
transitive closureof Ç . First we defineentailmentfor basic
connectives.�Ú0 - Á :t��0 - Á ?�Ú0 - Á : Ò Á ? ��0 - Á ?��0 - Á : Ð Á ?�Ú0 - Á :�Û0 - Á : Ð Á ? �ÄÌ0 - Á��0 -LÓ Á

We will be reasoningabouttemporalorder, sowe needto
definetemporallogic operators.� ÙÇb� v � v 0 - Á��0 -LÔ Á � Á ��YÇb� v � v 0 - Á�Ú0 -LÔmÕj� Á �� v 0 - Á whenever �ÜÙÇÝ� v�Ú0 -/�ªÖ×� Á �

We alsoneedentailmentfor a few helperpredicates.The
predicate}��³� determinesif a configurationlackssuccessor
(i.e. }��³�PÞÑÓ�ÔmÕj�#~F���M}J� where~F����} is entailedby everycon-
figuration), ±�}�}��6�#��� is true whenan action � hasoccurred
and �³�JÎS��{N~ holdswhennocritical actionshaveyetoccurred.Ó;ß^� v $O�zÇb� v��0 -/}��³� ��'àÀ�©VM$&À���0 -L±�}�}��6�#��� á �â'�ÀF$O�LH'à�I��{N~�#VM$OÀ©��0 -/�³�JÎS��{N~

Now we have the toolsneededto definethedesiredpred-
icates. If we have reacheda configurationfrom which the
systemcannotcontinueto executeandall actionsin ������� are
seen,thentheconfigurationisan �·½^}��³� , unlesstheconfigura-
tion is aforbiddenconfiguration.It is thusoneof thepossible
haltingconfigurations,giventhescenarioathand.

á ��'d��������$S�Û0 -Ñ±�}�}��6�©�@�ã�Ú0 ->}��³� �äÌ-mÆ��0 -/�·½�}��³�
If it is true for all reachableconfigurationsthat whenever

we have reachedan �·½�}��³� , we have seenaction � , we con-
cludethatthepresenceof � is entailedfrom observationsand
systemmodel. �Û0 -L�1Ö×��Ó��·½�}��³� Ð ±�}�}��6�©�@�¢���0 -��D�J}�±�}��w~!�#���

If thereis areachableconfiguration� : suchthatnocritical
actionshastakenplace,andthereis a configurationstepthat
takesus from �=: to �p? wherethe critical action � hasoc-
curred,we concludethat � is anenabledroot if it is possible
to reachan �·½�}��³� from � ? .��'��I��{N~å�Ú0 -/Ô Á ���³�JÎS��{N~ Ò Ô"Õj�©±�}�}��6�#��� Ò Ô Á �#�·½�}��³�x�8�8��Ú0 -L}��³
xÍ!À©}����J�J��~!�#���



3.2 Reasoning about behavior
Givena scenario,thestrongroot candidatesaretheactions�
for which��aJ{��w{N~;cenyz
�{��Afx$&É���0 -��°�J}J±�}��w~!�©�@� Ò }��³
xÍ!À#}��»�J�J��~!�#���
If wehavenostrongroot candidatesor morethanonestrong
root candidate,thesystemmodelis notstrongenoughfor ef-
ficient fault isolation. If, on theotherhand,we have exactly
onestrongrootcandidate,weassumethatwehavepinpointed
thetruecauseof thefault. This is reasonableto assume,since
theactionfoundis theonlyonethatisknowntohaveoccurred
(its presenceis entailedby the scenario)andit is consistent
with the given scenarioto assumethat the action is a root
event.

Of coursethereis still a possibilitythatthereareotheren-
abledrooteventswhosepresenceareconsistentwith thesce-
nario,but assumingoneof themto berootwoulddemandan
explanationto why the strongroot candidate(proven to be
present!)is not theroot.

3.3 Prototype implementation
We have designeda prototypeXSB [Sagonaset al., 1994]
programthattakesa systemmodelandobservationsasinput
andenumeratesthestrongroot candidates.XSB is a Prolog
dialectsusingtabulation (memoization)to improve termina-
tion. Given the systemmodel in Figure2 andfactsstating
that any sendingof æ![ W�ç or ������� indicatessystemfailure,
i.e. thoseactionsare critical actions,and the observations
that �#�J?�$ æ![ W�ç � has not occurredand �©�J�·$Næ![ W�ç � has occurred,
theXSB Prologprogramcomputed�©� : $ æ![ W�ç � to bethesingle
strongroot candidate.

The systemconsistsof threeobjectsthat all executethe
sameprocess.SeeFigure4 for an automatarepresentation
of a similar process(parametersare not explicit in the au-
tomata). Considerthe critical actions. Obviously, no �������
messagecanbe root actionsinceit will alwaysbepreceded
by a æ![ W�ç action,andneithercan �#� ? $ æ![ W�ç � berootactionsince
it is known to not have occurredat all. This leavesus with�#��:J$ æ![ W�ç � and �#�J�·$ æ![ W�ç � . It isconsistentwith thesystemmodel
andtheobservationsto assumethat �#� � $ æ![ W�ç � is the root ac-
tion, sinceif �J? receivesthe æ![ W�ç from �J� , then ��: cansendæ![ W�ç to �J� afterwards.Wecannotprovethat �#�J��$ æ![ W�ç � hashap-
pened,however. Thiscanbedonefor �©��:�$ æ![ W�ç � , andtherefore
it is theonly actionthatis bothenabledrootandpresent.

Thus,having someintuition of thesystemmakesthefault
isolationdescribedabove almosttrivial, but thekey motiva-
tion of thiswork is to formalizeandautomatethis intuition.

