Proceedings of the

Thirteenth International Workshop
on Principles of Diagnosis

(DX-02)

Semmering, Austria
2-4 May 2002

Sponsored by

AVL DITEST

European Office of Aerospace Research
and Development of the USAF

Materna
OCC’M Software

Siemens Austria, PSE PRO,
CES Design Services

Austrian Computer Society
Austrian Society for Artificial Intelligence

European Network of Excellence in
Computational Logic (COLOGNET)

AV

DI TEJ ST

[
COMPUTER GESELLSCHAFT lj
@z Opal Whe 1Y

COMPUTER SOCIETY WIEN

MATERNA g1EMENS

nfermarien & Communlcation

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)
17-05-2002 Conference Proceedings 2 May 2002 - 4 May 2002
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

. . o . . F61775-02-WF032
Thirteenth International Workshop on Principles of Diagnosis

(DX-2002) 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Conference Committee

. 5d. TASK NUMBER
Editors: M. Stumptner and F. Wotawa

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
TU Wien REPORT NUMBER
Favoritenstrasse 9-11
Vienna, A-1040 N/A
Austria
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
EOARD
PSC 802 BOX 14
- 11. SPONSOR/MONITOR’S REPORT NUMBER(S)
FPO 09499-0014 CSP 02-5032

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Final Proceedings for Thirteenth International Workshop on Principles of Diagnosis (DX-2002), 2 May 2002 - 4
May 2002

This workshop is based on the area of artificial intelligence. The focus of this year's event is on theories, principles
and computational techniques for diagnosis, testing, reconfiguration and repair of complex systems. Specific topics of
interest to the Air Force include: formal methods and computational methods, modeling (symbolic, numeric, discrete,
continuous, and hybrid discrete/continuous), computational issues like combinatorial explosion, the diagnosis process,
machine learning, nonmonotonic reasoning, and applications and technology transfer.

15. SUBJECT TERMS
EOARD, Modelling & Simulation, Software, Fault Detection and Correction, Computational Methods

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18, NUMBER | 19a. NAME OF RESPONSIBLE PERSON
Christopher Reuter, Ph. D.
a. REPORT b. ABSTRACT | c. THIS PAGE ABSTE’ECT OF PAGES P
UNCLAS UNCLAS UNCLAS 191 (plus 19b. TELEPHONE NUMBER (Include area code)
frontmatter) | +44 (0)20 7514 4474

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

Thirteenth International WWorkshop
on Principles of Diagnosis (DX-02)

Conference Committee

Program Chairs

Markus Stumptner University of South Australia, Adelaide
Franz Wotawa TU Graz, Austria
Program Committee
Bert Bredeweg University of Amsterdam, Netherlands
Marie-Odile Cordier Irisa, France
Mireille Ducassé Irisa, France
Daniele Theseider Dupré Universita Piemonte Orientale, Italy
Yousri El Fattah Rockwell, USA
Jan Lunze Ruhr-Universitat Bochum, Germany
Pieter J. Mosterman The MathWorks Inc., USA
Chris Price University of Wales, UK
Bernhard Rinner TU Graz, Austria
Meera Sampath Xerox, USA
Howard E. Shrobe MIT, USA
Peter Struss Occ’m Software and TU Miinchen, Germany
Patrick Taillibert Thales, France
Mugur Tatar DaimlerChrysler, Germany
Takashi Washio Osaka University, Japan
Marina Zanella Universita di Brescia, Italy

Feng Zhao Xerox PARC, USA

Foreword

The Thirteenth International Workshop on Principles of Diagnosis (DX 02) is the
latest in a series of annual workshops that focus on the presentation and exchange
of current results in the field of diagnosis and related areas, including tasks such as
monitoring, fault identification and isolation, testing, reconfiguration and repair. The
workshops are historically centered on approaches from the Artificial Intelligence (Al)
community, but aim at supporting wide range of different techniques and methodolo-
gies, as well as the integration of other research communities such as Process Engi-
neering and FDI.

The papers included in this volume span a wide range of techniques and application
areas, including such domains as complex hardware systems, software and knowledge
bases, secure systems, and design problems, and deal with discrete and continuous,
algebraic, logic-, constraint-, structure-, and probability-based approaches, dynamic
and temporal systems, distribution and abstraction, and non-symbolic methods of di-
agnosis. They bear witness to the continuing existence of fertile ground for further
theoretical and applied research.

The invited talks continue the choice of earlier workshops to bring in new and
varying viewpoints to provide a wider context to the problem area, and address issues
from related and neighboring areas of interest to the diagnosis community: constraint
satisfaction, problem decomposition, and debugging.

We wish to thank the authors of the submitted papers, the program committee
members, at least two of which reviewed each of the submitted full papers, for the
time and effort spent, and the invited speakers for their participation. We especially
wish to thank Sheila Mcllraith for her help in organizing the review process.

We would also like to acknowledge the support of our sponsors for their contribu-
tion to the success of this workshop:

e AVL DITEST
e COLOGNET

e European Office of Aerospace Research and Development, Air Force Office of
Scientific Research, United States Air Force Research Laboratory

e Materna

e OCC’M Software

e Austrian Computer Society (OCS)

o Austrian Artificial Intelligence Society (OEGAI)
e Siemens Austria, PSE PRO, CES Design Services
e TU Graz, lICM - Software Technology

e TU Wien, Institut flir Informationssysteme

Markus Stumptner and Franz Wotawa April, 2002

Content

Particle Filters for Real-Time Fault Detection in Planetary Rovers . . 1
Richard Dearden and Dan Clancy
Hybrid Modeling and Diagnosis in the Real World: A Case Study . . 7

Sriram Narasimhan, Gautam Biswas, Gabor Karsai,
Tivadar Szemethy, Tim Bowman, Mark Kay, and Kirby Keller
A Model-Based Diagnosis Framework for Distributed Systems 16
Gregory Provan
Model-based Tools for the Integration of Design and Diagnosis into a
Common Process — A Project Report 25
Peter Struss, B. Rehfus, R. Brignolo, F. Cascio, Luca Console,
Phillippe Dague, P. Dubois, Oskar Dressler, and D. Millet
Suggestions from the software engineering practice for applying
consistency-based diagnosis to configuration knowledge bases 33
Gerhard Fleischanderl
Consistency-Based Fault Isolation for Uncertain Systems with Appli-
cations to Quantitative Dynamic Models 36
Colin N. Jones, Gregory W. Bond and Peter D. Lawrence
Merging Indiscriminable Diagnoses: An Approach Based on Auto-
matic Domains Abstraction 43
Pietro Torasso and Gianluca Torta
Structural Analysis Utilizing MSS Sets with Application to a Paper

Plant 51
Mattias Krysander and Mattias Nyberg

Diagnostic Reasoning with Multilevel Set-Covering Models 58
Joachim Baumeister and Dietmar Seipel

Computing Minimal Conflicts for Rich Constraint Languages 65
Jakob Mauss and Mugur Tatar

A Model Counting Characterization of Diagnoses 70
T.K. Satish Kumar

Computing Minimal Hitting Sets with Genetic Algorithm 77
Lin Li and Jiang Yunfei

Model-Based Diagnosis for Information Survivability 81
Howard Shrobe

Observations and Results Gained from the Jade Project 91

Wolfgang Mayer, Markus Stumptner,
Dominik Wieland and Franz Wotawa
Hybrid Diagnosis with Unknown Behavioral Modes 97

Michael W. Hofbaur and Brian C. Williams
State Tracking of Uncertain Hybrid Concurrent Systems 106
Emmanuel Benazera, Louise Travé-Massuyés and Phillippe Dague
HCBFS: Combining Structure-Based and TMS-Based Approaches in

Model-Based Diagnosis o 115
T.K. Satish Kumar
Possible Conflicts, ARRs, and Conflicts 122

Belarmino Pulido Junquera and Carlos Alonso Gonzéalez
Model-Based Reliability and Diagnostic: A Common Framework for

Reliability and Diagnostics 129
Berhard Anrig and Jiirgen Kohlas
Far-sighted diagnosis of active systems 137

Roberto Garatti, Gianfranco Lamperti and Marina Zanella
Model-based Monitoring of Piecewise Continuous Behaviors using
Dynamic Uncertainty Space Partitioning 146
Bernhard Rinner and Ulrich Weiss
Object-Oriented Dynamic Bayesian Network-Templates for Modelling
Mechatronic Systems 151
Harald Renninger and Hermann von Hasseln
Development Tool for Distributed Monitoring and Diagnosis Systems 158
M. Albert, T. Langle and H. Worn
Using supervised learning techniques for diagnosis of dynamic sys-

eMS . . 165
Pedro J. Abad, Antonio J. Suérez, Rafael M. Gasca and J.A. Ortega
Fault isolation using process algebramodels 172

Dan Lawesson, UIf Nilsson and Inger Klein
Distributed Diagnosis of Networked, Embedded Systems 179

James Kurien, Xenofon Koutsoukos and Feng Zhao

Papers

Particle Filtersfor Real-Time Fault Detection in
Planetary Rovers

Richard Dearden and Dan Clancy
Research Institute for Advanced Computer Science
NASA Ames Research Center
Mail Stop 269-3 M offett Field, CA 94035 USA
Email:dear den,clancy@ptolemy.arc.nasa.gov

Abstract.

Planetary rovers provide a considerable challenge for artificial in-
telligence in that they must operate for long periods autonomously,
or with relatively little intervention. To achieve this, they need to
have on-board fault detection and diagnosis capabilities. Traditional
model-based diagnosis techniques are not suitable for rovers due to
the tight coupling between the vehicle’s performance and its envi-
ronment. Hybrid diagnosis using particle filters is presented as an
alternative, and its strengths and weaknesses are examined. We also
present some extensions to particle filters that are designed to make
them more suitable for use in diagnosis problems.

1 Introduction

Planetary rovers provide a considerable challenge for artificial intel-
ligence in that they must operate for long periods autonomously, or
with relatively little intervention. To achieve this, they need (among
other things) to have on-board fault detection and diagnosis capabil-
ities in order to determine the actual state of the vehicle, and decide
what actions are safe to perform. However, as we will discuss be-
low, traditional approaches to diagnosis are unsuitable for rovers, and
we must turn to hybrid approaches. In this paper we describe an ap-
proach to hybrid diagnosis based on particle filters [2, 7, 3]. We show
that the characteristics of diagnosis problems present some difficul-
ties for standard particle filters, and describe an approach for solving
this problem. We will use rovers as a motivating example through-
out this paper, but the techniques we describe can be applied to any
hybrid diagnosis problem.

The diagnosis problem is to determine the current state of a system
given a stream of observations of that system. In traditional model-
based diagnosis systems such as Livingstone [14], diagnosis is per-
formed by maintaining a set of candidate hypotheses (in Livingstone,
a single hypothesis was used) about the current state of the system,
and using the model to predict the expected future state of the system
given each candidate. The predicted states are then compared with
the observations of what actually occurred. If the observations are
consistent with a particular state that is predicted, that state is kept as
a candidate hypothesis. If they are inconsistent, the candidate is dis-
carded. Traditional diagnosis systems typically use a logic-based rep-
resentation, and use monitors to translate continuous-valued sensor
readings into discrete-valued variables. The system can then reason
about the discrete variables, and compare them with the predictions
of the model using constraint propagation techniques.

Unlike the spacecraft domains that Livingstone has been applied
in, rover performance depends significantly on environmental inter-
actions. The on-board sensors provide streams of continuous valued
data that varies due to noise, but also due to the interaction between
the rover and its environment. For example, a rover may have a sen-
sor that reports the current drawn by a wheel. In normal operation,
this quantity may vary considerably, increasing when the vehicle is
climbing a hill, and decreasing on downward slopes. The diagnosis
system needs to be able to distinguish a change in the current drawn
due to the terrain being traversed from a change due to a fault in the
wheel. A second issue for rovers is that their weight and power is
very tightly constrained. For this reason, any on-board diagnosis sys-
tem must be computationally efficient, and should be able to adapt
to variations in processor availability. Ideally, we would also like it
to adapt based on its own performance, spending more time on diag-
nosis when a fault is likely to have occurred, and less time when the
system appears to be operating normally.

Arover’s close coupling with its environment poses a considerable
problem for diagnosis systems that use discrete models. A particular
sensor reading may be normal under certain environmental condi-
tions, but indicative of a fault in others, so any monitor that trans-
lates the sensor reading into a discrete value such as “nominal,” or
“off-nominal high” must be sophisticated enough to take all the en-
vironmental conditions into account. This can mean that the diagno-
sis problem is effectively passed off to the monitors—the diagnosis
system is very simple, but relies on discrete sensor values from ex-
tremely complex monitors that diagnose the interaction between the
system and its environment as part of translating continuous sensor
values into discrete variables. To overcome this problem, we need to
reason directly with the continuous values we receive from sensors.
That is, our model needs to be a hybrid system, consisting of a set of
discrete modes that the system can be in, along with a set of continu-
ous state variables. The dynamics of the system is described in terms
of a set of equations governing the evolution of the state variables,
and these equations will be different in different modes. In addition,
a transition function describes how the system moves from one mode
to another, and an observation function defines the likelihood of an
observation given the mode and the values of the system variables.

This hybrid model can be seen as a partially observable Markov
decision process (POMDP) [1]. POMDPs are frequently used as a
representation for decision-theoretic planning problems, where the
task is to determine the best action to perform given the current es-
timate of the actual state of the system. This estimate, referred to as

the belief state,is exactly what we would like to determine in the di-
agnosis problem, and the problem of keeping the belief state updated
is well understood in the decision theory literature. The belief state
is a probability distribution over the system states—that is, for every
state it gives the probability of being in that state, given our prior be-
liefs about the state of the system, and the sequence of observations
and actions that have occurred so far.

Unfortunately, maintaining an exact belief state is computation-
ally intractable for the types of problem we are interested in. Since
our model contains both discrete and continuous variables, the belief
state is a set of multidimensional probability distributions over the
continuous state variables, with one such distribution for each mode
of the system. These distributions may not even be unimodal, so just
representing the belief state is a complex problem, but updating it
when new observations are made is intractable for hybrid models in
all but the simplest of models (see [8] for an illustration of this).
Therefore, an approximation needs to be made. As we said above,
we will use a particle filter to approximate the belief state and keep
it updated.

A particle filter represents a probability distribution using a set of
discrete samples, referred to as particles, each of which has an associ-
ated weight. The set of weighted particles constitutes an approxima-
tion to the belief state, and has the advantage over other approaches
such as Kalman Filters [6] that it can represent arbitrary distributions.
To update the distribution when a new observation is made, we treat
each particle as a hypothesis about the state of the system, apply the
model to it to move it to a new state, and multiply the weight of the
particle by the likelihood of making the observation in that new state.
To prevent a small number of particles from dominating the proba-
bility distribution, the particles are then resampled, with a new set of
particles, each of weight one, being constructed by selecting samples
randomly based on their weight from the old set.

Particle filters have already proven very successful for a number of
tasks, including visual tracking [7] and robot navigation [4]. Unfor-
tunately, they are less well suited to diagnosis tasks. This is because
the mode transitions that we are most interested in detecting namely
transitions to fault states typically have very low probability of actu-
ally occurring. Thus, there is a risk that there will be no particle in a
fault state when a fault occurs, and the system will be unable to diag-
nose the fault. We propose a solution to this problem by thinking of a
particle filter as a convenient way to divide the computation time that
is available for doing diagnosis between the candidate states that the
system could be in. A conventional particle filter splits the particles
(and hence the computation time) according to how well the states
predict the observations, but with this approach we will also spend
some computation time on fault states that are important to diagnose.
We do this simply by ensuring that there are always some particles
in those states. As we will show, the details of the particle filter algo-
rithm mean that we can add these additional particles without biasing
the diagnosis that results.

In the next section we discuss the hybrid model of the rover in
detail. In Section 3 we describe particle filtering and demonstrate its
weaknesses when applied to diagnosis problems, and in Section 4
we will describe our modifications to the standard particle filter in
detail. In Section 5 we present some preliminary results on real rover
data, using a simple version of our proposed approach. The final sec-
tion looks at the relationship between this work and some previous
approaches to this problem, and discusses some future directions for
this work.

2 Modeling a Planetary Rover

As we said above, we model a rover as a hybrid system. The dis-
crete component of the rover’s state represents the various opera-
tional and fault modes of the rover, while the continuous state de-
scribes the speed of the wheels, the current being drawn by various
subsystems, and so on. Following [13], our rover model consists of a
tuple (M, V, T, E, O) where the elements of the tuple are as follows:

e M is the set of discrete modes the system can be in. We assume
that M is finite, and write m for an individual system mode.

e V is the set of variables describing the continuous state of the
system.

e T is atransition function that defines how the system moves from
one mode to another over time. We write Prr(m,m') for the
probability that the system moves from mode m to mode m' .
We may also include a second transition function Prr(m, a, m’)
which is used when an action a occurs. This gives the probability
of moving from m to m’ when action a is executed.

e F is a set of equations that describe the evolution of the continu-
ous variables over time. The equations that apply at a given time
potentially depend on the system mode, so we write E,, for the
equations that apply in mode m. These equations will in general
include a noise term to account for random variations in the state
variables. Here we will assume Gaussian noise, with the parame-
ters of the Gaussian determined individually for each equation.

e (O is a function mapping the system state into observations. We
will assume that the observable system characteristics are some
subset of the system variables V', with their values corrupted by
Gaussian noise (again with parameters that may be a function of
the variable, and the system mode), so we write O(v, m) for the
observed value of some variable v in mode m.

We will also write Pr(s’|s) for the probability distribution over
future states s’ given some state s,where s and s’ are hybrid states,
so Pr(s’|s) includes both the distribution over the future mode given
by Pr T'(m'|m),and the distributions over the continuous variables
given by E,,.

The diagnosis problem now becomes the task of determining the
current mode m that the system is in, and the values of all the state
variables in V' (the results we will present will only show the proba-
bility distribution over discrete modes, but the algorithm produces a
distribution over the full hybrid state).

The experiments we will present in Sections 3 and 5 use actual
telemetry data from NASA Ames Marsokhod rover. The Marsokhod
is a planetary rover built on a Russian chassis that has been used in
field tests from 1993-99 in Russia, Hawaii, and the deserts of Ari-
zona and California. The rover has six independently driven wheels,
and for the experiments we present here, the right rear wheel had a
broken gear, and so rolls passively. The Marsokhod has a number of
sensors, but we will restrict our attention to diagnosing the state of
the broken wheel, and will therefore use only data from the wheel
current and wheel odometry sensors. We will treat each wheel inde-
pendently in the diagnosis. For each wheel, we have a model, taken
from [13], with the following characteristics:

e M consists of 23 system modes of which 14 are fault states.

e V/ consists of variables for the wheel current and wheel speed, and
the derivatives of current and speed.

e T is a fairly sparse matrix, with at most six successors for any
given mode. The probability of a transition to a fault state is 0.01
or less. All commands are described by one transition function

for the start and one for the end of a command because the data
doesn’t identify which command occurred.

e The state equations in E consist of the previous value plus a con-
stant term and noise. The noise is Gaussian with standard devia-
tion in the range 0.001 to 1.0, and the equations are independent
for each state variable.

e The equations in O are independent for each variable (but vary
depending on the mode), and include a Gaussian noise term with
a standard deviation that varies from 0.001 to 1.0.

3 ParticleFilters

A particle filter approximates an unknown probability distribution
using a weighted set of samples. Each sample or particle consists of
a value for every state variable, so it describes one possible complete
state the system might be in. As observations are made, the transition
function is applied to each particle individually, moving it stochasti-
cally to a new state, and then the observations are used to re-weight
each particle to reflect the likelihood of the observation given the
particle’s new state. In this way, particles that predict the observed
system performance are highly weighted, indicating that they are in
likely states of the system. A major advantage of particle filters is
that their computational requirements depend only on the number of
particles, not on the complexity of the model. This is of huge im-
portance to us as it allows us to do diagnosis in an anytime fashion;
increasing or decreasing the number of particles depending on the
available computation time.
To implement a particle filter, we require three things:

e A probability distribution over the initial state of the system.

o A model of the system that can be used to predict, given the cur-
rent state according to an individual particle, a possible future state
of that particle. Since 7' is stochastic, and E includes noise terms,
the predictive model selects a new state for the particle in a Monte
Carlo fashion [5], choosing by sampling from the probability dis-
tribution over possible future states.

e A way to compute the likelihood of observing particular sensor
values given a state. In our case, this is given by the observation
function O.

The particle filtering algorithm is given in Figure 1. Step (i) is the
predictive step, where a new state is calculated in a Monte Carlo way
for each particle, and this new state is then conditioned on the obser-
vations in step (ii) (we call this the re-weighting step). The predictive
step is performed by applying T to each particle, and then apply-
ing the appropriate equations from E to the state variables, sampling
values from the Gaussian error terms. Once the particles have been
re-weighted, we can then calculate the probability of each mode sim-
ply by summing the weights of the particles in the mode. We refer to
step (b) as the resampling step. For more details on the properties of
particle filters see e.g. [3].

3.1 Problemswith ParticleFiltersfor Diagnosis

Unfortunately, there are a number of difficulties in applying particle
filters to diagnosis problems. In particular, the filter must have a par-
ticle in a particular state before the probability of that state can be
evaluated. If a state has no particles in it, its probability of being the
true state of the system is zero. This is a particular problem in diag-
nosis problems because the transition probabilities to fault states are
typically very low, so particles are unlikely to end up in fault states

1. Create a set of n particles where each particle p; has a state s;
and a weight w;. s; is sampled randomly from the prior state
distribution, and w; = 1.

2. For each time step, do:

(a) Replace each particle p; with pj as follows:

i. Select a future state s; by sampling from Pr(s|s;), the
distribution over possible future states given by the model.

ii. Re-weight p; by multiplying its weight by the probability
of the observations o given s; as follows:

wi = Pr(o|s;)w;

(b) Resample n new particles p1, . . ., p» by copying the p’ cur-
rent particles where each particle p’; is added to the new
samples with the following probability:

]

w

Pr(p; =p§) = ﬁ
k=1 Yk

Figure1l. The particle filtering algorithm.

during the Monte Carlo predictive step. This situation is known as
sample impoverishment.

Figure 2 illustrates this problem. Each graph shows the most likely
modes that the wheel is in (the y-axis is the total weight of the parti-
cles in each mode, so a value of 10000 implies that all particles are in
that mode), shown over part of one of the trials in which the wheel is
initially idle, and then at step 12 is commanded to drive forward at a
fixed speed. The graphs on the left show the performance of Wheel 1,
which is operating nominally. The graphs on the right show the per-
formance of Wheel 6, which is faulty. In the top line, the probability
of the fault occurring is 0.1 rather than its true value of 0.01. Here
the fault is quickly detected in Wheel 6. In the bottom line of graphs,
the fault probability is set to its true value, and in this case the fault
is not successfully detected because insufficient particles enter the
fault state. One might expect that once a particle enters the fault state
its weight would be high since it would predict well, and at the re-
sampling step it should lead to several new particles being created.
Unfortunately, this did not occur in this situation because although
some particles did enter the fault state, their continuous parameter
values did not agree with the observations well, so they still had low
weights. The continuous parameters did not match because each of
the particles that entered the fault state came from the COMMANDE-
DRUNNING state, in which the current and wheel speed are expected
to be much higher than the observed values.

4 Importance Sampling

The simplest solution to the sample impoverishment problem is to
increase the number of particles being used. Given the constraints
imposed on on-board systems, this approach is probably unrealistic.
The data presented above was implemented in Java, using 10,000
particles per wheel, and runs in approximately 0.5 seconds per up-
date on a 750MHz Pentium 3. This is probably at the upper limit
of the number of particles we could expect to use on-board a rover
as the time available for diagnosis is longer, but there will be less
computation devoted to diagnosis. Thus running with ten times as
many particles (which is roughly equivalent to multiplying the fault

10000
8000
6000
4000

2000 Idle ——
PrematureAction ------
CommandedSpeedRising -
CommandedRunning &
GearAndEncoderFaultRunning --a--

30 40 50 60

8000
6000
4000

2000 Idle ——
PrematureAction ------
CommandedSpeedRising ---*
CommandedRunning &
Gef\rAndEncodfrFaultRunnipg e

30 40 50 60

10000 - -
8000
6000
4000
2000 dle ——
PrematureAction ------
CommandedSpeedRising -
CommandedRunning &
0 GegrAndEncodngauItRunnifg e
30 40 50 60
10000 " ae6
8000
6000
4000
2000 dle ——
PrematureAction ------
CommandedSpeedRising ----%----
CommandedRunning &
GePrAndEncodfrFauItRunnin S

30 40 50 60

Figure 2. Results for Wheel 1 (left side) and Wheel 6 (right side). In the top row, the probability of a fault is ten times its true value, while the bottom row
uses the true probabilities. The fault (GEARANDENCODERFAULTRUNNING)in Wheel 6 is quickly detected in the top row, but is never discovered in the
bottom row due to sample impoverishment.

probability by ten) is probably impractical on the rover, and even
10,000 particles may be unrealistic as the model gets more complex.
This could be somewhat overcome by only increasing the number
of particles when there is some evidence that the system is predict-
ing poorly. In order to achieve this, we need some measure of when
this occurs. The obvious measure is to look at the total weight of the
particles after conditioning on the observations. If no particles are
predicting the observations well the total weight should drop. Un-
fortunately, in practice this is rarely useful because there are a num-
ber of other possible causes for this behavior. For example, particles
moving from a state in which there is high confidence in the sen-
sor readings to a state with more sensor noise will tend to drop in
weight even if they are still predicting the observations well. We see
this in the Marsokhod model because the IDLE mode has relatively
large variance for the observation noise, whereas the COMMANDE-
DRUNNING mode has smaller variance, so the total particle weight
increases when the system moves from the IDLE to the COMMANDE-
DRUNNING mode, even for wheel 6 where COMMANDEDRUNNING
predicts the observations poorly.

Another way to reduce the likelihood of sample impoverishment
is to take advantage of some results from importance sampling (see
e.g. [9]). In importance sampling, we want to sample from some dis-

tribution P, but we can’t. Instead, we sample from some other dis-
tribution @, and weight each sample s by Prp(s)/ Prg(s), the ratio
of the likelihood of sampling s from P to the likelihood of sampling
it from Q. The weighted sample is then an unbiased sample from
P, as long as @ is non-zero everywhere that P is non-zero. In fact,
importance sampling is exactly what the particle filter algorithm is
doing. For a particle filter, the unknown distribution P is the poste-
rior distribution we are trying to compute, Q is the prior distribution
(the set of samples before the observation), and the re-weighting step
corresponds to the importance sampling weight computation.

Given that whatever we choose for), the weighted samples are
an unbiased sample from P, we can add arbitrary samples to our
particle filter at the resampling step, and still end up with an unbiased
posterior distribution. We will use this property to ensure that we
have samples in the system modes that are important to us (hence
the name importance sampling). The question then is how to choose
(. We can imagine an oracle that provides a set of candidate states
the system might end up in, given the current distribution over state.
When we resample, we simply make sure that there are always some
particles in the states provided by the oracle. If those states explain
the subsequent observations well, the particles in them will get high
weight, and are likely to be resampled with more particles at the next

10000 [xxsexxsexesxx

8000 || Poe
6000 |- |
4000 |

2000 | Idle ——
i PrematureAction ------
CommandedSpeedRising -
CommandedRunning &
GearAndEncoderFaultRunning --a--

30 40 50 60

10000

9000
8000
7000
6000
5000
4000
3000

2000

ldle ——

PrematureAction ------

CommandedSpeedRising ----*---
CommandedRunning &

GearAndEncoderFaultRunning ----

1000

30 40 50 60

Figure3. Results for the importance sampled particle filter. All states with > 25% probability were used as starting points for the forward search, and 0.5%
of the particles were assigned to each of the found states. On the left are results for wheel 1, and on the right for wheel 6.

step. On the other hand, if they predict the observations poorly, the
particles will quickly disappear again.

The question that remains is how to implement the oracle. For a
complex system such as a planetary rover, with many components
each with its own set of possible failure modes, there are exponen-
tially many possible failure modes, so this is a non-trivial problem.
However, one approach that seems promising is to use a traditional
model-based diagnosis system such as Livingstone [14]. These dis-
crete systems typically operate more quickly than hybrid approaches,
so can be used to suggest hypotheses without significantly affecting
computation time. We pointed out in the introduction that they are not
in general suitable for diagnosing rovers, but they could be used to
identify sets of likely system modes for the hybrid system to be used
in. The integration of Livingstone with the particle filter approach is
currently work in progress, as it adds a number of additional compli-
cations including building an additional system model, and ensuring
that the discrete and hybrid models agree with one another and can
easily be translated back and forth.

For simpler systems such as the Marsokhod wheel diagnosis we
have used in this paper, the above approach is unnecessary. Instead,
we can use an oracle based on forward search from the current high-
probability states. Since each system mode in this model has at most
six possible successors, and there are typically only two to three high
probability modes at any time, we find in practice that in most cases
a simple one-step look-ahead search adds fewer than five modes to
those that already contain particles.

5 Resaults

The results we present here are based on the Marsokhod model we
described in Section 2. Dr. Rich Washington supplied the model and
the data, which came from his work on using Kalman filters for rover
diagnosis [13]. The only changes made to the model were to make
it suitable for use with a particle filter; no changes were made to
model parameters or transition probabilities. To demonstrate our ap-
proach we use a small piece of one of the telemetry data files (the
same piece used in Section 3) in which the rover is initially idle, and
then a drive command is issued, resulting in an increase in current to
each wheel, followed by a corresponding increase in speed, and then

a constant speed. As before, wheel 6 is faulty, with a broken gear
(this corresponds to the GEARANDENCODERFAULTRUNNING state
in the model).

Figure 3 shows the results for the importance sampled particle fil-
ter. We used single step forward search from all states with probabil-
ity > 0.25 to select the set of bias states. Each of these states was
then guaranteed to receive at least 0.5% of the total number of par-
ticles at each re-sampling step. The left hand graph is the probable
states for Wheel 1, as before. Like the graph in the bottom row of
Figure 2, the PREMATUREACTION state was given high probability
before step 13. This state appears where the effects of an action are
seen before the signal to perform the action, due to problems with the
rover telemetry. In this case it is a spurious result due to the model
of the IDLE state not allowing sufficient noise in the observations. A
small adjustment to the model would remove this problem, which is
only present in the data for two of the wheels. The right hand graph
shows the same data for Wheel 6. In this case, the fault state domi-
nates the probability distribution after step 20, seven steps after the
command to drive the wheel was observed, as compared with three
steps for the model with increased fault probabilities (Figure 2).

6 Discussion and Relation to Other Work

An important thing to note is that standard particle filters treat the
model essentially as a black box, using it only to predict future states
of the system. We have described one approach that exploits the
structure in the model to make diagnosis using particle filters more
effective. This is by no means the only way to exploit that structure,
and we are in the process of looking at other techniques. Possibilities
include making a single-fault assumption (but relaxing it if it predicts
the observations poorly), and taking advantage of independence be-
tween components in the system to reduce the number of samples
needed, or even to diagnose subsystems independently.

One closely related piece of work is Verma et al.’s decision-
theoretic particle filter [11]. Their approach is similar to ours, but
they assign a utility—which corresponds to how important each state
is to diagnose—to every state and multiply the probability of a tran-
sition by the utility of the state that results. This alters the transition
function to favor important states, rather like the approach we took

in Figure 2. For relatively simple diagnosis tasks such as the one
we have presented here, the approaches seem very similar. However,
designing a utility function to produce the right diagnoses, without
causing too many false diagnoses of faults is a difficult task, espe-
cially as any reasonable utility function would give all fault states
a high utility. In [10], they refine this approach, again using a risk
function that scores states by how important it is to diaghose them
correctly, but this time modifying the particle filter algorithm so that
the samples are distributed according to the product of the posterior
probability distribution and the risk factor. This ensures that samples
in high-risk states have higher weights, and the true posterior can be
recovered from the risk-sensitive posterior, but still suffers from the
problem of sample impoverishment. These approaches are orthogo-
nal to the approach described here, and we are currently working on
combining the two.

Another related effort is the work of Washington [13] that applies
Kalman Filters to this problem. In this work, the continuous dynam-
ics in each mode is tracked by a set of Kalman filters. The main
problem with the approach is that the number of filters tends to in-
crease over time because each time a transition is made to a state the
initial conditions for the filter are different, and filters with differ-
ent initial conditions cannot be combined. This is not a problem for
particle filter-based approaches because the particle filters can rep-
resent arbitrary distributions over the parameter values, so particles
entering a state with two different sets of initial conditions will form
a bi-modal distribution. As we said above, we used the model and
data from this paper in our own work. We see fewer errors in the
mode identification with our approach than in Washington’s paper,
although we are sometimes slower to identify the fault, and our com-
putational requirements are somewhat higher.

As we said in the introduction, this paper is intended as a proof
of concept. There is still much work to do on the problem of how
to integrate a model from Livingstone with this system to act as an
oracle. We have demonstrated that a simple look-ahead search per-
forms quite well, but this is clearly inadequate for large diagnosis
problems, particularly as most faults can occur at any time, so the
one step lookahead is unlikely to scale to very large problem. We are
also examining a number of other approaches to improving diagno-
sis with particle filters, such as backtracking when prediction is poor,
and re-sampling past states based on observations that occurred more
recently. Finally, we are investigating how a diagnosis system of this
type would fit with the CLARALy rover architecture [12] being used
for future NASA missions to Mars.

REFERENCES

[1] Dimitri P. Bertsekas, Dynamic Programming: Deterministic and
Stochastic Models, Prentice-Hall, Englewood Cliffs, 1987.

[2] A. Doucet, ‘On sequential simulation-based methods for Bayesian fil-
tering’, Technical Report CUED/F-INFENG/TR.310, Department of
Engineering, Cambridge University, (1998).

[3] Sequential Monte Carlo in Practice, eds., Arnaud Doucet, Nando De
Freitas, and Neil Gordon, Springer-Verlag, 2001.

[4] Dieter Fox, Wolfram Burgard, and Sebastian Thrun, ‘Markov localiza-
tion for mobile robots in dynamic environments’, Journal of Artificial
Intelligence Research, 11, 391-427, (1999).

[5] Markov Chain Monte Carlo in Practice, eds., W. R. Gilks, S. Richard-
son, and D. J. Spigelhalter, CRC Press, 1996.

[6] M.S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Prac-
tice, Prentice Hall, 1993.

[7]1 M. Isard and A. Blake, ‘CONDENSATION: Conditional density prop-
agation for visual tracking’, International Journal of Computer Vision,
(1998).

[8] Uri Lerner, Ron Parr, Daphne Koller, and Gautam Biswas, ‘Bayesian

[9]
[10]

[11]

[12]

[13]

[14]

fault detection and diagnosis in dynamic systems’, in Proceedings of
the Seventeenth National Conference on Atrtificial Intelligence, (2000).
B. D. Ripley, Stochastic Simulation, Wiley, New York, 1987.

Sebastian Thrun, John Langford, and Vandi Verma, ‘Risk sensitive par-
ticle filters’, in Neural Information Processing Systems (NIPS), (De-
cember 2001).

V. Verma, J. Langford, and R. Simmons, ‘Non-parametric fault iden-
tification for space rovers’, in International Symposium on Artificial
Intelligence and Robotics in Space (iSAIRAS), (2001).

R. Wolpe, I. A. D. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,
‘The CLARAty architecture for robotic autonomy’, in Proceedings
of the 2001 IEEE Aerospace Conference, Big Sky, Montana, (March
2001).

Rich Washington, ‘On-board real-time state and fault identification
for rovers’, in Proceedings of the IEEE International Conference on
Robotics and Automation, (April 2000).

Brian C. Williams and P. Pandurang Nayak, ‘A model-based approach
to reactive self-configuring systems’, in Proceedings of the Thirteenth
National Conference on Atrtificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference, pp. 971-978, Port-
land, Oregon, (1996). AAAI Press / The MIT Press.

Hybrid Modeling and Diagnosisin the Real World: A Case Study

Sriram Narasimhan, Gautam Biswas, Tim Bowman, Mark Kay & Kirby Keller

Gabor Karsai & Tivadar Szemethy
EECS Dept. & 1SIS, Vanderbilt University
Box 1824, Station B, Nashville, TN 37235.

{nsriram, biswas, gabor, tiv} @vuse.vanderbilt.edu

Abstract

Applying model-based diagnosistechniquesto sys-
tems that exhibit hybrid behavior presents an inter-
esting set of challenges that mostly revolve around
interactions of the continuous and discrete compo-
nents of the system. In many real world systems,
the overall physical plant is inherently continuous,
but system control is performed by a supervisory
controller that imposes discrete switching behav-
iors by reconfiguring the system components, or
switching controllers. In this paper, we present a
case study of an aircraft fuel system, and discuss
methodologies for building system models for on-
line tracking of system behavior and performing
fault isolation and identification. Empirical stud-
ies are performed on detection and isolation for a
set of pump and pipe failures.

1 Introduction

Most present-day systems that we use are designed to be re-
pairable. Failures. either physical (hardware) or logical (soft-
ware), and the resulting maintenance are a fundamental part
of the economics of ownership. Fault diagnosis involves the
detection of anomal ous system behavior and the isolation and
identification of the cause for the deviant behavior. When the
system includes safety-critical components, failures or faults
in the system must be diagnosed as quickly as possible, and
their effects compensated for so that control and safety can
be maintained. The term, diagnostic capabilities, refers to
the abilities of a system to detect a failure and isolate it to
afailed unit. Quick detection and isolation allows for quick
corrective actions that may include reconfiguration of system
functions to prevent damage and maintain control.

Fault accommodation requires tight integration of online
fault detection, isolation, and identification with the system
control loop that may be designed to take appropriate control
actions to mitigate the effect of the faults and help maintain
nominal system operation. Failure to detect faults reduces
system availability, results in failed or incomplete missions,
and, in some cases, may even lead to catastrophic failures that
lead to loss and destruction of the system. Therefore, fault
diagnosisiscritical to achieving system performanceand life-
cycle cost objectives.

The Boeing Company
MC S111-1335, Box 516
St. Louis, MO 63166.

{timothy.e.bowman, mark.c.kay,kirby.j.keller } @boeing.com

In general, systems are dynamic, i.e.,, their behavior
changes over time. Faults impose additional transients on
the dynamic behavior, but that may be difficult to detect and
characterize, especialy in the presence of model disturbances
and noisy measurements. Moreover, in physical systems nat-
ural feedback from the system and controller actions may
mask the transient behavior if they are not detected soon after
they occur. This motivates the development and use of online
model-based fault detection and isolation methods. Model-
based techniques employ a model to predict nominal system
behavior. The model must be constructed at alevel of detail
where system behavior can be mapped to system components
and parameters. The relations in the model are employed to
map observed deviations between measurements and values
predicted by the model to possible faults in system compo-
nents. Continued monitoring helps establish a unique fault or
set of faults associated with the system.

Most real-life systems are equipped with a limited num-
ber of sensors to track system behavior, and analytic redun-
dancy methods have to be applied to derive non-loca in-
teraction between potential faults and observations. These
techniques have been applied to a variety of schemes used
in the diagnosis of discrete [deKleer and Williams, 1987],
discrete event [Lunze, 1999; Sampath et al., 1996] and
continuous systems [Gertler, 1997; Mosterman and Biswas,
1999]. The traditional approach to hybrid system diagno-
sis has been to use a single continuous model with complex
non-linearities, or abstracting the continuous dynamics to a
discrete event model. Complex non-linearities complicate
the analysis and they may introduce numerical convergence
problems. Discrete event abstractions lead to loss of criti-
cal information, such as fault transient characteristics. Fur-
ther, methods to identify the set of events that describe both
nominal and faulty behavior is often a computationally chal-
lenging task bringing to question the scalability of such ap-
proaches. Hybrid system analyses require the use of multi-
ple models of the system. Recent approachesto hybrid sys-
tem diagnosis have incorporated appropriate model selection
and mode estimation techniques at run time to track faulty
behavior and perform fault isolation [Mcllraith et al., 2000;
Hofb]aur and Williams, 2002; Narasimhan and Biswas, 2001,
2002].

Model-based diagnosis techniques can only be as good as
the model s upon which they are based. Incompl ete and incor-

rect models cause problems with the tracking and fault isola-
tion tasks. The tracking process may produce false alarms or
worse missed alarms. In the first case, diagnosisis triggered
when there is no fault in the system. In the second situation,
diagnosis is not triggered and a fault may be missed. Fault
isolation with incomplete and inaccurate models may also
produce false candidates and miss true candidates. On the
other hand, building models that include unnecessary detail
may increase computational complexity making online pro-
cessing infeasible. Therefore, a key task in model-based di-
agnosisisto build accurate models at the right level of detail.
This paper focuses on the pragmatics of model building and
fault isolation by performing a case study on the fuel transfer
system of an aircraft.

2 Fuel System Description

High-performance aircraft require sophisticated control tech-
niques to support all aspects of operation, such as flight con-
trol, mission management, and environmental control. An
aircraft's fuel transfer system maintains the required flow
of fuel to the engines through different modes of operation,
while ensuring that imbal ances are not created that affect cen-
ter of gravity of the system. Fig. 1. illustrates a typica fuel
system configuration. The fuel system geometry is symmet-
ric and may be split into |eft side and right side arrangements.
The overall system can be divided into two main sub-systems:
(i) the engine feed system, and (ii) the transfer system. The
feed system consists of aleft and right engine feed tank. The
tanks are connected through pipes with controlled valves so
that fuel can betransferred between the tanksif afault occurs
in one of the tanks. A boost pump in each of the feed tanks
controls the supply of fuel from the tank to its respective en-
gine. The transfer system moves fuel from the two forward
fuselage and the two wing tanksto the engine feed tanks. The
intent is to keep the engine feed tanks near full at all times so
that sufficient fuel is available on demand, and if failures oc-
cur in the transfer system there is still a significant amount
of fuel available for emergency maneuvers. The fuel trans-
fer sequence is set up in a way that maintains the aircraft's
center of gravity. To achieve this, pumps located in the fuse-
lage and wing tanks are are turned on in a pre-determined
sequenceto transfer their fuel to acommon transfer manifold
(set of tubes). The fud exits the transfer manifold through
level control valvesinto the feed tanks.

A wide variety of sensors may be included in the fuel
transfer system. Fuel quantity gauging sensors determine the
amount of fuel in atank. Engine fuel flow meters determine
engine fuel consumption. Pressure transducers measure the
transfer and boost pump pressures. Position sensors deter-
minethe open and closed states of valves. Each sensor comes
at acost that is determined by its weight, reliability, complex-
ity, and cost. Therefore, designers often try to minimize the
number of sensors while ensuring that the required control
can be achieved.

The transfer system control schedules the pump operation
to match a pre-defined transfer sequence shown in Table 1.
The unit of the amounts in the table is the pound. Initialy
one wing pump in each tank is turned on. When afeed tank

Right Wing Tank

0

Right Feed
Right Engine

1 B8]

=
Tank
|
FEED

Right Transfer Tank
TRAMNSFER.
Lefl Transfer Tank

iz
el L

INTER- @ @

COMMECT |

0 [B] [P]

. L

Trans fer Purngp

Left Feed

Left Engine
Tarde e

2
8

Level Control Valve

Interconnect Valve D
Boost Purnp

Flow Meter

oEEGG R

Left Wing Tank
Fuel Quantity Sensor

Figure 1: Fuel System Schematic

quantity decreases by 100 lbs, the level control valve in that
tank will be opened. The fuel then flows from the transfer
manifold into the feed tank raising its level back to the full
fuel quantity at which point the level control valve will be
closed, stopping the fuel transfer.

Table 1: Fuel Transfer Sequence

Left Wing | Right Left Fuse- | Right Fuse-
Tank Wing Tank | lage Tank lage Tank
2500 2500 3300 3000

2000 2000 3300 3000

2000 2000 3000 3000

1000 1000 2000 2000

0 0 1000 1000

0 0 0 0

The most common failures in this configuration are trans-
fer and boost pump failures, and shutoff valve failures. The
transfer pumps have two primary failure modes. Oneis ato-
tal loss of pressure caused by the impeller not turning. The
other is adegraded state caused by mechanical wear, leakage,
or electrical failure where the fuel flow rate falls below nom-
inal values. The second failure can lead to the first condition
over time. Faultsin the boost pump mirror those in the trans-
fer pumps. Valve failures are stuck-at conditions, i.e., their
positions do not change even when they are commanded to
do so. This can result from mechanical friction/jamming of
the shaft or electrical failure of the motor or power source. In
this work, we also consider partial failures of the valves. A
third class of faultsthat we consider isleaksin the connecting
pipes. Our goal isto develop an online diagnostic system for
detection, isolation and identification of these faults.

3 Component-based Hierarchical Modeling
for Diagnosis

Complex real-world systems are made up of a number
of subsystems and components. Hierarchica component-
based approaches, e.g., Statecharts [Harel, 1987], 20sim [van
Amerongen, 2000], and Ptolemy [Buck et al., 1994]. are a
practical approach to constructing models of such systems,
We have devel oped a new methodology for hierarchical com-
ponent based modeling that customizes the graphical Generic
Modeling Environment (GME) with a hybrid bond graph
(HBG) approach for building hybrid models of physical sys-
tems with supervisory controllers. This section reviews our
approach to hybrid bond graph modeling, then presents the
GME methodology for building component-based modelsfor
the aircraft fuel transfer system.

3.1 Hybrid Bond Graphs

Our approach to modeling the fuel system is based on an ex-
tended form of bond graphs [Karnopp et al., 1990], called
Hybrid Bond Graphs (HBG) [Mosterman and Biswas, 1998].
Bond graphs present a methodology for energy-based mod-
eling of physical systems. Generic bond graph components
represent primitive processes, such as the energy storage ele-
ments, inertias and capacitors, and dissipative elements, re-
sistors. Bonds represent the energy transfer pathways in the
system. Junctions, which are of two types: 1 or series, and
0 or parallel, define the component interconnectivity struc-
ture, and impose energy conservation laws. Overall, the bond
graph topology implies system behavior that combines indi-
vidual component behaviors based on the principles of conti-
nuity and conservation of energy.

Extensions to hybrid systems require the introduction of
discrete changes in the model configuration. In the HBG
framework, discontinuities in behavior are dealt with at
a meta level, where the energy model embodied in the
bond graph scheme is suspended in time, and discontinuous
model configuration changes are modeled to occur instanta
neously. Therefore, the meta level describes a control struc-
ture that causes changes in bond graph topology using ide-
alized switches that do not violate the principles of energy
distribution in the system. Topology changes result in a new
model configuration that defines future behavior evolution.
To ensure physical principles are not violated, we have de-
veloped transformationsthat derive the initial system statein
the new configuration from the old one. From this point on
behavior evolution is continuous, till another discrete change
istriggered at the meta level.

To keep the overall behavior generation consistent, the
meta-model control mechanism and the energy-related bond
graph model s are kept distinct. The switching structureisim-
plemented as localized switched junctions that provideacom-
pact representation of the system model across al its nomi-
nal modes of operation. Instead of pre-enumerating the bond
graph for each mode, the HBG uses individual junctions to
model local mode transitions. The switched O- and 1- junc-
tions represent idealized discrete switching elements that can
turn the corresponding energy connection on and off. A finite
state machine determines the ON/OFF physical state of the

- Wing Tank

~——

\F

7

. Se-0-TF-0
: Pump Efficiency
: —

Switching Signa[:

Pipe
'Transfer Tank
C— o\)

Feed Tank
C

Figure 2: Hybrid Bond Graph Example

junctions. The transitions in this automaton depend on both
control signals and internal variable values.

Fig. 2 shows the hybrid bond graph model of a portion of
the fuel system. The dotted subsystem represents the wing
tank, and the dashed subsystem represents the fuselage tank.
In this simplified model, the tank system is modeled as a ca-
pacitor for storage of fuel, pump system as an effort source
to boost the pressure and create an outflow, and pipes as con-
duits with resistive losses. For this configuration with two
switched junctions, the system can bein four different modes.
When thetwo junctionsare off, thereis no fuel suppliedto the
feed tank, one of the two tanks (wing or fuselage) can supply
fuel to the feed tank, and both tanks may supply fuel to the
feed tank at the same time. Switching of configurations is
achieved by changing the switching signal values. Suppose
the wing tank is supplying fuel, i.e., signal; = 1 (on) and
signals = 0 (off). To switch supplying tanks, we simply set
signaly = 0 (off) and signals = 1 (on). The state equation
model for the new configuration can be easily derived online
using a standard algorithm [Karnopp et al., 1990].

32 GME

We have developed an approach for building component-
based system models using a graphical modeling tool called
Generic Modeling Environment(GME) [L edeczi et al., 2001].
GME is a configurable toolkit for creating domain-specific
modeling and program synthesis environments. The con-
figuration is accomplished through meta-models® specifying
the modeling paradigm (modeling language) of the applica-
tion domain. The modeling paradigm contains the syntac-
tic, semantic, and visual presentation information of the do-
main, such as the concepts that form the building blocks for
constructing models, the rel ationships among these concepts,
how the concepts may be organized and viewed by the mod-
eler, and the rules governing the composition of individual
concepts and sets of concepts to form component and system

1The concept of meta-modelsin GME differs from the metalevel
switching modelsin HBG.

models. The modeling paradigm definesthe family of models
that can be created using the resultant modeling environment.

The meta-models specifying the modeling paradigm are
employed to automatically generate the target domain-
modeling environment, e.g., the HBG environment. The gen-
erated modeling environment is then used to build domain
models that are stored in a model database. The primarily
graphical, domain models can be conveniently stored in stan-
dard formats including XML to be used by specific applica-
tions. We have developed a GME modeling paradigm that
describes the HBG modeling environment.

3.3 Hierarchical and Compositional Modeling in
the fluid domain

Resl life systems with embedded control tend to be complex,
and system designers and engineers typically have a lot of
difficulty in generating flat models of the entire system. Hi-
erarchical and compositional modeling are useful tools that
allow the system to be constructed in a structured way by
modeling subsystems independently and composing them to
generate system models. The two main stepsin this approach
are: (i) decomposition into subsystems and building mod-
els of subsystems, and (ii) specifying interactions between
subsystems and using composition operators to build system
models. This approach provides a number of advantages,
such as simplicity in model building, independence in build-
ing subsystem models, and modularity and reusability of the
generated components.

To model the fuel transfer system, we develop models of
typical componentsin the fluid domain, such as tanks, pipes,
and pumps. Pipes may include valves that regulate flow.
Pumps and valves can be turned on and off. We assume that
their switching time constants are much faster than the time
constants in the fluid domain. Therefore, pumps and pipes
with valves are modeled as hybrid systems. In our GME
paradigm, subsystems are modeled as components. Interac-
tions between the components are specified as relations be-
tween their in-ports and out-ports. Components connected
by ports define the system model. The ports can model: (i)
energy transfer between componentsin the bond graph frame-
work, and (ii) communication of information by signals. Sig-
nals are assumed to have no energy content.

For this work, we build first order linear models?. Tanks
are modeled as a bond graph segment with a capacitor con-
nected to a O junction. Each tank component can have multi-
ple in-ports and out-ports. In-ports have energy connections
(bonds) to the 0 junction and out-ports have bonds from the
0 junction. Ports may be marked as in and out based on a
conventional direction for energy flow, but this does not mean
that energy cannot flow in the oppositedirection. In casethere
is an energy flow in the opposite direction, the corresponding
variable takes on a negative value.

Pipes are modeled as resistors connected to a 1 junction.
Pipes have exactly one in port and one out-port that can be
connected to ports of other tanks and pipes. The switching
on the pipes is achieved by specifying switching signals on
the 1 junction connected to the resistor. As discussed earlier,

?In reality the pressure flow relations are nonlinear.

pumps are modeled as an effort source connected to a trans-
former, which is connected to a O junction. Pumps have one
out-port for representing the pressure delivered by the pump.

®in Quti——

| 1
F\-- In Qute ™ in Oute ®in Oute

outw-4- Pipe SwitchedPipe LeftEngineFeedTank
[Resistor e | CTank
Purmp i || Efon \
p— - . ‘ !i -
Jut n

PumpEfficiency J2 "

LeftingTank

—
Ot

Figure 3: Hierarchical and Compositional Modeling

As an example, the left wing tank is connected to the left
feed tank by instantiating two tank components, one pipe
component, and one switched pipe component. The switched
pipe controls the flow into the feed tank. The out port of the
first tank (left wing tank) is connected to the in port of the
pipe and out-port of the pipe is connected to the in-port of the
second pipe. Sincethe pumpis modeledto pull fuel out of the
left wing tank, we connect the out port of a pump component
to the in port of the pipe. Fig. 3 illustrates the component
based and hierarchical model of this subsystem and the un-
derlying model of the some of the components.

3.4 Modeling for diagnosis

Models form the core component of the tracking and diag-
nosis algorithms [Biswas and Yu, 1993; Narasimhan et al.,
2000]. The hybrid observer uses quantitative state space
models for tracking nomina system behavior, the fault iso-
lation and identification unit uses tempora causa graphs
(TCG) for quaitative analysis and input output equation
(IOE) models for quantitative parameter estimation. We have
devised schemes to systematically derive these model repre-
sentations from the HBG models created in GME.

Precise tracking of nomina system behavior requires the
component parameter values in the bond graph model be ac-
curately estimated. We describe our parameter estimation
methodol ogy in the next section. For fault isolation and iden-
tification, there has to be a a one to one correspondence be-
tween faults and parametersin the model. For example, if we
abstract a pump model and represent it as an effort source,
we cannot differentiate among faults in the electrical versus
mechanical/fluid part of the pump. Including a transformer
component that models the electrical to fluid energy trans-
formation at an abstract level solves this problem. A partial
fault or degradation in the mechanical part of the pump can
be attributed to a change in the transformation parameter.

Once the model structure has specified and al parame-
ters have been estimated, the hybrid bond graph model of
the complete system is derived by composing the compo-
nent models and flattening out the hierarchy. The designation
of ports as in- and out-ports, and restricting connections to
be from out-ports to in-ports only ensures the consistency of
bond connections when the components are composed. The

=in Oute—

LeftWingTank Hemin Out®

®In QutE—
LeftferTank —L

= In Oute rEE n Oute: ®In Cute. ®n

HE In outE— OutE— Fipe SwitchedPipe LeftEngineFeedTank Pipe LeftEngine
Outi—J Pipe FPump
e o1
Pump R In OutE—) 1=EIn OutE—
Transferhanifold BleedResistar
Ein Outm-—
_— 1 Ein OutE
Right<ferTank HE In outE—-
J Right¥¥ingTank Bemin Out® ®in Out® ® In Out® Ein Out®E = in
Outm— Pipe
iE Pipe SwitchedPipe RightEngineFeadTank Pipe RightEngine
Fump

Pump

Figure 4: Component Model of Fuel System

resulting hybrid bond graph may be used to systematically
derivethe state space and temporal causal graph model of the
system. In the bond graph framework, each element describes
equationsthat need to be satisfied for that component. For ex-
ample, for a0 junction the pressures on all bonds incident is
equal and net flow of all bonds is equal to zero. The proce-
dure to convert to state space equations may be summarized
as[Karnopp et al., 1990]:

1. Identify state variables (effortson capacitors and flow on
inductors).

2. identify input variables (effort and flow sources).

3. Useconstituent equationsof the bond graph components
to derive the relations between the effort and flow vari-
ablesin the system.

4. Substitutefor all non-state and non-input variablesto de-
rivethe state equation model. Thisstepisapplied repeat-
edly till all unnecessary variables are eliminated.

The algorithm to derive the TCG from the bond graph is de-
scribed in [Mosterman and Biswas, 1999].

3.5 Building Models of the Fuel System

From our discussion in earlier sections, the primary model
building steps are: (i) identify subsystems and model them at
the appropriatelevel of detail, (ii) compose system models by
specifying interactions among the subsystems, and (iii) esti-
mate parameters of the model.

As discussed earlier, tanks, pipes, and pumps are the main
components of the fuel system model. In addition, we need
to build models for the transfer manifold and the engines. For
the scenarios we deal with, it was sufficient to model the en-
gines as constant flow sources, i.e., asink. Engines have one
in-port that represents the flow into the engine from the feed
tank. The transfer manifold is modeled as a single capacitor
connected to the 0 junction. The transfer manifold has mul-
tiple in-ports representing flow into, and multiple out-ports
representing flow out of the transfer manifold.

The next step is to determine the complete system config-
uration. For the fuel system we instantiate 6 tanks: 2 wing
tanks, 2 fuselage tanks and 2 engine feed tanks. Each has a
corresponding pump. Since the outlets of the wing and fuse-
lage tanks and the inlet of feed tanks al have valves, we cre-
ated switched pipe componentsfor each of these components.
Two instances of the engine are created, and the transfer man-
ifold component is also included in the model. Fig. 4 depicts
our component-based GME model of the entire fuel system.

The individual components are connected using bond
graph junctions to build the energy model of the overall sys-
tem. The fuselage tanks supply the transfer manifold, where
the flows from the fusel age tanks sum up. Thisis modeled by
connecting one out-port of the fusel age tank to thein-port of a
pipe, and the out-port of the pipe to thein-port of the transfer
manifold. The pump associated with each tank is also con-
nected to the in port of the pipe. This develops a high pres-
sure at theinlet of the pipe, and hence pullsfuel from the tank
into the pipe. The flow from the wing tanks and the transfer
manifold combine and distribute evenly to the left and right
feed tanks. One out-port of the wing tank is connected to the
in port of a pipe. The out-port from these pipes and the out-
port from the transfer manifold are connected to a 0 junction
to combine the flows. The O junction is connected to the in-
port of switched pipes whose out-ports are connected to the
in-ports of the feed tanks. In order to maintain stability when
both feed tanks are closed, a bleed resistor is added to the
piping. This resistor bleeds fuel into the left feed tank. The
out-ports of the feed tanks are connected to the in-ports of the
corresponding engines through pipes.

The next step is to estimate the model parameter values.
For the scenarioswe model, the engine fuel consumption rate
isset at g gpm for both engines®. All other parameters are es-
timated from experimental data of an entire fuel burn curve,
where all the fuel from the wing and fuselage tanks was con-

%In this discussion the actual numbers are not used to avoid any
concerns about releasing sensitive data.

sumed by the engines. We used the rate of depletion of fuel
in the tanks and the flow out of the tanks when the level con-
trol valves are closed to calculate the individual tank capaci-
tances. For theleft feed tank the fuel depletionrateis approxi-
meately d Ibs/s, and hence we determine the capacitance of the

left feed tank to be ¢, L2222 Similarly, the right feed tank ca-

b
pacitance is estimated to be ¢, £ tsl“j)“? . We performed similar

calculations to determine the wing and fuselage tank capac-

ities (approximately c,, L5). To estimate the resistances,
we used the pressure drop and flow through the pipe corre-
sponding to the resistance to calculate the resistance value.
The pump effort and efficiency values were given nominal,

realistic values.

4 Diagnosis
HEG @ Software
IEEHE - Architecture
feme—mesemssmes | 1
! 1
State ! i
Eguation : {
Greneration ! i
‘:r i C DiAERREE — ‘.r_ o I
|
Ditas Hiybnid Famlt N TCG Parareter |
Ohserver 17| Detector Diagnoser Estimator i
; i
| (T S T_._._-

Figure 5: Software Architecturefor Diagnosis

The diagnosis task involves tracking dynamic system be-
havior that includes continuous evolution plus discrete model
changes till the fault detector signals a fault. At this point,
the fault isolation unit is invoked. Discrete mode changes
require dynamic switching of system models, and may also
involve discontinuous changes in the system variables. The
fault isolation unit also needs to consider change in modes
when matching fault signatures with actual system behavior.
This motivates the software architecture for diagnosis, illus-
tratedin Fig. 5. Theinput to thediagnosis system isthe model
as an XML file and the experimental data as a text file. Each
line of the data file represents one sample of the data. Al-
though the current version uses a datafile as input, replacing
it with datafrom an actual system does not alter therest of the
architecture. Each sample of data includes al input values,
all measured output values, and the values of all switching
signals. The output of the diagnosis moduleisthe set of diag-
nostic hypothesesthat are consistent with the model and data.
The diagnosis output at each time step can be observed in a
GUI implemented in Python (www.python.org). The active
state model (ASM) is an internal data structure that maintains
information about the system including the current mode, cur-
rent state estimates, and current diagnostic hypotheses. This
structure is updated at each time step from information re-
ceived from the observer and the diagnosis module. The hy-
brid bond graph (HBG) data structure contains the flattened
HBG model of the system after composition of al active com-

ponent subsystems. The HBG model also containsthe switch-
ing conditionsfor mode changes. These are parsed and stored
in the ASM. All the diagnosis algorithms modules were im-
plemented in C++. The SWIG toolkit was used for Python-
C++ interactions.

The parser reads in the model file, interprets it and cre-
ates the HBG data structure. The symbolic equation gener-
ator (SEG) takes the HBG and the current mode of the sys-
tem and derives the state space equation (SSE) model of the
system, which is stored in the ASM. When tracking system
behavior, the hybrid observer reads in the data sample for the
next time step from the datafile, and checksto seeif any con-
trolled (specified in datafile) or autonomous (stored in ASM)
mode changes have occurred. When mode changes occur,
the SEG is invoked to re-calculate the SSE model. To ac-
commodate for model disturbances and measurement noise,
a Kaman filter is built from the current SSE model to track
system behavior. At each time step, the fault detector com-
pares the system output with the observer estimates to deter-
mine if a fault has occurred in the system. When the fault
detector triggers, the diagnosis module is activated. The di-
agnosis module uses propagation algorithms on the TCG to
generatefault candidatesthat are consistent with the observed
discrepancies. Continued tracking by matching the fault sig-
natures generated for each candidate hypotheses helps refine
the candidate set. For details on the hybrid observer and di-
agnosis algorithms, refer to [Mosterman and Biswas, 1999;
Narasimhan and Biswas, 2002].

In subsequent sections we briefly describe the hybrid ob-
server and the diagnosis modulesand illustrate their function-
ing by applying them to a diagnosis problem on the fuel sys-
tem. In the experimental setup, the fuel system is controlled
by the sequence defined in Table 1. The data for the experi-
mentswas generated using a Matlab/Simulink simulation that
was developed at Vanderbilt University. We assume pressure
values are measured at the output of each of the six tanks of
the fuel system. The fault introduced is an abrupt decreasein
the left fuselage tank pump efficiency at time step 200. This
occurs in the mode when only the left fuselage tank is sup-
plying fuel, and only the left feed tank is receiving fuel.

4.1 Hybrid Observer and Fault Detector

The hybrid observer tracks the system behavior as it evolves
and the fault detector comparesthe observer output to the sys-
tem output to determineif afault is present in the system. The
hybrid observer performs the following tasks:

e Continuoustracking of system behavior in current mode,
e Determining if a mode change has occurred, and

e |nitiaizing the observer in a new mode, with the new
state and new model.

The discrete time form of the SSE models are derived to
track system behavior. To account for model disturbancesand
noisy measurements, we use a Kalman filter to track system
behavior. This requires computation of the R and @) matrices
that model the disturbance and noise variances, and K, which

represents the Kalman gain matrix.

i=Ai+Bu+K(y— 9)

§=Ci
P = AP+ PAT + BQBT — KRKT
K =PCTR™!

In our experiments, R and Q are diagonal matrices with val-
ues of 0.01 along the diagonal. The Kalman gain (K) is ini-
tialized to a diagonal matrix of arbitrarily high value (100 in
our experiments). This gain matrix typically convergesto its
true valuein afew time steps.

Mode changes may be of two types. controlled or au-
tonomous. Controller issued switching commands need to
be provided in the data file. These correspond to the con-
trolled mode changes in the system. At each time step, the
observer checksto seeif the data set indicates a mode change.
All autonomous change conditions are converted so that they
contain only state and input variables. The observer usesin-
put data and estimated state values to calculate if the con-
ditions for any autonomous change evaluates to true. This
is done at each time step also. For the fuel system, there
are no autonomous changes and hence the data file provides
sufficient information to determine if a mode change has oc-
curred. If a controlled or autonomous mode change is indi-
cated, the observer computes the new mode. The equation
solver is invoked to derive the new SSE model. The ob-
server re-initializes the state based on the reset function spec-
ified, and continues the tracking in the new mode with a new
Kaman filter that is derived from the A and B matricesin the
new mode.

Fig. 6illustrates asample run of the hybrid observer for the
experimental setup described earlier. Gaussian noise with a
2% noise variance was generated using the Matlab models as
described earlier. We illustrate the tracking of pressurein the
left fuselage tank. The thick line represents the noisy system
output (it is more like awaveform than aline due to the noise
in the measurements) and the thin line representsthe observer
estimates. Until time step 200 (at which point the fault was
introduced) we natice that this line is completely subsumed
by the thick line indicating accurate tracking. However, after
time step 200 the thin line deviates from the thick lineindicat-
ing afault. The fault detector (uses a 5% detection threshold)
flags the fault. In the next section, we describe the fault iso-
lation scheme.

4.2 Fault Isolation and I dentification

Our fault isolation and identification methodol ogy, described
in greater detail in [Narasimhan and Biswas, 2002], for hy-
brid systemsis broken down into three steps:

1. Afastroll back process using qualitative reasoning tech-
niques to generate possible fault hypotheses. Since the
fault could have occurred in amode earlier than the cur-
rent mode, fault hypotheses need to be characterized as
a two-tuple (mode, fault parameter), where mode indi-
cates the mode in which the fault occurs, and fault pa-
rameter is the parameter of an implicated component
whose deviation possibly explains the observed discrep-
anciesin behavior.

! FuelSystem. LW T.Effort =10] %]

2600
2550}

0 50 100 150 Z00 250 300 350 40

Figure 6: Hybrid Observer Sample Run

2. A quick roll forward process using progressive moni-
toring techniques to refine the possible fault candidates.
The goal is to retain only those candidates whose fault
signatures are consistent with the current sequence of
measurements. After the occurrence of a fault, the
observer’s predictions of autonomous mode transitions
may no longer be correct, therefore, determining the
consistency of fault hypotheses also requires the fault
isolation unit to roll forward to the correct current mode
of system operation.

3. A real-time parameter estimation process using quan-
titative parameter estimation schemes. The qualitative
reasoning schemes are inherently imprecise. As aresult
a number of fault hypotheses may still be active after
Step 2. We employ least squares based estimation tech-
nigues on the input-output form of the system model to
estimate consistent values of the fault parameter that is
consistent with the sequence of measurements made on
the system.

The models used in these three steps, temporal causal graph
(TCG) and input output equations (IOE) model, are derived
directly from the hybrid bond graph.

We illustrate the diagnosis algorithms for the experiment
discussed in the previous section. As Fig. 5 illustrates, after
time step 200 the actual pressure in the left fuselage tank is
below the predicted value. The fault detector flags this and
triggers the diagnosis process. We use the roll back proce-
dure to propagate this discrepancy back through our models
to generate the fault candidates. In the current mode, we get
thefollowing candidates: L eft Fuselage Pump-, L eft Fuselage
Pipe+, Transfer Manifold+, Bleed Resistor+, Left Switched
Pipe+, Left Feed Pump-. Since the left fuselage tank was not
open in any of the previous modes, no candidates are gener-
ated in any previous modes.

The next step rolls forward to check for the consistency
of the effects of the faults hypothesized against actual sys-
tem measurements. Since no autonomous mode changes
are present and we assume that al controller commands are
known, we know exactly what mode the system isin. We
generate signatures (effects of fault) in that mode for al the
above candidates. In the current mode we cannot distinguish

between the candidates because they have similar signatures.
However, when amode change occurs (right feed tank is also
opened), we regenerate signatures in the new mode and note
that Left Switched Pipe+ and Left Feed Pump- do not affect
the right feed tank pressure. However, we notice a discrep-
ancy in the right feed tank pressure, hence we can drop these
candidates. We cannot distinguish between the other candi-
dates (Left Fuselage Pump-, Left Fuselage Pipe+, Transfer
Manifold+) with the selected set of measurements. In order
to distinguish between these candidates we need more mea-
surements. For example, we could model the pump in more
detail and add a sensor to measure the current drawn by the
pump motor. Thiswould let us identify faults in the pump as
opposed to faultsin pipes that the pump is connected to.

Table 2 lists the different fault classes in the fuel system.
Each fault class represents multiple instances of the faults
in the same component. The fault classes are numbered as
follows: 1) Wing Tank Pump (WTP), 2) Wing Tank Pipe
Resistance (WTR), 3) Fuselage/Transfer Tank Pump (TTP),
4) Fuselage/Transfer Tank Pipe Resistance (TTR), 5) Trans-
fer Manifold Resistance (TMR), 6) Switched Pipe Resistance
(SPR, 7) Feed Tank Pump (FTP), and 8) Feed Tank Pipe Re-
sistance (FTR). The results of our diagnosis experiments for
these sets of faults appear in the table. The \/ mark in row i
and column j indicates that if the roll back process generated
candidatesi and j, one of them will be dropped by theroll for-
ward process. The x mark indicates that the current control
sequence and set of measurements are not sufficient to distin-
guish between the pair in question. In general, the algorithm
cannot distinguish between pump and pipe faults associated
with the same tank. We need more detailed models and more
measurements to do this. We also see that we cannot distin-
guish between the transfer manifold and fuselage pipe faults.
We can distinguish between all other fault classes. The abil-
ity to distinguish between all fault classesis critical since the
change in control strategy depends on the fault type.

Table 2: Fuel System Fault Diagnosability

wre | - x |V IV IV IV IV IV
wir | X[- V IV IV IV IV Y
™ |/ V - X X V V v
TR | +/ N X - X v v v/
™R | 4/ N X X - v v v/
s |V [V [V IV IV |- vV [V
e [V oV IV IV IV V- X
R [V [V IV IV IV IV I x |-

5 Conclusions

We have presented a case study on modeling a real system
and building a diagnosis engine for the system. The key
to successful tracking and diagnosis is to have models that
are topologically correct, with parameter value estimates that
match the nominal observed behavior so as not to generate
false alarms. This can be adifficult and time consuming task,
with alot of experimental data being required to build accu-

rate models. The presence of noise in the data complicates
the tracking and fault detection task. For the given set of
measurements, our tracking mechanisms worked well with
fault-free data provided the variance of the added Gaussian
noise was limited to 2%. Part of the reason for such low
noise threshol ds was the use of a naive threshol d-based fault
detector in these experiments. The diagnosis system aways
generated the true fault hypothesis, but in a number of cases
the hypothesis set contained more than one fault candidate.
Thiscould be attributed to lack of detail in the modelsand the
need for more measurementsin the analysis. Also, parameter
estimation was not included as part of the experiment. In pre-
viouswork [Narasimhan and Biswas, 2002], we have shown
that parameter estimation often helps to isolate the true fault.

In future work, we would like to build more detailed mod-
els of the different components of the fuel system in an at-
tempt to diagnose alarger set of faults. The experiments need
to be extended to run with real data provided from Boeing, as
opposed to simulated Matlab data that we generated at Van-
derbilt University. We would also like to run sensitivity anal-
ysistests to the diagnosis system performance under varying
noise and disturbance conditions. Finaly we would like to
build more robust techniques for fault detection and parame-
ter estimation to combat the effects of noise and disturbance.

6 Acknowledgments

This project was conducted as part of ISIS and the EHS lab
at Vanderbilt University. The DARPA/ITO SEC program
(F30602-96-2-0227), NASA-IS grant (NCC2-1238), and the
Boeing Company, St. Louis have supported the activities de-
scribed in this paper. Wewould also like to thank Brian Olson
and John Ramirez for helping to build the initial fuel system
models.

References

[Biswas and Yu, 1993] Gautam Biswas and Xudong W. Yu.
A formal modeling scheme for continuous systems: Focus
on diagnosis. In IJCAI 93, pages 1474-1479, Chamberey,
France, 1993.

[Buck et al., 1994] J.T. Buck, S. Ha, E.A. Lee, and D. G.
Messerschmitt. Ptolemy: A framework for simulating and
prototyping heterogenous systems. International Jour-
nal of Computer Simulation, Special Issue on ”’Simulation
Software Development™, 4:155-182, April 1994.

[deKleer and Williams, 1987] Johan deKleer and Brian C.
Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97-130, 1987.

[Gertler, 1997] Janos Gertler. Fault detection and isola
tion using parity relations. Control Engineering Practice,
5(5):653-661, 1997.

[Harel, 1987] David Harel. Statecharts: A visual formalism
for complex systems. Science of Computer Programming,
8:231-274, 1987.

[Hofbaur and Williams, 2002] Michael W. Hofbaur and
Brian Williams. Mode estimation of probabilistic hybrid

systems. In Fifth International Workshop on Hybrid Sys-
tems: Computation and Control, page To Appear, Stan-
ford, California, USA, March 2002.

[Karnoppet al., 1990] D.C. Karnopp, D.L. Margoalis, and
R.C. Rosenberg. Systems Dynamics: A Unified Approach.
John Wiley and Sons, New York, 2 edition, 1990.

[Ledeczi et al., 2001] A. Ledeczi, M.Maroti, A. Bakay,
G. Karsai, J. Garrett, C. Thomason, G. Nordstorm,
J.Sprinkle, and PVolgyesi. The generic modeling environ-
ment. Workshop on Intelligent Signal Processing, 2001.

[Lunze, 1999] J. Lunze. A timed discrete-event abstraction
of continuous-variable systems. International Journal of
Control, 72(13):1147-64, 1999.

[Mcllraithet al., 2000] Sheila Mcllraith, Gautam Biswas,
Dan Clancy, and Vineet Gupta. Hybrid systems diagnsois.
InThird International Workshop on Hybrid Systems, pages
282—295, 2000.

[Mosterman and Biswas, 1998] Pieter J. Mosterman and
Gautam Biswas. A theory of discontinuities in physical
system models. Journal of the Franklin Institute : Engi-
neering and Applied Mathematics, 1(3):401-439, 1998.

[Mosterman and Biswas, 1999] Pieter J. Mosterman and
Gautam Biswas. Diagnosis of continuous valued systems
in transient operating regions. IEEE Transactions on Sys-
tems, Man, and Cybernetics, 1(6):554-565, 1999.

[Narasimhan and Biswas, 2001] Sriram Narasimhan and
Gautam Biswas. Efficient diagnosis of hybrid systems us-
ing model of supervisory controller. In 12th International
Workshop on Principles of Diagnosis (DX '01), pages
127-134, via L attea, Italy, March 2001.

[Narasimhan and Biswas, 2002] Sriram Narasimhan and
Gautam Biswas. An approach to model-based diagnosis
of hybrid systems. In Fifth International Workshop on
Hybrid Systems: Computation and Control, Stanford ,
CA, USA, vol. LNCS 2289, pp. 308-322, March 2002.

[Narasimhan et al., 2000] Sriram Narasimhan, Gautam
Biswas, Gabor Karsai, Tal Pasternak, and Feng Zhao.
Building observers to address fault isolation and control
problems in hybrid dynamic systems. In The 2000
IEEE International Conference on Systems, Man, and
Cybernetics (SMC ’00”), pages 2393-2398, Nashville,
TN, USA, October 2000.

[Sampath et al., 1996] M. Sampath, R. Sengupta, S. Lafor-
tune, K. Sinnamohideen, and D.C. Teneketzis. Failure di-
agnosis using discrete-event models. IEEE Transactions
on Control Systems Technology, 4(2):105-124, 1996.

[van Amerongen, 2000] Job van Amerongen. Modeling,
simulation and controller design of mechatronic systems
with 20sim. IFAC Mechatronics, 2000.

A Model-Based Diagnosis Framework for Distributed Systems'

Gregory Provan
Rockwell Scientific Company,
1049 Camino Dos Rios, Thousand Oaks, CA 91360
gprovan@rwsc.com

Abstract

We present a distributed model-based diagnostics
architecture for embedded diagnostics. We extend
the traditional model-based definition of diagnosis
to a distributed diagnosis definition, in which we
have a collection of distributed components whose
interconnectivity is described by a directed graph.
Assuming that each component can computealocal
minimal diagnosis based only on sensors internal
to that component and knowledge only of its own
system description, we describe an algorithm that
guarantees a globally sound, complete and minimal
diagnosis for the complete system. By compiling
diagnoses for groups of components based on the
interconnectivey graph, the algorithm efficiently
synthesizes the local diagnoses computed in dis-
tributed components into a globally-sound system
diagnosis using a graph-based message-passing ap-
proach.

1 INTRODUCTION

This article proposes a new technique for diagnosing dis-
tributed systems using a model-based approach. We assume
that we have a system consisting of a set of inter-connected
components, each of which computesalocal (component) di-
agnosis.! We adopt the structure-based diagnosis framework
of Darwiche [8] for synthesizing component diagnoses into
globally-sound diagnoses, where we obtain the structure from
the component connectivity. Unlike previous approaches that
compute diagnoses using the system observations and a sys-
tem description [8; 10], we transform the component diagno-
sis synthesis into the space of minimal diagnoses. Assum-
ing that each component can compute a local minimal diag-
nosis based only on sensors internal to that component and
knowledge only of the component system description, we de-
scribe an agorithm that guarantees a globally sound, com-
plete and minimal diagnosis for the complete system. This

*Research supported in part by The Office of Naval Research
under contract number N00014-98-3-0012.

INote that one can compute component diagnoses using any
method which returns a minimal diagnosis (with respect to a speci-
fied minimality criterion).

algorithm uses as input the directed graph (digraph) describ-
ing the connectivity of distributed components,with arc di-
rectionality derived from the causal relation between the the
components. Given that real-world graphs of this type are
either tree-structured or can be converted to tree-structured
graphs, we propose agraph-based message-passing a gorithm
which passes diagnoses as messages and synthesizes|ocal di-
agnosesinto aglobally minimal diagnosisin atwo-phase pro-
cess. By compiling diagnoses for collections of components
(as determined by the graph’stopology), we can significantly
improve the performance of distributed embedded systems.
We show how this approach can be used for the distributed
diagnosis of systems with arbitrary topologies by transform-
ing such topologiesinto trees.

One important point to stress is that this approach synthe-
sizes diagnoses computed locally, and places no restriction on
the technique used to compute each local diagnosis(e.g., neu-
ral network, Bayesian network, etc.), provided that each local
diagnosis is a least-cost or most-likely diagnosis. The syn-
thesis approach takes this set of self-diagnosing sub-systems,
together with the connectivity of these sub-systems, to com-
pute globally-consistent diagnoses.

The approach presented in this article assumes that al
faults are diagnosable (i.e., can beisolated) through a central-
ized agorithm. We examine whether a distributed approach
can diagnose all faults, since a distributed algorithm can iso-
late faults no better than a centralized algorithm. Issues re-
lating to restricted diagnosability of both centralized and dis-
tributed algorithms due to insufficient observable data (e.g.,
when the suite of sensorsisinsufficient to guarantee complete
diagnosability) are examined in [21].

This article is organized as follows. Section 2 introduces
the application model that we use to demonstrate our ap-
proach. Section 3 introduces our modeling formalism, and
specifies our notion of centralized and distributed model.
Section 4 describes how we diagnose distributed models.
Section 5 surveys some related work on this topic. We sum-
marize our conclusionsin Section 6.

2 IN-FLIGHT ENTERTAINMENT
EXAMPLE

Throughout this article we use a simplified example of an

In-Flight Entertainment (IFE) system. Figure 1 shows the
schematic for an IFE system fragment where we have (1) a
transmitter module (TX) that generates 10 movie channels
(consisting of both video and audio signals) and 10 audio
channels; (2) two area distribution boxes (ADB); and (3) at-
tached to each AD B; we have two passenger units, P;; and
P;y. For ADB j, passenger i, ¢ = 1, 2 has acontroller C'j;
for selecting a video or audio channel, plus an audio unit o.;
and video display v;. Control signal C}; is sent by passenger
i t0 AD B; and then to the transmitter, which in turn sends an
RF signa (RF) to each passenger.

We adopt a notion of causal influence for describing how
different components affect the value of asignal as it propa-
gatesthrough the system. For example, the RF signal causally
influences the passenger audio and video outputs. In this
model the observables are the control signals, plus for pas-
senger ¢ downstream of AD B sound (.S ;) and video-display
(VDj;). Weassign afault-modeto the transmitter and to each
ADB and passenger unit.

S
c > o1
! Pll |, VD,

l—» S;,

|, D,

—> S21

L VD;

—> SZZ
—> VD,,

Figure 1: Schematic of IFE fragment, showing the main mod-
ules and the directed arcs of data-flows.

Our modeling approach makes the following assumptions.
First, we can specify a system using an object-oriented ap-
proach. In other words, a system can be defined as a col-
lection of components, which are connected together, e.g.,
physicaly, asin an HVAC system, or in terms of data trans-
mission/reception, as in the IFE example. Our primary com-
ponent consists of a block, which has properties: input set,
output set, fault-mode, and equations. Given the fault-mode
and input set, the equations provide a mapping to the output
set. In other words, the inputs are the only nodes with causal
arcs into the block, and the outputs are the only nodes with
causal arcsout of the block. Typically, we have causal depen-
dence of block outputsw; oninputs/;, i.e. w; o £;.2

This distributed model consists of a set of sub-models, or
blocks, which may be connected together. In our IFE exam-
ple, the transmitter block has inputs of control signals C'; and
Cs, and output an RF' signal.

Second, we assume that each component computes diag-

2The causal function o< can be be generalized to include proposi-
tions, relations, probabilistic functions, qualitative differential equa-
tions, etc. We don’t address such a generalization here.

noses based on data local to the component. We do not place
any restrictions on the type of algorithm used to compute the
diagnosis, except that the diagnosis be a least-cost diagno-
sis. We will describe the cost function used by our synthesis
algorithm in the following section.

3 MODEL-BASED DIAGNOSTICSUSING
CAUSAL NETWORKS

This section formalizes our modeling and inference approach
to diagnostics and control reconfiguration. We first introduce
the model-based formalism, and then extend these notions to
capture a distributed model-based formalism.

3.1 FLAT (CENTRALIZED) MODELS

We adopt and extend the model-based representation for
diagnosis of Darwiche [8]. We model the system using a
causal network:

Definition 1 A system description is a four-tuple & =
(V,G,%), where

e Vs a set of variables comprising two variable types:
A isaset of variables (called assumables) representing
the failure modes of the components, V' is a set of non-
assumable variables (V N A = () representing system
properties other than failure modes;

e G is a directed acyclic graph (DAG) called a causal
structure whose nodes are membersin V U .4 and whose
directed arcsrepresent causal relations between pairs of
nodes;

e and X isa set of propositional sentences (called the do-
main axioms) constructed from membersin V U A based
on the topological structure of G.

This definition of system description differs from the stan-
dard definition (called SD in [22]) only in that we include
a graph G to complement the domain axioms set of failure
modes (commonly called COMPS) and non-assumable vari-
ables.

The set of non-assumable variables consists of two exclu-
sive subsets: Vs (the set of observables) and V .05 (the
set of unobservables).

We can capture structural properties of the system descrip-
tion using the directed acyclic graph, or DAG, G.3 For exam-
ple, if an actuator determinesif a motor is on or not, we say
that the actuator causally influences the motor. More gener-
aly, A may directly causally influenceB if A is apredecessor
of BinG. Weuse B « A to denotethedirect causal influence
of the value of B by the value of A.# Through transitivity, we
can deduce indirect causal influence. For example, if B < A
and C' « B, then A indirectly influences C.

This captures the notion of direct causal influence, i.e., a
node NV and those nodes that are directly causally affected by
N, using aclan. We define the notion of the clan of anode N
of aDAG G in terms of graphical relationships as follows:

3In other system description specifications, e.g. [12], these struc-
tural relations are captured using logical sentences.

“This notion of causal influence does not guarantee that A influ-
ences B, but that A may influence B.

Definition 2 (Clan) : Given a DAG g, theclan Y (NV;) of a
node N; € G consistsof thenode N; together with its children
ing.

We adopt the notion of clan because we are interested in
synthesizing diagnoses computed at a set of distributed nodes
organized in atree structure. The intuition behind the algo-
rithmisasfollows. givenlocal diagnoses, we start at the par-
ents of leavesin the decomposition tree and move up the tree
to the root, identifying if any node’s diagnosisis affected by
the diagnoses of its children, and if so, synthesizing those di-
agnoses. To perform each synthesis operation, we use a clan.

A clan is dual to the well-known notion of family, which
is typically defined as a node together with its parentsin G.
This notion is important because we need to synthesize loca
diagnostics within tree-structured systems, and the clan pro-
vides a more efficient means for doing so than the family for
tree-structured systems. For simplicity of notation, we will
denote the clan for node N, Y (IV;), as Y;.

It is also important to define restrictions of subsets of ob-
servables:

Definition 3 (Restriction) We denote by 6; the restriction of
an instantiation 6 of variables V' to the instantiation of a sub-
set V; of V. We denote the restriction of variable set T to
variablesin sub-system description ®; by 7%:.

One of the key elements of diagnosing a system is the in-
stantiation of observables, since a diagnosisis computed for
abnormal observableinstantiations.

Definition 4 (Instantiation) #®: is an instantiation of ob-
servables V,,,* for system description ;. ©% denotes the
set of all instantiations of observables V,;,;*:.

We specify failure-mode instantiations and partition the
possible states into normal states and faulty states as follows:

Definition 5 (M ode-l nstantiation) .A* is an instantiation of
behavior modes for mode-set .A. Further, we decomposition
A* such that A* = A" U A?, where A” denotes normal
system behaviour, i.e. all modes are normal, and A" denotes
a system fault, which may consist of simultaneous faults in
multiple components.

An assumable (behavior-mode variable) specifies the
discrete set of behavior-states that a component can
have, eg., and AND-gate can be either OK, stuck-at-
0, or stuck-at-1. Our IFE-system, with component-set
{TJ;‘, ABDl7 ADBQ, Py, Pia, Poq, PQQ}, can have a mode-
instantiation in which all components are OK except P11,
which is in audio-fail mode. In this case we have A? =
{Tx — mode = OK,ABD; — mode = OK,ADBy —
mode = OK, P1s—mode = OK, Py —mode = OK, Pyy—
mode = OK} and A" = {P;; — mode =audio-fail }.

3.2 DISTRIBUTED SYSTEM DESCRIPTIONS

This section describes our distributed formalism, which ap-
plies to collections of interconnected components, or blocks.
We assume that a distributed system description is provided
either by the user or is deduced from the physical constraints
of available local diagnostic agents and physical connectiv-
ity. For example, many engineering systems, such as com-
mercial aircraft, are subdivided into Line-Replaceable Units

(LRUSs), based on a number of factors, such as fault-isolation
capabilities, physical constraints, and ease of repair. An LRU
typicaly consists of a number of connected sub-systems, as
in the Passenger Unit of the IFE example, which consists of
circuit-cards to select audio/video channels and to drive the
audio and video output devices. It is standard practice in
commercia aircraft to isolate faults only to the LRU-level,
and replace faulty componentsonly at the LRU-level.

Definition 6 (Decomposition Function) a decomposition
function is a mapping ¢(®) = ®g4 that decomposes a
centralized system description @ into a distributed system
description ®4;¢ = {®1,..., ®,,}. The distributed system
description induced by a decomposition function ¢ is defined
by a decomposition IT over the system variables V, i.e. a
collection X = { X4, ..., X, } of nonempty subsets of V such
that (D) Vi = 1,....,m, X; € 2V; V= Ui(XilXi € H)
When¢;; = X; N X; # 0, we call &; the separating set, or
sepset, of variables between ®; and @ ;.

We can describe a distributed system description in terms
of adecomposition graph. A decomposition graphisagraph-
ica representation of the system model, when viewed as a
collection of connected blocks. In this graph each vertex cor-
responds to a block, and each directed edge corresponds to
adirected (causal) link between two blocks. Figure 2 shows
the decomposition graph for the extended IFE example. ®

A decomposition graph is a directed tree, or D-tree, which
is defined as follows:

Definition 7 A D-tree 7p is a directed graph with vertices
V(7p) with a vertex ro, called the root, with the property
that for every vertex r € V(7p) there is a unique directed
walk fromrq tor.

Definition 8 A decomposition graph G v is an edge-labeled
D-tree G(X,&,€) with (1) vertices X = {Xi,..., X},
where each vertex consists of a collection of variables of G,
(2) directed edges join pairs of vertices with non-empty in-
tersections, and arc direction is specified by the causal direc-
tion of the arcs between blocks in the decomposition graph,
ie, & = {(XJ,Xk”XL N Xj 7é (Z), X x Xj}, and (3)
edge labels (or separators) defined by the edge intersections,
§={&;|X: N X; #0}.

We assume that in a distributed system description, for any
block all sensor dataislocal, and al equations describing dis-
tributed subsystems refer to local sensor data and local con-
ditions.

3.3 DIAGNOSISSPECIFICATION
We define the notion of diagnosis as follows:

Definition 9 (Diagnosis) Given a system description ¢ with
domain axioms X and an instantiation 6 of V ;,, a diagnosis
D(#) is an instantiation of behavior modes A* U A” such
that X U QU AT UAD B£ 1.

"We do not show the feedback loops of control requests
(Cy,Ca, Ci1..., Cy2) since dl edges concerning observables can be
cut [7].

X,={RF, C,,RF,, RF
Cuy, Crp, ADBrMode /Cj/ X4={Sy1, VDu.RFy,
Cyy, Pyy-mode}

X=RF.C..C, [RE
Tx-mode} L —
Cl
X6={S1, VD1, RFy,
Cy,, Pyp-mode]
F Xs={RF, C,,RFy, 1 Piz 00}
\;\ Cy, Cpp, ADB-mode} | RF
2
Cu
X5={S;1, VD21, RF,,
C,,, P,-mode}
\REL
Cp

Figure 2: Decomposition graph of extended IFE system de-
scription. Here an oval corresponds to a vertex, and a block
corresponds to a sepset. We specify the variables associated
with each vertex in the graph.

This diagnostic framework provides the capability to rank
diagnoses using a likelihood weight «; assigned to each as-
sumable A;, i = 1,...,m. Using the likelihood algebra de-
fined in [8], we can compute the likelihood assigned to each
diagnosisfor observation 6. We refer to a (diagnosis, weight)
pair using (D(6),). We use the weights to rank diagnoses,
i.e., least-weight diagnoses are the most-likely. This provides
a notion of minimal diagnosis, i.e. a diagnosis of weight «
such that there exists no lesser-weight diagnosis.

34 LOCAL/GLOBAL DIAGNOSTICS

Our methodology rests on the determination of when com-
ponent diagnoses are independent, in which case the global
diagnosisisjust the conjunction of the component diagnoses.
We apply the decomposition theorem of [8] to this case of
distributed diagnostics:

Theorem 1 If we have a system description ¢ consisting of
two component system descriptions ®; and ®-, and a sys-
tem observation 6, if the variables shared by &, and &, all
appear in 4, then

D®(0) = D*'(6,) A D2(6y).

This theorem states that a diagnosis is decomposable pro-
vided that the system observation contains the variables
shared between ®; and ®,. However, what happens when
the observation 6 does not contain all variables shared be-
tween &, and ®,? One solution [8] isto decompose the com-
putation of D® by performing a case-analysis of all shared
variables &£15. However, this case-analysis approach is expo-
nential in |£12], the number of variables on which we do case-
analysis. Hence if we wanted to embed the diagnostics code,
such a case-analysis might be too time-consuming when per-
formed on a system-level model.

In the following we assume that each component computes
a local diagnosis, i.e., a diagnosis based only on loca ob-
servables and on equations containing only local variables. In
contrast aglobal diagnosisis one based on global observables
and on equations describing all system variables. Our task is

to integrate these local component diagnoses into a globally
sound, minimal and consistent diagnosis, since for many sys-
tems the diagnostics generated locally are either incomplete
or not minimal.

Note that we can obtain global diagnostics for a modular
system by composing local blocks and diagnosing the entire
system model. However, it is true in many cases that global
and local diagnostics may differ. We now define a notion of
correspondence between local and global diagnoses.

The conjunction of the set of distributed system descrip-
tionsis defined as D ;s (0) = N, D®*(6), and we know
that Dgis¢(0) = D(6) only when 8 = |4, 5&;;.

We can compute the diagnoses for this set of distributed
system descriptions either using an on-line algorithm, or by
pre-computing the set of diagnoses for D 4;.:(6). In the fol-
lowing, we outline the compiled method of diagnosis.

We define a table, called a clan table, to specify local and
global diagnoses for collections of blocks. This table com-
pilesthe local case-analysis required by Theorem 1. We will
show later how to use this table for our diagnosis synthesis
agorithm.

Definition 10 A clan (or local/global diagnosis) table for
block-set B = {®,,...®;} is a table consisting of tuples
(observable-intantiation, global diagnosis, weight) for all ab-
normal instantiations of observablesd in B.

Note that we can use the compositionality of blocks to
show that any time we compose a system description from
multiple blocks, we obtain “global” diagnosticsfor that com-
posed system description when we compute diagnoses over
the composed system description. Hence the “globa” diag-
nosisfor each collection of blocksis computed from a system
description generated from the composition of the system de-
scriptions of the blocksin B, using the observablesfrom B.

Example 1 Table 1 contrasts the local and global diagnoses
for a set of scenarios where the set B of blocksis an ADB
with downstream passenger units. In these scenarios, we
compute the (probabilistically) most-likely diagnosis, assum-
ing that all faultsare equally likely, i.e., have weight 1. More-
over, in defining a local diagnosisin Table 1, we report the
conjunction of all local diagnoses, i.e. the local diagnosisis
ADB-diagnosis A P;-diagnosis A P;-diagnosis. In scenarios
1, 2 and 4, the local and global diagnoses are identical. How-
ever, in scenarios 3, 5 and 6, they differ: the passenger units
each assume alocal fault, whereas the transmitter unit is the
faulty one (sinceasingle transmitter fault is much morelikely
the two simultaneous faults, one in each passenger unit).

Given this potential for discrepancy between local and
global diagnoses, we map the decomposition graph into a
representation, the clan graph, from which we can synthesize
globally sound and complete minimal diagnoses from local
minimal diagnoses. Figure 3 shows the clan graph for the
extended | FE example.

5These differences arise due to different instantiations of the RF
signal in the local and global diagnosis. We hide the details of the
case-analysis of shared variables for simplicity of presentation.

[Scenario [ADB; Unit [PassUnit;; [Pass Unitip | Diagnosis |

Ci1 C1a S11 VD1 Si2 VD2 LOCAL GLOBAL

1 audio | audio nom. none nom. none — —

2 audio | audio none none nom. none Py -audio-fail P4 -audio-fail

3 audio | audio none none none none P 1-audio-fail A Py 2-audio-fail Xaudio

4 video | video nom. nom. nom. none P >-video-fail Py 5-video-fail

5 video | video nom. none nom. none Py -video-fail A P> -video-fail Xvideo

6 audio | video none none none. none Py -audio-fail A Py 5-video-fail AD B, -fail

Table 1: Diagnostic Scenarios. We denote anominal passenger output of nhominal using nom., and abnormal observable datain
bold-face. Xaudio denotes degraded audio, and Xvideo denotes degrated video.

RF
RF

Y /ﬁf//1‘!II!D

@ ADB,-mode 2
RF Y

%
CZ
ADB,-mode

Figure 3: Clan graph of extended | FE system description.

Definition 11 (Clan graph) : A clan graph Gy of a DAG
G(V, E) of vertices V and edges E is an edge-labeled D-tree
GV, €&, &) defined asfollows: (1) verticesY = {Y1, ..., Y, },
where each node Y; consists of a clan of G; (2) edges de-
fined by non-empty intersections between pairs of vertices
E ={Y;,Y)|YinY; # 0}; and (3) separators defined
by the edge intersections ¢ = {¢;; = Y; NY;}.

The following section shows how we use the clan graph for
distributed diagnosis.

4 DISTRIBUTED MODEL-BASED
DIAGNOSIS

This section describes our distributed model-based diagnosis
algorithm. We first map the directed graph of the system into
atree using tree-decomposition techniques, and then employ
amessage-passing algorithm on the tree.

41 TREE-DECOMPOSITION

The work on tree-decomposition stems from work on
treewidth and graph minors [23]. A good review of the liter-
ature can be found in [5]. We define the basic notions bel ow.

Definition 12 A tree decomposition of an undirected graph
G = (V,E) isapar (X,T)withT = (I,F) atree, and
X = {X;]i € I} isafamily of subsets of V, one for each
node of 7', such that
1. UiEI X, =V,
2. for all edges {v,w} € FE there exists an ¢ € I with
ve X;andw € X;,and
3. for all i, j, k € I'if j isonthepathfromitokinT, then
X; N Xy, C X;.

The last property is known as the running-intersection prop-
erty within the BN community. The clique-tree algorithm

computes a tree-decomposition in which each node of the
tree is a clique, and undirected edges correspond to shared
variables between cliques.

Given atree-decomposition, inference complexity is based
on the treewidth, defined as follows. The width of atree de-
composition ismax;ey | X;| — 1. Thetreewidth of agraph G
is the minimum width over all tree decompositionsof G. The
treewidth bears close relations to the maximal vertex degree
and maximal clique of a graph, so it provides a measure of
the complexity of diagnostic inference, among other things.
If a graph has a low treewidth then inference on the graph
is guaranteed to be easy. The task of computing treewidth is
NP-hard [2]. Many algorithms exist that, givenagraphwith n
variables, will compute an optimal treewidth in time polyno-
{ni]aJ inn but exponential in the treewidth &; see, for example,
4].

Directed Tree-Decomposition

The difference between the standard literature on tree-
decompositions and the task addressed here is that the stan-
dard literature focuses on undirected graphs, and we focus on
directed graphs. We capture and exploit the directionality of
causal relations during all phases of diagnostic inference. For
example, if we have an abstract hierarchical specification of
a system and compute diagnostics for each abstract hierar-
chical block, we still preserve the directionality of causality
among the abstract blocks. We exploit this directionality us-
ing a diagnostic synthesis algorithm operating on a directed
tree.

Definition 13 A D-tree 7p is a directed graph with vertices
Vr,, and a vertex Vp, called the root, with the property that
for every vertex V€ Vr, thereisauniquedirected walk from
VWtoV.

The tree-decomposition results have been generalized to
directed graphs in [16], and we make use of some of those
results here. The key change is that we need to preserve or-
dering of edges during the decomposition process. To capture
such properties, wefirst need to define anotion of variable or-
dering, called Z-normality.

Definition 14 Let G beadigraphandlet Z C V. Aset Sis Z-
normal if and only if the vertex-sets of the strong components
of G \ Z can be numbered S;, Ss, ..., Sq such that

1 if1<i<j<dthennoedgeof GhasaheadinsS;
andtail in S;, and

2. either S =0or S =5;US;41---US; for someintegers
i, jwithl <i<j<d.

Definition 15 A D-tree decomposition of a digraph G =
(V,€) is a pair (X,7p) with 7p = (Z,F) a D-tree, and
X = {X;|i € I} is a family of subsets of V, one for each
node of 7p, and the edges are numbered 7 = {1, ..., 1} with
F={F;:j€ J} such that

L Uiz Xi =V,

2. for all edg% {v,w} € € there exists ani € Z with
ve X;andw € X;,and

3. for all 4,4,k € 7 if j ison the path fromi to k in 7p,

4. ifje J,thenJ{X;:ie€Z,i>j}isX;-normal.

The width of atree decomposition is the least integer w such
that forall i € Z, | X; U JX;| < w + 1, wheretheunionis
taken over all edges j € J incident with ¢. max;ez | X;| — 1.
The treewidth of a graph G is the least integer w such that G
has a D-tree-decomposition of width w.

For the class of applications addressed in this article, the
input graphs G for the system description are digraphs, and
the decomposition graph and clan graph are both D-tree de-
compositions of G. For more general digraph topologies, by
applying an algorithm for generating D-tree decompositions,
we can convert the digraphs into a decomposition graph, and
apply the diagnostic synthesis approach. Many of the prop-
erties of undirected tree-decompositions hold for the directed
case[16].

4.2 DIAGNOSISOF SYSTEMSWITH
TREE-STRUCTURED GRAPHS

We now describe an approach to diagnosing systems with
tree-structured decomposition graphs.
We assume that:

e We are provided with the component system descrip-
tions and their connectivity;

e Thereisasingleroot in the decomposition graph (which
is a component with no parent-components), and each
leaf is a component with no child-component;

e Nodes have indices starting at the root (X), increas-
ing based on a breadth-first expansion from the root and
ending at the leaves, labeled X ,, g, ..., X;

e Each component computes a local diagnosis based on
local observables.

We base our approach on synthesizing diagnoses, starting
from the leaf components and ending up at the root of the
tree. We first decompose the decomposition graph into aclan
graph. Based on the clan graph we construct a clan table for
each node in the graph.

Thisagorithmisinspired by the Bayesian network clique-
tree approach of [17], but replaces the clique-tree with
an analogous clan-tree, and passes diagnoses as messages.
Analogous to the clique-tree method’'s clique-table pre-
computation, this approach requires pre-computing clan-
tables, but for embedded systems this results in computation-
aly simpler algorithms than those adopted in the past.

Under this scheme, we pre-compute clan tables for each
clan in Gy. Given an observation 6 for blocks X, ..., X,

where X, ..., X, aalemembersof aclanY € Gy, each block
computes diagnostics locally. We then compute the most
likely fault-mode assignment for Y through a process we call
diagnostics synthesis, which entails table-lookup in the clan
table of the minimal diagnosisgiven 6. The algorithm synthe-
sizes final diagnoses, going from the leaves to the root. This
guarantees a sound, complete and globally minimum system
diagnosis.

In this approach wefirst need to pre-computethe clan table,
and then use that table for diagnostic synthesis. We can pre-
compute the clan table from a set of blocks {®4, ..., ®;} as
follows:

1. Generate the decomposition graph Gax from
{®q,..., D}, with indices increasing in a breadth-
first manner from the root.

2. Generatethe clan graph Gy of G x.

3. Computethe clan tablefor each clan Y; in Gy.

Given an observation 6, the diagnostic synthesis algorithm

isasfollows:

1. Given observation 6, each block B; computes its local
diagnosis D®: () and likelihood (D ®#).
2. Mark al nodes X;, i = 1, ..., n with flag=0;
3. Loopforj =ntol:
(& If flag=0for X; do:
For each node X; in the clan Y(X;), look up
corresponding clan diagnosis D®¥ (¢) and weight
x(D®Y (9)) inthe clan-table;

It 5(D* (0) < >
k:®rey
o revisefault-modeassignment to nodesinY (N),
by (a) setting the minimum-weight diagnosis
mode-variable; (b) if any local diagnosis D’ is

. %‘gesz%fljeg?o varlablesm Y based on D and

° ?f reassi gnment is sound pass message with fault

o @?agforg?}(€Y(X;)tol;

Theorem 2 Given a tree-structured decomposition graph
Gx and local component diagnoses, diagnostics synthesis
will compute a sound and globally consistent set of fault
mode assignments for components X € G within O(|Y|)
message-passing steps, where Gy, isthe clan graph generated
fromGy.

k(D®*),

Example 2 Diagnosis Synthesisin a Clan: Consider Sce-
nario 3 of Table 1. For this observation 6, the total set of
possible clan diagnoses is: (P;1, audio-fail) A (P12, audio-
fail) v (AD B, Xaudio). The weights of the diagnoses are 2
and 1, respectively.

In computing diagnoses on a purely local basis, the result-
ing diagnosis is (Py1, audio-fail) A (P12, audio-fail), with
weight 2. Note however thereis afamily diagnosis of weight
1, (ADB;, Xaudio), which is selected since it is of lower
weight than the distributed diagnosis. We now instantiate
each local component with 0, and set diagnoses as follows:
(P11, 0), (P12, 0), (ADB1, Xaudio). There exists a consistent
set of local variable instantantiations for this assignment, so
no further message-passing is necessary.

