AFRL-SR-AR-TR-02-0165
2N Mo WO

KCAP K-CAP Conference Support

Yolanda Gil
University of Southern California

S, ‘ 20020517 021

Approved for public release; distribution unlimited

Air Force Research Laboratory
Air Force Office of Scientific Research
Arlington, Virginia

REPORT DOCUMENTATION PAGE

AFRL-SR-

Public reporlmg hurden Inr this collection of inf ion is estimated to average 1 hour per response, including the time for reviewing instructiont
the col of i Send regarding this burden estimate or any other aspect of this collection of information, including
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, «

1. AGENCY USE ONLY /Leave blank) 2. REPORT DATE

AR-TR—OZ-
OLLY f:) "ot

3. REb nwuuRIES COVERED
01 June 01 - 31 December 01

6. AUTHOR(S)

4. TITLE AND SUBTITLE
KCAP K-CAP Conference Support

Yolanda Gil

5. FUNDING NUMBERS
F49620-01-1-0437

7. PERFORMING ORGANIZATION NAMEI(S) AND ADDRESSIES)
University of Southern California

School of Engineering

4676 Admiralty Way, Suite 1001

Marina det Rey, CA 90292-6601

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES]
AFOSR/NM

801 N. Randolph Street Room 732

Arlington, VA 22203-1977

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F49620-01-1-0437

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
SEE ATTACHED SHEET

14. SUBJECT TERMS

15. NUMBER OF PAGES

209
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

Standard Form 298 gRev 2-89) {EG)
Prescribed by ANSI
Designed using Pev!orm Pro WHSIDIOR, Oct 94

_

Abstract F49620-01-1-0437

This report includes the compiled papers from the 1% International Conference on
Knowledge Capture held 21-23 Oct 2001 and sponsored by AFOSR.

In today’s Web-linked and data-rich world, there is a growing need to manage
burgeoning amounts of information effectively. Although indexing and linking documents
and other information sources is an important step, capturing the knowledge contained
within these diverse sources is crucial for the effective use of large information
repositories. Knowledge acquisition has been a challenging area of research in artificial
intelligence, with its roots in early work to develop expert systems. Driven by the
modern Internet culture and by knowledge-based industries, the study of knowledge
acquisition has a renewed importance.

Although there has been considerable work in the area of knowledge capture, activities
have been distributed across several distinct research communities. In machine
learning, learning apprentices acquire knowledge by non-intrusively watching a user
perform a task. In the human-computer interaction community, programming-by-
demonstration systems learn to perform a task by watching a user demonstrate how to
accomplish it. In knowledgé engineering, modeling techniques and design principles
have been proposed for knowledge-based systems, often exploiting commonly
occurring domain-independent inference structures and reusable domain-specific
ontologies. In planning and process management, mixed-initiative systems acquire
knowledge about a user’s goals by taking commands or accepting advice regarding a
task. In natural language processing, tools can process text and create representations
of its knowledge content. All of these approaches are related in that they acquire
information and organize it in knowledge structures that can be used for reasoning.
They are complementary in that they use different techniques and approaches to
capture different forms of knowledge.

The aim of k-CAP 2001 was to provide a forum in which to bring together disparate
research communities whose members are interested in efficiently capturing knowledge
from a variety of sources and in creating representations that can be (or eventually can
be) useful for reasoning. This conference promoted multidisciplinary research that could
result in a new generation of tools and methodologies for knowledge capture.

Topics presented included:

Knowledge acquisition tools

Advice taking systems

Authoring tools

Programming-by-demonstration systems

Learning apprentices

Knowledge engineering and modeling methodologies
Knowledge extraction systems

Knowledge management environments
User preferences elicitation tools
Mixed-initiative decision-support tools
Knowledge-based markup techniques

KCAP
K-CAP Conference Support

Final Report
March 21, 2002

Period of Performance
July 2001-December 2001

AFOSR Grant Number: F49620-01-1-0437

Yolanda Gil
USC/Information Science Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292
(310) 822-1511
gil@isi.edu

Table of Contents

K-CAP’01 Conference OrganiZers ... viii

IVIEEA TUROTIAIS oottt teenae e e b e bbb s e

Invited Speakers’ Abstracts

« Knowledge Capture for Boostrapping Intelligent Systemscccccceenennn
K. D. Forbus (Northwestern University)

o Researchindex: Inside the World’s Largest Free Full-Text Index

OF SCIENEIFIC LItOIaAtUIE .. oeoeeeeeeieeeeeeeeeeieeee e e ettt sti e neeeeseeeeseeesba e e enaeeane e
S. Lawrence (NEC Research Institute)

e Phenomenal Data-Miningcccooiiiiiiiiii i
J. McCarthy (Stanford University)

Technical Papers

« WebODE: a Scalable Workbench for Ontological Engineering.........................
J. C. Aspirez, P. Corcho, M. Ferndndez-Ldpez, A. Gomez-Pérez
(Universidad Politécnica de Madrid)

o A Library of Generic Concepts for Composing Knowledge Bases
K. Barker, B. Porter (University of Texas at Austin),
P. Clark (Boeing Math and Computing Technologies)

« Knowledge Entry as the Graphical Assembly of Components.........................
P. Clark, J. Thompson (Boeing Math and Computing Technologies), K. Barker,
B. Porter (University of Texas at Austin), V. Chaudhri, A. Rodriques, J. Thomere,
S. Mishra (SRI International), Y. Gil (University of Southern California),
P. Hayes, T. Reichherzer (University of Western Florida)

« Supporting Ontology Driven Document Enrichment within Communities
LYl o - 1o L1 =TT U U RO RPPPT PRI
J. Domingue, E. Motta, S. B. Shum, M. Vargas-Vera, Y. Kalfoglou, N. Farnes
(The Open University)

o Representing Roles and PUrPOSEe...........ooiiiiiiiiiimiiiiiioniii e
J. Fan, K. Barker, B. Porter (University of Texas at Austin),
P, Clark (Boeing Math and Computing Technologies)

o Learning Hierarchical Task Models by Defining and Refining Examples..........
A. Garland, K. Ryall, C. Rich (Mitsubishi Electric Research Laboratories)

« Building and Exploiting Ontologies for an Automobile Project Memory
J. Golebiowska (INRIA & Renault), R. Dieng-Kuntz, O. Corby (INRIA), D. Mousseau (Renault)

« Ontology-Based Operators for e-Business Model De- and Reconstruction......
J. Gordijn, H. Akkermans (Vrije Universiteit)

H Fumniture Accesories

- ey

a4iiel
R B3
‘:T Telephone Arm/Tray

ray
ERatE

filling the form that appears in the middie of the screen, and
contextual menus arise when right-clicking on any of the
visualized components.

This user interface also includes the functionalitics of
exporting/importing ontologies into XML or varied ontology
languages, inference engine and documentation.

OntoDesigner. OntoDesigner is a graphical user interface for
the visual construction of taxonomies of concepts and ad-hoc
relations between concepts, which is integrated in the
WebODE ontology editor as an applet. Figure 3 shows a
snapshot of OntoDesigner while editing an ontology on the
domain of office furniture.

Using OntoDesigner, the user can create different views of
the edited ontology, so that the visualization of parts of the
ontology can be customized while creating it. Moreover, the
user can decide at any time whether showing or hiding
different kinds of relations (either predefined or ad-hoc)
between concepts, in the sense of a graphical prune.

Axiom Manager. This applet is used to ease the management
of formulae in the WebODE ontology editor. It allows the
user to create axioms using a graphical interface and provides
functionalities such as an axiom library, axiom patterns and
axiom parsing and verification.

5. RELATED WORK

WebODE has a strong relationship with ODE [3]. Both
applications allow building ontologies at the knowledge level,
and translators are used to implement them in different
ontology languages. ODE was created as a classical
application for single users and was difficult to extend.
Furthermore, ontologies were stored in a Microsoft Access
database, which proved to be inefficient when dealing with
large ontologies. However, while ODE knowledge model is
flexible, WebODE knowledge model is fixed, as has been
explained in this paper.

12

Key Hotger

Protégé2000 and OntoEdit are ontology development tools
developed at the same time than WebODE, and using a
similar design rationale, although they are not web-based but
stand-alone applications. In fact, they share many
functionalities (ontology edition, ontology documentation,
ontology exportation and importation into XML and other
languages). Moreover, Protégé2000 has been developed
using a plug-in architecture, where new services can be added
easily to the environment. However, WebODE integrates all
its services in a well-defined architecture, stores its ontologies
in a relational database (avoiding the use of text files) and
provides additional services such as the inference engine, the
axiom builder, ontology acquisition or catalogue generation.

OilEd was developed in the context of the OntoKnowledge
[22] EU project for the easy development of OIL ontologies.
It is not intended as a complete ontology editor, but just “the
Notepad for OIL ontologies”.

Other “classic” editors, such as WebOnto, Ontolingua and
OntoSaurus, can be used for the edition of ontologies in a
specific language (OCML, Ontolingua and LOOM,
respectively). They do not use -databases for storing
ontologies.

6. CONCLUSIONS
In this paper, we have stated the need for a workbench for
ontological engineering that allows:

o the development and management of ontologies,

e a wide use and integration of ontologies using a set of
useful ontology middleware services, and

e the rapid development of ontology-based applications for
their integration in enterprise information systems.

We have presented the WebODE workbench as a solution for
this needs, describing its expressive knowledge model for
representing ontologies, several built-in services and
additional reusable services, such as WebPicker, OntoMerge
and OntoCatalogue.

The Association for Computing Machinery
1515 Broadway
New York, New York 10036

Copyright © 2001 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital
or hard copies of portions of this work for personal or classroom use is granted without fee provided that
copies arc not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyright for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or <permissions@acm.org>.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously
published by ACM. If you have written a work that has been previously published by ACM in any journal
or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this
work to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the
work, the author(s), and where and when published.

ACM ISBN: 1-58113-380-4

Additional copies may be ordered prepaid from:

ACM Order Department
PO Box 11405
New York, NY 10286-1405

Phone: 1-800-342-6626
(US and Canada)
+1-212-626-0500

(all other countries)

Fax: +1-212-944-1318
E-mail: acmhelp@acm.org

ACM Order Number 607010
Printed in the USA

Cover Design
by Fanny Mak

ii

FOREWORD

In today’s Web-linked and data-rich world, there is a growing need to manage burgeoning amounts of
information effectively. Although indexing and linking documents and other information sources is an
important step, capturing the knowledge contained within these diverse sources is crucial for the effective use
of large information repositories. Knowledge acquisition has been a challenging area of research in artificial
intelligence, with its roots in early work to develop expert systems. Driven by the modern Internet culture and
by knowledge-based industries, the study of knowledge acquisition has a renewed importance.

Although there has been considerable work in the area of knowledge capture, activities have been distributed
across several distinct research communities. In machine learning, learning apprentices acquire knowledge by
nonintrusively watching a user perform a task. In the human-computer interaction community, programming-
by-demonstration systems learn to perform a task by watching a user demonstrate how to accomplish it. In
knowledge engineering, modeling techniques and design principles have been proposed for knowledge-based
systems, often exploiting commonly occurring domain-independent inference structures and reusable domain-
specific ontologies. In planning and process management, mixed-initiative systems acquire knowledge about
a user’s goals by taking commands or accepting advice regarding a task. In natural language processing, tools
can process text and create representations of its knowledge content. All of these approaches are related in
that they acquire information and organize it in knowledge structures that can be used for reasoning. They are
complementary in that they usc different techniques and approaches to capture different forms of knowledge.

The aim of K-CAP 200! is to provide a forum in which to bring together disparate research communities
whose members are interested in efficiently capturing knowledge from a variety of sources and in creating
representations that can be (or eventually can be) useful for reasoning. This new conference will promote
multidisciplinary research that could result in a new generation of tools and methodologies for knowledge
capture. The twenty six papers included in these proceedings cover many important topics for the conference,
including ontologies/knowledge representation, interactive acquisition tools, collaborative/distributed KA.,
information extraction, knowledge management, semantic markup, adaptive user interfaces, PSMs, and
learning from examples. The papers were selected from eighty-two submissions. Qur program committee
members are largely responsible for the high quality of the conference program.

Our invited speakers John McCarthy, Ken Forbus, and Steve Lawrence, covered diverse topics of interest to
this community and an abstract of their talks is included in these proceedings. Three invited tutorials were
held prior to the main conference program. Frank van Harmelen, Dieter Fensel, and Heiner Stuckenschmidt
talked about the Semantic Web, Henry Lieberman presented programming by example, and Guus Schreiber
and Hans Akkermans gave an overview of CommonKADS. Dieter Fensel organized an excellent workshop
program.

We would also like to thank other people who contributed to making this conference happen. John Gennari
handled our finances and coordinated with ACM’s sponsorship program. Rob Kremer proposed a wonderful
location for the conference, the relaxing Laurel Point Inn, and handled the local arrangements together with
Tim Menzies. Rob also managed the conference Web site and the registrations, and brought in Camille
Sinanan and Roberto Flores to help with registrations and student volonteers respectively. Fanny Mak
designed the logo on the cover of the proceedings, as well as many fliers and posters to advertise the
conference. Lisa Tolles-Efinger at Sheridan Printing took over the production of the proceedings for
publication by ACM. Jim Blythe, Pete Clark, John Gennari, and Xian-ping Ge helped create the Latex
templates for the papers.

Finally, we would like to thank the conference sponsors for their financial and administrative support to the
conference.

Yolanda Gil
Mark Musen
Jude Shavlik

iii

K-CAP 2001 Sponsoring Organizations

K-CAP 2001 is sponsored by the Association for Computing Machinery (ACM) and its Special
Interest Group on Artificial Intelligence (SIGART), held in cooperation with the American
Association for Artificial Intelligence (AAAI), and is an endorsed conference of Technical

Committee 12 of the International Federation for Information Processing (IFIP).

@

American Association for International Federation
Artificial Intelligence for Information
Processing

Association for
Computing
Machinery

Funding for K-CAP 2001 is provided by the US Air Force Office of Scientific Rescarch (AFOSR),
the US Defense Advanced Research Project Agency (DARPA), the US Office of Naval Research
(ONR), and the US Army Simulation, Training, and Instrumentation Command (STRICOM).

5 ey,
"f‘“*‘ ; uUs Army
US Air Force US Defence Simulation,
Office of Advanced US Office of Naval Training, and
Scientific Research Project Research Instrumentation
Research Agency Command

Table of Contents

K-CAP’01 Conference OrganizZers ... viii

EVItE TUROTIAIS oottt ma s

Invited Speakers’ Abstracts

« Knowledge Capture for Boostrapping Intelligent Systems ...
K. D. Forbus (Northwestern University)

o Researchindex: Inside the World’s Largest Free Full-Text Index
of Scientific LiteratUreoooiniviiniii i
S. Lawrence (NEC Research Institute)

o Phenomenal Data-Miningcoooiiiiiiiii
J. McCarthy (Stanford University)

Technical Papers

« WebODE: a Scalable Workbench for Ontological Engineering.........................
J. C. Aspirez, P. Corcho, M. Ferndndez-Lopez, A. Gomez-Pérez
(Universidad Politécnica de Madrid)

« A Library of Generic Concepts for Composing Knowledge Bases.................
K. Barker, B. Porter (University of Texas at Austin),
P, Clark (Boeing Math and Computing Technologies)

o Knowledge Entry as the Graphical Assembly of Components.........................
P. Clark, J. Thompson (Boeing Math and Computing Technologies), K. Barker,
B. Porter (University of Texas at Austin), V. Chaudhri, A. Rodriques, J. Thomere,
S. Mishra (SRI International), Y. Gil (University of Southern California),
P. Hayes, T. Reichherzer (University of Western Florida)

« Supporting Ontology Driven Document Enrichment within Communities
FoL A o £ [+ (11 TOTUUTE PO PP T PP PP PP PPPPPRPPRPIPPRRED
J. Domingue, E. Motta, S. B. Shum, M. Vargas-Vera, Y. Kalfoglou, N. Farnes
(The Open University)

e Representing Roles and PUFPOSEe ..o
J. Fan, K. Barker, B. Porter (University of Texas at Austin), :
P, Clark (Boeing Math and Computing Technologies)

+ Learning Hierarchical Task Models by Defining and Refining Examples...........
A. Garland, K. Ryall, C. Rich (Mitsubishi Electric Research Laboratories)

« Building and Exploiting Ontologies for an Automobile Project Memory
J. Golebiowska (INRIA & Renault), R. Dieng-Kuntz, O. Corby (INRIA), D. Mousseau (Renault)

« Ontology-Based Operators for e-Business Model De- and Reconstruction......
J. Gordijn, H. Akkermans (Vrije Universiteit)

Joint Knowledge Capture for Grammars and Ontologies............ccccooiinees 68
U. Hahn, K. G. Marké (Albert-Ludwigs-Universitiit Freiburg)

CREAM -- Creating Relational Metadata with a Component-based,
Ontology-driven Annotation Framework...............ccoiiiii e 76
S. Handschuh, S. Staab (University of Karlsruhe), A. Maedche

(FZI Research Center for Information Technologies)

Capturing Analytic Thought ... 84
J. D. Lowrance, I. W. Harrison, A. C. Rodriguez (SRI International)

Knowledge Capture and Utilization in Virtual Communities.......ccovveiiieiiiineens 92
Y. Merali (The University of Warwick), J. Davies (Btexact Technologies)

Capturing Knowledge of User Preferences: Ontologies
in Recommender SYSteMSoooviiiiiiriiiiii i 100
S. E. Middleton, D. C. De Roure, N. R. Shadbolt (University of Southampton)

Human Directability of Agents..............ccoii e 108
K. L. Myers, D. N. Morley (SRI International)

Applying Natural Language Processing (NLP) Based Metadata
Extraction to Automatically Acquire User Preferencescccccceviniiinnnns 116
W. Paik, S. Yilmazel, E. Brown, M. Poulin, S. Dubon, C. Amice (solutions-united, inc.)

Ontology-Guided Knowledge Discovery in Databases....................... Teeerneenns 123
J. Phillips, B. G. Buchanan (University of Pittsburgh)

A Methodology for Ontology Integration ... 131
H. S. Pinto, J. P. Martins (Instituto Superior Técnico)

Untangling Taxonomies and Relationships: Personal and Practical
Problems in Loosely Coupled Development of Large Ontologies 139
A. L. Rector, C. Wroe, J. Rogers, A. Roberts (University of Manchest)

Inferring the Environment in a Text-to-Scene Conversion System............c... 147
R. Sproat (AT&T Labs — Research)

SEAL — A Framework for Developing Semantic POrtALSccoeeieeceeen 155
N. Stojanovic (University of Karlsruhe), A. Maedche (FZI Research Center for Information
Technologies), S. Staab, R. Studer, Y. Sure (University of Karlsruhe)

Ontology-Based Metadata Generation from Semi-Structured Information 163
H. Stuckenschmidt (University of Bremen), F. van Harmelen (Vrije Universiteit Amsterdam) ~

Discovery of Ontologies from Knowledge Bases............ccccccooininnninns 171
H. Suryanto, P. Compton (University of New South Wales)

Learning Procedural Knowledge through Observation ... 179
M. van Lent, J. E. Laird (University of Southern California)

+ A Grammar-Driven Knowledge Acquisition Tool that Incorporates
Constraint Propagation............ccoouieiiiin it 187
S. White (Accelrys Ltd.), D. Sleeman (University of Aberdeen)

o From Thesaurus to Ontologyoveiiiiiiiiiiiiiii e 194
B. J. Wielinga, A. Th. Schreiber, J. Wielemaker, J. A. C. Sandberg (University of Amsterdam) :

« Web User Clustering from Access Log Using Belief Function....................... 202
Y. Xie, V. V. Phoha (Louisiana Tech University)

AUhOr INAeX ... 209

vii

'~ K-CAP’01 Conference Organizers

Conference Co-Chairs: Yolanda Gil, University ofSouth-ern California/Information Sciences Institute
Mark Musen, Stanford University

Jude Shavlik, University of Wisconsin at Madison
Treasurer: John Gennari, University of California at Irvine

Local Arrangements: Rob Kremer, University of Calgary

Tim Menzies, University of British Columbia

Workshop Chair: Dieter Fensel, Free University of Amsterdam

Program Committee: Hans Akkermans, Free University of Amsterdam
Jeff Bradshaw, University of West Florida
Bruce Buchanan, University of Pittsburgh
Claire Cardie, Cornell University
B. Chandrasekaran, Ohio State University
Steve Chien, Jet Propuision Laboratory
Paul Compton, University of New South Wales
Mark Craven, University of Wisconsin at Madison
Rose Dieng, INRIA-Sophia-Antipolis
Adam Farquhar, Schiumberger
Dieter Fensel, Free University of Amsterdam
Richard Fikes, Stanford University
Ken Forbus, Northwestern University
Peter Haddawy, Asian Institute of Technology
Eric Horvitz, Microsoft Research
Henry Kautz, University of Washington
Pat Langley, Daimler-Benz Research
Doug Lenat, Cycorp
Henry Lieberman, MIT Media Lab
Steve Minton, Fetch Technologies
Ray Mooney, University of Texas at Austin
Johanna Moore, University of Edinburgh
Enrico Motta, Open University
Karen Myers, SRI International
Dan O'Leary, University of Southern California
David Page, University of Wisconsin at Madison
Bruce Porter, University of Texas at Austin

viil

Program Committee (continued):

Additional Reviewers:

Charles Rich, Mitsubishi Electric Research Laboratory
Claude Sammut, University of New South Wales

Guus Schreiber, University of Amsterdam

Nigel Shadbolt, University of Southampton

Rudi Studer, University of Karlsruhe

Bill Swartout, USC/Institute for Creative Technologies

Loren Terveen, AT&T Labs

Manuela Veloso, Carnegie Mellon University

David C. Wilkins, University of lllinois at Urbana-Champaign
Ian Witten, University of Waikato

Harith Alani, University of Southampton

Leslie Carr, University of Southampton
Srinandan Dasmahapatra, University of Southampton
John Domingue, Open University

James Fan, University of Texas at Austin

Eibe Frank, University of Waikato

Andy Garland, Mitsubishi Electric Research Lab
Nick Gibbins, University of Southampton
Siegfried Handschuh, University of Karlsruhe
Laurie Hiyakumoto, Carnegie Mellon University
Geoff Holmes, University of Waikato

Yannis Kalfoglou, Open University

Jihie Kim, USC/Information Sciences Institute
Fritz Lehmann, Cycorp

Alexander Maedche, University of Karlsruhe
Tim Menzies, University of British Columbia
Kieron O'Hara, University of Southampton
Bembhard Pfahringer, University of Waikato

Tom Russ, USC/Information Sciences Institute
Gerd Stumme, University of Karlsruhe

York Sure, University of Karlsruhe

Dan Tecuci, University of Texas at Austin

Maria Vargas-Vera, Open University

Peter Z. Yeh, University of Texas at Austin

Invited Tutorials

The Semantic Web
Sunday, 08:30-11:20

Frank van Harmelen, Free University of Amsterdam
Dieter Fensel, Free University of Amsterdam
Heiner Stuckenschmidt, Universitat Bremen

The Semantic Web is the vision of having data on thc Web
defined and linked in a way that it can be used by machines not
just for display pumoses, but for automation, integration and reuse
of data across various applications.

In this tutorial, we will discuss a number of key standards,
technologies and policies that are currently being designed by
leading European and American academic and industrial groups
under the supervision of the W3C in order to make this vision a
rcality.

Programming by Example: Intelligent Interfaces for Teaching New Behavior

to a Machine
Sunday, 11:30-15:20

Henry Lieberman, Media Lab, Massachusetts Institute of Technology
http:/iwww.media.mit.edu/~lieber/

Programming by Example (also called Programming by
Demonstration) is a powerful new technology that lets end-users
create programs by recording actions in the user interface rather
than by typing statements in a programming language. The user
demonstrates a sequence of actions on a concrete example in a
graphical user interface, and the system records the actions.
Machine Learning and agent technologies arc used to generalize
programs that can be used in future situations that are analogous
to, but not the same as, the situation on which the system was first
taught. Programming by Example systems are “macros on
steroids.”

This tutorial will present this technology, which shows how
intelligent user interfaces can dramatically improve the process of
software development and make it accessible to users who do not
have prior experience with programming. The ideas are, of course,

best presented by example. We will survey many systems of this
type, including live demonstrations. We will also do in-class
design exercises, such as “Wizard of Oz” and “Short-Order
Programming” exercises to give attendees hands-on experience
with the technology.

Henry Lieberman is the editor of a new book, “Your Wish is my
Command,” published by Morgan Kauffman, which will serve as
text for the tutorial. This book collects 19 articles which describe
PBE systems for such diverse applications as text editing,
graphical editing, CAD/CAM, animation, games, web browsing,
teaching children programming, and others. He also maintains the
Programming by Example Web site, at
http://www.media.mit.edw/~lieber/PBE/. This site also contains
the book, “Watch What I Do,” Allen Cypher, ed. the other major
reference in this field.

Knowledge Engineering with CommonKADS in perspective
Sunday, 15:50-18:10

Guus Schreiber, University of Amsterdam
Hans Akkermans, Free University of Amsterdam

In this tutorial we review what we perceive as the main .

contributions of the CommonKADS methodology for knowledge
engineering. We give a synopsis of CommonKADS and discuss
some topics in more depth, such as reusable task models, rule
types, context models, and the link to object-oriented analysis and
design. The tutorial is partly based on the experiences gained by
the speakers in teaching CommonKADS to non-Al audiences.

Guus Schreiber is an associate professor of Social Science
Informatics at the University of Amsterdam. His research interests
lie mainly in the area of knowledge engineering and knowledge-
system development. Recently he has also worked on knowledge
modelling for the “semantic web". He published more than 80
papers in these areas. In 2000 he published with MIT Press a
textbook on knowledge engineering and knowledge management,
based on the CommonKADS methodology. He has been involved
in numerous European rescarch projects in the knowledge-
engineering area, such as KADS & KADS-II (both on
methodologies for knowledge-system development), REFLECT

(reflective reasoning), GAMES (medical knowledge systems) and
KACTUS (technical ontologies). He is currently involved in the
Dutch ICES project MIA (Multimedia Information Amalysis) and
in the European project IBROW (Intelligent Brokering on the
Web). .

Hans Akkermans is a professor of Business Informatics at the Free
University Amsterdam, and an international consultant in
information and knowledge management. He holds a cum laude
PhD degree in theoretical physics from the University of
Groningen. He has published over 125 refereed international
journal articles and conference papers in various fields of
informatics, physics, engineering, and e-business, and participates
in many international cooperative industry-university projects. He
regularly carries out evaluation and advisory assignments for the
European Commission. His group at Amsterdam coordinates
OntoWeb, the EU Thematic Network on Ontology and Semantic
Web Technology for Knowledge Management and E-Commerce.

Invited Speakers’ Abstracts

K-CAP 2001

Knowledge Capture for Bootstrapping
Intelligent Systems

Kenneth D. Forbus
Northwestern University
forbus@northwestern.edu

Abstract

Knowledge is the fuel for intelligent systems. Building software that comes closer to the breadth
and flexibility of human reasoning will require substantially larger knowledge bases than any that
have been built to date. This talk describes two ways we are exploring for bootstrapping
intelligent systems via knowledge capture. First, analogy is useful for knowledge capture because
people find it easier to articulate examples than universally valid principles. By exploiting recent
advances in cognitive science, we are creating a technology of analogical processing that can (and
has) been used with multiple large knowledge bases. Second, sketching is useful for knowledge
capture because people find it easier to express many things spatially. By focusing on deeper
visual and conceptual understanding of the contents of sketching, instead of recognition, we are
building sketching systems that can be broadly applied in many domains. These efforts have
benefited substantially from involvement with DARPA research communities, and some lessons
learned from those experiences will be discussed.

Bio

Kenneth D. Forbus is a Professor of Computer Science and Education at Northwestern University.
His rescarch interests include qualitatitve reasoning, analogy and similarity, sketching and spatial
reasoning, cognitive simulation, reasoning system design, articulate educational software, and the
use of Al in computer gaming. He received his degrees from MIT (Ph.D. in 1984). He is a Fellow
of the American Association for Artificial Intelligence and serves on the Governing Board of the
Cognitive Science Society and the editorial boards of Artificial Intelligence, Cognitive Science,
and the AAAI Press.

Copyright is held by the author/owner.
K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
ACM 1-58113-380-4/01/0010.

Researchindex: Inside the World’s Largest
Free Full-Text Index
of Scientific Literature

Steve Lawrence
NEC Research Institute
lawrence@research.nj.nec.com

Abstract

Researchlndex (also known as CiteSeer) is a digital library of scientific literature that
aims to improve communication and progress in science. This talk covers the design,
implementation, and operation of Researchlndex.

Bio

Dr. Steve Lawrence is a Research Scientist at NEC Research Institute, Princeton, NJ. His
research interests include information retrieval and machine learning. Dr. Lawrence has
published over 50 papers in these areas, including articles in Science, Nature, CACM,
and IEEE Computer. He has been interviewed by over 100 news organizations including
the New York Times, Wall Street Journal, Washington Post, Reuters, Associated Press,
CNN, MSNBC, BBC, and NPR. Hundreds of articles about his research have appeared
worldwide in over 10 different languages.

Copyright is held by the author/owner.
K-CAP'01, October 22-23, 2001, Victoria, British Columbia,
Canada. ACM 1-58113-380-4/01/0010.

Phenomenal Data-Mining

John McCarthy
Computer Science Department, Stanford University
jme@cs.stanford.edu

Phenomenal data mining finds relations between the data and the phenomena that give rise to data
rather than just relations among the data.

Science and common sense both tell us that the facts about the world are not directly observable
but can be inferred from observations about the effects of actions. What people infer about the
world is not just relations among observations but relations among entities that are much more
stable than observations. For example, 3-dimensional objects are more stable than the image on a
person's retina, the information directly obtained from feeling an object or on an image scanned
into a computer.

This talk concerns what can be inferred by programs about phenomena from data and what facts
are relevant to doing this. In order to infer phenomena from data, facts about their relations must
be supplied. Sometimes these facts can be implicit in the programs that look for the phenomena,
but more generality is achieved if the facts are represented as sentences of logic in a knowledge
base used by the programs.

Creating knowledge bases containing both common sense knowledge and knowledge of the
domain of the data will be a lot of work. This is unavoidable.

The result of phenomenal data-mining can include an extended database with additional fields on
existing relations and new relations. Thus the relations describing supermarket baskets can be
extended with a customer field, and new relations about customers and their properties can be
introduced.

Bio

John McCarthy is Professor Emeritus of Computer Science at Stanford University. His recent
research addresses various aspects of formal reasoning, including non-monotonic logic,
commonsense reasoning, formalizing context, and elaboration tolerance. He was first to propose
time-sharing computer systems and to develop the Lisp programming language. McCarthy has
worked on Artificial Intelligence since its early days and is credited with coining the term. He
McCarthy received the A. M. Turing award of the Association for Computing Machinery in 1971
and was elected President of the American Association for Artificial Intelligence for 1983-84 and
is a Fellow of that organization. He is a member of the American Academy of Arts and Sciences,
the National Academy of Engineering and the National Academy of Sciences. He received the
National Medal of Science in 1990.

Copyright is held by the author/owner.
K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
ACM 1-58113-380-4/01/0010.

Technical Papers

K-CAP 2001

WebODE: a Scalable Workbench for Ontological
Engineering

Julio C. Arpirez, Oscar Corcho, Mariano Fernandez-Lépez, Asuncién Gomez-Pérez
Facultad de Informatica. Universidad Politécnica de Madrid
Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain
+34 91 336 7439
jarpirez@delicias.dia.fi.upm.es; {ocorcho, mfernandez, asun}@fi.upm.es

ABSTRACT

This paper presents WebODE as a workbench for ontological
engineering that not only allows the collaborative edition of
ontologies at the knowledge level, but also provides a
scalable architecture for the development of other ontology
development tools and ontology-based applications. First, we
will describe the knowledge model of WebODE, which has
been mainly extracted and improved from the reference
mode! of METHONTOLOGY’s intermediate repre-
sentations. Later, we will present its architecture, together
with the main functionalities of the WebODE ontology editor,
such as its import/export service, translation services,
ontology browser, inference engine and axiom generator, and
some services that have been integrated in the workbench:
WebPicker, OntoMerge and the OntoCatalogue.

Keywords
WebODE, ontology engineering workbench, ontology
building, translation, integration and merge.

1. INTRODUCTION

In the last years, several tools for building ontologies have
been developed: Ontolingua [11], OntoSaurus [24], WebOnto
[8], Protégé2000 [25], OilEd [20], OntoEdit [21], etc. A
study comparing some of them can be found in [10].
Additional ontology tools and services have been built for
other purposes: ontology merging (Chimaera [18],
Ontomorph {4], PROMPT [14]), ontology access (OKBC
(5D, etc. Finally, many applications have been built upon
ontologies: Ontobroker [12], PlanetOnto [9], (KAY [1],
MKBEEM [19], etc. All these tools and applications have
contributed to a high development of the ontology
community, and have laid the foundations of an emergent
research and technological area: the Semantic Web [2].

However, current ontological technology suffers from the
following problems, which must be solved prior to its transfer
to the enterprise world:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute 1o lists, requires prior
specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...85.00.

e There is no comespondence between existing
methodologies and environments for building ontologies,
except ODE and METHONTOLOGY [13].

e Existing environments just give support for designing
and implementing ontologies, but they do not support all
the activities of the ontology life cycle.

e There are a lot of isolated ontology development tools
that cannot interoperate easily, because they are based on
different technologies, on different knowledge models
for representing ontologies, etc.

Consequently, there is a need for a common workbench to

ensure a wide acceptance and use of ontological technology.

We foresee three main areas in this workbench, as shown in

figure 1:

e Ontology development and management, which
comprises technology that gives support to ontology
development activities: knowledge acquisition, edition,

browsing, integration, merging, reengineering,
evaluation, implementation, etc.; ontology management
activities: configuration management, ontology

evolution, ontology libraries, etc.; and ontology support
activities: scheduling, documentation, etc.

¢ Ontology middleware services, which include different
kinds of services that will allow the easy use and
integration of ontological technology into existing and
future information systems, such as services for
accessing ontologies, integration with databases,
ontology upgrading, query services, etc.

s Ontology-based applications development suites, which
will allow the rapid development and integration of
ontology-based applications. They will be the last step
towards a real integration of ontologies into enterprise
information systems.

In this paper, we will present WebODE as an scalable
ontological engineering workbench that gives support to
activities from the first two areas of the workbench previously
identified. WebODE’s ontology editor allows the
collaborative edition of ontologies at the knowledge level,
supporting the conceptualization phase of
METHONTOLOGY and most of the activities of the
ontology’s life cycle (reengineering, conceptualization,

Ontology-Based Applications

Bemantic : Knowledge
Portals Qroker; I e lm'anagement |
n

Ontology
Development

Suite

Ontology Middleware f

Ontology Iﬁarary

Component-based
Easy integration
RAD

:

Ontology) i Ontology Ontology | Ontology
edition | merge translation | evatuation
—

Ontology
conf. man.

|
tomology Development Tools

Ontology }Tntology ["Ontotogy §[Ontology | Ontology
acquisition il | browsing | mapper docum. evolution
i | sl ‘ess— J

Figure 1. An ontological engineering workbench.

implementation, etc). Besides, WebODE provides high
extensibility in an application server basis, allowing the
creation of middlewarc services that will allow the use of
ontologies from applications.

This paper is organized as follows: section WebODE in a
nutshell gives a general overview of the main features of this
ontological engineering workbench. Section WebODE's
knowledge model presents the knowledge model used for
representing ontologies in the WebODE workbench. Section
WebODE architecture describes its main services and the
WebODE ontology editor, as an applications that uses most
of the services. Section Related Work gives a short overview
of existing ontology editing applications. Finally, the
Conclusions section summarizes the main conclusions of this
work, projects in which WebODE has already been used,
ontologies developed using the WebODE ontology editor and
further work.

2. WEBODE IN A NUTSHELL

WebODE is not an isolated tool for the development of
ontologies, but an advanced ontological engineering
workbench that provides varied ontology related services and
covers and gives support to most of the activities involved in
the ontology development process.

WebODE workbench is built on an application server basis,
which provides high extensibility and usability by allowing
the addition of new services and the use of existing services.
Examples of these services are WebPicker, OntoMerge and
OntoCatalogue.

Ontologies in WebODE are stored in a relational database.
Moreover, WebODE provides a well-defined service-
oriented API for ontology access that makes it easy the
integration with other systems.

Ontologies built with WebODE can be easily integrated with
other systems by using its automatic exportation and
importation services from and into XML, and its translation
services into and from varied ontology specification
languages (currently, RDF(S) [23], OIL {16], DAML+OIL
[7], X-CARIN [19] and FLogic [17]).

WebODE’s ontology editor allows the collaborative edition
of ontologics at the knowledge level. Its knowledge model,
which is described in depth in the next section, is mainly
based on the set of intermediate representations of
METHONTOLOGY and provides additional features.

Ontology edition is aided both by form based and graphical
user interfaces, a user-defined-views manager, a consistency
checker, an inference engine, an axiom builder and the
documentation service.

Two interesting and novel features of WebODE with respect
to other ontology engineering tools are: instance sets, which
allow to instantiate the same conceptual model for different
scenarios, and conceptual views from the same conceptual
model, which allow creating and storing different parts of the
ontology, highlighting and/or customizing the visualization of
the ontology for each user.

The graphical user interface allows browsing all the
relationships defined on the ontology as well as graphical-
pruning these views with respect to selected types of
relationships. Mathematical properties such as reflexive,
symmetric, etc. and other user-defined properties can be also
attached to the "ad hoc" relationships.

The collaborative edition of ontologies is ensured by a
mechanism that allows users to establish the type of access of
the ontologies developed, through the notion of groups of
users. Synchronization mechanisms also exist that allow
several users to edit the same ontology without errors.

Constraint checking capabilities are also provided for type
constraints, numerical values constraints, cardinality
constraints and taxonomic consistency verification [15] (i.e.,
common instances of disjoint classes, loops, etc.)

Finally, WebODE’s inference service has been developed in
Ciao Prolog. Although WebODE is not OKBC compliant yet,
all the OKBC primitives have been defined in prolog for their
use in its inference engine.

3. WEBODE'S KNOWLEDGE MODEL

WebODE'’s knowledge model is extracted from the set of
intermediatc representations of METHONTOLOGY. It
allows the representation of concepts and their attributes
(both class and instance attributes), taxonomies of concepts,
disjoint and exhaustive class partitions, ad-hoc binary
relations between concepts, properties of relations, constants,
axioms and instances. It also allows the inclusion of
bibliographic references for any of them and the importation
of terms from other ontologies.

Additionally, WebODE improves the reusability of
ontologies defining sets of instances, which allow the
instantiation of the same conceptual model for different
scenarios it may be used for.

In the following subsections we will describe each one of the
components of the WebODE 's knowledge model:

3.1. Concepts

In short, a concept (also known as a class) can be anything
about which something is said, and, therefore, can also be the
description of a task, function, action, strategy, reasoning
process, etc.

Concepts are identified by their name, although they can also
have synonyms and abbreviations attached to them. A
natural language (NL) description can be also included.

The same applies to references and formulae, which will be
described later in this section. Any component in WebODE
may have any amount of references and reasoning formulae
attached to it.

Class attributes are attributes whose value must be the same
for all instances of the concept. They are not components
themselves in WebODE's knowledge model, as they are
always attached to a concept (and to its subclasses, because of
the inheritance mechanism).

The information stored for a class attribute is the following:
its name (which must be different from the rest of attribute
names of the same concept); the name of the concept it
belongs to (attributes are local to concepts, that is, two
different concepts can have attributes with the same name);
its value type, also called range, which can be a basic data
type (String, Integer, Cardinal, Float, Boolean, Date, Numeric
Range, Enumerated, URL) or an instance of a concept (in this
case, the name of the concept must be specified), and, finally,
its minimum and maximum cardinality, which constrains
the number of values that the class attribute may have.

Optional information for class attributes consists of its NL

description, the measurement unit and its precision (the
last two ones just in case of numeric attributcs).

Finally, the value(s) of the class attribute can be specified
once it has been defined completely. These values will be
attached to the class attribute where they have been defined.

Instance attributes are attributes whose value may be

-different for each instance of-the concept. They have the same

properties than class attributes and two additional propertics,
minimum value and maximum value, which are used in
attributes with numeric value types. Values inserted for
instance attributes are interpreted as default values for them.

3.2. Groups

Groups, also called partitions, are used to create disjoint and
exhaustive class partitions. They are sets of disjoint concepts
that have a name, the set of concepts they group together
and, optionally, a NL description. A concept can belong to
several groups.

3.3. Built-in Relations

This subsection deals with predefined relations in the
WebODE's knowledge model, related to the representation of
taxonomies of concepts and mereology relationships between
concepts. They are divided into three groups:

Taxonomical relations between concepts. Two predefined
relations are included: subclass-of and not-subclass-of. Single
and multiple inheritance are allowed.

Taxonomical relations between groups and concepts. A
group is a set of disjoint concepts. There are two predefined
relations available, whose semantics is also explained:

* Disjoint-subclass-partition. A disjoint subclass partition
Y of class X defines the set Y of disjoint classes as
subclasses of class X. This classification is not
necessarily complete: there may be instances of X that
are not included in any subclass of the partition.

* Exhaustive-subclass-partition. An exhaustive subclass
partition Y of class X defines the set Y of disjoint
subclasses as subclasses of the class X, where X can be
defined as union of all the classes of the partition

Mereological relations between concepts. Two relations are
included: transitive-part-of and intransitive-part-of.

3.4. Ad-hoc relations

WebODE allows just binary ad-hoc relations to be created
between concepts. The creation of relations of higher arity
must be made by reification (creating a concept for the
relation itself and » binary relations between the concepts that
appear in the relation and the concept that is used for
representing the relation).

Ad-hoc relations are characterized by their name, the name
of the origin (source) and destination (target) concepts, and -
its cardinality, which establishes the number of facts
(instances of the relation) that can hold between the origin
and the destination term. Their cardinality can be restricted to
1 (only one fact) or N (any number of facts).

Additionally, there is some optional information that can be
provided for an ad-hoc relation, such as its NL description
and its properties (they are used to describe algebraic
properties of the relation).

References and formulae can be also attached to the ad-hoc
relations, as happened with the concepts.

3.5. Constants

Constants arc components that have always the same value.
They are included in the knowledge model of WebODE to
ease the maintcnance of ontologies. They are available for
their use in any expression in the ontology.

The information needed for a constant is: name, value type
(the same as shown for attributes of concepts, except for
instances of concepts), value and measurement unit. Its NL
description can be optionally provided.

3.6. Formulae

There are three types of formulac that can be created in
WebODE: axioms, rules and proccdures. All of them are
represented by their name, an optional NL description and a
formal expression in first order logic, using a syntax
provided by WebODE.

Axioms model sentences, using first order logic, that are
always true. They may be included in the ontologies for
several purposes, such as constraining its information,
verifying its correctness or deducting new information.

Rules are included in the ontology for the inference of new
knowledge in the ontology from the knowledge already
included in it. Their chaining mechanism is not explicitly
declared, although WebODE’s inference engine uses
backward chaining.

Procedures arc used for declaring sequences of actions.
Currently, the user is free to use any syntax for these
components, because it is too much tight to the target
language in which the ontology will be used.

The axiom generator, which will be described later in this
paper, allows the user create axioms more easily than if they
were created from scratch. WebODE also provides a library
of axiom patterns for common used expressions.

3.7. Instances

There are two kinds of instances that can be created in
WebODE: instances of concepts and instances of relations
(also called facts).

Instances of concepts represent elements of a given concept.
They have their own name, and a set of instance attributes
with their values. Instance attributes are inherited from the
concept they belong to and its superclasses.

Instances of relations are used to represent a relation that
holds between individuals (instances of concepts) in the
ontology. They have their own name, the names of the
relation and the instances that participate in it.

WebODE allows grouping both kinds of instances in sets of
instances. Instance sets, which are described by their name

and an optional description, allow the distributed use of the
ontology in different frameworks. In other words, the same
ontology can be instantiated for different applications, and
instances in an instance set are independent from instances in
another one. This, along with the import/export features,
permits the isolation of the main two parts of an ontology: its
conceptualization and its instances (the knowledge base).

3.8. References

References are used for adding bibliographic references in the
ontology. The information needed for references is their
name and an optional description. They can be attached to
any component of the WebODE’s knowledge model.

3.9. Properties
They are used to describe algebraic properties of ad-hoc
relations. They are divided in two groups:

* Built-in properties: reflexive, irreflexive, symmetric,
asymmetric, antisymmetric and transitive.

« Ad-hoc properties. The user can define them and attach
them to ad-hoc binary relations to describe either
algebraic or other kinds of properties of them.

3.10. Imported terms

Imported terms are components that are included in the
current ontology from other ontologies. The user must
provide their name, the host for retricving the term from, the
name of the ontology where to retrieve the term from and the
original term name.

Currently, only concepts from other ontologies can be
imported into WebODE. In the future, this will be expanded
to any kind of components of the ontology (groups, relations,
axioms, etc.).

4. WEBODE ARCHITECTURE

The architecture of the WebODE workbench is explained in
this section, according to the classical three tiers architecture
commonly found in web applications: data tier, business logic
tier and presentation tier.

4.1. Data Tier

Ontologies are the central element in our workbench. They
can be stored in a relational database with JDBC support (it
has been tested both in Oracle and MySQL).

The module for database access is included as a core service
inside the Minerva Application Server (which is explained
later in this section). Its main features are the optimization of
connections to the database (comnection pooling) and
transparent fault tolerance capabilities.

4.2. Business Logic Tier
This tier usually is divided in two different ones: the
presentation sub-tier and the logic sub-tier.

The presentation sub-tier is responsible for generating the
content to be presented in the user’s browser. It also handles
user requests from the client (form handling, queries, etc.)
and forward them to business logic services. Serviets andr
JSPs (Java Server Pages) are used in it.

The logic sub-tier comprises the applications’ business-logic
services. All the implemented services are available from the
Minerva Application Server, through RMI-IIOP technology.
We distinguish two groups of services: services from the
Minerva Application Server, which are not tied specifically to
the WebODE workbench but can be used by any other
service, and business-logic services for WebODE, which are
specific to this workbench.

Modules from Minerva Application Server
This application server has been developed in our lab. In this
subsection we will describe its main modules:

Authentication module. All the authentication and security
controls in the application server are based on this module. It
allows managing access control lists for all the services of
applications built upon the server, groups for sharing
ontologies, information protection, etc.

Currently, it uses an internal format for storing and accessing
information. However, it is possible to develop additional
modules for the authentication of users using other
authentication systems (from Windows NT, UNIX, LDAP,
etc.). This would allow the integration of the workbench in
the authentication schema of the organization.

Log module. This module is in charge of auditing tasks. Its
verbose level can be configured, depending on the audit
needs for the system.

Administration module. It allows the administration of the
application server by using the Minerva Management
Console (MMC), which allows the server administrator to
manage locally or remotely every installed service, to start
and stop services, to manage users, groups and access control
lists through the authenticator service, etc.

Thread management module. This module optimizes the
use of threads in the server for any task, using thread-pooling
techniques, which improve drastically their execution time.
Additionally, it is possible to change thread priorities: some
tasks can be executed before other ones.