4 Future Work
In previouswork with Larsson[Larssonet al., 2000;Larsson,
1999] westudiedthefaultisolationproblemusingastructural
model. A key featureof thatapproachis theuseof software
engineeringmodels,in particularUML [ObjectManagement
Group,1999] classdiagrams. Sucha modelcan be devel-
opedandmaintainedat a relatively low costbeingan inte-
gratedpart of the softwaredevelopmentprocess.The work
presentedhereand in our previous work [Lawesson,2000;

Lawessonet al., 2001] aimstostrengthenthediagnosticcapa-
bility while still usingstandardandstate-of-the-artmodeling
notations.Behavior in UML is often expressedusingstate-
charts,andprocessalgebrasprovide a textual representation
of statemachines.Of course,enforcingthe softwaredevel-
oper to constructcompletestatechartsfor all classesis not
realisticin largesoftwaresystems;hence,reasoningmustbe
ableto copewith incompleteor missingbehavioral descrip-
tions. Our approachshouldalsobeextendedto dealwith the
specialfeaturescharacteristicof objectorientedsoftwaresys-
temssuchasclassesandinheritance.Below we sketchsome
partial solutionsto suchissues,which will be addressedin
our futurework.

4.1 Classes behaviors and inheritance
Our processalgebraexpressesa systemmodelas a flat set
of the processdefiningequationswithout any hierarchy. In
anobjectorienteddesign,thesystembehavior is partitioned
into classes.Furthermore,inheritanceallows for a hierarchy
of classes.We implementsimpleschemascalledclassesin
orderto achievethepartitioningand(inheritance)hierarchy.

Thus,in thefollowing aclass is aschemethatcanbecom-
piled to a setof processdefiningequations.A class � may
inheritpartsof its characteristics(e.g.its behavior) from asu-
perclass, andin thatcontext � is referredto asthesubclass.
A stateinheritancesequence|�ceÊi � : $O� ? $ 7,7 7 $&� � l
is adeclarationsayingthatstate| in thesuperclassis refined
by states�I:J$&�ª?J$ 7 7,7 $O�1� in the subclasswhere �I: is the de-
fault state(i.e. thesubstateenteredwhenenteringthesuper-
state| ). Whencompilingtheclassto processequations,the
inheritancesequencedescribeshow the defining equations
from the superclassshouldbe used. Thus,we implementa
simple form of inheritanceas refinement.The syntaxused
for definingclassesbelow isè -K�©|@$O9��S$ ¼
where

è
is thenameof theclass,| is thenameof thesuper-

class(if any), 9 is thesetof stateinheritancesequencesand
¼

is asetof processdefiningequations.If thereis nosuperclass
wewrite

è -z�©�S$ ¼ .

Example
Lackingformaltools,weoutlinetheapproachby anexample.
In thefollowing we definetwo classes� : and � ? , where � ?
refinesthe state � in � : with states� and

¼
. We saythat

states� and
¼

refinestate� .� : -z�©�S$Sa� QSR8T- Í 7¦éé QSR8T- 
 7 �
}��?I-z�©�=:J$Sa·�LceÊi �ª$ ¼ l#f·�O$!a� QSR¢T- � 7¦¼¼ QSR¢T- Î 7 �é QSR¢T- } 7 ¼
}



Now, ��? maybecompiledto the following processequa-
tions.ê �p?��¦� QSR8T- Í 7 �p?�� é <j� 7 �p?·� ¼� ? � é QSR8T- 
 7 � ? �`��<j} 7 � ? � ¼�p?J� ¼ QSR8T- Í 7 ��?·� é <�Î 7 �p?J�.�

Theoutgoingtransitionsfrom � becomeoutgoingtransi-
tions from all refining states,while the incomingtransitions
aremoved from the refinedstateto the first of the refining
states. If thereare transitionsfrom the samestatein both
super- andsubclass,they arejoinedasindeterministicchoice,
aswith state

é
andtransitions
 7 � and } 7¦¼ . The statesare

prefixedwith theclassnameto avoid namespaceclashes.

4.2 Statecharts
Sincebothprocessesandstatechartshavea transitionsystem
semantics,themappingis straightforwardoncethesemantics
of the statechartsis fixed. We usea handshakingsemantics
of thestatecharts,becauseof expressivity anddomainproper-
tiesasdescribedin [Lawesson,2000]. We definetheseman-
tics via our processlanguageby providing a mappingfrom
statechartsto processes.The mappingis ratherstraightfor-
wardsincewerestrictourselvesto statechartswithouthistory
states– essentiallymaking the statechart equivalent to an
automatawithouthierarchy, seefor example[Lilius andPor-
res,1999]. The processalgebraexamplein Figure2 could
representaslightly improvedversion2 of theautomatain Fig-
ure4 with structureinformation(i.e. thestates| , yz
�{N� and|;}�~F��� ) added.

4.3 Default behaviors of class diagrams
Sincea classdiagramin generaldoesnot containbehavioral
informationin termsof statecharts,we may introducea su-
perclasscalledPropagator thatencapsulatesthebehavior of
beingableto propagateerrorsaswell asreportingerrorsto
thelog, andasubclassBreakable thatis apropagatorthatcan
introduceerrorsby the transitioncrit. The ideais to let all
classesinherit from Propagator, andthenrefinewith behav-
ioral modelswhenavailable,anduseBreakable for classes
that may give rise to critical actionsbut wherea behavioral
model is missing. The definition of Propagator andBreak-
able aregivenin Figure5.

The pathsof error propagationbetweenclassesis com-
puted by using information about dependenciesbetween
classesin theclassdiagrams(asin [Larsson,1999;Larsson
et al., 2000]), andthenreflectedin the

Á 
�{FÀ#}��D�#��� statethat
modelserrorpropagation.
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Abstract

Networked embedded systems are composed of a large num-
ber of physically distributed nodes that interact with the phys-
ical world via a set of sensors and actuators, have their own
computational capabilities, and communicate with each other
via a wired or wireless network. Monitoring and diagnosis
for such systems must address several challenges caused by
the distribution of resources, communication limitations, and
node and link failures. This paper presents a distributed di-
agnosis framework that exploits the topology of a physical
system to be diagnosed to limit inter-diagnoser communica-
tion and compute diagnoses in an anytime and any informa-
tion manner, making it robust to communication and proces-
sor failures. The framework adopts the consistency-based di-
agnosis formalism and develops a distributed constraint sat-
isfaction realization of the diagnosis algorithm. Each local
diagnoser first computes locally consistent diagnoses, tak-
ing into account local sensing information only. The local
diagnosis sets are reduced to globally consistent diagnoses
through pairwise communications between local diagnosers.
The algorithm has been successfully demonstrated for the di-
agnosis of paper path faults for the Xerox DC265 printer.