PP,

FEEAT w2 | ocal D

P,,-mode
P,,-mode

JADB: Family Dx

PucPy Local Dx

Tx-mode
ADB,-mode
ADB,-mode

ADB,-mode
P,,-mode
P,,-mode

ADE, Family Dx

Local Dx

Figure 4: Diagnosis synthesis procedure, Step 1: (@) loca
diagnoses synthesized at clans, and (b) clan diagnoses are
passed between families, as noted by dark arrows.

Example 3 Message-Passing: Figure4 showsthefirst stage
of thisprocedure. In the graph we show nodes wherethe vari-
ables are restricted to fault mode variables, to simplify the
description of message-passing of instantations of mode vari-
ables. Firgt, the local diagnoses are computed at each node
in the decomposition graph: al four passenger units register
a fault, and no other nodes in the decomposition graph reg-
ister faults. As a shorthand, we denote a fault-weight pair
using variable-names for faults, with () denoting a nominal
mode. Then, these faults are synthesized at each clan using
the clan-table: fault-weight pair (P11 A P12, 2) issynthesized
into (ADB;, 1), andfault (Pe1 A Paa, 2) issynthesized into
(ADB,, 1). Second, the synthesized faults (ADB;, 1) and
(ADB,, 1) are sent to the adjacent node in the clan graph,
Yi.

ADB,-mode

P._-mode Local Dx

Tx-mode

ADB,-mode Family Dx

ADB,ADB, | ocal Dx Local Dx

.

T Family Dx

ADB,-mode
P,,-mode
P,,-mode

Family Dx

Figure 5: Diagnosis synthesis procedure, Step 2: global diag-
noses computed following family diagnosis message-passing.

Figure 5 shows the second stage of this procedure. Fault-
weight pair (ADB; A AD B, 2) issynthesizedinto (T'z, 1)
at clan Y7, and all other fault-modes are set to nominal. This
is the global minimum-weight fault.

4.3 COMPLEXITY ISSUES

The complexity of logical resolution within a distributed
framework have been discussed in [1]. Here, our task is
model-based diagnosis within a tree-structured topol ogy.

This approach is based on computing diagnoses for the
clans of G. Hence, it never needs to diagnose a system de-
scription for the entire graph G, but only for the clans of G.
As noted in Theorem 2, once the clan tables are computed,
given any local component diagnoses, the algorithm is linear
in the number of nodesin the clan-graph.

The worst-case complexity of computing aclan tableis ex-
ponential in the number of variables in the clan table. The
memory requirements for storing the clan tables are defined
as follows. In the worst case, for a clan with mode vari-
ables A4, ..., A, where each mode variable has |w 4, | faulty
values, a clan table stores an entry for each of the x ;|wa, |
multiple-fault combinations. For single-fault scenarios, aclan
table must storeonly ", [wa, | entries.

The main issue is the time-complexity of generating the
clan tables. For tree-structured systems the complexity of di-
agnosing G is exponential in the clan size, and the complexity
is bounded by the largest clan of G. Hence the complexity of
initially computing diagnoses is the same for the centralized
and distributed approaches. However, for embedded applica-
tions, the distributed approach has a complexity advantage,
since only clan-table lookup and simple message-passing are
required.

5 RELATED WORK

Our approach to distributed diagnosis has been preceded by
many pieces of related work, and we review several here.
Note that this review examines the most relevant work, and
does not claim to be exhaustive.

One of the most closely-related pieces of work describes
techniquesfor distributed logical inference [1; 20]. Thiswork
focuses on how to perform logical reasoning and query an-
swering, proposing sound and compl ete message passing al-
gorithms, by exploiting the tree structure of distributed theo-
ries. They examine the complexity of computation, propose
specialized algorithms for first-order resolution and focused
conseguence finding, and propose agorithms for optimally
partitioning a theory that is not already distributed. In some
way's, our task can be considered a special case of the general
problem that Amir and Mcllraith examine. Logica inference
computes a model, whereas diagnostic inference computes a
minimal model in the assumables, a subset of the language
of the theory. We leverage many aspects of the specific diag-
nosis problem in our work, aspects that serve to distinguish
both our approach and our results. These include the notion
of causality, which imposes a directionality on the tree struc-
ture and the inference, and the notion of preference. In ad-
dition, the task of diagnostic inference depends critically on
two classes of distinguished variables, assumables (the liter-
as of interest) and observables (the inputs), and distributed
diagnosability depends on how assumables and observables
are distributed among the collection of blocks. In addition,
if the variables common between two blocks are observable,
then from adistributed diagnostics point of view those blocks
are independent [7].

The approach presented here bears some relation to diag-
nostic approaches on trees. Stumptner and Wotawa [25] have
an agorithm for diagnosing tree-structured systems. This ap-
proach assumes a centralized system defined at the compo-
nent level whereas our approach deals with distributed sys-
tems that can be defined at any level of abstraction. In ad-
dition, our assumption of sub-systems computing their own
diagnoses means that our diagnostic synthesis process is a
single-pass algorithm from the leaves of the tree to the root,

whereas Stumptner and Wotawa need a two-pass approach
since they must first enumerate all component diagnoses. A
second major tree-based method uses a clique-tree decom-
position of a system, e.g., the diagnostic method of [13]. A
clique-tree is a representation that is used for many kinds of
inference in addition to diagnosis, including probabilistic in-
ference and constraint satisfaction. The tree we generateis a
directed tree with a fixed root, and the nodes of the tree are
generated based on the clan property; a clique-tree is undi-
rected (with an arbitrary root), and the nodes of the tree are
generated based on the family property. One can think of
the D-tree as a directed variant of a clique-tree, which is op-
timized for diagnostic inference. In addition, our approach
uses the ordering of the D-tree to require message-passing in
a single direction only; in contrast, message propagation in
clique treesis bi-directional.

Our work also bears somerelation to papers describing dis-
tributed solutions to Constraint Satisfaction Problems (CSPs)
[26; 15]. As with the work on distributed logical inference
[1], the task of distributed CSPs is finding a satisfying as-
signment to the variables, when constraints are distributed in
a collection of subsets of constraints. Hence the underlying
tasks of distributed diagnosis and CSP satisfiability are dif-
ferent. One issue in this work that is similar to diagnostic
reasoning is the recording of minimal sets of unsatisfiable
clauses as nogoods [15]. The computation of nogoods is a
key step to computing diagnoses [10].

There have been several proposals for using the ATMS [9]
in a distributed manner, e.g., [11; 19; 3; 18]. Our approach
differsfrom thiswork in that our approach uses system topol -
ogy explicitly, whereas these other approaches do not make
as extensive a use of topology.

The compilation approach proposed in this article bears
some relation to prior work.” [24] presents an empirical com-
parison of centralized compilation techniques as applied to
severa areas, of which diagnosisis one. Our future work in-
cludes examining the applicability of these compilation tech-
niques within our distributed framework. Compilationis also
examined in [20], but (as mentioned earlier) as applied to a
different task, logical resolution.

There has been some prior work on distributed model-
based diagnosis. For example, the approach in [14] assumes
that the diagnosis computed by each distributed agent is glob-
ally correct, and examine the case where agents must coop-
erate to diagnose components whose status is unknown. Our
approach makes the more realistic assumption that diagnoses
are not necessarily globally sound, and derives a very differ-
ent global synthesis algorithm.

6 SUMMARY AND CONCLUSIONS

This document has described a mechanism for computing dis-
tributed diagnoses using system topology and observability
properties. This algorithm takes as input minimal diagnoses
computed within distributed components, and uses system
topology to integrate these diagnoses into a globally sound
and minimal system diagnosis.

"A review of compilation can be found in[6].

We arein the process of applying this approach to two real-
world domains, that of In-Flight Entertainment and diagnosis
of HVAC systems.

The approach presented here provides a mechanism for
designing systems with predictable distributed diagnostics
properties. A given decomposition graph can be rated accord-
ing to its diagnosability and efficiency. Additionaly, given a
system description, we can apply D-tree decomposition al-
gorithms to the system DAG to assist in identifying small-
treewidth decompositions, if any exist. Further, if a system
has no small treewidth decomposition, one can then recom-
mend system re-design to be facilitate efficiently computing
distributed diagnoses.

References

[1] E. Amir and S. Mcllraith. Paritition-based logical rea-
soning. In Proc. KR 2000, pages 389-400. Morgan
Kaufmann, 2000.

[2] S.Arnborg, D. Corneil, and A. Proskurowski. Complex-
ity of finding embeddingsin ak-tree. SAM J. Algebraic
Discrete Meth., 8:277-284, 1987.

[3] C.Beckstein, R. Fuhge, and G. Kraetzschmar. Support-
ing assumption-based reasoning in a distributed envi-
ronment. In Proceedings of the 12th International \Work-
shop on Distributed Artificial Intelligence, pages 3-17,
Hidden Valley, Pennsylvania, 1993.

[4] HansL.Bodlaender. A linear timealgorithm for finding
tree-decompositions of small treewidth. SSAM Journal
on Computing, 25:1305-1317, 1996.

[5] H. Bodlander. Treewidth: Algorithmic techniques and
results. In Proceedings 22nd International Sympo-
sium on Mathematical Foundations of Computer Sci-
ence, MFCS 97, volume 1295 of Lecture Notesin Com-
puter Science, pages 29-36. Springer-Verlag, 1997.

[6] Marco Cadoli and Francesco M. Donini. A survey
on knowledge compilation. Al Communications, 10(3-
4):137-150, 1997.

[71 A. Darwiche and G. Provan. Exploiting system struc-
turein model-based diagnosis of discrete-event systems.
In Proc. 7th Intl. Workshop on Principles of Diagnosis,
pages 95-105, 1996.

[8] Adnan Darwiche. Model-based diagnosis using struc-
tured system descriptions. Journal of Artificial Intelli-
gence Research, 8:165-222, 1998.

[9] J. deKleer. An Assumption-based TMS. Artificial In-
telligence, 28:127-162, 1986.

[10] J. de Kleer and B. Williams. Diagnosing Multiple
Faults. Artificial Intelligence, 32:97-130, 1987.

[11] A. Dragoni. Distributed belief revision versus dis-
tributed truth maintenance: preliminary report. In Atti
del 3zo Incontro del Gruppo Al*IA di Interesse Spe-
cialesu Inteligenza Artificiale Distribuita, pages 64—73,
Rome, Italy, 1993.

[12] O. Dressler and Peter Struss. The consistency-based ap-
proach to the automated diagnosis of devices. In Ger-
hard Brewka, editor, Principles of Knowledge Repre-
sentation, pages 267-311. CSLI Publications, Stanford,
CA, USA, 1996.

[13] Yousri El Fattah and Rina Dechter. Diagnosing tree-
decomposable circuits. In [JCAI, pages 1742—-1749,
1995.

[14] Peter Frohlich, lara de Almeida Mora, Wolfgang Ne-
jdI, and Michael Schroeder. Diagnostic agents for dis-
tributed systems. In Model Age Workshop, pages 173—
186, 1997.

[15] K. Hirayamaand M. Yokoo. Theeffect of nogood |earn-
ing in distributed constraint satisfaction. In Proceed-
ings of the 20th | EEE International Conf. on Distributed
Computing Systems, pages 169177, 2000.

[16] T. Johnson, N. Robertson, P. Seymour, and R. Thomas.
Directed tree-width. to appear in J. Combin. Theory Ser.
B

[17] S. Lauritzen and D. Spiegelhalter. Local computations
with probabilities on graphical structures and their ap-
plications to expert systems. Royal Satistical Society,
50:154-227, 1988.

[18] Benedita Malheiro and Eugenio Oliveira. Solving con-
flicting beliefs with a distributed belief revision ap-
proach. In IBERAMIA-SBIA, pages 146-155, 2000.

[19] Cindy L. Mason and Rowland R. Johnson. DATMS:
A framework for distributed assumption based reason-
ing. In Les Gasser and Michael N. Huhns, editors, Dis-
tributed Artificial Intelligence, volume 2, pages 293—
317. Pitman, 1989.

[20] Sheila A. Mcllraith and Eyal Amir. Theorem proving
with structured theories. In Proc. 1JCAI, pages 624—
634. Morgan Kaufmann, 2001.

[21] G. Provan. Distributed Diagnosability Propertiesof Dis-
crete Event Systems. In Proc. American Control Con-
ference, Anchorage, AK, May 2002.

[22] R. Reiter. A Theory of Diagnosis from First Principles.
Artificial Intelligence, 32:57-96, 1987.

[23] N. Robertson and P. Seymour. Graph minors. ii. algo-
rithmic aspects of treewidth. J. Algorithms, 7:309-322,
1986.

[24] Laurent Simon and Alvaro del Val. Efficient conse-
quence finding. In [JCAI, pages 359370, 2001.

[25] Markus Stumptner and Franz Wotawa. Diagnosing tree-
structured systems. Artificial Intelligence, 127(1):1-29,
2001.

[26] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and

Kazuhiro Kuwabara. The distributed constraint satis-
faction problem: Formalization and algorithms. Knowl-

edge and Data Engineering, 10(5):673-685, 1998.

M odel-based Toolsfor the Integration of Design and*Diagnosis into a
Common Process - A Project Report

P. Struss™®, B. Rehfus’, R. Brignolo®, F. Cascio”, L. Console’,
P. Dague®, P. Dubois’, O. Dressler®, and D. Millet®

Technical Univ. of Munich, 2DaimlerChrysler AG, Stuttgart, *Magneti-Marelli Spa, “Centro Ricerche Fiat; Torino,
*Universitadi Torino, ®Université de Paris NordRenault, PariOCC’M Software, Munich’PSA Peugeot Citroén, Paris
struss@in.tum.de, struss@occm.de

Abstract
The growing importance of on-board diagnosis for
automobiles demands for a close integration of diagnostic
tasks in the entire design process. This report describes
work carried out to date within the European project
.Integrated Design Process for onboard Diagnosis, (IDD).
It presents an analysis of the current design process and the
model of a new process which allows for a better
integration of diagnosis related tasks, such as
diagnosability analysis, failure-modes-and-effects analysis
(FMEA), on-board diagnosis design, in the overall design
process of mechatronic subsystems. We then discuss in
what way model-based technology can provide tools to
support the actual integration and, in particular, present an
approach to model-based diagnosability analysis..

I ntroduction

The importance of diagnosis in onboard automotive
systems is constantly growing together with the
complexity of the systems. The average dimension of the
diagnostic code inside a modern electronic control unit
(ECU) is now more than 50% of the whole code. At
present, there is no correspondence between such an
important role of diagnosis in onboard systems and a
similar role that diagnosis could play in the design
process chain.

The correct way of dealing with this situation is to re-
organize the design and development chain so that the
diagnosisis no longer the last task in the design chain.
This goal provides an opportunity and challenge to
model-based systems technology for several reasons.
First, in early design stages, when physical prototypes of
the designed system are not existing, diagnostic reasoning
can only be based on a model. Second, since the design is
subject to revisions, the adaptation of diagnostics and
fault analysis to such revisions has to happen
automatically or, at least, without major efforts. Finally,
the existence and use of (simulation) models for the
development and validation of control design can provide

a basis for the application model-based diagnosis
technology.

The European Fifth Framework project ,Integrated
Design Process for onboard Diagnosis“ (IDD) pursues the
goal to formalize and standardize the diagnostic design
process, and to enable the introduction of diagnosis early
in the chain. This methodological goal has to be
combined with another important objectigving to the
designers a set of model-based tools that can help themin
evaluating and understanding the effects of each choice

on the system being designed. The IDD project was
started February 2000 with a duration of three years and
involves both industrial and academic partners: Fiat CRF
(Torino), Magneti-Marelli SpA (Torino), PSA, Peugeot
Citroen (Paris), Renault (Paris), DaimlerChrysler AG
(Stuttgart), OCC'M Software GmbH (Minchen),
Universita di Torino, Université de Paris Nord, XlIl, and
Technische Universitat Minchen.

Except for the approach to diagnosability analysis, this
paper does not aim at presenting new model-based
theories or techniques, but rather focuses on describing
the work and intermediate results of this project in order
to increase the awareness of this challenge in the field of
model-based reasoning. Therefore, we start with a
description of the current design process and its
deficiencies. Based on this, a new design process is
proposed in section 3 that introduces the exchange of
models as the major medium for a closer interaction
between control design on the one hand and failure-
modes-and-effects analysis (FMEA) and diagnostic
design on the other hand. Section 4 outlines the
technological and software basis chosen by IDD to
develop the tools that are required to realize this
integrated process. We then present our approach to
model-based diagnosability analysis. Finally, we outline
the remaining work in the project and list the guiding
applications which will be used in the project for
validation of the tools.

" This work is supported by the Commission of the European Union (Project no. G3RD - CT199-00058)

Analysis of the Current Process of Design
and Generation of Diagnostics

The current processes of each industrial partners have

been investigated with a focus on the integration of the
diagnostic process and diagnosis-related processes into

the whole design process of mechatronic subsystems.

Starting from these results a ,merged process” has been
developed that is based on the similarities recognized,
ignoring details and small differences. The abstraction of
this process will be used as a comprehensive reference for
the current design processes. This analysis and its
consequences are presented in more detail in [Brignolo et.
al. 01].

In the framework presented here we consider especially
processes related toechatronic subsystems, such as air
conditioning or engine control systems. These subsystems
involve ECUs as centers of control and diagnostic
functions and the physical system, comprising mechanic,
hydraulic, electric components. Following [Bortolazzi-
Steinhauer 00], Fig. 1 summarizes the overall design,
isolating the different phases and showing in which way
the process for a subsystem, which is the most interesting
one in this project, is related to the entire process.

\
\Strategy Production2
| 1
1

'
| i
Sub & | R Start-Up)
1 I I
H H i
I i
: |
Requiremen
= A-sample \
' B-Sample
' C-Sample
1 H D-Sample
I T
Behaviour H i
Modelling & !
1
I
I

{ Functional Prototyping |

Entire

Process Technology

Integration

i Maturit
Functional Functional Opumly

Product
=

zation

Hardware
Development

Software
Development

Product Development i

Diagnostics - Onboard

Figure 1 Entire Process and subsystem process,
overview

During the ,strategy phase' a first conceptual framework

for the new product is worked out, the ,technology phase'

targets the concept approval, the integration phase’
focuses on the realization of the new product by taking
into consideration technical feasibility and manufacturing

aspects, and, finally, the ,production phase‘ ensures the
industrial mass production with the correct requirements
of quality.

The IDD approach focuses primarily on the Technology

phase which leads to the first almost complete prototype,
but takes into account that a good amount of diagnostic
development is performed at present in the Integration
phase, as illustrated in Figure 1.

From an abstract point of view, the reference process,

which is focussed on the functional prototyping within the

technology phase, can be modeled as a set of nested

loops:

» Specifications loop: Definition of requirements,
specifications and implementation of the validated
result. In this phase also feedback from after-sales

and customers may be involved. Further
requirements may be added depending on mock-up
observations.

e OQOuter design loop: Design of the whole system
prototype, involving the definition of the overall
structure of the system, i.e. the selection of the
physical (mechanic, hydraulic, electric) components
and decisions about the overall layout of the system.
This loop terminates when the prototype meets all the
requirements and specifications. The core activities
are design of the system including its control and
diagnosis, comprising a series of inner design loops,
and the hardware development of the physical
system, which runs in parallel.

« Inner design loop: Design of the ECU-based control
system and components. Each iteration involves the
design of the control algorithms, FMEA, diagnostic
development, implementation of the ECU (HW and
SW) and verification of the algorithms, as shown in
Figure 2. The verification step at the end of the first
iterations is performed using models (software/
hardware in the loop), whereas, later, the physical
system is used. Depending on the achieved results,
there are several iterations, each one of them
producing an advanced prototype.

Onboard Diagnosis Design

FMEA —> Algorthms_|—»]Verification |-
Control Design (SW + HW)
Selection
of Comps i i i
Lyl . Simulatior/ ECU Integration/ p Next
e thei [omotommn |-of SRR ol Ve Prototype
layout

Figure 2 Thereference process,
oneiteration of theinner design loop

Three problem areas in the reference design process have
been identified as the essential ones with respect to a
better integration of the diagnostic tasks, mainly in the
inner and the outer design loops.

The first problem concerns the interaction between the
diagnosis design process and the FMEA generation (cf.
upper part of Figure 2).

* FMEA and generation of onboard diagnosis are
separated and sequential tasks.

e Only few tools support the information extraction
process needed for the FMEA, eg. simulating the
consequences of faults or studying interactions
between faults. Thus, a lot of work is left to the
experience and sensibility of the people that perform
FMEA.

The second problem area concerns the interaction

between FMEA and the development of diagnostics, and

the development and design of control algorithms of the

system (cf. Figure 2).

Currently, these are two substantially separate tasks,

despite the fact that there are important

interdependencies. Examples for possible interactions are:

¢ achange of the control algorithm may turn a physical
component, that was not very essential before, into a
critical one and, hence require additional diagnostics,

* a change of the control agorithm promotes the
masking of certain faults that were detectable more
easily before. Again, additional diagnostics have to
take this into account,

* a change of the diagnostics aiming at enhancing
diagnosability may exploit additiona signals, which
may possibly improve control, as well.

As a consequence, requirements and constraints arising
from one of these tasks can be dealt with by the other
onesonly in the next inner design loop, i.e. changesin the
design of control algorithms can have impact on FMEA/
diagnosis only during the next inner design loop and vice
versa, thus causing additional iterations and time delay.

The third problem area concerns the relation between the

design of diagnosis and component selection and layout

definition (cf. left-hand part of Figure 2).

The problem here is, that currently the component

selection task is external to the inner design loop. As a

consequence, for instance the choice or placement of

sensor is often not optimized with respect to diagnosis
purposes, or, if later changes are made, additional (outer

and inner) design loops are needed that cause delays.

An improvement could be reached by performing a

comparative analysis (,what-if-analysis‘) inside the inner

design step and the integration in the early phases of
control and diagnostic development. Thus, part of the
component selection task is moved inside the inner design
process, and, in particular in the early phases of the inner
design loop, it is possible and cheap to modify component
choices, e.g. sensors, regarding type, sensitivity or
placement and to immediately explore the impact on
control generation, FMEA, diagnosability analysis, and
diagnosis generation.

The New Process

Based on this analysis of the reference process and the

outlined improvements, we propose a frame for a new

process which is closely connected to a new tool

architecture.

In summary, the framework for a new process has to

satisfy the requirement that in the inner design loop of the

process, the designers (the different experts involved in

the design) should be supported in performing different

activities in an interleaved way:

e design of the physical system,

e design of control algorithms, and their simulation (for
gquantitative analysis),

* generation of the FMEA of the designed system

» analysis of the diagnosability, i.e. investigation which
faults are detectable and discriminable from each

other,

» derivation of on-board diagnosis (OBD) software for
the system,

e comparative analysis on the current design (physical
system and control), i.e., analysis of the

consequences of applying changes to the design both
from the control and diagnosability point of view,

e comparative analysis of different design alternatives.

Thus, designers and decision makers are supported in the

process of evaluating different designs and in making

choices about the best design of a system.

e Such a tight integration of different activities and the
aim to perform them concurrently require the fast and
reliable exchange of information about any changes
in the design introduced by any of the activities. This
is why we propose that theodel of the system
being designed must play a central rolein the new
process, as indicated by Figure 3.

¢ The aims to update FMEA, diagnosability analysis
and OBD generation quickly after a change and to
consider different design alternatives in parallel
establishes the requirement that these tasks can be
effectively supported or automated by computer tools
based on the model, i.e. they have tortwelel-based
tools.

OBD-
generation

FMEA
generation

Models

library \
Selection K
of Comps
and their ‘ Control Design }—b
layout

Figure 3 Framefor the new design process

Diagnosability|
Analysis

Control Design (SW + HW)

Integration/
Verification

Simulation/ ECU
Verification +

Next
Prototype

Softwar e Support for the New Process

Accordingly, the actual goal is to provide a new set of

functions for supporting the designer, which are realized

as ,software plug-ins* added to the existing software tools

for design. Within the scope of IDD, we are considering

three plug-ins:

» tools for diagnosability analysis

» tools for supporting the FMEA generation (cf. [Price
98])

* tools for supporting the generation of onboard
diagnostics (see e.g. [Bidian et al. 99], [Cascio et al.
99], [Sachenbacher-Struss-Weber 00]).

These tools rely on model-based systems and will be

based on a common set of models and a common model-

based diagnostic system core.

The new process and the respective tools should be

integrated or combined with the simulation tools, that are

currently used for the design of control strategies and
typically based on quantitative models. In IDD, this is

Matlab/Simulink. This requires software that transforms

the models created in these environments into qualitative

diagnostic models that form the basis for the model-based
tools.

Figure 4 summarizes the overall architecture of the new

design support system .

Onboard - Diagnosis

IAMI=A Software

Support Tool

Diagnosabilty
(OIS Teel Generation Tool

Qualitative
diagnostic model

| Model transformation |

Numerical model
(quantitative)

Modeling and Control
Simulation Tool Generation Tool

Design
Tool

Figure 4 Tools architecture for the new process

A challenge lies in providing
e a common software platform with components that
are re-usable in different contexts, and

» the harmonization of models used for different tasks.
The latter is ideally to be achieved by automated
transformation routines. In particular the automated
transfer of traditional quantitative models (used e.g. for
simulation and control design) to qualitative models

allowing for automated FMEA and fast, i.e. real-time, on-

board diagnosis, is a central target. If indeed successful,

the re-use of existing model fragments ddifer ent tasks

will reduce life cycle costs by a significant amount.

IDD envisions three types of application settings:

e anintegrated toolbox with its own graphical user
interface and storage of models. A component-
oriented ontology has been chosen to best address
modeling requirements in the automotive domain.

e a variety of plug-ins to industry-adopted existing
tools. In IDD, we have chosen MatLab/Simulink.
Models will possibly be stored with these tools and a
specific graphical user interface will be limited, if
existent at all. The plug-ins provide additional
functionality, namely diagnosability analysis, FMEA,
and the transformation of design information
captured by the Matlab/Simulink model.

e the (on-board) processing scenario fiedicated
applications such as diagnosis and monitoring. They
are dedicated to a particular variant of a device. A
diagnosis and monitoring application on a ECU is a
typical example.

The IDD toolbox and plug-ins will be running on
Microsoft Windows. Therefore, COM (component object
model) was chosen as a protocol for the interaction of
(binary) components. All the engines, transformers, etc
are implemented obeying this standard. This allows for
the re-use of functionality in different contexts, and, in
particular, the three different application settings. The
second cornerstone is given by the use of XML (extended
markup language) for describing data in a uniform and
exchangeable way. Many of our software components
take XML documents as input and produce such
documents as output.

COM and XML allow us to build task-related

applications that are constructed from components which

themselves are aggregated from even more basic
components. The components in the layer directly under
the application level we callengines, our third

cornerstone. So, there are (re-usable COM) components

that encapsulate a diagnosis engine, an FMEA engine, a

predictive engine, a transformation engine, etc. An

important consequence of the choice of COM, XML, and
engines is that the resulting architecture is an open one,
open at any desired degree down to the level of individual
methods of low level objects.

At the component level, the IDD consortium has chosen

OCC'M’'s Razr [RAZR 02] as a basis for

implementation. It provides state of the art model-based

systems software packaged into COM-components and
supplied with XML-interfaces. This allows for further
extensions as needed by the consortium requirements.

These components include

e anATMS (Assumption Truth Maintenance System)
which provides fast consistency checking and
handling of time. While still adhering to the basic

framework of assumption-based truth maintenance
[de Kleer 86], the employed technology has changed
substantially making possible the implementation of
on-board systems meeting real-time requirements
([Sachenbacher-Struss-Weber 00]).

» aconstraint-based predictive engine which alows
to limit the computational efforts by specifying
appropriate foci of attention.

e a model compiler which produces system
descriptions (XML documents) suitable for
processing by various engines. For representing
constraints, a data structure similar to ordered binary
decision diagrams (OBDD), but also suitable for
direct constraint processing is used as a compact
representation [Bryant 92].

* a diagnosis engine which accepts a system
description and a continuous stream of observations
(measurements) as the input and produces an
assessment of the current situation by listing the best
candidates for diagnosis.

« The modd transformation engine is centra and
touches on still open research questions. Therefore, it
is a main subject of the consortium’s current
activities. As already pointed out, automated model
transformation is required to obtain qualitative
models. Behavioral and structural descriptions are
extracted from numerical models (developed in
Matlab/Simulink), converted to qualitative models
represented in XML form and possibly transformed
into more abstract descriptions through a process
called task-dependent model abstraction
([Sachenbacher-Struss 01]). The foundations of one
of the implementations and a critical discussion of
the practical experiences are presented in [Struss 02].

In the following, we discuss the foundations for the

diagnosability analysis engine, that forms a specific

contribution of the project, in a little more detail.

Diagnosability Analysis Engine
Diagnosability analysis is expected to answer two
different types of questions:

“For a particular design and a chosen set of sensors,

determine:

* Fault detectability, i.e. whether and under which
circumstances the possible faults considered can be
detected (by the ECU)

* Fault (class) discriminability, i.e. whether and
under which circumstances the ECU is able to
distinguish different classes of faults.”

The second question is a generalization of the fault

identification task (Determine the present fault mode

unambiguoudly”). This generalization is motivated by on-
board diagnosis requirements: full fault identification is
usually not possible and also not required for on-board
purposes, since there is a limited set of possible recovery
actions that can be performed by the control unit and

which are to be selected dependent on the general type of
fault and its severity rather than the individual fault. For
instance, only certain critical faults may require
immediate shut-off of the engine while others allow
continued operation possibly under certain limitations.
Also off-board diagnosis is appropriately characterized as
fault class discrimination where the classes comprise the
faults of the various smallest replaceable units. More
generally, diagnosis is usually a discrimination task
whose goal is defined by the available “therapy” actions.
Discriminability is the fundamental task, because
detectability can be formulated as discriminability from
the normal behavior.
Although the ultimate goal is to discriminatkasses of
behavior modes from each other, the analysis has to based
on the discriminability of each pair ondividual faults
taken from any pair of classes, which is unfortunate from
a computational point of view.
In our framework, (fault) behavior modes are represented
as finite relations, and discriminability analysis becomes
the task of computing the observable distinctions between
two relations. So, let Y be the set of observable
variables. In an on-board situation, this corresponds to the
set of actuator and sensor signals. Since we want to
characterize the situations under which detection or
discrimination is possible, we introduce a set of variables
Vs that are exogenous or “causal “ variables w.r.t. the
physical system (i.e. the subsystem excluding the ECU).
This set includes the actuator signals but also other
guantities that influence the behavior of the physical
system. Some of the latter may be observables, e.g. the
atmospheric pressure, while other are not (directly)
measurable, such as the load. Since on-board diagnosis
can rely only on what is observable to the ECU, we
define:

Vocase=Vobs N Vease
and

Vobsicause = Vaobs \ Veause

as well as the respective projections, PRFROY case

The abstract example in Figure 5 will provide an intuition

about possible answers to the discriminability question.

The vertical axis represents the observable causal

variables and the horizontal axis the remaining

observables. There may be many unobservable variables,
but the shown projection to the space of observables is all
that matters.

Two different fault modes (or, more generally, behavior

modes) are represented by two relations. As illustrated by

the figure, we can distinguish three different cases:

« In the upper section the relations cover each other,
i.e. for any causal stimulus in the projection of this
intersection area, the observable set of consistent
tuples for the two behavior modes are the same, and,
hence, theycannot be discriminated from each
other.

* Inthe lower section, they are totally digoint, i.e. any
of the respective causal inputs always leads to
different system behavior and, thus,
deterministically discriminates between the two
modes.

e For al other causa inputs, the two modes can
possibly be discriminated, because the actua
response of the system may be outside one of the
relations, but is not guaranteed to.

\

o-cause

Not discriminable
(ND)

Possibly discrim.
(PD)

Discriminable ‘\
©) N\

V,

obs\cause

Figure 5 Three categories of discriminability of two
behavior modes

With this trandation of the task to the anaysis of
relations, we can also support our previous claim, that, in
general, a pairwise comparison of individual modes of
required to determine the discriminability of classes of
modes. Consider the trivial example of one inverter with
two mode classes:

C, ={ output-stuck-0, output-stuck-1},

C, ={shorted, ok}.
Figure 6 a and b display the four faults in the observable
spacei, o, grouped in the two classes.

i 0

4%

i output- output- i
/ stuck-0 / stuck-1 A / ok / shorted
1 1
0 0
> o » o
a) 0 1 by © 1

Figure 6 Behavior classes of theinverter for fault
classes C, (a) and C, (b)

Obviously, the faults are pairwise discriminable, and,
hence, so are the two classes of faults. However, if we
would try to represent each class as the disjunction of its
modes and associate with it the union of the respective
relations, then both of these class relations cover the
entire behavior space and are not distinguishable. The
deeper reason is that a fault class represents more than a
(exclusive) digunction of modes. We aso make a
persistence assumption, namely that one particular mode
occursin al inspected situations (i.e. for al inputs).
Before we give forma definitions and computable
expressions for the concepts, we introduce one last
element: operating conditions. This reflects the common
practice of distinguishing between ranges of internal or
external quantities that result in qualitatively different
behaviors and are often reflected by different states of the
system and its control. Examples are engine idle, clutch
engaged, cold engine, brake pedal pushed.

Often, the analysis of fault effects and diagnosability can
be restricted to certain operating conditions and is futile
for others. For instance, one may not be extremely
interested in the detectability of a fault in the air intake
system under conditions where the engine is not running
(one has to be cautious with such restrictions, though,
because firstly, there may be a requirement to perform
fault detection beforehand, such as checking the
operability of the airbag system or the ABS, and
secondly, a broken component could affect operating
modesin which it is not intended to be active).

In our approach, an operating condition has to be
expressed as a constraint on a subset of model variables.
Often, but not always, they will refer to exogenous
variables such as the angle of the accelerator pedal or air
temperature, and typically, but not exclusively, they are
observables (the load, for instance, is not directly
observable).

In most cases, the constraint that defines an operating
condition will be a conjunction of restrictions on variable
values to some interval or state like temperature>120°C
or ignition = ON

Restricting the analysis to certain operating conditions
then boils down to computing the intersection of a
behavior relation with their respective constraints.

Definition 1 (Discriminability of behavior modes)

Let MODEL;y;, MODELayto be the behavior
relations of two modes,
OPC,; an operating condition,
and
SITO DOM(Vo.cause)
a non-empty relation on the observable causal
variables.

For OPC; and SIT, two faults are called
- not discriminable, written

ND(fault,, fault,, OPC;, SIT),
iff

(i) SIT O PROJ. cause(OPC) \ PROJ, e
(PROJObS (MODELfaunl N OPC|)\
PROJObS (MODELfaunz N OPC|)
0 PROJys (MODEL ¢y N OPC)\
PROJyss (MODEL a1 N OPC)))
- deterministically discriminable, written
DD(faulty, fault,, OPC;, SIT),
iff
(i) SIT O PROJy cause(OPC) \
PROJo-cause (PROJobs (M ODELfauItl n OPCi)
n PROJObS (M ODELfaunz n OPC|))
- possibly discriminable, written
PD(fault,, fault,, OPC; , SIT),
iff
SIT 0 PROJs.case(OPC) \ (SITp O SITop),
where SITyp and SITpp are the maximal relations
that satisfy (i) and (ii), respectively.

These definitions characterize the three cases discussed
above w.r.t. Figure 6 in a way that can be computed by
operations on the extensional constraint representation
generated by the model compiler.

Based on the discriminability of modes, discriminability
of fault classes can be defined and computed.

Definition 2 (Discriminability of mode classes)

Let FC; ={fault;j}, j =1,2 be two fault classes and
OPC; an operating condition. Let furthermore
SIT-SET ={SITy} O P(DOM (Vo -case))
be a set of non-empty relations of observable causal
variables. FC,, FC,are called
- not discriminable, written

ND(FC,, FC,, OPC)
iff there exists a pair of modes that is completely non-
discriminable:

Ofaulty O FC, Ofaulty O FC,

ND(faUlt”(fault,, OPC;, PROJ, cause (OPC,))

- deterministically discriminable, written

ND(FC,, FC,, OPC; SIT-SET),
iff each pair of modes is deterministically
dicriminable for some element of SIT-SET:

O faulty, OFC, O faulty OFC, OSIT,OSIT-SET

DD(fauIt|k, fault2|, OPCi, S|Tk|)

- Possibly discriminable, written

PD(FC,, FC,, OPC; SIT-SET),
otherwise, iff all SIT, are in the complement of the
non-discriminable situations:

Dk| SlTk| n SITND,kI =0

Status and Future Work

As of now, two different alternatives have been
implemented to generate the qualitative diagnosis models
from existing numerical models which both use Matlab
itself to compute the tuples of the modeling relation. In

addition, a library of qualitative models will be created
manually that allows to configure the model based on the
structural description only. Based on a use case analysis,
the core of the diagnosability analysis tool and the model-
based on-board diagnosis engine have been devel oped.
IDD will use a nhumber of guiding applications with the
goal to demonstrate how the diagnostic tasks described
can be performed by using the new process and the new
tools architecture. Furthermore, we aim to demonstrate
how additional advantages of the new method can be
achieved, e.g. optimization of sensor placement or deeper
diagnostic performance. Thereby, the guiding applications
serve, on the one hand, as case studies for the application
of the new technigques and, on the other hand, as test cases
and demonstrators of the results of the project.
The guiding applications chosen cover on the one hand
different mechatronic systems with central ECU-
functions, and on the other hand the general application of
diagnostic tasks to multiplexed architecture systems. They
include
e The air delivery system for diesel engines (Figure
7), comprising the exhaust gas turbocharging system
and the exhaust gas recirculation system (EGR. and
the Common Rail Injection System (Fiat and
Magneti-Marelli).

Filter Catalyst
o= T =
= = = | Waste Gate

Actuator
4
11 Heat Exchanger /F}/\{R\
 irbar: EGR Actuator ——
. * '-

@
dﬁ- EN—

-t

Figure 7 Guiding application: Air delivery system

e The cooling system (DamlerChrysler AG),
including an intercooler, which on the one hand
increases the efficiency of the engine by cooling the
compressed air and, hence, increasing the air charge
rate, and on the other hand decreases NOx emissions
by keeping the combustion at lower temperature
(Figure 8).

e Theair conditioning system (Peugeot Citroén PSA)

which consists of two loops that supply a cold heat

exchanger and a hot heat exchangeyute 9).

3
air fromfilter
ar—» engine turbocharger
1 radiator
_,_g-— 2 intercooler
pump 3 thermostat

compressed air

Figure 8 Guiding application: Cooling system

L'}

Aj_rmy'{n
Beaoaa

|
Bone il /| é
HE=Y g
An@%

\ \l

\

Taan

' Aratrace Mxrg
veve veve Raecr E»légey

Figure 9 Guiding application: Air conditioning system

e The multiplexed architecture (Renault) involving
ECUs, sensors, actuators, functions (EF = elementary
functions), busses and data frames (Figure 10). The
design engineer will be enabled to run a program
directly on the representation of a designed
architecture and receive the results of an analysis of
the interdependency of faults and functions in this
architecture.

Figure 10 Guiding application: Multiplexed ar chitecture

A first version of models for these guiding applications
has been developed and will be used to validate and
improve the model abstraction module and to evaluate the
tools. By the end of the project in January 2003, we hope
to demonstrate the utility of the tools and the benefits of
the modified design process based on examples that are
closeto redlity.

References

[Bidian et a. 99] P. Bidian, M. Tatar, F. Cascio, D. Theseider-
Dupré, M. Sachenbacher, R. Weber, C. Carlén: Powertrain
Diagnostics: A Model-Based Approach, Proceedings of ERA
Technology Vehicle Electronic, Systems Conference '99,
Coventry, UK, 1999

[Bortolazzi-Steinhauer 00] J. Bortolazzi, St. Steinhauer, Th.
Weber: Development and Quality Management of In-
Vehicle Software. In: Electronic Systems for Vehicles (VDI
— Berichte 1547), VDI Verlag , Duesseldorf 2000

[Brignolo et a. 01] R. Brignolo, F. Cascio, L. Console, P. Dague,
P. Dubois, O. Dressler, D. Millet, B. Rehfus, P. Struss.
Integration of Design and Diagnosis into a Common Process.
In: Electronic Systems for Vehicles, pp. 53-73. VDI Verlag,
Duesseldorf, 2001.

[Bryant 92] R. Bryant: Symbolic Boolean Manipulation with
Ordered Binary-Decision Diagrams ACM Computing
Surveys, Vol. 24, No. September 1992

[Cascio et al. 99] F. Cascio, L. Console, M. Guagliumi, M.
Osella, A. Panati, S. Sottano, D. Theseider-Dupré: Strategies
for on-board diagnostics of dynamic automotive systems
using qualitative models, Al Communications, June 1999.

[de Kleer 86] J. de Kleer: An assumption-based truth
maintenance system, Atrtificial Intelligence 28, 1986

[Price 98] C. Price: Function-directed Electrical Design
Analysis, Al in Engineering 12(4), pp. 445-456, 1998.

[RAZ’R 02] Raz'r Version 1.6, Occ'm Software GmbH, see
http://www.occm.de

[Sachenbacher-Struss-Weber 00] M. Sachenbacher, P. Struss,
R. Weber: Advances in Design and Implementation of OBD
Functions for Diesel Injection Systems based on a
Qualitative Approach to Diagnosis, SAE 2000 World
Congress, Detroit, USA, 2000.

[Sachenbacher-Struss 01] M. Sachenbacher, P. Struss: AQUA:
A Framework for Automated Qualitative Abstraction. In:
Working Papers of the 15th International Workshop on
Qualitative Reasoning (QR-01), San Antonio, USA, 2001

[Struss 02] P. Struss: Automated Abstraction of Numerical
Simulations Models - Theory and Practical Experience. In:
Sixteenth International Workshop on Qualitative Reasoning,
Sitges, Catalonia, Spain, 2002.

Suggestions from the softwar e engineering practice for applying

consistency-based diagnosisto configuration knowledge bases

Gerhard Fleischanderl

Siemens AG Osterreich, Program and System Engineering, CES Design Services
Erdberger Laende 26, A-1030 Vienna, Austria
gerhard.fleischanderl @siemens.com

Abstract

A configuration knowledge base is software that needs
debugging during maintenance and can benefit from
consistency-based diagnosis. The paper describes
suggestions and practical experience from the
introduction of this diagnosis technique in the work
flow for maintaining configuration knowledge bases.
Consistency-based diagnosis is suitable for detecting
bugs in knowledge bases, but needs tailoring to fit in
the work flow of the knowledge engineers.

1 Introduction

Configurators have aready been applied to different
industry domains. For instance, telecommunication systems
are among the products successfully handled with configu-
rators. The crucial information is in the knowledge bases of
the configurators.

Configurators using declarative constraints [Mittal and
Frayman, 1989] are in everyday use and can generate and
modify configurations with more than 50,000 objects
[Fleischanderl et al., 1998]. Declarative constraints offer
easier maintenance compared to procedural specifications,
but also benefit from effective debugging methods. Con-
sistency-based diagnosis [Reiter, 1987] [Greiner et al.,
1988] is applicable to fault detection in configuration
knowledge bases [Felfernig et al., 2000], which is the topic
of this paper. The extensions towards hierarchical models
[Felfernig et al., 2001] are not discussed here because the
author did not apply this yet.

This paper discusses suggestions and practical experi-
ence from applying diagnosis techniques to the debugging
of declarative knowledge bases for configurators. The
experience ranges from the planning of an engineering
process including diagnosis to the early adoption of diag-
nosis for the debugging of knowledge bases. The require-
ments of the development process for knowledge bases are
compared with the specification of the diagnosis method.

2 Maintaining knowledge bases

Creating and maintaining knowledge bases is essentialy a
software engineering process.

After collecting and analyzing new requirements, the
knowledge base is modified and tested. Regression tests are
essential for long-term maintenance. So the results from
replaying regression tests should be fed into a diagnosis
tool if the new output differs from the expected output of a
regression test.

In an ideal world the discrepancies from regression tests
would be analyzed with a diagnosis tool and suggestions be
made which constraints in the knowledge base are
responsible for the discrepancies. Unfortunately this is not

that easy.

3 Preconditionsfor consistency-based
diagnosis

Consistency-based diagnosis needs a consistency checker,
i.e. asolver that yields conflict sets when a knowledge base
isin contradiction to a positive example. The configurator
kernel COCOS [Stumptner et al., 1998] applied by the
author is a solver that uses declarative constraints for stati-
cally checking or expanding a partial configuration. The
kernel was extended to also yield conflict sets. So a suffi-
ciently powerful consistency checker is available.

The elements that can be faulty have to be identifiable
parts of a knowledge base. In our case the constraints can
be faulty with respect to positive examples and are the
“components’ for model-based diagnosis.

4 Requirementsand consequences of
consistency-based diagnosis

4.1 Definition of a CKB-diagnosis

A CKB-diagnosis (i.e. diagnosis of configuration knowl-
edge bases) uses the model-based diagnosis paradigm and
is defined as follows [Felfernig et al., 2000].

Definition (CKB-Diagnosis Problem): A CKB-Diagnosis
Problem is a triple (DD,E+,E-) where DD is a configura-
tion knowledge base, E+ is a set of positive and E- of
negative configuration examples. The examples are given
as sets of logical sentences. It is assumed that each example
on its own does not contain inconsistencies.

Definition: A CKB-diagnosis for a CKB-Diagnosis
Problem (DD,E+,E-) isaset S DD of sentences such that
there exists an extension EX, where EX is a set of logical
sentences, such that

DD -SE EXE e+ consistent " e+ 1 E+

DD -SE EXE e inconsistent " e-1 E-

Let NE be the conjunction of all negated negative
examples. Thisisthe most easily found EX.
Proposition: Given a CKB-Diagnosis
(DD,E+,E-), adiagnosis Sfor (DD,E+,E-) existsiff
"e+1 E+:e+ E NEisconsistent.
Corollary: Sisadiagnosis iff
"e+1 E+:DD-SE e+ E NEisconsistent.

Problem

4.2 Representation of examples

The definition of a CKB-Diagnosis Problem says that the
examples are given as sets of logical sentences. This is
usualy not the case in configurator implementations. Y et,
databases or other data representations can easily be trans-
formed into facts, i.e. logical sentences. This transfor-
mation need not be done for the implementation of diag-
nosis for configurator knowledge bases, but is a precon-
dition for the applicability of CKB-diagnosis.

With logical sentences one can define a configuration as
a set of fragments. In configurator applications, configu-
rations are based on an object model, which is usually
defined with UML. All objects usually are reachable from
one entry object. So the positive or negative examples
cannot just be isolated sub-configurations, but must be
connected objects. This is a dlight restriction that does not
limit the diagnosis.

This property of configurations ensures that trivia
inconsistencies are avoided, eg. there cannot be two
modules in the same dlot. Therefore each example (i.e. its
structure of objects and connections) does not contain
inconsistencies among its elements.

4.3 Conjunction of negated negative examples

The definition of a CKB-diagnosis requires an extension
EX. The question is: Where does EX come from?

The simplest EX would be the negation of all negative
examples, i.e. NE as defined above. This is not a useful
solution for maintaining configurator knowledge bases in
real life. This would reduce the advantages of declarative
congtraints, namely that knowledge bases contain little
redundant information and can be understood easily by
domain experts. Furthermore, the constraints should be
sufficiently general to be applicable to similar situations in
the future. The negation of configurations (i.e. negative
examples) would clutter the knowledge base with facts that

may overlap and would not prevent examples that are
dightly different.

4.4 Diagnosisispart of the existing knowledge
base

According to the definition of CKB-diagnosis, a diagnosis
is a subset of the knowledge base. That means faults are
found among the constraints in the existing knowledge
base. Thisis useful in real-life projects and makes the con-
sistency-based diagnosis worthwhile. Yet, defining new
congtraints (thus extending the knowledge base) has to be
accomplished with other approaches.

5 Integrating consistency-based diagnosisin
the softwar e engineering process

The definitions for consistency-based diagnosis of configu-
ration knowledge bases do not tell a lot about how to
proceed (step by step) to reach a correct knowledge base.
However, the conditions for the correctness check for
knowledge bases are specified.

This section describes how to use diagnosis in the soft-
ware engineering process for knowledge bases.

5.1 Usethe examplesoneby one

Examples, i.e. stored configurations, may be partial or
complete. Due to restrictions coming from the usual object
models in software development, each example is a net-
work of objects that can be reached from an entry object.
Therefore, only one example can be loaded at one time.
This holds for positive and negative examples.

5.2 Negative examplesare outsiders

In the diagnosis process discussed here, negative examples
do not yield hints for mistakes in a knowledge base.

We expect that negative examples lead to inconsis-
tencies. If a negative example is consistent with the
knowledge base, the consistency-based diagnosis has no
discrepancy to start from. The practical suggestion then is
to analyze the consistent negative examples "by hand" and
modify the knowledge base to rule out those examples.
This corresponds to finding the mysterious EX in the defi-
nition of CKB-diagnosis.

The good news, however, is that negative examples usu-
aly are modifications of positive examples or previously
positive examples that became negative after a modifica-
tion to the knowledge base. Our experience from mainte-
nance over many years shows that these negative examples
will mostly remain negative examples after more modifi-
cations to the knowledge base.

Help also comes from good practice in software engi-
neering. When knowledge bases are stored in a version
control (configuration management) system, we can find
the latest previous version where some negative example
was still rejected by the knowledge base. Comparing that
older version with the current knowledge base shows the
constraints that were modified or removed in the meantime.
This is of course an excellent starting point for modifying

the current knowledge base such that it again rejects the
negative example.

When all negative examples are rejected by the knowl-
edge base, start looking at the positive examples. So the
negative examples are treated outside the diagnosis step.

5.3 Usetheresultsfrom regression tests

Like any software, knowledge bases can be maintained
more efficiently by using regression tests and checking
them after amodification.

When aregression test produces an output different from
its reference, find out whether the new output is expected
(after a modification to the knowledge base). Only if the
new output is different from what is expected, feed this
output into diagnosis.

54 Dodiagnosisand repeat the cycle

Finally, we use consistency-based diagnosis to detect faults
in the knowledge base. This follows the definition of CKB-
diagnosis as described above. The well-defined precon-
ditions and semantics of the method make it particularly
valuable.

After the knowledge base was modified, we must repeat
the cycle of testing and diagnosis until all negative exam-
ples are inconsistent and all positive ones are consistent.

The cycle described here starts with the negative
examples (by modifying or extending the knowledge base)
and continues with the positive examples (by modifying or
reducing the knowledge base). This could be done the other
way round. The "optimal" sequence, however, depends on
the structure of the knowledge base and the expert's
experience and point of view. The objective is to modify
the knowledge base such that it remains easy to maintain
and easy to understand. We are confident that the steps
described above help us get close to this objective.

6 Beyond diagnosis
Beyond the scope of CKB-diagnosis, other methods can be
useful for maintaining knowledge bases.

Automatic generation of test cases would be helpful for
producing a large set of regression test cases. This would
assure the quality of knowledge bases that are maintained
over several years.

If a negative example is consistent, automatic generali-
zation of the negated negative example could yield a non-
redundant modification to the knowledge base. Here the
optimum between introducing too many new constraints
and over-generalization has to be found. For this purpose
the methods for automatic learning of concepts have to be
analyzed with respect to the semantics of the configuration
knowledge base.

7 Summary and conclusion

Consistency-based diagnosis is applicable to the debugging
of configuration knowledge bases. The method is particu-
larly valuable because of its well-defined preconditions and
semantics.

Integrating CKB-diagnosis in the software engineering
process for knowledge bases can be done efficiently and
effectively. There are minor limitations where CKB-
diagnosis cannot be fully applied, i.e. with respect to
automatic suggestions from negative examples. Altogether
the experience from the planning of a debugging process
with diagnosis and from the early adoption is encouraging.
Results from wide usage will follow.

Acknowledgement

| want to thank Gerhard Friedrich and Dietmar Jannach for
their valuable contributions to our discussions.

References

[Felfernig er al., 2000] Alexander Felfernig, Gerhard E.
Friedrich, Dietmar Jannach, and Markus Stumptner.
Consistency-based Diagnosis of Configuration Knowledge
Bases. Proceedings of the 14th European Conference on
Artificial Intelligence (ECAI-2000), pp. 146-150, Berlin,
Aug. 2000, |OS Press.

[Felfernig er al., 2001] Alexander Felfernig, Gerhard E.
Friedrich, Dietmar Jannach, and Markus Stumptner.
Hierarchical diagnosis of large configurator knowledge
bases. Working Notes of the 12th Intl. Workshop on
Principles of Diagnosis (DX-2001), Via Lattea, Italy,
March 2001.

[Fleischanderl et al., 1998] Gerhard Fleischanderl, Gerhard
E. Friedrich, Alois Haselbdck, Herwig Schreiner, and
Markus Stumptner. Configuring large systems using
generative constraint satisfaction. IEEE Intelligent Systems
& their applications, 13(4):59-68, July/Aug. 1998.

[Greiner et al., 1988] Russell Greiner, Barbara A. Smith,
and Ralph W. Wilkerson. A Correction to the Algorithm in
Reiter's Theory of Diagnosis. Artificial Intelligence,
41(1):79-88, Nov. 1989.

[Mittal and Frayman, 1989] Sanjay Mittal and Felix
Frayman. Towards a generic model of configuration tasks.
Proceedings of the 11th Intl. Joint Conference on Artificial
Intelligence (IJCAI-1989), pp. 1395-1401, Detroit, Aug.
1989, Morgan Kaufman Publishers.

[Reiter, 1987] Raymond Reiter. A Theory of Diagnosis
from First Principles. Artificial Intelligence, 32(1):57-95,
Apr. 1987.

[Stumptner et al., 1998] Markus Stumptner, Gerhard E.
Friedrich, and Alois Haselbock. Generative Constraint-
Based Configuration of Large Technica Systems.
AI-EDAM (Artificial Intelligence for Engineering, Design,
Analysis and Manufacturing), 12(4):307-320, Special |ssue
on Configuration, Sep. 1998.

Consistency-Based Fault I solation for Uncertain Systems
with Applicationsto Quantitative Dynamic M odels

Colin N. Jones! and Gregory W. Bond ? and Peter D. Lawrence’

Abstract. This paper presents the Probabilistic General Diagnostic
Engine (PGDE), a novel method of offline consistency-based fault
isolation. Many existing proposals require qualitative logic mod-
els for consistency-based diagnosis due to their ability to speed the
search for conflict sets through the use of an ATMS. However, for
many applications, quantitative dynamic models are preferred or al-
ready available. The key strength of the PGDE isthat it allowsthe use
of any modelling language for which an appropriate calculation en-
gine can bewritten. It also offers graceful degradation in the presence
of uncertainty, commonly caused by noise or modelling errors. Fi-
nally, given perfect knowledge, it can be shown that the PGDE com-
putes the same result as existing consistency-based diagnosis meth-
ods. To demonstrate the performance of the algorithm, we have used
a quantitative dynamic model of the fluid power circuit of asingle-
degree of freedom hydraulic test bench and developed an appropri-
ate calculation engine for computing consistency between measured
values and predicted results. Various failures were generated on the
physical test bench and the PGDE isolated the faults with approxi-
mately 85% accuracy.

1 INTRODUCTION

Consistency-based diagnosis has at its heart the search for a subset of
the full model such that predictions made using the subset are con-
sistent with sensor measurements. This search space is exponential
in the number of model components and so a great deal of attention
has been given to devel oping efficient algorithms. Much progress has
been made by utilizing the properties of propositional logic and qual-
itative models ([10, 8, 1] to name afew) but the problems associated
with more complex dynamic systems have still to be solved in gen-
era. The Probabilistic General Diagnostic Engine (PGDE) addresses
some of theseissuesin ageneral framework that applies to any model
for which an appropriate “ consistency measure” can be formul ated.
There are many devices for which quantitative dynamic models
either already exist or whose behavior can best be described by a set
of differential equations. The cost of developing qualitative models
exclusively for the purpose of diagnosis is prohibitive, thus making
the adaptation of qualitative methods to quantitative dynamic models
an important topic. Models of this type present two new challenges
to the diagnostician: First, quantitative dynamic models require the
comparison of sets of signals to determine consistency. Due to noise
and modelling errors, it can be difficult to represent the results of

1 Cambridge University, Engineering Department, Trumpington St., Cam-
bridge, CB2 1PZ, U.K.

2 AT&T Labs - Research, 180 Park Avenue, Rm. D273, Bldg. 103, Florham
Park, NJ, PO. Box 971, U.S.A

3 University of British Columbia, EECE Department, 2356 Main Mall Van-
couver, BC, V6T 174, Canada

these comparisons by the discrete values typically used in qualitative
methods. Second, the nature of dynamic systems is that they often
have states which are not directly measurable. When the model is
simulated using only the equations from afew components, itisoften
the case that many of the states will become unknown. If no conflict
is observed, we reason that a possible diagnosis has been identified,
however, it isimpossible to know if there would have been a conflict
if these states had been known. As aresult, the underconstrained na-
ture of dynamic systems reduces the resol ution of fault isolation pro-
cedures and this must be taken into account in any diagnostic method
dealing with these models.

The PGDE algorithm attempts to deal with these difficulties by
maintaining a belief distribution for each possible diagnosis. Since
these distributions are not limited to discrete-valued consistency
messures, the PGDE is able to more accurately interpret interme-
diate non-boolean consistency assessments. They are also updated
throughout the duration of the diagnostic procedure, and conclusions
about the consistency of sets of components with observations are
not drawn until sufficient information has been processed. In Sec-
tion 2, the proposed algorithm is laid out in a step-by-step fashion,
including consideration of its computational complexity in Section
2.5. Next, Section 3 presents a non-trivial example hydraulic circuit
and summarizes some diagnostic results obtained by the PGDE. Fi-
nally, the paper closes with a discussion of conclusions and future
directions of research in Section 4.

2 PGDE ALGORITHM

The model used in a consistency-based algorithm is a set of con-
straints on the signals passing through the system. A failure can be
declared when these signals are inconsistent with the constraints. The
goa of the algorithm is then to locate a subset of these constraints,
which when removed from the model, restore consistency between
the predicted and observed behavior. This process can proceed in an
iterative manner, selecting a set of constraints to remove and simu-
lating the system until afeasible set isfound.

We begin by defining the system asin[7]:

Definition 1 A systemisatriple (SD,COMPSOBS) where:

1. the components (COMPS) are a finite set of constants
2. the system description (SD) is a set of constraints
3. the observations (OBS) are measurements of the physical device

There is no requirement that there be a one-to-one mapping
from components to constraints and so a partition {SD:} .cconps
is defined covering SD such that |, ccopps SDPe = SD and
SD.;SD.; = 0 Vei # c;. The set of al possible failures is

given by the power set of COMPS and for each element A C
P(COMPS), define SDA = U, ca SDe. This alows the defi-
nition of components which contain large numbers of constraints or
complex behaviors as well as hierarchies of components. The cardi-
nality of aset of constraints X C SD iswrittenas|X|; itisasystem-
dependent real number, representing the notion of how “large” the set
X iswhen compared to SD.

Reiter's original work [7] relies on a ‘theorem prover’,
TP(SD, D(A,COMPS\A), OBS), which returns true if the par-
tidl model containing only the constraints in the complement of
SDa, (SDa)¢, is consistent with the observations OB.S and false
otherwise; consistency implying that the components A are a possi-
blediagnosis. Here the theorem prover isredefined to return acontin-
uous measure of how consistent the constraints (SDa)¢ are with the
observations OBS. It is possible that the system defined by (SDa)¢
with OBS asinputs may be underconstrained. Thus, for some of the
constraintsin (SDa)¢, itisimpossible to verify if they have, or have
not, been violated. If this system is consistent then it is not valid to
say that A is adiagnosis as the faults might have been in the con-
straints that could not be tested. This situation is very common in
dynamic systems with state as they are inherently underconstrained
[4]. To deal with this, the constraints which were used during the
simulation of (SDa)¢ are returned by TP(-) as defined below.

Definition 2 Let A € P(COM PS). Define the function TP(-, -) :
SD x OBS —- R x SD as:

(1a,An) = TP((SDa)", OBS)
Where:

e A € [0,1], 1 implies constraints (SDa)¢ are consistent with
the observations OBS, and 0 implies inconsistency

e An C (SDa)° are the constraints which TP(-) had sufficient
information to apply during the calculation of pia

Two belief distributionsover the states {true, false, unknown} are
maintained for each element A € P(COMPS). These are rep-
resented by the probability mass functions B, A (x) and B¢ A ()
with domains {true, false, unknown}. By A(true) is the belief
that the evidence, provided by calls to TP(-), shows that A is a di-
agnosis. By A (false) is the belief that the evidence does not show
that A isadiagnosis. It does not mean that the evidence does show
that A isnot adiagnosis as consistency can only incriminate compo-
nents, it cannot exonerate them [7]. Finally, B, A (unknown) isthe
probability that it is unknown what the evidence shows, or that there
is no evidence. If ua = 0 then at least one component of A° must
be faulty and we call A° aconflict set [7] and A an inverse conflict.
Bic,a(true) isthe belief that the evidence showsthat A isan inverse
conflict, B¢ a(false) that it doesn’t and B A (unknown) that the
evidence is unclear.

Initially, all the beliefs are 100% unknown (B, a(z) =
B a(x) ={0.0,0.0,1.0}). Ineach iteration, acall ismadeto TP(-)
to check if a new set of constraints (SDa)¢, is consistent with the
observations, O BS. The distributions are then updated to reflect the
simulator’s certainty in the consistency of each set of components,
again with the observations. In this way, the diagnostic engine deter-
mines the components that are most likely to be faulty, as well as a
measure of its confidence in these decisions.

A block diagram of the PGDE isshown in Figure 1. The following
sections deal with each stage of the algorithm in detail in the order:

updating the beliefs (steps 3 and 4), choosing a new set to test for
consistency viaTP(-) (step 1), deciding when to stop and interpreting
the final belief distributions (steps 5 and 6).

2.1 Beélief update

Once apossible diagnosis, A, has been selected, TP(-) isused to find
the consistency measure, 1.4, and the constraints which were used to
computeit, Aa. The goal isto determine what the consistency mea-
sure has shown about each of the subsets of COM PSS, using Aa as
aguide. Assuming no fault models, two properties of constraint sys-
tems allow the consistency measure of the set A to affect the beliefs
of other sets: supersets of diagnoses are diagnoses (removing more
constraints will not make the system inconsistent) and subsets of in-
verse conflicts are inverse conflicts (adding constraints will not make
the system consistent). Using these facts, the supersets of A arefirst
considered and the information derived from pa and Aa is used to
update the beliefs that they are diagnoses (B A, (z) YAp D A).
Similarly, the beliefs that the subsets are inverse conflicts are also
updated (B¢ o, (7) VAc C A).

2.1.1 Update belief in diagnosis

We begin by assuming that ua = 1, indicating that the observations
are consistent with the constraints (SDa). The goal isto determine
to what degree this evidence shows that each set is adiagnosis. The
first step isto locate the base set, A, for the set (SDa)€ as defined
below in Definition 3. This is the set with the most components of
which none have had any of their constraints used during the calcula-
tion of pua. Referring to Figure 2, inwhich TP((S Dy 2,33)¢, OBS)
wascaled, thebasenodeisAp = {1,2,3,4}. I1f A # Ap,thenthe
constraints of at least one component have not been considered due
to the assumption that the components in A were faulty (in Figure
2 this would be component 3). In essence, TP(-) cannot distinguish
between any set A’ suchthat A C A’ C Ag, since whenever the
constraints associated with the componentsin A are not considered,
neither are those of Ap, which implies that pa = par = pag.
Thisisalimitation of the model and the placement of the sensors; as
aresult the best the algorithm can do isincriminate Ag and inform
the user of this sensor deficiency. Because the consistency measure
would be the same for all of the sets A’, suchthat A C A’ C Ap,
the sets are marked and ignored in subsequent callsto TP(-). For cer-
tain model types these families of sets can be identified a priori and
grouped into single components to speed the algorithm [1, 2].

Definition 3 Let A C Ag C COMPS. Then Ag isthe base set
for A iff

SDap mAA =0
VA" D Ap, SDa/[)Aa #0

If the constraints associated with A are not considered during
the call to TP(-), those in (Aa)¢\ SDa, are not either (in Fig-
ure 2 this would be the unshaded sections of components 5 and
6). These are the constraints which were not considered that do
not make up a full component. The question is: Is the lack of con-
flict during the computation of A due to the constraintsin SDa
those in (Aa)°\ SDay, or some combination of the two? The
safest approach would be to say that this evidence can only increase
the belief that some set A’ O Ap which covers all of (AA)€ is
a diagnosis (A’ = {1,2,3,4,5,6} in the example). However, if

-
- 1 A 2 N
/ Choose asubset of P(COMPS) Cdl TP((SDy)¢,0BS) \
| s AN
/4a + N /33 ‘
. B+D,Ap(x COmpUte B D,Ap(X)) /—\ Compute Bo.sp(Xi)
Current Belief New MIEdegseih node is a Bp ap(%:2) Belief that A, is a diagnosis given A, ‘
- J o
‘ {Bpat-Bp.ant An ‘
{Bicas-Bicant - ~ e
| 40 compute B cacX) /—\ 3D Compute Be alxia) |
New belief that each node is an inverse B xn) Belief that A is an inverse conflict given /
\ B+|CAC(X) conflict ICAC™ Ap
" - J G /
S
P . -

5 Combine BD,A(X) and BIC,A(X) to
form Da(x)

properties of aminima diagnosis

6 Compute the probability that each node has the
Dy a(¥) J

Figurel. The PGDE Algorithm

Figure2. Example nine component system

[(Aa)¢\ SDag| < |SDa |, thiswould be avery conservative ap-
proach, in the sense that a set will never be called adiagnosisif it can-
not completely explain the observed behavior, and multiple compo-
nent failures would be returned more often than they should. In most
cases, designing models which reduce the size of (Aa)°\ SDay
will increase the precision of the diagnosis and so we make the as-
sumption that most modelers will aim for this characteristic and asa
result assumethat |(Aa)¢\ SDa | issmall compared to |SDa |-
Under the assumption that the majority of the constraints which
were not considered during the computation of pa belong to Ag,
this evidence increases the belief that Ap is a diagnosis. However,
because every superset of a diagnosis is a diagnosis, this evidence
asoincreasesthe belief that all of the supersets of Ag are diagnoses.
Thereforefor each set Ap O Ap the probability that the constraints
in SDa,, can account for the lack of conflict during the computation

of ua is:

P(Apisadiagnosis | Aa A ua = 1) (4)
_ [(Aa)*NSDap|
[(Aa)e]

Assuming that faults are equally likely to be anywhere in (Aa)¢,
the probability that they arein SDa . isgiven by Equation 4, asthe
proportion of (Aa)° that is covered by SDa . If @l of, or more
than, (Aa)€ is covered, then the probability that the system will be
consistent is 100%, by the assumption that ua = 1.0.

This probability is computed assuming ua = 1, when in fact it
may well be less than one. The consistency measure describes our
ability to measure how consistent the observations are with the con-
straints Aa. The real components A are either consistent or incon-
sistent with observations and it is only the inability of the model and
sensors to perfectly determine which oneistrue that causes ua < 1.
Therefore the consistency measure can be interpreted as a probabil-
ity that the real artifact is consistent or inconsistent and we assume a
mapping PC(pa) to [0, 1] defined by the modeler which represents
how probable it isthat the real artifact is consistent given pa.

For each Ap O Ap we define abdlief distribution Bp A (z; A)
over the states {¢rue, false, unknown} which represents the belief
that A p isadiagnosis given only the information from calling TP(-)
on A. The distribution is defined as follows:

Bo,ap (true; A)

= P(Apisadiagnosis| Aa A ua =1) - PC(ua)
Bo,ap(false; A)

= (1— P(Apisadiagnosis| Aa Apua =1))-PC(ua)
Byp,ap (unknown; A)

= 1="PC(ua) ©®)

Equation 5 takes the probability that aset isadiagnosis given Aa and
that the measure is consistent, and then scales this probability by the
certainty that the call to TP(-) returned consistent. This distribution
is now combined with the current beliefs using Bayes' Theorem and
the Total Probability Theorem.

Let F be the set {true, false, unknown}. Then the current be-
lief distribution, By, A . (2), isupdated by the evidence Bo, a » (75 A)
to the new belief distribution By _ (2):

By ap(z) = (6)

> P(Biap(@) | Boay(fi)=1A
f1,f2€F

Bo,ap (f2§A) = 1) : BD,AP (fl) - Bo,ap (f2§A)

The probabilities P(BJ ., (z) | Boap(fi) = 1A
Bp,ap(f2;A) = 1) in Equation 6 can be represented by a condi-
tional probability table as shown in Table 1. The first two columns
represent fi and f> respectively and the last three represent z. The
values in Table 1 are chosen such that if the current belief is very
certain, as defined by the weight of the unknown state, then a new
distribution which is very uncertain, will not strongly influence the
belief, and vice versa. If the new evidence agrees with our current
belief, then this belief is strengthened, and if it does not then it is
weskened.

Table1l. Conditional Probability Table used to update B Ap () given

Bo,ap(z;4)
P(Bf A, (@) | By o, (f1) = 1A Boap(f2;4) =1)
X
f f2 True | False | Unknown
True True 10 0.0 0.0
True False 0.5 0.5 0.0
True Unknown 1.0 0.0 0.0
False True 0.5 0.5 0.0
False Fase 0.0 1.0 0.0
False Unknown 0.0 1.0 0.0
Unknown True 1.0 0.0 0.0
Unknown False 0.0 1.0 0.0
Unknown Unknown 0.0 0.0 1.0

2.1.2 Update belief in inverse conflict

To update the beliefs B ¢ A (), much the same procedure isfollowed
as in the case where the system is consistent, only now the evidence
suggests that the considered sets are inverse conflicts rather than di-
agnoses. As before, the first step is to locate the set A, but now it
isthe base set of (Aa)° (A = {7,8,9} inFigure2). (Ap)° isthe
largest set of components such that all of (SDa ,)¢ wasused to com-
pute ua and weagain assumethat |(SDa ;)¢ > |Aa \ (SDag)€-
Theevidence provided by ua suggeststhat some of the constraintsin
(SDa)¢ have been violated. Since adding constraints will not take
away the fact that some of these have not been met, every superset
of (SDa)¢ dso contains broken constraints indicating that every
subset, Ac, of A isaninverse conflict. As before, the probability
that the set A¢ isaninverse conflict is:

P(Ac isaninverse conflict | Aa A pua = 0)

_ 1AaN(5Dac)|
[Aal

We assume amapping PZC(ua) € [0, 1], defined by the modeler,
which represents the probability that the real artifact is inconsistent
given ua. This mapping is then used to compute a distribution,
Bic,aq (z;A), over the states {true, false, unknown} which
represents the belief that the set A isan inverse conflict given only

the information from calling TP(-) on A.

Bic,a (true; A)
= P(Acisaninverseconflict | Aa A pa =0) - PZC(ua)
Bic,aq (false; A)
= (1— P(Acisaninverseconflict | Aa A pua = 0))
PIC(pa)
Bic,a (unknown; A)
= 1-PIC(ua)

This belief distribution is incorporated into our current belief
B¢ a () in the same manner as discussed in the previous sec-
tion. The total probability theorem is again used as in Equation 6
to compute the new belief distribution B¢ A (z) from the old one
B¢ a (x) and the new evidence Bic,a . (x; A) using the conditional
probabilitiesin Table 1.

The new evidence provided by the call to TP((SDa)¢, OBS) has
now been incorporated into the belief distributions B A (z) and
By A(x) for al subsets A of COM PS. The next section looks at
how to use these belief distributions to choose the next component to
passto TP(-).

2.2 Next best set

The order in which the subsets of COM PSS are tested is crucial to
the speed at which the algorithm will find the diagnoses. There are,
however, several choices which will produce varying results and so
the choice depends largely on knowledge of the system. The follow-
ing properties can be taken into account when developing a heuristic
search strategy:

e Failurerates: choose sets of components with a history of failure

e Expected knowledge gain: choose sets of components which are
expected to reduce the unknown portions of the belief distributions
the most. (i.e. By A (unknown) and B¢ a (unknown)). See[9]
for aderivation.

e Current belief: choose the supersets and subsets of the set cur-
rently most likely to be a minimal diagnosis to isolate a single
diagnosis as quickly as possible.

e Principle of Parsimony: choose the sets with the fewest compo-
nents as they are more likely to be diagnoses.

e Execution time: choose the sets with the most components, as
TP(-) will likely take lesstimeto evaluate systems with fewer con-
straints.

2.3 Stop conditions

The certainties in the potential diagnoses returned by the PGDE in-
crease monotonically with each iteration [5]. Thus, the maximum
certainties are achieved when all subsets of P(COM PS) have been
passed to TP(-) for testing. Since thisis likely to take too long, ade-
cision needs to be made about when to stop. Asit is when choosing
a search algorithm, this decision is mostly heuristic and entirely up
to the modeler. Some examples of criteriaare listed here:

e A timelimit has been reached

e The sum of all of the subsets of P(COM PS)’s knowledge has
risen above some limit

e The knowledge gained per call to TP(-) has fallen below some
level

e A percentage of the subsets of COM P S have been tested
e At least one minimal diagnosis has been found with some mini-
mum certainty

24 Most likely minimal diagnoses

A minimal diagnosisis adiagnosis such that no proper subset of itis
aso adiagnosis. They are of interest as the Principle of Parsimony
[7] states that the diagnoses with the fewest components are the most
likely. Theminimal diagnoseswill have the propertiesthat all of their
supersets will be diagnoses and al of their proper subsets will be
inverse conflicts. The goal is to determine which sets are most likely
to have these properties given the belief distributions B A (z) and

BD,A(I)'

2.4.1 Combining B,(x) and Bc(x)

The two belief distributions By (z) and Bic(x) have been kept sepa-
rate, asthey represent different types of information. In order to com-
pute the most likely minimal diagnoses, al of the information needs
to be taken into account and as a result they need to be combined.
This is done using the conditional probability table shown as Ta
ble 2 to compute the combined belief distribution D (x). D (true)
represents the probability that A is a diagnosis, while D (false)
represents the probability that it is not. Note that this is different
from By A (false) as By, a(false) represents the belief that the ev-
idence does not show that A is a diagnosis, whereas Dx (false)
represents the belief that the evidence does show that A isnot adi-
agnosis. D A (unknown), represents the belief that we don’t know
what the evidence shows. The values in Table 2 are chosen such
that if B, A(x) and Bc A () agree that A is a diagnosis and not
a inverse conflict then D, (true) = 1. However, if they do not
agree, then we are confused about what the evidence has shown and
D (unknown) = 1. If neither B, A (x) nor Bic A (x) have any in-
formation then DA (unknown) = 1.

Table2. Conditional Probability Table used to combine B (x) and
B|c(£l?) into D(CE)

P(DA(I) ‘ BD,A(fl) =1 /\B|C,A(f2) = l)
X

h fa True | False | Unknown
True True 0.0 0.0 1.0
True Fase 1.0 0.0 0.0
True Unknown 1.0 0.0 0.0
Fase True 0.0 1.0 0.0
False Fase 0.0 0.0 1.0
False Unknown 0.0 0.0 1.0

Unknown True 0.0 1.0 0.0
Unknown False 0.0 0.0 1.0
Unknown Unknown 0.0 0.0 1.0

2.4.2 Finding the minimal diagnoses

Definition 7 below, defines a distribution D, () for each A €
P(COM PS) which representsthe belief that the set A hasthe prop-
erties of aminimal diagnosis.

Definition 7 Let A € P(COMPS).
LetAci CAji=1,...,m, Vi #]Acl #* ch

LetAp,i D) A,i: 1,...,11, VZ#]APL 7& Apj.
Define the distribution =D () such that:

—D(true) = D(false)
—D(false) = D(true)
—D(unknown) = D(unknown)

Define the operator ® such that A® B equals the result of combining
A and B using the conditional probability table 3, then:

YN () = Da(z)

©Dap () ©... © Dap (@)
©® 2D, (#) © ... © 2Da,, (2)

Table3. Conditional Probability Table used to compute C = A ® B

P(C(z) | A(f1) =1AB(f2) = 1)

X

h fa True | False | Unknown
True True 1.0 0.0 0.0
True False 0.0 1.0 0.0
True Unknown 1.0 0.0 0.0
False True 0.0 1.0 0.0
False False 0.0 1.0 0.0
False Unknown 0.0 1.0 0.0
Unknown True 0.0 0.0 1.0
Unknown False 0.0 0.0 1.0
Unknown Unknown 0.0 0.0 1.0

The result isthat D, (z) istrue for sets which have all proper-
ties that a minimal diagnosis should have and false or unknown for
all other sets. Because D, () is a continuous distribution over the
states {true, false, unknown}, afunction is needed which allows
the possible diagnoses to be returned to the diagnostician in order
from most likely to least, along with a measure of the algorithm’s
certainty in the result. The following sorting function is suggested as
agood balance between certainty in the result and the belief that the
setisaminimal diagnosis:

Dayy (true) - (1 — Dy, (unknown)) (8)

Minimal diagnoses can now be returned to the diagnostician in or-
der from the one with the largest value for Equation 8 to the small-
est. The probability that a set is a minimal diagnosis is egual to
Dy, (true) /(1 — Dy, (unknown)) and the certainty in the result
defined by 1 — Dy, (unknown).

2.5 Complexity considerations

Calling TP(-) on every subset of COM PSS is an exponential under-
taking. If the PGDE isrun so that the maximum certainty is achieved
in the result, every subset of COM PS would need to be tested and
the algorithm would indeed be exponential in time. However, atrade-
off can be made between certainty and execution time by using some
of the criterialisted in Section 2.3.

Maintaining the distributions By (x) and Bic(z) is exponentia in
space if the entire set P(COM PS) is considered. However, for ex-
ample, we assume that the likelihood of 40 componentsfailing simul-
taneously in a system of 50 components is negligible. Therefore, the
algorithm does not require that the distributions By (x) and Bic(z)

cover all of P(COMPS), but only up to the level where a reason-
able number of simultaneous faults are considered.

Asseen in Figure 1 there are four stepsto the algorithm which are
performed in an iterative fashion: choose next set, call TP(-), interpret
the results and update the beliefs By (z) and Bic(z). This algorithm
is primarily intended for the diagnosis of complex dynamic systems
for which TP(-) will require aperiod of simulation in order to test for
consistency and so it is assumed that this call will take a significant
period of time. Computing the next set to test can be a function of
P(COMPS), but it is assumed that the TP(-) will take the majority
of the time. Both the interpretation of the results and the updating
of the belief states involve only the supersets and/or subsets of the
set under test, which is arelatively small number when compared to
the size of P(COMPS). The fina two steps of the algorithm do
involve the entire set P(COM PS)), but as they are not part of the
iterative procedure, their effect on the speed of the algorithm is not
significant.

3 DIAGNOSISOF A HYDRAULIC CIRCUIT

Figure 4 shows a schematic for a single degree of freedom hydraulic
manipulator used to test the algorithm presented in this paper. The
model is made of eight components as seen in Figure 3: the head-side
port of the main valve, the rod-side port of the main valve, the cylin-
der, the manipulator, the rod-side anti-cavitation valve, the head-side
anti-cavitation valve, the exit filter and the check valve. The behavior
of the components is described by sets of hybrid dynamic equations
which can be found in [6] and [5].

The function TP((SDa)¢, OBS) was implemented using a mod-
ified version of Hybrid Concurrent Constraint programming, or hcc
[3]. The set of hybrid dynamic equations (SDa)¢ is passed to the
modified hcc, along with O B.S which are the time sequences of the
sensor values. The system made of (SDa)° and OBS will likely
be over-constrained and the resulting simulation will contain several
discrepancies between measured and simulated values. These resid-
uals (simulated outputs less measured) will also be time sequences
which can be compared to a set of residuals recorded during nor-
mal operation to generate a consistency measure, pua. During the
experiments, the system was setup in a position control loop with
a sinusoidal input signal at a frequency of 0.25Hz. A period of six
seconds is recorded, encompassing a single extension and retrac-
tion of the manipulator arm. Six experiments were run, each with
the arm under a different failure condition which is common in a
system such as this [6, 9]. The failures were caused by manual ad-
justment of the three valves and one friction plate shown in Figure
4. The faults are assumed to be permanent and to have occurred
before the measurements are taken. At each iteration the set to be
passed to TP(-) is selected to maximize the expected decrease in
U = ZAEP(COJWPS) B¢ a(unknown) + By A(unknown) and
the algorithm is stopped when the change in U is less than 1% for
more than 10 iterations.

The six failures and the results of fault isolation using the PGDE
are as follows. On average, 99.90% of the time taken is spent in
simulation during the callsto TP(-), whileonly 0.10% is required for
the PGDE calculations. For details refer to [5].

e Leak inthe hose connecting the valve to the head-side of the cylin-
der.
Thisfailure was correctly isolated in all 10 sample runs taking an
average of 54.5 seconds.

e Leak in the hose connecting the valve to the rod-side of the cylin-
der.

Sensor
Sen
Main Vave " SO [M Sensor
””””””””””” Pe
> P
Head-Side |
- Exit Filter
< P, Ce
Rod-Side | [Check Valve
qr ‘, ,,,,,,,,,,,,,,,,,,,,,
<
Cylind
> ylinoer Sensor
> Sensor
%6 f|
Qs Manipulator |« Sensor
Pr Ph
i | Sensor |
Anti-cav [«
rod side |«
Anti-cav [«
head side |«

Figure3. Component model of the hydraulic test bench

Thisfailure was correctly isolated in all 10 sample runs taking an
average of 53.1 seconds.

e Partidly clogged return filter.

For two of the five tests run, the filter was returned as the most
likely diagnosis, with the rod-side port of the main valve and the
rod-side anti-cavitation valves together forming a close second.
In the remaining three tests the filter was not returned as a diag-
nosis by itself, but five diagnoses containing the filter and another
component werereturned as all being very likely. The average cal-
culation time was 167 seconds.

e |ncreased friction in manipulator bearing.

For two of the five tests run, the manipulator was returned as the
only likely diagnosis with very high certainty (96%, 100%). In
two more of the testsit was returned as one-half of a double fault
and in the fifth test the algorithm did not get the correct solution.
These calculations took on average 82 seconds to complete.

e Leaksin both hoses connecting the valve to the cylinder.

In all five tests the four double faults: {rod-side anti-cavitation
valve, head-side anti-cavitation valve}, {rod-side anti-cavitation
valve, head-side port}, {head-side anti-cavitation valve, rod-side
port} and {head-side port, rod-side port} were returned as being
equally likely with a high degree of certainty (~ 85%). For this
situation, these are the correct diagnoses as one component on the
rod-side and one on the head-side that can account for the leaks
is needed to explain this failure. The average calculation time was
140 seconds.

o Partially clogged return filter and aleak in the head-side hose.

In all five tests the algorithm returned the head-side anti-cavitation
valve or port as the only explanation. The filter causes a much
smaller effect on the system and so it is difficult to recognize it
as faulty when other components are misbehaving. The average
calculation time was 61 seconds.

Actuator

Manipulator

\

Friction
Adjustment

Main
Valve

X
Filter

| Pump >

Relief/Anti-cavitation
Vavles

(Load)

o Check l\
! Valve »
- Clogged
/);\/ ‘ Return
Filter
Z Rod-side
Relief Leak
Valve
Head-side
Leak
Tank ©

Figure4. Schematic of experimental test bench

4 CONCLUSIONS

This paper has presented a novel approach to consistency-based di-
agnosis which allows for the use of any modelling language. The use
of continuous distributions representing the belief that each set of
components is a diagnosis allows the determination of consistency
or inconsistency to be delayed until supporting evidence has been
collected and for noise in the simulator, TP(-), to be handled. The
demonstration of this algorithm on a non-trivial physical test bench
shows that it can be applied effectively to isolate redistic faults in
red artifacts.

ACKNOWLEDGEMENTS

The first author would like to thank the Natural Sciences and Engi-
neering Research Council (NSERC) of Canadafor partial funding of
thiswork.

REFERENCES

[1] B.Pulido, C.Alonso, C.Llamas, and F.Acebes, ‘Consistency-based di-
agnosis using possible conflicts’, in Proc. of the twelfth Workshop on
Principles of Diagnosis, (2001).

[2] B.Pulido, F.Acebes, and C.Alonso, ‘ Exploiting knowledge about struc-
ture and behaviour in consistency-based diagnosis with fault modes in
dynamic systems’, in Proc. of the Ninth Intl. Workshop on Principles of
Diagnosis, (1998).

[3] V.Gupta, R. Jagadeesan, V. Saraswat, and D. Bobrow, ‘ Computing with
continuous change', Science of Computer Programming, (1997).

4

(9

(6]

[7

8l

(9

[10]

W.C. Hamscher and R. Davis, ‘Diagnosing circuits with state: An in-
herently underconstrained problem’, in Proceedings of the 4" National
Conference on Artificial Intelligence, (1984).

Colin N. Jones, Consistency-Based Fault | solation for Hybrid Dynamic
Models, Master’s thesis, The University of British Columbia, August
2001.

Masoud Khoshzaban-Zavarehi, On-Line Condition Monitoring and
Fault Diagnosis in Hydraulic System Components using Parameter Es-
timation and Pattern Classification, Ph.D. dissertation, University of
British Columbia, 1997.

Raymond Reiter, ‘A theory of diagnosis from first principles’, Artificial
Intelligence, 32(1), 57-96, (1987).

S.Narasimhan, F.Zhao, G.Biswas, and E.Hung, ‘Fault isolation in hy-
brid systems combining model based diagnosis and signal processing’,
in Proc. of the Intl. Workshop on Hybrid Systems, (2000).

Xiaodan Sun, Real-Time Performance Monitoring and Fault Diagnosis
of Hydraulic Manipulators, Master's thesis, The University of British
Columbia, March 1995.

Andrew Watkins, Consistency-Based Diagnosis Using Dynamic Mod-
els, Master's thesis, The University of British Columbia, 1999.

Merging Indiscriminable Diagnoses:
an Approach Based on Automatic Domains
Abstraction

Pietro Torasso, Gianluca Torta
Dipartimento di Informatica
Universita di Torino
Torino (Italy)
e-mail: {torasso,torta}@di.unito.it

Abstract. The paper presents an approach suitable for on-
line diagnosis, which aims at automatically abstracting the
domains of discrete variables in the model (i.e. behavioral
modes of system components) in order to keep only those
distinctions that are relevant given the available observations
and their granularity.

In particular the paper describes an algorithm which iden-
tifies indistinguishable behavioral modes by taking into ac-
count specific classes of available observations and derives an
abstract model where such modes are merged and the domain
model is revised accordingly.

By considering increasingly restricted classes of available ob-
servations (and/or granularity of observations), a set of ab-
stract models can be derived that can be exploited through
model selection each time a new diagnostic problem has to be
solved.

The approach has been tested within the framework of a di-
agnostic agent for a space robotic arm, and experimental re-
sults showing the reduction in the number of diagnoses are
reported.

1 Introduction

Model based diagnosis has been applied successfully to auto-
matic on-board diagnosis problems in a variety of domains,
including automotive and space missions ([1], [10]).

‘While many problems are common to off-line and on-line
diagnosis, the latter presents some peculiar challenges, the
most apparent of which concerns the tough constraints on
computational resources and time ([3]).

Another difficult problem both on-line and off-line diagnosis
have to deal with is the potentially large number of alterna-
tive diagnoses returned by a diagnostic system when a specific
problem has to be solved.

One classical way of addressing this problem consists in defin-
ing preference criteria among diagnoses, usually based on
some form of minimality (see e.g. [6]) or probability, so that a
number of admissible diagnoses can be discarded because of
their implausibility .

We can also approach the problem not at diagnosis time, but
at earlier time (i.e. during system design and modeling): there

exist guidelines for creating models suitable for troubleshoot-
ing (see e.g. [8]) as well as methods for suggesting the place-
ment of enough sensors in the system to guarantee that only
one or a few admissible diagnoses will be returned in each sit-
uation (see for example [15]); sensors failures can be handled
by an adequate level of redundancy.

Finally, the encoding of large sets of diagnoses in a compact
way can at least alleviate the explosion of time and space
required to compute and handle such large sets (see [11]).

Unfortunately, all these approaches only provide a partial
solution; while preference criteria, cleverly written models and
compact encoding do not guarantee that the reduced set of
diagnoses is small enough in all situations, exhaustive sensor
placement may be too expensive or just impossible because
the device design is already frozen.

In off-line diagnosis, there’s an additional possibility: when
the number of diagnoses returned on the basis of available
observations is too high, further discriminant measures can
be automatically suggested and manually taken until a satis-
factory level of discrimination is reached. Effective techniques
based on information theory and probability have been de-
vised to support this process (e.g. [7]). However, for on-board
diagnosis, this approach is inadequate since in most cases the
only available measures are provided by sensors and taking
further measures manually is out of question.

In this paper we present an approach suitable for on-board
diagnosis, which aims at automatically abstracting the do-
mains of discrete variables in the model (i.e. behavioral modes
of system components) in order to keep only those distinc-
tions that are relevant given the available observations and
their granularity. As we shall see, this can significantly reduce
the number of returned diagnoses.

The paper is structured as follows. In section 2 we in-
troduce some definitions, in particular the notion of indis-
tinguishability among the behavioral modes of a component.
In section 3 we present an algorithm which identifies indis-
tinguishable behavioral modes by taking into account specific
classes of available observations and derives an abstract model
where such modes are merged and the domain model is revised
accordingly. Section 4 discusses some ways the algorithm can
be used effectively in diagnostic problem solving.

In section 5 we report experimental results obtained by im-
plementing and running the algorithm on the model for a
space robotic arm. Finally, in section 6 we briefly review
other approaches in the literature and underline similarities
and differences with respect to our own.

2 Basic Definitions

First, we define a system structure description (SSD) by
slightly modifying the definition in [5]:

Definition 2.1 A Structured System Description (SSD) is a
tuple (V,G, DT where:

V is a set of variables whose domains DOM (v),v € V are
discrete and finite. Moreover, variables in V are partitioned in
the following sorts: CXT (inputs), COMPS (components),
STATES (endogenous variables), OBS (observables) *

DT (Domain Theory) is a set of Horn clauses defined over
V' representing the behavior of the system (both mormal and
faulty). Note that the clauses are constructed in such a way
that the roles associated with variables belonging to different
sorts are respected: CXT and COMPS variables will always
appear in the body of clauses; OBS wvariables will always ap-
pear as heads of clauses; STATES wariables can appear in
both

G (System Structure) is a DAG whose nodes are in 'V repre-
senting the structure of the system. The graph can be directly
computed from DT, being just a useful way for making explicit
the structural properties “hidden” wn DT clauses: whenever a
formula N1(bm1) A ... A Np(bmy) = M(bm;) appears in DT,
nodes N1 through Ny are parents of M in the graph

Since the system structure graph G is a DAG, a partial prece-
dence relation holds between connected nodes in the graph:

Definition 2.2 We denote with > the usual precedence par-
tial order relation over nodes in DAG G, i.e.: N > M if there
exists a directed path from N to M.

Given an SSD we can define specific diagnostic problems over
it:

Definition 2.3 A diagnostic problem is a tuple DP =
(SDD,0OBS’,CXT) where SSD is the System Structured

Description, OBS' is an instantiation of OBS' C OBS and
CXT is a complete instantiation of CXT

We are now ready to give our definition of diagnosis, which is
a fully abductive characterization 2 (see [4]):

Definition 2.4 Given a diagnostic problem DP =
(SDD,0BS’,CXT) an assignment

H = {ci(bmi),...,cn(bmy)} of a behavioral mode to each
component ¢c; € COMPS is a diagnosis for DP if and only
if:

Vm(z) € OBS' DT UCXTUH F m(z)

and

Vm(z) € OBS' DT UCXTUH W m(y) fory#x

1 We assume that observables never influence other variables. This
is not restrictive: each observable parameter which influences
other variables is modeled as an endogenous variable (i.e. it be-
longs to STATES) with an associated observable in OBS

2 Note however that our approach does not depend on the definition
of diagnosis being abductive vs consistency-based

Since in our definition, OBS' is (in general) a partial instan-
tiation of OBS, we can introduce the notion of diagnoses that
can’t be discriminated given OBS’ but that may be discrim-
inated if more observables were available:

Definition 2.5 Given a diagnostic problem DP =
(SDD,0OBS’,CXT), let us suppose that H1 and H2
are two diagnoses for DP. H1 and H2 are discriminable if
and only if 3m | m € (OBS — OBS') such that

DT UCXTU H1 F m(a)

DT UCXTUH2F m(b)

m(a) # m(b)

Diagnoses are complete instantiations of variables in sort
COMPS. We now turn into considering two such assignments
Al and A2 and compute the projections ® of their transitive
closures * over OBS (OBS1 = projectops(tclosure(Al))
and OBS2 = projectops(tclosure(A2)) respectively), given
a fixed context CXT.

If OBS1 = OBS2 then Al and A2 are indiscriminable di-
agnoses for diagnostic problem (SDD,0OBS,CXT) where
OBS = OBS1 (and = OBS2). An interesting relation be-
tween Al and A2 holds when this situation happens under
any fixed context CXT:

Definition 2.6 Let Al and A2 be two complete
stantiations of COMPS; if, given any context CXT,
projectons (tclosure(Al)) = projectons (tclosure(A2)), then
we say that A1 and A2 are indiscriminable.

in-

In the above definition we have considered the case where
all OBS are available. Let’s now consider the case (as it is
usual in on-board diagnosis) when we can identify subsets of
OBS that may be the only available manifestations (e.g. only
sensorized manifestations may be available on-board, with no
possibility to perform further measurements).

Let {CL;} denote such identified interesting subsets (not nec-
essarily all disjoint); we can now refine definition 2.6 as fol-
lows:

Definition 2.7 Two assignments Al and A2 are CLy-
indiscriminable iff they are indiscriminable by considering
OBS restricted to CLy, i.e. VCXT projectcr, (tclosure(Al))
= projectcr, (tclosure(A2))

Given the above definitions, we are now ready to characterize
formally two behavioral modes (i.e. values from the domain of
a component variable ¢;) that may be safely collapsed together
without loosing any discriminability power of the model:

Definition 2.8 Let bm, and bms be two behavioral modes
of component variable c;; if for any two assignments Al =
(al Aci(bm,) A a2) and A2 = (al A c;i(bms) A a2) such that
they differ only in the mode associated to c;, Al and A2 are
(CLyg-)indiscriminable, then we say that bm, and bms are
(C Ly -)indistinguishable.

3 A projection of a set of instantiated variables I over a set of
variables W (projectw (I)) is just the subset of I that mentions
variables in W

4 The transitive closure of Ai (tclosure(A)) is the set of m(z) s.t.
DT UCXTU Ai - m(z)

3 Automatic Domain Abstraction
3.1 The Algorithm

In this section we present an algorithm which identifies indis-
tinguishable modes in a given model (that we will refer to as
the detailed model), and generates a simplified model (that
we will call abstract) where mutually indistinguishable modes
are merged in new modes. The algorithm assumes that the
model is defined as in definition 2.1 and further assumes that
in the system structure graph G at most one directed path
exists between any two nodes.

The top level function Abstract() is sketched as pseudo-
code in figure 1 while other relevant functions called by
Abstract () are showed in figure 2.

Parameter CL; C 0Obs of Abstract() contains the list

of available manifestations, while IIcr, associates to each
M € CLy its granularity in the form of a partition ITp; over
DOM(M).
Manifestations that aren’t available at all do not belong to
CLy. If M is available at a certain level of granularity, IIas
will contain as many classes as the distinguishable values for
M, and each class will contain all the v € DOM (M) that
can’t be distinguished at the available level of granularity. As
a special case, if M is available at its maximum granularity,
II5s will contain a separate class for each v € DOM (M).

The first few instructions of Abstract () perform an initial
abstraction of the model based on Ilcyz,: indistinguishable
values for each manifestation M (i.e. those that belong to the
same class in ITys) are substituted in DT by a new “abstract”
value representing the whole class.

The call to TopologicalSort() returns a list contain-

ing variables in Comps U States such that if two variables
N, M satisfy relation 2.2 (i.e. N = M) we guarantee that
position(N) > position(M). In particular, we start a visit
of the system structure graph G at the available observation
nodes and proceed backwards by visiting a node only if all its
immediate successors have already been visited.
Note that, by starting the visit at the available manifesta-
tions only (i.e. CLy), some of the Comps and States may not
be reached at all; these nodes, that are connected only to
unavailable manifestations, are stored in a TrivialNodes list
(see below).

The main loop in Abstract(), for each variable N in
the list, first computes the conditions under which the
variable influences its immediate successors modes (this is
recorded in an associative memory InfluencesMatrix[]);
then, by using InfluencesMatrix[] it computes the par-
tition of all the modes of the variable in equivalence
classes determined by the indistinguishability relation
(FindIndistinguishableModes()); finally it replaces the oc-
curences of the modes in the DT clauses with newly introduced
“class representative” modes (MergeModes ()).

If the call to FindIndistinguishableModes() produced a
trivial partition for N (i.e. only one class coinciding with
DOM(N)) then N itself is added to the list of trivial nodes.

When Abstract() terminates, TrivialNodes contains the
components and states whose behavioral modes are all equiv-
alent in influencing relevant manifestations (i.e. M € CLy).
These nodes, together with unavailable manifestations (i.e.
M € 0bs\CLy) are obviously redundant for the diagnostic
task and the caller of Abstract() may decide to completely

remove them from the model.

Let’s now describe into some more detail the functions
called by Abstract () (figure 2).
Function FindInfluences() considers how each mode bm,
of variable N under consideration can cause mode bms of
immediate successor variable M. The condition under which
N(bm,) causes M (bms) is clearly the disjunction of conjunc-
tions of the form a = a1 A a2 where a1 and a2 occur in a
formula a; A N(bm,) A as = M(bms).
Function FindIndistinguishableModes() 1is recursive; at
each call it partitions a set of modes into indistinguishabil-
ity classes based on a single immediate successor node and
then calls itself recursively on each of the generated equiva-
lence classes in order to further discriminate by considering
the remaining immediate successors.
Note that in the test ({a, 7) € Il.ona) We are testing proposi-
tional formulas for identity; we assume that any two equiva-
lent formulas have been made identical at that point by calls
to normalize() in FindInfluences (). Normalization is not too
computationally expensive since the formulas we handle are
in DNF and only positive literals can occur.

Function MergeModes(), given a
(either an element of TIlgz, or computed by
FindIndistinguishableModes()), considers the equiva-
lence classes 7 one at a time. It generates a new name v as
a “representative” for the class and then scans the DT set of
formulas for occurrences of bm € 7 and replaces them with
v. This process can produce duplicate formulas ®; by using
set notation in the pseudo-code we underline that only one
copy of the duplicate formulas has to be added to the new
version of DT.

partition II

3.2 Correctness

In this paragraph we state two properties which imply that
the abstraction algorithm behaves as intended.

Property 3.1 If two behavioral modes are put in the same
class m by function FindIndistinguishableModes () they are
C Ly -indistinguishable in the sense of definition 2.8.

Proof. Given assignments A1 = a; U {N(bm,1)} U az and
A2 = a3 U{N(bmy2)} U as suppose DT UCXT U Al - m(z)
while DT U CXT U A2 tf m(z) for some m € CLy. Clearly,
it can’t be m(z) € tclosure(al U a2) because otherwise m(z)
would be derivable from A2 as well.

Then, the entailment of m(z) by Al must exploit at some
point N(bm.,1) by using a formula ¢ = (N(bm,1) Ay = L).
If L = m(x), i.e. the formula directly entails m(z), then, an
analogous formula ¢’ = (N(bm.2) Ay = m(z)) must exist
in DT, with v < ' (indeed, two modes are put in the same
partition only if they have the same direct effects under the
same conditions). Then, DT U CXT U A2 F m(z), which is a
contradiction.

This result can be extended to the case when L # m(z) (i.e.
the number of steps between the application of formula ¢
and the conclusion m(z) is greater than 1) with a proof by
induction. O

5 This is not incidental: the value of our abstraction partially lies
in the collapse of formulas

Function Abstract(V =
ForEach M € CLy
DT := MergeModes (M, Ilcr, (M), DT)

(Cxt, Comps, States, Obs), G, DT, CLy, Ilcz,)

Loop

Candidates := TopologicalSort(States U Comps, CLj, G)
TrivialNodes := States U Comps \ Candidates
InfluenceMatrix := 0 x @ x 0

ForEach (/N € Candidates)
ImmediateSuccessors :=

{children of N in the system structure graph G} N (Canditates U CLy)

InfluenceMatrix := InfluenceMatrix U FindInfluences(/N, ImmediateSuccessors)
II := FindIndistinguishableModes(/N, modes(N), ImmediateSuccessors, InfluenceMatrix)
If (I = {DOM(N)}) Then TrivialNodes := TrivialNodes U {N}
DT := MergeModes (XN, II, DT)
Loop
Return
EndFunction

Figure 1.

The following property is intended to demonstrate the
correspondence of a diagnosis at the abstract level to a set of
diagnoses at the detailed level.

Property 3.2 Let DP; = (SSD,;,OBS' ,CXT) be a di-
agnostic problem and DP, = (SSD,,OBS’' CXT) the
corresponding problem at the abstract level. Then, D, =
{c1(v1),...,cn(vn)} where v; is a new behavioral mode in-
troduced in place of set {bmgi, ..., bm;y,;} of indistinguishable
behavioral modes is a diagnosis for DP, iff all the elements
in the set:

{{Cl(b?n1j1)7 e ,cn(bmnj")},j,- =1... k‘l}

are diagnoses for DP,.

Proof. Our proof is subdivided in 3 steps: first, we prove
that for any two diagnoses at the detailed level Dg; and Dgs,
projectops: (tclosure(Dg1)) = projectons: (tclosure(Daz)),
where OBS’ C OBS represents the available manifestations
(parameter Obs of function Abstract()). Then, we prove that
for any detailed diagnosis Dy, projectops: (tclosure(Dg)) =
projectopsi (tclosure(D,)). Finally, we exploit this result to
prove the theorem thesis.

In the following, projectops: (tclosure(.)) has been abbrevi-
ated in tcops (.)-

For step 1, we proceed by induction on the number of
components which are assigned different behavioral modes
in assignments Dg; and Dgs. The case n = 1 (i.e. Dg1 =
aU{ci(bm,)} and Dg> = aU{c;(bms)}) follows from the def-
inition of indistinguishability of bm, and bm.

For the inductive step, where Dg1 = a1l U {c;(bm.)}, Dg2 =
a2 U {ci(bms)} and al, a2 differ in assignments to n compo-
nents, we note the following relations hold:

tcops' (@l Uci(bm,)) = tecops (@l U ci(bmy))

from indistinguishability of bm, and bm,, and:

tcops' (@l Uci(bmy)) = teops (a2 U ci(bmy))

from inductive hypothesis. It then follows that tcops/(al U
ci(bmy)) = tcops (a2 U ¢; (bms)).

In order to carry step 2, we note that, since v; is substituted
by MergeModes () wherever a mode bm;j; of its associated class

Sketch of the Abstract() function

7 appears, the following holds:

tcops/(Da) = U, .. j, tcops ({e1(bmyjy), ..., en(bming,) })
But, in step 1, we have proved that all the terms of the union
are equal. So, tcops/ (Dg) is equal to the tcops: of any of the
Dy.

