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ABSTRACT 

In this report we show how image formation or reconstruction in synthetic 
aperture radar (SAR) can be viewed as the inversion of the circular Radon 
transform. The advantage of viewing image formation in this way is that 
it could be used in situations where more standard methods could fail such 
as high squint and ultra-wideband SAR. We examine previous work in the 
literature on circular Radon transforms and their inversion. Next, we present 
some novel techniques and analytic expressions for the transform of some key 
functions. We briefly consider motion compensation. Finally, we propose a 
number of possible methods that could be pursued to make new practical 
image formation algorithms. 
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Inverting the Circular Radon Transform 

EXECUTIVE SUMMARY 

The Radon transform is an integral along a path, and in its simplest form this path is 
a straight line. We will refer to this form of the transform as the normal Radon transform 
(NRT) because it is usually written using the normal equation for the line. Jakowatz et al. 
(based on work by Munson et al.) showed the relationship between this line integral and 
spotlight SAR image formation using the polar-to-rectangular resampling process. This 
corresponds to the Presnel approximation to the wavefront: the radiating energy from 
the radar is assumed to be planar. However, this approximation only holds in restricted 
physical geometries and limits the size and resolution of the image that can be formed. 

In reality, the wavefront radiating from the radar's antenna is spherical, with the sector 
of the sphere determined by the antenna beam pattern and geometry. As a consequence, 
the received signal at a particular antenna position and time since transmission is an 
average (integral) of the surface reflectivity (at the radiation's frequency) at all points 
where the spherical wavefront impinged upon the ground at half that time (to account for 
the round trip). We will ignore the effect of shape and duration of the transmitted pulse 
by assuming that the received data has been range compressed by matched filtering the 
received signal against the transmitted pulse. The antenna position is usually a function of 
time along a straight line, and so this coordinate is referred to as slow time. In contrast, the 
time interval between transmission and reception of a pulse corresponding to a particular 
range is referred to as fast time. 

If the geometry of the imaged terrain is planar, the locus of its intersection with the 
spherical wavefront will be the arc of a circle. Under this assumption, the received radar 
signal is an average of the ground reflectivity over a circular arc. Consequently, the radar 
performs a circular Radon transform (CRT) of the ground reflectivity. Therefore, forming 
an image of the ground reflectivity in synthetic aperture radar (SAR) is the process of 
inverting the circular averages, or in other words, inverting the circular Radon transform of 
the received radar signal. This approach to image formation provides an alternative view 
to understanding the SAR image formation process and can be used to develop algorithms 
that are free of the range curvature limitations of standard techniques. The approach 
used here may also be more intuitive for many readers unfamiliar with radar, because the 
concepts of doppler and phase are not required. In addition, methods based on inverting 
the CRT could be used in situations where the more standard techniques may fail because 
the stationary phase approximation is inappropriate, such as ultra-wideband or foliage 
penetration SAR, and high-squint SAR for tactical platforms. Follow-on work however 
will be needed to determine the practical utility of the results presented here. 

In this report we examine the existing body of literature on inverting the CRT and 
related methods in the SAR literature. In addition, we present a number of new methods 
for inverting the CRT as the basis for future research. We assume that the radar is 
monostatic (co-located transmitter and receiver), and that the propagation medium is 
isotropic, homogeneous and non-dispersive so that the wave velocity is constant in space. 
Then using the Born approximation, the radar echo is assumed to be a sum of single- 
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scattering objects. We also use the "start-stop" approximation because the sensor platform 
speed is much less than the wave velocity. Furthermore, we make three assumptions 
that can be removed at the cost of complexity. Firstly, the geometry is assumed to 
be two-dimensional, i.e. we can ignore the height of the radar above the ground plane. 
Secondly, the illumination of the ground by the antenna in both transmission and reception 
is assumed to be uniform. Finally, we assume an aspect independent ground reflectivity. 

This work was carried out while the first author was on attachment to the Defence 
Evaluation &: Research Agency, Malvern UK. 

IV 



DSTO-RR-0211 

Authors 

Nicholas J. Redding 
Surveillance Systems Division 

Nicholas Redding received a B.E. and Ph.D. in electrical en- 
gineering all from the University of Queensland, Brisbane, in 
1986 and 1991, respectively. Prom 1988 he received a Research 
Scientist Fellowship from the Australian Defence Science and 
Technology Organisation (DSTO) and then joined DSTO in 
Adelaide as a Research Scientist after completing his Ph.D. in 
artificial neural networks in 1991. In 1996 he was appointed as 
a Senior Research Scientist in the Microwave Radar Division 
(now Surveillance Systems Division) of DSTO. Since joining 
DSTO he has applied image processing techniques to the auto- 
matic classification of ionospheric data, and more recently has 
researched target detection (both human and algorithmic) in 
synthetic aperture radar imagery. He is currently on a one year 
posting to the UK's Defence Evaluation and Research Agency. 

Garry N. Newsam 
Surveillance Systems Division 

Garry Newsam received a B.Sc. and M.Sc. in mathematics from 
the University of Canterbury, New Zealand in 1978, and an 
A.M. and Ph.D. in applied mathematics from Harvard Univer- 
sity in 1983. He then worked for a year as a research fellow 
at Victoria University, New Zealand examining the statistics of 
energy use in commercial buildings. After this he joined the 
Centre for Mathematical Analysis at the Australian National 
University as a research fellow and lecturer: there he taught 
and did theoretical and applied work on inverse problems in 
optics, atmospheric chemistry and groundwater modelling. 

Since 1995 Dr Newsam has been a Principal Research Scientist 
with DSTO, leading a group now within Surveillance Systems 
Division tackling problems in image analysis and related ar- 
eas. His current research interests include image processing 
and compression, spline fitting and image registration, recon- 
structing shapes from imagery, modelling and generating ran- 
dom fields, and Radon transforms. 



DSTO-RR-0211 

VI 



DSTO-RR-0211 

Contents 

1 Introduction 1 

2 Radon Transform and its Inverse 2 

2.1 Normal Radon Transform  2 

2.2 Circular Radon Transform  4 

2.2.1      Adjoint of the Circular Radon Transform  6 

3 Reconstruction Methods for Synthetic Aperture Radar 6 

3.1 Time Domain Correlation  6 

3.2 Backprojection  7 

3.3 Link to the Circular Radon Transform  8 

4 The Problem 8 

4.1     Invertibility of the Circular Radon Transform  9 

5 Previous Methods for Inverting the Circular Radon Transform 10 

5.1 Hankel Transform Method  10 

5.2 Backprojection Method  12 

5.3 Fast Backprojection Method     12 

5.4 Link to the Range Migration Algorithm  12 

5.4.1 Shift to Scene Centre  15 

5.4.2 Statement of the Range Migration Algorithm  15 

5.4.3 Validity of the Hankel Function Approximation  16 

5.5 Deconvolution Method  17 

6 Resampled Fourier Methods for Inverting the Circular Radon Trans- 
form 18 

6.1 Square Fourier Transform Method  18 

6.2 Reduction to a Normal Radon Transform  20 

7 Properties of the Circular Radon Transform 22 

7.1 Translations  22 

7.2 Analytic Forward Transforms  23 

7.2.1      Delta Function     23 

Vll 



DSTO-RR-0211 

7.2.2 Disc     24 

7.2.3 Gaussian Radial Basis Function  25 

7.2.4 Vertical Line  26 

7.2.5 Vertical Line Segment      26 

7.2.6 Horizontal Line  31 

7.2.7 Horizontal Line Segment  31 

7.2.8 Simple Polynomials and Other Functions  32 

7.3     Analytic Inverse Transforms  32 

7.3.1      Bessel Function  33 

8 Options for Inverting the Circular Radon Transform 35 

8.1 Resampled Fourier Methods  35 

8.2 Linear Combination Method      36 

9 Motion Compensation 37 

10 Conclusion 41 

11 Acknowledgements 41 

References 41 

Figures 

1 The geometry of the circular Radon transform  5 

2 The magnitude of the residual: r0(z)  17 

3 The geometry of a disc displaced from the origin along the ?y-axis, perpendic- 
ular to the imaging trajectory  23 

4 The trace of the circular Radon transform of a Dirac delta function at (0,2). 
The weighting function on the implicit curve in (70) is not shown  24 

5 The various cases under which a circle can intersect a disc  27 

6 The circular Radon transform of a disc of radius one centred at the origin. .  . 28 

7 The CRT of a disc of radius one displaced from the origin along the y-axis to 
be centred on y = y/b  28 

8 The circular Radon transform of a Gaussian radial basis function centred at 
the origin  29 

9 The CRT of a Gaussian radial basis function displaced from the origin along 
the y-axis to be centred on y = \/b  29 

Vlll 



DSTO-RR-0211 

10 The CRT of a vertical line segment in the interval y0 = 2, y\ = 4  30 

11 The various cases under which a circle can intersect a horizontal line segment. 32 

12 The CRT of a horizontal line segment yt = 2 in the interval XQ = -2, x\ = 2. 
A square-root mapping to compress the grey scale has been used in this 
density plot to make the "arms" visible  33 

13 The geometry of a displaced point  38 

14 The distortion of the cartesian grid due to the displaced point  39 

Tables 

1         The CRTs and SCRTs of a number of simple functions  34 

IX 



DSTO-RR-0211 



DSTO-RR-0211 

1    Introduction 

The Radon transform is an integral along a path, and in its simplest form this path is 
a straight line. We will refer to this form of the transform as the normal Radon transform 
(NRT) because it is usually written using the normal equation for the line. Jakowatz et 
al. [18] (based on work by Munson et al. [23]) showed the relationship between this line 
integral and spotlight SAR image formation using the polar-to-rectangular resampling 
process. This corresponds to the Presnel approximation to the wavefront: the radiating 
energy from the radar is assumed to be planar. However, this approximation only holds 
in restricted physical geometries and limits the size and resolution of the image that can 
be formed [18]. 