Planning module. This module, which depends on the thread
management module, allows the planning of periodical tasks,
such as cache management, periodical backups, ontology
consistency checking, etc.

Backup module. Using this module, ontologies can be safely
stored in any destination (which is configurable). Backups
can be scheduled as needed.

This service makes use of the planning and the ontology
XML exportation services. This last service will be explained
later in this section.

Business logic modules for WebODE workbench
These modules provide services for the WebODE ontology
editor, although they can be used for any other application.

Ontology access service. This module is in charge of
managing the ontologies’ conceptual model, by inserting,
deleting and modifying the definitions of all the terms in a
domain.

10

It uses the database access service, and, optionally, cache and
consistency check services, which are explained below.

Cache module. This module, which uses the databasc access
and planning services, speeds up the access to ontologies,
using several caching techniques that increase the
performance of the ontology access service.

Consistency check module. This module also uses the
database access and planning services from the Minerva
application server. It performs consistency checks during
taxonomy building, as presented in [15], decoupling thesc
verifications from the ontology access service.

Ontology access API. Ontologies can be accessed from other
applications through this well-defined APL This API is
supported by the Minerva application server and can bc
accessed through RMI-IIOP.

XML ontology exportation module. It exports ontologies to
valid XML, according to a well-defined DTD. This XML
code can be used by other applications able to use this format
or for later importations of the ontologies into other instances
of the WebODE workbench.

XML ontology importation module. It imports ontologics
in the XML format described by the DTD used in the XML
exportation service. These ontologies must also accomplish
consistency rules used by the consistency check service.

Ontology languages exportation/importation. Currently,
several services exist in WebODE for the exportation and
importation of ontologies to the following languages:
RDF(S), OIL, DAML+OIL, X-CARIN and FLogic.

OKBC-based inference engine. It allows the ontology
developer to perform queries and inferences on the ontology.
The user can use predefined access primitives, which arc
based in the OKBC protocol, and create his/her own Prolog
programs to perform inferences reusing the primitives already
provided. It is based on Ciao Prolog.

Axiom prover module. It makes use of the inference engine,
allowing the ontology developer to test if knowledge
currently included in the ontology is consistent with its
axioms. Each axiom is translated into Horn clauses and can
be tested independently from the other ones.

Documentation module. WebODE ontologies are
automatically documented in different formats, such as
HTML tables (intermediate representations of

METHONTOLOGY), HTML documents or XML files. The
whole ontology or parts of it can be selected for this
documentation generation. Views generated with
OntoDesigner can be also selected for their documentation.

WebPicker: Ontology Acquisition from Web Resources.
WebPicker is a service for the ontology acquisition from web
resources that has been used for the acquisition of several
standards and initiatives of products and services
classifications in the e-commerce domain (UNSPSC, e-cl@ss
and RosettaNet) as described in detail in [6].

[Dar R & =5 7 S5
Yk ¥

i -
; Relations With Graphical Intermediate m

Instance Attributes for Term Djvider.

Instance Attnbute Name! m Measurement Unit m [Value Interval

Bookn @ 1 .
Bookn @ 1)

I.lr. attribute containing the Leight of tre d)\')dar.?j

IF:(\al Fl

!

1A Cffice Linkabie
© =3 Office Fumnnture
D Char
14 C@Mér Term Heme Crxer
[5ack.panal Instacce Attribute Neme [Height
D Backeate Dnor
D Dnder Sereen
D Gtass Ooot Descrpton
o [Fumiurs 2ccenones
© [ey Huder
© 7 Secunty Dente Value Type
& Stane [
&7 Siarage Faniture Minicnum-Maximum Cacdinaity |i [1_
$ (AT Measemsrt Unt feertmeter
[es-
DY 2oz on Tatte Precisn .
[recuetsi Mewrion Ve 3
Ma crnom sioe

5end] [|

Figure 2. Snapshot of WebODE’s ontology editor while editing an instance attribute of a concept.

Information represented in web resources is transformed into
a conceptual model specified in the XML syntax of
WebODE, which is imported later into WebODE, so that its
ontology editor can be used to redesign it.

OntoMerge: Ontology Merge. This scrvice performs the
merge of concepts (and their attributes) and relations of two
ontologies built for the same domain. First, it assists the
revision of both ontologies, based on a set of design criteria
and semantic and syntactic relationships among the
components of the ontology. Later, it uses natural language
resources for establishing relationships between both
ontologies. It performs a supervised merge of components
from both ontologies using this information. Finally, it assists
the final revision of the resulting merged ontology.

OntoCatalogue: Catalogue Generation from Ontologies.
This service generates electronic catalogues out from
ontologies, taking into account several configuration
parameters, such as the depth of the taxonomy of products,
attributes to be generated, the mappings between relations in
the ontology and links in the catalogue, navigation hints
through the catalogue, parts of the taxonomy to be generated,
etc.

The catalogue generation from ontologies ensures a good and
rich classification of products/services in it.

4.2.1. User Interface Tier: WebODE Ontology Editor

The WebODE ontology editor is an application for the
development of ontologies at the knowledge level, based on
the knowledge model already presented, which uses most of
the services that have been presented above. Its user interface
uses HTML, CSS (Cascading Style Sheets) and XML
(Extended Mark-up Language). JavaScript and Java are used
for several kinds of user validations.

Some specialized applets have been also included in the user
interface, such as OntoDesigner, the axiom manager, the
ontology browser and the clipboard.

The design rationale for this user interface is based on an
easy-to-use and clarity basis. Figure 2 shows one of the
screens of the editor, while including a new instance attribute
for a concept. We will explain the most relevant componcents
in this figure:

The clipboard applet is available in the upper part of the
screen. It is used to copy and paste components’ definitions,
which is useful when creating components that are very
similar to others. It has enough space for four definitions.

The ontology browser is placed on the left. It aids the
navigation through the taxonomy of concepts, formulac,
references and imported terms in the ontology. New
components can be added by just double clicking on it and

Its ontology editor integrates in a common user interface
most of the activitics of the ontology life cycle, using the
services available in the workbench. Its most interesting
functionalities are: multiple-users support, guided
conceptualization through the use of a very intuitive and
simple user interface, multiple choice clipboard for easily
copying and pasting components, complete consistency
checks to ensure that the ontology contains valid
knowledge, casy taxonomy edition either by using the form
based user interface or a more complex and powerful
graphical editor (OntoDesigner), an advanced term import
providing by reference and by value fashions, instance
handling independent from the ontology conceptualization,
an API for accessing ontologics from any application using
RMI or CORBA, and, finally, maximum interoperability
thanks to the use of XML and several ontology
specification languages.

This workbench has been successfully used in several
projects: B2B and B2C ontology creation and reengineering
in MKBEEM (IST 1999-10589), ontology acquisition
through Webpicker in ContentWeb (UNSPSC, RosettaNet
and e-cl@ss), ontology building and ontology metrics in
(Onto)’Agent (Reference Ontology), ontology building in
project UPM:AM-9819 “Environment Ontology” (Elements
and Environmental Jons) and electronic catalogues merging
in MRO.

In the future we will provide extra services both to the
WebODE ontology editor and the middleware area, such as
ontology translation manager, ontology configuration
management capabilities, ontology upgrading, etc.

ACKNOWLEDGEMENTS

This work is supported by a FPI grant funded by UPM and by
the project ContentWeb funded by MEC. It would not have
been possible without the help of J.P. Pérez, O. Vicente, J.
Ramos, R. de Diego, A. Lopez, V. Lopez and E. Mohedano,
in the implementation and/or tests of WebODE, and
developers of ODE (M. Blazquez and J.M. Garcia).

REFERENCES

1. Benjamins, V.R,, Fensel, D., Decker, S., Gémez-Pérez,
A. (KA)’: Building Ontologies for the Internet: a Mid
Term Report. JHCS, 51:687-712. 1999.

2. Bemers-Lee, T., Fischetti, M. Weaving the Web: The
Original Design and Ultimate Destiny of the World
Wide Web by its Inventor. Harper. S Francisco. 1999.

3. Blazquez, M.; Fernandez-Lopez, M.; Garcia-Pinar, J.M.;
Gémez-Pérez, A. Building Ontologies at the Knowledge
Level using the Ontology Design Environment. KAW98.
Banff, Canada. 1998.

4. Chalupsky, H. OntoMorph: A Translation System for
Symbolic Knowledge. KR-2000. 471-482. 2000.

5. Chaudhri V. K.; Farquhar A.; Fikes R.; Karp P. D.; Rice
J. P. The Generic Frame Protocol 2.0. Technical Report,
Stanford University.1997.

13

10.

1L

12.

13.

14.

16.

17.

18.

19.
20.
21.
22.
23.
24,

25.

Corcho, O., Goémez-Pérez, A. WebPicker: Knowledge
Extraction from Web Resources. NLDB’0l. Madrid.
June, 2001.

DAMLA+OIL. http//’www.daml.org

Domingue, J. Tadzebao and Webonto: Discussing,
Browsing and Editing Ontologies on the Web. KAW9S.
Banff, Canada. 1998.

Domingue, J., Motta, E. A4 Knowledge-Based News
Server Supporting Ontology-Driven Story Enrichment
and Knowledge Retrieval. EKAW 1999.

Duineveld, A.; Studer, R.; Weiden, M; Kencpa, B.;
Benjamis, R. WonderTools? A comparative study of
ontological engineering tools. KAW99. Banff. 1999.

Farquhar A, Fikes R., Rice J., The Ontolingua Server: A
Tool for Collaborative Ontology Construction. 10th
Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Canada. 1996.

Fensel, D., Angele, J., Decker, S., Erdmann, M,
Schnurr, H., Staab, S., Studer, R., Witt, A. On2broker:
Semantic-Based Access to Information Sources at the
WWW. WebNet 99. Honolulu. USA. October, 1999.

Femandez, M.; Gomez-Pérez, A.; Pazos, J.; Pazos, A.
Building a Chemical Ontology using methontology and
the Ontology Design Environment. IEEE Intelligent
Systems and their applications. #4 (1):37-45. 1999.

Fridman, N., Musen, M. PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment.
AAAI-2000. Austin, Texas. August, 2000.

. Gémez-Pérez, A. Evaluation of Ontologies. International

Journal of Intelligent Systems. 16(3). March, 2001.

Horrocks, 1., Fensel, D., Harmelen, F., Decker, S.,
Erdmann, M, Klein, M. OIL in a Nutshell. EKAW'00.
Juan les Pins. France. October, 2000.

Kifer, M.; Lausen, G.; Wu, J. Logical Foundations of
Object-Oriented and Frame-Based Languages. Journal
of the ACM. 1995.

McGuinness, D., Fikes, R., Rice, J., Wilder, S. The
Chimaera Ontology Environment. AAAI-2000. Austin,
Texas. August, 2000. ;

MKBEEM. http://mkbeem.elibel.tm.fr

OILEd. http://img.cs.man.ac.uk/oil/

OntoEdit. http://www.ontoprise.de/co_produ_tool3.htm
OntoKnowledge. http://www.ontoknowledge.org

RDF. http://www.w3.org/TR/REC-rdf-syntax/

Swartout, B.; Ramesh P.; Knight, K.; Russ, T. Toward
Distributed Use of Large-Scale Ontologies. AAAI
Symposium on Ontological Engineering. Stanford. USA.
March, 1997. :
Using Protégé-2000 to Edit RDF. Technical Report.
Stanford University. http://www.smi.Stanford.edu/
projects/protege/protege-rdf/protege-rdf html.

A Library of Generic Concepts
for Composing Knowledge Bases

Ken Barker and Bruce Porter

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712 USA
{kbarker, porter} @cs.utexas.edu

ABSTRACT

Building a knowledge base for a given domain traditionally
involves a subject matter expert and a knowledge engineer.
Onc of the goals of our research is to eliminate the
knowledge engineer. There are at least two ways to achieve
this goal: train domain experts to write axioms (i.e., turn
them into knowledge engineers) or create tools that allow
users to build knowledge bases without having to write
axioms. Our strategy is to create tools that allow users to
build knowledge bases through instantiation and assembly
of generic knowledge components from a small library.

In many ways, creating such a library is like designing an
ontology: What are the most general kinds of events and
entities? How are these things related hierarchically? What
is their meaning and how is it represented? The pressures of
making the library usable by domain experts, however,
leads to departures from the traditional ontology design
goals of coverage, consensus and elegance. In this paper we
describe our component library, a hierarchy of reusable,
composable, domain-independent knowledge units. The
library emphasizes coverage (what is an appropriate set of
components for our task), access (how can a domain expert
find appropriate components) and semantics (what
knowledge and what kind of representation permit useful
composition). We have begun building a library on these
principles, influenced heavily by linguistic resources. In
early evaluations we have put the library into the hands of
domain experts (in Biology) having no experience with
knowledge bases or knowledge acquisition.

Keywords
knowledge engincering, ontologies, knowledge reuse

INTRODUCTION
The traditional audience for concept taxonomies includes
knowledge engineers, ontologists and philosophers. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistributc to lists,
requires prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00

14

Peter Clark

Knowledge Systems
Boeing Math and Computing Technologies
m/s 7L66, PO Box 3707, Seattle, WA 68124 USA
peter.e.clark@boeing.com

audience is often interested in ontologies as elegant models
capturing a natural division of kinds of things in the
universe of discourse. When the intended audience includes
experts in particular fields of knowledge who hope to use
the ontology to represent abstractions from their fields, the
pressures on the design of the ontology shift.

It is a claim of our research (28] that users with no
experience in knowledge engineering will be able to
represent knowledge from their domain of expertise by
instantiating and composing generic components from a
small, hierarchical library. Components are coherent
collections of axioms that can be given an intuitive label —
usually a common English word. The components should
be general enough that their axiomatization is relatively
uncontroversial. Composition consists of specifying
relationships between instantiated components so that
additional implications can be computed.

As a guiding principle in building the library we have
chosen to restrict both the number of components (to a few
hundred) and the size of the language of composition — the
relationships between components (currently less than a
hundred). Our goal is to achieve coverage through
composition rather than through enumeration of a large
number of concepts. The small library and simple
composition language also have the benefit of being easy to
learn for users with no knowledge engineering experience.

This design principle presents two research questions: 1) is
such a system easy for users to master? 2) is such a system
sufficient to represent sophisticated domain knowledge?
We have evidence that the system is indeed usable by
domain experts. The quality of the representations created
by our domain experts is under review.

In an attempt to make the library more accessible to users
unfamiliar with knowledge engineering, we have taken a
somewhat different approach to building our ontology: we
have taken inspiration from English lexical resources (such
as dictionaries, thesauri and English word lists) and
Linguistics research. We are certainly not rejecting
traditional knowledge engineering approaches, trying
instead to reconcile them with language usage. Rather than
try to avoid the clash between knowledge base concepts and

English words, we are attempting to make our component
library intuitive to users accustomed to expressing
knowledge with natural language.

This paper is part of a larger context of ongoing research on
knowledge base construction by composition. Elsewhere we
have discussed:

e motivations for the approach and algorithms [5, 6, 7]

e a graphical user interface [8]

e aknowledge representation and reasoning system [6]

e qucstion answering and explanation generatior: [17, 24]

Within that context, this paper provides a brief tour of an
carly version of our component library to highlight its
requirements, construction, contents and applications.

In the following section, we will describe our research
project in more detail and the design constraints it places on
our component library. We will then expose the contents of
the library: what components it contains, what the language
for composing components is and how we arrived at these.
We will describe the ways in which the user accesses the
library and report on some early observations of domain
experts using the library.

The component library itself is online and can be browsed
at http://www.cs.utexas.edw/users/mfkb/RKF/tree/.

THE PROJECT

A challenge problem for DARPA’s Rapid Knowledge
Formation (RKF) project [11] is to provide a software
environment in which a biologist can build a knowledge
base from information found in a textbook on Cell Biology.
It must be possible to query the resulting knowledge base to
obtain answers to the kinds of questions typically found at
the end of a textbook chapter.

Our component library is being used in software (called
SHAKEN) being developed by SRI, one of the primary
contractors on the RKF project [27]. A user of SHAKEN
builds a knowledge base by taking generic components
from the library, instantiating them in a graph and
connecting the instantiations to represent such things as
static relationships between concepts, temporal and spatial
information, event structure and process plans.

Requirements for Library Components

Given the project requirements, it is imperative that the user
have a sufficient variety of components (coverage), that
components that satisfy user expectations can be found
easily (access) and that components are general enough to
be used in a variety of contexts but specific enough to
express non-trivial knowledge (semantics).

Coverage

There should be components to allow the user to encode a
variety of knowledge from any domain. This is not to say
that there should be as many components as there are words
in a dictionary. Rather, the library should be broad-
coverage with components specific enough that a user is

15

willing to make the abstraction from a domain concept.
Conversely, the components should not be so specific that
the user is handcuffed or does not care enough about the
fine distinctions to use the components consistently.

Access

Although knowledge engineers and philosophers are
interested in the structure of upper-level ontologies, it is
less likely that a biologist describing DNA replication will
be interested in learning our hierarchy in order to find
components. Furthermore, since we are restricting the
library to a small number of components, it is unlikely that
there will be an exact match for a concept required by the
user. For both these recasons, it is important that the
interface help the user to find appropriate components.

Semantics

Our library is not merely a taxonomy of concepts. Each
component contains axioms that encode the meaning of the
component as well as how the component interacts with
other components. These axioms must be general cnough
that the components are reusable. They must also be written
in such a way that they do not clash with the axioms of
other components when composed.

In the next sections we will discuss how thesc criteria,
along with previous successful work on broad-coverage
intuitive semantic inventories have guided the construction
of our library.

RELATED WORK

In theory an ontology could be strong on all dimensions:
coverage, access, semantics. In practice, however, an
ontology, like most artifacts, is the result of engineering
tradeoffs. For example, consider WordNet [21] and Sensus
{16]. On one hand, they are as easily accessed as a
thesaurus and have very broad coverage — they include the
variety of concepts, relations, and modifiers used in
everyday text. On the other hand, they provide very shallow
semantics. For each English word, these ontologies give its
senses along with their definitions, parts of speech,
subclasses, superclasses and sibling classes. The definitions
are free text (of limited use to computer programs) and the
encoded relations are the only semantics.

The ontologies in Ontolingua [14] represent a different
point in the space of tradeoffs. These ontologies are very
limited coverage (thcy apply mainly to isolated topics in
Engineering), but they have rich semantics. For example,
they can be used to compute answers to Engineering
problems stated in their vocabulary.

Cyc [10, 18, 19] represents yet another point. Its coverage
is arguably as broad as WorldNet’s, including many senses
for entries in its lexicon. By one account, however, it
receives lower scores on semantics and accessibility.
Parmar [23] compared the representations of a handful of
actions in Cyc and our component library. She found that
Cyc often lacks axioms that capture the effects of actions —
the representation does not support automated reasoning

about change. In terms of accessibility, Parmar measured
the time she spent searching the Cyc ontology for entries
that correspond to fifieen common actions represented in
the component library.l On average, she spent over 3.5
minutes finding the Cyc term that most closcly matches
each action. By her assessment, many of thesc matches
were not close: on a scale from 1 (poor) to 10 (perfect), the
average scorc was less than 6.5.

It is clear, though, that Cyc is an example of a very different
approach to coverage than what we propose, making it
difficult to compare Cyc and our library. Cyc achieves
coverage through enumeration. The semantics of concepts
is often encoded in the fine distinctions between specialized
subclasses.

Given our small number of components and relations, there
is an obvious overlap with work on semantic primitives in
Linguistics and Natural Language Processing. Schank’s
Conceptual Dependency Theory [25] enumerated a very
small number of primitive actions and the relations between
actions and their participants. A later refinement [26]
included relations between pairs of actions. The extremely
small number of primitives forces each one to cover many
different concepts. The avoidance of names that clash with
English words makes the Conceptual Dependency language
less intuitive to users.

For our project, rich semantics is the first priority. The
semantics of each component is expressed in KM [6],
which in turn is defined in first-order logic. KM includes
situation calculus — a knowledge representation and
reasoning formalism for actions and the changes they cause.
For example, the component for ENTER includes KM
encodings of these axioms:

e ENTER is a type of MOVE, so instances of ENTER inherit
axioms from MOVE, such as: the action changes the
location of the object of the MOVE

e before the ENTER, the object is outside some enclosure

e after the ENTER, the object is inside that enclosure and
contained by it

¢ during the ENTER, the object passes through a portal of
the enclosure

¢ if the portal has a covering, it must be OPEN; and unless
it is known to be CLOSED, assume that it is OPEN,

We plan to achieve good coverage by encoding a small set
of general components for breadth. Depth can then be
achicved through specialization and composition of
components, without having the user write axioms.

We consider accessibility especially important, given that
our users are not knowledge engineers. The library has been

: BREAK, CARRY, CREATE, ENTER, EXIT, MAKE-ACCESSIBLE,

MAKE-CONTACT, MAKE-INACCESSIBLE, MOVE, RELEASE,
REMOVE, REPAIR and TRANSFER.

16

designed to allow retricval of components by means of
scmantically related search terms (as described below: see
Searching the Library).

THE COMPONENT LIBRARY

In deciding what components to encode, we took
inspiration from linguistic resources (such as dictionaries
and thesauri). Our goal was not to build an online
dictionary, but rather a library of components representing
concepts that are general and intuitive enough to have
obvious labels among common English words.

Furthermore, since domain experts are accustomed to
expressing their knowledge with words, having explicit
links between our components and dictionaries will help
provide access to the library (as described below). These
linguistic resources have much to offer:

¢ They have broad coverage of common terms. Our goal
is to have a library of domain-independent, general
components. This is where the strengths of general-
purpose dictionaries and thesauri lie.

¢ Lexicographers pay attention to consensus view of the
semantics of terms and common usage. Most
dictionaries and thesauri are the result of many years of
studying how terms are commonly used.

e They often group semantically related words into
general semantic categories. These categories may be
thought of as the most general concepts.

The Longman Dictionary of Contemporary English
(LDOCE) [29] uses a “defining vocabulary” of about 2,000
words. All definitions in the dictionary ground out
eventually to the defining vocabulary. WordNet groups
semantically similar words into “synsets”, which are
themselves linked hierarchically. Roget’s Thesaurus [20]
divides the universe into six classes. Each class is
subdivided into multiple sections, themselves subdivided.
The thousand leaves in Roget’s tree contain semantically
related words (not quite synonyms), one of which is chosen
as the representative for the group: the headword.

Each of these resources (the Longman defining vocabulary,
a horizontal slice of the WordNet hierarchy, the Roget
headwords) could be used as a list of general concepts, or
as inspiration for an original list. None of these would suit
our purposes as-is: the LDOCE vocabulary is not organized
semantically; WordNet has considerably less coverage and
fewer relations among non-nouns; Roget is somewhat
arbitrary, and obviously influenced by his culture.

Generic Events

The main division in our component library is between
entities (things that are) and events (things that happen).
Events are states and actions. States represent relatively
static situations brought about or changed by actions.

Actions
The actions are grouped into fifieen top-leve! clusters, each
having several more specific subclasses (Table 1). The list

was developed under consultation of WordNet, the LDOCE
defining vocabulary and Roget.

For example, the list of actions was compared to those
headwords in Roget’s Thesaurus that most naturally
describe actions. In Roget, each headword heads several
paragraphs; each paragraph contains words of the same part
of speech. Although the headwords themselves are all
nouns, some of the nouns are nominalizations and represent
events more naturally than entities (for example, headwords
#161: Production and #264: Motion). For these headwords,
the noun paragraphs arc often relatively empty, or contain
more nominalizations. Their verb paragraph$ are the
richest. Although there are over one thousand headwords in
Roget, our actions are general enough to cover most of the
more action-like headwords (with the exception of those
having to do with “sentiment and moral power” — an area
we have so far ignored).

States

States are relatively temporally stable events. They are
coherent collections of axioms that represent situations
brought about or changed by actions. Many of our actions
are defined in terms of the change in state they cause.

This relationship between actions and states is made
explicit in the library: there are actions that put objects into
states, actions that take objects out of states and actions
whose behavior is affected by objects being in states. For
example, the BREAK action puts an object into a BE-BROKEN
state. The REPAIR action takes an object in a BE-BROKEN
state out of that State. If an object is in a BE-BROKEN state,
it may not be the instrument of any of the events for which

it is the intended instrument (though it may be instrument of
other actions, such as using a broken computer to hold a
door open). Other states include BE-RUINED, BE-CLOSED,
BE-CONFINED, BE-TOUCHING, BE-ATTACHED-TO, etc.

There are other events that seem to fit somewhere between
our actions and states, such as “being in motion”. We
expect that most of our actions have non-conclusive,
durative counterparts (such as MOVING, CREATING, etc.).
We are investigating continuous representations of our
actions for the purpose of simulation. For now, our actions
are all represented as discrete events.

Entities and Roles

To date, we have concentrated on events. We plan to
research generic entities in a similar way. Our entity
hierarchy is currently a relatively impoverished tree, serving
as the root of a number of concepts from our test domain:
Cell Biology (just over 500 at the time of writing).

Our preliminary investigation into entities led us to
distinguish a separate class of role concepts. A role can be
thought of as a temporally unstable entity. It is what an
entity is in the context of some event. For example, PERSON
is an entity while EMPLOYEE is a role. A PERSON remains a
PERSON independent of the events in which she participates.
Conversely, someone is an EMPLOYEE only by virtue of
participation in an EMPLOY event.

Our library allows instances of roles to be linked to
instances of entities as adjunct instances that can be used to
capture both the role that an entity plays in an event, and
the role it is intended to play (its purpose).

In order to determine how common role concepts are, we

Action Description Example Subclasses
ADD add a part to an entity --
REMOVE remove a part from an entity -
COMMUNICATE* transfer information INTERPRET, ENCODE, REPLY
CREATE bring a new entity into existence COPY, PRODUCE, PUT-TOGETHER
BREAK cause an entity to be unable to be used as instrument (for events DESTROY, RUIN, TAKE-APART

in which it is the intended instrument)
REPAIR “undo’ a BREAK --
MOVE change the location of an entity CARRY, ENTER, SLIDE
TRANSFER change the possessor of an entity DONATE, LOSE, TAKE

MAKE-CONTACT make entities touch
BREAK-CONTACT
MAKE-ACCESSIBLE

MAKE-INACCESSIBLE

PERCEIVE* discern using senses
SHAPE* change the shape of an entity
ORIENT* change the orientation of an entity

make touching entities touch no longer
allow an entity to participate (in various ways) in events

prevent an entity from participating in events

ATTACH, COLLIDE
DETACH, DISPERSE

ADMIT, EXPOSE, RELEASE
BLOCK, CONCEAL, CONFINE
IDENTIFY, TOUCH
FLATTEN, FOLD

FACE, ROTATE, TURN

Table 1: The top-level action clusters (actions marked * are under construction in the ¥ Jary)

17

conducted an experiment with the Collins online dictionary
[9]. In that experiment we estimated that as many as 6% of
nouns satisfy our criteria for role concepts. Furthermore, the
most frequent nouns in the British National Corpus [4] also
contain an estimated 6% role concepts. A more detailed
discussion of roles and justification for a separate role
hierarchy appear in [13].

COMPOSITION

The precoded axioms in library components provide much
of the power that allows domain experts to build knowledge
bases. Equally important is the ability to connect
components in such a way that our knowledge
representation system (KM {6]) can draw inferences from
the composition beyond the union of the individual axioms
of the components.

From the point of view of a user, composition is simply the
linking together of library components. From this linking,
however, KM is able to draw inferences by way of the
knowledge encoded in components:

e Conditional rules: many components specify additional
axioms that are asserted conditionally, dependent on
the kinds of components they are composed with and
the kinds of connections between them. For example, if
the raw material of a PRODUCE is a SUBSTANCE, then
the product is composed of that SUBSTANCE. If the raw
materials are OBJECTs, then the product has those
OBJECTS as parts.

¢ Definitions: many components specify the sufficient
conditions under which KM can automatically
reclassify instances. For example, an instance of MOVE
whose destination is inside a container is automatically
reclassified as an instance of ENTER, allowing KM to
apply the axioms of that more specific component.

e Simulation: many components include preconditions
that must be satisfied for an action to take place and the
axioms that get asserted (or retracted) as a result of the
action taking place. KM is able to simulate complex
combinations of events and their participating entities.

The Language of Composition

In order to enable the kind of inferencing we have
described, composition must have predictable semantics,
which we accomplish by defining a restricted composition
language of relations and properties. These relations and
properties have their own axioms defining what inferences
will be drawn from the composition of components.

Relations
We have defined a small set of relations to connect Entities
and Events. Keeping the set small — we currently have

about eighty — will allow us to maintain detailed axioms
for each relation that capture the semantics of the
composition of the related components. Writing such
axioms for an open-ended set of relations might not be as
feasible. The small number of relations also makes it easier

18

for our inexperienced users to learn to use them. Our
relations that link an event to an entity describc the
participants involved in the event. Our original sct was
inspired by a comprehensive study of case roles in
Linguistics [3]. The set has been refined to account for the
kinds of relationships expected for our particular event
components. Event-to-Entity relations include agent, donor,
instrument, object, recipient, result, etc.

To account for relationships between entitics, we drew on
previous research into the semantics of English noun
phrases [2]. Since nouns can represent many things (not just
entities) the semantic relationships within noun phrases are
a superset of what is required to account for relations
between our entities. The set of entity-to-entity relations
currently includes content, has-part, location, material,
possesses, region, etc.

The choice of relationships between events followed from
studies in discourse analysis [1] and process planning [22].
These relations include causes, defeats, enables, entails,
inhibits, by-means-of, prevents, resulting-state and
subevent.

In addition to the relations among events and entities, we
have a very small number of relations that involve roles
[13]: relations that link an Entity to the Role it plays (or is
intended to play) and between the Role and the Event.

Properties

We also have a small number of properties. Properties link
entities to values. For example, the size of an entity is a
property that takes a value. The value can be a cardinal (25
kilograms), a scalar (big relative to housecats) or a
categorical (brown).

To define our set of properties, we turned once again to
linguistic studies. Whereas events and entities usually
surface as verbs and nouns in language, properties are
closely related to adjectives. Since adjectives can also
represent entities, we restricted our study to those adjectives
that ascribe values to features of the nouns they modify.
These adjectives are often called ascriptive adjectives.

We consulted work in Linguistics on adjective semantics,
most notably Dixon [12] and Frawley [15]. We then
conducted two exercises to build a list of properties.

For the first exercise we once again used WordNet, which
explicitly distinguishes ascriptive adjectives from non-
ascriptive adjectives (called pertainyms in WordNet). For
the ascriptive adjectives, there are occasionally links to the
noun that best describes the “attribute” to which the
adjective ascribes a value. For example, the attribute for
large is size. WordNet identifies about 160 unique nouns
that are used as attributes. We used these attributes to
populate the adjective classes proposed by Dixon, resulting
in a first draft of a list of properties.

For the second exercise we once again consulted Roget. As
described earlier, although the Roget headwords are nouns,

some of them more naturally describe ¢vents and have rich
verb paragraphs. For other headwords, the adjective
paragraphs arc the richest (for example, headword #192:
Size). Some of the headwords so naturally indicate
properties that the verb paragraphs contain little more than
“be <adjective>". In headword #201: Shortness, the first
entry in the verb paragraph is “be short”. Our experiment
pulled hcadwords whose verb paragraphs begin with
copular adjectival complementation phrases’, producing a
list of candidates for propertics. This test also singles out
ascriptive adjectives, since nonascriptive adjectives do not
appear as copular complements. Unfortunately, the test did
not filter out certain relations (such as “be identical to”, “be
different from”, etc.). In the exercisc we removed thesc
relations by hand. The result was a list of approximately
230 headwords representing properties.

We then grouped all of the candidate properties into
approximately 25 general categories. This final list of
properties includes such properties as age, area, capacity,
color, length, shape, size, smell and wetness.

A Simple Example of Composition

Consider the simple example of messenger RNA (mRNA)
leaving a cell nucleus. In our interface, the user might
describe this action by making an MRNA the object of a
MOVE whose destination is outside a CELL-NUCLEUS:

MOVE
. destination
object
PLACE

MRNA . :
is-outside
CELL-NUCLEUS

The composition is richer than the mere connection of
components due to the extra inferences KM can draw from
the connection. Since the destination of the MOVE is outside
some place, KM will recognize that this MOVE satisfies the
definition of EXIT and will reclassify this instance of MOVE
to be an instance of EXIT. Through the semantics of EXIT,
KM will infer that prior to the EXIT the MRNA was inside
the CELL-NUCLEUS, and that the MRNA must have EXIiTed
through a portal in the CELL-NUCLEUS. KM can also infer
that CELL-NUCLEUS must be playing the role of CONTAINER,
and that its content prior to the EXIT included the MRNA. In
simulating the EXIT, KM will assert that the location of the
MRNA is a PLACE outside the CELL-NUCLEUS in the
situation immediately following the EXIT.

USING THE LIBRARY

User Interface
Access to the component library is through a web-based
too! for building compositions through graph operations:

2 a phrase of the form “<copula> <adjective>”, where the

copulas include “be”, “become”, “seem”, etc.

19

e add a component to a graph

e connect two components with a relation

e specialize a component to one of its subclasses
e unify two component instances

The use of this tool for knowledge entry is described in
detail in [8].

Searching or Browsing the Library

The main disadvantage in restricting ourselves to a small
number of generic components is that the library will
probably not have a component that exactly matches the
concept a user is looking for. The library interface, then,
must make it easy for the user to find a close cnough match.
Our interface supports two modes of access to the library: a
tree-based browser and a search tool.

Browsing the Library

Since the components are arranged hicrarchically in the
library, they can be browsed in the form of a tree. Our
library browser allows the user to selectively expand the
tree to view a component’s subclasses. Since the library is
small (by design) and we have attempted to make the
component names intuitive and transparent, browsing the
library through the tree is feasible. Nonetheless, given that
our users are expected to have little or no experience with
concept hierarchies, we believe it will be easier for them to
find components through a search facility.

Searching the Library
The SHAKEN interface allows two kinds of searching:
token match searching and semantic matching.

Token matching will return a component whose name
exactly matches (or contains) the search term.

Semantic matching traverses the WordNet hierarchy for
terms semantically related to components.

As part of the documentation for each component we have
identified the WordNet entries that most closely match the
semantics of the component. Our WordNet-based search
tool finds the search term in WordNet, then climbs the
hierarchy of hypernyms (more general terms) finding all
components listing those hypernyms in their documentation.

Table 2 shows examples of search terms and their results.

search term components found

assemble ATTACH, CREATE, COME-TOGETHER, MOVE-TOGETHER
mend REPAIR

gum-up OBSTRUCT, BLOCK

busted BE-BROKEN, BE-RUINED

Table 2: Examples of search terms and components found

One of the advantages of semantic searching is that results
are sorted on the WordNet distance between the search term
and the component, and on the depth of the component in
our hierarchy. This gives preference to more specific library

components, meaning the user is more likely to choose a
more specific (and therefore more semantically loaded)
component than if shé browsed top-down through the tree.

Documentation

One of the disadvantages of giving components names that
are also English words is that users may have different
biases about the senses of those words. These expectations
may clash with the semantics of the components. This
problem underlines the need for good documentation. Qur
documentation for components includes several things:

e Definitions. Given our particular users, it is important
to have simple, non-technical definitions that describe
all of (and only) the meaning of each component.

® One-line glosses. Early experiments have shown that
users often accept or reject a component based solely
on its name in a list. In our web-based interface one-
line glosses are displayed as the mouse hovers over a
component name.

e More detailed documentation. We also document the
full semantics of components, including participants in
an event, subevents, parts of an entity, etc.

¢ Examples. Several examples of varying complexity
help show the intended use of components.

¢ Neighboring concepts. We are adding information to

the documentation on “neighboring concepts” (similar
components and how they differ from each other).

All documentation is available through the user interface,
which can also show a graph representation of components
in the library. In the graph the user can choose to see all,
none or any subset of the links between the component and
components connected to it through our relations.

EVALUATION

We have conducted three experiments in which biologists
with no experience in knowledge engineering were asked to
encode knowledge using our library and SHAKEN. In the
first two experiments, users were given roughly one day of
training on how to use the system and one day to encode a
biological process (DNA transcription). In the third
experiment we provided roughly one week of training.
Users then (over eight weeks) encoded the knowledge from
one chapter of a textbook in Cell Biology. All interaction
between the users and developers was indirect, mediated by
an impartial “gatekeeper” knowledge engineer.

In all threc experiments the users have shown that our
library search facility is able to guide them to generic
components that they are willing to accept as abstractions of
concepts they wish to encode. For example, our users were
comfortable defining biological processes in terms of such
generic actions as COLLIDE, SLIDE, ATTACH, RELEASE, etc.

At the end of each experiment, users were also asked to fill
out a questionnaire. On average users found it moderately
easy (slightly over 3 on a scale of 1-to-5) to find relevant

20

components in the library. They found it easy (4 on a scale
of 1-to-5) to understand the components. They found the
components useful (4) for representing knowledge. They
found the restricted language of relations easy (4) to
understand and use. They found it moderately difficult
(slightly under 3) to cast biological knowledge in terms of
the components and relations in the library.

More objective data on the quality of the representations of
the knowledge built by the users is being collected.

LIMITATIONS AND FUTURE WORK

It is part of our claim that arbitrarily complex knowledge
can be represented through the composition of simple
generic components. The goal of knowledge reuse,
however, suggests that the library will be even more
powerful if it allows users to compose these more complex
compositions themselves. One of our main tasks ahead is to
populate the library with more complex (yet still general)
components, such as processes of DELIVERY, PRODUCTION,
COMMUNICATION, etc. We are also investigating ways to
automate the composition of more complex components,
such as through the use of interface templates.

Users identified several ways in which the library could be
improved. For example, biologists are often interested in
representing functional aspects of processes, not just
physical/spatial descriptions. Including role concepts and
the notion of purpose is currently making the encoding of
functional knowledge easier. We have made extensions to
our relationship language and are continuing to expand our
role hierarchy and our generic entity hierarchy to admit
functional representations more easily.

Experiments also underlined the importance of simple
component names that do not have strong connotations in a
particular domain. Our general actions of REPLICATE and
TRANSCRIBE caused confusion among the biologists. We are
currently reviewing the names (and documentation) of all
our components. We are also reviewing components that
users found unintuitive for other reasons. For example,
users were not interested in the distinction between MOVE
and its subclasses MOVE-FROM and MOVE-TO. We will
likely remove these components for the sake of simplicity.

SUMMARY

In this paper we have described the process of building a
library of knowledge components under the pressures
imposed by our intended audience: domain experts with no
experience in ontologies or knowledge engineering. In
order to make the library accessible, we have taken
inspiration from linguistic resources and built hooks to
language into the components. In order to achieve power
through composition of components, we have limited the
library to a small number of components and relations with
rich semantics. Preliminary trials with users inexperienced
in knowledge engineering have been promising, giving us
hope that domain experts will soon be able to encode their
expertise in powerful knowledge bases.

ACKNOWLEDGMENTS

The authors are indebted to Art Souther, James Fan, Paul
Navratil, Dan Tecuci, Peter Yeh, Marwan Elrakabawy,
Sarah Tiemcy, John Thompson, Vinay Chaudhri, Andres
Rodriguez, Jérome Thoméré, Yolanda Gil, Jim Blythe, Jihie
Kim, Pat Hayes and Paul Cohen for input on the
construction and use of the component library.

Support for this rescarch is provided by a contract from
Stanford Rescarch Institute as part of DARPA’s Rapid
Knowledge Formation project. This material is based upon
work supported by the Space and Naval Warfare Systems
Center - San Dicgo under Contract No. N66001-00-C-8018.

REFERENCES

1. Barker, K., and Szpakowicz, S. Interactive Semantic
Analysis of Clause-Level Relationships, in Proceedings
of PACLING ‘95 (Brisbane, April 1995).

2. Barker, K., and Szpakowicz, S. Semi-Automatic
Recognition of Noun Modifier Relationships, in
Proceedings of COLING-ACL ‘98 (Montréal, August
1998), 96-102.

3. Barker, K., Copeck, T., Delisle, S. & Szpakowicz, S.
Systematic Construction of a Versatile Case System.
Journal of Natural Language Engineering 3, 4
(December 1997), 279-315.

4. BNC. The British National Corpus. Available at
http://info.ox.ac.uk/bne/, 2001.

5. Clark, P.,, and Porter, B. Building Concept
Representations from Reusable Components, in
Proceedings of AAAI '97 (Providence RI, July 1997),
AAAI Press, 369-376.

6. Clark, P. and Porter, B. KM — The Knowledge Machine:
User’s Manual and Situations Manual. Available at
http://www.cs.utexas.edu/users/mfkb/RKF/km.html, 2001.

7. Clark, P., Thompson, J. and Porter, B. Knowledge
Patterns, in Proceedings of KR-2000 (Breckenridge CO,
April 2000), Morgan Kaufmann, 591-600.

8. Clark, P., Thompson, J.,, Barker, K., Porter, B.,
Chaudhri, V., Rodriguez, A., Thoméré, J., Gil, Y. and
Hayes, P. Knowledge Entry as the Graphical Assembly
of Components: The SHAKEN System, in Proceedings
of K-CAP 2001 (Victoria BC, October 2001).

9. COLLINS. The Collins English Dictionary. William
Collins Sons, 1979. At the Linguistic Data Consortium,
http://www.ldc.upenn.edw/Catalog/LDC93T1.html, 1993.

10.CYC. The Cyc Upper Ontology. Available at
http://www.cyc.com/cyc-2-1/index.html, 2001.

11.DARPA. The Rapid Knowledge Formation Project.
Available at http://reliant.teknowledge.com/RKF/, 2000.

12.Dixon, R. M. W. Where Have all the Adjectives Gone?
Mouton, The Hague, 1982.

21

13.Fan, 1., Barker, K., Porter B. and Clark, P. Represcnting
Role Concepts, in Proceedings of K-CAP200]
(Victoria BC, October 2001).

14.Fikes, R. and Farquhar, A. Distributed Repositories of
Highly Expressive Reusable Ontologies. [EEE
Intelligent Systems 14, 2 (March/April 1999), 73-79.

15.Frawley, W. Linguistic Semantics. Lawrence Erlbaum
Associates, Publishers, Hillsdale NJ, 1992.

16.Knight, K. and Luk, S. Building a Large-Scale
Knowledge Base for Machine Translation, in
Proceedings of AAAI '94 (Seattle WA, July-August
1994), AAAI Press, 773-778.

17.Lester, J. and Porter, B. Developing and Empirically
Evaluating Robust Explanation Generators: The
KNIGHT Experiments. Computational Linguistics 23, [
(1997), 65-101.

18.Lenat, D. Cyc: A Large-Scale Investment in Knowledge
Infrastructure. Communications of the ACM 38, I1
(November 1995), 33-38.

19.Lenat, D. and Guha, R. Building Large Knowledge
Based Systems. Addison Wesley, Reading,
Massachusetts, 1990.

20.Lloyd, S. M. Roget’s Thesaurus. Longman, Essex, 1982.

21.Miller, G. A. (ed.)). WordNet: An Online Lexical
Database. International Journal of Lexicography 3, 4
(Winter 1990).

22 Narayanan, S. Reasoning about Actions in Narrative
Understanding, in Proceedings of IJCAI'99 (Stockholm,
August 1999), Morgan Kaufmann, 350-358.

23.Parmar, A. The Representation of Actions in KM and
Cyc. Department of Computer Science, Stanford
University technical report (forthcoming), 2001.

24.Rickel, J. and Porter, B. Automated Modeling of
Complex Systems to Answer Prediction Questions.
Artificial Intelligence Journal 93, 1-2 (1997), 201-260.

25.Schank, R. C. Conceptual Information Processing.
North-Holland Publishing Company, Amsterdam, 1975.

26.Schank, R. C. and Abelson, R. P. Scripts, Plans, Goals
and Understanding. Erlbaum, Hillsdale NJ, 1977.

27.SRI. SRI’'s Rapid Knowledge Formation Team.
Available at http://www.ai.sri.com/~rkf, 2001.

28.SRI. Proposal to DARPA’s Rapid Knowledge

Formation Project. Available at
http://reliant.teknowledge.com/RKF/proposals/SRI/SRIproposal.htm,

2000.

29.Summers, D. (ed). Longman Dictionary of
Contemporary English: New Edition. Longman, Essex,
1987.

Knowledge Entry as the Graphical Assembly of
‘ Components

Peter Clark Ken Barker Vinay Chaudhri Yolanda Gil Pat Hayes
John Thompson Bruce Porter Andres Rodriguez ISI Thomas Reich-
Knowledge Systems Computer Science Jerome Thomere usc herzer
M&CT, Boeing Univ. Texas Sunil Mishra Marina del Rey IHMC, U W Florida
Seattle, WA 98124 Austin, TX 78712 SRI International, CA 94025 CA 90292 FL 32514

Abstract

Despite some successes, the lack of tools to allow subject
matter experts to directly enter, query, and debug formal do-
main knowledge in a knowledge-base still remains a major
obstacle to their deployment. Our goal is to create such
tools, so that a trained knowledge engineer is no longer re-
quired to mediate the interaction. This paper presents our
work on the knowledge entry part of this overall knowledge
capture task, which is based on several claims: that users
can construct representations by connecting pre-fabricated,
representational components, rather than writing low-level
axioms; that these components can be presented to users as
graphs; and the user can then perform composition through
graph manipulation operations. To operationalize this, we
have developed a novel technique of graphical dialog using
examples of the component concepts, followed by an auto-
mated process for generalizing the user’s graphically-entered
assertions into axioms. We present these claims, our ap-
proach, the system (called SHAKEN) that we are develop-
ing, and an evaluation of our progress based on having users
encode knowledge using the system.

Keywords

Graphical knowledge entry, knowledge acquisition, compo-
nents, composition, knowledge-based systems.

INTRODUCTION
Despite some successes, the lack of tools to allow subject
matter experts to directly enter, query, and debug formal do-
main knowledge in a knowledge-base (KB) still remains a
major obstacle to their deployment. Our goal is to create
such tools, so that a trained knowledge engineer is no longer
required to mediate the interaction. This paper presents our
work on the knowledge entry part of this overall knowledge
capture task. In particular, we present a novel technique
of graphical dialog using examples of component concepts,
and an evaluation of this technique. The particular applica-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010... $5.00

22

tion domain we are working with is ccll biology (although
our techniques are not specific to this domain), and our fo-
cus has been on capturing domain knowledge, as opposed
to problem-solving knowledge (the “what™ rather than the
“how to” knowledge). This work is being conducted as part
of DARPA’s Rapid Knowledge Formation (RKF) project [8].

CONTEXT, GOALS, AND CLAIMS

Context of the Work

Component-based approaches for knowledge capture are cur-
rently popular, and so we first describe where our work fits
in this context. It is useful to view expertise as compris-
ing problem-solving knowledge (“how” knowledge) and do-
main knowledge (“what” knowledge). Perhaps the most suc-
cessful component-based, knowledge capture work has been
with problem-solving knowledge, where reusable problem-
solving methods (PSMs) can be assembled to produce task-
specific problem-solvers, e.g., [4, 18]. Moreover, PSMs can
also be used to guide acquisition of domain facts, as they
“expect” certain types of knowledge in order to operate, e.g.,
the Expect system [2], Protege-derived tools [13].