We use this result for step 3: D, is a diagnosis with the
abstracted model iff DT U CXT U D, - OBS’; but, then,
for any Dy the same entailment must hold, thus any Dy is a
diagnosis at the detailed level. The converse is analogous. [

3.3 An Example

We end this section by illustrating how the abstraction algo-
rithm works on a very simple SSD. Let the original Domain
Theory DT contain the following clauses (figure 3 shows the
associated System Structure Graph):

s1(a) A s2(a) = ml(z) s1(a) A s2(a) = m2(zx)

sl(a) A s2(b) = ml(z) sl(a) A s2(b) = m2(z)

s1(a) A s2(c) = ml(z) s1(a) A s2(c) = m2(z)

$1(6) A 52(a) = m1(y) $1(6) A 52(a) = m2(y)

$1(6) A 52(6) = mi(y) $1(6) A 2(6) = m2(y)

s1(b) A s2(c) = ml(y) s1(b) A s2(c) = m2(z)
1(a) A cl(a) A c2(a) = sl(a) i1(b) A cl(a) A c2(a) = s1(b)
1(a) Acl(a) A c2(b) = sl(a) i1(b) A cl(a) A c2(b) = s1(b)
1(a) A cl(a) A c2(c) = s1(b) i1(b) A cl(a) A c2(c) = sl(a)

(a) A cl(b) Ac2(a) = sl(a) i1(b) A c1(b) A c2(a) = s1(b)
i1(a) A cl(b) Ac2(b) = sl(a) i1(b) A cl(b) A c2(b) = s1(b)
1(a) A cl(b) A c2(c) = s1(b) i1(b) A c1(b) A c2(c) = sl(a)

12(a) A c3(a) = s2(c)

12(a) A c3(b) = s2(a)

i2(a) A c3(c) = s2(b)

12(b) A c3(a) = s2(c)

i2(b) A c3(b) = s2(a)

12(b) A c3(c) = s2(b)

Function FindInfluences(/N, ImmediateSuccessors)
NodeInfluenceMatrix :=) X) x ()
ForEach (bm, € modes(N), M € ImmediateSuccessors, bms € modes(M))
Formulas := {clauses where N(bm,) occurs in the body and M (bm,) occurs in the head}
a := false
ForEach ((ai A N(bm,) A az = M(bm,)) € Formulas)
a = aV (a1 Aa2)
Loop
NodeInfluenceMatrix := NodeInfluenceMatrix U {(N(bm,), M (bms), normalize(a))}
Loop
Return NodeInfluenceMatrix
EndFunction

Function FindIndistinguishableModes(/N, Modes, Nodes, InfluenceMatrix)
M := first(Nodes)
Hcond = @
ForEach (bm, € Modes)
a = U,,. (InfluenceMatrix(N(bm,), M(bms)), M(bms))
If ({a,m) € Icong) Then
Meona = Heona — {{a, ™)} U{{a, 7 U{bm,})}

Else
Ieona := Ieona U {<a, {me}>}
EndIf
Loop
I = Ul men, o, {7}

If (tail(Nodes) # ()
ForEach (m € II)
IT := II — 7 U FindIndistinguishableModes(/N, m, tail(Nodes), InfluenceMatrix)
Loop
EndIf
Return II
EndFunction

Function MergeModes (NN, II, DT)
DT’ :=)
ForEach (7 € II)
v := GenerateNewModeName (7)
Formulas := {clauses for which Jbm, € m s.t. N(bm,) appears in the body or head}
ForEach ((¢p = a1 A N(bm,) A as = M(bms)) € Formulas)
DT’ := DT’ U {(a1 AN(v) Aaz = M(bmy))}
Loop
ForEach ((¢ = a = N(bm,)) € Formulas)
DT’ := DT’ U {(a = N(v))}
Loop
Loop
Return DT’
EndFunction

Figure 2. Sketch of the main functions called by Abstract()

with OBS = {ml,m2}, STATES = {sl,s2}, COMPS =
{c1,¢2,¢3} and CXT = {il,42}.
Let the domains of the variables be as follows:
DOM(ml) = {z,y}, DOM(m2) = {z,y, 2z}
DOM(s1) = {a,b}, DOM (s2) = {a,b,c}
DOM(cl) = {a,b}, DOM(c2) = DOM(c3) = {a,b, c}
DOM (i1) = {a,b}, DOM (i2) = {a, b}
Furthermore, let’s assume for simplicity that all the OBS are
available at their maximum granularity.
The algorithm starts by trying to merge modes of sl.
The InfluenceMatrix() entries relating sl to ml are:
(s1(a), {(m1(x), 52(a) V 52(b) V s2(c)), (m1(y), L)})
(s1(5), {(m1(), L), (m1(y), s2(a) V s2(b) V 52(e))})
it follows that modes a,b of s1 can’t be merged. It is now s2
turn to be considered; the entries relating s2 to m1 are:
(s2(a), {(m1(x), 51(a)), (m1(y), s1())})
(s2(b), {(m1(x), s1(a)), (m1(y),s1(b))})
(s2(e), {(m1(z), s1(a)), (m1(y), s1(B)})
it may seem that modes a, b, c of s2 can be merged; however,
s2 also influences another manifestation, m?2:

(s2(a), {(m2(z), s1(a)), (M2(y), s1(b)), (m2(2), L)})

(s2(b), {(m2(x), s1(a)), (m2(y), s1(b)), (m2(2), L) })

(s2(c), {{(m2(x), L), (m2(y), L), (m2(2), s1(a) V s1(b))})
we can thus merge modes a,b in new mode ab, but not mode
Having considered all the states, we now turn to the compo-
nents, starting from cl:

(c1(a), {(s1(a), (i1(a) Ac2(a)) V (il(a) Ac2(b)) V (i1(b) Ac2(c))),
(s1(b), (i1(a) Ac2(e))V (i1(b) Ac2(a))V (i1(b) Ac2(b))) })
(c1(b), {(s1(a), (i11(a) Ac2(a))V (il(a) Ac2(D)) V (i1(b) Ac2(c))),
(s1(b), (il(a) Ac2(e)) V (11(b) Ac2(a)) V (i1 (B) Ac2(b))) })

modes a, b of c1 can then be merged in new mode ab; note that
cl goes into the trivial-nodes list, since all its domain has col-
lapsed into a singleton. Similar arguments lead to merging
modes a, b of ¢2; however, mode c of ¢2 can’t be merged with
the other two modes.
Component ¢3 is the only one left to be considered:

(c3(a), {(s2(ab), L), (s2(c), 2(a) V i2(b))})

(c3(b), {(s2(ab), i2(a) V i2(b)), (s2(c), L)})

(e3(c), {(s2(ab),i2(a) V i2(b)), (s2(c), L)})
we can merge modes b, ¢ into a new node bc. Note that we can
merge these modes only because we already unified modes a
and b of s2; the importance of processing variables in the >
relation order is now evident.
Note also that we could have considered for abstraction s2
before s1, or ¢2 before c1 or after ¢3 since s1,s2 and cl, ¢2, 3
are not tied by the precedence order relation. It is easy to see
that in such case the same mergings would have taken place
anyway.

The output of the process described above results in a re-
vised domain theory:

1(a) A s2(ab) = ml(z) 1(a) A s2(ab) = m2(x)
s1(a) A s2(c) = ml(z) s1(a) A s2(c) = m2(z)
s1(b) A s2(ab) = ml(y) s1(b) A s2(ab) = m2(y)

(d) A s2(c) = ml(y) (b) A s2(c) = m2(z)

i1(a) A cl(ab) A c2(ab) = sl(a)
zl(a) A cl(ab) A c2(c) = s1(b)
i1(b) A cl(ab) A c2(ab) = s1(b)

M1 M2
Sl S2
Il Cl Cc2 I2 C3

Figure 3. System Structure Graph for the Example Domain

Theory

11(b) A cl(ab) A c2(c) = s1(a)

2(a) A c3(a) = s2(c)
i2(a) A c3(bc) = s2(ab)
12(b) A c3(a) = s2(c)

(b) A c3(bc) = s2(ab)

and abstracted domains:
DOM(m1) = {z,}, DOM(m2) = {z,y, 2}
DOM(s1) = {a,b}, DOM(s2) = {ab, c}
DOM/(cl) = {ab}, DOM(c2) = {ab,c}, DOM(c3) = {a, bc}
DOM(i1) = {a, b}, DOM(i2) = {a,b}

4 TUsing Abstract Models in On-Board
Diagnosis

Having described how the abstraction algorithm works, we
now consider how it can be used in real scenarios to practically
improve the performance of the diagnostic problem solver.

A first scenario is when the manifestations of the system

can be naturally subdivided in classes CLj (see section 2);
one such classes will contain all the manifestations (CLqay),
another may contain only sensorized manifestations (CLgsens),
further ones may exclude from CLgens other groups of mani-
festations that can potentially all become unavailable together
in some contexts. Similarly, manifestation granularities (ex-
pressed as abstraction functions 7;) may be identified and
associated to classes they apply to.
Equipped with this set of pairs (C'Ly,7;), we can generate
off-line a corresponding set of models Mj};; when a specific di-
agnostic problem is presented to the on-line diagnostic agent,
the minimal (C' Ly, 7;) that covers the available observations is
selected, and the corresponding model Mj; is used to compute
diagnoses.

Sometimes, however, classes of manifestations (and their
granularity) cannot be conveniently identified a-priori. In such
cases we may want to compute an abstract model on-demand,
given the particular C'L; and 7; that have been identified as
currently available ©
The system may perform this on-line model synthesis as a
lower priority task, asynchronously with the diagnostic tasks;

6 How this info can be gathered, either manually or automatically,
is out of the scope of the present paper

once the ad hoc Mj; has been computed it may be reused for
many diagnostic problems until some conditions on the avail-
able observations or their granularity changes.

Obviously, time overhead is added by the computation of
models but in some situations this may well be paid off by the
benefits (see below). Moreover, experimental data presented
below in section 5 show that such overhead may be in the or-
der of the time needed for solving a few easy diagnostic cases
(involving a single fault) or just a difficult one (involving mul-
tiple faults); keeping in mind that the abstraction algorithm
is only run once whilst many diagnostic problems can exploit
such a abstract model, this overhead may be acceptable.

In both the above scenarios, the number of returned
diagnoses is reduced by returning diagnoses for the abstract
model that correspond to sets of diagnoses for the detailed
model that carry essentially the same information, as proved
in section 3.2.

Moreover, whenever a diagnosis for the abstract model
mentions a “compound mode” (i.e. a new mode introduced in
place of a non-singleton set of indistinguishable modes), we
explicitly know that the set of modes it represents couldn’t
be discriminated even in different contexts. Thus, in case
further tests involving different contexts are planned, they
shouldn’t aim at that kind of discrimination.

Both reduced-size and increased informativity of the result
should be helpful for the human or automatic supervisor
which must interpret it and take action accordingly.

5 Experimental Results

We have implemented the algorithm described above as a
module of the diagnostic agent for the space robotic arm SPI-
DER developed by ASI (Agenzia Spaziale Italiana); for a de-
scription of the diagnostic agent please see [12] and [11].
The model of the robotic arm (which obeys definition 2.1) is
enough complex to represent an interesting test-bed: it con-
sists of 35 assumables (COM PS) with an average 3.43 behav-
ioral modes each, 45 manifestations (OBS) and 1143 formulas
7

Observations in such a model are explicitly partitioned
into two classes: sensorized (CLsens) and mnon-sensorized
(CLnosens). While observations in CLsens can reasonably be
assumed to always be available, observations in CLysens are
available through manual measurements that can be carried
only during off-line diagnosis.

We have applied the abstraction algorithm to the model
by passing CLsens as the available observations (assuming
Tops = identity, i.e. manifestations available at their maxi-
mum granularity) and obtained a simplified model as output.
Table 1 shows some relevant static measures on the detailed
and abstract models: the number of clauses has been reduced
by 18.6%, and the average number of behavioral modes per
system component has been reduced by 16.9%. Compilation
of the detailed model in the abstract one took 1494msec of
CPU time (all results in this section are referred to a Java
implementation of both the diagnostic agent and the abstrac-
tion algorithm, compiled and run using jdk1.3 on a Sun Sparc
Ultra 5 equipped with SunOS 5.8).

7 The number of formulas is greatly reduced by the use of a noisy-
max modeling technique, see [12]

model clauses | modes avg
detailed 1143 3.43
abstract 930 2.85

Table 1. Comparison between abstract and detailed models

We have then compared the performance of the diagnostic

agent when it uses the detailed (original) versus the gener-
ated abstract model. Using the simulator for the diagnostic
agent, three test sets of 100 diagnostic problems each have
been automatically generated; problems in test sets 1, 2 and
3 had 1, 2 and 3 faults injected respectively. Table 2 reports
on the reduction of the average number of diagnoses returned.
Particularly significant appear the reductions obtained in test
set 2 (-43%) and test set 3 (-61.6%).
It should be noted that the diagnostic agent returns only pre-
ferred diagnoses (in particular, those that have a minimal
number of faults), thus the reported reductions are obtained
by compacting “good-quality” diagnoses, not by discarding
implausible ones.

model testset 1 testset 2 testset 3
detailed 50+ 0.6 | 17.9 + 3.6 | 123.3 £ 23.1
abstract 3.7+ 04 | 10.2 £ 1.9 47.3 + 8.4

Table 2. Average number of elementary diagnoses obtained
with abstract and detailed models (confidence 95%)

Even if our diagnostic agent uses a compact encoding for
candidate diagnoses during the search process, thus obtaining
an optimized search space size that is not proportional to the
number of diagnoses ([11]), the average time employed for
solving problems using the abstract model appears to be at
least no worse than that obtained by using the detailed model
(see table 3).

model testset 1 | testset 2 testset 3

detailed 241 + 19 337 + 45 1212 + 182

abstract 235 + 25 259 + 32 988 + 153
Table 3. Average CPU times obtained with abstract and

detailed models (in msec; confidence 95%)

Consistent results (both in terms of static reduction of the
model size and reduction of diagnoses) have been obtained
by applying the abstraction algorithm to other subclasses of
manifestations in the model. Space precludes reporting them
in this paper.

Please note that the faulty behavioral modes modeled for
the components were the ones listed in the FMECA document
for the real device, thus proving that the results obtained with
the abstraction algorithm and reported above are of interest
for a real-world system.

6 Related Work and Conclusions

Literature on MBD contains several proposals to use abstrac-
tion as a means of simplifying system model and, conse-
quently, characterization and computation of diagnoses.

Some of them formulate abstraction rules and prove that ab-
stractions obtained by their application preserve important
properties, i.e. by reasoning at the abstract level we don’t
overlook any diagnoses ([9], [13]).

Among the rules proposed by Mozeti¢, rule 1 (Refin-

ment/collapse of values) aims exactly at abstracting sets of
values at the detailed level into a single value at a more
abstract level. Compared to our approach, however, both
Mozeti¢ and Provan assume that the abstraction is done man-
ually, by a human knowledgeable about the system behavior
and structure. Moreover, they use the abstract models only in
order to reduce the computational complexity, but still return
detailed level diagnoses.
In a recent paper ([2]), the authors improve Mozeti¢ approach
so that the hierarchy (still manually provided) is automati-
cally rearranged on a case by case basis in order not to hide
any available observations from the abstract levels.

Sachenbacher and Struss ([14]) have defined a relational-
based approach (i.e. the behavior model is given as a relation
R among tuples of variables) for automated abstraction of
variables domains and showed its usefulness in building sys-
tem models by composing sub-system models and then ab-
stracting away values details that are not of interest in the
resulting model. In contrast to our approach, their work as-
sumes that a desired abstraction 7¢4,4 be given as part of the
abstraction problem, together with the restrictions on avail-
able observations information 7,,s that appear also in our
approach.

Travé-Massuyes, Escobet and Milne ([15]) define a notion of
indiscriminability among faulted components which is some-
what similar to our notion of indistinguishability among be-
havioral modes. Their work, which is based on a relational
model of the system, aims at suggesting the addition of sen-
sors in order to make all the possible faults discriminable.

In this paper we have shown how abstraction of variable
domains in propositional, qualitative system models, can sig-
nificantly reduce the average number of admissible diagnoses
when only a subset of observables is available.

This is particularly useful in on-line diagnosis, where limita-
tions on the number and/or granularity of observables can
likely apply.

The algorithm presented in the paper has a larger applicabil-
ity than discussed so far. For example, it can be used as a
support tool for diagnosability during system modeling (i.e.
the algorithm can point out discrepancies between the gran-
ularity of the model being defined and that of the system
observables).

There are many directions we are considering for extending

our work. The current version of the algorithm assumes that
in the device structure nodes are connected by at most one
directed path, while representation of some systems of prac-
tical interest does not obey to this restriction.
We also could explore how our automatic abstraction tech-
niques can be extended in order to merge together compo-
nents whose contributions to the available observations are
indiscriminable (i.e. introducing the notion of indistinguish-
able components).

REFERENCES

(1]

[13]

[14]

(15]

F. Cascio, L. Console, M. Guagliumi, M. Osella, A. Panati,
S. Sottano, and D. Theseider Dupré, ‘Generating on-board
diagnostics of dynamic automotive systems based on qualita-
tive models’, AT Communications, 12, 3343, (1999).

L. Chittaro and R. Ranon, ‘Hierarchical diagnosis guided by
observations’, in Proc. 17t Int. Joint Conference on Ar-
tificial Intelligence - IJCAIO1, pp. 573-578, Seattle, USA,
(2001).

L. Console and O. Dressler, ‘Model-based diagnosis in the real
world: lessons learned and challenges remaining’, in Proc. 16"
Int. Joint Conference on Artificial Intelligence - IJCAI99,
pp. 1393-1400, Stockholm, Sweden, (1999).

L. Console and P. Torasso, ‘A spectrum of logical definitions
of model-based diagnosis’, Computational Intelligence, 7(3),
133-141, (1991).

A. Darwiche, ‘Model-based diagnosis using structured system
descriptions’, Journal of Artificial Intelligence Research, 8,
165-222, (1998).

J. de Kleer, A. Mackworth, and R. Reiter, ‘Characterizing
diagnoses and systems’, Artificial Intelligence, 56(2-3), 197—
222, (1992).

J. de Kleer, O. Raiman, and M. Shirley, ‘One step lookahead
is pretty good’, in Proc. 2" Int. Workshop on Principles of
Diagnosis - DX91, pp. 136-142, Milan, Italy, (1991).

W. Hamscher, ‘Modeling digital circuits for troubleshooting’,
Artificial Intelligence, 51, 223-271, (1991).

I. Mozeti¢, ‘Hierarchical model-based diagnosis’, Int. J. of
Man-Machine Studies, 35(3), 329-362, (1991).

N. Muscettola, P. Nayak, B. Pell, and B. Williams, ‘Remote
agent: to boldly go where no ai system has gone before’, Ar-
tificial Intelligence, 103, 5-47, (1998).

L. Portinale and P. Torasso, ‘Diagnosis as a variable assign-
ment problem: a case study in a space robot fault diagnosis’,
in Proc. 16" Int. Joint Conference on Artificial Intelligence
- IJCAT 99, pp. 1087-1093, Stockholm, Sweden, (1999).

L. Portinale, P. Torasso, and G. Correndo, ‘Knowledge rep-
resentation and reasoning for fault identification in a space
robot arm’, in Proc. 5t" Int. Symposium on AI, Robotics and
Automation is Space - iISAIRAS99, pp. 539-546, Noordwijk,
Holland, (1999).

G. Provan, ‘Hierarchical model-based diagnosis’, in Proc. 12t"
Int. Workshop on Principles of Diagnosis - DX01, pp. 329—
362, San Sicario, Italy, (2001).

M. Sachenbacher and P. Struss, ‘Aqua: A framework for auto-
mated qualitative abstraction’, in Proc. 15" Int. Workshop
on Qualitative Reasoning - QR01, San Antonio, USA, (2000).
L. Travé-Massuyes, T. Escobet, and R. Milne, ‘Model-based
diagnosability and sensor placement. application to a frame
6 gas turbine sub-system’, in Proc. 17t" Int. Joint Confer-
ence on Artificial Intelligence - IJCAIO1, pp. 551-556, Seat-
tle, USA, (2001).

Structural Analysis utilizing MSS Sets with Application
to a Paper Plant

Mattias Krysander and Mattias Nyberg
Department of Electrical Engineering, Linkdping University
SE-581 83 Linkbping, Sweden
Phone: +46 13 282198, Email:matkr@isy.liu.se, matny@isy.liu.se

Abstract. When designing model-based fault-diagnosis systemsin a structural model In addition to finding all submodels that can
the use oftonsistency relationglso called e.gparity relationg is be used to derive consistency relations, the algorithm also selects a
a common choice. Different subsets are sensitive to different subsessnall set of submodels that corresponds to consistency relations with
of faults, and thereby isolation can be achieved. This paper presentise highest possible diagnosis capability.
an algorithm for finding a small set of submodels that can be used to In industry, design of diagnosis systems can be very time con-
derive consistency relations with highest possible diagnosis capabisuming if done manually. Therefore it is important that methods for
ity. The algorithm handles differential-algebraic models and is basediagnosis-system design are as systematic and automatic as possible.
on graph theoretical reasoning about the structure of the model. Afihe algorithm presented here is fully automatic and only needs as
important step, towards finding these submodels and therefore alsoput a structural model of the system. This structural model can in
towards finding consistency relations, is to find milnimal struc- turn easily be derived from for example simulation models.
turally singular (MSS) sets of equations. These sets characterize the Structural approaches have also been studied in other works deal-
fault diagnosability. The algorithm is applied to a large nonlinear in-ing with fault diagnosis. In [10] a structural approach is investi-
dustrial example, a part of a paper plant. In spite of the complexity ohated as an alternative to dependency-recording engines in consis-
this process, a small set of consistency relations with high diagnosi®ncy based diagnosis. Furthermore a structural approach is used in
capability is successfully derived. the study of supervision ability in [2] and an extension to this work
considering sensor placement is found in [12].

. In Sections 2 and 3, structural models and their usefulness in fault

1 Introduction diagnosis are discussed. Then in Section 4, a complete description of

When designing model-based fault-diagnosis systems, using tthe algorithm is given. The algorithm is then in Section 5 applied to

principle of consistency based diagnosis [5, 11, 6], a crucial step ié large nonline_ar indu_strial process, a part of a paper plant. In §pite
the conflict recognition. As shown in [3], conflict recognition can be of the complexity of this process, a small set of consistency relations

achieved by using pre-computed consistency relations (also calle§fith nigh diagnosis capability is successfully derived.
e.g.analytical redundancy relationsr parity relationg. With prop-
erly chosen consistency relations, different subsets of consistency r& Structural models

lations are sensitive to different subsets of faults. In this way isolationl_he behavior of a svstem is described with a model. Usually the
between different faults can be achieved. y) y

The systems considered in this paper are assumed to be model?r:cfda is a set of equations. A structural model [2] contains only the

. - ormation of which variables that are contained in each equation.
by a set of nonlinear and linear differential-algebraic equations. Tq_et M,., denote the structural model obtained from the equations

find consistency relations by directly manipulating these equations iaescribing the system to be diagnosed. This structural model will

a computationally complex task, _espeC|aIIy for_ large ar_ld_ nonllne.aE:ontain three different kinds of variables: known variabiése.g.
systems. To reduce the computational complexity of deriving consis-

. . sensor signals and actuators; unknown variablgs for example
tency relations, this paper proposes a two-step approach. In the flrs? 9 g P

.) . internal states of the system; and finally the fauitsIf faults are

step, the system is analyzed structurally to find overdeternsobd ; . . i
: decoupled then they will also be includedih,. The differentiated
models Each of these submodels are then in the second step trans-) . : . .
and non-differentiated version of the same variable are considered to

formed to consistency relations. The benefit with this two-step @Phe different variables. The time shifted variables in the time discrete

proach is that the submodels obtained are typically much smalleéase are also considered to be separate variables.

than the whole model, and therefore the computational complexity A structural model can be represented byirzidence matri4

of deriving consistency relations from each submodel is substantiallyi] The rows correspond to equations and the columns to variables. A
lower compared to directly manipulating the whole model. o O : o . -)
cross in positior{s, 5) tells that variableg is included in equation.

The main contribution and the focus of the paper is a structural al-
gorithm for finding these submodels. Instead of directly manipulatingexample 1 A simple example is a pump, pumping water into the top
the equations themselves, the proposed algorithm only deals with thef a tank. The water flows out of the tank through a pipe connected
structural information contained in the model, i.e. which variablesto the bottom of the tank. The known variables are the pump imput
that appear in each equation. This structural information is collectethe measured water level in the tapk, and the measured flow from

the tanky;. One fault denoted; is assumed to be associated with 3,1 Basic Assumptions
each known variable. The actual flows to and from the tank are de-
notedF;, and the actual water level in the tank is denotedVithout ~ Basic assumptions are needed to guarantee that the subsets found

knowing the exact physical equations describing the analytic modePnly by analyzing structural properties are exactly those subsets that
the structural model can be set up as follows: can be used to form consistency relations. Before the basic assump-

tions are presented, some notation is needed.FLé&e any set of

equation | unknown fault known equations andl’ any set of variables. Then definerx (E) = {z €
FiFsh b | fufunforfs | wynys X|3e € E : e containsz} andequp(X) = {e € E|3z € X : e
el X X X containse}. Also, letvarx (e) andequg (x) be shorthand notations
€2 XX X @ for varx ({e}) andequg ({z}) respectively. Ifg is any equation,
€3 X X X function or variable, leg® denote the:th time derivative ofy. Then
€4 XX definevarx (E) = {undifferentiatedz|3i(z* € varx (E))}, e.g.
22 X X X X varx,uy {y = &}) = {y,«}. Finally, the number of elements in

any setF is denoted E|.
The first assumption is introduced to ensure that the model be-

Equatione; describes the pumpy the conservation of volume in o ; . .)
d ! pumz: comes finitely differentiated in Section 4.1.

the tank,es the water level measuremeat, the flow from the tank
caused by the gravity; the flow measurement, ang a fault model

Assumption 1 The modelV/,,;, has the property
for the flow measurement fauf ;.

©)

The meaning of condition (3) is that each subset of equations include

more or equally many different variables, considering derivatives as

The _task Is to find submodels that can be usgd to form cons_lstenctyle same variable. If condition (1) is not fulfilled and there are no
relations. To be able to draw a correct conclusion about the d'agno%dundant equations, the model would normally be inconsistent
ability from the structural analysis, it is crucial that for each of these As mentioned earlier the structural model contains less inforlma-

submodels there is a consistency relation that validates all equatioqi%n than the analytical model. The next assumption makes it possible

VE C Mom‘g : |E| < |quuy(E)|.
3 Fault Diagnosis Using Structural Models

included in the submodel. The common definition of consistency re
lation does not ensure this. Therefore the new definitionowisis-
tency relation for an equation sét introduced that explicitly points
out the submodel considered. Before consistency relatiorEfis
defined some notation is needed.

Let x andy denote the vectors of variables containedXin and

Y respectively. The®(x, y) denote an equation set that depends on

variables contained iX,, andY’.

Definition 1 (Consistency Relation forE) A scalar equation
c(y) = 0is aconsistency relation fahe equation¥ (x, y) iff

IxE(x,y) < c(y) =0 2)

and there is no proper subset Bfthat has property (2).

Definition 1 differ from the common definition of consistency re-
lation in two ways, the left implication in (2) and that there is no
proper subset off that has property (2). Refer the latter as the min-
imality condition in Definition 1. The following example shows the
importance of the left implication in (2).

Example 2 Consider the modell = {y1 = z,y2» = z,y3 = z}.
The equationy; —y» = 0is not a consistency relation fdr, because
it is true even if e.gys # y1 = y2 and then it is impossible to find
a consistent: in E. Howevery; — y2 = 0 is a consistency relation
for {y1 = z,y2 = z}.

The expression: + y2 — 2ys

0 includesys. The right im-

to draw conclusions about analytical properties from the structural
properties.

Assumption 2 There exists a consistency relatiofy) = 0 for the
equation sef iff
VX' Cwarx, (H),X' # 2 :|X'| < |equu(X")| 4)

According to Assumption 2 the unknown variableshincan be
eliminated if and only if it holds that for each subset of variables in
H the number of variables is less then the number of equatiofs in
which contain some of the variables in the chosen subset.

The Assumptions 1 and 2 are often fulfilled. For example all sub-
sets of equations found in the industrial example in the end of the
paper satisfy Assumption 2. Even though the "only if” direction of
Assumption 2 is difficult to validate in an application, the results of
the paper can still be used to produce a lower bound of the actual
detection and isolation capability.

If all subsets of the model fulfill Assumption 2, the structural anal-
ysis will find all subsets that can be used to find consistency relations.

3.2 Finding Consistency Relations via MSS Sets

Now, the task of finding those submodels that can be used to derive
consistency relations will be transformed to the task of finding the
subsets of equations that have the structural property (4). To do this,
two important structural properties are defined [9].

plication in (2) holds, but the opposite direction does not hold. The o _ N _ _
conclusion is that also this expression is not a consistency relatiodéfinition 2 (Structurally Singular) A finite set of equation&’ is

for E or any equation subset d.
However(y: — y2)? + (y2 — y3)? = 0 is a consistency relation
for E.

The minimality condition in Definition 1 is important, because it
guarantees that any invalid equation can infer an inconsistency.

structurally singulawith respect to the set of variables if |E| >
|lvarx (E)|.

Definition 3 (Minimal Structurally Singular) A structurally sin-
gular set is aminimal structurally singulafMSS) set if none of its
proper subsets are structurally singular.

For simplicity, MSS will always mean MSS with respectXg, in For all natural numbers;, y§j+1) _ y;j) — 0 is a consistency

the rest of the text. The next theorem tells that it is sufficient and necrg|ation. Most of these consistency relations contain high orders of

essary to find all MSS sets to get all different sets that can be utilize@griyatives ofy, andy». The derivatives of known variables are in
to form consistency relations. The task of finding all submodels thabeneral not known, but they can usually be estimated. The higher
can be used to derive consistency relations has thereby been trangqer of derivative, the more difficult it is to estimate the derivative.
formed to the task of finding all MSS sets. Thus it is reasonable to make a limitation(y) for variabley of the
order of derivative that can be considered as possible to estimate.
Derivatives up ton(y) are then considered to be known and higher
derivatives belong td(,.

To summarize the example, Algorithm 2 must be capable of differ-
entiating equations. To produce a correct structural representation of
For a proof, see [7]. differentiated equations, the algorithm must take linearly contained
variables into account. Further, it has to handle the limitatiary)
foreachy € Y.

Theorem 1 Let H C Moyig, Where M,,i4 fulfills Assumption 1.
Further, let H and all E; fulfill Assumption 2. Then there exists a
consistency relation(y) = 0 for H(x,y) where|H| < oo iff H =
U, E: where for eachi, E; is an MSS set.

4 Algorithm for finding and selecting MSS sets

The objective is to find all MSS sets in a differentiated version of theAIgorithm 2 consists of two parts. The first part is a modification of

:) : 1 n a; () f
modelM,,, and then choose a small subset of these MSS sets witantelides’ algorithm [9]. Led = Ui, U<y {e;’ },thenay; is the
the same diagnosability as the full set of MSS sets. The algorithnftighest number of differentiations it of equationi. ThenM is a

can be summarized in the following steps. differentiated model oMo,y = U7, {e:}. Let{e{""|1 < i < n}
be the set of most differentiated equationgiin The highest deriva-
Algorithm 1 tive of a non-differentiated variable in the modelM is defined as

o _ _ . max({ilz® € varx, (M)}).
1. Differentiating the model: Find equations that are meaningful to pantelides algorithm differentiates equation subsets, so that the
differentiate for finding MSS sets. _ original equations together with the differentiated equations have a
2. Simplifying the model: Given the original model and the addi- ;omplete matchingd] of the most differentiated equations into the
tional equations found in step (1), remove all equations that canynknown variables with the highest derivatives.
not be included in any MSS set. To simplify the next step, merge The modification of Pantelides’ algorithm is that derivatives of
sets of equations that have to be used together in each MSS setown variables, higher or equal ta(y), are also allowed to be
3. Finding MSS sets: Search for MSS sets in the simplified model. jcjuded in the matching.
4. Analyzing Diagnosability: Examine the diagnosability of the MSS
sets found in step (3). Algorithm 2
5. Decoupling faults: If the diagnosability has to be improved, someinput: The original model\/,,,, a description of which variables
faults have to be decoupled. For decoupling faults, return tothat are linearly contained, and for eaghe Tary (Morig), m(y) <

step (1) and consider these faults as unknown variablég,in 0.
6. Selecting a subset of MSS sets: Select the simplest set of MSS sets - _) o
that contains the desired diagnosability. (1) Apply the modified Pantelides’ algorithm Ad,;, and the limits

m(y). The output is the number of times each equation must be
Note that to avoid searching for all MSS sets decoupling all possi- differentiated to find all MSS sets.
ble faults, Algorithm 1 has been organized so that first, the fault fr¢2) Differentiate the equations id/,;, the number of times sug-
model is analyzed. Then if it is necessary for achieving higher isola- gested in step (1) and use the description of which variables that
bility, faults are decoupled. The following sections discuss each of are linearly contained, to get the correct structural description of
the steps in Algorithm 1. the differentiated structural model denotél;; s .

. . Output: Mz s.
4.1 Differentiating the Model

To handle dynamic models, Algorithm 1 needs a way to deal withlt Is critical that step (1) in Allgo.rlf[hm 2 termlnatgs, .€. o equatllon
S - . . . L . should be differentiated an infinite number of times. In Pantelides
derivatives. In this section an algorithm for handling derivatives is

defined. This algorithm is referred to as Algorithm 2. A small exam-(lggs). the condltlon_when the algorithm terminates is stat_ed. This
le will show what Alaorithm 2 must be capable of handlin condition can be written as the structural property (3). Since the
P 9 P 9 model M,,;, has this property according to Assumption 1, the al-

Example 3 Consider the model = {e1, e2,e3} = {y1 = z,yo = 9orithm will terminate.

i,ys = x*}. It is obviously impossible to eliminatein e, if dif- Let now M SS(M) denote the set of MSS sets found in equations
ferentiation of any equation is forbidden. In general, all derivatives M and M SSau(M) = MSS(U2,M™). Then it is possible to
of E have to be considered. £ denote the set of theth time State the following theorem proven in [7].

derivative of each element, the equation set generally considered i?heorem 2 If Assumption 1 is satisfied and for eagh

Uz‘oioE<i)- o v
Even thoughvarx, (e1) = varx, (e3) = {z} the derivatives of vary (Morig), m(y) < oo, then
e1 andes contain different sets of variables, because x,, (é1) = MSSai(Morig) = MSS(Maiss)

{&} # varx,(és) = {z,z}. Sincex is linearly contained ire;,

the variabler in ¢; disappears. Knowledge about which of the vari- The consequence of this theorem is that all MSS sets that are possible
ables that are contained linearly in an equation determines the set dfo find if the original model,,, is differentiated an infinite number
variables in the differentiated equation completely. of times, can always be found M4 ;.

Example 4 The following example is a continuation of Example 1 This makes one group d&1, e2, é4, é5 }. This search made simplifi-

with the structural model shown in (1). Let(u) = m(ys) = 1 cations and therefore the search is performed once more. The second
andm(yx) = 0. According to Algorithm 1 the first iteration uses time no simplifications have been done and the simplification step is
the fault free model, i.e. all faults are zero. The equatigrontains therefore complete. The remaining system is

only a fault. Since all faults are at the moment assumed to be zero,

] ” . o equation unknown fault known
theneg is not considered. Further, assume that no variable is linearly o h ‘ Fufonf f | WYy
contained in any equation. Then no variable will disappear in the dif- [el [X X <)y(f)? <)g)?
ferentiation. The structural modél/,; ; obtained from Algorithm 2 es X X X (6)
iS €4 X X
. es X X X
equation | unknown fault known
FiRFh b | f. | u j -
o S J;(fyhfyfff B 4.3 Finding MSS Sets
€2 XX XX x x ®) After the simplification step is completed, step (3) in Algorithm 1
23 D finds all MSS sets in the simplified mod&{;..,. This section ex-
éi X XXX plains how the MSS sets are found.
The task is to find all MSS sets in the modél;...,, with equations
es X X X
és XX X X XX {e1, - ,en}. Let My, = {eg, - ,en} bethelash — k + 1 equa-

tions. LetE be the current set of equations that is examined. The set
of MSS sets found is denoted,;43. Then the following algorithm
finds all MSS sets iM ;.

Algorithm 3

4.2 Simplifying the Model

Itis a complex task to find all MSS sets in a structural model. There
fore it can be of great help if it is possible to simplify the model. Here MPUt: The model sir,..
two kinds of simplifications are used. 1. Setk = 1andMy g3 = @.

In a first step, all equations iy, ¢s that include any variable 2. Choose equatioey,. LetE = {e;} and X = &.
that is impossible to eliminate, are removed. This can be done witB. Find all MSS sets that are subsets\éf and include equation..
Canonical Decomposition [2]. (@) LetX = wvarx, (E)\X be the unmatched variables.

In a second step, variables that can be eliminated without losing -))
any structural information are found. The rest of this section will be (?) If X = &, thenE is an MSS set. Inseff into Maigs.

(c) Else take a remaining variablé € X and letX = X U

devoted to a discussion about this second step. 3

If there is a setX C X, with the propertyl + |X| = {Z}. Let E = equy;,\g(Z) be the remaining equations. For
lequary; s, (X)], then all equations inquay,, , , (X) have to be used all equationse in E let E = E U {e} and goto (a).
to eliminate all variables itX . Since all unknown variables mustbe , ¢, setk = k + 1 and goto number (2).
eliminated in an MSS set this means particularly that all MSS sets
including any equation afquay,,,, (X) has to include all equations Output: The set of MSS sets found, Megs.
inequn,,,, (X). The ideais to find these sets. Then it is possible toAlgorithm 3 finds all MSS sets if/,.;, according to the next theo-
eliminate internal variables, here denot&din these sets. Every set rem proven in [7].

is replaced with one new equation. _ .
This second simplification step finds subsets of variables that ar'é’heorem{ Maigs = MSS(M“_WP)_ _
included in exactly one more equation than the number of variableslhe following small example with five equations shows how the al-

To reduce the computational complexity, a complete search for suc#orithm works.

sets is in fact not performed here. Instead only a search for single : | ‘g(l “;(2 T3
variables included in two equations is done. When a variable is in- 9 X X
cluded in just two equations, these equations are used to eliminate 3l x x X
the variable. If all variables are examined and some simplification 4| x

was possible, then all remaining variables have to be examined once 5 X

more. When no more simplifications can be made, the simplificationThis model gives the following time evolution of current equations,
step is finished and the resulting structural model is dendfed, . i.e. E in Algorithm 3 is

Note that with this strategy larger sets than two equations will also

be found, since the algorithm can merge sets found in previous steps. 2 3 2
The next theorem ensures that no MSS set is lost in the simplifica- 2 5 5 2 2 3 3 5
tion step. 3 3 3 3 4 4 4 4 4 4
11 1 11 1 1 1 1 1 1
Theorem 3 MSS(Mdiff) = MSS(MSimp) 4
4 3 3 5
For a proof, see [7]. Consider again Example 4 and the output (5) 3 3 5 55 4 4
from the differentiation step. No equations can be removed in the 2 2 2 2 22 3 3 3 45

first simplification step. . . The bold columns represent the MSS sets found. This example
The second step searches for variables which belong only to twalso shows that if there are several matchings including the same

equations. In the first search, the algorithm fifilsn {e1,e2}, F2in - equations, the algorithm finds the same subset of equations several
{éa, é5}, andh in the equations produced Hy1, e2} and{éa, és5}. times.

4.4 Analyzing Diagnosability variablesX, and search for new MSS sets by applying Algorithm 1
] ~ step (1) to the new model obtained. An MSS set that is able to isolate
When the MSS sets are found, the next step is to analyze their dizyt ; from fault j has to include at least one equation that includes

agnosability. The continuation of the example in (6) will be used toggt ;. If any such MSS set is found, it has to include an elimination
illustrate how this analysis is done. The 4 MSS sets that can be foungs fault 5. If not, this MSS would have been discovered earlier.

in (6) are shown in the left column in Figure 1 (a). The matrix in this | the example in Figure 1, the fault matrix shows tfiagnd f,
figure is the incidence matrix of the MSS sets in (6). If any equationan, not be isolated fronfy, ;. The problem is that there is no MSS set
in the MSS set include fault;, the elements, j) of the incidence that decouple faulf, ;. But there could be one f, s is eliminated.
matrix is equal toX. Note that anX in position (i, j) is no guar- The fault , ; is moved from the fault§” to the unknown variables
antee for faultj to appear in the MSS sét For an example of the x° The procedure starts all over from the step (1) in Algorithm 1.

interpretation of an incidence matrix, consider the third MSS set intje result is a new MSS set in whidl; is decoupled. This gives a
Figure 1 (a). This MSS set could contgin and f, ¢, but it is impos- possibility to detect and isolate all faults.
sible that it could contaitf,x, sincef, is only included in equation

e3. For simplicity, the derivatives of the faults are omitted in Figure 1.

If the number of different faults is large it is not easy to see Which4
faults that can be isolated from each other. The incidence matrix of
the MSS sets show which faults that could be responsible for an in-)
consistency of each MSS set, but it is more interesting to see whicf} i not unusual that the number of MSS sets found is very large.
faults that can be explained by other faultstadilt matrixshows the ~ Many of the MSS sets probably use almost as many equations as un-
maximum isolation and detection capability of the diagnosis systemknown variables in the entire system. These MSS sets usually rely
The maximum isolation capability with a diagnosis system designe®" too many uncertainties to be usable for fa_lult isolation. Small MSS
with this structural method is obtained if it is assumed that each faulp€tS are more robust and are usually sensitive to fewer faults. There-
makes all MSS sets including this fault inconsistent. If fautt sen- fore the goal must be to find the set of most robust MSS sets but with
sitive to at least all MSS sets that fauis sensitive to, then element the Same diagnosis capability as the set of all MSS sets.

(i,) of the fault matrix is equal t& . The interpretation of ai in Start tq sortthe MS_S sets in an ascending order (_)f complexity. The
position(i, j) is that faultf; can not be isolated from faujt. compl_exny measure is here the number of_eg_uatlons, even though

The fault matrix corresponding to the incidence matrix in Fig- More _|nforr_nat|ve measures are also a possibility. The MSS sets'are
ure 1 (a) is shown in Figure 1 (b). Consider the first row of the fault€xamined in the rearranged order. If an MSS set increase the diag-

matrix. Suppose that faulf, is present. Then, the first three MSS hosability, then select the MSS set. The diagnosability is increased if
sets are not satisfied in an ideal case. This meansftheertainly some fault becomes detectable or some faghin be isolated from

can explain faultf,, but alsof,; can explain faultf,. Fault f, some other fa_ulj. This means that for each detection of afaul_t and_
cannot explain faulf.,, since if f, is present, the third MSS set is for €ach isolation between two faults, the smallest MSS sets with this
satisfied. Note that the fault matrix is not symmetric. For examplediagnosis ability will be one of the chosen MSS sets. In this way the
fault f,; can explain faultf, but the opposite is not true. The fault final outputfrom Algorithm 1 will be the most robust set of MSS sets
matrix can more easily be analyzed after Dulmage-Mendelsohn pelVith highest possible diagnosis capability.

mutations [8]. This algorithm returnsraaximal matching4] which

is in block upper-triangular form. The diagonal blocks corresponds

to strong Hall components of the adjacency graph of the fault ma5 Industrial example: A part of a paper plant

trix. The interpretation is that faults in a diagonal block can never

be distinguished with that diagnosis system. In the small example iThis example is a stock preparation and broke treatment system of a
Figure 1 (b), the same matrix is returned after Dulmage-Mendelsohfaper plant located in Australia. The system is used for mixing and
permutations, which usually is not the case. The diagonal blocks argurifying recycled paper for production of new paper. An overview

.6 Selecting a Subset of MSS Sets

thel x 1 diagonal elements. of the system is shown in Figure 2.
To screen
&
MSS | fufynfyr present interpreted fault bure Valve 6 @
Tei s e, e e, 657 | X X X fault | fu Fyh Fyr — Fo
{el,en.eq.éq.e5.€50 | X X X Tu X X ot
{e1,eg,eq4,é4,e5,é5} | X X fyn ‘ X X — Fa -
{e3, ¢4, e5 X X Ty s X DY Pulper Valve 4
Valve 1 F
(a) (b) F3 F10 8
Pump 1)
Cyclone
Figure 1. The incidence matrix of MSS sets is shown in (a). The fault vave2 (X d Py
matrix of (a) is shown in (b). vaves Valve 5

Fy
Tank

To sedimentation

4.5 Decoupling faults

Suppose that the elemeit j) of the fault matrix is equal t&< for Figure 2. A stock preparation and broke treatment system of a paper plant.
somei # j. It could still be possible to isolate faultfrom fault
j by trying to decouple fault j. Include faujt among the unknown

5.1 System Description 5.3 Simplifying the Model

Mucl)sfa??tzt;2‘rteh?:§r}1/:itdegr]eaclir?ong2“(;]e:ar\ri?cd %Zorggdtgf htggléﬁg\(,j\,;h% the first step of simplification applied to the left matrix in Figure 3,
pup y) ; . the equationg27, 28,29} include variables belonging only to one
compare well to real measured data. Because of space considerations, .. . : -
. - . equation, i.e. they cannot be included in any MSS sets.

the details of the model are omitted, but can be found in [7]. The The second part of the simplification finds that the vari-
system has 4 states: the volume and concentration in the pulperandé{r@)les{9 17,18, 19, 20, 21, 25, 26, 27, 28,29, 30,31} can be elim-
the tank. There are 6 sensors in the system.Se;nsmdy;; measure inated. ’Th7e équétiohs ,tha7t f(;rm7 gr7oupys ;;{aa 52}, {2,53}

the water levels of the pulper and the tank respectivglyand y. (3,54}, {4, 15, 40}, {32, 41,44}, {39, 48,51} {31’43}‘{35’45}‘
measure concentratiops andys measure pressure. The flows and .~ ~5 ¢ 7 0 700 ST 0 LA L 0 L

S : 37,46} and{36,47}. The simplified structural model is shown in
concentrations into this system are known and the flows out from the.. Lo .)
igure 4 (a). Note the simplification of the model by comparing Fig-
system are also known. There are 6 valves and two pumps that are ;
.) ure 3 and Figure 4 (a).
actuators with known inputs.

There are 21 faults that are considered. All sensors can have a con-
stant offset faul(f1, ..., fs). All valves can have a constant offset
in the actuator signdlf7, . . ., f12). Clogging can occur in the pipes XL .))
near the valveg fis, ..., fis) and also directly after the tank. kK s . .
Finally, the pumps can have a constant offset in the actuator signal * : : :
(f20, fa1)-

The system is described by 29 equations. Equatigns. ..,
e4) describe the dynamicgges,...,e14) are pressure loops,s
relates the concentration in the junction after the tank with the “ - - -
flows Fy and Fg, (e1s, e17) describe the two pump$eis, . . ., e23) wl *E - R
are valve equationgezq, . . ., e2¢) are flow equations, and finally o o
(ea7,. .., e29) @re sensor equations for sensor 1, 2, and 3. The struc- = ;)
tural model for these equations can be viewed in the first 29 rowsin = L. "= as] : - . -
the matrices in Figure 3 renumbered unknown variables faults

(@) (b)

XXX x
xx
xx

x

x
.
5
x

N
3
x
x
MSS sets
x
x
x
x
x
x

.
&

renumbered equations

N
3

5.2 Differentiating the Model _ S _ _ o
Figure 4. The simplified structural model is shown in (a). The incidence
The highest order of derivatives that is known for all known vari- matrix of the MSS sets is shown in (b)

ables are assumed to be one. If a variable is contained linearly in

an equation the variable disappears in the differentiated expression.

This knowledge is used since the equations are known. Algorithm 2

is applied to the first 29 equations in Figure 3. The result is that all

equations except equation 1, 2, 3, and 4 are differentiated. This ré.4 Finding MSS sets
sults in additionally 25 differentiated equations shown in the lower

part of Figure 3. Algorithm 3 is then applied to the simplified model. The algorithm
returns 35770 MSS sets that are contained in the simplified model.
o kT T The largest MSS set consists of 24 equations.
57)(x Xx X sl XXX .
oL e T %] 5.5 Analyzing Diagnosability
sl < x IR -
ol |] The two different fault matrices are seen in Figure 5. The Dulmage-
. Mendelsohn permutations gives that the faul® 13}, {8,14},
B 1 E%] {9,15}, {10,16},{11,17} and {12, 18} are never distinguishable.
i i o Fart----- R These pairs of faults all belong pairwise to the same valve. This iso-
ol) LT | Ty lation performance for faults concerning valves is in this case ac-
x < x X < ceptable. To give an example of how elimination of faults is done,
L T] the attention is focused on isolating faults 4, 8, and 14.
451 xXxx xXxX 1 asp xXxx
or N T 1 5.6 Decoupling faults
S5 w0 5 m w wm Yo 5 b w5 w o _ _
unknown variables fauits Considering Figure 5, it is still important to discover if any MSS set

can decouple fault 2 or 3 and be sensitive to fault 4. It is also neces-
sary to decouple fault 20. Apply Algorithm 1 to the original model,
Figure 3. Structural model of the stock preparation and broke treatment but where fault 2 now is considered to be an unknown variable. Then
system. apply the Algorithm 1 to the model where faults 3 is decoupled and
finally also when fault 20 is decoupled. The algorithm finds thereby
additional MSS sets that isolate fault 4, 8, and 14.

5.7 Selecting a subset of MSS sets
The 24 chosen MSS sets are

=
%)
9]

VOO U LN >

16193241 44

8 10172024
1214212326

141723 2526
172433344249

7 1619324144
172125374246 50

8 101220212425
172325263942485051
, 516 =
404249 5254
203335 4045 54
244042 495354
172440 424954

[RINTXTSY
[SFNIS
00 00 =
Yy
aouo
e

72
724
516
617
51

6

™

the consistency relations, which give the fault detection and the fault
isolation capability.

The method is capable of handling general differential-algebraic
non-causal equations. Further, the method is not limited to any spe-
cial type of fault model. Algorithm 1 finds all submodels that can
be used to derive consistency relations and this is proven in Theo-
rem 2, 3, and 4. The key step in Algorithm 1 is step (3) that finds all
MSS sets in the model it is applied to.

Finally the method has been applied to a large nonlinear industrial
example, a part of a paper plant. The algorithm successfully manage
to derive a small set of submodels. In spite of the complexity of this
process, a sufficient number of submodels could be transformed to
consistency relations so that high diagnosis capability was obtained.

REFERENCES

From these sets and the structural model in Figure 3 the incidenC(ﬁ]
matrix in Figure 4 (b) is obtained.

: [2
T : 3l
2”0 2 6 8 10 122 14 16 18 20 22 200 2 4 6 [4]
(@) (b) 5]
[6]

Figure 5. These matrices are the fault matrices before (a) and after (b) the
Dulmage-Mendelsohn permutation. [7]
(8]
5.8 Generating Consistency Relations 0]

Consistency relations corresponding to the 24 MSS sets are calcu-
lated by using the function Eliminate in Mathematica. Most of thel
equations in the model are polynomial equations. For polynomial
equation-systems, the function Eliminate useslBer Basis tech-
nigues for elimination. Each MSS set with 7 or less equations was
easily eliminated to a consistency relation. The consistency relatiorl$]
from the MSS set 17 and 18 were obtained from the Eliminate funcy,,
tion, but were to complex to be numerically reliable. Elimination of
the unknown variables in MSS sets with 8 or more equations was
computational intractable with the Eliminate function. Therefore, by
using only consistency relations obtained from the 15 first MSS sets,
the isolation capability was reduced slightly. Some further results of
the investigation can be found in [7].

6 Conclusion

This paper has presented a systematic and automatic method for find-
ing a small set of submodels that can be used to derive consistency
relations with highest possible diagnosis capability. The method is
based on graph theoretical reasoning about the structure of the model.
It is assumed that a condition on algebraic independency is fulfilled.
An important idea, towards finding these submodels, is to use the
mathematical concephinimal structurally singulasets. These sets
have in Theorem 1 been shown to characterize these submodels, i.e.

E. Carpanzano and C. Maffezzoni, ‘Symbolic manipulation techniques
for model simplification in object-oriented modeling of large scale con-
tinuous systems’Mathematics and Computers in Simulatipi(48),
133-150, (1998).

J. P. Cassar and M. Staroswiecki, ‘A structural approach for the design
of failure detection and identification systems.’|RAC Control of In-
dustrial Systemg1997).

M-O. Cordier, P. Dague, M. Dumas, F. &g J. Montmain,

M. Staroswiecki, and L. Tra@+Massugs, ‘Al and automatic control
approaches of model-based diagnosis: Links and underlying hypothe-
ses’, in4th IFAC Symosium on Fault Detection Supervision and Safety
for Technical Processesd., A.M.Edelmayer, volume 1, pp. 274-279,
(2000).

F. Harary,Graph theory Addison-Wesley publishing company, ISBN
0-201-41033-8, 1969.

J. De Kleer, A. K. Mackworth, and R. Reiter, ‘Characterizing diagnoses
and systems’Artificial Intelligence (1992).

J. De Kleer and B.C. Williams, ‘Diagnosing multiple fault&tificial
Intelligence (1987).

M. Krysander and M. Nyberg, ‘Structural analysis for fault diagnosis of
DAE systems utilizing graph theory and MSS sets’, Technical Report
LiTH-ISY-R-2410, Dept. of Electrical Engineering Liking Univer-

sity, (2002). URL:http://www.vehicular.isy.liu.se/Publications/.

G. Meurant,Computer Solution of Large Linear Systeratsevier Sci-
ence B. V., ISBN 0-444-50169-X, 1999.

C C. Pantelides, ‘The consistent initialization of differential-algebraic
systems’SIAM J. SCI. STAT. COMPUR(2), 213-231, (1988).

B. Pulido and C. Alonso, ‘An alternative approach to dependency-
recording engines in consistency-based diagnosisLeicture Notes

in Artificial Intelligence volume 1904, pp. 111-121. Artificial Intelli-
gence: Methodology, Systems, and Applications. 9th International Con-
ference, AIMSA 2000., Springer-Verlag, Berlin, Germany, (2000).

R. Reiter, ‘A theory of diagnosis from first principlegistificial Intel-
ligence (1987).

L. Trave-Massugs, T. Escobet, and R. Milne, ‘Model-based diagnos-
ability and sensor placement. application to a frame 6 gas turbine sub-
system’, inDX01 twelfth international workshop on principals of diag-
nosis ed., D. T. Dupre’ S. Mcilraith, pp. 205-212, (2001).

Diagnostic Reasoning with
Multilevel Set-Covering Models

Joachim Baumeister! and Dietmar Seipel!

Abstract. We consider multilevel set-covering models for diagnos- cise description ofienerator setsLater [4] they introduced the in-

tic reasoning: though a lot of work has been done in this fleldwl- tegration of Bayesian probabilities in set-covering models. With the
edge acquisitiorefforts have been investigated only insufficiently. system MOLE[[5] Eshelman focussed on the problem of acquiring
We will show how set-covering models can be build incrementallyset-covering knowledge. He proposed an interactive process that al-
and how they can be refined by knowledge enhancements or reprisws for refining previously acquired knowledge after a reasoning
sentational extensions. All these extensions have a primary charastep to differentiate between conflicting hypotheses. Console et al.
teristic: they can be applied without changing the basic semantics db] showed with the system CHECK how to combine heuristic and
the model. causal knowledge. There heuristic knowledge was used to find rea-

Keywords: set-covering diagnosis; model-based diagnosis; qualita=°’°n‘5‘bIe hypotheses for a given observation. In a second step the
tive modeling; knowledge acquisition; abductive reasoning causal knowledge was used to generate abductive explanations for
' ' the hypotheses. Lon@l[7] extended covering models with probabili-

ties and a rich syntax of temporal and non-temporal causation events.
Since knowledge acquisition is a cost sensitive task, reuse of existing
knowledge is another emerging aspect. Puppe [8] showed how set-
covering knowledge can be combined with other classes of knowl-

In this paper we will present a new interpretation of set-covering) e g
. L .) edge like heuristic rules, case-based knowledge or decision trees.
models [1] which is a suitable representation for the manual devel-

opment of knowledge-based systems. Because of its simple semallost of these approaches only investigated syntax and semantics of
tics set-covering models are rapidly understood by the experts, biifie reasoning process, but did not consider the knowledge engineer-
still maintain a well-known model-based interpretation. [Th [2] we ing process. Eshelman’s MOLE system [5] differs from our knowl-
showed how knowledge-based diagnostic systems can be developélge acquisition approach, since there knowledge refinement is per-
incrementally with set-covering models, thus supporting rapid proformed by adding new covering relations to the model. In our paper
totyping of such systems. In this paper we will extend this approachve will present (multilevel) set-covering models and show how to
to multilevel set-covering models, and we will describe how simpleenrich these simple models with knowledge enhancementsiikie
set-covering models can be enhanced by representational extensiolities andweightsor representational extensiofisr more complex
Practical experience has shown that these additions facilitated the deovering relations. A primary characteristic of the presented exten-

velopment of a real world example from a medical ICU domain. sions is the incrementality: each extension can be applied indepen-
dently from other enhancements and will not change the basic se-

cr)r?antics of the model, but refine special aspects of it.

1 Introduction

A set-covering modetonsists of a set of diagnoses, a set of find-
ings (observations) and covering relations between the elements
these two sets. There exists a covering relation between a diagnosi$e rest of the paper is organized as follows: In Sedtjon 2 we will
and a finding, iff the diagnosis implies the observation of the find-introduce the basic concepts of set-covering models and show how
ing. We can define covering relations between diagnoses as well, itp enrich set-covering models with additional knowledge like simi-
a diagnosis implies the observation of another diagnosis. The baslarities and weights. Beyond that we will introduce representational
idea of set-covering diagnosis is the detection of a reasonable set 8ktensions of set-covering models in Secfipn 3 that will enable us to
diagnoses which can explain the given observations. To do this, wlrmulate exclusions, necessary relations and complex covering rela-
propose an abductive reasoning step: Firstly, hypotheses are gen&ns (conjunctions, disjunctions, cardinalities). In Secfipn 4 we will

ated in order to explain the given observations. Secondly competinghortly summarize the problem of hypothesis generation and we will
hypotheses are ranked usinguality measure introduce constraints that shrink the exponentiell size of possible hy-

Reasoning with set-covering models has got a long tradition in di_potheses. We will conclude this paper in Secfipn 5 with an overview

agnostic reasoning: Early work was done by Padil [3] with his Sys_of the work we have done so far and promising directions we are

tem ABEL, which implemented a comprehensive set-covering repplannlng to work onin the future.

resentation including causal, associational and grouping relations.
Reggia et al[[1] contributed a formal approach to set-covering mod

els and addressed the problem of hypothesis generation with a pre- Set-Covering Models

1 University of Wiirzburg, Department of Computer Science, Am Hubland, A set-covgrlng model congsts of a set of diagnoses, a set of findings
97074 Wirzburg, Germany, emaifbaumeister, seipp@informatik.uni- (Observations) and covering relations between the elements of these

wuerzburg.de two sets. There exists a covering relation between a diagnosis and

a finding, iff the diagnosis predicts the observation of the finding.In the worst case this procedure will generatecandidates fon
Furthermore we can define covering relations between two diagnoselagnoses. So heuristics are needed to keep the method computation-
to state that a diagnosis implies another diagnosis. In this way wally tractable (c.f. Sectidn]4).

can build acoverlng-.treefor a diagnosis, where we po;tulate that The basic sets for this task are the following: We defihe to be

the leafs of the covering-tree have to be observable findings. So eaqne set of all diagnoses aitl4 the set of all observable parameters

covering path will start with a diagnosis and lead to an Observabl?attributes). To each parametdre (.4 a rangedom(A) of values
finding. is assigned, anfy = (J .o, dom(A) is the set of all possible
values for the parameters. If a paramefeis assigned to a value

21 The Basic Model then we callA : v afinding
The basic idea of set-covering diagnosis is the detection of a reason- QrF = {A:v | A € Qu, v e dom(A) }
able set of diagnoses which can explain the given observation of finq
ings. In anabductive reasoningtep hypotheses are firstly generated
in order to explain the given observatiomyfothesis generatignin ’ _))
a second step, we define a quality measure for ranking competing hy* covering relation- between a diagnosi® and a states (S # D)

potheseshypothesis testingSet-covering models describe relations is denoted by = D — 5. We say that D predictsS” or that “D
like: coversS”. Thenc, = D is called thecauseande, = S is called the

effect We define2z to be the set of all covering relations contained
in the model. ThetD™ € Qx is the set of all covering relations with
diagnosisD as the cause, i.eDt = {r € Qr|c, = D}. Eg,
for the model in Figur§]1 we obtaie,, = Flu ande,, = Fever,
Cold™ = {rs,r6}.

SinceS can be a diagnosis itself, we are able to buildltilevelset-
covering models. A stat§' transitively coversanother states’, if
We call each of these relationsvering relationsaind we denote them qitherS coversS’ or S covers another statg’ that transitively cov-

by erss’.
ri=D— A;:v,, 1<i<mn,

s the set of all findings. Furthermore we call an elemgmrt Qs =
Qp U QF astate

A diagnosisD predicts that the parameters;, ..., A, are
observed with corresponding values .. ., v,,.
A diagnosisD predicts the diagnosds;, . .., Dy,.

We call Fo C QF the set ofobserved findingand a set{ C Qp
ri=D—D;, 1<i<m. of diagnoses aypothesisA finding that is not transitively covered
Covering models can be visually described like in Figgre 1. In thisPY the hypothesist is calledisolated and th?f‘ft of all observed
findings that are isolated will be denoted By; 5" C Fo. E.g. for
a hypothesis{ = {D:} andFo = {A1:v1, Az :v2, Ay :v4} We
obtainF°g = {Az:va}.

r

3
Temp : Increased

Figure 1. Basic set-covering model for diagnodds, FeverandCold.

example the model states that diagnddisimplies the observation

of the diagnose&everand Cold. DiagnosisFever itself forces the Figure 2. Basic set-covering model for diagnodis
observation of the attributeEemperatureand Skinwith their corre-

sponding valuetncreasedandSweating

The basic algorithm for set-covering diagnosis is very simple: GiverNow we will describe the computation of the precision of a state for
a set of observed findings, it uses a simple hypothesize-and-test str@&Jiven observation. The precisiatt5) of a stateS provides a real
egy, which generates hypotheses (coined from diagnoses) in the firs@lue between and1 to describe the degree of accuracy the covered
step and tests them against the given observations in a second st&fates ofS are observed.

The test is defined by calculating a quality measure, which expressesottom-Up Computation of Precisions.Given the setFo of ob-

the covering degree of the hypothesis regarding the observed fingerved findings, the precisionof each state is computed bottom-up
ings. The generation and evaluation of the hypotheses is an iteratiarting with the findings:

process, which stops when a satisfying hypothesis has been found or

all hypotheses have been considered. Usually the algorithm will look .
{1, if A:v € Fo

at single diagnoses, compute the corresponding quality measure, and m(Aw) =
0, otherwise

then it will generate hypotheses with multiple diagnoses, if needed.

@)

The precisionr(D) of a diagnosisD can be computed as soon as the if all predictions are fully observed, i,efzrc = H¥, , and the set

>0
precisions of all its successassare known. For this we define Fisolated _
H,0 .
D; — {7« e Dt |7T(er) > c(er) }, Example. For the covering relation given in Figurg 2, the set
DiO = {TGD+|7T(6T)>0}7 .7:(9:{A23U2,A32’U37A4:’U4,A52U5,A62U6}

as the sets of atelevantcovering relations, i.e. relations that predict of findings, and the hypothesi¥ = {D:}, we obtainr (D) = 1,
states with a precision greater than a user defined threshold functiop(D;) = 1 (with ¢(D2) = ¢(D3) = 0.7). Since we obtair{t =

{r1,r2, 73} for hypothesisH we can calculate

m(er
re%:; (er) Hic = {ri,r2},
— = i + _ =
"= g TPl @ FiE™ = {Avivn Agivs).
0, otherwise

. » Up to now we presented the basic representation for set-covering
The denominator counts all successor state3 viith a positive pre- aqels containing diagnoses and findings connected with cover-

cision, which gives us the maximally achievable score. The nomingj rejations. Of course this simple representation might not always

tor sums up the precision of all successor states with a precision, tha{eet the requirements of real world applications. Therefore we will
is greater than or equal to the completeness value, which gives us t'%‘ﬁortly present knowledge extensions of set-covering models In [2]

actually achieved score. we showed how to apply these extensions in an incremental way.
Thecompleteness valug D) of a diagnosis is specified by the mod-
eler and is motivated by the fact, that a covering model for a diagnosis

will contain more states than the diagnosis will cause in an averag€-2 EXtension by Similarities and Weights

case. Nevertheless in most cases the observation of a percentage of =~ L . i N
Similarities between findings and weights for states provide signifi-

the modeled states will legitimate the validation of this diagnosis. To K led . ;) del he followi
emphasize this percentage the modeler has to specify a (:ompleten¢§§§‘t nowledge extensions for set-covering models. In the following

value ¢(D). Unless this factor is reached by the observation set in’¢ Will show howbto include these enhancements into the quality
the current case, the diagnosis may neither be considered as a va”dweasures given above.
observed state, nor will it be considered as a valid hypothesis candBimilarities. Consider a parametet with the domain
date. S
i)) . dom(A) = { no, si, mi, hi},
Since we also want to consider multiple faults, i.e. hypotheses con-

taining more than one diagnosis, we define with the meanings normahg), slightly increaseds), medium in-
creasedrti), and heavily increasedi), where A : hi is predicted.
nt=J p" Hi, = b, Hl.=J DL We clearly see that the observatidnmi deserves a better precision
DeH DeH DeH than the observatiod : no. Nevertheless the simple quality measure

considers both observations as unexplained findings and makes no

difference between the similarities of the parameter values. For this

reason we want to defir@milaritiesas an extension to set-covering

models.

Quality Measures:The quality measures are used .to rank the POSSIy\ o define the similarity function

ble hypotheses with respect to the given observation. As we already

introduced the precision of a single diagnosis we now will define sim : Qy x Qy — [0,1]

the quality of a hypothesis, which can contain multiple diagnoses.

The quality of a hypothesis provides a real value betw@amd 1 to capture the similarity between two values assigned to the same

to describe the degree of accuracy with which the hypotiigsian ~ parameter. The valugmeans no similarity and the valaendicates

explain the given observatiofo . two equal values. In cluster analysis problems this function is also
calleddistance functiorgcf. [9]).

Definition 2.1 (Quality Measure) Thequality o(*) of a hypothe- With.s.imilarit.ies. we need to adapt Equatigrj (1) for computing the

sis’H is given by precision of findings.

The covering relations € HIC are calledelevantfor H. Observe,
that relevancy depends oFv, since the precisions have been com-
puted based offo.

T€§+ m(er) m(A:v) = sim(Valy(A), Valr, (A)),
- 3)

T LIS

H - . . .
o(H) where Val returns the value of a specified attribute contained in a

specified set of states.
Notice that, in contrast to the precision, the quality measure does not
evaluate a single diagnosis with respect to the transitively observed
predictions, but assesses a hypothesis (containing possibly multipleno special similarity is included in the model, then we get the sim-
diagnoses) on the basis of the transitively predicted and observegle quality measure by defining thiefault similarity sim. (v, v') =
findings and the unexplained (isolated) findings. 8y, Whered, ., = 1, if v = o, andé, ,» = 0, otherwise.

We see thab(H) € [0, 1] for any hypothesigt € Qs The lower weights. The introduction of weights for covered states is another
bound0 is obtained, if{, = . The upper bound is obtained, common generalization of the basic covering model. Here we apply

Val : 295 x Q4 — Qy.

a weight functionw : Qs — IN4, to emphasize that some states Then the weights of the ¥D-connected findingg; will only con-
(findings and diagnoses) have a more significant pathological impottribute to the precision oD if all of these findings are observed.

tance than other states. If not all findings are observed, theh cannot explain the findings
When applying weights to the model we need to adapt Equdfjon (2&nd we have to check if another diagnosis from the hypothesis can
which calculates the precision for a given diagnosis: explain these observations. All remaining findings — so far unex-
plained — will be added to the set of isolated findifg$’s . This
S w(e) - m(er) will decrease the quality measure for the current hypothesis, since
rend H; will not contain relations covering the unexplained observa-
>c . + . =" . . .
(D) = S w(e) , DIy #0, tions. Given an AiD-covering relation of the form
TEDJ;O r:D—)AND{Fl F}
0, otherwise T
. . . . we define for eaclt; € { F1, ..., F, }:
Like for the precision of a diagnosis, we need to adapt Equdtion (3)
to calculate the quality of a given hypothesis:) {W(Fi)7 ifforall F; € e : w(F}) > 0
Tr\L's) = .
0, otherwise
Z+ w(er) - w(er)
o(H) = etz We try to explain all findings; with 7.(F;) = 0 butw(F;) > 0 by
Z+ w(er) + %lmw(F) other diagnose®’ € H \ {D}. All remaining findingsF;, which
remd, FeFsd cannot be explained by other diagnoses are add#gi{g .
If all states have the same weight, ie(S) = 1 for all S € Qs, Example. Assume that we have the covering model of Figure 3,
then the model reduces to the simple covering model. where ¢(D) = 0.5, and we observe the sefo = {1, 2}

Thenw(F3) = 0, sinceF3 is not in Fo. Therefore not all preci-

st o st 0w e ey e OO i ot s e gas v e
° F,) = 7,.(F5) = 0. We obtainFis°4std — {F,} for hypothesis
extensions (cf[]2]). wr(F2) = mr(F3) H,0 {£2} for hyp

H = {D}. Notice, thatF is notinFy;°s"?, since it is not observed.

3 Complex Covering Relations 3.2 Disjunction of Covering Relations

In the previous section we introduced the basic set-covering model) .) o
and extensions that allow for the refinement of set-covering knowl\We also can express alternative covering relations with disjunc-
edge build with basic covering relations. In this section we proposdion- Here we can distinguish between inclusiveRj@nd exclusive
some further extensions of the representationpA ORr- and [MIN, (X0oR) disjunctions.

MAaXx]-relations. In Figure[4 we can see two different disjunctive covering relations

To keep the interpretation of covering models simple, we only al-for diagnosisD: in the left one the findings™, F; are connected

low these extensions for covering relations between diagnoses arffth the Or-covering relationD —or {F3, F3}, whereas at the
(directly observable) findings. right side the findings are connected with ancovering relation

D —xor {F2, F5}. These @&/XoR-relations state, that only one

3.1 Conjunction of Covering Relations a a

It is desirable to be able to represent conjunctions between covering
relations. An AND-covering relation [or] tom

D —anp {F17 R Fn}
denotes the characteristic, that all covering relatibhs» F; have ° e e G G °

to be fulfilled simultaneously.
Figure 4. OR-/XOR-covering relations.

a of the connected finding has to be observed to fulfill the relation.
Of course we need to consider the different semantics in covering
Ao models. When computing the quality measures we have to take the
following three cases into account:

G ° 1. If noneof the predicted findings is observed, then nothing has

))) to be done. The covering relations connected with tREX®R-
Figure 3. Covering relationD —ano {2, F3} condition cannot contribute to the quality measure of the parent
state.

2. If oneof the predicted findings is observed, then we simply cut
all other states connected byrEXoR-relations from the model.
When computing the quality measure we only take the observed
finding into account.

. If more than oneof the predicted findings are observed (e.qg.
{F>, F3} C Fo), then we have to differentiate betweem @nd
XoRrelations. For both we take the finding with the maximal con-
tribution; e.g. regarding the weighted precision

Tw(F) = w(F) - w(F).

For Or-relations we simply ignore the remaining observations for
assessing the quality. They will neither contribute to the quality of
the hypothesis nor will they need to be explained by other diag-
noses.

For Xor-relations the observations left over still have to be ex-
plained. Like for the AiD-relations we try to explain them with 1
the other diagnoses contained in the current hypothesis. All ret-
maining findings, that cannot be explained by other diagnoses, are
added to the set of isolated finding; "

Figure 5. A [MIN, MAX]-covering relation.

If k € [MIN, MAX], then all findings inF N Fo will contribute.

If & > MAX, then letF .. € F N Fo be the Max findings
with the maximum weighted precisions among the finding&'in
(i.e. |Fmae| = MAX). We explain the findings itF,.q.. by D.
Then we try to explain the findings (i N Fo) \ Fmae by other

We see that we carefully have to us&/®oR-relations, because of
their different interpretation of the observation. For example, multi-
ple observations of one &R-covering relation are taken negatively

diagnoses also contained in the hypothesis. These findifgs
Fo) \ Fmaz, Which we cannot explain by other diagnodes e
H \ {D}, are added to;°5"".

into account (i.e., they are assumed to be unexplained findings of tife If & < MIN, then we try to explain all findings ¥ N Fo by other

current hypothesis), whereas in ordinarg-@lations they will not
contribute in any way.

As shown for AND-covering relations we also have to locally define
the precision for ®@/XoR-covered findings in context of the given
diagnosis: Consider anrerelation (analogous for &R):

L Fa)

We select a findind".a. € { F1, ..., Fy }, such thatry, (Fre) =
maz (7w (Fi), 1 < i < n). Then we say that

{

If there is more than ond’; with maximum weighted precision
mw (F;), then all but one (randomly selected) finding will set to the
precisionr, (F;) = 0.

When we compute the precisiariD) of a diagnosid, then the pre-
cisions of the findings; that are covered by an®DX OR-covering
relation contribute with the measure (F;) and not with the usual
precision measure(F;).

TID—>QR{F1,..

|f F1 = Fmam
otherwise

ﬂ-(Fi)7

7I'T(Fi) 0

diagnoses)’ € H \ {D}. Findings, which cannot be explained
by other diagnoses, are addedﬁéij’g"’f@d,

We integrate [MN, MAX]-relations into set-covering models by lo-
cally defining the precision for findings connected by ajiVMAXx]-
relationr =D —mn,max] F-. Then we say that for eadhi ¢ F:

0, if k< MIN
o (F) = or if K>MAXAF ¢ Fras
n(F"), if ke [MIN,MAX]
or if k> MAXAF € Fras

where F,,., is again the set of the WMx findings with the best
weighted precisions among the findingsin

When calculating the quality measure for a diagnosis or hypothesis
we apply the precisionr,.(F') for all findings F' connected by the
relationr. FindingsF' with m.(F) = 0 butx(F) > 0 need to be
explained by other diagnoses contained in the hypothesis or will be
added taF3;°5"".

It is worth mentioning that ordinary covering relations for a diagno-

For XoRr-relations we have to explain the remaining findings by othersjs are following a similar concept, since we only will consider pre-

diagnoses contained in the hypothesis or add thes1¢j5".

3.3 Cardinalities in Covering Relations

dicted findings that are also observed but not all predicted findings of
the diagnosis. But as opposed toIfM MAXx]-relations all observed
predictions will contribute to the quality. In [M, MAX]-relations
only MAx observed findings will contribute; more thanaM find-

Another enrichment of the set-covering representation is the conned?9S have to be explained by other diagnoses. In general, an ordinary

tion of covering relations by cardinality constraints. We express suc
cardinalities by [MN, MAX]-covering relationsConsider the exam-
ple in Figurdb. The covering relation between diagndsiand the
findings F, F», F3, Fy and F5 means, that betweehand4 of the

predicted findings have to be observed. We denote such relations by

r=D —pq {F1, F2, F5,Fy, F5 }.

When we interpret [NN, MAX]-relationsr =D —mw,max] F, then
we have to consider three possible cases for the nudber|F N
Fo| of relevant findings:

igovering model for a diagnosi8 with n covered findings is compa-

rable to a/c(D) - n, n]-relation connecting the findings.

3.4 Bounded Covering Relations

The introduction of similarities for finding values is a useful knowl-
edge extension. Nevertheless in some situations the expert wants to
express that a relation is only fulfilled if a covered parameter is ob-
served with exactly the predicted value, rather than a similar value.
Therefore we supplement necessary covering relations, disjunctive,

conjunctive and constrained covering relations with the optional la- —(D1 A --- A Dy,)
bel bounded We obtain the required behaviour by locally defining Remove generated hypotheses, containing all the diagnoses
the default similaritymeasure for bounded relations: Ds,..., D, atthe same time.

sim (Valy(A), Valro (A)) = Svaty,(4), Vatz (4)- Thus, we create hypotheses using generator sets and check each gen-

l.e., only if a parameted is observed with the predicted value, then €rated hypothesis against the available exclusion constraints. If one
1is assigned to its precision. exclusion constraint evaluates true, the hypothesis is discarded.

It it worth noticing, that the modification of generator sets with re-
spect to exclusion constraints yields a combinatorial size of gener-
ators and therefore is not reasonable. An evaluation of the gener-
ated hypotheses according to existing exclusion constraints has been
proven to be more efficient.

4 Constraints for Hypothesis Generation

As mentioned in the introduction of Sectiph 2, the problem of hy-
pothesis generation is exponential, sincerfatiagnoses we need to
consider abou2™ hypotheses in the worst case for an observation.
In the following we want to sketch some heuristics to restrict the hy-4 2 Necessary Covering Relations
pothesis space.

In a first step, we will filter all diagnose® € Qp, that arerele- A Stronger type of covering relations anecessary covering rela-
vant, i.e. having the minimum precision. For this, we define the setioNS A necessary covering relation between a diagnésiand a
of relevant diagnoses finding 1 means, thafD> necessarily cover$y and thatF; always
has to be observed i is hypothesized. We depict a necessary cov-
Q' ={D € Qp|n(D) > c(D)}. ering relation withD ™5 I as shown in Figurg|6.

Then, only diagnose® e Q75 will be taken into account, when

generating hypotheses. Before describing concepts to shrink the set 6

of hypotheses, we will defingeneratorsas a compact representation

for sets of hypotheses, which had been introduced by Reggia et al. 5

[J. 3l

Definition 4.1 (Generator) A generatolG; = {G1,...,G,} con- é e 9
sists of non-empty pairwise-disjoint subséts C Q7' The hypothe-

sesHg, generated by, is defined as
Figure 6. Necessary Covering relation for a diagnabis

Hg, ={HCQp||HNGi| <1, foralll <i<n}.

For G; = 0, it holds thatHg, = {0}. We can see, thak{g, is For applying necessary covering relations we introduce an adapted

analogous to a cartesian set product. definition of the precision,,.. for each diagnosi® € Qp:
For example, for the set-covering model defined in Figdre 1 and o

Fo = {temp : inc, skin : sweat,nose : red}, we obtainG = 0, if 3r € Qr :r = D X5 F with
{G1,G2} with G; = {{cold}, {fever}} andG, = {{flu}}. So we Tonee(D) = FeQrAnm(F) <t

can computé{g = {0, {cold}, {fever}, {cold, fever}, {flu}} to be ©(D), otherwise

the set of interesting hypotheses.

A method for computing and updating generator sets is extensivelyherer € [0, 1] is a specified threshold, which defines when a find-
described in4]. Generators are used to efficiently generate hypothd?d is sufficiently observed (e.g.= 0.8).

ses in an incremental manner: In a first step, sets of generators dgherefore a diagnosi® does not propagate any contribution to its
scribing higher level diagnoses (concepts) are created. For hypothgarent states until all necessarily covered findings are (sufficiently)

ses containing higher level diagnoses and having a high quality meayhserved. Consequentlf, will not appear in any generator and thus
sure, we build sets of generators containing underlying specializegill not be included in any hypothesis.

diagnoses and test them with their corresponding quality measure.
In the following, we introduce two basic knowledge extension, that]
additionally shrink the space of generated hypotheses. 5 Conclusions and Future Work

After describing the basic structures of set-covering relations we
4.1 Exclusion Constraints have shown how to enrich the model with additional knowledge like

similarities or weights. We also considered the computation of qual-
We can definexclusion constraint® filter diagnoses from the pro- ity measures of these parts. Furthermore, we have shown represen-
cess of hypotheses generation. In general, two kinds of constraintgtional extensions to the set-covering model to facilitate necessary,

are possible: disjunctive, conjunctive or constrained covering relations. An impor-
tant characteristic of all these extensions is the incrementality: some
“(DAFLA---ANFy) enhancements can be added to refine special aspects of the model
If findings F1, ..., F,, are observed, then remove generated hy-but will not change its basic semantics; others are used to guide the

potheses, containing diagnogis process of candidate generation.

In the future we are planning to work on the following fields: In- [13]
cremental development requires restructuring the model from time
to time. We are currently working on restructuring methods for set-14]
covering models that do not alter the basic semantics but improve the
design of the diagnosis knowledge. In software engineeefagtor- [15]
ing [10,[11] has been emerged as the corresponding method. In gen-
eral we have to look atalidation technique$or set-covering mod-

els besides simple case testing. Because of the special structure of
the model we alsoj have to consider static verification techniques fqi 7
the set-covering representation. For a survey in this field we refer to
[12,[13[1a[15].

In this paper we presented a hand-driven development of set-covering
models. But it seems to be possibldearn coarse modelautomat-

ically from a small number of available cases. Later on these models
should be refined by the developer with additional knowledge. With
such a semi-automatic development step, the initial costs of knowl-
edge acquisition can be reduced conveniently. Some work in this field
has been done by Thompson etlall[16] and Wang et al. [17]. This step
is not considered if we have a sufficiently large set of data, since then
traditional machine learning methods (e.g. learning neural networks,
learning Bayes networks) seem to be more appropriate.

ACKNOWLEDGEMENTS

The authors would like to thank Frank Puppe for his helpful sugges-
tions and comments.

REFERENCES
[1] James A. Reggia, Dana S. Nau, and Pearl Y. Wang. Diagnostic Expert
Systems Based on a Set Covering Modédburnal of Man-Machine
Studies19(5):437-460, 1983.

Joachim Baumeister, Dietmar Seipel, and Frank Puppe. Incremental
Development of Diagnostic Set—-Covering Models with Therapy Ef-
fects. InProceedings of the KI-2001 Workshop on Uncertainty in Arti-
ficial Intelligence Vienna, Austria, 2001.

Ramesh S. Patil, Peter Szolovits, and William B. Schwartz. Modeling
Knowledge of the Patient in Acid-Base and Electrolyte Disordérs.
Szolovits, P. (Ed.). Artificial Intelligence in Medicine, Westview Press,
Boulder, Coloradp1982.

Yun Peng and James A. Regghibductive Inference Models for Diag-
nostic Problem-SolvingSpringer, Berlin, 1990.

Larry EshelmanMole: A Knowledge-Acquisition Tool for Cover-and-
Differentiate Systemgages 37-79. In: Sandra Marcus (ed.): Automat-
ing Knowledge Acquisition for Expert Systems. Kluwer Academic
Publishers, 1988.

Luca Console, Luigi Portinale, Daniele Theseider Dupr, and Pietro
Torasso. Combining Heuristic and Causal Reasoning in Diagnostic
Problem Solving. In Jean-Marc David, Jean-Paul Krivine, and Reid
Simmons, editorsSecond Generation Expert Systempages 46—68.
Springer, 1993.

William J. Long. Temporal Reasoning for Diagnosis in a Causal Proba-
bilistic Knowledge BaseaAtrtificial Intelligence in Medicing8(3):193—
215, 1996.

Frank Puppe. Knowledge Reuse among Diagnostic Problem-Solving
Methods in the Shell-Kit D3lnt. J. Human-Computer Studie®9:627—

649, 1998.

Jiawei Han and Micheline Kambebata Mining: Concepts and Tech-
niques Morgan Kaufmann Publishers, San Mateo, California, 2000.
William F. Opdyke. Refactoring Object-Oriented Framework$hD
thesis, University of lllinois, Urbana-Champaign, IL, USA, 1992.

Martin Fowler. Refactoring. Improving the Design of Existing Code
Addison-Wesley, 1999.

Anca Vermesan and Frans Coenemvalidation and Verification of
Knowledge Based Systems. Theory, Tools and PracKbewer Aca-
demic Publishers, 1999.

[2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]
(10]
(11]

[12]

Alun Preece. Building the Right System Right. Rioceedings of
KAW'98 Eleventh Workshop on Knowledge Acquisition, Modeling and
Management1998.

Frans Coenen and Trevor Bench-Capé#aintenance of Knowledge-
Based System#cademic Press, 1993.

Marc Ayel and Jean-Pierre LaureMalidation, Verification and Test of
Knoweldge-Based SystenWiley, 1991.

Cynthia A. Thompson and Raymond J. Mooney. Inductive Learning
for Abductive Diagnosis. IfProceedings of the AAAI-94, \ol, fiages
664-669, 1994.

Xue Z. Wang, M.L. Lu, and C. McGreavy. Learning Dynamic Fault
Models based on a Fuzzy Set Covering MethGdmputers in Chemi-
cal Engineering21:621-630, 1997.

Computing Minimal Conflicts
for Rich Constraint Languages

Jakob Mauss' and Mugur Tatar*

Abstract. We address here the following question: Given an
inconsistent theory, find a minimal subset of it responsible for the
inconsistency. Such conflicts are essential for problem solvers that
make use of conflict-driven search (cf. [2, 4, 9]), for interactive
applications where explanations are required (cf. [16, 22]), or as
supporting tools for consistency maintenance in knowledge-bases
(cf. [11]). Conflict computation in Al applications was usually
associated with dependency recording as performed by TMSs (cf.
[2, 3, 18]). This techniques, however, have a rather limited
applicability for languages that go beyond the expressiveness
power of propositiona logic. For more powerful languages and
solvers constraint suspension appeared, until now, to be the only
available alternative for the computation of minimal conflicts.

We present here an algorithm for computing minimal conflicts
that can be used with powerful constraint languages, e.g. possibly
including finite and non-finite variable domains, algebraic and FD
constraints, etc. The conflicts are extracted post mortem from the
proof (atree with inferences of the form A OB O C) that lead to
the derivation of the inconsistency by an informed search that
computes and generalizes conflicting relations. The agorithm is
based on asimple but powerful principle that allows to recursively
decompose the minimization problem into smaller sub-problems.
This principle can also lay the foundation for efficient constraint
suspension agorithms that can be used in case no intermediary
results are cached during the constraint solving, i.e. in case no
proof structures are available.

1 INTRODUCTION

For problems expressed using propositional logic or using finite-
domain (FD) constraints there exist some efficient solutions for the
computation of conflicts and explanations (cf. [13, 16, 18]).
Unfortunately, this is not the case for more expressive constraint
languages. Due to the scope of our application interests, namely
supporting engineering tasks such as safety and diagnosability
analysis and also design and configuration (cf. [12, 15, 20, 22]),
we are especialy interested in modeling languages adequate for
engineering problems. Such languages have to mix logical and FD
constraints with (more or less) classical systems of linear and non-
linear algebraic or even differential equations. The general purpose
techniques that can be applied in this case for the (minimal)
conflict computation are constraint suspension (cf. [7]) and TMS-
like dependency recording (cf. [3]). Constraint suspension can
guarantee conflict minimaity, but it is in many cases too
inconvenient due to the large amount of time required to
recompute many subsets of the initial problem. When applied to

! DaimlerChrysler AG, Research and Technology, RIC/EK
Alt-Moabit 96a, D-10559 Berlin, Germany.
Email: {jakob.mauss, mugur.tatar} @DaimlerChrysler.com

systems of equations where local value propagation is not enough
for solving, TMS-based architectures usually become a heavy
machinery that consumes considerable amounts of time and
memory (see also [17]) and, in the end, still do not have any
guarantees for conflict minimality — the minimality is (at most)
guaranteed with respect to the propositional clauses that represent
the dependencies and not with respect to the semantic of the
original constraint language. The following example is an attempt
to illustrate this. Consider a system of five algebraic constraints

A =x>4 Az=y=22 As=x>2y+1

A2 =x<5 A4 =y <2
A solver may process these constraints in 4 steps as shown in
Figure 1. In steg@®, they are discovered inconsistent. A minimal
conflict among the given constraints is §,Ms, As }. If the solver
were using dependency recording it would not find the above
minimal conflict — just the trivial {A, A,, As, A4, As}in this case!

AL, Aszss

XD(4,5) @ X>5
y=2

A, SO\ A, Ay B A,
L) [xs

[=2] [o3]
A, SON_A,

y=2 y<2

Figure 1. Treefor proving the inconsistency of 5 constraints.

Of course, this was a just simple example where no symbolic
variable elimination was required and, for the above example, one
can easily define a strategy to handle correctly the conflict
computation — for instance by maintaining separate dependencies
for lower and upper bounds of intervals as in [6]. However, this
unnecessarily overloads the solving process in case of consistency
and, still, would not solve the problem in general.

In contrast, the key idea of this paper is to do a (guided) post
mortem analysis of the context in order to compute the minimal
conflicts. The algorithm uses the information thags;sAis
conflicting with A, (we say that As is a conflicting relation for
A) and propagates and updates these conflicting relations
through the proof tree in order to select only those parts of it that
are really contributing to the conflict. The paper is organized as
follows: in section 2 we present the basic procedure for extracting
a minimal conflict from a binary proof tree. In section 3 we
describe how a constraint solver can control the inferences in order
to easily provide such trees. In section 4 we report some first
empirical results regarding the performance of the algorithms.
Section 5 concludes the paper with a comparison to related work.

2 COMPUTING MINIMAL CONFLICTS This case analysis leads to the following procedure for extracting a
minimal conflict from a proof tree.
Specification: Let

R be a non-empty set of relations (assumptions)

A the root of a binary proof tree with the leaves given by R

B a conflicting relation for A, i.e.: B 0 and AOB =[.
The proof tree satisfies the requirement that, for any non-leaf node
A: left(A) Oright(A) O A.

We assume in the following arelational framework, i.e. constraints
are noted as relations over variables with finite or continuous
domains. These relations may be represented extensiondly (as in
Figure 4), or intensionaly using formulas (as in Figure 1). In
relational terms, [T represents the join (intersection) of relations,
falsity ‘(1" is represented by the empty relation, and the implicatio

A 00 B is interpreted as subset relatioril®B. A set of constraints L
P The procedure XC1(A, B) returns one minimal and non-empty

forms aconflict if it is not satisfiable, i.e. in relational terms, if the o
set MO R such that[[M) 0B =[. As a consequence, if A is the

join of the relations representing th nstraints is the em . . .
loin of the relations representing the constraints Is the e IC)t¥oot of a refutation tree then XC1(A&) returns a minimal conflict

relation. Given an initial set of inconsistent constraints, we an?rom the tree - wherd represents the universal relation i.e. the
interested in extracting minimal conflict, i.e. a minimal subset P e
ceomplement ofl.

that is still inconsistent. Of course, there can be more than on
minimal conflict in an inconsistent context, but we focus for theXC1l(A, B)

moment on finding just one such minimal conflict. In the © 'Af\ (|sLIea;‘t(A‘)A) return { A}
following, we show how to extract a minimal conflict from a A; : ri ghtEAg

binary proof tree such as the one shown in Figure 2. The initial ¢ - A, OB

constraints appearing as leaves in the proof tree are also called & - A OB

assumptions in the following. @ if (G =0and & # 0) return XC1(As, B)
@if (G #0and G =0 return XC1(Az, B)
falsity ®if (G =0and &G =0 return XCl(A B)
O conclusion or return XCl(Az B)
B assumption @if (G #0and G 2 0)

M « XCl(A, &)
M < XCL(A;, (OM) 0O B)
return M O M

In case® the procedure first descends in the sub-treavith C,
as conflicting relation. Before it descends in the sub-treevé
Assume that we have two conflicting relations A, B, none of thenhowever, have to generalizg o OM; and G to (OIM,) O B. This
being empty, i.e. & 0O, B# 0, and AOB O 0. Then we have to is necessary in case we haseral minimal conflicts that span

Figure 2. Tree proving the inconsistency of 11 assumptions.

consider two cases. over the sub-trees;Aand A in order to select from Aa sub-
1. A and B are both assumptions. In this case, {A, B} is theconflict that is part of the same conflict as the sub-conflict that was
minimal conflict. non-deterministically chosen (ca&g from the sub-tree A Such a

ase is also illustrated by the following example.

Example Consider the set R = {A...As} shown in Figure 4.

The constraints are extensionally defined relations in this example.
Eg A='x=aly=1)0x=b0Oy=0). R is inconsistent,
actually it contains two minimal conflicts. Figure 5 shows how
XC1 computes one of them. Circled numbers correspond to the
five cases marked in the pseudo code above.

2. At least one of A, B is not an assumption. Assume without Iosg
of generality that A has been derived from and A, i.e.
A;0A,0 A. Let now: G :=A; 0B and G :=A, OB. We can
then distinguish 4 cases, as shown in Figure 3.

minimal conflicts

Figure 3. Four cases distinguished by computing intersections. {A, Az, Ag}
Each relation is depicted as a set of variable assignments. {As Ay, As}
2.1:C,=00C, # OIn this case, the assumptions leading to the A A
. . . . Xy z 8 Xy z 5
derivation of A do not contribute to the conflict with B. PR a3 7
Consequently, we can prune the whole sub-tree aAd X 3{ b 0o X ; X >3,, b 0o X 421
. . . a a a a
continue the conflict search i A b 0 Ag b 0 b 0 A, b 0
2.2:C,#00C, =0 Analog to case 2.1.#can be ignored. A, A, A, A,
2.3: C; = 0 OC, = O There are at least two independent _
conflicts with B, at least one in the sub-tregakd at least one Figure4. A proof treefor R={As, Az, As, A4, As}
in A,. If we want to find just one conflict then we can non- The crucial part of the procedure is handled in casevhere a
deterministically decide to skip one of the sub-trees. minimal conflict is composed as a disjoined union of two sets M

. - . and M, computed using the left and right sub-tree. Note that the
2.4: Cy # 0 G, # 0 All minimal conflicts are spread across (. et Mdepends on the first set;MDuring the recursive

both sub-trees. A minimal conflict has to be composed from & S .
. X . call at A the procedure non-deterministically decides to select the
partial solution retrieved from the sub-tree; Aand an

; . . conflict containing A. This decision is reflected in the arguments
appropriate completion retrieved from the sub-treelfB was -) h
L . L . of the succeeding call at;An order to select the right sub-conflict
a conflicting relation for A, then s a conflicting relation for i.e A and not A which could be erroneously selected if we did
A, and G is a conflicting relation for A With these new : y

- . . . not update the conflicting relation for!A
conflicting relations we can descend recursively in theAd P g !
sub-trees and collect the sub-conflicts.

Some properties of XC1 that are worth discussing are:

(1) During top-down traversal of the proof tree, only direct fathers
of the nodes contained in the returned minimal conflict are visited.
Sub-trees not involved in the minimal conflict are pruned without
investigating their nodes. The worst-case appears when the pruning
is not effective and we have to inspect the whole tree (always in
case @). For a tree with n leaves there are no more than 4(n-1)
joins for the worst case (see aso the incremental computation of
M, later on). However, the complexity of the conflict
minimization crucially depends on the complexity of the basic join
operations.

XC1(Ag, T) @
C, « Ag
C, - Ay
M, | XC1(Ag, Ay @
-
C, « A;OA;=
_ [xyz]
C, « A;0A,=
M, —| XC1(A,,) ®
C,— L
C,- L
return|{ XC1(A,,) ©
return {A}
M, —|Xcu(A,) ®
1 -
C,
2
return | XC1(A;,) o
return {Ag}

return {A;, Az}

M, | XC1(As, Ag) ©}
return { A; }

return {A;, A, Ag}
Figure 5. Trace of computation of aminimal conflict

(2) An inference engine will be unable in general to provide
compl ete implementations of the join and empty-check operations
- for instance in case we are dealing with systems of non-linear
equations. When used in conjunction with a correct but incomplete
inference engine, XC1 may return a non-minimal conflict. The
conflict ‘'minimallity’ is only relative to the completeness degree of
the inference services supplied by the solver.

(4) There are severa obvious improvements of the efficiency of
XC1 as given above. If the proof structure is a tree then M; 0 M,
can be computed as a digoined union in case @. If case @ is
aways mapped to (say) case @ then the computation of C, is
required only if C; # 0. The repeated 00 computations OM; can be
avoided if XC1, in addition to returning the set M, also returns the
join M, which alows for an incremental computation of the
conjunction in case @. Moreover, the generalization of the
conflicting relation Cy, i.e. (OM) OB in case @, is required only
if it is a strict generalization, i.e. if M, is a strict subset of the
leaves of A;.

3 DERIVING PROOF TREES

In the previous section we have seen how to extract one or severa
minimal conflicts from a proof structure. In this section we sketch
how a constraint solver operating on a set R of input relations can
control the inference in order to

1. check whether R is consistent, i.e. whether OR # O

2. solveR for any variable

3. provide the proof structure required for conflict computation.
Conflict computation using XC1 works however with any well-
formed proof structure, irrespective if the proof was generated by a
solver like the one described in this section or not?.

We note with V(A) the set of variables constrained by arelation
A. (A, X) denotes the projection of A onto a variable set X. The
projection T(A, X) results from eliminating all variables V(A) \ X
from the relation A. For example, if

A=x’+y?<1 B=(x-12+y?<1
then mA OB, {x}) = 0<x0Ox<7?
and mA OB, {y}) = -l<yOy<1.

The projection operation is an abstraction (generaization)
operation, i.e. A0 mA,X). Hence, the computation
C:=mA OB, X) can be seen as an inference of the form
A OB O C. We cdl such an inference, i.e. projecting the join of
two relations A and B onto a variable set X, an aggregation.

The computed proofs will contain aggregations as the only kind
of inference. The proof structures will be used to derive minimal
conflicts, or minimal explanations of variable solutions.

The consistency check, may seem trivia to specify. We could
simply ask the solver to compute [R to check whether OR # [J.
However, in the practica applications with which we are
commonly confronted, R may contain hundreds of algebraic and
logical constraints with thousands of variables. In this case, the

Q ,J‘\ intermediate relations created during the computation of OR would
"’. F D be huge. Instead, following [1], after computing a single
b t E’ N\ c conjunction A 0B, we eliminate all those variables from the result
VAN that do not occur in the remaining relations. Consequently, the

A B intermediate relations remain 'small' — the size depending, of

course, on the degree of connectivity of the constraint network.
This works fine, as long as a variable is shared by a relatively small
number of constraints. If the connectivity degree increases (cf.
induced width w* in [5]), then many of the aggregations degrade
to simple joins and the approach is likely to become inappropriate.

Figure 6. Two minimal conflicts{B, D} and {A, C, D}

(3) The procedure can easily be extended to return several minimal
conflicts instead of only one. Basicaly, in case ®, one can
continue search in both sub-trees, instead of non-deterministically
choosing one of them. However, this simple extension of XC1 will
not always return al of the minimal conflicts. See Figure 6 for an
example. The second conflict { A, C, D} is missed, when using the
given proof tree. Anyway, the computation of al minimal conflicts
from a context can require significantly more effort and is seldom
justified in practice.

2 such proof structures can be recovered, for instance, also from the
well-founded-support recorded by a TMS (cf. [18]) - in which case XC1
could be used for further conflict minimization (recal that a TMS
guarantees minimality only with respect to propositional dependencies and
not with respect to the more expressive constraint language).

The creation of a proof tree for the consistency check is given by
the following procedure.
Specification: Let R be a non-empty set of assumptions, 0 O R.
Then the procedure isConsistent(R) returns true, iff R is satisfiable.
i sConsi stent (R)
if (|R=1)
return true
el se
choose {A, B} OR
S « R\ {A B}
X « (vars(A) O vars(B)) n (0O vars(9))
C - mAOB, X
if (C=10 return false
return isConsistent(S O { C})
vars(A)
if (Ais a leaf)
return V(A)
el se
return vars(left(A)) O vars(right(A))

Obviously, the procedure isConsistent computes a proof tree
containing aggregations as the only kind of inference. Therefore,
we call this an aggregation tree. If A is the root of an aggregation
tree for an inconsistent set R of assumptions then, as shown in
section 2, XC1(A, T) returns a minima conflict. To keep the
conflicting relation B small, we may add a projection step
B « (B, vars(A)) as first instruction in XC1. The strategy used
to choose a pair of relations for aggregation may for example
minimize the variable set X, or try to achieve a balanced tree.

For checking the consistency of n assumptions, isConsistent
computes n - 1 aggregations. A significant feature of proof trees as
derived above is their ability to support incremental context
analysis. Assume we have performed a consistency check for a set
R of n assumptions, and we want to analyze a second context R,
constructed by replacing an assumption A in the proof tree for R
by a new assumption B with the same variable set. In order to
check the new context R O {B} \ { A}, we only have to re-compute
the inferences on the path from A to the root of the proof tree, i.e.
if the proof tree is balanced, we only have to compute log(n)
aggregations. As we see next, the computation of variable
solutions can be performed using aggregations as well.

Specification: Let R be a non-empty consistent set of
assumptions, and A the root of an aggregation tree computed by
the procedure isConsistent. Then the procedure solve(A, T)
computes for every variable x in R the solution §[x] := T(CR, {x}).

sol ve(A, B)

if (Ais aleaf) return
B - m B, vars(A))
A~ left(A;
A « AL OA
X < vars(A) O vars(A2) \ vars(A)
for each x O X

S[x] < m(A OB, {x})
solve(A, Az O B)
solve(Az, A2 O B)

A —~ right(A)

If we take a closer ook at the procedure solve, we note that each
S[x] is the root of a proof structure defined by a sequence of
aggregations. In this case the proof is not purely a tree, it is
actually a DAG because some nodes are used more than once.
Still, the proof is well-formed, i.e. there are no cyclic justifications.
XC1 can be modified to cope with the DAG structure. The
resulting procedure XE1(S[x],—S[x]) returns a minimal
supporting set of assumptions for the solution of x, i.e. a minimal
subset E O R such that S[x] = T(CE, {x}).

4 APPLICATION AND EMPIRICAL RESULTS

We have recently finished a prototype implementation of a
Relational Congtraint Solver (RCS) that follows the principles
described in this paper, including the computation of explanations
and conflicts. RCS is already integrated in our environment for
engineering knowledge management, and its integration in MDS
[12] is planned to follow.

In this section we compare XC1 with the conflict computation
based on naive constraint suspension. Let R be an inconsistent set
of relations. Then the procedure MC(R, {}) returns a minimal
conflict, computed by constraint suspension.

M(R M
if R={} return M

el se choose A O R
if RO M\ {A}) =10
return MC(R\ {A}, M

else return MC(R\ {A}, MO {A})
The procedure MC resembles Junker's RoBUSTXPLAIN [8], which
may use a trailing-mechanism not described in [8] to perform
incremental (i.e. fast) consistency checking. If |R| = n and a
consistency check for R reguires n aggregations, then MC(R, {})
needs O(n?) aggregations for computing a minimal conflict. In
contrast, XC1 requires only O(n) aggregations for the same task,
given an arbitrary, not necessarily baanced tree. Our
implementation of MC uses an incremental consistency check as
explained in section 3 — thus, a check requires @{(lpg(n))
instead ofO(n) aggregations in the best case.