In reality, the wavefront radiating from the radar's antenna is spherical, with the sector 
of the sphere determined by the antenna beam pattern and geometry. As a consequence, 
the received signal at a particular antenna position and time since transmission is an 
average (integral) of the surface reflectivity (at the radiation's frequency) at all points 
where the spherical wavefront impinged upon the ground at half that time (to account for 
the round trip). We will ignore the effect of shape and duration of the transmitted pulse 
by assuming that the received data has been range compressed by matched filtering the 
received signal against the transmitted pulse (see Section 3.1). The antenna position is 
usually a function of time along a straight line, and so this coordinate is referred to as 
slow time. In contrast, the time interval between transmission and reception of a pulse 
corresponding to a particular range is referred to as fast time. 

If the geometry of the imaged terrain is planar, the locus of its intersection with the 
spherical wavefront will be the arc of a circle. Under this assumption, the received radar 
signal is an average of the ground reflectivity over a circular arc. Consequently, the radar 
performs a circular Radon transform (CRT) of the ground reflectivity. Therefore, forming 
an image of the ground reflectivity in synthetic aperture radar (SAR) is the process of 
inverting the circular averages, or in other words, inverting the circular Radon transform of 
the received radar signal. This approach to image formation provides an alternative view 
to understanding the SAR image formation process and can be used to develop algorithms 
that are free of the range curvature limitations of standard techniques. The approach 
used here may also be more intuitive for many readers unfamiliar with radar, because the 
concepts of doppler and phase are not required [18, 22, 2]. In addition, methods based on 
inverting the CRT could be used in situations where the more standard techniques may fail 
because the stationary phase approximation [32] is inappropriate, such as ultra-wideband 
or foliage penetration SAR [16], and high-squint SAR for tactical platforms. Follow-on 
work however will be needed to determine the practical utility of the results presented 
here. 

In this report we examine the existing body of literature on inverting the CRT and 
related methods in the SAR literature. In addition, we present a number of new methods 
for inverting the CRT as the basis for future research. Like [36], we assume that the radar 
is monostatic (co-located transmitter and receiver), and that the propagation medium is 
isotropic, homogeneous and non-dispersive so that the wave velocity is constant in space. 
Then using the Born approximation, the radar echo is assumed to be a sum of single- 
scattering objects. We also use the "start-stop" approximation because the sensor platform 
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speed is much less than the wave velocity. Furthermore, we make three assumptions 
that can be removed at the cost of complexity. Firstly, the geometry is assumed to 
be two-dimensional, i.e. we can ignore the height of the radar above the ground plane. 
Secondly, the illumination of the ground by the antenna in both transmission and reception 
is assumed to be uniform. Finally, we assume an aspect independent ground reflectivity. 

In the next section we review the basics of the normal Radon transform as a starting 
point for our development of the CRT. Because the CRT is a generalisation of the NRT, 
many of the concepts relevant to both can be presented more simply in the context of 
the NRT using well-established theory. Having established the basic Radon transform 
theory, we then briefly consider some established SAR image reconstruction methods in 
Section 3 to set the linkage with the received radar signal. Section 4 states the inverse 
CRT in concise terms, and Section 5 examines previous methods for determining the 
inverse CRT, including the link to the well-known range migration algorithm for SAR 
image formation. Section 6 presents some new Fourier resampling methods for the ICRT, 
Section 7 derives properties of the CRT and inverse CRT, and Section 8 discusses various 
options for new practical methods for SAR image formation. Section 9 briefly discusses 
motion compensation, and conclusions are presented in Section 10. 

2    Radon Transform and its Inverse 

2.1    Normal Radon Transform 

Typically, the Radon transform of the function f(x,y), x,y € R is defined as a path 
integral along a straight line of the function, 

/oo     roc 
/     f(x,y)S(p-xcos9-y sinÖ) dxdy, (1) 

•oo J—oo 

where 6(-) is the Dirac delta function and (p, 8) are the parameters of a normal equation 
for the line of integration. (See [28] for the algebra of the Dirac delta function.) 

Several different approaches exist for inverting the Radon transform. The first one 
we will consider employs the Projection Slice Theorem [18], which states that the one- 
dimensional Fourier transform of any projection pe{p) = (fö/)(p, #) is equal to the two- 
dimensional Fourier transform with respect to the polar coordinates of the image f{x,y) 
to be reconstructed, i.e. 

F{vcQs6,i/sm6) = P9{i>), (2) 

where 
/oo     roc 

/     f(x.y)e2^^+^dxdy, (3) 
-00 J —oo 
/oo 

pd(p)e2^dp. 
-( ' -oc 

Consequently, by (2), we may invert the Radon transform by use of one-dimensional 
and two-dimensional Fourier transforms. The standard Fast Fourier Transform (FFT) on 
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a uniform grid can be employed if a polar to rectangular coordinate transformation is 
undertaken [18, 34]; otherwise non-uniformly sampled FFT techniques must be employed 
[3, 4, 11, 29, 33, 37]. Note that the theorem can be used in reverse order to calculate the 
Radon transform of a signal f(x, y). 

Filtered backprojection is probably the most commonly used approach to inverting the 
Radon transform. It is derived as follows. Starting with the inverse of (3), 

/oo    poo 

/     F(kx,ky)e-
2*i(xk'+yky)dkxdkv 

-OO J — 00 

and converting to polar coordinates we obtain [34] 

(•2-K      /-OO pJ,-K     pOO 

f(x,y)= /    uF(ucose,usme)e-27riu{xcose+ysin^dude 
Jo    Jo 

PTC      pOO 

= /    /     |i/|F(i/cosö,i/sinö)e_2,ri''(a:cos*+''8in^di/dö 
Jo   J-oo 

pn    poo /   poo \ 

= /    /     Ml/     P0(p)e2*ipvdp)e-2*iv(xcoa0+v*JiWdvdß. (4) 
Jo    J-oo \J-oo ) 

Typically, (4) is written as two steps, the first of which is a high-pass filtering step in the 
frequency domain, 

Po(p) = j°° M (f°° Pe(p)e2*ipvdp\ e-2™<>vdv, 

followed by integration of the set of projections g(p, 9) = p#(p), 

pTV 

f(x,y)=  /   g(xcos6 + ys'm6,9)d9 
Jo 

pTT     pOO 

=        /     g(p,6)6(p — xcosO — ysmO)dpdQ, 
Jo    J-oo 

(5) 

(6) 

which is called backprojection and is simply an integration along sinusoidal paths of the 
filtered projections g(p,9). 

It can be shown that the backprojection operation is equal to half the adjoint Radon 
transform [9]. To see this, firstly let g{p,6) be the normal Radon transform of some 
function, then we define the backprojection operator B by 

(Bg)(x1y)=       g{xcos9 + ysm9,9)d9. (7) 
./o 

Then by the symmetry property g{p,9) = g(—p, -9) and 

1   f2n 

(Bg){x,y) = -        g(xcos9 + ysm9,9)d9 (8) 

where V)g is the adjoint normal Radon transform. 
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We can see that iV is the adjoint operator from the following development [9]. Firstly, 
let (•, •) designate an inner product in R2, and in the transform domain let (•, -)p designate 
an inner product in R x [0, 2n]. Secondly, let /(x) and /i(x), x € K2, be C°° functions, 
and g(p,0) = ft/(x). Then 

(h,rtg)= f   />(x)(7^)(x)dx 

=  /   h(x) /     g(xcos6 + ysin#, 6)d6dx 
Jm2        Jo 

r r2n    poo 

=  /   /i(x) /      /     g(p,9)5(p - xcosö - ys'm6)dpdQdx 
J«.2 JO      J-oo 

rift     /»OO      r 

— /      /   h(x)g(p,6)S(p - xcosd - ys'mö)dxdpdd 
Jo     J-oo JR

2 

= /      /    (Kh)(p,0)g(p,e)dpdO 
Jo     J-OO 

= (Kh,g)p, (9) 

which confirms that TZ^ is the adjoint of 1Z from the inner product property of a transform 
and its adjoint. 

Many other schemes exist for inverting the normal Radon transform. They include the 
"linogram" and related methods which employ a non-linear grid in the Radon domain to 
reduce the two-dimensional interpolation of the direct Fourier slice theorem approach to a 
one-dimensional interpolation in the frequency domain and a one-dimensional interpolation 
in the Radon domain [34]. There are also techniques that reduce the inversion of the Radon 
transform to a problem in linear algebra through discretization [9, 34]. Various methods 
exist to speed up the resulting algebra by using the special structure of the matrices 
involved [6, 25]. 

2.2    Circular Radon Transform 

By analogy with (1), we define the circular Radon transform of a function to be the 
path integral of the function along a circle of radius t centred on the point (u, 0) on the 
x-axis. This can be written as 

/oo     roc 

/      /(x, y)S(t - y/(x - u)2 + iß) dxdy. 
-oc J — oo 

(10) 

The geometry of the circular Radon transform is shown in Figure 1. There are many other 
possible families of CRT depending on the choice of centres for the circles: the particular 
definition presented here has been chosen because it best corresponds to the standard 
geometry used in SAR. 

From Papoulis [28], the Dirac delta function 6(a(x.y)), a(x,y) = t — ij{x — u)2 + y2 

is a line mass of density 

(!02 + (t)2 
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imaging trajectory 

Figure 1: The geometry of the circular Radon transform. 

Therefore we can rewrite (10) as 

g(u,t) = (Tlcf){u,t) =  (f f(x,y)dxdy. 
J J  (x-u)2+y2=t2 (11) 

The integral in (11) needs to be carefully interpreted as it is an integral along a line in 
the plane with respect to arc length. Let x = u + tcos6 and y = tsinO. Then from the 
Jacobian of the transformation of variables, dxdy = t dt dd. Changing the intervals of 
integration and eliminating the redundant integral over a single value of t we obtain as 
our third equivalent definition of the CRT, 

/•2TT 

g(u,t) = (ncf)(u,t) = /     f(u + tcos0,tsm9)td9. 
Jo 

(12) 

From (10), the dual operator for the CRT (changing the integration with respect to x 
and y to be with respect to u and t), called here the circular backprojection operator, is 
defined to be 

/OO       /-00 

/     g(u, t)S(t - ^(x-u)2 + y2) du dt 
•OO J — OO -OO J — OO 

fOO /OO 

g{u, y/(x - u)2 + y2) du. 
-OO 

(13) 

We will prove that (13) is the adjoint of the CRT in Section 2.2.1 below. 