Less work has been devoted to capture of domain knowledge,
and it is capture of this kind of knowledge that is the primary
focus of our work. Existing tools have focussed only on en-
try of taxonomic (“isa”) knowledge and database-style facts,
e.g., WebOnto [9], or have been targeted for use by knowl-
edge engineers rather than subject matter experts, requiring
logical axioms to be directly entered, e.g., Ontolingua [10],
GKB [15], and the HITS Knowledge Editor [17]. Our goal
is to allow users to encode these more complex, declarative
axioms, describing both static objects and dynamic processes
in the world, without requiring expertise in logic or Al. Our
approach is analagous to work on PSMs: We similarly as-
sume a library of components (but about objects and pro-
cesses in the world, rather than about problem-solving strate-
gies); and components similarly provide “expectations” to
guide the user (but about how domain knowledge should be
represented). The result of the knowledge capture process is
a new set of axioms about a domain-specific object or pro-
cess, which can then be used for question-answering.

Concerning our use of graphs for interacting with users, graph-

ical notations have frequently been found to be intuitive to
users, ¢.g., in “concept maps,” an informal graphical notation
developed for educational settings, and used in tools such as
WebMap [12] and by Univ. West Florida [3]. Similarly they
have sometimes been found intuitive to knowledge engineers
themselves, e.g., [16, 11]. Our goal is to exploit this intuitive-
ness for working with a pre-built library of representational
components.

Claims

A central claim of our approach is that users can construct
axiomatic representations by connecting pre-fabricated, rep-
resentational components, rather than writing low-level ax-
ioms directly. By component, we mean a coherent set of
axioms which describe some abstract phenomenon (e.g. the
concept of “invade™), and which are presented to the users
as a single representational unit. By composition, we mean
the connection of such components together, and the com-
putation of additional implications of the composite set of
axioms. Components are intended to encode fairly abstract
phenomena, such as knowledge about the concepts “invade,”
“break,” “container,” and “control system.” Our goal is thus
to recast the knowledge capture process as one of instantia-
tion and assembly, rather than of axiom writing.

A second, related claim of our work is that components can
be presented to users as graphs, and the user can then perform
composition through graph manipulation operations. As a
result, details of the underlying logic are hidden from users.
Two implementation challenges for this are first expressing
components as graphs, and second translating the user’s graph
manipulation operations back into logic, so that as the user
manipulates graphs, the system records the logical equivalent
of those operations. Our novel solution to this challenge is to
have the dialog with the users be in terms of examples of their
concepts of interest, coupled with a process for generalizing
the user’s graphically-entered assertions.

These two claims are related. In particular, the claim that
knowledge capture can be treated primarily as an assembly
process suggests that just a small number of axiom types
(for stating connections and instantiations of existing com-
ponents) will be sufficient to allow the users to build ade-
quate representations. Although any full axiomatization of
the user’s concepts of interest may require complex axioms
about space, time, actions, movement, etc., these will have
been pre-built in the KB, and the user’s job is thus simpli-
fied to describing domain-specific concepts using them. This
provides a basis for the design of the graphical interface, as
it only needs to support entry of this restricted set of axiom
types, rather than the full range of possible first-order logic
expressions. To the extent that these claims hold, a parsimo-
nious tool for knowledge capture can be constructed, and to
the extent that they do not, special add-ons will be needed to
accomodate the user’s needs.

TECHNICAL APPROACH

The user’s goal is to createfextend a representation of a con-
cept, i.e., encode axioms describing the propertics, structure,
and behavior of some domain-specific object or process. The
user’s activities are to: (1) Identify relevant components from
the prebuilt KB; (2) connect and extend them to build a new
representation; (3) save the result; and (4) test and ask ques-
tions about the new concept. The focus of this paper is on
step 2 above, the construction of new representations.

Components

A component is a small set of first-order logic (FOL) ax-

ioms about a particular concept, gathered into a single data

structure, encoding a coherent description of that concept [5].

The user is provided with a pre-built library of such compo-

nents to work with. (Creating this library is a separate, major

goal of our project [1]). For example, consider a (much sim-

plified) component describing the process of “Invasion™. It

might include axioms stating that:

e The defending object has some barrier to protect it

e During an invasion, the invader penetrates that defensive
barrier, then enters through it, then takes control of the at-
tacked object.

¢ The invading agent is a tangible entity

* etc.

Statements such of these are encoded in first-order logic in
the KB using (in our case) the frame-based language KM
{6). A simplified example of this notion of invade looks (in
KM notation, with examples of equivalent FOL notation as
footnotes) ' :

;53 [11 “The invading agent is a tangible entity”

5 [21 “The subevents of an invasion are a penetrate,

3 an enter, and a take control.”
353 [31 “During the penetrate, the invader penctrates
R the defensive barrier of the attacked object.”
1»; [41 “The first subevent is a penetrate event™
335 ete.
(Invade has (superclasses (Attack)))
(every Invade has

(agent ((a Tangible-Entity))) i (1)

(object ((a Tangible-Entity with

(has-part ((a Barrier})))})))

{subevent (

(a Penetrate with ; [2al
(agent ({the agent of Self))) ; [3a)
(object ((the Barrier has-part of ;[3b]

(the object of Self))))
(next-event ((the Enter subevent
of Self))))
{a Enter with ; [2b]
(agent ((the agent of Self)))
(object ((the object of Self)))
(next-event ()
(the TakeControl subevent of Self))))
(a TakeControl with ;[2¢]

1Briefly on KM’s syntax: slots (lowercase) are binary predicates, classes
(mixed case) are sorts/types, ‘every’ denotes universal quantification and
‘a” denotes existential quantification. See [6] for further details.

1.

(agent ((the agent of Self)))
(object ((the object of Self))))))
(first-subevent (
(the Penetrate subevent of Self))))
Or in standard FOL syntax:
[1] Vitsa(i, Invade) —
Jy isa(y, Tangible-Entity) A agent(i, y)
[2a, 3] Viisa{i, Invade) —
(3p subevent(i. p) Aisa(p, Penetrate) A
(Va agent(i,a) — agent(p,a)) A
(Vo,b object(i.a) A has-part(o.b) A
isa(h, Barricr) — object(p.b)))

; (4]

etc.

These axioms provide one fairly general model of invasion
for the user to start from, and use concepts which themselves
already have rich semantics in the KB. For example, axioms
about the concept of Entex (not shown here) encode that
if something is entered, then the entering object will be spa-
tially insidc afterwards, that the path of entry will necessarily
cross the boundary of the entered thing, etc. The KB uses
a rich language for describing the properties and effects of
actions, allowing questions to be answered through both de-
ductive reasoning and running simulations.

Displaying Axioms to the User

To present the axioms about a concept C' to the user, the raw
axioms are not presented directly. Rather, the user sees an
example I of that concept, i.e., a set of ground facts about
1, computed from those axioms. Ground facts are both com-
prehensible and graphable, and provide an easy-to-grasp (al-
though approximate) summary of what the KB “has to say”
about a concept. The user then builds new concepts by inter-
acting with this and other examples.

For instance, suppose the user is wanting to build a represen-
tation of how a virus invades a cell. One starting point for
this is the pre-built concept of Invade, which the user would
locate by browsing the component library. To then display
the axioms for invade, our system SHAKEN then:

creates an instance [of Invade (i.e., asserts the existence
of an individual of type Invade), then

2. queries the KB for values for each of I’s slots (i.e., uses in-

ference to compute all ground facts of the form slot(l,)).
Existentially quantified variables are Skolemized, and thus
the result of this is typically a set of ground, binary facts
between Skolem individuals. An example is shown shortly.

3. Recursively applies step 2 to each such value = found, up

to a certain depth limit.

4. Presents this database of ground facts to the user as a graph,

where each Skolem instance is a node, and each binary re-
lation is an arc. Nodes are labelled with the most specific
class(es) (i.e., sort, type) that each instance belongs to.

The boundaries of this procedure, and hence the extent of the
resulting graph, are set manually by us, the knowledge en-
gineers, by pre-specifying which slots should be included in
the graph, and the depth of recursion. An autolayout algo-
rithm then determines the spatial layout of nodes and arcs.

24

The graphs are computed dynamically by this procedure at
run-time, and thus can automatically adapt as new axioms
are added to the system. From here, the user can modify
the initial presentation by moving, expanding, or contract-
ing nodes in the graph, hiding or exposing edges, and saving
hisfher revised presentation so new uses of that concept will
appear the same way.

Applying this procedure to our (simplificd) Inrade repre-
sentation, SHAKEN would first generate a Skolem instance
denoting an example of invade, e.g., named I'nradel (terms
ending with numbers denote Skolem constants), and hence
the set of facts:

agent(Invadel, Tangible-Entity2)
object(Invadel, Tangible-Entity3)
has-part(Tangible-Entity3, Barrier4)
first-subevent(Invadel, Penetrate5)
subevent(Invadel, Penetrate5)
agent(Penetrate5, Tangible-Entity2)
object(Penetrate5, Barrierd)
next-event(Penetrate5, Enter6)
subevent(Invadel, Enter6)
agent(Enter6, Tangible-Entiry2)
object(Enter6, Tangible-Entity3)
next-event(Enter6, TakeControl7)
subevent(Invadel, TakeControl7)
agent(TakeControl7, Tangible-Entity2)
object(TakeControl7, Tangible-Entity3)

From this, a graph would be synthesized and displayed, where
each node corresponds to a Skolem instance and each arc a
binary relation. The resulting graph may look, for example:

Penetrate |Tx:—>! Eﬁtcﬂrxl?l TakeControl I

event event

Entering Knowledge by Interacting with the Graph
Suppose that the user wishes to build a representation of how
a virus invades a cell. Hefshe would first provide a name for
this new concept (e.g., VirusInvasion), and then locate one
or more components in the KB to start from. In this example,
the user may select the Invade concept shown earlier. As a
result, SHAKEN generates the above database, and also adds
the assertion that the root instance denotes (an example of)
the user’s new concept, i.e., asserts:

isa(Invadel, VirusInvasion)

As a result, the label on this root node appears as “Virus-
Invasion,” and would appear as shown in the top graph in
Figure 1. The entire graph is treated as a “representative in-
stance” of the user’s new concept.

To develop a model of how (for example) a virus invades a
cell using this and other components, the user needs to en-
code facts such as:
Al. the invading agent is a virus
A2: the invaded object is a cell
A3. the penetrate is by means of endocytosis
Ad. the agent in the endocytosis is the invaded object (i.e.,
the cell)
AS. there is also a delivery (of DNA) taking place
AG6. there are certain correspondences between the invade
and the delivery e.g.,
AG6.1 the invader (i.e., the virus) is the same as the
agent in the delivery
A6.2 the thing delivered is the DNA of that virus.

Rather than writing these statements in logic, the user makes
them through the graphical interface via graph manipulation
operations. This is possible becausc these axioms (specifying
the composition) are generally all of a simple form: the com-
plex axioms about virus invading a cell, e.g., how the spatial
relationships of the objects change during the process, are
mainly applications of more general axioms which already
reside in more general components, and thus have already
been pre-encoded in the component library. The user’s job
(and thus the interface) is thus simplified to using just this
restricted subset of axiom types. As stated earlier, this is an
important claim of our work, namely that by pre-encoding
components well, a set of simple types of connections be-
tween them will be adequate for KB construction by a user
who is not a trained knowledge engineer.

SHAKEN currently supports four types of axiom-building
graph operations (plus others for controlling layout and node
visibility). Each graphical operation corresponds to a simple,
ground assertion about the example hefshe is working on, and
each time the user performs an operation, SHAKEN makes
the corresponding logical assertion in the KB. On comple-
tion, an algorithm generalizes these assertions to hold for all
instances of the concept C the user is describing, and the
resulting axiom set captures the knowledge the user has en-
tered. If the user is happy with his/her work, the axiom set is
added to the KB, and can be further refined later and/or used
itself as a component for defining new concepts.

The four graphical operations and their corresponding ax-
ioms are listed in Table | and illustrated in Figure 1. They
are as follows:

Specialize: Refine an object’s most specific class(es). In
Figure 1, the user has clicked on the first Entity node
and then selected Cell from a menu, to state that the
thing being invaded is a cell. This asserts isa(Tangible-
Entity3,Cell) in the KB.

Add: Add a new participant to the representation. In Fig-
ure 1, the user has selected the graph for Virus. This
asserts 3z isa(x, Virus), which is then Skolemized to
isa(Virus8, Virus) and asserted in the KB.

Unify: State that two objects are coreferential. In Figure 1,

25

cunlains'

\, DNA /I

. - agent
Nirwtmaion]

contains

Figure 1: Examples of the four axiom-asserting graphical
operations that the user can use in SHAKEN.

—

Operation Examples Graphical Action Graphical Result Logical Assertion
specialize "Al, A2 click node I + select class I's label changes to Cllass isa(l,Class)

add A3, AS click button + select class graph for class appears Je isa(e, Class)
unify A4, A6.1,A6.2 dragnode I onto node I’ nodes fuse I=r

connect A3, A4 sketch arc R between I, I’ arc appears R(I,1")

Table 1: The four graphical operations in SHAKEN, and their logical equivalent. The examples refer to the axioms

listed in the body of this paper.

the user has stated that the invader is the same object
as the virus hefshe just introduced, by dragging one
on top of the other (which then fuse). This asserts
Tangible-Entity2 =Virus§.

Connect: Assert a relation holds between two nodes, by
sketching an arc. In Figure 1, the user’s action results
inagent(Enter6, Virus8) being asserted.

Implications of the User’s Assertions

The user’s assertions may have logical implications in the
KB, and hence may imply changes to the graph the user is
viewing. For example, if the user has two graphs for two
distinct viruses displayed (similar to the Virus graph in Fig-
ure 1), and hefshe then unifies the two viruses, this implies
(from constraints in the KB) that the two DNA nodes must
also be coreferential, and so should also be unified. To feed
these changes back to the user, first these “knock on™ effects
are computed in the KB, and then the graphs the user is view-
ing are recomputed and redisplayed (preserving as much of
the original spatial layout as possible).

Thus SHAKEN is not just a passive graph editor, but is ac-
tively engaged in showing the user consequences of his/her
assertions when they affect the visible graphs. This is an
important and distinctive property of our interface, and nec-
essary to keep the graphs and the KB synchronized so that
the dialog remains coherent.

Axiom Synthesis from Graph Operations

Through the above means, the user can only enter ground
facts about this particular example of hisfher new concept.
The final stage of this knowledge entry phase (before testing
and debugging) is the automatic generalization of those as-
sertions to hold for all instances of the user’s new concept.
This generalization process is algorithmic (rather than induc-
tive), which we now describe.

The axioms which the user has graphically entered are all
relationships either between Skolem instances, or between a
Skolem instance and a class. For example, the user would
enter the earlier assertion A2 that “the invaded object is the
cell” by a ‘specialize’ graphical operation on the node de-
noting the invaded object, namely Tangible-Entity3. This is
illustrated in the first step of Figure 1, and results in the cor-
responding logical assertion being added to the KB:

isa(Tangible-Entity3, Cell)

26

To generalize this to apply to all instances of the user’s new
concept Virusinvasion, the algorithm behaves as follows:

1. First, the axiom is rephrased to only mention the “root”
Skolem instance R, namely the one denoting the concept
the user is defining. In our example here, the root Skolem
R is Invadel, denoting the user’s example of Virusinva-
sion. Informally, this means a statement like

“Tangible-Entity3 is a Cell”

is rephrased as

“the object of Invadel is a Cell”

Note that the latter statement only mentions the root in-
stance Invadel. This is required for step 2.

Formally, each Skolem instance [in the ground assertion
is replaced with a variable v, and a formula is added as
an antecedent which uniquely identifies v as that Skolem
instance /, and no other. In other words, this formula is a
description of I, stating the unique way it is related to the
root R, i.e. is true only when v = I. In SHAKEN, this
formula is a path (role chain) of relationships from the root
instance R to I, found by a simple graph search procedure
starting at R and looking for path(s) to /. The resulting
formula has the form:

pi(R,z1) Apa(zy z2) A App(Tn-1.v)
and thus the rephased axiom has the form:
Y&y, v pr(R, 1) A o pr(Tu—1,v) — axiom(v)
In the above example, the ground fact
isa(Tangible-Entity3, Cell)
would thus be rephased as
Yv object(Invadel, v) — isa(v.Cell)
If there are multiple such objects, then additional predi-

cates are added to the formula until it only holds for I (here
Tangible-Entity3).

2. This axiom is then generalized so that it holds for all ex-

amples of the concept NewC being defined. This is done
by replacing the root instance It in the axiom with a vari-
able 7, and adding an antecedent stating the axiom holds
for all cases when 7 is an instance of NewC, i.e., when
isa(r, NewC) is true. The final axiom will thus have the
form:

vr isa(r. NewC) — formula(r)

where forniula(r) is the axiom from step 1 with R re-
placed by r. In the example, the final result would be:

.:; “The invaded object is the cell.”
vr isa(r, VirusInvasion) —
(Vo object(r,v) — isa(e.Cell))

It should be clear that the purpose of step 1, rewriting in terms
of R, is to pave the way for step 2, where 12 is replaced by a
universally quantified variable.

N

One complication must be dealt with for the ‘Add’ operation.
When the user adds a new component to the screen through
the ‘Add’ operation, it is initially disconnected from the root
graph describing the user’s new concept. This means that
there is no path connecting the root instance R to instances in
that new graph, and thus the reformulation in step 1 will fail.
To handle this, a (graphically invisible) “participant™ relation
is asserted to hold between R and the new instance whose
existence has been declared, stating that the new instance is
a “participant” in R. As a result, the procedure in step 1 can
now find a path from R to that instance and others in its graph
by traversing that participant relation. For example, in graph
3 of Figure 1, the user has added the graph for Virus, so the
assertion is added to the KB:

participant(Invadel, Virus8)
This allows paths to instances in the new graph to be found.

Axiom Synthesis with ‘Delete’ Operations

An undesirable characteristic of this axiom synthesis rou-
tine is that it assumes a monotonically growing KB. As each
axiom includes logical descriptions of the objects the user
manipulated, generated at a fixed moment in time, the user
cannot later delete facts about those objects without risking
invalidating those descriptions, and hence his/her earlier syn-
thesized axioms. In the earlier example, if the user were
to later delete the assertion object(Invade !, Tangible-Entity3),
then the synthesized axiom shown would no longer be valid.

We have recently prototyped (but not deployed) an alterna-
tive, and very different, axiom synthesis routine which sup-
ports non-monotonic change, thus providing the user with
a much desired ‘Delete’ (of a node or arc) operation, and
which we briefly describe here. Rather than converting each
user action into an axiom, this alternative approach stores the
user’s final graph itself as a (large) “forall...exists...” axiom
stating that “forall instances of the concept being defined, all
the objects and relationships in the graph exist.” This axiom
is created only at the end of the user’s session, and overwrites
any previous axiom for that concept, thus allowing the user to
delete as well as add to the graph. To support this, two exten-
sions were needed for the inference engine: First, the user’s
delete operations must override implications from the KB, to
prevent SHAKEN re-inferring the deleted arc/node. Second,
when inferencing with several “forall...exists...” statements

27

AddConoat | Specos | Remove | Zoome | 2oomOk | oot | S;w]

Transcrption-initiation

Subevent *
fied.subenent” A

\\

Move-Through
- ~

nextevent® | nedevent®

! next event*

Make-Contact

aext-event”

next event®

|
base® [object” e
<t

base ™
ynne X)‘/ /
f . (DNA-Double-Strand

(RaPohmerase)

aqent
base "

object*

(OhA-Regulatory- éiitiuéoce}
(Sigma-Factor} abiedt”

object” agent

obiect”

Figure 2: A screendump of SHAKEN’s graph interface,
showing a user’s representation of how the process of
RNA transcription is initiated.

like this, the inference engine needs to heuristically deter-
mine coreferences between instances in the (logical equiv-
alent of) the multiple graphs, so that they are appropriately
merged together. Although these extensions complicate the
formal semantics of axioms in the KB, they will provide
users with a much-desired ‘Delete’ capability in later ver-
sions of the system. It has become increasingly clear from
our experiments that assuming simple axiom semantics and
a monotonically growing KB are difficult positions to main-
tain for real-world knowledge acquisition.

Entering Knowledge through the Interface

Through these operations, the user’s task is to assemble a rep-
resentation of new concepts. The user first provides a name
for his/her new concept, then selects from the KB the most
appropriate, pre-built generalization of that concept to start
from. SHAKEN then displays the initial graph for (an in-
stance of) that new concept. From here, the user adds, spe-
cializes, connects, and unifies nodes on the screen to gradu-
ally build a representation. An example of one of the simpler
representations built by a user during the experimental eval-
uation is shown in Figure 2. Separate testing and question-
answering tools [14, 7} allow the users to debug and pose
questions to their representations until they are satisfied.

EVALUATION AND DISCUSSION

During the summer of 2001, an extensive evaluation was per-
formed on SHAKEN, including the graphical entry compo-
nent described in this paper. Four users who were trained
in biology (three graduate students, one undergraduate), and
who had no background in programming or formal logic, un-
derwent a week’s training in using the system. Following
this, they then independently worked over a period of four
weeks (except for one who worked for three weeks due to va-
cation constraints) on encoding an 11-page subsection from
a graduate-level textbook on cell biology, including debug-
ging and testing their representations. These trials was run by

an independent contractor (IET, Inc.), rather than ourselves.
For the trials, the basic component library was augmented
with representations of the prerequisite knowledge necded to
understand the subsection. This augmentation was carefully
controlled by 1ET to prevent knowledge from the subsection
itself being included in the initial library.

Most significantly, all four users were able to both grasp
the basic approach of assembling components, and construct
representations using the graphical interface. Over the four
week period (three for one user), the users constructed rep-
resentations of 442 biological concepts (approximately 100
each) ranging in complexity from a single node (i.e., just a
concept name) to graphs containing over 100 nodes. The
total number of synthesized axioms in the users’ final rep-
resentations (where each axiom-building graphical action re-
sults in one axiom being synthesized) were 1408, 567, 1296,
and 921 respectively. The users also tested their representa-
tions by posing (independently set) questions to them using a
menu-driven question-asking interface. The questions were
approximately high-school level difficulty, and were mainly
“reading comprehension” type questions requiring only sim-
ple inference, although a few requircd more complex infer-
ence and simulation. Sometimes this testing revealed er-
rors or inadequacies in the representations, which the users
would then correct. The final, system-generated answers to
the test questions were collected, and, after the four week pe-
riod was complete, were scored by an independent biologist
on a 0-3 scale (0 = completely incorrect, 1 = mostly incor-
rect, 2 = mostly correct, 3 = completely correct). At time
of writing the final scores are still being tallied, but the eval-
uators report that the average score is close to 2, reflecting
that the users had successfully constructed reasonably accu-
rate, inference-capable representations. These results are sig-
nificant: they suggest that the basic machinery works, pro-
viding a basic vehicle for axiom-building without the users
having to encode axioms directly (or even encounter terms
like “concept,” “relation,” “instance,” “quantification,” etc.);
and that those axioms are built in terms of prebuilt knowl-
edge, hence bringing background knowledge into the repre-
sentations for future reasoning and question-answering tasks.
This is an important achievement for this project. In a sep-
arate questionnaire to the three users at the end of the four
weeks (the fourth user still to complete the questionnaire
when back from vacation), all three rated SHAKEN as “use-
ful” as a tool to enter knowledge (on a scale of useless/not so
useful/moderatefuseful/very useful), and “easy” to use (on
a scale of very easy/easy/moderate/difficult/very difficult).
This again points to the viability of this approach.

"«

Although the users were able to encode a lot of knowledge

with SHAKEN, there was also knowledge they were unable

to encode due to the limited expressivity of the interface. The

most significant of these, as reported by the users, were:

e simple attribute values (which had to be represented as
classes in the current system), e.g., rates, sizes

28

e equational information e.g., how rates vary with time

temporal relations, e.g., simultancous/temporally overlap-

ping events

pre/post conditions for actions

richer process models, e.g., repetitive events

sequences, e.g., nucleotide sequences

negative information, ¢.g., being able to say something

doesn’t happen

locationalfspatial information b

o how things change with time (fluent information). The sys-
tem assumes the graph describes the world at the start of a
process, and so, for example, it is not possible to describe
what an object looks like at the end of a process.

Similarly, comparing the users’ source text with what they
actually encoded, it is clear that they abstracted away many
of the details contained in the text. For example, the source
text for the user-built representation in Figure 2 begins:

“In bacteria, RNA polymerase molecules tend to stick
weakly to the bacterial DNA when they make a random
collision with it; the polymerase molecule then slides
rapidly along the DNA.."

If we compare this text with what was actually encoded (see
Figure 2) by one user, we can see that events like “stick”
and “slide” have been abstracted to Make-Contact and
Move - Through {(whose representations are pre-built in the
library), and other phrases like “weakly”, “rapidly”, “ran-
dom™, and “tend to™ have been omitted. (This user has also
added an extra prerequisite step, mentioned in text elsewhere,
of the sigma factor attaching to the polymerase). In fact, to
our surprise, the users seemed to have little or no trouble ab-
stracting out details when building their representations, and
they quickly grasped what could be represented and what
could not using SHAKEN. In contrast, users (such as our-
selves) with more experience in knowledge representation
sometimes had more difficulty abstracting in this way when
attempting the same encoding task. Interestingly, despite
these limitations, the users themselves felt they had managed
to encode much of the core knowledge. After the trials were
completed, they were each asked: “Next week SHAKEN will
be asked questions and answer them using the knowledge
you entered, and based on that it will be given a grade. Do
you think it will be a passing grade?”. All three users re-
ponded quite confidently, saying things like “definitely” and
“oh yes”. When asked “What kind of grade?”, two users
answered A-, the third said B. Independent of whether this
perception is correct or not, it is interesting that the users
themselves felt they had been able to teach the system much
of the biological knowledge in the selected subsection.

Another surprise to us was the size of the representations
the users created. Some of the users’ graphs contained over
100 nodes in, and were rich in relationships and associations.
(The users could manage graphs this size as the interface al-
lows them to hidefexpose parts of the graph, so not all nodes

need be visible at once). The graph shown in Figure 2 is thus
not representative of the typical complexity that the users
were able to build. The fact the users were able to build such
sophisticated representations perhaps partially explains their
confidence in the amount of knowledge encoded.

Despite the reasonable performance scores, there were still
errors in the users’ final representations. Some of these arose
duc to the use of linguistic-style devices (e.g., metonymy,
analogy, metaphor, approximation) in their graphical asser-
tions. Examples we observed include: indirect reference;
interchangeably referring to an object and an event; inter-
changeably referring to an object and a location; missing
corcference statements; overgenerality; missing context (stat-
ing a conditional fact as a universal statement); and misuse
of case roles. An important future task is to make SHAKEN
more active in interpreting and critiquing the users’ input, so
these errors are detected and corrected more agressively.

A final, interesting point concerns the interaction between
representation and question-answering. SHAKEN assumes a
single, universal representation for each biological concept,
while sometimes the users wanted to be able to represent the
same concept in multiple ways, depending on what kind of
tasks they wanted their representation to support. Sometimes
this resulted in the users creating multiple representations for
the same concept (using slightly different concept names).
A more principled method for handling different viewpoints
like this, either in the KB itself andfor in the reasoning and
question-answering procedures, would be desirable.

SUMMARY

‘We have presented a method for knowledge capture, in which
knowledge entry is viewed primarily as a task of component
assembly rather than axiom-writing, and shown how it can
be implemented using a graph-based interface, based on a
novel technique of dialog using examples. Our trials sug-
gest that users can both grasp the approach and construct
sophisticated, axiomatic representations, despite having no
formal training in logic or Al This is a potentially signifi-
cant achievement for enabling subject matter experts to build
KBs directly.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Space and
Naval Warfare Systems Center - San Diego under Contract
No. N66001-00-C-8018. We are grateful to all the other
members of the team, working on other parts of the overall
system, who have contributed to this work.

REFERENCES
1. K. Barker, B. Porter, and P. Clark. A library of generic
concepts for composing knowledge bases. In Proc. Ist
Int Conf on Knowledge Capture (K-Cap’01), 2001.

2. J. Blythe, J. Kim, S. Ramachandran, and Y. Gil. An
integrated environment for knowledge acquisition. In
Int. Conf. on Intelligent User Interfaces, 13-20, 2001.

29

10.

12.

13.

14.

15.

16.

17.

18.

. A.J. Canas, K. M. Ford, J. D. Novak, P. Hayes, T. Re-
ichherzer, and N. Suri. Using concept maps with tech-
nology to enhance cooperative leaming in latin amer-
ica. Science Teacher, 2001. (To appear).

. B. Chandrasekaren. Generic tasks in knowledge-based
reasoning: High-level building blocks for expert systein
design. IEEE Expert, pages 23-30, Fall 1986.

. P.Clark and B. Porter. Building concept representations
from reusable components. In AAAI-97, pages 369-
376, CA, 1997. AAAL :

. P. Clark and B. Porter. KM - the knowledge machine:
Users manual. Technical report, UT Austin, 1999.
(http://www.cs.utexas.edufusers/mfkb/km html).

. P. Clark, J. Thompson, and B. Porter. A knowledge-
based approach to question-answering. In R. Fikes and
V. Chaudhri, editors, Proc. AAAI’99 Fall Symposium on
Question-Answering Systems. AAAI, 1999.

. DARPA. The rapid knowledge formation project (web
site). http://reliant.teknowledge.com/RKF/, 2000.

. J. Domingue. Tadzebao and webonto: Discussing,
browsing, and editing ontologies on the web. In Proc.
KAW’98, 1998.

A. Farquhar, R. Fikes, and J. P. Rice. A Collaborative
Tool for Ontology Construction. International Journal
of Human Computer Studies, 46:707-727, 1997.

. B. R. Gaines. An interactive visual language for term
subsumption languages. In IJCAI’91, 1991.

B. R. Gaines and M. L. G. Shaw. Webmap: Concept
mapping on the web. The World Wide Web Journal,
1(1), 1996.

W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gen-
nari, S. W. Tu, and M. A. Musen. Knowledge modeling
at the millennium. In Proc. KAW’99, 1999.

J. Kim and Y. Gil. Knowledge analysis of process mod-
els. In IJCAI'01, 2001. (to appear).

S. M. Paley, J. D. Lowrance, and P. D. Karp. A Generic
Knowledge Base Browser and Editor. In Proc. IAAI'97.
AAAI Press, 1997.

J. F. Sowa. Conceptual structures: Information pro-
cessing in mind and machine. Addison Wesley, 1984.

L. G. Terveen and D. A. Wroblewski. A collabora-
tive interface for browsing and editing large knowledge
bases. In AAAI’90, pages 491-496, 1990.

B. J. Wielinga, A. T. Schreiber, and J. A. Breuker.
KADS: A modelling approach to knowledge engincer-
ing. Knowledge Aquisition, 4(1), 1992.

Supporting Ontology Driven Document Enrichment within
‘ Communities of Practice

John Domingue, Enrico Motta, Simon
Buckingham Shum, Maria Vargas-Vera,
Yannis Kalfoglou
Knowledge Media Institute

Nick Farnes

International Centre for Distance Leaming

The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK
{j-b.domingue; e.motta; s.buckingham.shum; m.vargas-vera; y.kalfoglou; n.farnes} @open.ac.uk

ABSTRACT

Formative work by Lave and Wenger has articulated how
practices emerge through the interplay of informal processes
with symbolic codifications and artifacts. In this paper, we
describe how ontologies can serve as symbolic tools within a
community of practice supporting communication and
knowledge sharing. We show that when a community’s
perspective on an issue is stable, it opens the possibility for
introducing knowledge services, based on an ontology co-
constructed by knowledge engineers with stakeholders. Using
a casc study we describe our approach, ontology driven
document enrichment, looking at how ontology construction
and population can be supported by web based technologies.

Keywords

Ontology, Semantic Web, Communitics of Practice,
Knowledge Management.

INTRODUCTION

Formative work by Lave and Wenger {13, 22} has articulated
the nature of the practices from which the term community of
practice derives its name. Practices emerge through the
interplay of informal processes with symbolic codifications
and artifacts:

...Such a concept of practice includes both the
explicit and the tacit. It includes what is said and what
is left unsaid; what is represented and what is
assumed. It includes language, tools, documents,
images, symbols, well-defined roles, specified criteria,
codified procedures, regulations, and contracts that
various practices make explicit for a variety of
purposes. But it also includes all the implicit relations,
tacit conventions, subtle cues, untold rules of thumb,
recognizable intuitions, specific perceptions, well-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00.

30

tuned sensitivities, embodied understandings,
underlying assumptions, and shared world views.
Most of these may never be articulated, yet they are
unmistakable signs of membership in communities of
practice and are crucial to the success of their
enterprise. ([22], p. 47)

In this paper, we describe how ontologies [9] can serve as
symbolic tools within a community of practice. We show that
when a community’s perspective on an issue is stable (i.e.
there is reasonable consensus), it opens the possibility for
introducing knowledge services, based on an ontology co-
constructed by knowledge engineers with stakeholders. The
ontology reflects a “shared world view”, codifying “well-
defined roles”, “specified criteria” and “codified procedures.”
Throughout, we regard representations such as ontologies as
boundary objects [2] whose role is to support communication
and negotiation over meaning between stakeholders within
and across communities of practice.

Once an ontology has been constructed a population phase
uses the ontology to describe web documents from a
communal viewpoint. Two key questions which arise in this
type of enterprise and that we address in this paper are: who
develops the ontology? and how is the ontology population
phase supported?

We believe that knowledge engineers are crucial in the
ontology development phase. The main reason for this choice
is that a careful design of the ontology is crucial to ensure the
success of any particular document enrichment initiative. The
ontology specifies the selected communal viewpoint,
circumscribes the range of phenomena we want to deal with
and defines the terminology used to acquire domain
knowledge. In our experience small errors/inconsistencies in
any of these aspects can make the difference between success
and failure. Moreover, ontology design requires specialist
skills which are normally not possessed by the members of
our target user communities.

Our approach is to develop the ontology using a participatory
design methodology. The ontology is developed during a
series of face-to-face meetings between knowledge engineers,
who are concerned with issues such as representational

consistency and completeness, and a representative group of
the target community.

In contrast it is essential that ontological enrichment occurs
without the aid of knowledge engineers. Unless enriched web
resources are a “living archive” the resultant services will
soon fall into disuse. In describing the APECKS personal
ontology server Tennison and Shadbolt [20] make a case for
“living ontologies”.

In the rest of this paper we shall illustrate our approach,
which we term ontology driven document enrichment [16],
using a casc study. We start by outlining the domain, the
architecture of the application and onc of the knowledge
services that we created. We then describe the design of the
ontology and four ways in which we support the ontology
population process. Related work is briefly summarized
before ending with some conclusions.

CASE STUDY AN OBSERVATORY ON LIFELONG
LEARNING INITIATIVES

Case Study Background

In its Green Paper, ‘The Leaming Age’, the UK Government
set out its vision of ‘a leaming society in which everyone,
from whatever background, routinely expects to learn and
upgrade their skills throughout life.” One of the significant
steps carried out by the UK Government to fulfil this vision
was the creation of the University for Industry (Ufi) in the
autumn of 2000. The overall goal for Ufi was to provide
flexible learning packages which would improve the quality
of life of individuals and to boost business competitiveness.

Promoting and supporting lifelong learning is a very difficult
activity which requires knowledge of a number of disparate
research areas including learning theory, organisation science
and sociology. For the Ufi to be successful associated
researchers and policy makers would need to discover and
disseminate good practice on lifelong learning. It was decided
that the main supporting mechanism for this would be a Web
portal, termed the National Observatory (available at
www lifelonglearning.ac.uk), which was setup in the early
part of 2000. By the time the Ufi was launched the
observatory contained a number of resources including a
bulletin board and a web based newsletter. The main resource
was a ‘Good Practice’ database which held several hundred
hand-coded summaries of articles describing lifelong learning
initiatives. Although the database entries were highly
regarded the text based search mechanisms provided a poor
method of accessing relevant items.

Our goal in this project was to provide a semantic query
service for lifelong learning researchers and policy makers
who wanted to analyse relevant case studies, and for
organisations that required “help in understanding their
learning needs.

Approach and Overall Design
The semantic query service was constructed collaboratively
by knowledge engineers at the Knowledge Media Institute

31

(KMi) within the Open University (OU), lifelong learning
researchers at the International Centre for Distance Learning
(ICDL) also at the OU and a number of external lifelong
learning researchers. The lifelong learning researchers
specified a number of questions that the observatory should
be able to answer. The questions were categorised into three
main themes deemed important by the lifelong learning
research community. Each theme contained three or four sub-
themes. The themes were:

* Widening participation,

= Organisational change, and

* Funding.

The specified questions were relatively broad and high level.
For example, one of the questions associated with widening
participation is “What techniques are needed to target. the
needs of socially excluded groups?” and one of the questions

associated with organisational changes is “What strategies
appear most effective in attracting SMEs to learning?”.

The main concepts and relations within the themes and
questions were used as the basis for an initial observatory
ontology. The ontology was then expanded over a period of
four months so that the formulated questions could be
answered whilst ensuring that any new concepts and relations
conformed to the view of the lifelong learning researchers.

The ICDL researchers then populated the ontology with
instances which reflected the knowledge content of the
learning initiatives in the Good Practice database. In this
paper we describe how we supported these researchers in
their population task.

Architecture

The overall architecture of the system is shown in Figure 1.
At the centre of the architecture is a knowledge server whose
main role is to retrieve appropriate leamning initiatives from
the database from end-user queries. The main components of
the server are as follows:

e LispWeb - a customised HTTP server [18] which offers a
library of high-level Lisp functions to dynamically
generate HTML. pages.

o WebOnto Server - WebOnto [3], composed of a central
server and a Java based client, enables users to
collaboratively browse and edit knowledge models over
the web.

e OCML - An operational knowledge modelling language
[15], which provides the underlying representation for
our ontologies and knowledge models.

o Observatory Library — a set of knowledge models which
includes the observatory ontology used to index the
learning initiatives in the good practice database.

Connected to the central server are;

e The Good Practice Database — a database containing
several hundred summaries of documented examples of
lifelong learning.

* Named Entity Recognizer — this uses the Marmot and
Badger systems from Riloff [17] in combination with a
regular expression matcher to support the automatic
creation of OCML entities from text in web pages.

o WebOnto Client — a Java based client to the WebOnto
server.

e Semantic Search Service — a service for retricving
leaming initiatives from high level queries.

WebQnto Client

Good Practice
Database

Semantic Search Service

Learning Inttiative
Web Page . '
—_—

Figure 1. The architecture of the Observatory.

In contrast with other approaches to semantic annotation we
decouple the knowledge structures from the web resources.
This architecture allows us to provide multiple knowledge
services, possibly for different communities of practice, over
the same set of web documents. For example, a community of
graphic designers may be interested in the typography and
layout of a set of web pages whereas experienced website
developers may be interested in the structure of the
underlying HTML code. Another feature of this architecture
is that the interfaces are directly connected to the ontology —
there is no intermediate web crawling or compilation phase.

An Semantic Search Service

The semantic search service is designed to be easy-to-use by
non-IT specialists and to provide answers to policy level
questions. Figure 2 shows a screen snapshot of a web
interface, constructed in Flash™, for finding leamning
initiatives according to the type of funder or the
characteristics of the targeted learning community. In the
figure the user is asking for a government funded learning
initiative which involved a socially excluded community.

The query is run in OCML on the knowledge server. A set of
rules link OCML knowledge items to relevant learning
initiatives within the good practice database. Figure 3 shows
the 9™ (of 11) solutions. Each solution contains links to a
knowledge item, a related learning initiative and links to an
explanation of why they were returned. The explanation,
shown in figure 4, describes why the target leamning

— -

32

community, the members of the Stamford housing estate,
were considered to be socially excluded.

Figure 2. A screen snapshot showing the query interface
asking for a government funded learning initiative which
involved a socially excluded learning community.

“learnung-community? hackney-starnford-le arning. c ommurary
learnmg -mitiative | hackney learmung vuhative (query rationale)Take me to the

-
. = >
relevant inthative (related mutiative rationale d

?govemnment-organization3 department-for- education-and- employment {query
rationale)Take me to the relevant mitiative. (related initative rationale

Figure 3. A screen snapshot showing the results of the
query in figure 2.

The hacknev-stamford-le aming- communty has a low educational level The mitiative
hackney-learmung-intiative has the leamning community backney- stamford-learning-community

Figure 4. The explanation generated for the query
formulated in figure 2.

Ontology Design

As we outlined earlier in this paper, there were several
constraints which had to be satisfied when creating the
observatory ontology. The ontology had to characterise the
domain such that a) the types of questions posed by the
lifelong learning policy makers and researchers could be
answered, b) there was a mapping to the existing database of
learning initiatives, and ¢) the characterisation conformed to
the viewpoint of the researchers.

We should emphasise the importance of the last constraint. It
was important that all of the ‘observatory team’ understood
and had ownership of the ontology. Also as outlined in [5] in
their analysis of the KA initiative, and in [11] in their
description of a SHOE case study, ontology development and
representing specific resources are intertwined activities.

‘Slot Name. -+ -Documentation v Value Type '
Has-title: ! .| The title of the initiative. - " T L Aetring, e T T e
~{The ‘location .of . the initiative. This .includes | A learning related location.
‘| informiation on thé social geography of the area. st)
The starting date for the initiative. An integer representing the year (used within
1 N A v the existing database).
|- The underlying rationale for the initiative. A rationale for learning.

Hasfunder'sine - .o | The funding organisation oF person. Either an organisation or person.
“Other-involved-parties * ‘Organisations, individual people and communities | Either-an organisation, generic-organisation,
T which take part in the initiative. - | person or community.

Has-learner * The target audience for the initiative. A learning-community.

Hashelivemble - | The tangible results of the ihitiative. A document, technology or organisation (a

project may create a new organisation).

Table 1. The definition of the learning-initiative class.

The conceptual design of the ontology was developed in a
series of weekly meetings involving the whole observatory
team. A number of the meetings included external policy
makers and lifelong learning researchers the end users of the
observatory. Once an initial version of the ontology had been
implemented in WebOnto a sample population phase
followed. In the early part of this phase the knowledge
engineers and populators collaboratively coded 10 practices
in the database. Coding difficulties would either result in
immediate changes to the ontology or be logged and changed
later. The populators then coded a further 20 practices on
their own reporting problems by phone or email.
Additionally, the team continued to meet face-to-face weekly
to discuss problems and changes to the ontology. These
discussions would invariably result in changes to the ontology
and occasionally in the addition of new tools. WebOnto’s
architecture meant that any changes to the ontology (or to
WebOnto itself) were immediately available to the
populators.

Because the domain, the intersection of learning and social
policy, was relatively broad we created and reused a number
of higher level ontologies. Figure 5 shows the structure of the
relevant portion of our library. The arrows indicate that an
ontology uses its parent ontology (i.e. inherits all of the
OCML entities). The observatory knowledge base currently
indexes several hundred good practice case studies.

The core of the ontology is based on a learning initiative class
which represents a single documented case in the Good
Practice database. As we can see from table 1 the main
attributes of learning initiatives are the title, location, date,
leaming rationale, funders, organisations involved, target
learners and the tangible results. Often the descriptions of

33

Figure 5. Each node represents an ontology or knowledge
base. The shadowed nodes indicate knowledge models
which were created during the project.

learning initiatives describe generic rather than specific
entities. For example, involved parties arc sometimes
described using phrases such as “a local college” or “a few
mechanical engineering SMEs”. These types of statements
are captured using the generic-organisation class — the
instances of this class are classes of type organisation.

The other key definition within the ontology is the learning-
community class. We do not have space here to include this
definition but the key attributes include the affiliation, ethnic
group, occupation, gender, age, skill level and dependents.
This broad range of slots reflects the diverse attributes that
learning and social poticy researchers argue can affect access
to learning within a community.

Ontology Population

Although WebOnto is primarily aimed at expert model
builders we have recently provided a number of tools to allow
non-experts to populate ontologies. Integrating support for
ontology creation and population within WebOnto contrasts
with the approach taken in tools such as Protégé [8] where
ontology construction and population are separated.

Help in WebOnto is provided in four main ways:

e Multiple visualizations — aid in reviewing what has been
created.

e Automatically generated instance forms — support the
addition of instances.

e Knowledge items from web pages — information
extraction techniques have been coupled with direct
manipulation techniques to enable OCML entities to be
created from web pages.

* Automatic type checking — automatically checking for
undefined values and constraint violations.

Multiple Visualizations

The usc of visualizations has long been acknowledged to be
important in the creation of knowledge models [4]. The key is
to provide support for high level or coarse grained views
which are tightly coupled to multiple fine grained views.
WebOnto provides high level graphical views of class
hicrarchies tied to fine grained views which use font and
colour to differentiate between types of OCML entities.

A significant task where visualizations can aid populators is
in validation. Populators need easy-to-read detailed
descriptions of the entered knowledge structures. Often the
ontological enrichment of a web resource is based on a single
class or on a set of related classes - typically class A
constrains the type of a slot in class B. Specific resources are
represented by a set of connected instances. This heuristic
provides the basis for the design of a connected instances
visualization. This view displays all the instances connected
to a selected instance. Figure 6 shows a connected instances
view of the hackney-learning-initiative. Within this
view instance names are shown in black, classes in green and
slot names in a light blue. Knowledge items which were
entered by the user are shown in bold. Any slot values which
are instances are expanded. Each instance is picked out using
background shading.

Within figure 6 we can sce that the hackney-learning-
initiative is an instance of learning-initiative. The
has-location slot has the value hackney-1li-location
which is an instance of learning-related-location. The
has-premises-type slot of hackney-li-location has two
values - the classes
library-premises.

community-centre-premises and
The department-for-education-and-
employment instance was created by the user but the values of
its slots were not. The depth of the inline expansion is defined
by the user. Selecting any instance in the view creates a new
connected instances view. We elected to provide these

34

visualizations in HTML format so that they could easily be
printed and viewed in hardcopy format ~ a requirement from
the lifelong learning researchers populating the ontology.

b tonne(led InslancesPage Nztstape

Hackneg Leamlng lnithﬂve (Learning-Initiative)
Has-Title "demonstration outreach projects: the hackney project” .
Has Project-Name “the hackney project”

Has-Location

Hackney-Li-Loeation (Leaming-Related-Location)
‘Has-Repional-Constremt High-Unemployment.Empl

-Feature M:
-Has Address . TH

ent-Reg

Community-Centre-Premises Lhngi Premises
Has-Initiative -Date 1997
Has-Ratonale

Hg@x»lmn-Access-gA_gonﬂ (@p;o_vc Asces: To Lcafnmg Ranunalc)

. Has-Premises-

Has Funder
Department-For-Education-And- Employment (Government-
+ Has Orgariiration Sire Large-Sired-Organiration
In-Feonomic-Sector Government-Sector
Other-Involved-Parties
London-Borough-Of- Hackney- Education-Department (Local-Authority)
In-Economic-Sector Local-Government-Sector

Enterprise-Careers (Votational-Guidance-Organization)
In-Economie-Sector Careers-Guidance- Sector

anization

Figure 6. A screen snapshot of a connected instance based
visualization. Items in bold were defined by the ontology
populators. Colour coding distinguishes between
instances, classes and relations. Individual instances are
picked out with background shading (enhanced for this

paper).