X1 Y1

Xo Y2 X3 ¥3 X Y4 X5 Y5

Figure 7. An 8-bit full adder

X6 Yo X7 Y7

For the empirical comparison, we used a set R of 137 relations,
representing eight 1-bit full adders connected in series as shown in
Figure 7, and the assignments=cl, and for 0< k < 7: %, =0,

V= 1. If we add one more relation of the forjp=c 0, then R
becomes inconsistent and contains a minimal conflict M of size
IM|=2+3 k. This gives us 8 different setg Bf size 138,
containing a minimal conflict M of size 2 + 3 k.

conflict detection MC XC1 t(MC)
M| n 0,1 O L 0 m | Y(XC1)
2 8.5/ 59.1 957 091.6 8.8 3|5 446
5| 32.6/ 120.8 76.2 594 31{4 139 L2
8| 52.4| 129.1 108.3 804 525 229 6.9
11| 70.5| 131.5 140.4 1036 728 315 5.4
14| 93.0] 133.6 178.5 130{1 939 40.4 5.4
17| 107.7 134.9 208.5 151}1 1135 48.3 1.1
20| 122.6/ 135.8 2475 179|8 131.3 55.7 R.5
23| 134.8 136.7 278.3 2010 151.8 63.7 n.3

Figure 8. Empirical results

For each k isConsistent(Ris run for consistency check and it
returns a refutation tree that is used as input by both MC and XC1.
The leaves of this tree represent an initial (not necessarily minimal)
conflict of sizen - see Figure 8. The table gives the average results
obtained for running both algorithms 100 times for all eight R
For each run, we permutated the order of tipaif relations which
resulted in different structures of the derived aggregation trees. The
columns in the table denote the average number of join and project

operations needed for conflict detection in isConsistent and by the
subsequent minimization call to MC or to XC1. The last column
gives the ratio of the measured runtimes for MC and XC1. For

the one of RCS. One weak point, however, of the available
computation techniques that are not based on conflicts is that they
basically address static problems. It would be interesting to see if

example, for the case of a minimal conflict of size 2, the average
initial conflict provided by isConsistent has size 8.5 and it takes
59.1 aggregations (join followed by project) to detect the conflict.
MC needs then 95.7 more joins and 91.6 projections to minimize
the initial conflict by suspension, while XC1 is 446 times faster
than MC and needs only 8.8 joins and 3.5 projections for the same
task. The performance gain of XC1 relative to MC depends

the ideas of theemporal decomposition that can be applied for
computing minimal conflicts (cf. [14]) can be also applied for the
direct computation of diagnoses or interpretations.

Although we discussed here about the computatiomiifimal
conflicts, in practice minimality and completeness have to be
traded against efficiency. Nevertheless, sometimes the definition of
the application (minimisation,

compilation, explanation, etc)

strongly on the structure of the proof trees supplied by the solverrequire a higher degree of completeness that is more important
i.e. whether the conflicting assumptions are uniformly spreadhan the computation times.

among the leaves of the tree or whether they are clustered in a few
sub-trees.

5 RELATED WORK AND DISCUSSION .
Dependency recording, like the one performed by TMSs (cf. [2, 32
18]) works relatively fine as long as we stay in a propositionar
framework (or, anyway, in a finite world). In more expressive
frameworks these techniques gradually become both 4

e very resource consuming (in time and space) 5]

¢ incomplete with respect to the more expressive framework.
Constraint suspension is another technique used for confligs]
computation. It is in general expensive because it relies on
performing the consistency check many times for different subselg]
of the initial problem. A recent enhancement to constraint
suspension is the one reported in [8]. The performance of thé!
conflict computation is improved there in two ways:

(a) by adding the constraints to the solver's store one after th
other and performing each time a complete consistency checEa,
one knows that the last constraint added that caused the store
to become inconsistent is part of all conflicts from the already10]
considered subset; and
by employing an intelligent search, where sets of constraintEL1]
are simultaneously suspended and then are binary split if
necessary.
The proof structure corresponding to the control strategy assuméi?!
by Junker is a linear tree. We do not need to enforce the sequential
consistency check as assumed by (a). We can assume ¥%
clustering technique, such as the ones resulting after structure
analysis, e.g. cycle-cutset, hypertree decomposition, etc. (cf. [10]),
and thus take advantage of the performance improvements f@r4]
constraint solving enabled by these methods. Our solution suifg5]
better the solvers employing such decompositions or the solvers
that are recording (at least partially) their proof structures in ordelt®]
to support incremental operation. Although developed[17]
independently and using quite differing notations, phinciple
underlying the decomposition of the conflict minimization [18]
problemsis the same for our XC1 and for Junker’s @ckXPLAIN [19]
algorithm. After several years of trying to improve constraint
solving and dependency recording (cf. [15]), the existence of sud20]
simple and general algorithms for minimal conflict computation
came for us as a surprising positive result.

One of our main application areas is model-based diagnosi£2.1]
We do not argue here that one should perform diagnosis by alwailzc.2
first computing conflicts and then generating minimal / preferred]
etc. diagnoses. Several authors point out that the direct
computation of diagnoses can be more efficient (cf. [16, 19, 213
23]). The ideas from an algorithm such as TREE* (cf. [21]) can be
probably easily adapted to a general relational framework such as

(b)

REFERENCES

Y. El Fattah: An Elimination Algorithm for Model-based Diagnosis.
Dx98, Cape Cod, USA, pp. 47-54, 1998.

K. Forbus, J. de Kleer: Building Problem Solvers. MIT Press, 1993.

J. de Kleer: An Assumption-based truth maintenance system.
Artificial Intelligence, 28, pp. 127-162, 1986.

J. de Kleer, B. Williams: Diagnosing Multiple Faults. Artificial
Intelligence, 32, pp. 97-130, 1987.

R. Dechter: Bucket Elimination: a Unifying Framework for
Reasoning. Artificial Intelligence, 113, pp. 41 - 85, 1999.

D. J. Goldstone: Controlling inequality reasoning in a TMS-based
analog diagnosis system. 9" Nat. Conf. On Al, pp. 512-517, 1991.

R. Bakker, F. Dikker, F. Tempelman, P. Wognum: Diagnosing and
solving over-determined CSP. Proc. IJCAI-93, 1993

U. Junker: QUICKXPLAIN: Conflict Detection for Arbitrary
Constraint Propagation Algorithms. |JCAI'01 Workshop on
Modelling and Solving Problems with constraints, pp. 75-82, 2001.

N. Muscettola, P. Nayak, B. Pell, B. Williams: Remote Agent: To
boldly go where no Al system has gone before Artificial Int., 103,

pp. 5-47, 1998.

G. Gottlob, N. Leone, F. Scarcello: A comparison of structural CSP
decomposition methods. Artificial Int., 124(2), pp. 243-282, 2000.

A. Fleming, G. Friedrich, D. Jannach, M. Stumptner: Consistency-
based Diagnosis of Configuration Knowledge Bases. ECAI-2000,
Berlin, 2000.

J. Mauss, V. May, M. Tatar: Towards Model-based Engineering:
Failure Analysis with MDS. ECAI-2000 Workshop W31, 2000.
http://www.dbai .tuwien.ac.at/event/ecai 2000-kbsmbe/papers.html

F. Bouquet, P. Jegou: Solving over-constrained CSP using weighted
OBDDs. Proc. Over-Constrained Systems, Lecture Notes in
Computer Science, Vol. 1106, Springer, Berlin, 1996.

M. Tatar : Diagnosis with cascading defects. ECAI-1996, 1996.

M. Tatar: Model-based failure analysis in engineering — an
experience reportnvited talk at Dx 2001. Available at request.

J. Amilhastre, H. Fargier, P. Marquis: Consistency restoration and
explanations in dynamic CSPstificial Intelligence 135, 2002.

G. Katsillis, M. Chantler: Can Dependency-based Diagnosis Cope
with Simultaneous Equation§%97, France, 1997.

D. McAllester: Truth Maintenanc&AAI-90, pp. 1109-1116, 1990.

W. Nejdl, B. Giefer: DRUM: Reasoning without conflicts and
justifications.Dx94 , pp. 226-233, New Paltz, NY, 1994.

M. Tatar, P. Dannenmann: Integrating Simulation and model-based
Diagnosis into the Life Cycle of Aerospace Syste®=99, Loch
Awe, Scotland, 1999.

M. Stumptner, F. Wotawa: Diagnosing tree-structured systems.
Artificial Intelligence, 127, pp. 1-29, 2001.

F. Feldkamp, M. Heinrich, K.-D. Meyer-Gramann: SyDeR - System
Design for ReusabilityAl-EDAM Special Issue on Configuration
Design. Sept. 1998.

A. Darwiche: Decomposable Negation Normal Fordaurnal of
ACM, July 2001.

A Model Counting Characterization of Diagnoses

T. K. Satish Kumar
Knowledge Systems L aboratory
Stanford University
tksk@ksl.stanford.edu

Abstract

Given the description of a physical system in one
of several forms (a set of constraints, Bayesian net-
work etc.) and a set of observations made, the
task of model-based diagnosis is to find a suitable
assignment to the modes of behavior of individ-
ual components (this notion can also be extended
to handle transitions and dynamic systems [Kurien
and Nayak, 2000]. Many formalisms have been
proposed in the past to characterize diagnoses and
systems. These include consistency-based diag-
nosis, fault models, abduction, combinatorial op-
timization, Bayesian model selection etc. Different
approaches are apparently well suited for different
applications and representational forms in which
the system description is available. In this paper,
we provide a unifying theme behind all these ap-
proaches based on the notion of model counting.
By doing this, we are able to provide a universal
characterization of diagnoses that is independent of
the representational form of the system description.
We also show how the shortcomings of previous ap-
proaches (mostly associated with their inability to
reason about different elements of knowledge like
probabilities and constraints) are removed in our
framework. Finally, we report on the computational
tractability of diagnosis-algorithms based on model
counting.

1 Introduction

Diagnosis is an important component of autonomy for any
intelligent agent. Often, an intelligent agent plans a set of
actions to achieve certain goals and because some conditions
may be unforeseen, it is important for it to be able to recon-
figure its plan depending upon the state in which it is. This
state identification problem is essentially a problem of diag-
nosis. In its simplest form, the problem of diagnosis is to find
a suitable assignment to the modes of behavior of individual
components in a static system (given some observations made
on it). It is possible to handle the case of dynamic systems by
treating the transition variables as components (in one sense)
[Kurien and Nayak, 2000]. The theory developed in this pa-
per is therefore equally applicable to dynamic systems too

(although we omit the discussion due to restrictions on the
length of the paper).

Many approaches have been used in the past to character-
ize diagnoses and systems. Among the most comprehensive
pieces of work are [de Kleer and Williams, 1989], [Reiter,
1987], [Struss and Dressler, 1989], [Console et al., 1989],
[de Kleer et al., 1992], [Poole, 1994], [Kohlas et al., 1998]
and [Lucas, 2001]. The popular characterizations of diag-
noses include consistency-based diagnosis, fault models, ab-
duction, combinatorial optimization, and Bayesian model se-
lection. These approaches are however tailored for different
applications and representational forms in which the system
description is available. They also have one or more short-
comings arising out of their inability to provide for a frame-
work that can incorporate knowledge in different forms like
probabilities, constraints etc.

In this paper, we provide a unifying theme behind all these
approaches based on the notion of model counting. By doing
this, we are able to provide a universal characterization of di-
agnoses independent of the representational form of the sys-
tem description. Because model counting bridges the gap be-
tween different kinds of knowledge elements, the shortcom-
ings of previous approaches are removed.

2 Background

Before we present our characterization of diagnoses based on
model counting, we choose to provide a quick overview of
the previous approaches so that we can compare and contrast
our approach with them.

Definition (Diagnosis System) A diagnosis system is a triple
(SD,COMPS, OBS) such that:

1. SD is a system description expressed in one of several
forms — constraint languages like propositional logic, prob-
abilistic models like Bayesian network etc. S D specifies both
component behavior information and component structure in-
formation (i.e. the topology of the system).

2. COMPS is afinite set of components of the system. A
component comp; (1 < i < |COM PS|) can behave in one
of several, but finite set of modes (A£;). If these modes are
not specified explicitly, then we assume two modes — failed
(AB(comp;)) and normal (—AB(comp;)).

3. OBS is a set of observations expressed as variable values.
Definition The task in a complete diagnosis call is to find a
“suitable” assignment of modes to all the components in the

system given SD and OBS. The task in a partial diagnosis
call is to find a suitable assignment of modes to a specified
subset S (S € COM PS) of the components in the system
given SD and OBS.

Unless stated otherwise, we will use the term “diagnosis”
to refer to a complete diagnosis. Later in the paper we will
show that the characterization of partial diagnoses is a simple
extension of the characterization of complete diagnoses.
Definition (Candidate) Given a set of integers
7:1"'7:|C'OMPS| (SUCh that for 1 < jJ < |COMPS|,
1 < i; < |Mj|), a candidate Cand(i1 - --ijcomps|) i

defined as Cand(iy ---i|COMp5|) =(lk(i?Mpsl

My (ix)))-

Here, M, (v) denotes the v*" element in the set M, (assumed
to be indexed in some way).

Notation When the indices are implicit or arbitrary, we will
use the symbol H to denote a candidate or a hypothesis i.e.
an assignment of modes to all the components in the system.

(compy, =

Consistency-Based Diagnosis

The task of consistency-based diagnosis can be summarized

as follows. Note that the definition of a diagnosis in this

framework does not discriminate between single and multi-

ple faults.

Definition (Consistency-Based Diagnosis) A candidate H is

a diagnosis if and only if SD U OBS U H is satisfiable.
There are other characterizations of diagnoses under this

framework called partial diagnoses, prime diagnoses, kernel

diagnoses etc. We will examine these later in the paper.

Fault Models

Consider diagnosing a system consisting of three bulbs
By,Bs and Bz connected in parallel to the same volt-
age source V' under the observations of f(B1), of f(Bs2)
and on(B3). AB(V) A AB(Bj;) is a diagnosis under the
consistency-based formalization of diagnosis if we had con-
straints only of the form —AB(B3) A =AB(V) — on(Bs).
Intuitively however, it does not seem reasonable because B3
cannot be on without V' working properly. One way to get
around this is to include fault models in the system. These are
constraints that explicitly describe the behavior of a compo-
nent when it is not in its nominal mode (most expected mode
of behavior of a component). Such a constraint in this exam-
ple would be AB(Bs3) — of f(Bs). Diagnosis can become
indiscriminate without fault models. It is also easy to see
that the consistency-based approach can exploit fault models
(when they are specified) to produce more intuitive diagnoses
(like only By and B- being abnormal).

Diagnosis as Combinatorial Optimization

The technique of using fault models is associated with the
problem of being too restrictive. We may not be able to model
the case of some strange source of power making B3 on etc.
The way out of this is to allow for many modes of behavior
for each component of the system. Every component has a
set of modes (in which it can behave) with associated mod-
els. One of these is the nominal (or normal) mode and the
others are fault modes. Each component has the unknown
fault mode with the empty model. The unknown mode tries
to capture the modeling incompleteness assumption (obscure

modes that we cannot model in the system). Also, each mode
has an associated probability that is the prior probability of
the component being in that mode. Diagnosis can now be cast
as a combinatorial optimization problem of assigning modes
of behavior to each component such that it is not only con-
sistent with SD U OBS, but also maximizes the product of
the prior probabilities associated with those modes (assuming
independence in the behavior of components).

Definition (Combinatorial Optimization) A candidate H =
Cand(i1 - - -ijcomps)) is a diagnosis if and only if SDU H U

OBS is satisfiable and P(H) = (H‘,CC:?MpslP(compk =
My, (ix))) is maximized.

Diagnosis as Bayesian Model Selection

Sometimes we have sufficient experience and statistical in-
formation associated with the behavior of a system. In such
cases, the system description is usually available in the form
of a probabilistic model like a Bayesian network. Given some
observations made on the system, the problem of diagnosis
then becomes a Bayesian model selection problem.
Definition (Bayesian Model Selection) A candidate H
is a diagnosis (for a probabilistic model of the system,
SD) if and only if it maximizes the posterior probability
P(H/SD,OBS).

Diagnosis as Abduction

Yet another intuition behind characterizing diagnoses is the
idea of explanation. Explanatory diagnoses essentially try to
capture the notion of cause and effect in the physics of the
system. The observations are asymmetrically divided into in-
puts (I) and outputs (O) [de Kleer et al., 1992]. The inputs
(I) are those observation variables that can be controlled ex-
ternally.

Definition (Abductive Diagnosis): An abductive diagnosis
for (SD, COMPS, OBS = I UQ) is a candidate H such
that SD U I U H is satisfiableand SDUIU H — O.

3 Probabilitiesand Model Counting

Before we present our own characterization of diagnoses
based on the notion of model counting, we show an interest-
ing relationship between probabilities and model counting
(see Figure 1). The model counting problem is the problem
of counting the number of solutions to a SAT (satisfiability
problem) or a CSP (constraint satisfaction problem).

Definition (Binary representation of a CPT): The bi-
nary representation of a CPT (Conditional Probability Table)
is a table in which all the floating-point entries of the CPT
are re-written in a binary form (base 2) up to a precision of P
binary digits and the decimal point along with any redundant
zeroes to the left of it are removed.

We provide a set of definitions and results relating the
probability of a partial assignment A to the number of
solutions (under the same partial assignment A) to CSPs
composed out of the binary representations of the CPTs (see
Figure 1). Basic definitions related to CSPs can be found in
[Dechter, 1992].

Definition (Zero-one-layer of a CPT) The k" zero-one-layer
of a CPT is a table of zeroes and ones derived from the kt*

zero-one layers precision =P

CPT-1 CPT-1 L
CPT-2 CPT-3 CPT-2
CPT-4
CPT-3
A Sample Bayesian Network
Values of Parents
- CPT-4
Node 0.4
Values
A CPT (Family) in the Bayes Net
CPTs

0O

Weight = 1/2 Weight = 1/4 Weight = 1/8

Figure 1: Shows the conditional probability tables (CPTs) of a Bayes net on the left of the vertical line L. On the right of L are
the binary representations of these CPTs (example shown for 0.4 in decimal = 0.011 in binary). CPTs correspond to families in

the Bayes net and let the number of families be C.

bit position of all the numbers in the binary representation of
that CPT.

Definition (Weight of a zero-one-layer) The k" zero-one-
layer of a CPT is defined to have weight 2—*.

Definition (CSP Compilation of a CPT) The k* CSP
compilation of a CPT is a constraint over the variables of the
CPT that is derived from the k** zero-one-layer of the CPT
such that zeroes correspond to disallowed tuples and ones
correspond to allowed tuples.

Definition (CSP Compilation of Network) The (k1, ks - - - k¢)
CSP compilation of the Network is the set of constraints S =
{si : 8; is the kth CSP compilation of the i¢* CPT}.
Definition (Weight of a CSP Compilation) The weight of a
(k1, k2 - -+ ko) CSP compilation of a network is defined to be
equal to 2~ (k1tkzke)

Property There are an exponential number of CSP compi-
lations for a given network. Since each CPT expands into
P zero-one-layers and a CSP for the entire network can be
compiled by taking any of these P layers for each CPT (there
are (é CPTs), the total number of CSP compilations possible
is P“.

Notation We will use the notation &;; to mean the j** CSP
compilation of the i** CPT. Let A indicate a complete or
partial assignment to the variables. If A is an assignment
that instantiates all the variables of C PT;, then we will use
the notation h;;(A) to indicate whether or not A satisfies
hij. If A'is a complete assignment for all the variables in

the network, then all variables for all CPTs are instantiated
and we will use the notation C'SP, k,...k)(A) to indicate
whether A satisfies all the constraints A, (1 < ¢ < C). If
A is not a complete assignment for all the variables, then we
will use the notation #CS P, k,...ke)(A) to indicate the
number of solutions to the (k1, k2 - - - kc) CSP compilation
of the network that share the same partial assignment as A.
Theorem 1 The probability of a complete assignment
A= (Xy = z1---X, = z,) is just the sum of the
weights of the different CSP compilations of the network
that are satisfied by this complete assignment. That is,
P(A) = Z(k1,k2~~kc) CSP(kl,kz---kc)(A)27(k1+k2"'k0)
(forall1 <i<C,1<k; <P).

Proof Consider the complete assignment A = (X; =
z1 - -+ X, = x,,) for all the variables. The probability of this
assignment is equal to the product of the probabilities defined
locally by each CPT. Now using the fact that the ¢! bit in the
binary representation of this local value has been written out
as an allowed or disallowed tuple in the t** CSP compilation
of that CPT, we can rewrite the local value for A in a CPT
as Ele hij(A)277. The total probability is then just the

product over all local values = II{_, Zle hij(A)277.
Expanding the product, we see that each term is essentially
of the form 3=, 4y ke) 2= (kithake) IO hyp (A) =

Z(km___kc) 2—(k1+k2...kc)CSP(k1’kz___kc)(A)_

Theorem 2 (Model Counting) The marginalized prob-
ability of a partial assignment A to a set of variables
S C V is equal to the product of the weight and the
number of solutions (under the same partial assignment A)
summed over all CSP compilations of the network. That is,

P(A) = E(kn,lw---kc) #CSP(k1,k2---kc)(A)Q_(kl—i_kzmkc)
(forall1 <i<C,1<k; <P).

Proof From the previous theorem, we know that
the probability of a complete assignment B is
> (k1 kaoker) CS Pk aeky (B)27 rhake) (for all
1 <i<CC 1< k < P) Now, the marginalized
probability of a partial assignment A is just the sum of
the probabilities of all complete assignments B that agree
with A on the assignment to variables in S. That is,
P(A) = Y gP(B)(B(S) = A). Using the result of
the previous theorem to expand P(B), we have P(A) =
B Xtk ko ko) OS Plbn ok (B)27 R k2 ko) (B(S) =
A). Switching the two summations and noting that
> B CSPu, hyko)(B)(B(S) = A) is the same

8 D (ky kahe) FOS Pl kako) (A), We get that
P(A) = 3tk sk H#CSPpy ooy (A) 27 k1 Hhke)

3.1 Probability-Equivalents and I ncorporation of
Probabilities

Often, we are given information in many forms. Probabilities
are natural information elements when there is an element of
statistical experience that we want to exploit. In other cases,
constraints may be the most appropriate to use. The general
idea in our framework is to use probabilities when we explic-
itly have them and to use model counting otherwise. We will
use #(.S1, S» - - -) to mean the number of consistent models to
(S1USs - -) (with respect to the uninstantiated free variables
in SD). Theorems 1 and 2 establish that model counting is
a weaker form of probabilities and that probabilities provide
only precision information over model counting. Therefore, it
is natural for us to use probabilities (to describe events) when
we have them explicitly, and to use model counting otherwise.

For any event E, we use the expressions #ﬁfg)ﬂ) and P(E)
almost equivalently — except that we use the former when
we do not know P(E) explicitly. This framework allows us
to reason about both probabilities and constraints.

Definition (Probability Equivalents) The probability equiv-
alent of #(SD,E) for any event E is defined to be
P(E)#(SD) when P(E) is given explicitly.

4 DiagnosisasModel Counting

In this section, we characterize diagnoses based on model
counting. We will then show how all the previous approaches
are captured under this formalization. For the first part of
the discussion we will consider only complete diagnoses (an
assignment of modes for all the components).

Definition (Model Counting Characterization) A diagnosis
is a candidate H that maximizes the number of consistent
models to SD U OBS U H using probability equivalents
wherever necessary.

Notation We will use M (H) to denote #(SD,0BS, H)
(the number of consistent models to SD U OBS U H) when

SD and OBS follow from context.

Theorem 3 (Capturing Consistency-Based Diagnosis)
Consistency-Based diagnosis is looking for a hypothesis H
for which M (H) is non-zero.

Proof By definition, consistency-based diagnosis chooses H
such that SDUOBS U H is consistent. In other words, there
exists at least one satisfying assignment for SD UOBS U H.
Clearly, this is equivalent to saying that M (H) is non-zero.
Theorem 4 (Capturing Abduction) Abduction chooses a
hypothesis H that maximizes M (H) assuming uniformity in
prior probabilities P(H).

Proof The maximum value of #(SD,0BS = I U O, H)
is #(SD, H,I) and this happens when HU SDU I — O.
Given that the input variables are controlled externally, we
know that #(SD,H) = N(I)#(SD,H,I). Here, N(I)
is a constant that measures the number of different values
for the input variables. Since #(SD, H) is equivalent to
P(H)#(SD) which we assumed to be a constant for all
H, maximizing #(SD,0BS, H) is equivalent to finding
a hypothesis H for which I — O (under SD). The fact
that abduction requires H to be consistent is also captured,
because if H is inconsistent, then M(H) = 0 and clearly
M (H) will not be maximized.

Theorem 5 (Capturing Bayesian Model Selection) Bayesian
model selection chooses a hypothesis H such that it maxi-
mizes the probability equivalent of M (H).

Proof The probability equivalent of M(H) =
#(SD,0OBS,H) is P(OBS,H). Clearly, if we are
maximizing P(OBS,H) then we are maximizing
P(H/OBS)P(OBS). Since P(OBS) is independent
of H, it is equivalent to maximizing P(H/OBS) which is
exactly what Bayesian model selection does.

Theorem 6 (Capturing Combinatorial Optimization) Com-
binatorial optimization is looking for a hypothesis H which
maximizes P(H) under the condition that M (H) is non-
zero.

Proof As noted earlier, H is consistent with SD U OBS
if and only if M(H) is non-zero. We also know that
combinatorial optimization is looking for a consistent H
which maximizes P(H). The theorem follows as a simple
consequence of the above two statements. Basically, combi-
natorial optimization maximizes only the prior probabilities
of hypotheses (instead of maximizing the equivalent of the
posterior probabilities) unless they are obviously ruled out
by being inconsistent.

4.1 Consequences (Removing Previous
Shortcomings)

We now show the consequences of formalizing diagnosis as
model counting. In particular, we identify problems with pre-
vious approaches and show how model counting removes all
of them.

Problems with Consistency-Based Diagnosis

One of the problems with consistency-based diagnosis is that
it allows for non-intuitive hypotheses as diagnoses. It pro-
vides only for a necessary but not a sufficient condition on
the hypotheses that can be qualified as diagnoses. By itself, it
is of little value unless we use an elaborate set of fault models

to remove non-intuitive hypotheses that could otherwise be
consistent. Model counting removes these problems because
of its ability to merge and incorporate the notions of both
consistency and probabilities. In one sense, one can think of
model counting as giving us a measure of the degree to which
a hypothesis is consistent with SD and OB.S. Some of these
problems are alternatively addressed in [Kohlas et al., 1998]
and [Lucas, 2001].

Problems with Fault Models

The problem with fault-models is that of over-restriction (as
explained at the beginning of the paper). We need to be able
to reason not only about constraints relating SD and OBS,
but also about any other kind of information we may have
in the form of probabilities etc. The over-restriction problem
can be removed by introducing probabilities. These proba-
bilities can then be used in the unified framework of model
counting.

Problems with Abduction

Like the consistency-based approaches, explanatory diag-
noses are also unable to incorporate and reason about proba-
bilities. Yet another problem with abduction is that it assumes
we have completely modeled all cause-effect relationships in
our system. This contradicts our modeling incompleteness
assumption and is an unnecessary restriction on SD. Model
counting removes this problem in a way very similar to how
probabilities were used to deal with the modeling incomplete-
ness assumption. Alternate treatments for these problems
can be found in [Poole, 1994] (which links abduction with
probabilistic reasoning) and [Console et al., 1989] (which ad-
dresses the modeling incompleteness assumption).

Problems with Diagnosis as Bayesian Model Selection

Bayesian model selection agrees with our characterization of
diagnoses — but the only problem it poses is that it requires
SD to be in the form of a Bayesian network with known prob-
abilities. Modeling a physical system as a Bayesian network
is in many cases a non-intuitive thing to do. This is especially
so when certain probability terms are hard to get. Parts of
the system may be better expressed in the form of constraints
or automata. In such cases, Bayesian model selection does
not extend in a natural way and model counting is the right
substitute (because it is defined under all frameworks).

Problems with Diagnosis as Combinatorial Optimization

One problem associated with casting diagnosis as a combi-
natorial optimization problem is that of being unable to give
explanatory diagnoses a preference over the rest. Clearly, we
would like to prefer hypotheses that not only maximize the
prior probability P(H) but that are also explanatory rather
than just being consistent with SDUOBS. One way to incor-
porate this preference is to find all consistent hypotheses that
maximize P(H) and to pick an explanatory one among them.
The question that arises then is how we would compare two
hypotheses one of which is explanatory and the other just con-
sistent (but not explanatory), with the latter having a slightly
better prior probability. This question is left unanswered un-
der the combinatorial optimization formulation of diagnoses.
In the model counting framework however, it is easy to see

that we really have to maximize P(H)%. The

second factor is maximized for explanatory diagnosis — but
this is as much as the preference we attach for them.
Another problem with the combinatorial optimization for-
mulation is that probabilities are restricted to only behavior
modes of components and only these prior probabilities are
maximized. There is no framework to reason about proba-
bilistic information connected with observation variables.

5 Partial Diagnoses

Sometimes, we are interested in finding a suitable assignment
of modes to a specified subset S of the components COM PS
rather than for all components. We argue that our characteri-
zation of diagnoses under the model counting framework re-
mains unchanged.

Definition (Candidate) Given a set of integer tuples
(k1,9k,) -~ - (kn,ir,) suchthatfor1 < j <n < |COMPS|,
1 <ig; < |Mj|, acandidate Cand((ky,ix,) - (kn,ir,)) is
defined as Cand((k1,ix,) - - - (kn, ik,)) = (Uy= (comp, =
M, (i,))). o N _ .
Notation When the indices are implicit or arbitrary, we will
use the notation Jg to denote a candidate or a hypothesis
i.e. a set of mode assignments to all the components in
S CCOMPS.

Definition (Model Counting Characterization) A partial di-
agnosis for S C COM PS is an assignment of modes Jg to
the components in S that maximizes #(SD, OBS, Js) using
probability equivalents wherever necessary.

It is now not hard to verify that all previous approaches are
captured in a way very similar to that for complete diagnoses.
This is essentially a consequence of the theorem that relates
the number of consistent models for (SD,0BS, Jg) to the
marginalized probability of Js (Theorem 2). Instead of pre-
senting the proofs again (and making repetitive arguments),
we choose to allude to another set of characterizations mostly
associated with consistency-based diagnosis. These are the
notions of partial (a different characterization in consistency-
based diagnosis), kernel and prime diagnoses. These notions
have the same kind of drawbacks associated with the general
consistency-based framework [de Kleer et al., 1992] and our
investigation into these notions is just in the spirit of under-
standing their relationship to model counting.

Definition An AB—literal is AB(c) or ~AB(c) for some
component ¢ in COMPS. An AB-clause is a disjunc-
tion of AB—literals containing no complementary pair of
AB-literals.

Definition A conflict of (SD,COMPS,0BS) is an
AB-—clause entailed by SD U OBS. A minimal conflict of
(SD,COMPS,0BS) is a conflict no proper sub-clause of
which is a conflict of (SD,COM PS, OBS).

Definition (Consistency-Based Characterization) The partial
diagnoses of (SD,COM PS, OBS) are the implicants of the
minimal conflicts of (SD,COMPS,0OBS).

Theorem 7 A partial diagnosis in the consistency-based
framework identifying an implicant 7' of the minimal
conflicts of SD U OBS, is also a partial diagnosis
in the model-counting framework maximizing M(Js) =
#(SD,0BS, Js) for S = variables of the implicant 7', but

with free variables limited to abnormality (AB) variables.
Proof The implicant T fixes an assignment for the compo-
nents in S but leaves COMPS \ S unassigned. Let the
set of minimal conflicts of SD U OBS be 7. Let #4p(E)
denote the number of consistent models of E restricted to
free variables being from the uninstantiated A B—variables.
Since T is an implicant of 7, all models of T" (restricted to
AB-—variables) also satisfy 7 and are hence consistent with
SD UOBS. This makes # ap(SD,0BS,T) = #45(T).
In general, since #45(SD,0BS,T) is upper bounded hy
ap(T), the truth of the theorem follows.

Definition (Consistency-based Characterization) A kernel
diagnosis identifies the prime implicants of the minimal con-
flicts of SD U OBS.

Without a detailed discussion (due to lack of space), we
claim that this notion is related to yet another task in diagno-
sis — that of “representing” complete diagnoses. This task
is orthogonal to “characterizing” them [Kumar, 2002]. There
are other notions of diagnosis called prime diagnoses, irre-
dundant diagnoses etc. [de Kleer et al., 1992] arising mostly
out of the task of “representation” and all of which are cap-
tured in one or the other way by the model counting frame-
work (which we omit in this paper).

6 Related Work on Characterizing Diagnoses
and M odel Counting

Related work in trying to unify model-based and probabilis-
tic approaches can be found in [Poole, 1994], [Kohlas et al.,
1998], [Lucas, 1998] and [Lucas, 2001]. [Poole, 1994] links
abductive reasoning and Bayesian networks and general diag-
nostic reasoning systems with assumption-based reasoning.
[Kohlas et al., 1998] shows how to take results obtained by
consistency based reasoning systems into account when com-
puting a posterior probability distribution conditioned on the
observations (the independence assumptions are lifted in [Lu-
cas, 2001]). [Lucas, 1998] gives a semantic analysis of differ-
ent diagnosis systems using basic set theory. The issue of the
modeling incompleteness assumption is referred to in [Con-
sole et al., 1989].

Diagnosis algorithms based on model counting have not
yet been developed. However, the problem of model count-
ing itself has been extensively dealt with. Although this prob-
lem is # P-complete, there are a variety of techniques that
have been used to make it feasible in practice (including ap-
proximate counting algorithms running in polynomial time,
structure-based techniques etc.). Model counting for a SAT
instance in DNF (disjunctive normal form) is simpler than it is
for CNF (conjunctive normal form). For DNF, there is a fully
polynomial randomized approximation scheme (FPRAS) to
estimate the number of solutions [Karp et al., 1989]. CDP and
DDP are two model-counting algorithms for SAT instances in
CNF [Bayard and Pehoushek, 2000]. A version of RELSAT
has also been used to do model counting on SAT instances in
CNF. If a propositional theory is in a special form called the
smooth, deterministic, decomposable, negation normal form
(sd-DNNF), then model counting can be made tractable and
incremental [Darwiche, 2001].

7 Summary and Future Work

In this paper, we provided a unifying characterization of diag-
noses based on the idea of model counting. In the process, we
compared and contrasted our formalization with the previous
approaches — in many cases, removing the problems asso-
ciated with them. Because model counting bridges the gap
between probabilities and constraints and is well-defined for
many representational forms of information available about
the system, we believe that the model counting characteri-
zation of diagnoses is useful and general in the sense of not
imposing any restrictions on the representational form of the
system description.

As for our future work, we are in the process of investi-
gating and developing computationally tractable algorithms
based on the model counting characterization of diagnoses.
Advances in model counting algorithms (approximate count-
ing, structure-based methods etc.) seem to be encouraging
towards this goal. We are also working on variants of the
diagnosis problem (e.g. when we are interested in a set of
candidate hypotheses rather than just one).

References

[Bayard and Pehoushek, 2000] Bayard R. J. and Pe-
houshek J. D. Counting Models using Connected
Components. Proceedings of the Seventeenth National
Conference on Artificial Intelligence (AAAI 2000).

[Console et al., 1989] Console L., Theseider D., and
Torasso P. A Theory of Diagnosis for Incomplete Causal
Models. Proceedings of the 10th International Joint
Conference on Artificial Intelligence, Los Angeles, USA
(1989) 1311-1317.

[Console and Torasso, 1991] Console L. and Torasso P. A
Spectrum of Logical Definitions of Model-Based Diagno-
sis. Computational Intelligence 7(3): 133-141.

[Darwiche, 2001] Darwiche A. On the Tractable Counting
of Theory Models and its Applications to Belief Revision
and Truth Maintenance. To appear in Journal of Applied
Non-Classical Logics.

[Dechter, 1992] Dechter R. Constraint Networks. Encyclo-
pedia of Artificial Intelligence, second edition, Wiley and
Sons, Pages: 276-285, 1992.

[de Kleer, 1986] de Kleer J. An Assumption Based TMS.
Artificial Intelligence 28 (1986).

[de Kleer et al., 1992] de Kleer J., Mackworth A. K., and
Reiter R. Characterizing Diagnoses and Systems. Arti-
ficial Intelligence 56 (1992) 197-222.

[de Kleer and Williams, 1987] de Kleer J. and Williams B.
C. Diagnosing Multiple Faults. Artificial Intelligence,
32:100-117, 1987.

[de Kleer and Williams, 1989] de Kleer J. and Williams B.
C. Diagnosis with Behavioral Modes. In Proceedings of
IJCAI’89. Pages: 104-109.

[Forbus and de Kleer, 1992] Forbus K. D. and de Kleer J.
Building Problem Solvers. MIT Press, Cambridge, MA,
1992.

[Hamscher et al., 1992] Hamscher W., Console L., and de
Kleer J. Readings in Model-Based Diagnosis. Morgan
Kaufmann, 1992.

[Karp et al., 1989] KarpR., Luby M., and Madras N. Monte-
Carlo Approximation Algorithms for Enumeration Prob-
lems. Journal of Algorithms 10 429-448. 1989.

[Kohlas et al., 1998] Kohlas J., Anrig B., Haenni R., and
Monney P. A. Model-Based Diagnosis and Probabilistic
Assumption-Based Reasoning. Artificial Intelligence, 104
(1998) 71-106.

[Kumar, 2001] Kumar T. K. S. QCBFS: Leveraging Qualita-
tive Knowledge in Simulation-Based Diagnosis. Proceed-
ings of the Fifteenth International Workshop on Qualita-
tive Reasoning (QR’01).

[Kumar, 2002] Kumar T. K. S. An Information-Theoretic
Characterization of Abstraction in Diagnosis and Hypoth-
esis Selection. Proceedings of the Fifth International Sym-
posium on Abstraction, Reformulation and Approximation
(SARA 2002).

[Kurien and Nayak, 2000] Kurien J. and Nayak P. P. Back
to the Future for Consistency-Based Trajectory Tracking.
Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI’00).

[Lucas, 1998] Lucas P. J. F. Analysis of Notions of Diagno-
sis. Artificial Intelligence, 105(1-2) (1998) 293-341.

[Lucas, 2001] Lucas P. J. F. Bayesian Model-Based Diagno-
sis. International Journal of Approximate Reasoning, 27
(2001) 99-119.

[Mcllraith, 1998] Mcllraith S. Explanatory Diagnosis: Con-
jecturing Actions to Explain Observations. Proceedings
of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98).

[Mosterman and Biswas, 1999] Mosterman P. J. and
Biswas G. Diagnosis of Continuous Valued Systems
in Transient Operating Regions. IEEE Transactions on
Systems, Man, and Cybernetics, 1999. Vol. 29, no. 6, pp.
554-565, 1999.

[Nayak and Williams, 1997] Nayak P. P. and Williams B. C.
Fast Context Switching in Real-time Propositional Rea-
soning. In Proceedings of AAAI-97.

[Poole, 1990] Poole D. A Methodology for Using a Default
and Abductive Reasoning System. International Journal
of Intelligent Systems 5(5) (1990) 521-548.

[Poole, 1993] Poole D. Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64(1) (1993)
81-129.

[Poole, 1994] Poole D. Representing Diagnosis Knowl-
edge. Annals of Mathematics and Artificial Intelligence
11 (1994) 33-50.

[Raiman, 1989] Raiman O. Diagnosis as a Trial: The Alibi
Principle. IBM Scientific Center (1989).

[Reiter, 1987] Reiter R. A Theory of Diagnosis from First
Principles. Artificial Intelligence 32 (1987) 57-95.

[Shanahan, 1993] Shanahan M. Explanation in the Situa-
tion Calculus. In Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
93), 160-165.

[Struss, 1988] Struss P. Extensions to ATMS-based Diagno-
sis. In J. S. Gero (ed.), Artificial Intelligence in Engineer-
ing: Diagnosis and Learning, Southampton, 1988.

[Struss and Dressler, 1989] Struss P. and Dressler O. “Phys-
ical Negation” - Integrating Fault Models into the General
Diagnosis Engine. In Proceedings of 1JCAI-89. Pages:
1318-1323.

[Williams and Nayak, 1996] Williams B. C. and Nayak P. P.
A Model-Based Approach to Reactive Self-Configuring
Systems. In Proceedings of AAAI-96. Pages: 971-978.

Computing Minimal Hitting Setswith Genetic

Algorithm

Lin Li*?and Jiang Y unfei®

Abstract. A set Sthat has a non-empty intersection with every
set in a collection of sets C is cdled a hitting set of C. If no
element can be removed from Swithout violating the hitting set
property, Sis considered to be minimal. Severa interesting
problems can be partly formulated as ones that a minima
hitting set or more ones have to be found. Many of these
problems are required for proper solutions, but sometimes the
approximate solutions are enough. A genetic agorithm and
advantaged agorithms were devised for computing minimal
hitting sets. An improvement makes them get most minimal
hitting sets efficiently. Furthermore, they are smaller, i.e. fewer
rules.

1 INTRODUCTION

A lot of theoretical and practical problems, e.g., [1~8], can be
partly reduced to an instance of the minimal hitting set or one
of itsrelatives, such as the minimum set cover problem, model-
based diagnosis [1~5,7~8], and teachers and courses problem.

Normally speaking, it isa problem of sdecting aminima set
(e.g., of teachers) that has a non-empty intersection with each
set (e.g., ligt of courses), That is to say, thereis, at least, one
teacher who can teach any courses, Thisis a formulation of the
minimal hitting set problem, which, in general, is NP-hard [6].

Generally, there are a number of hitting sets, but sometimes
we only need one or some of them. There are some algorithms
[1~8] for computing dl of the minimal hitting sets, the space
and time efficiency are not ideal. We present a novel method
based on the Genetic Algorithm (in short GA here) for
calculating minimal hitting sets.

Definition 1. (Hitting sets)

Given a collection C={S | iON } of sets of elements from
some universe U, a hitting setisaset SO U such that SNS #0
,for all i, i.e., aset which contains, at |east, one element

! Sun Y at-sen university, Guangzhou, China
2 Jinan university, Guangzhou, China. email:linlionline@21cn.com.

from all setsin C. Let HS(C) denote the collection of al hitting
subsets in HS(C). These are called the minimd hitting sets of
C.

We introduce a minimizing operator U [5], MHS(C)= U
(HS(C)). Wewill use [to get minima conflict(/hitting) sets
from conflict(/hitting) sets.

Determining a minimal cardinality element of MHS(C) is
called the minimal hitting set problem.

Example 1. Modd-based diagnosis [1], as shown in Figure
1. Suppose conflict setsare {M1, M2, A1}, {M1, Al, A2, M3}.
The minimal hitting sets (diagnosis) are {M1}, {Al}, {M2,
A2}, {M2, M3}.

{M1}, {Al} areof minimal cardinality.

=3
Il b
B=2
——|_ o N
C=2 | [14]
LI2 4
— A2 =12
D=3 — =
e ¥ JZ [12]
E=3

Figure1 A smplecircuit with 3 multipliers and 2 adders.

A minimal cardinality hitting set is a minimal hitting set of
minimal cardindity.

In case of large sets of conflicts, the computation of the
hitting setswill result both time and space consumption. Shown
in Figure 2.

There are about millions of components, For example, in
vehicles, computer systems, power plants, arcrafts, etc,.
Therefore, we developed a novel efficient GA to compute
minimal hitting sets. When the scale of conflicting sets is
getting large, the GA method can till be used for computing
the minimd hitting setsin avery short time.

2 GENETIC ALGORITHM

Genetic dgorithm is a heuristic for the function optimization,
where the extreme of the function (i.e., minimal or maximal)
cannot be analytically established. A population of potential
solution is refined iteratively by employing a strategy inspired
by Darwinist evolution or natural selection. Genetic agorithms
promote “survival of the fittest”. This type of heuristic has been
applied in many different fields, including construction of
neural networks and multi-disorder diagnosis.

For the minimal hitting set problem, a straightforward choice
of population is a set P of elements from 2, encoded as bit-
vectors, where each bit indicates the presence of a particular
element in the set.

Example 2. (Teacher and course problem) Let C denote a set
cluster containing,

S={1, 2,3, 4}, S={1, 2, 4}, {1, 2}, S~{2, 3}, S={4}.

It means that there are 5 courses {S;, &, S, S, S} and 4
teachers 1, 2, 3, 4. Teachers 1, 2, 3 and 4 can teach course S,
teachers 1, 2, 4 can teach course S, ... , teacher 4 can teach
course Ss. We want to find the least teachers who can teach all
of the 5 courses. This is a minimal hitting sets problem, and the
minimal hitting sets are: H,={1, 3, 4}, H={2, 4}.

We use bi-vectors to represent the sets and their hitting sets,
these bi-vectors are called “chromosomes”, each bit is called
“gene”, and all of the “chromosomes” are called “population”.

If we use chromosome to represent the sets, they are
represented as follow:

S={1, 1,1, 1}, S={1, 1,0, 1}, S={1, 1, 0, 0}, S={0, 1, 1,
0}, S={0,0,0, 1}.

The hitting sets are: H;={1, 0, 1, 1}, H,={0, 1, 0, 1}.

Here, | SI<|0S|, | Hil<|OS|, so, the length of chromosomes
equals to [OS|.

Genetic operations include: “crossover”,

“inversion”, “selection” and “obtain”.

Suppose that minimal conflict sets cluster is C={S,, S, ...,
S} =08

“Crossover” operator. Suppose that S;={sy1, Si2, .. , Sinh
S={S, S ..., S}, are two chromosomes, select that a
random integer number O<r<n, S, & is offspring of
crossover(S;, S),

S={s|ifisr, sOS, else § 0},

S={s|ifisr, sUS, else 5§ 0S}.

“Mutation” operator. Suppose that a chromosome S={ s,
S, ..., Sin}, Selecting a random integer number O<r<n, S is
mutation of S,

S={s | if i#r, then 5=sy;, else 5 =1-5;;}.

“Inversion” operator. Suppose that chromosome S={s,
Si2 «+e s Sir y S r41y +e+ s SL 4l Sir+l1, --- 5 Sin } [, | @re random
numbers, S is the inversion of S,.

Szz{slll S12, o+ s Sty StrHhy e 0 S1r#d Sir#+dy oo s Sin }

“Selection” operator. Suppose that there are m sets, we
select [MV2] sets and diminate other sets, the sets we selected
are both “fitness” and “minimal”, i.e. first, they intersect more
sets than the other, and second, their cardinality is smaller.

“mutation”,

“Obtain” operator. Suppose that there is a Sngleton set in
the set cluster, then all hitting sets must hits this s, i.e. the
gene stands for this set must be always kept as “1” , we refer to
this operator as “obtain”:

“Obtain” operator has no any influence on the result, it can

improve the efficiency, such as a giraffe obtains “long neck”.

So they can be competed under the “ long neck” condition.

Genetic algorithm.

1. InitializePopulation: Obtain k*|C|*|0S| population
randomly, each chromosome is an n-length array, k is a const
coefficient.

2. Testing if one of the stopping criteria (time, fitness, etc)
holds. If it is yes, the procedure can be stopped, here,100
generations are gotten

3. Selection: Selecting one of chromosome; testing its
fitness, here, being the number of sets it hits. Keeping the most
fitness ones and deleting the bad ones.

4. Applying the genetic operator: such as “crossover”,
“mutation”, “inversion” and “obtain” to the selected parents to
form offspring.

5. Recombining the offspring and current population to form
a new population with “selection” operator.

6. Repeating steps 2-5.

Also, we can use Genetic Algorithm to compute MINIMAL
hitting sets from hitting sets.

In step 3. If we get hitting sets, we can undergo mutation
operator just to change s from “1” to “0” in order to get its
offspring, else, we undergo mutation operator just to change s
from “0” to “1” in order to get its offspring. In the next
selection operator we will go on keeping hitting sets because
they are more fitting.

In the end, we will get 4 sets as follow:

1. Minimal hitting sets;

2. Both minimal hitting sets and their super-hitting sets; we
will use operator 11 to delete the super-hitting sets;

3. Hitting sets, but not minimal, their sub-hitting sets are not
gotten;

4. No hitting sets, these sets will be deleted by “selection”
operator.

But, in fact, the situation 3 is never gotten by GA test
program.

We can get about 95 percent minimal hitting sets with GA.
(shown in Figure 2)

3 COMPARISON

We have written a program to compare among HS-tree, BHS-
tree [8] and GA; the result is shown in Figure 3 and Figure 4.
The elements of every conflict sets are between 1 and 20.

In general, GA can get more than 95 percent minimal hitting
sets in 100 generations, when the set cluster is big, then the HS-
tree and BHS-tree can not run because of “Out of memory”,
but, GA can get almost all minimal hitting sets efficiently.

The space complexity of HS-tree is about O(nT'), m is the
average of |§|, nis |C|, That of BHS-tree is about O(Z'HS"),

that of GA isabout O(n|JS|). So the efficiency of GA is better
than that of HS-tree and BHS-tree.

100

3
B

(Seconds)
(S

0 -ﬁﬂé’""‘ PEPETS i

v

5 6 7 8 9 10 11 12 13 17 20
The number of conflict sets

—@— BHStrec —l—HStree —A—GA |

Figure 2 Running time among BHS-tree, HS-tree and GA.
(CPU-PII 667, 128M main memory, C++, Windows’98)

The comprasion of BHS and GA

100,

o8l |-
o7H IH IH

096——
% oeld I I I [a

o IH 1H 11 1 B
93¢ IH IH |1 IH B
926 IH 1H 11 1 B

8 23 104 124 172 212 232 277 301 627

The number of hitting sets

Figure 3 The hitting sets number and the percentage of GA
gets.

4 CONCLUSIONS

In this paper, we have improved,

1. When the conflict sets scale gets big, This GA algorithm
may get most of minimal hitting sets in a relative short time
and small memory, but the other algorithm can’t get the hitting
sets because of “out of memory”.

2. The GA algorithm can also get MINIMAL hitting sets. If a
chromosome is not a hitting set, and the “mutation” operator
just changes a random gene from “0” into “1”, else change a
random gene form “1” into “0” so that we can get minimal

hitting set.

Example 3. (Continue to Example 2)

If we get Hx={1, 1, 0, 1} and know that it is a hitting set,
then we undergo “mutation” operator to it, however, we only
change “1” into “0” here.

Hs:={1, 1, 0, 1}—-{0, 1, 0, 1}, (minimal hitting set)

—{1, 0, 0, 1}, (no hitting set)
—{1, 1, 0, 0}. {no hitting set}

Underlined genes stand for “mutation” from parent genes.

3. Although this algorithm can’t get all of the minimal hitting
sets, but after we replace or repair these components we have
computed, we can do next diagnosis step by step. The next
research is GA used in choice of a repair/replace action on the
set of suspects or choice of a next measurement.

This GA can be used in many other fields, e.g. a librarian can
decide what kind of journals referred by researchers will be
purchased under lack of funds. [6, pp124].

ACKNOWLEDGEMENTS

We are grateful to the referees for their comments, which
helped us improve this paper.

REFERENCES

[1] R. Reiter, A theory of diagnosis from first principles.
Artificial Intelligence, 1987, 32(1): 57~96.

[2] Greiner R, Smith B. A, Wilkerson R. W, A correction to
the algorithm in Reiter’s theory of diagnosis (research
note). Artificial Intelligence, 1989, 41(1): 79~88.

[3] J. de Kleer J, A. K. Mackworth, R. Reiter,
Characterizing diagnoses and systems. Artificial
Intelligence, 1992, (56): 197~222.

[4] J. A. Reggia, D.S. Nau, P.Y. Wang, Diagnostic expert
systems based on a set covering model, International
Journal of Man-Machine Studies. 1983, (19): 437~460.

[5] Rolf Haenni, Generating diagnosis from conflict sets.
1997. http://www.aaai.org/

[6] Staal Vinterbo, Aleksander Ohrn, Minimal approximate
hitting sets and rule templates, International Journal of
Approximate Reasoning 2000, (25): 123~143

[7] Franz Wotawa, A variant of Reiter’s hitting set
algorithm. Information Processing Letters. 2001, (79):
45~51.

[8] Jiang Yunfei, Lin Li, Computing minimal hitting set
from first principles with BHS-tree. Journal of software.
Spring 2002. (Coming soon, In Chinese).

[9] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim, Hitting
sets derandomize BPP, In: Automata, languages and
programming, number 1099, Lecture Notes in Computer
Science, Springer, Berlin, 1996, pp. 357~368.

[10] J.A. Reggia, D.S. Nau, P.Y. Wang, Diagnostic expert
systems based on a set covering model, International
Journal of Man-Machine Studies 19 (1983) 437~460.

(11]

(12]

(13]

(14]

(19]

(16]

(17]

S. Vinterbo, L. Ohno-Machado, A genetic agorithm
approach to multidisorder diagnosis, Artificia
Intelligence in Medicine, 18 (2) (2000) 117~132.

JA. Swets, RM. Pickett, Evaluation of Diagnostic
Systems. Methods from Signd Detection Theory,
Academic Press, New York, 1982.

F.M. Brown, Boolean Reasoning, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1990.

J. Wroblewski, Finding minima reducts using genetic
algorithms, in: Proceedings of the Second Annual Join
Conference on Information Sciences, October 1995, pp.
186~189.

M. Mitchell, An Introduction to Genetic Algorithms,
MIT press, Cambridge, 1996.

D. whitley. An overview of evolutionary algorithm:
practical issues and common pitfalls, Information and
Software Technology. 2001(43): 817~831.

Benjamin Han, Shie-Jue Lee. A genetic agorithm
approach to measurement prescription in fault diagnosis.
Information Science. 1999(120):223~237.

M odel-Based Diagnosisfor Information Survivability !

Howard Shrobe
NE43-839
Artificial Intelligence Laboratory
M assacusetts | nstitute of Technology
Cambridge, MA 02139
hes@ai.mit.edu

Abstract.

The Infrastructure of modern society is controlled by software sys-
tems that are vulnerable to attack. Successful attacks on these sys-
tems can lead to catastrophic results; the survivability of such infor-
mation systems in the face of attacks is therefore an area of extreme
importance to society. This paper presents model-based techniques
for the diagnosis of potentially compromised software systems; these
techniques can be used to aid the self-diagnosis and recovery from
failure of critical software systems. It introduces | nformation Surviv-
ability as a new domain of application for model-baesed diagnosis
and it presents new modeling and reasoning techniques relevant to
the domain. In particular: 1) We develop techniques for the diag-
nosis of compromised software systems (previous work on model-
base diagnosis has been primarily cconcerned with physical compo-
nents); 2) We devel op methods for dealing with model-based diagno-
sis as a mixture of symbolic and Bayesian inference; 3) We develop
techniques for dealing with common-mode failures; 4) We develop
unified representational techniques for reasoning about information
attacks, the vulnerabilities and compromises of computational re-
sources, and the observed behavior of computations; 5) We highlght
additional information that should be part of the goal of model-based
diagnosis.

1 Background and Motivation

The infrastructure of modern society is controlled by computational
systems that are vulnerabile to information attacks. The system and
application software of these systems possess vulnerabilities that en-
able attacks capable of compromising the resources used by the soft-
ware systems. A skillful attack could lead to consequences as dire as
those of modern warfare. In every exercise conducted by the govern-
ment so far, the attacking team has managed to completely the target
systems with little difficulty. Thereisadire need for new approaches
to protect the computational infrastructure from such attacks and to
enable it to continue functioning even when attacks have been suc-
cessfully launched.

Our presmise is that to protect the infrastructure we need to re-
structure these software systems as Adaptive Survivable Systems. In

1 This article describe research conducted at the Artificia Intelligence Lab-
oratory of the Massachusetts Institute of Technology. Support for this re-
search was provided by the Information Systems Office of the Defense Ad-
vanced Research Projects Agency (DARPA) under Space and Naval War-
fare Systems Center - San Diego Contract Number N66001-00-C-8078.
The views presented are those of the author alone and do not represent
the view of DARPA or SPAWAR.

particular, we believe that a software system must be capable of de-
tecting its own malfunction and it must be capable of repairing itself.
But this means that it must first be able to diagnose the form of the
failure; in particular, it must both localize and characterize the break-
down.

Our work is set in the difficult context in which there is a con-
certed and coordinated attack by a determined adversary. This con-
text places an extra burden on the diagnostic component. It is no
longer adequate merely to determine which component of a com-
putation has failed to achieve its goal, in addition we wish to de-
termine whether that failure is indicative of a compromise to the
underlying infrastructure and whether that compromise is likely to
lead to failures of other computations at other times. Furthermore,
we wish to determine what kind of attack compromised the resource
and whether this attack islikely to have compromised other resources
that share a vulnerability. This paper focuses on the diagnostic com-
ponent of self adaptive survivable systems.

2 Contributions of this Work

We build on previous work in Model-Based diagnosis[2, 3, 4, 5, 8].
However, the context of our research is significantly different from
that of the prior research, leading us to confront several important
issues that have not previously been addressed. In particular, we
present several new advances in representation and reasoning tech-
niques for model-based diagnosis:

1. We develop representation and reasoning techniques for describ-
ing and reasoning about the behaviors and failures of software sys-
tems (most previous work has focussed on hardware, particularly
digital hardware).

2. We develop mixed symbolic and Bayesian reasoning technique
for model-based diagnosis. The statistical component of the tech-
nigue utilizes Bayesian networks to calculate accurate posterior
probabilities.

3. We develop a unified framework for reasoning about the failures
of the computations, about how these failures are related to com-
promises of the underlying resources, about the vulnerabilities of
these resources and how these vulnerabilities enabl e attacks.

4. We develop techniques for reasoning about common-mode fail-

ures. A common-mode failure occurs when the probabilites of the
failure modes of two or more components are not independent.
Thisissue has not been substantially addressed in the previous lit-
erature on model-based diagnosis.

5. We develop diagnostic techniques that lead to an estimate of the
trustability of the computational resources that are used in a spe-
cific computation. These techniques also help us to assess which
attacks have occurred and the likelihood that specific attacks have
been successful.

These are crucial issues when failure is caused by a concerted and
coordinated attack by a malicious opponent. There are many modes
of attacking computational systems but the most pernicious attack-
ers seek to avoid detection; therefore they attempt to scaffold the at-
tack slowly, at a nearly undetectable rate. These scaffolding actions
will typically appear as minor misbehaviors (i.e. they will cause the
system to behave somewhat outside its normal range), but skillful
attackers will space out the attacks so that the misbehaviors are in-
frequent and they will attempt to make the resulting misbehaviors
seem as close to normal behavior as possible. This makes it crucial
that our diagnostic techniques be capable of extracting information
from low-frequency events that closely resemble normal modes of
operation.

Attackers aim at high leverage points of the infrastructure, such
as operating systems or middleware. This leads to common-mode
faults, because once the operating system has been compromised all
application components can be caused to fail simultaneously.

The paper first briefly reviews the current state of the art in model -
based diagnosis; this work has mainly been concerned with break-
downs caused by the deterioration of hardware components. In par-
ticular, we adopt the framework in [4] where each component has
modelsfor each of several behavioral modes and each model isgiven
aprobability. Wewill then turn to the question of how to extend these
techniques so as to apply them to the diagnosis of software systems.
We extend our modeling framework to account for the fact that soft-
ware systems are built in layers of infrastructure, with compromises
to onelayer affecting all higher levels. A software system has agreat
deal of hidden state; what we are actually capable of observing isthe
behavior of a specific computation; but this particular computation
uses a variety of resources (e.g. the operating system and middle-
ware, data-sets, etc.). These resources may have been subject to a
variety of compromises, each of which might lead to adifferent mis-
behavior of the computation. Compromises to the resources occur
because the resources possess vulnerabilities that allow specific at-
tacks to take control of the resources for purposes other than those
intended by the original designers.

We will finally present mixed symbolic and statistical diagnostic
algorithms for assessing the posterior probabilities of the various be-
havior modes of each component in the model. We present an imple-
mentation and show an example of the reasoning process. Finally, we
discuss the demands placed on the diagnostic component by our goal
of self-adaptivity and conclude with suggestions for future research.

3 Related Research

Model-Based Diagnosisis asymptom directed technique; it isdriven
by the detection of discrepancies between the observations of actual
behavior and the predictions of amodel of the system. Almost all of
the reported work in the area [2, 1, 3, 4, 5, 8] has been concerned
with the diagnosis of physical systems subject to routine breakdown.
M odel-based diagnostic systems use simul ation model s that compute
expected outputs given known inputs; they utilize dependency di-
rected techniques to link each intermediate and final value to the se-
lected behavioral model of any component of the system which was
involved in producing that value.

The completeness of the diagnostic processis dependent on having
bi-directional simulation models for each component of the system.
Such models produce both a set of assertions recording what values
are expected and a dependency network linking these assertions to
one another and to assertions stating which components must bein a
particular behavioral mode for those val ues to appear.

Our work builds on the framework in Sherlock [4] and on the prob-
abilistic techniquesin [8]. In Sherlock the description of acomponent
includes multiple simulation models, one for each behaviora mode
of the component. One distinguished mode is the norma mode, but
behavioral models for known failure modes may also be provided. It
isalso typical to include anull model to account for unknown modes
of behavior. Finally, each of the behavioral modes of acomponent is
assigned an a priori probability. Sherlock uses these to guide a best
first search for a set of behavioral modes, one for each component,
such that the models for those modes predict the observed behavior.
This is the most likely diagnosis. However, these techniques i de-
pend on the assumption that the failure modes of the components are
independent; aswe will see this assumption doesn’t hold in our envi-
ronment. Later work [8] introduced techniquesfor applying Bayesian
networks in the context of model-based diagnosis, allowing depen-
dencies to be modeled; [10] presents techniques within this frame-
work for generating several likely diagnoses in order of decreasing
likelihood.

Because our focus is on detecting the intentional compromise of
software components we are forced to face a number of new issues.
These include: How to model software components in the spirit of
model-based diagnosis; How to deal with the fact that a compromise
to the computational infrastructure (e.g. the operating system) can
manifest itself in the malfunction of many application components;
How to deal with the fact that compromised components may behave
in ways that are difficult to distinquish from normal behavior; How
to reason about the system so asto extract as much information about
possible compromises as we can. In particular, we deal with how to
use both symbolic and Bayesian techniques.

4 Modeling Software Computations

Model-Based Diagnosis requires completely invertible models of the
components in order to guarantee completeness of its analysis. But
the components of a complex software system rarely have input-
output relationship that are invertible. We therefore look for other,
additional properties, that |ead to more complete coverage. In partic-
ular, we concentrate here on descriptions of computational delay (or
other Quality Of Service metrics). In our current implementation we
use an interval of expected delay times (i.e. the computation should
run no slower than x and no faster than y) as the behaviora mod-
els. Figure 1 shows the application of such models in a framework
similar to Sherlock. When propagating in the forward direction we
add the delay interval predicted by the behavioral model to the in-
terval bounding the arrival time of the latest input. In the backward
direction, we use interval subtraction (and only update the bounds
on the last input to arrive). When more than one component predicts
the bounds for a particular value (e.g. when a model for component
A and a model for component C both predict bounds for the value
labeled MID), we take the intersection of the two intervals to ob-
tain the tightest bounds implied by the overall model. A discrepancy
is detected when the lower bound of an interval exceeds the upper
bound.

As in Sherlock we provide severa behavioral models for each
component, one characterizing normal behavior, others characteriz-

ing known failure modes and a null model to cover al other unex-
pected behaviors.

Notice that in Figure 1 there are six potential diagnoses, only one
of which involvesasingle point of failure (in component C). The oth-
ersinvolve multiple failues with one component running slower than
expected and other components masking the fault at Outl by run-
ning faster than expected. In the third diagnosis, component A runs
in “negative time’! On the surface, such a diagnosis seems physi-
cally impossible and we might expect the diagnostic algorithm to re-
ject it. But, the diagnosis algorithm is guided by our representational
choices; the reason this diagnosis involves negative time is that the
fast behavioral model of component A predicts adelay interval from
-30to +2.

Such behavior seems very unlikely, and indeed we assign a low
likelihood to this model; however, it is not impossible. Suppose that
both computations A and C are running on the same computer and
further suppose that the computer has been compromised by an at-
tacker. Under these circumstances, it's not impossible for component
C to be delayed (because of a parasitic task inserted by the attacker)
while component A has been accelerated, running in less than zero
time because it has been hacked by the attacker to send out reason-
able answers before it recelvesits inputs.

What we are able to observe is the progress of a computation;
but the computation is itself just an abstraction. What an attacker
can actually affect is something physical: the file representing the
stored version of aprogram, the bitsin main memory representing the
running program, or other programs (such as the operating system)
whose services are employed by the monitored application.

Thus, we require amore elaborated modeling framework detailing
how the behavior of a computation is related to the state of the re-
sources that it uses. In turn, we must represent the vulnerabilities of
these resources and the attacks enabled by these vulnerabilities. Fi-
nally, we must represent how such attacks compromise the resources,
causing them to behave in an undesired manner.

5 Common Mode Failures

A single compromise of an operating system component, such as
the scheduler, can lead to anomal ous behavior in several application
components. This is an example of a common mode failure; intu-
itively, acommon mode failure occurswhen asinglefault (e.g. anin-
accurate power supply), leadsto faults at several observable pointsin
the systems (e.g. severa transistors misbehave because their biasing
power isincorrect). Another example comes from reliability studies
of nuclear power plants where it was observed that the catostrophic
failure of aturbine blade could sever several pipesasit flies off, lead-
ing to multiple cooling fluid leaks.

Formally, there is acommon mode failure whenever the probabili-
ties of the failure modes of two (or more) components are dependent.
Early model-based diagnostic systems have assumed probabilisticin-
dependence of the behavior modes of different components[4] in or-
der to simplify the assessment of posterior probabilities. Later work
[8] alowsfor probahilistic dependence; however, it does not explore
in detail how to model the causes of this dependence. We deal with
common mode failures by extending our modeling framework to
make explicit the mechanisms that couple the failure probabilites of
different components.

We first extend our modeling framework, as shown in Figure 2,
to include two kinds of objects: computational components (repre-
sented by a set of delay models one for each behavioral mode) and
infrastructural components (represented by a set of modes, but no de-

lay or other behavioral models). Connecting these two kinds of mod-
els are conditional probability links; each such link states how likely
aparticular behavioral mode of acomputational component would be
if theinfrastructural component that supportsthat component werein
aparticular one of its modes (normal or abnormal). Each infrastruc-
tural component mode will usualy project conditiona probability
links to more than one computational component behavioral mode,
allowing us to say that normal behavior has some probability of be-
ing exhibited even if the infrastructural component has been com-
promised (however, for simplicity, figure 2 shows only a one-to-one
mapping).

The model also includes a priori probabilities for the modes of
theinfrastructural components, representing our best estimates of the
degree of compromisein each such piece of infrastructure. Following
asession of diagnostic reasoning, these probabilities may be updated
to the value of the posterior probabilities.

We next observe that resources are compromised by attacks. At-
tacks are enabled by vulnerabilities in the resources. For example,
many systems in the Unix family are vulnerable to buffer-overflow
attacks; most networked systems are vulnerable to packet-flood at-
tacks. An attack is capable of compromising aresourcein avariety of
ways, for example, buffer overflow attacks are used both to gain con-
trol of a specific resource and to gain root accessto the entire system.
But the variety of compromises enabled by an attack are not equally
likely (some are much more difficult than others). We therefore add
athird tier to our model to describe the ensemble of attacks assumed
to be available in the environment. We connect the attack layer to the
resource layer with Conditional probability links that state the like-
likhood of each mode of the compromised resource once the attack
has been successful.

Our model of the computational environment therefore includes:

e The components of the computation that is being observed

e A set of behavioral models for each component, representing both
normal and failure modes.

e The set of resources available to be used by the computational
components

e A set of behavioral modes for each resource, representing both
normal and compromised modes.

e A map stating which resources are used by each computational
component.

e Conditional probabilties linking the modes of the computationsto
the modes of the resources employed by that component.

e Alist of vulnerabilities possessed by each computational resource.

e A description of which attacks are enable by each vulnerability.

e A list of attack types that are believed to be active in the environ-
ment.

e A description of which compromised modes of each type of re-
source can be caused by a successful execution of each type of
attack. Thisis provided as a set of conditional probabilities of the
compromised mode given the execution of the attack.

Given this information, simple rule-based inferencing (imple-
mented in the Joshua inference system) deduces which specific re-
sources might have been compromised and with what probability.
Thisinformation isthen used to construct a Bayesian network (in the
IDEAL system).

6 Diagnostic Reasoning

Figure 3 shows a model of a fictitious distributed financial system
which we use to illustrate the reasoning process. The system con-

sists of five interconnected software modules (Web-server, Dollar-
Monitor, Bond-Trader, Yen-Monitor, Currency-Trader) utilizing four
underlying computational resources (Wall St-Server, JPMorgan, Bon-
dRUs, Trader-Joe).

For each computational component we show the conditional prob-
ability tablesthat describe how the behavioral modes of each compu-
tational resource probabilistically depend on the modes of the under-
lying resources (each resource has two modes, normal and hacked).
Note that two computations (Dollar-Monitor and Yen-Monitor) are
supported by a common resource (JPMorgan) and compromises to
this underlying resource are likely to affect both computations. The
failure modes of these two computations are no longer independent;
this is indicated by the conditional probabilities connecting the be-
havior modes of the JPMorgan to those of both Dollar-Monitor and
Yen-Monitor. The specific conditional probabilites supplied describe
the degree of coupling.

Finally we show the a priori probabilities for the modes of the
underlying resources. However, when attacks are present in the en-
vironment what matters is the conditional probabilities of the dif-
ferent modes of the resources given that an attack has taken place.
We hypothesize that one or more attack types are present in the en-
vironment, leading to a three-tiered model as shown in figure 4. In
this example, we show two attack types, buffer-overflow and packet-
flood. Packet-floods can affect each of the resources because they are
al networked systems; buffer-overflows affect only the 2 resources
which are modeled as instances of a system type vulnerable to such
attacks.

Asin earlier techniques, diagnosisis initiated when a discrepancy
is detected; in this case this means that the predicted production time
of an output differs from those actually observed after an input has
been presented. The goal of the diagnostic processisto infer asmuch
as possible about where the computation failed (so that we may re-
cover from the failure) and about what parts of the infrastructure may
be compromised (so that we can avoid using them again until correc-
tive action is taken). We are therefore looking for two things: the
most likely explanation(s) of the observed discrepancies and updated
probabilities for the modes of the infrastructural components.

To do this we use techniques similar to [4, 8]. We first identify all
conflict sets, and then proceed to calculate the posterior probabili-
ties of the modes of each of the computational components. We do
these tasks by a mixture of symbolic and Bayesian techiques; sym-
bolic model-based reasoning is used to predict the behavior of the
system, given an assumed set of behaviora modes. Whenever the
symbolic reasoning process discovers a conflict (an incompatible set
of behavioral modes), it adds to the Bayesian network a new node
corresponding to the conflict (see below). Bayesian techniques are
then used to solve the extended network to get updated probabilities.

This approach involves an exhaustive enumeration of the combi-
nations of the models of the computational components. This alows
us to calculate the exact posterior probabilties. However, thisis ex-
pensive and the precision may not be needed. It would be possible
to instead use the techniques in [10] to generate only the most likely
diagnoses and to use these to estimate the posterior probabilities; but
we have not yet pursued this approach.

We instead follow the following approach: We aternate the find-
ing of conflicts with the search for diagnoses. After each “conflict”
node is added to the Bayesian network (see below) the network is
solved; this gives us updated probabilities for each behavioral mode
of each component. We can, therefore, examine the behavioral modes
in the current conflict and pick that component whose current behav-
ioral mode is least likely. We discard this mode, and pick the most

likely aternative; we continue this process of detecting conflicts, dis-
carding the least likely model in the conflict and picking its most
likely alternative until a consistent set is found. This process is a
good heuristic for finding the most likely diagnosis 2.

Our models of computational behavior (the delay models) are used
to predict the behavior of the computational components and to com-
pare the predictions with observations. When a discrepancy is de-
tected, we use dependency tracing to find the conflict set underlying
the discrepancy (i.e. a set of behavioral modes which are inconsis-
tent). At this point a new (binary truth value) node is added to the
Bayesian network representing the conflict as shown in Figure 5.
This node has an incoming arc from every node that participates in
the conflict. It has a conditional probability table corresponding to a
pure "logical and” i.e. its true state has a probability of 1.0 if al the
incoming nodes are in their true states and it otherwise has probabil -
ity 1.0 of being in its fal se state.

Since this node represents a logical contradiction, it is pinned in
itsfalse state. Adding this node to the network imposes alogical con-
straint on the probabilistic Bayesian network; the constraint imposed
is that the conflict discovered by the symbolic, model-based behav-
ioral simulation is impossible. We continue to explore other combi-
nations of behavioral modes, until al possible minimal conflicts are
discovered. Each of these conflicts extends the Bayesian network as
before, The set of such conflicts congtitutes the full set of logical
constaints on the values taken on within the Bayesian network; thus,
once we have augmented the Bayesian network with nodes corre-
sponding to each conflict, the network has al the information avail-
able. .

At this point, we have found al the minimal conflicts and added
conflict nodes to the Bayesian network for each. We therefore also
know all the possible diagnoses since these are sets of behavioral
modes (one for each component) which are not supersets of any con-
flict set. For each of these we create a node in the Bayesian network
which isthelogical-and of the nodes corresponding to the behavioral
modes of the components. This node representsthe probability of this
particular diagnosis. The Bayesian network isthen solved. Thisgives
us updated probabilities for al possible diagnoses, for the behavioral
modes of the computational components and for the modes of the
underlying infrastructural components. Furthermore, these updated
probabilities are those which are consistent with all the constraints
we can obtain from the behaviora models. Thus, they represent as
complete an assessment as is possible of the state of compromise in
the infrastructure. These posterior estimates can be taken as priorsin
further diagnostic tasks and they can also be used as a “trust model”
informing users of the system (including self adaptive computations)
of the trustworthiness of the various pieces of infrastructure which
they will need to use.

7 Results

The sample system shown in Figure 3 was run through severa anal-
yses including both those in which the outputs are within the ex-
pected range and those in which the outputs are unexpected. Figure
6 shows the results of an analysis in which the outputs are within the
expected range. Figure 7 and 8 show the results of an analysis of an

2 However since the probabilities of the failure modes of different compo-
nents are not independent, thisis only a heuristic

3 [8] builds logical reasoning directly into the Bayesian network system be-
cause the logical inferences needed are simple enough to be accomodated.
However, our inference needs are more complex and not easily amenable
to this approach

abnormal case. Inputs are supplied at times 10 and 15 for the two in-
puts of Web-Server; each of the figures shows the times at which the
the outputs of Currency-Trader and Bond-Trader are observed. There
are four runsfor each case, each with adifferent attack model. In the
firgt, it is assumed that there are no attacks present and the a priori
values are used for the probabilities of the different modes of each
resource. The second run assumes only a buffer-overflow attack; the
third run assumes only a packet-flood attack. The fourth run assumes
both types of attacks. There are four columns in each of the results
chart, one for each of these runs. The top chart in each figure shows
thea priori and posterior probabilities for each resource being in its
“hacked” mode. The middle chart shows the posterior probabilities
for each mode of each computational component. The bottom bot-
tom chart in each figure shows the posterior probabilites that each of
the two types of attacks have occurred. *.

There are more than two dozen possible diagnosesin the abnormal
case. It should be noted that even the most likely diagnosisis actually
not al that likely; in addition the next severa diagnoses are nearly
equally as likely. The most likely diagnosis is therefore not particu-
larly informative for our two goals of recovering from the failure and
steering away from compromised resources in the future. However,
the posterior probabilities of the modes of the infrastructure compo-
nents are, in fact, useful guides for the second of these goals. The
posterior probabilities of the behavioral modes of the computational
resources are useful guidesfor thefirst goal, because these probabili-
ties aggregate the information contained in the individual diagnoses.

The most significant change isthe increase in the probabilities that
the resources named JPMorgan and Wallst-server are hacked. This
changes the trustworthiness ordering of the resources: JPMorgan is
a posteriori the least trustworthy resource, while the a priori listing
ranks Trader-Joe followed by Bonds-R-US as the least trustworthy.
This follows from the fact that the JPMorgan resources is utilized
by the computations Yen-Monitor and Dollar-Monitor both of which
are very likely to be in abnormal modes and the most likely expla-
nation is that that JPMorgan causes a common-mode failure. Notice
that in the last two columns when packet-flood attacks are possible,
all the resources are much more likely to be hacked. Qualitatively,
this is because all the resources are vulnerable to the packet-flood
attack. The misbehavior of the computational components provides
evidencethat JPMorgan is hacked which in turn provides evidence of
a packet flood attack. But since packet-flood attacks affect all the re-
sources, this increases the likelihood that other resources are hacked
aswell. The Bayesian network carries out the quantitative version of
this argument.

It is worth noting that this propagation of trust can carry over to
resources not used in the misbehaving computation. For example,
assume that the environment contains another resource (call it “new-
bie”) that is subject to the same attacks as the ones (e.g. JPMorgan)
that participated in the faulty computation. The misbehavior in the
computation is evidence that JPMorgan is “hacked” and this, in turn,
isevidencethat an attacked succeeded. But thiswould lend weight to
the conclusion that other resources (e.g. Newbie) subject to this same
attack had also been compromised. The Bayesian network would
propagate probabilities in exactly this fashion leading to a posterior
assessment that Newbie has been hacked (although this probability

4 The implementation isin CommonLisp and uses the Joshua [7] rule-based
reasoning system as well asthe Ideal system [9] and in particular itsimple-
mentation of the algorithm described in [6]. On a 300 MHz powerbook, the
total solution timeisunder 1 minute. By far, the most expensive part of this
is calculating the probabilities of the complete set of diagnoses. The most
likely diagnosis and all conflict sets are located in less than 10 seconds)

will be lower than the probability that IPMorgan is hacked).

8 Conclusionsand Future Work

The example above illustrates how model-based reasoning tech-
niques can be used to extract information from a single run. Our
example is intentionally fanciful since we are at the present con-
centrating on the development of the representational and reasoning
frameworks. In future work we will explore realistic models of real
systems.

The information extracted is probabilistic and it sheds light both
on the question of where the computation might have failed, on what
underlying resources might have been compromised and on what at-
tacks might have succeeded.

It is notable that the identification of the most likely diagnosisis
not particularly informative. For example, in the most likely diag-
nosis Yen-Monitor isin its Norma mode. However, the most likely
behavioral mode for Yen-Monitor is its Slower mode which occurs
in many of the remaining diagnoses. The posterior probabilites of the
behavioral modes aggregate the probabilites from each of the possi-
ble diagnoses, producing an overall assessment that is moreinforma-
tive than any individual diagnosis. Of course, if there are very few
diagnoses, or the most likely diagnosis is extremely probable, then
the probabilities of its behavioral modes will approximate the overall
posterior probabilities.

It isimportant to keep in mind why we are interested in the diag-
noses at al. The goa of the system isto recover from the failure and
to steer away from future trouble. To do this it needs to know how
much of the computation has been completed successfully and how
much remains to be done. Given such information the system would
pick arollback point for recovery that includes no failed part of the
computation. Furthermore, the chosen rollback point would maxi-
mize the probability of continuing the restarted computation to com-
pletion. Aswejust saw, an individual diagnosis, even the most likely
diagnosis, does not give us the information we need to do this. When
the available evidence supports multiple diagnostic hypotheses, then
our interest should shift from individual diagnoses to aggregate fail-
ure probabilities and this information is conveyed completely by the
posterior probabilities of the failure modes. I.e. if the posterior prob-
ability that Yen-Monitor failed is high, then we don’t actually care
that there are multiple (multiple point of failure) diagnosesinvolving
this failure nor do we care how likely each of these diagnosesis. In-
stead what we do care about is that it's very likely that Yen-monitor
didn't do itsjob and that we should select arollback point prior to its
execution. Similarly, in choosing arecovery plan we should avoid us-
ing those resources whose posterior failure probabilities are highest.
5

Thisisto say that the goal of the diagnostic process should be to
assess the overall posterior probabilities of the behavioral modes of
the computational and infrastructure components. These give us evi-
dence for which computational resources are to be to be trusted dur-
ing the recovery process and during subsequent computations. Thisis

5 Of course, gathering further evidence might reduce the number of possible
diagnoses leading to greater resolution. However, in our context there are
two difficultieswith attempting to do this. First, it would take time and there
might be tight timeliness contraints on the failed computation (e.g. suppose
the computation was processing sensor data which must be acted on very
quickly). Second, any attempt to gather more data would involve running
the same, or similar, computations again when we know that something is
compromised; this might lead to loss or destruction of data. Making this
tradeoff correctly involves estimating the expected cost of new information
and it expected benéfit. It is possible that such and analysis would suggest
that acting on the available diagnostic evidence is the best course of action

adifferent definition of the goal of diagnostic activity than has been
used in previous research on model-based diagnosis.

We have not yet addressed the details of how the system should
use thisinformation in forming a recovery plan. The general outline
is that when assigning a computation to a resource it should choose
that resource which is most likely to be in n mode that will success-
fully complete the computation. But the probabilities of the modes
of different resources are not independent; they are linked by the
Bayesian network. Having decided to use a particular resource be-
cause it's likely to be in an acceptable mode, the system should pin
the Bayesian network into a state where the resource is believed to
be in the desired state and re-solve the network. Subsequent choices
should be made in light of the updated probabilities.

We have aso not yet addressed the question of what actions the
system might take to obtain more information in future runs. The
Minimum Entropy approach in [3] provides a useful framework.
However, the current context provides more degrees of freedom; in
addition to making new observations, we can a so change the assign-
ment of resources to computational components in a way that will
maximize the expected gain in information. The details of this re-
main for future research.

REFERENCES

[1] Randall Davis, ‘ Diagnostic reasoning based on structure and behavior’,
Artificial Intelligence, 24, 347-410, (December 1984).

[2] Randall Davis and Howard Shrobe, ‘ Diagnosis based on structure and
function’, in Proceedings of the AAAI National Conference on Artificial
Intelligence, pp. 137-142. AAAI, (1982).

[3] Johan deKleer and Brian Williams, ‘ Diagnosing multiple faults', Arti-
ficial Intelligence, 32(1), 97130, (1987).

[4] Johan deKleer and Brian Williams, ‘ Diagnosis with behavior modes’,
in Proceedings of the International Joint Conference on Artificial Intel-
ligence, (1989).

[5] Walter Hamscher and Randall Davis, ‘Model-based reasoning: Trou-
bleshooting’, in Exploring Artificial Intelligence, ed., Howard Shrobe,
297-346, AAALI, (1988).

[6] FV. Jensen, SL. Lauritzen, and K.G. Olesen, ‘Bayesian updating in
causal probablistic networks by local computations', Computational
Satistics Quarterly, 4, 269-282, (1990).

[7] S. Rowley, H. Shrobe, R. Cassels, and W. Hamscher, ‘ Joshua: Uniform
access to heterogeneous knowledge structures (or why joshing is bet-
ter than conniving or planning)’, in National Conference on Artificial
Intelligence, pp. 48-52. AAALI, (1987).

[8] Sampath Srinivas, ‘Modeling techinques and algorithms for probablis-
tic model-based diagnosis and repair’, Technical Report STAN-CS-TR-
95-1553, Stanford University, Stanford, CA, (July 1995).

[9] Sampath Srinivasand Jack Breese, ‘Ideal: A software package for anal-
ysis of influence diagrams’, in Proceedings of CUAI-90, pp. 212-219,
(1990).

[10] Sampath Srinivas and Pandurang Nayak, ‘ Efficient enumeration of in-
stantiations in bayesian networks', in Proceedings of the Twelfth An-
nual Conference on Uncertainty in Artificial Intelligence (UAI-96), pp.
500-508, Portland, Oregon, (1996).

B
Norma:2 4
Fast: -30 1
Slow: 530 | Opserveds
Predicted: Low = 5
Normal: 5 10 High =10
Fast: -30 4
Slow: 11 30 | opeerved: 17
c Predicted: Low = 8
High =16
A B C MID MID
Low High
Normal Norma Slow 3 3
Normal Fast Slow 4 6
Fast Slow Slow -30 0
Fast Norma Slow 1 2
Slow Fast Normal 7 12
Slow Fast Fast 13 30

Figurel. Reasoning About Software Component Delay

5
Piremal Belay: 34 paim i T [CrrE———
Delayed Dilag 4o paitmaliiosal sdmbilinn e 3 pyie: Probubaliny 1
Aconkeatad: Delay inf2 | Condivosal orobabibn s 3 1 Ok Protalshiny 19

la raeacdeli Has menehs

Compoacel | Mk T

Lescased Cim 1-

Figure2. Modeling Computational and Infrastructure Components

N H N H
Normal .6 15 N H Normal .50 .05
Peak 1 .80 Normal .8 .3 Fast 25 45
Off Peak .3 .05 Slow 2 7 Slow .25 .50

—» web Dollar ./ Bond
Server Mon—ly \lader
A A A
N H N H
Normal .60 .05 Normal .50 .05
Slow 25 45 Fast 25 45
Slower .15 .50 Slow .25 .50
Currency N
Trader i
Wallst JPMorgan "\ Trader Bonds
Server Net Joe RUS
Normal .9 Normal .85 Normal .7 i Normal .8
Hacked .1 Hacked .15 Hacked .3 Hacked .2 |

Figure3. An Example of the Extended System Modeling Framework

Yen Dollar Web Bond Currency
Monitor Monitor Server Trader Trader
A A

[JP Morgan Net | [Wall St Server| | Bonds-R US | [Trader Joe|

Buffer Overflow Packet Flood

Figure4. An Example of the Three Tiered System Modeling Framework

t
E

L TP g
1q1414ﬂ4!

L L L N B B E_pe

&—{)

Figure5. Adding a Conflict Node to the Bayesian Network

Normal Case: 48 “Diagnoses’

30 Minimal Conflicts
Output of Bond-Trader Observed at 25
Output of Current-trader Observed at 28

Name Prior Posterior
Wallst .10 .04 .07 .09 17
JPMorgan 15 .07 .08 A1 19
Bonds-R-Us .20 .18 .18 .15 17
Trader-Joe .30 .28 .28 .16 .18
Computations Using Each Resource
Web- Off-Peak .40 40 40 40
Server Peak .04 .05 .05 .08
Normal .55 .56 .55 52
Dollar- Slow .23 .23 .25 .29
Monitor Normal a7 77 .75 71
Yen- Really-Slow .03 .04 .04 .05
Monitor Slow .21 21 21 .25
Normal .76 .75 .75 .70
Bond- Slow .29 .29 .27 .26
Trader Fast .23 .23 .24 .26
Normal .48 48 49 48
Currency- | Slow .09 .09 07 .06
Trader Fast .52 .52 48 .51
Normal .40 .39 45 43
Attack Types Attacks Possible
Name Prior None Buffer- Packet- Both
Overflow Flood
Buffer-Overflow 4 0 .28 0 .30
Packet-Flood 5 0 0 .23 .25
Figure6. Updated Probabilities
Slow Fault on both outputs 25 “Diagnoses”
34 Minimal Conflicts
Output of Bond-Trader Observed at 35
Output of Current-trader Observed at 45
Name Prior Posterior
Wallst A 27 .58 75 .80
JPMorgan A5 45 .62 74 .81
Bonds-R-Us .20 21 .20 .61 .50
Trader-Joe .30 .32 .31 .62 .50
Computations Using Each Resource
Web-Server | Off-Peak 03 .02 .02 .02
Peak 54 .70 .78 .80
Normal 43 .28 .20 .18
Dollar- Slow 74 .76 .73 .76
Monitor Normal .26 .24 .27 .24
Yen- Really-Slow .52 .54 .56 .58
Monitor Slow .34 .35 .34 .34
Normal 14 A1 .10 .08
Bond- Slow 59 .57 .76 .70
Trader Fast 0 0 0 0
Normal 41 43 .24 .30
Currency- Slow .61 .54 .62 .56
Trader Fast .07 11 .16 .16
Normal .32 .35 .22 .28
Attack Types Attacks Possible
Name Prior | None | .Buffer- Packet-Flood | Both
Overflow
Buffer-Overflow 4 0 .82 0 .58
Packet-Flood .5 0 0 .89 .73

Figure7. Updated Probabilities

Prob Currency Bond Yen Dollar Web
ability Trader Trader ~ Monitor Monitor Server
.0898 Slow Slow Normal Normal Peak
.0876 Slow Norma Slow Slow Normal
.0855 Normal Norma sower Slow Normal
.0762 Slow Normal Really-Slow Slow Normal
.0641 Slow Slow Slow Slow Normal
.0626 Norma Slow Redly-Slow Slow Normal
.0557 Slow Slow Redly-Slow Slow Normal
.0468 Normal Slow Slow Normal Peak
.0416 Slow Slow Slow Normal Peak
.0321 Slow Norma Normal Slow Peak
.0306 Normal Slow slower Normal Peak
.0301 Normal Norma Slow Slow Peak
.0276 Slow Slow slower Slow Off-Peak
.0272 Slow Slow slower Normal Peak
.0268 Slow Norma Slow Slow Peak
.0262 Normal Norma slower Slow Peak
.0260 Fast Slow slower Normal Peak
.0235 Slow Slow Normal Slow Peak
.0233 Slow Norma slower Slow Peak
0223 Fast Norma slower Slow Peak
.0221 Norma Slow Slow Slow Peak
0196 Slow Slow Slow Slow Peak
.0192 Normal Slow slower Slow Peak
.0171 Slow Slow slower Slow Peak
0163 Fast Slow slower Slow Peak

Figure8. diagnoses

Observations and Results Gained from the Jade Project

Wolfgang Mayer* and Markus Stumptnert and Dominik Wieland* and Franz Wotawa? §

Abstract

This paper summarizes the work done in the course
of the Jade project, which deals with automatic de-
bugging of Java programs. Besides a brief intro-
duction to the Jade project, models developed to
debug Java programs are evaluated and results are
presented. Furthermore, insights gained from the
results are discussed and topics for further research
are identified.

1 Introduction

For the last three years the Jade project has examined the ap-
plicability of model-based diagnosis (MBD) techniques to the
software debugging domain. In particular, the goals of Jade
were (1) to establish a general theory of model-based soft-
ware debugging with a focus on object-oriented programming
languages, (2) to describe the semantics of the Java program-
ming language in terms of logical models usable for diagno-
sis, and (3) to develop an intelligent debugging environment
for Java programs based on theoretic results.

The main practical achievement of the Jade project is the
interactive debugging environment, which allows us to effi-
ciently locate bugs in faulty Java programs. Currently, this
debugger is fully functional with regard to nearly all aspects
of the Java programming language and comes complete with
a user-friendly GUI, the diagnosis system being integrated
into a “normal” interactive debugger interface. The Jade
debugger limits the search space of bug candidates by com-
puting diagnoses for a given (incorrect) input/output behav-
ior. This is done by using model-based diagnosis techniques,
which in some cases have been adapted to suit the needs of
an object-oriented debugging environment. Furthermore, the

*Vienna University of Technology, Institute for In-
formation Systems, Database and Artificial Intelligence
Group, Favoritenstrasse 9-11, A-1040 Vienna, Austria,

email: {mayer,wieland} @dbai.tuwien.ac.at

fUniversity of South Australia, Advanced Computing Research
Center, 5095 Mawson Lakes (Adelaide) SA, Australia, email:
mst@cs.unisa.edu.au

*Graz University of Technology, Institute for Software
Technology, Inffeldgasse 16b/ll, A-8010 Graz, Austria,
email: wotawa@ist.tu-graz.ac.at

8 Authors are listed in alphabetical order

debugger can be used to unambiguously locate faults through
an interactive debugging process, which is based on the iter-
ative computation of diagnoses, measurement selection, and
input of additional observations by the user.

This work is organized as follows: The next section briefly
describes the program models used by the Jade debugging
environment. Section 3 presents results obtained with the
models introduced in Section 2. Section 4 analyzes the results
from Section 3 and discusses some properties of the models.
In Section 5, we point out interesting topics for further re-
search. Section 6 briefly compares our approach to related
work. Finally, we conclude the paper.

2 Program models

Since model-based diagnosis relies on the existence of a
logical model description of the underlying target system,
one of the most important components of the Jade sys-
tem are its models. Currently, the Jade debugger makes
use of two model classes, dependency-based models and
value-based models. This section briefly describes these
model types. More comprehensive descriptions can be found
in [Stumptner et al., 2001; Wieland, 2001; Mayer, 2000;
2001].

Dependency-based models are based on the collection
of all data and control dependencies of a given Java pro-
gram. As an example, we look at a single statement S;,
e.g., i nt x=a*b; . Informally, the variable dependencies
arising from this statement can be specified by S; : z +
{a,b}. A formal logical model can now automatically be
derived from this dependency. For our example it reads
-AB(S;) A ok(a) A ok(b) = ok(z), where the predicate
AB stands for the assumption that a certain statement is in-
correct, i.e., behaves abnormally. The predicate ok(v) speci-
fies that the value of variable v is correct without making use
of the concrete value of v. Observations for such a model
can be expressed by specifying the correctness or incorrect-
ness of a certain variable, e.g., —ok(z) in the above example.
In the course of the Jade project different dependency-based
models have been created that vary in their levels of abstrac-
tion and the amount of information used during their creation.
These models are:

ETFDM: A dependency-based model, which makes use of
a concrete execution trace [Wieland, 2001].

| Testseries | #TC Diagnosis Debugging
@51 | D1 [@D\(%) | @Dy | @D2(%) || @S2 | @R | oTh | oTi(%) | oTs | 2Ta(%)

1 | Adder 14 17 8.14 48 8.14 48 17 10 3.9 39 39 39
2 IfTest 10 35 2.2(1.9) 63 (54) 2.0 57 6.3 4.9 3 61 2.8 57
3 | WhileTest 10 5.6 33 59 25 47 11.7 5.4 5.1 94 39 72
4 | Numeric 9 4.6 4.6 100 4.6 100 6.2 3.6 4.4 120 5.3 147
5 | Trafficlight 4 5 3 60 3 60 14 7.25 | 6.25 86 6.25 86
6 | Library 5 26 20.6 (18) 79 (69) 20 77 33 186 | 7.8 42 7.6 41
& 1 10 6.3(5.9) 63 (59) 6 60 134 | 76 4.6 60 45 59

Table 1: Diagnosis and debugging results of the dependency-based models

DFDM: A dependency-based model, which only makes use
of static (compile-time) information, such as the Java
source code and the programming language seman-
tics [Stumptner et al., 2001; Wieland, 2001].

SFDM: Another dependency-based model, which is based
on either the ETFDM or the DFDM and involves a
higher level of abstraction by removing the distinction
between object locations and references [Stumptner et
al., 2001; Wieland, 2001].

Value-based models are models which make use of
concrete execution values and propagate these values from
the model’s inputs to its outputs and (if possible) from the
model’s outputs to its inputs. A simple value-based model
for the above example statement reads ~AB(S;) b © = axb,
where z, a, and b stand for concrete variable values as com-
puted at run-time. In the case of value-based models observa-
tions can be expressed by specifying the concrete value of a
certain variable, e.g., z = 6 in the above example. The Jade
system currently operates on the following two value-based
model types:

VBM: A value-based model, which makes use of not only
the underlying program dependencies, but also concrete
evaluation values and the full programming language se-
mantics [Mayer, 2000].

LF-VBM: A second value-based model, which is based
on the unfolded source code for a particular program
run [Mayer, 2001]. In particular, the loops are expanded
into a set of nested conditional statements, where the
conditional statements are modeled specially in order to
provide better backward reasoning capabilities.

Although the expressiveness of the individual models is not
exactly the same, all models support a considerable subset of
the Java programming language. Currently, exception han-
dling and programs using multiple threads are not supported.
Furthermore, the value-based models do not support recursive
method calls. The models are designed to locate functional
faults, e.g. wrong operators or reversed conditions. They
cannot reliably locate structural faults or more severe defects,
such as wrong algorithms or data structures.

3 Results

In this section we describe results obtained by applying
the models introduced above to a set of example pro-
grams and compare them with respect to their debug-

ging and diagnostic accuracy. The tests were separated
into two test sets, where one test set was used to com-
pare the dependency-based models, whereas the other set
was used to evaluate the value-based models. A compar-
ison between the dependency-based models and the value-
based models can be found in [Stumptner et al., 2001].
Most of the example programs can be obtained from
http://ww. dbai . tuwi en. ac. at/ proj/Jade/.

3.1 Dependency-based models

The first test series aims at evaluating the performance of the
used dependency-based models, i.e., DFDMs, ETFDMs, and
SFDMs. Furthermore, we compare the results scored by these
model types. In particular, the test series has two main goals:
(1) to examine the ability of the Jade debugger to reduce the
search space of bug candidates. In other words, we test which
parts of a Java program can automatically be excluded from
the fault localization process in a single diagnosis step and
which parts of the search space remain for further debugging
actions. (2) to evaluate the debugging performance of the
Jade tool, i.e., determining the amount of user interaction
needed to unambiguously locate a fault in a Java program.

In order to carry out these tests we implement a couple
of test programs demonstrating simple variable dependencies
(simulating a binary adder, numeric examples), making use of
control structures (if and while statements), and finally mul-
tiple objects and instance fields together with linked lists and
general processing (a small library application). We then con-
struct test cases for each program P by specifying the correct
input/output behavior of P and installing a single-fault into
P. Overall 52 test cases are constructed and used for the eval-
uation of the system’s performance. Table 1 shows all tests
carried out with each row summarizing all tests performed in
asingle test series. Column #T'C denotes the number of tests
of the respective test series.

The diagnostic performance of the Jade system in the con-
text of dependency-based models is given in columns 4 to 8
of Table 1. Column &S; shows the average number of top-
level statements of the tested programs in a single test series.
Since the Jade tool performs hierarchical debugging, only
these top-level statements (this excludes statements nested
in loops and selection statements) can be identified as the
source of a fault in a single diagnosis step. Columns @D,
and @D, present the number of top-level statements, which
remain as possible fault candidates after a single diagnosis
step has been performed using DFDMs and ETFDMs, re-

spectively. In other words, the difference between @S; and
@D, (@D-) shows the number of statements, which can be
eliminated from the debugging scope in a single diagnosis
step. Columns @D1(%) and @D2(%) show the number of
remaining statements for both model types in relation to the
total number of top-level statement, i.e., @S;. These columns
present the percentage of statements, which remain as possi-
ble fault candidates for further debugging actions. All tests
are also performed with the simplified versions of the test
programs’ DFDMs. In cases where these tests yield results
different from tests with the full DFDMs, the results obtained
from the SFDMs are given in brackets. Note that no tests are
carried out with simplified versions of ETFDMs, since these
models are not yet fully supported by the Jade debugging
tool.

The right side of Table 1 (columns 9 to 14) depicts the
debugging performance of the Jade debugging environment.
Since we are now interested in the exact localization of faults,
we no longer deal with top-level statement only, but also take
statements nested in loop and selection statements into con-
sideration. Column @S, shows the average number of all
statements of the respective tested program. Column @R in-
cludes the average indices of those statements, in which the
single fault has been installed during the test design phase.
If we argue that with traditional debugging tools one has to
step through the code manually statement by statement un-
til the bug is located, the values in column @R provide a
reasonable reference value for the amount of user interac-
tion needed by the Jade system to exactly locate a fault.
The latter is presented in columns @T; (DFDMSs) and @7,
(ETFDMs). Columns &T4(%) and @T>(%) show the av-
erage number of user interaction relative to the average in-
dex of the buggy statement, i.e., T1 (%) = @T1/2R and
@Tz(%) = @TQ/QR.

3.2 Value-based models

In a second step we test the diagnostic performance of the
more detailed and semantically stronger value-based models,
i.e., VBMs and LF-VBMs. For this task we implement a sec-
ond set of example programs which is designed especially
to investigate the specific advantages and disadvantages of
the value-based model variants. Whereas some examples are
small and specifically designed to demonstrate different as-
pects of the models, most of the example programs imple-
ment well-known algorithms which could be part of larger
programs. For example, programs executing a binary search
procedure, computing the Huffman encoding of an array of
characters, or applying Gauss elimination are part of this test
suite. Similar to the tests carried out with the dependency-
based models, faults were seeded into each program such that
each test case is influenced by one fault. Again, we assume
that the faulty program is a close variant of the correct pro-
gram. We do not deal with wrong choice of algorithms, data
structures or similar major design defects.

The diagnostic experiments are performed by specifying
the inputs of the program together with the expected results
as observations. A summary report of the obtained results
for each example program is depicted in Table 2. Several as-
pects of the examples are listed: Stm denotes the number of

Program Stm VBM LF-VBM

C D % C D H S %
BinSearch 27116 6 63| 43 1 1 2 8
Binomial 76126 9 42255 24 1 1 32
BoundedSum | 16|14 4 38| 19 1 0 2 38
BubbleSort 1510 6 93| 34 7 1 1 47
FindPair 5/ 4 4 100 10 1 O 2 80
FindPositive2 | 1713 3 41| 20 2 1 1 12
FindPositive3| 17|13 3 41| 20 2 1 1 12
Hamming 27119 11 70 9% 9 1 1 33
Huffman 64122 9 800|161 9 0 (2)(25
Huffman 64|22 6 59|164 12 1 1 19
Intersection 95131 12 84|155 8 1 1 5
Library 24121 6 38| 36 5 0 2 34
Matrix 71121 21 100|127 37 1 1 52
MaxSearch2 21|16 3 38| 37 2 0 2 19
MultLoops 21|12 2 19| 27 4 2 3 24
MultiSet 97|55 8 28(283 1 0 (2)(11)
Permutation 24117 14 96| 29 3 1 1 13
Permutation0 | 26|19 12 69| 33 1 1 1 4
Permutationl | 26|19 12 69| 32 8 0 3100
Permutation2 | 2619 15 85| 33 9 1 1 35
Permutation3 | 24(19 12 67| 33 2 0 3 50
Polynom 12064 14 241|189 26 0 (3)(13)
SearchTree 84141 41 100|140 45 0 (1)(54)
SkipEqual 5(4 4 100 11 2 1 1 40
Stat 23117 3 39| 42 2 0 4 48
Sum 5| 4 3 80| 10 3 1 1 40
SumPowers 21|12 8 81| 36 5 1 1 24
[Z] 39120 9 65| 77 8 0.6(1.6)(32)

Table 2; Diagnosis results of the value-based models

statements in the program, C' represents the number of com-
ponents in the generated model. D stands for the number
of diagnoses of minimal cardinality that are obtained and H
represents the number of diagnoses from D that actually in-
clude the seeded fault. S denotes the cardinality at which
the diagnostic process is stopped because the seeded fault has
been located. Finally, the %-column lists the percentage of
the statements that have to be examined in the worst case un-
til the seeded fault is found. Here it is assumed that the di-
agnoses are presented with increasing cardinality. Note that
these numbers can further be improved by suitable heuristics,
which present the diagnoses according to their ’likelihood’
to explain the faults. For the VBM, the columns H and S
are omitted because their value is always equal to one. Num-
bers in parentheses denote cases where the faults cannot be
located because the maximum time allowed for diagnosis is
exceeded. In these cases the numbers are lower bounds to
the actual results that would be obtained when continuing the
diagnostic process to its completion.

4 Discussion

Based on the results from Section 3, in this section we dis-
cuss some important properties of the proposed models and
present insights gained during the Jade project.

From the results it can be seen that the amount of code
that has to be analyzed in order to locate a fault can be re-
duced significantly with all models. If we look at Table 1 we
find that in the test series carried out with dependency-based
models approximately 40% of the top-level statements can be
eliminated from the debugging scope, leaving some 60% for
further debugging actions. Interestingly, the average results
obtained with different dependency-based model types were
quite similar with slight advantages to ETFDMSs (in compar-
ison to DFDMs) and full model versions (in comparison to
SFDMs). In the case of value-based models, the results lie
in the same order of magnitude. In particular, between 40
and 80% of all statements have to be checked, with the av-
erage being at 65%. Note that this does not indicate a better
performance of dependency-based models in comparison to
value-based models, since completely different test programs
were used to evaluate the different model types. In particular,
the test series with the value-based variants in general used
longer and more complex test methods. These methods result
in only very few statements being removed from the suspect
code in case of dependency-based models, but still yield re-
markable results with VBMs. For a more detailed comparison
of dependency-based and value-based models see [Stumptner
etal., 2001].