Sometimes it is convenient to define a semi-circular Radon transform (SCRT) by 

{% :/2/)(M)= r 
JO 

f(u +t cos ejs'mö)td9. (14) 
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2.2.1    Adjoint of the Circular Radon Transform 

Given the CRT denned by (12), the dual operator defined by (13), and letting (•,•) 

and (•, •),. denote inner products in R2 and M x [0, oo], then we can show that TZC is the 
adjoint operator of 1ZC as follows: 

/oo     roo   /   p2ir \ 

/     (/     f{u +tcas6,tsin6)td0)g(u,t)dtdu, 
-oo JO      \Jo J 

then setting x = t cos 0 and y = t sin #, 

/oo      /*oo      /*00 

/       /     f(x + u,y)g{u,\Jx2 + y2)dxdyd,u 
•00 J — oo J -oo 
/oo    /-oo     /-oo 

/      /     f(x,y)g{u1 \/{x -u)2 + y2)dxdydu 
■oo J — oo J—oo 

/OO       />00 /    /-OO   \ 

/   f(x,y)[      g{u,V(x -u)2 + y2)du) dxdy 
-oo J -oo \J—oo / 

= (frtg)- 

Therefore, by the inner product property, the dual operator Til is the adjoint of Tlc. 

3    Reconstruction Methods for Synthetic 
Aperture Radar 

In this section we review simple methods for SAR image formation that allow us to 
establish the relationship between the received radar signal and the transformed signal or 
circular averages in the CRT context. We follow Soumekh [32] for the development in the 
first two of the following subsections, with material added to motivate the link between 
the radar signal and circular averages. 

3.1    Time Domain Correlation 

Let p(t) denote the transmitted radar pulse. Then when the antenna moving along the 
x-axis is located at (u,0), the SAR signature of the ground point (XJ, y,) is given by 

2A/(x,--«)2+y2 
P \t 

where c is the speed of light in the medium. Without loss of generality, we can assume that 
fast time t has been scaled so that it represents the distance to the point of reflectivity, 
effectively making § = 1. We will use this assumption for the remainder of this report. 
Therefore, the pulse becomes 

p(t- yjixj-up + y^ . 
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In reconstruction via time domain correlation, this signal is correlated with the mea- 
sured SAR data in the slow-time fast-time domain s(u,t) to give a measure of the reflec- 
tivity at the point (xi,yi). Therefore we can write 

f(xi,Vi) = /     s(u,t)p* (t-\]{xi-u)2 + y(\ dtdu, (15) 

where p*(-) denotes the complex conjugate of p(-) and f(xi,yi) is the estimated ground 
reflectivity. The integral with respect to t would normally be undertaken in the Fourier 
domain as an integral with respect to fast time frequency UJ using Parseval's theorem, 

f(xi,yi)= f I s(u, u) P^^Vta-«)^? d(jJ dUj 

where P(w) is the Fourier transform of the transmitted radar pulse. 

How does s(u,t) relate to the CRT of f(x,y)? This becomes clear after the following 
section where we show Soumekh's backprojection form of SAR image reconstruction. 

3.2    Backprojection 

Let sm denote the fast-time matched filtered (i.e. range compressed) SAR signal given 
by 

sm(u,t) = s(u,t)*p*{-t). (16) 

The underlying idea of fast-time matched filtering is to try and undo the effect of convo- 
lution of the returns with the radar pulse p(t). Therefore, in principle one would do this 
matched filtering with a function q(t) whose Fourier transform Q(ui) is a reasonable approx- 
imation to pTjy- For the special case where p{t) is an ideal chirp with infinite extent, then 
q(t) = p*(—t). However, for other radar pulses p*(—t) is not such a good approximation 
to the desired inverse filter. With the appropriate choice of q(t), sm(u,t) = s(u,t) *q(t) 
would be close to the true unknown returns s that would have been collected by an ideal 
radar that emitted a delta function pulse. 

Following (16), we can write 

sm (u, yj{xi - uY + yA =  fs(u, t)p* (t - yJ(Xi - uY + y{\ dt (17) 

and so we can rewrite the time domain correlation (15) as the backprojection 

f(xi,yi) =     Smlu, yj(xi - u)2 + y\ j du. (18) 

Consequently, the estimated reflectivity / at the point (x{,yi) is given by the sum over 
slow-time of all the fast-time points that correspond to echoes from that point. This 
corresponds to integrating along a hyperbolic path in the transform or slow-time fast-time 

domain, because for fixed (XJ, j/j), the function t = J(xi — u)2 + y2 describes a (conjugate) 
hyperbola centred on (XJ,0) in the (u,t) plane (concave upwards) with asymptotes of slope 
±1. 
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3.3    Link to the Circular Radon Transform 

The linkage between the circular Radon transform and reconstruction via backprojec- 
tion and hence time domain correlation of the previous subsections can now be explained. 
We can write the received radar signal as the integral over the product of the combined 
antenna pattern, gain, range attenuation, and reflectivity function with the pulse to give 
[38], 

s(u,t)=  /   / A(u, x, y)f(x, y)p(t- y/{x - u)2 + yA dx dy, 
Jy Jx 

where A(u,x,y) is the combined antenna pattern, gain and range attenuation function, 
and f(x,y) is the reflectivity function. Next we assume that the reflectivity function is 
non-zero only in the main antenna beam so that the frequency-independent antenuation 
function is unity, giving 

s(u,t)=  I   I f(x,y)p[t-y/(x-u)* + yAdxdy. (19) ,*) = / J f(x,y)p(t-^(x-u)2 + y2) dxdi 

Then substituting (19) into (17) and letting t' = yj{x - u)2 + y2 and t" = \J{x' - u)2 + y'2 

we obtain 

p* (t - t') dt 

(20) 

sm (u, *') = j 17 j f(x', y') p(t- t") dx' dy' 

=  !   [ Hx',y')h(u,t',t")dx'dy' 
Jy' Jx' 

where h(u,t',t") is given by 

h{u, t', t") =  fp(t- t") p* (t - t') dt 

and can be considered to be the point spread function of the radar.   For a chirp pulse 
h(u, t', t") is concentrated at t'. 

We can now make the following observations. Firstly, at the radar sampling points 
(x,y), the point spread function h(u,t',t") and the delta function 6(t - \/{x- u)2 + y2) 
will coincide, so from (20) and (13) the fast-time matched filtered SAR signal sm(u,t) 
is the function g(u, t) of circular averages, or circular Radon transformed data, to the 
limit of the radar resolution. Secondly, the backprojection (18) is identical to the circular 
backprojection (13). Thirdly, f(x, y) is not the target or ground reflectivity function f(x, y) 
because the adjoint ftj is not equal to the inverse TZ'1, although it can be a reasonable 
approximation to it in situations where the scatterers are isolated points such as in sonar. 

4    The Problem 

The SAR image reconstruction problem, given the data (j{u.t) consisting of integrals 
of f(x,y) over circular arcs in the plane centred on the x axis, is to find a closed form 
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solution for /. In SAR terms, g represents the range-compressed baseband received signal 
in fast-time t and slow-time u coordinates as discussed in the previous section. As in (11), 
we may write the relationship between / and g as 

g(u,t) = CRcf)(u,t) = ff f(x,y)dxdy. (21) 
JJ (x-u)2+y2=t2 

The geometry is shown in Figure 1. 

We shall interpret (21) here as the equivalent form shown in (12), 

g(u,t)= f{u + tcos6,tsm0)td6. (22) 
Jo 

When g is data collected from a SAR system, then (22) should more properly be [14], 

/•27T 

g(u,t)=        h{t)(j,(0)f{u + t cos (9, t sin 0)td6, (23) 
Jo 

where h(t) is the range attenuation factor under the omnidirectional isotropic scattering 
model, and /z(0) represents the antenna diagram assuming no frequency dependence. We 
will assume that the range attenuation factor has been compensated for in the processing 
to form g(u, t) and so can be neglected here. We will also assume that the target is in the 
main beam so that the antenna diagram can also be neglected. 

We may assume that f{x,y) = 0 for y < 0 or that f{x,y) = f(x, —y) as convenient 
because either the SAR points to one side of the platform or for low frequency SAR, two 
antennas are to used to distinguish the left- and right-hand sides [15]. Note here that the 
CRT annihilates functions f{x,y) that are odd in y (i.e. f(x,y) = —f(x,—y)), and this 
property has important consequences. In particular, the inversion formulae typically give 
reconstructions / that are even, so if we know f(x, y) = 0 for y < 0, we will need to multiply 
reconstructions by a factor of two to give the correct answer in the upper half plane. 
Furthermore, many of the changes of variables to be considered shortly involve square 
roots, and so implicitly restrict domains of definition or make the function symmetric. 

4.1    Invertibility of the Circular Radon Transform 

The Radon transform integrating over all circles in the plane M2 is clearly overdeter- 
mined, because the set of all circles has three dimensions, which is one greater than the 
plane. The question then is what subsets of circles in the plane are invertible. Quinto 
[30] considers the case of all translations of a circle of fixed radius as well as all circles 
centred on a circle and shows they are invertible. Agranovsky and Quinto [1] show that 
the more general case of CRTs along paths that are not on the zero sets of harmonic 
polynomials are invertible. The CRT along the lines considered in this report is a special 
case. Zalcman [39] provides an excellent introduction to these sorts of considerations in 
integral geometry. 