Introduction
Our diagnostic research is motivated by existing and emerg-
ing applications of networked, embedded systems. In such
systems the physical plant is composed of a large number
of distributed nodes, each of which performs a moderate
amount of computation, collaborates with other nodes via
a wired or wireless network, and is embedded in the phys-
ical world via a set of sensors and actuators. Examples
include distributed sensor networks (Chu, Haussecker, &
Zhao 2001), complex electromechanical systems with em-
bedded controllers (Zhaoet al. 2001), data networks, smart
matter systems (Jacksonet al. 2001), and ad-hoc wireless
networks of consumer devices. Such systems present a num-
ber of interesting new challenges for diagnostic systems. A
moderate amount of computation is potentially available, but
it is partitioned into embedded chunks that range in size
from tiny, in the case of smart dust sensor motes (Kahn,
Katz, & Pister 1999) to moderate in the case of consumer de-
vices. Communication between nodes is available, but may
involve unreliable delivery, power-constrained wireless net-
works, or large, complex topologies requiring multiple hops
to connect two arbitrary nodes. Finally, nodes might leave

the network dynamically and nodes of a previously unseen
type might join in their place.

In this paper, we consider how we might apply techniques
from model-based diagnosis to these types of problems. In
general, traditional model-based techniques are centralized.
They assume that the diagnostic algorithm is run on a sin-
gle processing unit that has access to observations from all
sensors in the physical plant. In the next two sections of
the paper, we briefly discuss centralized, model-based tech-
niques and discuss how they cause scalability, robustness
and reconfigurability problems if employed directly on net-
worked, embedded systems. We then present a set of use-
ful properties for diagnostic algorithms for such systems.
In the fourth section, we present a simple formulation for
diagnosis of discrete, distributed systems in order to mo-
tivate discussion and map the formulation onto distributed
constraint satisfaction and distributed constraint optimiza-
tion. We next propose an algorithmic framework for dis-
tributed diagnosis that operates in an anytime manner and is
robust to communication and processor failures. We dis-
cuss the communications requirements for the framework
and compare performance results for one instantiation of the
distributed diagnosis framework against a centralized diag-
noser. In the related work section, we discuss why exist-
ing distributed constraint satisfaction and optimization algo-
rithms are not well suited for distributed diagnosis of net-
worked, embedded systems. We finally discuss two open
areas for future work. The contributions of this paper are
that it illustrates the interesting features of networked, em-
bedded systems that make them challenging for traditional
model-based diagnosis techniques, it presents a simple for-
mulation of the distributed diagnosis problem for these type
of systems and relates it to distributed constraint satisfaction
and optimization, it presents a class of robust, anytime al-
gorithms for performing diagnosis, and it illustrates prelim-
inary diagnostic results on a model of a real physical system
with comparisons to an existing centralized diagnoser.

Model-based Diagnosis
The objective of diagnosis is to determine the state of a phys-
ical plant such as a printer, aircraft or network, based upon
the current sensor readings from the plant and prior knowl-
edge about the plant’s structure and behavior. In order for
the diagnosis to be useful for on-line control of the plant,



accurate diagnoses must be generated in a time-critical man-
ner using the available computational resources. In most
model-based diagnostic techniques, prior knowledge about
the physical plant consists of a description of the behav-
ior of each component of the plant, including normal and
faulty behaviors, and the interconnections between compo-
nents (Hamscher, Console, & de Kleer 1992). Partial ob-
servability presents the main challenge of diagnosis. Faults
in a component may not be directly observable, and in-
stead may cause changes in the behavior of the plant that
propagate through several components before becoming ob-
servable at a sensor. To perform diagnosis, the component
models are combined into a global store, observations are
obtained from the physical plant, and a centralized algo-
rithm is applied to find a system-wide diagnosis. We be-
lieve this very abstract description captures many diagnostic
formalisms, including logic-based formalisms such as those
based upon (de Kleer & Williams 1989) or (Reiter 1987),
bond graphs (Mosterman & Biswas 1997) and many others.
Throughout this paper we will use a formalism and exam-
ples consistent with GDE (de Kleer & Williams 1987) and
its descendants, keeping in mind the general properties of
centralized, model-based diagnosis that are at issue.

Figure 1 on the next page schematically illustrates a small
model for the kind of traditional problem we might attack
with a model-based diagnoser. The 24 boxes represent
rollers, gears, motors, sensors and other devices in a printer
paper path. For example, the acRoll acquires a sheet of pa-
per from the paper tray and transports it to the feedRoll,
driven by the acBelt. We have developed a simple diagnos-
tic application for this paper path system using L2 (Kurien &
Nayak 2000), a centralized, GDE-style diagnoser developed
by NASA. Each component is modeled by finite state ma-
chine augmented with finite domain variables that describe
its behavior. Arcs between components in Figure 1 repre-
sent interactions between components, for example convey-
ing that the acRoll receives an angular velocity from the ac-
Belt. This is represented by a constraint between the cor-
responding variables. There are five sensors that report the
time of arrival of a sheet of paper at various points in the
paper path.