Automatically Generated Instance Forms

Many errors in semantic annotation occur because of errors in
naming existing entities and in selecting the class of new
instances [5]. The forms in WebOnto seek to alleviate this by
prompting users with the names of relevant knowledge items.

: natance of teaimng mutistive

=10

Name: [Fackner-iearning mbatve

Clch on 2 S0t hame 10 see examples of s use

B oeronstibarowea [siring o E
M v B~ B
T e Im.nhud.hnmn iﬁ%m i[
s = g 5
ORI cver morove-acco5 radonale-for-learning Wreom H
- B~ g
= §

fiearning e Hi
v “H i

'l

Figure 7. A screen snapshot showing an automatically
generated learning-community instance edit form.

An example of an automatically generated form for editing
an instance of a leaming community is shown in figure 7.
Each slot is displayed as a row. The slot name is a button

which displays examples of the values that have been given
to the slot within other instances. Figure 8 shows the result
of selecting the ‘other-involved-parties’ button.

N Information on the slot other-involved-parties
Examples of the use of the slot othexr-involved-parties

E:mmles with instances of the same class
FOOTEALL-CLUES-LEARNING-TRITIATIVE had the value LOTAL-EDUS
CHIEATOWE-LEAEKING- IRTTIATIVE had the value LIA KETWORE
~ILEA-LINES- LEARNING-INITIATIVE hed the value FLYMOITTH
BOLTUR-TELENATICS i3~ INITIATIVE had the value BLLTH

11 IR T

ATION-ATTTHORITY

AMIZATION

i3 .

ISINE S 30HOOT z]
- Y

e S o ¢

WJme-am

TR st il R T

Figure 8. A screen snapshot of the help given when .
selecting the other-involved-parties button of the form
shown in figure 7.

The second column is a simple text field into which the name
of a value can be entered. Within our underlying knowledge
modelling language OCML [15] slots can be typed using a
class or a combination of classes (e.g. (or organization
person)). These classes and all of their descendants appear in
alphabetical order the third column of the form. Figure 9
shows a user selecting the training-organization class for
the other-involved-parties slot. When a class is selected
the instances of the class appear in the menu in the fourth
column. Figure 10 shows a user sclecting the focus-
central -london instance.

e §ionaon burough ol hac ™ [organization e B
foeador manager

W""’“’"‘""“"‘ Fome - — E

Irtadent

¥ ystem- mansger o s

rade assoctation
o jurade union

5 4

- Rock ¢ TR b/ rcon e IRV

PG A

g fractner rearming it awve.

Figure 9. A screen snapshot showing a user selecting the
training-organization class for the other-involved-parties
slot of a learning-initiative instance.

o e e |
- e
S RREbs [racmerie s 7 [documers

sex-tec v
-trish training and emplayment 1«

Figure 10. A screen snapshot showing a user selecting the
focus-central-london instance for the other-involved-
parties slot of a learning-initiative instance.

The forms here are in some respects similar to the forms
provided in Protégé-1I [8]. The key difference is that instance
forms in WebOnto are generated directly from the ontology
whereas the forms in Protégé-Il use an extra set of form
specific definitions. The extra information means that the
generated forms can use non-trivial layouts but require an
extra compilation cycle. Within WebOnto any changes to the
ontology are immediately reflected within the forms.

35

Knowledge Items from Web Pages

As with the majority of our application domains a proportion
of the elements referred to in the observatory knowledge basc
appear within web documents, specifically, within the entrics
within the Good Practice databasc. To aid in the generation of
knowledge items from web documents WebOnto contains an
interface to a named entity recognizer. Named entity
recognizers are used to extract items of a pre-specified type
from grammatical text. We currently use Marmot [17] to
tokenize the text (identifying the nouns) and Badger [17]
extract the named entities. We also use a regular expression
matcher (written in Perl) because Badger relies on the input
text being composed of grammatical sentences (nouns, verbs
and prepositions) and this is not always the case for the
learning initiatives.

The interface between OCML and the entity recognizer is
implemented with two types of constructs: pattern definers
and templates. A pattern definition consists of the name of an
OCML class or instance and a set of strings which represents
patterns using the using the standard notation for regular
expressions. The pattern for a college is:

(def-pattern college
" (capital_word}* College"

" (capital word)* College of (capital_word) *")

Within the observatory case we have created patterns to
identify organizations, ethnic groups, peoples’ names and
dates.

Templates are used to create new OCML structures from the
results of the entity recognizer. Currently three types of
template are used:

e New class instance — this specifies how text can be
used to create a new instance of a class.

e New class subclass — this specifies how subclasses
of a class can be created.

e Fill instance — specifies how an existing instance is
filled.

A template consists of the name of a class or instance, a list of
variables and the template body. Within the template body
variables are denoted by the prefix ‘$’, and, $class-name and
$instance-name are special variables which represent the
name of the class and instance respectively. The template
used to create the hackney-community-college instance
was:
(def-new-instance-template organization (name)
(def-instance S$name $class-name))
Other examples of how we have combined our knowledge
modelling infrastructure with information extraction
technologies can be found in [21].

Automatic type checking

The late 80s and 90s saw a considerable effort into creating
tools for validating and verifying knowledge bases [14]. We
have found that even relatively simple tools can aid ontology
populators. OCML contains a general purpose real-time

constraint checker. The output of checking the observatory
knowledge base is shown in figure 11. Any of the instances or
relations shown in figure 11 can be inspected by simply
clicking on them.

N Results of Checking the observatory-kb2 ontology
e result of checking Obzervatory-FbZ was:
In the instance hackney-learning-1nitiative-coupse
the slot has-content has the unknown value food-hygiene-course ¥
[In the instance swi-learning-coneunity-delivery-methe
the slot medium-used has the unknown value netuorked-computers |~
In the instance hattersley-cc-delivetar-delivery-nethod
di

Figure 11. The result of carrying out consistency checking
on the observatory knowledge base. Items within the
knowledge base are highlighted using colour and can be
selected and inspected. Colour is used to distinguish
between instances and relations.

RELATED WORK

The KA? initiative [1] shares a number of commonalities with
our work. As with the case described here the aim of KAZis
to allow a community to build a knowledge base collectively,
by populating a shared ontology. The knowledge base is
constructed by annotating web pages with special tags, which
can be read by a specialised search engine cum interpreter,
Ontobroker [6]. In this paper we have described and
approach which learns from the early problems reported in
that initiative [5].

A number of tools such as the CEDAR toolkit [10] and
OntoAnnotate [19] provide support based on a web browser
integrated with a view of an ontology. The CEDAR
annotation tool allows segments of text from web pages to be
associated with OCML structures stored on a WebOnto
server. Within OntoAnnotate text can be selected from a web
page and dragged to fill in the value of an instance.
OntoAnnotate also contains mechanisms for managing
annotations after an ontology is altered, a text pattern matcher
similar to the one described here and links to an ontology
based information extraction system. Both the CEDAR
annotation tool and OntoAnnotate are designed to use
ontologies to annotate web pages whereas goal of the
technologies described here are to facilitate the population of
ontologies. Hence, rather than creating a separate tool we
elected to extend WebOnto thus tightly coupling the ontology
development and resource description activitics.

In terms of the underlying architecture, as we stated earlier
the main difference between our approach and the above
approaches to adding semantic information to web pages is
that we decouple the web pages from the knowledge model.
We should state however that the WebOnto server is now
able to export knowledge models in OIL RDF syntax [71.
This facility was used to incorporate parts of our library into
an OIL based ontology server as part of a dynamic link
service (see [12] for more details).

36

CONCLUSIONS

In this paper we have described how ontologies can support
knowledge sharing within communities of practice. To be
successful it is important that all stakeholders are able to
participate in the ontology development process and that thig
process is ongoing and integrated with ontology population,
Moreover, ontology population requires support from 2
mixture of technologies and as far as possible should be
integrated into existing working practices.

We have now been using this approach over a number of
years in a variety of projects, in domains ranging from
managing best practice in the acrospace industry, to
supporting the application of medical guidelines. Our
experience to date suggests that our approach appears to
provide both the technology and the methodological
framework required to minimize risk and ensure the
participating community’s acceptance.

ACKNOWLEDGEMENTS

This work was funded by the Marchmont Project under the
Adapt Programme and the Advanced Knowledge
Technologies (AKT) Interdisciplinary Research
Collaboration (IRC), which is sponsored by the UK
Engineering and Physical Sciences Research Council under
grant number GR/N15764/01. The AKT IRC comprises the
Universities of Aberdeen, Edinburgh, Sheffield, Southampton
and the Open University.

The authors would like to thank Maureen Nichols and Sophie
Farnes for their coding effort and tolerance.

REFERENCES

1. Benjamins, R., Fensel, D. and Gomez Perez A.
Knowledge Management through Ontologies. In U.
Reimer (editor), Proceedings of the Second International
Conference on Practical Aspects of Knowledge
Management. Basel, Switzerland, 29-30 October, 1998.

2. Bowker, G. C, and Star, S. L. Sorting Things Out:
Classification and its Consequences. MIT Press:
Cambridge, Mass., 1999.

3. Domingue, J. Tadzebao and WebOnto: Discussing,
Browsing, and Editing Ontologies on the Web. In B.
Gaines and M. Musen (editors), Proc 11th Knowledge
Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada, April, 1998.

4. Eisenstadt, M., Domingue, J., Rajan, T. and Motta, E.
Visual Knowledge Engineering. /EEE Transactions on
Software Engineering Special Issue on Visual
Programming, 16(10), 1164-1177, October, 1990.

5. Erdmann, M., Maedche, A., Schnurr, H.P., Staab, S. From
Manual to Semi-Automatic Semantic Annotation: About
Ontology-based Text Annotation Tools. COLING-2000
Workshop on Semantic Annotation and Intelligent
Content, Centre Universitaire, Luxembourg, 5-6 August,
2000

6. Fenscl, D. Decker. S., Erdmann, M. and Studer, R.
Ontobroker: The very high idea. Proc 11" Annual Florida
Artificial Intelligence Research Symposium (FLAIRS-98).

7. Fensel, D., Horrocks, 1., van Harmelen, F., Decker, S..
Erdmann, M. and Klein, M. OIL in a Nutshell, Proc. /2th
Int’l Conf. Knowledge Engineering and Knowledge
Management, Lecture Notes in Computer Science, vol.
1937, 2000, Springer Verlag, New York, 1-16

8. Grosso, W. E., Eriksson, H., Fergerson, R. W, Gennari, J.
H., Tu, S. W., and Musen, M. A_ Knowledge Modeling at
the Millennium (The Design and Evolution of Protege-
2000). Proc 12th Knowledge Acquisition Workshop,
BanfT, Alberta, Canada, October, 1999.

9. Gruber, T. R. A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition, 5(2).
1993.

10.Hatala, M., and Hreno, J. Annotation of documents with
knowledge model concepts. Enrich Report I1D44-0O-K,
2000. (Available at http://kmi.open.ac.uk/projects/
enrich/id44.pdf).

11.Heflin, J. Hendler, J., and S. Luke. Applying Ontology to
the Web: A Case Study. In Proc of the International
Work-Conference on Artificial and Natural Neural
Networks, IFVANN'99.

12.Kalfoglou, Y. Domingue, J., Carr, L., Motta, E., Vargas-
Vera, M. and Buckingham Shum, S. On the integration of
technologies for capturing and navigating knowledge with
ontology-driven services. KMi Technical Report No. 106,
April, 2001.

13.Lave, J. and Wegner, E. Situated Learning: Legitimate
Peripheral Participation, Cambridge University Press,
Cambridge, UK, 1991.

37

14. Meseguer, P. and Precce, A. Verification and Evalidation
of knowledge-based systems with formal specifications.
The Knowledge Engineering Review, 10(4), 331-343,
1995.

15.Motta E. Reusable Components for Knowledge Models.
10S Press, Amsterdam, 1999.

16.Motta, E., Buckingham Shum, S. and Domingue, J.
Ontology-Driven Document Enrichment: Principles,
Tools and Applications. International Journal of Human
Computer Studies. 52(5), 1071-1109. 2000.

17.Riloff, E. An Empirical Study of Automated Dictionary
Construction for Information Extraction in Three
Domains. The Al Journal, 85, 101-134, 1996.

18.Riva, A. and Ramoni, M. LispWeb: a Specialized HTTP
Server for Distributed Al Applications, Computer
Nenworks and ISDN Systems, 28 (7-11), 953-961, 1996.

19.Staab, S., A. Midche, S. Handschuh. An Annotation
Framework for the Semantic Web. In: S. [shizaki (ed.),
Proc. of The First International Workshop on MultiMedia
Annotation. January, 30 - 31, 2001. Tokyo, Japan.

20. Tennison, J. and Shadbolt, N. R. APECKS: a Tool to
Support Living Ontologies. Proc. of the lith Banff
Knowledge Acquisition Workshop. Banff, Alberta,
Canada, April 18-23, 1998.

21. Vargas-Vera, M., Domingue, J., Kalfoglou, Y., Motta, E.
and Buckingham-Shum, S. Template-driven information
extraction for populating ontologies. Proc of the 1JCAI'0]
Workshop on Ontology, Learning. Seattle, WA, USA
2001.

22. Wenger, E. Communities of Practice: Learning, Meaning,
and Identity. Cambridge University Press: Cambridge,
1998

Representing Roles and Purpose

James Fan
Ken Barker
Bruce Porter
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712 USA
{jfan, kbarker, porter} @cs.utexas.cdu

Abstract

Ontology designers often distinguish Entities (things that arc)
from Events (things that happen). It is not obvious how this
division admits Roles (things that are, but only in the context
of things that happen). For example, Person might be consid-
ered an Entity, while Employee is a Role. A Person remains
a Person independent of the Events in which he participates.
Somecone is an Employee only by virtue of participating in an
Employment Event. The problem of how to represent Roles
is not new, but there is little consensus on a solution. In this
paper, we present an ontology that finds a place for Roles
as well as a representation that allows Roles to be related to
Entities and Events to express the teleological notion of pur-
pose.

Keywords
roles; ontologies; teleology

Background
One of the challenge problems in DARPA’s Rapid Knowl-

edge Formation project requires subject matter experts (SME’s)

with little training in knowledge engineering to build a knowl-
edge base of information from a college-level textbook on
cell biology. The knowledge base will be evaluated on its
ability to answer a large set of questions drawn from stan-
dard test banks, such as the GRE subject exam (a graduate
school admissions test) and questions from the end of book
chapters. Our goal is to develop ways to help SME's succeed.

One of our chief concerns for this challenge problem is de-
veloping good ways to represent the wide variety of types of
knowledge expressed in textbooks. Many knowledge engi-
neering projects can focus on just a few types of knowledge -
for example, building a knowledge base about aircraft might
focus exclusively on structure and partonomy - because the
questions they are intended to answer are relatively limited.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010. . . $5.00

Peter Clark

Knowledge Systems

Boeing Math and Computing Technologies

38

m/s 7L66, PO Box 3707, Seattle, WA 68124 USA

peter.c.clark@boeing.com

However, textbook knowledge and the questions we expect
to be presented are quite varied.

There are many types of knowledge conveyed in textbooks,

of course, and this paper focuses on just onc - how to rep-

resent the roles and purposes of entities ~ which has been

problematic for knowledge engineering. Although ontolo-

gies typically distinguish Entities (things that are) from Events
(things that happen), it is not obvious how this division ad-

mits Roles (things that are, but only in the context of things

that happen).

The source of the problem lies in the distinction between
intrinsic and extrinsic features. Intrinsic features, such as
shape and size, describe an entity in isolation. In contrast,
extrinsic features describe an entity relative to other entities
and events. For example, used to strike nails is an extrinsic
feature of a hammer because it relates a hammer to nails and
striking. Efforts to represent concepts using only intrinsic
features have largely failed [11], especially for representing
artifacts [3].

Although the distinction between intrinsic and extrinsic prop-
erties is more spectral than black-and-white, it is important to
distinguish the many cases that fall into the uncontroversial
extremes because they differ in significant ways. For exam-
ple, an entity’s intrinsic features (such as age) may change
over time, but they are always applicable to the entity. In con-
trast, extrinsic features (such as the salary of a person) may
become completely inapplicable. Moreover, unlike intrinsic
features, an entity’s extrinsic features may be contradictory,
such as the salary of a person with multiple jobs. For these
reasons, most psychological research on concept representa-
tion distinguishes between an entity’s extrinsic and intrinsic
features [11].

From these distinctions (and others we discuss later) we draw
three conclusions. First, the distinction between intrinsic
and extrinsic features is important; a knowledge-based sys-
tem that ignores their differences might draw incorrect infer-
ences. Second, the roles and purposes of an entity are nec-
essarily extrinsic features, i.e. they relate an entity to other
entities and events. Finally, roles should be reified in any

knowledge representation scheme. The representation of a
role consists of those extensional features of an entity that
are due to its participation in some event.

The Difference between Roles and Entities

There has been considerable research on roles in data and
knowledge modeling, as we summarize below. The research
offers two key insights. First, entities and roles are not related
taxonomically, at least not in any simple way; “Neither the
roles of the real world nor the entities of the real world are a
subset of the other” [2]. Guarino offers two criteria for distin-
guishing roles from entities [6]: (1) a role is “founded” and
(2) a role lacks “semantic rigidity”. Something is founded if
it is defined in terms of relationships to other things. Some-
thing is semantically rigid if its existence is tied to its class;
that is, if in ceasing to be of kind X, it ceases to be. For exam-
ple, the concept food is a role because it meets these criteria,
as follows:

e Food is Founded: The properties of food, such as eaten-by
and nutritional-value, are extrinsic properties of the entity
filling the role of food - they relate that entity to others
participating in the eating cvent, such as the eater, and they
are applicable only in that context.

o Food lacks Semantic Rigidity: An entity that might fill the
role of food retains its identity (i.e. its primary class mem-
bership) outside the context of the role. For example, a
grasshopper is food when eaten by a bird, but when it is no
longer considered food, it is still a grasshopper.

In contrast, these criteria tell us that person is an entity, and
not a role, for the following reasons:

e Person is not Founded: The properties of a Person, such
as age and sex, are intrinsic features. They are defined
independently of other entities and events.

e Person has Semantic Rigidity: when a Person ceases to be
a Person, she ceases to be.

Roles in Use

There would be little value in devising a complicated repre-
sentation for roles if they do not occur frequently. To gauge
how common roles are, we ran a simple experiment using
English word lists.

We first extracted from a large online wordlist [1] nouns that
end in “-e¢”, “-er”, “-or” or «_jst”. These endings, such as
employee, driver, actor and pianist, are good cues for roles

We pruned this list to only those whose stems are also
stems of base verb forms. The result was a list of more
than 5,000 candidate role names. To determine how many
of these might actually represent role concepts, we sampled
109 at random. Based on the tests of foundedness and lack
of semantic rigidity, 101 of the sampled nouns represented
role concepts. Given that there are 74,577 unique noun en-
tries in the Collins wordlist, this experiment suggests that at
least 6% of nouns may represent role concepts (at 95% con-

39

fidence). The suffix filter would miss many potential roles,
making this number an underestimate of roles in use.

As a second experiment, we checked a list of the most fre-
quently used nouns in the the British National Corpus [71-
200 of the roughly 3,000 most frequent nouns represented
role concepts, meaning that role concepts also account for
6% of the most common nouns. (Previous work [15] has es-
tablished that there is considerable overlap among the more
frequent words in different corpora).

A Knowledge Representation for Roles

Roles are easy to identify yet they are difficult to
They are not merely reified names for the participants in
events. Rather, roles have their own characteristics which re-
quire that they be treated differently than entities in a knowl-
edge representation scheme. Steimann [14] identified fifteen
characteristics of roles, which we've distilled into these four:

rcpresem .

1. Roles are created and destroyed dynamically. Because a
role represents the extrinsic features of an entity due to its
participation in an event, the role is created when the par-
ticipation begins. If the entity stops participating, the role
may cease to exist and all its properties may no longer hold.

2. A role can be transferred between entities. For example,

the role of manager can be transferred from one person to
another. Note that many of the role’s features are trans-
ferred without change, while others must be re-computed
in light of the new entity playing the role. For example,
if a person earns a 20% bonus for being manager, then
the salary feature must be recomputed should that role be
transferred.

3. An entity may play different roles simultaneously, for ex-

ample a person may be both an employee and an employer.

4. Entities of unrelated types can play the same role. For ex-

ample, both a cracker and a grasshopper can play the role
of food.

These four characteristics impose requirements on any knowl-
edge representation scheme for roles. The next section as-
sesses past approaches to representing roles in light of these
requirements.

Previous Approaches to Representing Roles

According to Steimann [14], previous research produced three
basic approaches to representing roles. The first approach
represents a role as nothing but a label assigned to a partic-
ipant in an event. For example, the employer role labels the
agent of an enploy event. This approach is simple, but it
fails 1o reify roles as distinct from entities (instead combin-
ing intrinsic and extrinsic properties into a single represen-
tation of an entity), which is problematic as we discussed in
Section Background.

Assuming that these labels can be assigned and retracted dy-
namically (as entities play roles and later drop them), this
approach meets the first requirement (“roles are dynamic™)
and the second requirement (“roles can be transferred™). The
approach does not meet the third requirement (“entity can
play multiple roles™) because roles are not reified as predi-
cates with arguments. Rather in this approach roles are sim-
ple propositions. Consequently the extrinsic features of an
entity can clash due to the entity’s participation in different
events. For example, if a person has two jobs, then the two
employee roles she plays will give her two different salary

values. ;f a query about her salary is posed, th'en it is not PERSON PERSON LORGANIZAWE]
clear which value should be returned. Finally, this approach N—
meets the fourth requirement (“entities of different types can X

play the same role™) as there are no constraints on assigning
labels to entitics.

subsumes

subsumes subsumes

The second approach, used by Sowa [13] and Uschold [8]
, reifies roles and distinguishes them from entities (in that
roles represent extrinsic features and entities represent in-
trinsic ones), then combines the two types of concepts into
a single hierarchy. They can be combined in either of two A

ways; both are problematic {14]: EMPLOYER EMPLOYER

(b)

1. the roles are subtypes of entities. For example, the role esm- @
ployer would be a subtype of the entity person, as shown
in Figure 1 (a). This becomes problematic when trying
to meet the fourth requirement (“entities of different types LEGAL ENTITY
can play the same role”). To illustrate, consider extending
the hierarchy to assert that an employer may be either a
person or an organization, as shown in Figure 1 (b). This
taxonomic structure says that every employer is both a per-
son and an organization - not what we intended. In an ef- subsumes subsumes
fort to represent the disjunction of person and organization,
we create a new type, legal-entity, which subsumes person
and organization, as shown in Figure 1 (c). Because an
employer must be a legal-entity, employer must be a sib-
ling of person and organization. This does not capture our
original assertion that an employer is either a person or or- PERSON ‘ I EMPLOYER | |ORGANIZATION PERSON ‘I
ganization. g

EMPLOYER

subsurzs

subsumes

© @

2. the roles are supertypes of the entitics that play them. For Figure 1 Taxonomy paradox. If roles and entities are

example, employer would subsume person, as shown in combined into one hierarchy, none of the hierarchies
Figure 1 (d). This is clearly wrong because not every per- above fully captures the intended information: an em-
son is an employer. Moreover, it fails to meet the first re- ployer can be either a person or an organization.

quirement (“roles are dynamic”), unless the subtype rela-
tionship between entities and roles is dynamic. To avoid
this paradox, some knowledge representation schemes take
exactly that approach [5]. (See also qua-classes of KL-
ONE [4] and the existence subclass of SDM [9] and MERODE
[12].) These schemes have the restriction that a role exists

if and only if an entity is actually playing that role. This re-
striction makes it difficult to use role concepts to represent

an entity’s purpose, as we discuss in Section Representing
Purpose using Roles.

40

1 THING J
-
/.suhxumcs \ “Suh'sumcg
M-_,/_A,_ .
[ENTITY : [ROLE !

-
subsumey o
subsumes
subnumes
O ! -

- -
L AGENT [INSTRUMENT
e .

/o {
xuhxum7/ subnume

subsumes

b OBJECT 7
- __7 S
subsumes/ \ *

‘subsumes

\-‘ subsumies /
14

f INITIATOR | [CATALYST | TEMPLATE !
; :

' CONTAINER

[TERMINATOR‘

VICTIM

Figure 2: A partial listing of our role hierarchy. Role is
a sibling of the top-level concept Entity, and it has several
subtypes, such as Agent, Instrument and Object.

The third approach represents a role as an “adjunct instance”
of an entity. An adjunct instance here is a distinct instance of
a role class that is coupled with the instance of an entity; the
role instance does not exist independent of that entity. We
adopt this basic approach, as we discuss next.

Our Approach

We built a representation of roles using the adjunct instance
approach to express what an entity is designed to do (its pur-
pose), and what an entity actually does (its role). In our rep-
resentation, roles are types independent of entities. An in-
stance of a role is played by an instance of an entity; every
instance of a role exists along with an instance of an instance
of an entity. The role instances are connected with the en-
tity instances through two composition methods described in
Section Role composition. In order to retrieve values of prop-
erties that belong to a role, we need to first retrieve the role
from the entity with which it is composed, and then we can
retrieve the values of properties from the role.

In keeping role concepts separate from entities, the problem
arises of where in the taxonomy role concepts belong. In or-
der to avoid the taxonomy paradox described above, we make
Role a sibling of the top-level Entity concept (see Figure 2).

For our project, we are mainly concerned with general role
concepts. Examples of such general roles include:

e Agent: the role played by an entity performing or respon-
sible for an event. More specific Agent roles include Ini-
tiator, Terminator, Creator, Interpreter.

o Instrument: the rolc played by an entity used in some event.
More specific Instrument roles include Container, Catalyst
and Connector.

e Object: the role played by an entity acted upon in an event.

41

More specific Object roles include Template (Object of a
Copy event), Idol, Input and Victim.

Our solution is implemented in the KM language [10]. KM
is a frame-based language with clear first-order logic seman-
tics. To avoid issues of KM syntax, we will illustrate our
solution with examples expressed in first-order logic.

Representing Purpose using Roles

The reification of roles (as distinct from entities) provides a
convenient way to represent the teleological notion of pur-
pose. We represent an entity’s purpose as the default role(s)
it plays. For example, the default role of cereal is food (i.c.
to be the object eaten by people) and the default role of a
cup is to contain (i.e. to be the instrument of containment).
These entities are artifacts, which typically have a clear pur-
pose, but natural entities are often ascribed a purpose, too.
For example, one purpose of a human hand is to grip.

Role composition

In our approach, roles are types and instances of roles are
played by instances of entities; an instance of a role requires a
corresponding entity. The correspondence is established with
2 relations: played-by and purpose. When an entity is related
to a role with one of these relations, we say they are com-
posed together. (In our knowledge representation scheme
{101, such compositions have inferential ramifications, which
are outside the scope of this paper.)

The played-by composition represents that an entity is actu-
ally participating in an event. (In our knowledge represen-
tation scheme, this can be asserted to hold in a temporally
bounded state.) For example, when a hammer is participating
in a hammering event, the instrument role for the hammering
event is played-by the hammer. (Equivalently, the hammer
plays the instrument role for the hammering event.)

The purpose composition represents a role that the entity is
intended to play, but says nothing about whether it is actually
doing so. For example, the purpose of a hammer is to be the
instrument of a hammering event, which is true even when
the hammer is not participating in any hammering event.

Both played-by and purpose are many-to-many relations, which

means that an entity can play multiple roles and a role can be
played by multiple entities. Both relations are fluent, which
means that an entity can dynamically acquire and relinquish
roles. :

It is possible and common for an entity to play a role that is
the purpose of another entity. For example, the purpose of
a hammer is to be the instrument of a hammering event; a
shoe might also “play the role™ of a hammer - or more accu-
rately, play the role that is the purpose of a hammer. In order
to avoid this representational gymnastics, we could reify the
purpose of a hammer as a hammer-role so that the shoe plays
a hammer-role. Note that a shoe cannot “play™ a hammer
because hammer is an entity, not a role.

. Y S N

i SHOE I’ |HAMMER-ROLE | | SHOE-ROLE

1
[HAMMER K

Figure 3: The duplication of the entity hierarchy in the
role hierarchy caused by the promiscuous reification of
the purpose of entities.

Although we could reify hammer-role, that leads to a poten-
tial problem. Reifying the purpose of entities promiscuously
will result in duplication of the entity hierarchy in the role
hierarchy (Figure 3). The duplication problem is inherit in
any representation of purpose. In practice, however, it is not
a serious issue because most roles need not be reified. Our
criteria is to reify only those roles, such as container, that are
likely to be played by many different kinds of entities, not
just those entities whose purpose is to play the role.

Non-reified roles are specialized instances of generic roles,
and they are left unnamed. Specialization is accomplished
through the addition of properties or constraints on an in-
stance of the generic roles. As an example of composition,
the purpose of a hammer might be represented as follows:

Vz isa(z, Hammer) —

Jy, z isa(y, Instrument) A

isa(z, Hammering) A purpose(z,y) A in — event(y, z)

The Skolem variable y is an example of a non-reified role.

By using a combination of purpose composition and non-
reified role concepts, we can avoid the problem of duplicat-
ing the entity hierarchy in the role concept hierarchy. For ex-
ample, a representation of using my shoe as a hammer would
be:

3p, h isa(myShoe, Shoe)

Nisa(h, Hammer) A plays(myShoe, p) A purpose(h, p)

The Skolem instance p is a non-reified role denoting the pur-
pose of a hammer. It is used to express that myShoe plays
that role. That is, myShoe plays the role which is the pur-
pose of a hammer.

Conclusion
The distinction between entities (things that are) and events
(things that happen) is clear and common in ontologies, but

it's decidedly less clear how to handle roles (things that are,
but only in the context of things that happen). Although roleg
arc often confused with entitics, and mixed together in a sip.
gle hierarchy, we draw from the data modeling literature ap .
operational distinction between them. Using this distinctiop
we determine that roles are frequently used in English text,
accounting for more that 6% of the most common nouns. We
describe our representation in which roles are reified, and
instances of roles are composed with the entities that partic-
ipate in them. Finally, we show how this representation can
be easily extended to include the teleological notion of the
purpose of entities.

Acknowledgments

We wish to thank Charles Benton, Paul Navratil, Art Souther,
Dan Tecuci, John Thompson, and Peter Yeh for their insight-
ful comments and suggestions. Support for this research is
provided by a contract from Stanford Research Institute as
part of DARPA’s Rapid Knowledge Formation project. This
material is based upon work supported by the Space and
Naval Warfare Systems Center - San Diego under Contract
No. N66001-00-C-8018.

REFERENCES
1. Collins English Dictionary. William Collins Sons Co.
Ltd., 1979.

2. C. Bachman and M. Daya. The role concept in data
models. In Proceedings of the 3rd International Con-
ference on VLDB, pages 464-476, 1977.

3. R. Barr and L. Caplan. Category representations and
their implications for category structure. Memory and
Cognition, 15:397-418, 1987.

4. R. Brachman and J. Schmolze. An overview of the KL-
ONE knowledge representation system. Cognitive Sci-
ence,9:171-216, 1985.

5. 1. Odell C. Bock. A more complete model of relations
and their implementation: Roles. Journal of Object-
Oriented Programming, 11:51-54, 1998.

6. N. Guarino. Attributes and arbitrary relations. Data
and Knowledge Engineering, 8, 1992.

7. A.Kilgamiff. BNC database and word frequency lists.

8. S. Moralee M. Uschold, M. King and Y. Zorgios. The
enterprise ontology. The Knowledge Engineering Re-
view, 13, 1998.

9. D. McLeod and M. Hammer. Database description with
SDM: A semantic database model. ACM Transactions
on Database Systems, 6(3):351-386, 1981.

10. B. Porter and P. Clark. KM - the knowledge ma-
chine: Reference manual. Technical report, University
of Texas at Austin, 1998.

11

12.

13.

14.

15.

. E. Smith and D. Medin. Categories and Concepts. Har-
vard University Press, Cambridge, MA, 1981.

M. Snoeck and G. Dedene. Specialization and role in
object oriented conceptual modeling. Data and Knowl-
edge Engincering, pages 171-195, 1996.

1. Sowa. Conceptual Structures: Information Process-
ing in Mind and Machine. AddisonWesley Publishing
Company, New York, 1984.

E Steimann. On the representation of roles in object-
oriented and conceptual modelling. Data and Know!-
edge Engineering, 35(1):83-106, 2000.

S. Delisle T. Copeck, K. Barker and S. Szpakowicz.
More alike than not-an analysis of word frequencies
in four general-purpose text corpora. In Proceedings
of the Fourth Conference of the Pacific Association for
Computational Linguistics, pages 282-287, 1999.

43

Learning Hierarchical Task Models by Defining and
' Refining Examples

Andrew Garland and Kathy Ryall and Charles Rich
Mitsubishi Electric Research Laboratories
{garland,ryall,rich} @merl.com

Abstract

Task models are used in many areas of computer science
including planning, intelligent tutoring, plan recognition, inter-
face design, and decision theory. However, developing task
models is a significant practical challenge. We present a task
model development environment centered around a machine
learning engine that infers task models from examples. A
novel aspect of the environment is support for a domain expert
to refine past examples as he or she develops a clearer under-
standing of how to model the domain. Collectively, these
examples constitute a “test suite™ that the development envi-
ronment manages in order to verify that changes to the evolv-
ing task model do not have unintended consequences.

Keywords
programming by demonstration, knowledge acquisition

INTRODUCTION

Many fields of computer science — planning, intelligent tutor-
ing, plan recognition, interface design, and decision theory to
name a few — get a lot of leverage from applying general-
purpose algorithms to domain-specific task models. This
approach gives rise to the notorious knowledge acquisition
bottleneck: developing an accurate domain model is a signif-
icant engineering obstacle. In this paper, we present a devel-
opment environment that can ease the task model acquisi-
tion process. The environment combines direct mode! edit-
ing, machine learing based upon annotated examples, and
model verification through regression testing. The learning
techniques and most of the other major components of this
environment are in place; however, the graphical front-end is
still under development.

In this work, the problem of developing task models is con-
sidered in the context of the Collagen [18, 17] system. In
Collagen, a collaborative interface agent engages in dialogs
with a user to jointly achieve tasks. Collagen is an implemen-
tation of the SharedPlan theory of collaborative discourse [7],
in which the agent’s behavior is driven by general-purpose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010. ... $5.00.

algorithms for discourse interpretation [13], plan recognition
[10], and action selection [11]. In order to apply these algo-
rithms in a given domain requires constructing an explicit,
declarative model of the underlying task structure.

Since Collagen task models are hierarchical, a domain expert
must decide how to divide tasks into subtasks, which involves
choosing the best abstractions to represent intermediate goals,
The choice of intermediate goals is especially important for
collaborative agents because the agent must be able to dis-
cuss how to accomplish tasks in a way that is intuitive to the
user. Determining an appropriate set of intermediate goals
(as well as the number and type of parameters for each) can
be extremely difficult for a domain expert.

Our approach to acquiring task models is based on the con-
jecture that it is often easier for people to generate and dis-
cuss examples of how to accomplish tasks than it is to deal
directly with task model abstractions. In a sense, we designed
a kind of programming by demonstration [4, 12] system in
which a domain expert performs a task by executing actions
and then reviews and annotates a log of the actions.

In prior research, we developed machine leaming techniques
that infer hierarchical task models from a set of partially-
annotated examples of task-solving behavior [5]. As a gen-
eral tradeoff, an expert can provide minimal annotations about
many examples or more exhaustive annotations about fewer
examples. Also, as will be discussed below, certain types of
annotations are more valuable to the learning engine.

We have integrated these machine learning techniques into a
development environment that provides comprehensive sup-
port for experts to generate task models. This involves remov-
ing or refining past examples as well as defining new exam-
ples. In addition to learning from the collection of exam-
ples, the system can use them for regression testing to verify
the behavior of the model throughout the development pro-
cess. This technique detects more potential errors than sim-
ply checking the internal consistency of a model.

The design presented in this paper reflects the collective expe-
rience of the Collagen research group over the past several
years “manually” developing task models. Typically, a model
is constructed through an incremental development process,
which is described in the following two paragraphs.

e

Initial versions of a task model are inferred from a small
numbe- of examples that show the most common solutions
to key domain tasks. Both the model and the examples fre-
quently undergo substantial revisions during this early stage.
Next, the mode! will be generalized to cover additional exam-
ples that demonstrate solutions involving, for example, alter-
nate orderings for actions, optional behavior, or alternate task
decompositions. Occasionally, defining additional examples
will spur the expert to re-conceptualize the entire domain,
necessitating reworking many previous examples.

As the development process nears completion, there is less
and less benefit to providing new examples. It is generally
faster and easier to directly edit the model. Also, learned
models, even when accurate, may need to be tweaked by the
expert for other reasons. For example, as discussed in (5], the
organization of a complete and accurate task model may be
inappropriate for a collaborative agent. It is at this final stage
of development that the ability to easily verify the behavior
of the model using the collection of past examples is critical.

The next section of the paper describes how task models are
inferred from the annotated examples of the expert; we also
provide empirical results based on our implementation of this
learning module. The third section of the paper presents
the design of the model building environment in detail. The
paper concludes with a discussion of related research.

MACHINE LEARNING FROM EXAMPLES

Within the task model development environment, there is a
division of labor between the user and the computer: the user
provides annotated examples so that the learning system can
generalize the task model under development.

This section describes how a domain expert partially anno-
tates examples. We describe the task model language first
and then the different types of partial annotations. Empirical
results are included that quantify how the different types of
annotations influence the number of examples that need to be
provided by the domain expert.

A task model is composed of actions and recipes. Actions
are either primitive actions, which can be executed directly,
or non-primitive actions (also called “intermediate goals™ or
“abstract actions™), which are achieved indirectly by achiev-
ing other actions. Each action has a type; each action type is
associated with a set of parameters. Actions do not currently
include an explicit representation for preconditions and effects.

Recipes are methods for decomposing non-primitive actions.
Each recipe specifies a set of steps that are performed to
achieve the non-primitive action that is the collective objec-
tive of the steps. All steps are assumed to be required unless
they are labelled as optional. There may be several different
recipes for achieving a single non-primitive action.

A recipe also contains constraints that impose partial tempo-
ral orderings on its steps, as well as various logical relations

45

among their parameters. For the purposes of this paper, the
only logical relations we will consider are equalitics. Equal-
ities between a parameter of a step and a parameter of the
objective of the recipe are called bindings, but are otherwise
indistinguishable from constraints. Parameters and steps have
a name as well as a type in order to allow for unambiguous
references (in bindings and constraints) to multiple steps of
the same type.

Figure 1 contains samples of this representation for a cooking
domain that will be used throughout this paper as a running
example. This domain was chosen over alternate Collagen
task models because it is intuitive and can be easily varied in
order to conduct empirical studies. A task model in the form
of Figure 1 is the desired output of learning.

nonprimitive act PreparePasta
parameter Pasta pasta

primitive act GetPasta
parameter Pasta pasta

recipe PastaRecipe achieves PreparePasta

steps Boil boil

CookPasta cook

optional GetPasta get
bindings achieves.pasta = cook.pasta
constraints get.pasta = cook.pasta

boil.water = cook.water
boil precedes cook
get precedes cook

Figure 1: Collagen representations from a cooking domain
(keywords are in bold).

Annotation Language

Informally, the input to the learning algorithm is a serics of
demonstrations; each one explicitly shows one correct way
to perform a task and, via annotations, indicates other simi-
lar ways that are also correct. For example, if the sequence
[a,b,¢] is correct and b is annotated as optional, then we
know [a, c] is also a correct example. We can also general-
ize from the annotated examples based on assumptions about
the target model to be learned. For example, if the leamner is
told [a, b, ¢] and [c, b, a] are both correct and the target model
represents partial ordering constraints on pairs of actions, all
orderings of a, b, and ¢ must be correct.

More precisely, each input to the learning engine is an anno-
tated example e, where e is a five-tuple: (¢, S, optional,
unordered, unequal):

¢ is the temporally ordered list of actions [p1, ... ,px] that
constitute the unannotated example demonstrated by the
expert. In most cases, each p; will be a primitive action;
however, p; could also be an intermediate goal. The seman-
tics of the latter case is that p; is being used as a place-
holder in lieu of fleshing out the example to include a seg-
ment that achieves p;.

S isasegment, which is a pair (segmentType, [s1....,5,]).
Each s;, called a segment element or element for short, is
either an action or a segment. Grouping elements together
means that they collectively achieve a non-primitive act of
type segmentT ype.

optional is a partial mapping from elements to boolean val-
ues. If the mapping is defined and is true, the expert is
specifying that removing that segment element from the
example would constitute another correct example from
the domain.

unordered is a partial mapping from pairs of elements in
the same segment to boolean values. If the mapping is
defined and is true, the expert is specifying that switching
the order of appearance of the pair of elements would con-
stitute another correct example from the domain.

unequal is a partial mapping from pairs of action parame-
ters to boolean values. If the mapping is defined and is
true, the expert is specifying that another correct exam-
ple with the same segmentation exists wherein these two
parameters do not have the same value. This mapping does
not convey information about inequality relations; i.e. this
mapping cannot indicate that two parameters must never
have the same value.

Figure 2 contains an example of how this formal notation is
used to define an annotated example in the cooking domain.
Each action is subscripted so that different instances of the
same act type can be distinguished. The arguments of each
primitive action are specific domain items.

¢ =[Boil|(waterq), GetPastas{spaghettiy),
CookPastag (spaghettis, waterg), Boilg(waterg),
MakeSauces (marinaraz), ServeDinnerg(kitchens)]

S=(MakeMealyg, [
(PreparePastar, [Boil;,GetPastay, CookPastas))
(PrepareSauceg, [Boil,s, MakeSauces])
ServeDinnerg])

optional(GetPastag) = frue

optional(ServeDinnerg) = false
unordered(PreparebPastar, PrepareSaucesg) = true
unordered(Boil;, CookPastag) = false

unequal(Boil) .water,Boily.water) = true
unequael(GetPastay.pasta, CookPastag.pasta) = false

Figure 2: Sample annotated example, in formal notation.

Figure 2 defines one top-level segment of type MakeMeal,
which is composed of two sub-segments (PreparePasta,
PrepareSauce) and a primitive action (ServeDinner).
The partial mappings at the bottom of the figure indicate
that Get Pasta is optional and ServeDinner is required.
Also, the steps of type PreparePasta and Prepare-
Sauce may appear in any order in general, while the Boil
step of PreparePasta must always precede the Cook -
Pasta step. Finally, the annotations indicate that the com-

46

mon water parameter value for Boil; and Boily is a cojp-
cidence, but that the pasta parameter of Get Pasta and Cook-
Pasta will always be the same.

A graphical interface, which is part of the development envj-
ronment, allows experts to annotate this information in a more
intuitive way, such as by marking certain nodes in a tree
visualization. However, it should be clear from this partially
annotated example that fully annotating examples would be
quite burdensome regardless of the interface.

It is tempting to draw conclusions from the absence of cer-
tain annotations. For example, in Figure 2, many steps are
not marked as optional. While one might interpret this to
mean that the unmarked steps are required, it might just be
the case that the expert is not sure if those steps are required
or optional. To handle such cases, the leamning techniques
distinguish between positive evidence (e.g., annotating that a
step is required) and the lack of negative evidence (e.g., the
step appears in all defined examples involving this recipe).

A key feature of our learning algorithm is that it infers bind-
ings, constraints, and parameters of non-primitive actions,
which we will refer to collectively as propagators. The role
of propagators is to enforce equality relationships among the
parameter values of primitive actions. For example, in a task
model for cooking spaghetti marinara, the cooked pasta must
be the same pasta to which the marinara sauce is later added.
In contrast, different knives can be used to cut, say, the toma-
toes and the mushrooms. These equality relations cross the
boundaries of many actions and recipes, i.e. they are not local
to any particular recipe.

Empirical Results

Some experiments were run to better understand the tradeoff
between how much information the expert provides in each
example and how many examples must be provided to learn
an accurate model of the domain. For testing purposes only,
we simulate a human expert that provides varying types of
annotations. This approach focuses the results on this trade-
off rather than the best way to elicit annotations from the
expert. At present, we do not presume that there is a data
base of unannotated examples that either the expert or the
learner can access — examples are generated by the expert
as needed.

In each experiment, we start with a target task model and use
it to simulate the activities of a domain expert, both to gener-
ate unannotated examples and to annotate them. Segmenta-
tions and non-primitive action names are always provided by
the simulated expert, but we varied which other annotations
were provided. After each example is input to the learning
engine, we determine if the generalized task model is equiva-
lent to the target model. Also, we determine if each example
was “useful,” i.e. if it contained any information that altered
the contents of the data structures used for inference; other
examples are labeled “useless.”

We ran experiments on two target task models. The first
represents part of a sophisticated tool for building graphi-
cal user interfaces, called the Symbol Editor. The model
was constructed in the process of developing an agent to
assist novice users of the Symbol Editor. The model contains
29 recipes, 67 recipe steps, 36 primitive acts, and 29 non-
primitive acts. A typical example contains over 100 primi-
tive actions. The second test model was an artificial cooking
world model designed to test the learning algorithm. The
model contains 8 recipes, 19 recipe steps, 13 primitive acts,
and 4 non-primitive acts. Anexample typically contains about
10 primitive actions. Both models have recursive recipes.

We ran all variations of possible combinations of annotation
types, and report a subset in Table 1. In this table, O indicates
that all ordering annotations are given, E indicates that all
equality annotations are given, and P indicates that all propa-
gators are given (propagator annotations subsume equality
annotations). Optional steps are only annotated when all
annotations are given (indicated by "All" in the table). The
reason for this is that optionality is the easiest aspect to learn
because it does not involve relationships between steps. The
data are the results of randomized sequences of examples —
100 trials for the cooking domain and 20 trials for the Sym-
bol Editor. Also, the average and minimum are measured on
useful examples.

Table 1: The kind of annotations provided influences the
number of examples needed to learn task models.

Anno- Cooking Symbol Editor

tation | Avg. | Min. Ul | Avg. [Min. Uscless
All 5.3 3 9.9 1.9 1 0.1
op 6.5 3 111 24 1 0.4
P 72 4 14.1 30 2 0.5
EO 7.2 3 104 | 142 31 470
E 8.1 4 13.1 | 144 3 46.9
o 38.3 15 | 4043 | 53.0 37 | 1187
None 38.3 15 | 4042 | 53.1 37 1 118.6

The main surprise is that providing equality annotations dra-
matically reduces the number of required examples (from
38.3 to 8.1 for cooking). This is encouraging because it
seems likely that it will be much less onerous for a human
expert to indicate when apparent equalities in the example
are coincidental, than to construct all the propagator infor-
mation directly.

Another interesting result in Table | is that learning is strongly
influenced by the order in which examples are processed.
This is reflected both by the minimum number (which is
roughly half the average number) of useful examples and the
average number of useless examples (which is comparatively
large). It is possible a human would provide diverse, useful
examples so that the number of examples required in practice

:® would be close to the minimum number of useful examples.

47

DESIGN FOR A MODEL DEVELOPMENT ENVIRONMENT
This section presents the design for our task model devel-
opment environment. A novel aspect of the environment is
support for a domain expert to refine past examples as he
or she develops a clearer understanding of how to model the
domain. Collectively, these examples constitute a “test suite™
that the development environment manages in order to verify
that changes to the evolving task model do not have unin-
tended consequences.