DSTO-RR-0211 

5    Previous Methods for Inverting the Circular 
Radon Transform 

5.1    Hankel Transform Method 

The inverse of the CRT can be expressed analytically in terms of a Hankel transform 
as follows. This was discovered independently by Fawcett [12] and Andersson [2], and 
rediscovered more recently by Soumekh [31] and Milman [21, 22] as a statement of the u-k 
migration (or range migration) algorithm [8]. We will firstly derive the inverse in terms of 
the Hankel transform as presented by Nilsson in [26]. 

Firstly, define the CRT by 

r2z 

g(u,t) = {Kcf)(u,t) = f{u + tcosO,tsin6)d0. (24) 
Jo 

Note that in (24), the term t has been neglected from the definition (12). It is simply 
a scaling of the radar signal g(u,t) so it is possible to neglect it here without loss of 
generality. Next, take the Fourier transform with respect to slow time u. 

i da 

/oo 

e2™ug{u,t)> 
-oo 

=  [    e2nivn ( f    f(u + tcasO,tsmO)de) du 

where g(F,I> denotes the Fourier transform with respect to the first variable and the second 
variable is left intact. Changing the order of integration, 

/oo     r2r> 
/       e2,iv{u+t cos 0)e-2nivt cos 6j {u + f ^ ^ f gjn Q) df) ^ 

-oo Jo 
/•2TT /-oo 
/      e-2««fcosfl   /       e^iv{n+tcOS8)^u + tcosejsin9^dude 

JO J-oo -00 

/•2?r 

/     e-2nivtcosefWHv,tsme)de. 
Jo 

Now, 

/oo 
f^F\v,p)e-2^<dp 

-00 

where y = tsm6. Then changing the order of integration, 

g(F^(v,t) =   I V2™*cosfl ( f°° f{F-F)(vlP)e-2«l»»dp) dO 

/oo r2n 
flF'F)(v,p)dp /       e-^'nvcos0+psinO)do^ 

-oo JO 

Let 

'cos0 + psin0= \Jx)2 + p2 sm(6 - ij'\ 

10 
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for some tp. Therefore using periodicity of the integrand, 

/ -27rit^A;2+p2sin(0-0) JQ _    I -2mtyjv2+p2 sm0 JQ 

JO JO 

= 2nJo{2nt\/v2 + p2) 

where JQ(-) is the Bessel function of the first kind of order zero. Consequently, 
/oo 

f^F\v,p)J0(2ntyM+^)dp. 
-oo 

Next, let 

so that 

and so then 

a = y/v2 + p2 (25) 

a da 
dp = 

\/a2 — v2 

f(F>F\v,Va2-v2) 
g™{v,t) = 2vr r J0(2nta)f   '    ^l^^ada. (26) 

J —oo \ (J   — V 

We can use the symmetry in the problem to reduce the interval of integration in (26). 
Prom f(x,—y) = f(x,y), we have f^F'F^(v,—p) = f(F,f"*(v,p) and from (25) we have 
a = yv2 = \v\ when p = 0. Therefore, 

'\v\ 

Then from the Hankel transform pair of order zero [5], 

J\v\ va  - vd 

we have that 

Let 

/•oo 

fHo{q) =2n        f(r)J0{2Ttqr)rdr 
Jo 

/•oo 

f(r) = 2ir        fH°(q)J0(2irqr)qdq 
Jo 

(Ftfo)t      \      J   2l ) :    2 '-    ila-\v  ^0 

I   0 otherwise. 

\p\ = \/a2 - v2, 

then 

f^F)(v,p)=l^F^(v,^T^) (27) 

where g(F'H°> is the Fourier transform of g with respect to the first variable u and zero-order 
Hankel transform with respect to the second variable t of g(u, t), given by, 

/oo     /-oo 
/     g{u4)e27TivuJ0{27rtp)tdtdu. 

-oo Jo 

Note that f(F'F\v,p) is implicitly even in p. 

11 



DSTO-RR-0211 

5.2    Backprojection Method 

Andersson [2] showed that the backprojection operator for the CRT (the adjoint ex- 
pressed in (13)) can be used to implement <?(F-H°) in (27). We give the following develop- 
ment from Nilsson [26]. 

Again we take the backprojection operator to be 

/oo 
g(u,y/(x-u)* + y*)du (28) 

-oo 

then taking the two-dimensional Fourier transform of lZcg we obtain 

/oo     roo    /   /-oo \ 

/ /     g{u, J(x-ur + y*) du   e2^vx^ dx dy 
•00 J-00   \J-oo / 

/oo /   roo     roo \ 
e2*iuvl /       5(u, ^ _ u)2 + y2)e2*ipye2*iv(r-u) dx dy     du 

00 \J -00 J—00 / 
/oo /   roo     roo \ 

e2niuv I /       g^^^)e^Pye^i^dxdy )  du, 

■00 \J — 00 J-00 / 

and letting x = t cos 6, y = t sin #, 

/oo /   roo    r2ir \ 
e2*iuvl /       0(U)t)e2*«(»cos«+psin»)idtd0\  rfu 

-oo VJO     JO / 
/OO       /-OO /     />27T .  \ 

/     g(u, t)e27Tiuv     /     e
2™V"2+P2 sin(«-V) rfö W <ft rfu 

-oo JO \J0 / 
/oo      /-OO 

/     g{u,t)Jo(27Tt^/v2 + p2)e2iriuvtdtdu 
-co JO 

=   1    (F,//o)(UiV^^2). (29) 

Therefore, from (27) and (29), 

j^F\v,p) = ir\p\CR)cg)^F\v,p). (30) 

5.3    Fast Backprojection Method 

Nilsson [26] has developed a fast backprojection method for the operator (28). This 
is similar to the method developed in [20]. Nilsson's method has been applied to the 
CARABAS-II low-frequency ultra-wideband VHF SAR sensor [35, 36]. 

5.4    Link to the Range Migration Algorithm 

Milman [22] has shown that the range migration algorithm (RMA) [8, 21, 31] can be 
viewed as a close approximation to a Hankel-Fourier transform representation of the inverse 
CRT, similar to the one presented in Section 5.1. We will now examine this development 
in detail. 

12 
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Starting with the CRT1, 

g(u,t) = f{x,y)dxdy, 
JJ  [x-u)'i+y2=f2 )2+y2=i2 

Milman noted that the hyperbolic geometry in the (it, i)-plane suggests the use of hyper- 
bolic functions to simplify the integrals. Re-arranging the circle of integration, 

(it - xf      t2 

— - — H = 1 9 r       9 "> yZ yZ 

we see that it defines a rectangular conjugate hyperbola in the (u, f)-plane centred on 
(x,0), with parametric representation (ysinhip + x,ycoshtp), ip € R. Therefore, if we 
define 

y sinh ip = x — u 

then using the identity cosh2 ip - sinh2 ip = 1 we obtain 

x = t tanh ip + u 

y = tsechip. 

The Jacobian of the transformation (x,y) —> (t,tp) is -tsech^ so dxdy = tsechip dip, 
and we can write 

/oo 

f(t tanh ip + u,t sech tp)t sech ip dip. 
■oo 

Let 

/   *\    g{u,t) 
9o(u,t) = —j—. 

Then taking the two-dimensional Fourier Transform of go(u,t) we have 

. . /"OO       /-OO       /-OO 

g(
0
,}(v,k)= /      /     e2ni^u+kt^f(tta,nhiP + u,tsechiP)sechipdipdudt, 

J—oo J—oo J — oo 

and letting t — y cosh ip so that dy = dt sech ip, 

/OO      /-OO      /-oo 

/      /     e2^vu+kycosh^f(ysmhiP + u,y)dipdudy 
■00 J —oo J —OO 

and letting it = x - y sinh ip so that du = dx, 

/OO       /"OO       />0O 

/       /     e
2,ri(^cosh'/'-^sinh^)e27rira/(x,y)#da;d2/. (31) 

-oo J — oo J—oo 

Milman included an e4rrl * term in his definition, where A is the wavelength of the radiation. We do 
not need this term because we assume that the differing phase lags with respect to frequency have already 

been taken into account by the radar to measure pit V —^- ]. 

13 
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Next, we let k2 — k2 - v2 (this is called the Stolt transformation [8]). Also we define 

k v 
cosh</> = —,        sinh(f)=—, <f> e R, 

y */ 

and we can see as expected that 

k2   -  ?,2 

Then, 

cosh  <£ - sinh <f> = —-^— = 1. 
ky 

cosh(^> — </>) = cosh ^ cosh </> - sinh tp sinh < 

= — cosh tp — — sinh ij). 

and we can rewrite (31) as 

. /"OO       /-00       /-OG 

9{o,)(v,ky)= /      /     e2vivxe2iriyk»cosh^-^f{x,y)d^dxdy (32) 
./-OO ./—OO ./-OO 

The Hankel functions of the first and second kind (also called Bessel functions of the 
third kind) are given by the integral representations [19] 

ni J- 

'o   w = • / 
7™ J- 

So we can rewrite (32) as 

. . OO 

H{
0
l)(x) = ^. I     eixcoshtdt 

. . OO 

m2)lx) = ; /     e-ixcosbtdt. 