To perform diagnosis with L2 and this model, observa-
tions as to when or if the paper arrived at various points in
the path would first be obtained from the printer’s sensors
via its internal data bus and sent to an external processor
running L2. The values would be discretized and assigned
to the corresponding variables in the constraint system. A
constraint optimization algorithm would be applied to the
updated constraint system to find assignments to the vari-
ables that are consistent with the observations. Such an as-
signment might represent that the paper was late at the first
sensor because the feedMotor is slow, slowing down both
the acRoll and the feedRoll. This information could then
be used to perform maintenance, or in systems with redun-
dancy, to reconfigure the system for robust control. In ad-
dition to this small demonstration, we have applied similar
diagnostic techniques to spacecraft (Bernardet al. 1998),
chemical processing plants (Goodrich & Kurien 2001), sci-
entific instruments, and other electromechanical systems to

Given a set of component models and a centralized diagnoser C:

1. C combines the component models in a central store

2. Observations are collected from the physical system

3. C computes the system-wide diagnoses

Figure 2: Centralized Diagnosis of a Centralized System

Given a setS of currently connected components and a central-
ized diagnoser C:

1. ∀S, S forwards its component model toC

2. C combines the component models in a central store

3. ∀S, S forwards its observations toC

4. C computes the system-wide diagnoses

5. ∀S, C projects the variables of interest toS from the diag-
noses and forwards them toS

Figure 3: Centralized Diagnosis of a Networked System

assist in robust control.

Challenges of Monitoring and Diagnosing
Networked, Embedded Systems

Suppose we would like to perform diagnosis for a recon-
figurable, networked, embedded system. Such systems are
constructed such that each component is locally controlled
by a small, embedded processor which coordinates with
other processors via a potentially unreliable network. In ad-
dition, components and their processors might be unplugged
and replaced with upgraded versions from time to time. Ex-
amples of such systems are ad-hoc wireless networks, modu-
lar robots, and more conventional systems such as intranets.
Even traditional electro-mechanical systems such as printers
and automobiles now contain on-board networks, embedded
sensing and tens or hundreds of local controllers.

We can provide diagnostic information to the local con-
trollers of such a system using centralized diagnosis via the
process outlined in Figure 3. First, a centralized, global di-
agnosis problem is created by assembling a global model of
the components within a centralized diagnoser. The obser-
vations are centrally collected and a diagnosis or set of diag-
noses are computed by the centralized diagnoser. Aspects of
the centralized, global diagnosis are then be distributed back
to the local controllers.

This approach makes several assumptions. First, there
must exist a processor large enough to store the global diag-
nostic model and run the centralized diagnostic algorithm.
If this processor fails, it must be acceptable for no further
diagnoses to be generated. Second, there must exist a cen-
tral bus or buses with sufficient capacity to forward all data
needed for diagnosis to the central processor. If a bus fails,
the data needed to diagnose and recover for the failure must
be located on the near side of the bus with respect to the
diagnostic processor, or it must be acceptable for no further
diagnoses to be generated for the bus and the far side compo-



Figure 1: Paper Path Model in Xerox DC265ST Printer

nents. Finally, the set of components to be diagnosed must
be represented using the same formalism, and in most appli-
cations must be known a priori.

With networked, embedded systems, all of these assump-
tions may be false. Each processor in the plant may be quite
small. If a processor fails, we may require the components
attached to remaining processors to continue operating in
a full diagnosis and control cycle. If the network is bifur-
cated, we may require that each half of the plant continues
operations to the extent possible and works to resolve the
failure with the locally available information. New compo-
nents might join into the network at any time by publishing
their capabilities such as described by JINI (Sun Microsys-
tems Inc 1999).

These issues suggest an approach wherein we do not arti-
ficially centralize the problem but allow a local diagnoser to
be associated with each system processor. Each local diag-
noser finds a partial diagnostic solution using a model of the
locally controlled portion of the plant and the locally avail-
able observations. Communication is then required to re-
fine the partial diagnostic solution into a diagnosis, in effect
making use of observations and models local to other diag-
nosers. We next suggest themes for dividing and coordinat-
ing the diagnostic process to maximize scalability, robust-
ness and reconfigurability, based upon our experience with
both diagnosis and networked, embedded systems.

• Scalability
Dividing the diagnostic problem among local diagnosers
allows us to apply multiple processors and potentially ad-
dress computational scalability problems caused by the
small processors we may encounter in some embedded
systems. To address communication scalability issues,
we seek to exploit the topology of the physical plant.
We would like to arrange that two local diagnosers need

communicate only if the subsystems of the physical plant
they correspond to are physically interconnected or share
data. Thus the structure of our diagnostic architecture
will mimic the physical topology of the plant being di-
agnosed. For the type of engineered systems that are typ-
ically amenable to diagnosis, physical scalability is ac-
complished by modularizing subsystems and connecting
them through fairly narrow physical interfaces (power,
data, physical support). By respecting these interfaces,
we expect our communication needs for moving diagnos-
tic data to scale as well as the underlying physical plant.

• Robustness
A diagnostic architecture must be extremely robust to fail-
ure and able to operate in an anytime and any information
manner. This can be accomplished with refinement. We
would like to arrange that each diagnoser locally produce
a superset of the diagnoses that a global diagnoser would
produce for the local components. Communication with
other diagnosers is then used only to prune the local diag-
nosis set. This yields several important properties. First,
the diagnostic process can be interrupted at any time and
each diagnoser will contain the true diagnosis plus possi-
ble imposters. This is an important safety feature in do-
mains where taking action based upon a false negative can
cause serious harm. Second, if diagnosers fail, then the
remaining diagnosers will simply produce coarser (more
conservative) estimates of the possible states of their com-
ponents. Third, if the system is bifurcated due to a com-
munication failure, then each half will produce all diag-
noses consistent with the reachable diagnosers and any
state of the other half of the system.

• Reconfigurability
A side effect of employing local diagnosers that commu-
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Figure 4: Automaton Representing A Single Valve

nicate via opaque interfaces defined by the physical plant
is natural support for modular or reconfigurable plants.
Intuitively, a connected subset of the components of Fig-
ure 1 may be disconnected from the plant and replaced by
new hardware with a different model, so long as the phys-
ical and diagnostic interface at the point of disconnection
is maintained. In addition, this opens the possibility of
participation by different implementations of the same di-
agnostic algorithm or even different algorithms participat-
ing in a diagnosis. The latter would of course require an
interface that is semantically meaningful for all partici-
pating diagnosers. However, even the former capability
might be useful in allowing vendors of components that
are likely to be connected (e.g. data network components
or power distribution components) to create diagnosers
that can collaborate.