Dependency-based models One major advantage of
dependency-based models is that they can be constructed and
applied to actual diagnosis problems very quickly. This is
also true for medium- to large-size programs. They are also
easier to handle than their value-based counterparts, since
they require observations only to state whether the value of
a certain variable is correct or not, whereas with value-based
models concrete execution values are needed. Generally, the
use of ETFDMs results in fewer single diagnoses, because
concrete execution traces are used during the collection of
the dependencies. This becomes especially apparent for pro-
grams, which include loop and selection statements or recur-
sive method calls. The improved debugging performance of
ETFDMs in comparison to DFDMs comes with longer mod-
eling times, since now the creation of a model not only de-
pends on the underlying source code, but also on the ex-
istence of an execution trace, whose creation requires run-
ning the program. It was also shown that the full versions of
DFDMs and ETFDMs are superior to their simplified coun-
terparts. This is, because they model object locations and
object references by separate model constructs and thus pro-
vide a finer-grained model architecture. On the other hand the
computation of diagnoses with full model versions is compu-
tationally more expensive. Further on, the specification of
observations is easier with simplified model versions.

The Value-Based Model However, dependency-based
models did not prove to be an optimal solution for all tested
programs due to their lack of run-time information. Note
that even ETFDMs do not make use of concrete evaluation
values directly, but only extract information about executed
branches and numbers of iterations of loops from concrete
execution traces. Therefore, the VBM was developed, which
makes use of the full programming language semantics and
propagates concrete evaluation values through the system. As
already mentioned, in many cases VBMs score satisfying re-

sults with programs, which can hardly be diagnosed using
dependency-based approaches only. [Stumptner et al., 2001]
indicates that in general value-based models are superior to
their dependency-based counterparts. Therefore, although
VBMs have the drawbacks of their high computational re-
quirements, VBMSs have proved as satisfying general-purpose
alternatives and complements to dependency-based models.

Loop Handling A negative aspect of the dependency-
based models and the VBM is the fact that these models pro-
vide good results for programs without loops but fail to com-
pute satisfying diagnoses for programs that consist of large
loop statements. This is due to the fact that loop statements
are modeled hierarchically and discrimination between state-
ments inside the loops is not possible. To overcome these
problems, the LF-VBM expands loops into a set of nested
conditional statements, with separate assumption variables
for each statement. The number of conditional statements is
derived from the initial execution of the test cases. Therefore,
the model is able to reason about the statements inside the
loop independently, without considering the whole loop as an
entity. This provides a finer-grained resolution, which avoids
the problem of large diagnosis entities mentioned above.

As can be seen in Table 2, switching from the VBM to
the LF-VBM leads to much better results. In particular, the
percentage of statements that has to be considered until the
fault is located is reduced to 32-43%? on average, which is
quite low compared to the percentage of statements that was
computed by the VBM. For the LF-VBM it is no longer the
case that every faulty statement is included in a diagnosis of
cardinality one (as with the VBM). Therefore, the cardinal-
ity up to which diagnoses have to be computed is likely to
be greater than one, depending on the type of fault and the
program structure. For most example programs the diagnosis
cardinality required to locate a fault is less than or equal to
two, which is usually computationally feasible when consid-
ering small- to medium-sized programs. Another aspect of
the LF-VBM that keeps the model from being blindly appli-
cable is the fact that the strong fault modes of the conditional
statements decouple the selection of the conditional branch
to be executed from the evaluation of the selection condition.
Therefore, faults in the condition cannot be located using the
LF-VBM. Fortunately, such faults can in many cases be found
with the VBM alone and do not require the LF-VBM to be
applied.

In case of dependency-based models additional tests have
been carried out to examine the overall debugging perfor-
mance of the Jade tool. As Table 1 indicates, the average
number of user interactions needed by the Jade tool is sig-
nificantly smaller than the amount of user interactions needed
by traditional debugging tools. On average some 40% of user
interactions can be saved using the Jade tool. In general, the
direct comparison of user interactions is problematic, since
different user interactions require different types of inputs
from the user, which vary in time, complexity, and knowledge

143% is obtained when assuming the whole program has to be
examined for the examples where no exact solution was found. Bet-
ter estimates (37%) are obtained when taking the percentages ob-
tained with the VBM as upper bounds.

needed by the user. The numbers given in Table 1 therefore
include all user interaction performed by the Jade system. If
only variable queries, i.e., the input of a new observation in
the form of the value of a certain variable at a given source
code position, are counted, the average amount of user inter-
action amounts to only 35% of the user interaction needed by
traditional debugging tools. Since strictly speaking all other
kinds of user interactions are not included in the reference
value of traditional debuggers, this lower value probably pro-
vides a more accurate measurement of the debugging perfor-
mance of the Jade system.

Comparison If we compare the results obtained with
the Jade system to results obtained with other approaches
for program analysis, it can be seen that the approaches de-
scribed herein are comparable and in many cases even supe-
rior to other techniques. When comparing our approach to
slicing [Weiser, 1984], we find that with dependency-based
models we yield similar results to those obtained by slicing
techniques. When value-based models are used, our results
are much better, because for most of the example programs
used during the evaluation of the value-based variants, static
slicing is not able to eliminate any statement. This can be
explained by the different levels of abstraction applied by
dependency-based models and slicing on the one hand and
value-based diagnosis techniques on the other hand. The
value-based approach is somewhat closer to the actual execu-
tion semantics of the program than with both, program slicing
and dependency-based models. Another improvement with
respect to slicing is that we can provide more information to
the user, if a loop has to be executed a different number of
times to explain a fault. Those examples where no statements
of the program can be eliminated are programs that are either
very short (consisting of only an initialization statement and
a loop) or programs where almost every part of the program
depends on every other part (for example a binary search tree,
where the program execution depends on the values that were
inserted previously).

5 Ongoing Work

Although the results presented in the previous section are
already promising, there remain topics for further research.
This section discusses possible enhancements of the models,
to avoid some of the drawbacks mentioned in Section 4.

First, no single model is able to efficiently locate faults.
Rather, a combination of models has to be applied to perform
efficient reasoning. This multi-model-reasoning approach is
not only applicable to a single level of abstraction, as in
the case of the VBM and the LF-VBM, but can also be ap-
plied using multiple levels of abstraction or types of models.
For example, the dependency-based models can be used to
narrow the region of interest and then apply combinations
of the VBM and the LF-VBM to exactly locate the fault.
Also, models dealing with structural faults [Jackson, 1995;
Wotawa, 2000] or various special-purpose models (e.g., to
locate faults in loops, selection statements, etc...) could be
incorporated in such a framework.

For this approach to be applicable, suitable strategies to de-
cide under which conditions to apply certain kinds of models

have to be developed and evaluated. Based on these criteria,
the most efficient model can be selected based on the pro-
gram structure, the test cases and the diagnoses computed so
far. This approach overcomes the drawbacks of the models,
as well as reduces the computational complexity of the di-
agnostic process, because models are only instantiated when
needed. To select candidates for further inspection, suitable
criteria for ranking diagnoses according to their likelihood to
explain the fault have to be developed.

As far as the fault classes which can be located with the
Jade environment are concerned, it should already have be-
come clear that we are interested in source code bugs which
become observable as failures or output errors and manifest
themselves as logical faults in the analyzed source code. This
explicitly excludes compile-time and run-time failures as well
as faults leading to the non-termination of a program. For a
discussion about the fault classes handled by the Jade sys-
tem we divide the class of analyzed faults into functional and
structural faults. Functional faults are all faults, which result
in a certain variable storing an incorrect value in at least one
possible evaluation trace. In particular, these faults include
the use of incorrect operators or the specification of incor-
rect literals, such as integer or boolean constants. Since these
faults do not alter the structure of the program, faults belong-
ing to this class can generally be found with the Jade de-
bugging environment, once they become observable through
a test case leading to an incorrect variable value.

Structural faults, on the other hand, are source code bugs
which alter the structure of the underlying program. This is
the case if the dependency graph [Ferrante et al., 1987] of
the program is not structurally equivalent to the dependency
graph of the correct program. The result of these faults is
that the system description, i.e., the model, differs from the
system description obtained by the correct program. At the
moment structural faults can only be located under certain
circumstances. A discussion about different classes of struc-
tural faults and how they are handled by the Jade tool is given
in [Wieland, 2001]. In the future special-purpose models have
to be developed that handle different kinds of structural faults.
As already discussed, these models then have to be combined
with the general-purpose models described herein to increase
not only the performance of the Jade debugger, but also the
number of fault classes handled by the tool.

To aid the programmer in correcting a fault, an intelligent
debugging environment should be able to provide possible
corrections for a faulty part of a program. As described in
[Stumptner and Wotawa, 1999], after a single diagnosis has
been selected for further investigation, possible replacement
expressions for the faulty expression can be inferred and pre-
sented as corrections.

Finally, intuitive means for specifying the expected behav-
ior of a program have to be developed. This includes the
construction of an intuitive graphical user-interface through
which the user can easily switch between different levels of
abstraction, test case specification, and other representations
of the program (e.g., visualizations of heap structures, etc.).

6 Reated Work

This section briefly summarizes related research in the area
of program debugging and compares the approaches to our
work.

Weiser’s slicing approach [Weiser, 1984] is probably the
most widely known approach to improve program debugging.
His approach relies on the program dependencies and tries to
eliminate those parts of a program that cannot contribute to an
observed faulty program behavior. This approach is compara-
ble to the dependency-based models presented here. Details
on the relationship between these approaches can be found
in [Wotawa, 2001].

Shapiro [Shapiro, 1983] introduces a theoretical frame-
work for algorithmic program debugging and several algo-
rithms suited to debug logic programs. However, the ap-
proach suffers from heavy user interaction, which is unde-
sirable when debugging larger programs. In addition, the al-
gorithms cannot locate faults inside procedures.

In [Console et al., 1993] the application of model-based di-
agnosis to the software domain has been proposed for the first
time. This paper introduces a way of using MBD by remov-
ing and adding Horn clauses to Prolog programs. Extensions
of this approach were developed in [Bond, 1994].

Liver [Liver, 1994] discusses the use of a functional repre-
sentation in the debugging of software to reduce the problem
of structural faults in software, where statements are missing
or superfluous parts of a program are the source of errors. The
approach relies on symbolic execution of a functional speci-
fication, which has to be provided by the user.

Hunt [Hunt, 1998] applies the idea of MBD to the domain
of object-oriented languages by building models for programs
written in Smalltalk. The model used in this work is based
on dependencies between instance variables and method calls
that modify them. In contrast to our approach, [Hunt, 1998]
is limited to single faults.

MBD concepts have also been applied to VLSI design lan-
guages, in particular VHDL [Friedrich et al., 1999], using pa-
pers describe (abstract) models used for locating a concurrent
statement, e.g., a VHDL process, responsible for a detected
misbehavior. The Jade project builds on this work, but ex-
tends the previous approaches by modeling of object-oriented
features.

Finally, Burnell and Horvitz [Burnell and Horvitz, 1995]
present another approach to program debugging using prob-
ability measurements to guide diagnosis. As this approach
relies on belief networks, which have to be initialized by do-
main experts, it is doubtable whether this approach can be
applied to arbitrary programs.

7 Conclusion

Building intelligent debugging aids for programmersis an im-
portant goal repeatedly attacked by researchers during the last
decades. Unfortunately, no generally applicable solution has
been found so far. In this paper we summarize the work done
during the Jade project and discuss some results obtained
using the introduced model types. Besides the results, spe-
cific advantages and disadvantages of each of the models are

discussed. Incorporating these models in a system with multi-
model reasoning capability and ranking criteria for diagnoses
holds the promise of wider applicability and even better dis-
crimination. As our approach clearly outperforms classi-
cal debugging techniques for many example programs, the
model-based approach can be considered a promising tech-
nique that should be further researched to obtain a generally
applicable debugging tool.

Acknowledgments

This work was partially supported by the Austrian Science
Fund project P12344-INF.

References

[Bond, 1994] Gregory W. Bond. Logic Programs for
Consistency-Based Diagnosis. PhD thesis, Carleton Uni-
versity, Faculty of Engineering, Ottawa, Canada, 1994.

[Burnell and Horvitz, 1995] Lisa Burnell and Eric Horvitz.
Structure and Chance: Melding Logic and Probability
for Software Debugging. Communications of the ACM,
38(3):31-41, 1995.

[Console et al., 1993] Luca Console, Gerhard Friedrich, and
Daniele Theseider Dupré. Model-based diagnosis meets
error diagnosis in logic programs. In Proceedings 13"
International Joint Conf. on Artificial Intelligence, pages
1494-1499, Chambery, August 1993.

[Ferrante et al., 1987] Jeanne Ferrante, Karl J. Ottenstein,
and Joe D. Warren. The program dependence graph and
its use in optimization. ACM Transactions on Program-
ming Languages and Systems, 9(3):319-349, 1987.

[Friedrich et al., 1999] Gerhard Friedrich, Markus Stumpt-
ner, and Franz Wotawa. Model-based diagnosis of hard-
ware designs. Artificial Intelligence, 111(2):3-39, July
1999.

[Hunt, 1998] John Hunt. Model-Based Software Diagnosis.
Applied Artificial Intelligence, 12(4):289-308, 1998.

[Jackson, 1995] Daniel Jackson. Aspect: Detecting Bugs
with Abstract Dependences. ACM Transactions on Soft-
ware Engineering and Methodology, 4(2):109-145, April
1995.

[Liver, 1994] Beat Liver. Modeling software systems for di-
agnosis. In Proceedings of the Fifth International Work-
shop on Principles of Diagnosis, pages 179-184, New
Paltz, N, October 1994,

[Mayer, 2000] Wolfgang Mayer. Modellbasierte Diagnose
von Java-Programmen, Entwurf und Implementierung
eines wertbasierten Modells. Master’s thesis, Institut fur
Informationssysteme, Abteilung flir Datenbanken und Ar-
tificial Intelligence, TU Wien, 2000. (only available in
German).

[Mayer, 2001] Wolfgang Mayer. Evaluation of VValue-Based
Models for Java Debugging. Technical report, Technische
Universitdt Wien, Institut fiir Informationssysteme 184/2,
Paniglgasse 16, A-1040 Wien, Austria, 2001.

[Shapiro, 1983] Ehud Shapiro. Algorithmic Program Debug-
ging. MIT Press, Cambridge, Massachusetts, 1983.

[Stumptner and Wotawa, 1999] Markus ~ Stumptner and
Franz Wotawa. Debugging Functional Programs. In
Proceedings 16 International Joint Conf. on Artificial
Intelligence, pages 1074-1079, Stockholm, Sweden,
August 1999.

[Stumptner et al., 2001] Markus ~ Stumptner, Dominik
Wieland, and Franz Wotawa. Comparing Two Models
for Software Debugging. In Proceedings of the Joint
German/Austrian Conference on Artificial Intelligence
(K1), Vienna, Austria, 2001.

[Weiser, 1984] Mark Weiser. Program slicing. IEEE Trans-
actions on Software Engineering, 10(4):352-357, July
1984.

[Wieland, 2001] Dominik Wieland. Model-Based Debug-
ging of Java Programs Using Dependencies. PhD
thesis, Vienna University of Technology, Computer
Science Department, Institute of Information Systems
(184), Database and Atrtificial Intelligence Group (184/2),
November 2001.

[Wotawa, 2000] Franz Wotawa. Debugging VHDL Designs
using Model-Based Reasoning. Artificial Intelligence in
Engineering, 14(4):331-351, 2000.

[Wotawa, 2001] Franz Wotawa. On the Relationship be-
tween Model-based Debugging and Programm Mutation.
In Proceedings of the Twelfth International Workshop on
Principles of Diagnosis, Sansicario, Italy, 2001.

Hybrid Diagnosis with Unknown Behavioral Modes

Michael W. Hofbaur! and Brian C. Williams 2

Abstract. A novel capability of discrete model-based diagnosis not impose such a strong modeling assumption. Its concept of the
methods is the ability to handlenknown modewhere no assump- unknown modallows diagnosis of systems where no assumption is
tion is made about the behavior of one or several components of thmade about the behavior of one or several components of the sys-
system. This paper incorporates this novel capability of model-basetem. In this way, it captures unspecified and unforeseen behaviors
diagnosis into a hybrid estimation scheme by calculating partial fil-of the system under investigation. This paper provides an approach
ters. The filters are based on causal and structural analysis of the incorporate the concept of an unknown mode into our hybrid es-
specified components and their interconnection within the hybrid autimation scheme[9]. As a result we obtain an estimation capability
tomaton model. Incorporating unknown modes provides a robust eghat can detect unforeseen situations. Furthermore, it allows us to
timation scheme that can cope, unlike other hybrid estimation andontinue estimation on a degraded basis. We achieve this by causal
multi-model estimation schemes, with unmodeled situations and pa®&analysis[17, 20], structural analysis[7] and decomposition of the sys-
tial information. tem.

This paper starts with a brief introduction to our hybrid systems
modeling and estimation scheme. Upon this foundation, we extend
hybrid estimation to incorporate the unknown mode and demonstrate

hthe underlying structural analysis and decomposition task. Finally, an
gxperimental evaluation with computer simulated data for a Martian

high demands on performance and availability. As a consequencl_, h fth h
fault-tolerant control and an underlying monitoring and diagno- V€ SuPport system demonstrates the advantages of this extended hy-
brid estimation scheme.

sis capability plays an important role in achieving these require-
ments. Monitoring and diagnosis systems that build upon the discrete
model-based reasoning paradigm[8] can cope well with complexityp) Hybrid Systems
in modern artifacts. As an example, the Livingstone system[22] suc-
cessfully monitored and diagnosed the DS-1 space probe in flightThe hybrid automaton model used throughout this paper is based on
a system with approximately®® modes of operation. However, a [9] and can be seen as a model that merges hidden Markov models
widespread application of discrete model-based systems is hinderdtdlMM) with continuous discrete-time dynamical system models (we
by their difficulty to reason about the continuous dynamics of an arPresent the model on the level of detail sufficient for this work and
tifact in a comprehensive manner. Continuous behaviors are difficultefer the reader to the reference cited above for more detail).
to capture by the pure qualitative models that are used by the rea-
soning engines. Nevertheless, additional reasoning in terms of th2
continuous dynamics is vital for detecting functional failures, as well "
as low-level incipient (i.e slowly developing) faults and subtle com-Definition 1 A discrete-time probabilistic hybrid automaton (PHA)
ponent degradation. A is described as a tuple, w, F, T, Xg, T5):

Hybrid systems theory provides a modeling paradigm that inte-
grates both, continuous state evolution and discrete mode changa&sx denotes the hybrigitate variablesf the automatoh composed
in a comprehensive manner. Recent work in hybrid estimation[14, Of x = {za} U x.. The discrete variable, denotes thenode
16, 24, 9] attempts to overcome the shortcomings of discrete model- f the automaton and has finite domai. Thecontinuous state
based diagnosis cited above and provides schemes that integratevariablesx. capture the dynamic evolution of the automatan.
model-based approaches with techniques from fault detection and denotes théwybrid stateof the automaton, while. denotes the
isolation (FDI)[23, 4] and multi-model adaptive filtering[13, 11, 10]. ~ continuous state
The hybrid estimation schemes, as well as their FDI and multi-modep The set ofl/O variablesw = uq U uc U y. of the automaton
filtering ancestors, work well whenever the underlying model(s) are is composed of disjoint sets of discrete input varialiggcalled
'close’ mathematical descriptions of the physical artifact. They can command variablgscontinuousnput variablesu., and continu-
fail severely whenever unforeseen situations occur. Therefore, it is ousoutput variablesgy..
essential to provide models that capture the entire spectrum of posst- £ : Xa — Fpr U Fag specifies theontinuous evolutioof the
ble behaviors/modes whenever we use the hybrid estimate for closed automaton in terms dafiscrete-time difference equatiof » and

loop control, for instance. Model-based diagnosis, in contrast, does algebraic equationd’sz for each moders € Xq. T denotes the
sampling period of the discrete-time difference equations.

1 Introduction

Modern technology is increasingly leading to complex artifacts witl

1 Concurrent Hybrid Automata

I Department of Automatic Control, Graz University of Technology, A-8010
Graz, Austria, emailhofbaur @irt.tu-graz.ac.at 3 When clear from context, we use lowercase bold symbols, sush &s

2 MIT Space Systems and Al Laboratories, 77 Massachusetts Ave., Rm. 37- denote asetof variables{vy, ..., v}, as well as avector[vy, ..., v;]T
381, Cambridge, MA 02139 USA, emaililliams ~ @mit.edu with components;.

e The finite setT’, of transitionsspecifies the probabilistic discrete

evolution of the automaton.

Consider the illustrative cPHA in Fig. 1 with

A = <{xd1}: {ud17u617wc1}7F1,T17 {m11,m12}...>

Complex systems are modeled as a composition of concurrently 4, — a2, zer }, {tiaz, wer, yer }, Fa, To, {mar, mas}...)
operating PHA that represent the individual system components. A A; = ({43, 2c2, Tes }, {Uaz; te1, Ye1, Yea }, Fs, Ts, {ms1 }...).

concurrent probabilistic hybrid automata (cPH#pecifies this com-
position as well as its interconnection to the outside world:

Definition 2 A concurrent probabilistic hybrid automaton (cPHA)

CAis described as a tupled, u, y¢, vs, Vo, No, Ny):
o A={A,As,..

of a PHAA; by z4s, Xci, Udi, Uciy Yeiy Fiy Xai).

e Theinput variablesu = uy U u. of the automaton consists of the

sets of discrete input variables; = ug; U ... U ug (command
variables) and continuous input variablesC u.; U ... U ug.

e Theoutput variablesy. C y.1 U... Uy, specify the observed
output variables of the cPHA.

e The observation process is subject to additive, zero mean Gaussian

sensor noiseN,, : X; — IR™*™ specifies the mode dependbnt
disturbancev, in terms of the covariance matrR = diag(r;).

e N, specifies additive, zero mean Gaussiisturbanceghat act
upon the continuous state variables = x.1 U ... Ux¢. Ny :
X; — IR™*™ specifies the mode dependent disturbamgen
terms of the covariance matr@.

Definition 3 The hybrid statex ;) of a cPHA at time-stef spec-
ifies the mode assignment, () of the mode variablex; =
{za1,...,za} and the continuous state assignmeqy, of the
continuous state variables = x.1 U... U X.

Interconnection among the cPHA componeAdtsis achieved via
shared continuous I/O variables € u.;Uy.; only. Fig. 1 illustrates
a simple example composed of 3 PHAs.

> Y
Uet Wt Lf Y l
Uy A A, A, T
U || |,

Figure 1. Example cPHA composed of three PHAsS

., A; } denotes the finite set of PHAs that repre-
sent the componenid; of the cPHA (we denote the components

Fi, F> and F3 provide for a cPHA modexg)y =
[m11,ma1, ma1]” the equations

Fi(mi1) = {te1 = 5.0 wer }

Fy(ma1) = {xc1,(k) = 0.8 Tea,(k—1) + Wer, (k—1)5

Ye1 = zcl}

(2
Fz(ma1) = {@c2,(k) = Tes,(k—1) + Ye1,(k—1)»
ZTes (k) = 0.4 Teo, (k—1) + 0.5 Uer, (k—1),
Ye2 = 2.0 Zea + T3}
This leads to the discrete-time model:
Tet,(k) = 0.8 Tex,(k—1) + 0.2 Uer, (k—1) + Vs1,(k—1)
Te2,(k) = Tel,(k—1) T Te3,(k—1) T Vs2,(k—1)
Ze3, (k) = 0.4 Tea (k—1) + 0.5 Uer, (k1) + Vs3,(k—1) (3

Yel,(k) = Te1,(k) T Vol,(k)

Ye2,(k) = 2.0 Tea, (k) + e, (k) T Vo2, (k)

2.2 Estimation of Hybrid Systems

To detect the onset of subtle failures, it is essential that a monitoring
and diagnosis system is able to accurately extract the hybrid state of
a system from a signal that may be hidden among disturbances, such
as measurement noise. This is the role of a hybrid observer. More
precisely:

Hybrid Estimation Problem: Given a cPHACA, a sequences
of observationgy. (o), Ye,(1), - - - » Ye, (k) } @nd control inputs

{u@y,uqy, ..., uw}, estimate the most likely hybrid state
X(r) at time-stepk.

A hybrid state estimate) consists of acontinuous state esti-
mate together with the associatetbde We denote this by the tuple

X(k) 1= (X, (k) Xe,(k), P (k)

wherex. (i) specifies the mean ari) the covariance for the con-
tinuous state variables.. The likelihood of an estimatg;, is de-

A cPHA specifies a mode dependent discrete-time model for anoted by thenybrid belief-statéh) [X].

plant with command inputs,, continuous inputai., continuous
outputsy., modex,, continuous state variables and additive, zero
mean Gaussian disturbances v,. The discrete-time evolution of

We perform hybrid estimation as extended version of HMM-style
belief-state update that accounts for the influence of the continuous
dynamics upon the system'’s discrete modes. A major difference be-

x. andy. is described by the nonlinear system of difference equatween hybrid estimation and an HMM-style belief-state update, as

tions (sampling period’)

Xe,(k) = f(k) (Xe,(k—1), Ue,(k—1)) + Vs, (k1))
Yeu(k) = (k) (Xe,(k), Ue, (k) + Vo, (k)-

The functionsf;) andg) are obtained by symbolically solvifig

the set of equations’ (41, (x)) U . .. U Fi(za;,x)) given the mode

Xd, (k) = [Tar,(k)s - -+ > Tar, (k)]

4 E.g. sensors can experience different magnitudes of disturbances for differ-

ent modes.

well as multi-model estimation, is, however, that hybrid estimation
tracks a set of trajectories, whereas standard belief-state update and
multi-model estimation aggregate trajectories which share the same
mode. This difference is reflected in the first of the following two
recursive functions which define our hybrid estimation scheme:

“

hery[Xi] = Pr(mi[X;,(k—1), Ua,k—1)) hie—1)[X;]

h(k) [)A(] — h(ok) [)A(i]PO(YC,(k)l)A(i!(k%uc!(k))
225 ey Rs]Po (Ye, () [R5, (k) U, (1))

©)

5 Our symbolic solver restricts the algebraic equations and nonlinear func-

tions to ones that can be solved explicitly and utilizes @kBer Basis
approach[3] to derive a set of equations of form (1).

h(ek)[%:] denotes an intermediate hybrid belief-state, based on tran-
sition probabilities only. Hybrid estimation determines for each

X, (k—1) at the previous time-step — 1 the possible transitions, multi-output (MIMO) filter (see Fig. 2) for modexy;) =

thus specifying candidate successor states to be tracked. Consedtri1, m21,m31]” based on the mathematical model (3). This filter

tive filtering provides the new hybrid stake (,y and adjusts the hy- provides the hybrid state estimatg) as well as the value for the

brid belief-stateh 4 [%;] based on the hybrid probabilistic observa- hybrid probabilistic observation functioRo (y., (x)|Xi, k), Ue,(k))

tion function Po (y e, (k) |Xi,(k)> Ue,(x))- The estimatek;) with the for the hybrid estimator (see Appendix A for the extended Kalman

highest belief-stat&) [X;] = max;(h)[X:]) is taken as the hybrid filter estimation details).

estimate at time-step. Let us assume the modey; (1) = [?,ma1, m31]T which speci-
Tracking all possible trajectories of the system is almost alwaydies that component 14;) is in unknown modeA component in un-

intractable because the number of trajectories becomes too large affemown mode imposes no constraints (equations) among its variables

only a few time-steps. In [9] we present an approximative anytime(u.1 and the internal variable., in our case). As a consequence,

anyspace algorithm that copes with the exponential growth, as well ase cannot deduce an overall mathematical model of the form (1) and

the large number of modes in a typical concurrent hybrid automatoffail to provide the basis for the hybrid estimation scheme, the MIMO

model. filter for modexy; (1) = [?, ma1, ma1]”

Hybrid estimation and other multi-model estimation schemes have
in common that they require models that are 'close’ mathematical de- v
scriptions of the system. They can fail severely whenever unforeseen, o | Ya
i.e. unmodeled, situations occur. As a consequence, we have to pro- +vsl +v52 +vs3 e
vide models for all operational modes as well as an exhaustive seg; w,, ivoz Yer
of models for possible failure modes. Providing all possible failure A A A o
models can be problematic even under the assumption of an exhaukIijl 1 2 3
tive failure mode effect analysis (FMEA). For instance, consider anUs r r
incipient fault in a servo valve that causes the valve to drift off its CA
nominal opening value. The drift (positive, negative, slow, fast...) is
subject to the fault. It is surely difficult to provide a mathematical Figure 3. Example cPHA with explicit noise inputs

model with the correct parameter values that captures all possible

drift situations. Nor is it helpful to introduce a sufficiently large set

of modes that captures possible situations of the drift fault as this

would introduce additional complexity for hybrid estimation by in- However, a close look on the PHA interconnection (Fig. 3 - the

creasing the number of modes unnecessarily. figure extends Fig. 1 by including the implicit noise inputs, as well
This requirement of hybrid mode estimation is in contrast to dis-as indicating the causality for the internal I/O variables) reveals that

crete model-based diagnosis schemes, such as GDE (e.g. [5, 6, 19}¢ can still estimate component 3 by its observed oujpuiand the

Model-based diagnosis deduces the possible mode of the syste@@servationy.. as a substitute for the value of its input. This intuitive

based on nominal models, and few specified fault models only. Th@Pproach utilizes a decomposition of the cPHA as shown in Fig. 4.

onset of possible fault scenarios are covered by the so calied

known modeavhich does not impose any constraints on the system’s +Vsl Y
variables. ol

The next section provides an approach that systematically incor- U A Ya
porates the concept of the unknown mode into our hybrid estimation ™ 1 - A,
scheme.

. . . Vol +V52 *Vsa

3 Estimation with Unknown Modes Ya i Vo Y,
The estimation scheme [9] requires a fully specified mode assign- Uea AS

mentxg; () for each candidate trajectory that is tracked in the course
of hybrid estimation. Only a fully specified mode allows us to deduce
the mathematical model (1) for the overall system. This model is the
basis for the dynamic filter (e.g. extended Kalman filter) that is used
in the course of hybrid estimation.

Figure 4. Decomposed cPHA

The decomposition allows us to treat the concurrent parts of the
%Xcl system independently and calculatdilger cluster consisting of 2

Uer —»] R independent filters. However, when calculating the individual filters
— 2 i -
Ve MIMO Filter < for the cluster, we have to tgke into account t_hat we usantbe:
X3 _surement)f the |nput to the t'hlrd componergy((l)_ln repla_u?ement to_ _
Yo —» its true value. This can be interpreted as having additional additive
™ Po noise at the component’s input as indicated in Fig. 4. The following

modification of the covariance matri®s for the state variables of
Figure 2. MIMO filter (e.g. extended Kalman filter) for the cPHA example A3 takes this into account:

Qs = bgrib; + Qs, (6)
For our illustrative 3 component example introduced above
this would mean that hybrid estimation calculates a multi-inputwherer; denotes the variance of disturbange andbz = [0, 1]

raw modelfor the system given mode,. The following decom-

Uy >Xcl position performs a structural analysis of the raw model-based on
y. Filter 1 causal analysis[17, 20], structural observability analysis[7] and graph
cl > decomposition[1].

A cPHA model does not impose a fixed causal structure that spec-

> - Xcz ifies directionality of automaton interconnections. Causality is im-
Filter 2 - Xc?, plicitly specified by the set of equations. This increases the expres-

siveness of the modeling framework but requires us to perform a
Yeo > Poz causal analysis of the raw model (8) as a first step. The deduc-
tion of the causal dependencies is done by applying the bipartite-
Filter Cluster matching based algorithm presented in [17]. The resulting directed

graph records the causal dependencies among the variables of the
system (Fig. 6 shows the graph for the the illustrative 3 PHA ex-
ample). Each vertex of the graph represents one equatian F

denotes the input vectbof As with respect tay.; .

A filter cluster consisting of extended Kalman filters and the m
MIMO extended Kalman filter are interchangeable as they provideUa —We —= Xy — Yo — > X — = Xs—> Yo,
the same expected value for the continuous stéfe{)) whenever U \\/
the mode of the automaton is fully specified. However, the decom-

posed filter has the advantage that the probabilistic observation func- _
tion Py of the overall system is given by Figure 6. Causal graph for the cPHA example

Po =[] Pos,)

J

Figure 5. Decomposed filter

o)] or an exogenous variable specification (e.g.) and is labeled by
wherePo,; denotes the probabilistic observation function of it ts dependent variable which also specifies the outgoing edge (in the
filter in the filter cluster. following, we will use the variable name to refer to the correspond-

This factorization of the probabilistic observation function allows jng vertex in the graph). Vertices without incoming edges specify the
us to calculate an upper bound fBp whenever one or more com- exogenousariables.

ponents of the system are in unknown mode. We simply take the
product over the remaining filters in the cluster. This is equivalentpefinition 4 A causal graphof a cPHAC.A at a modex, is a di-

with considering the upper bounds of the inequalities; < 1for rected graph that records the causal dependencies among the vari-
each unknown filtey. In our example with unknown componedg ablesv € J, Xe; U ues U yes of CA. We denote the causal graph

this would mean: by CG(CA,x4) and sometimes omit arguments where no confusion
Po < Poz, seems likely.

where Pp, denotes the observation function for the filter that esti-

mates the continuous state of compondpt Goal of our analysis is to obtain a set of independent subsystems

The following subsection provides a graph-based approach fothat utilize observed variables as virtual inputs. Therefore, we slice
filer cluster deduction that grounds the informally introduced decom+he graph at observed variable vertices with outgoing edges, insert a
position on a more versatile basis. new vertex to represent a virtual input and re-map the sliced outgo-
ing edges to this vertex. Fig. 7 demonstrates this re-mapping for the
causal graph of Fig. 6. The observed variablesjareandy... Only
the vertex with dependent variabjg has an outgoing edge, thus we
slice the graph aj.1 — x.2 and re-map the edge to the virtual input
Starting point for the decomposition of the system for a cPHA modeuyc: .

X4 is the set of equations

3.1 System Decomposition and Filter Cluster
Calculation

ucl ’ Wcl ’ Xcl ’ ycl

)

F1(£L‘d17(k.))U...UFL(ZL‘dL(k)) =: .7:(Xd)7 (8)

whereF} (x4, (1)) returns the appropriate set of equations for a com-
ponentA; wheneverry;) € Xy or the empty set whenever the
component is in unknown mode, i€y (xy =?. Although we still
have to solve the set of equations to arrive at the mathematical
model of form (1) we can interpret the set of equations (8) as the \\/

uy°1 » XcZ » Xc3 » ch

6 In the general case, we have to calculbtefor a cPHA componentd
and observed inputaly, by linearization, more specificallyp; (ry =

of;/ouy.|, (o 1) Ui (k1) , wheref; denotes the right-hand side of
cj,(k—=1)2"cj,(k—
the difference equation for component;, uy, refers to the observed

variables that are used as inputs to the componentyje. C y.) and o)]
Rej (k—1) @aswell asu.; (,_1) represent the state estimate and the contin- A dynamic filter (e.g. extended Kalman filter) can only estimate

uous input for componend ; at the previous time-step, respectively. the observable part of the model. Therefore, it is essential to perform

Figure 7. Remapped causal graph for the cPHA example

an observability analysis prior calculating the filter so that non ob- n “ n y
servable parts of the model are excluded. We perform this analysis
on a structural basls

Definition 5 We call a variables of a cPHAC.A at modex, struc-

turally observable (SOyhenever it is directly observed, i.e.€ ye., Wer|—— | Xer Xeg| = | Yoo
or there exists at least one path in the causal géap(t A, x4) that)
connects the variableto an output variable. € y. of CA. Figure 9. Causal SCC graph for cPHA example

A filter estimates the state variables of a dynamic system based
on observationy. and the inputsi. that act upon the state variables 2 - A variable in an SCC is structurally determined, if and only if all
X.. The required knowledge about the inputs indicates that the variables in the SCC are structurally determined.
structural observability criteria is not yet sufficient to determine the
submodel for estimation. We have to make sure, that no unknown eXAs a consequence, we can apply our structural analysis to strongly
ogenous input influences a variable. To illustrate this, consider agaigonnected components directly and operate on the SCC graph, i.e
the 3 PHA example with mode,; = [?,m21, m31]7. Component a causal graph without loops. The analysis of a strongly connected
1 in unknown mode omits the equation that relates the variables component with respect to structural observability and structural de-
andw,. This leads to a causal gragl$ (Fig. 8), wherew,, is la- termination (SOD) can be outlined as follows:
beled as exogenous (no incoming edges). This unknown exogenous

input influences the state variahle; and, as a consequence, pre-))
vents us from estimating it! function determine-SOD-of-SCECC, u., k)

when SOD-undetermined3(CC)
if exogenousECC)
then v; « independent-vafCC)
U if v; € u. then SD(SCC) « True

elseSD(SCC) « False

else V « uplink-SCCsECC)
Uy — Xy — X g— Yoy loop for SCC; in'V
do determine-SOD-of-SCECC;, uc, k)
\/ SOECC) — True
SD(SCC) « all-uplink-SCCs-are-SD)
Figure 8. Remapped causal graph for the cPHA example with unknown cluster-index§CC) «— k U cluster-indicesy)
componentA; SOD-determined{CC) — True
return Nil

ucl Wcl > Xcl > ycl

We extend our structural analysis of the causal graph by the fol=

lowing criteria: Our structural analysis algorithm determines structural observabil-

ity and determination (SOD) of a variable by traversing the SCC

U- graph backwards from the observed variables towards the inputs.
|In the course of this analysis we label non-exogenous strongly con-
nected components with an index that refers to their cluster mem-
bership. This indexing scheme allows us to cluster the variables into
non-overlapping clusters with respect to the observed variables. The

Furthermore, it is helpful to eliminate loops in the causal graphdirect relation between a variable, its determining equation, and the
prior checking variables against both structural criteria. For this purcPHA component that specified this equation leads to the compo-
pose, we calculate thetrongly connected componemtsthe causal nent clusters sought. The structural analysis can be summarized as
graph[1]. follows:

Definition 6 We call a variable) of a cPHAC.A at modex, struc-
turally determined (SDyvhenever it is an input variable of the al
tomaton, i.ev € u., or there does not exist a path in the causa
graphCG(CA, x4) that connects an exogenous variable ¢ u.
with v.

Definition 7 A strongly connected component (SGf)the causal
graphCg is a maximal seSCC of variables in which there is a path function component-clustering(4, x)
from any one variable in the set to another variable in the set. returns a set of cCPHA component clusters

) vy < observed-varglA)
Fig. 9 shows the remapped causal graph for the 3 PHA example after’;,

. . . - - .
grouping variables into strongly connected components. Cg « remap-causal-grapti (CA, xa), y.)

The strong interconnection among variables in an SCC implies u. « virtuakinputsCg) U input-varsC.A) -
that: CGscc < strongly-connected-component-grapéj

k<0
1. Structural observability of variables in an SCC follows directly ~loop for SCC; in output-SCC(Gsc e, <)
from structural observability of at least one variable in the SCC. do determine-SOD-of-SCECC;, u., k)
k—k+1

7 Throughout the paper we assume that loss of observability is caused by raph-clusters— get-SOD-SSC-cluste
a structural defect of the model. Otherwise, it is necessary to perform an grap 9 | € h I@QSCC)
additional numerical observability test [18] as structural observability only '€turn automaton-clusters(4, graph-clustery
provides anecessargondition for observability.

lighting system |.7

\
7#\\ //#\\ ///d‘b\\ ///d‘b\\ pulseinjection valves
cluster 1{ A, A,} - - D——
U W X k-] Airlock Plant Growth Chamber K
1| cl ! cl ! ycl E [
sod-1 sod-1 sod-1 O flow regulator 1 Co,
E tank
o flow regulator 2
cluster 2 { A3}
— XcZ’ Xc3 " yc2
sod-2 sod-2

Figure 10. Labeled and partitioned causal SCC graph for the 3 cPHA Figure 11. BIO-Plex plant growth chamber

example

' . drifts towards its postitive or negative limit, nor do we know the mag-

Each component cluster defines the observable and determined . - .

. nitude of the drift. A fault of this type, which develops slowly and

raw model for a subsystem of the cPHA. This raw model can be S L : .

. .) . whose symptom is hidden among the noise in the system is a typical

solved symbolically and provides the nonlinear system of difference . . o

- L . » - .~ tandidate for our unknown-mode detection capability. However, we
equations (a model similar to (1), but with the additional virtual in-

puts) that is the basis for the corresponding filter in the filter clusteraISO provide explicit failure models that describe typical situations.

4 . or example, the PGC has 4 plant trays with one illumination bank
In this way we exclude the unobservable and/or undetermined par - 0 .
o or each tray. A black out of one illumination bank can be interpreted
of the overall system from estimation.

. as a25% loss in light intensity. This situation can be modeled explic-
Whenever a state variable; becomes unobservable and/or un- itly by a dynamical model that takes this reduced light intensity into
determined (e.g. due to a mode change) during hybrid estimation ybyady 9 y

we hold the value for the mean at its last known estimateand decount.
. . . 9 . In the following we describe the outcome of a simulated experi-
increase its variance; = p;; by a constant factor at each hybrid

L)) . . ment where the flow regulator fault with drifting symptom is injected
estimation step. This reflects a continuously decreasing confidence . . o .
) - X o at time pointk = 700 and an additional light fault, that harms one
in the estimatet.; and allows us to restart estimation whenever the

variable becomes observable and determined 8gain of th? four illumination banks, is injected At= 900. The faults are
repaired’ atk = 1100 andk = 1300 for the flow regulator fault and

the lighting fault, respectively. This experiment illustrates unknown

4 Example - BIO-Plex mode detection and recovery from it, nominal failure mode detection,
and the multiple fault detection capability of our approach.

Our application is the BIO-Plex Test Complex at NASA Johnson

Space Center, a five chamber facility for evaluating biological and

physiochemical Martian life support technologies. It is an artificial, d3—~

biosphere-type, closed environment, which must robustly provide all U,

the air, water, and most of the food for a crew of four without in- Ay As

terruption. Plants are grown in plant growth chambers, where they Rl LS

provide food for the crew, and convert the exhaf@@- into O-. In — A W y

order to maintain a closed-loop system, it is necessary to control the 2FR2 » CC

resource exchange between the chambers without endangering the - Yo

crew. For the scope of this paper, we restrict our evaluation to the |, ‘ A We,

sub-system dealing with'O, control in the plant growth chamber a2 3P|v1

(PGC), shown in Fig. 11.] A oV
The system is composed of several components, such as redundant A4 6 =l

flow regulators (FR1, FR2) that provide continud@ui®- supply, re- pvz| Wy Pec

dundant pulse injection valves (PIV1, PIV2) that provide a means for

increasing th&'O» concentration rapidly, a lighting system (LS) and
the plant growth chamber (PGC), itself. The control system main-
tains a plant growth optimal' O, concentration 0200 ppm during

the day phase of the system (20 hours/day).

Hybrid estimation schemes are key to tracking system operational The simulated data is gathered from the execution of a refined sub-
modes, as well as, detectjng subtle fgilures and performing diagéet of NASA's JSC's CONFIG model for the BIO-Plex system[12].
noses. For example, we simulate a failure OT the second flow r_egHybrid estimation utilizes a cPHA model that consists of 6 com-
ulator. The regulator becomes off-line and drifts slowly towards 'tsponents as shown in Fig. 12. To illustrate the complexity of the
positive limit. This fault situation is difficult to capture by an explicit hybrid estimation problem we should note, that the concurrent au-
fault model as we do not know, in advance, whether the regulatof] .o has approximatel§’ ~ 15000 modes. Each mode de-

8 Whenever a state variable.; is directly observed we also can utilize an scribes the dynamic evolution of the chamber system by a third or-

alternative approach suggested in [15] that restarts the estimator with thd€r system of difference equations. For example, the nominal op-
observed value, thus improving the observer convergence time. erational condition for plant growth is characterized by the mode

Figure 12. BIO-Plex cPHA model

Xd = [Mr2, My2, Mo1, Mo1, Mi2, Mp2], Wherem,o characterizes
an partially open flow regulator.,; a closed pulse injection valve,
my2 100% light on, andm,2 plant growth mode at200 ppm, re-
spectively. This mode specifies the raw model:

Fi(mr2) = {zc1,(6) = 0.5 Ue1,(k—1), Ye1 = Te1}
Fy(mr2) = {Teo k) = 0.5 Uer, (k1) Ye2 = Tea}
F3(my1) = {we2 = 0.0}

Fu(my1) = {wes = 0.0}

F5(my2) = {wa = 1204.0}

Fo(mp2) = {Tes,(k) = Tes, (o—1) + 20.163

[~1.516 - 10" f1(wer, (k—1)) f2 (Tes,(o—1))+
Ye1,(k—1) F Ye2,(k—1) + Wer,(k—1) + Wea, (k—1)),

Ye3 = 1'63}7
9)
where f1 and f2 denotes
fr(wer) == — 7.615 + 0.111 wep — 2.149 - 107° w2)
fo(wes) :=T72.0 — 78.89 ¢ c3/400-0,

Te1,(k) ANdxeo (1) denote the gas flow ([g/min]) of flow regulator 1
and 2, respectively and.s () denotes the”’O» gas concentration
([ppm]) in the plant growth chambei,; () andw. () denote the
gas flow ([g/min]) of the pulse injection valves ands () denotes
the photosynthetic photon flux,fmol/m?s]) of the lights above the
plant trays. The nonlinear expression

—1.516 - 1074f1 (U}Cl,(k_l))fz(xcg’(k_l))

approximates theCO, gas production [g/min] due to photo-

synthesis according to th€' O, gas concentration and chamber

The causal graph (Fig. 13) of the raw model (9) leads to the de-
composition of the system as shown in Fig. 14 (our implementation
of the causal analysis and decomposition algorithms treats constant
values, such as the value 1204.0 for the photosynthetic photon flux,
as known exogenous inputs with constant value). The decomposition
of the model leads to a filter cluster with 3 extended Kalman filters -
one for each flow regulator and one for the remaining system (pulse
injection valves, lighting system and plant growth chamber). This
enables us to estimate the mode and continuous state of the flow reg-
ulators independent of the remaining system. As a consequence, an
unknown mode in a flow regulator does not cause any implications
on the estimation of the remaining system.

cluster 1 { FR1}

e
cluster 2 { FR2}

—

cluster 3{PIVL, PIV2, LS, PGC}

uy,

\»
=
iy
/“j
/\

Figure 14. Partitioned causal SCC graph of the BIO-Plex cPHA model

Fig. 15 shows the continuous input (control signal), observed

illumination[12]. This raw model defines a third order system of flow rates for flow regulator 1 and 2 and th#&, concentration for

discrete-time difference equations with sampling period = 1
[min]:

Tet, (k) = 0.5 Uer,(k—1) + Vs1,(k—1)
Tea, (k) = 0.5 Uer,(k—1) + Vs2,(k—1)
Tes (k) = Tes (k1) + 20.163[—1.041+
L1dle s /4000 4 gy 1) 4 Do (o) + Vs, (k-1
Yel,(k) = Tel,(k) T Vol (k)
Ye2,(k) = Te2,(k) T Vo2,(k)

Ye2,(k) = Te3, (k) T Vo3, (k) >
(11)

1204.0 —= W,

/

.

w

o, s‘\

0.0

Figure 13. Causal graph of the BIO-Plex cPHA raw model (9)

the experiment. Both flow regulators provide half of the requested
gas injection rate up tb = 700. At this time point, the second flow
regulator starts to slowly drift towards its positive limit which it will
reach at approximatel = 800. The camber control system re-
acts immediately and lowers the control signal in order to keep the
CO- concentration at the requested 1200 ppm concentration. This
transient behavior causes a slight bump in @@, concentration

as shown in Fig. 15-b. Our hybrid mode estimation system detects
this unmodeled fault @& = 727 and declares flow regulator 2 to be

in an unknown mode (we indicate the unknown mode by the mode
number O in Fig. 16). The flow regulator mosieick-oper{m,s) be-

Flow Regulator 2 Estimation Detail

mode number
o B N W A& O o
T

I I I |
700 727 750 800 850
time [minutes]

Figure 16. Mode estimate detail for flow regulator 2

comes more and more likely as the regulator drifts towards its open
position. Hybrid mode estimation prefers this mode as symptom ex-

control input

<4

@
T
I

inflow rate FR2

CO2 gas inflow rate [g/min]
o
o
T

‘IU‘\"““‘ |

inflow rate FR1

o)

I I I I
600 1000 1100 1200 1300

time [minutes]

L I I
700 727 800 900 1400

(a) Control inputu. and measured O, input flow rates

CO2 concentration [ppm]

1240

1220

[N
N
o
S

1180

1160

1140

L
700 727

1120

I I I I
600 1000 1100 1200 1300 1400

time [minutes]

I I
800 900

(b) CO> level in PGC (measurement - gray/green, estimate -
black)

Figure 15. Observed data and continuous estimation of(fi®, concentration in plant growth chamber

planation fromk = 769 onwards, although flow regulator 2 goes The hybrid estimator uses a cPHA description and performs decom-

into saturation a little bit later &t = 800.
The light fault atc = 900 is detected almost instantly At= 904

position and estimation, as outlined above. Decomposition is done
on-line according to the mode hypotheses that are tested in the course

(mu4). This good discrimination among the pre-specified modesof hybrid estimation. In general, it can be assumed that the the mode
(failure and nominal) is further demonstrated at the terminationin the system evolves on a lower rate than the hybrid estimation
points of the faults. Repairs of the flow regulator 2 and the lightingrate, which operates on the sampling perfadTherefore, we cache

system are detected immediatelykat= 1101 andk = 1301, re-

recent decompositions and their corresponding filters for re-use as

spectively. Fig. 17 shows the mode estimation result for the lightinga compromise between a-priori calculation (space complexity) and

system and flow regulator 2 over the entire experiment horizon.

Flow Regulator 2

mode number

o kP N w & g O
T

1200

1100

1000
time [minutes]

900

800

I |
700 1300 1400

Lighting System

mode number

I I I I I I
700 800 900 1000 1100 1200
time [minutes]

I |
1300 1400

Figure 17. Mode estimates for flow regulator 2 and lighting system

5 Implementation and Discussion

The implementation of our hybrid estimation scheme extends previ-[
ous work on hybrid estimation [9] and is written in Common LISP. [7]

pure on-line deduction (time complexity).

Optimized model-based estimation schemes, such
Livingstone[22], utilize conflicts to focus the underlying search
operation. A conflict is a (partial) mode assignment that makes a
hypothesis very unlikely. This requires a more general treatment
of unknown modes compared to the filter decomposition task
introduced above. The decompositional model-based learning
system Moriarty[21] introduced continuous variants of conflicts,
so-calleddissentsWe are currently reformulating these dissents for
hybrid systems and investigate their incorporation to improve the
underlying search scheme. This will lead to an overall framework
that unifies our previous work on Livingstone, Moriarty and hybrid
estimation.

as

REFERENCES

A. Aho, J. Hopcroft, and J. UllmarData Structures and Algorithms
Addison-Wesley, 1983.

(1]

[2] B. Anderson and J. Moor&ptimal Filtering, Information and System
Sciences Series, Prentice Hall, 1979.

[3] Grobner Bases and Applicationeds., B. Buchberger and F. Winkler,
Cambridge Univ. Press, 1998.

[4] J. Chen and R. PattoiRobust Model-Based Fault Diagnosis for Dy-
namic Systemluwer, 1999.

[5] J.de Kleer and B. Williams, ‘Diagnosing multiple fault&rtificial In-

telligence 32(1), 97-130, (1987).
6] J.de Kleer and B. Williams, ‘Diagnosis with behavioral modesRin-
ceedings of IJCAI-8%p. 1324-1330, (1989).
A. Gehin, M. Assas, and M. Staroswiecki, ‘Structural analysis of sys-

(8]
(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

tem reconfigurability’, inPreprints of the 4th IFAC SAFEPROCESS estimate(x. (k=1) P(k_1)>, and the control input,. (k—1)-
Symposiuvolume 1, pp. 292—-297, (2000). ’ ’

Readings in Model-Based Diagnoseis., W. Hamscher, L. Console, 2 _ o

and J. de Kleer, Morgan Kaufmann, San Mateo, CA, 1992. Xeqor) = F&e i) e -1) (12)
M. Hofbaur and B.C. Williams, ‘Mode estimation of probabilistic hy- A _of 13
brid systems’, inHybrid Systems: Computation and Control, HSCC (k=1) = x| (13)
2002 eds., C.J. Tomlin and M.R. Greenstreet, volume 2289%wature Xe,(k—1)Ye,(k—1)

Notes in Computer Scienc253-266, Springer Verlag, (2002). Py = A(k—l)P(k—l)Aaq) +Q. (14)

P. Li and V. Kadirkamanathan, ‘Particle filtering based likelyhood ra-
tio approach to fault diagnosis in nonlinear stochastic systeiBEE

Transactions on Systems, Man, and Cybemnetics - PaRI(3), 337— This one-step ahead prediction leads to a prediction resigual

343, (2001). with covariance matriS<k)

X.R. Li and Y. Bar-Shalom, ‘Multiple-model estimation with vari-

able structure’|EEE Transactions on Automatic Contrdll, 478-493,)y = VYe, (k) — g(fic,(.k), ucﬁ(k)) (15)

(1996).

J. T. Malin, L. Fleming, and T. R. Hatfield, ‘Interactive simulation- C = 8£ (16)
. ‘ L (k))

based testing of product gas transfer integrated monitoring and control Xz, (ok)+Ue, ()

software for the lunar mars life support phase |1l test'SIRE 28th In- ’ T’

ternational Conference on Environmental Systems, Danvers(Jd#y, S(k) = C(k)P(ok)C(k) +R. (17)

1998).

P. Maybeck and R.D. Stevens, ‘Reconfigurable flight control via multi- The second filter step calculates the Kalman filter daiin,), and
ple model adaptive control methodtEEE Transactions on Aerospace refines the prediction as follows:
and Electronic System27(3), 470-480, (1991).

S. Mcllraith, ‘Diagnosing hybrid systems: a bayseian model selection K - p cr gl 18
approach’, inProceedings of the 11th International Workshop on Prin- (k) = (ok) (k)X (k) (18)
ciples of Diagnosis (DX00Qpp. 140-146, (June 2000). Koy = Keyok) + Kuorir 19)

P.J. Mosterman and G. Biswas, ‘Building hybrid observers for complex

dynamic systems using model abstractionsHybrid Systems: Com- Puy = [I - K(k)c(k)} Per)- (20)
putation and Control (HSCC’'99kds., F. Vaandrager and J. Schuppen, . . .)
volume 1569 of.NCS 178-192, Springer Verlag, (1999). The output of the extended Kalman filter, as used in our hybrid esti-

S._Narasimhan and G. BiS_Nas, ‘Efficient diagnosis_of hybrid systemsmation system, is a sequence of mean/covariance@aiiyr@), P(k)>
using models of the supervisory controller’,Rmoceedings of the 12th for x , + as well as the hybrid probabilistic observation function
International Workshop on Principles of Diagnosis (DXOgp. 127— ’

134, (March 2001). T s e /2

P. Nayak,Automated Modelling of Physical Systerhscture Notes in Po(y)[Ry, Ue,(ky) =€ 7RI (21)
Artificial Intelligence, Springer, 1995.

E. SontagMathematical Control Theory: Deterministic Finite Dimen-

sional SystemsSpringer, New York, Berlin, Heidelberg, 2 edn., 1998.

P. Struss and O. Dressler, ‘Physical negation: Integrating fault models

into the general diagnostic engine’,Rtoceedings of the International

Joint Conference on Artificial Intelligence (IJCAI'89p. 1318-1323,

(1989).

L. Trave-Massugs and R. Pons, ‘Causal ordering for multiple mode

systems’, irProceedings of the 11th International Workshop on Quali-

tative Reasoning (QR9,7p. 203-214, (1997).

B. Williams and B. Millar, ‘Decompositional, model-based learning

and its analogy to diagnosis’, Proceedings of the 15th National Con-

ference on Atrtificial Intelligence (AAAI-98)1998).

B. Williams and P. Nayak, ‘A model-based approach to reactive self-

configuring systems’, ifProceedings of the 13th National Conference

on Artificial Intelligence (AAAI-96)(1996).

A. S. Willsky, ‘A survey of design methods for failure detection in dy-

namic systems’Automatica12(6), 601-611, (1974).

F. Zhao, X. Koutsoukos, H. Haussecker, J. Reich, and P. Cheung, ‘Dis-

tributed monitoring of hybrid systems: A model-directed approach’, in

Proceedings of the International Joint Conference on Atrtificial Intelli-

gence (IJCAI'01)pp. 557-564, (2001).

Acknowledgments

In part supported by NASA under contract NAG2-1388.

A

Extended Kalman Filter

The disturbances and imprecise knowledge about the initial state
X.,(0) Make it necessary to estimate the state by its mean,

and covariance matri® ;). We use an extended Kalman filter[2]
for this purpose, which updates its current state, like an HMM ob-
server, in two steps. The first step uses the model to predict mean
for the statex. (o) and its covarianc®), based on the previous

State Tracking of Uncertain Hybrid Concurrent Systems!

Emmanuel Benazerd and Louise Trave-Massuyes’ and Philippe Dague*

Abstract. In this paper we propose a component-based hybrid forpresents the algorithms required to reason about hybrid models and
malism, that represents physical phenomena by combining concute track multiple trajectories in both simulation and diagnosis; Sec-
rent automata with continuous uncertain dynamic models. The fortion 5 discusses our research, compares and references some related
malism eases the modeling of complex physical systems, and addagork.

concurrency to the supervision of hybrid systems. Uncertainties in

the model are integrated as probabilities at the discrete level and ins . .

tervals at the cont?nuous Ie\f)el. Our modeling framework is rather? Hybrid System Formulation

generic while focusing on the construction of intelligent autonomous? .1 Hybrid Systems as Transition Systems
supervisors by integrating a continuous/discrete interface able to rea-

son on-line in any region of the physical system state-space, for belN€ et of all components of the physical system to be modeled is

havior simulation, diagnosis and system tracking. denqted bngmps. Every component in thgt set is described by a
hybrid transition system. The set of all variables used to describe a

component is denoteld and is partitioned in the following manner:

1 INTRODUCTION))
o IT =11, UIlc UIlgong U IIp — set of discrete variables of 4

In the past few years, numerous works have been presented to modeldistinct types (Mode, Command, Conditional, Dependent),
embedded systems with hybrid models and reason about them for = = =; U Zp — set of continuous variables of 2 distinct types
simulation, diagnosis [9] or verification [1] purposes. The model- (Input, Dependent).

ing framework usually expresses the different operating modes of

the system as a set of finite automata and associates to each mdf@de variabledI,, represent components nominal or faulty modes,
continuous knowledge encoded through standard numeric differerfUch a®nor stuck Command variablel - are endogeneous and ex-

tial equations. In this paper we propose a component-based hybrRgeneous commands modgled as_discrete_ events to the system (e.g.
formalism, that represents physical phenomena by combining corsoftware commands). Continuous input variatiigsare exogeneous
current automata with continuous uncertain dynamic models. Howeontinuous signals to the system determined by its environment (e.g.
ever it is not sufficient to add continuous knowledge to automata, bekNown inputs or disturbances). Conditional variatiles, .. are spe-
cause moving between operating modes requires the automatic cofific discrete variables that represent conditions on continuous vari-
struction of the structure of the newly assembled continuous modepfbles. Discrete and continuous dependent variables are all other vari-
It means computing both the characterization of the region of thebles. Finally the seDbs contains observable variables of the phys-
state-space of the operating mode (denoted @snéiguratior), and ical system. Each observable signal has an explicit sampling period.
a proper causal ordering between the active variables in that mod®@ur hybrid transition system is an extension of the standard transi-
No pre-study of the behavior of the physical system is required tdion system [8] that adds (qualitative or quantitative) constraints to
determine the state-space regions associated with the current sy§€ states.

Fem configuration(s) bepausg the ;earch at continuous Igvel 'S C‘.’JlStE)definition 1 (Hybrid Transition System — HTS) A Hybrid Transi-
into a boolean constraint satisfaction problem. A reasoning contlnut-ion Systenti TS is a tuple ¢/, 3., T', C, ©) with:

ous/discrete interface (C/D 1) is thus added, which provides an on- T ’
line generation of the characterization of the new model structure by 1/ — 11 U = — set of all variablesyv € V, the domain ofy
making use of enhanced Truth Maintenance techniques [18] on the s piy), finite for variables inIl, intervals or real values irk
logical model. This is keypoint to achieve the diagnosis of the hy- gtherwise.

brid system for which detection is provided by the continuous layer, 53 set of all interpretations over.

and state identification is performed at the discrete logical level by Each state i assigns a value from its domain to any variable
searching for the current configuration consistent with observations. ,, < y/.

At the same time, the logical framework allows the description of 4 7 __finite set of transition variables.

purely discrete component behavior in the same manner as in [17]. Each variabler,, in T ranges over its domai[r,,] of possible
Section 2 describes the discrete and the continuous layers; Section 3ransitions of the mode variable, € I, Eachr?, in D[r,,] is
presents the interface that integrates both layers together; Section 4 5 functionr/, : & — 2%, associated to a mapping functiop .

- - — set of (qualitative or quantitative) continuous constraints
1 This work is supported by CNES (French Space Research Center) and AS- gverV @ q)
TRIUM. :

2 Laboratory for Analysis and Architecture of Systems, Toulouse, France Each constraint in C' at least depends on one mode variable in
3 Laboratory for Analysis and Architecture of Systems, Toulouse, France I Ym € I1y, we noteC[m] the set of constraints associated
4 LIPN - UMR 7030 Universi Paris 13, France to the variablem.

e © — set of initial conditions. thermostafl’, with faulty modesstuckon, stuckoff andunknown as

© is a set of assertions ovadr such that they define the set of Well as required transitions. This thermostat switches according to
initial possible states, i.e. the set of statds ¥ such thats = ©. € room temperature (it should be in itson mode when the tem-

' peraturer < m to warm up the room, and back to @ mode when
Note that in aHT'S, due to the continuous constraintsdh some < = M to cool it down).z is hence influenced by the heater setting
transitions can trigger according to conditions over continuous varif€mperature: (in modeon) or by the outside temperature.. (in
ables. At the discrete/continuous interface level, these conditiong10deoff). The temperature variationis observed through a sensor
have a corresponding discrete variablella.nq, Which captures With additive noisetno;. Initially, * = xeq:, the room isclosedand
their truth value. Throughout this paper we illustrate the formal-the thermostat isn. Variables of bothf/7'S are:

R.mode € II); = (closed, open, unknown)
R.cmd € ll¢ = (none, open, close)
Rc€lleona = (Raxz<m,Rz>mARx<M,Rx>M)
RxecZp € [—oo0,+0o0]
Ri €Zp € [—00,+00]
R Az €Ep € [—o00,+00]
R.ino €21 € [—1,1]
R.Qc € [0.05,0.15]
R.Qo € [0.02,0.05]
Ra € [0.9,1.1]
= Test Raewy = 4
g gfue;](;ﬁ figé}fizwhe,em =z — . T.mode € IlIpy = (of f, on, stuck-on, stuck_of f, unknown)
iEz a8l TM = 17
Tm = 10
Th = 20
Figure 1. room HT'S with unknown mode Obs = {i}

2.1.1 States and Time

Considerations about time are central because both the discrete and
the continuous frameworks use time representations that are differ-
ent. At the continuous level, time is explicit in the equations that
represent the physical system behavior, we cagbhigsical timef.
Physical time is discretized according to the highest frequency sen-
sor, providing theHT'S reference sampling periofl;. =(kTs), or

z(k) for short, specifies the value of the continuous vector of state-
variables in= at physical timekT,. We call abstract timethe time

at the discrete level. It is dated according to the occurrence of dis-
crete events. At datg the discrete state; of a HT'S is the tuple
(M, Q+), wherel, is the vector of instances of mode variables, and
Q. the vector of instances of variablesIdfin qualitative constraints.
Discrete state-variables arelih\ I1¢,,q. Abstract time dates are in-
dexed on physical time, which informs about how long a component
has been in a given discrete statet ¥ kT, then we write the in-
dexed date”. When there is no ambiguity it is simply denotedtby
Thehybrid states,, of a HT'S is the tuple(mx, z(k)).

2.1.2 Transitions
Clotf) (Clstuckof 1) e = reat
C Clstuck. e = e . . .
LR Transitions describe changes between modes over time. The transi-

l2id =aQ/c(exr — T-M) tion variable associated toa mode varialaldzs denotedjm such that
its domain isD[r,,] = {7, € T} U {7d, € Tr} U {r**}, with:

Figure 2. thermostatd T'S with fault modes . . .
g e T the set ohominaltransitions that express switches from one

nominal mode to another,
e Ty the set offaulty transitions that move thé/T'S into a faulty

ism and later on the diagnosis operation on a simple example: figure mode,

1 shows thef/T'S of a room R submitted to a temperature source. ¢ ¢ theidentitytransition that allows & 7'S to stay in its current

It has two nominal modesopen(a door or a window is opened), mode

closed and a faultyunknowrmode. The room temperaturas influ- '

enced by the temperature of the sourceaccording to a first-order Because transitions cannot always be considered as instantaneous
differential equation which accounts for the room characterigdics against the frequency of the sensors, we introduce delays on nom-

(closed) and?, (open). The actions that move the room from one . o . ” "
mode to another are modeled as observed single discrete commarigg' transitions. Delayl.; 'is such that once a transitiarj, is en-

emd = open andemd = close. Figure 2 presents the model of a abledit is triggered afted ; T, i.e. afterd,. physical time units.

i
m

While a transition issnabledand waiting for its delay to expire, itis Second, initialization is performed by making use of the mapping
said to be irstandby For a matter of simplification, the delay will be - fynction, and physical time goes afine-step relationi):

referred asi when there is no ambiguity. A delay on transition can

also be modeled by adding modes and clocks to the hybrid transition (e, x(k+d) =1L (st;c)

system [4]. We do not use this representation here because we think o @
that it does not enforce the easy representation of a component as a (Mo, 2k +d) = (e, 2(0))

tran.sition system by creating modes thgt are irrelevant for thg diag\ivherex(e)
nosis purpose. To model faults, we define fault modes of which Wer,,., over the continuous timé. In the systems we are interested
know the behavior, such asuckon or stuckoff, and a unique mode j, "ot of the discontinuities are driven by controller actions and
unknowrthat is rather specific because it has no constraints and CO\sreserve the state variables continuity. In our example, the tempera-
ers all interpretations ix. Modeled faults are often abrupt faults in e is obviously continuous when the thermostat switches fram

the sense that they do not represent tenuous parameter changes. TQUS# and we use the temperatuie]M at this point to compute
faglt transitions have no delay, i.e. their duration is one physical time;, _ aQ.(z. — T.M). However it has been shown in [10] that in
unit. specific cases, retrieving a mapping function from the models of both
Definition 2 (pre and post assertions)For a given transitionr?, considered modes is far from trivial and requires deep understanding
and a given state,. € ¥, we note assertiongre(r,) = m/ A of the physics of the phenomena abstracted in the discontinuity.

andpost(r,) = m’ where:

is the continuous state associated to the discrete state

7
¢HCUCond

e m’ andm’ are two instances of the mode variabte 2.3 Component modes behavior

i ¢ﬁcwwd is a logical condition over instances of variables of We described how transitions express component’s dynamics be-
bothIlc andIlcong. tween modes. At this point we want to represent each intra-mode
We refer to theguard of a transition as the condition statement behavior with two goals in mind: on the one hand the representation
dﬁicucmd that triggers the transition. Only fault transitions can be must encode th_e available q_ualitative or_q_uantitative knowledge; on
spontaneous, so their guard can be always true. Traditionnally, proihe other hand it must be suitable for efficient reasoning. For purely
abilities are also attached to every nominal and faulty transitions. Inliscrete components, usually software drivers as well as complex
our example.T" is represented as followg { is the next operator ejectronic devices, the behavioral model is given by a set of boolean
from temporal logic): constraints oveflc U I1p that are associated to each mode variable
R.7y,,, : R.mode = closed A R.cmd = open. O R.mode = open value in the same manner as in [17]. For continuous components, the
R.t2,. : R.mode = open A R.cmd = close (O R.mode = closed continuous behavior is expressed by discrete-time continuous con-
O straints oveE. Each constraint is attached to a mode of the transition
system. The discrete-time continuous constraints are of the following
standard form:

R.T}ail : R.mode = open V R.mode = closed R.mode = unknown

T.‘riom : Tmode =off ANRx <m (O T.mode=on
T2, : Tomode =on ARax>M (O T.mode=off { z(k+1) = Az(k) +Zj:0,.“,r Bju(k —7) 3)
T.T}a” : T.mode =on ANR.x > M (O T.mode = stuck-off y(k + 1) = C:C(k + 1)
T.7}qi + Tomode =of f ARz <m O T.mode= stuck.on wherez(k), y(k), andu(k) represent the continuous state vector of
T.73,; : Tomode =on O T.mode = stuck_on dimensionn, ouput (observed) variables vector of dimensioand
T.rd . Tomode =off O T.mode = stuck-of f input (control) varigbles of dimens_ianat_timek_TS, respectivgly;A, _
T3+ Tamode = on v Tamode = of f O Tumode — unknown B, andC are matrices of appropriate dimensions. To provide a suit-

able framework for reasoning, continuous constraints are encoded in
There is no delay when the thermostat (room) switches bet@een a specific two levels formalism [15] which includes a causal model

(open andoff (closed modes. and an analytical constraint level. The causal model is obtained from
equation (3) by expressing it as a setaafusal influencesmong
2.2 Moving between modes the (state, input or output) variables. Influences may be of different

» . . types: dynamic, integral, static and constant. The following definition
When a transition triggers, the component switches from one mOd@xpresses first and second order dynamic influences:

to another, the correspondiigT'S needs to transfer its continuous
state vector as well. For that reason each transiﬂdﬂis associated Definition 3 (Dynamic inﬂuence) A dynamic inﬂuencéij is a tu-

with amapping functiori_; : ¥ — X over the dependent variables pie (¢;, ¢;, K, Ty, T;, cond) for first order differential relations and
in V. It initializes the value of a subset of variables in the hybrid (¢, ¢, K T, ¢, w, cond) for second order relations with :

state resulting from applying,, to Sk wherel is the abstract time _)

index. Other variables in, . keep their previous value. The iden- ® §iﬂ€ = a;d & € E are two continuous variables such thgt

. . _ ; . . L influenceg;,

tity mapping function is denotet!”. Triggering a transition is a two e K isthe pe{rametegain, representing the static gain of the influ-
steps operation [1]. First, mode change is performed by applying the ence

transitionr., to the current hybrid state and moving to the resulting e T, is the parametedelay, representing the time needed fyto
i g -

mode after its delay has expiretlgnsition relation—=): react tog;,
e T, is the parameteresponse timeepresenting the time needed by
i 1) &; to get to a new equilibrium state after having been perturbed,
i e (is thedamping raticof the system,
Sip St;ﬂ:ﬁd e w is theundamped natural frequenofthe system,

i €T, (st;c,st;cM) €x? Sk = pre(rk)

e cond is the parameteconditionwhich specifies the logical con- A T4 R

dition under which the influence is activeimnd ranges over ele- - Azx — 1. Ris; _ =
T2 T Tz -3
ftis @&
The underlying operational model of dynamic influences is provided y
by the following equation:

inai
Gl = Y apfl—p)+ Y. bi(k+1-q) (4)
p=0,...,n—1 q=0,...,m

Figure 3. Causal nominal system description of the thermostat and room

where¢; and¢; are continuous variables, is the influence order example

andm < n (causal link). Usually an equation is modeled by a set of
influences. When necessary, uncertainties can be taken into account
in the influence parameters and as additive disturbances. The first amgfinition 5 (Hybrid Component System — HCS) A Hybrid Com-
represented by considering that parametgrandb, have time in- ponent SystemHCS is a tuple (Comps,V,%,T,C,0) with
dependent bounded values, i.e. they are given an interval value. Th@mps being a set ofs components modeled as concurrent hybrid
latter can be introduced as a bounded value constant influence agj;, ...

ing on¢;. From the superposition theorem that applies to the Iineal(rﬁalnSItlon systeméli = (Vi, %0, T2, Cis 0)y Uiz . Vi) = Vi
case, the computation of the updated value of varighles = in DS ®i N, T = Ui T, C = Uz- Ci, 0 = Ui ©i.

an equatioreq consists in processing the sum of the activated influ-

ences froneq having exerted og; during the last time-interval. The - - . .
rediction update of all the state and observed variablé3 and of atrajectory as a succession of states. At each time-step, constraints
P and commands first synchronize on shared variabl€sinIl- and

y(k.) frpm the '_"T‘°W"?dge of control variablas(k) and influence = (the room and the thermostat shake:). Shared variables serve
activation conditions is performed along the causal model structure; *.. o
. o o . as time-dated communication channels between automata. The au-
Our representation of uncertainties leads to the prediction of contin: .
- - s tomata must nevertheless synchronize between states. The synchro-
uous variable trajectories in the form of bounded envelopes. In other._ . s . .
o . nization uses transitions and is such that given components of the

words, the system statg k) at every time instant = k75 is pro-

vided in the form of a rectangle of dimensian HOS:

We track the evolution of & C'S over a temporal window in the form

e HTS that received a command synchronize on the corresponding
nominal transition,
e non commanded 'S synchronize on the identity transition®.

Definition 4 (Causal system description — CD)The causal system
description associated to the set of continuous constraintsb &

is a directed graptG = (E, I) where! is a set of edges supporting
the influences among variablesah with their associated conditions

When synchronizeddT'S instances are introduced into the trajec-
and delays.

tory whereas otheH T'S are not copied at each time-step. Intuitively
The numerical intervals obtained from equation (4) are refined at theve want to only introduce the minimal subset of t&"S necessary
analytical model level with global constraints by performing a toler-for tracking and diagnosis purposes. In [11] and for discrete-only
ance propagation algorithm [6] on the set of variables. Back to thenodels, this subset is computed using a pre-compilation of prime
example, the feasible continuous state&adre specified by the in- implicants of mode variables. In our implementation, transitions syn-

fluences in eaclti T'S: chronize a posteriori, and only when needed by the reasoner to oper-
ate. This saves big amounts of memory as when tracking a physical
R.i1 (static) : if (R.mode = closed) thenR.Ax gein=Ce p & system in its nominal long-term state, very few components need to
R.io (static) : if (R.mode = open) thenR.Ax 9¢in=Q0 p & be reintroduced. i e . i
, The concurrency process is complexified by the introduction of
R.iz (integral) : R *“5" R delays on transitions. Figure 4 presents an example of the synchro-
Ruis (static) : Rop 7%= 919V =1 p Ay nization of four concurrenHT'S, H; to H4. Four transitions are
T.i1 (constant) : if (T.mode = on V T.mode = stuck.on) then enabled on shared variables at time-sfepnd synchronize over the
Th — R.Az three next time-steps with different delays, exceptdey andd-,
T.is (constant) : if (T.mode = of f V T.mode = stuck_of f) then that are equal{, andH>, as well asH3 and H, have constraints that
R.zent — R.Az share variables. Due to different commands, the concurrence makes
T.iz (constant) : T-&noi — R.2 the four HT'S change mode at tim&' whereas otheHT'S in the

model stay inactive (they are not represented on the figure). Then the
synchronization effort takes into account delays of triggered transi-
tions as well as the links betwedfT'S through shared variables:

Influences without explicit conditions are valid in all modes except
in the unknownmode. Figure 3 presents the nomiaD for the
room and the thermostat.

e H, andH,4 have the same delay and thus participate a same hybrid

2.4 Hybrid Component System state at time-stef); ; 2,
Once components have been modeled FAES, constituting a ® Hi andH> synchronize at,,™ . This is done with the identity

generic reusable database of models, they need to be assembled in dransition onf. hrd

Hybrid Component Systetn model the entire physical plant. Com- ® H1 (or Hz) and H4 don’t synchronize at,,, "' because they
ponents are hence instantiated. Within the whole plant model, com- don't share any variables,

ponents are concurrent, i.e. able to evolve independently which ale H; and H, share variables budon’t synchronizeat tfj{i*? be-
lows us to reason on subparts of the model. causer; is already instandby

The last remark is of importance because it relies on the hypothesia the model, a proper causal ordering of variables is to be found
thatwe cannot track or diagnose a physical component while it iswhen entering the new mode. A brute force approach would con-
switching from one mode to anothée. when one of its transitions sist in generating a new causal structure for every different mode.
is in standby as the required transient models are often unknown oiThe problem of performing an on-line incremental generation of the
too complex. The consequence is that components only synchronizsausal structure has been previously addressed [16] but it is solved

in their non-standby states. here in a slightly different manner. This is done by first casting the
B problem into a boolean constraint satisfaction problem: every con-
Hy: 81 H 8141 Tl 143 tinuogls equatiotr: and va;]iablle in ttEéCSfishassocialL)tled to boolean
variables inlT whose truth values state if the variables or equations
. 73
s : E @ are active or not. Rules over the boolean variables are automatically
Hy 5 7 (ot 7 [oa) 7t P built to represent the conditions of these activations and form a logi-
E L o , D cal representation of the causal-ordering problem.
time i iy htin i+ 3.3 Overview
The previous configuration and causal ordering problems are solved
on-line by using a truth maintenance system (TMS) to reason on the
) N corresponding boolean constraint satisfaction problems. We use the
Figure 4. synchronization over 3 states of foliT'S. e . .
context switching algorithms of [18] because we are not interested
in generating all configurations of the physical system but to switch
from one to another as fast as possible. Fh€'S reacts to events,
. . Discrete level
3 Continuous/Discrete Interface o G i
3.1 Configurations -’ /o

Depending on the mode at a given time&'S has its hybrid state Configurations
that ranges over several continuous regions. These regions are known
to be difficult to determine and compute, if not undecidable. We pro-
pose an on-line mechanism to keep track of the state-space partition e e P e e
by sheltering every continuous functional piece with a conjunction szi'_ = o

of logical conditions we denote aganfiguration] /’/T \ *

\
\
\
N

,

/ * , '

,

/ \’\ \
y
;
1 ’ A
7
’ 4 A

]

discrete events
continuous events

Ll e x1 xn

Definition 6 (HC'S configuration) A configuration for aHC'S at
time-step” is a logical conjunctions,x = (A, m") A (A, 11%,,,.4)

where then! are instanciations of component modegli; and the
It/ are variables ofilcona.

The configurations are automatically drawn from conditions on botH-€- Observations from sensors as well as commands, and propagates

transition guards and influences that define structural changes in tfgem to the model's discrete and continuous levels through the logi-

model. A configuration can be attached to one or more modes igal interface and the way back. Figure 5 sums up these interactions.

I1,,. In our example, the continuous state is easily partitioned by thd he C/D |, made of the variables ific.na associated to influence

thermostat’s transitions into three regions determined by the thregonditions and transition guards, as well as the causal ordering log-

conditions on variable, defining27 configurations: ical model, ensures the logical consistency of the changes triggered
by the flow of events.

Figure 5. 3-layers interactions

C1 : R.mode = closed NT.mode = on AN R.x <m
Cz : R.mode = closed AN T.-mode = on A (R.x > m A Rx < M)
Cs : R.mode = closed AN T.-mode = of f AN (R.x >m A Rax < M) 4 Simulation and DlagnOSIS ofa Hybrld

Cs : R.mode = closed A T.mode = of f A R.x > M Component System

4.1 Simulation
Whatever the complexity of the conditions defining the regions of

the physical system, it is easy to logically express any condition as & HC'S simulation is a run of concurrent hybrid transition systems
boolean variable ofLc,,4, Wwhose 1/0 corresponds to the condition that generates possible nominal trajectories of #€S according

and its negation. This however leads to a number of partitions thaf© issued commands and inputs over the time. The uncertainty on
is not optimal relatively to the exact number of state-space regionfe continuous constraint parameters determines the precision of the
in which the physical system evolves. Note that the configuratiorfomputed envelopes that enclose the observed behavior of the phys-

associated to thenknowrmode encompasses the overall state-spaceiCal system at each time step. o . .
Sometimes the truth value of a condition in a configuration may

be undetermined when checked against a rectangular enclosing of
the continuous state-variables. The problem arises from the fact that
When switching from one mode to another, some equations and varsome variables over which configurations rely are not measured.
ables are added or retracted according to the new configuration. Colivhen the computed bounds of such a continuous varigbspan
sequently, due to the possible presence of static continuous equatioager more than one configuration region relying on that variable, we

3.2 Causal ordering for static equations

say that the currerttonfiguration is splitting the continuous state on At time-steptf, due to the crossing af = M, the current configura-
variable ;. Figure 6 shows a configuration split for the thermostattion is splitted onz. A new partial hybrid state comes from equation

(5):
emporal
< Jnce%ﬂinfy R.mode = closed N T.mode = on N R.x > M
:] Then bounds of variable are refined in each configuration by fil-
=M 2 tering the values with respective constraifts > m A R.x < M
22 andR.xz > M. As transitionT.72,,, turnsenabledwith the second
configuration, the configuration is instantaneoudy£,,, has no
_ delay) updated to:
x=m \ C4 : Romode = closed N T.mode = of f NRx > M (7)
t
0 iyt oF ekt From that point the system tracks two distinct trajectories.

Figure 6. Transition guard split .
4.2 Fault Detection

The detection algorithm then uses the above prediction of the endo-
example when crossing — M. The current configuration splits on geneous continuous variable values to obtain robust decisions about

regionsz' andz? and the two possible trajectories are tracked simul-the existence of faults, based adaptive thresholdprovided by the

taneously. In applications, this situation happens rather frequentl nvelop(_as upper and lower bounds. Th|s_ is performed _by comparing
and multiple consecutive splits of a guard on the same variable ca e predicted and observed values of variables across time. The adap-
occur because sensor frequencies are usually beneatiertiyo- tive thresholds principle fairly reduces the possibility of false alarms

ral uncertaintyinduced by the envelopes. We first want to split the when tracking the system. However, to achieve better robustness, we

continuous state into logical branches then refine consequently tr%ésually mark a variable as mibehaving after it has been outside of its

bounds on all continuous variables in every explored branch. For ounds for at least..» physical time-steps. After that delay, the

given continuous variablg;, the logical split of a configuratiod, lagnosis op(_ergtlon Is triggered. . L . .
returns the set of possible configurations to be tracked: For dynamic influences, the algorithm sensitivity relies on a mixed
' strategy which combines an observer type strateggséd-loop

mode, i.e. the measure of a variahleat time ¢ is used to elabo-
[0,x](&) = \/ (Hgondsv A </\ Hgond>) (5) rate the prediction of at time¢ + 1) with a pure simulation strategy
’ n (open-loopmode, i.e. the prediction gfat timet-+1 is obtained from
) the prediction ofy at timet) to determine the thresholds and further
wherellz,,q, are variables oflconq relying ong; andIl¢,,. assess variable states. We call this strateggmai-closed l00gSCL)
other conditions i, . Relation (5) is used to compute the splitted strategy [13]. The mode control (open-loop or closed-loop) depends
areas because it is much faster than exploring the overall continusn whether the observed value of a variaplis in the predicted en-
ous state space. The following algorithm is applied on every trackestelope (normal situation) or out of it (alarming situation). As soon
trajectory: as the variable becomes alarming, running on a closed-loop mode
might drive the prediction to follow the fault, turning the detection
procedure insensitive to the fault. The prediction temporal window is
edt 1 hence scaled up by switching to the open-loop mode. Note that the
which it is splitting the state-space, _ fault detection mechanism is very efficient at ruling out wrong trajec-
2. The state-space is logically splitted with relation (5). For each conyqyies issued from multiple successive splits on the same boundary
flguratlon§§k in [0,%](&;), its corresponding contlngous region is onstraint.
denotedr; (k) and its corresponding discrete statg e, . Figure 7 shows three scenarios with faults where detection is ap-
3. Envelopes over variables i are refined in every regiongi(k) plied. On the first scenario the thermostat fails to switch at time-step
by filtering them on the constraints defined by the conditions in63 and sticks to it®n mode. In the second scenario the consfant

J

1. The configuration,. is checked against the rectangular region
defined by variables’ predicted envelopes to find a varigbterer

the configuration [6]. is degraded from time-stefs to a lower value, so the heater is slower
4, (wfk i :rg (k)) constitute new hybrid states enclosed in new tra-to warm the room. Scenario three presents a fault characterized by an
jectories to be tracked. abrupt structural change in the thermostat model. For all scenarios,
isb — 1.

Nm
The three preceding steps are applied for remaining variables on the
growing set of generated trajectories. Finally the resulting set of com-

puted hybrid states is: 4.3 Diagnosis
j ; When a fault is detected, a diagnosis comes back to find the cur-
[ser] = ®(7rtk & 7$§i(k)) ©) rent configuration of théZ C'S according to observations, inputs and
i commands. This must be performed over a finite temporal window

In our example, the thermostat's configurations only split on thel 11, but because of the fault detection at a continuous level the prob-

temperaturer. On figure 6, until time-step?, the configuration of lem of losing solutions is strongly reduced. The temporal window is
the HCS is ' usually set up to the physical time that corresponds to the longest

chain of non-repeated transitions. In our exanilflgohysical time-
Cs : R.mode = closed A T.mode = on A R.x > m A Rax < M steps cover ann-off complete sequence.

24

22

20

fault

detection

X

Xmax, xmin ------

fault

xd
xdmax, xdmin ---

@
S

80

100

20

40

L

80

(a) Scenarid, x: After detection and diagnosis, a few more time-
steps are necessary for the prediction to catch up with the physical
system. This comes from the fact that the estimation of the time
of the fault is not accurate enough: because of the time uncertainty

due to the envelopes, the estimation is a few time-steps late.

0 20

(b) Scenaridl, z:

the fault is detected at time-stég.

fault

detection

X

il
&

detection

xd
xdmax, xdmin -~

L
40

(c) Scenario2, x: After the fault is diagnosed, thilind state-

velope shows that it is not sure if the thermostainor off.

100

(d) Scenari@, &: The fault is not so abrupt as to be detected in-

tracking methodises the nominal behavior of the thermostat and stantaneously. Measures iothe predicted bounds again at time-

predicts all possible switches at each time-step: the very wide en- step69. This is due to the fact that when using thénd state-
tracking methodthe thermostat’s controller model is still switch-

ing on valid thresholds.

20

detection

detection

xd
xdmax, xdmin

100

(e) Scenari®, z: The thermostat switches on valid thresholds and (f) Scenaria3, &: After a thermostat’s structure change, the heater

theblind state-tracking methokkeeps a relatively good tracking of

the temperature after the fault occured. This is due to the fact that its nominal behavior.

the physical model of the room is still valid.

Figure 7. Three fault scenarios

setting temperatur@'.h is oscillating. When turnedff, 7' keeps

Definition 7 (HC'S Diagnosis) A diagnosisdiag(t) overm time- 4.3.2 Diagnosis example with the unknown mode
steps for aHC'S is such thatliag(t) = {6 }=1,...,m With the con-
sitency of: Scenario® and3 primarily lead to diagnosi8a where the thermo-
stat is in theunknownmode. This mode is useful at the discrete level
U 5 ®) because it assures tlhat there is always a.solution to the diagnpsis
""" T problent. At the continuous level however, it has no model, so it is
T not possible to track &T'S in that mode. Isolating thenknown
Solving relation (8) is a three steps operation. First, existing conflictutomata so as to continue the prediction of the behavior of others
(a set of influences which cannot be unfaulty altogether) are exhibf/ 7S in the model often leads to tracking based on a wrong model:
ited from the causal system descripti@nip) of the HCS, each in- in scenari®, once the mode ¢f has been diagnosed to tieknown
fluence stamped with a temporal label and activation condition. Thesnfluences referring t@” are inactive which is equivalent to predict
are then turned into diagnosis candidates by a failure-time orientegk’s behavior withT".A = 0. Our current solution to that problem is to
enhanced version of the hitting set algorithm [14]. Temporal infor-yse a dedicatehlind state-tracking methothat is applicable thanks
mation is drawn from maximizing on each components the delays ofp the semi-closed loop fault detection strategy described in subsec-
the influences downstream the faulty variable€ip. tion 4.2. When a component is found to be intitknownmode, the
Second, at the configurations level, the TMS negates the activatiofominal model of the component is used instead. The detection mod-
conditions of the conflicting influences and fastly iterates through theyle runs on open-loop prediction mode until the measures fall into
logical remaining configurations to reinsure the consistency. Finallythe envelopes again. This is guaranteed to occur because the open-
every found configuration is checked against the past observationsop predicted envelopes widen with time (uncertainty propagation
over the temporal window before being approved as in [11] excepbf interval models). Triggered by this event, the detection module
that candidate generation and consistency checks are interleaved agp@én switches to closed-loop prediction mode and is able to track the
run from present time back to the beginning of the temporal windowsystem until the measures get out of their bounds again, and so on.
Configuration solutions to the diagnosis problem contain a mode inThjs is the method applied on scenariband3 on figure 7. How-
stanciation of every necessary component infiieS explainingthe ever in scenari®, an improved solution could be to use parameter
observations. Note that on figure 7, for all three scenarios, the diagsstimation techniques as proposed in [9] because the structure of the
nosis operation is performed in less titah seconds on a Pentium Il model is still valid. But drawbacks are the additional computational
300 Mhz, which is beneath the measures’ frequency, so the detectiafbst and the fact this would leave the system untracked for a period

time-step is equal to the diagnosis time-step. of time (proper parameter estimation requires to wait for properly
excited data). More research is needed to integrate existing parame-
4.3.1 Diagnosis example with a fault mode ter estimation and model fitting techniques into our framework. Also

note that such faults generally result from the natural degradation of

When applied to the first scenario, the diagnosis starts s SOQe monitored physical system and could be taken into account in
as © goes out of its bounds for all currently tracked trajecto- causal models [12].

ries: iterating through the system nomin@lD from figure 3, at

timestep68 the influences in conflict ar® = {T.i3, T.i2, R.i1,

R.i3, R.i4}. Relatively to the current configuration (7) it is equiv- 5§ Summary, Discussion and Related Work

alent to add the constrainisc = {\/mi:D[T‘mode] T.mode =

m', Romode = closed, T.mode = off V T.mode = In this paper we extend previous work on diagnosis in the Al com-

stuck_of f, \/WED £ mode] R.mode = m’} which are activation munity by presenting a formalism that merges concurrent automata

conditions on the influences in conflict. &&i4 has a delay of, the ~ With continuous dynamic system models and reasons about its con-

elements of the last conflict are stamped with the current physicdigurations using logical tools. The problem of reasoning about and

time minusl. Other conflicts elements are stamped with the currendiagnosing complex physical plants without computing their contin-

physical time. uous reachable state-space is addressed. The approach integrates nu-
The TMS then seeks for consistency on both the configurationsnerous techniques from different fields into a runnable standalone

and the transition model starting from the current configuration byapplication, which is able to deal with real-world problems such as

inserting the negation of the elementslia: I'-c = {T'mode = gaqliite state-tracking [3]. The modeling, simulation and diagnosis

unknown, R.mode = open V R.mode = unknown,T.mode = . . - . . .
on V Tamode — stuck.on NV T-mode — unknown, R.mode = tools are implemented, including the engine that splits the configu-

unknown} and returns the following possible configurations rankedrations. The program generates a C++ runtime that is intended to be
according to the probabilities attached to transitions and to the numdemonstrated on an autonomous spacecraft test bench at CNES.

ber of faults leading to them: Other formalisms for building comprehensive and tracktable hy-
1 : (R.mode = closed) A (T.mode = stuck-on) A (R.x > M) brid systems include [10] and [4]. But none of these approaches pro-

2a : (R.mode = closed) A (T.mode = unknown) A (R.x > M) vide an intuitive component-based framework allowing engineers to

26 : (R.mode = unknown) A (T.mode = stuck-on) A (R.x > M) build reusable models of equipments. Moreover the models often in-
3 : (R.mode = unknown) A (T.mode = unknown) A (R.xz > M) clude numerous functional modes that are irrelevant to the diagnosis

task. For instance [4] introduces additional modes to deal with de-

layed transitions, and [10] rather focuses on the expression of the
proximations able to produce sound hybrid models of complex
ysical systems. Besides, it examines types of discontinuities that

are rarely encountered in controlled systems. In such systems, most

Other configurations with the thermostat in modes stuckoff, or

the room in modepenare ruled out during the search process be-
cause there are no transitions or past observations and commal
consistent with these configurations. Diagnasifits with the fault

in the first scenario (thermostat took transitiqh”). The state vec-

tor is reinitialized according to the mapping functionwf,;; (I**) 5 Note that theunknownmode is also a dead-end since no nominal transition
before the tracking continues. can lead out of this mode.

of the discontinuities are driven by controller actions and preservey Acknowledgements

state variables continuity.

our work takes numerous ideas from the discrete-only work at the//€ are very thankiul to Marie-Claire Charmeau and Bernard Polle

basis of Livingstone [17, 11] and adds and links continuous know

I_for providing information about application and valuable comments

edge to it. The difficult problem of the temporal window that required on this work.

aggregating in a history all past states in every tracked trajectory

is now strongly reduced as it is less likely that a wrong trajectoryREFERENCES

is tracked without detecting anomalies at the continuous level. [9] 1]
introduced a diagnosis-dedicated hybrid formalism relying on error
bounds for the detection parts, but without concurrence nor transi-
tions triggered autonomously from the continuous level; it uses prob-
abilities, parameter estimation as well as data fitting to refine the di-
agnosis. [20] unifies traditional continuous state observers with hid-
den Markov models belief update in order to track hybrid systems
with noise but do not include concurrent models nor any mapping
function discussion. The approach is interesting because it make
extensive use of probabilities where we chose to rely on bounded
uncertainties (intervals) at the continuous level and on probabilities
at the discrete level. In fact these are different uncertainties as thé4]
uncertainty is uniformly distributed in the case of intervals whereas
[20] relies on normal laws. In our point of view using probabilities [5]
at the discrete levels allows to prune an otherwise prohibitive search,
but intervals offer a more compact representation of uncertainties on
continuous variables. However, the point would need more discus{6]
sion and research. Similar approaches also include [21] that com-
bines a Petri net and signal analysis to estimate the discrete modem
and overcome an exponential cost in the number of sensors, but lacks
an efficient diagnosis engine; and [7] that uses a dedicated bayesian
network as well as a method of smoothing that helps successfully di{8]
agnose faults with a very low belief state. Note that the model check- 9]
ing community has recently investigated the use of interval-baseqI
numerical models [5].

An advantage of our approach is that any type conditions ad10]
sociated to transitions and influences (e.g. continuous functions as
guards) can be modeled and tracked without being directly observeﬁh]
Finally on-line performances can be enhanced as the formalism al-
lows the logical model to be pre-compiled before use by generatin{f 2]
prime-implicants on transition guards [19] and influence conditions.
However it still happens that trajectories cannot be discriminated due
to too much imprecision on parameters that leads to overlapping er3]
velopes. A solution to this problem has been to merge such envelopes
and corresponding trajectories. Another remark concerns the splits
that occur and are not linked to any real mode or structure changé%‘”
in the model: when starting the thermostat and room models with
external temperature..: < m, a split occurs when first crossing [15]
atxz = m. These splits however are sound and refine the bounds
on continuous variables as they allow the system to reduce temporal
uncertainty at the crossing point. [16]

Further work will focuse on reconfiguration by reasoning on con-
figurations with the same core algorithms as for diagnosis. This wil[17]
be done by identifying a set of goal configurations and find under un-
certainty a valid plan made of least costly endogeneous comman
to reach each goal. We think that additive improvements could als
include automatic controller synthesis as in [2] as well as parametgi 9]
estimation based on the causal structure of the continuous level in
order to refine the tracking of the system when iniitknowrmode. ~ [20]
In a near future more results are to come out as our implementation is
intended to be tested on spacecraft models and run on-board groum]
based satellite hardware.

(2]

8]

R. Alur, C. Courcoubetis, N.Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A.Olivero, J.Sifakis, and S.Yovine, ‘The algorithmic anal-
ysis of hybrid systems’, ifProceedings of the 11th International Con-
ference on Analysis and Optimization of Discrete Event Systems
331-351, (1995).

E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, ‘Effective
controller synthesis of switching controllers for linear systerRsg-
ceedings of the IEEE, Special Issue on Hybrid Syst884011-1025,
(July 2001).

E. Benazera, L. Tra&&Massugs, and P. Dague, ‘Hybrid model-based
diagnosis for autonomous spacecrafts’Pioceedings of the first ESA
Workshop on On-Board Autonomy, October 2001, Nordwijk, Nether-
lands pp. 279 — 286, (2001).

T. Henzinger, ‘The theory of hybrid automata’, Rroceedings of the
11th Annual IEEE Symposium on Logic in Computer Science (LICS
'96), pp. 278-292, New Brunswick, New Jersey, (1996).

T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi, ‘Be-
yond HYTECH: Hybrid systems analysis using interval numerical
methods’, intHSCG pp. 130-144, (2000).

E. Hyvonen, ‘Constraint reasoning based on interval arithmetic: The
tolerance propagation approackitificial Intelligence 58(1-3), 71—
112, (1992).

Uri Lerner, Ronald Parr, Daphne Koller, and Gautam Biswas, ‘Bayesian
fault detection and diagnosis in dynamic systems’ARAI/IAAI pp.
531-537, (2000).

Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concur-
rent Systems - SpecificatidBpringer-Verlag, 1992.

S. Mcllraith, G. Biswas, D. Clancy, and V. Gupta, ‘Towards diagnosing
hybrid systems’, irProceedings of the Tenth International Workshop
on Principles of Diagnosis DX-991999).

P. J. Mosterman and G. Biswas, ‘A comprehensive methodology for
building hybrid models of physical systemg\rtificial Intelligence

121, 171-209, (2000).

P. Nayak and J. Kurien, ‘Back to the future for consistency-based tra-
jectory tracking’, inProceedings of AAAI-2000, Austin, TexéZ000).

R. Pons, L. Trag-Massugs, and M. Porcheron, ‘Model-based diagno-
sis and maintenance of time-varying dynamic systemg$?rateedings

of the Tenth International Workshop on Principles of Diagnosis DX-99
pp. 211-219, (1999).

L. Trave-Massugs, T. Escobet, R. Pons, and S. Tornil, ‘The ca-en di-
agnosis system and its automatic modeling methG@dmputaaddn i
Sistemas Journab(2), 128-143, (2001).

L. Trave-Massugs and J.A. Jimenez, ‘Fault detection and isolation in
the ca-en system’, Technical report, LAAS-CNRS, Toulouse, France,
(2001).

L. Trave-Massugs and R. Milne, ‘Tigertm: Gas turbine condition mon-
itoring using qualitative model based diagnosIEEE Expert Intelli-
gent Systems & Applicationgl997).

L. Trave-Massugs and R. Pons, ‘Causal ordering for multiple modes
systems’, inProceedings of the Eleventh International Workshop on
Qualitative Reasoningp. 203 — 214, (1997).

B. C. Williams and P. Nayak, ‘A model-based approach to reactive self-
configuring systems’, irProceedings of AAAI-96, Portland, Oregon
pp. 971-978, (1996).

B. C. Williams and P. Nayak, ‘Fast context switching in real-time rea-
soning’, inProceedings of AAAI-97, Providence, Rhode Is|g2897).

B. C. Williams and P. Nayak, ‘A reactive planner for a model-based
executive’, inProceedings of IFCAI-971997).

B.C. Williams, M. Hofbaur, and T. Jones, ‘Mode estimation of prob-
abilistic hybrid systems’, Technical report, Massachusset Institute of
Technology, (2002).

Feng Zhao, Xenofon D. Koutsoukos, Horst W. Haussecker, James Re-
ich, Patrick Cheung, and Claudia Picardi, ‘Distributed monitoring of
hybrid systems: A model-directed approach’,|dCAl, pp. 557-564,
(2001).

HCBFS. Combining Structure-Based and TM S-Based Approachesin
M odel-Based Diagnosis

T. K. Satish Kumar
Knowledge Systems L aboratory
Stanford University
tksk@ksl.stanford.edu

Abstract

Model-based diagnosis can be formulated as the
combinatorial optimization problem of finding an
assignment of behavior modes to all the compo-
nents in a system such that it is not only consis-
tent with the system description and observations,
but also maximizes the prior probability associated
with it. Because the general case of this problem
is exponential in the number of components, we
try to leverage the structure of the physical sys-
tem under consideration. Traditional dynamic pro-
gramming techniques based on the underlying con-
straint network (like heuristics derived from maxi-
mum cardinality ordering) do not necessarily sup-
plement or do better than algorithms based on using
truth maintenance systems (like conflict-directed
best first search).

In this paper, we compare the two approaches and
examine how we can incorporate the dynamic pro-
gramming paradigm into TMS-based algorithms to
achieve the best of both the worlds. We describe
an algorithm called hierarchical conflict-directed
best first search (HCBFS) to solve a large diag-
nosis problem by heuristically decomposing it into
smaller sub-problems. We also delve into some of
the implications of HCBFS with respect to (1) pre-
compiling the system description to a form that can
amortize the cost of a diagnosis call and (2) facili-
tating other hybrid techniques for diagnosis.

1 Introduction

Diagnosis is an important component of autonomy for any
intelligent agent. Often, an intelligent agent plans a set of ac-
tions to achieve certain goals. Because some conditions may
be unforeseen, it is important for it to be able to reconfigure
its plan depending upon the state in which it is. This mode
identification problem is essentially a problem of diagnosis.
In its simplest form, the problem of diagnosis is to find a
suitable assignment of modes in which each component of
a system is behaving in, given some observations made on
it. It is possible to handle the case of a dynamic system by
treating the transition variables as components (in one sense)
[Kurien and Nayak, 2000].

Definition (Diagnosis System): A diagnosis system is a triple
(SD,COMPS, OBS) such that:

1. SD is a system description expressed in one of several
forms — constraint languages like propositional logic,
probabilistic models like Bayesian network etc. SD specifies
both component behavior information (SDg) and compo-
nent structure information (i.e. the topology of the system)
(SDr).

2. COMPS is a finite set of components of the system. A
component comp; (1 < i < |COM PS|) can behave in one
of several, but finite set of modes (1/;). If these modes are
not specified explicitly, then we assume two modes — failed
(AB(comp;)) and normal (—AB(comp;)).

3. OBS is a set of observations expressed as variable values.
The task of diagnosis is to “identify” the modes in which
individual components are behaving given the system de-
scription (S D) and the observations (OBS).

Definition (Candidate): Given a set of integers
i1---icomps (such that for 1 < j < |[COMPS)|,
1 < i; < |Mj]), a candidate Cand(iy ---ijcomps)) IS

defined as Cand(il tee 7:|C’OMPS|) = (Li?MPSl

M (ir))).]
Here, M, (v) denotes the v*" element in the set M, (assumed
to be indexed in some way).

(compy, =

2 Diagnosis as Combinatorial Optimization

Consider diagnosing a system consisting of three bulbs
B;,Bs and Bj connected in parallel to the same volt-
age source V under the observations of f(B1), of f(Bs)
and on(Bs3). AB(V) A AB(Bs) is a diagnosis under the
consistency-based formalization of diagnosis [de Kleer et al.,
1992] if we had constraints only of the form —~AB(B3) A
-AB(V) — B3 = on. Intuitively however, it does not
seem reasonable because B3 cannot be on without V' work-
ing properly. One way to get around this is to include fault
models in the system [Struss and Dressler, 1989]. These are
constraints that explicitly describe the behavior of a compo-
nent when it is not in its nominal mode (most expected mode
of behavior of a component). Such a constraint in this exam-
ple would be AB(B3) — of f(Bs). Diagnosis can become
indiscriminate without fault models. It is also easy to see
that the consistency-based approach can exploit fault models
(when they are specified) to produce more intuitive diagnoses

(like only By and B- being abnormal).