/CO        rOC 

/     H^(2iryky)e
2vivxf(x,y)dxdy, (33) 

-OO J—OO 

after ignoring the ^ term because we are integrating over an infinite domain. Using the 
Hankel functions as a kernel, the Hankel transform pair of order zero is here defined to be 

/OO 

H^]{2irqr)f{r)rdr 
-OO 

/OO 

H^\2nqr)J^\q)qdq. 
-OO 

Let fo(x,y) = f{x,y)/y. Then (33) can be rewritten as 

gloFjr)(v,ky) = ^fl
0
F^)(v,k„), (34) 

or in other words, the two-dimensional Fourier transform of go (after the Stolt transfor- 
mation) is equal to the Fourier transform with respect to x and the Hankel transform of 
order zero with respect to y of f0(x,y). Therefore, we can write that 

1^1 =   r   r e-2^H(
0
2)(2nyky)g

{
0
F-F)(v. ky)ky dk,, dv. (35) 

y       J—oo J—oo 

14 
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(2), The asymptotic expansion of HQ   (Z) for large z is given by [17], 

H0   (z)~^-e        4JL    „!r(-n+i)    ' (36) 

n=0 \ H 

and taking only the first term of the expansion we obtain 

42)(z) « ^e-^-^. (37) 

(Note that this is equivalent to making the stationary phase approximation [22].) Therefore 
we can rewrite (35) as 

i  _i_ • roo     roo 

f(x,y) * -±j=Jy- /      /     e-2vilvx+kvriy/k;glF'F)(v,ky)dkydv. 
7TV 2 J-oo J-oo 

(38) 

5.4.1    Shift to Scene Centre 

The origin of the swath is usually shifted from the antenna position to the centre of 
the swath to reduce the bandwidth of a signal. To achieve this let the centre of the swath 
be (xo, yo), and define the new coordinates x' — x — xo and y' = y — yo- Then we rewrite 
(32) as2 

g{o'\v,ky) = e2nivxo /       /     e2nivx'e2^y'+y^kycosh^-^f'{x',y')dipdx'dy',   (39) 
J — 00 ^—00 ./—00 

where f'(x',y') = f(x' + xo,y' + XQ)-  Then following through the steps of the previous 
subsection, we obtain 

f'(x',y') * 1 + *   /'       f°°   r e-2ni(vx'+kyy'^e-2™Xoe-2*ikyy°g{
0
F>F)(v,ky)dkydv. 

7rv2 Vy' + y J-oo J-oo 
(40) 

5.4.2    Statement of the Range Migration Algorithm 

We are now in a position to state the RMA from (40): 

1. Compute the two-dimensional Fourier transform of the scaled signal go(u, t) to obtain 

<?fF)(<a)- 

2. "Match filter": compute y/kie-2*ivx°e-2irikvv° g{
0
F,F){v,k). 

3. Perform the Stolt transform k2 = k2 — v2 by interpolation and resampling of the 

second variable jfc to obtain y/k~e~27rivXoe~27rikyy° g{
0
F,F)(v, ky). 

4. Compute the scaled inverse two-dimensional Fourier transform (40) of the output of 
the previous step to obtain f'(x',y'). 

Consequently, we can see that the RMA is an approximation to a Hankel-Fourier 
transform formulation of the inverse CRT. 

2Note the difference from (27) of [22]. The presence of the cosh(i/> — <j>) term means that it is incorrect 
to take an e2lrlkyV term outside the integrals. 

15 
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5.4.3    Validity of the Hankel Function Approximation 

How accurate is the approximation in (37)? This will determine whether the novel 
techniques we develop later in this report have practical utility, because the range migra- 
tion algorithm is a widely understood public domain algorithm, which is believed to cope 
completely with range migration and be applicable to high squint and ultra-wideband SAR 
[8]. 

Prom Lebedev [19], the residual of the approximation in (36) is given by 

,    , u       T2(n+hJ2\T\ 
\rn{z)\ < -j, argz  <7T-<5, 

7rn!(2|z|sin£)"+2 

where S is an arbitrarily small positive number. When n = 0 (taking the first term in the 
expansion (36)), rn(z) simplifies to 

8|z|(sin<J)5 \\Z\J 

Therefore, the error in the approximation (37) is of the order of l/(yky), but the constant 
3 

factor could be extremely large due to the presence of the (sin6) 2 in (41). 

Figure 2 shows the magnitude of the residual 

r0(z) = H™(z)-J^e-il*-V, (42) 
V nz 

where for our purposes z = 2nyky from (35). Clearly the residual decays to zero rapidly 
as expected from (41). We will now examine the range of values of z = 2nyky that are 
likely to be encountered in practice. 

The signal support of the range spatial frequencies ky is determined from the fast-time 
and slow-time spatial frequencies k and v, respectively, by k2 = k2 - v2. The fast-time 
spatial frequency k has units of radians/m and signal support given by [8] 

k € [4TT(/C - B/2)/C,47T(/C + B/2)/c], 

where fc is the radar centre frequency (Hz) and B is its transmitted bandwidth (Hz). For 
the n-th target, its slow-time spatial frequency v has support [32] 

v e £ln = [2-cos(9n(-L),2-cos6UL)l, 
c c 

where 6n(u) is the aspect angle (measured off trajectory) of the 71-th target when the 
radar is located at (u,0), L is half the size of the synthetic aperture, and ui = 2nf is 
the transmitted signal's instantaneous angular velocity (radians/s). For a given fast-time 
frequency k, the slow-time spatial frequency signal support of ?> for the total echoed SAR 
signal s(u,t), denoted Qs, is given by the union of that for all targets in the target area. 
For spotlight mode and a planar radar aperture, [32] 

ns 2-COS0C-2-     - + —    ,2-cos0r + 2-     ^ + — 
c c \      xc Uxlc c  \      xr Dx 

16 
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Figure 2: The magnitude of the residual: ro(z). 

where 9C is the average squint angle (measured off trajectory), xc is the mean range of 
the target area, Dx is the length of the antenna, and A = 2-KC/UJ is the instantaneous 
wavelength of the radiation. 

Using the above equations for the support of fast-time and slow-time spatial frequen- 
cies, it is possible to show when problems are likely to occur with the RMA. In surveillance 
and mapping applications, the standoff to the swath is usually measured in kilometers. If 
we take the example given in Table 10.1, p. 410 of [8], the minimum slant range of the 
imaged scene is y = 712.35 m for a radar with a radar centre frequency of 242.2 MHz. 
The transmitted bandwidth is B = 133.5 MHz, the half synthetic aperture L = 380.4 
m, and we assume that the antenna length Dx = 4 m for a broadside geometry. Then 
k € [7.3576,12.9496] radians/m, and v € ft, sa [-5.94043,5.94043] at the minimum instan- 
taneous frequency. Therefore z = 2ny\/k2 - v2 - 19430.3 in this example. However, by 
shortening the antenna length Dx it is possible to make ky arbitrarily close to zero which 
puts one in the regime where the approximation residual is large. Further investigation is 
required to understand when this is likely to occur in practical systems, but this simple 
example shows that it is possible in practice. 

5.5    Deconvolution Method 

Norton [27] in the context of acoustic imaging has developed a method to reconstruct 
a reflectivity field from line integrals over circular paths. Following [27], we may rewrite 
(21) in terms of Dirac delta functions so that 

9( 
/OO       POO 

/     f(x,y)6(t-y/(x-u)2 + y* 
-OO J-OO ^ 

dxdy. (43) 
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Norton then uses the property of the Dirac delta function that 

S(z-a) = 2z6(z2-a2) (44) 

for x > 0 and a > 0 to write 

/OO        /-00 

/     f(x,y)6(t2-(x-u)2-y2) dxdy. 
-00 J — oo 

(45) 

This manipulation is not correct, however, because the substitution of (44) into (43) has 
used z = t and a = yj{x — u)2 + y2, which is only appropriate if the integral (43) is with 
respect to t, but it isn't. Consequently, the equations Norton derives to invert (45) are 
not the inverse of (43). 

6    Resampled Fourier Methods for Inverting the 
Circular Radon Transform 

We now present a novel method for inverting the circular Radon transform via Fourier 
transforms and appropriate resamplings. We derive the result by two different methods 
and show that they are equivalent; firstly directly via change of variables, and secondly 
via the projection slice theorem. 

6.1    Square Fourier Transform Method 

Firstly, let us define the square Fourier transform (FT) of the received signal g by 

/OO 

e2^t2g{u,t)dt, (46) 
-00 

then from (22) 

/OO       1-2-K 

/     e27riu*2 S'{u + t cos 6,t sin 0)tdtd9. 
-co Jo 

Making the change of coordinates from polar (t, 6) to Cartesian (x, y) (dx dy = tdtdO from 
the Jacobian) and then translating in x so that (u. 0) is now the origin gives 

/oo     roc 

/     e2lTiw{{x~u)2+y2) f{x,y) dx dy 
-co J — oo 

/OO      /-oo 
/    e^i*2+y2)e-2*i(-2^)Tf(xy)dxdy^ (47) 

-oo J -oo 

Next, make the change of variable r = x2 + y2 so that 

x = x 

y = yfr-X2. (48) 

18 
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The Jacobian of this transformation is 

d(x, r) 

so then 

dx      dx 
dx      dr 

dx     dr 

1 0 
~x 1 

\ft—x1     2s/i—x2 2\Jr — x2 

dx dy = — dx dr. 
2yr - x2 

We define the function k(x, r) by 

{f(x,Vr—x2) n^l   |2 s 
Vr^x^ u < l^l   < r (49) 

0 otherwise, 

where we have assumed that f(x, y) = f(x, —y) so we need only consider the positive root 
of %/r — x2. 

Then we can rewrite G(u, u) in (47) as 

/OO       POO 
/       e2niure2iri(-2üju). 

-oo J — OO 

2nium2   I        I      „2Kiojr„2ni(-2u>u)xJ\xiVr      x ' dx dr 

Zs/T^X1 

/•oo     roo 
2^u2   I I       ^vH-2wu)x^niUrk^x^dxdr 

J—oo J —oo 

= e2niuJu2K(-2uu,Lj) 

(50) 

where 
/oo    /-oo 

/       e
2*i™e

2™ßrk(x^dxdr 

-oo J—oo ' —oo J — oo 

-7TI 
= e—WG(__^). (51) 

Calculating the Inverse 

Consequently, given g(u, t), the inversion of the CRT can be carried out by the following 
series of resamplings and Fourier transforms. Firstly, let h(u, r) be a scaled resampling of 
g(u, t) defined by 

*(«.r) = 2^. (52) 

This resampling converts the square FT of g in (46) into the standard FT of h, so that 

/oo 
e2viuTh(u, T) dr. (53) 

-oo 

Next, we resample G according to 

K(a,ß) = e-^G(-^ß) (54) 

19 
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and then compute k(x, r) by the two-dimensional FT of K by 

/oo     roc 

/     e-2niaxe-27rißrK(a,ß)dadß (55) 
oo J — oo 

which we resample to give f{x,y) by 

f(x,y) = yk(x,x2+y2). (56) 

Note that we have used this method to compute some analytic inverse CRTs in Section 7.3. 