We believe these properties will be of interest as we begin to
investigate applications involving very large numbers of em-
bedded processors communicating via networks. In the next
section we introduce a simple formalization that will allow
us to discuss algorithmic directions for type of problem.

Centralized Formulation
Our approach to distributed qualitative diagnosis follows the
centralized diagnostic formalism developed in (de Kleer &
Williams 1989) and extended in (Williams & Nayak 1996)
and (Kurien & Nayak 2000). To motivate our distributed
algorithms, we begin with a brief overview of the central-
ized technique, summarized from (Kurien & Nayak 2000).
Suppose we would like to diagnose the state of a single com-
ponent, a valve, which is qualitatively modeled via the finite
state machine illustrated in Figure 4. We refer to each possi-
ble discrete state of a component as amode. A valvev has
three modes,open, closed, andstuckClosed. The behav-
ior of the flow of the valve within each mode, which has the
discrete domain{zero, nonzero}, can be captured with the
following propositional formulae.

v = open ⇒ flowv = nonzero
v = closed ⇒ flowv = zero
v = stuckClosed ⇒ flowv = zero

If flowv is observable from the physical plant, we will refer
to this variable as anobservation. In order to represent the
non-determinism of the automaton within a propositional
framework, the encoding introduces anassumptionvariable
a. Intuitively, av represents the choice that Nature makes
as to whether valvev will behave normally or experience a

Figure 5: Variable Connectivity In a Global Model

failure when it is commanded. The transition portion of the
automaton can thus be captured by the following formulae.

av = normal⇒
vt = closed ∧ cmdt = open ⇒ vt+1 = open
vt = closed ∧ cmdt 6= open ⇒ vt+1 = closed
vt = open ∧ cmdt = close ⇒ vt+1 = closed
vt = open ∧ cmdt 6= close ⇒ vt+1 = open
vt = stuckClosed ⇒ vt+1 = stuckClosed

av = stick⇒v,t+1 = stuckClosed

Intuitively, the diagnostic task is to find a set of assignments
to the assumptions, here{av}, such that the model is consis-
tent with the observations, here{flowv}. For example, sup-
posevt = closed, we command the valve open, represented
by cmdt = open. The plant assignsO asflowv = zero.
The only consistent assignment toav is av = stick and we
diagnose valve is stuck closed. If we wish to model multiple
automata, we introduce a mode and assumption for each au-
tomaton and compile all automata into a set of formulae that
may share variables. For example, two valves in series share
the same flow. Figure 5 visualizes the compilation of the de-
vice constraints into a global constraint system model. Each
node represents a finite domain variable. Two nodes are con-
nected by an edge if the two variables appear in a constraint
together, denoting that the possible values of the variables
are related by interacting together in some physical process
or the transmission of data. Note that a realistic model such
as that of Figure 5 contains many observations and assump-
tions, and many assignments may be consistent. More for-
mally, letA denote the set of assumptions,O denote the set
of observations, andF denote the formulae describing the
plant. Given an assignmentΩ to O created by observing
the plant, a diagnosis D is an assignment toA such that the
following propositional formula is consistent:

∧ai∈A(ai = di) ∧oj∈O (oj = ωj) ∧ F .

To perform diagnosis over multiple components, we must
find an assignment to eacha that renders the set of formulae
consistent with all observations. Intuitively, we assign the
observations reported by the physical plant,Ω to the vari-
ables of the graph corresponding to observations,O, then
reassign the assumption variables,A until the constraint sys-
tem illustrated in Figure 5 becomes consistent. Thus in this
diagnosis framework, diagnosis can be viewed a constraint
satisfaction problem.

A second diagnostic task is to find the most likely diag-
noses. For each assumption assignment we can associate
the prior probability of the even the assumption represents.



Figure 6: Partition Among Three Diagnosers

Thus, P(av=stick) denotes the prior probability of the valve
sticking. Assuming conditional independence, the probabil-
ity of a diagnosis is defined as follows.

P (D) = Πai∈DP (ai = di)

Given multiple components, we must find the assignment to
eacha that renders the set of formulae consistent with all
observations such that the probability of the assignment is
maximal. Intuitively, we assign the observations reported
by the physical plant,Ω to the variables of the graph corre-
sponding to observations,O, then choose among the possi-
ble reassignments of assumption values to assumption vari-
ables,A, until the constraint system illustrated in Figure 5
becomes consistent. The choice of which assumption to re-
assign and to which value to assign it is based upon the prob-
ability of the possible assignments. In this case, diagnosis
can be viewed as a constraint optimization problem.

Distributed Diagnosis
In this paper, we propose splitting the global diagnostic pro-
cess into a number of cooperating local diagnostic processes.
In order to distribute the problem, we divide the global di-
agnoser which produces assignments toA into a set of local
diagnosers which make assignments to subset ofA. Intu-
itively, we partition the edges of Figure 5. If a node is con-
nected to edges in more than one partition, it is replicated
and the partitions must reach consensus on its value. More
formally, a local diagnoserL is described by (FL, VL, AL,
OL, RL) whereFL is the subset ofF assigned toL, VL

denotes the set of variables that appear inFL, AL denotes
A∩VL, OL denotesO∩VL and RL denotes the union of
VL∩VM over all other diagnosersM . Figure 6 illustrates a
possible partitioning of the constraint graph of Figure 5. The
slightly darker nodes indicate the members ofRL, shared
variables that have been replicated. Given a fixed number
of diagnosers or the maximum number of constraints a diag-
nostic processor can accommodate, we can use a graph par-
titioning algorithm (Sanchis 1989) to find a partitioning of
the graph that attempts to minimizeRL for each diagnoser.