Figure 3 shows an idealized sequence that a user would fol-
low to develop a task model. In practice, a model would not
be developed in such a straightforward path. For example,
the model can be inferred, visualized, or manually edited by
the user at arbitrary points during the development cycle.

Define a starting set of actions (optional).

Define examples.

Generalize the model based on the examples.
Visualize the resulting model.

Use the model in subjective tests of quality.

Refine prior examples.

Manually edit the task model.

Run regression tests with the collection of examples.

Figure 3: Typical steps in task model development

Most of the process described in Figure 3 is presently achicv-
able through a single GUI application; however, certain aspects
currently require a combination of command-line programs
and text-file editing. Fully integrating the current capabili-
ties into a single tool will reduce the burden for the domain
expert, and will provide opportunities for providing more
assistance.

Both Collagen and the model building tool are written in the
Java programming language. This has two important ben-
eficial consequences. First, it is easy to design the system
to switch between alternate components (e.g., model viewers
or learning engines) by using interfaces and Java Beans. Sec-
ond, the task model language for Collagen is implemented as
a superset of Java, which permits very specific refinements
of task models for any particular domain.

The rest of this section is a “story board” that illustrates how
a person might use our system to develop a task model for
making a meal. As this task is something that occurs in
the physical world, the user constructs examples by virtu-
ally walking through the process of making a meal — it is
a mental walk-through, rather than an actual walk-through.
In contrast, for a computer application with a graphicat user
interface that has already been built and implemented, a per-
son could simply run the application, and annotate the result-
ing log. For an application that is being (re-)designed, an
expert would use the virtual walk-through process to create
examples.

Define a Starting Set of Actions (Optional) The first step
the user may take is to generate an initial list of primitive and
non-primitive acts, as shown in Figure 4.

Non-Primitives: MakeMeal
Primitives: Boil, CookPasta, PrepareSauce, ServeDinner

Figurc 4: Initial working set of action types

This categorization may change over time, but helps to boot-
strap the process. Our system does not assume the existence
of a pre-defined hicrarchy of actions (i.e., an ontology) for
the domain — determining this hierarchy is a major part of
task model development. While defining the primitives for
an implemented GUI application may be straightforward, for
activities in the real world the process is more difficult. In
all non-trivial domains, identifying the correct set of abstract
(non-primitive) actions is challenging.

Define Examples Anexample is an annotated list of instan-
tiated actions (action type plus specific values for parame-
ters) that constitute the achicvement of a goal in the domain.
The user may start by constructing an unannotated demon-
stration of how to make a meal, as shown in Figure 5 (for
reading ease, actions in the examples of this section are not
subscripted).

GetPasta
Boil
CookPasta
PrepareSauce
ServeDinner

Figure 5: First example, unannotated

In Figure 5, the user has not specified any parameter val-
ues. Also, the example includes an unknown action type
(GetPasta), so the system may either ask the user if the
action should be added to the working set as a primitive act
or silently do so, depending on a settable option.

Working with this example, the user groups related actions
into segments; for each segment, the user provides a name
that describe the purpose of the segment. In the minimally
annotated version shown in Figure 6, the elements of a seg-
ment are identified visually by the level of indentation — the
purpose name for a segment, which precedes its elements, is
surrounded by brackets. In this case, the user has grouped
the first three steps into PreparePasta. The system rec-
ognizes that this act is not part of the working set and can
ask if it should be added to the non-primitives. In practice,
annotations don't have to be added during a second pass —
they can be done at the same time that actions are added.

Generalize the Model Based on the Examples After anno-
tating one or more examples, the user can invoke the infer-

48

[MakeM eal)
[PreparePasta)
GetPasta
Boil
CockPasta
PrepareSauce
ServeDinner

Figure 6: First example, minimally annotated

ence engine to generalize the task model to incorporate the
examples. Even if the learning tool has only onc example
to process (i.e. this example is the first one submitted by
the user), generalization may occur if the same non-primitive
action-type appears more than once in the example.

The result of learning from the example in Figure 6 is given
in Figure 7. A comparison with Figure 1 shows that the
propagators are missing from this first version of the task
model. Barring guidance from the domain expert, the auto-
mated techniques name each recipe based on the types of the
required steps, sorted alphabetically, of the recipe. Also, step
names are derived from the type of the step.

nonprimitive act PreparePasta

primitive act GetPasta

o

recipe Boil CookPasta_GetPasta achieves PreparePast

steps Boil boil
CookPasta cookPasta
GetPasta getPasta
constraints getPasta precedes boil

boil precedes cookPasta

Figure 7: A portion of the task model after one example

An important issue is how the machine learning techniques
will preserve manual edits to the task model. This issue
arises in many environments where a human and a computer
are collaborating — a person will often want to pin down
some parts of the problem at hand so that the computer does
not modify them when formulation a solution. The learning
techniques currently allow an expert to pin down some parts
of the system, but there are still some open issues regarding
parameters for non-primitives.

As discussed in the previous section, the learning techniques
free the domain expert from having to specify non-primitive
parameters. Or, for those who are so inclined, an expert
can specify the number and type of parameters for each non-
primitive. However, mixing the two approaches requires either
heuristics or dialogs with the expert or a combination of both.
To see why, imagine an expert state that a non-primitive has
a parameter of type X and that the learning engine infers the
need for two slots of type X. Do either of these get mapped
to the user-specified parameter and, if so, which one? There

are other ambiguous situations where the decision whether
or not to re-use a propagator is unclear.

Define Additional Examples The expert iterates through
this process until the task mode! is complete enough to test
subjectively. After the user defines each additional exam-
ple, inconsistencies between the current model and the new
example need to be worked out. There are several ways in
which the user and the system could interact to resolve incon-
sistencies; currently it is the sole responsibility of the domain
expert.

As a result of resolving inconsistencies, sometimes the model
will be changed and sometimes the example will be changed.
For example, an action that was originally defined as a prim-
itive action might appear as a segment purpose type. Some-
times the definition of the action needs to be changed and
sometimes the expert makes an error. Another common source
of inconsistencies is in the number and type of parameters for
an action.

Figure 8 is an example of making linguini with clam sauce
that might be provided as a second example to the learning
system. In this figure, the user has added more detail by
decomposing PrepareSauce and specifying parameters.

[Makebeal]
GoToKitchen (kitcheny)
[PrepareSauce}
Boil {waterj)
CookClams {(clamsg, waters)
MakeClamSauce {clamsg)
[PreparePasta)
Boil (waters)
CookPasta(linguini;,,waters)
ServeDinner (kitchensy)

Figure 8: Second example, minimally annotated

When processing this second example, the system adds new
acts to the working set of primitives, moves PrepareSauce
from the primitives to the non-primitives, and adds parame-
ters to the definitions of actions that appear in this example.
The system also determines that there are optional steps in
two different recipes (going to the kitchen and getting the
pasta) and that the PreparePasta and PrepareSauce
steps are unordered. Finally, in this example, the water used
in preparing the sauce and the pasta happen to be the same so
the system infers a set propagators that will force this equal-
ity to always hold. Figure 9 shows the output of learning.

In future examples, new acts may be demonstrated. Or, addi-
tional recipes to athieve known acts may be shown (e.g.,
achievingMakeMeal by calling a take-out restaurant). Also,
additional orderings will be learnéd for known recipes. Other
examples will show that parameters are not tied to specific
domain literals; likewise, the water used in preparing a sauce
and the water used in preparing pasta are generally differ-

49

nonprimitive act PreparePasta
parameter Water water

primitive act GetPasta

recipe Boil_CookPasta achieves PreparePasta

steps Boil boil

CookPasta cookPasta

optional GetPasta getPasta
bindings achieves.water = cookPasta.water

boil.water = cookPasta.water
cookPasta.water = waterj
cookPasta.pasta = linguini;
getPasta precedes boil

boil precedes cookPasta

constraints

Figure 9: A portion of the task model after two examples

ent. Future work includes investigating mechanisms for the
learning system to indicate what types of examples would
most benefit the learning process.

Visualize the Model After the inference techniques have
generalized the model to account for this example, the expert
can review the result to see if it matches his or her intention.
In future work, additional bookkeeping by the learning tech-
niques will enable the expert to find out what part(s) of which
example(s) implied various pieces of the mode! (e.g. step
optionality, ordering and equality constraints). Some pieces
of the model will not be tied to examples — for example, if
the model is manually edited.

® MakeMeal
© Recipe: PreparePasta_PrepareSauce_ServeDinner
©- 1) [optional] GoToKitchen
© 2) PreparePasta
® Recipe: Boil_CookPasta
1) [optional] GetPasta
©- 2) Boil
© 3) CookPasta

parameter: Pasta
© 2) PrepareSauce
© Recipe: Boil_CookClams_MakeClamSauce
©- 1) Boil
© 2) CookClams

parameter: Clams
©- 3) MakeClamSauce
©- 4) ServeDinner

Figure 10: A graphical view of part of a task model.

Another feature of our system is that it supports multiple
views of the task model. In Figure 1 (and throughout this sec-
tion) we saw the textual representation of a portion of a task
model. In Figure 10 we see a graphical view of the decom-
positions for a task in the task model, drawn as a tree.’ The
children of non-primitive actions are the recipes that achieve
that act; a recipe expands to show the steps of that recipe; and

1o simplify exposition, some visual elements of the tool have been been
suppressed or replaced by text (e.g. “[optional]”). :

the children of primitive acts are the action type’s parameters.
The numbering of recipe steps summarizes the precedence
relations. Also, parameters that are constrained by the model
to always be equal, i.e. the two Water parameters shown,
are indicated by having the same background color (different
colors are used for each set of propagators).

Use the Model in Subjective Tests of Quality Ideally, the
current task model can be evaluated by the domain expert
by interacting with a collaborative agent for an existing GUI
application."’ Based on this interaction, the expert can iden-
tify weaknesses or errors in the model. For example, the
expert can notice when the agent erroncously propagates a
parameter value (as would be the case for the water used to
boil clams and pasta). To improve the quality or accuracy
of the model, the expert can create new examples, refine old
examples, or manually edit the model .

Refine Prior Examples After using the task model (or at

other times), the domain expert may wish to refine prior exam-
ples. For example, showing the learning system that Get -

Pasta has a pasta parameter with the same value as Cook -

Pasta is easily done by adding parameter values to the first

example. Figure 11 shows such a refinement of the first

example.

[MakeMeal]
[PreparePasta)
GetPasta(zitiy)
Boil (water2)
CookPasta({zitiq,watexr;s)
[PrepareSauce)
ServeDinner (kitchen;)

Figure 11: First example, refined with parameters

In Figure 11, PrepareSauce is now marked as a place-
holder non-primitive, i.e. a non-primitive that is not decom-
posed in this example. Alternately, the domain expert could
have refined PrepareSauce in Figure 11.

Manually Edit the Task Model The domain expert may
wish to manually edit the task model, perhaps as a result of
a subjective evaluation. For example, using the task model
inferred from the two defined examples reveals that some
dialogs flow unnaturally because PreparePasta does not
have a parameter of type Pasta, even though that parame-
ter is not needed for correctness. In addition, some experts
may choose to replace the automatically generated recipe and
step names, or may choose to take advantage of Collagen’s
flexible glossing (English text generation) mechanism.

Since the task model language for Collagen is a superset of
Java, actions and recipes can include arbitrary Java code. In
terms of system design, this means that there must be support

2Evaluation is always possible — Collagen can simulate the behavior of
a collaborative agent in the absence of an existing application.

for experts to manually add Java code to the task model when
needed.

Regression Testing As task models become complex, it
is easy to make changes that have unexpected consequences.
Our current implementation incorporates a rigorous testing
facility to identify when changes to the task model influences
the analysis of stored examples. Regression testing is not as
useful in the early stages of model development, when action
and recipe definitions are undergoing rapid change.

As the model is developed and refined, older examples may
become obsolete. Changes in the number and types of param-
eters for an action, for example, may cause an early exam-
ple to no longer be consistent with the current version of the
task model. Likewise, as actions are added and deleted, and
potentially reclassified as primitives or non-primitives, ear-
lier examples may no longer be valid. An important consid-
eration for the development environment is how to alert the
user that these examples exist and how to provide an explana-
tion of why the example is no longer usable. In some cases,
the user may choose to disregard an early example while at
other times he or she may choose to update an earlier exam-
ple so that it can continue to be used in regression testing.

RELATED RESEARCH

Tecuci et al. [19] present techniques for acquiring large num-
bers of hierarchical if-then task reduction rules through demon-
stration by and discussion with a human expert. In their
system, the expert provides a problem-solving episode from
which the system infers an initial task reduction rule, which
is then refined through an iterative process in which the human
expert critiques attempts by the system to solve problems
using this rule. Tecuci er al. do not specifically address either
the issue of building a model in the absence of a pre-defined
ontology or the notion of regression testing to ensure that
model updates preserve correctness.

Gil and Melz [6] and Kim and Gil [8] have reported on a
wide range of issues related to building knowledge acquisi-
tion tools for developing databases of problem-solving knowl-
edge. In contrast to our approach of inferring task models
from annotated examples, they have focused on developing
tools and scripts to assist people in editing and elaborating
task models, including techniques for detecting redundancies
and inconsistencies in the knowledge base, as well as making
suggestions to users about what knowledge to add next.

Paterno [15, 16] presents a graphical tool for eliciting hierar-
chical task models, represented as ConcurTaskTrees, of coop-
erative activities. This tool provides support for converting
informal scenarios into formal descriptions and then verify-
ing the consistency of a ConcurTaskTree with saved scenar-
jos. In addition to some key differences in representation lan-
guage (such as alternate decompositions for abstract actions
and the ability to enforce arbitrary constraints among param-
eters), this tool does not support inference.

Other rescarch efforts have addressed aspects of the task model
learning problem not addressed in this paper. Bauer [2, 3]
presents techniques for acquiring non-hierarchical task mod-
els from unannotated examples for the purpose of plan recog-
nition (i.e., inferring a person’s intentions from her actions).
OBSERVER [21] automatically learns the preconditions and
effects of planning operators from unannotated expert solu-
tion traces and then refines the operators through practice.
In a related approach, van Lent and Laird [20] present tech-
niques to learn the preconditions and goal conditions for a
hierarchy of operators (encoded as specialized Soar produc-
tion rules) given expert-annotated performance traces.

Angros Ir. [1] presents techniques that learn recipes that
contain causal links, to be used for the intelligent tutoring
systems, through both demonstration and automated experi-
mentation in a simulated environment. Masui and Nakayama
{14] investigate learning macros from observation of or inter-
action with a computer user in order to assist the user with
tasks that occur frequently or are inherently repetitive. Lau
et al. [9], in one of the few formal approaches to learning
macros, uses a version space algebra to leamn repetitive tasks
in a text-editing domain.

CONCLUSION

This paper presented an approach, which is implemented in a
development environment, for constructing and maintaining
a hierarchica! task model from a set of annotated examples
provided by a domain expert. The key pieces of the system
are a machine learning inference engine and a facility for
conducting regression testing in order to verify the consis-
tency of a task model with previously defined examples. As
a general tradeoff, the domain expert can either provide min-
imal annotations about many examples or more exhaustive
annotations about fewer examples.

Future work for this project fall into two broad categories:
extensions to the inference engine and improvements in the
usability of the development environment. One area for future
work that falls into both categories is to develop constructive
critics, i.e. algorithms that propose possible annotations, and
include a facility for users to easily manage the advice pro-
vided by them. For example, one constructive critic might
analyze past usage logs (or annotated examples) to suggest
the segment elements that should be marked optional in an
as-yet unannotated example. The user should be able to:
1) review such suggestions at any time, 2) easily understand
them, and 3) easily accept none, some, or all of the them.

REFERENCES
1. R. Angros Jr. Learning What to Instruct: Acquiring Knowl-
edge from Demonstrations and and Focussed Experimenta-
tion. PhD thesis, University of Southern California, 2000.

2. M. Bauer. Acquisition of Abstract Plan Descriptions for Plan
Recognition. In Proc. 15th Nat. Conf. Al, pages 936-941,
1998.

3. M. Bauer. From Interaction Data to Plan Libraries: A Clus-

51

10.

11.

14.

1s.

16.

17.

18.

19.

20.

21.

. A. Cypher, editor.

. Y. Gil and E. Melz.

tering Approach. In Proc. 16th Int. Joint Conf. on Al, pages
962-967, 1999.

Watch What 1 Do: Programming by
Demonstration. MIT Press, Cambridge, MA, 1994.

. A. Garland, N. Lesh, and C. Sidner. Learning Task Models for

Collaborative Discourse. In Proc. of Workshop on Adaptation
in Dialogue Systems, NAACL "01, pages 25-32, 2001.
Explicit representations of problem-
solving strategies to support knowledge acquisition. In Proc.
13th Nat. Conf. Al pages 469-476, 1996.

. B. Grosz and C. Sidner. Plans for discourse. In P. R. Cohen,

J. Morgan, and M. E. Pollack, editors, Intentions in Conimu-
nication, pages 417-444. MIT Press, Cambridge, MA, 1990.

. J. Kim and Y. Gil. Acquiring problem-solving knowledge

from end users: Putting interdependency models to the test.
In Proc. 17th Nat. Conf. Al, pages 223-229, 2000.

. T Lau, P. Domingos, and D. S. Weld. Version space algebra

and its application to programming by demonstration. In Proc.
17th Int. Conf. on Machine Learning, pages 527-534, 2000.
N. Lesh, C. Rich, and C. Sidner. Using Plan Recogpnition in
Human-Computer Collaboration. In Proc. of the 7th Int. Conf.
on User Modeling, pages 23-32, 1999.

N. Lesh, C. Rich, and C. Sidner. Collaborating with Focused
and Unfocused Users under Imperfect Communication. In
Proc. 9th Int. Conf. on User Modeling, pages 64-73, 2001.

. H. Lieberman, editor. Your Wish is My Command: Program-

ming by Example. Morgan Kaufmann, 2001.

. K. E. Lochbaum. A Collaborative Planning Mode! of Inten-

tional Structure. Computational Linguistics, 24(4):525-572,
Dec. 1998.

T. Masui and K. Nakayama. Repeat and predict- two keys
to efficient text editing. In Conference on Human Factors in
Computing Systems, pages 118-123, 1994.

F. Paterno and C. Mancini. Developing task models from
informal scenarios. In Proc. ACM SIGCHI ’99, Late-Breaking
Results, pages 228-229, 1999.

F. Paternd, G. Mori, and R. Galiberti. CTTE: An environment
for analysis and development of task models of cooperative
applications. In Proc. ACM SIGCHI '01, Extended Abstracts,
pages 21-22, 2001.

C. Rich and C. Sidner. COLLAGEN: A Collaboration man-
ager for Software Interface Agents. User Modeling and User-
Adapted Interaction, 8(3/4):315-350, 1998.

C. Rich, C. Sidner, and N. Lesh. Collagen: Apply-
ing Collaborative Discourse Theory to Human-Computer
Interaction. Al magazine, 22(4), 200l To appear.
http:/fwww.merl.com/papers/TR2000-38/.

G. Tecuci, M. Boicu, K. Wright, S. W. Lee, D. Marcu, and
M. Bowman. An integrated shell and methodology for rapid
development of knowledge-based agents. In Proc. 16th Nat.
Conf. Al pages 250-257, 1999.

M. van Lent and J. Laird. Learning hierarchical perfor-
mance knowledge by observation. In Proc. 16th Int. Conf.
on Machine Learning, pages 229-238, 1999.

X. Wang. Learning by observation and practice: an incremen-
tal approach for planning operator acquisition. In Proc. 12th
Int. Conf. on Machine Learning, pages 549-557, 1995.

Building and Exploiting Ontologies for an Automobile
‘ Project Memory

Joanna Golebiowska ' %, Rose Dieng-Kuntz !, Olivier Corby ', Didier Mousseau 2

1 INRIA, ACACIA Project, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France
2 RENAULT, TPZ D12 138, DTSI/DTPU/KMPD, sce 18820 860 quai de Stalingrad, 92109 Boulogne, France
E-mail: {Joanna.Golebiowska, Rose.Dieng, Olivier.Corby} @sophia.inria.fr

Abstract

This paper describes SAMOVAR (Systems Analysis of
Modelling and Validation of Renauit Automobiles), aiming at
preserving and exploiting the memory of past projects in
automobile design (in particular the memory of the problems
encountered during a project) so as to exploit them in new
projects. SAMOVAR relies on (1) the building of ontologies (in
particular, thanks to the use of a linguistic tool on a textual
corpus in order to enrich a core ontology in a semi-automatic
way), (2) the «semantic» annotations of the descriptions of
problems relatively to these ontologies, (3) the formalisation of
the ontologics and annotations in RDF(S) so as to integrate in
SAMOVAR the tool CORESE that enables an ontology-guided
search in the base of the problem descriptions.

1 Introduction

How to preserve and exploit the memory of past projects in
automobile design (in particular the memory of the problems
encountered during a project) so as to exploit them in new
projects? The role of ontologies for knowledge management is
more and more. They can play an important role for building a
project memory, that is a specific kind of corporate memory
[9,10]. Several researchers aim at proposing a methodology for
building such ontologies, possibly from textual information
sources [2]. Such a methodological framework is interesting for
us, as there are several heterogenecous sources of information
inside the company: different databases, official references,
problem management systems and other specific bases in the
departments; moreover, in addition to basic data which can be
processed by traditional means, some bases contain important
textual data.

After detailing our problematic and the concrete problem to
be solved at Renault, we will present the approach adopted for
SAMOVAR. Then we will detail our techniques for building the
SAMOVAR ontologies, relying on both manual construction
and semi-automatic construction thanks to the application of
heuristic rules on the output of a linguistic tool applied on a
textual corpus stemming from textual comments of a database.
Then we will explain their exploitation and the use of the
CORESE (Conceptual Resource Search Engine) tool [8] for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00

52

information retrieval about the descriptions of past problems
encountered in vehicle projects. We will generalize our
approach so as to propose a method for building a project
memory in the framework of any complex system design. In our
conclusion, we will compare SAMOVAR to related work.

2 The problematic

The field of SAMOVAR is the process of prototype validation
during a vehicle project. This process is intrinsically complex
and raises many problems. These problems frequently slow
down the cycle due to the necessity of repeating validations: so,
it increases both the delays and the costs of such projects.

A close observation of validation shows that part of the
failure is due to loss of information and of experience gained.
The objective of SAMOVAR is to improve the exploitation of
this information and make it available for future projects. Useful
data exist in the form of text. Therefore it is necessary to find
suitable techniques and tools, such as for example linguistic
techniques for exploiting the knowledge underlying such texts.

2.1 Context

The product development cycle of an automobile is made of
numerous repetitive sub-cycles (design/ development /
validation) - of short or long duration. The whole cycle is
punctuated by milestones and prototype waves which mark the
production of successive models and prototypes, more or less
complex. During a vehicle project, validations are carried out:
the testing department checks that the component-parts or the
functions satisfy the requirements of the product specifications.

Thus, the quality of smoothness of the dashboard, the noise
of a car door being shut, the behaviour of the car on cobble
stones, or even its resistance to high or low temperatures are
tested. These validations are spread throughout the vehicle
project and done successively by the testing department, starting
from the most elementary functions till the final synthesis test.
The project begins with tests related to the engineering center
according to the parts validated and ends with tests on
performance, speed and crash.

These project validation phases often reveal discrepancies
with respect to the specifications. From detection of a problem
to its resolution, such problems are documented in a unique data
management system called Problem Management System
(PMS). This system uses a database including the information
needed for the process of problem management: especially
information on the actors involved in the project and above all,
the descriptions and comments on the problems that arose.

2.2 Interest of exploiting the Problem
Management System

The appearance of problems increascs the additional costs and

the project duration. Therefore solutions have been thought out.

One possible solution would be to exploit the information

contained in the PMS in order to use the PMS not only as a

problem management system but also as a source of information.

The PMS can be considered as a huge source of
information, thanks to the textual ficlds of the basc which arc
particularly rich and under-exploited. The actors involved in the
automobile design preject express themselves freely for
describing the problems detected, as well as the various
solutions proposed, or the constraints for carrying out such or
such solution. This basc can therefore be considered as archives
or even as constituting (a part of) the memory of a project, more
precisely the memory of the problems encountered during the
project.

Furthermore, in the company, there are other information
sources, such as the official corporate referential or the
numerous local bases of the testing department. It would be
useful to exploit this information with the contents of the PMS.

Therefore our aim is to propose a means of retrieving,
structuring and making reusable this wide quantity of
information for the same project or for the other projects. The
participants of current projects have expressed needs related to
information search and retricval useful during the validation
phases. Their needs concerned especially the retrieval of similar
incidents, detection of any correlation or dependency with other
incidents and so the reuse of existing solutions within the same
or even a different project.

Some pieces of information are relatively simple to
retrieve. However, this is not the case for the textual data of
PMS. The vocabulary used by the project participants in such
comments is broad and varied: a given term (existing in the
corporate official referential) frequently has different
designations according to the department or even the phase
reached in the project. Therefore, our objective was to detect a
suitable semantic term, to classify it according to the validation
process and to link it with all the variations encountered. So, we
needed to extract the main terms of the domain (and the
relations between them if possible) and to structure them in our
ontology.

2.3 SAMOVAR’s approach

A synthesis of tools dedicated to the extraction of terms and of
relations from textual corpora is proposed in [3]. Several
linguistic tools exist to extract candidate terms: Lexter [5],
Nomino' , Ana [11] [12]. With regard to the acquisition of
semantic relations, several approaches enable to acquire them
(based on the exploitation of syntactical contexts ! [17], or the
use of the lexical-syntactical pattemns : [18}, [19]). Few tools are
offered such as Coatis [14] for causal relationships, Cameleon
[28] [27] for hyponymy and meronymy relations.

The approach of SAMOVAR consists of structuring the
knowledge contained in the PMS textual fields describing
problems, and of enabling the user 1o carry out searches with the
aim of finding similar problem-descriptions.

! http://wew ling.uqam.ca/nomino

53

As a starting point, we took directly the exploitable sources
(i.e. the different databases of the company), and then we built
up scveral ontologies offering different viewpoints on the
validation process: problems, projects, services, componcents
(ie. parts). After having primed our base manually, we
completed it progressively, with the clements from the PMS
textual data using Natural Language Processing (NLP) tools — in
particular, Nomino that was chosen as term extractor for
availability reasons. This stage is automatic, however the
support of an expert is necessary throughout the process. Then
we annotated the problem descriptions automatically with
instances of concepts of the ontologies. Finally we facilitated the
access to the base of problem-descriptions thanks to the
formalization in RDF(S) of the ontologies and of the
annotations, enabling the use of the CORESE tool [8] to carry
out ontology-guided searches through the such annotated basc
of problem-descriptions. The whole SAMOVAR approach is
summarized in figure 6.

3 SAMOVAR ontologies

The SAMOVAR base is a multicomponent ontology composed
of 4 ontologies, each dedicated to the description of a precise
field :

« Component Ontology: it is based on the official company
referential, corresponding to the functional segmentation of
a vehicle into sub-components;

« Problem Ontology: it contains the problem types and it is
built up semi-automatically from a manually-activated core
from textual fields taken from the problem management
system;

« Service Ontology: it corresponds to the services cross-
referenced with the company organization (managemcnt
and profession) and it is supplemented by PMS
information. This ontology gives an additional overall point
of view on the problems;

= Project Ontology: it reflects the structure of a project and it
is made up of knowledge acquired during a project vehicle,
according to the interviews carried out with different actors
on the project.

Each ontology is a n-leveled hierarchy of concepts linked
by the specialization link.

All the ontologies (or Samovar ontology components),
apart from the Problem ontology, were built automatically, by
an extraction of the PMS data base.)

Remark: Instead of building several interconnected
ontologies, we could have built one single ontology organized
through several sub-ontologies. We chose to distinguish the
different ontologies in order to enable their possible reuse
independently from one another. The various constituents of our
ontology correspond to the possible points of view concerning
the the validations process. Even though, in fact, they constitute
a single object, it is important to protect the possibility of
various points of approach for validations.

3.1 Construction of the ontologies
The ontologies were built through two phases according to the
data type and the means involved:

« afirst extraction of the information contained in data bases,
« 2 sccond extraction, with specific techniques and tools for
discovering the information « hidden » in texts.

The core of our ontology was primed manually, thanks to
elements stemming from existing bases (sce figure 1).

ibemml model | i

. —
! - -
/& ‘7«\’“}1‘:@' /} (O‘.Tﬂ“‘/
a o A I e
[N e T P | WA
L 7 N T Xl | -
7A:7 I r PJ{_I_:h (\! ‘
T]\ - compren l

r—L——\
[Component |

' | recet ey |

T Raremed s

o L : | Buses (WMLKA)
‘;L*“\“M:/ - /’H l /.‘FJ‘
L= ek

Figure 1: Construction of ontologies for SAMOVAR — first
data extraction

A first extraction of the initial data (1) supplied a textual
format (2) which was then translated in the form of an ontology.
by respecting the RDFS format (as expected by CORESE). In
parallel, another extraction was made from the Component
referential in order to complete the previous data with additional
information. In this way Component, Service and Project
Ontologies are obtained, our ontological base (3). Then this base
was used to annotate the data with the terms designating
concepts of the ontologies. Thus we obtained the initial basc
annotated with annotations related to the concepts of the
ontologies (4).

A sccond process deals with the textual data (the final goal
being to enrich the result of the first extraction with the
information stemming from the texts). To be able to deal with a
text we needed a minimun of tools adapted to this type of data —
the Natural Language Processing tools. We wanted to avoid
heavy treatments requiring building the entire chain of
treatment, for this reason we’ve reduced NLP treatments to the
candidates terms.

This process exploits the output obtained after application
of the linguistic tool Nomino on the textual corpus stemming
from the textual comments contained in the problem
management system (PMS). Nomino is a tool for extraction of
nominal groups from a representative corpus in a domain.
Nomino takes as input a textual corpus and produces as output
a set of «lexicons » - lists of nouns, nominal complex units
(NCU), additional nominal complex units (ANCU), verbs,
adjectives, adverbs. The (A)NCU corresponds to the
prepositional groups (PG) or the nominal groups (NG). The
lexicons of the NCU are accessible in the form of graphs which
illustrate the existing dependencies for a PG or a NG.

Then, we exploited the lexicons and the graphs produced
by Nomino, in order to :

54

= detect the significant terms (i.e. corresponding to important
validation points in the automobile design validation
process),

« enrich the Problem ontology by means of the Nomino
graphs, by exploiting the regularity of their structures.

3.1.1 Detection of significant terms

Firstly, we analysed the lexicons produced by Nomino in order
to discover the most frequent terms, likely to be the most
representative terms of the domain : wiring, assembling, pipe,
attachment. centring, component, installation, conformity,
branch, hole, clip, screw, contacl, maintains, tightening. paw,
position, geomelry, connecting.

These structured terms allowed us to sct up the Problem
ontology. The initial structuring of this ontology was based on
discussions with the experts. Figure 2 shows an cxtract of this
Problem ontology.

Problem
4 A IS >
Asserrbly Geometry Deterioration Noise
A 1 FS FS >
Screw Resistance Implermentation May interference
v
Centring

Figure 2: Extract of the Problem Ontology

The terms selected for the bootstrap were those which are
exploitable as semantic clues for a problem type: for example, a
problem of Centring can be discovered thanks to the
presence of such clues as «indexage», coaxiality,
«entraxe», etc.

Indeed the Nomino outputs can be sorted by frequence
numbers. The most frequent words can be considered as relevant
fr the processed domain and we exploit them as clues for the
Problem ontology bootstrap.

The validity of the terms (i.e. the candidate terms for the
bootstrap, and the clues exploited to find them) was confirmed
with support of the experts.

Once the bootstrap of ontology was constituted, it needed
to be enriched. For this purpose, we used the prepositional
groups stemming from Nomino.

The extraction process implemented so far was applied to
the enrichement of Problem Ontology. The other ontologies
were constructed automatically from different data base fields,
with help of interviews information. That is why most examples ;
presented below concern only Problem Ontology. In the second
phase we intend to reuse this method to enrich the Component
ontology, notably to extract supplementary terminologie

(synonyms, etc.)
3.1.2 Enrichment of the Problem ontology

Besides nouns, Nomino produces nominal and’
prepositional groups. We exploited the structures of the mos+’
frequent cases produced by Nomino.

The manual analysis of these NCU was performed by noun of Problem type, it is followed by a preposition “of”

studying each Nomino output carcfully so as to find some aanother noun of Problem type, which becames the son of the
regularities in the NCU obtained by Nomino. This manual first noun.

analysis, carricd out with the support of the expert, supplied the The second rule R2, authorizes a succession of terms
structures which we exploited to build the SAMOVAR heuristic consisted of noun, preposition and noun, where the first can be
rules. For instance, we could find cases such as: “difficulty” (“effort”, “hardness” or “lack™). followed by a

ition “of” n Problem type.
« (DIFFICULTY EFFORT PROBLEM HARDNESS LACK RISK) OF preposition “of” and another noun of Problem typ

PROBLEM These rules were implemented in PERL.
* DISCOMFORT FOR PROBLEM OF PART
* IMPOSSIBILITY OF PROBLEM OF PART 3.1.3 Kinematic of the process
= PROBLEM(INCORRECT IMPOSSIBLE INSUFFICIENT DIFFICULT) We enriched the Problem ontology gradually (see Figurc 4). For
« (DAMAGE DISPLACEMENT LACK BREAK BREAKAGE) OF PART that, the SAMOVAR system takes in entry the Nomino outputs,

the Component ontology, Problem ontology bootstrap and the
heuristic rule base. Then it analyses the nominal groups to scc
with which rule each of them can match.

We exploited these structural regularities of Nomino
outputs to build manually heuristics rules validated by the
expert, heuristic rules which would enable the feeding of the
ontology in a semi-automatic way. Example of a Nominal Group and the corresponding rule:

These rules thz.n reflected the existing structures in the NOISE OF RUBBING OF THE WHEEL DURING ITS HEIGHT
corpus were determined manually, but once implemented and ADJUSTMENT
activated, they helped us to enrich the Problem ontology
automatically by suggesting to attach a relevant new concept
corresponding to a new term. at the right position in the
ontology. Figure 4 shows examples of heuristic rules.

Noun[type=Problem,n=i| Prep|« of »] Nom[typc=Problem,n=i~1]

The rule matches the nominal group, recognises the first
term as a noise (that corresponds to an existing concept in the
Problem ontology) and proposes to build a concept for the
second noun and to insert it in the Problem ontology, as a son of
the Noise concept. In the following case, the rule matches the
name of the part and proposes to link the first term as a

R1 : Noun [type=Problem,n=i] Prep[« of »]
Noun(type=Problem,n=i+1] ;

R2 :(difficulty||effort||hardness||lack|[risk) Prep[« of »]
Noun[type=Problem]

Problem :
R3 : impossibility Prep[« of »] Noun[type=Problem]
Prep[« of »] Noun[type=Component] JUDDERING OF THE REAR SWEEP ARM ON PPP3
R4 : Noun[type=Problem] Prep[« of »||« on »||« under »] Noun({type=Problem] Prep[« of »|j« on »fl« under »] Noun
Noun(type=Component] [type=Component]

Figure 3: Examples of heuristi
£ ples of heuristic rules The output provides the candidate terms to insert in the

These rules represent the possible combinations between Problem ontology. The knowledge enginecr (possibly with the
the elements of the Component and Problem ontologies as support of the expert) validates each candidate and decides if
attested in the texts. A rule is presented as a series of categories, the position proposed for insertion in the existing Problem
each one possibly decorated with a set of features (for example hierarchy is correct. If yes, a concept corresponding to the term
type=Problem to indicate that the element is part of the Problem is inserted in the ontology. Such a concept — that was attested in
ontology, type=Component for an element of Component the textual corpus - can be compared to a «terminological
ontology, etc.). concept» if we use the terminology of Terminae [4].

For example, the rule R1 authorizes a succession of terms
consisted of noun, preposition and noun, where the first is a

Nommo Outpat

PMS Bases (va) O

== =

Candidats for
Probkene

Probiem Onlokgy
bootstrap
i Heuristics rukes p

Interviews

Problem Ontology

A

Figure 3: Process of enrichment of the ontology Problem

55

To formalize our ontologies, we chose the RDF Schema
(RDFS) language, which is recommended by W3C for description
of resources accessible by the Web. RDFS allows to simply
describe the ontology to which RDF annotations will be relative to.
Such RDF annotations arc quite relevant to describe resources
within a company. We can consider the descriptions of the
problems met in a vehicle project (i.e. problem descriptions
contained in PMS) as resources being a part of the memory of this
project.

Thercfore, we developed a parser which, at the end of the
process, generates a version of the ontology in RDF Schema
(which is also the formalism required by the CORESE software).
After RDF(S) generation, the annotations of the PMS problem-
descriptions are automatically updated by SAMOVAR in the form
of RDF statements.

4 Exploitation of the Ontologies
4.1 Use of the CORESE Tool

The ontologies set up were used to make annotations on the
problem-descriptions from the PMS, considered as document
elements. Their formalization in RDF Schema and the
formalization of the annotations in RDF enabled to use the
CORESE too! for information retrieval guided by such RDF(S)
ontologies and annotations [8].

The CORESE tool implements a RDF(S) processor based on
the conceptual graph (CG) formalism [30]. CORESE relies on
RDF(S) to express and exchange metadata about documents.
CORESE offers a query and inference mechanism based on the
conceptual graph (CG) formalism. It may be compared to a search
engine which enables inferences on the RDF statements by
translating them into CGs.

CORESE translates the classes and properties of RDFS
towards CG concept types and relation. CORESE also translates
the base of RDF annotations into a base of CGs. This enables the
user to ask queries to the RDF/CG base. A query is presented in
the form of an RDF statement which is translated by CORESE into
a query graph which is then projected on the CG base (using the
projection operator available in CG formalism). The graphs results
of this projection are then translated back into RDF for providing
the user with the answers to his query. The projection mechanism
takes into account the concept type hierarchy and the relation type
hierarchy (obtained by translation of the RDF schemas).

e
«sw? !%
1

\

Figure 4: Architecture of SAMOVAR

56

To exploit CORESE, we formalised the SAMOVAR
ontologies into RDFS. Then, we indexed the problem-descriptions
of the PMS base with instances of concepts from thes¢ ontologies,
while respecting the XML-based RDF syntax. After these two
stages, the user could carry out information retrieval from the
annotated problem-description base. The results of the user’s query
take into account not only the initial terms of the query but the
links modeled in the different ontologies.

4.2 Examples of queries

Here are two examples in which we show that the problems
extracted from texts and structured with hierarchical links allows
us to find duplications of problem descriptions:

Compaonent Ontology
eicio_a i

Vehicle_area |

a7 . R
Cockprt_area Basis_area

A s A

Fdrg Tnstatlation Centrrg ., A e
— - e e CAArcondtionring €A Dashboard [T
» » . - I

soewg Caing Seegored 47 -
v »
Choog Frfly vatrurert panet y :
< Gearsift kever
Stagirg

Qt: Fixiog & gearshitt lever

AL.1: Fixing & gearshft lever
A1.2: Asserbiing & gearshift lever

Figure 5: Pathway for the ontologies to retrieve information

In the first example, the user is looking for the problems of
fixing on the gearshift lever bellows. A single answer is obtained:

T_Fixation rdf:about=http://coco.tpz.tot.fr:8080/SAMOVARXMIL/MOXj!-

02057.xmt

libelle DIAMETRE DU SOUFFLET AU NIVEAU DU BOUTON PRESSION
NON EN CONCORDANCE AVEC LE DIAMETRE DU POMMEAU DU
SELECTEUR DE VITESSE (VOIR PSXj2-00193)

piece SOUFFLET_DE_LEVIER_DE_VITESSE

On the other hand, if the user extends her query to take into
account more general concepts, following the ontological links (in
our case - assembling), she will find a second case, which is
effectively a similar problem-description.

Following a successive route through the ontologies thanks to
the generalization and specialization links, the user can expand the
query to find the subsuming concepts (cf. the fathers of the
elements of the query) and the sibling concepts. In the example,
the user can explore the problems on gearshift lever, level by level:
from problems of fixing /connecting, she can go up to the father of
this last concept (i.e. Assembling), and then go down to the other
children concepts (e.g. Installation). The second case thus found is
a similar problem-description to the first answer :

T_Montage rdf:about=http://coco.tpz.tot.fr:8080/SAMOVARXML/PSX2-001 93.xml

libelle BOUTON PRESSION DU SOUFFLET DE LEVIER DE VITESSE
IMMONTABLE (GEREE PAR MOXj1-02057)

piece SOUFFLET_DE_LEVIER_DE_VITESSE

In the second example, the user would like to find the
problems of centring on crossbar of cockpit area. The system

returns three cases among which two turn out to be problem-
descriptions pointing mutually:

T_Centrage rdf:about= http://coco.tpz.tot. fr.8080/'SAMOVARXML/MOX;1-00403. xm

libelle FIXATIONS PDB : FIXATIONS LATERALE G ET COMPTEUR
DECENTRE SUR TRAVERSE.

piccc TRAVERSE_DE_POSTE_DE_CONDUITE
T_Centrage rdf:about=http://coco.tpz.tot.fr:8080/SAMOVARXMI/MOX;j1-02071.xml

libelle FIXATION : SUPPORT CARMINAT SUR TRAVERSE DECENTREE.
(VOIR PSXj2-00023)

picce TRAVERSE_DE_POSTE_DE_CONDUITE
T_Centrage rdf:about=http://coco.tpz.tot. fr:B080/SAMOVARXML/PS X2-00023.xml

libelle NON COAXIALITE DES TROUS DE FIXATION. SUPPORT
CALCULATEUR CARMINAT SUR TRAVERSE(GEREE PAR MOXjl1-02071)

piece TRAVERSE_DE_POSTE_DE_CONDUITE

The browsing through the ontology lets the user browse the
whole base of problem-descriptions, following the semantic axes
modeled through links in the ontologies. This browsing helps the
user to find similar problem-descriptions.

4.3 Evaluation of the ontologies for the search
of similar problem-descriptions

The tests were made on the Component and Problem ontologies

covering the corpus corresponding to an extract of the PMS base

of a vehicle-project:

= a first step was concerning a specific perimeter (Dashboard)
for 2 milestones,

= asecond step processed the entire base of the project.

We created these ontologies taking the different information
sources into account (official references cross-checked with items
from the problem base). In professional terms the domain
corresponds to the process of assembling. At present the
Dashboard perimeter contains 118 concepts and 3 relations among
which 22 components within 6 architectural areas, 12 sections and
3 levels reflecting the official Component referential. The Problem
ontology contains about 43 types of problems. The Service
ontology comprises 9 services extracted automatically from the
base. These ontologies have been used to annotate around 351
problem-descriptions.

The whole base contains 792 concepts and 4 relations among
which 467 components are structured in the same way, but updated
with a typology of 39 component managers. The Problem ontology
contains about 75 types of problems. The Service ontology
contains about 38 types of services retrieved from base. These
ontologies have been used to annotate around 4483 problem-
descriptions.

4.3.1 Discussion

The first exploratory investigations on scarch of similar problem-
descriptions have been proved to be interesting. All problem-
descriptions mutually pointing have been found (in the case where
problem-descriptions belong to the covered perimeter).
Furthermore, there were less answers, but only the relevant ones.

So, we can conclude that good results are obtained thanks to
the annotations of problem-descriptions with the instances of the
problem types discovered from texts and structured in an ontology.

We can also notice that the modeling of the ontology is
essential in this method. Test modifications in the Problem

57

ontology had more or less positive repercussions on the results. It
is important to make sure of the validity of the ontology with the
experts’ support.

More generally, the method strongly depends on the corpus of
the handled domain: if we reuse it for another domain, it will
probably be necessary to update the heuristic rules allowing
extraction of new concepts in order to cover the structures not
processed. Indeed, the heuristic rules depend on the regularities
found among the candidate terms extracted from the corpus.

Other « adjustments » were necessary during the process. For
example, annotations with problems are at present performed by
pattern matching : an annotation with a specific problem is
activated as soon as the presence of some clues (for example
Centring will be detected thanks to the presence of such clues
as indexage, coaxiality, entraxe). According to the
order of triggering of the rules, a problem-description can be
annotated with instances of different ontology concepts. It would
be interesting to order the rule triggering.

Besides, some other NLP tools (such as relation extractors
[14] [28]) could help to refine furthermore the results of the
Problem ontology construction.

As a further work, we intend to apply the same approach for
building a Solution ontology (that would be connected to the
Problem ontology). The same approach can be adopted: i.e. write
heuristic rules from the manual analysis of the regularities of the
candidate terms produced by Nomino and expressing possible
solutions to the problems.

It would enable to index the problem-descriptions not only
with instances of the concepts of the ontologies Problem, Project,
Service and Component, but also with adequate instances of
concepts of this Solution ontology.

5 Conclusions
5.1 Related Work

We have previously evoked several linguistic tools, dedicated to
the extraction of terms and of relations from textual corpora.
Among such tools, the choice of Nomino was due to both its
relevance for our purposes and its availability. SAMOVAR can be
compared to several approaches or tools integrating linguistic
tools for extraction of candidate terms from a textual corpus.

Terminae [4] offers a methodology and an environment for
building ontologies thanks to linguistic-based techniques of textual
corpus analysis. The method is based on a study of the occurrences
of terms in a corpus in order to extract the conceptual definitions
and the environment helps the user in her modeling task by
checking the characteristics of a new concept and by proposing
potential family knot. Lexiclass [1] offers an interesting approach
for building a regional ontology from technical documents. This
tool enables the classification of syntagms extracted from a
corpus, in order to help the knowledge enginecer to discover
important conceptual fields in the domain. Lexiclass coupled with
Lexter, carries out a syntagm classification from Lexter according
to the terminological context of the terms.

[3] describes a general method for building an ontology,
method based on analysis of textual corpus using linguistic tools.
The authors give the example of the Th(IC)2 project where they
combine several tools for processing the textual corpus, each tool
dedicated to a specific task (Lexter for terms extraction, Cameleon
for relations, Terminae - for concept hierarchy construction) Our

method is situated in such a methodological framework: we usc
various specific tools in every step of the process, but with a
corpus stemming from different origins (i.c. both interviews and
textual data retrieved from existing databases). This variety
characterizes the originality of our approach. [22], (23], [20] also
present a general architecture for building an ontology from a
textual corpus. [22], [23] exploit different linguistic tools so as to
build a concept taxonomy and exploit a learning algorithm for
mining non-taxonomic relations from texts.

The integration of CORESE in SAMOVAR and its ability to
cnable information retrieval thanks to annotations linked to the
concepts of the ontologies thus build in a semi-automatic way is
one originality of SAMOVAR. We must notice that SAMOVAR
thus implements an approach for finding similar problems among
past problem descriptions, which is a typical capability of casc-
based reasoning systems [26].

5.2 Further work

As noticed earlier, we will study heuristic rules for extraction of
the Solution ontology from the textual corpus. Moreover, making
explicit the links between the Problem and the Solution ontologies
would enable to refine the indexing of the problem descriptions.
Therefore, we will exploit a linguistic tool enabling the extraction
of domain-dependent semantic relations, adapted to the automobile
domain.