6.2    Reduction to a Normal Radon Transform 

Starting with (22) we make the change of variable x = u + t cos 6 so that 

dx — -ts'mOdO 

sin0= Wl 
(x — u)2 

t2   ' 

and using f(x,y) = f(x, —y), we can rewrite the integral in x as 

g(u,t) = -2 f ' f{x^t2-{x-u)2) ]        =dx. 
Ju + t sjt1 — (X - U)1 

Now y = ^Jt2 - (x - u)2, and making the change of variables (x,y) i—> (x,r) as in (48), 
i.e. r = x2 + y2, we have that Vr - x2 = y/t2 - (x - u)2 and r = t2 - u2 + 2xu. Therefore, 
from the definition of k(x,r) in (49), we obtain that 

ru+t 

g{u,t)= 2k(x,t2 -u2 + 2xu)tdx. (57) 
Ju-t 

We recognise this as the integral along the straight line x cos 6 + rsinö = p in the (x,r) 
plane where 

2u •   /> 1 t2~u2 

cos6=  sin (9 = -7: p=—===. (58) 
\/l + 4u2 v/l + 4u2 ^      Vl + Au2 V    ; 

However, the integral is not with respect to arc length along the line: to achieve this we 
note that 

dl = y/l + 4w2 dx, (59) 

which takes into account the length of the line, so that the normal Radon transform 
(Hk)(p,6) of k(x,r) is given by 

CJlk)(p,8) =  / k(x,r)dl 
J (j\r): j-cosö-f /• sin 8=p 

k(x.t2 -u2 + 2xu)dx. (60) 
"30 
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We can extend the limits of integration of (57) to (-00,00) by noting that k{x,r) = 0 for 
|x| > r, r < 0. Therefore, we can rewrite (60) as 

\/1 4- 4?/2 

(ftfc)fofl) =     2t    g{u,t). (61) 

Nilsson [26] has developed a very similar expression to this to relate the CRT to backpro- 
jection along straight lines. 

By appealing to the projection slice theorem, we can write 
/oo 

e2viup{Tlk)(p,9)dp 
-00 ' —00 

fOO 

Prom (58) we can rewrite this as 

2^4==^= y/i + 4u2   ,    iX       It 
at 

-27T»     ""2 „      r°°     2m       "       t2    , v 
vI+W2   /     e     Vi+4«2   g{u,t)dt 

J—00 
= e 

-00 

.-(aicost)2 

= e-
27r' 4WSin« G(u, u sin 6»). (62) 

By letting a = u cos 6 and /3 = w sin 0 we obtain 

-*i£~,    a 
K(a,ß)=e-mWG(-—,ß) (63) 

provided that w/0. Note that in (63) we have obtained the same expression as in (51), 
confirming the earlier result. 

Calculating the Inverse by the Normal Radon Transform 

Examining the derivation of the CRT and its relationship with the normal Radon 
transform above leads us to the following series of resamplings and Fourier transforms as 
an alternative to the ones in Section 6.1. Firstly, scale g(u, t) to determine the normal 
Radon transform otk(p,9) using (58) by defining the resampled function h(p,Q), 

Hp,e) = 2«ne/-L+   *   9 [^ö^£e + I^e)' (64) 

so then 

{Kk)(p,0) = h(p,0) 

by (61). Next, we invert the normal Radon transform (TZk)(p,6) to obtain k(x,r) by one 
of the methods outlined in Section 2.1, i.e. , 

k{x,r) = (ll-1{Kk)){x,r). 

Then we can resample k(x,r) to obtain f{x,y) by 

f{x,y) = yk{x,x2 + y2). 
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7    Properties of the Circular Radon Transform 

In this section we examine a number of properties of the CRT. These include the effect 
of translation of the target function in the transform domain, and the CRT and inverse 
CRT (ICRT) of some simple functions. These properties are important because we will 
use them later to suggest further new methods for SAR image formation. 

7.1    Translations 

Firstly, note that the translation in x corresponds to a translation in u in the transform 
domain from the definition (22) so that 

{Tlcf(x - xhy))(u, t) = g(u - Xi,t), (65) 

where (1lcf(x,y))(u,t) = g(u,t). Note that this applies for all f{x,y). 

Next, let us consider the effect of translation perpendicular to the imaging trajectory. 
Let us consider a disc as our target function f(x,y), but this time displaced from the 
origin along the y axis (Figure 3), 

f(X,V>>      { 0   otherwise. 
x2 + {y~ Vi)2 < r2 

This target function is radially symmetric, which simplifies considerations for the moment. 

Figure 3 also shows the circular integration path of radius t centred at (u, 0) intersecting 
the disc centred at (0, yi). It is clear from this diagram that the resulting path integral 
is equivalent to that obtained from a disc centred at the origin integrated along a path 

centred on {Ju2 + y2,0). Consequently, for radially symmetric target functions, we may 
write 

(ncf(x, y - yi))(«, t) = g(sju2 + y2, t). (66) 

For target functions that are not radially symmetric, clearly the target function imaged 
at (0, yi) has undergone a rotation with respect to that imaged at the origin. The rotation 
is through an angle of ip = - tan-1 ^ which changes with slow-time u. Then we can write 

(TZcf(x, y-iji))(u,t)= g_ tan_i Mu?+ yf,t) (67) 

where </</,(u, t) is a function of %p as well as u, t, and is the transform of the rotated target 
function given by 

gji,(u,t) = (1lcf (x cos ij> + y sm IJK-X sm ij> + y cos ij>)){u.t). (68) 

Consequently, to determine the CRT of a target function translated along the ty-axis, we 
need to know its CRT at all rotations ij> when it lies on the x-axis. 
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Figure 3: The geometry of a disc displaced from the origin along the y-axis, perpendicular 
to the imaging trajectory. 

7.2    Analytic Forward Transforms 

In this section we explore a number of different analytic expressions for the forward 
circular Radon transform. 

7.2.1    Delta Function 

Let our target function be the delta function located in the {x,y) plane at the point 
(0,yj). Then we may write 

f(x,y) = 6{x)8{y-yi), 

where <£(•) is the Dirac delta function. The CRT of the delta function is then given by 

g{u,t) =        f(u + tcos8,tsinO)td0 
Jo 

= /    5(u + tcos0)6{tsm8-yi)td6, 
Jo 
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Figure 4:  The trace of the circular Radon transform of a Dirac delta function at (0,2). 
The weighting function on the implicit curve in (70) is not shown. 

then from Papoulis [28], S(a(t)) = £4 |j^, where U are the zeros of a(t), 

r2* 6(6 ~ C0S~1 ^ S@ ~ sin_1 ^ -I 0       t sin cos-1 -^     t cos sin x ^. 
-<< 

1 f271 -v 
=        6(9- cos"1 — )5(0 - sin"1 ^) d9 (69) 

'/H)HJ 
then solving cos-1 =f - sin-1 & for t and taking the positive root we obtain 

g(u,t) = {   y(i-^)( 
0 

»? 
^ 

i£t = yfu* + y? 

otherwise. 

(70) 

Figure 4 shows a plot of the trace swept out by the CRT of the delta function. Note the 
hyperbolic shape, which is characteristic of the CRT of finite or concentrated objects in 
the (x,y) plane. 

7.2.2    Disc 

Let us consider a disc centred on the origin, with its circumference given by 

x2 + y2 = r2. 
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We wish to determine the CRT of this disc for irradiating circles of radius t centred on 
the x-axis at the point (u,0). To do this, we need to determine the length of the arc of 
the circle that intersects the disc. 

Let g(u, t) denote the resulting CRT of the disc. In the case where \u\ > \r+t\, the circle 
will not intersect the disc, and g(u, t) = 0 in such circumstances (Figure 5(a)). When \u\ = 
\r +1\, there is a non-enveloping osculation between the disc and the circle (Figure 5(b)), 
but because the intersection between the two occurs at an infinitely small point, g(u, t) = 0. 
When \r — t\ < \u\ < \r + t\, intersection occurs between the circle and disc (Figure 5(c)), 

and the length of the intersecting arc is given by g(u,t) = 2icos_1 (" +2tüT )• ^he 

enveloping osculation occurs when |u| = \r — t| and t ^ r (Figure 5(d)), and the entire 
circle lies within the disc, i.e. , g(u,t) = 2irt. If |u| = \r — t\ and t = r then the circle 
lies on the circumference of the disc and g(u, t) = 2nt. If |u| < \r - t\ and t < r then 
the circle is completely enveloped by the disc and g(u, t) — 2wt (Figure 5(e)). However, if 
\u\ ^ \r — t\ and t > r then the circle envelopes the disc and g{u,t) — 0, intersecting at 
most at a single point when |u| = \r — t\. 

In summary, the CRT of the disc centred at the origin is given by 

g(u,t) = < 
2*cos-1("2+

2fu-
r2)    if|r-i|<|u|<|r + i|, 

2irt if |u| < \r - 11 and t ^ r, (71) 
0 otherwise. 

Figure 6 shows a density plot of the CRT of a disc of radius one. Figure 7 shows the effect 
of translation along the y-axis on the transform of a disc of radius one. 

7.2.3    Gaussian Radial Basis Function 

Let the Gaussian radial basis function (RBF) be defined by 

f{x,y) = e-*<-x'+y'l (72) 

Then the CRT of f(x,y) from (22) is given by 

/•2-K 

g{u,t) = (Kcf)(u,t) = f{u + tcos0,tsm8)td9 (73) 
Jo 

= 2irte-^t2+u^I0(2TTtu), (74) 

where IQ(-) is the modified Bessel function of the first kind of order 0.  Figure 8 shows a 
density plot of the CRT of the Gaussian radial basis function. 