Our approach to finding consistent diagnoses in a dis-
tributed fashion is refinement based. Intuitively, each local
diagnoser finds the diagnoses for the locally modeled com-
ponent that are consistent with the constraints of the local
model and the local observations. This is a superset of the
diagnoses for the local components that are consistent will
all constraints and observations. Each local diagnoser then

1. Given observation setΩ, if oj ∈ OL, assignoj = ωj in L.

2. ∀L, if OL 6= ∅, compute all assignments toAL∪RL s.t.
∧oj∈OL(oj =ωj) ∧ai∈AL (ai =di) ∧ri∈RL (ri =ρi) |= F L

3. For eachr ∈ RL, for each other diagnoserM , if r ∈ VM send
all RL assignments toM .

4. In each suchM , compute all assignments such that
∧ri∈RL(ri = ρi) ∧ak∈AM (ak = dk) ∧rk∈RM (rk = ρk) |=
F M

5. If the consistentRM assignments decreased in step 4, return
to step 3, substituting M for L.

Figure 7: Consistency-based, Anytime Diagnosis

communicates with directly other diagnosers to further re-
duce the set of consistent diagnoses for the local compo-
nents. We would like that the diagnoses start with a superset
of the globally consistent diagnoses and move toward only
the globally consistent diagnoses. We define the relation-
ships conservative and feasible between the diagnoses
produced by a global diagnoser and the diagnoses produced
by a local diagnoser. A local diagnosis setDL is conserva-
tive with respect to the global diagnosis setDG if

∀δG ∈ DG ΠAL(δG) ∈ DL

whereΠ is the projection operator. That is, the assignments
made to the assumptions local toL by a global diagnosis
must also be made by a local diagnosis. A local diagno-
sis setDL is feasible if the assignments made to the local
assumptions are contained in a consistent global diagnosis.
More formally,

∀δL ∈ DL ∃δG ∈ DG : ΠAL(δG) = δL.

Incremental Consistency
We next discuss an algorithmic framework for incrementally
revising a set of conservative diagnoses into a set feasible di-
agnoses in a robust, anytime, distributed manner, followed
by results from one particular instantiation of this frame-
work. The approach of the algorithmic framework is similar
in spirit to Waltz’s algorithm (Waltz 1975). Each set of di-
agnoses is monotonically reduced toward a feasible set as a
side effect of spreading consensus on the value of variables
shared between diagnosers. The algorithm is illustrated in
Figure 7.

The algorithm operates by incrementally reducing the
possible assignments toAL for all L, first by introduction
of observations and second by communication between di-
agnosers. Each local diagnoser begins with a conservative
local diagnosis set inAL. Typically this would be all possi-
ble diagnoses, which can be implicitly captured by an appro-
priate encoding of the constraint setFL. In Step 1, observa-
tions are assigned in every diagnoser which has constraints
involving an observation. In Step 2, the observation assign-
ments are used to compute all assignments toAL∪RL that
are consistent withFL and the observations received byL.
Note that the projection ofAL from these assignments is a



conservative diagnosis set. Intuitively, suppose an assign-
ment toAL appears in a global diagnosis but is not com-
puted by L. If it is not computed, it must be inconsistent with
FL and the assignments toOL. It is therefore inconsistent
with F and the assignments toO, and could not appear in a
global diagnosis. In Step 3, the assignments toRL are pro-
jected out of the consistent assignments of L and forwarded
to each other diagnoser M that references these variables. In
Step 4, M eliminates a subset of its assignments that are not
feasible. Intuitively, an assignmentα to AM is not feasi-
ble if there is no assignment toA containingα that is con-
sistent withF andO. If α constrains a variable inRL to
have a value that was not received fromL, thenα is incon-
sistent with all consistent assignments toAL. Thus, each
time Step 4 is performed, infeasible assignments toAM are
eliminated. Each diagnoser begins with a conservative set
of assignments toAL, and as rounds of communication are
performed, the local diagnoses are moved toward feasibility
in an anytime manner. Per Step 5, the algorithm continues as
long as consistent assignments are eliminated. In the worst
case, each loop would eliminate one of an exponential num-
ber of possible assignments.

Note that we have described the algorithm to propagate
sets of assignments that remain consistent in one local di-
agnoser to to other diagnosers in which the assigned vari-
ables appear. More generally, we may propagate any in-
formation that allows remote diagnosers to restrict the do-
main of a variable based upon inference performed in the
local diagnoser. Examples include assignments that cannot
be made because of constraints within one diagnoser (no-
goods), assignments that must be made, or sets of possible
assignments to a variable that remain consistent. Note also
that this algorithm is not complete with respect to distributed
constraint satisfaction. Intuitively, suppose we have two lo-
cal diagnosers, one containing only the constraintA∨B and
the other containing only the constraintĀ∨B. Neither can
constrain and propagate the value ofB, thoughB must be
true. This same restriction applies to the centralized con-
straint satisfaction technique used in L2, so we do not be-
lieve it presents a significant drawback. The related work
section contains further details on the relationship between
distributed diagnosis and distributed constraint satisfaction
and why we believe an incomplete algorithm is sufficient.

Communication Requirements
When presented with a networked, embedded system, we
may perform centralized diagnosis of the distributed system
by transmission of observations or distributed diagnosis of
the distributed system by transmission of intermediate re-
sults. Choosing distributed diagnosis allows us to trade com-
munication bandwidth for reduced processor requirements,
increased robustness and greater reconfigurability. In this
section, we examine how the communication requirements
of the distributed, incremental diagnosis algorithm compare
to a centralized approach. We first consider the communi-
cation requirements of the centralized procedure shown in
Figure 3. Letn be the number of components ands be the
number of components with sensors. In Step 3 of the pro-
cedure, each ofs components forwards its observations to

C. In Step 5,C forwards the diagnostic results to each ofn
components. Assuming all observations from a single com-
ponent can be sent in a single message, Figure 3 requires
s point to point messages toC and one broadcast message
from C to all n components

We now consider the communication requirements for the
distributed algorithm of Figure 7. This algorithm performs
distributed diagnosis by exchanging messages that refine the
value of shared variables across local diagnosers. Letv be
the number of variables that are shared, andr be the av-
erage number of diagnosers that share each variable, and
m be the average number of messages exchanged that in-
volve a given variable. For example, if each local diagnoser
uses unit propagation, it can send messages specifying that
a variable must have a certain value or cannot have a certain
value, but no messages specifying disjunctions between as-
signments. Thusm is bounded by the size of the largest do-
main of a shared variable. The increase in messages created
by moving to the distributed diagnoses technique is given by
the ratio

α1 =
vrm

s + 1
.