The technique of using fault models however is associated
with the problem of being too restrictive. It may not model
the case of some strange source of power making B3 on etc.
The way out of this is to allow for many modes of behavior
for the components of the system. Each component has a set
of modes with associated models — normal modes and fault
modes. Each component has the unknown fault mode with
the empty model. The unknown mode tries to capture the
modeling incompleteness assumption (obscure modes that we
cannot model in the system). Also, each mode has an associ-
ated probability that is the prior probability of the component
behaving in that mode. Diagnosis can now be cast as a com-
binatorial optimization problem of assigning modes of behav-
ior to each component such that it is not only consistent with
SDUOBS, but also maximizes the product of the prior prob-
abilities associated with those modes [de Kleer and Williams,
1989]. Note that the combinatorial optimization formulation
of diagnosis assumes independence of the behavior modes of
components.

Definition (Combinatorial Optimization Characterization) A
candidate H = Cand(i1 ---ijcomps|) is a diagnosis if
and only if SD U H U OBS s satisfiable and P(H) =

(MEMPS| P(compy, = My (ix))) is maximized.

There are many other characterizations of diagnoses based
on the notions of abduction, Bayesian model selection, model
counting [Kumar, 2002] etc. These characterizations (includ-
ing combinatorial optimization) are mostly for choosing the
most likely diagnosis and do not incorporate any notion of
refinement [Lucas, 1997]. The combinatorial optimization
formulation to return the most likely diagnosis is however
justified, practical and suited for a variety of real-life appli-
cations [Kurien and Nayak, 2000]. It also benefits from the
availability of computationally efficient algorithms to solve
combinatorial optimization problems [Williams and Nayak,
1996].

3 Computational Methods

Definition (Combinatorial Optimization Problem): A combi-
natorial optimization problem is a tuple (V, f, ¢) where (1)
V is a set of discrete variables with finite domains. (2) An
assignment maps each v in V' to a value in v’s domain. (3) f
is a function that decides feasibility of assignments. (4) cis a
function that returns the cost of an assignment. (5) We want
to minimize ¢(V') such that (V") holds.

In the context of diagnosis, the following correspondences
hold: (1) V = COM PS. (2) Domains correspond to modes
of behavior of components (3) An assignment is a candi-
date. (4) c is a simple cost model assuming independence
in behavior modes of components ¢(comp; = M;(v)) =

log%. Here, M;(v*) is the nominal mode of
behavior of comp;; P(comp; = M;(v*)) > P(comp; =
M;(v)) for any v # v*. c(Cand(iy---icomps))) =
|cOMPS| _) . s
bl c(compr = My(ig)). (5) f is the satisfiability
of SD U Cand(zl s i|C’OMPS|) UOBS.
A brute-force method of solving such a problem is to use
a simple best first search (BFS) which is clearly exponen-

tial in the number of components. It can however, be poten-
tially improved by leveraging the structure of the system. One
popular method of leveraging structure using the paradigm
of dynamic programming is to use heuristics derived from a
maximum cardinality ordering (m-ordering) [Tarjan and Yan-
nakakis, 1984] over the constraint network relating the vari-
ables of the system. Such techniques have been used in a va-
riety of domains — Bayesian network reasoning, constraint
satisfaction problems [Dechter, 1992] etc. A constraint net-
work on the variables of the system is defined by having
the variables represent nodes and constraints in SD repre-
sent hyper-edges. Any kind of optimization or satisfaction
defined over the variables can be done in time exponential in
the induced width of the graph [Dechter, 1992]. Although the
induced width itself cannot be found constructively in poly-
nomial time, heuristics derived from m-ordering perform rea-
sonably well in practice. Throughout the rest of this paper,
we will refer to all such heuristics as naive m-ordering (naive
because they do not supplement the power of TMS-based al-
gorithms).

These heuristics however, may not be directly beneficial
or applicable when the number of components is somewhat
lesser than the total number of variables in the system (which
is usually the case). The induced width of the constraint net-
work relating all the variables in a physical system can easily
be much more than the number of components. A further dis-
advantage of such approaches is that often the relationships
between variables are too complex and consistency checks
may involve some kind of a “simulation”. Since dynamic
programming techniques based on these heuristics maintain
and build partial assignments, they are very likely to be costly
processes. Furthermore, in many cases, the number of faulty
components is usually far lesser than the total number of com-
ponents and these techniques do not exploit this significantly
towards computational gains.

One approach that addresses these problems some-
what indirectly is conflict-directed best first search (CBFS)
[Williams and Nayak, 1996]. It is based on the idea of ex-
amining hypotheses in decreasing order of their prior prob-
abilities and using a truth maintenance system (TMS) to
catch minimal conflicts and focus the search. QCBFS [Ku-
mar, 2001] is an extension of CBFS that leverages qualitative
knowledge present in the system. Because hypotheses are ex-
amined in order of their probabilities, diagnoses that entail a
nominal behavior for all but a few components are caught as
soon as possible (unlike in the naive m-ordering case).

A TMS incorporates and uses the following properties: (1)
If a partial assignment to the mode behaviors of a subset of
the components is inconsistent, then any other assignment
that contains this subset unchanged is also inconsistent. (2)
Smaller conflicts result in more pruning of the search space
and therefore, whenever an assignment A is infeasible, a min-
imal infeasible subset of A is returned (using dependency
tracking). (3) Since the hypotheses that we examine differ
only incrementally from one another in the assignments for
behavior modes of components, feasibility checks are made
more efficient (like in ITMS [Nayak and Williams, 1997]).

1112 13 14 15 16 17 18 19 110 111112

Figure 1: (a) Shows the worst-case scenario for m-ordering.
(b) Shows the worst-case scenario for CBFS.

3.1 Comparison of naive m-ordering and CBFS

While naive m-ordering exploits the structure of the under-
lying constraint network, it does not exploit the fact that we
are interested in an assignment only to the components of the
system (and not the intermediate variables). This becomes
a liability especially when consistency checks involve “sim-
ulation” and are therefore costly. It performs badly when a
“small” number of components are “tightly” connected. Fig-
ure 1(a) illustrates the bad behavior of m-ordering. There
are 4 components that can possibly behave in different modes
(C1,C2, C3 and C4). F1, F2 and F3 are not modeled as com-
ponents but are some complex mappings (involving simula-
tion) from their inputs to outputs. The number of parents of
C4 is equal to 6 and the combinatorial optimization problem
is exponential in this quantity [Darwiche, 1998]. A TMS-
based algorithm however, would require only a search space
exponential in the number of components (=4). This can be
verified by noting that once a set of modes is assumed for each
component (as in a TMS-based algorithm), verifying that the
current set of inputs lead to the observations is not exponen-
tial but only polynomial in the size of the graph. This is be-
cause any component maps its inputs to a unique output and
we just need to follow the inputs through all the transforma-
tions defined by the components to eventually verify whether
there is a match with the observations. In the case of naive m-
ordering however, combinatorial optimization requires us to
compute and store against all values of communication vari-
ables around a family (also called partition), the most likely
modes of behavior of the components in it. This makes it ex-
ponential in the induced width of the graph. It is also easy to
see (as claimed earlier) that when the diagnosis is quite close
to the nominal behaviors of components, there is no obvious
way of exploiting it with m-ordering.

CBFS on the other hand, exploits the fact that we are inter-
ested in an assignment only for the components of the system,
but does not exploit the structure of the physical setting effi-
ciently. The only indirect way in which the structure comes
into play is in the TMS implementation of f to catch min-
imal conflicts. The problem with CBFS is in large due to
the fact that all inconsistencies are traced back to the compo-
nents. This makes CBFS perform sub-optimally when com-
ponents are “loosely” connected. Figure 1(b) illustrates the
bad behavior of CBFS. An observation of O = 1 when C7 is
an XOR gate entails the conflicts {71 = 1,72 = 1} and
{T1 = 0,72 = 0}. Notethat T1 =0, T2=0, T1 =1 or
T2 =1 are not conflicts by themselves. If all inconsisten-

(A)) © ()

Figure 2: (A) The physical setting. (B) The graph represen-
tation. (C) The constraint network. (D) The T-Graph.

cies are traced back to the components C1 - C6 however, the
search space over component behavior modes is never pruned
by a minimal conflict of size lesser than 6. If on the other
hand, we split the problem into two (by treating the cases
{T'1 =1,T2 = 0} and {T'1 = 0,72 = 1} separately) the
search space can be reduced to being exponential in 4 vari-
ables (rather than 6).

4 Hierarchical Conflict-Directed Best First
Search (HCBFYS)

Before we describe HCBFS as an algorithm that can combine
the best of both the above approaches, we define the follow-
ing notions related to the structure of a physical setting.
Definition (Structural Parameter Set): The structural pa-
rameter set S of a physical system is the 4-tuple S =
(COMPS,1,0,T). Here, I is the set of external inputs,
O is the set of output variables under observation, and T is
the set of intermediate variables in the system which are not
under observation.

Definition (Graph Representation): The graph representa-
tion of a physical system with structural parameter set S and
a topology characterized by S D is a graph with nodes corre-
sponding to elements in .S and undirected edges correspond-
ing to physical connections inferred from SDr.

Definition (*-node): A node in the graph representation of a
physical system is a c-node, i-node, o-node or a t-node when
it corresponds respectively to a component, input variable,
output variable or an intermediate variable.

Definition (T-Graph): The T-Graph of a physical system with
structural parameter set S and topology SD- is a graph built
out of removing the c-nodes from its graph representation and
directly connecting the inputs to their outputs (in that direc-
tion).

Figure 2 illustrates the above definitions for a simple physi-
cal setting. Note that the graph representation is not the same
as the constraint network specified by SD. While the con-
straint network is built on the variables of the system (ex-
cluding components) using SD, the graph representation is
built only out of SDr (and includes the components). The
T-Graph represents the causal relationships among the vari-
ables (excluding the components) and it can be observed that
the constraint network is equivalent to the T-Graph moralized
by m?king aclique out of all the parents of any node [Dechter,
1992].

Notation: Let M (%) be the set of modes in which component
comp; can behave. Let ¢; be the cardinality of this set. Let
T (7) be the set of values an intermediate variable t-node; can

take. Let ¢; be the cardinality of this set.

Definition (c-size): The c-size of a sub-graph G is the product
of the number of modes in which each component it contains
can behave, = ;cconmps(a)Ci-

Definition (t-partition): A t-partition of a graph representa-
tion is any collection of vertex induced sub-graphs Sy - - - Sk,
such that forall 4, j with1 <4,5 <k, S; NS, CT.
Definition (t-size): The t-size of a sub-graph in a t-partition
of the original graph is the product of the number of dif-
ferent values each of the t-nodes it shares with other sub-
graphs, can take. In other words, suppose S --- Sy form a
t-partition of the original graph. Denote the t-nodes in each
of these sub-graphs by ST} - - - STy. The t-size of S; is given
by esT (t]’|3h, 1<h<kh#i,j€STh).

Definition (ct-size): The ct-size of a graph is the product of
its c-size and t-size.

Given the graph representation of a physical system,

its c-size characterizes the size of the search space for
CBFS. The general idea behind HCBFS is to reduce the
effective search space of CBFS using dynamic program-
ming. Suppose we were able to divide the system into two
subsystems that had components comps, - - - comp;, and
compj, -+ -compy, such that ny +ny = |[COM PS|. Now,
the search space for each of these two individual partitions
(for CBFS) becomes their respective c-sizes. Calling them
C1 and Cs respectively, we have C,.Cy = C (C'is the c-size
of the original graph). Of course, the search cannot simply
be done in each of them independently because of the com-
mon variables they share. However, we can apply the idea
of dynamic programming to solve each of these partitions
for all values of the variables they share and then “join” the
two results. If we allow for the common variables to be only
among the t-nodes, then the size of the search space becomes
Ci1T + CoT + T? (T is the t-size of the common t-nodes).
C1T + CoT accounts for solving the sub-problems for all
values of the communication variables, and T2 accounts for
“joining” them. It should be noted however, that if consis-
tency checks involve “simulation”, then the 72 term tends to
be negligible (because search over the join-space does not in-
volve simulation). Generalizing the above idea of dynamic
programming, it is also possible to characterize n-way splits
which partition the original graph into n partitions each of
which share communication variables with a subset of the
others.
Definition (Splitting Condition): The splitting condition
holds for a t-partition in a graph G if the sum of the ct-sizes of
the partitions and the join-size is strictly lesser than the c-size
of G.

To obtain maximum computational benefits, we have to
find a t-partition that minimizes the sum of the ct-sizes of
the resulting partitions and the join-size. This general n-way
split is NP-hard to find (easy to prove from the fact that find-
ing the induced width is NP-hard). However, HCBFS em-
ploys a heuristic to decompose a large diagnosis problem
into optimal sub-problems based on the topological struc-
ture of the system. It runs in polynomial time and is al-
ways assured of yielding computational benefits (albeit in
sub-optimal amounts). The idea is to examine only a poly-
nomial number of 2-way splits and choose the greediest one

ALGORITHM HCBFS (Graph G = (V, E))
T = T-Graph of G
" = Partition-Tree formed by m-ordering
on moralized T
E =Edges of T'
GREEDYSPLIT (G, E)
END HCBFS

ALGORITHM GREEDYSPLIT (Graph G,
Candidate-Splits B)

b, = BEST-SPLIT (G, B)

IF (SPLITTING-CONDITION (G, bt,)) THEN
(G1,G3) = PARTITION (G, bg)
Bj ={b;|b; is on the same side of by as G1 }
By = {b;|b; is on the same side of b, as G2}
GREEDYSPLIT (G4, By)
GREEDYSPLIT (G2, Bs)

END IF

END GREEDYSPLIT

Figure 3: Hierarchical Conflict-Directed Best First Search

Cl cC3 T2 T3

T T
I I
1 1 T2 c2
I I
i i

Figure 4: Illustrates the working of HCBFS to produce sub-
problems. Thicker edges denote greater communication (t-
size). P1, P2, P3 are the final partitions. The tables indicate
the solutions to diagnosis sub-problems for all values of the
surrounding communication variables.

if it satisfies the splitting condition. Such a splitting process
is performed recursively until there is no more apparent scope
for computational benefits. Interestingly enough, the candi-
date t-partitions that are examined are themselves derived us-
ing the m-ordering heuristics. Figure 3 presents the working
of HCBFS; and Figure 4 illustrates its working on a small
example. The following properties hold true for the HCBFS
algorithm.

Property 1: The edges of 7" maintain the running intersec-
tion property [Dechter, 1992] and hence the t-nodes consti-
tuting the communication variables on any edge form a valid

t-partition.
Property 2: Let the c-sizes of the final partitions be
Cy---Cg. The c-size of the original graph is therefore

IIi=¢C;. The first time we partition G, it must have been
the case that (because of the splitting having to be satisfied)
Ii=*C; > S x T+ T x R (T is the size of the communi-
cation; .S and R are the c-sizes of the two resulting partitions
withSx R = Hﬁi’f(}i). In later iterations, the effective S and
R are only made to decrease recursively and this essentially
means that HCBFS is always safe in producing computational
benefits.

Property 3: The total number of splits considered is clearly
linear since they correspond to the edges of T'. Although
there are two recursive calls to GREEDYSPLIT, the can-
didate set of edges that enter them are disjoint and hence
GREEDYSPLIT is called only a linear number of times. This
proves that the running time of HCBFS is polynomial.
Property 4: Choosing certain edges in a tree as splits results
in a set of partitions that themselves form a tree with respect
to the split edges (as illustrated in Figure 4). Since we know
that optimization in a tree structured network is exponential
in the ct-size of the largest partition, the complexity of diag-
nosis using HCBFS is exponential in this parameter.

4.1 Analysisand Implicationsof HCBFS

We briefly delve into the computational implications of
HCBFS. HCBFS facilitates search in two ways. First, it re-
duces the effective search space by using the dynamic pro-
gramming paradigm. Second, it propagates “easiness” in con-
straint checking. Constraint checking in general may not be
computationally straightforward — it may often involve sys-
tem “simulation” of some kind over an extended period of
time. It can be noticed however, that constraint checking over
the join space is a mere verification that two selected rows of
the partition tables have similar values for their communica-
tion variables. By using HCBFS, the simulation-based con-
straint checks are “pushed” to smaller parts of the system (the
partitions). Even for consistency checks that do not involve
“simulation”, implementing a TMS for each small partition
is more effective (in terms of the complexity of data struc-
tures to be maintained) than one large TMS for the system as
awhole.

HCBFS not only reduces the effective un-amortized search
complexity for a diagnosis call, but also reduces the amor-
tized complexity. The solutions to sub-problems occurring
for diagnosis calls made in the past can be stored and used for
future diagnosis calls when they need to solve the same sub-
problems. Eventually, when all sub-problems for all values

of communication variables have been solved at least once, a
diagnosis call can be answered by doing a search only over
the join-space of the partitions. This too (as argued before) is
computationally easier than “simulation”.

The dynamic programming idea of HCBFS can further be
used to pre-process or compile the system description to fa-
cilitate diagnosis. Consider a partition of the graph represen-
tation of a physical setting. The idea is to solve the diagnosis
problem for this partition for all values of the surrounding in-
termediate variables (t-nodes) and store the results. We can
then treat this partition as a single physical component that
can take any value (mode) corresponding to a combination
of the values for each of its surrounding t-nodes. The as-
sociated probabilities would be derived from the results for
the corresponding diagnosis sub-problems. This kind of pre-
compilation of the system to treat partitions as components
provides computational benefits only if their t-size is lesser
than their c-size (which is often the case).

The space complexity associated with HCBFS has two
components. One is the size of the tables associated with
the sub-problems. This is referred to as the table-space com-
plexity. It is easy to observe that the table space complexity
is equal to the sum of the t-sizes over all partitions. Another
component of the space requirement is the actual space re-
quired for the diagnosis algorithms to build the tables and
compose them to answer a diagnosis call. This space require-
ment is identical to the running time complexities associated
with solving and composing sub-problems. It is worth not-
ing that the cost of implementing dynamic programming in
HCBFS is reflected only in its table-space complexity.

HCBFS also leads to what are called hybrid approaches.
These are techniques that combine conflict-based and
coverage-based approaches [Kumar, to appear] to solve sub-
problems and combine their solutions. Coverage-based algo-
rithms are those that record conflicts and cast the diagnosis
problem as a minimum weight hitting set problem [Kurien
and Nayak, 2000]. Conflict-based approaches refer to the
standard TMS-based algorithms like CBFS and QCBFS. In
general, hybrid approaches do the following: (1) Employ
the hierarchical partitioning algorithm to reduce the effective
search space. (2) Employ one of coverage-based or conflict-
based approaches for the sub-problems and the join space.

5 Comparison with Related Work

Related work on trying to leverage structure into the task of
diagnosis can be found in [Darwiche, 1998], [Autio and Re-
iter, 1998], [Provan, 2001] etc. In [Darwiche, 1998], negation
normal forms (NNF) are used to represent the consequence
of SD U OBS. Subsequently, minimal cardinality diagnoses
are extracted from them using a simple cost propagation and
pruning algorithm. For such a procedure to be effective, it is
important to ensure the decomposability of the NNF. Decom-
posability is achieved by partitioning SD to perform a case
analysis on the shared atoms that do not appear among the
observations. The partitioning choices are inspired by trying
to produce a join-tree of the topological structure of the sys-
tem much like the m-ordering heuristics. The complexity of
the algorithm is exponential in the size of the hyper-nodes of

the join tree and linear in the number of such hyper-nodes.

There are at least three important ways in which this ap-
proach differs from ours. Firstly, this approach does not rea-
son about probabilities but rather looks for minimal diagnoses
(minimizes the number of faulty components). Secondly (and
more importantly), it tries to produce diagnoses (minimal) by
maintaining at each stage, a representation for all the consis-
tent candidates. The optimization phase (of producing mini-
mal candidates) occurs as a separate phase. Usually, we are
not interested in all consistent diagnoses and trying to rep-
resent them at any stage when there could potentially be an
exponentially large number of them can be a bottleneck. In
our approach, the optimization and satisfaction phases are in-
terleaved. This allows us to produce candidates as and when
we want them, in decreasing order of their optimization val-
ues, and to prune the search space using both optimality- and
satisfiability-reasoning. Thirdly, if the number of intermedi-
ate variables is too many, achieving decomposability in the
NNF is exponential in the induced width of the moralized
T-Graph; but since we are interested only in the behavior
modes of components and not that of intermediate variables,
the search space may be significantly reduced using our ap-
proach when the components are “tightly” coupled.

In [Provan, 2001] the idea of hierarchical diagnosis has a
different meaning. It is based on the use of abstraction oper-
ators to define an abstraction hierarchy of the model (a lattice
induced by a set of partitions of the system variables). A
group of components and intermediate variables at a partic-
ular abstraction level are “merged” to form “abstract” com-
ponents at a higher level with appropriately defined inputs,
outputs and constraints relating them. A structural abstrac-
tion sc of subcomponents ¢, - - - ¢ defines two modes of be-
havior for sc — AB(sc) and —AB(sc) with the constraint
that —AB(c1) --- ~AB(c,) — —AB(sc). Such an abstrac-
tion mechanism is useful only for isolating a group of compo-
nents all of which cannot be behaving in their nominal modes
(abstract models isolate diagnoses only at the abstract level,
but more efficiently). At each level of abstraction we only
define the nominal mode of behavior for the abstract compo-
nent. The only other implicit mode is the faulty mode. This
limits the scope of diagnosis even at the abstract levels. Un-
der a combinatorial optimization formulation of the diagnosis
problem, abstraction of ¢; - - - ¢ to sc only defines what hap-
pens when all components ¢; - - - ¢, are behaving in their most
probable modes (nominal mode for sc). It does not say any-
thing about what probabilities are associated or what happens
with any of the other remaining exponentially large number
of non-nominal modes. This makes diagnosis not only in-
feasible at more detailed levels, but also information-lossy at
abstract levels.

6 Conclusions

In this paper, we employed the combinatorial optimization
characterization of the diagnosis problem. We compared
two different approaches that exploit different features of
the problem: (1) naive m-ordering exploits the structure of
the system by leveraging the causal dependencies among the
variables (T-Graph) (2) CBFS exploits the fact that the out-

put is uniquely determined for given inputs to a component
behaving in a known mode, and that we are interested only
in an assignment to the component modes of the system. We
observed that naive m-ordering performs poorly when there is
high interconnectedness among components and that CBFS
performs poorly when there is low coupling. We proposed a
computationally feasible algorithm called HCBFS (extending
on CBFS) to achieve the best of both the worlds. HCBFS uses
CBFS in tightly coupled parts of the system and m-ordering
to identify them. We showed that HCBFS has many important
implications on the complexity of diagnosis — reduces the
un-amortized complexity of a diagnosis call, reduces amor-
tized complexity of a diagnosis call by reusing computation
done for sub-problems arising in past diagnosis calls, allows
pre-compilation of the system description to facilitate diag-
nosis, and enhances hybrid algorithms. Finally, we compared
and contrasted our work with somewhat related approaches.

References

[Autio and Reiter, 1998] Autio K. and Reiter R. Structural
Abstractions in Model-Based Diagnosis. In Proceedings
of ECAI’98. Pages: 269-273.

[Darwiche, 1997] Darwiche A. New Advances in Structure-
Based Diagnosis: A Method for Compiling Devices. In
Proceedings of the Eighth International Workshop on
Principles of Diagnosis (DX’1997). Pages: 35-42.

[Darwiche, 1998] Darwiche A. Model-Based Diagnosis Us-
ing Structured System Descriptions. Journal of Artificial
Intelligence Research 8: 165-222.

[Darwiche and Provan, 1997] Darwiche A. and Provan G.
The Effect of Observations on the Complexity of Model-
Based Diagnosis. In Proceedings of the Fourteenth Na-
tional Conference on Atrtificial Intelligence (AAAI’97).
Pages: 99-104.

[Dechter, 1992] Dechter R. Constraint Networks. Encyclo-
pedia of Artificial Intelligence, second edition, Wiley and
Sons, Pages: 276-285, 1992.

[de Kleer et al., 1992] de Kleer J., Mackworth A. K., and
Reiter R. Characterizing Diagnoses and Systems. Arti-
ficial Intelligence 56 (1992) 197-222.

[de Kleer and Williams, 1989] de Kleer J. and Williams B.
C. Diagnosis with Behavioral Modes. In Proceedings of
IJCAI"89. Pages: 104-1009.

[Forbus and de Kleer, 1992] Forbus K. D. and de Kleer J.
Building Problem Solvers. MIT Press, Cambridge, MA,
1992.

[Hamscher et al., 1992] Hamscher W., Console L., and de
Kleer J. Readings in Model-Based Diagnosis. Morgan
Kaufmann, 1992.

[Kumar, 2001] Kumar T. K. S. QCBFS: Leveraging Qualita-
tive Knowledge in Simulation-Based Diagnosis. Proceed-
ings of the Fifteenth International Workshop on Qualita-
tive Reasoning (QR’01).

[Kumar, 2002] Kumar T. K. S. A Model Counting Charac-
terization of Diagnoses. Proceedings of the Thirteenth In-
ternational Workshop on Principles of Diagnosis (DX’02).

[Kurien and Nayak, 2000] Kurien J. and Nayak P. P. Back
to the Future for Consistency-Based Trajectory Tracking.
Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI’00).

[Lucas, 1997] Lucas P. A Theory of Diagnosis as Hypothesis
Refinement. Proceedings of NAIC’97.

[Nayak and Williams, 1997] Nayak P. P. and Williams B. C.
Fast Context Switching in Real-time Propositional Rea-
soning. In Proceedings of AAAI-97.

[Provan, 2001] Provan G. Hierarchical Model-Based Diag-
nosis. In Proceedings of the Twelfth International Work-
shop on Diagnosis (DX’01).

[Struss, 1988] Struss P. Extensions to ATMS-based Diagno-
sis. In J. S. Gero (ed.), Artificial Intelligence in Engineer-
ing: Diagnosis and Learning, Southampton, 1988.

[Struss and Dressler, 1989] Struss P. and Dressler O. “Phys-
ical Negation” - Integrating Fault Models into the General
Diagnosis Engine. In Proceedings of 1JCAI-89. Pages:
1318-1323.

[Tarjan and Yannakakis, 1984] Tarjan R. E. and Yan-
nakakis M. Simple Linear Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Hypergraphs
and Selectively Reduce Acyclic Hypergraphs. SIAM J.
Comput. 13, pages 566-576, 1984.

[Williams and Nayak, 1996] Williams B. C. and Nayak P. P.
A Model-Based Approach to Reactive Self-Configuring
Systems. In Proceedings of AAAI-96. Pages: 971-978.

Possible conflicts, ARRs, and conflicts

Belarmino Pulido Junquera and Carlos Alonso Gonalez
Departamento de Informatica. Universidad de Valladolid
Edificio Tecnolodas de la Informacion y las Telecomunicaciones
E-47011. Valladolid (Spain) e-mail: {belar,calonsg @infor.uva.es
Phone: +34 983 42 36 70 Fax: +34 98342 36 71

Abstract. Consistency-based diagnosis is the most widely used apean be done forward (whenever new input data are introduced), or
proach to model-based diagnosis within the Artificial Intelligencebackward (when a discrepancy is found, such as in CAEN [2, 21],
community. It is usually carried out through an iterative cycle of be-DYNAMIS [6], or TRANSCEND [25]). Another important feature
havior prediction, conflict detection, and candidate generation andf the GDE framework is that it calculates labels propagating values
refinement. Many approaches to consistency-based diagnosis hatfeough constraints in every possible direction.
relied on some kind of on-line dependency-recording mechanism for However, one problem related to on-line dependency-recording is
conflict calculation. These techniques have had different problemshat the set of labels needs to be computed each time a new different
specially when applied to dynamic systems. Recently, off-line com~alue is introduced. Another problem was found in the combined use
pilation of dependencies has been established as a suitable alternativeon-line dependency-recording together with qualitative models for
approach. In this work we compare one compilation technique, basediagnosing dynamic systems [17, 14]. Mainly for these reasons sev-
on thepossible conflictoncept, with results obtained with the clas- eral research groups have looked for alternative methods to such a
sical on-line dependency recording engine as in GDE. Moreover, wé&ind of on-line dependency-recording. On the one hstate-based
compare possible conflicts with another compilation technique comdiagnosig36] has emerged as an alternativestmulation-based di-
ing from the FDI community, which is based on analytical redun-agnosis just for qualitative models. On the other hanapological
dancy relations. Finally, we study the relationship between possiblenethodspropose to explicitly use the structural description of the
conflicts, analytical redundancy relations, and conflicts. system to be diagnosed. This information is implicitly stated in the
system description. Within this last approach, we make difference of

. two major trends: those methods that use other on-line dependency-

1 Introduction recording than ATMS (by exploring causal-graphs [2, 24], signed

For more than thirty years different techniques have been app”egirected graphs [26], or other topologica_l and functional structu_res
to diagnose systems in multiple domains. Diagnosis has been carrida)): @nd those methods that perform off-line dependency-recording.
out through knowledge-based systems, case-based reasoning, modelLast techniques are also known as compilation methods within the

based reasoning, and so on. This work is focused in the model-bas&¥< community. The main idea supporting this approach is that re-

approach to diagnosis. Moreover, we will only talk about diagnosisdundancy within the models can be found off-line. A similar idea

of physical devices [18]. was used in the Control Engineering community (or FDI), where
More specifically, consistency-based diagnosis is the most widelyptaroswiecki and Declerk proposed to use Analytical Redundancy

used approach to model-based diagnosis within the Artificial Intelli-R€lations (ARRs for short), for fault detection and localization [34].
gence community (usually known as DX). It is a research field thafeiven such a S|m_|lnar|ty, thereis an ongoing interest from the DX and
has reported successful results in recent years [39, 7]. This approadf¢ FP! communities in comparing their approaches. -

has proven its maturity, both in theory, and in practice. On the one Between the FDI and Al proposals, Lunze and Schiller [23] were
hand, the diagnosis process and the diagnosis results have been cdifile t0 perform diagnosis using causal graphs associated with over-
pletely characterized from a logical point of view [32, 12], thus fa- constramed systems. These systems were obtained from the logical
cilitating further comparison. On the other hand, consistency-baseffmula in the models of the system.) _
diagnosis has been successfully applied to a wide variety of domains Within the DX community we have found the following compila-
such as automotive industry [3, 38], bio-medicine [20], nuclear plantdion techniques:

[24], or ecology [37].

In such a framework, GDE [13] is the most well known imple- e Darwiche and Provan [10] characterized the set of diagnoses using
mentation, andle factoparadigm. GDE organizes the diagnosis pro- the consequence concept [9], instead of using the conflict concept.
cess as an iterative cycle of behavior prediction, conflict detection, Analyzing the system structure, those sub-systems which could
and candidate generation and refinement. But conflict computation lead to a diagnosis can be found off-line.
is a non-trivial step, which has deserved a lot of attention from thee Similar information is used by Steele and Leitch [35] to refine the
consistency-based diagnosis community. In GDE, the set of mini- set of candidates, in an adaptive approach to diagnosis [4].
mal conflicts is computed by means of an ATMS [11], which recordse In DOGS, Loiez and Taillibert [22] proposed to localize, off-line,
on-line the set of correctness assumptions, or dependencies, used byover-constrained sets of equations. They were looking for those
the inference engine. It should be noticed that dependency-recording sub-systems capable to become conflicts. The work done is con-

ceptually equivalent to that in [34], as it has been stated in [8]. 2.1 Searching for over-determined systems
e Frohlich and Nejdl [15] used structural information two-fold: they
analyzed the whole set of logical formula in the model to find sub-We have r_epr_esented the modelSi) as a hyper-graphisp =
sets of formula capable to generate diagnosis, and they benef{tv’ R} which is made up of: . . .
from these sub-sets in order to refine the whole set of diagnosi® ¥ = v1: 02, ..., vn}, the setof variables in the model. Itis made
candidates. up of observedDBS, and not observed or unknown variables,
e Pulido and Alonso [27, 28] proposed to organize consistency- NOBS:V = OBS|JNOBS.
based diagnosis around tpessible conflicconcept. A possible ® 12 ={r1,72,...,7m} is afamily of sub-sets i, where eachr;
conflict is a sub-system in system description which is capable to fepresents a constraint in the model, and it contains some model
become a conflict, within the GDE framework. variables, observed and not observed ones.
We have calledEvaluation Chainsthe over-constrained sub-
In this work we revisit the compilation technique based orpie- ~~ SyStéms infsp (in Appendix A the reader can find definitions for
sible conflictconcept [27, 28]. Initially we summarize the character- ©€rminology in graphs and hyper-graphs c.f. [16, 1]):
ization of that concept, in order to compare possible conflicts against
real conflicts. Later on, we establish the relationship between pos-
sible conflicts and ARRs. Finally, we revisit the work by Cordier et
al. [8] in order to compare conflicts and ARRs from a computational
point of view.
Due to space limitations we do not compare possible conflicts and 1. H.. is a connected hypergraph,
otht_ar compilation techniques from the DX community. Such a com- 2. V..NOBS # 0,
parison can be found in [28, 30].

Evaluation chain: H.. C Hgp is a partial sub-hypergraph in
Hsp: Hee = {Vec,Rec}, WhereVee C V, R.. C R, and
Xee = Voe N NOBS is the set of unknowns .., and H,.
verifies:

3. vvno S Xec = ngC (Uno) Z 21

4. let G(H..) be a bipartite graph made up of two kinds of nodes:

2 The possible conflict concept z € Xec, andr;,. € Rec, such that two nodes are linked in
G(H..) ifand only if x € r;... Then,G(H..) has amatching

: . e ,
Main assumptions in this work are that there is no structural fault, with maximal cardinalityn’ = [Xec| and|Rec[> m’ + 1.

and it is possible to know beforehand the number and placement of

. : - S Figure 1 shows a classical example in consistency-based diagno-
available observations (sensors). An additional assumption is that the) .
Lo is. In order to make difference of components and constraints, we
model of the system can be expressed as a set of constraints: quanti- .
. o . - will use capital letters for components, and small letters for con-
tative or qualitative, linear or not, algebraic or not.

In Reiter’s framework for model-based diagnosis [32] a minimal straints in their modelsn; anda; denote the models of multipliers

conflict identifies a set of constraints containing enough redundancilrlOI adders, respectively. Each model is made up of just one con-
traint; for instancem: = {A, C, X }. Whenever a model has more

rform diagnosis. In the m impl when constraints ar P
to perform diag 0sIS the . .OSt simple case, when co stra FS at%an one constraint, indices are used to distinguish them. The related
made up of equations, a minimal conflict would denote a strlctlyhyper graph is

over-determined system - A BCDEFGXYZ
As it was mentioned in the previous Section, shared basis in com- Tpotwbor = {{4, B, C, D, B, F, G, X, ¥, Z}, {ma,m2,m3, a1, az}}

pilation techniques is: the set of analytically redundant sub-systems,

which can be used for diagnosis purposes, can be computed off-line. M1
Moreover, it has been proven that GDE provides all the existing [A=3]
minimal conflicts. Since the set of possible conflicts tries to be a fc=2]] >< —lx Al
computational alternative to on-line dependency recording for con- 0
flict computation, we have imposed an additional requirement: over- Mz 1T [o
constrained sub-systems should be the same as the set of minimal (B=3]
conflicts computed by GDE (-2 >< — " a2

Finding analytical redundancy is a necessary but not a sufficient . (G-12]
condition for a system to be suitable for consistency-based diagnosis M3 G=12
purposes. The system must also be solved using local propagation (=2 J
aloné. To fulfill both requirements we have split the search process E=3) | >< ‘

into two phases. First, we look for over-determined systems. Second,
V_Ve check whether these_ systems can be S_Olved using local pl’_Op_agEhgure 1. Classical polybox example in the consistency-based diagnosis.
tion alone. To do so, we just need abstractions of model-description. "Opserved values are in brackets(, Y, Z} are non-observed values.

For the sake of readability, below we include a summary of defini-

tions the reader can find in [27, 28]. Since we are interested in minimal conflicts, only minimal evalu-
ation chains, MEC for short, are useful.

1 In an over-determined system the number of equatigris greater than the o])) o) o
number of unknownsy: e > u + 1. In a strictly over-determined system, Minimal Evaluation Chain : H.. is a minimal evaluation chain if

e=u+1 there is no evaluation chaii,. C H...
2 For th_|s reason, we a[ways assume that we have the same model (system
description oiSDin Reiter’s terminology) as GDE has. The set of minimal Evaluation chains, SMEC, is built based on

3 Current consistency-based diagnosis systems do not impose that constrathie algorithms:build-every-mec()build-mec() andjustify() which
[19]. In [30] we extended the possible conflict concept to deal with suchperform depth-first search i sp using backtracking. All these al-
(cyclical) configurations. gorithms can be found in Appendix B. In the polybox example, these

algorithms have found three MECs: 2. (Vv; | vi € Vinem andv; is a leaf node} v; € OBS,

Heey ={{A,B,C,D,F, X, Y}, {mi,m2,a1}} 3. 312 € Vinem | x; is a discrepancy node,

Hecg :{{B,C,D,E,G,Y,Z},{m27m3,a2}} i . Rk . .

Hees ={{A,C,E,F,G,X,Y, Z},{m1,a1,a2,m3}} 4. if x; is a discrepancy node, then there exists a directed and
acyclic path inHpem : {%i, Zit1, ..., Titk, z;} from each

nodex; to ;.

2.2 Can an evaluation chain be solved?))
Algorithms used to calculate every MEM for each MB@Liild-

A minimal conflict is a strictly over-determined system that we wantevery-mem()andbuild-mem() are given in Appendix C. These al-

to solve using local propagation alone. However, the hyper-graph hagorithms are exhaustive too, since they perform depth-first search
not enough information about how each constraint can be solved. Tgsing backtracking. For instance, MBL., has a related AND-OR
tackle this problem, we create an AND-OR graph for each minima/draph:

evaluation chain. In suc_h a graph, there is one or more AND-OR AOG(Hee,) = {{A,B,C,D,F, X,Y},

arcs for each hyper-arc in the MEC. Each AND-OR arc represents
one way the hyper-arc could be solved. In fact, to solve a MEC, we
should select one AND-OR arc from each constraint. As a conse- Given He., and the set of available interpretations in
guence, choosing different AND-OR arcs from the AND-OR graphAOG(He.,), algorithmbuild-mem()is able to find seven different
generates different ways of solving the MEC. Moreover, the overMEMs®:

{m11 y Mg, Mg, TM21, 24, TN23, A1, Aly, als}}

determined system can only be solved using local propagation cri- MEMs Equivalent to evaluate the expression

teria. Each one of the different ways of solving a MEC is called a {my,,ma2,,a1,} Fops = Fprea = AX C+ B x D

Minimal Evaluation Model, or MEM. {m1,,m2,,a1,} Xpreay = AXC =Xppeqy =F —BxD

For instance, each constraint or a;) used to model the poly- — {m;, ma,,a1,} Aobs = Aprea = (F — B x D)/C, if C#0

box system provides three different interpretations to the AND-OR (1, ~ 1y 41,3 Cope = Cprea = (F — B x D)/A, if A#0

graph: {m1,,ma,,a15} Yprea, = F — (A X C) = Yprea, = B x D
Mi; = Vout = Ving X Ving) {mll,m22, a13} Bops = Bprcd = (F — A x C)/D, Zf D 7& 0

mi(’Uout,UmpUing) = Miy = Ving = Uout/”Uz'ng, if Ving #0 {mh,mzs, a13} Deops = Dp're(i = (F — A X C)/B, Zf B §£ 0
Miz = Ving = 'Uout/vin1> 74f Ving # 0

Interpretations for a constraint are usually obtained when applying It should be noticed that a MEC would provide no MEM if the
the invertibility criterion. Nevertheless, there are additional criteria.over-determined system can not be solved using available interpre-
Appendix D shows constraints used to model a physical system madations and local propagation. In [31] the reader can find additional
up of tanks, pumps and valves. Constraihtss, t23, tr25 are used information on how temporal information has been included in this
to compute the mass in a tank. In such kind of constraint, just one inframework and one example of a MEC which can not provide any
terpretation is allowed, since we have taken an integration approachMEM.

mr(t) = fm’T(t —1dt+mrp(t—1) Once summarized the possible conflict concept, next section stud-
This interpretation can not be reversed. Hence, additional concepigs the relationship between MECs, and MEMs, which are computed
are necessary to define a Minimal Evaluation Model. off-line, and real conflicts computed on-line.

Given the relation betweer,. € R.., and the set of AND-OR
arcsry,_, derived fromr;, ., we can state the following proposition. 3 Conflicts and possible conflicts
Proposition 1 Let AOG(Hec) = {Vem, Rem} be the AND-OR |t ayaluated, a MEM could lead to discrepancy, i.e., it could lead to
graph obtained fromH.. = {Vec, Rec} applying the local reso- 4 conflict. However, the set of MEM is computed off-line, without
lution criterion, where: any model evaluation. And conflicts would appear only when obser-

¢ Vem = Vecs vations are introduced and the evaluation model is computed. So, we
® Vri,, € Rec = iy, € Rem, k21 have introduced the following concept:
Then,r;,. € Re. induces a partition inRe, .
Possible conflict: The set of constraints in a Minimal Evaluation
Proof: Eachr;,, € Re. induces an equivalence classii,,. Chain giving rise to, at least, one Minimal Evaluation Model.

By definition, it induces a partition too.))]
For example, in the polybox system in Figure 1, there

Leaf node v; is a leaf node in grapif iff T';,' = 0. are three possible conflictsf{m.,ms,a1},{m1,a1, az,ms},
Discrepancy node v; is a discrepancy node in gragh iff {m2,ms, a2}}, because every MEC has, at least, one MEM.
o (dg(vi) >2 A v; € NOBS), or In such a case, where component models are made up of only
o (dy(vi) >1 A v; € OBS) one relation, the set of possible conflicts is equivalent to the set of

minimal conflicts in Reiter’s terminology computed on-line by GDE,

That is, a leaf node has no predecessors, and a discrepancy nodbatever the faults and whatever the set of available observations.
can be found in two different ways: estimating an observed variable, At this point it is necessary to answer the following question: is
or doing a double estimation for an unknown variable. the set of possible conflicts equivalent to the set of minimal conflicts

-)) computed on-line by GDE? In order to answer, we need additional
Minimal Evaluation Model : A partial AND-OR graphHem C definitions:

AOG(H..), where Hpern = {Vinem, Rmem}, iS @ minimal
Evaluation model iff: P(S): isthe set of subsets in S;

1. Rmem is @ minimal hitting-set for the partition induced by 4 since the MEM will have the same set of variables as MEC, we just include
Tiee € Rec N Rem, the set of interpretations.

model : COMPS — P(Rsp): model(C) identifies the family
of relations modelling” behavior;

comp: Rsp — COMPS: r; — comp(r;) = {C | r; €
model (C)}:
comp(r;) indicates the component containing relatignin its
model.

Proposition 2 Letco be a minimal conflict found by GDE, and is
related to a discrepancy in € Vsp: there is a minimal evaluation
chain,He. = {Vec, Rec}, such that:

v € Vee andeo = Uv»-eR ~comp(r;)

Proof: GDE solves a minimal over-determined system to find
a minimal conflict related ta [19]. Sincebuild-every-mec()
performs exhaustive search, it is able to find every minimal
over-determined system iHHsp. Hence, it will find that over-
determined system too.

Hence, once GDE finds a minimal conflibyild-every-mec(vill

This proposition always holds. Unfortunately, the converse does
not hold universally, because we can not guarantee for an arbitrary set
of non-linear constraints that every MEM for a MEC will provide the
same solution for a given set of observations [40]. This assumption
should be stated in the following way:

Equivalence assumption: Every MEM in a MEC provides the
same set of solutions for any given set of input observations.

Now, it is possible to define the following proposition:

Proposition 5 If GDE finds a minimal conflict;o, related to a dis-
crepancy inv, andthe equivalence assumption holdsr a H.. con-
taining v, then the possible conflict related .. will be confirmed
as a minimal conflict.

Proof: The proof is straightforward based on propositions 2,
and 3.

find a MEC containing the same set of constraints which were used Comparing possible conflicts, conflicts, and

to find a conflict. Those constraints belong to the same set of compo-

nents.

Proposition 3 Letco be a minimal conflict found by GDE, ard is
related to a discrepancy in € Vgp: there is a minimal evaluation
model,H,. = {Vem, Rem }, that can obtain a discrepancy in and

v € Ve, @andco = Ur R comp(r;)

Proof: By proposition 2, there is a MEC related to, such
that:

co = U comp(r;)

i €ERec

Moreover build-every-mem(performs an exhaustive search
too. Therefore, it will find every MEM related to such MEC,
i.e., every possible way the MEC can be solved. Hence, it will
find the over-determined system used to obtain the minimal
conflict. Also, eachr;, € Re., is an interpretation for some
ri € Rec. Hence:

co = U comp(r;)

i €ERem

At least one of the MEM related to the CEM will find a discrep-

ancy inv, in the same way the GDE does.
Unfortunately, the number of MEMs for each MEC is exponen-

tial in the average number of interpretations for each hyper-arc in the

ARRs

As previously mentioned, there is an on-going research interest from
the DX and FDI communities in comparing their approaches. Re-
cently, Cordier et al. [8] proposed a common framework to com-

pare conflicts and ARRs [34, 33]. In that trend, we compare ARRs
and possible conflicts considering the way they are computed. After-
wards, we discuss results in [8] and extract some conclusions.

4.1 Possible conflicts and ARRs

The set of ARRs is obtained from the unique canonical decomposi-
tion of the structural description of the system into under-determined,
just-determined, and over-determined sets of constraints. The canon-
ical decomposition is based on finding a complete matching, w.r.t.
unknown variables, in the bipartite graph associated to the structural
description of the system. Combination of just-determined systems
together with redundant relations is the basis forAamalytical Re-
dundancy Relatidi34].

Each complete matching can be considered as a causality assign-
ment, but it is necessary to obtain a causal matching for the over-
determined system, from the set of causal matchings satisfying the
invertibility condition [33]. Each ARR can be solved and used for
diagnosis purposes once observed values are introduced.

It should be noticed that all the steps, except the solving one, could

MEC. Due to practical reasons we just select one MEM related to £€ done off-line. Hence, computing ARRs is a compilation technique
MEC. Based on that MEM, we build an executable model which isi" FD!- And, it seems obvious that strong similarities do exist be-
used for fault detection. In [31] the reader can find a detailed descriptveen the way ARRs and possible conflicts are computed.
tion of how possible conflicts can be used to perform consistencye Both methods search for over-determined sub-systems. Direct or
based diagnosis for both static and dynamic systems. deduced ARRs can be used to estimate a value for an observed
Nevertheless, it is still possible to claim that the set of possible variable in the system. Moreover, algorithms used for computing
conflicts is theoretically equivalent to the set of conflicts found on- MEC, can be used to obtain the whole set of over-determined sub-
line by means of GDE. We will show this fact in next two proposi- systems. Hence, the algorithms will find an evaluation chain with
tions. the same set of constraints as of the ARR.
An ARR need a causal matching, because not every causality as-
sighment can be done in the complete matching. In the same way,
AND-OR arcs are introduced to limit the ways an hyper-arc can
be solved. It seems obvious that one of the evaluation models for
an evaluation chain will be equivalent to the causal matching in
the ARR.

5 It is straightforward to modify algorithndustify()to search for any over-
determined system.

Proposition 4 If H.. is a MEC, H.,, is one of its MEMs and the
evaluation of the executable model associatedite, generates a
discrepancy iy € Ve,,, then GDE will find a discrepancy in.

Proof: There is a discrepancy inrelated to the evaluation of a
MEM. The MEM is an strictly over-determined system. More-
over, GDE finds any discrepancy related to any minimal over-
determined system. Hence, it will find the discrepancy foo.

e The set of evaluation models for an evaluation chain are built FT-0! Line 10
based on local propagation criterion, i.e., the evaluation model Inflow —_
does not contain any cycle. This condition has been imposed in —
the ARR approach too. For this reason, the ARR is obtained once
graph reduction, by means of loop elimination, has been done in TR-1
the causal graph [33]. This step is equivalent to loop elimination |
in the possible conflict approach [29].

Line 9

However, there are some differences: Line 8 LL-05
. . . X T2 Line 1zg_;nﬂﬂw
o Staroswiecki et al. [33] assume that in an over-determined sys- P FLOo P3 Qutflow

FT-03

tem the set of unknowns can be computed in different ways, using
constraints and known values, and “deduced redundancy relations
are obtained writing that all these results have to be the same”.

This assumption is the same as the equivalence assumption in tr}F

. X ows FT01 = f, FT02 = f¥, FT03 = f*,andFT04 = f,; level of
previous section. tank LT05 — hfl fs f7 I

! o)) ' ro» @nd the value of the control action on vave = wus
As mentioned above, that assumption is never done in GDE while at the output of tand”R2.

computing minimal conflicts, because the assumption does not

hold universally for physical systems made up of general non- Its related hyper-graph can be described as:

linear constraints [40]. Therefore, based on propositions 4 and

5, it can not be claimed that model-based diagnosis relying upon Hsp = {Vsp, Rsp};

ARRs and consistency-based diagnosis using conflicts will pro- Vsp = {OBSUNOBS};

vide always the same set of results. Results obtained using ARRsOBS = {f1, f7, fs, fi1, h}Rzl}; ,

would be the same as of those obtained using just one MEM for NOBS: = {fo f10, fr2, fra; MRy, MRy, KRy Ty T

each MEC. These results can be sub-optimal, w.r.t. the number of 12, M7 Ry s m;R% h:;R2 J A;‘DP% APpy, Pirp, s Porpy s Pir,

H H H 2 s 471 y 472 s UWeont

detected con_fllcts, unless the equwalence assumption hglds. R;,; _ {T?h’ “Tf;’ trly. t2r14, 12, 42 425, 124, 125, p21. 2.
. Moreov_er, buﬂq-every-mec()orowdes the vx_/h_ole set of_ mlnlmgl P23, p31, P32, P33, 021, 02a, 121, 1120, t123, tr24, 1125, 1126}

evaluation chains, because we look for minimal conflicts. This is

not guaranteed in the original ARR approach, which should be e meaning for each equation above can be found in Appendix

revised to find just minimal ARRs. D. We have used common equations for computing mass balances,
overflows, and so on. Analyzing the system we have found three pos-
sible conflicts. The reader should notice tlaf's is minimal w.r.t.
constraints, but not minimal w.r.t. components.

TR-2 Line 14 V2

igure 2. Scheme of the system to be diagnosed. Measured variables are

4.2 Discussion

PC; | Components
{t?‘ll, tT’lg, tT‘lg, tT'14, t21, t22, t23, {TRl, TQ, Pz}
Cordier et al. [8] defined thsupportfor an ARR as “the set of com- 124,25, p21,p22,p23}

ponents involved in the ARR”. This term was also called “potential g?h ?%3’?311’%321’ pi%’ ”?21’ ”2?22} }gg% 53’%}1%
~ e H e . rly,trlz,trls,irly, 1,t4a2,043, 1,142,172, 2,
R-conflict”, because of their Proposition 4.1: 125, 23,1124, t125, 1126, p33,v21} | P3, Va}

“Let OBS be a set of observations for a system modeled by
SM (resp. SD). There is an identity between the set of minimal 5 Conclusions
R-conflicts for OBS and the set of minimal potential R-conflicts
associated to the ARRs which are not satisfied by OBS.” In this paper we have shown that compilation of dependencies by
means of the possible conflict approach is theoretically equivalent to
As stated in the previous section, we think it is necessary to makén-line dependency recording in GDE. However, it is not possible
three explicit assumptions to guarantee that such a conclusion hold8 claim that, in practice, consistency-based diagnosis using possible

universally: conflicts provides the same results as GDE does, unless the equiva-
e the equivalence assumption holds, lence assumption holds.
e the set of ARRSs is built based on minimality criteria, and We have found out that the model of an ARR is equivalent to some

« we have a component-oriented behavior description of the syste ’valuatlon model for an evalu_atlon chain. Since we select just one
EM for each MEC for practical reasons, we conclude that both

but minimality is considered wr.t. sets of constraints. approaches can obtain equivalent results (assuming ARRs are com
Regarding first two conditions, it seems obvious that proposition bp q (9

5 in Section 3 is equivalent to proposition 4.1. in [8] when both as-pu'tfd l?lased ohn mlnlmal:tydcrtljt?tzlat).P ition 4.1 in 8 dtob
sumptions hold. Third assumption must be taken into account when inally, we have concluded that Proposition 4.1 in [8] need to be

behavioral models are made up of more than one constraint. Mini[ewsed taking into account results in propositions 4 and 5, and con-

mality w.r.t. sets of constraints is needed because not every possib?éde”ng minimality criteria w.r.t. constraints.

conflict is equivalent to a minimal conflict in Reiter’'s framework. We Acknowledgements

will illustrate this using the system in Figure 2. The system is made Authors wants to thank Louise TreaMassus for critical reading

up of common components in process industry such as tanks, pumpsf the original manuscript, and three anonymous referees for their

valves, and so on. valuable comments.

REFERENCES

(1]
[2]

(3]

[4]

(5]

(6]

(71

(8]

9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]
(22]

C. Berge,Hypergraphs. Combinatorics of Finite Seborth-Holland,
Amsterdam, 1989.

K. Bousson, J.-P. Steyer, L. TiaMassugs, and B. Dahhou, ‘From [23]
a heuristic-based to a model-based approach for monitoring and diag-
nosis of biological processesEngineering Applications of Artificial
Intelligence 11, 447-493, (1998).

F. Cascio, L. Console, M. Guagliumi, M. Osella, A. Panati, S. Sottano[24]
and D. Theseider Dupre, ‘Generating on-board diagnostics of dynamic
automotive systems based on qualitative model€roteedings of the
Tenth International Workshop on Principles of Diagnosis (DX;99)
27-35, Loch Awe, Scotland (UK), (1999).

M.J. Chantler, G.M. Coghill, Q. Shen, and R.R. Leitch, ‘Selecting tools
and techniques for model-based diagnosistificial Intelligence in
Engineering12, 81-98, (1998). [
L. Chittaro, G. Guida, C. Tasso, and E. Toppano, ‘Functional and tele-
ological knowledge in the multimodeling approach for reasoning about
physical systems: A case study in diagnosi&EE Transactions on [27]
Systems, Man and Cyberneti@8, 1718-1751, (1993).

L. Chittaro, R. Ranon, and J. Lopez Cortes, ‘Ship over troubled wa-
ters: Functional reasoning with influences applied to the diagnosis of a
marine technical system’, iRroceedings of the Seventh International [2g]
Workshop on Principles of Diagnosis (DX-9@p. 69—78, Val Morin,
Quebec, Canada, (1996).

L. Console and O. Dressler, ‘Model-based diagnosis in the real world:
lessons learned and challenges remainingRlioceedings of the Six-
teenth International Joint Conference on Avtificial Intelligence (IJCAI- [29]
99), pp. 1393-1400, Stockholm, Sweeden, (1999).

M.O. Cordier, P. Dague, M. Dumas, F. Levy, J. Montmain,
M. Staroswiecki, and L. Tr&Massugs, ‘A comparative analysis of ai
and control theory approaches to model-based diagnosiBtoiceed-
ings of the Fourteenth European Conference on Artificial Intelligence
(ECAI 2000) pp. 136-140, Berlin, Germany, (2000). [31]
A. Darwiche, ‘Model-based diagnosis using structured system descrip-
tions’, Technical report 97-07, Department of Mathematics, American
University of Beirut, Beirut, Lebanon, (1997).

A. Darwiche and G. Provan, ‘Exploiting system structure in model-
based diagnosis of discrete-event systemsRroceedings of the Sev-
enth International Workshop on Principles of Diagnosis (DX;3%).
93-105, Val Morin, Quebec, Canada, (1996).

J. de Kleer, ‘Problem solving with the ATMSArtificial Intelligence
28,197-224, (1986).

J. de Kleer, A.K. Mackworth, and R. Reiter, ‘Characterizing diagnosis
and systems’, iflReadings in Model Based Diagnasigl-65, Morgan-
Kauffman Pub., San Mateo, (1992).

J. de Kleer and B.C. Williams, ‘Diagnosing multiple faultaitificial
Intelligence 32, 97-130, (1987).

O. Dressler and P. Struss, ‘The consistency-based approach to auto-
mated diagnosis of devices’, irinciples of Knowledge Represen-
tation, ed., Gerhard Brewka, 269-314, CSLI Publications, Standford{3s]
(1996).

P. Froelich and W. Nejdl, ‘A static model-based engine for model-based
reasoning’, inProceedings of the Fifteenth International Joint Confer-
ence on Artifical Intelligence (IJCAI-97pp. 446-471, Nagoya, Japan, [36]
(1997).

M. Gondran and M. MinouxGraphs and AlgorithmsJohn Wiley and
Sons, New York, 1984.

T. Guckenbiehl and G Schaefer-Richter, ‘SIDIA: Extending prediction
based diagnosis to dynamic models’,Rmoceedings of the First In-
ternational Workshop on Principles of Diagnosis (DX-90p. 74-82,
Stanford, California, USA, (1990).

W.C. Hamscher, L. Console, and J. de Kleer (Ed®eadings in Model
based DiagnosisMorgan-Kaufmann Pub., San Mateo, 1992.

G. Katsillis and M.J. Chantler, ‘Can dependency-based diagnosis cope
with simultaneous equations?’, Proceedings of the Eigth Interna-
tional Workshop on Principles of Diagnosis (DX-9Pp. 51-59, Le
Mont Saint Michel, France, (1997).

M. Lafon, J. Pastor, L. Tr&Massugs, B. Doyon, J.F. Demonet, and
P. Celsis, ‘Qualitative modeling of cerebral information propagation|[40]
mechanisms’, ifProceedings of the Third International Conference on
Computational and Neuroscience®lume 2, pp. 21-23, Research Tri-
angle Park, USA, (1998).

(25]

[30]

(32]

(33]

(34]

[37]

(38]

[39]

A. Ligeza and B. Gorny, ‘Systematic conflict generation in model-based
diagnosis’, inProceedings of thepp. 1103-1108, (2000).

E. Loiez and P. Taillibert, ‘Polynomial temporal band sequences for
analog diagnosis’, ifProceedings of the Fifteenth International Joint
Conference on Atrtificial Intelligence (IJCAI-9fp. 474-479, Nagoya,
Japan, (1997).

J. Lunze and F. Schiller, ‘Logic-based process diagnosis utilising the
causal structure of dynamical systems’Piroceedings of the Artificial
Intelligence in Real-Time Control (IFAC/IFIP/IMACS)p. 649-654,
Delft, Holland, (1992).

P.J. Mostermartlybrid dynamic systems: a hybrid bond graph model-
ing paradigm and its applications in diagnosRhd thesis, Vanderbilt
University, Nashville, Tennessee, USA, May 1997.

P.J. Mosterman and G. Biswas, ‘Monitoring, prediction and fault iso-
lation in dynamic physical systems’, Proceedings of the Fourteenth
AAAI National Conference on arificial Intelligence (AAAI-9@p. 100—
105, Providence, Rhode Island, USA, (1997).

0.0. OyeleyeQualitative modeling of continuous chemical processes
and applications to fault diagnosiBhd thesis, Department of Chemical
Engineering, M.L.T., Cambridge, Massachusetts, USA, 1990.

B. Pulido and C. Alonso, ‘Possible conflicts instead of conflicts to diag-
nose continuous dynamic systems’ Hroceedings of the Tenth Inter-
national Workshop on Principles of Diagnosis (DX-99p. 234-241,
Loch Awe, Scotland (UK), (1999).

B. Pulido and C. Alonso, ‘An alternative approach to dependency-
recording engines in consistency-based diagnosisArtificial Intel-
ligence: Methodology, Systems, and Applications. Ninth International
Conference (AIMSA-0pyolume 1904 of_ecture Notes in Atrtificial In-
telligence 111-120, Springer Verlag, Berlin, Germany, (2000).

B. Pulido and C. Alonso, ‘Dealing with cyclical configurations in mor-
dred’, in IX Conferencia Nacional de la Asoci@ci Espdiola de In-
teligencia Artificial, (CAEPIA-01)pp. 983-992, Gijon, Spain, (2001).

B. Pulido and C. Alonso, ‘Reviéh del concepto de posible con-
flicto como €cnica de pre-compila@n’, Revista Iberoamericana de
Inteligencia Artificial 41-53, (2001).

B. Pulido, C. Alonso, and F. Acebes, ‘Lessons learned from diagnos-
ing dynamic systems using possible conflicts and quantitative models’,
in Engineering of Intelligent Systems. Fourteenth International Con-
ference on Industrial and Engineering Applications of Atrtificial In-
telligence and Expert Systems (IEA/AIE-200DIlume 2070. olLec-

ture Notes in Artificial Intelligencepp. 135-144, Budapest, Hungary,
(2001).

R. Reiter, ‘A theory of diagnosis from first principlegirtificial Intel-
ligence 32, 57-95, (1987).

M. Staroswiecki, S. Attouche, and M.L. Assas, ‘A graphic approach for
reconfigurability analysis’, irProceedings of the Tenth International
Workshop on Principles of Diagnosis (DX-9pp. 250-256, Loch Awe,
Scotland (UK), (1999).

M. Staroswiecki and P. Declerk, ‘Analytical redundancy in non linear
interconnected systems by means of structural analysBdoeedings

of the IFAC Advanced Information Processing in Automatic Control
(AIPAC-89) pp. 51-55, Nancy, France, (1989).

A.D. Steele and R.R. Leitch, ‘A strategy for time-constraint qualitative
parameter identification’, ifProceedings of the Computational Engi-
neering in Systems Applications (CESA IMACS-IEE/SMC Multiconfer-
ece) Lille, France, (1996).

P. Struss, ‘Fundamentals of model-based diagnosis of dynamic sys-
tems’, inProceedings of the Fifteenth International Joint Conference on
Artifical Intelligence (IJCAI-97)pp. 480-485, Nagoya, Japan, (1997).
P. Struss and U. Heller, ‘Model-based support for water treatment’, in
Qualitative and Model Based Reasoning for Complex Systems and their
Control, Workshop KRR-4 at the Sixteenth International Joint Confer-
ence on Artifical Intelligence (IJCAI-99p. 84-90, Stockholm, Swee-
den, (1999).

P. Struss, M. Sachenbacher, and C.M. &ayrlinsights from building a
prototype for model-based on-board diagnosis of automotive systems’,
in Proceddings of the Eleventh International Workshop on Principles of
Diagnosis (DX-00)pp. 201-212, Morelia, Mexico, (2000).

L. Trave-Massugs and R. Milne, ‘Gas-turbine condition monitoring
using qualitative model-based diagnosiEZEE Expert 12, 22-31,
(1997).

B.C. Williams and B. Millar, ‘Automated decomposition of model-
based learning problems’, Proceedings of the Seventh International
Workshop on Principles of Diagnosis (DX-96p. 258-266, Val Morin,

Quebec, Canada, (1996). C Algorithms for computing the set of minimal
evaluation models

Algorithm build-every-mem (SMEC, SMEM)is
Begin

A Graph and hyper-graph notation for chain = each MEC in SME@o

H =V, E| Hyper-graphH, made upV: nodes, and for R = each constraint in chaiio
E: a family of sub-sets i’ for | = each interpretation for Ko

Iy Successors for node model :={I};

r;! Predecessors for node to-be-justified:= 1.nobs;

du (i) Degree for nodé in H justified :=0;

d}; (i), di (i) Output and input demi-degree for nodim H chain := chain\ { R};

build-mem (model, chain, to-be-justified, justified, SMEM);
Bipartite graph: G = [V, E] is a bipartite graph if there are two end for
disjoints parts i/ = S U T, and edges it are always directed end for
fromStoT. end for

Matching: A matchingM in G = [V, E] is a subset of2 such that ~ End
no two arcs inM share a common vertex incident to them.
Algorithm build-mem (model, available, to-be-justified, justified,

B Algorithms for computing the set of minimal SNE';Eeg:%'S
evaluation chains if to-be-justified =) and available # and3; discrepancy node in
Algorithm build-every-mec (SMEC)is modelthen
SMEC: set of MEC;{ Each MEC is a set of constraifts Insert model in SMEM;
available, to-be-justified, justified, chain: set of constraints; end if
R, R2: constraint; else o _
Begin f_or S =each constraintin availabi®
available := Constraints-iti{s p); if S.nobaN to-l:_)e-Justlfled_ =) then
while available ¢ do for 12 = each interpretation for 8o
R := Select-constraint(available); if head(12)" to-be-justified# () then
chain :=0; Insgrt{IQ} in quel;
available := availablg {R}; available := availablg {S}; .
build-mec (SMEC, chain, R, available); to-be-justified := (to-be-justifie§ head(12))U tail(12).nobs;
end while Insert head(12) in justified;
End Build-mem (model, available, to-be-justified, justified, SMEM);
end if
Algorithm build-mec (SCEM, chain, R, availabley end for
Begin _ end if
Insert R in chain;, end for
to-be-justified := R.nobs; end if
justified :=0; End
Justify (SMEC, chain, to-be-justified, justified, available);
End . .
, _ _ o D Constraints used to model the hydraulic system
Algorithm Justify (SMEC, chain, to-be-justified, justified, avail- .
able)is Constraints Represent

) , o
v: unknown variable: trly,t21,tr2, Massbalancein Tin/p = > fin — Y fout

related: set of constraints;

Begin trls, 122 Overflow in T: fout = \/k - (hr — hext)
if to-be-justified =) then
if there is no subset of chain in SMERen trls,t23,tr2s Massimy(t) = fm/T(t —1dt +mp(t—1)
Erase chain supersets from SMEC;
Insert chain in SMEC; trls, t25,tr26 Heightin T:thy = ki - 3T
end if{ Only minimal chains are included in SMELC.
else 124,122 Pressure at botton®r, = ko - hy + Patm
v := select-variable (to-be-justified);
related := R R € available and \e R.nobs; p21, P32 Pump load curve in PAPp = table PQ(fout)

while related# () do
R1 := select-r (related); Z
related := relat(ed {Rl%; P22,p31 Outflow in T: fout = \/k3 : W
chain2 := chairu {R1};
Justified2 := Justified{v}; p23,p33, V21 Flow out of tank:f,, = fout
to-be-justified2 := (to-be-justifiefl v) U (R1.nobs\ justified2};
available2 := available R1; tr2: Control:u = PID(hr)
Justify (SMEC, chain2, to-be-justified2, justified2, available2);
end while
end if
End

(Pry—Patm)

V29 Flow through a valvefou: = 4 / ks - Fot (100)2
6+(=

Model-Based Reliability and Diagnostic:

A Common Framework

for Reliability and Diagnostics

*

Bernhard Anrig and Jiirg Kohlas

Department of Informatics, University of Fribourg,
CH-1700 Fribourg, Switzerland
{Bernhard.Anrig, Juerg.Kohlas}@unifr.ch

Abstract. Technical systems are in general not guaranteed
to work correctly. They are more or less reliable. One main
problem for technical systems is the computation of the reli-
ability of a system. A second main problem is the problem of
diagnostic. In fact, these problems are in some sense dual to
each other.

In this paper, we will use the concept of probabilistic ar-
gumentation systems PAS for modeling the system descrip-
tion as well as observation and specifications of behaviour in
one common framework. We show that PAS are a framework
which allows to formulate both main problems easily and all
concepts for these two problems can clearly be defined therein.
Using PAS, reliability and diagnostic can be considered as
dual problems. PAS allows to consider one common strategy
for computing answers to the questions in the different situa-
tions.

1 Introduction and Overview

One main problem for technical systems is the computation
of the reliability of a system. This is studied in reliability
theory (see for example [7, 8]). The reliability depends on
various factors like the quality and the age of components,
complexity of the system, etc. The reliability of a system con-
veys some information about the behavior of the system in
the future, based on information about the components, for
example probabilistic information about the reliability over
time.

A second main problem for technical systems is the prob-
lem of diagnostic. Here, the problem is to explain the behavior
of the system, usually based on measurements and observa-
tions of some parts of the system, together with the system
description in some framework. The actual observations and
the description of the system are the only ingredients for the
computation of the diagnoses. Additionally, if probabilistic
knowledge is available about the different operating modes of
the components, then the likelihood of the system states can
be defined and prior as well as posterior probabilities can be
computed for the set of possible system states.

* Research supported by grant No. 2000-061454.00 of the Swiss
National Foundation for Research.

system description

diagnostic
~

reliability
~

R\Viad
A
combined reasoning

Figure 1. Reliability versus Diagnostic.

The two main problems depend both on a formalization of
the system in some framework together with either observa-
tions, measurements, or requirements (Fig. 1). Here, we will
use the concept of probabilistic argumentation systems PAS
for modeling the system description as well as observation and
specifications of behaviour in one common framework. The
goal of a PAS is to derive arguments in favor and against the
hypothesis of interest. An argument is a defeasible proof built
on uncertain assumptions, i.e. a chain of deductions based
on assumptions that makes the hypothesis true. If probabilis-
tic information is available, a quantitative judgement of the
situation is obtained by considering the probabilities that the
arguments are valid. The resulting degrees of support and pos-
sibility correspond to belief and plausibility, respectively, in
the Dempster-Shafer theory of evidence [24, 20]. In fact, PAS
combines the strengths of logic and probability in one frame-
work. In this paper we show that probabilistic argumentation
systems are a framework which allows to formulate both main
problems, i.e. reliability and diagnostic, easily and all concepts
therefore can clearly be defined therein. The framework will
especially allow to consider one common strategy for comput-
ing answers to the questions in the different situations. Some
work in this direction but without using PAS has been done
by Provan [22].

The main information for both problems is the description
of the system in some formalism; we will focus here on a for-

malization using logic. In the case of reliability, we may have
a specification which describes the goals which have to be ful-
filled by the system. This information will be used to compute
the structure function from the system description. Different
specifications may lead to different structure functions. Even
in the absence of an explicit specification of a reliability re-
quirement, we may deduce a structure function by assuming
that the system should be functioning at least if all compo-
nents are working.

On the other hand, in the case of diagnostic, some obser-
vations of the system may indicate that the system is not
working as it is supposed to be. This information — together
with the system description — allows then to compute the di-
agnoses of the system, i.e. minimal sets of components whose
malfunctioning “explains” the wrong behaviour of the whole
system.

2 Reliability
2.1 Combinatorial Reliability

In binary combinatorial reliability, a system is assumed to be
composed of a number of different components. Each com-
ponent is either intact or it is down, and so is the whole
system itself, depending on the states of its components. In
order to formulate this, binary variables x; are associated to
components ¢ = 1,2,...,n of the system, where z; = T if
the component number i works and x; = 1 otherwise. Let x
be the vector (z1,z2,...,zs) of the component states. This
state-vector has 2" possible values. These values can be de-
composed into two disjoint subsets, the set St of working
states, for which the system as a whole is assumed to be func-
tioning, and the set S| of down-states, for which the system
is supposed to not work properly. The corresponding system
state is denoted by z. Its dependence on the state-vector x is
described by a Boolean function ¢, defined as

T ifxe ST,
o) = {J_ if x €8,)

The Boolean function ¢ is called the structure function of the
system. In combinatorial reliability it is assumed to be given
and it forms the base for reliability analysis.

The structure function ¢ is usually assumed to be mono-
tone. That is, if x1 < X2, then ¢(x1) < ¢(x2). For a monotone
structure function, a subset P C {1,2,...,n} of components
is called a path, if ¢(x) = T for all state-vectors x for which
the components of the set P are working, x; = T for all s € P.
That is, the elements of a path are sufficient to guarantee the
functioning of the system, regardless of the state of the com-
ponents outside the path. We assume that the set {1,2,...,n}
of all components is a path (otherwise the system would never
be functioning). A path P is called minimal, if no proper sub-
set of P is still a path. Since the paths are upwards closed it
is sufficient to know all minimal paths. Let P denote the set
of minimal paths. This set determines the structure function,

o) =\ N = (2)

PePieP

r =

This logical formula expresses the fact, the system is working,
if all components of at least one minimal path are working.

out

Figure 2.

A simple device

Dually, the notion of a cut is defined and C denotes the set of
all minimal cuts.

If for every component i = 1,2,...,n its respective prob-
ability p; of functioning correctly is defined, then the prob-
ability that the system is functioning can be computed (as-
suming the components to be stochastically independent). In
fact, ¢(x) is a random variable, and the probability p that the
system is functioning is

p = E(¢(x)) = h(p)- 3)

Here, p denotes the vector (pi,p2,...,pn) of probabilities.
h(p) is called the reliability function and its computation is
a nontrivial task [1, 16, 5].

2.2 Model-Based Reliability

The structure function describes the conditions under which
a system is functioning, depending on the states of its com-
ponents. It is already a compilation of knowledge about the
system and its structure. In this section we shall illustrate an-
other approach, where a more physical description of a system
is given. Additionally, a specification of the desired behavior
of the system is given. These two elements will then allow the
deduction of a structure function and its associated reliability
function. The discussion in this section will be informal.

Example 1: Detector of Power Failure

(Example adapted from [22])

Consider a simple device which watches a Boolean value in
and reports an output out equal to T, if the value vanishes
(becomes L). A simple version of such a device is depicted
in Figure 2. The functionality of this device can be described
with propositional logic. Let in and out be the variables which
denote the state of the in- and output respectively. Both vari-
ables are binary, i.e. represent the boolean values true or false
respectively. Further, there are two internal variables z1 and
x2, also binary. For every component A, B or C, there is a
respective binary variable oka, okg, and okc which describes
the working mode of the component.

Consider the inverter A: if it works correctly (oka is true),
then its input is the negation of its output, out is true if and
only in is false. We express this by the formula in < —z;. So
the entire information is modeled as the logical implication
oka — (in < —z1). Note that so far nothing is said about
the behavior of the component, if it is down (oka is false).
There are several possibilities. One is that in this case the
output of the component is always false, i.e. “0ka — —x1.

For the component B, the same specification can be ap-
plied. For the or-gate, if it works correctly, then the output is

true if at least one of its inputs is. So the whole information
about the device is modeled by a set of six implications:

—\Ok‘A — —\1,‘17
—-okp — —xa, (4)
—okc — —out

oka — (in < 1),
> = okp H(in<—>—|x2)7
okc — (out < 1 V x2),

This is the system description. We add now a specification of
what we expect from the system to this physical description of
the system. We expect, that negative (false) input is detected,
i.e. the output is true. This could be expressed by —in — out.
However, this is a weak requirement. It does not exclude that
out becomes true, even if in is true. More stringent would be
the specification —in < out. This asks that there is an alarm
(out) if, and only if, in is false.

We may now ask under which states, described by the vari-
ables oka, okgp, and okc, each one of these specifications is
fulfilled. This defines the structure function of the system as-
sociated with the corresponding specification of desired sys-
tem behavior. We shall see in the next section, that it is a
well-defined problem of propositional logic to deduce these
structure functions from the system description and the spec-
ifications of desired behavior.)

This example shows how the physical behavior of systems
and the required behavior can be described in the language
of propositional logic. We shall examine this structure in the
following section in a general context.

3 Probabilistic Argumentation Systems

Probabilistic argumentation systems have been developed as
general formalisms for expressing uncertain and partial know-
ledge and information in artificial intelligence. They combine
in an original way logic and probability. Logic is used to derive
arguments and probability serves to compute the reliability or
likelihood of these arguments. These systems can be used for
model-based diagnostics as has been demonstrated in [2, 19].
Here we shall show how they relate to reliability theory.

In this section we give a short introduction into proposi-
tional probabilistic argumentation systems. For a more de-
tailed presentation of the subject we refer to [15]. We remark
also that such systems have been implemented in a system
called ABEL which is available on the internet (cf. [14] for
further information).

3.1 Propositional Logic

Propositional logic deals with declarative statements, called
called propositions, that can be either true or false. Let
P = {p1,...,pn} be a finite set of propositions. The sym-
bols p; € P together with T (tautology) and L (falsity), are
called atoms. Compound formulas are built by the following
syntactic rules:

e atoms;

o if v is a formula, then —v is a formula;

e if v and ¢ are formulas, then (yAd), (yV), (y — J), and
(v < 9) are formulas.

By assigning priority in decreasing ordering to —, A, V, —,
some parentheses can be eliminated. The set Lp of all formu-
las generated by the above recursive rules is called proposi-
tional language over P.

A literal is either an atom p; or the negation of an atom
—pi. A term is either T or a conjunction of literals where
every atom occurs at most once (but none of L and T), and
a clause is either L or a disjunction of literals where every
atom occurs at most once (but none of L and T). Cp C Lp
denotes the set of all terms, and Dp the set of all clauses.

Np ={0,1}" denotes the set of all 2" different interpreta-
tions for P. If v € Lp evaluates to 1 under x € Np, then x is
called a model of . The set of all models of ~ is denoted by
Np(v) € Np.

A propositional sentence 7 entails another sentence § (de-
noted by v | §) if and only if Np(y) C Np(d). Sometimes,
it is convenient to write x = « instead of x € Np(y). Also
we write v = L if v is not satisfiable. Furthermore, two sen-
tences v and § are logically equivalent (denoted by v = 9), if
and only if Np(vy) = Np(9).

3.2 Basic Concepts of Argumentation
Systems

Consider two finite sets P = {p1,...,pm} and A =
{a1,...,an} of propositional variables with ANP = 0, the ele-
ments of P are called propositions, the elements of A assump-
tions. We consider a fixed set of formulas > C L aup called the
knowledge base, which models the information available; sets
of formulas are interpreted conjunctively, i.e. ¥ = A{¢ € X}.
We assume that this knowledge base is satisfiable. A triple
(X, A, P) is called a propositional argumentation system PAS.

The elements of N4 are called scenarios (or system states).
A scenario represents a specification of all values of the as-
sumptions in A. Define now:

Inconsistent Scenarios: CSs(X):={s€ Na:s,X = L},

Quasi-Supporting Scenarios of h € Ly:
QSA(h,X) :=={s € Na:s,X = h},

Supporting Scenarios of h € Ln:
SPs(h,X) := QS4(h,X) — CSa(X),

Possible Scenarios for h € Ln:
PLA(h,S) := SPA°(—h,).

Inconsistent scenarios are in contradiction with the know-
ledge base and therefore to be considered as excluded by the
knowledge. Supporting scenarios for a formula h are scenar-
ios, which, together with the knowledge base imply h and
are consistent with the knowledge. So, under supporting sce-
narios, the hypothesis A is true. Possible scenarios for h are
scenarios, which do not imply —h and thereby do not refute h.
Quasi-supporting scenarios for h are the union of supporting
scenarios and inconsistent scenarios.

Scenarios are the basic concepts of assumption-based rea-
soning. However, sets of inconsistent, quasi-supporting, sup-
porting and possible scenarios may become very large. There-
fore, more economical, logical representations of these sets are
needed. For this purpose, the following concepts are defined:

Set of Supporting Argument for h:
SP(h,X) ={a € Ca: Na(a) C SPa(h,X)},

The sets of quasi-supporting and of possible arguments are
defined analogously. Remark that supporting arguments are
similar to paths for structure functions in reliability the-
ory. This similarity will be exploited later. These sets are

all upward closed. Hence the sets of arguments are al-
ready determined by their minimal elements. We denote by
n@S(h,X), uSP(h,X) and pPL(h,X) the sets of minimal
quasi-supporting, supporting and possible arguments. Fur-
ther,

Conflict: conf(X) := \/ «,
acepQS(L,X)
Support of h: sp(h,X) := \/ Q,

acpSP(h,X)

Quasi-support g¢s(h,X) and possibility pl(h,Y) are defined
analogously. Clearly, any formula which is logically equivalent
to logical representations above can be used as a representa-
tion.

Ezample 2: (Cont. of Example 1)

The information of Example 1 is modeled in an argu-
mentation system as follows: A = {oka,oks,okc}, P =
{in,x1,x2,0ut} and X as in (4). There are no incon-
sistent scenarios and for h = -in — out we have
QSA(h’7 E) = {(O> 1,1),(1,0,1), (17 1, 1)} and PLA(h7 E) =
Na. As CSa(2) = 0, we have QS, = SPa in this situation
and there are some arguments in favor of the hypothesis, but
none against it. Hence, gs(h,X) = (oka A okc) V (oks A okc)
and pl(h,X)=T. S

3.3 Probabilistic Information

On top of the structure of a propositional argumentation sys-
tems, we may easily add a probability structure. Assume that
there is a probability p(a;) = p; for every assumption a; € A
given. Assuming stochastic independence between assump-
tions, a scenario s = (s1,..., Sn) gets the probability

p(s) = pri(l—pi)lfsi- (5)

This induces a probability measure p on L4,

o) = 3 pls)

SENA(f)

for f € La. A quadruple (X, A, P,II) with IT = (p1,...,pn) is
then called a probabilistic (propositional) argumentation sys-
tem PAS.

The problem of computing the probability p(f) is similar to
the problem of computing the reliability of a structure func-
tion, except, that monotonicity cannot be assumed in general;
for algorithms for efficiently computing the probability p(f)
see [20, 9, 13].

Once we have such a probability structure on top of a
propositional argumentation system, we can exploit it to com-
pute likelihoods (or in fact, reliabilities) of supporting and
possible arguments for hypothese h. First, we note, that X
imposes that we eliminate the inconsistent scenarios and con-
dition the probability on the consistent ones. In other words,
3. is an event that restricts the possible scenarios to the set
Na — CSa(X), hence their probability has to be conditioned
on the event Y. This conditional probability is defined by

’ _ p(s)
P = T pas(LE)

for consistent scenarios s. p(gs(h, X)) = dgs(h) is the so-called
degree of quasi-support for h. Now, the degree of support dsp
for hypotheses h is defined by

This result explains the importance of quasi-support. It is
sufficient to compute degrees of quasi-supports. Further, we
obtain the degree of plausibility of h,
1 — dgs(—h,X)

dpl(h) = p'(pl(h, X)) = ———=— =1 — dsp(=h).

pl(h) = p'(pl(h, X)) 1= dgs(L,%) sp(—h)
Degree of quasi-support dgs(h) and of support dsp(h) corre-
spond in fact to unnormalized and normalized belief in the
Dempster-Shafer theory of evidence [24, 20, 15].

3.4 Computational Theory

Computing quasi-supports is the basic operation in PAS. It
can be based on resolution and variable elimination (forget-
ting) [15, 12, 13]. In the sequel, we will sketch some of the
main concepts for computation.

First, note that the computation of ¢gs(h) can be reduced to
the computation of the conflicts with respect to an updated
knowledge base: gs(h,¥) = ¢s(L,3 U {=h}). So for any hy-
pothesis h, the quasi-supporting arguments ¢s(h,X) can be
determined by computing the conflicts with respect to the
knowledge base ¥ U {—h}. Hence in the sequel, we focus on
the computation of the conflicts with respect to a general
knowledge base.

The ideas presented in the sequel are based on representa-
tions of knowledge in conjunctive normal form (CNF), i.e. a
conjunction of clauses. The main step is based on the princi-
ple of resolution. Let z € AU P. A disjoint decomposition of
3. is then defined as follows:

vt = {¢eX:zeLit®)}
¥, = {£e€eX:-ze it}
Y = {¢eX:z¢ Lit(¢) and ~x ¢ Lit(€)}

Lit(X) denotes the set of all literals occurring in X. A literal
is either a (positive) atom or a negated atom.

Consider two clauses ¢ =z VT and €~ = -z V™ in BT
and ¥ respectively. The clause p(¢7,£7) = 6T v § is called
the resolvent; note that we simplify implicitly the resolvent
so that p(£7,€7) is again a clause, i.e. double occurrences of
atoms etc. are simplified.

Eliminating a variable x € P U A from ¥ means now to
compute

Elim,(X) = u(Se U{p(¢+,¢7) : €T e X7, £ e))
Consider a set @ C PUA. We define now, for Q = {q1,...,qr},
Elimg(X) = Elimg, (. . . (Elimg, (Elimg, (X))) ...)

The result does not depend on the very order of the elimina-
tion of atoms; yet note that the computations depend criti-
cally on a “good” ordering, see [15] for a discussion as well as
relations to the theory of local computation (in the sense of
Shenoy & Shafer [25]).

This allows then to compute the quasi-supporting argu-
ments of a knowledge base X as follows:

Theorem 1 ([15])
QS4(h,X) = N§(Elimp (X U {=h}))

In other words, this theorem asserts that
gs(h,X) = - /\ Elimp(X U {=h}).

The concept of elimination allows to compute quasi-
supporting and therefore also supporting as well as possible
arguments for hypotheses. This notation connects the con-
cepts presented here to the more general theory of valuation
algebras, a general theory for representing, combining and fo-
cusing pieces of information [18, 21].

4 Reliability Analysis Using Probabilistic
Argumentation Systems

4.1 Reliability based on Requirement
Specification

We discuss now how probabilistic argumentation systems can
be used to formulate and solve reliability problem. The ba-
sic idea is simple: The system behavior is described in terms
of the states of its components. In addition the desired or re-
quired behavior of the system is specified. The system descrip-
tion forms a probabilistic argumentation system. The ques-
tion is then: how likely (probable) is it, that the specified
requirement is satisfied? In order to answer this question, the
specification of required behavior is taken as a hypothesis.
The support of this specification determines then essentially
the structure function of this reliability problem, and the de-
gree of support of the specified requirement is the reliability
of the system with respect to the required behavior. Note
that — depending on different goals a system should attain,
or services it should provide — different requirements may
be formulated. So the corresponding reliability analysis has
to be differentiated, but can be carried out within the same
framework of probabilistic argumentation systems.

Ezxzample 3: (Cont. of Example 1)

We have already formulated ¥ and two different specifications
61 = —in — out and d2 = —in < out. We can compute the
supports of these two specifications. It turns out, that both
are the same,

sp(01,%) = sp(d2,X) = (oka A okc) V (oks A okc).

Note that this is just the path representation of the expected
structure function. In fact this structure function could be
reformulated as (oka V okg) A okc, which shows that it is a
series system composed of component C' and a parallel module
of the components A and B. The remarkable fact is, that this
structure function has been automatically deduced from the
system description and the specification of requirements.

The system description is an essential element for this anal-
ysis. If it is changed, then this may influence the results of the
analysis. Suppose that, in contrast to the model above, we do
not know how the faulty components behave. The knowledge
base becomes now

sy _ oka — (in < —x1), okp — (in — —x2),
| oke — (out < 1V x2).

With this less complete model, the structure function of the
two specifications above become different,

Sp(617 Z:/)
Sp(627 Z:/)

(oka N okc) V (oks A okc),
oka N ok N okc.

Now, the stronger requirement d2 can only be guaranteed if
all three components work correctly (a series system), whereas
the weaker one still has the same redundancy as before. ©

In the general case, we have a PAS (X, A, P), where the
assumable symbols in A correspond to the components of the
system. Positive assumptions correspond to working compo-
nents. Accordingly in the context of reliability analysis, we
shall call the scenarios of this argumentation system system
states. The propositional symbols in P are needed to describe
the system behavior. We assume that the system descrip-
tion Y excludes no system states, that is there are no con-
flicts, @S4(L,X) = 0. A knowledge base ¥ which satisfies
this is called A-consistent.

The required behavior is specified by a formula §. Usually §
will not contain assumptions, but there is no reason to exclude
this in general. § formulates a reliability goal. There may be
several such goals.

The set of system states SPa(d, X) supporting ¢ contains all
states guaranteeing the required specification from the sys-
tem description. Its complement SP4¢(5,X) = PLa(—0,%)
contains the system states where this guarantee is no more
assured. These are the unreliable states. So SP4 (9, X) defines
the structure function associated with the specification §

{ T ifs€ SPa(s, %), ©)
L ifs¢ SPa(s,%).

s = ¢sx(s)
The index ¥ in ¢s,x will be omitted if 3 is clear from the con-
text. Here, s denotes the “system state”, which is T, when the
reliability specification is assured and L otherwise. Since the
set SPa(6,%) has a logical representation based on minimal
arguments, the same holds for the structure function ¢s,

¢s= \a

aEpSP(5,%)

= Sp(é, Z) (7)

In the same way, based on minimal possible arguments
PL(—4,X), we obtain

~¢s= \/B =pl(-6,5).

BEuPL(—6,%)

By de Morgan laws this transforms into

N\ -5 (8)

BEUPL(—4,%)

¢s =

Note that =, the negation of a term, is a clause. This is a
second logical representation of ¢s.

A comparison with the minimal path and minimal cut rep-
resentation of monotone structure functions (2) shows that
minimal supporting arguments « for 6 and minimal possible
arguments [for =é play a role similar to minimal paths and
minimal cuts.

According to our assumption of A-consistency, we have
QS4(L,X) = 0. Thus

SPA(8,%) = QS,(L, XU {~d}). (9)

On the other hand, we have also
PLA(=6,%) = QS,°(L, T U {=8}). (10)

This shows, that a reliability analysis of a system X relative
to a requirement specification d, requires essentially the com-
putation of the conflict states @S, (L, 3 U{—d}). We shall see
below, that this is exactly also what is required for diagnosis.
This is a first hint to the duality between the problems of
reliability and diagnosis.

Once probabilities for the assumptions, i.e. component
availabilities or reliabilities are defined, system reliability rel-
ative to a specification ¢ is simply the degree of support of 9,
(since @S4(L,%) =10), ie.

psn = dsp(8,X) = dgs(6, %) = p(QSa (L, X U{=4})).

4.2 Implicitly Defined Reliability

A specification ¢ is called consistent with the system descrip-
tion X, if the system state 1 belongs to SP4(d,). In this sec-
tion we only consider specifications consistent with the system
description.

A system description X often contains, besides assumptions,
another set O of special propositional atoms, namely those
which are observable. Then specifications ¢ can be assumed
to be formulated with observables only, § € Lo. Observables
are typically input and output variables of some system.

Assume now, that in a system description (3, P, A) a set
of observable variables O is singled out. Usually, O C P, i.e.
component states can not be observed directly. But it does no
harm to assume more generally O C P U A. Then we define
an implicit specification

5 = Elim(Aup),o(Z @] {a1 Naz A--- N\ an})

That is, 5 represents all the functionality of the system in
terms of observables which can be obtained from a system
with all components working. We call this the implicit relia-
bility specification with respect to O. Now, the system may be
— with respect to this specification — as good as “new” also
for some states including faulty components. Therefore we
define the implicit structure function by the set of up-states
relative to 6, i.e. SP4(8,%). Hence, we obtain

\/oz7 or ¢z = /\ﬂ,&

aepSP(5,5) BEWPL(—4,5)

o5 =

Accordingly, the implicit reliability of such a system can be
obtained as the degree of support ds;v((g7 ¥). This approach
helps to decide whether a system has some implicit redun-
dancy, namely, whether ¢; represents simply a series system,
ie. uSP(S, ¥) has only the set of all assumptions as minimal
supporting argument for 5.

Lemma 2 Ifd € Lo is a consistent specification with respect
to X, then § =6."

This shows that § is the most stringent, consistent speci-
fication over observables O. For all specifications over O the
implicit specification has least reliability:

L For proofs see [6].

Lemma 3 Ifd € Lo is a consistent specification with respect
to X, then SPa(,%) C SPa(4,%).

Corollary 4 If 6 € Lo is a consistent specification with re-
spect to X, then ps < ps.

5 Model-Based Diagnostic

5.1 Duality Between Reliability and
Diagnostics

A problem of diagnostics arises if an observation indicates
that a requirement specification § is violated. Then the ques-
tion is: how can the required functionality be recovered? That
is, one would like to find out those components whose fail-
ure caused the system failure and which have to be fixed or
replaced. This analysis will be based on the system descrip-
tion ¥ and on the specification § which is violated.

In fact, we ask, which system states are compatible or con-
sistent with the system description 3 and the violation of the
specification ¢, expressed by —§. Well, these are of course all
states which are consistent with 3 U {—d}, that is the set

QS°(L, S U{=6}) = PLA(—4,%). (11)

Remark that this is exactly the set of down states relative to
the specification 0 (see (10)). Here we have the basic duality
between reliability analysis relative to a requirement speci-
fication ¢ and the diagnostic problem relative to the same
specification. The conflict set QS (L, X U {—=d}) is the com-
putational key to both reliability analysis and diagnostics. It
gives the up-states which define reliability and its complement
gives the possible states explaining the violation of the relia-
bility specification, i.e. possible diagnostics. It is well known
in model-based diagnostics that such conflict sets play a key
role [23, 10, 19]. The duality implies that they play an equally
important role for model-based reliability.

If the structure function ¢s, 5 is monotone, then to the min-
imal possible arguments 3 € uPL(—d,X) correspond the min-
imal cuts =(. They represent minimal sets of failed compo-
nents, which explain the violation of the specification §, inde-
pendently on the state of the other components.

Minimal cuts correspond to kernel diagnoses in model-
based diagnostics [23]. Usually model-based diagnostics goes
not beyond such concepts of diagnostics. It neglects the im-
portant role of probability.? The observation of the violation
of the specification 6 in fact defines the event QS,°(L, X U
{—0}) in the sample space Na. That is, the prior probabilities
p(s) defined on the states have now to be conditioned on this
event. This gives us the posterior probabilities

p(s))
T (05, (LE0 =) ~ a2

for diagnostic states s € QS,(L,3 U {=d}). This underlines
once more the key role of the conflict set @S, (L, 2U{=d}). Its
prior probability is sufficient to compute the posterior proba-
bilities of the possible diagnostic states explaining the viola-
tion of §.

p(s|=d) =

2 See however [19, 3] for a discussion of this subject, and es-
pecially [19] for the problems of the approach of De Kleer &
Williams [11]. Other approches focus for example on minimal
entropy [26] or on restricting the device to have a Bayesian net-
work model [17].

These posterior probabilities represent important addi-
tional diagnostic information. For example we may look for di-
agnostic states with maximal posterior probability. s is called
a maximal likelihood state, if

p(s|=6) = (s[—0). (13)

max P
SEQS (L, 3u{~d})

There may be several such states. They represent most likely
states explaining the violation of .

Reiter [23] proposed to look especially at possible diagnos-
tic states with a minimal number of faulty components. In-
tuitively this makes sense: The failure should be explained
with a minimal number of down components. If s is a state,
we define s~ to be the set of its negative (down) compo-
nents. Then we define a partial order between states: s’ <'s
if s~ C 5. Reiter diagnoses are now those diagnostic states
s € QS,°(L,X U {=d}), which are minimal with respect to
this partial order. We make the reasonable assumption that
for every component ¢ we have p; > 0.5 such that p; > 1 — p;.
I.e. it is more probable that a component works than that
it is down. Then s’ < s implies that p(s’|=d) > p(s|=d). So
maximum likelihood states are Reiter diagnoses. The inverse
of course does not hold necessarily. Also, if the structure func-
tion ¢s is monotone, the s~ of Reiter diagnoses correspond to
minimal cuts relative to the specification 4.

The posterior fault probabilities of the components,
p(—a;|—0), are also of interest. The larger this probability,
the more critical is component i for the requirement specifi-
cation ¢. So this is a possible importance measure for com-
ponent ¢ relative to the specification (for other importance
measures see [4]).

Example 4: (Cont. of Example 1)

Suppose we observe that, although —in, we have also —out,
i.e. a power system failure is not detected. Note that —in A
—out = =01 (cf. Example 3). So we consult the minimal cuts
relative to the specification —d1. There are two minimal cuts:
{—0kc} and {—oka,—okg}. To any minimal cut corresponds
a Reiter diagnosis, namely, {oka, okg, 7okc} to the first cut,
and {—0ka, 0kp,okc} to the second one. One of these two
diagnoses must be the maximum likelihood state. The first one
has prior probability 0.99x0.99x 0.05 = 0.049, the second one
0.01 x 0.01 X 0.95 = 0.000095. So clearly, the first one is by far
the most likely state. The posterior probability is obtained by
dividing the prior probability by the unreliability 0.05 relative
to 61. We obtain for the maximum likelihood state a posterior
probability of 0.98. ©

5.2 Diagnostics Based on Observations of
System Behavior

The actual observation is not necessarily the negation of a sys-
tem requirement, but may be something stronger, which im-
plies the violation of a specification. Indeed, as we saw in Ex-
ample 4 we observed —inA-out = —d1, but ~in A—out = —d2.
So, we should reconsider the duality between reliability and
diagnostics. In fact, assume that we make some observation
of the system behavior, expressed in a formula w over observ-
ables. Then we may test whether w = —és. If this is the case,
then we have a diagnostic problem, in the sense that at least
one component must be down.

The solution of this diagnostic problem is found along sim-
ilar lines as in the previous section. Possible states are those,
which are consistent with the system description and the ob-
servation. Or, in other words, the states in the conflict set
QS,4(L, X U{w}) are those which are excluded by the obser-
vation. So, the possible diagnostic states are those of the set
PLg(w,3) = @S,°(L, X U {w}). We see that this diagnostic
problem is dual to a (fictitious) reliability problem with a “re-
quirement” specification —w. Note that the specification —w is
always consistent with 3, since S5 is consistent and w E —bs.

Of course, we get a much sharper diagnostic with an ob-
servation w = -4, than with the information of =4 only. This
follows, because according to Lemma 3, we have PLa(w,) C
PLA(S7 ¥). So, the more precise the observation, the more
states are eliminated. A mere statement that a given reliabil-
ity specification is violated is less informative than a precise
observation implying a violation of a requirement specifica-
tion.

6 Combining Diagnostic and Reliability

We conclude this discussion of duality between reliability and
diagnostics by remarking that we may have an observation of
the system behavior which does neither entail a specification &
nor its violation —¢§. But still this observation is information
and we can use it to improve reliability analysis and also to
perform a preventive diagnostic analysis (see [6]). For relia-
bility as well as for diagnostic, additional measurements —
or more generally any additional information — can be taken
into account in the framework presented above and helps to
focus the reasoning.

7 Conclusions

In this paper we have shown how closely reliability and model-
based diagnostic are connected. The framework of probabilis-
tic argumentation system appears to be a framework which
covers both approaches. Therefore the generic structure of
PAS can be used for solving problems in both domains. The
approaches can even be combined and the information spec-
ified can be used in the common framework. Further, from
the system description of an argumentation system, we can
derive the appropriate structure function and — if desirable
— take into consideration a reliability requirement. PAS al-
lows to use local computation architectures and approxima-
tion techniques [25, 15]. This complements the computational
theory of reliability theory.

REFERENCES

[1] J. A. Abraham, ‘An improved algorithm for network reliabil-
ity’, IEEE Transactions on Reliability, 28, 58-61, (1979).

[2] B. Anrig, ‘Probabilistic argumentation systems and model-
based diagnostics’, in DX’00, Eleventh Intl. Workshop on
Principles of Diagnosis, Morelia, Mezico, eds., A. Darwiche
and G. M. Provan, pp. 1-8, (2000).

[3] B. Anrig, Probabilistic Model-Based Diagnostics, Ph.D. dis-
sertation, University of Fribourg, Institute of Informatics,
2000.

[4] B. Anrig, ‘Importance measures from reliability theory for
probabilistic assumption-based reasoning’, in Furopean Conf.
ECSQARU’01, Toulouse, eds., S. Benferhat and P. Besnard,
pp. 692-703. Lecture Notes in Artif. Intell., Springer, (2001).

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]
23]
24]

[25]

[26]

B. Anrig and F. Beichelt, ‘Disjoint sum forms in reliability
theory’, ORiON J. OR Society South Africa, 16(1), 75-86,
(2001).

B. Anrig and J. Kohlas, ‘Model-based reliability and diag-
nostic: A common framework for reliability and diagnostics’,
Technical Report 02-01, Department of Informatics, Univer-
sity of Fribourg, (2002).

R. E. Barlow and R. Proschan, Statistical Theory of Reliabil-
ity and Life Testing, New York, 1975. IAUTOM 3.9.4-10.

F. Beichelt, Zuverldssigkeits- und Instandhaltungstheorie,
Teubner, Stuttgart, 1993.

R. Bertschy and P.-A. Monney, ‘A generalization of the algo-
rithm of Heidtmann to non-monotone formulas’, J. of Com-
putational and Applied Mathematics, 76, 55-76, (1996).

R. Davis, ‘Diagnostic reasoning based on structure and be-
haviour’, Artif. Intell., 24, 347-410, (1984).

J. De Kleer and B. C. Williams, ‘Diagnosing multiple faults’,
Artif. Intell., 32, 97-130, (1987).

R. Haenni, ‘Cost-bounded argumentation’, Int. J. of Approz-
tmate Reasoning, 26(2), 101-127, (2001).

R. Haenni, ‘A query-driven anytime algorithm for
assumption-based reasoning’, Technical Report 01-26,
University of Fribourg, Department of Informatics, (2001).
R. Haenni, B. Anrig, R. Bissig, and N. Lehmann. ABEL
homepage. http://diuf.unifr.ch/tcs/abel, 2000.

R. Haenni, J. Kohlas, and N. Lehmann, ‘Probabilistic ar-
gumentation systems’, in Handbook of Defeasible Reasoning
and Uncertainty Management Systems, eds., J. Kohlas and
S. Moral, volume 5: Algorithms for Uncertainty and Defeasi-
ble Reasoning, Kluwer, Dordrecht, (2000).

K. D. Heidtmann, ‘Smaller sums of disjoint products by sub-
product inversion’, IEEE Transactions on Reliability, 38(3),
305-311, (August 1989).

P. H. Ibargiengoytia, L. E. Sucar, and E. Morales, ‘A
probabilistic model approach for fault diagnosis’, in DX’00,
Eleventh Intl. Workshop on Principles of Diagnosis, More-
lia, Mexico, eds., A. Darwiche and G. M. Provan, pp. 79-86,
(2000).

J. Kohlas. Valuation algebras: Generic architecture for rea-
soning. draft, 2002.

J. Kohlas, B. Anrig, R. Haenni, and P.-A. Monney, ‘Model-
based diagnostics and probabilistic assumption-based reason-
ing’, Artif. Intell., 104, 71-106, (1998).

J. Kohlas and P.-A. Monney, A Mathematical Theory of
Hints. An Approach to the Dempster-Shafer Theory of Fuvi-
dence, volume 425 of Lecture Notes in Economics and Math-
ematical Systems, Springer, 1995.

J. Kohlas and R. F. Stark, ‘Information algebras and informa-
tion systems’, Technical Report 96-14, University of Fribourg,
Institute of Informatics, (1996).

G. M. Provan, ‘An integration of model-based diagnosis and
reliability theory’, in DX’00, Eleventh Intl. Workshop on
Principles of Diagnosis, Morelia, Mexico, eds., A. Darwiche
and G. M. Provan, pp. 193-200, (2000).

R. Reiter, ‘A theory of diagnosis from first principles’, Artif.
Intell., 32, 57-95, (1987).

G. Shafer, The Mathematical Theory of Evidence, Princeton
University Press, 1976.

P. P. Shenoy and G. Shafer, ‘Axioms for probability and belief
functions propagation’, in Uncertainty in Artif. Intell. 4, eds.,
R. D. Shachter, T. S. Levitt, L. N. Kanal, and J. F. Lemmer.
North Holland, (1990).

P. Struss, ‘Testing for discrimination of diagnoses’, in DX’94,
Fifth Intl. Workshop on Principles of Diagnosis, New Paltz,
USA, (1994).

Far-sighted Diagnosis of Active Systems

Roberto Garatti and Gianfranco Lamperti and Marina Zanella !

Abstract. Active systems are a class of discrete-event systems
modeled as networks of nondeterministic automata communicating
through either synchronous or asynchronous connection links. The
model-based diagnosis of an active system is carried out by first
reconstructing its behavior based on the observation, from which
faults are later derived. The complexity of behavior reconstruction is
exacerbated by the possibility of queuing events within links, thereby
making essential the simulation of the order in which events are
buffered within links. Unfortunately some sequences of events may
lead to blind alleys in the search space. This is especialy critical if
events exchanged among components are assumed to be uncertain,
as the number of alternative sequences of queued events is till
larger. Therefore, behavior reconstruction without any prospection
in the search space is generally bound to detrimental backtracking.
To make diagnosis of active systems more efficient, we present an
off-line technique for processing the modelsinherent to the system at
hand so as to automatically generate prospection knowledge relevant
to the mode in which events are produced and consumed over links.
Such a knowledge is then exploited on-line, when the diagnostic
engine is running, to guide the search process, thus reducing both
time and space.