5.3 Towards a Method for Building a Project

Memory

By finding information about similar problems processed during a
given project, SAMOVAR began the process of capitalization in
the company. It will be possible henceforth to spread it to wider
scale - to exploit the incidents and the existing solutions between
the various vehicle projects, to study problems and solutions
within the same range or the same project. And in the longer term,
exploit this capitalization to discover recurring problems in a
company by re-showing weak spots "problems generators * to the
engineering centres.

So SAMOVAR could enhance information sharing among the
teams involved in the same or different vehicle projects.

We could exploit the SAMOVAR principles for other projects,
provided that the right adaptations are carried out, especially at the
level of the ontologies. We can thus generalize our approach to
other domains than automobile design, for example to build and
exploit a memory of the project of design or construction of any
complex system, particularly regarding the memory of the
problems encountered in such projects (e.g. incidents met during
the design of a plane, a satellite, even a power plant, etc.). We
propose a method relying on the following steps:

1. If there exists a database or a referential describing the
components of this complex system, exploit it to build semi-
automatically a Component ontology. Otherwise, use
linguistic tools and method such as the ones described in [3]
in order to build this Component ontology.

2. If there exists a description of a project characteristics in the
considered company, exploit it to build a Project ontology.
Otherwise, rely on interviews of the experts.

3. Establish a corpus of texts describing the problems met

during one or several existing projects. It can involve texts

58

resulting from textual documents or from textual comments
in databases.

Exploit some existing linguistic tools allowing the extraction
of candidate terms (e.g. Lexter [5, 6] or Nomino).

5. Analyse manually (with the support of an expert) the
regularities among the candidate terms which are liable to
describe types of problems (resp. solutions). Then thanks to
the regularities observed, write heuristic rules exploiting
both these regularities and the Contponent and Project
ontologies in order to suggest terms to include as concepts
into the Problem (resp. Solution) ontology and even more to
proposc their position in this ontology. Validate such
heuristic rules by the expert.

Use these heuristic rules and let an expert validate the
propositions of the system obtained thanks to these heuristic
rules.

7. Use the concepts of the Problem, Solution, Component and
Project ontologies, so as to index automatically the
elementary problem-descriptions (in the textual corpus) with
instances of these concepts.

Exploit an RDFS generator for the ontologies and an RDF
generator for the annotations, in order to be able to use the
search engine CORESE to query the base annotated by the
instances of problems.

6.

The proposed methodology is generic. However the rules are
constructed relying on the corpus: they reflect the existing
structures of the corpus and are strongly connected to it. So, to
apply the methodology for another domain it will be necessary to
rebuild the heuristic rule base, so as to make it reflect the
regularitics observed in the corpus. This is typical of a
methodology based on corpus analysis.

5.3.1 Acknowledgments ‘
We wish to thank our colleagues for their precious advices on our
work and for their contribution in reading over this article.

6 References

[1] Assadi H, Construction of a regional ontology form text and
its use with a documentary system. In N. Guarino, ed. Proc. of
the 1% Int. Conf. On Formal Ontology and Information
Systems (FOIS’98), I0S Press, 1998.

[2] Aussenac-Gilles N, Bi¢bow B, Szulman S, Corpus analysis |
for conceptual modelling, EKAW’2000 Workshop Ontologies :
and Texts, Juan-les-Pins, October 2-6, 2000 pages 13-20 .

[3] Aussenac-Gilles N, Bi¢bow B, Szulman S, Revisiting '
Ontology Design : a Method Based on Corpus Analysis, InR.
Dieng and O. Corby eds, Knowledge Engineering and :
Knowledge Management: Methods, Models and Tools,

EKAW 2000, Juan-les-Pins, French Riviera, October 2-6,
2000, p. 172-188.

Biébow B, Szulman S, Terminac : a linguistics-based tool for .
building of a domain ontology, In D. Fensel and R. Studer,
eds, Knowledge Acquisition, Modeling and Management,
Proc. of the 11th European Workshop (EKAW'99), LNAI
1621,. Springer-Verlag, 1999.

[4]

(S] Bourigault D, Lexter, un Logiciel d’Extraction de
TERminologie, Application a I’acquisition des connaissances
a partir de textes, PhD thesis, EH.E.S.S, Paris, France, 1994

{6] Bourigault D, Lexter, a natural language processing tool for
terminology extraction. Proc. of the 7" EURALEX Int.
Congress, Goteborg, 1996.

[7]1 Brickley D. and Guha R.V. eds. Resource Description
Framework (RDF) Schema Specification 1.0, W3C Candidate
Recommendation 27 March 2000, http://www.w3.org/TR/rdf-
schema

{8] Corby O, Dieng R , Hébert C, A Conceptual Graph Model for
W3C Resource Description Framework, ICCS’2000,
Springer-Verlag, Darmstadt, August 2000.

[9] Dieng R., Corby O., Giboin A. and Ribiére M. Methods and
Tools for Corporate Knowledge Management. In S. Decker
and F. Maurer eds, International Journal of Human-
Computer Studies, Special issuc on Knowledge Management,
51:567-598, September 1999.

[10] Dieng R., Corby O., Giboin A., Golebiowska J., Matta N. and
Ribiére M. Méthodes et Outils pour la Gestion des
Connaissances, Dunod, 2000.

[11] Enguehard C, ANA, Apprentissage Naturel Automatique d’un
réseau sémantique, thése de doctorat, UTC, 1992

[12] Enguehard C, and Pantera L. Automatic natural acquisition of
terminology. Journal of Quantitative Linguistics, 2/1:27-32,
1995.

[13] D. Faure and C. Nédellec., In D. Fensel and R. Studer,
editors, Proc. of the 11th European Workshop (EKAW'99),
LNAI 1621,. Springer-Verlag, 1999.

[14] Garcia D, Analyse automatique des textes pour I’organisation
causale des actions. Réalisation du systéme informatique
COATIS, PhD thesis, Université de PARIS IV, Paris 1998

{15] Golebiowska J, SAMOVAR - Knowledge Capitalization in
the Automobile Industry aided by Ontologies, PKAW 2000,
Sydney, December 11-13, 2000.

{16] Golebiowska J, SAMOVAR - Setting up and Exploitation of
Ontologies for capitalising on Vehicle Project Knowledge. In
Aussenac-Gilles N., Biébow B., Szulman S., eds, Proc. of
EKAW?’2000 Workshop Ontologies and Texts, Juan-les-Pins,
October 2000 pages 79-90

[17] Grefenstette G, Explorations in automatic thesaurus
discovery, Kluwer Academic Publishers, Boston, 1994

{18] Hearst M, Automatic Acquisition of Hyponyms from Large
Text Corpora, ICCL, COLING 92, Nantes July 25-28, 1992

59

[19] Jouis C, Contribution a la conceptualisation et a la
Modélisation des connaissances a partir d’un analyse
linguistique de textes. Réalisation d’un prototype : le systéme
SEEK. Thése de doctorat, 1993, EHESS.

{20] Kietz J.-U., Maedche A. and Volz R. A Method for Semi-
Automatic Ontology Acquisition from a Corporate Intranet.
In Aussenac-Gilles N., Biébow B., Szulman S., EKAW’2000
Workshop Ontologies and Texts, Juan-les-Pins, October 2-6,
2000 pages 37-50.

[21] O. Lassila and R. R. Swick eds. Resource Description
Framework (RDF) Model and Syntax Specification, W3C
Recommendation 22 February 1999,
http ://www.w3.0rg/TR/REC-rdf-syntax

[22] Maedche A. and Staab S., Mining Ontologies from Texts. In
Dieng R. and Corby O. eds, Knowledge Engineering and
Knowledge Management: Methods, Models and Tools,
EKAW 2000, Juan-les-Pins, French Riviera, October 2-6,
2000, p. 189-202.

[23] Maedche A. and Staab S., Discovering conceptual relations
from text. Proc. of ECAI’2000, I0S Press, August 2000.

[24] Morin E. Acquisition de patrons lexico-syntaxiques
caractéristiques d’une relation sémantique, TAL (Traitement
Automatique des Langues), 1999

[25] Morin E Automatic acquisition of semantic relations between
terms from technical corpora. Proc. of the 5™ Int. Congress on
Terminology and Knowledge Engineering (TKE’99), 1999.

[26] Moussavi M. - A Case-Based Approach to Knowledge
Management, in Aha D.W. (Ed). Proc. of the AAAT'99
Workshop on "Exploring Synergies of Knowledge
Management and Case-Based Reasoning". Juillet 1999;
Orlando, FL. AAAI Press Technical Report WS-99-10.

[27] Séguéla P. and Aussenac-Gilles N.. Extraction de relations
sémantiques entre termes et enrichissement de modéles du
domaine. 1C'99, pages 79-88, Paris, 1999.

[28] Séguela P, Adaptation semi-automatique d'une base de
marqueurs de relations sémantiques sur des corpus
spécialisés. Terminologies Nouvelles, 19:52-60, 1999.

[29] Séguéla P. Construction de modéles de connaissances par
analyse linguistique de relations lexicales dans les documents
techniques. PhD Thesis, Université de Toulouse, March 2001.

{30] Sowa J. F. Conceptual Graphs : Information Processing in
Mind and Machine. Reading, Addison Wesley, 1984.

Ontology-Based Operators
for e-Business Model De- and Reconstruction

Jaap Gordijn
Vrije Universiteit - Vuture.net (Centre for e-business research)
Cisco Systems - Internet Business Solutions Group
De Boelelaan 1081a
1081 HV Amsterdam, The Netherlands
gordijn@cs.vu.nl

Abstract

We define e-business models as conceptual models that show
how a network of actors (a value constellation) creates, ex-
changes and consumes objects of value by performing value
adding activities. In this paper we present a semi-formal
ontology-based representation of e-business models that is
useful in carrying out a preliminary business and require-
ments analysis. In particular, we show that a small set of
generic ‘model deconstruction’ operators is able to generate
design variations on a given e-business model, so that upfront
analysis of the characteristics and consequences of a range
of alternative e-business models becomes possible. We illus-
trate our ontology-based e3-value approach by a commercial
project on Internet news services.

Keywords
e-business model, reconstruction, ontology, e>-value

INTRODUCTION

Successful e-business information systems are often charac-
terized by innovative ways of doing business. This is usually
called the e-business model. We define an e-business model
as a conceptual model that shows how a network of actors
creates, exchanges and consumes objects of value by per-
forming value adding activities.

Finding such an e-business model isa creative task. We can,
however, support this task by (1) an insightful way of rep-
resenting e-business models, and (2) a way of finding and
analyzing ‘design’ variations on such models.

To find variations on an initial e-business model, and conse-
quently to assist in the elicitation of such a model, e*-value
defines e-business model deconstruction operators (inspired
by [7, 3, 8]). These operators are part of an e-business model
deconstruction and reconstruction process, during which we
de-assign activities from their performing actors, try to find

Permission to make digital or hard copies of all or part of this work for
persona! or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

K-CAP01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010. . . $5.00

Hans Akkermans
Vrije Universiteit - Vuture.net (Centre for c-business research)
AKMC Knowledge Management
De Boelelaan 1081a
1081 HV Amsterdam, The Netherlands
hansakkermans @ compuserve.com

alternative, andfor more activities by de-constructing exist-
ing ones, and re-assign newly found activities to executing
actors. Because we assume that activities are profitable for
at least one actor, re-assignment is possible. Essentially, to
clarify discussions between stakeholders, we split the recon-
struction process into two questions: (1) which value adding
activities exist, and (2) which actors are to perform these ac-
tivities?

In previous work we have introduced an ontology-based
general representation of e-business models ([4], see recent
publications at http://www.cs.vu.nl/~gordijn/research.htm).
Based on this e3-value ontology, we discuss in the present pa-
per three generic operators for e-business model deconstruc-
tion: (1) the value activity deconstruction operator, which
breaks an activity into smaller ones, but leaves the prod-
ucts/services offered or requested by the original activity to
its environment unchanged, (2) the value port deconstruction
operator, which breaks a service/product offered or requested
by a value activity into smaller ones, and (3) the value inter-
face deconstruction operator, which breaks combinations of
value objects offered and counter-compensations requested
into smaller pieces.

We illustrate e-business model de- and reconstruction by one
of the e-business projects where we successfully applied our
approach. The project at hand is about the provisioning of
a value-added news service. With respect to such a service,
a regular newspaper called the Amsterdam Times (a fictitious
name, but based on an actual commercial e-business project)
wants to offer to all its subscribers a service to read articles
online using the Internet, but such that it will make hardly
any additional costs. Therefore, the idea is to finance the
execution of this business idea by the telephone connection
revenues, which originate from the reader who has to set up
a telephone connection for Internet connectivity.

This paper first introduces in brief the core concepts of our
&3-value methodology, which we use to formalize e-business
models. Then we discuss both the general theory and an ap-
plication of e-business model de- and reconstruction, and fi-
nally we present our conclusions.

E3-VALUE CORE CONCEPTS

To represent an e-business model, we use a lightweight ontol-
ogy consisting of interrelated core concepts, and we utilize a
well known lightweight scenario technique, called Use Case
Maps [1]. This allows us to communicate e-business mod-
¢ls easily to intended users such as business consultants, and
CxO's. Moreover, the agility of e-business projects (the need
to define, explore, and execute a business idea fast [5]) asks
for an lightweight approach. Below, we discuss the onto-
logical concepts and the UCM scenario concepts briefly (see
Fig. 1 for an example). More information can be found in

{11, (4]

The e3-value ontology

Actor. An actor is perceived by its environment as an inde-
pendent economic (and often also legal) entity. By carrying
out value activities (see below) an actor makes profit or in-
creases its utility. In a sound and viable e-business model
every actor should be capable of making a profit.

Value Object. Actors exchange value objects. A value ob-
ject is a service, product or even a consumer experience. The
important point here is that a value object is of economic
value to one or more actors.

Value Port. An actor uses a value port to show to its envi-
ronment that it wants to provide or request value objects. The
concept of port (a notion adopted from engineering systems
theory) is important, because it enables to abstract away from
the internal business processes, and to focus only on how ex-
ternal actors and other components of the e-business value
model can be ‘plugged in".

Value Interface. Actors have one or more value interfaces.
A value interface groups individual value ports. It shows the
value object(s) an actor is willing to exchange in return for
other value object(s) via its ports. Such willingness is ex-
pressed by a decision function on the value interfaces, which
shows on what conditions an actor wants to exchange a value
object for another value object. The exchange of value ob-
jects is atomic at the level of the value interface. Either all
exchanges occur as specified by the value interface or none
at all.

Value Exchange. A value exchange is used to connect two
value ports with each other. It represents one or more poren-
tial trades of value objects between actors.

Value Offering. A value offering is a set of value exchanges.
It shows which value objects are exchanged via value ex-
changes in return for other value objects. A value offering
should obey the semantics of the connected value interfaces:
that is values are exchanged via a value interface on all its
ports, or none at all.

Market segment. In the marketing literature [6], a market
segment is defined as a concept that breaks a market (consist-
ing of actors) into segments that share common propetties.

61

Accordingly, our concept market segment shows a set of ac-
tors that share for value interfaces an equal decision function.
We realize that in practice all actors behave differently and
consequently cannot have equal decision functions. How-
ever, to be able to design understandable e-business models,
we assume (as in marketing theory is done) that some groups
of actors constitute equivalence classes with respect to their
decision functions.

Value Activity. A value activity is performed by an actor and
increases profit or utility for such an actor. The value activity
is included in the ontology to discuss the assignment of value
activities to actors. Value activities can be de-constructed
into smaller value activities, but the requirement is that these
still should be profitable or increase utility for the performing
actor.

Use Case Maps

Scenario path. A scenario path consists of one or more seg-
ments, related by connection elements and start- and stop
stimuli. It represents via which value interfaces objects of
value must be exchanged, as a result of a start stimulus, or
as result of exchanges via other value interfaces. Thus a sce-
nario path shows causal relations between value interfaces.

Stimulus. A scenario path starts with a start stimulus.- A
start stimulus represents an event, possibly caused by an ac-
tor. If an actor causes an event, the start stimulus is drawn
within the box representing the actor. The last segment(s)
of a scenario path is connected to a stop stimulus. A stop
stimulus indicates that the scenario path ends.

Segment. A scenario path has one or more segments. Seg-
ments are used to relate value interfaces with each other, pos-
sibly via connection elements, to show that an exchange on
one value interface causes an exchange on another value in-
terface. Using connection elements, sophisticated causal re-
lations can be represented.

Connection. Connections are used to relate individual seg-
ments. An AND fork splits a scenario path into two or more
sub path, while the AND join collapses sub path into one
path. An OR fork models a continuation of the scenario
path into one direction, to be chosen from a number of al-
ternatives. The OR join merges two or path into on path.
Finally, the direct connection interconnects two individual
segments.

E-BUSINESS MODEL RECONSTRUCTION IN E*-VALUE
The e-business model reconstruction process consists of the
following steps, which we discuss in the following sections
in detail:

1. Identification of an initial e-business model.

2. Deconstruction of the initial e-business model.

3. Reconstruction of alternative e-business models.

The initial e-business mode!

The process of e-business model reconstruction starts with a
representation of an initial e-business model. We assume the
existence of an innovative e-business idea. Consequently, the
goal of this step is to articulate that idea more precisely, so
that stakeholders all have a common understanding about the
idea.

The idea for the e-business model in this paper is to use a
termination fee to finance a news article online service for
subscribers on a regular newspaper. Termination means that
if someone tries to set up a telephone connection by dialing
a telephone number, another actor must pick up the phone,
that is, terminate the connection. If someone is willing to
cause termination of a large quantity of telephone calls, most
telecommunication operators are willing to pay such an actor
for that (the termination fee). Because the newspaper has a
large subscriber base, it is capable to generate a large number
of terminations for an article online service. This idea is
formalized by an initial e-business model (sec Fig. 1).

e-Business model deconstruction

For deconstruction, we de-assign actors from value activi-
ties, but leave value exchanges between value activities in-
tact. Then, we repeatedly apply one of the three deconstruc-
tion operators. As we will show, it is possible to apply op-
erators a number of times on an e-business model. The next
sections discuss the three operators, along with their business
rationale, and an example.

Value Activity deconstruction

Business rationale. Can we split a value activity, which
initially is viewed as being performed as a whole by one ac-
tor, into smaller activities, together behaving as the original
one, whereby each smaller activity potentially can be per-
formed by individual actors?

Focus. The value activity de-constructor focusses on the
internal structure of a value activity while keeping its value
interfaces to the environment the same. It breaks down a
value activity into smaller ones, for instance to allow spe-
cialized actors to perform one of these value activities.

Operator VAD :a — ay,...,an.

1. De-construct a value activity a with value interfaces iy, ...i,
into value activities ay, ..., ay.

2. Assign each value interfaces iy, ...i, to one or more of the
de-constructed value activities.

. Add, if necessary, extra value interfaces to the de-
constructed value activities, and relate these by value ex-
changes. Extra value interfaces and exchanges can be nec-
essary to ensure that the de-constructed activities ay, ...,a,
are from an environment perspective equivalent to a.

62

4. Reconsider scenario segments, which hit the value inter-
faces of value activity a.

It is possible that for a value activity a multiple alternative
deconstructions exist.

Example: De-construct the Handle traffic value activity
into two other value activities Fig. 2 de-constructs the
Handle traffic value activity into two smaller value activities,
which each can be potentially performed by a single (differ-
ent) actor. The two value interfaces of Handle traffic can be
found at the two smaller value activities, thereby providing
the same interfaces to their environment as the original value
activity. The value activity Handle local traffic offers end-
to-end connectivity to a reader and gets paid for this, while
it only exploits the local loop: the last miles from a local
telephone switch to the reader. Consequently, this activity
should *buy” interconnection from the Handle long distance
traffic activity, and pays for this in return. The latter activ-
ity exploits a telecommunication network between local tele-
phone switches, and a web server for hosting news articles.
Buying interconnection is shown by adding value interfaces
and value exchanges between Handle local traffic and Han-
dle long distance traffic. The scenario path is changed but
hits the same value interfaces as was the case for the Handle
traffic value activity.

telephone
connection
fee

telephone
connection

termination termination

l VAD: Handle traffic -> Handle local traffic, Handle long
distance traffic

telephone telephone
connection connection
fec
inter
connection
® #\ Handle long
HandI} Jocal distance
loop trattic raffic
inter
connection
fee
termination termination

fee

Figure 2: Deconstruction of the value activity handle traf- ¢
fic into two value activities handle local loop traffic and
handle long distance traffic.

[)
3 | Start
i Legend i Stimulus
i L J
S e -
Market | - It -~ ‘,
| segment -Read dr‘lLlLA |
| D .
! T
Value R L EEERE R
. - -~ teleph
Offering . ..__telephone . - -+ Co‘ﬂ;gﬂ?gﬁ
connection
fee
. iOpe-
i H -
i AND fork jrator Hagdle Value
Yvalke) 4~ amaffic 77707 F e
Exchange” - termination traffic . Activity
B BOS
Value article I termination
| Object [online termination fee
i Value
; - -] _{-- Port
1 S S Value
| " Interface
: __ Stop
|
I Actor ... Stimulus
|
"Amsterdam Times
[

Figure 1: The initial e-business model showing that the Amsterdam Times funds its service by a termination fee offered
by a telecommunication operator. The reader offers a termination opportunity and a telephone connection fee and
requests in return an article online and a telephone connection. The ports requesting/offering these value objects are
grouped into one value interface from a reader’s perspective because these objects are only of value in combination
to the reader. By following the scenario path, it can be seen that the Amsterdam Times resells the termination to a
telecommunication operator. This operator also receives a fee for a telephone connection, as result from reading an
article. For each actor, initially one value activity is assumed that describes its value adding process at best.

Example: De-construct the Provide Online news articles
value activity into two other value activities The decon-
struction shown in Fig. 3 essentially separates the content
creation (news) from the technical infrastructure needed to
deliver content to the reader. It can be seen as out sourcing
Internet service provisioning from a news provisioning per-
spective. Again we need to add value interfaces and value
exchanges to represent that the Provide news articles value
activity must acquire facilities for Internet service provision-
ing. Note that the scenario path for the de-constructed value
activities hits the same value interfaces as the original value
activity. However, internally, the scenario path splits to show
that as a result of a termination/article online exchange, also
a termination/termination fee and an Internet service provi-
sioning/fec is necessary.

Value Port deconstruction

Business rationale. Can we split products, services or
combinations into smaller products/services, which each can
be delivered and consumed by individual actors?

Focus. Focus is to untangle offered or requested value ob-
jects, which still are of value for actors. These objects can

potentially be offered by multiple value activities rather than
one, and thus by multiple actors. Because we change the
value port, we change the value interface of a value activity
to the environment.

Operator VPD :p— py,....pn.

1. For each value port p in a value interface:

2. Consider deconstruction of value port p with value object
o into value ports py, ..., pp, with value objects 0y, ...0,.

3. If deconstruction is possible, de-construct also the peer-
ports of p. Peer ports are the ports p;, which are connected
by value exchanges to value port p. Note that a value port
p can be connected to multiple other value ports p;, repre-
senting that a value activity containing port p can exchange
objects with multiple other value activities.

(a) Dis-connect value exchanges connecting value port p
and value ports p;.

(b) De-construct value ports p; into ports py,, ..., pp, in the
same way as p was de-constructed.

article

temunation onlinc

termination

l VAD: Provide online news articles -> Provide news
articles, Intemet service provisioning

termination ao::fr‘; lnlcrf\ct
service
provisioning
Profide (* Internet
neps service
artifles (g rovisioning- ="
fec
termination termination
. fee

Figure 3: Deconstruction of value activity provide online
news articles into two value activities provide news articles
and internet service provisioning.

(c) Re-connect ports py,..., pp using value exchanges with
ports Plis--s Pn;-

Example: De-construct the value object lnrernet service
provisioning into two other value objects Fig. 4 de-
constructs the value port Internet service provisioning into
two different ports/value objects: (1) Internet hosting pro-
visioning, e.g. hosting a web site, and (2) Internet access
provisioning, e.g. exploiting a modem pool to offer access to
the Internet.

Value Interface deconstruction

Internet
service
provisioning
Provide ¥ Internet
- -
news service
articles |, Jprovisioning

fee

1 VPD: Intemet service provisioning-> access, hosting

access

Provide Internet
news (@4 - o service
articles hosting provisioning

fee

Figure 4: Deconstruction of the value object Internet ser-
vice provisioning into two value ports access and hosting.

Business rationale. A value interface models the notion of
one good turn deserves another, consisting of value objects
offered and value objects requested in return. It is sometimes
possible to split up a value interface in more interfaces, for -
(1) de-bundling, and (2) smaller value activities. Bundling
refers to the business notion that an actor believes that if two
or more products are offered as a whole, more money can
be eamned than offering these products seperately (see e.g.
[2]). De-bundling refers to the opposite mechanism. We can
also apply value interface deconstruction to split up the value
activity associated with the interface at hand. Essentially, we
split up an interface into smaller ones, whereby each value
interface can be associated with a new value activity.

Focus. The focus is to find smaller value interfaces, that is
value interfaces with a smaller number of value ports.

Operator VID :i —iy....,i,.

1. For each value interface i with value ports py, ..., pnof a

value activity a:

2. Find (alternative) value interfaces i;....,i, grouping value

Ports pi...., Pa-

3. Reconsider scenario segments.

Example: An access and hosting value interface Fig. 5
introduces two separate value interfaces for the Internet ser-
vice provisioning activity: one for offering Internet access
and one for offering hosting services. Creation of these in-
terfaces takes two steps. First we have to de-construct the
fee port into two ports: the access fee and hosting fee. This
is necessary due to the definition of value interface. A value
interface models objects of value offered to the environment
and the objects requested in return. We therefore need ports
who receive the objects requested in return for offering ac-
cess and hosting value objects. Second, we create two value
interfaces, representing hosting and access services.

Note we do not split the value interface of the Provide news
articles value activity. This value interface models that, for
offering articles online, we need both hosting and access for
each scenario occurrence.

Example: Access and hosting via value activity decon-
struction It also possible to split up the Internet service
provisioning value activity into Internet access provisioning
and Internet hosting provisioning (see Fig. 6), but there is
an important difference compared to the previous example.
Fig. 6 still shows a value activity called Internet service pro-
visioning’ (although smaller than the original one). This ac-
tivity is profitable by offering a bundle of access and hosting
services, but must buy-in access and hosting from another
service. In contrast, in Fig. 5, the value activity Provide news
articles is responsible for acquiring both access and hosting.

access
Provide Intemet
news L o scrvice
articles hosting provisioning
aem -
¢)
fee

access .
vide
Pro access feo lmcr?wl
news service
- = .
articles | g e provisioning
hosting
\J .
hosting fee
1 VID: {access,access fee, hosting, hosting fee} |
ntemet scrvice prnining
->

laccessaaccess feel o o ,-.»Nm.,.g'hos"ng‘hos“ng feel ema wnice prosvswning

e
access
P,
Provide access fee lnlcr.nc(
DEWS service
articles e provisioning
hosting e
hosting fec

Figure 5: Deconstruction of the value interface with four
ports into two value interfaces with each two ports.

Internet
service
provisioning
Internet
- -
service
> gprovisioning
fee

VAD: Internet service provisioning
->

Internct access provisioning, Internet hosting provisioning

access

Internet ®| Internet
. -
service access
provisioning PN rovisioning
- = lmch\cl access fee
service
provisioning’ | g4~ 1 .
for hosting nteme
access -
rovisioning
hosting fee

Figure 6: Deconstruction of the value activity Internet ser-
vice provisioning into one for access provisioning and one
for hosting provisioning. In contrast to Fig. 5, the In-
ternet service provisioning ensures that their exist still one
bundle of Internet service provisioning, while in Fig. §
an actor who wants access and hosting must compose the
bundle him/herself.

65

> access

Provide access fee lnlcl".lll:l
ngws service
anticles [gg” provisioning

hosting R

7 .
hosting fee
l VAD: Internet service provisioning
->

Internet access provisioning, Internet hosting provisioning

access Intemet |
access
. P Jprovisioning
v
Provide access fee
T
articles .
™ _bosting, l'ﬂk‘:"t;l -
hosting
e e provisioning
hosting fee

Figure 7: Deconstruction of the value activity Internet ser-
vice provisioning into one for access provisioning and one
for hosting provisioning, using the value interfaces de-
constructed in Fig. 5.

Combining deconstruction operators. The three mentioned
deconstruction operators can be sequentially applied. The
following three cases appear regularly:

e A number of sequential value activity deconstruction op-
erations. In this case, we try to break up a value activity
into (alternative) smaller ones, but do not change anything
visible to the outside world.

e Value port deconstructions, followed by value interface de-
constructions, and finally value activity deconstructions. In
this case, we try to find smaller value objects which can
be offered by separate value activities, which can be per-
formed by individual actors. Fig. 7 is an example of this.
First we de-construct the value interface of Internet service
provisioning into two smaller ones for access and hosting
(see Fig. 5), and then we de-construct the value activity
into two smaller ones.
De-bundling, a number of value port deconstructions, fol-
lowed by value interface deconstructions. Fig. 5 can be
seen as a case of de-bundling: we allow that the services
hosting and access are sold separately rather than as a
whole. Note that a value interface means that if a value ob-
ject is exchanged via one of its ports, value objects on all
its other ports must be exchanged too, so after de-bundling,
access and hosting can be obtained as separate services
rather than as a whole.

e-Business Model reconstruction
Deconstruction of an e-business model means de-assigning

value activities and actors, and generating new value activi--

ties. During e-business model reconstruction, we study the
re-assignment of value activities to performing actors.

First, we generate value activities configurations. These are
connected value activitics, by means of value exchanges,
which represent an e-business model, without their perform-
ing actors. Because in this case study, we did not consider
alternative deconstructions, so we have only one such a con-
figuration (essentially Fig. 8 with omitted actors.).

Second, we re-identify actors, who are potentially interested
in executing one or more value activities. Actors are poten-
tially interested, if they expect to make a profit, or to increase
utility by performing the value activity. Re-identification
means that we consider new actors, which were not identi-
fied during development of the initial e-business model. It
is reasonable to expect that by finding new, more specialized
value activities, other actors than the ones already found are
interested to perform these.

Third, we make an actor-value activity assignment matrix
(see Table 1). This matrix shows actors, which are poten-
tially interested in performing value activities of a specific
configuration.

Finally, using the actor-value activity assignment matrix, al-
ternative e-business models can be extracted and represented
using our graphical technique. Fig. 8 shows one possible e-
business model. Other models are possible by choosing other
assignments of value activities to actors.

CONCLUSION

Finding innovative e-business models is a creative task.
However, finding varations on such an e-business model can
be facilitated by e-business model de- and reconstruction.
The starting for this is to separate (1) which value adding
activities exist from (2) which actors are performing these.

To find e-business model variations, we have defined three
deconstruction operators, which all have a clear business ra-
tionale. The value activity deconstruction (VAD) operator
helps in finding smaller value activities, which all can be
profitably performed by at least one actor. We keep the value
interface invariant using this operator, and only focus on the
partitioning of a value activity overa number of actors rather
than one actor.

A value interface models that an actor, or value activity, of-
fers something of value to its environment, and wants some-
thing in return for that. The value interface deconstruction
(VID) operator splits such interfaces into smaller ones. This
may be done for two reasons. First, splitting can be done for
unbundling reasons: the offering of value objects separately
rather than as a bundle. Second, de-constructed value inter-
faces can be used to de-construct a value activity associated
with these interfaces into smaller activities.

Finally, the value port deconstruction (V PD) operator assists
in identifying new value ports/objects, based on an initial
one, which each can de delivered or requested by individ-
ual actors. Mostly, the VPD operator is followed by the VID

operator to address unbundling, or by the VAD operator, to
distribute the offering of the original value object over a num-
ber of actors.

Also, we have shown how these operators work out in a prac-
tical, non-trivial e-business modeling project. The represen-
tation proposed in this paper of c-business models appeared
valuable in the project to illustrate complicated concepts such
as call termination and interconnection to stakeholders, while
the presented de--and reconstruction process proved impor-
tant to find new value activities, and to renegotiate assign-
ment of these activities with the performing actors.

Acknowledgement. This work has been partly sponsored
by the Stichting voor Technische Wetenschappen (STW),
project nr VW1.4949 on a Framework for the Electronic Sale
of Information Products. Also, we thank De PersCombinatie
for their permission to publish some of the e-business project
results.

REFERENCES
1. R. Buhr. Use case maps as architectural entities for com-
plex systems. IEEE Transactions on Software Engineer-
ing, 24(12):1131-1155, 1998.

2. S.-Y. Choi, D. O. Stahl, and A. B. Whinston. The eco-
nomics of doing business in the electronic marketplace.
Macmillan Technical Publishing, Indianapolis, IN, 1997.

3. P. Evans and T. S. Wurster. Blown to Bits - How the New
Economics of Information Transforms Strategy. Harvard
Business School Press, Boston, MA, 2000.

4. J. Gordijn, J. Akkermans, and J. van Vliet. What's in an
electronic business model. In R. Dieng and O. Corb, ed- -
itors, Knowledge Engineering and Knowledge Manage-
ment - Methods, Models, and Tools, 12th International
Conference (EKAW 2000), volume LNAI 1937, pages
257-273, Berlin, D, 2000. Springer Verlag. Also avail-
able from http://www.cs.vu.nl/™ gordijn.

5. A. Hartman, J. Sifonis, and J. Kador. Net Ready - Strate-
gies for Success in the E-conomy. McGraw-Hill, New
York, NY, 2000.

6. P. Kotler. Marketing management: analysis, planning,
implementation and control. Prentice Hall, Englewood
Cliffs, NJ, 1988.

7. D. Tapscott, D. Ticoll, and A. Lowy. Digital Capital -
Harnessing the Power of Business Webs. Nicholas Bre-
aly Publishing, London, UK, 2000.

8. P. Timmers. Electronic Commerce: Strategies and Mod-
els for Business-to-Business Trading.] ohn Wiley & Sons
Ltd., Chichester, UK, 1999.

Table 1: Actor - Value activity matrix showing which actors can potentially perform which value activity, and while
creating profit, or increasing utility by doing an activity.

ITaIuc activity ‘ Actor j

Reader | Last Mile | Data Runner | Hoster | Amsterdam Times
Read article X
Handle local loop traffic X X
Handle long distance traffic X X
Provide internet access X X X X
Hosting X X X X
Provide news articles X

Reader r;

telephone
connection
termination
article
online inter interconnection fee
connection
S —]
@ 1o l Data
1]
| Runner
i terminatio Q D
4) S\
fee Handle lorg 1
terminatio distande
‘. n L) traffic
|
1
o access @ Internet
N 4 1
. access eprovi L]
| fee O ®
~.!—‘-----_-- L] }
| inet access
hecess fee
qQ
Provide hosting * Intgmet
news . hosting
. hostin,
articles io fee & provisioning
Amsterdam Hoster
| Times |

Figure 8: A re-constructed e-business model by assigning newly discovered value activities to actors.

67

Joint Knowledge Capture for Grammars and Ontologies

Udo Hahn

Kornél G. Marko

@9 Text Knowledge Engincering Lab
Albert-Ludwigs-Universitat Freiburg
D-79098 Freiburg, Germany
http://www.coling.uni-£freiburg.de

Abstract

We introduce a methodology for automating the maintenance
and growth of domain-specific concept taxonomies and gram-
matical class hierarchies simultaneously, based on knowl-
edge capture from natural language texts. The assimilation
process is centered around the linguistic and conceptual ‘qual-
ity” of various forms of evidence underlying the generation,
assessment and on-going refinement of lexical and concept
hypotheses. On the basis of the strength of evidence, hy-
potheses are ranked according to plausibility, and the most
reasonable ones are selected for assimilation into the given
lexical class hierarchy and domain ontology.

INTRODUCTION

Intelligent systems require knowledge-rich resources to rea-
son with. As their creation is usually delegated to human
experts who are slow and costly, these systems face the often
deplored knowledge acquisition bottleneck. The knowledge
supply challenge is even more pressing when various knowl-
edge sources have to be provided within the framework of a
single system, all at the same time. This is typically the case
for knowledge-intensive natural language processing (NLP)
systems which require simultaneous feeding with a lexical
inventory, morphological and syntactic rules or constraints,
and semantic as well as conceptual knowledge.

Each of these subsystems embody an enormous amount of
specialized component knowledge on its own. Much empha-
sis has already been put on providing machine learning sup-
port for single of these components — morphological [4],
lexical [17, 20}, syntactic [3, 9, 12}, semantic {5, 11, 16]
and conceptual knowledge [10, 22, 8, 13]. But only Cardie
[2] has made an attempt so far to combine these isolated
streams of linguistic knowledge acquisition within a com-
mon approach, i.e., to leamn different types of relevant NLP
knowledge simultaneously.

We also propose such an integrated approach for learmning
lexical/syntactic and conceptual knowledge. New concepts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00.

are acquired and positioned in the concept taxonomy, as well
as the grammatical status of their lexical correlates is learned
taking two knowledge sources into account. Domain knowl-
edge provides a concept and role taxonomy which serves as
a comparison scale for judging the plausibility of newly de-
rived concept descriptions in the light of that prior knowl-
edge. Grammatical knowledge contains a type hierarchy of
lexical classes which make increasingly restrictive grammati-
cal constraints available for linking an unknown word with its
corresponding word class. Our model makes explicit the kind
of qualitative reasoning that is behind these multi-threaded
learning processes [21, 8].

A LEARNING SCENARIO

Consider a learning scenario as depicted in Figure 1 from a
grammatical perspective and in Figure 2 from a conceptual
one. Suppose, your knowledge of the information technol- .
ogy domain tells you nothing about Itoh-Ci-8. Imagine, your
favorite technology magazine features an article starting with
“The Itoh-Ci-8 has a size of ... ”. Has your knowledge in-
creased? If so, what did you leamn from just this phrase?

The learning process starts upon the reading of the unknown
word “Itoh-Ci-8”. In this initial step, the corresponding hy-
pothesis space incorporates all the top level concepts avail-
able in the ontology for the new lexical item “Itoh-Ci-8”.
So, the concept ITOH-CI1-8 may be an OBJECT, an ACTION,
a DEGREE, etc. (cf. Figure 2). Similarly, from a grammati-
cal viewpoint (cf. Figure 1), the lexical item “Itoh-Ci-8” can
be hypothesized as being an instance of one of the top-level
part-of-speech categories, €.g.,a NOMINAL, an ADVERB ora
VERBAL.! Due to grammatical constraints, however, (“Itoh-
Ci-8” directly follows “The ") the VERBFINITE hypothesis
and more specialized ones can be immediately rejected (cf.
the darkly shaded box in Figure 1).

While processing the noun phrase “The ltoh-Ci-8” as the
subject of the verb “has ”, the ADVERB hypothesis, as well as

I'while the distinction between NOMINAL and VERBAL should be obvi-
ous, the prominent role of ADVERB at the top level of word class categories
might not be. NOMINAL as well as VERBAL carry grammatical information
such as case, gender, number, or tense, mood, aspect, respec-
tively, none of which is shared by ADVERBs. As class hierarchies derive
from the principle of property inheritance, and ADVERBs lack common fea-
tures with other word classes, they form an independent class on their own.
This explains the prominent role of ADVERB at this high level of abstraction.

<subj : Substantive
VerblnfinTrue>

<obj: Substantive>

<ppatt : Prepositionx

valencies: LexemeVerbTrans

lvalcncics: LexemeVerbAux

"The Itoh-Ci-8 has a size of ..."

Figure 1: Sample Scenario — Grammatical Learning

Object

N o~ 4!
PhysicalObject l . ’Teéii&logy l
‘ Al
Possession e+ 1 Product
<agent : Object> ~_ PhysicalSize
<patient : <s¥u~n(:

Object,Degree>

Product, ...>
N)

Computer]

I\

)Y

inst-of inst-of

= Cortext: 11-DOMAM

,’PdSSlFS—PJ)D?K’
N {POSSESS 1',\

vl PURSESS- PATIERT

PR T R Yy Ty TP T EI O R Y T Y ey

“The Itoh-Ci-8 has a size of ..."

Figure 2: Sample Scenario — Conceptual Learning

69

specialized NOMINAL hypotheses such as ADJECTIVE, in-
cluding participles acting as adjectives, ADJPARTICIPLE (cf.
the grey shaded boxes in Figure 1), become invalid (none of
the instances of any of these word classes must intervene a
determiner and a finite verb directly), still leaving the SUB-
STANTIVE hypothesis intact, which is also derived from NOM
INAL. Additional supportive evidence for the latter comes
from the part-of-speech constraints imposed by the subj
(or, alternatively, by the obj) dependency relation (cf. the
valency requirements attached to the verb “has” in Figure
1). The equally possible VERBINFIN alternative, however, is
ruled out due to violating syntactic evidence. Since “Itoh-
Ci-8” is not a pronoun (it does not match this closed list), we
hypothesize it to be a NOUN, finally.

From a semantical perspective (cf. Figure 2}, the concept
ITOH-CI-8, at this stage of analysis, is related via a spe-
cialized AGENT role to the ACTION concept POSSESSION,
the concept denoted by “has” (lexical ambiguities, e.g., for
the verb “has” as an auxiliary or full verb, lead to the cre-
ation of alternative hypotheses). Since POSSESSION requires
its AGENT to be an OBJECT, ACTION and DEGREE are no
longer valid concept hypotheses for ITOH-CI-8. Their can-
cellation (cf. the darkly shaded boxes in Figure 2) yields
already a significant reduction of the huge initial concept
search space. The learner then aggressively specializes the
remaining single hypothesis to the immediate subordinates
of OBJECT, e.g., PHYSICALOBJECT and TECHNOLOGY, in
order to test more restrictive hypotheses which - due to more
specific constraints - are easier falsifiable.

Just as subject was mapped to the AGENT role, the semantic
constraints for the verb “has ” also indicate that the grammat-
ical direct object relation is to be interpreted in terms of a
conceptual PATIENT role. Accordingly, the phrase “ ... has
a size of ... " is processed such that size.l is the PATIENT
of the POSSESSION relationship. Subsequent interpretation
steps combine the fillers of the AGENT and PATIENT roles so
that the following terminological expressions are asserted:

(P1) size.l : PHYSICALSIZE
(P2) Itoh-Ci-8.1 HAS-SIZE size.l

Assertion (P1) indicates that size.l is an instance of the con-
cept class PHYSICALSIZE and (P2) relates size.l and Itoh-
Ci-8.] via the binary relation HAS-SIZE. Given the concep-
tual roles attached to PHYSICALSIZE, the system recognizes
that all specializations of PRODUCT can be related to the
concept PHYSICALSIZE (via the role S1ZE-OF), while for
TECHNOLOGY no such relation can be established. So, we
favor the conceptual reading of ITOH-CI-8 as a kind of a
PropucT and suppress the TECHNOLOGY hypothesis (cf.
the grey-shaded box in Figure 2).

At this intial stage, we, finally, come up with two prelimi-
nary assumptions - grammatically, we consider the lexical
item “Itoh-Ci-8” as a NOUN, while conceptually, we inter-
pret ITOH-CI-8 as a PRODUCT.

THE LEARNING MODEL

The system architecture for elicitating conceptual and gram-
matical knowledge from texts is summarized in Figure 3. It
depicts how linguistic and conceptual evidence are generated
and combined to continuousty discriminate and refine the set
of word class and concept hypotheses (the unknown item yet
to be learned is characterized by the black square).

oA

‘dependency pare tree

| | Hy pothesi
space-1
'_—l
space-p
2
Lo | Hy pothiesis
space-qy

e
P Conceptua
a T quality
Jerminalogird labels space-n Qualifier
nowledge huse
Tanguage Pricesar Quality Machine

Figure 3: Architecture for Joint Ontology and Grammar Learning

Grammatical knowledge for syntactic analysis is based on a
fully lexicalized dependency grammar [7]. Such a grammar
captures binary valency constraints between a syntactic head
(e.g., a noun) and possible modifiers (e.g., a determiner or
an adjective). These include restrictions on word order, com-
patibility of morphosyntactic features and semantic integrity
conditions. For a dependency relation § € D := {specifier,
subject, dir-object, ...} to be established between a head and
a modifier, all valency constraints must be fulfilled.

In this object-oriented approach, lexeme specifications form
the leaf nodes of a lexical class hierarchy. Grammatically
related lexical items are grouped together in terms of spe-
cific word classes which are further abstracted in terms of
increasingly general word class specifications. Different lev-
els of generality in this hierarchy reflect stronger or weaker
constraints these classes embody. This word class taxonomy
consists of word class names W := {VERBAL, VERBFINITE,
SUBSTANTIVE, NOUN, ...} and a subsumption relation ¢sa
= {(VERBFINITE, VERBAL), (NOUN, SUBSTANTIVE), ...}
C W x W, which characterizes specialization relations be-
tween word classes.

The language processor [6] yields structural dependency in-
formation from the grammatical constructions in which an
unknown lexical item occurs in terms of the corresponding
parse tree. Whenever a parse tree incorporating an unknown
word is generated, an implicit word class hypothesis for this
item is made, since after committing to this word class all its
valency constraints are met. All the different syntactic con-
structions (e.g., genitive, apposition, comparative), in which
unknown lexical items appear, are recorded and assessed later
on relative to the credit they lend to a particular hypothesis.

Conceptual knowledge is expressed in terms of a KL-ONE-
like knowledge representation language [24]. A domain on-
tology consists of a set of concept names F := { COMPANY,

70

HARD-DISK, ...} and a subsumption relation isa r = {(HARp.
DisK, STORAGEDEVICE), (IBM, COMPANY), ...} C F x
F. Concepts are linked by conceptual relations. The corre-
sponding set of relation names R := {HAS-PART, DELIVER.
AGENT, ...} contains the labels of conceptual relations which
are also organized in a subsumption hierarchy isa g = {(HAs-
HARD-DISK, HAS-PHYSICAL-PART), (HAS-PHYSICAL-PART,
HAS-PART), ...}.

The semantic interpretation of dependency parse trees [19)
involving unknown lexical items and their conceptual corre-
lates in the terminological knowledge base forms the basis
for the derivation of concept hypotheses within alternative
hypothesis spaces. Each hypothesis they contain is further
enriched by conceptual annotations reflecting structural pat-
terns of consistency, mutual justification, analogy, etc. This
kind of initial evidence, in particular its predictive “good-
ness” for the learing task, is represented by corresponding
sets of linguistic and conceptual quality labels.

Linguistic quality labels reflect structural properties of phrasal
patterns in which unknown lexical items occur — we assume

that the type of grammatical construction exercises a particu-

lar interpretative force on the unknown item and, at the same

time, yields a particular level of credibility for the hypothe-

ses being derived therefrom. Appositive constructions (“the

laser printer X"), e.g., constrain the conceptual status of the

unknown item much more than, e.g., genitives (“X's price).

Hence, the linguistic quality label APPOSITIVE ranks higher

than GENITIVE.

Conceptual quality labels capture the degree of structural
similarity, compatibility, etc. when the representation struc-
tures of a concept hypothesis are compared with those of al-
ternative concept hypotheses or a priori representation struc-
tures in the underlying domain knowledge base. The closer
the match with given knowledge, the more credit is lent to
a hypothesis. For instance, a very positive conceptual qual-
ity label, M-DEDUCED, is assigned to multiple derivations
of the same concept hypothesis in different hypothesis (sub)-
spaces, a definitely negative one is INCONSISTENT, which
annotates contradictory hypotheses.