Note that counting the number of messages exchanged is
not sufficient to determine the cost of communication. In
many applications, such as wireless networks with limited
energy or bandwith, the number of packets transmitted is a
critical cost measure. Network topology will determine the
number of packet transmissions or hops required to deliver
a message. In many applications, each node in a network
is connected to a small number of neighbors. Point to point
communication is implemented by multiple hops between
neighbors, and a broadcast is implemented by flooding the
network. Lethc be the average distance in hops between a
node with a sensor and the centralized diagnoser. Lethv be
the average number of hops between nodes that share a vari-
able. In general, the change in the total number of packet
transmissions required by decentralizing the problem is de-
termined by

α2 =
vrmhv

shc + n
Intuitively, packet transmission for the centralized diagnoser
scales with the size and width of the network, while the de-
centralized approach scales with the number of constraints
that cross network components. Note that if the network
topology reflects the physical interactions of the compo-
nents, it is likely the case thathv < hc. Thus we can
construct wide networks with very localized interactions for
which centralized diagnosis requires more packet transmis-
sions than decentralized diagnosis, though we do not expect
this to be the case in practice. In addition to total packet
transmission, we may further refine our cost measure to in-
clude the maximum number of packets transmitted by any
link in the network. This determines the minimum band-
width or power storage a network node must support. The
ratioα2 does not capture that in the centralized case, all mes-
sages must pass through network links connected to the cen-
tral diagnoser. This drives up the minimum capabilities of a
network node in relation to distributed diagnosis where mes-
sage sources and destinations are more evenly distributed



Independent L2 Distributed
Faults In Diag Time Spread Diag Time
First module 6 0.02 9 21 0
Two modules 12 0.18 14 49 0
Three modules 84 13.28 20 343 0.05
All modules 108 27.08 24 637 0.22

Table 1: Comparison of distributed diagnoser and L2

through the system. We are currently defining a diagnostic
model for a distributed sensor network in addition to avail-
able models of more traditional electro-mechanical systems
in order to better characterize the communication require-
ments of both distributed and centralized algorithms

Results

To implement the distributed diagnosis algorithm described
above, each local diagnoser could represent its conservative
diagnosis set as a partial assignment in a GDE-style diag-
noser, a relational table, a binary decision diagram and so
on, so long as the representation can be efficiently pruned
when an observation or neighboring diagnoser decreases the
range of a variable. Ideally, we would like to test a central-
ized diagnoser against a set of local diagnosers that compute
and represent diagnoses in the same manner. For these pre-
liminary results, we present the performance of the central-
ized L2 diagnoser against a distributed diagnoser that takes
advantage of the small local model size enabled by distribut-
ing the problem. PARC intern Rong Su implemented the
distributed algorithm using finite-state automata to prune in-
consistent assignments toVL (Steps 2 and 4 of Figure 7) and
a distributed consensus algorithm (Steps 3 and 5) shown to
converge to feasible diagnoses (Suet al. 2002). Table 1
compares performance with L2 on the paper path model.
The first three columns are the name of the diagnostic sce-
nario, the diagnoses found by L2, and the time required.
Since the physical plant has few sensors, the number of con-
sistent diagnoses grows with the complexity of the scenario.
The fourth column is the number of local diagnosers reached
via Step 3 of the algorithm, out of 24. The fifth column
lists the number of diagnoses found by the distributed al-
gorithm. Note that the FSA-based algorithm finds more di-
agnoses than L2. L2 is conflict based, and thus postulates
only those failures that can eliminate a discrepancy between
an expected observation and the observation received from
the plant. The FSA-based algorithm finds all consistent fail-
ures, including those that would be indistinguishable from
proper operation of the plant. The sixth column is the time
to compute the diagnoses, demonstrating the dramatic speed
advantage, on this model, of computing feasible local diag-
noses via a pre-compiled FSA representation then determin-
ing consistent combinations versus global, on-line inference.
The current implementation runs each local diagnoser seri-
ally on a single processor, and we believe a parallel imple-
mentation will provide a greater speed advantage.

Related Work

A diagnoser for a networked, embedded system may be cen-
tralized, decentralized or distributed. Work in centralized
diagnosis may be applied by collecting models and observa-
tions from the networked components of the physical plant
and appling a centralized algorithm. As described in the
third section of this paper, this raises robustness and scalabil-
ity issues that must be addressed. Rish, Brodie and Ma, for
example, attempt to increase the efficiency of a centralized
diagnostic procedure for a distributed network of computers
using an approximate representation and carefully designed
active probing of the distributed system (Rish, Brodie, & Ma
2002). In decentralized diagnosis, e.g. (Debouk, Lafortune,
& Teneketzis 2000), local diagnosers communicate with a
coordination process that assembles a global diagnosis. The
coordination process of decentralized approaches are still
subject to robustness and scalability issues. We are there-
fore pursuing an approach of distributed diagnosis, similar
to (Baroniet al. 1999), where there is no centralized con-
trol structure or coordination process. Each local diagnoser
communicates directly with other diagnosers.