1 INTRODUCTION

Diagnosis of discrete-event systems (DESs) is a complex and chal-
lenging task that has been receiving an increasing interest from both
the model-based diagnosis community [9], within the Al area, and
the fault detection and isolation (FDI) community [16, 8, 10], within
the automatic control area. The current shared prospect is that, in
the general case, the specific faults cannot be inferred without first
finding out what has happened to the system to be diagnosed. Once
the system evolution is available, the sets of candidate faults can be
derived from it.

In this respect, in spite of slightly different terminologies, such
as histories [2], situation histories or narratives [4], paths [5], and
trajectories [11, 6], al the distinct approaches describe the evolution
of a DES as a sequence interleaving states and transitions, as the
favorite behavioral models of DESs in the literature are automata.

Based on the method for tracking the evolutions of the system that
explain a given observation, two broad categories of approaches to
diagnosis of DESs can be basically singled out:

e Those that first generate (a concise/partial model of) al possible
evolutions and then retrieve only the evolutions that explain the
observation;

e Those that generate in one shot the evolutions explaining the
observation.

The first category includes some relevant works from both the
automatic control area [19, 20, 7, 15] and the Al area [12, 6].

I Dipartimento di Elettronica per I’Automazione, Universita di Bres-
cia, via Branze 38, 25123 Brestia, Italy, email: garatrob@tin.it, lam-
perti @ing.unibs.it, zanella@ing.unibs.it

Embodied in the second category are some approaches of the Al
area[2, 11, 17].

Since finding out the system evolutions is a computationally ex-
pensive and, therefore, inefficient process (see, for instance, [18]
about the computational difficulties of the diagnoser approach
[19, 20], or the worst case computational complexity analysis in
[2], or the discussion in [11]), most of the approaches exploit a
trade-off between off-line and on-line computation.

Focusing on the second category outlined above, the decentral-
ized diagnoser approach [17] draws off-line a local diagnoser for
each component. Such a diagnoser is an automaton whose states
and (observable) transitions are labeled with compiled knowledge
about unobservable paths and interacting components, respectively.
Each local diagnoser is employed on-line for both a more efficient
reconstruction of al the possible evolutions of the relevant compo-
nent that comply with the observation and a more efficient merging
of the histories of distinct components into global system histories.

This paper applies knowledge compilation to the active system
approach [2, 3], to which purpose it isolates a kind of knowledge,
implicit in the models of the structure and behavior of the system
at hand, that can be compiled off-line in order to speed up on-line
execution. The framework is that of active systems, a class of DESs
modeled as networks of nondeterministic automata communicating
through directed links. If an active system includes one or more
asynchronous buffered links, its reaction to an event coming from
the external world is assumed to continue until there is no event
left in the links. The component that sends events on a link is the
event producer and that extracting them from the link is the con-
sumer. The knowledge we compile is actually that inherent to the
producer-consumer rel ationships between components. In particular,
we present, by means of an example:

e An extension of both the modeling primitives and the on-line
‘short-sighted’ evolution reconstruction method so as to cope with
uncertain events,

e A method for generating off-line, under the form of a determinis-
tic automaton, called a prospection graph, the modd of the way
events are exchanged over one or more links;

e A ‘far-sighted” method for exploiting prospection graphs on-line
while reconstructing the evolutions of (sub)systems.

Finally, the computational advantages of far-sighted diagnosis are
discussed and some conclusions are hinted.

2 ACTIVE SYSTEMS WITH UNCERTAIN
EVENTS

Topologically, an active system X is a network of components which
are connected to one another through /inks. Each component is com-
pletely modeled by an automaton which reacts to events either com-
ing from the external world or from neighboring components through
links. Formally, the automaton is a 6-tuple

(87 Ein7 17 Eout7 07 T)

where S is the set of states, Ein the set of input events, I the set of
input terminals, Eoyut, the set of output events, O the set of output
terminals, and T the (nondeterministic) transition function:

T:S x Eip x I x 2Boutx0 oS

A transition from state S to state S’, which is triggered by the
input event a« = (E,I), E € Eiy, I €1, and generates the set 5 =

{(F1,01),...,(E,,Oy,)} of output events, Ej, € Equt, Ok € O,
k € [1..n], is denoted by
S alp s’

Components are implicitly equipped with three virtual terminals,
the standard input (In €) for events coming from the external
world, the standard output (Out € O) for events directed toward
the external world (messages), and the fault terminal (Fit € O) for
modeling faulty transitions.

An event (E, Flt) is a fault event. The approach assumes that
both nominal and faulty behavior of each component are specified in
the automaton. A fault event is not exchanged among components.
Rather, it is a forma artifice to describe the faulty behavior of
components uniformly. The name of fault events are supposed to be
informative as to the specific fault affecting the component when
the relevant transition is performed?.

An event may be uncertain in nature, that is, represented by a
disunction of possible values. Links are the means of storing the
events exchanged between components.

Each link L is characterized by a 4-tuple

(1,0,x, P)

where [is the input terminal (connected with a component output
terminal), O the output terminal (connected with a component input
termina), x the capacity, that is, the maximum number of queued
events, and P the saturation policy, which dictates the effect of the
triggering of atransition 7' attempting to insert a new event E into
L when L is saturated, that is, when the length of the queue equals
X. Three cases are possible:

e LOSE: E islost;

e OVERRIDE: E replaces the last event in the queue of L;

e JWAIT: T cannot be triggered until L. becomes unsaturated, that
is, until at least one event in L is consumed.

The queue domain Q of L is the set of possible sequences
(queues) of events in L. The length of the queue @ of events incor-
porated in L is denoted by |Q)|.

The polymorphic Link function is defined as follows. Let

a=(E,0)
represent an event relevant to a terminal 6. Then,

Link(a) < L | L is the link connected with 6.

No more than one link can be connected with a component terminal.

e

If 6 isavirtual terminal, then Link(a) = null. Let

B={(F1,01),...,(En,0,)}

2 For example, consider a breaker which is in the state open and is expected
to change state to close when it receives a command (nominal behavior).
The possible misbehavior of the breaker can be defined by inserting a
faulty transition, from state open to open, that generates the fault event
(stuckToOpen, Flt).

xi: (& In) | (€1, O) —@ xg: (€2, 1) | (flr.FIt).
4/ . - - L ‘.
@ xi (€2 1) | (e}, O) . Ou) v e D18 O e)
st x5 (& 1) | ({es, O)

X,: (& In) Xg (e In) | (b, Out) xq. (&, In)

‘— xs: (& In) —\b@

Y3 (@) [(2 O)(F, F).

vii (&, 1) (e, 0) @ :@

v4 (&5, 1) [(&5 O).(d, Our)
y2: {ened, 1) (e O)

Figure 1. System ¥ and models of components X (top) and Y (bottom).

be a set of events relevant to terminals 6;, i € [1..n], respectively.
Then,
Link(8) € {Ls | Ls = Link(€),€ € B}.

Initidly, ¥ isin aquiescent state 3¢, wherein all links are empty. At
the arrival of an event from the external world, > becomes reacting,
thereby making a series of transitions until a final quiescent state
is reached, wherein al links are empty anew. This reaction yields
a sequence of observable events, the messages, which make up a
system observation OBS(X).

Let 3y denotetheinitial state of system X. Based on a diagnostic
problem

p(X) =

areconstruction of the system reaction is carried out, which yieldsan
active space, that is, a graph representing the whole set of candidate
histories, each history being a path from X, to a fina state, in
other terms, a sequence of component transitions which explains
OBS(%).

Candidate diagnoses are eventualy distilled from the active space,
each diagnosis being a set of faulty components, that is, those com-
ponents which made at least one faulty transition during a candidate
system history.

(OBS (%), %0)

Example 1. Displayed in the center of Figure 1 is a system U,
where X and Y are components, while L; and L, are links. Both
components are endowed with an input terminal 7 and an output
termina O. For both linkswe assumey = 1and P = WAIT. The
behavioral models of X and Y are displayed on the top and on the
bottom, respectively. Accordingly, Y involves three states (Y7 - - -

Ys) and four transitions (y1 --- y4), one of which is faulty (ys3)
(states and transitions are denoted by capital and small letters, re-
spectively). For instance, transition y. is triggered by the input event
(es,I) and generates the set of output events {(e2, O), (d, Out)},
where the former is directed toward X on link Lo, while the latter
is a message labeled d (y4 is said to be observable). Transition ys
involvestheinput event ({e1, es}, I'), meaning that y. may either be
triggered by e; or es. Considering the modd of X, note that, when
triggered, transition =3 generates the uncertain event ({es, es}, O),
meaning that either es or es is randomly generated (no assump-
tion is made about the likelihood of event generation). Likewise, zg
generates the uncertain event ({es, e}, O), meaning that ether es
or nothing is generated (e denotes the null event). O

3 SHORT-SIGHTED DIAGNOSIS

The main task relevant to the resolution of a diagnostic problem
p(X) = (0OBS(X), Xo) is the reconstruction of the system reaction
to make up the relevant active space Act(p(X)). A node N in the
search space is identified by three fidds, N = (o, S, Q), where:

e 0 = (S51,...,5y) isthe record of states of the system compo-
nents, each S;, i € [1..n|, being a state relevant to a component
C; in X (n is the number of componentsin X);

e S isthe index of OBS(X), that is, an integer ranging from O to
the number of messages (length) of OBS (%), which implicitly
denotes the prefix of the observation composed of the first &
messages,

Q= (Q1,...,Q,) istherecord of queues of the £ linksin X.

Node N issaid to be final when & equals thelength of OBS (%) and
al links are empty. The search for the nodes of the active space is
started at the initia hode No = (3o, 0, ({),...,())), wheredl link
queues are empty. Each successor node of a given node is obtained
by applying a component transition that is consistent with both the
system topology and the observation. An applied transition is an
edge of the search space. When the reconstruction processis carried
out in one step (monolithically) without any prospection knowledge
(short-sightedly), it can be described by Algorithm 1, where nodes
and edges generated during the search are stored in variables X and
&, respectively.

Algorithm 1. (Short-sighted Reconstruction)

1. X={No}; £€=0; (No is unmarked)

2. Repeat Steps 3 through 5 until all nodes in N are marked;

3. Get an unmarked node N = (0,3, Q) in X;

4. For each i in [1..n], for each transition T within the model
of component C;, if T is triggerable, that is, if its triggering
event is available within the link and T is consistent with both
OBS(X) and the link policy (when T generates output events
on non-virtual terminals), do the following steps:

(a) Create a node (N' = (¢’,S’,Q’)) := N, (N’ iscreated as a
copy of N)

(b) o'[i] := the state reached by T
(¢) If T is observable, then S := S+ 1, (amessage is generated)

(d) If the triggering event E of T' is relevant to an internal link
Lj, then remove E from Q'[j];

(e) Insert the internal output events of 'I' into the relevant queues
in Q'
() If N' & X then insert N’ into X; (N’ is unmarked)

Insert edge N > N’ into &;
(®) g

5. Mark N;
6. Remove from R all the nodes and from £ all the edges that are
not on a path from the initial state Ny to a final state in N.

The algorithm aims to make up al the nodes which are reachable
from theinitial node under the given observation. To thisend, it con-
siders, one at atime, all the nodes which have been reached already
(those in X) and have not yet been processed (the unmarked ones).
For each of them, it attempts to find a transition that is triggerable
by a component in the corresponding state. If so, it generates the
target node N’ with the appropriate values ¢/, &/, and Q'. In the
new node was not created already, it isinserted into N (note that two
nodes which differ in the & field only have to be considered dif-
ferent, as the mode in which messages have been generated differ).

The corresponding edge N L, N’ is inserted into £ too. Finally,

X1

» Xa(es) X3(e3)

. Y2 X5
e ¥ __
Do)
,,,,,, o
e Y2 ’ X6 ..
o /i! ,,,,,, x_ I N
(XsY1 ab &ce) (XaY1 ab eqfidh)
ST ST -
Xs
----- s S

X7 X7

_/,_i_,_\

Y4

Leet X8 Xo(€)
XsY2 abed &1&) X3Y; abed &1

Figure 2. Short-sighted reconstruction space (see Example 2).

when there are no more nodes to be processed (all nodes in X are
marked), the search space is pruned by eliminating the inconsistent
nodes, that is, those that are on a blind alley.

It is worthwhile highlighting that the search process does not
terminate at a final node. In fact, the system might continue to react
and loop on unobservable paths. In other words, when a final node
is met in the search, it is inserted into N as an unmarked node like
all other nodes, since in principle, unobservable paths might happen
to leave it.

When uncertain output events are involved, severa new nodes
N’ are to be generated for the same transition T, specifically, one
for each combination of possible values within each disjunction.
For example, since transition x5 in Figure 1 involves the uncertain
output event ({es, es }, O), two target nodes will be generated, one
for e; and one for es. If the set of output events included severa
uncertain events, all possible combinations would be required to be
enumerated.

Example 2. Shown in Figure 2 isthe reconstruction space generated
short-sightedly for the diagnostic problem (%) = (OBS(V), ¥y),
where ¥ is the system outlined in Figure 1, OBS(¥) = (a, b, ¢, d),
and ¥y = (X1, Y1). Each node is depicted by an dlipse, wherein

e 0 = (X,,Y;) isthe par of component states;
e $ isthe prefix of the observation generated so far;
o Q= (Q1,Q2) isthe pair of link queues.

Edges are marked by the corresponding component transitions, pos-
sibly qualified by the relevant chosen label when the involved out-
put event is uncertain. Dotted edges denote faulty transitions. Final
nodes are depicted as double ellipses. The dashed part of the graph

corresponds to inconsistent states, which are ailmost half the search
space. Owing to cycles in the graph (edges marked by z3), the
active space includes an unbound number of candidate histories.
However, only two candidate diagnoses are possible, namely {Y}
and {X,Y}. Note that, although not relevant to our example, the
replication of the same faulty transition in a cycle does not change
the diagnosis. A finer-grained diagnosis can be defined, as in [2],
caled deep diagnosis. The latter isa set of pairs (C, f), where C' is
a component and f a fault event. This way, even if not relevant to
our example where each component model includes a single faulty
transition, it is possible to know all the faulty transitions performed
by each misbehaving component.]

4 FAR-SIGHTED DIAGNOSIS

The essential problem with short-sighted diagnosis lies in the lack
of any prospection in the search space as to the consistency of the
link queues. In other words, the inability to understand that a given
configuration of Q isbound to a ‘blind alley’ forces the reconstruc-
tion algorithm to uselessly explore possibly large parts of the search
space. In order to overcome this limitation, prospection knowledge
can be automatically generated off-line based on the system model.
Considering Figure 2, such a knowledge will allow the reconstruc-
tion process to avoid entering the inconsistent sub-space through
Y2.
Thebasic ideaisto view alink L asahbuffer in which aproducer
component C? generates events that are consumed by a consumer
component C°. That is, L connects an output terminal of C* to an
input terminal of C°. The way events are produced and consumed
in L is both constrained by the characteristics of the link (capacity
and saturation policy) and the models of C* and C*.

4.1 Prospection graphs

Let L = (1,0, x, P) be alink from output terminal O® of com-
ponent CP? to input terminal I°¢ of component C°, with queue
domain Q. Let MP = (SP,EP,I°,E’,, OP, T?) and M°® =

out»
(SC,Ef,, I°, ES,, O°, T¢) be the models of CP and C°, respec-
tively. Let
- (Spu’Epl,7Tpu)
be the nondeterministic automaton obtained from A® in such away
that
o SP" =8P isthe set of states;
o EP C TP U{e} isthe set of events;
o TP :SP" x EP" — 257 isthe transition function.
The transition function T*" is obtained from T® as follows:
o S8 e if L ¢ Link
wr=s g eqe] S5 ET # Link(f)
S — S5 eT? otherwise.

Similarly, let

M = (S8, BT, T)

be the nondeterministic automaton obtained from M€ in such a way
that

o S°: = S¢ isthe set of states;
o E° C T°U({e} isthe set of events,

o T 8" x B 257 is the transition function.
The transition function T¢" is obtained from T*¢ as follows:
a S5 8 eT” if L+ Link
vr—s g eqel S5 ET # Link(a)
S — S8 eTe otherwise.

Let MP = (SP,EP,T?) and M°® = (S°,E°, T°) be the de-
terministic automata equivalent to M/ and M<", respectively. A
prospection state L of L isatriple

L£=(575Q) 8" xS xQ.

Let £ be a prospection state and § = §' € (TP U T°), § ¢
(57,80, 7= 5 2% 6" ¢ (TPUT®). Let Q be aqueue of events
in L and

e Head(Q) denote the first consumable event in Q;

e Tail(Q) denote the sequence of events in @ following the first
event;

e App(Q,e) denote the queue obtained by appending e to Q;

e Repl(Q, e) denote the queue obtained by replacing the last event
in @ with e.

The Next function yields the set of next prospection states as
follows:

Next(L,T) ef

{£'| £ € Next®(L,T), T € T°}U
{£'| L' € Next®(L,T), T € T°}
where
Next®(L£,T) € {£' | £’ = (5',5°,Q'), B = (E,O") € 3,
e€ BE,Q =Ins(Q,e),(|Q| < x or
(|Q| = x, (e = e or P € {LOSE, OVERRIDE})))},

W | App(@e) QI <X
Ins(Q.e) = ¢ Q if |Q| = x, (e = € or P = LOSE)
Repl(Q,e) if |Q|=x,P = OVERRIDE

and
Next®(£,T) < {£'| £' = (SP,5,Q"),
a=(E,I%,ec E, Head(Q) = e,Q = Tail(Q)}.

Let Co = (S§,Sg) be the pair of initial states for C* and C°,
respectively. The spurious prospection graph of L and Co is the
nondeterministic automaton

I™(L,Co) = (S",E", T", S5, S7)

where
S" = {L | £ is a prospection state of L} is the set of states,
E" C EP UE® C TP U'TC isthe set of events,
So = (55,55, () istheinitial state,

i ={L|LeS" L=(S"5()} istheset of final states,
T" : S" x E" — 25" isthe transition function defined as follows:

£ L eT iff £' € Neat(L,T).

A state of a spurious prospection graph which is not within a path
fromtheinitia stateto afind stateis an inconsistent state. Similarly,
a transition entering or leaving an inconsistent state of a spurious
prospection graph is an inconsistent transition.
The nondeterministic prospection graph is the nondeterministic
automaton
™ (L,Co) = (S",E", T", Sg, ST)

obtained from T (L, Cy) by removing inconsistent states and incon-
Sistent transitions.
The prospection graph

F(L7CO) = (S7E7 T7 507 Sf)

is the deterministic automaton equivalent to the nondeterministuic
prospection graph I'" (L, Co).

Figure 3.

Example 3. Shown in the dashed box of Figure 3 are the prospec-
tion models MP(X) (top) and M°(Y') (bottom), inherent to link
L1, which are relevant to the components X and Y displayed in
Figure 1. Depicted on the top of the box is the nondeterministic
automaton MP" (X) equivalent to MP(X). The generation of the
nondeterministic prospection graph I' (L4, (X1, Y1)) isoutlined on
theright of Figure 4, where double dlipses denotefinal states, while
dashed nodes and edges represent inconsistent states and transitions,
respectively. Note that the latter includes a circular path involving
four states. This situation is similar to that of active systems, where
cycles may stem from (possibly) fina states. Within the context of
prospection graphs, cycles represent repetitive patterns of link state
changes (in our example, events e; and es are repeatedly produced
and consumed, that is, inserted into and removed from link ;). O

Note that, essentially, the generation of a prospection graph is anal-
ogous to the generation of an active space, where

e Component models are substituted by prospection models;
e Only onelink is considered;
e No observation index is considered.

4.1.1 Generalized prospection graphs

The notion of the prospection graph of asingle link can be naturally
extended to that of aset of links. Let L = {L1,..., L.} beaset of
links (with queue domains Q1, . . ., Q.. respectively) connecting a
st C = {C4,...,C:} of components, where each component C;,
i € [1..t], is characterized by model

]\/jz = (Su Eini 5 Ii7 Eout,” 02’7 Tz)

Let M = (SP,E?, T¢) be the nondeterministic automaton ob-
tained from M; in such a way that

Generation of I'™ (L1, (X1, Y1)) (see Example 3).

o S! =S, isthe set of dtates;
e E! C T, U{e} isthe set of events;
o T¥: S x B — 257 s the transition function.

The transition function T;‘ is obtained from T; as follows:

if Relevant(a, 8,1L)

T / n
=5 gepd ST ET _
otherwise

S5 S8 et
where
Relevant(a, B,1) % ({ Link(a)} U Link(B8)) NL # 0.

Let M; = (S:,E;, T;) be the deterministic automaton equivalent
to M. A generalized prospection state £ of L is a pair

£=650

where

S=(S1,... (S1x---
Q:(Q17~~~7 m)e(le

Lee £ = (S,Q) be a generalized prospection state and

S g et iet.g,T=5Lg.

OO OMOR
OIEO0

L6

Xo(€)
4

T

QLD
X1 0

v X1
s@nend D
Y1 - Y2 o
Y1
=

2 '\/Xz‘\ﬁ Eﬁaezﬁ\,‘
T - 2

\ / N
X3(s) Xs(es) X3(8) Xa(e) X3
. RS SN
(oY,) (KoY, @A) (Ko doid) 3 @
_______ SNSRI
Y2 e
(X3Y, &)
e Y3 X7
X7
v 7 S
(X,Y; éesﬁaﬁ\,‘ Ya

xs 3D

D=

Figure 4. Generation of the generalized prospection graph I'(L, ¥g) (see Example 4).

The generalized Next function yieds the set of next generalized
prospection states as follows:

Next(£,T) € {g' | & = (S',Q),S = (51,...,9)),
Q =@, Q)@= (Ea, L),
((Link(In) € L) or
(Link(Io) = L;j,L; € L,e € E,, Head(Q;) = e,
Q) = Tail(Q)))),
Lg ={Lg | Lg = Link(Op), (Es,Op) € B, Ls € L},
VL, € Lg(e € Eg,(Es,0p) € B8, Ly, = Link(Og),
Qh = Ins(Qn,e),
(1Qn| < xn or
(IQn| = xn, (e = € or P, € {LOSE, OVERRIDEY))),
VL, € (L — (Lg U{Link(I.)})) (Q; =Qu),
S =8 Veel.t]z#i(S,=5.)}
Let Co = (So,,---,So,) bethe record of initia states for compo-
nents in C. The generalized spurious prospection graph of L and
Cy is the nondeterministic automaton
(L, Co) = (S",E", T", S5, SF)
where
S" = {2 | £ is a prospection state of L} is the set of states,
E" C J'_,E; CJ'_,T; isthe set of events,

So = (Co, (()---())) istheinitia state,
§f“ ={L[Le8", £=(5(() ()} istheset of final states,

T® . S" x E* — 25" isthe transition function defined as follows:

gL g e T"iff & € Next(L,T).

The generalized nondeterministic prospection graph is the non-
deterministic automaton

FD(Lv CO) - (Sn7En7Tn7 SOn7an)

obtained from I™(IL, Co) by removing inconsistent states and in-
consistent transitions.
The generalized prospection graph

I'(L,Co) = (S,E, T, So, S¢)
is the deterministic automaton equivalent to the I'" (L, Co).

Example 4. Shown in Figure 4 is the generation of the generalized
prospection graph I'(IL, ¥) relevant to the links in system ¥ (see
Figure 1), where L = {L1, L2} and ¥y = (X1,Y1). Specifically,
outlined on the |eft are the prospection model s of components X and
Y, namely M (X)) and M (Y'). Shown on the center is the generation
of the generalized nondeterministic prospection graph I'*(LL, ¥q)
(the dash part of the graph denotes the inconsistent search space),
where consistent nodes are identified by labels £ - - - £6. Findly,
displayed on the right is the corresponding deterministic prospec-
tion graph I'(LL, ¥). The latter is determined based on the subset
construction algorithm presented in [1], which identifies each node
of the deterministic automaton by means of a subset of nodes of
the nondeterministic one, specificaly, those nodes that are reach-
able through the same marking transition. For example, since there
are two edges, leaving the same state £6 in the nondeterministic
automaton, that are marked by the same label =g, the deterministic
automaton will include the node identified by the subset {£3, £7},
which is reached from {£¢} by means of the (unique) edge marked
by x9. According to the algorithm, each node in the deterministic
automaton that includes a final state of the nondeterministic one is
final itself. Nodes of the deterministic automaton are identified by
labels 0 - - - 8. O

Given a system X3, in order to exploit the prospection knowledge in
the reconstruction process, we need to create a set of g prospection

graphs

I'(¥) = {T(L1,Co,),.-.,(Lg,Co,)}
such that | JY_,L; equals the whole set of links in 3. I'(Y) is a
prospection coverage of X.

Algorithm 2. (Far-sighted Reconstruction)

The far-sighted reconstruction algorithm is a variation of Algo-
rithm 1. First, the Q field of a node denotes a record of g states
relevant to the g prospection graphs in the prospection coverage
I'(%), namely

Q = (717"'779)'

Moreover, in the initial node No = (00, So, Qo), Qo is represented
by the record of the initia states of the corresponding prospection
graphs, namely (o, ,...,%0,). Finaly, Step 4 of Algorithm 1 is
changed as follows:

For each i in [1..n), for each transition T within the model of
component C;, if T is triggerable, that is, if the following two
conditions hold

(i) T is consistent with OBS(X);

Let TI(T) = {T4,...,T,} be the prospection graphs
in I'(X) that are relevant to links connected with terminals
on which events are either consumed or generated by T’ let
O(N) = {71,...,7-} be the elements of Q(N) relevant to
I(T):

(i) Vi€ [1..r] (3 = 7, is an edge in T;),

then do the following steps:

(a) Create a node (N' = (¢/,3', Q")) := N;

(b) o'[i] := the state reached by T;

(c) If T is observable, then S := S + 1;

(d) Replace the elements of Q' relevant to Q(N
prospection states;

(e) If N' & X then insert N' into N,

) with the new

Insert edge N =5 N' into &.
* g

Essentialy, Algorithm 2 exploits the knowledge about the consis-
tency of link states by means of the prospection graphs generated
off-line, thereby preventing the search from entering (possibly large)
inconsistent parts of the space. Of course, such a prospection is fi-
nite, thereby not eliminating completely the backtracking. Besides,
it alows for an efficient treatment of nondeterminism caused by
uncertain events. Recall that, in short-sighted reconstruction, such
situations can only be dealt with by mere enumeration of all possible
new link states generated by the collection of output events of the
current transition. For example, if 7' generated 3 uncertain events
(on three different links), each of which represented by a disjunction
of 2 values, then we would have 8 new nodes. Instead, since the
prospection graphs are deterministic, with far-sighted reconstruction
only one new node is generated, as at most one edge marked by T
can leave each current state of the prospection graphs.

Proposition 1. Let p(X) be a diagnostic problem and || Al denote
the (possibly unbound) set of histories incorporated in an active
space A. Let Act®(p(X)) and Act!(p(X)) denote the active spaces
generated by Algorithm 1 and Algorithm 2, respectively. Then,

[Act*(p(ED = [Act (p(S))]]-

X9(€)

X{,Yz abed 8 X3Yz abed 7

:: X3Y3abcd4 ‘;.

Figure 5. Far-sighted reconstruction space (see Example 4).

Example 5. Shown in Figure 5 is the reconstruction space for the
diagnostic problem ©(¥) = ({(a,b,c,d), (X1,Y1)) based on the
generalized prospection graph outlined on the right of Figure 4. It
is striking comparing it with the short-sighted reconstruction (based
on Algorithm 1) displayed in Figure 2. While the number of con-
sistent states (15) is necessarily equa in both reconstructions, the
far-sighted reconstruction space includes one inconsistent state only,
against the 14 inconsistent states of the short-sighted reconstruction
space. In fact, while the two states on top of both graphs are the
same, thereis aright branch stemming from the latter of such states
in the short-sighted reconstruction which is missing in the far-sighted
reconstruction. This branching is actually disabled by prospection
graph I'({L1, L2}, (X1, Y1)), which constraints the occurrence of
all the transitions involved in event exchange on the links of sys-
tem W: according to this prospection graph, only transition y; is
allowed to follow z1, while y», the responsible for the blind alley
in Figure 2, is not.

5 CONCLUSION

Referring to the active system approach [2, 3] to diagnosis of DESS,
this paper has shown how the off-line compilation of knowledge

about event exchange between components brings a computational
advantage on-line in terms of reduction of the number of backtrack-
ing steps performed by the history reconstruction algorithm. This
advantage is expecially tangible when relaxing a strong assumption
of al the state-of-the-art approaches to diagnosis of DESs, namely,
the preciseness of events. In this work, all input and output events
in behaviora modes, and not only observable events, as instead
in [14], may have an imprecise value ranging over a set of la
bels, namely an uncertain value. In presence of uncertain events,
the search performed by short-sighted diagnosis is nondeterministic,
while that carried out with the support of prospection knowledge is
deterministic. Moreover, prospection graphs, once generated off-line,
can be reused several times on-line for different diagnostic problems
inherent to the same system, or even for the same diagnostic problem
in case there are repetitive link patterns in the system structure.

A previous proposal [13], based itself on knowledge compilation,
transforms the active system approach into a spectrum of approaches
which, according to the classification in Section 1, range from a
totally first category version, wherein an exhaustive smulation of
the system evolution is performed off-line, while on-line activities
are limited to rule-checking, to a totally second category version,
i.e. the original approach wherein no computation is performed off-
line. Each approach falling in between consists of both off-line and
on-line processing. The contribution of this paper is orthogonal to
that work, that is, it could be integrated within any version of the
spectrum (with the exception of the exclusively on-line one) in order
to reduce backtracking steps in any reconstruction.

The exchange of events among components dealt with in this
paper, being both asynchronous and buffered, is peculiar only to
the active system approach. One might argue that providing for a
specific modeling primitive, namely the link, for the structural ob-
jects that implement asynchronous buffered communication between
components, aong with specific methods for dealing with them, just
increases the expressive power of the method but does not alter its
computational power at all. In fact, each link could be replaced by a
common component, whose behavioral model represents the link be-
havior, and, therefore, synchronous composition of automata would
suffice. Thisis correct in principle but scarcely feasible in practice,
for many reasons. Firgt, the size of the behavioral modd of such a
component depends not only on the capacity of the link buffer but
also on the number of distinct kinds of events that can be transmit-
ted on the link. For instance, let us consider a link with capacity
equal to three, on which four kinds of events, say a, b, ¢, and d, can
be transmitted. As each state of the component representing the link
is univocally identified by the sequence of events in the buffer, the
behavioral model of such a component has >3 _ (4%) = 85 states!
So large a model is a burden for history reconstruction. In fact, the
model may be unduly large as it includes even states that are phys-
ically impossible given the system structure, since corresponding to
sequences of events that cannot be generated.

Besides, as remarked above, such a model depends on the kinds
of events that can be transmitted on the link, that is, it depends on
the producer component of the link at hand. This is somewhat in
contrast with the philosophy of compositional modeling, according
towhich individual component models are reciprocally independent.

Instead, in the active system approach and, consequently, in this
paper, alink isjust the instantiation of a model, encompassing only
the terminals, capacity, and policy of the link, and such a model is
independent of the structure of the system in which the link is in-
stantiated. Of course, notwithstanding the modeling simplicity, link
states are bound to emerge in the computation, sooner or later. The
methods introduced in this paper are actually aimed at minimizing
the number of physically impossible link states (and, hence, since a
link state is a part of any active system state, the number of active

space states) visited by the history reconstruction search agorithm.
In short-sighted diagnosis, where a link state is represented as a se-
guence of events, not all sequences of events are considered but only
those that can be generated given the system structure. In far-sighted
diagnosis, where the state of one or several links becomes a record
of indexes, the number of visited link states is further reduced: only
those states are generated that can evolve towards a state wherein
the link is empty.

REFERENCES

[1] A. Aho, R. Sethi, and JD. Ullman, Compilers — Principles, Tech-
niques, and Tools, Addison-Wesley, Reading, MA, 1986.

[2] P Baroni, G. Lamperti, P. Pogliano, and M. Zandla, ‘Diagnosis of
large active systems', Artificial Intelligence, 110(1), 135-183, (1999).

[3] P Baroni, G. Lamperti, P. Pogliano, and M. Zandlla, ‘Diagnosis of
a class of distributed discrete-event systems’, IEEE Transactions on
Systems, Man, and Cybernetics — Part A: Systems and Humans, 30(6),
731-752, (2000).

[4] C. Barra, S. Mcllraith, and T.C. Son, ‘Formulating diagnostic prob-
lem solving using an action language with narratives and sensing’, in
Seventh International Conference on Knowledge Representation and
Reasoning — KR’2000, pp. 311-322, Breckenridge, Colorado, (2000).

[5] L. Console, C. Picardi, and M. Ribaudo, ‘Diagnosis and diagnosabil-
ity using PEPA’, in Fourteenth European Conference on Artificial
Intelligence — ECAI’2000, pp. 131-135, Berlin, D, (2000).

[6] M.O. Cordier and C. Largouét, ‘ Using model-checking techniques for
diagnosing discrete-event systems', in Twelfih International Workshop
on Principles of Diagnosis — DX’01, pp. 3946, San Sicario, |, (2001).

[7] R. Debouk, S. Lafortune, and D. Teneketzis, ‘ Coordinated decentral-
ized protocols for failure diagnosis of discrete-event systems', Journal
of Discrete Event Dynamical Systems: Theory and Application, 10,
33-86, (2000).

[8] PM. Frank, ‘Analytica and qualitative model-based fault diagnosis
— a survey and some new results', European Journal of Control, 2,
6-28, (1996).

[9] Readings in Model-Based Diagnosis, eds., W. Hamscher, L. Console,
and J. de Kleer, Morgan Kaufmann, San Mateo, CA, 1992.

[10] R. Isermann, ‘Supervision, fault detection and fault-diagnosis meth-
ods — an introduction’, Control Engineering Practice, 5(5), 639-652,
(1997).

[11] J. Kurien and PP. Nayak, ‘Back to the future for consistency-based
trajectory tracking’, in Eleventh International Workshop on Principles
of Diagnosis — DX’00, pp. 92-100, Mordlia, MX, (2000).

[12] P Laborie and J.P. Krivine, ‘Automatic generation of chronicles and
its application to alarm processing in power distribution systems’, in
Eighth International Workshop on Principles of Diagnosis — DX 97,
Mont St. Michd, F, (1997).

[13] G. Lamperti and M. Zandlla, ‘ Generation of diagnostic knowledge by
discrete-event model compilation’, in Seventh International Confer-
ence on Knowledge Representation and Reasoning — KR’2000, pp.
333-344, Breckenridge, Colorado, (2000).

[14] G. Lamperti and M. Zanella, ‘Uncertain temporal observationsin diag-
nosis', in Fourteenth European Conference on Artificial Intelligence
— ECAI’2000, pp. 151-155, Berlin, D, (2000).

[15] J. Lunze, ‘Diagnosis of quantized systems based on timed discrete-
event moddl’, IEEE Transactions on Systems, Man, and Cybernetics
— Part A: Systems and Humans, 30(3), 322-335, (2000).

[16] R.J. Patton and J. Chen, ‘A review of parity space appproaches to fault
diagnosis', in IFAC Symposium on Fault Detection, Supervision and
Safety for Technical Processes — SAFEPROCESS’91, Baden-Baden,
D, (1991).

[17] Y. Pencolg, ‘ Decentralized diagnoser approach: application to telecom-
munication networks', in Eleventh International Workshop on Princi-
ples of Diagnosis — DX’00, pp. 185-192, Mordia, MX, (2000).

[18] L. Rozg, ‘Supervision of telecommunication network: a diagnoser ap-
proach’, in Eighth International Workshop on Principles of Diagnosis
— DX’97, Mont St. Michd, F, (1997).

[19] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.C.
Teneketzis, ‘ Diagnosability of discrete-event systems', IEEE Transac-
tions on Automatic Control, 40(9), 1555-1575, (1995).

[20] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D.C. Teneketzis, ‘ Failure diagnosis using discrete-event models', IEEE
Transactions on Control Systems Technology, 4(2), 105-124, (1996).

M odel-based M onitoring of Piecewise Continuous
Behavior s using Dynamic Uncertainty Space Partitioning'

Bernhard Rinner? and Ulrich Weiss?

Abstract. Monitoringgainsimportanceor mary technicalsystems
suchasrobots, productionlines or anti lock brakes. A monitoring
systemfor technicalsystemamustbe ableto dealwith incomplete
knowledgeof the supervisedsystem to processnoisy obserations
andto reactwithin predefinedime windows. This paperpresentsa
new approachto monitoring technicalsystemsbasedon imprecise
models.Our approachrepeatedlypartitionsthe uncertaintyspaceof
animprecisemodelandchecksthe derived models statefor consis-
tengy with themeasurement#nconsistenpartitionsarethenrefuted
resultingin asmalleruncertaintyspaceandafasterfailure detection.
This paperfurther focuseson the extensionof our basicapproach
to monitoring systemghat exhibit both continuousanddiscretebe-
haviors. Our monitoringsystemhasbeenimplementedisingCOTS
componentsand hasbeendemonstratedn online monitoring of a
non-trivial heatingsystem.

Keywords: fault detection;hybrid systems;imprecise models;
residualgeneration

1 INTRODUCTION

The primary objective of a monitoringsystemis to detectabnormal
behaiors of a supervisedsystemassoonaspossibleto avoid shut-
down or damageTechnicalsystemsuchasrobots,productionlines
orantilock brakesprovide avastnumberof challenge$or amonitor
ing system,.e., it mustbe ableto dealwith incompleteknowledge
aboutthe supervisedsystem,to processnoisy obsenationsand to
reactwithin predefinedime windows.

A particularlyimportantand widely-appliedapproachis model-
based monitoring [6, 5] which relieson a comparisonof the pre-
dictedbehaior of a modelwith the obsered behaior of the super
vised system.Our approachusing dynamicuncertaintyspacepar
titioning [12] is basedon imprecisemodelswherethe structureof
the modelsis knovn andthe parametersnay be impreciselygiven
asnumericintenals. Theseparameteintervals spanthe uncertainty
spaceof themodel.Fromanimprecisemodelbasednintenalsonly
boundson the trajectory (ernvelopes)can be derived. Dynamic un-
certaintyspacepartitioning keepsthe envelopessmall by exploiting
the measurementgom the supervisedsystemas soonas possible.
Whene&er nev measurementarrive residualsare generatedat the
“cornerpoints” of theuncertaintyspaceandchecledfor consisteng
by comparingtheir signs.This resultsin afastfaultdetection12].

The fundamentalassumptiorof dynamicuncertaintyspacepar
titioning is that the models statevaluesare monotonicwithin the

1 This work hasbeensupportedby the Austrian ScienceFund undergrant
numberP14233-INFTheauthorsarein alphabeticabrder

2 Institute for Technicallnformatics,Graz University of Technology AUS-
TRIA; email{ ri nner, uwei ss] @ti.tu-graz. ac. at .

rangeof the uncertaintyspace Discontinuoudransitionsin the sys-
tem’'smodelmayintroducenon-monotonidehaiorsin thestateval-
uesand,thereforeyiolate our assumptiorfor the consisteng check.
In orderto presere a conserative monitoringapproachfor hybrid
systemswe have to extend our consisteng checkby a monotonic-
ity check. Wheneer the monotonicityof the statevaluesis giventhe
consisteng checkcanbe performedpotentiallyresultingin a refu-
tation of the imprecisemodel.If the monotonicityis not knowvn the
consisteng checkis simply ignoredandno modelis refuted.

Theremaindeof this paperis organizedasfollows. Section2 de-
scribeghetechnicaldetailsof uncertaintyspacepartitioningandthe
consisteng check.Section3 discusseshe necessargxtensionsof
our approachto monitoring systemswhich exhibit both continuous
anddiscretebehaiors. Sectiord presentgxperimentatesultsof our
monitoringapproachn areal-world systemwith several change®of
ainputvalue.A discussioranda summaryof relatedwork conclude
this paper

2 MONITORING BASED ON UNCERTAINTY
SPACE PARTITIONING

2.1 Overview

Monitoring methodshasedon imprecisemodelscanreasorwith in-
completeknowledge in the model as well aswith noisy measure-
ments.A main dravback of this approachhowever, is thatthe en-
velopesmay diverge very rapidly which delaysor even inhibits a
fault recognition.We have revisedthis interval approachto model-
basedmonitoring with the primary goal to keep the resulting en-
velopesassmallaspossible.

In ourapproachye exploit themeasuremenfsom thesupervised
systemassoonaspossibleto refinethe uncertaintyin the modeland
thederivedenvelopesThekey stepin ourapproachs to partitionthe
uncertaintyspaceof the modelinto several subspacesThetrajecto-
ries derived from eachsubspaceare then checled for consisteng
with the measurement€£achinconsistentsubspaces refutedand
excluded from further investigations Partitioning and consisteng
checkingarecontinuedesultingin asmalleruncertaintyspaceof the
model.Whenall subspacarerefuted,a discrepang betweermodel
predictionandobsenation hasbeenrecognizedanda fault hasbeen
detected.

2.2 Subspace Partitioning and Consistency
Checking

In generalatechnicalsystemcanbe modeledas

x¢ = f(x¢—1,u4-1, Pt-1) 1)
yi: = g(xt, pt)

wherex; is the statevector at discretetime ¢, u; is the input vec-
tor at time ¢, p; is the parametewector at time ¢, y; is the out-
put vector at time ¢, and g and f are vector functions.In an ex-
act model, p: is a vector of real numbers.However, in a model
with uncertainparametersp; is replacedby a vector of intervals
pt = [(p t:pl t) (p t:pQ t): "a(tapK t)] where K is the
numberof uncertairparametersA modelwnth uncertairparameters,
i.e.,animprecise model, canthereforebedescribedas:

% = f(Xe—1,u—1,De—1)
¥ = g(%k¢, Be)
Equation2 is the startingpoint of our approachlt definesanim-

precisemodel of the supervisedsystemwith K uncertainparame-
ters. Thus, this model hasa K-dimensionaluncertaintyspace.In
orderto divide this uncertaintyspaceNe have to definea partition
a: = [(ﬂlyyql,t) (qztaq“) - (g Kt7th)]T with q;: C pe.
A completepartitionlng of the uncertaintyspaceat ary time ¢ into
M partitionsmust satisfy the following condltlonU "(’") = P¢
wherem = 1,..., M. A modelbasedon a partition of the uncer
tainty spaces referredto assubspace model. Fromthe definition of
apartition,we canfinally definethe stateof a subspacenodelm:

@)

™ = £(&", w1, 47

~(M) =g (M)quM))

With the monotonicityassumptiorof £ andg with regardto the
parameterg; over therangeof theintervals,the (uncertain)stateof
asubspacenodelcanberepresentelly the (exact)stateof thecorner
points of a subspaceThe cornerpointsof a subspacaredefinedas
all combination®f upperandlowerboundsof apartitiong: andcan
berepresentedssetQ{™ = {qgf?)} withi =1,...,2%. Thus,an
uncertaintyspaceof dimensionk resultsin 2¥ cornerpoints. The
statesatthe cornerpointscanberepresentedsset

®)

Xim; {X((T; xt(1,)) = f(xt(1)1’ l(lt)1’ qE Z 1)} (4)
Y," {y ¥ Ytqb = g(XtT;z aqysT)}
whereq(m) is anexactparameterectorattimet from the subspace

m andat corneri = 1,...,2% of this subspaceNote, thatx(m)

arestatevectors andaISOygm) areoutputvectorswith exactvalues.
Note that this approachassumeshat the parameter®f the system
are constantand are not varying in time. This assumptiorwill be
discussedater.

This representatiomf an uncertainstateis directly exploited by
our consisteng checkfor a given subspacen. First, a residual is
calculatedfor eachstateat a cornerpoint using the measurements

attime ¢, i.e., r,E"f) = Yt measured — yt(T), whereri”}) hasthe

samedimensionJ asy: measureda and ytm) Then, the minimum
andmaximumvaluesof the residualaredeterminechs

(m) (m)

tymin,g m,in{rt ”} (5)
,rt("?n)am g ma‘x{rt(:rzn,i} (6)
with ¢ = 1,...,2%, andj = 1,..., J. Finally, subspacenodelm

is checledfor consisteng simply by comparinghesignsof rij’;)m,j
andr{™

t,max,j"

ments,iff

Thesubspacenodelm is consistentvith themeasure-

(m)

Sgr(rt,min,j) # Sgr(r‘gz'zrz)am,j) (7)

Ar r:ymea\sured - y(p)
@ ®
0, 89
L—pP
q3 y I
e

Figurel. Consisteng checkwith oneuncertainparametep andthree
subspace§, G2, andgs. Theresidualsatthe cornerpointsof subspacé;
arebothneyative, therefore the modelwith thesubspacd; is inconsistent

with the measurementn subspacéy, theresidualsatthecornerpointshave
differentsigns.Thus,g» is consistentFor the parameterangeof subspace
gs themonotonicityassumptions violated.In this case checkingthe
residuals’signsat the cornerpointsis not feasible.

holdsfor all elementg =1,...,.J.

Informally, Equation7 checkswhetherthe zerovectorlies within
the“residualsubspace(seeFigurel). If thisequations violated,the
subspacenodelm is refuted.This simple consisteng checkholds
alsoif not all elementsof y areincludedin the measurementsn
this casea comparisorwith the missingelementss simply ignored.
Sincethis techniqueis basedon the calculationof an exact state(at
cornerpoints),we canusestandarchumericalmethodsfor comput-
ing the solution of differential equations Note that subspacesre
only refutedwhenthey aregenuinelyinconsistentvith the measure-
ments.

Dueto theuncertaintyin the parameterghis methodmayresultin
divergingervelopesThisdeviation of thepredictedvalueto the“cor-
rect” value over time is referredto asaccumulation uncertainty. In
orderto keepthis deviation smallwe have alsointroduceda dynamic
partitioning of the subspacenodels.During monitoring consistent
subspacearefurther partitionedresultingin smallersubspacenod-
els that potentially describethe supervisedsystemmore precisely
[12].

3 MONITORING PIECEWISE CONTINUOUS
BEHAVIORS

3.1 Monotonicity at Transitions

In orderto extendour approacto monitoringpiecevise continuous
behaiors anddiscretetransitionswe musthave a closerlook atour
monotonicityassumptionRemembethat the result of our consis-
teng checkis only valid if the statevalueswithin the subspacere
monotonic.

In generalthe monotonicityof the statevalueswith regardto the
parameterg notguaranteethy themonotonicityof thesystemequa-
tionsf andg. The monotonicityis only given whenthe following
assumptionslsohold:

1. thesysteminputu doesnotchangeand
2. theinitial valuesof a subspacenodelarethe sameover its com-
pleteuncertaintyspace.

Both assumptionsireimportantfor monitoringdiscreteand con-
tinuousbehaiors. Thefirstassumptioris especiallyrelevantfor tran-
sitionsbecauseahey are often triggeredby stepwisechangeof the

systeminput (e.g.,causedy operatoractions).Suchtransitionsvio-
late, thereforethefirst assumptionThe secondassumptioris a sim-
ple consequencef theintegrationof the givendifferentialequation:

t

x(t) = x4, +/:'c(7')d7' 8)
to

If the initial statesx;, are differentat somecornersin the sub-
spacemodel,the statevaluesx; may not be monotonic(evenif x is
monotonic).However, monotonicityis guaranteedfter sometime.

As discusse@bore discontinuoudransitionsmayresultin anon-
monotonicityof the statevalueswith regardto the parametergfor
alimited periodof time), which in turn leadsto anincorrectconsis-
teng/ check.Thus,to maintaina correct(andconserative) monitor
ing techniguewe mustextendthe consisteng checkby a checkfor
monotonicity If the monotonicityis not guaranteedhe consisteng
checkis simply ignoredand this subspacecan not be refuted. At
sometime afterthe transitionthe subspacenay becomemonotonic
againandthe consisteng checkcanbe appliedagain.

3.2 Checking for Monotonicity

The monotonicity of the statevaluesfor an individual subspaces
checledby thefollowing method.
We defineamatrix B(t, x, p) with theelements

ozi(t, x,p)
Opj
wheret is the time, x the statevector andp the parametewector
with its elementgp;. We alsodefinethe matrix C(¢, x, p) with the

elements

bij(t,x,p) = ; 9)

cij(t,x,p) = ———. 10
i P) dp; (10)
Thematrix C(t, x, p) is calculatedoy

dC(t,x,

% = A(t7x7 p)C(t,X, p) + B(t7x7p), (11)

where C(0,xo,p) =
A(t,x, p) is definedas

0 (the empty matrix), and the matrix

Oi; (t: X, p)

The elementsc;; (t,x,p) give us the trend of the state value
z;(t, p) with regardto the parametemp;. This is exploited by our
monotonicity check: The statevaluesof asubspacenodelaremono-
tonic, iff

Sgn(cij,min) = SYN(Cijmaz) (13)
holdsfor all statevaluesi = 1,...,I andall directionsof the
uncertaintyspacej = 1,..., K. ¢ij,min arethe appropriateval-

uesof ¢;; (¢, x, p) atthe cornermin, andc;j ma= arethe valuesof
cij (t,x, p) atthecornermaz of thatsubspacenodel(asdescribed
with Equationss and®6).

Figure2 depictsthe monotonicitycheck.In generalthe informa-
tion at the cornerpointsis not sufficient to decideon monotonicity
However, assuminghe monotonicityof the functionsf andg with
regardto the parameterthe monotonicitycheckbecomesuficient.

Thecalculationof the monotonicitycheckimpliesanumericalso-
lution of the differentialequation(Equation12). However, sincewe

AX
® 9 xP
® : ~¥
/ _—~
. q d,
] ﬂ) & ! , » P

Figure2. Monotonicity checkwith onestatevalueandoneparameterTo
checkthe subspacenodelfor monotonicity thegradientsof the statevalues
with regardto the parametersrecalculatecatthe cornerpoints.In this
example,thesubspacd; is monotoneandthe subspacés violatesthe
monotonicitycheck.

usealsoa differentialdescriptionof the system(f = x), the mono-
tonicity checkdoesnotsignificantlyincreasehecomputationaload.
Notethatmatrix A is constanfor linearsystems.

4 THE MONOTONICITY CHECK IN A
REAL-WORLD SYSTEM

We nowv examinethe monotonicity behaior on a “real” technical
systemwhich is comprisedof three heating/coolingcomponents
mountedon a thermal conductie plate. A processcontrol com-
puter (B&R 2003) controlsthe three heating/coolingcomponents.
Themeasuredamplesaswell asthecontrolactionsissuedaretrans-
ferredto the monitoringsystemvia aRS 232interface.

Ourmodelwhichincludesthethreecomponentsvith heatingele-
mentsis givenas

T = C%(qzl — Li(T1 — Tp) — L12(Th — 1))
T = %2((112 + L13(Th — T2) — La(T> — To)
—Lo3(T> — T3))

C%(qz‘s + Ly3(T> — Ts3) — L3(Ts — To))

(14)
Ty, =

whereT; is the temperatureof the three components(; is the
massof the componentsg; is the heatflow into the componentsL;
the thermalconductvity betweenthe component andthe environ-
ment,L;; thethermalconductvity betweerthe component andj,
andTp thetemperaturef the environment.We canreducethe com-
plexity of thismodelby exploiting the symmetricconstructiorof the
heatingsystem(Ls = L;, Las = L2, C3 = C1) resultingin atotal
of five uncertainparameters.

Thestatevectoris givenasx = (11, T», T3)7, theinputvectoras
u = (qi1, g2, @13, To) T, andtheoutputvectorasy = (71 +na, To+
na, Tz +n3)7, wheren; is thenoiseof eachtemperatursensarThe
noiseparameterarealsoincludedin the uncertaintyspaceresulting
in a total of eightuncertainparametersiNote that noiseparameters
are not dynamically partitionedinto smallerintervals andthey are
not consideredy themonotonicitycheck.

We have measuredhe input valueswith g,y = 1.24W and
gon. = 34.8W (heatingelementis eitherturnedoff or turnedon).
With an initial refinementstep, we get the parameterintenals as
L, = [0.12,0.13], L = [0.15,0.18], L1» = [0.62,0.73], C1 =
[51, 54], C> = [61, 65]. Therefinemenstepis performedn asingle
continuousbehaior sgment[12].

To examinethe non-monotonichehaior in the system,we ob-
sene the systemafter a transition,and countthe subspacenodels,

100.0

T %5.0

90,0
85,0
80,0
B0
0.0
E5.0
EO,0
55,0
50,0
45.0

40,0

w0
30.0

LO0E+00 2,00E+02 4.00E+02 B.00E+02

8.00E+02

1.00E+0% 1205403 1.40E+03 1.60E+03 1.80E+03

Figure3. Measurementsom the heatingsystemusedfor monotonicitychecking.Theinput H» is generatedby the processontrolcomputerandsentto the
monitoringsystem.

which aremarked asnon-monotonicOver time, this givesus a pic-
ture,how thetransitionproducenon-monotonicityn thestatevalues.
We choosehefollowing scenario:

Control state1: HeatT> until T reache§0. Thengoto state2.

Control state2: HeatTh, if T> < 70. If tsiate2 > 100sec, go to
state3.

Control state3: HeatTy, if T> < 90. If tsiates > 100sec A Tr >
90, goto state4.

Control state4: Do notheat.If T> < 50, goto statel.

Figure 3 plots the resultingmeasurementfor this scenario.The
heatingflag H, (generatedy the PCC)is used,to get a discrete
changeof aninput. To implementthe heatingelementcharacteristic,
we assumean additionalmassC}, anda thermalconductvity Loy,
betweercomponen® andthe heatingmass:

. 1
Thy = C—h(32.82H2 — Lop(Thz — T2)) (15)
g2 = 124+ Lop(Tho — To) (16)

To demonstratehe non-monotonieffect after a stepwisechange
of aninput, we checkthe monotonicityof all subspacenodels,and
count non-monotonicsubspacemodels,i.e., which violate Equa-
tion 13. Figure4 shows a partof thescenariowherethetemperature
of componeng is hold at 90 degree(controlstate3). For thisplot, we
have startedwith 128 subspacenodels,andno dynamicpartitioning
is introduced Dueto the discretecontrollerthe heatingis turnedon
andoff severaltimes.At eachtransitionabout40 subspacenodels
arenon-monotonicAn interestingobsenationin this figureis, that
thenon-monotonisubspacedisappeaguickly, if theheatingflagis
turnedoff only for ashorttime.

Figure5 shavsthenumberof thenon-monotonisubspacenodels
after control state3. The peakhereis about30 subspacenodels.It
shaws, that non-monotonicsubspacenodelsare also existing for a
“longer” time period(hereabout400 secondspfterthe lastdiscrete
changeof aninput.

Non-monotonicsubspacenodelsare not refuted,and, therefore,
do not male ary contribution to decreasehe uncertaintyspace Al-
thoughthenumberof non-monotonicubspacenodelsarequitehigh
(about50 percenbof the currentsubspacenodels)for sometimes.it
hasnotasignificantlyinfluenceto therefutation.Thereasoris, how-
ever, thatsuchpeaksdoesnot hold for long time, sothe consisteng
checksoonbecomewalid again.At this examplethe numberof con-
sistentsubspacenodelsat the endof the scenarids about20.

T%%S 8
100,0
90,0
80,0
70,0 T
Bir, 2
50,0
40,0 Hz
30,0
20,0
10,0
X NM

0,00 1063, 00 200,00 300,00 t 400, 0

Figure5. Thenon-monotonicityaftertheswitchingperiod.Drawn are(as
sameasin figure4) themeasuremerdandthe ervelopesof T», theheating
flag Hy andthe numberof non-monotonisubspacenodelsN M. Some

subspacenodelsarenon-monotoni@fterthe heatingperiod.

5 DISCUSSION

In this paperwe have presenteémodel-basednonitoringapproach
basedon uncertaintyspacepartitioning. The fundamentalassump-
tion of this approachs the monotonicityof the statevalueswith re-
gardto the rangeof the parametersln systemswhich exhibit both
discreteandcontinuoushehaiors the monotonicitycannot be guar
anteednly by the monotonicityof thevectorfunctions.Thus,in or-
derto apply our basicapproacto monitor hybrid systemswe have
introduceda monotonicitycheckfor the statevalues.

Note the differenceof monitoring basedon pre-calculateden-
velopeswith our approachWith pre-calculatedervelopes,the en-
velopesremain constantover the completemonitoring process.n
ourapproachtheenvelopesnaybecomesmallerthantheinitial ones
dueto the refutationof inconsistentsubspacesluring monitoring.
Thisresultsin anearlierdetectionof faults.However, thereis a sig-
nificantincreasen the computationaload of subspacgartitioning.

Our approachis basedon computingthe ervelopesof differen-
tial equationsFor complex models,the overall runtime of our mon-
itoring algorithmis dominatedby solvingthe differentialequations,
especiallywhena high-precisamethodsuchasRunge-Kittais used.
Thecomputationatompleity of ouralgorithmfor asingletime-step
canbeestimatedas

o(M2" (p+ p))

whereM is thenumberof partitions,K is thenumberof uncertainty
parametersy is the time of the Runge-Kittaalgorithm,andy is the

time of thematrix multiplicationaccordingo Equationl1. Thetime

p stronglydepend®n the dynamicpropertiesof the systemandfor

high dynamicsystemstheassumptiorp > p holds.

17

T t20.0
110,0
100,0
90,0 éw
80,0 Tz
70,0 1
= YTyl
50,0 Hz
40,0
0,0
20,0 | M\‘\
10,0 NM
0.0 W‘\n ,_/")f

00 50,00 00,0 150,00 t 200,00

Figure4. Firstovervien of themonotonicityof thetechnicalsystem Drawn arethe measured™ with its ervelopes,Hs is the heatingflag for thesecond
componentand N M is the numberof the non-monotonesubspacenodels.Thediscretechangeof theinput makesadirectly effect to themonotonicityof the
statevalues.

This approacicanalso be seenassystem identification, because furtherinvestigationson the monotonicitypropertiesafter a discon-
refuting subspacenodelsreduceghe uncertaintyspaceresultingin tinuoustransition,especiallyin the context of non-linearsystems,
smallerboundingintenals on the parametersMeasurementoise and (iii) the improvementof the dynamic uncertaintyspaceparti-
canalsobehandledby introducingadditionaluncertaintyparameters tioning.
into themodel.

_ Hqu\/en this approaclhis in (_:ontraSFt(_) tradltlonalsystenjdeqtl- REFERENCES
fication wherethe model spaceis specifiedby a parameterizedlif-
ferentialequation.dentificationselectsnumericalparametevalues ~ [1] Joaquim Armengol, Louise Trave-Massuyes, Josep Vehi, and

: - JosepLluis de la Rosa,’A Surwey on Intenal Model Simulatorsand
sothatsimulationof the modelbestmatcheshe measurementsy their Propertieselatedto Fault Detection’,Annual Reviews in Control,

usingrefutationinsteadof searchour methodis ableto derive guar- 24, 31-39,(2000).
anteed boundsonthetrajectories. [2] Joaquim Armengol, Josep Vehi, Louise Trave-Massuyes, and
Model-basedmonitoring using uncertaintyspacepartitioning is Miguel Angel Sainz, Application of Multiple Sliding Time Windows

to Fault DetectionBasedon Intenal Models’, 12th International Work-
shop on Principles of Diagnosis (DX-01), 9-16,(2001).
S.Bogh,‘Multiple Hypothesis-&stingApproachto FDI for theIndus-

relatedto the interval identificationalgorithmof Schaichet al. [13].
In their approachthe consisteng checkis only performedat the 3]

qualitative level. Thus,valuabledetectiontime is lost, aslong asthe trial Actuator Benchmark’,Control Eng. Practice, 3(12), 1763—1768,

faultis only manifestedn a quantitatve value.Petridisan Kehagias (1995).

[10] have also developedan algorithmwith subspacepartitioning. [4] ﬁndfeth(;ﬂarFini an% Gianlqcy?ﬂan}e'm,fé@TQuam?'ﬁ/e Sim'\ljllégi(;n
i H H H H roacnior Fuzz namiciodels, ransactions on ivioael-

The pa_lrtltlonlngls only pe_rf_ormedln ac_j\anceandthe c_onssteny ingpand Computer S>ilmallation, A(4), 285-313(1994).

checkis basedon probabilitiesdependingon the noisein the sys- [5] Jie ChenandRonJ. Patton,Robust Model-Based Fault Diagnosis for

tem. Otherwork in monitoring [7, 9, 3] usesmultiple modelsfor Dynamic Systems, Kluwer, 1999.

fault detection.Thesemodelsrepresenknown faults of the super [6] Readings in Model-based Diagnosis, eds. WalterHamscherLucaCon-

sole,andJohandeKleer, MorganKaufmann,1992.
[7] PeteD. HanlonandPeterS. Maybeck, Multiple-Model Adaptie Esti-
mationusinga ResidualCorrelationKalmanFilter Bank’, IEEE Trans-

vised system.From the viewpoint of systemidentification,our ap-
proachis closely relatedto semi-quantitatie systemidentification

[8]. Identificationof both approachesre groundedon the refuta- actions on Aerospace and Electronic Systems, 36(2), 393-406(2000).
tion of subspacenodelsthat are knowvn to be inconsistenwith the [8] Herbert Kay, Bernhard Rinner and Benjamin Kuipers, ‘Semi-
measurementsSemi-quantitatie systemidentificationperformsre- Quantitatve Systemldentification’, Artificial Intelligence, 119(1-2),
finementat the qualitatve andintenal level. Semi-quantitatie sys- 103-140(May 2000). . .

. e -) [9] Raman Mehra, Constantino Rago, and Sanjeg Seereeram, Au-
temidentificationhasalsobeenappliedto model-basednonitoring tonomousFailure Detection,ldentificationand Fault-tolerantEstima-
[11]. BonariniandBontempi[4] have developeda quite similar ap- tion with Aerospace\pplications’,Proceedings of the IEEE Aerospace
proachto our consisteng check.However, they have focusedon un- Applications Conference, 2, 133-138(1998). _
certaintyinitial statevalues,which are given asintenals. Also re- ~ [10] V. PetridisandAth. Kehagias,A Multi-model Algorithm for Parame-

. . L ter Estimationof Time-varyingNonlinearSystems’ Automatica, 34(4),
latedto our work is Armengoletal. [1, 2]. The simulationis based 469-475(1998).
on modalintenal arithmeticswhich producesverbounded andun- [11] BernhardRinnerandBenjaminKuipers,‘Monitoring Piecavise Con-
derbounded envelopesof a technicalsystem.To minimize the rate tinuous Behaviors by Refining Semi-Quantitatie Trackers’, in Pro-
of falseandmissedalarms the uncertaintyspaceis only partitioned ceedings of the Sixteenth International Joint Conference on Atrtificial

at critical measurementévhich arebetweerthe underboundednd Intelligence (1JCAI-99), pp. 1080-1086Stockholm,Sweden(August
1999).MorganKaufmann.

overboundedervelopes).In compqrisonto our approach,we SiM- [12] BernhardRinner and Ulrich Weiss, ‘Model-basedMonitoring using
ulate at eachcornerof the uncertaintyspace which leadsto exact UncertaintySpacePartitioning’, in Proceedings of the 21st IASTED In-
envelopes(no falseand missedalarms,accordingto obserability) ternational Conference on Modelling, Identification and Control (MIC
for linearsystems. 2002), (February2002).

. [13] David Schaich,RudibertKing, Uwe Keller, and Mike Chantler ‘In-
Directionsfor future work include (i) the incorporationof (un- tenal Identification- a Modelling and DesignTechniquefor Dynamic

known) discontinuougtransitionsin our monitoring approachii) Systems’jn QR99, 13" International Workshop on Qualitative Rea-
soning, (June6-91999).

Object-Oriented Dynamic Bayesian Networ k-Templates for M odelling
M echatronic Systems

Harald Renninger and Hermann von Hasseln

DaimlerChrysler AG Research and Technology (REM/E)
D-70546 Stuttgart, Germany
{harald.renninger, hermann.v.hasseln} @daimlerchryser.com

Abstract

The object-oriented paradigma is a new but proven technol-
ogy for modelling mechatronics, i.e. multidisciplinary mod-
dling. For many reasons the object-oriented approach is
very much desirable also for qualitative models in system
design, diagnosis or verification. Bayesian networks are a
very robust technology for qualitative probabilistic model-
ling. In this paper we present a first approach in using the
Bayesian networks modelling technique with the quantita-
tive object-oriented method. Analogous to Modelica, an
object-oriented modelling language, we constructed a Baye-
sian network library for modelling hydraulic systems. These
Bayesian networks are called Object Oriented Dynamic
Bayes Nets (OODBNSs). Our method is easily transferable to
any other physical domain or logic. In this contribution our
motivation and the construction steps are described. Simula-
tion results for a sample hydraulic system are given.

I ntroduction

Future system architectures will be characterized by
highly modular and reusable components, and by abstract
description languages widely independent of implementa-
tion details. Typical components of system architectures are
software and hardware (sub-)systems. On the Software side
the object-oriented paradigma is by now (at least in indus-
trial applications) the de facto description or modelling lan-
guage standard, mostly represented by the Unified
Modelling Language (UML). On the Hardware side, which
is our focus here, we have mechatronic hardware compo-
nents, the constituent parts of which are control logics and
controlled physical or chemical systems. Modelling mecha
tronic systems challenges the engineer due to different
physical domains. In order to reach the goal of atruly uni-
fied description of system architectures comprising Soft-
ware and Hardware systems, the description or modelling
languages of mechatronic systems have to be lifted to a
similar abstract level astheir Software counterparts.

Model based techniques play an important role in con-
current and future engineering processes. Models and simu-
lations are a basis for system design and analysis, e.g. for
geometric layout of hydraulic systems. On the other hand,
model based control and model based diagnosis are state of
the art.

Many different philosophies have been devel oped to sup-
port the modelling task. In the control engineering area
tools like Matlab/Simulink [1] or MatrixX SystemBuild [2]

are widespread. For modelling mechanical systems
ADAMS [3] or SIMPACK [4] are frequently used. For
electronic systems PSPICE [5] is an appropriate tool. Other
specific tools are used to solve modelling tasks in flow
dynamics, therma flow or chemical processes. Each of
these programs are specialy tailored for the specific
domain.

A mechatronic system consists of a control logic, elec-
tronics and a controlled mechanical, hydraulic or any other
physica or chemical system. The entire system is com-
posed of subsystems of different domains. This shows the
restriction of al classical modelling systems, since the con-
trol part can be easily described for example in Matlab/
Simulink, but it is nearly impossible to model an electrical
subsystem. So, a method is needed for a multidisciplinary
modelling.

Methods and tools, e.g. Omola, Dymola or Smile, have
been developed which alow multidisciplinary modelling.
Modelica [6], [7] is the latest step in this direction. It is a
standardized object-oriented modelling language which is
supported by the tool Dymola[8] for example.

Dymola/Modelica comes with libraries for different
physical domains like electrics/electronics, mechanics,
thermal flow or hydraulics, see Figure 1. It also contains a
signal block and a Petri net library. A library consists of a
set of templates for different physical or logical objects.
The user can extend alibrary for example by inheritance or
can create completely new libraries. A model is described
by an object diagramm. Most tools contain a graphical
interface with asimple drag and drop technique for the tem-
plates and interconnections at the object interfaces. The
interconnections have the meaning of constraints. More
precisaly, two types of equations are generated when two
physical objects are connected: a flow and a potential equa
tion. With the definition of the flow and the potential vari-
ables, the energy flow in the interface is uniquely defined.
This is valid for all lumped parameter systems. The great
advantage is that the system can now be modelled by local
behaviour and not by global analysis [9], which supports
the general idea of modularity.

Qualitative M odels and Bayesian Networks

Qualitative modelling offers many well-known advan-
tages for system design, diagnosis or verification, see [14]
for avery extensive survey of techniques and applications.
Some of these advantages are:

HyLib - package HyLib
[

Examples

Library Library @ E

Interfaces Pumps Cylinders

Sensors Lines

S =]

Valves Restrictions

(o] [

Valumes

IS Valves - package HyLib.Valves M=k
Fie Edit

Checkialve CheckialveTus Reliefialie

=Ove = Ove [T <[

Three Abtualve
A
P T

SerFlouCont

Shuttleahve Tuctivayabie

Redusinglahre

Senb¥alve Profifalve Basic
IZE%ID]‘ [%‘ M

Fuel Filter

e
L=l
T
BRI

Back Flow Ta Tank

W L
To Engine Tank

[l Volumes ValumsConst Linevalume

Figure 1: The hydraulicslibrary and an object diagram in Dymola.

* handling of incomplete and imprecise knowledge,

* robustness,

e easy comparison of system aternatives, e.g. parameters
variations,

« direct interpretation of simulation results,

o complexity.

Our vision is an object-oriented method using Bayesian net-
works for modelling physical systems, especially system
dynamics. Bayesian networks are a well-suited method for
handling imprecise knowledge in a consistent way. Efficient
learning and adaption algorithms are known for Bayesian
networks, which is a very interesting option for automatic
model calibration. The definition of a Bayesian network BN
isasfollows: BN = {DAG, CPDs}, where DAG isadirected
acyclic graph, consisting of nodes and directed edges or
links, and CPDs are conditional probability distributions.
The nodes in a Bayesian network represent propositional
variables of interest (e.g., the temperature of a device). The
links of a BN represent informational or causal dependencies
among the variables. These dependencies are quantified by
conditional probabilties (the CPDs) for each node given its
parental nodes in the DAG. We do not cite the Bayesian net-
works fundamentalsin this paper, but refer to the relevant lit-
erature, see [10] for some Bayesian networks basics or [11]
for an excellent textbook.

Object-oriented Bayesian networks were introduced in
[13], and are now supported by the newest version of the
commercia Software tool HUGIN [12] for example.

Template construction

In this section we describe the conversion steps from
Modelica to Bayesian network templates. The conversion
will proceed in four major steps. First, given a dynamic com-
ponent, the differential equations will be discretized in time
using Euler's rule. Second, the equation part of a Modelica
template will be reformulated with qualitative operators.
Third, the qualitativ landmarks have to be chosen for each
state variable and each parameter. Fourth, the resulting qual-
itative equations will be graphically programmed with Baye-
sian networks.

An fuel reservoir called "VolumeConst" will serve as an
example. The icon used in the Modelica HyLib library [15]
is shown in Figure 2. Note, that the component VVolumeConst
has one port (portA) and that the flow into the component
has a positive sign . PortA can be viewed as a real physical
flange with some pressure p and an oil flow q. The behavior
of the component VolumeConst is described in Modelica by
the equation block. Other definition blocks like the graphi-
cal, interfaces or parameter block are omitted.

VolumeConst

Figure 2: The Dymolarepresentation for afuel reservoir.

model VolumeConst

graphi cal bl ock

i nterfaces bl ock

par anet er bl ock

equation

der(portA.p) = beta/volume* portA.q;
end VolumeConst

The equation block consists of one differential equation
with beta and volume being fixed parameters defining the
effective bulk modulus of the liquid and the volume in
square meters, respectively. After chosing a time step h the
time discrete version is as follows:

model VolumeConstDiscr
equation
1\h (portA.p(t) — portA.p(t-h)) =
(betalvolume * portA.q(t))
end VolumeConstDiscr

Next, qualitative operators are inserted.

model VolumeConstQual
equation
portA.p(t) O -portA.p(t-h) =
const O portA.q(t)
end VolumeConstQual

Now we have to choose a quantity space, the "landmarks",
for the variables and parameters. For clearness, we choose a
three valued quantity space x0{-, 0,4} for all variables x.
Some qualitative calculus has to be defined for the chosen
quantity space. Qualitative addition O for the three valued
guantity space can be defined straightforward [14] as in
Table 1.

g X=-[x=0|x=+
y = - zZ=- zZ=- z=7
y=0|z=-]1z=0]|z=+
y=+|z=?|z=+|z=+

Table 1: Qualitative addition defined.

The z = ? entry marks the ambiguity of the result, when
the O operatorisappliedon x = - andy = + or viceversa,
respectively.

Now the Bayesian network template for VolumeConst can
be constructed. The basic idea is to identify each qualitative
variable with a Bayesian network node, the qualititative val-
ues with the states of this node, and the qualitative calculus
with CPDs.

We give an example for the O operator applied on vari-
ables x and y . The principle Bayesian network is shown in
Figure 3. The entries in the CPD table in Figure 3 are proba-
bilities, where each column sumsto 1. The z = ? entriesin
the operator table can be represented by the colomns with the
uniform distribution, i.e. 1/3 for each entry in this case.

Any other algebraic operation can also be reformulated as
a Bayesian network fragment. In this way the complete tem-
plate for VolumeConst is constructed. The result is shown in
Figure 4. The port nodes, which correspond to the port vari-
ablesin portA are marked with arectangle. When the Baye-
sian network template is instantiated in a system model only
the input and output nodes, i.e. the port nodes, are visible.
Note that this is a dynamic Bayesian network, because node
PAO carries the state of the pressure at time dicet-h and PA1
the state at time slice t. The difference is calculated in node
dPo1.

z=+

1/3

z=0

1/3

o| oflafol+

o| o=+

o|lo|al+

1/3

O| = |0Ofolo
(e}
=
X
«

= O|0O|O
le}

Figure 4: Bayesian network template for VolumeConst.

What is missing yet are the constraint templates, which
serve as connectors between components. We need two dif-
ferent templates, one expressing that there is equal pressure
at two connected ports, and a second one, expressing that the
flows sum up to zero at a hydraulic node. We present these

two templates with the CPDs in Figure5 and Figure®6,
respectively. For the pressure we assume three values. zero
pressure (0), low pressure (+), high pressure (++). Note, that
the arcs are directed to the "inner" constraint node, such that
the resulting Bayesian network model is always acyclic. In

FD—Cm—ED

ql

q2 +

=

sum_0O=true

= |0 |o|+

o|~|olo
+
o

sum_O=false|

Figure5: Bayesian network template ZeroSumFlows2 for the flow constraint.

1

p2

eq_p=true | 1

]
- (o |+|o

o
o |+|+
[}
o
o
N

eq_p=false | O

Figure 6: Bayesian network template EqPressure2 for the pressure constraint.

Figure5 and Figure6 we show the simplest scenario that
two components are connected in series. In Figure 1, on the
right hand side, thisis the case for the "ReliefValve" and the
"LineToFilterResistance”. In the Bayesian network for this
tank system, the ReliefValve-template and the LineToFilter-
Resistance-template will be connected via the flow con-
straint and the pressure constraint, see also Figure 7. Note
that the table entries are hard 0/1 decisions. Before propagat-
ing the Bayesian network, the "true"-state of the sum_0 and
the eg_p nodes must always be set evident. Doing this, the
pressures on both sides are forced to be equal. The flow con-
straint then simply states, that the mass flow coming out of
the first component equals the mass flow into the second
component. In the general case, where more than two com-
ponents meet, for example the "LineToFilterResistance”, the
"FilterResistance" and the "ReliefValveFilter", the flow con-
straint template must be assembled from the O -operation
fragment, see Figure 3, and the flow constraint template of
Figure 5. This new object is then called ZeroSumFlows3 and
isshownin Figure 7.

Results

A basic library for constructing simple hydraulic circuits
has been developed. It contains an ideal flow source, areser-
voir, a hydraulic resistance, atank, arelief valve, areal flow
source, and the constraint templates. Differing from the pre-

viously discussed three state nodes, each dynamic variable
here has five states. We used the object-oriented Bayesian
network software Hugin. Currently, only discrete valued
nodes are used. This is reasonable, because many mecha-
tronic systems are hybrid or switching. Discrete valued
nodes alow us to model arbitray dynamics, whereas contin-
uous valued node models result in Kalman models, thus lin-
ear models.

We will shortly discuss the hydraulic library. The ideal
flow source has two ports, namely A and B, or a "positive"
and a"negative" port, with only one flow variable which can
be controlled, i.e. set evident. A real flow source called Real-
FuelPump is derived from this ideal flow source. Addition-
aly it contains the volume model, which was described
above. So the port B of Real FlowPump delivers a pump flow
and a pump pressure. The tank model has only a flow vari-
able at the ports A and B. It is dynamic, modelling the
change of the fuel volume over time.

The relief valve has a switching behaviour in Modelica.
Pressure and flow is specified at the ports. In Modelica the
valve logic is modelled with a state machine. We modelled
this valve logic with a Markov model, having the two states
"open" and "closed". At last, the hydraulic resistance has two
ports specifying pressure and flow. It models laminar flow,
i.e. the pressure drop over a hydraulic line.We used this ele-
ment also to model the resistance of the fuel filter.

~ ~
L - T B

LineToFikerResistance

\

-
f q2 ,- 92
Zery umFIowsl

/\

- =

b, [I
i i i i
\%FZ /l.l__F1_Jl.l \ﬂq?_ il q]_/l,:
Pressure21 ZemSumFIoW2

FilterResistance

‘ \.4 Relief'alveFilter

=) \& =2

Zero fumFlows2_%

Figure7: The Bayesian network tank system model.

We present a little hydraulic circuit, that is, a fictitious
tank system. This system was first modelled for reference in
Dymola/Modelica, see Figure 1 on the right hand side. Then
we built this system using the dynamic Bayesian network
templates. The Bayesian network tank system is shown in
Figure 7. For the dynamic simulation, we set evident all con-
straint nodes and the pump flow. All other nodes are hidden,

{

|
3
&

that is, they were calculated by propagation. The results for
100 time steps are shown in Figure8, Figure9, and
Figure 10. These figures show the evolution of the probabil-
ity distributions. The darker the colour bars are, the higher
the probability. We added mean values for conveniance. The
plots were produced using the Qualitative Modelling Tool-
box for Matlab SIMULINK [16].

i

L L L L L
o] 10 20 30 40

1 I 1 . I 1
50 60 70 80 90 100
Seconds

Figure 8: The pump flow (evident node).

VolumeFlow
o
T

')

g

|
Vi

L L L L L
0 10 20 30 40

. . L
50 60 70
Seconds

L L L
80 90 100

Figure 9: The flow into the fuel reservoir VolumeConst (inside the Real Fuel Pump template - hidden node).

Conclusion and future wor k

In this contribution we have motivated the need for intelli-
gent modelling techniques. For system design, diagnosis or
verification qualitative models are a very good choice. We
favor the Bayesian network technology due to their robust-
ness, intuitivity and practicability.

We seeked a quditative modelling technique for mecha-
tronic systems, i.e. for dynamic, multidomain systems. The
object-oriented physical modelling technique gave us the
hint for the construction of our OODBNSs. The simulation
results encourage us to proceed in this direction. Recent suc-

cess has been made to select the states (the "landmarks")
upon measurements or quantitative simulations, using a sim-
ple heuristic from system identification. Furthermore, learn-
ing respectively adapting the CPDs using HUGINSs adaption
APl was very promising.

References

[1] SIMULINK. Homepage: http://www.Mathworks.com/
[2] SYSTEMBUILD. Homepage: http://www.isi.com/

(3]
[4]
(5]
(6]

(7]
(8]
[

Valvet
T

o
T

| | 1 1 | | | | 1 ' |
[o] 10 20 30 40 50 60 70 80 90 100
Seconds

Figure 10: The ReliefValve behavior (hidden node), where’ 0" means closed, and '1" means open.

ProductsMATRIXx/

ADAMS. Homepage: http://www.adams.com/
SIMPACK. Homepage: http://www.simpack.de/
PSPICE. Homepage: http://www.microsim.som/
Elmqvist, H.; Mattsson, S.E.; Otter, M.1999. Modelica
- A Language for Physical System Modeling, Visualiza-
tion and Interaction. |IEEE Symposium on Computer-
Aided System Design, CACSD’99, Hawaii, August 22-
27, 1999.

Modelica. Homepage http://www.modelica.org
Dymola. Homepage http://www.dynasim.se

Otter, M. et al. 1999. Objektorientierte Modellierung
Physikalischer Systeme, Teil 1. at - Automatisierung-
stechnik 47, pp.A1-A4. Continued in the following
issues of the at.

[10] Jensen, F. 1996. Bayesian networks basics. AISB Quar-

terly 94, pp. 9-22.

[11] Cowell, R.G., Dawid, A.P, Lauritzen, S.L., Spiegelhal-

ter, D.J. 1999. Probabilistic Networks and Expert Sys-
tems. Statistics for Engineering and Information
Science. Jordan, Lauritzen, Lawless, Nair (eds.),
Springer-Verlag New York Inc. ISBN 0-387-98767-3.

[12] Hugin. Homepage: http://www.hugin.com/
[13] Koaller, D., Pfeffer, A. 1997. Object-oriented bayesian

networks, Proceedings of the thirteenth conference on
Uncertainty in Artificial Intelligence, UAI 97.

[14] Dague, Pet al. 1995. Qualitative Reasoning: A Survey

of Techniques and Applications. AICOM Vol. 8, Nrs. 3/
4, Sept./Dec. pp. 119--192.

[15] Beater, P. 1998. Object-oriented Modeling and Simula-

tion of Hydraulic Drives. Simulation News Europe,
SNE 22, pp. 11-13.

[16] G. Lichtenberg et.al. Qualitative Modelling Toolbox

User's Guide. Release 5.2. Download: http:/
pcweb.rts.tu-harburg.definter/homepage.nsf

Development Tool for Distributed Monitoring and Diagnosis Systems

M. Albert, T. Langle, H. Wdrn
Institute for Process Control and Robotics
University of Karlsruhe
D-76128 Karlsruhe
Germany

Abstract

This paper introduces a concept for building up
distributed monitoring and diagnostic systems
for complex industrial applications. The diag-
nostic process, from accessing sensor data up to
the visualization within a graphical user inter-
face is described by universal applicable for-
malisms. Generic mechanisms were identified to
improve the quality of a diagnosis by integrating
legacy diagnostic engines and handling different
diagnostic mechanisms in parallel. For this pur-
pose, a modular multi-agent architecture and a
set of development tools were implemented.
This software architecture for monitoring and
diagnosis was developed within the framework
of the EU Esprit Program: “DIAMOND: Dls-
tributed Architecture for M ONitoring and Diag-
nosis”.

1 Introduction

To compete within industry, manufacturers are demanded
to optimize their productive processes. In order to
achieve this efficiency, a high value has to be set on the
quality of the industrial equipment as well as on the in-
dustrial process itself. Monitoring and diagnostic systems
(M&D systems) support this objective by predicting fail-
ures, or if a failure occurred, by identifying the reason
for this fault. Thereby it is possible to reduce down-time
costs of the production process. To achieve an overall
reduction of the production costs, the development ex-
pense for a powerful M&D system has to be minimized.
For this purpose, a modular concept was realized that is
based on a distributed multi-agent approach.

A complex industrial application is built by a set of dif-
ferent physical units. These units may be provided by
different vendors, having detailed knowledge about the
behavior of their unit. Furthermore, there are often dif-
ferent diagnostic methods for the same unit available. To
realize a powerful diagnosis, the knowledge about the
different physical units and about various diagnostic
methods should be merged together within an overall
framework. Therefore, new strategies were required to

treat these supplementing diagnostic knowledge about an
industrial process.

This paper presents the generic aspects of the underlying
infrastructure and describes the multi-agent framework.
It is neither deemed to explain any diagnostic algorithms
that may be applied nor to present the methodologies in
detail that are employed to handle different diagnostic
results in parallel.

2 Related work

Interest in recent research on distributed approaches for
diagnostic purposes can currently be seen in Europe,
Japan and in the United States. A general overview about
distributed artificial intelligence in industry is given in
[Par94]. This paper reviews the industrial needs for Dis-
tributed Artificial Intelligence, giving special attention to
systems for manufacturing, scheduling and control. It
gives case studies of several advanced research applica-
tions, actual industrial installations and identifies steps,
need to be taken to deploy these technologies more
broadly.

In [Fro96] there is a distinction between semantically
distributed diagnosis and spatially distributed diagnosis.
Semantically distributed diagnosis refers to a heteroge-
neous group of agents, in which each agent has its own
view of the system. This can either mean that each agent
focuses on a specific area of the system or that the agents
model different aspects of the system or use different
diagnostic methods, e.g. one agent models the structure
of the system and another one models the performance.
Spatially distributed diagnosis refers to a group of agents
which jointly monitor and diagnose a spatially distrib-
uted system with relationships between those equip-
ments. Each agent has detailed knowledge about a small
part of the system.

Different concepts to realize a distributed approach are
proposed in the literature, ranging from classical client
server application over blackboard technologies to a few
multi-agent frameworks. Most distributed applications
employ a classical client server approach with distributed
clients, communicating with a central server. This well
known technology is continuously advanced and applied
to distributed management applications. The standardi-

zation of distributed management tasks like information
exchange, monitoring and diagnostics is aimed by the
Common Diagnostic Model (CDM), developed within
the “distributed management task force” (DMTF)
[DMTF]. This framework is based on software clients
which perform their tasks nearly automatically and report
information to a central server.

Another concept is based on a blackboard technology. A
central blackboard is used to store all available informa-
tion about an industrial process. These data can be ac-
cessed by other software units, possibly software agents,
in order to perform a diagnosis or to visualize the results.
[Lee97] outlines the conceptual foundations for next
generation industrial remote diagnostics and product
monitoring systems. It extends the multi-agent frame-
work research to include new classes of product popula-
tion and diagnostic agents within a distributed Embedded
Web and Electronic Commerce infrastructure. The prod-
ucts to be diagnosed are for example printers, copiers
and vehicles.

[Ben97] introduces a KQML-CORBA (Knowledge
Query and Manipulation Language) [KQML] based ar-
chitecture to implement a multi-agent system for network
and service management. The paper adopts this archi-
tecture and applies it to diagnosis and monitoring of ma-
chines and components in the production environment by
using a multi-agent approach, combined with semanti-
cally distributed diagnosis. Up to now there are only few
other implementations of KQML, one over TCP/IP in C
which has been developed Lockheed-Martin [Fin99] and
one in JAVA [Fro96]. The use of the agent communica-
tion language developed by FIPA [FIPA98] together with
the CORBA standard for distributed computing is a
widely used strategy to realize an agent interaction
[OrfaT7].

3 Unitsof Monitoring and Diagnostic
System

High value and cost effective diagnosis system can be
developed by distinguishing between the tasks that have
to be performed within a M&D system. Some tasks are
general for all monitoring and diagnostic systems, some
are specific for the employed production equipment and
others are specific for the considered production process.
These three units should to be treated in different ways:

3.1 Generic M&D units

Independent to specific requirements of an application
area, a set of tasks are generic for all monitoring and
diagnostic systems. Functionalities like interfacing dif-
ferent units, storing data, formatting measurements and
diagnosis results, configuring the system, managing the
interaction and some more have to be performed in all
M&D systems. It is obviously feasible to reuse a set of
existing software units whenever a specific Monitoring
and Diagnostic system has to be built. This allows the
integration of highly developed and well tested units ex-

tremely fast and low priced. Together with a set of well
defined interfaces, a general architecture for monitoring
and diagnosis becomes realized.

3.2 Specific to production equipment

Some parts of monitoring and diagnostic software are
specific to the used production equipment. The way how
to access sensor values and how to use these data to di-
agnose a physical component is specific to the produc-
tion environment. The component manufacturer is inter-
ested to equip its component with monitoring and diag-
nostic capabilities that are compatible with a generic
architecture. The usage of software agents allows to en-
capsulate legacy diagnostic tools in order to become in-
teroperable to the overall system (see section 5). These
parts are reusable whenever the same production equip-
ment is used and should not be developed each time a
M&D system is built from scratch.

3.3 Specific to production process

All remaining parts of the complete monitoring and di-
agnosis system are specific to the production process.
The interaction between different physical components,
and adoptions of the operator interface are examples for
units that have to be develop individually.

4 DIAMOND - distributed multi-
agent architecture

The architecture, proposed in this paper, tries to merge
the three different parts to a consistent monitoring and
diagnosis system. All generic units of a M&D system are
realized by the utilization of software agents, each re-
sponsible for a specific task. An integration of all parts
that are specific to the production environment or to the
production process itself is supported by encapsulating
these functionalities into different agents, able to interact
with the overall framework. The DIAMOND architecture
specifies the information that are required to integrate
these parts and supports the development process by of-
fering a set of tools (see section 5).

The structure and the interaction of the software agents
that are able to perform all generic tasks and that are
used to encapsulate all specific tasks are described in the
following chapter.

4.1 Structure of DIAMOND Agent

All agents that are used within DIAMOND are built of
two different software units. One is responsible for the
communication with other DIAMOND agents within the
M&D framework. This unit is called ‘Wrapper’ and is
identical for all agents. The second software unit is
called ‘Brain’. This part performs all tasks that are spe-
cific for the type of the agent.

The Wrapper is responsible for handling the communi-
cation of this agent with other agents in the M&D system
by applying the CORBA middleware. Information can be
exchanged by applying CORBA events or by using

CORBA call-backs. The wrapper registers its CORBA
objects at the ORB to become visible for other agents.
However, the wrapper does not initiate or analyze any
information exchange with another agent by itself. This
is handled by the brain part.

The agents brain performs all tasks that are specific to
the type of the agent. Some of the agents that are utilized
within the framework perform exclusively generic tasks
that are similar for all industrial environments. The im-
plementation of the brain for these agents is uniform for
each application where DIAMOND is applied. The tasks
that have to be performed by the monitoring and diag-
nostic agents (see next chapter) are partly independent
on the application. One part handles generic monitoring
or diagnostic capabilities. This part of the monitoring
agent brain and the diagnostic agent brain is provided by
the DIAMOND development toolkit (see section 5.4 and
section 5.5). All further capabilities depend on the spe-
cific application and have to be implemented afterwards
individually by accessing well defined interfaces. This
absence of an explicit implementation enables the inte-
gration of legacy monitoring and diagnostic tools inside
the brain of a monitoring agent or inside a diagnostic

agent.

4.2 Agent interaction

The Wrapper of each agent uses CORBA to exchange
messages with other agents. It supports a synchronous
call-back communication and an asynchronous event-
based communication.

The wrapper exposes a CORBA remote interface to other
agents that can use it, whenever they want to send a mes-
sage to this agent by using a CORBA call-back. The

cure, if an unknown protocol was received, if the agent is
to busy to handle the message or if the agent will con-
tinue to process the message. Only in the last case, the
message will be stored in an internal buffer that is part of
the Wrapper. This buffer allows to sort incoming (and
outgoing) messages according to their priority, their
timestamp or in respect to a given time-out. The brain
removes the message from the buffer as soon as it is able
to process it. After processing the message, it specifies
the answer, corresponding to the used protocol. This an-
swer is stored in the internal buffer of the agent and for-
warded to the remote CORBA object.

The message that is sent by an agent contains a set of
pre-defined parameters as it is specified by FIPA. These
parameters are stored within a XML structure. Since a
conversation must not only handle information exchange
but also the exchange of attitude about the information, a
2-layered protocol is applied. The outer layer of a mes-
sage represents the attitude about the information. These
data are processed by the Wrapper. The information it-
self is part of an inner layer which is stored in the con-
tent parameter of a message. The message content, which
is also encoded in the XML syntax, is processed by the
brain of the agent.

If an agent wants to supply data quickly to the overall
multi-agent framework without taking care about the re-
ceiving agents, an asynchronous event-based communi-
cation is more feasible. This mechanism is mainly used
by the monitoring agents to supply measurements to all
diagnostic agents that are interested in. Every agent is
able to supply and to consume events, structured in
XML, by connecting to different event channels. This
CORBA functionality is accessed by the Wrapper.

ML

Agent A
BRAIN Wrapper

CORBA

2

Agent B
Wrapper BRAIN

7’XML /

Figure 1 Agent Interaction

FIPA-Agent Communication Language (FIPA-ACL)
[FIPA98] is used to restrict the interaction between
communicating agents (see figure 1).The REQUEST, the
QUERY -REF the SUBSCRIBE and the CANCEL proto-
col were identified to cover all required agent interac-
tions. The call-back CORBA concept allows the receiv-
ing agent to return an integer value instantly if the struc-
ture of the message is invalid, if the message is not se-

4.3 Monitoring Agent

The interface between the physical state of the industrial
application and the DIAMOND system is realized by a
Monitoring Agent. This type of agent handles the meas-
urements of the physical components and prepares them
to be treatable by other agents within the framework.
Each Monitoring Agent has to be adjusted to the sensors

of the industrial equipment that will provide the meas-
urements. Furthermore, the Monitoring Agents are able
to initiate a diagnosis of a component as soon as they
have identified an irregular state of a measurement.

4.4 Diagnostic Agent

Different aspects of distribution are handled within the

DIAMOND framework. First of all, the different tasks

that have to be performed within the monitoring and di-

agnhostic process are distributed to different agent types,

each responsible for its specific task. The task that has to
be performed by the Diagnostic Agents is also distrib-
uted again. The Diagnostic Agents are handling the
measurements that are provided by the Monitoring

Agents to identify the functional state of the physical

components. This diagnosis may be performed by differ-

ent Diagnostic Agents, each having a different view of
the industrial application.

* Thisvariation may be related with different temporal
aspects of the behavior of the plant (temporal distri-
bution).

» Often, there are different diagnostic agorithms
available to identify the state of an industrial proc-
ess. A development tool for a flexible M&D system
has to be able to handle various diagnostic mecha-
nisms in parallel. This is identified as a semantical
distribution of the diagnosis.

* The entire diagnostic knowledge about the behavior
of the plant is split to a set of smaller knowledge
units, each associated with a physical part of the
plant, called component. A single Diagnostic Agent
does not know about the behavior of the complete
plant, but about a single component. This knowledge
may be provided by the manufacturer of the compo-
nent. In this manner, the diagnostic task is spatially
distributed.

When distributing the overall diagnostic task regarding

temporal, semantical and spatial aspects, a flexible and

clear framework is feasible. For diagnosing the overall
process, the various diagnostic results, reported by dif-
ferent Diagnostic Agents have to be merged together.

This additional task is performed by the Conflict Reso-

lution Agent.

4.5 Conflict Resolution Agent

A conflict resolution mechanism is required to investi-
gate, whether the diagnostic results, reported by different
Diagnostic Agents are contradicting or completing each
other. The Diagnostic Agents do not communicate with
each other to merge their knowledge, but do report their
diagnosis to a Conflict Resolution Agent. According to
the different types of distribution, temporal, semantical
and spatial conflicts have to be considered. For this pur-
pose, the relations between the components and between
the possible failures which may be related within the
components have to be well known (section 5.1 and 5.3).
The knowledge is represented by a Graph. An adjacent
vector, where each element represents a component is

used to build the graph [ALG94]. Each node (compo-

nent) consists of:

e Vector of topological arcs with other components

e Vector of relationships between the same failure in
different components

e Vector of relationships between different failures in
different components.

The overall conflict resolution process is divided into

different sequential steps:

e The reported failures are assigned to the nodes
(components) of the graph conformed by the infor-
mation specified in the structural knowledge base
(chapter 5.1). This allows to identify semantical con-
flicts.

* Following, spatial and temporal conflicts are investi-
gated in three different levels. Level 1 works with
the topological information specified in the struc-
tural knowledge base, level 2 works with the rela-
tions between the same failure in different compo-
nents (i.e. similar to level 1 but specific for afailure)
and level 3 works with the relations between differ-
ent failuresin different components.

Details about these generic algorithms for handling tem-

poral, semantical and spatial conflicts can be found in

[DIAMOND].

4.6 Facilitator Agent

The Facilitator Agent is responsible for networking and
mediating between the agents in the Multi-Agent frame-
work. Large industrial applications may be federal and
hierarchical structured. This structure is adopted to dif-
ferent “domains”. A domain is a subsystem of the
DIAMOND architecture that is responsible for a part of
the industrial application. Each “domain” is associated
with a facilitator agent to facilitate the networking within
this domain and with other Facilitator agents of other
domains. Thus a diagnosis of a single domain as well as
a diagnosis of the complete industrial application is fea-
sible. Furthermore, the Facilitator agent is the mediator
to the Graphical User Interface Agent.

4.7 Blackboard Agent

All diagnosis results that were reported within a well
defined timeframe are stored in a blackboard that is im-
plemented in a Blackboard Agent. Each domain has its
own Blackboard Agent that is mediating with the Con-
flict Resolution Agent. The Blackboard Agent provides
the results, reported by the Diagnostic Agents and trig-
gers the conflict resolution process. The resolved diag-
nostic result that cover the state of all components that
are part of the domain are forwarded to the Facilitator
Agent. The Blackboard Agent is also in charge of storing
all reported diagnostic results permanently.

4.8 Graphical User Interface Agent

The Graphical User Interface Agent is the human gate-
way to the DIAMOND system. The operator uses this

interface to get information about the state of the indus-
trial application, to provide human accessible informa-
tion to the Diagnostic Agent and to initiate diagnostic
processes.

4.9 Overall Architecture

The hierarchical and federal structure of the industrial
environment that has to be monitored and diagnosed is
transferred to a hierarchical and federal structure of the
software architecture. For this purpose, industrial com-
ponents are grouped together to form a logical superior
unit. A set of agents that are responsible for diagnosing
this set of components are grouped within a “domain”.
Only the Facilitator Agent of each domain is able to
communicate with other Facilitator of other domains or
with the Graphical User Interface Agent.

The main concepts of this DIAMOND architecture are
summarized in figure 2.

Monitorin
Aagent

Monitorin
Aagent

M onitorin
Aagent

provide measurements that may be used by the Diagnos-
tic Agents of different domains.

5 How to build a monitoring and di-
agnosis system

This chapter describes the steps that are required to build
up a complete monitoring and diagnosis system by using
the results provided by the DIAMOND architecture.

5.1 ldentify semantic structure of thein-

dustrial application

The first step while building up a monitoring and diagno-
sis system is to define all physical components and their
relations of the automated industrial system that have to
be supervised. There should be no overlap between com-
ponents, nor should there be “white spaces” of the sys-
tem being diagnosed not covered by a component at all.

Object Request Broker

T

CRA

iC Blackhoard Gl
' Aagent Adent
Domain A
\ Domain B
K Domain C

Figure 2 DIAMOND Architecture

All DIAMOND agents that are interacting are pictured as
two colored boxes with the type of the agent written in-
side. The light green box indicates the Wrapper that is
responsible for communication. This part is unique for
all agents. The second box represents the Brain which is
specific for the agents type. The agents are interacting by
using the Object Request Broker (CORBA). This mid-
dleware is pictured as the yellow bar in the middle of the
figure.

The figure indicates three different domains (Domain A,
B and C). These domains are grouping the Diagnostic
Agents, a Blackboard Agent, a Conflict Resolution Agent
and a Facilitator Agent together. The Monitoring Agents
are not associated to one single domain. They are able to

The components of the industrial application may be hi-
erarchical or federal related with each other. If there is a
set of components that are building a logical unit which
is widely self-contained, they have to be grouped to-
gether into a domain. The knowledge about the compo-
nents and domains is fixed for a specific industrial appli-
cation and will not change during runtime. DIAMOND
provides an ontology that defines the structure and the
possible attributes of any component. This knowledge is
stored in the structural knowledge base in the XML for-
mat.

The possible relations between components are ex-
pressed by the attributes of each “COMPONENT” ele-
ment:

* INPUT_CONNECTED_TO specifies functional or
logical output of another component which effects
the behavior of this component.

* EXCLUSIVE identifies that the faults of both related
components are mutual to each other.

« BELONGING_TO is used to express the topological
relation between “parent” and “child” components.

Further attributes are the certainty of the identified rela-

tion and a possible time delay which describes the tem-

poral behavior of related components.

5.2 ldentify measurements

It has to be investigated whether there are any existing
monitoring sources available which are able to access
measurable states of the plant. These sources may be
accessed by a Monitoring Agent. It has to be investi-
gated, which information about the measurable state of
the industrial application is accessible and how to obtain
them. In the case of integrating a legacy application for
accessing the system variables, the interface to these ap-
plications have to be identified. All measurable states
that are practical for a diagnosis have to be described as
a measurement according to a well defined ontology for
MEASUREMENT.

All measurements that will be used have to be associated
with a Monitoring Agent that is able to access it. It is
reasonable to associate all measurements that are pro-
vided by a single data acquisition source or by a specific
mechanism how to access them with the same Monitoring
Agent.

5.3 ldentify failure modes

The M&D system is able to identify those potential faults
of the industrial application that were specified in ad-
vance. Therefore, it has to be investigated, which legacy
diagnostic tools may be used and which faults these
modules are able to detect.

Attributes for each failure are specifying the conditions
that have to be fulfilled, the names of rules that are fea-
sible to identify the fault and potential recovery actions.
Another attribute identifies whether the occurrence of
this failure is related with another failure, either in the
same or in another component. This allows to state
whether different faults are contradicting or comple-
menting each other, how they are temporally related and
how a failure propagates.

All these information are stored within an XML struc-
ture. These data are mainly processed by the Conflict
Resolution Agent to solve diagnostic conflicts. The diag-
nostic mechanisms and algorithms to identify the failure
are specific to the industrial process and will be used by
the diagnostic agents.

5.4 Build Monitoring Agents and connect
with industrial environment
For building the Monitoring Agents, a shell is provided

by DIAMOND that enables the creation of this agent.
The connection with the monitoring and diagnostic infra-

structure is automatically realized. The connection with
the sensors of the industrial application has to be done
afterwards. This task is specific for each application and
for each sensor.

There are several predefined configuration parameters
for a Monitoring Agent. These parameters may be set by
using a DIAMOND toolKkit.

5.5 Build Diagnostic Agents and connect
with diagnostic engines

The measurements are used by the Diagnostic Agents to
perform a diagnosis. For this purpose, each Diagnostic
Agent needs to have a diagnostic engine. This may be a
commercial expert system or any other kind of diagnostic
engine to identify failures of the related component. The
connection of the diagnostic engine with the M&D sys-
tem is realized by using a development shell for creating
the Diagnostic Agents. The interface to the diagnostic
engine has to be implemented afterwards individually.
There are only two methods that have to be implemented
for interfacing:

One method enables the diagnostic engine to get a meas-
urement value which is accessed from an internal buffer
of the Diagnostic Agent. The engine does not keep care
where to get the measurement from. All measurements
that were identified in chapter 5.2 are accessible. After
the engine has performed its diagnosis, it provides the
diagnosis result to the Wrapper of the agent by using the
second method of the interface. The Wrapper makes the
result available for the infrastructure for further proc-
essing.

Integrating the diagnostic engine of a legacy diagnostic
tool is possible, if this clear interface is realized. No
further modifications, neither to the DIAMOND frame-
work, nor to the diagnostic engine are required.

6 Evaluation Examples

The functionality of the presented multi-agent architec-
ture was verified by integrating a specific monitoring and
diagnosis system into two operational prototypes.

The first was concerned with the functional process of an
automated welding cell, containing a control system, a
robot with gas-metal arc welding equipment and a posi-
tioning device. To simulate faults that may occur in the
welding system, a simulator was used that emulates the
behavior of the welding equipment for different faulty
situations. The measurements were accessed by using an
ODBC interface and a DCOM interface. Several legacy
case based reasoning engines, each responsible for an-
other component, were applied to identify faulty compo-
nents. This integration was suitable to present the capa-
bility to integrate different data accessing methods and
various diagnostic engines within an integrative moni-
toring and diagnostic system easily. This M&D system
was able to identify spatial conflicts and recognize the
propagation of faults from one component to another
one.