Multiple concept hypotheses which represent alternative read-
ings of each unknown lexical item are organized in terms of
corresponding hypothesis spaces, each one holding a differ-
ent or a further specialized concept hypothesis. The quality
machine estimates the overall credibility of single concept
hypotheses by taking the assembled set of quality labels for
each hypothesis into account. The final computation of a
preference order for the entire set of competing hypotheses
takes place in the gqualifier, a terminological classifier ex-
tended by an evaluation metric for quality-based selection
criteria. The output of the quality machine is a ranked list of
plausible concept hypotheses (for a formal specification of
the underlying quality calculus, cf. [21]).

THE LEARNING SCENARIO REVISITED

Depending on the type of the syntactic construction in which
the unknown lexical item occurs, different hypothesis gener-
ation rules may fire. Genitives, such as “The switch of the
Itoh-Ci-8...", place by far fewer constraints on the item to be
learnt than, say, appositives like “The laser printer Itoh-Ci-8
_»_In the following, let target be the unknown item (“Itoh-
Ci-87) and base be the known item (“switch”). The main
conceptual constraint for genitives requires the target concept
to fill one of the n roles attached to the base concept. Since
without additional evidence the correct role cannot yet be de-
cided upon, n alternative, equally likely hypotheses have to
be posited (unless additional constraints apply). Following
on that, the target concept is assigned as a tentative filler of
the i-th role of the base concept in the corresponding i-th
hypothesis space. The classifier then immediately derives a
suitable concept hypothesis by specializing the target con-
cept according to the concept class restriction of the base
concept’s i-th role (cf. [10] for a similar constraint propa-
gation mechanism). The hypothesis generation rule also as-
signs a syntactic quality label to the i-th hypothesis indicating
the type of syntactic construction in which target and base
co-occur (here, GENITIVE).

After the processing of “The Itoh-Ci-8 has a size of ...", the
target ITOH-C1-8 is already predicted as a PRODUCT. Prior
to continuing with the phrase “The switch of the Itoh-Ci-8
...”, consider a fragment of the conceptual representation for
SWITCHes:

(P3) SWITCH-OF =
(P4) SWITCH =
VHAS-PRICE.PRICE M1
VHAS-WEIGHT.WEIGHT (1
OuUTPUTDEV U INPUTDEV U)

switch |PART-OF | Harpware

VSWITCH-OF.
STORAGEDEV LU COMPUTER

The relation SWITCH-OF is defined by (P3) as the set of
all PART-OF relations which have their domain restricted to
SWITCH and their range restricted to HARDWARE. In addi-
tion, (P4) reads as “all fillers of HAS-PRICE, HAS-WEIGHT,
and SWITCH-OF roles must be concepts subsumed by PRICE,
WEIGHT, and the disjunction (OuTPUTDEV U INPUTDEV
U STORAGEDEV U COMPUTER), respectively”. So, three
roles have to be considered for relating the target ITOH-CI-
8, as a tentative PRODUCT, to the base concept SWITCH.
Two of them, HAS-PRICE and HAS-WEIGHT, are ruled out
due to the violation of a simple integrity constraint (PROD-
ucT does not denote a unit of measure). Therefore, only
the role SWITCH-OF must be considered. Given the defini-
tion of SWITCH-OF in (P3), ITOH-CI-8 is immediately spe-
cialized to HARDWARE by the classifier (cf. also Figure 2).
Since the classifier aggressively pushes hypothesizing to be
maximally specific, four distinct hypotheses are immediately
created due to the range restriction of the role SWITCH-OF
as expressed in (P4), viz. OUTPUTDEV, INPUTDEV, STOR-
AGEDEV and COMPUTER, and they are managed in four

71

distinct hypothesis spaces, k1, hs, hs, and hy, respectively.
Within Ay, h2, and hs, DEVICE, their common ‘supercon-
cept, is multiply derived by the classifier, too. Accordingly,
this hypothesis is assigned a high degree of confidence by
issuing the conceptual quality label M-DEDUCED.

EVALUATION

The knowledge base on which we performed our experiments
contained approximately 3,000 concepts and relations from
the information technology (IT) domain, the grammatical class
hierarchy was composed of 80 word classes. We randomly
selected 48 texts from a corpus of IT magazines, with ap-
proximately 9,000 word tokens. So, 48 descriptions of new
products were to be learnt.

Grammar Learning

The task of grammar learning is to predict the most specific
word class for an unknown lexical item, given a hierarchy
which covers all relevant word classes for a particular nat-
ural language. Most relevant for the learning task are va-
lence specifications of the word classes and various word or-
der constraints. Furthermore, morphosyntactic feature con-
straints have to be incorporated, when possible. These con-
straints are checked in a top-down manner, i.e., (cf. our dis-
cussion related to Figure 1) we start from pretty general word
class hypotheses which are continuously refined as more dis-
criminatory evidence comes in.

Following previous work on evaluation measures for learning
systems in the framework of NLP [10], we distinguish here
the following parameters:

o Hypotheses denote the set of grammatical class hypothe-
ses derived by the system as the final result of the text un-
derstanding process, for each target item;

o Correct denotes the number of cases in which Hypotheses
contain the correct grammatical class description for the
target item;

o OneCorrect denotes the number of cases in which Hy-
potheses is a singleton set, i.e., contains orily the correct
grammatical class description;

o AllHypos denote the number of word class hypotheses gen-
erated by the system for all target items.

The data in Table 1 indicate that the system dealt with 75
instances of unknown lexical items. This number includes
cases of word class ambiguities, as well as instances of word
classes other than SUBSTANTIVES (but excluding occurrences
of VERBALs). In 73 of the 75 cases word class hypotheses
could be generated (in two cases data was so weak that no
hypothesis could be created). In 66 of the 73 cases the set
of word class hypotheses for an unknown lexical item con-
tained the correct prediction, while for 37 lexical items there
was only one and correct hypothesis.

For determining precision and recall, we faced the following
problem. At the end of the full learning cycle various word
class hypotheses may still remain valid for one unknown lex-

Testset (n=48)

1.0
09 |
08 |
0.7 | L.
0.6 ;
05 |
0.4 |
0.3}
02}
01}
0.0

AT
LATH -
LACB -

ey

LA

4 5 6 7 8 9 10 11 12 13 14 15 16
Learning Steps

Figure 8: Learning Accuracy (LA) under Optimal Conditions

The almost dramatic decrease in learning accuracy for the
pure terminological learner (LA-) can be explained by the
observation that as the number of learning steps increase the
number of hypothesis spaces (they contain alternative read-
ings for a concept only one of which may be the correct one)
increase as well (cf. Figure 9). Since only the quality cal-
culus prunes the growing hypothesis spaces by eliminating
implausible ones, there is no wonder that in a pure termino-
logical approach leaming accuracy falls below 30%. As can
be seen from the considerable difference between LA~ on
the one hand, and LA CB/LA TH on the other, as well as
from the small corridor between LA CB and LA TH, gram-
matical evidence is the driving factor for leaming accuracy,
while conceptual criteria only slightly improve the final re-
sults. The same holds for the realistic scenario, too, indicat-
ing the influence of seemingly general regularities.

Under optimal learning conditions the hypothesis spaces re-
veal a quasi-logarithmic growth behavior (cf. Figure 9). More
specifically, the pure terminological learner generates almost
double as many hypothesis spaces (7.3 on the average) as
the quality calculus operating with linguistic evidence only
(3.7 on the average). A significant selection of hypothesis
spaces, however, results from the application of the full qual-
ity calculus (1.3 on the average), i.e., the incorporation of
conceptual criteria. The lower average number in the optimal
case is due to a more precise analysis, whereas in the realis-
tic scenario corrupted syntactic parses have to be considered,
too. In any case, the data reveals the superior discrimination
power contained in the full quality calculus when it comes to
the choice between concept alternatives.

DISCUSSION AND CONCLUSIONS

Knowledge-based systems provide powerful means for rea-
soning, but it takes a lot of effort to equip them with the
knowledge they need, usually by manual knowledge engi-
neering. In this paper, we have argued for an alternative so-
lution. It is based on an automatic learning methodology in
which concept and grammatical class hypotheses emerge as

74

Testset (n=48)

-
vy

TNH - -
o1 NHTH - o
NH CB
g L
8+
a]
I 6t
Z s |
ol L,
3t
2t
1 b/
0

y 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Learning Steps

Figure 9: Number of Hypotheses (NH) under Optimal Conditions

a result of the incremental assignment and evaluation of the
quality of linguistic and conceptual evidence related to un-
known words. No specialized learning algorithm is needed,
since learning is a (meta)reasoning task carried out by the
classifier of a terminological reasoning system [21].

This distinguishes our methodology from Cardie’s case-based
approach 2] which also combines conceptual and grammat-
ical learning, but where the actual learning task is delegated
to the C4.5 decision tree algorithm. Cardie’s approach also
requires some supervision (interactive grammatical encod-
ing of the context window surrounding the unknown word),
while our method operates entirely unsupervised. We share
with her the view, however, that learning should encompass
several linguistic dimensions simultaneously (parts of speech,
semantic and conceptual encodings) within a unified approach,
and should also avoid any explicit hand-coding heuristics to
drive the acquisition process.

The work closest to ours with respect to the ontology learn-
ing problem has been carried out by Rau et al. [15] and Hast-
ings and Lytinen {10]. They also generate concept hypothe-
ses from linguistic and conceptual evidence. Unlike our ap-
proach, their selection of hypotheses depends only on an on-
going discrimination process based on the availability of this
data but does not incorporate an inferencing scheme for rea-
soned hypothesis selection. The crucial role of quality con-
siderations becomes obvious when one compares plain and
quality-annotated terminological reasoning for the learning
task. In the light of our evaluation study (cf. Figure 6 and 8,
final learning step) the difference amounts to 23% under re-
alistic experimental conditions, and 43% under optimal con-
ditions, respectively, distinguishing between LA - (plain ter-
minological reasoning) and LA CB values (terminological
metareasoning based on the quality calculus).

REFERENCES
1. E. Brill. Transformation-based error-driven learning and nat-
ural language processing: A case study in part-of-speech tag-
ging. Computational Linguistics, 21(4):543-565, 1995.

. C. Cardie. A case-based approach to knowledge acquisition
for domain-specific sentence analysis. In AAAI'93 - Proceed-
ings of the 11th National Conference on Artificial Intelligence,
pages 798-803. Washington, D.C,, July 11-15, 1993. Menlo
Park, CA & Cambridge, MA: AAAI Press & MIT Press, 1993.

. E. Chamiak. Tree-bank grammars. In AAAI'96/IAAI'96 -
Proceedings of the 13th National Conference on Artificial In-
telligence & 8th Innovative Applications of Artificial Intel-
ligence Conference, volume 2, pages 1031-1036. Portland,
Oregon, August 4-8, 1996. Menlo Park, CA & Cambridge,
MA: AAAI Press & MIT Press, 1996.

. B. Daille. Morphological rule induction for terminology ac-
quisition. In COLING 2000 - Proceedings of the 18th Inter-
national Conference on Computational Linguistics, volume 1,
pages 215-221. Saarbriicken, Germany, 31 July - 4 August,
2000. San Francisco, CA: Morgan Kaufmann, 2000.

. F. Gomez, C. Segami, and R. Hull. Determining preposi-
tional attachment, prepositional meaning, verb meaning and
thematic roles. Computational Intelligence, 13(1):1-31, 1997.

. U. Hahn, N. Broker, and P. Neuhaus. Let’s PARSETALK:
Message-passing protocols for object-oriented parsing. In
H. Bunt and A. Nijholt, editors, Advances in Probabilistic and
Other Parsing Technologies, volume 16 of Text, Speech and
Language Technologies, pages 177-201. Dordrecht, Boston:
Kluwer, 2000.

. U. Hahn, S. Schacht, and N. Broker. Concurrent,
object-oriented natural language parsing: The PARSETALK
model. International Journal of Human-Computer Studies,
41(1/2):179-222, 19%94.

. U. Hahn and K. Schnattinger. A text understander that learns.
In COLING/ACL'98 - Proceedings of the 36th Annual Meet-
ing of the Association for Computational Linguistics & 17th
International Conference on Computational Linguistics, vol-
ume 1, pages 476-482. Montréal, Canada, August 10-14,
1998. San Francisco, CA: Morgan Kaufmann, 1998.

. M. Haruno, S. Shirai, and Y. Ooyama. Using decision trees to
construct a practical parser. In COLING/ACL’'98 - Proceed-
ings of the 36th Annual Meeting of the Association for Compu-
tational Linguistics & 17th International Conference on Com-
putational Linguistics, volume 1, pages 505-511. Montréal,
Canada, August 10-14, 1998. San Francisco, CA: Morgan
Kaufmann, 1998.

P. M. Hastings and S. L. Lytinen. The ups and downs of lexical
acquisition. In AAAI'94 ~ Proceedings of the 12th National
Conference on Artificial Intelligence, volume 1, pages 754~
759. Seattle, Wash., July 31 - August 4, 1994. Menlo Park,
CA: AAAI Press & MIT Press, 1994,

. M. A. Hearst. Automated discovery of WORDNET relations.
In C. Fellbaum, editor, WORDNET: An Electronic Lexical
Database, pages 131-151. Cambridge, MA: MIT Press, 1998.

. J. C. Henderson and E. Brill. Bagging and boosting a Trec-
bank parser. In NAACL 2000 - Proceedings of the Ist Meeting
of the North American Chapter of the Association for Compu-
tational Linguistics, pages 34-41. Seattle, Wash., USA, April
29 - May 4, 2000. San Francisco, CA: Morgan Kaufmann,
2000.

75

i6.

17.

18.

20.

21.

22.

23.

24,

. L. Rau, P. Jacobs, and U. Zemik.

. A. Maedche and S. Staab. Discovering conceptual relations

from text. In W. Horn, editor, ECAI 2000 - Proceedings of
the 14th European Conference on Artificial Intelligence, pages
321-325. Berlin, Germany, August 20-25, 2000. Amsterdam:
I0OS Press, 2000.

. M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Build-

ing a large annotated corpus of English: The Penn Treebank.
Computational Linguistics, 19(2):313-330, 1993.

Information extraction
and text summarization using linguistic knowledge acquisi-
tion. Information Processing & Management, 25(4):419-428,
1989.

S. D. Richardson, W. B. Dolan, and L. Vanderwende. MIND-
NET: Acquiring and structuring semantic information from
text. In COLING/ACL'98 - Proceedings of the 36th Annual
Meeting of the Association for Computational Linguistics &
17th International Conference on Computational Linguistics,
volume 2, pages 1098-1102. Montréal, Canada, August 10-
14, 1998. San Francisco, CA: Morgan Kaufmann, 1998.

E. Riloff. An empirical study of automated dictionary con-
struction for information extraction in three domains. Artifi-
cial Intelligence, 85(1/2):101-134, 1996.

M. Romacker and U. Hahn. An empirical assessment of se-
mantic interpretation. In NAACL 2000 - Proceedings of the
1st Meeting of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 327-334. Seattle,
Washington, USA, April 29 - May 4, 2000. San Francisco,
CA: Morgan Kaufmann, 2000.

. M. Romacker, K. Markert, and U. Hahn. Lean semantic inter-

pretation. In IJCAI’99 — Proceedings of the 16th International
Joint Conference on Artificial Intelligence, volume 2, pages
868-875. Stockholm, Sweden, July 31 - August 6, 1999. San
Francisco, CA: Morgan Kaufmann, 1999.

B. Schiffman and K. R. McKeown. Experiments in auto-
mated lexicon building for text searching. In COLING 2000 -
Proceedings of the 18th International Conference on Compu-
tational Linguistics, volume 2, pages 719-725. Saarbriicken,
Germany, 31 July - 4 August, 2000. San Francisco, CA: Mor-
gan Kaufmann, 2000.

K. Schnattinger and U. Hahn. Quality-based learning. In
W. Wahlster, editor, ECAI’'98 - Proceedings of the 13th Eu-
ropean Conference on Artificial Intelligence, pages 160-164.
Brighton, U.K., August 23-28, 1998. Chichester: John Wiley,
1998.

S. Soderland and W. Lehnert. WRAP-UP: A trainable dis-
course module for information extraction. Journal of Artificial
Intelligence Research, 2:131-158, 1994.

A. Voutilainen. A syntax-based part-of-speech analyser. In
EACL'95 — Proceedings of the 7th Conference of the Euro-
pean Chapter of the Association for Computational Linguis-
tics, pages 157-164. Dublin, Ireland, March 27-31, 1995. As-
sociation for Computational Linguistics, 1995.

W. A. Woods and J. G. Schmolze. The KL-ONE family. Com-
puters & Mathematics with Applications, 23(2/5):133-1717,
1992.

CREAM — Creating relational metadata with a
component-based, ontology-driven annotation framework

Siegfried Handschuh
Insitute AIFB
University of Karlsruhe
76128 Karlsruhe, Germany
sha @aifb.uni-karlsruhe.de

“The Web is about links; the Semantic Web is about the
relationships implicit in those links.”
Dan Brickley

Abstract

Richly interlinked, machine-understandable data constitutes
the basis for the Semantic Web. Annotating web documents
is one of the major techniques for creating metadata on the
Web. However, annotation tools so far are restricted in their
capabilities of providing richly interlinked and truely machine-
understandable data. They basically allow the user to anno-
tate with plain text according to a template structure, such
as Dublin Core. We here present CREAM (Creating RE-
lational, Annotation-based Metadata), a framework for an
annotation environment that allows to construct relational
metadata, i.e. metadata that comprises class instances and
relationship instances. These instances are not based on a
fix structure, but on a domain ontology. We discuss some
of the requirements one has to meet when developing such a
framework, e.g. the integration of a metadata crawler, infer-
ence services, document management and information ex-
traction, and describe its implementation, viz. Ont-O-Mat a
component-based, ontology-driven annotation tool.

Keywords

Steffen Staab
Insitute AIFB
University of Karlsruhe
76128 Karlsruhe, Germany
sst@aifb.uni-karlsruhe.de

Metadata, Markup, Annotations, Ontology, DAML+OIL, RDF,

Semantic Web

Introduction

Research about the WWW currently strives to augment syn-
tactic information already present in the Web by semantic
metadata in order to achieve a Semantic Web that human and
software agents alike can understand. RDF(S) or DAML+OIL
are languages that have recently advanced the basis for ex-
tending purely syntactic information, e.g. HTML documents,
with semantics. Based on these recent advancements one of
the the most urgent challenges now is a knowledge capturing
problem, viz. how one may turn existing syntactic resources
into interlinked knowledge structures that represent relevant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00

76

o Avoid Redundancy: Decentralized knowledge provision-

Alexander Maedche
FZ1 Research Center for
Information Technologies
76131 Karlsruhe, Germany
macdche @fzi.de

underlying information. This paper is about a framework for
facing this challenge, called CREAM!, and about its imple-
mentation, Ont-O-Mat.

The origin of our work facing this challenge dates back to the
start of the seminal KA2 intiative [1], i.e. the initiative for
providing semantic markup on HTML pages for the know-
ledge acquisition community. The basic idea then was that
manual knowledge markup on web pages was too error-prone
and should therefore be replaced by a simple tool that should
help to avoid syntactic mistakes.

Developing our CREAM framework, however, we had to
recognize that this knowledge capturing task exhibited some
intrinsic difficulties that could not be solved by a simple tool.
We here mention only some challenges that immediately came
up in the KA2 setting:

¢ Consistency: Semantic structures should adhere to a given -

ontology in order to allow for better sharing of knowledge.
For example, it should be avoided that people confuse com-
plex instances with attribute types. .

o Proper Reference: Identifiers of instances, e.g. of per-

sons, institutes or companies, skould be unique. For in- -
stance, in KA2 metadata there existed three different iden- ‘,
tifiers of our colleague Dieter Fensel. Thus, knowledge -
about him could not be grasped with a straightforward query.

ing should be possible. However, when annotators collab-
orate, it should be possible for them to identify (parts of)
sources that have already been annotated and to reuse pre- :
viously captured knowledge in order to avoid laborious re- :
dundant annotations.

o Relational Metadata: Like HTML information, which is

spread on the Web, but related by HTML links, knowledge
markup may be distributed, but it should be semantically
related. Current annotation tools tend to generate template-
like metadata, which is hardly connected, if at all. For ex-
ample, annotation environments often support Dublin Core
[12], providing means to state, e.g., the name of authors,
but not their IDs®. :

ICREAM: Creating RElational, Annotation-based Metadata.

2The reader may see similar effects in bibliography databases. E-S-g.
query for James (Jim) Hendler at the — otherwise excellent — DBLP: 3,
http://www.informatik.uni-trier. de/~ley/db/.

3In the web context one typically uses the term *URI’ (uniform resource,

* Maintenance: Knowledge markup needs to be maintained.
An annotation tool should support the maintenance task.

o Ease of use: It is obvious for an annotation environments
to be useful. However, it is not trivial, because it involves
intricate navigation of semantic structures.

o Efficiency: The effort for the production of metadata is
a large restraining threshold. The more efficiently a tool
support the annotation, the more metadata will produce a
user. These requirement stand in relationship with the ease
of use. It depends also on the automation of the annotation
process, e.g. on the pre-processing of the document.

CREAM faces these principal problems by combining ad-
vanced mechanisms for inferencing, fact crawling, document
management and — in the future — information extraction.
Ont-O-Mat, the implementation of CREAM, is a component-
based plug-in architecture that tackles this broad set of re-
quirements.*

In the following we first sketch two usage scenarios (Section:
Scenarios for CREAM). Then, we explain our terminology
in more detail, derive requirements from our principal con-
siderations above and explain the architecture of CREAM
(Section: Design of CREAM). We describe our actual tool,
Ont-O-Mat, in Section Implementation. Before we conclude,
we contrast CREAM with related work, namely knowledge
acquisition tools and annotation frameworks.

Scenarios for CREAM
We here only summarize two scenarios, two knowledge por-
tals, for annotation that have been elaborated in [21]:

The first scenario extends the objectives of the seminal KA2
initiative. The KA2 portal provides a view onto knowledge of
the knowledge acquisition community. Besides of semantic
retrieval as provided by the original KA?2 initiative, it allows
comprehensive means for navigating and querying the know-
ledge base and also includes guidelines for building such a
knowledge portal. The potential users provide knowledge,
e.g. by annotating their web pages in a decentralized man-
ner. The knowledge is collected at the portal by crawling and
presented in a variety of ways.

The second scenario is a knowledge portal for business an-
alysts that is currently constructed at Ontoprise GmbH. The
principal idea is that business analyst review news tickers,
busigess plans and business reports. A considerable part of
their work requires the comparison and aggregation of sim-
ilar or related data, which may be done by semantic queries

* like“Which companies provide B2B solutions?”, when the

knowledge is semantically available. At the Time2Research

~ portal they will handle different types of documents, anno-

tate them and, thus, feed back into the portal to which they

may ask questions.

- Design of CREAM
" In this section we explain basic design decisions of CREAM,

" which are founded on the general problems sketched in the

‘l_idcnliﬁcr) to speak of ‘unique identifier’.
4The core Ont-O-Mat can be downloaded from:
;;http ://ontobroker. semanticweb. org/annotation.

77

introduction above. In order to provide a clear design ratio-
nale, we first provide definitions of important terms we use
subsequently:

¢ Ontology: An ontology is a formal, explicit specification
of a shared conceptualization of a domain of interest [8].
In our case it is constituted by statements expressing defi-
nitions of DAML+OIL classes and propertics [7].

¢ Annotations: An annotation in our context is a set of in-
stantiations attached to an HTML document. We distin-
guish (i) instantiations of DAML+OIL classes, (if) instan-
tiated properties from one class instance to a datatype in-
stance — henceforth called attribute instance (of the class
instance), and (iii) instantiated properties from one class
instance to another class instance — henceforth called re-
lationship instance. -
Class instances have unique URIs. Instantiations may be
attached to particular markups in the HTML documents,
viz. URIs and attribute values may appear as strings in the
HTML text.

¢ Metadata: Metadata are data about data. In our context
the annotations are metadata about the HTML documents.

¢ Relational Metadata: We use the term relational meta-
data to denote the annotations that contain relationship in-
stances.
Often, the term “annotation™ is used to mean something
like “private or shared note”, “comment” or “Dublin Core
metadata”. This alternative meaning of annotation may be
emulated in our approach by modeling these notes with
attribute instances. For instance, a comment note “I like
this paper” would be related to the URL of the paper via
an attribute instance ‘hasComment’.
In contrast, relational metadata contain statements like *stu-
dent Siegfried cooperates with lecturer Steffen’, i.e. re-
lational metadata contain relationships between class in-
stances rather than only textual notes.

Figure 1 illustrates our use of the terms “ontology”, “an-
notation” and “relational metadata”. It depicts some part
of the SWRC® (semantic web research community) ~nto-
logy. Furthermore it shows two homepages, viz. pages about
Siegfried and Steffen (http://www.aifb.uni-karlsruhe.de/WBS/sha and
http://www.aifb.uni-karlsruhe.de/WBS/sst, respectively) with annota-
tions given in an XML serialization of RDF facts. For the
two persons there are instances denoted by corresponding
URISs (person.sha and person_sst). The swrc:name of person_sha is
“Siegfried Handschuh™. In Addition, there is a relationship
instance between the two persons: they cooperate. This co-
operation information ‘spans’ the two pages.

Requirements for CREAM

The difficulties sketched in the introduction directly feed into
the design rationale of CREAM. The design rationale links
the challenges with the requirements. This results in a N:M
mapping (neither functional nor injective). An overview of
the matrix is given in Table 1. It shows which modules (re-
quirements) are mainly used to answer challenges set forth
in the introduction, viz.:

Shttp://ontobroker.semanticweb. org/ontos/swrc.html

1

Figure 1: Annotation example

rdf:nasDomain

rdf:subClass

rdf type

rdf:subClass

annotation [--w:c:phostudent

ce"person_sha".

cooperatedith
L g ALt

swrc:PhDStudent -

o e /nES, 55t sperson_sst /> | swiccooperateWith sweai
< swro:Lecturer™

web page | Siegfried
Handschuh

URL

« Document Viewer: The document viewer visualizes the
web page contents. The annotator may easily provide an-
notations by highlighting text that serves as input for at-
tribute instances or the definition of URIs. The document
viewer must support various formats (HTML, PDF, XML,
etc.).

e Ontology Guidance: The annotation framework needs guid-

ance from the ontology. In order to allow for sharing of
knowledge, newly created annotations must be consistent
with a community’s ontology. If annotators instantiate ar-
bitrary classes and properties the semantics of these prop-
erties remains void. Of course the framework must be able
to adapt to varying ontologies in order to reflect different
foci of the annotators.

Furthermore, the ontology is important in order to guide
annotators towards creating relational metadata. We have
done some preliminary experiments and found that sub-
jects have more problems with creating relationship in-

stances than with creating attribute instances (cf. {22]). With-

out the ontology they would miss even more cues for as-
signing relationships between class instances.
Both ontology guidance and document viewer should be
easy to use: Drag’n’drop helps to avoid syntax errors and
typos and a good visualization of the ontology can help to
correctly choose the most appropriate class for instances.
e Crawler: The creation of relational metadata must take
place within the Semantic Web. During annotation an-
notaters must be aware of which entities exist in the part
of the Semantic Web they annotate. This is only possi-

78

rdf hasRange

rdf subClass

e —

="parson_sst"-
Stasb

Steffen Staab

g

Research:

Semanne Web, Enrwis dge
Macagement, Natx & Language.
ez

ble if a crawler makes relevant entities immediately avail-
able. So, annotators may look for proper reference, i.e.
decide whether an entity already has a URI (e.g. whether
the entity named “Dieter Fensel” or “D. Fensel” has al-
ready been identified by some other annotators) and thus
only annotators may recognize whether properties have al- -
ready been instantiated (e.g. whether “Dieter Fensel” has
already be linked to his publications). As a consequence of
annotators’ awareness relational metadata may be created,
because class instances become related rather than only flat
templates are filled.

Annotation Inference Server: Relational metadata, proper
reference and avoidance of redundant annotation require
querying for instances, i.. querying whether and which
instances exist. For this purpose as well as for checking
of consistency, we provide an annotation inference server
in our framework. The annotation inference server reasons
on crawled and newly annotated instances and on the on- ..
tology. It also serves the ontological guidance, because it |
allows to query for existing classes and properties. ;
Document Management: In order to avoid redundancy '
of annotation efforts, it is not sufficient to ask whether inj“‘.
stances exist at the annotation inference server. Wheft an ..
annotator decides to capture knowledge from a web page,).
he does not want to query for all single instances that he',
considers relevant on this page, but he wants information,i,l
whether and how this web page has been annotated before.
Considering the dynamics of HTML pages on the web, it15?
desirable to store annotated web pages together with thell

3
.

Table 1: Design Rationale — Linking Challenges with Required Modules

Requirement I Storage
Replication

Document | Ontology | Crawler | Annotation Document Information
General Viewer Guidance Inference | Management | Extraction
Problem Server
Consistency X X
Proper Reference X X
Avoid Redundancy X X X
Relational Mctadata X X X
Maintenance X X
Ease of use X X X
Efficiency X X X X X X

annotations. When the web page changes, the old annota-
tions may still be valid or they may become invalid. The
annotator must decide based on the old annotations and
based on the changes of the web page.

A future goal of the document management in our frame-
work will be the semi-automatic maintenance of annota-
tions. When only few parts of a document change, pattern
matching may propose revision of old annotations.
Information Extraction: Even with sophisticated tools
it is laborious to provide semantic annotations. A major
goal thus is semi-automatic annotation taking advantage
of information extraction techniques to propose annota-
tions to annotators and, thus, to facilitate the annotation
task. Concerning our environment we envisage two major
techniques: First, “wrappers™ may be learned from given
markup in order to automatically annotate similarly struc-
tured pages (cf., e.g., [16]). Second, message extraction
like systems may be used to recognize named entities, pro-
pose co-reference, and extract some relationship from texts
(cf., e.g., [20]).

Besides of the requirements that constitute single modules,
one may identify functions that cross module boundaries:

* Storage: CREAM supports two different ways of storage.
The annotations will be stored inside the document that
is in the document management component, but it is also
stored in the annotation inference server.

" & Replication: We provide a simple replication mechanism

by crawling annotations into our annotation inference server.

! ¢ Architecture of CREAM

¢ The architecture of CREAM is depicted in Figure 2. The

‘complete design of CREAM comprises a plug-in structure,

Wwhich is flexible with regard to adding or replacing mod-
rules. Document viewer and ontology guidance module to-
fgether constitute the major part of the graphical user inter-
face. Via plug-ins the core annotation tool, Ont-O-Mat, is
xtended to include the capabilities outlined above. For in-
ce, a plug-in for a connection to a document manage-
ent system provides document management and retrieval
fapabilities that show the user annotations of a document he
Oads into his browser. This feature even becomes active
ﬁfhen the user does not actively search for already existing
4

e ¥

79

annotations. Similarly, Ont-O-Mat provides extremely sim-
ple means for navigating the taxonomy, which means that the
user can work without an inference server. However, he only
gets the full-fledged semantics when the corresponding plug-
in connection to the annotation inference server is installed.

Implementation: Ont-O-Mat
This section describes Ont-O-Mat, the implementation of our

CREAM framework. Ont-O-Mat is a component-based, ontology-

driven markup tool. The architectural idea behind CREAM
is a component-based framework, thus, being open, flexible
and easily extensible.

In the following subsection we refer to the concrete realiza-
tion and the particular technical requirements of the compo-
nents. In subsection we describe the functionality of Ont-
O-Mat based on an example ontology for annotation that is
freely available on the web.

Ont-O-Mat services and components

The architecture of Ont-O-Mat provides a plug-in and ser-
vice mechanism. The components are dynamically plug-able
to the core Ont-O-Mat. The plug-in mechanism notifies each
installed component, when a new component is registered.
Through the service mechanism each component can dis-
cover and utilize the services offered by another component
[9]. A service represented by a component is typically a ref-
erence to an interface. This provides among other things a
de-coupling of the service from the implementation and al-
lows therefore alternative implementations.

The Ont-O-Mat services have been realized by components
according to the requirements listed in subsection . So far
we have realized the following components: a comprehen-
sive user-interface, component for document-management,
an annotation inference-server and a crawler:

e Document Viewer and Ontology Guidance: There arc
various ways how the gained knowledge database can be
visualized and thus experienced. On the one hand, the sys-
tem can be used as a browser. In the annotated web pages,
the extracted text fragments are then highlighted and an
icon after each fragment is visible. By clicking on the icon,
the name of the assigned class or attribute will be shown.

Figure 2: Architecture of CREAM.

Annotation Environment

Document Management

e
Annotation annolate -
Tool GUI

... qQuery = ey
Document Eﬁ“ B)

AR Aty

Viewer

web pages

copy

annotated

craw! web pages

S B e]

| -

crawl | o _-.
PR .C\ﬂk

> e
. o-@

.“ £ 5
v NS
e% v

-domain
ontologies

e’
L& e je
g

On the other hand, the user can browse the ontology and
retrieve for one class all instances or for one instance all
attributes. .
The underlying data model used for Ont-O-Mat has been
taken from the comprehensive ontology engineering and
learning system ONTOEDIT / TEXT-TO-ONTO (see [18]).
Ont-O-Mat works currently in “read-only-mode” with re-
spect to the ontology and only operates on the relational
metadata defined on top of the given ontology.

e Document Management: A component for document man-
agement is required in order to avoid duplicate annotations
and existing semantic annotations of documents should be
recognized. In our current implementation we use a straight
forward file-system based document management approach.
Ont-O-Mat uses the URI to detect the re-encounter of pre-
viously annotated documents and highlights annotations in
the old document for the user. Then the user may decide
to ignore or even delete the old annotations and create new
metadata, he may augment existing data, or he may just
be satisfied with what has been previously annotated. In
order to recognize that a document has been annotated be-
fore, but now appears under a different URI, Ont-O-Mat
computes similarity with existing documents by simple in-
formation retrieval methods, e.g. comparison of the word
vector of a page. If thereby a similarity is discovered, this
is indicated to the user, so that he can check for congru-
ency.

o Annotation Inference Server: The annotation inference
server reasons on crawled and newly annotated instances .
and on the ontology. It also serves the ontological guid-
ance, because it allows to query for existing classes and

independent reasoning in a high-level logical language with
a well-founded semantics.

RDF Crawler: As already mentioned above, the annota-
tion must take place right within the Semantic Web and not
isolated. Therefore, we have built a RDF Crawler®, a ba-
sic tool that gathers interconnected fragments of RDF from
the Web and builds a local knowledge base from this data.

In general, RDF data may appear in Web documents in
several ways. We distinguish between (i) pure RDF (files
that have an extension like "*.rdf™), (ii) RDF embedded in
HTML and (iii) RDF embedded in XML. Our RDF Crawler
relys on Melnik’s RDFE-API’ that can deal with the dif-
ferent embeddings of RDF described above. One general
problem of crawling is the applied filtering mechanism:

Baseline document crawlers are typically restricted by a
predefined depth value. 'Assumiag that there is an unlim-
ited amount of interrelated information on the Web (hope-

fully this will soon hold about RDF data as well), at some
point RDF fact gathering by the RDF Crawler should stop.

We have implemented a baseline approach for filtering: At
the very start of the crawling process and at every subse-

quent step we maintain a queue of all the URIs we want to
analyze. We process them in the breadth-first-search fash-
ion, keeping track of those we have already visited. When
the search goes too deep, or we have received sufficient
quantity of data (measured as number of links visited or
the total web traffic or the amount of RDF data obtained)
we may quit.

Information Extraction: This component has not yet been
integrated in our Ont-O-Mat tool. Actually, we are near
finishing an integration of a simple wrapper approach [15),

properties. We use Ontobroker’s [3] underlying F-Logic
[14] based inference engine SilRI [2] as annotation infer-
ence server. The F-Logic inference engine combines ordering-

80

SRDF Crawler is freely available for download at:

http://ontobroker.semanticweb. org/rdfcrawler.

7http://www-db.stanford.edu/~melnik/rdf/api.html

but we have not yet the message extraction approach for
Ont-O-Mat that suggests relevant part of the texts for an-
notation.

Using Ont-O-Mat — An Example

Our example is based on the freely available SWRC (Se-
mantic Web Research Community)® ontology , the succes-
sor of the KA2 ontology. The SWRC ontology models the se-
mantic web rescarch community, its researchers, topics, pub-
lications, tools, etc. and properties between them. It is avail-
able in the form of DAML+OIL classes and propertics, in
pure RDF-Schema and in F-Logic. The general idea behind
SWRC is that the SW rescarch community creates rélational
metadata according to the SWRC ontology to enable seman-
tic access to their web pages. In the following we shortly
explain how Ont-O-Mat may be used for creating relational
metadata based on the SWRC ontology.

The annotation process is started either with an annotation
inference server or the server process is fed with metadata
crawled from the web and the document server. Figure 3
shows the screen for navigating the ontology and creating
annotations in Ont-O-Mat. The right pane displays the docu-
ment and the left panes show the ontological structures con-
tained in the ontology, namely classes, attributes and rela-
tions. In addition, the left pane shows the current semantic
annotation knowledge base, i.e. existing class instances, at-
tribute instances and relationship instances created during the
semantic annotation.

1. First of all, the user browses a document by entering the
URL of the web document that he would like to annotate.
This step is quite familiar from existing browsers.

2. Then the user selects a text fragment by highlighting it and
takes a look on the ontology which fits in the topic and is
therefore loaded and visible in ontology browser.

3. There are two possibilities for the text fragment to be an-
notated: as an instance or as an property. In the case of an
instance, the user selects in the ontology the class where
the text fragment fits in, e.g. if he has the text fragment
"Siegfried Handschuh”, he would select the class "PhD
Student”. By clicking on the class, the annotation gets
created and thus the text fragment will be shown as an in-
stance of the selected class in the ontology at the ontology
browser.

4. To each created instance, titeral attributes can be assigned.
The choice of the predefined attributes depends on the class
the instance belongs to, e.g. the class "PhD Student” has
the attributes name, address, email, and telephone number.
The attributes can be assigned to the instance by highlight-
ing the appropriate text fragment of the web document and
dragging it to the related property field.

5. Furthermore, the relationships between the created instances
can be set, e.g. the PhD Student Siegfried Handschuh

8h(tp://www.semanlicweb.org/ontologies/

“works at” the OntoAgent project and “is supervised” by
Rudi Studer. Ont-O-Mat preselects class instances accord-
ing to the range restrictions of the chosen relation, ¢.g. the
"works at” of a PhD Student must be an Project. Therefore
only Projects are offered as potential fillers to the "works
at” relation of Siegfried.

Comparison with Related Work

CREAM can be compared along three dimensions: First, it
is a framework for mark-up in the Semantic Web. Second,
it can be considered as a particular knowledge acquisition
framework vaguely similar like Protégé-2000[6]. Third, it is
certainly an annotation framework, though with a different
focus than ones like Annotea [13].

Knowledge Markup in the Semantic Web

We know of three major systems that intensively use know-
ledge markup in the Semantic Web, viz. SHOE [10], Onto-
broker [3] and WebKB [19]. All three of them rely on know-
ledge in HTML pages.

They all started with providing manual mark-up by editors.
However, our experiences (cf. [5]) have shown that text-editing
knowledge mark-up yields extremely poor results, viz. syn-
tactic mistakes, improper references, and all the problems
sketched in the introduction.

The approaches from this line of research that are closest to
CREAM is the SHOE Knowledge Annotator®.

The SHOE Knowledge Annotator is a Java program that al-
lows users to mark-up webpages with the SHOE ontology.
The SHOE system [17] defines additional tags that can be
embedded in the body of HTML pages. The Knowledge An-
notater is less user friendly compared with our implementa-
tion Ont-O-Mat. It shows the ontology in some textual lists,
whereas Ont-O-Mat gives a graphical visualization of the on-
tologies. Furthermore, in SHOE there is no direct relation-
ship between the new tags and the original text of the page,
i.e. SHOE tags are not annotations in a strict sense.

Comparison with Knowledge Acquisition Frameworks
The CREAM framework is specialized for creating class and
property instances and for populating HTML pages with ther.
Thus, it does not function as an ontology editor, but rather
like the instance acquisition phase in the Protégé-2000 frame-
work [6]. The obvious difference of CREAM to the latter is
that Protege does not (and does not intend to) support the par-
ticular web setting, viz. managing and displaying web pages.

Comparison with Annotation Frameworks

There are a lot of — even commercial — annotation tools
like ThirdVoice!l®, Yawas [4], CritLink [23} and Annotea
(Amaya) [13].

These tools all share the idea of creating a kind of user com-
ment on the web pages. The term “annotation” in these frame-

Shttp://www.cs.umd.edu/projects/plus/SHOE/
KnowledgeAnnotator.htm!
10http:/fwww.thirdvoice.com

Figure 3: Ont-O-Mat Screenshot.

Ry AdminustratveStat
i Manager

) - Tachni siStan

§ Sudent

& [P Graduate

PhDGRdeni
£ undergraguate

Produet
Project
- o

Emut

ot
Frone

T o

TjeTe e Ratsne e

- ¥nowledge Management Hroup, nstitute AFB, Karistung tioversty TH;)
Siegfried
__.__...J Handschuh

Eral @ gaftefoynbamnne gt

«+49-(0771-608-7363
Fae PO 0%

Kollegiengebaude am Enrennof

“hangschuh@acm org % (EBHL;::-::‘;,;:SZU‘)‘
T |Gegtied . ; 4 2na oot
It therwww ato unrbariscuhe def_ T 100m 281
pubkcaton Arery Insttute Af 6
. supemsor Unreamty of b astseshe
< @ Rudi Stuger £ 18129 hamrmata
OntoAgents
S stuoiesat Biographical Sketch
OntoBroker He 15 Currentty worbing togather wilh SIgfan DECLEr 30 Uner e superision of £2 SLuget in
P On Tob nowieng= 2 1} me Qntozgents projert in trie DARP2 DAL progran
345210 we g p)
B GntoAgents | state: 1oaced . . Selowe v r L aged ¢
AR OntoSener Al rypecsosran

Ready, -

works is understood as a remark to an existing document. As
mentioned before, we would model such remarks as attribute
instances only in our framework. For instance, a user of these
tools might attach a note like "A really nice professor!” to the
name “Studer” on a web page.

Annotea actually goes one step further. It allows to rely on
an RDF schema as a kind of template that is filled by the an-
notator. For instance, Annotea users may use a schema for
Dublin Core and fill the author-slot of a particular document
with a name. This annotation, however, is again restricted to
attribute instances. The user may also decide to use complex
RDF descriptions instead of simple strings for filling such
a template. However, he then has no further support from
Amaya that helps him providing syntactically correct state-
ments with proper references. '

To summarize, CREAM is used to generate really machine-
understandable data and addresses all the problems that come
from this objective: relational metadata, proper reference and
consistency.

Conclusion and Future Plans

CREAM is a comprehensive framework for creating annota-
tions, relational metadata in particular — the foundation of
the future Semantic Web. The framework comprises infer-
ence services, crawler, document management system, onto-
logy guidance, and document viewers.

Ont-O-Mat is the reference implementation of CREAM frame-
work. The implementation supports so far the user with the
task of creating and maintaining ontology-based DAML+OIL
markups, i.e. creating of class, attribute and relationship in-

82

{6785.0ctea

stances. Ont-O-Mat include an ontology browser for the ex-
ploration of the ontology and instances and a HTML browser
that will display the annotated parts of the text. Ont-O-Mat is
Java-based and provide a plugin interface for extensions for
further advancement.

Our goal is a constant advancement of Ont-O-Mat and the
CREAM framework in order to answer basic problems that
come with semantic annotation.

We are already dealing with many different issues and through
our practical experiences we could identify problems that are
most relevant in our scenario/settings, KA2 and Time2Research.
Nevertheless our analysis of the general problem is far from
being complete. Some further important issues we want to
mention here are:

e Information Extraction: We have done some first steps
to incorporate information extraction. However, our future
experiences will have to show how and how well informa-
tion extraction integrates with semantic annotation. :

« Multimedia Annotation: This requires considerations about
time, space and synchronization.

« Annotation + Authoring: Knowledge capturing and an-
notation is a process of marking up existing HTML with
semantic data. We are also interested in supporting the in- -
verse process of HTML authoring from semantic data.

 Changing Ontologies: Ontologies on the web have char-
acteristics that influence the annotation process. Heflin & -
Hendler [11] have elaborated on changes that affect an-
notation. Future annotation tools will have to incorporate
solutions for the difficulties they consider.]

e Active Ontology Evolvement: Annotation should feed back!

i

i
i

'

into the actual ontologies, because annotators may find that
they should consider new knowledge, but need revised on-
tologies for this purpose. Thus, annotation affects ontology
engineering and ontology learning.

Our general conclusion is that providing semantic annota-
tion, relational metadata in particular, is an important com-
plex task that needs comprehensive support. Our framework
CREAM and our tool Ont-O-Mat have already proved very
successful in leveraging the annotation process. They still
need further refinement, but they are unique in their design
and implementation.

Acknowledgements.

The rescarch presented in this paper would not have been
possible without our colleagues and students at the Institute
AIFB, University of Karlsruhe, and Ontoprise GmbH. We
thank Kalvis Apsitis (now: RITI Riga Information Technol-
ogy Institute), Stefan Decker (now: Stanford University),
Michael Erdmann, Mika Maier-Collin, Leco Meyer and Tanja
Sollazzo. Rescarch for this paper was partially financed by
US Air Force in the DARPA DAML project “OntoAgents”
(01IN901C0).

REFERENCES
1. R. Benjamins, D. Fensel, and S. Decker. KA2: Build-
ing Ontologies for the Internet: A Midterm Report.

International Journal of Human Computer Studies,
51(3):687, 1999.

2. S. Decker, D. Brickley, J. Saarela, and J. Angele. A
Query and Inference Service for RDF. In Proceed-
ings of the W3C Query Language Workshop (QL-98),
http fwwwow3.org/TandS/QL/QL9E/, Boston, MA, De-
cember 3-4, 1998.

3. S. Decker, M. Erdmann, D. Fensel, and R. Studer. On-
tobroker: Ontology Based Access to Distributed and
Semi-Structured Information. In R. Meersman et al.,
editors, Database Semantics: Semantic Issues in Multi-
media Systems, pages 351-369. Kluwer Academic Pub-
lisher, 1999.

4. L. Denoue and L. Vignollet. An annotation tool for
web browsers and its applications to informa-
tion retrieval. In In Proceedings of RIAO2000,
Paris, April 2000. http://www.univ-savoie.fr/ la-
bos/syscom/Laurent.Denoue/friao2000.doc.

5. M. Erdmann, A. Maedche, H.-P. Schnurr, and Steffen
Staab. From manual to semi-automatic semantic an-
notation: About ontology-based text annotation tools.
In P. Buitelaar & K. Hasida (eds). Proceedings of the
COLING 2000 Workshop on Semantic Annotation and
Intelligent Content, Luxembourg, August 2000.

6. H. Eriksson, R. Fergerson, Y. Shahar, and M. Musen.
Automatic generation of ontology editors. In Proceed-
ings of the 12th Banff Knowledge Acquisition Work-
shop, Banff, Alberta, Canada, 1999.