We have formulated the the distributed diagnostic pro-
cess as a distributed constraint satisfaction problem (DCSP).
Since many problems in scheduling, resource allocation, and
hardware design can be formulated as constraint satisfaction
problems, the distributed constraint satisfaction problem has
received a large amount of attention. Yokoo and Hirayama
provide an excellent overview (Yokoo & Hirayama 2000) of
algorithms for solving DCSP’s. These existing algorithms
do not meet our needs for two reasons. First, the great ma-
jority of the algorithms are formulated assuming the com-
putational nodes and network connecting the nodes are re-
liable, and that all messages sent between nodes arrive in
the order sent. For diagnosis of networked, embedded sys-
tems, we seek specific guarantees of behavior in response to
the loss of computing nodes or bifurcation of the network.
Second, the majority of DCSP algorithms are designed to
solve general discrete constraint satisfaction problems, such
as the graph coloring problem. The ability to solve general
CSP problems requires features that complicate distribution,
such as backtracking on choices for variable assignments.
In practice, centralized diagnosers are able to find consis-
tent diagnoses using incomplete, backtrack-free procedures
such as unit propagation. This difference arises because the
constraints we generate from finite state models such as il-
lustrated in Figure 4 tend to be closer to Horn clauses in
structure than general discrete constraints and diagnosis may
use observation values asserted by the physical plant to drive
constraint processing. We therefore expect a distributed di-
agnoser acting upon the same models should be able to use
less powerful inference methods than full constraint satis-
faction. While we have encountered full DCSP algorithms
that allow some fault tolerance, such as the Mozart system
(Roy 1999), and some simpler constraint processing meth-
ods that assume reliable, fully connected networks, such as
distributed arc consistency (Nguyen & Deville 1998), we
have not yet encountered an algorithm that is sufficiently
narrow in scope and robust to failures.



Future Work
A number of issues remain for future work. The issue of
how to use knowledge of the prior probability of failures to
avoid computing all consistent diagnoses has been explored
but not solved. The algorithm of Figure 7 also does not take
into account any information about the likelihood of fail-
ures. We may of course find the set of globally consistent
diagnoses and compute the probability of each by assuming
conditional independence of the failures, as described above.
However, rather than computing the probabilities of all con-
sistent diagnoses, we might wish to avoid generating un-
likely diagnoses given we have generated a sufficient num-
ber of consistent, likely diagnoses. Conflict-directed, best-
first search (de Kleer & Williams 1989) is a centralized, dis-
crete constraint optimization algorithm that is specialized for
diagnosis. It efficiently enumerates consistent assignments
to a set of propositional variables in order of their cost, or in
this case enumerates diagnoses in order of their prior prob-
ability. Intuitively, it operates by starting with the highest
probability assignment to the assumptions, the case where
no failures have occurred. It substitutes a minimal cost as-
signment to an assumption with a non-minimal cost assign-
ment only when a conflict between an observation value as-
signed by the plant and the value predicted by the current
assumption assignments occurs. Our current direction in
developing a distributed analog is to begins with a maxi-
mum likelihood (e.g.,no failure) assignment toAL within
each diagnoserL, which in turn constrains the shared vari-
ables. When diagnosersL andM disagree on the value of a
shared variabler, each performs a local diagnosis to conser-
vatively approximate the maximum probability assignment
to the assumptions that would admit a different value for
r. This information can then be used to limit propagation
of variable changes throughout the system. We have imple-
mented a preliminary version of this system using copies of
L2 as the local diagnosers for the purposes of exploration,
but we are currently limited to very simple network topolo-
gies. Formalizing a reasonably general algorithm for gener-
ating a conservative estimate of the most likely diagnoses in
a robust, distributed, anytime manner remains future work.

As framed here, the distributed diagnoser never computes
complete global diagnoses. Rather, at each local diagnoser
it computes feasible local diagnoses. These are projections
of the global diagnoses that are relevant to that diagnoser. In
the case that control of the plant is distributed, we believe
this is appropriate. Each processing node uses the possible
states of its components, as determined by the feasible local
diagnoses, to inform its control. However, even when per-
forming distributed diagnosis of a distributed system, com-
putation of the global diagnoses may be of interest for pur-
poses such as centralized, supervisory control or display to a
user. We note that simply taking the cross-product of the fea-
sible diagnoses produced by each local diagnoser will result
in a superset of the global diagnoses. Some combinations
of the cross-product may not appear in any consistent global
diagnosis. If the consistent global diagnoses are needed, we
may compute them by checking combinations of local feasi-
ble diagnoses from multiple diagnosers against a combined
model using a linear-time technique such as unit propaga-

tion. This can be done hierarchically and in parallel, allow-
ing us to rule out inconsistent partial combinations of local
diagnoses in order to avoid explicitly checking all combina-
tions. Intuitively and from initial experiments, we suspect
for many problems this technique would be a competitive
method for producing all consistent global diagnoses. In
fact, the performance numbers for the FSA-based distributed
algorithm shown in Table 1 are for both computing the con-
servative and feasible local diagnoses for each local diag-
noser and then computing the globally consistent combina-
tions of these local diagnoses. Formalizing this technique
and more thoroughly investigating its effectiveness remain
future work.

Conclusion
We have developed a distributed diagnosis framework that
leverages the topology of the physical plant to limit inter-
diagnoser communication and compute consistent diagnoses
in an anytime and any information manner, making it ro-
bust to communication and processor failures. The frame-
work is conservative, in that it avoids false negatives in fa-
vor of false positives in the case where computation cannot
be completed due to limited time or communication failure.
This property can be vital in applications where safety is
critical. In addition to being anytime and conservative, our
approach allows a very small granularity for the local di-
agnosers. We can potentially create a diagnoser per physi-
cal component if desired. This flexibility allows us to con-
sider time/space/communication tradeoffs that implement
each local diagnoser as an exponentially large (in the small
local model size) structure that enables diagnosis to be per-
formed collaboratively on very weak networked processors.
One implementation of the distributed algorithm for finding
consistent diagnoses has been implemented using a discrete-
event formulation and tested on one model. Our future work
includes implementations of the algorithm using binary de-
cision diagrams and the unit propagation implementation of
L2 to compute locally consistent assignments. The latter
will allow direct comparison of centralized and distributed
implementations of the same diagnostic technique on a va-
riety of problems modeled for L2. We are also continuing
to extend the formulation to include optimization-based dis-
tributed diagnosis.
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