The second evaluation example took an existing expert
system for diagnosing the water-steam cycle chemistry of
a coal fired power plant (called SEQA, based on G2,
Gensym) and re-worked it to operate in a modern diag-
nostic framework. To verify the behavior of the M&D
system outside the power plant, a simulator based on a
neural network model was used to either generate offline
artificial anomalies overlapped to normal patterns or on-
line to provide a set of normal behavior values against
which measurements should be compared. The assimila-
tion of a complete legacy expert system into a distrib-
uted M&D framework illustrated a complex tasks since
there were many interfaces necessary for accessing data
and for using the legacy diagnostic engines.

7 Conclusion

This paper describes a concept for building a distributed
architecture for monitoring and diagnosing a complex
industrial application. The presented M&D system uses a
multi agent approach which warrants the flexibility, the
extendibility and a cost effective development of the
system.

One main extension to existing solutions is the possibil-
ity to integrate legacy diagnostic tools into the overall
diagnosis system. This requires an extensive and exact
specification of all components, measurements and pos-
sible failures of the industrial application as well as a
specification of their relations to each other. This was
realized by introducing a set of ontologies for the moni-
toring and diagnostic system.

Furthermore, several diagnostic engines can be utilized
in parallel. They may refer to different components of
the industrial application and they may apply different
diagnostic mechanisms. By using different Diagnostic
Agents, related to different components, the diagnostic
knowledge can be provided by the component manufac-
turer. For applying different diagnostic methods, algo-
rithms were developed to handle different diagnosis re-
sults in parallel and to investigate whether they are com-
pleting or contradicting each other.

Acknowledgment

This research work has been performed at the Institute
for Process Control and Robotics, Prof. Dr.-Ing. H.
Worn and Prof. Dr.-Ing. R. Dillmann, Department of
Computer Science, University of Karlsruhe (Germany) in
collaboration with Union Fenosa Generacion, S.A.
(Spain), KUKA Roboter GmbH (Germany), GenRad Ltd
(UK), Instituto de Investigacion Tecnoldgica - Universi-
dad Pontificia Comillas (Spain) and S.A.T.E. s.r.l.(Italy).
The research was partly funded by the European Com-
mission in the DIAMOND project under the Contract
No. EP 28735.

References

[ALG94] “Introduction to Algorithms”, T.H. Cormen,
C.E. Leiserson, R.L. Rivest, the MIT Press, 1994,
[Ben97] Benech D., Desprats T., Raynaud Y., “A
KQML-CORBA based Architecture for Intelligent
Agents Communication in Co-operative Service and
Network Management”, IFIP/IEEE International Confer-
ence on Management of Multimedia Networks and Serv-
ices, Montréal, Canada (1997)

[CORBA] http://www.corba.org/ 2002 ,,Common Ob-
ject Request Broker Architecture”, object management
group.

[DIAMOND] http://wwwipr.ira.uka.de/~kamara/diamond/
2001 “Distributed Architecture for Monitoring and Diag-
nosis”. EU Esprit Project No. 28735.

[DMTF] “Distributed Management Task Force”,
http://www.dmtf.org/ , develops standards for distributed
management tasks, 2002

[Fin99] Yannis Labrou, Tim Finin, Yun Peng, Uni-
versity of Maryland, Baltimore County: "Agent Commu-
nication Languages: The Current Landscape". |EEE
March/April (1999)

[FIPA98] http://www.fipa.org/ 1998 "FIPA 98 Specifi-
cation", Foundation for intelligent Physical Agents
(1997-2001).

[Fro96] Froehlich, P., Nejdl W., “Resolving Conflicts
in Distributed Diagnosis”, ECAI *96, 12" European Con-
ference on Artificial Intelligence, John Wiley & Sons,
Ltd., (1996)

[KQML] T. Finin, R. Fritzson, D. McKay, R. McEn-
tire, “A language and protocol for Information Ex-
change”, Technical Report CS-94-02, Computer Science
Department, University of Maryland, UMBC

[Lee97] Lee B. H., “Agent-based Remote Diagnostics
of Product Populations Across the Full Product Life Cy-
cle An Industrial Multi-Agent System Approach in an
Electronic Commerce Framework”, Proceedings of The
Seventh International Workshop on Principles of Diag-
nosis, October 13-16, 1996, Val Morin, Quebec, Canada
(1997)

[Nejo4] Nejdl W., Werner M., “Distributed Intelli-
gent Agents for Control, Diagnosis and Repair”, Techni-
cal Report, Informatik V, RWTH Aachen, Germany,
(1994)

[Orfa7] Orfali, R., Harkey D., “Client/Server Pro-
gramming with Java and CORBA”, John Wiley & Sons,
Ltd., (1997)

[Par94] Parunak V., “Applications of Distributed Arti-
ficial intelligence in Industry”, OHare and Jennings,
eds., Foundations of Distributed Artificial Intelligence,
Wiley Inter-Science, 1996, (1994)
[XML] 2001, ,Extensible
http://www.xml.org/

Markup Language“,

Using Supervised Learning Tedniques for Diagnosis of
Dynamic Systems

Pedro J. Abad®, Antonio J. Sudrez!, Rafael M. Gasca?, Juan A. Ortega®

Abstract. This paper describes an approach based onsupervised
leaning techniques for the diagnosis of dynamic systems. The
methoddogy can start with red system data or with a model of
the dynamic system. In the second case, a set of simulations of
the system is required to oktain the necessary data. In bah cases,
obtained datawill be labell ed acording to the running condtions
of the system at the gathering data time. Label indicaes the
running state of system: correc working or abnarmal functioning
of any system comporent. After being labelled, data will be
treaed to add additional information abou the running of system.
The final goal is to okltain a set of dedsion rules by applying a
classfication toadl to the set of labelled and treaed data. This
way, any observation onthe system will be dassfied acording
to those dedsion rules, having a return label indicaing the
currently running state of system. Returned label will be the
diagnostic. This entire learning task is carried ou off-line, before
the diagnosing.

1 INTRODUCTION

Diagnosis determines why a system, corredly designed, doesn't
work like it was expeded. Explanation, for this erroneous
behaviour, represents a discrepancy with the system design. One
diagnaosis task isto determine the system elements that could cause
the eroneous behaviour acwmrding to the system observations.
Monitoring process is fundamental to avoid nonred faults by
small aterations in variables values. [1] Proposes a knowledge
model for dynamic systems monitoring.

Fault detedion consists on determining, starting from the
system observations, when an incorred operation of the observed
system exists. When fail ure is deteded then diagnosis will take the
control to find the reasons of that incorred behaviour.

Fault detedion and dagnostic of faulty comporents are very
important from the strategic point of view of the mmpanies, due to
the eonamic demands and environment conservation required to
remain in competitive markets. This is one of the reasons causing
that thisis avery adive investigation field. Comporents faults and
process faults can cause systems damages and undksirable halt of
the system. This causes the increase of costs and ceaease of
production. Therefore developing medhanisms to deted and to

1 Dpto de Ingenieria Electrénica, Sistemas Informéticosy Automética
Universidad de Huelva. E-Mail: {abadhe asuarez@uhues}

2 Dpto de Lenguaje'y Sistemas Informéticos. Universidad de Sevilla
E- Mail: {gascaortega@lsi.us.es}

diagnose systems faults are needed to maintain the systems in
levels of seaurity, production and reliability.

Inside the Artificial Intelli gent community the dynamic systems
diagnaosis task has been approached, in most of the caes, adapting
the tedhniques coming from the static systems diagnosis to the
dynamic behaviour of the systems. This way [2] or [3] try to add
temporary information to GDE [4]

On the other hand, qualitative models have dso been commonly
used for this purpose [5] [6].

In [7] the fundaments of the based-models diagnosis, applied to
the dynamic systems, are presented, and more recently [8] propases
a onsistency-based approach with qualitative models.

Other techniques, coming from the Al, have dso entered in
the diagnosis field. Following this line, leaning techniques tries to
identify the system behaviour basing on a previous training.

Lately, some works using leaning-based techniques have been
presented, like stochastic methods [9], neural network based
leaning [10] and classficaion systems [11]. Neura network
techniques have recatly been applied in dverse fidds, as
medicine [12] or power supdy [13].

Machine Leaning techniques, inside the supervised leaning
field, are aitomated procedures based on logicd operations that
lean atask starting from a suite of examples. In the dassficaion
field the atention has been centred, concretely, in approaces with
dedsion trees [14], where dassfication is the result of a series of
logicd steps. These gproaches are &le to represent the most
complex problems if they have enough data. Applied to the
diagnosis, we can find these methods used for the dassficaion o
temporary patterns [15] or in previous works to the arrent one
[16] [17].

The present work is centred in quentitative models. It uses
supervised learning tedhniques to oltain a rules-based modedl to
diagnose dynamic systems by reagnizing the wrred behaviour
models and faulty behaviour models. An approach to offer severa
fault causes, when thereisn’'t an only clea cause, is presented.

Rest of the document has been arganized in the foll owing way:
in the next sedion the used methoddogy will be exposed and the
form to cary out the diagnosis. Next a problem applicaion
example is described for the developed approach. To ill ustrate the
operation d these techniques awide set of testsis presented. Lastly
some improvements that are in devel opment processare discussed.

2 PROPOSED METHODOLOGY

To cary out diagnosis of dynamic systems a set of dedsion rules
shoud be generated. It can be dore starting from the known

trajectories of the system or the simulations generated from a
model.

Before starting with the methodology some concepts need to be
defined.

2.1 Definitions and notation.

Definition 1. Behaviours Family. It is a finite group of
trgjectories having a similar behaviour from the point of view of
the diagnosis.

Definition 2: Correct behaviour. It is the finite group of

trajectories belonging to evolutions of the system without any fault

type.

Definition 3: Perfect behaviour. It is the trgjectory describing the

system when all parameters take the central values of the ranges

defined as correct.

Definition 4: Observation. It is a real trgectory of the dynamic

system containing values of the observational variables in the

system.

Definition 5: Diagnosis. It is the identification of the observed

behaviour of the system as belonging to a certain behaviour family

(diagnosis label) and according to decision rules.

Proposed approach can be generated from two different ways:
e Rules are generated starting from a group of different
behaviour models.
[JModel (behaviour) [7 labelled trajectories
¢ Rules are generated starting from a group d experimental
trajeaories of dynamic system for the corred behaviour and
possble fault behaviour.
O Trajectories (behaviour) [J labelled trajectories.
Leaving of one of these situations the processcan continue like
that:

1. Similar trajedories belonging to dfferent behaviours family are
identified. These trgjedories are labelled again as belonging to
both behaviours family.

O Similar Trajectories (different behaviour family) O
relabelled trajectories.

Problem

Description

odel

=ystem

Chservation

Decisien
Eules

ﬂﬂ::> [DIAGNOSIS ‘

Evaluation

Classification

2. Dedsionrules are generated using a supervised leaning todl.
[JRelabelled trajectories [7 Decision rules

3. Diagnosis consists in as®ciating an observation as
correspondng to behaviours family by using dedsionrules.
Classification (observation, rules) [J Diagnostic label

2.2 Methodology

Proposed methoddogy to diagnose is an amplificaiion o other one
developed in [16]. This basic methoddogy may present some
problems when the same system behaviours can be ssociated to
different fault reasons. In order to dorit diagnose incorredly these
cases, in this new approad, those behaviours will be sswciated
with all the possble behaviours family that can cause this concrete
behaviour. In this way severa fault causes will be offered for
observations that can correspondto different behaviours family.

Basic idea onsists in oltaining a set of clasdfication rules from
a suite of system data in dfferent behaviours modes: the orred
behaviour and the faulty behaviours. After, those obtained
classfication rules can be used to asciate an observation with
model behaviour. Thus diagnosis of the observationis obtained.

Process can start with red system data or with a moddl of the
dynamic system. In the second cese, a set of smulations of the
system is required to oltain the necessary data. In bah cases,
obtained data will be labelled acwrding to the running condtions
of the system at the gathering data time. Label indicaes the
running system state: corred working or abnamal function d any
system comporent. Final result consistsin adatabase @ntaining all
labell ed trgjedories.

Obtained database @ntains very smilar tragedories
correspondng to dfferent behaviour family and therefore with
different labels. To solve this problem the set of al similar
trajeaories will be relabelled with new labels. This new labels will
be ommposed as a mix of the older labels. Thus, relabelled
trajedories will be &wociated with anyone of the origina
behaviours family. The problem is to define when two or more
trajedories are similar. Dedsion taken is that several trajedories

Labelled
Databaze

e
@f&
R

Eedabelling

Ee-labelled

Data
Treatment

Labelled &

Database

Treated
Databaze

Figure 1. Proposed Methodology

are similar when distance between them is lower than a magnitude.
That magnitude should be specified for each treated system. Used
distance is Euclidean distance.

After being labelled and relabelled, trajectories data will be
treated to add additional information about running of the system.
This additional information will be very useful when classification
tool tries to find decision rules, because available information will
be greater. This additional information should characterize the
system further than gathering data and it is specified for each
treated systems.

A new database, which contains original trajectories plus new
attributes and the corresponding label, is obtained.

Final step, to obtain decision rules, is to use a classification tool
with the labelled and treated database.

An aspect to highlight is that all process, until this moment,
have been development off-line, and time needed for this process is
not important for the diagnosis process.

Diagnosis process consists on evaluating an observation with
the obtained decision rules. Time spending to diagnose is only the
time of evaluating obtained decision rules. Decision rules returns
the label associated to the behaviour by correspondence between
training data and observed data. This returned label is offered as
diagnosis.

Next a case study will
methodology.

be presented to develop this

T

Figure2. The example system

3 CASE STUDY

As it has been commented previously, methodology can be used
with real system data or with obtained data of a model simulation.
In our case, the methodology will be applied to a model, which is
an idealized situation, but it offers us a clear idea of the way to act.
In case of application on a real system, many difficult aspects, not
mentioned here (as monitoring or small phase shift), need to be
taken in account, but with the model we are only trying to present
the approach.

As example of dynamic system to diagnose we consider the
controller electric motor in [18] and [19]. Figure 2 represents
treated system. The motor ‘M’, whose rotational speed is ‘W', is
driven through a voltage ‘v’ by the controller ‘C’ which acts based
on the desired speed ‘d’ and the speed ‘w,’ measured by the
revolution counter ‘S’. Controller ‘C’ is considered as an I-
controller.

System can be modelled by the following equations, which
include a constant for each component that is used to model also
the faulty behaviour of the component:

MOtOr:T*%\I:Cm*V_W

@

dv
| —Controller: ot =Ce* (d — Wm) (2)
Sensor Wm=Cs*wW 6)

Where T is the inertia of the motor, ¢, is the constant of the
motor; ¢ is the constant of the controller and c; is the constant of
the revolution counter.

Component anomalous operation is caused, mainly, by the
deviation of the component constant nominal value. These
constants stray of the considered correct values range

Some faults represent that constants take values above the
correct ones and others faults represent that constants take values
below the correct ones. Diagnosis result should indicate, in
addition to the faulty component, if taken values for the component
constant are below correct values or above them.

Possible fault reasons that we want to identify are therefore:
‘CmHigh’ when values of Cm are above the correct ones;
‘CmLow’ when values of Cm are below the correct ones; ‘CsHigh’
when values of Cs are above the correct ones; ‘CsLow’ when
values of Cs are below the correct ones; ‘CcHigh’ when values of
Cc are above the correct ones and ‘CcLow’ when values of Cc are
below the correct ones.

To describe the system correct behaviour, it is considered that
values of all constants don "t have only one correct value, but rather
they can take values inside an interval that will be considered as
correct.

This way, operation flexibility is allowed and system real
behaviour is better simulated, where there is not a correct value but
rather correction margins are flexible. This produces that system
doesn™t have an only correct behaviour, but rather a correct
behaviours family. It represents all possible combinations of the
constants values that are inside of the defined tolerance limit.

A correct behaviours family does the diagnosis more difficult,
because it is necessary to recognize different behaviours as correct,
but on the contrary it provides a more realistic vision of the system.

In our model the constant values considered as correct are:

Table 1. Values for OK behaviours

cm [0.98-1.02]
Cc [0.98-1.02]
Cs [0.98-1.02]

Other considered characteristics in our system are:

1. Fault is present from the beginning and it doesn "t evolve in the
time.

2. Behaviour change occurs instantly and starting from here it
doesn " t change again.

3. Once the wanted angular speed has been indicated, it doesn™t
change until this angular speed is reached.

This way, diagnosis will be caried ou when the desired angular
speal (d) is changed. The way to diagnose is by cheding the
evolution to read the final spedl. It is necessary to kegy in mind
that in spite of existence of a falure in some cmporent, |-
controller is able to ad on the motor to read the required fina
speeal. Of course evolution o the system to read the desired fina
speead will be different. This difference in the behaviour will alow
the diagnosis.

Wm=WEs
V= NTEGIF2)
W= INTEG(f)
F2= Co{d-Wn)
F= Gyt

Ce

)

!
v

Figure3. Forrester diagram

First step, therefore, is performing system simulations in
different behaviours modes. In ou case, system has been modell ed
as a Forrester diagram [20], to be @le to simulate using the
simulation tood VEMSIM®. Forrester diagram generated for the
systemis presented in figure 3.

Simulated behaviours will be those that we want to dagnose.
They will be: OK for corred behaviour and CmHigh, CmLow,
CsHigh, CsLow, CcHigh, CcLow for eatn comporent fault above
mentioned.

A behaviour family will represent ead ore of these behaviours.

Simulations values are shown in table 2.

Table2. System valuesfor simulation

T 3

D 10

W 5
Time Step 0.1

For the mrred behaviour the mnstant values are into [0.98
1.02]. Vdues to simulate behaviours above the rred one aeinto
[1.02-5]. Values to simulate behaviours bellow the wrred one ae
into [0-0.98].

Constants values for smulated behaviours have been eleded by
random with the Monte Carlo method following a uniform
distribution. Number of simulations per behaviour will be 100.

Label correspondng to behaviour is placed to ead ore of the
trgjedories. This way, a database ntaining 700 labelled
trajedoriesis obtained.

Trajedories are cmposed with values of the variable ‘w,, in
ead time step. Reason to seled variable ‘w,,, and nd ‘W' is that
‘W, istheonly observable variable in thered system.

Infigures 4, 5 and 6 dfferent system behaviours are shown.

Obtained database has smilar trgjedories belong to different
behaviours. This way severa very similar trgedories have
different labels. Thisisaproblem, becaise our final goal isto use a

classficaion tool to olktain a set of dedsion rules, and if we have
similar trajedories with dfferent labels then classfier can't
corredly work; that is to say, those similar trajedories will be
incorredly classfied. Figure 7 shows an example of this.

20
15
-
10 1
3
0
i] 12 18 24 30
Time (Second)
Figure4. OK Behaviour
20
15
10 —
|
5
0
0 6 12 18 24 30
Time (Second)
Figure5. CmHigh Behaviour
20
15
10 L =
/
3]
|
0
0 3 12 18 24 30

Time (Second)

Figure6. CclLow Behaviour

To solve this problem a new label will be &sgned to very
similar trajedories. A mixture of labels of all similar trgjedories
will compose the new label. This way, next step is to find all
simil ar trgjedories into the database and asggning a new label.

It is necessary to define when two or more trajectories are
similar. Two trgjectories are considered similar when distance
between them is smaller than a magnitude. Distance between
trgjectories is measured as Euclidean Distance and magnitude
chosen is 10% of the Euclidean distance between the two further
away trajectories for the correct behaviour. This magnitude in our
exampleis 0.45.

20
15
]
5
0
0 b 12 18 24 30

Time (Second)

Figure 7. Behaviour CcHigh vs CmHigh

After this process we obtain a new database with al similar
trajectories re-labelled as corresponding with all behaviours of the
similar trgjectories.

Next step is to calculate new attributes of each trajectory with
the goal that classifier has more information to generate decision
rules. These new attributes must be representative for each
trajectory.

For each trgjectory point next attributes have been calcul ated:

« Distance to perfect behaviour. It indicates how far away is

current trajectory from perfect behaviour (above defined). It
is calculated as:

DP(i) =wWni|-wmpfi] 4)

Where W[i] is the treated point in the current trajectory and
Wmpfi] is the correspondent point in the perfect behaviour.

« Integral. It is the magnitude returned by numerical integration
between current point and the precedent one. It represents the
closed area between them. It is calculated by approximating
asfollow:

PRI ®
2

Where Tsis the time step in the simulation, p[i] isthe current
treated point and p[i-1] the precedent one.

In addition next attributes will be calculated for each trgjectory:

¢ Rise Time (RT). It is the moment in which desired revolution
speed is reached for first time.

e Steady state (SS). It is the moment in which desired
revolution speed is reached definitively.

e Max speed (MS). It is the value of the highest revolution
reached speed.

* Max speed time (MST). It is the moment in which the highest
revolution speed is reached.

This way a new database containing tragjectories plus new
atributes is generated.

Datain new database have the following form:

RT, SS MS, MST, W[1], DP[4], I[1],, Wm[n], DP[n], I[n],
LABEL

Fina step is performing supervised learning with the obtained
database. Classification tool selected to perform the supervised
learning is C4.5 [21]. What is gotten with this tool is to
characterize each one of the behaviour families according to the
values of the attributes that have been provided. Result is a
decision tree and an equivaent set of decision rules. These rules
will be the way to do the diagnosis. In our example classifier
obtains 27 rules with an error rate of 1.2%. This mean that 1.2% of
trajectories are not correctly classified with those rules.

3.1 Diagnosis

The way to do the diagnosis is evaluate the observed data with the
obtained rules.

Because in rules appear attributes that have been calculated and
not appear in observed data, same attributes should be calculated
for observed datain order to be able to classify with those rules.

This way in the moment that one observed data is gathered all
possible attributes should be calculated. After that, decision rules
are evaluated with two possible results: a label is returned or
information is insufficient to evaluate al rules. In the first case the
returned label is the result of the diagnosis. In the second one we
need to wait more information in further moments.

If we want to diagnose the system with another running
conditions, we should have prepared the decision rules set for those
specific conditions. 1. e. if we want to diagnose this system when
current rotational speed is 12 rad/sec and desired rotational speed
is 7 rad/sec, we should have generated a set of decision rules for
those conditions and we will use them in the diagnosis moment.

4 RESULTSON THE EXAMPLE SYSTEM

To evaluate the proposed methodology a set of tests have been
done.

Observational data have been obtained by simulating the system
with specific conditions for the test. This way a test trgjectory is
obtained and the diagnosis correct result is known, because it must
be the corresponding to the simulated conditions.

Conditions of the test are the same above mentioned. We
remember them in table 3:

Table 3. Tests conditions

T 3

D 10

W initial 5

Time Step 0.1

Values for OK [0.98-1.02]
Values for HIGH [1.02- 5]
Values for LOW [0-0.98]

In table 4 we can see results for the tests:

Table4d. Testsresults

VALUE OF THE
CONSTANT DIAGNOsis | DIAGNOSIS
CORRECT WITH
WITH SIMPLE
piAGNosis | Voo s RE-
Cm | Cc Cs LABELLED
1 1 1.03 | CSHIGH CSHIGH CSHIGH
1 1 1.07 | CSHIGH CSHIGH CSHIGH
1 1 1.1 CSHIGH CSHIGH CSHIGH
1 1 1.5 CSHIGH CSHIGH CSHIGH
1 1 2 CSHIGH CSHIGH CSHIGH
1 1 3 CSHIGH CSHIGH CSHIGH
1 1.03 1 CCHIGH OK OK
CCHIGH |
1 1.07 1 CCHIGH CM HIGH CM HIGH
CCHIGH |
1 1.1 1 CCHIGH CM HIGH CM HIGH
1 15 1 CCHIGH CCHIGH CCHIGH
1 2 1 CCHIGH CCHIGH CCHIGH
1 3 1 CCHIGH CCHIGH CCHIGH
oK |
1.03 |1 1 CM HIGH | OK CSLOW
CCHIGH |
1.07 |1 1 CM HIGH | CM HIGH CM HIGH
CCHIGH |
1.1 1 1 CM HIGH | CM HIGH CM HIGH
15 1 1 CM HIGH | CM HIGH CM HIGH
2 1 1 CM HIGH | CM HIGH CM HIGH
3 1 1 CM HIGH | CM HIGH CM HIGH
1 1 097 |CSLOW OK CSLOW|
OK
1 1 093 |[CsLOW CSLOW CSLOW
1 1 089 |CsLOW CSLOW CSLOW
1 1 085 |CSLOW CSLOW CSLOW
1 1 0.5 CSLOW CSLOW CSLOW
1 1 0.1 CSLoOwW CSLOW CSLOW
1 097 |1 CCLOW OK OK
CCLOW |
1 093 |1 ccLow CCLOW CM LOW
CCLOW |
1 089 |1 ccLow CCLOW CM LOW
CCLOW |
1 085 |1 CCLOW CCLOW CM LOW
1 0.5 1 cCcLow CCLOW CCLOW
1 0.1 1 ccLow CCLOW CCLOW
097 |1 1 CM LOW | OK OK
CCLOW |
093 |1 1 CM LOW |CCLOW CM LOW
CCLOW |
089 |1 1 CM LOW | CM LOW CM LOW
CCLOW |
085 |1 1 CM LOW |CM LOW CM LOW
0.5 1 1 CM LOW | CM LOW CM LOW
0.1 1 1 CM LOW | CM LOW CM LOW
099 (098 |1.02 |[OK OK OK
1 1.02 |[1.02 |OK OK OK
098 |1 098 |OK OK OK
098 [1.02 |1.02 |[OK OK OK
099 (101 |101 |[OK OK OK
101 |1 099 |[OK OK OK

We can see that diagnosis methoddogy with simple labelled
doesn't offer a mrred diagnostic in tests that are very nea of the
corred behaviour. In those caes the fault is not deteded. Other

times, methoddogy returns an incorred diagnasis, but in general
offered results are accetable.

This occurs because there ae very similar trgjedories belonging
to dfferent behaviours, and clasdfier canna corredly sdled the
rulesto dfferencethem.

To solve this problem the new methoddogy propases the re-
labelled of all similar trajedories as have been above mentioned.
Obtained results $how that the new methoddogy offers a multiple
diagnosis when the previous one can't find the crred fault.
Among the multiple offered dagnoses, nea to all tests return the
corred one.

It is important to highlight that, in tests where behaviour is far
of the mrred one, offered diagnosisisthe mrred one.

In the set of presented tests the diagnosisis corred in 5833 %
of the caes. Corred diagnosisis offered, among others, in 3055 %
of the caes. Anincorred diagnosisis offered in 27 % of the cases.
The fault is not deteded in 833 % of the caes. Otherwise, never
deted fail ure when fail ure doesn’t exist.

5 CONCLUSIONSAND FURTHER
WORKS

Presented methoddogy is able to perform diagnasis of dynamic
systems and it is independent of the system type. In fad, one of
further worksis to apply this methoddogy to a nontlinea dynamic
system.

This cgpadty is due to the fad that the methoddogy is only
centred in the evolution charaderistics of the system for the corred
behaviour or faulty behaviours.

Anocther charaderistic of the methoddogy is that the diagnosis
can be performed in a very simple way, and a very little
computational timeisrequired.

Certain systems, as the presented in the example, can produce
similar behaviours for different fault reasons. This is due to
relationship among variables that govern the system behaviour.
This relationship, among system variables, can prodice that an
ateration o a variable would be mmpensated by the dteration o
another variable in contrary sense. To solve this problem,
methoddogy asdgns multiple fault reasons to system behaviours
that could be produced by different fault reassons. This way a
multiple diagnasisis offered in those situations.

Anocther further work isto be &le to dagnose dynamic system
when multiple fault occurs at the same time, is to say, identifying
system behaviours when more than ore mmporent is faulty.

ACKNOWLEDGMENTS

This work has been partidity financed by the Comision
Interministeria de Ciencia 'y Temologia (DPI20000666-C02-02)
and the Modeizaddn Matemética Redes y Multimedia
investigation group d the University of Huelva

REFERENCES

[1] C. J Alonso, J A. Maestro, J. B. Pulido y C. Llamas.
Monitorizacion de Sstemas Dindmicos: hacia unaCaracterizacion
en e Nivd de Conacimiento. In proceedings of the | Jornadas de
Trabajo sobre Diagnosis. Valladolid 2001

(2]

(3]
(4
(5]

(6]

(7]
(8]

(9]

(10

(11

(12

(13

[14]
(15

[16]

[17]

(18

(19

(2]
(21

W. Hamscher. Diagnasis devices with hierarchic structure and
known comporent failure models. In proceadings of the 6th
Conference on Al Applicaions.. 1990

Dague, Py otros. When Oscill ators sop cscill ating. In proceedings
of 1JCAI-91

J. De Kleeg y B. Williams. Diagnasing multiple faults. Artificial
Intelligence 32, 97-130, 1987

K. Bouson, y L. Trave-Masauyes A computational causal model for
process sipervision. Technicd Report 92147 LAAS-CNRS,
Toulouse, France, 1992

P. Mosterman Hybrid dynamic systems: a hybrid bond gaph
modeling paadigm anditsappicationsin dagnasis. Tesis Doctoral
Vanderbilt University, Nashville, Tennessee USA. 1997

P. Struss Fundamentals of model-based diagnosis of dynamic
systems. Proc. IJCAI'97. 1997.

B. Pulido, C. Alonso y F. Acebes. Consistency-based Diagnasis of
Dynamics Systems using quatitative models and df-line
dependency-recording. In proceadings of DX-01.2001

A.D. Pouliems y G.S. Stavrakakis. Real time fault monitoring of
indwstrial process Microprocesr-based systems engineaing.
Kluwer Academic Publishers, Dordrecht, 1994

V. Venkatusubramanian and K. Chan. A neural network
methoddogy for process fault diagnasis. Journal of Artificia
Intelligence in Chemicd Engineeing, 35:19932001 1995

S. Leonhart y M. Ayoubi. Methods of fault diagnasis. Control
Engineeing Pradice, 5. 1997.

A. Simoén, L. Alonso y A. Anton. Sistema hibrido baroso para
ayuda Bl diagnético del glaucoma. In proceedings of the |
Jornadas de Trabajo sobre Diagnosis. Valladolid 2001

S. Saludes, A. Vargas y J. R. Perén. Aplicacion ce la red reurond
SOM para la detecdédn e fallos desconccidos en un gupo
hidroelédrico. In proceeadings of the | Jornadas de Trabajo sobre
Diagnosis. Valladolid 2001

J. RossQuinlan. Induwction d dedsiontrees. Madhinelearning, 1986
Juan J. Rodriguez, Carlos J Alonso y Q. IsaacMoro. Clasificacion
de patrones temporales en sistemas dinamicos mediante Boosting y
Alineamiento dnamico temporal. In proceedings of the | Jornadas
de Trabajo sobre Diagnosis. Valladolid 2001

Pedro J. Abad y Antonio J Sudrez Diagnosis de Sistemas
Dindmicos Basada en Aprendizsje Supervisado Off-line. In
proceadings of the | Jornadas de Trabajo sobre Diagnosis.
Valadolid 2001

Antonio J. Sudrez y Pedro J. Abad. Aplicacion de Témicas de
Aprendizaje a la dagnasis de Sistemas Dinamicos con Etiquetado
Mdiltiple. In proceedings of the IX CAEPIA —TTIA. 2001

A. Panati and D. T. Drupé Stated based vs smulation-based
diagnasis of dynamic system. ECAI200Q !4™ European Conference
on Artificial Intelligent. 2000

A. Malik and P. Struss Diagngasis of Dynamic Systems does not
necessarily require smulation. Workshop Notes of the Seventh
International Workshop on Principles of Diagnosis DX-96 Montreal.
1996

J. W. Forrester Principles of systems. Wright-Allen Press1968

J. Ross Quinlan. C45:Program for Machine Learning. Morgan
Kaufman, 1993

Fault I solation using Process Algebra M odels

Dan L awesson!, Ulf Nilsson!, Inger Klein?
!Deptof ComputerandinformationScience
2Deptof ElectricalEngineering
Link6ping University, 58183 Linkoping, SWEDEN

{danl a,ul fni}@da.liu.se

Abstract

We investigatethe problemof doing postmortem
fault isolationfor concurrentsystemsusing a be-
havioral model. The aim is to isolatethe action
that hascausedhe failure of the system,the root
action. The naive approachwould be to saythat
a certainactionis the root actioniff it is a logical

consequencef themodelandobsenationsthatthe
actionis thefirst “badthing to happen”.This, how-

ever, is astrongrequiremenandputshigh demand
on the model. In this paperwe describethe con-
ceptof strong root candidate, a relaxationof the
naive approach.The advantageof determiningthe
strongroot candidatedirectly from modeland ob-

senationsis that the setof tracesconsistentwith

modelandobsenationsneednotbeexplicitly com-
puted. The propertyof strongroot candidatecan
insteacbedeterminean-the-fly thusonly comput-
ing relevantpartsof thereachablestatespace.

1 Introduction

In this paperwe describea model-basedHamschetet al.,
1997 approachto fault isolationin object orientedcontrol
software. The work is motivatedby a real industrial robot
control systemdevelopedby ABB Robotics. The systemis
large (the orderof 108 linesof code),concurrenthasan ob-
jectorientedarchitectureandis highly configurablesupport-
ing differenttypesof robotsandcell configurationsSincethe
systemis time- andsafety-criticathefirst priority, in caseof
afailure,is to bring the systemto a safestate;alarmsthatgo
off areloggedandcanbe analyzedvhenthe systemcomes
to a stand-still. Thefaultsconsideredre primarily hardware
faults,andthereforewerely ontheassumptiorthatthefailing
hardware has somesoftware counterparthat is affectedby
thefailureof thehardware.In additionwe make thecommon
singlefaultassumptioni.e. thata systenfailureis causedy
only onefault (but resultingin cascadinglarms).

Thelog thuscontainspartial information aboutthe events
thattook placeat the approximatdime of the systemfailure.
However, the orderin which messagesareloggeddoesnot
necessarilyreflect the way error messagepropagate- the
systemis concurrentand safetycritical actionsmay have to
be taken beforeerror reportingtakes place. Hence,in what

inger@sy.liu.se

followswe (somevhatconseratively) view thelog asaset of
errormessagedn additionasystemmaycontainanumberof
critical eventsthatare unobserable,but which may explain
all obsenablealarms.

The ultimateaim of our faultisolationmethodis to single
outtheerrormessagéhatexplainstheactualcauseof thefail-
ure,or possiblyanunobserablecritical eventexplainingthe
obsenations.Thatis, weaimto discarderrormessagewhich
aredefinitely effectsof othererrormessagesyhile trying to
isolate error messagesor critical events)which explain all
othermessagedn contrasto messagéiltering, we canthus
find failing componentshathave not manifestedhemseles
in the errorlog, if the failing of the componenis a logical
consequencef the modelandthe obsenations. Given the
sizeof the softwareit is not possibleto usethe codedirectly
—we haveto rely onamodelof thesoftware.n this papemwe
considerfinite statemachinemodelsexpressedn a process
algebra.Theprocessalgebras choserherebecausé allows
for more straightforvard formal reasoninghanfor example
statecharts,but the contribution of this work - the fault iso-
lation - reliesonly onthelabeledtransitionsystemsemantics
of themodel.In practicetheaimis to useabehaioral model
thatis an artifact of the software developmentprocesssuch
as statecharts. Thenthereis no extra costassociatedvith
maintaininga correctmodelwhenthesoftwareevolves,since
thensodoesthemodel.

In standardAl diagnosiditerature,seee.g.[Reiter 1987,
adiagnosids a (minimal) setof failed componentsxplain-
ing theobsenations.But for dynamicsystemgsystemsawith
state)adiagnosiss oftendefinedasthesetof all tracespr tra-
jectories,consistenwith the obsenations(seee.g.[Cordier
etal., 2001;Consoleet al., 200d). However, thisdefinitionis
generallyinsufiicient to isolatethe origin of the fault(s),and
requirespost-processingp pin-point e.g.the faulty compo-
nent(s). Our approactis moredirectandfocuseson finding
the alarm that explains (is consistentwith) all obsenables:
given the systemdescription,expressedn a simpleprocess
algebraandtheobsenations we try to infer theorigin of the
fault using propertiesof actionsinvolving the temporalor-
der, expressedn a specificationanguagebasedon a subset
of the temporallogic CTL, originally developedfor verifi-
cation[Clarke et al., 1999. This resembleghe processof
modelcheckingandasin the caseof model-checkinghere
is no needfor calculationof the entirestatespaceobviously

equivalentto the setof tracesconsistentvith modelandob-
senations)if the temporallogic formulaeare evaluatedby
constructinghe statespaceon-the-fly

Ourapproactalsobearssomeresemblancéo thatof Sam-
pathet al. [Sampathet al., 1995. However their work is
mainly concernedwvith diagnosabilityin discreteevent sys-
tems;i.e. to detectwithin finite delay whethera certaintype
of faulthasoccurred While ourapproachs amenabl@nly to
post-mortemanalysis the work reportedin [Sampatret al.,
1995 is mainlyintendedor monitoringandon-linedetection
anddiagnosis.

The restof the paperis organizedasfollows: In Section
2 we describethe behaior languagehatwill be usedto de-
fine a transitionrelation, that definesthe set of all possible
behaiors (i.e. traces).In Section3 we provide rulesfor en-
tailment of somepredicatesof interestfrom configurations
andthetraceghatcanfollow from them. Finally, we outline
ongoingandfuturework in Sectior4.

2 A behavior language

A behaior modelcanbeexpressedn differentways,andwe
have chosento usea processalgebra.No matterwhich for-
malismand notationthatis used,the semanticshouldpro-
vide alabeledtransitionrelationthatdescribeshe statetran-
sitionsof the modeledsystem.In this sectionwe describea
processalgebrainfluencedby CCS[Milner, 1989 andgive
thenecessargemantics.

2.1 Processes

Our procesdanguagas constructedrom thefollowing syn-
tacticcategyories

¢ afinite set£ of action labels denotedby a in our meta
languageEveryactionlabelis equippedwvith anassoci-
atedarityn > 0.

e asetQ of object id’s denoteddy o.

o afinite setS of states A with associatearity n > 0.
We considerfour typesof actions (denotediy a in our meta
language).

e Sendactionsof theform o:a(t), whereo is therecipient
object, @ an n-ary actionlabel and t is an n-tuple of
objectid’sor variables.

e Receve actionsof the form a(x) wherea is ann-ary
actionlabelandx is ann-tupleof variables.

¢ Internalactionsof theforma, wherea is anullaryaction
label.

o New-actionsof theform new(o, P) whereo € O andP
is aprocessexpressiondefinedbelow.

A procesds describedby a process expression, denotedby
P (andoccasionallyy), andgiven by the following abstract
syntax
Pu=Alt)| D P
iel
wherel is afinite index set. Sumsare usuallywritten sim-
ply a;.P; + as.P,. We resene the nullary stateStop for a

completedprocess.We assumehatevery A/n € S (Stop
exceptedhasadefiningequationof theform

Ax) % p

A process state o is a partialmapfrom O to P. The object
init € O is calledtheinitializing object, the state Main €
S is calledthe main process andthe statesq := {init —
Main} is calledtheinitial process state.

Let 0: O — P beaprocessstate,o € O andP € P.
By olo — P] we denotethe processstatewhich is almost
identicalto o exceptpossiblyato. Thatis

Pifz=o0
ofo = P|(z) :== { g(x)lotherwise

Thebehaiorsof oursystemaredescribedy thelabeledran-
sitionrulesin Figurel. Ourtransitionsareof theform

o !
o—0

wherea (the obsenation)is a setof pairsof theform (o, a)
representin@ctiona occurringin objecto.

Therearefour transitionrules,sync, internal, new anddef.
The rule sync allows two objectsto synchronizetheir state
transitionsandoptionallyexchangevalues.In our limited al-
gebratheonly valuesthatcanbetransmittecareobjectiden-
tifiers. However, theideais notto modelall systembehavior,
but to have a systemmodelthatrevealssynchronizatiorand
systemstructure. Therule internal allows a singleobjectto
performatransitionby itself. Creationof new objectsis han-
dled by the rule new, anddef allows for exchanginga state
with its definition?!

Example

Typically, a systemis describedby creatinga main process
thatsetsup the systemstructure.Figure2 shavs anexample
of sucha system. ProcessM ain createsthreeobjectsand
runs Setup which tells the objectsabouteachothervia the
inst call. Thisis neededsincewhenstarted,a processdoes
not know arything aboutits ervironment. After init, each
objectwill actasa peerto-peemode,asshavedin Figures3
(thesystem)and4 (objectdetails).Objectscansendrequests
to eachother andsometimesheanswetto arequests afail-
ure,andthenthe systemis broughtto a halt by transmission
of down messages.

3 Fault Isolation

Theavailableinformationwhendoingfaultisolationis asys-
tem modeland an obsenation (in our casea messagdog).
We usethetermscenario to referto thatinformation. In the
following we overloadthe term actionin the context of sce-
nariosto meanpairs (o,a) € O x L whereo is an object
identifieranda is an actionlabel. Someof the actionsin a
systemare critical actions, actionsthat are associatedvith
systenfailures.

Thus a scenariois a quadruple(—s, Crit, Logy, Log,),
where— isaprocesstatetransitionrelation,Crit C O x L

!Sincewe rely on a finite statespacemodel, we do not allow
unboundedreationof objectsvia the new rule.

Servent(this, z,y)

Wait(this, z,

Compute(this, z,y,0)

Fail(z,y)
Down

S

Main
Setup(z,y, z)

o(0;)) =P +0;:a(t).P+ P, o(oj) =P +a(x).Q+ P
o (oL o1 s Plloy = Q{x/t}]

sync:

0'(0,') =P +a.P+ P

internal: U {(ﬂ’;)}

O'[Oi '—>P]

o(0;) = P, + new(0,Q).P+ P; ofo; = Pllo— Q] > o’

new :
ol '
o— 0

o(0;) = A(t) Ax)“ P ofo; — P{x/t}] S o

def: =
!
oc—o

Figurel: Procesdransitionrules(t is a vectorof objectid’s)

def z:Teq(this). Wait(this, z,y) + y:Teq(this).Wait(this, z, y)+
req(0).Compute(this, z,y,0) + down(). Down
y) = ok().Servent(this, z,y) + fail().Fail(z,y)
def o:0k().Servent(this, z,y) + o:fail().Servent(this, z,y)
= z:down().Fail(z,y) + y:down().Fail(z,y)
def
= Stop
= init(this, z,y).Servent(this, z,y)
et new(s1, 9).new(ss2, S).new(ss, S).Setup(s1, s2, $3)
def

z:init(z, y, z).yunit(y, z, T).z:init(z, z,y).Stop

Figure2: A processlgebraexample

is the setof critical actions,Log, C O x L is the setof
actionsthat have beenobsened (i.e. the messagédog), and
Log, C O x L is the setof actionsknown not to have oc-
curred(i.e. the obsenableactionsnot containedn the mes-
sagelog). Thus, we assumethat a synchronizedaction is
loggedastwo separat@actions— onefrom the sendingobject
andone from the receving. This allows modelingof mes-
sagesendingwith unknown recever andis no severelimi-

tation sinceit is possibleto expressrecever informationby
havingamodelwherethedesiredactionlabelsareuniqueand
receverobjectid thusbecomesinambiguous.

A configuration, denoted”, is thesymbol L or apair (o,)
whereo is aprocessstateand! C O x L is a setof actions.
Thefollowing rulesdefinesthe configuration transition rela-
tion = for agiven— andLog,,.

c ¢ anLog,=90
(o,0) = (o', l1U Q)

o6 anLog,#0
(o) =L

Theconfiguration{init — Main},) is calledtheinitial
configuration. TheconfigurationL is calleda forbidden con-
figuration and representonfigurationsthat are allowed by
the behaioral model, but inconsistenwith the obsenations
at hand. We seeconfigurationsas snapshot®f the system
stateof a givenscenarioandthe configurationtransitionre-
lation describeghe behavior of the system.Faultisolationis
theproces®f findingthefirst critical actionthathasoccurred
in agivenscenariotheroot action. Giventhesinglefaultas-
sumptionanda systemmodelthatis properlydesignedthe
first critical actionto occurin the systemis the causeof the
failure.

An actiona is present in a scenariaif the systemmodel
andthe obsenationentailsthe occurrencef a. An actiona
is an enabled root if the assumptiorthat o is root actionis
consistentvith the obsenationsandthe systemmodel. We
introducethe concepf strong root candidate, andsaythata
strongroot candidatds anactionthatis bothpresenandan
enabledoot.

3.1 Predicaterules

Givena certainscenario(—, Crit, Logy, Logy), we wish to
reasonaboutpropertiesof reachableconfigurations. There-
fore we definepredicatesthat correspondo the interesting
propertieshy determiningor which configurationghey hold
true. Sincewe areinterestedn strongroot candidatesye
needto formally definepresentactionsandenabledroot ac-
tions. Thuswe definethe predicatepresent(a) that holds
in configurationsvhereactiona mustoccursometimen the
future andthe predicateenabledroot(a) thatholdsfor con-
figurationswhereit is consistento assumehata maybethe
first critical actionto occur In definingthesetwo predicates,
wewill needsomehelperpredicatesWe will useokend that
holdsin configurationghat correspondo consistenending
statesf thesystem An endingstateis a statewhereno more
obsenableactionsoccur i.e. whenthe systemhasreached
final state.In a configurationrwherea hasoccurred seen(c)

holds,while nocrit holdsin configurationsvhereno critical
action hasoccurred. The predicateend holdsin configura-
tionswherethereis no next configuration.

We defineentailmentbf logical formulaefrom the follow-
ing syntax:
Fu=FVF|FANF|-F|EF(F)|EX(F)|AG(F) |

end | okend | nocrit |

seen(a) | present(a) | enabledroot(c)
In orderto be ableto defineentailmenfor the desiredpredi-
cateswe will needthefollowing. We use= for thereflexive

transitve closureof =. Firstwe defineentailmentfor basic
connectves.

CER CEFR CEF
CIZFl/\Fz C|=F1VF2
CEF ClEF
C':F1VF2 C|=—|F

We will be reasoningabouttemporalorder, sowe needto
definetemporallogic operators.

C>C" CEF
C = EF(F)
C=C" CEF
C E EX(F)

C' E F whenaerC = C'
C = AG(F)

We alsoneedentailmentfor a few helperpredicates.The
predicateend determinesf a configurationlacks successor
(i.e.end = ~E X (true) wheretrue is entailedby every con-
figuration), seen(a) is true whenan actiona hasoccurred
andnocrit holdswhenno critical actionshave yetoccurred.

-3AC",C = C' a€l Vael,a ¢ Crit

C Eend (a,1) £ seen(a) (o,l) = nocrit

Now we have the tools neededo definethe desiredpred-
icates. If we have reacheda configurationfrom which the
systermcannotcontinueto executeandall actionsin Log, are
seenthentheconfiguratioris anokend, unlesgheconfigura-
tionis aforbiddenconfiguration.lt is thusoneof the possible
haltingconfigurationsgiventhe scenaricat hand.

Va € Log,,C = seen(a) Cl=end C#L
C k= okend

If it is truefor all reachableconfigurationghat whenever
we have reachedan okend, we have seenactiona, we con-
cludethatthe presencef « is entailedfrom obsenationsand
systemmodel.

C |= AG(—okend V seen(c))
C = present(a)

If thereis areachableonfigurationC; suchthatnocritical
actionshastakenplace,andthereis a configurationstepthat
takesus from C; to Cy wherethe critical actiona hasoc-
curred,we concludethata is anenabledootif it is possible
to reachanokend from Cs.

a € Crit C |= EF(nocrit A EX (seen(a) A EF(okend)))

C E enabledroot(a)

3.2 Reasoning about behavior

Givena scenariothe strongroot candidatesretheactionsa
for which

({init —» Main},0) = present(a) A enabledroot(a)

If we have no strongroot candidate®r morethanonestrong
root candidatethe systemmodelis not strongenoughfor ef-
ficient faultisolation. If, on the otherhand,we have exactly
onestrongrootcandidatewe assumehatwe have pinpointed
thetruecauseof thefault. Thisis reasonablé assumesince
theactionfoundis theonly onethatis knownto haveoccurred
(its presencas entailedby the scenario)andit is consistent
with the given scenarioto assumethat the actionis a root
event.

Of coursethereis still a possibilitythatthereareotheren-
abledroot eventswhosepresencareconsistentvith the sce-
nario,but assumingneof themto berootwould demandan
explanationto why the strongroot candidate(provento be
presentl)is nottheroot.

3.3 Prototypeimplementation

We have designeda prototypeXSB [Sagonast al., 1994
programthattakesa systemmodelandobsenationsasinput
andenumerateghe strongroot candidates XSB is a Prolog
dialectsusingtakulation (memoization}o improve termina-
tion. Giventhe systemmodelin Figure 2 andfactsstating
that any sendingof fail or down indicatessystemfailure,
i.e. thoseactionsare critical actions,and the obserations
that (o2, fail) has not occurredand (os, fail) has occurred,
the XSB Prologprogramcomputed oy, fail) to bethesingle
strongroot candidate.

The systemconsistsof three objectsthat all executethe
sameprocess. SeeFigure 4 for an automatarepresentation
of a similar process(parametersre not explicit in the au-
tomata). Considerthe critical actions. Obviously, no down
message&an be root actionsinceit will alwaysbe preceded
by afail action,andneithercan(os, fail) berootactionsince
it is known to not have occurredat all. This leavesus with
(01, fail) and(os, fail). It is consistentvith thesystenmodel
andthe obsenationsto assumehat (os, fail) is the root ac-
tion, sinceif o5 recevesthe fail from o3, theno; cansend
fail to o3 afterwards.We cannotprovethat(os, fail) hashap-
penedhowever. Thiscanbedonefor (oy, fail), andtherefore
it is theonly actionthatis bothenabledootandpresent.

Thus,having someintuition of the systemmakesthe fault
isolationdescribedabore almosttrivial, but the key motiva-
tion of thiswork is to formalizeandautomatehis intuition.

4 Future Work

In previouswork with Larssor{Larssoret al., 2000;Larsson,
1999 we studiedthefaultisolationproblemusingastructural
model. A key featureof thatapproachs the useof software
engineeringnodels,in particularUML [ObjectManagement
Group, 1999 classdiagrams. Sucha modelcan be devel-
opedand maintainedat a relatively low costbeingan inte-
gratedpart of the software developmentprocess.The work
presentechereandin our previous work [Lawesson,2000;

Lawessoret al., 2001] aimsto strengthemthediagnosticapa-
bility while still usingstandarcandstate-of-the-annodeling
notations. Behavior in UML is often expressedising state-
charts,andprocessalgebragrovide a textual representation
of statemachines.Of course,enforcingthe software devel-
operto constructcompletestatechartdor all classeds not
realisticin large softwaresystemshenceyeasoningnustbe
ableto copewith incompleteor missingbehaioral descrip-
tions. Our approactshouldalsobe extendedo dealwith the
specialfeatureharacteristiof objectorientedsoftwaresys-
temssuchasclasseandinheritance Below we sketchsome
partial solutionsto suchissues,which will be addressedh
ourfuturework.

4.1 Classesbehaviorsand inheritance

Our processalgebraexpresses systemmodel as a flat set
of the procesddefining equationswithout ary hierarchy In
an objectorienteddesign,the systembehaior is partitioned
into classesFurthermorejnheritanceallows for a hierarchy
of classes.We implementsimple schemagalled classesn
orderto achieve the partitioningand(inheritancehierarchy

Thus,in thefollowing aclass is aschemehatcanbe com-
piled to a setof procesdefiningequations.A classC may
inheritpartsof its characteristicge.g.its behaior) from a su-
perclass, andin thatcontet C is referredto asthe subclass.
A stateinheritancesequence

S — [Al,Az, ,An]

is adeclaratiorsayingthatstateS in thesuperclasss refined
by statesA;, A, ..., A, in the subclassvhere 4, is the de-

fault state(i.e. the substatenteredvhenenteringthe super

stateS). Whencompilingthe classto processequationsthe

inheritancesequencealescribeshow the defining equations
from the superclasshouldbe used. Thus,we implementa

simpleform of inheritanceas refinement. The syntaxused
for definingclassedelow is

N=(51),D
whereN is thenameof theclass,S is the nameof the super
clasg(if ary), I isthesetof stateinheritancesequenceand D

is asetof processlefiningequationslf thereis no superclass
wewrite N = (), D.

Example

Lackingformaltools,we outlinetheapproactby anexample.
In thefollowing we definetwo classeL; andCs, whereC,
refinesthe stateA in C; with statesC’ andD. We saythat
statesC and D refinestateA.

Cl - ()a{
A % B
B % a.A

}

C, = (Cl’{A — [C’ D]})’{
c ¥ 4p
D % cc
B ¥ D

Now, C2 may be compiledto the following processequa-
tions.

U
“~

€

C5:C = b.Co:B + d.Cy:D
Cy:B def a.Cy:C + e.Cy:D
Co:D % b.Cy:B+eCo:C

The outgoingtransitionsfrom A becomeoutgoingtransi-
tions from all refining stateswhile the incomingtransitions
are moved from the refinedstateto the first of the refining
states. If thereare transitionsfrom the samestatein both
super andsubclassthey arejoinedasindeterministichoice,
aswith stateB andtransitionsa.A ande.D. The statesare
prefixedwith the classnameto avoid namespaceclashes.

4.2 Statecharts

Sincebothprocesseandstatechartbave atransitionsystem
semanticsthemappings straightforvardoncethesemantics
of the statechartss fixed. We usea handshakingemantics
of thestatechartdyecausef expressiity anddomainproper
tiesasdescribedn [Lawesson200d. We definethe seman-
tics via our procesdanguageby providing a mappingfrom
statechartso processes.The mappingis ratherstraightfor
wardsincewe restrictourselhesto statechartsvithout history
states— essentiallymaking the statechart equivalentto an
automatawithout hierarchy seefor example[Lilius andPor
res,1999. The processalgebraexamplein Figure2 could
represenéaslightly improvedversiorf of theautomatan Fig-
ure4 with structureinformation(i.e. the statesS, Main and
Setup) added.

4.3 Default behaviorsof classdiagrams

Sincea classdiagramin generaldoesnot containbehaioral
informationin termsof statechartswe may introducea su-
perclasscalled Propagator thatencapsulatethe behavior of
beingableto propagateerrorsaswell asreportingerrorsto
thelog, andasubclasBreakable thatis a propagatothatcan
introduceerrorsby the transitioncrit. Theideais to let all
classesnherit from Propagator, andthenrefinewith beha-
ioral modelswhen available, and use Breakable for classes
that may give rise to critical actionsbut wherea behaioral
modelis missing. The definition of Propagator and Break-
able aregivenin Figure5.

The pathsof error propagationbetweenclassess com-
puted by using information about dependenciebetween
classesn the classdiagrams(asin [Larsson,1999;Larsson
et al., 2000), andthenreflectedin the Failed(x) statethat
modelserrorpropagation.

Acknowledgments

This work has beenfinancially supportedby VINNOVA's
Centerof ExcellenceSIS — Information Systemdor Indus-
trial Control and Supervision. We are also grateful for the

2In the processalgebraversionof this examplea 7eg also pro-
videsareferencdo the caller, sothatthe calledobjectknon where
to addresghe answer This makesthe examplemore similar to a
realsystemput in this completelysymmetriccasewhenthe objects
run the samecodewithout parameterstherthanreferenceso each
othersthesemanticsemainshe same.

cooperatiorwith ABB Robotics,andin particular Magnus
Larsson.

References

[Clarkeet al., 1999 E. Clarke, O. Grumbeg, andD. Peled.
Model Checking. MIT Press;1999.

[Consolect al., 2000 L. Console,C. Picardi, and M. Rib-
audo.DiagnosisandDiagnosabilityAnalysisusingPEFRA.
In Proc. 14th European Conference on Artificial Intelli-
gence, pagesl31-13610S Press2000.

[Cordieret al., 2001 Marie-Odile Cordier LaurenceRozé,
and YannickPencolé. Incrementaldecentralizedliagno-
sis approachfor the supervisionof a telecommunication
network. In Proc. 12th Intl Workshop on Principles of Di-
agnosis, DX01, 2001.

[Hamscheet al., 1994 W. Hamscher L. Console, and
J.deKleer. Readings in Model-Based Diagnosis. Mor-
ganKaufmannPublishers1992.

[Larssoret al., 200d M. Larsson,l. Klein, D. Lawesson,
andU. Nilsson. Faultisolationin objectorientedcontrol
systems.n 4th IFAC Symposium On Fault Detection, Su-
pervision and Safety for Technical Processes (SAFEPRO-
CESS 2000), June2000.

[Larsson,1999 M. Larsson. Behavioral and Structural
Model Based Approaches to Discrete Diagnosis. PhD
thesis no 608, Departmentof Electrical Engineering,
Link6éping University, 1999.

[Lawessoret al., 2001 DanLawessonlUIf Nilsson,andIn-
ger Klein. Model-checkingbasedfault isolationin uml.
In Proc. 12th Intl Workshop on Principles of Diagnosis,
DX01, pagesl03-1102001.

[Lawesson200d Dan Lawesson. Towards Behavioral
Model Fault Isolation for Object Oriented Control Sys-
tems. Licentiatethesisno 863, Deptof Computerandin-
formationSciencelLinkdping University, 2000.

[Lilius andPorres 1999 J.Lilius andl. Porres.Theseman-
ticsof UML statemachines.TechnicalReport293, Turku
Centrefor ComputerScience1999.

[Milner, 1989 R.Milner. Communication and Concurrency.
PrenticeHall, 1989.

[ObjectManagemenGroup,1999 Object Management
Group. OMG Unified Modeling LanguageSpecification,
versionl.3,Junel999.

[Reite; 1987 R. Reiter A theory of diagnosisfrom first
principles. Artificial Intelligence, 32(1):57-95, April
1987.

[Sagonast al., 1994 K. SagonasT. Swift, andD. S. War
ren. XSB asan efficient deductve databasesngine. In
Proc. of the 1994 ACM SIGMOD Int. Conf. on Manage-
ment of Data (SIGMOD’94), pages442—-453,1994.

[Sampattet al., 1999 M. SampathR. Sengupta$S. Lafor-
tune, K. Sinnamohideenand D. Teneletzis. Diagnhos-
ability of Discrete-EentSystems.|EEE trans. Automatic
Control, 40(9):1555-15751995.

Figure3: A globalpictureof the examplesystenconsistingof theobjectsos, 02 andos. Eachobjecthasbehaior asdescribed
in Figure4.

ok! down req!

req ok

\

Fail

down!

Figure4: An automatadescribinga peerto-peersystem. Sendingactionsare sufixed with ! andthe restof the actionsare
receving actions.Thereareno internalactionsin this automata.

Propagator, = (), {

QU
~

€

Main = init(x).0OK (x)

OK (x) = fail().Failing(x)

Failing(x) def log.Failed(x) + nolog.Failed(x)

Failed(z1, 22, ..., %) = z1:fail().Failed(x) + ... + z,: fail(). Failed(x)

Breakable = (Propagator, {}), {
OK (x) def crit.Failing(x)

Figure5: Definitionsof the classe$ropagator andBreakable

Distributed Diagnosis of Networked, Embedded Systems

James Kurien

Xenofon Koutsoukos

Feng Zhao

Palo Alto Research Center

3333 Coyote

Hill Road

Palo Alto, CA 93404
jkurien,koutsouk,zhao@parc.com
Phone: 1-650-812-4340

Fax: 1-650-812-4334

Abstract

Networked embedded systems are composed of a large hum-
ber of physically distributed nodes that interact with the phys-
ical world via a set of sensors and actuators, have their own
computational capabilities, and communicate with each other
via a wired or wireless network. Monitoring and diagnosis
for such systems must address several challenges caused by
the distribution of resources, communication limitations, and
node and link failures. This paper presents a distributed di-
agnosis framework that exploits the topology of a physical
system to be diagnosed to limit inter-diagnoser communica-
tion and compute diagnoses in an anytime and any informa-
tion manner, making it robust to communication and proces-
sor failures. The framework adopts the consistency-based di-
agnosis formalism and develops a distributed constraint sat-
isfaction realization of the diagnosis algorithm. Each local
diagnoser first computes locally consistent diagnoses, tak-
ing into account local sensing information only. The local
diagnosis sets are reduced to globally consistent diagnoses
through pairwise communications between local diagnosers.
The algorithm has been successfully demonstrated for the di-
agnosis of paper path faults for the Xerox DC265 printer.

Introduction

Our diagnostic research is motivated by existing and emerg-
ing applications of networked, embedded systems. In such
systems the physical plant is composed of a large number
of distributed nodes, each of which performs a moderate
amount of computation, collaborates with other nodes via
a wired or wireless network, and is embedded in the phys-
ical world via a set of sensors and actuators. Examples
include distributed sensor networks (Chu, Haussecker, &
Zhao 2001), complex electromechanical systems with em-
bedded controllers (Zhaet al. 2001), data networks, smart

matter systems (Jackset al. 2001), and ad-hoc wireless

networks of consumer devices. Such systems present a num-;

ber of interesting new challenges for diagnostic systems. A
moderate amount of computation is potentially available, but
it is partitioned into embedded chunks that range in size
from tiny, in the case of smart dust sensor motes (Kahn,
Katz, & Pister 1999) to moderate in the case of consumer de-
vices. Communication between nodes is available, but may
involve unreliable delivery, power-constrained wireless net-
works, or large, complex topologies requiring multiple hops
to connect two arbitrary nodes. Finally, nodes might leave

the network dynamically and nodes of a previously unseen
type might join in their place.

In this paper, we consider how we might apply techniques
from model-based diagnosis to these types of problems. In
general, traditional model-based techniques are centralized.
They assume that the diagnostic algorithm is run on a sin-
gle processing unit that has access to observations from all
sensors in the physical plant. In the next two sections of
the paper, we briefly discuss centralized, model-based tech-
nigues and discuss how they cause scalability, robustness
and reconfigurability problems if employed directly on net-
worked, embedded systems. We then present a set of use-
ful properties for diagnostic algorithms for such systems.
In the fourth section, we present a simple formulation for
diagnosis of discrete, distributed systems in order to mo-
tivate discussion and map the formulation onto distributed
constraint satisfaction and distributed constraint optimiza-
tion. We next propose an algorithmic framework for dis-
tributed diagnosis that operates in an anytime manner and is
robust to communication and processor failures. We dis-
cuss the communications requirements for the framework
and compare performance results for one instantiation of the
distributed diagnosis framework against a centralized diag-
noser. In the related work section, we discuss why exist-
ing distributed constraint satisfaction and optimization algo-
rithms are not well suited for distributed diagnosis of net-
worked, embedded systems. We finally discuss two open
areas for future work. The contributions of this paper are
that it illustrates the interesting features of networked, em-
bedded systems that make them challenging for traditional
model-based diagnosis techniques, it presents a simple for-
mulation of the distributed diagnosis problem for these type
of systems and relates it to distributed constraint satisfaction
and optimization, it presents a class of robust, anytime al-
gorithms for performing diagnosis, and it illustrates prelim-
inary diagnostic results on a model of a real physical system
with comparisons to an existing centralized diagnoser.

Model-based Diagnosis

The objective of diagnosis is to determine the state of a phys-
ical plant such as a printer, aircraft or network, based upon
the current sensor readings from the plant and prior knowl-
edge about the plant’s structure and behavior. In order for
the diagnosis to be useful for on-line control of the plant,

accurate diagnoses must be generated in a time-critical man-| Given a set of component models and a centralized diagnos
ner using the available computational resources. In most
model-based diagnostic techniques, prior knowledge about
the physical plant consists of a description of the behav-
ior of each component of the plant, including normal and
faulty behaviors, and the interconnections between compo-
nents (Hamscher, Console, & de Kleer 1992). Partial ob-
servability presents the main challenge of diagnosis. Faults
in a component may not be directly observable, and in-
stead may cause changes in the behavior of the plant that
propagate through several components before becoming ob-
servable at a sensor. To perform diagnosis, the component
models are combined into a global store, observations are
obtained from the physical plant, and a centralized algo-
rithm is applied to find a system-wide diagnosis. We be-
lieve this very abstract description captures many diagnostic
formalisms, including logic-based formalisms such as those
based upon (de Kleer & Williams 1989) or (Reiter 1987),
bond graphs (Mosterman & Biswas 1997) and many others.
Throughout this paper we will use a formalism and exam-
ples consistent with GDE (de Kleer & Williams 1987) and
its descendants, keeping in mind the general properties of
centralized, model-based diagnosis that are at issue.

Figure 1 on the next page schematically illustrates a small
model for the kind of traditional problem we might attack . ; :
with a model-based diagnoser. The 24 boxes represent Challenges of Monitoring and Diagnosing
rollers, gears, motors, sensors and other devices in a printer Networked, Embedded Systems
paper path. For example, the acRoll acquires a sheet of pa- Suppose we would like to perform diagnosis for a recon-
per from the paper tray and transports it to the feedRoll, figurable, networked, embedded system. Such systems are
driven by the acBelt. We have developed a simple diagnos- constructed such that each component is locally controlled
tic application for this paper path system using L2 (Kurien & by a small, embedded processor which coordinates with
Nayak 2000), a centralized, GDE-style diagnoser developed other processors via a potentially unreliable network. In ad-
by NASA. Each component is modeled by finite state ma- dition, components and their processors might be unplugged
chine augmented with finite domain variables that describe and replaced with upgraded versions from time to time. Ex-
its behavior. Arcs between components in Figure 1 repre- amples of such systems are ad-hoc wireless networks, modu-
sent interactions between components, for example convey- |ar robots, and more conventional systems such as intranets.
ing that the acRoll receives an angular velocity from the ac- Even traditional electro-mechanical systems such as printers
Belt. This is represented by a constraint between the cor- and automobiles now contain on-board networks, embedded
responding variables. There are five sensors that report the sensing and tens or hundreds of local controllers.

1. C combines the component models in a central store
2. Observations are collected from the physical system
3. C computes the system-wide diagnoses

Figure 2: Centralized Diagnosis of a Centralized Syst[em

Given a setS of currently connected components and a central-

ized diagnoser C:

1. VS, S forwards its component model ©

2. C combines the component models in a central store

3. VS, S forwards its observations ©

4.

5. VS, C projects the variables of interest & from the diag-
noses and forwards them £

C computes the system-wide diagnoses

Figure 3: Centralized Diagnosis of a Networked Syst

assist in robust control.

time of arrival of a sheet of paper at various points in the
paper path.
To perform diagnosis with L2 and this model, observa-

We can provide diagnostic information to the local con-
trollers of such a system using centralized diagnosis via the
process outlined in Figure 3. First, a centralized, global di-

tions as to when or if the paper arrived at various points in agnosis problem is created by assembling a global model of
the path would first be obtained from the printer’s sensors the components within a centralized diagnoser. The obser-
via its internal data bus and sent to an external processor vations are centrally collected and a diagnosis or set of diag-
running L2. The values would be discretized and assigned noses are computed by the centralized diagnoser. Aspects of
to the corresponding variables in the constraint system. A the centralized, global diagnosis are then be distributed back
constraint optimization algorithm would be applied to the to the local controllers.

updated constraint system to find assignments to the vari- This approach makes several assumptions. First, there
ables that are consistent with the observations. Such an as-must exist a processor large enough to store the global diag-
signment might represent that the paper was late at the first nostic model and run the centralized diagnostic algorithm.
sensor because the feedMotor is slow, slowing down both If this processor fails, it must be acceptable for no further
the acRoll and the feedRoll. This information could then diagnoses to be generated. Second, there must exist a cen-
be used to perform maintenance, or in systems with redun- tral bus or buses with sufficient capacity to forward all data
dancy, to reconfigure the system for robust control. In ad- needed for diagnosis to the central processor. If a bus fails,
dition to this small demonstration, we have applied similar the data needed to diagnose and recover for the failure must
diagnostic techniques to spacecraft (Bernarcl. 1998), be located on the near side of the bus with respect to the
chemical processing plants (Goodrich & Kurien 2001), sci- diagnostic processor, or it must be acceptable for no further
entific instruments, and other electromechanical systems to diagnoses to be generated for the bus and the far side compo-

0
Vout
. Vout Ly 10 y 12
2 v Vin inVW 3 Vout Vout
2cBelt Ve{/t;l'urlansBelt
Vour 1 yVin Yy 6 R A vy U v 13
feedRoll [ut ling[yertRoll Jlout Uingyl vertTransRoll Ut tng[preRegRoll Jlout lin regRoll
A Os, s, Toul
tin
21 19 17y
3 | tout exitInverterSolenoid
y
[acRoll 6
Vin A o
tin 22 Viin Vout preFuserGear
exitInverterGate 18 fuserGear Vin A
oul AVin Is
4 | tout preFuserFanVaccum
Solenoid s, vin
acSolenoi 23 g 20 14
exitRoll Lo 0 outl™ fyserMotor _Frout

Figure 1: Paper Path Model in Xerox DC265ST Printer

nents. Finally, the set of components to be diagnosed must
be represented using the same formalism, and in most appli-
cations must be known a priori.

With networked, embedded systems, all of these assump-
tions may be false. Each processor in the plant may be quite
small. If a processor fails, we may require the components
attached to remaining processors to continue operating in
a full diagnosis and control cycle. If the network is bifur-
cated, we may require that each half of the plant continues
operations to the extent possible and works to resolve the
failure with the locally available information. New compo-
nents might join into the network at any time by publishing
their capabilities such as described by JINI (Sun Microsys-
tems Inc 1999).

These issues suggest an approach wherein we do not arti-

ficially centralize the problem but allow a local diagnoser to

be associated with each system processor. Each local diag-

noser finds a partial diagnostic solution using a model of the
locally controlled portion of the plant and the locally avail-
able observations. Communication is then required to re-
fine the partial diagnostic solution into a diagnosis, in effect
making use of observations and models local to other diag-
nosers. We next suggest themes for dividing and coordinat-
ing the diagnostic process to maximize scalability, robust-
ness and reconfigurability, based upon our experience with
both diagnosis and networked, embedded systems.

e Scalability

Dividing the diagnostic problem among local diagnosers
allows us to apply multiple processors and potentially ad-
dress computational scalability problems caused by the
small processors we may encounter in some embedded
systems. To address communication scalability issues,
we seek to exploit the topology of the physical plant.
We would like to arrange that two local diagnosers need

communicate only if the subsystems of the physical plant
they correspond to are physically interconnected or share
data. Thus the structure of our diagnostic architecture
will mimic the physical topology of the plant being di-
agnosed. For the type of engineered systems that are typ-
ically amenable to diagnosis, physical scalability is ac-
complished by modularizing subsystems and connecting
them through fairly narrow physical interfaces (power,
data, physical support). By respecting these interfaces,
we expect our communication needs for moving diagnos-
tic data to scale as well as the underlying physical plant.

e Robustness

A diagnostic architecture must be extremely robust to fail-
ure and able to operate in an anytime and any information
manner. This can be accomplished with refinement. We
would like to arrange that each diagnoser locally produce
a superset of the diagnoses that a global diagnoser would
produce for the local components. Communication with
other diagnosers is then used only to prune the local diag-
nosis set. This yields several important properties. First,
the diagnostic process can be interrupted at any time and
each diagnoser will contain the true diagnosis plus possi-
ble imposters. This is an important safety feature in do-
mains where taking action based upon a false negative can
cause serious harm. Second, if diagnosers fail, then the
remaining diagnosers will simply produce coarser (more
conservative) estimates of the possible states of their com-
ponents. Third, if the system is bifurcated due to a com-
munication failure, then each half will produce all diag-
noses consistent with the reachable diagnosers and any
state of the other half of the system.

Reconfigurability
A side effect of employing local diagnosers that commu-

cmdin=open

open
Flow != zero

closed

Flow=zero

-------- clo: e
Flow=zero

cmdin=close

Figure 4: Automaton Representing A Single Valve

nicate via opaque interfaces defined by the physical plant
is natural support for modular or reconfigurable plants.
Intuitively, a connected subset of the components of Fig-
ure 1 may be disconnected from the plant and replaced by
new hardware with a different model, so long as the phys-
ical and diagnostic interface at the point of disconnection
is maintained. In addition, this opens the possibility of
participation by different implementations of the same di-
agnostic algorithm or even different algorithms participat-
ing in a diagnosis. The latter would of course require an
interface that is semantically meaningful for all partici-
pating diagnosers. However, even the former capability
might be useful in allowing vendors of components that
are likely to be connected (e.g. data network components
or power distribution components) to create diagnosers
that can collaborate.

We believe these properties will be of interest as we begin to
investigate applications involving very large numbers of em-
bedded processors communicating via networks. In the next
section we introduce a simple formalization that will allow
us to discuss algorithmic directions for type of problem.

Centralized Formulation

Our approach to distributed qualitative diagnosis follows the
centralized diagnostic formalism developed in (de Kleer &
Williams 1989) and extended in (Williams & Nayak 1996)
and (Kurien & Nayak 2000). To motivate our distributed
algorithms, we begin with a brief overview of the central-
ized technique, summarized from (Kurien & Nayak 2000).
Suppose we would like to diagnose the state of a single com-
ponent, a valve, which is qualitatively modeled via the finite
state machine illustrated in Figure 4. We refer to each possi-
ble discrete state of a component anade. A valvev has
three modesgpen, closed, andstuckClosed. The behav-

ior of the flow of the valve within each mode, which has the
discrete domaif zero, nonzero}, can be captured with the
following propositional formulae.

v = open = flow, = nonzero
v = closed = flow, = zero
v = stuckClosed = flow, = zero

If flow, is observable from the physical plant, we will refer
to this variable as anbservation In order to represent the
non-determinism of the automaton within a propositional
framework, the encoding introduces assumptiorvariable

a. Intuitively, a, represents the choice that Nature makes
as to whether valve will behave normally or experience a

Figure 5: Variable Connectivity In a Global Model

failure when it is commanded. The transition portion of the
automaton can thus be captured by the following formulae.

a, = normal=-
¢ = closed \ ecmd, = open
v = closed A emdy # open
v = open A cmd; = close
v = open A emd; # close
vy = stuckClosed
ay = stick=v 141 = stuckClosed

Vt4+1 = OpeEN

vi+1 = closed

vi+1 = closed

Vi4+1 = OopeNn

vi+1 = stuckClosed

=
=
=
=
=

Intuitively, the diagnostic task is to find a set of assignments
to the assumptions, hefe, }, such that the model is consis-
tent with the observations, hef¢low, }. For example, sup-
posev; = closed, we command the valve open, represented
by emd; = open. The plant assign® as flow, = zero.

The only consistent assignmentdg is a,, = stick and we
diagnose valve is stuck closed. If we wish to model multiple
automata, we introduce a mode and assumption for each au-
tomaton and compile all automata into a set of formulae that
may share variables. For example, two valves in series share
the same flow. Figure 5 visualizes the compilation of the de-
vice constraints into a global constraint system model. Each
node represents a finite domain variable. Two nodes are con-
nected by an edge if the two variables appear in a constraint
together, denoting that the possible values of the variables
are related by interacting together in some physical process
or the transmission of data. Note that a realistic model such
as that of Figure 5 contains many observations and assump-
tions, and many assignments may be consistent. More for-
mally, let A denote the set of assumptioris denote the set

of observations, an@d” denote the formulae describing the
plant. Given an assignmefit to O created by observing
the plant, a diagnosis D is an assignmentiteuch that the
following propositional formula is consistent:

Najeala; = d;) Nojeo (05 = wj) N F.

To perform diagnosis over multiple components, we must
find an assignment to eaefthat renders the set of formulae
consistent with all observations. Intuitively, we assign the
observations reported by the physical plaitio the vari-
ables of the graph corresponding to observatignsthen
reassign the assumption variabldsyntil the constraint sys-
tem illustrated in Figure 5 becomes consistent. Thus in this
diagnosis framework, diagnosis can be viewed a constraint
satisfaction problem.

A second diagnostic task is to find the most likely diag-
noses. For each assumption assignment we can associate
the prior probability of the even the assumption represents.

Figure 6: Partition Among Three Diagnosers

Thus, P&, =stick) denotes the prior probability of the valve
sticking. Assuming conditional independence, the probabil-
ity of a diagnosis is defined as follows.

P(D) =g,;epP(a; = d;)

Given multiple components, we must find the assignment to
eacha that renders the set of formulae consistent with all
observations such that the probability of the assignment is
maximal. Intuitively, we assign the observations reported
by the physical plant? to the variables of the graph corre-
sponding to observationg), then choose among the possi-
ble reassignments of assumption values to assumption vari-
ables, A, until the constraint system illustrated in Figure 5
becomes consistent. The choice of which assumption to re-
assign and to which value to assign it is based upon the prob-
ability of the possible assignments. In this case, diagnosis
can be viewed as a constraint optimization problem.

Distributed Diagnosis

In this paper, we propose splitting the global diagnostic pro-
cess into a number of cooperating local diagnostic processes.
In order to distribute the problem, we divide the global di-
agnoser which produces assignmentd tato a set of local
diagnosers which make assignments to subset.ofntu-
itively, we partition the edges of Figure 5. If a node is con-
nected to edges in more than one partition, it is replicated
and the partitions must reach consensus on its value. More
formally, a local diagnosek is described byX';, Vi, Ap,

Or, Ry) where F';, is the subset of' assigned ta., V,
denotes the set of variables that appeaF'in A; denotes
ANV, O denotesONV;, and R;, denotes the union of
VNV, over all other diagnoserd!. Figure 6 illustrates a
possible partitioning of the constraint graph of Figure 5. The
slightly darker nodes indicate the membersiyf, shared
variables that have been replicated. Given a fixed number
of diagnosers or the maximum number of constraints a diag-

. Given observation sét, if o; € Or, assigro; = w; in L.

. VL, if Or # 0, compute all assignments b, UR, S.t.
Nojeor (0j=wj) Nasear (ai=di) Ariery (ri=pi) E FL

. Foreachr € Ry, for each other diagnosét, if » € Vi, send
all Ry, assignments ta/.

. In each suctd, compute all assignments such that
Arierp, (Ti = pi) Nageay (ak=di) Aryery (T =pr) E
F

. If the consistenR,; assignments decreased in step 4, re
to step 3, substituting M for L.

turn

Figure 7: Consistency-based, Anytime Diagnosis

communicates with directly other diagnosers to further re-
duce the set of consistent diagnoses for the local compo-
nents. We would like that the diagnoses start with a superset
of the globally consistent diagnoses and move toward only
the globally consistent diagnoses. We define the relation-
ships conservative and feasible between the diagnoses
produced by a global diagnoser and the diagnoses produced
by a local diagnoser. A local diagnosis g2t is conserva-

tive with respect to the global diagnosis &t if

Ve € Dg 14, (6c) € Dr,

wherell is the projection operator. That is, the assignments
made to the assumptions local foby a global diagnosis
must also be made by a local diagnosis. A local diagno-
sis setDy, is feasible if the assignments made to the local
assumptions are contained in a consistent global diagnosis.
More formally,

Vo, € Dy, 35@ € Dg: HAL((YC,V) =9Ir.

Incremental Consistency

We next discuss an algorithmic framework for incrementally
revising a set of conservative diagnoses into a set feasible di-
agnoses in a robust, anytime, distributed manner, followed
by results from one particular instantiation of this frame-
work. The approach of the algorithmic framework is similar
in spirit to Waltz’s algorithm (Waltz 1975). Each set of di-
agnoses is monotonically reduced toward a feasible set as a
side effect of spreading consensus on the value of variables
shared between diagnosers. The algorithm is illustrated in
Figure 7.

The algorithm operates by incrementally reducing the
possible assignments té;, for all L, first by introduction

nostic processor can accommodate, we can use a graph parof observations and second by communication between di-

titioning algorithm (Sanchis 1989) to find a partitioning of
the graph that attempts to minimiZg, for each diagnoser.
Our approach to finding consistent diagnoses in a dis-
tributed fashion is refinement based. Intuitively, each local
diagnoser finds the diagnoses for the locally modeled com-
ponent that are consistent with the constraints of the local
model and the local observations. This is a superset of the
diagnoses for the local components that are consistent will
all constraints and observations. Each local diagnoser then

agnosers. Each local diagnoser begins with a conservative
local diagnosis set idl ;. Typically this would be all possi-

ble diagnoses, which can be implicitly captured by an appro-
priate encoding of the constraint 9ét. In Step 1, observa-
tions are assigned in every diagnoser which has constraints
involving an observation. In Step 2, the observation assign-
ments are used to compute all assignmentd to/R;, that

are consistent with';, and the observations received by
Note that the projection ofl;, from these assignments is a

conservative diagnosis set. Intuitively, suppose an assign- C. In Step 5,C forwards the diagnostic results to eachnof
ment to Ay, appears in a global diagnosis but is not com- components. Assuming all observations from a single com-
puted by L. If itis not computed, it must be inconsistent with ponent can be sent in a single message, Figure 3 requires
F;, and the assignments @y,. It is therefore inconsistent s point to point messages @ and one broadcast message
with F' and the assignments @, and could not appearina from C to all n components

global diagnosis. In Step 3, the assignment&jpare pro- We now consider the communication requirements for the
jected out of the consistent assignments of L and forwarded distributed algorithm of Figure 7. This algorithm performs

to each other diagnoser M that references these variables. Indistributed diagnosis by exchanging messages that refine the
Step 4, M eliminates a subset of its assignments that are not value of shared variables across local diagnosers.v lbet
feasible. Intuitively, an assignmentto A, is not feasi- the number of variables that are shared, aroe the av-

ble if there is no assignment té containinga that is con- erage number of diagnosers that share each variable, and
sistent with ' andO. If a constrains a variable if®;, to m be the average number of messages exchanged that in-
have a value that was not received frdmthenq is incon- volve a given variable. For example, if each local diagnoser
sistent with all consistent assignments4g. Thus, each uses unit propagation, it can send messages specifying that
time Step 4 is performed, infeasible assignmentd tp are a variable must have a certain value or cannot have a certain
eliminated. Each diagnoser begins with a conservative set value, but no messages specifying disjunctions between as-
of assignments tel;, and as rounds of communication are signments. Thus: is bounded by the size of the largest do-
performed, the local diagnoses are moved toward feasibility main of a shared variable. The increase in messages created
in an anytime manner. Per Step 5, the algorithm continues as by moving to the distributed diagnoses technique is given by
long as consistent assignments are eliminated. In the worst the ratio
case, each loop would eliminate one of an exponential num-

ber of possible assignments.

vrm
s+1°

a1 =

Note that we have described the algorithm to propagate
sets of assignments that remain consistent in one local di-
agnoser to to other diagnosers in which the assigned vari-
ables appear. More generally, we may propagate any in-

Note that counting the number of messages exchanged is
not sufficient to determine the cost of communication. In
many applications, such as wireless networks with limited
energy or bandwith, the number of packets transmitted is a

formation that allows remote diagnosers to restrict the do- critical cost measure. Network topology will determine the

main of a variable based upon inference performed in the number of packet transmissions or hops required to deliver
local diagnoser. Examples include assignments that cannota message. In many applications, each node in a network
be made because of constraints within one diagnoser (no- is connected to a small number of neighbors. Point to point
goods), assignments that must be made, or sets of possiblecommunication is implemented by multiple hops between

assignments to a variable that remain consistent. Note also neighbors, and a broadcast is implemented by flooding the
that this algorithm is not complete with respect to distributed network. Leth,. be the average distance in hops between a

constraint satisfaction. Intuitively, suppose we have two lo-
cal diagnosers, one containing only the constradints and

the other containing only the constraiAt/ B. Neither can
constrain and propagate the value®fthoughB must be
true. This same restriction applies to the centralized con-
straint satisfaction technique used in L2, so we do not be-
lieve it presents a significant drawback. The related work
section contains further details on the relationship between
distributed diagnosis and distributed constraint satisfaction
and why we believe an incomplete algorithm is sufficient.

Communication Requirements

When presented with a networked, embedded system, we nents, it is likely the case thdt, < h..

may perform centralized diagnosis of the distributed system
by transmission of observations or distributed diagnosis of
the distributed system by transmission of intermediate re-
sults. Choosing distributed diagnosis allows us to trade com-
munication bandwidth for reduced processor requirements,
increased robustness and greater reconfigurability. In this
section, we examine how the communication requirements
of the distributed, incremental diagnosis algorithm compare
to a centralized approach. We first consider the communi-
cation requirements of the centralized procedure shown in
Figure 3. Letn be the number of components anthe the
number of components with sensors. In Step 3 of the pro-
cedure, each of components forwards its observations to

node with a sensor and the centralized diagnoserhl).&e

the average number of hops between nodes that share a vari-
able. In general, the change in the total number of packet
transmissions required by decentralizing the problem is de-
termined by

vrmhy,

she +n

Intuitively, packet transmission for the centralized diagnoser
scales with the size and width of the network, while the de-
centralized approach scales with the number of constraints
that cross network components. Note that if the network
topology reflects the physical interactions of the compo-
Thus we can
construct wide networks with very localized interactions for
which centralized diagnosis requires more packet transmis-
sions than decentralized diagnosis, though we do not expect
this to be the case in practice. In addition to total packet
transmission, we may further refine our cost measure to in-
clude the maximum number of packets transmitted by any
link in the network. This determines the minimum band-
width or power storage a network node must support. The
ratio o does not capture thatin the centralized case, all mes-
sages must pass through network links connected to the cen-
tral diagnoser. This drives up the minimum capabilities of a
network node in relation to distributed diagnosis where mes-
sage sources and destinations are more evenly distributed

Qg =

Table 1: Comparison of distributed diagnoser and L2

through the system. We are currently defining a diagnostic
model for a distributed sensor network in addition to avail-

able models of more traditional electro-mechanical systems
in order to better characterize the communication require-

Independent L2 Distributed Related Work

Faults In Diag [Time | Spread] Diag | Time

Firstmodule | 6 002 |9 21 10 A diagnoser for a networked, embedded system may be cen-
Twomodules | 12 | 0.18 | 14 49 |0 tralized, decentralized or distributed. Work in centralized
Three modules 84 | 13.28 | 20 343 | 0.05 diagnosis may be applied by collecting models and observa-
Allmodules | 108 | 27.08] 24 637 | 0.22 tions from the networked components of the physical plant

and appling a centralized algorithm. As described in the
third section of this paper, this raises robustness and scalabil-
ity issues that must be addressed. Rish, Brodie and Ma, for
example, attempt to increase the efficiency of a centralized
diagnostic procedure for a distributed network of computers
using an approximate representation and carefully designed
active probing of the distributed system (Rish, Brodie, & Ma
2002). In decentralized diagnosis, e.g. (Debouk, Lafortune,

& Teneketzis 2000), local diagnosers communicate with a
coordination process that assembles a global diagnosis. The
coordination process of decentralized approaches are still
subject to robustness and scalability issues. We are there-
fore pursuing an approach of distributed diagnosis, similar
to (Baroniet al. 1999), where there is no centralized con-

To implement the distributed diagnosis algorithm described trol structure or coordination process. Each local diagnoser
above, each local diagnoser could represent its conservativeCommunicates directly with other diagnosers.

diagnosis set as a partial assignment in a GDE-style diag- We have formulated the the distributed diagnostic pro-
noser, a relational table, a binary decision diagram and so cess as a distributed constraint satisfaction problem (DCSP).
on, so long as the representation can be efficiently pruned Since many problems in scheduling, resource allocation, and
when an observation or neighboring diagnoser decreases thehardware design can be formulated as constraint satisfaction
range of a variable. Ideally, we would like to test a central- problems, the distributed constraint satisfaction problem has
ized diagnoser against a set of local diagnosers that computereceived a large amount of attention. Yokoo and Hirayama
and represent diagnoses in the same manner. For these preprovide an excellent overview (Yokoo & Hirayama 2000) of
liminary results, we present the performance of the central- algorithms for solving DCSP’s. These existing algorithms
ized L2 diagnoser against a distributed diagnoser that takes do not meet our needs for two reasons. First, the great ma-
advantage of the small local model size enabled by distribut- jority of the algorithms are formulated assuming the com-
ing the problem. PARC intern Rong Su implemented the putational nodes and network connecting the nodes are re-
distributed algorithm using finite-state automata to prune in- liable, and that all messages sent between nodes arrive in
consistent assignmentsitg (Steps 2 and 4 of Figure 7) and the order sent. For diagnosis of networked, embedded sys-
a distributed consensus algorithm (Steps 3 and 5) shown to tems, we seek specific guarantees of behavior in response to
converge to feasible diagnoses (8ual. 2002). Table 1 the loss of computing nodes or bifurcation of the network.
compares performance with L2 on the paper path model. Second, the majority of DCSP algorithms are designed to
The first three columns are the name of the diagnostic sce- solve general discrete constraint satisfaction problems, such
nario, the diagnoses found by L2, and the time required. as the graph coloring problem. The ability to solve general
Since the physical plant has few sensors, the number of con- CSP problems requires features that complicate distribution,
sistent diagnoses grows with the complexity of the scenario. such as backtracking on choices for variable assignments.
The fourth column is the number of local diagnosers reached In practice, centralized diagnosers are able to find consis-
via Step 3 of the algorithm, out of 24. The fifth column tent diagnoses using incomplete, backtrack-free procedures
lists the number of diagnoses found by the distributed al- such as unit propagation. This difference arises because the
gorithm. Note that the FSA-based algorithm finds more di- constraints we generate from finite state models such as il-
agnoses than L2. L2 is conflict based, and thus postulates lustrated in Figure 4 tend to be closer to Horn clauses in
only those failures that can eliminate a discrepancy between structure than general discrete constraints and diagnosis may
an expected observation and the observation received from use observation values asserted by the physical plant to drive
the plant. The FSA-based algorithm finds all consistent fail- constraint processing. We therefore expect a distributed di-
ures, including those that would be indistinguishable from agnoser acting upon the same models should be able to use
proper operation of the plant. The sixth column is the time less powerful inference methods than full constraint satis-
to compute the diagnoses, demonstrating the dramatic speedfaction. While we have encountered full DCSP algorithms
advantage, on this model, of computing feasible local diag- that allow some fault tolerance, such as the Mozart system
noses via a pre-compiled FSA representation then determin- (Roy 1999), and some simpler constraint processing meth-
ing consistent combinations versus global, on-line inference. ods that assume reliable, fully connected networks, such as
The current implementation runs each local diagnoser seri- distributed arc consistency (Nguyen & Deville 1998), we
ally on a single processor, and we believe a parallel imple- have not yet encountered an algorithm that is sufficiently
mentation will provide a greater speed advantage. narrow in scope and robust to failures.

ments of both distributed and centralized algorithms

Results

Future Work tion. This can be done hierarchically and in parallel, allow-

A number of issues remain for future work. The issue of iNng us to rule out inconsistent partial combinations of local
how to use knowledge of the prior probability of failures to ~ diagnoses in order to avoid explicitly checking all combina-
avoid computing all consistent diagnoses has been exploredtions. Intuitively and from initial experiments, we suspect
but not solved. The algorithm of Figure 7 also does not take for many problems this technique would be a competitive
into account any information about the likelihood of fail- method for producing all consistent global diagnoses. In
ures. We may of course find the set of globally consistent fact, the performance numbers for the FSA-based distributed
diagnoses and compute the probability of each by assuming @lgorithm shown in Table 1 are for both computing the con-
conditional independence of the failures, as described above. Servative and feasible local diagnoses for each local diag-
However, rather than computing the probabilities of all con- noser and then computing the globally consistent combina-
sistent diagnoses, we might wish to avoid generating un- tions of these local diagnoses. Formalizing this technique
likely diagnoses given we have generated a sufficient num- and more thoroughly investigating its effectiveness remain

ber of consistent, likely diagnoses. Conflict-directed, best- future work.
first search (de Kleer & Williams 1989) is a centralized, dis-
crete constraint optimization algorithm that is specialized for
diagnosis. It efficiently enumerates consistent assignments
to a set of propositional variables in order of their cost, or in
this case enumerates diagnoses in order of their prior prob-
ability. Intuitively, it operates by starting with the highest
probability assignment to the assumptions, the case where
no failures have occurred. It substitutes a minimal cost as-
signment to an assumption with a non-minimal cost assign-
ment only when a conflict between an observation value as-
signed by the plant and the value predicted by the current
assumption assignments occurs. Our current direction in
developing a distributed analog is to begins with a maxi-
mum likelihood €.g.no failure) assignment tal; within
each diagnosek, which in turn constrains the shared vari-
ables. When diagnosefsand M disagree on the value of a
shared variable, each performs a local diagnosis to conser-
vatively approximate the maximum probability assignment
to the assumptions that would admit a different value for
r. This information can then be used to limit propagation
of variable changes throughout the system. We have imple-
mented a preliminary version of this system using copies of
L2 as the local diagnosers for the purposes of exploration,
but we are currently limited to very simple network topolo-
gies. Formalizing a reasonably general algorithm for gener-
ating a conservative estimate of the most likely diagnoses in
a robust, distributed, anytime manner remains future work.
As framed here, the distributed diagnoser never computes
complete global diagnoses. Rather, at each local diagnoser
it computes feasible local diagnoses. These are projections
of the global diagnoses that are relevant to that diagnoser. In
the case that control of the plant is distributed, we believe

Conclusion

We have developed a distributed diagnosis framework that
leverages the topology of the physical plant to limit inter-
diagnoser communication and compute consistent diagnoses
in an anytime and any information manner, making it ro-
bust to communication and processor failures. The frame-
work is conservative, in that it avoids false negatives in fa-
vor of false positives in the case where computation cannot
be completed due to limited time or communication failure.
This property can be vital in applications where safety is
critical. In addition to being anytime and conservative, our
approach allows a very small granularity for the local di-
agnosers. We can potentially create a diagnoser per physi-
cal component if desired. This flexibility allows us to con-
sider time/space/communication tradeoffs that implement
each local diagnoser as an exponentially large (in the small
local model size) structure that enables diagnosis to be per-
formed collaboratively on very weak networked processors.
One implementation of the distributed algorithm for finding
consistent diagnoses has been implemented using a discrete-
event formulation and tested on one model. Our future work
includes implementations of the algorithm using binary de-
cision diagrams and the unit propagation implementation of
L2 to compute locally consistent assignments. The latter
will allow direct comparison of centralized and distributed
implementations of the same diagnostic technique on a va-
riety of problems modeled for L2. We are also continuing
to extend the formulation to include optimization-based dis-
tributed diagnosis.

Acknowledgment This work is supported in part by the De-

this is appropriate. Each processing node uses the possiblefense Advanced Research Projects Agency (DARPA) under con-
states of its components, as determined by the feasible local tract F33615-99-C3611. Rong Su implemented the distributed di-
diagnoses, to inform its control. However, even when per- agnoser as a PARC intern. NASA Ames Research Center provided
forming distributed diagnosis of a distributed system, com- the L2 diagnosis engine.

putation of the global diagnoses may be of interest for pur-
poses such as centralized, supervisory control or display to a
user. We note that simply taking the cross-product of the fea-
sible diagnoses produced by each local diagnoser will result
in a superset of the global diagnoses. Some combinations
of the cross-product may not appear in any consistent global
diagnosis. If the consistent global diagnoses are needed, we
may compute them by checking combinations of local feasi-
ble diagnoses from multiple diagnosers against a combined
model using a linear-time technique such as unit propaga-

References

Baroni, P.; Lamperti, G.; Pogliano, P.; and Zanella, M.
1999. Diagnosis of large active systeméttificial Intelligence
110(1):135-183.

Bernard, D. E.; Dorais, G. A.; Fry, C.; Jr,, E. B. G.; Kanefsky,
B.; Kurien, J.; Millar, W.; Muscettola, N.; Nayak, P. P.; Pell, B;
Rajan, K.; Rouquette, N.; Smith, B.; and Williams, B. C. 1998.
Design of the remote agent experiment for spacecraft autonomy.
In Procs. IEEE Aerospace

Chu, M.; Haussecker, H.; and Zhao, F. 2001. Scalable
information-driven sensor querying and routing for ad hoc hetero-
geneous sensor networkkt'l J. High Performance Computing
Applications To appear. Also, Xerox Palo Alto Research Center
Technical Report P2001-10113, May 2001.

Collin, Z.; Dechter, R.; and Katz, S. 1999. Self-stabilizing dis-
tributed constraint satisfactionChicago Journal of Theoretical
Computer Science

de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple
faults. Artificial Intelligence32(1):97-130. Reprinted in (Ham-
scher, Console, & de Kleer 1992).

de Kleer, J., and Williams, B. C. 1989. Diagnosis with behavioral
modes. InProceedings of IJCAI-8§91324-1330. Reprinted in
(Hamscher, Console, & de Kleer 1992).

Debouk, R.; Lafortune, S.; and Teneketzis, D. 2000. Coordinated
decentralized protocols for failure diagnosis of discrete event sys-
tems. Discrete Event Dynamic System: Theory and Applications
10(1/2):33-86.

Goodrich, C., and Kurien, J. 2001. Continous measurements and
quantitative constraints - challenge problems for discrete model-
ing techniques. IProceedings of iISAIRAS-2001

Hamscher, W.; Console, L.; and de Kleer, J. 19®2adings in
Model-Based DiagnosisSan Mateo, CA: Morgan Kaufmann.

Jackson, W.; Fromherz, M.; Biegelsen, D.; Reich, J.; and Gold-
berg, D. 2001. Constrained optimization based control of real
time large scale systems: Airject movement object system. In
Proceedings of the 40th IEEE Conference on Decision and Con-
trol, 4717-4720.

Kahn, J. M.; Katz, R. H.; and Pister, K. S. J. 1999. Mobile
networking for smart dust. IACM/IEEE Intl. Conf. on Mobile
Computing and Networking (MobiCom 99)

Kurien, J., and Nayak, P. P. 2000. Back to the future with consis-
tency based trajectory tracking. Rroceedings of AAAI-Q0

Mosterman, P., and Biswas, G. 1997. Monitoring, prediction and
fault isolation in dynamic physical systems. Bioceedings of
AAAI-97, 100-105.

Nguyen, T., and Deville, Y. 1998. A distributed arc-consistency
algorithm. Science of Computer ProgrammiBg(1-2):227-250.

Reiter, R. 1987. A theory of diagnosis from first principl@stifi-
cial Intelligence32(1):57-96. Reprinted in (Hamscher, Console,
& de Kleer 1992).

Rish, I.; Brodie, M.; and Ma, S. 2002. Efficient fault diagnosis
using probing. InProceedings of the AAAI Spring Symposium
on Information Refinement and Revision for Decision Making:
Modeling for Diagnostics, Prognostics and Prediction

Roy, P. V. 1999. The separation of concerns in distributed pro-
gramming: Application to distribution structure and fault toler-
ance in mozart.

Sanchis, L. A. 1989. Multiple-way network partitionindEEE
Transactions on ComputeB88(1):62—-81.

Su, R.; Wonham, W. M.; Kurien, J.; and Koutsoukos, X. 2002.
Distributed diagnosis for qualitative systems. Technical Report
SPL-01-071, Palo Alto Research Center. Submitted to WODES
2002.

Sun Microsystems Inc. 1999. Jini architectural overview.

Waltz, D. L. 1975. Understanding line drawings of scenes with
shadows. In Winston, P. H., edlThe Psychology of Computer
Vision McGraw-Hill. 19-91.

Williams, B. C., and Nayak, P. P. 1996. A model-based approach
to reactive self-configuring systems.Pnocs. AAAI-96971-978.

Yokoo, M., and Hirayama, K. 2000. Algorithms for distributed
constraint satisfaction: A reviewAutonomous Agents and Multi-
Agent Systent(2):185-207.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1992. Distributed constraint satisfaction for formalizing dis-
tributed problem solving. Innternational Conference on Dis-
tributed Computing Systen$14—621.

Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K. 1998. The
distributed constraint satisfaction problem: Formalization and al-
gorithms.Knowledge and Data Engineeririd(5):673—-685.

Zhang, Y., and Mackworth, A. K. 1992. Parallel and distributed
finite constraint satisfaction: Complexity, algorithms and exper-
iments. Technical Report TR-92-30, Department of Computer
Science, The University of British Columbia.

Zhao, F.; Koutsoukos, X.; Haussecker, H.; Reich, J.; Cheung, P.;
and Picardi, C. 2001. Distributed monitoring of hybrid systems:
A model-directed approach. Proc. IJCAI’2001 557-564.

Author | ndex

Abad, Pedro J., 165
Albert, M., 158
Anrig, Bernhard, 129

Baumeister, Joachim, 58
Benazera, Emmanuel, 106
Biswas, Gautam, 7

Bond, Gregory W., 36
Bowman, Tim, 7
Brignolo, R., 25

Cascio, F., 25
Clancy, Dan, 1
Console, Luca, 25

Dague, Phillippe, 25, 106
Dearden, Richard, 1
Dressler, Oskar, 25
Dubois, P., 25

Fleischanderl, Gerhard, 33

Garatti, Roberto, 137
Gasca, Rafael M., 165
Gonzalez, Carlos Alonso, 122

Hasseln, Hermann von, 151
Hofbaur, Michael W., 97

Jones, Colin N., 36
Junquera, Belarmino Pulido, 122

Karsai, Gabor, 7

Kay, Mark, 7

Keller, Kirby, 7

Klein, Inger, 172

Kohlas, Jiirg, 129
Koutsoukos, Xenofon, 179
Krysander, Mattias, 51
Kumar, Satish T.K., 70, 115
Kurien, James, 179

189

Lamperti, Gianfranco, 137
Lawesson, Dan, 172
Lawrence, Peter D., 36

Li, Lin, 77

Langle, T., 158

Mauss, Jakob, 65
Mayer, Wolfgang, 91
Millet, D., 25

Narasimhan, Sriram, 7
Nilsson, UIf, 172
Nyberg, Mattias, 51

Ortega, Juan A., 165
Provan, Gregory, 16

Rehfus, B., 25
Renninger, Harald, 151
Rinner, Bernhard, 146

Seipel, Dietmar, 58
Shrobe, Howard, 81
Struss, Peter, 25
Stumptner, Markus, 91
Suarez, Antonio J., 165
Szemethy, Tivadar, 7

Tatar, Mugur, 65

Torasso, Pietro, 43

Torta, Gianluca, 43
Travé-Massuyeés, Louise, 106

Weiss, Ulrich, 146
Wieland, Dominik, 91
Williams, Brian C., 97
Wotawa, Franz, 91
Worn, H., 158

Yunfei, Jiang, 77

19V AU ITFAUR TINDUEA

Zanella, Marina, 137
Zhao, Feng, 179

	dx02final14.pdf
	Introduction
	Set-Covering Models
	The Basic Model
	Extension by Similarities and Weights

	Complex Covering Relations
	Conjunction of Covering Relations
	Disjunction of Covering Relations
	Cardinalities in Covering Relations
	Bounded Covering Relations

	Constraints for Hypothesis Generation
	Exclusion Constraints
	Necessary Covering Relations

	Conclusions and Future Work

	dx02final21.pdf
	Object-Oriented Dynamic Bayesian Network-Templates for Modelling Mechatronic Systems
	Introduction
	Qualitative Models and Bayesian Networks
	Figure 1: The hydraulics library and an object diagram in Dymola.

	Template construction
	Figure 2: The Dymola representation for a fuel reservoir.
	Table 1: Qualitative addition defined.
	Figure 3: Bayesian network fragment and the CPD for theoperator.
	Figure 4: Bayesian network template for VolumeConst.
	Figure 5: Bayesian network template ZeroSumFlows2 for the flow constraint.
	Figure 6: Bayesian network template EqPressure2 for the pressure constraint.

	Results
	Figure 7: The Bayesian network tank system model.
	Figure 8: The pump flow (evident node).
	Figure 9: The flow into the fuel reservoir VolumeConst (inside the RealFuelPump template - hidden...
	Figure 10: The ReliefValve behavior (hidden node), where ’0’ means closed, and ’1’ means open.

	Conclusion and future work
	References