We can check the effect of translation of the Gaussian RBF along the y-axis to con- 
firm the relationship in (66) for radially symmetric target functions. Figure 3 shows the 
geometry of the problem. If we denote the - tan-1 ^ rotated coordinate system (x',y') 
centred on (0, yi) in the (x, y) plane with x' axis passing through the x-axis at x = u, then 

we can rewrite the Gaussian RBF function as f(x',y') = e_7r^ +y \ The centre of our 

integrating circle is located at [Ju1 + y?,0) in the rotated coordinate system, so then the 
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CRT of f{x, y) from (22) is given by 

g{u,t)= fi\Ju2 + yf + tcos6,tsin0)td8, 

which integrated gives that 

g(u,t) = (ncf(x,y-yi))(t,u)=2nte-^t2+u2+y?h0(2ntyfi^tf). 

Figure 9 shows the effect of translation along the y-axis on the transform of the Gaus- 
sian RBF. 

7.2.4    Vertical Line 

Let our target function be the vertical line at x = 0. Then we may write 

f{x,y) =6{x). 

The CRT of the vertical line is then given by 
/OO       /-OO 

/     f{x, y)Sit - y/ix - u)2 + y2) dx dy 
-OO J — OO 
/oo     roc 

/     6ix)S(t - y/ix - u)2 + y2) dx dy. 
-OO •/—oo 

Following Papoulis [28], the angle of the intersection of the two line masses 6(x) and 
5{t — y/(x - u)2 + y2) is given by 

sin 9= \  1 

and so the density at each intersection is 1/v/l - ^r- Therefore, 

giu,t) = l   7^1 
===    if lul < t 

'7? 
otherwise. 

7.2.5    Vertical Line Segment 

Let our target function be the vertical line segment at x — 0 in the interval y € [yo, ?/i] 
where 0 ^ yo < y\. Then we may write 

/(*.v) = ( i{x)  if?°^<yi J
 v    ,v/      \ 0 otherwise. 

The CRT of the vertical line segment is then given by the expression 

f -O^   if y/^Tyl < t < y/^Tyl 
giu,t) = <    V1-?r 

I   0 otherwise. 

using the density at the intersection calculated in Section 7.2.4. Figure 10 shows a density 
plot of the CRT of a vertical line segment. 
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(a) Non-enveloping non-intersecting: |u| > \r+ 

t\ 

(b) Non-enveloping osculation: \u\ = \r + t\ 

(c) Intersecting: \r - t\ < \u\ < \r + t\ (d) Enveloping osculation:   |u| = \r — t\ and 

(e) Enveloping: |-u| <\r-t\ and t ^ r 

Figure 5: The various cases under which a circle can intersect a disc. 
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Figure 6: The circular Radon transform of a disc of radius one centred at the origin. 

Figure 7: The CRT of a disc of radius one displaced from the origin along the y-axis to 
be centred on y = \/E. 
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Figure 8: The circular Radon transform of a Gaussian radial basis function centred at the 
origin. 

Figure 9: The CRT of a Gaussian radial basis function displaced from the origin along the 
y-axis to be centred on y = y/E. 
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Figure 10: The CRT of a vertical line segment in the interval y0 = 2,j/i = 4. 
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7.2.6    Horizontal Line 

Let our target function be the horizontal line at y = y{. Then we may write 

f{x,y) = S(y-yi). 

The CRT of the horizontal line is then given by 

/OO      fOO 

/     /(x, y)S(t - y/(x - u)2 + y2) dx dy 
-00 J — OO 

/OO 

% - Vi)S{t - \/(x - u)2 + y2) dxdy. 
-00 ■/ 

Following Papoulis [28], the angle of the intersection of the two line masses S(y - yi) and 
S(t - y/{x — u)2 + y2) is given by 

sin(— — o) = cosy = —-, 
Li Z 

and so the density at each intersection is A. Therefore, 

g(u,t) J2R   if 
\ 0       ot 

t > Vi 
otherwise. 

7.2.7    Horizontal Line Segment 

Let our target function be the horizontal line segment at y = yi in the interval x € 
[xo,Xi] where xo < x\. Then we may write 

t(~ ,.\ - j S(y- Vi)   if xo < x < «i 
A 'y;     \ 0 otherwise. 

The CRT of the horizontal line segment is then given by the expression 

fa    if (u - Xlf + y2 ^ i2 < (« - x0)
2 + y2 

g(u,t) 

\iu^ x\\ 

if u ^ XQ: 

J R 
}_ 0     otherwise 

JR if(- 
\ 0     othe 

xoY + yf^t^iu-xtf + y2 

otherwise 

if XQ < u < x\:    < 

f 0 iit^Vi 
2 fa if (u - x0)

2 + y? > i2 and (« - Xl)
2 + y2 > i2 

^ if (u - x0)2 + y2 < i2 and (it - xx)
2 + y2 ^ t2 

fa if (u - x0)2 + y? > i2 and (u - xi)2 + y2 < t2 

0 if (u - x0)2 + y2 < i2 and (it - xi)2 + y2 < t2, 

(75) 

using the density at the intersection calculated in Section 7.2.6. Figure 11 shows the 
geometric configurations that contribute to the cases in (75). Figure 12 shows a density 
plot of the CRT of the horizontal line segment. 
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H 1 1- -*-         1- 
X,   u 

"►       1 1 H 
*<) "I 

(b) (c) 

-i—i 1 ► 
u      X„ X. 

-1—1 >-► 

(d) (e) (f) 

H ►        ►" _, ^.         1 1 K 

(g) (h) (i) 

-t 1—t- -i—i 1- 

(j) (k) (1) 

Figure 11: The various cases under which a circle can intersect a horizontal line segment. 

7.2.8    Simple Polynomials and Other Functions 

Table 1 presents the CRT and SCRT of a number of simple target functions.   Note 
that Si(-) is the sine integral, defined to be 

Silz 
Cz s'mt  , 

= /    dt. 
Jo     t 

7.3    Analytic Inverse Transforms 

In this section we will use the resampling transforms presented in Section 6.1 to derive 
the inverse CRT for target functions with known CRT. 
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Figure 12: The CRT of a horizontal line segment y* = 2 in the interval x0 = -2, x\ = 2. 
A square-root mapping to compress the grey scale has been used in this density plot to 
make the "arms" visible. 

7.3.1    Bessel Function 

Let our taxget function be the CRT of the Gaussian radial basis function in (72), 

g(u, t) = 2nte-^t2+u^I0(2irtu). (76) 

Firstly, note that g{u,t) is odd in the second variable t, so we assume that g{u,t) = 0 for 
t < 0. Then following the steps presented in Section 6.1, from (52) and (53), 

/OO 

e2*fcrtate-*(*a+«a)j0(27rtu)dt 
-OO 

= 27re-™   /    tent^iul-l)J0(2nitu)dt, 
Jo 

then using (6.631.4) from [13], 

G(u,w) = 
g 1—2tw 

l-2iw' 

Then from (54), 

a 
K(a,ß)=e-*lWG(-^ß) 

_ ™2 

e  i-2iß 

= l-2iß' 
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f(x,y) (Kcf)(u,t) (^c/2/)(u,<) 

a 2airt ö7r£ 

ax 2antu a7riu 

ay 0 2ai2 

ax2 airt(t2 + 2u2) §07rt(t2 + 2u2) 

ay2 ant3 ^a7ri3 

ax2 + by2 Tc{at3 + bt3 + 2atu2) \ir{at3 + bt3 + 2atu2) 

axy 0 2at2u 

ax3 ant(Zt2u + 2u3) \airt{U2u + 2uz) 

ay3 0 fa*4 

ax2y a-Kt3u ^ant3u 

axy2 0 at2{\t2 + 2u2) 

a 
X 

2airt   ju+t 
t+u y u—t 

ant    ju+t 
t+u y u—t 

a 2airtu          1 u—t airtu             u—t 
(t-u)2(t+u) Y u+t {t-u)2{t+u) Y u+S 

sin(7r0-f) 
7T0-f i(5i(|)-Ä(f-27T2)) i(Ä(f)-5i(|-7r2)) 

Taö/e i: The CRTs and SCRTs of a number of simple functions. 

Then from (55), 

k(x,r) = p—2iriax  — 2-Kißr K(a,ß)dadß 

 2 

„-2max e 

l-2iß 
— da    dß 

/oo   --2itipr   /   /-00 2 \ 
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then using (3.323.2) from [13], 

foo     -2%ißr /oo   „-2inßr    ,      „ . 

-oo 

e = r -—7====—dp 
J — c y/l ~ 2iß 

/-co  p-2niß(r-x2) 
= e-™2 dß 

= e~™ 
2e-Tr(r-x2) 

y/r — x* 

k(x,r) = 

Using (56), 

y/r — x' 

f(x,y) = yk(x,x2 + y2) 
_ „-7r(x2+j/2) 

which agrees with (72). 

8    Options for Inverting the Circular Radon 
Transform 

In this report so far we have presented two equivalent methods in Section 6 for inverting 
the CRT via resampled Fourier transforms. In this section we discuss a number of options 
by which this inversion could be implemented. In addition, we present ideas for another 
novel method that uses an approximation to the fast-time matched filtered radar signal 
via a linear combination of analytic circular Radon transformed signals. 

8.1    Resampled Fourier Methods 

In Section 6.1, we presented a succession of resamplings and Fourier transforms that 
invert the CRT. There are a number of different ways of implementing this inversion, 
which we will now discuss. 

1. The most obvious approach to take is to undertake the implementations using the 
FFT algorithm in conjunction with interpolation to a uniform grid after each re- 
sampling. This is a relatively simple approach, but not particularly efficient because 
interpolation is generally computationally intensive. 

2. Two of the three interpolation steps could be eliminated by using non-uniformly 
sampled FFT algorithms [3, 4, 11, 29, 33, 37], which have computational complexity 
of the order of the standard FFT. 
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3. A combination of linear approximation and analytic expressions can be used to 
remove the need to compute some of the resampled Fourier transforms. For example, 
in the first step of Section 6.1, we compute 

/oo 

e2^t2g(u,t)dt. 
-oo 

If we approximate g(u, t) by a sum of Gaussian radial basis functions, 

g(u, t) = 2_^ cte. ^2 
i=i 

where for the moment we assume that a2 = 1/2, then we can write 

n roc 

G(u,tu) =^2ci 
-■   .       J— 00 

e-7T((t-t1)
2 + {U-Ul)

2)e27Tiu.'t2 df 

1 = 1 

Tl —TT{(II—ii   W. 
„2 

c «-"'■)   +2^+7) 

>/l - 2iw 

Following the next step, 

/OO       /-OO 

/     e-27riaxe-27lißrK(a,ß)dadß 
■oo J — OO 

/OO       /'OO 2 

/     e-
2-^e-2->e--%G(_^i/3)dad/3 

-00 J — oo 2p 

J-00 J-00 ■     V1 - 2i/i 

f°° " 1 27r.(t?-"2+2u,x)g + i(2<2 + 2u^-.lulx+2i2)/32+4x2/j:i /oo " 

■00 ,    ■ 

(77) 

where the integral (77) cannot be computed analytically and so must be carried out 
by some numerical means such as quadrature or by sampling the Fourier transform 
integrand and using the FFT. There are many other possible choices of basis function 
apart from the Gaussian radial basis function used in this example, and many other 
combinations of analytical and numerical steps could be employed to implement the 
resampled Fourier methods of Section 6. 

8.2    Linear Combination Method 

In this section, we develop an idea for SAR image formation that is the logical extension 
of the third idea presented in the previous subsection. The idea is to approximate the 
fast-time slow-time signal as a linear combination of the transformed basis, and then the 
reconstructed image is the same weighted sum of the original basis because the CRT is a 
linear transform.  The practical impediments to this approach are that in a real system, 
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only a portion of the transformed signal is observed because of the finite extent of the 
antenna beam pattern. The portion of transformed basis function observed will depend 
on the angle to the centre of the swath and the antenna pattern. 

We start out by considering the Gaussian RBF transform pair, 

„x2 + (y-yi)
2 

i-2-K 

g{u,t) = (Hcf)(u,i) = /     f(u + tcos6,tsine)td9 
Jo 

= 2irte-*-^^I0    ir 
V ^ , (78) 

where a is the width of the Gaussian RBF. Now (78) describes an hyperbolic shape with 
a finite cross-section (an hyperbolic ensemble (Figure 9)), which would approach (70), the 
CRT of a delta function, in the limit as a goes to zero (to a constant multiple). We need to 
determine the portion of the hyperbolic ensemble that is relevant to a particular imaging 
geometry and antenna combination. 

The average squint angle (off trajectory) of a target and its observed angular extent 
(dictated by the distance to target, beam width, and antenna steering) will determine the 
interval [uo,«i] over which the CRT of the target will be observed. If the target area is 
small enough, this can be assumed to be constant for all targets across the target area. 
Next, we determine the weighted sum of translates of the windowed version of (78) that 
best matched the received signal. Finally, the reconstructed image is given by the same 
weighted sum of the same translates of the Gaussian RBF. There are many details yet to 
be sorted out, however, to make this approach a practical one. 

Note that in this suggested approach, we have in broad terms substituted the stationary 
phase approximation of the RMA by another. However, it would be possible to control the 
fidelity of the new approximation to achieve any desired degree of accuracy in a natural 
way, something that is not possible in the stationary phase approximation. 

9    Motion Compensation 

We will now examine how motion compensation can be incorporated into the schemes 
presented here for image formation via inversion of the CRT. 

Let us examine the effect of perturbing a sample point on the transform space data. 
This is one step towards our goal of developing an inversion process for arbitrary imaging 
trajectory. Figure 13 shows the geometry of the problem. We consider displacement 
perpendicular to the imaging trajectory only, because displacement along the imaging 
trajectory is simple to deal with as we discuss in a moment (but also see Section 7.1). 
From this diagram we can see the effect of the perturbation, which is to change the radius 
of the intersecting circle at the sample point x = u along the imaging axis. 

We can calculate the effect upon the intersecting circle. Let d denote the displacement 
from the imaging axis as in Figure 13. Then the error in t of the transform of the points 

37 



DSTORR-0211 

(,i.O) 

(j.y) 

(u,d) ^\   °'                / 

d 

/\ ° 

Figure 13: The geometry of a displaced point. 

in the plane is given by 

t-t' = y/(x - u)2 + y2 - ^/{x - u)2 + (y - d)2 

= t- Vd2 + t2-2dtsin6. (79) 

If we displace the points in the target plane along the direction 0 to t', then the grid has 
been distorted to give that shown in Figure 14. 

Motion compensation for reconstruction via backprojection is simply a matter of ad- 
justing the coordinates to compensate for the platform movement, 

/(*■ n i yn ) —    / 
J u 

(     2v/(zn -u- xe(u))2 + (yn - ye(u))2 \ 
sm    u,     du. (80) 

More generally, motion compensation can be undertaken as follows [32]. Let our sensor 
platform trajectory be given by [u + xe(u), ye{u)]. Note that in standard approaches to 
image formation, standard FFT routines are used that require uniform sampling. Conse- 
quently, motion compensation in these cases must account for an error in the along-track 
direction to compensate for platform motion causing deviation from uniform slow-time 
sampling. However, if non-uniformly sampled FFT routines are used then this sampling is 
not a problem so motion compensation can be treated as an error in only the cross-track 
coordinate y. 

Let our generic SAR signal be given by 

s(u,t) = y^onp I t - 
2^/{xn-u)2 + y2 

Then using the shift theorem, the Fourier transform of the generic SAR signal with respect 
to fast-time t is 

S(u,u) = P(ijj) 2_] °n exP ( -^ik\/(xn - u)2 + y2 ) , 
n 

where k = ui/c and is called the wavenumber. Consequently, the measured SAR signal of 
target {xn,yn) in the {U,UJ) domain under motion errors is 

Sn(u,w) = exp i-A-Kik\f(xn - u - xe{u))2 + (y„ - yr(u))2\ 
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Figure 14: The distortion of the cartesian grid due to the displaced point. 

where the total measured SAR signal in the (it, u) domain is 

S(u, u) = P{u) ]P o-nSn{u, u). 
n 

We can rewrite this as 

Sn(u,u)) -aen(xn -u,yn,uj)exp y-Amk\J(xn - u)2 + y2J 

where the motion phase error function is given by 

aen{xn - u,yn,u) = exp(Anikren{u)) 

and the radial error for the n-th target is 

ren{u) = -y/{xn -u- xe(u))2 + {yn - ye{u))2 + yj{xn - u)2 + y2. 

Now, provided the fluctuations of aen(xn — u,yn, u) are small compared with the fluc- 

tuations of exp ( — Aniky/(xn — u)2 + y2 ), then by the method of stationary phase ([32], 

p. 99) the slow-time Fourier transform of Sn(u,uj) is 

Sen(ku,oj) = Aen(ku,üj)exp (-2irikuxn - 2wi^4k2 - k2 
Vn 

where 

Aen(2k cos 9n(u),uj) = aen(xn -u,yn,u) 
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and the aspect angle of the n-th target when the radar is located at (u, 0) is given by 

6n(u) = tan-1 ( — 
\xn -u, 

Now from the SAR mapping 

ky(ku,Lj) = ^4k2 - k2 

and the slow-time to slow-time frequency domain mapping 

ku = 2k cos 0n(u) 

we obtain that 

2k=y/kl + kl 

U = Xn — ~j—yn- 
Ky 

Therefore, aen(xn — u,yn,ui) directly maps into the (ku,u)) domain, and furthermore, the 
(ku,u)) domain directly maps into the target spatial frequency domain (kx,ky). Conse- 
quently, provided that the fluctuations of aen(xn - u,yn,u}) are small compared with the 
motion error-free signal, the motion phase error function aen(xn-u, yn,u) can be modelled 
as a filter in the spatial frequency domain (kx, ky). This filter, denoted Hen(kx, ky), varies 
spatially with the coordinates of the target, and is given by 

Hen\kx, ky) = aen(xn — u, yn,u) 

= exp (4-rrik ren(u)). (81) 

For narrow beamwidth SAR systems, the radial motion error function is approximated 

by 

ren(it) « xe(u) cos6C + ye{u) sin0C 

where 6C is the average squint angle (off trajectory) of the target area. Therefore, narrow 
beamwidth motion compensation is performed via 

Sn(u, öS) exp (-4nikxe(u) cos 0C — 4nikye(u) sin 6C), (82) 

which in the broadside case (9C = n/2) simplifies to 

~V(xn -u- xe(u))2 + (yn - xe(u))2 + y/(xn - u)2 + y2Sn{u,ui) exp {-Airikye(u)), 

a filter that is independent of the position of the coordinates of the target. 

In wide beamwidth systems, the assumption that the fluctuations of aen(xn - u,yn,uj) 
are small compared with that of the motion error-free signal is violated. One solution is 
to perform narrow beamwidth compensation first using (82), which reduces the dynamic 
range of the errors, and then apply the shift-varying filter (81) to compensate for the 
remaining positional errors. After the narrow beam compensation to average squint angle 
6C, the motion error still to be compensated for is given by the expression 

rexy = -y/(xn -u- xe(u))2 + (yn - xe{u))2 + yj(xn - u)2 + y2 - xe(u) cos 6C - yc\u) sin0c. 
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10    Conclusion 

The purpose of this report has been to present an alternative approach to SAR image 
formation from the perspective of circular Radon transforms (CRTs). This approach can 
naturally handle high-squint and ultra-wideband SAR. We have reviewed the literature 
on the inversion of circular Radon transforms, some of which has been undertaken by 
SAR researchers in Sweden for the CARABAS-II sensor. We present a number of novel 
possible approaches to the CRT inversion problem that could be developed into practical 
SAR image formation algorithms, and we will undertake this development in follow-on 
research. 
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