83

10.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Reference description of the daml+oil (march 2001) on-

tology markup language, March 2001.

http://www.daml.org/2001/03/reference.html.

. T.R. Gruber. A Translation Approach to Portable Onto-

logy Specifications. Knowledge Acquisition, 6(2):199-
221, 1993.

. Siegfried Handschuh. Ontoplugins - a flexible compo-

nent framework. Technical report, University of Karl-
sruhe, May 2001.

J. Heflin and J. Hendler. Searching the web with shoc.
In Artificial Intelligence for Web Search. Papers from
the AAAI Workshop. WS-00-01, pages 35-40. AAAL
Press, 2000.

. J. Heflin, J. Hendler, and S. Luke. Applying Ontology

to the Web: A Case Study. In Proceedings of the In-
ternational Work-Conference on Artificial and Natural
Neural Networks, IWANN’99, 1999,

. Dublin Core Metadata Initiative.

http://purl.oclc.org/dc/, April 2001.

J. Kahan, M. Koivunen, E. Prud’Hommeaux, and
R. Swick. Annotea: An Open RDF Infrastructure for
Shared Web Annotations. In Proc. of the WWWI10 In-
ternational Conference. Hong Kong, 2001.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of
object-oriented and frame-based languages. Journal of
the ACM, 42, 1995.

J. Klotzbuecher. Ontowrapper. Master’s thesis, Univer-
sity of Karlsruhe, to appear 2001.

N. Kushmerick. Wrapper Induction: Efficiency and Ex-
pressiveness. Artificial Intelligence, 118(1), 2000.

S. Luke, L. Spector, D. Rager, and J. Hendler.
Ontology-based Web Agents. In Proceedings of First
International Conference on Autonomous Agents, 1997.

A. Maedche and S. Staab. Ontology learning for the
semantic web. IEEE Intelligent Systems, 16(2), 2001.

P. Martin and P. Eklund. Embedding Knowledge in
Web Documents. In Proceedings of the 8th Int. World
Wide Web Conf. (WWW*8), Toronto, May 1999, pages
1403-1419. Elsevier Science B.V., 1999,

MUC-7 — Proceedings of the 7th Message Under-
standing Conference. http://www.muc.saic.com/, 1998.

S. Staab and A. Maedche. Knowledge portals — on-
tologies at work. Al Magazine, 21(2), Summer 2001.

S. Staab, A. Maedche, and S. Handschuh. Creating
metadata for the semantic web: An annotation frame-
work and the human factor. Technical Report 412, In-
stitute AIFB, University of Karlsruhe, 2001.

Ka-Ping Yee. CritLink: Better Hyperlinks for the
WWW, 1998. http://crit.org/ ping/ht98.html.

Capturing Analytic Thought

John D. Lowrance
Ian W. Harrison
Andres C. Rodriguez
Artificial Intelligence Center
SRI International
333 Ravenswood Avenue, Menlo Park, CA 94404
{lowrance, harrison, rodriguez} @ai.sri.com

Abstract

The survival of an enterprise often rests upon its ability to
make correct and timely decisions, despite the complexity
and uncertainty of the environment. Because of the
difficulty of employing and scaling formal methods in this
context, decision makers typically resort to informal
methods, sacrificing structure and rigor. We are
developing a new methodology that retains the ease of
use, the familiarity, and (some of) the free-form nature of
informal methods, while benefiting from the rigor,
structure, and potential for automation characteristic of
formal methods. Our approach records analysts' thinking
in a corporate knowledge base consisting of structured
arguments. The foundation of this knowledge base is an
ontology of arguments that includes two main types of
formal objects: argument templates and arguments. An
argument template records an analytic method as a
hierarchically structured set of interrelated questions, and
an argument instantiates an argument template by
answering the questions posed relative to a specific
situation. This methodology emphasizes the use of simple
inference structures as the foundation of its argument
templates, making it possible for analysts to independently
author new templates. When authoring an argument
template, the analyst can choose to embed discovery tools,
which are recommended methods of acquiring information
pertaining to the questions posed. An analyst wanting to
record an argument selects an appropriate template, uses
the discovery tools to retrieve potentially relevant
information, selects that information to retain as evidence
and records its relevance, answers the questions, and
records the rationale for the answers. The result is a
recorded line of reasoning that breaks down the problem,
bottoming out at the documents and other forms of
information that were used as evidence to support the
answers. The resulting collection of arguments and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00

84

templates constitutes a corporate memory of analytic
thought that can be directly exploited by analysts or
automated methods.

Keywords
Structured arguments, evidential reasoning, analysis,
knowledge management.

INTRODUCTION

Understanding the world and facing the different
alternatives it presents to us is crucial in any effort.
Different studies and formalisms of argumentation have
come out of different fields such as philosophy [11, 14,
15, 19] decision analysis [17] and artificial intelligence [9,
16, 4]. These formalisms attempt to deal with the
uncertainty inherently present in the world. Behind every
decision, though, there is an argument supporting it, and
arguments range from rhetorical explanations to
mathematical proofs. Argumentation theory leverages
problem solving under uncertainty by supporting
qualitative and quantitative approaches.

Analysis, on the other hand, deals with the examination and
separation of a complex situation, its elements, and its
relationships. More often than not, the situation is full of
unknowns, uncertainties, and deliberate misinformation.
The analyst is confronted not only with the facts, but also
with his or her knowledge about the facts and assumptions,
others' possible knowledge, the hypotheses that can be
drawn from those facts, and the evidence supporting and
contradicting those hypotheses (Heuer 1999).

Under the sponsorship of the Defense Advanced Research
Projects Agency (DARPA) of the U.S. Department of
Defense, SRI International is developing SEAS, the
Structured Evidential Argumentation System also known as
the SRI Early Alert System (Lowrance, Harrison, and
Rodriguez 2000). This work builds upon an earlier effort
(Stokke et al. 1994) that developed the first SEAS prototype
applied to the problem of early warning for project
management. In our current work, SEAS is being
generalized and applied to the problem of crisis warning for
national security. Our goal is to construct a system capable
of aiding intelligence analysts in leveraging analytic
products and methods developed for past situations or by

‘"

other analysts addressing the same or similar contemporary
problems. These analytic products take the form of
arguments: given a framework of assumptions, some
conclusions or statements can be reached. While national
security analysis is the focus of this work, we believe that
the tools and methods being developed have broad
application outside of the national security arena. We
believe that these tools and methods can be effectively
applied to any problem where regular assessments must be
made, based upon evidence from multiple sources, within a
complex and uncertain environment.

CAPTURING ANALYTIC METHODS

Our approach is based on the concept of a structured
argument. A structured argument is based on a
hierarchically organized sct of questions (a tree) that is
used to assess whether an opportunity or threat of a given
type is imminent. This hierarchy of questions is called the
argument's template (as opposed to the argument, which
is an instantiation of the template). This hierarchy of
questions supporting questions may go a few levels deep
before bottoming out in questions that must be directly
assessed and answered. These are multiple-choice
questions, with the different answers corresponding to
discrete points or subintervals along a continuous scale,
with one end of the scale representing strong support for a
particular type of opportunity or threat and the other end
representing strong refutation. Leaf nodes represent
primitive questions, and internal nodes represent
derivative questions. The links represent support
relationships among the questions. A derivative question
is supported by all the derivative and primitive questions
below it. Figure 1 illustrates a seventeen-question
argument template, with twelve primitive questions and
five derivative questions. Note that question 1 is answered
based upon the answers to 1.1, 1.2, 1.3, and 1.4, and 1.2 is
answered based upon the answers to 1.2.1, 1.2.2, and

Figure 1: An example argument skeleton

An inference method completes an argument template. It
is used to automatically answer some questions based
upon the answers to other questions. The analyst answers
the primitive questions in the question hierarchy, and the
answers to the derivative questions are automatically
calculated. In so doing, our approach emphasizes the usc
of simple and regular inference structures. These
structures are captured by argument skeletons and
associated inference methods. The same argument
skeleton and inference methods are typically used to
support multiple argument templates over widely differing

85

topics. A typical inference mecthod might take the
maximum answer as the conclusion when combining
several questions assessed along a continuous scale. The
idea is that if the argument template author fully
understands the structure of the interrelated questions that
constitute the argument skeleton and the propagation
scheme implemented by the inference method, then the
author can write the argument template questions and
answers to fit. The simpler the argument skeletons and
inference methods, the easier it is for the author.

The use of regular argument skeletons is encouraged —
that is, skeletal trees where all branches are identically
structured. Regular structures help to encourage that equal
time and emphasis are placed on all aspects of an analysis.
Likewise, the use of uniform or regular inference methods
is encouraged. A uniform inference method, where every
derivative question's answer is derived using the same
fusion method, makes for the easiest arguments to
understand and lines of reasoning to follow. A regular
inference method, one that employs the same fusion
method across all questions at the same depth in the
skeletal tree, is the next easiest to understand and follow.

Our philosophy is directly opposed to that of most
uncertain reasoning systems. In most systems, the author
begins by determining what questions might be asked and
then interrelates them through a complex set of
interconnections, typically annotated with conditional
probabilities. As a result, the updating scheme is often
complex and difficult to follow for those not versed in
probability theory. While this "strong model" approach
can be very effective when properly applied, we believe
that the "weak model" approach emphasized here is easier
to understand and use. Its effectiveness is directly related
to the author's ability to adapt to these simple and regular
inference structures, writing questions and answers that
properly function within these constraints. Thus,
knowledge is entered via text editing, without the use of
probabilities or weights, making knowledge entry easy.

The challenge in authoring an argument template is to
break the problem down into a hierarchically structured
sct of questions that matches the selected argument
skeleton and whose interrelationships among the answers
follow the inference method. Therefore, it is critical that
the author understands the structure of the argument
skeleton and the effect of the inference method, before
beginning to fashion the questions and answers that will
be posed by the argument template. See Figure 2 for an
example argument template question hierarchy.

Each derivative question is represented by two text
strings: a fopic and the question itself. Primitive questions
also include a question amplification string and five
multiple-choice answers. The amplification states the
question in more detail, reminding the user of the range of
things to consider when answering the question.

To facilitate the rapid comprehension of arguments, we
use a traffic light metaphor; relating answers to colored
lights along a linear scale, from green to red. The
questions in a template are yes/no or true/false; the
multiple-choice answers for primitive questions partition
this range, associating an answer with each colored light.
Typically, a five-light scale is used (green, yellow-green,
yellow, orange, red). Here green might correspond to true,

Figure 2: An example argument template question
hierarchy

1. POLITICAL: Is this country headed for a political crisis?

1.1. POLITICAL INSTABILITY: Is political instability
increasing?

1.1.1 INCREASINGLY UNSTABLE/WEAK
GOVERNMENT: Is the government becoming
increasingly unstable or weak?

1.1.2 INCREASING CONFLICT OVER POLICY/ISSUE
AREA: Is increasing conflict over policy/issuc areas
having a destabilizing cffect?

1.1.3 DECREASING PUBLIC CONFIDENCE: Is decreasing
public confidence in the leadership or government policies
having a destabilizing effect?

1.2. POWER STRUGGLE: Is there a government power struggle
with potentially destabilizing consequences?

1.2.1. FACTIONALISM: Is there evidence of growing
factionalism within the govemnment, bureaucracy, or
legislature that is leading to or exacerbating a power
struggle?

. OPPOSITION CHALLENGE: Is there a significant
political opposition challenge to the government that is
leading to or exacerbating a power struggle?

1.2.3. SUBNATIONAL GROUP INFLUENCE: Are powerful
subnational groups contributing to a government power
struggle by influencing or backing specific government
officials/factions?

1.3. GOVERNMENT RESPONSE TO SOCIO-POLITICAL
DISCORD: Is the government resorting to increasingly
stringent measures in response to socio-political discord with
potentially destabilizing consequences?

1.3.1. REPRESSION OF POLITICAL OPPOSITION: Is
government repression of the political opposition or
dissident groups occurring/increasing?

1.3.1 REPRESSION OF SOCIAL/RELIGIOUS GROUPS:
Is government repression of social/religious groups
occurring/increasing?

1.3.2 NTERNAL SECURITY MEASURES: Is the
government instituting or strengthening internal security
measures in response to armed
(guerrilla/insurgency/separatist) movements or
terrorist/criminal activity?

1.4. STRUCTURAL/INSTITUTIONAL PROBLEMS: Are
there serious or worsening or institutional problems that could
have destabilizing consequences?

1.4.1. CONSTITUTIONAL CONFLICT/CRISIS: Is there a
constitutional conflict/crisis?

1.4.2. ERODING LEGAL
AUTHORITY/ADMINISTRATIVE FUNCTIONS: Are
legal authorities or administrative functions eroding?

86

red to false, and the other three to varying degrees of
certainty. Ideally, the multiple-choicc answers are as
concrete as possible and directly and unambiguously
observable, making it easier for the user to recognize the
answer that fits the situation being analyzed. No multiple-
choice answers are associated with derivative questions;
within arguments, their answers are strictly summarized
by lights indicating their degrec of certainty.

There are two distinct ways of approaching the structuring
of an argument template: top-down and bottom-up. Using
the top-down approach, onc starts with the central
question and attempts to break it down into a small set of
supporting questions, each of approximately the same
significance; then one breaks down each of those
questions, attempting to break each into the same number
of equally significant questions. This procedure continues
until questions are produced that can be directly answered
or until the number of overall questions has become too
numerous to include in a single template. In this latter
case, the author might elect to limit the depth of the
original template and then capture those elements that fell
below that depth limit in their own templates; each of
these cascaded templates would share its root question
with one of the primitive questions in the original
template. The relationship of these cascaded templates to
the original template can be captured by adding these to
the original template as discovery tools (more on this
below). As such, an analyst who is developing an
argument based upon the original template, and is
confronted with one of its primitive questions, can either
elect to directly answer the stated question or invoke one
of these discovery tools to further break down the
question. The advantage of this approach is that the
analyst determines which of these discovery tools to
employ, thus choosing where and where not to spend time.

Using the bottom-up approach, one starts by enumerating
the detailed conditions that should lead to wamning. Once
these are enumerated, one begins to cluster these into
coherent collections of roughly equal size and
significance. One then clusters the clusters, again striving
for clusters of equal size and significance, and continues
this process until a single cluster remains. Each cluster
should give rise to a question in the resulting template,
with the nesting of the clusters captured as supporting
questions.

In practice, neither the top-down nor bottom-up approach
is employed in its pure form. Instead, both are typically
employed at different times, one after the other, until a
satisfactory result is achieved. Once the overall skeletal
structure has been established, then the author's attention
should turn to writing the detailed questions and answers
for the template.

In general, discovery tools are recommended methods for
acquiring information relevant to answering questions in

an argument template. These might be links to Web pages,
queries to databases or search engines, parameterized
launches of other analytic tools, or references to cascaded
templates. They capture an important aspect of an
analyst's knowledge, namely, where and how to go about
seeking information relevant to answering questions.
Knowledge of this form is one thing that distinguishes an
expert from a novice analyst. Discovery tools are captured
on primitive questions within a template by storing their
URLSs along with short citation strings used to reference
them. Again, simple text editing is all that is needed to
define these.

Finally, the author should establish a situation descriptor,
for a new template, that describes the type of situations for
which the template is intended to be used. Unlike the
other information provided by the user in defining a
template, much of the information in a situation descriptor
is chosen from a situation ontology rather than being free
text. The situation ontology serves much the same purpose
as a card catalog in a library; it establishes indices and
terms that are useful for retrieving objects based upon the
type of situation to which they are applied. For national
security problems, these include the part of the world
being analyzed (e.g., the continent, region, or country
under assessment), the principal actor (e.g., the leadership,
the government, or its people), the event (e.g., political,
economic, financial, or currency), and the time period.
These descriptions, with the exception of time, are
selected from hierarchies of terms that are established
through traditional knowledge engineering techniques. By
indexing objects according to this situation ontology, both
exact and semantically close matches can be automatically
retricved based upon a description of the situation of
interest expressed in the same terms. These situation
descriptors are augmented by free text fields where the
specific aspects of the situation can be fully expressed;
thus, the ontological terminology need not fully capture
every distinction.

In practice, we have found that analysts are capable of
authoring templates after minimal training, but that
authoring high-quality templates is challenging and
requires additional experience. To jump-start this process
for problems of national defense, we convened a
multidisciplinary team of experts to establish high-level
templates for assessing the stability of nation states. The
idea was to provide analysts with an example that they
could then improve upon or adapt to specific situations,
because it is easier to modify an example than to generate
a template anew. The results have been well received. We
imagine that variants of this high-level template will
eventually be supported by cascaded templates that are
more pointed. While the high-level template is useful in
reminding analysts of the full range of indicators that need
to be assessed and for generally organizing the analysis,
their abstract nature prevents them from delivering much

87

in the way of expert guidance. Given that templates
cascaded under this high-level template will address more
specific and limited analytic tasks, we anticipate that they
will capture expert knowledge suitable for guiding
analysts in doing analytic tasks that fall outside of their
areas of expertise. Thus, these templates capture and
deliver best practice.

CAPTURING ANALYTIC PRODUCTS

Arguments are formed by answering the questions posed
by a template and attaching the evidence that was used in
arriving at the selected answers. In essence, an argument
organizes the indications and warning signs for the given
type of opportunity or threat.

Figure 3: Argument hierarchy showing answers

ANV

Answers are chosen from the multiple choices given by
the associated template. If the available information docs
not allow the analyst to reduce the possible answers to a
single choice, multiple ones can be selected bounding the
answers that remain possible, given the available
information. The rationale for answering in that way is
recorded as a text string with attribution given to the
answering analyst and the time that that answer was given.

Upon answering each question, the template's inference
method is applied, deriving the answers to derivative
questions. Using the traffic light metaphor, arguments can
be displayed as a tree of colored nodes. Nodes represent
questions, and colors represent answers. Figure 3 shows
one such tree. The line of reasoning can be easily
comprehended and the analyst is able to quickly determinc
which answers are driving the conclusion. By examining
the high-value answers, the rationale behind the line of
reasoning can be understood.

Information used as evidence to support the answers given
in an argument is recorded as part of the argument. When
information that is potentially relevant to answering a
question posed is first found, it is entered as an exhibit. An
exhibit assigns a unique identifier to the information, and
records the URL for accessing it and a citation string for
referring to it (typically consisting of some combination of
title, author, and date). When the relevance of the
information to the question at hand is determined, the
exhibit is promoted to evidence. The relevance is recorded
in two ways: as a text string explaining the significance
and as the answer(s) to the question that would be chosen
if the answer were to be based solely upon this evidence.
The analyst making this assessment and the time of the
assessment are recorded as well. When evidence is
present, the rationale typically explains how the collective

evidence supports the answer(s) chosen, explaining away
that evidence that contradicts the answer and weaving
together the supporting evidence to arrive at the stated
conclusion.

When discovery tools are present, they can be used to aid in
the collection of evidence. When these tools are based upon
cascaded templates, cascaded arguments result from their
use. In this way, the analyst can choose where they want to
do a more thorough analysis, delving more deeply in a
targeted way. A cascaded argument's conclusion can be
automatically used as its relevance in support of the higher-
level argument.

The analyst also chooses a fusion method for combining all
of the evidence gathered supporting a single template
question. The fusion method can be manual (i.e., the analyst
answers the question based on his or her understanding of
the evidence and its relevance) or automated (i.e., the
answer is automatically reached by applying a combination
method to the relevance of the supporting evidence). When
an automated method is in use, changes in supporting
arguments can ripple up through the arguments that they
support, changing their conclusions.

As seen in Figure 4, complex lines of reasoning can be
captured using this methodology. Here a multidimensional
argument (i.e, a coordinated set of unidimensional
arguments like those discussed) is graphically depicted at
the top; it represents a coordinated assessment along
multiple perspectives. It is supported by structured
arguments as well as documents and analytic products
produced by other tools. This structure allows analysts to
quickly come to understand the reasoning of others and
compare and contrast it with their own.

Figure 4: Cascaded structured arguments

Multidimensiona Ewirormental

argument summery

New information
available

Unidimensional
argument

Supporting

Cascaded query struciure

arguments
[

Supporting critical
path analysis

88

Like argument templates, arguments too have associated
situation descriptors. An argument's situation descriptor is
like a template's situation descriptor except that it captures
information pertaining to the prevailing situation for
which the argument was developed. Like the situation
descriptors associated with templates, they are used to
find arguments that address related situations.

A CORPORATE MEMORY OF ANALYTIC
KNOWLEDGE

To support the application of the structured argumentation
methodology, SRI is developing SEAS, the Structured
Evidential Argumentation System. SEAS has been
developed as a Web server that communicates with
remote browser-based clients. Through HTML and
JavaScript, SEAS supports analysts in locating,
understanding, and developing templates and arguments,
This analytic knowledge is maintained within a
knowledge-base management system, with ephemeral
views served up upon demand. Figure 5 shows one such
view of a primitive question within an argument.

Figure 5: SEAS argument in browser client

m Argument: Political.lran ecr-pb
‘b./I\ 9 4 :\ @ : ®r

OO EEE E DOEE OO0 A
=

Base Quesnon
REPRESSION OF BOLITICAL OPPOSITION 13 govemment repression of the polincal opposmon or dissudent groups
occummg/mCTess®
Consider the Sollowiag
@ Coustlives 03 poluical opposimptbissdents
© Ban s poltice] purtiesimonmens
o s or emewions of poliical oppos¥ioalisssest deaders
« @ting dowa of or imposed mstrictions ox melis
® forests or emcwtions of memders of the mebi

Analyst Phiip Bayer, SRI Inemational, Oz 05-04-2000 131736

@ Yo, amosteerenly

O imy

O Pren, about as Likely 83 not

(O unikely

() ¥o, atmost cermmly ot
Rationale

Thers sev increasiag xqas that the Conservarves wall (g & e uard actioh aquiast the nlormers. Reform pownalists
ke inertased seriny snd have beus sUmBOded €0 COWE 10 auswar for tha polixcal wtxles Abo, befors tha
aections, the Conswrvtiver managed 10 bisquabdly o gy aember of Reform Partiam eaiary canbodaces

Documentary Evidence {2] {vith Fuston Method)
-- Fuching kit Post an Repreccon af Rerarmerns AN
ol B Analyst, Joha D Lownace, SR Ivensucionsd S e
on 14062000 08:48 15

Belrvance This wtsche clealy (hows Ot
conservrmes allied with the clenscs aev yg
(0 mpeess (e teformes and thar allies i the
powmbst soamuaiy rowh dsqublyag
by chetd Relom membert of Putumest
sad Dy emvsting and fatin dating fownshsts

APP Artick ax Barnalcct Sam@orrd x S ey e
Horsiedsaety ot SRR BV
Aasiyst Joha D Lownace, SRI buemations]
o 01052001 110611
Belevance Th stxl B 2 pime emmphe of Dow the
conservitives, wing (Mt cowts, we tryug 1o
npnss sl e they peuss e
TiP Tu crene o mrw Bueumentary Evideare fv s reae ¥ o5 aa ExMibit alihen ponced
Extubits {2} a
217 1+ | v R ——
n NY Jimes 0w Reprecous of Deces!
TP To wbl an Exhilbin, edek 03 the BBoske Dton ehowe

Discovery Tools [1]
B raso swrd o trus News Swanks

If we are to recognize future opportunities and threats,
then we must relate the present to the opportunities and

threats of the past. We must understand how the current
situation is like or unlike previous situations; how the
indications and warning signs arc similar or dissimilar;
how previous opportunities or threats were recognized or
missed; how previous opportunities or threats evolved and
thereby how the present situation might evolve; and how
previous situations werc leveraged, mitigated,
exacerbated, or missed. In short, we need a corporate
memory that is more than a historical data repository; we
need a corporate memory of analytic products and
methods on which to base future analysis.

By recording and retaining analytic thinking in a tommon
knowledge repository, analysts can leverage the thinking
from the past and present when addressing new tasks.
Based upon the indexing provided by the situation
descriptors, potentially relevant templates and arguments
can be found.

Beyond the analytic methods (i.e., argument templates),
analytic products (i.e., arguments), and their associated
situations (i.e., situation descriptors), we have found that
analysts need additional means for associating meta-
knowledge with these objects. To address this need, SEAS
supports memos.

Memos are structured annotations that are attached to
other objects within the SEAS knowledge base. Each
memo includes text strings for its subject and body and a
type selected from a pre-established set including critique,
to do, summary, instruction, and assumption. Like
arguments and templates, they have a designated audience
that restricts their access by others; only those that are
members of the audience will know of their existence. As
such, memos provide a means for private, semiprivate, or
public communication among analysts. Critiques are a
way for contemporary analysts to contribute to each
other’s work. - Assumptions might be added so that
analysts in the future will better be able to interpret a
historical analysis. Within SEAS, memos can be
selectively filtered based upon their type, with graphical
depictions indicating to the user where they can be found.
This provides a ready means for analysts to find and
interpret this form of meta-knowledge.

While analytic knowledge that is developed in SEAS is
retained in its corporate memory, as are references to
external analytic products used as evidence, there are
times when one would like to import arguments produced
using other technologies, so that they can be extended or
otherwise modified. Our objective is to provide a means
for the exchange of information among tools that can be
said to produce arguments. If tools can be said to be
~ argumentation tools, then they should be able to exchange
arguments. Although argumentation tools share common

concepts, they invariably have some unshared concepts,
. necessarily making importation imperfect.

89

Toward this objective, we are defining the Argument
Markup Language (AML), an XML representation of
arguments, and modifying SEAS to support the
importation and exportation of these objects. The initial
set of argumentation tools that we aim to support
comprises those based upon Bayesian nets, particularly
drawing from the Bayesian Net Interchange Format
(Microsoft 2001), CIM (Veridian 2001), a structured
argumentation tool developed at the same time as SEAS
but with an emphasis on arguments about processes, and
SEAS. While this is the initial set, we are aiming for a
general design that will support a far greater number of
tools, including those based upon both numeric and
symbolic representations of certainty. We began by
looking for common semantic concepts within these tools
and using terminology from the Law to capture them.
Legal terminology was selected since the Law already
includes a rich notion of argumentation from evidence and
provides a technology-neutral vocabulary, many of whose
terms are in common use. An initial version of AML has
been defined, and CIM and SEAS are being modified to
support it.

RELATIONSHIP TO OTHER WORK

The structured argumentation methodology and SEAS
were developed to aid those performing analytic tasks. In
particular, we were not looking to automate the analytical
reasoning that they perform, but to facilitate it. This
methodology

o Encourages careful analysis, by reminding the analyst
of the full spectrum of indicators to be considered

e Eases argument comprehension and communication
by allowing multiple visualizations of the data at
different levels of abstraction, while still allowing the
analyst or decision maker to "drill down" along the
component lines of reasoning to discover the detailed
basis and rationale of others' arguments

e Invites and facilitates argument comparison by
framing arguments within common structures

In addition, SEAS provides synchronous and
asynchronous access to a corporate memory of analytic
methods and results, which allows analysts to work
together on common arguments as well as leveraging
historical results. Collaboration, then, is recognized as an
important part of the process and leads to arguments that
are richer than would have been otherwise the case. The
Web is an ideal medium for collaboration, driven by the
near ubiquity of browser software and the information
explosion on the Web.

The goals of structured argumentation differ from those of
other knowledge capturing tasks. In most knowledge
engineering efforts the objective is to elicit and represent
the knowledge of humans in machines so that the machine
can later use this knowledge to approximate the reasoning
of humans. This largely requires that the knowledge be

captured in not natural language but in ontological
structures that ¢an be more readily manipulated by
machines. Examples include Cyc [1], DARPA High
Performance Knowledge Bases [2], DARPA Rapid
Knowledge Formation (3], GKB-Editor [13], EcoCyc [8],
and Ontolingua [5].

Today, intelligence analysts usually capture their
knowledge in text documents. Typically, these documents
have minimal structure, limited to section titles that break
up the document. These intelligence reports are intended
for human consumption. However, because of their
limited structure they are time consuming to read and
understand. To compare one report with another requires
that both reports be read, and it is up to the reader to find
common and uncommon aspects of the underlying
reasoning. It is also up to the reader to extract the analytic
method if it is to be employed in doing related analyses.
Searching a collection of such reports to find ones that
might be related to the current problem of interest is also
time consuming. Of course, word processing and search
engines can help to speed this process, but the level of aid
is fundamentally limited.

Structured argumentation fits between these two
approaches. It introduces more structure into the analytic
environment than is in use today but not as much as
typical knowledge engineering efforts. The analytic
method is separated from the analytic products, resulting
from its application. The analytic method is broken down
into a set of smaller analytic tasks, with their
interrelationships captured. ~ Methods for acquiring
information in support of these analytic tasks are also
broken out. In structure, analytic results parallel the
analytic methods on which they are based, with links to
the information that supports the conclusions retained, and
to the interpretations of that information relative to each
analytic task. The type of situation for which a method
was designed and for which a result was produced is also
captured. However, much of the knowledge captured
remains in natural language. In fact, when one compares
an analytic product produced” using SEAS with a
contemporary analytic product expressed in a text
document, one finds that most of the text found in the
document is found within the structured argument. The
structure has not replaced the words as much as it has
augmented them, making it possible for the machine to aid
the analysts in new ways.

This approach bears a resemblance to some recent work in
support of knowledge mobility [6]. In this work, the
rationale and sources of knowledge, drawn upon in
engineering knowledge, are retained within the resulting
formal structures. So doing allows others to more readily
understand why knowledge was captured as it was,
making it easier to reapply, extend, or modify. These
resilient hyper knowledge bases use a layered architecture
to capture knowledge from the most to the least formal.

This work can be viewed as building up from form
knowledge to less formal knowledge, while our work ¢
be viewed as building down from informal knowledge
more formal knowledge.

The structure introduced into the analytic process by !
structured argumentation methodology, althoy;
motivated by the desire to help humans, also represents 33§,
opportunity for greater accessibility to automatéajs ,
methods. These methods might attempt to provide criticg|’
feedback to the analyst or automatically make correctiong, ?
Such feedback can be readily communicated using the®
SEAS memo facility; thus, automated collaborators would
interact in the same way as human collaborators. Some of‘;‘
these capabilities could be introduced without the need to+
perform any natural language understanding; other
capabilities might require some limited understanding;
still others would benefit from more comprehensive
natural language understanding.

Without the introduction of natural language
understanding, we intend to develop an automated
argument critic that provides several kinds of feedback, -
For example, such a critic could examine the answer to
every question in an argument, to determine if the answer
is supported by evidence, if each picce of evidence
includes a statement of its relevance, and if the rationale
for the overall answer is given. It could also check for
overreliance on any single document supporting the
answer to multiple questions, since overuse of any source
of information leaves one vulnerable to its accuracy and
truthfulness. :

The corporate memory of arguments presents other
opportunities. By comparing the focal argument to
successful arguments from the past, other useful sources
could be identified that have not been used in the focal
argument. Likewise, sources that had previously led to
poor results could be flagged. Similarly, more complex
patterns of previous use could be exploited.

With the aid of some natural language understanding
technology, coupled with inference capabilities based
upon formal knowledge representations, we might develop
more sophisticated aids. These might look to find logical
contradictions in the way that evidence was interpreted or
in the rationale accompanying answers given. They might
also look to suggest alternative interpretations.

CONCLUSIONS

We believe that our structured argumentation
methodology, as implemented in SEAS, has shown that
the addition of even minimal structure into the analytic
process can aid analysts in developing, communicating,
explaining, and comparing analytic results. An important
aspect of this methodology is the retention of direct links
to the source material and its interpretation relative to the
conclusions drawn, allowing analysts to readily
comprehend the thinking of others. This, coupled with a

' collaborative environment and a corporate memory of

analytic thought, retaining the analytic methods and
products of an enterprise, allows analysts to leverage the
thinking of others both past and present. Finally, even
though our methodology was motivated by the desire to
help human analysts, it lays the groundwork for the

; introduction of automated methods to substantially aid or
panially supplant human analytic reasoning. We contend

that this methodology complements those knowledge
capturing methodologies that strive to formally represent
human knowledge in rich ontological structures.

ACKNOWLEDGEMENTS

We would like to recognize the contributions made to this
work by our colleagues supporting DARPA’s Genoa
program. In particular, we would like to thank the present
and past DARPA Genoa program (Doug Dyer, Tom
Armour, and Brian Sharkey), the other Genoa contractors,
particularly Syntek (John Poindexter and Greg Mack),
Veridian Systems Division (Mark Lazaroff, Scott Fisher,
and Jill Jermano), and ISX (Mark Hoffman), and our
colleagues at SRI (Tom Boyce, Eric Rickard, Phil Bayer,
Vinay Chaudhri, Jerome Thomere, and Karen Myers).

REFERENCES
[1]1 Cycorp (2001); The Cyc Knowledge Server;
http://www.cyc.com/

[2] DARPA (2000); High Performance Knowledge Bases
Project, http://reliant.teknowlcdgc.com/HPKB/

3] DARPA (2001); The Rapid Knowledge Formation
Project; http://reliant.teknowledge.com/RKF/

[4] Dung, P. (1995); On the Acceptability of Arguments
and Its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games; Artificial
Intelligence 77 (pp. 321-58)

[5] Fikes, R., Farquhar, A., and Rice, J. (1997); Tools for
Assembling Modular ~ Ontologies in Ontolingua;
Knowledge Systems Larobatory, Stanford University

[6] Gil, Y. (2001); Knowledge Mobility: Semantics for
the Web as a White Knight for Knowledge-Based
Systems, forthcoming

[7] Heuer, R. (1999); Psychology of Intelligence Analysis;
Center for the Study of Intelligence, Central Intelligence
Agency

91

[8] Karp, P., Chaudhri. V., and Paley, S. (1999); A
Collaborative Environment for Authoring Large
Knowledge Bases; in Journal of Intelligent Information
Systems, Vol. 13 (pp. 155-194)

[9] Loui, R. (1987); Defeat Among Arguments: A System

of Defeasible Inference; in Computational Intelligence;
Vol 3 (pp. 100-106).

[10] Lowrance, J., Harrison, 1., and Rodriguez, A. (2000);
Structured Argumentation for Analysis; in Proc. 12" Int.
Conf. on Systems Research, Informatics, and Cybernetics:
Focus Symposium on Advances in Computer-Based and
Web-Based Collaborative Systems (pp. 47-57)

[11] Lorenzen, P. and Lorenz, K. (1977); Dialogische
Logik; Wissenschaftliche Buchgesellschaft Darmstadt

[12] Microsoft (2001); XML Belief Net File Format;
http://www.research.microsoft.com/dtas/bnformat/

[13] Paley, S., Lowrance, J., and Karp, P. (1997); A
Generic Knowledge Base Browser and Editor; in Proc
Ninth Conf. on Innovative Applications of Artificial
Intelligence

[14] Perelrr}an, C. (1970); Le Champ de l'argumentation;,
Bruxelles: Editions de I'Université

[15] Perelman, C. and L. Olbrechts-Tyteca. (1958); Traité
46 l'argumentation - la nouvelle rhétorique;, Bruxelles:
Editions de 1’Université

[16] Pollock, J (1987); Defeasible Reasoning; in
Cognitive Science, Vol. 11 (pp. 481-518).

[17] Sycara, K. (1990); Persuasive Argumentation in
Negotiation, Theory and Decision Vol. 28, No. 3 (pp.
203-42)

[18] Stokke, R., Boyce, T., Lowrance, J., and Ralston, W.
(1994); Evidential Reasoning and Project Early Warning
Systems; Journal of Research and Technology
Management . ’

[19] Toulmin, S. (1958); The Uses of Arguments;
Cambridge University Press

[20] Veridian Systems Division (2001); Critical Intent
Modeling; unpublished

Knowledge Capture and Utilization in Virtual Communities

Yasmin Merali
Information Systems Research Unit
Warwick Business School
The University of Warwick
Coventry CV4 7AL
United Kingdom
Yasmin.Merali@warwick.ac.uk

Abstract

The literature on knowledge management highlights issues
of fit between IT-based systems for knowledge management
and the socially situated leveraging of knowledge assets by
organisations [1]. This paper explores the way in which a
knowledge-sharing environment (KSE) can facilitate
knowledge capture and utilization in virtual communities.
The KSE (Jasper II) is a system of information agents for
organising, summarizing and sharing knowledge from a
number of internal and external sources, including the
World Wide Web (WWW). The paper describes the
features and functionality of Jasper II, and goes on to show
how it can be leveraged to support the capture of both tacit
and explicit knowledge in virtual communities. The final
discussion focuses on the dynamics of the knowledge
capture and utilization process, highlighting the importance
of the feedback mechanisms that enable the KSE to meet
the specific needs of diverse, evolving communities. It
suggests that besides supporting the dynamic knowledge
requirements of communities, the KSE can play a key role
in the evolution of existing communities.

Keywords
Knowledge management, knowledge sharing environments,
virtual communities

INTRODUCTION

Whilst the ubiquity of communication and access to
information afforded by the internet, intranets and extranets
provides unprecedented opportunity for the exploration of
inter- and intra- organizational information and knowledge
resources, it has created new challenges for the effective
exploitation of these resources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

K-CAP01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00

92

John Davies
Advanced Business Applications
BTexact Technologies
Adastral Park
Ipswich IP5 3RE
United Kingdom
john.nj.davies@bt.com

This paper is concerned with the way in which IT-based
systems can enhance the utilization and leveraging of
knowledge in organisations. It shows how a knowledge
sharing environment (KSE) can be utilized to explore and
exploit both tacit and explicit knowledge processes in
virtual communities. The next section, outlining key issues
in knowledge management today, is followed by a
description of the salient features of the KSE (Jasper I1).
The final section concludes with a discussion on the
socially situated utilization of Jasper II to support
knowledge workers and meet the specific needs of diverse,
evolving communities.

ISSUES IN KNOWLEDGE MANAGEMENT

—

1

Knowledge processes are often classified according to -

whether they entail knowledge creation or knowledge reuse.

However in effect, the two are not orthogonal, as new:
knowledge builds on (or, alternatively, uses as a point off
departure) existing knowledge [2]. Knowledge reuse entails
three main activities [3]: ’
¢ location of documents or records that may contain: ’
relevant explicit knowledge, J

|

e selection of relevant/significant items from the set_’f
retrieved through the search and

¢ applying the knowledge in a particular context.

The escalation in the volume of available information ha§
exacerbated problems of information location, selection and
evaluation (of quality and cumrency of retriev;
information). The deployment of IT to automate the proces?
of locating, retrieving, delivering and disseminatinfgv
information makes good sense. Most knowledg§
management systems attempt to deal with these aspects,!
albeit with varying degrees of success.

;i

The processes of selection, evaluation and application
all context dependent and socially situated (i.e. peopl
determine what these processes look like, and the processeg
themselves shape, and are shaped by, the standards, value
and expectations of the society that gives rise to them). ;
piece of information perceived to be highly valuable by o8
person or group here and now may not have the same val
for a different person or group at the same time in SO

1

other place, engaged in some different task, or working with
a different value system. Equally the value of information
may change over time.

Taking knowledge management to be the process by which
organisations manage the creation, capture, dissemination
and utilization of knowledge, the main challenges for
practitioners include:

e scanning multiple internal and external sources
effectively,

e meeting the diverse, dynamic, context specific
information needs of individual and groups of
knowledge workers in real time,

e capturing the knowledge that is generated when people
use knowledge to do their jobs

o getting people to disseminate what they have learnt and

e getting people to use knowledge that has been
generated by others (overcoming the “not invented here
syndrome” and getting people to trust and value the
contributions of others).

The knowledge capture issue is often discussed in terms of
capturing explicit and tacit knowledge. Explicit knowledge
is that which can be expressed in language and can
therefore be codified and recorded. Tacit knowledge is that
which cannot be expressed in language (4, 5. It is
generally accepted that tacit knowledge can be transmitted
through socialization processes [6] such as a master-
apprentice “learning by accompanying, watching, helping
and copying” arrangements. Most organisational action is
context-specific, and tacit knowledge underpins the choice
of appropriate actions for given situations. It is thus a
valuable resource, and failure to manage it effectively can
lead to loss of expertise when people leave, failure to
benefit from the experience of others, needless duplication
of a learning process, and so on.

Most knowledge management systems cater for the
organisation, storage and dissemination of explicit
" knowledge. For access to tacit knowledge, they provide a
“yellow pages” facility for the location of people who are
considered to be particularly knowledgeable about
particular subjects and situations. In the final section we
_will sec how KSE’s like Jasper II can contribute more
. effectively to the process of sharing tacit knowledge.

)

" !'Three organisational trends have added to the complexity of
'i the problem:

e the move towards flexible work practices resulting in
increasing numbers of mobile and home workers, so
that people who would normally share information
contexts are no longer co-located,

i‘ the increasing importance of cross-functional and inter-
organisational collaborative work practices and
project-based organisation: this has generated the need
for people to share information contexts with others
from disparate disciplines and backgrounds, and

e the thrust towards responsive organisation: in the
increasingly interconnected world, there is greater
uncertainty in the competitive context, and the context
is more dynamic, demanding fast (and often
innovative) organisational responses. This trend
underlines the importance of knowledge creation and
reuse and highlights its relationship to organisational
learning [7].

The activities of knowledge creation and organisational

learning take place in the social context [8, 91

Consequently the focus of knowledge management experts

has extended from the design of systems 1o capture and

deliver explicit information to the development of virtual
environments to foster and support knowledge networks
and virtual communities of practice.

Communities of Practice

The term ‘community of practice’ {10] describes the
informal groups where much knowledge sharing and
learning takes place and has been increasingly applied in
the knowledge management context. Essentially a
community of practice is a group of people who are 'peers
in the execution of real work’ [11]. They are typically not a
formal team but an informal network, each sharing in part a
common agenda and shared interests.

Knowledge Networks

The networking aspect is particularly important in dynamic
contexts in which knowledge workers may be confronted
with the need to locate and harness rapidly the expertise of
individuals from disparate disciplines and locations with
whom they have no continuity of shared interest or common
agenda. Communities of practice and social networks both
highlight the importance of the link between social capital
and knowledge resources for effective knowledge
management.

Figure 1 (modified from [12]) provides a schematic
representation of the main issues relating to the process of
knowledge management discussed so far (problem areas are
denoted by the “!” sign, and dotted lines represent weak or
inadequate links).

?

ACCESS UTILISATION CREATION
\3: /

¥, LS

CAPTURE < DEFINITION G &

Figure 1: Issues in the Process of Knowledge
Management (modified from (12hH

Most knowledge management systems aspire to capture
information matching specified user profiles and querics.
Increasingly, the more advanced products on the market
offer both push (proactive delivery of information that
matches individual user profiles or specific tasks) and pull
facilities (reacting to user requests).

The bigger challenge for knowledge management lies in the
problem of capturing and re-using knowledge that is
generated during knowledge work (depicted by the cycle on
the right in the diagram). Whilst individuals and groups
working on a problem may learn significantly from their
experience, the knowledge created by this process tends to
remain private. This is due to a number of reasons
including

e the time and effort required to analyse and record what
has been learnt,

e the lack of a context within which to articulate
individual learning,

e the lack of recognition for individual contributions to
the organisational knowledge pool, and

e the “knowledge is power” syndrome and the fear of
losing their niche in the organisation.

The establishment of communities of practice is thought by
many to offer a way of overcoming some of these barriers
to knowledge sharing [11], and internet-based knowledge
support environments are seen as a way of enabling the
establishment of virtual communities of practice. The next
section describes the features of one such environment, and
the final section discusses the way in which KSEs can be
deployed to foster and sustain such communities and
networks of communities.

FEATURES OF THE KNOWLEDGE SHARING
ENVIRONMENT (KSE)

In this section we outline the main features of Jasper II, a
knowledge sharing environment (KSE). Jasper 11 is
comprised of a system of intelligent software agents that
retrieve, summarize and inform_ other agents about
information considered to be of some value by a Jasper 11
user. The information may be from a number of different
sources: it can be generated by the user himself, it can be an
internet/intranet page, archived information from
internal/external repositories or from another application on
the user’s own computer.

The process by which Jasper II agents search for, select,
retrieve, and present information that matches user-
specified profiles and queries is outlined below.

Storage and Organisaiton o finforamtion

Information is not copied from its original location to the
local server: the agents store only the relevant meta-
information. This meta-information is then used to index
on the actual information when a retrieval request is made.
In the case of WWW-based information the URL of the

94

WWW page is then added to the Jasper II store. Similarly,
when the user wishes to store some information from g
source other than WWW, (s)he can enter the information ip
a text box on their WWW browser and can again supply a
relevant annotation. The information thus entered could be
from a document in another format or might be a note or
snippet of knowledge that the user wishes to enter directly,
This information is converted to a WWW HTML page on
the user’s Jasper 11 server and stored as before.

Essentially, the Jasper II store is a simple term-document
matrix M.

Each user has a personal agent that holds a user profile
based on a set of key phrases which models that user’s
information needs and interests. As we will see below, the
modeling process is an adaptive one with the Jasper Il agent
suggesting modifications aimed at refining the profile to
better reflect the user’s actual information needs and
interests.

A major advantage of the Jasper scheme of using explicit
terms (words and phrases) to represent a user’s interests via
their profile is that the profile is explicitly available to the
user at all times. In other schemes (e.g. using neural or
Bayesian networks), the user profile is essentially a “black
box” which is invisible to the user. Trials of Jasper with
around 1000 users in one organisation revealed that users
preferred the version that made their profiles visible.

Matching and Selection of Information

Jasper uses the vector space model [13] for assessing the
relevance of shared information to individual users.
Essentially, the shared information (document) and user
profile (query) are placed in an n-dimensional vector space,
where # is the number of unique terms (words and phrases)
in the data set. A vector matching operation, based on the
cosine correlation used to measure the cosine of the angle
between vectors can then be used to measure the similarity
between a document and a query (or user profile). Terms
are weighted according to a variant of the (fidf weighting
scheme [14], which takes into account the frequency of the
term in the given document, the document length and the
frequency of the term across the entire Jasper document
collection, with more weight being given to rarer terms.

The similarity of Jasper users is calculated by calculating

the Dice coefficient for their profiles. The Dice coefficient -

provides a measure of similarity between 2 profiles based

on the number of terms (words and phrases) which co-occur

in the profiles, normalised for profile length. [15]

Dissemination and Delivery

When a user, finds information of sufficient interest to be
shared with their community of practice, a ‘share’ request is
sent to Jasper I via a menu option on his or her wwWwW
browser. Jasper Il then invites the user to supply an

annotation to be stored with the information. Typicallys

users provide annotations to do one or more of the
following:

e give reasons for sharing the information,
e provide a comment on the information content,

e highlight the relevance of the information to current
issues and contexts, and

¢ highlight the relationship of the information to past
discussions or postings.

At storage time, the Jasper Il agent performs four tasks:

e it creates an abridgement of the information, to.be held
on the uscr’s local Jasper II server. This summary is
created using the ProSum automatic text summarisation
tool. Access to this locally held summary enables a
user to quickly assess the content of a page from a local
store before deciding whether to retrieve (a larger
amount of) remote information,

e it apalyses the content of the page and matches it
against every user’s profile in the community of
practice. If the profile and document match strongly
enough, Jasper 1l emails the user, informing him or her
of the page that has been shared, by whom and any
annotation added by the sharer,

e it matches the information against the sharer’s own
profile. If the profile does not match the information
being shared, the agent will suggest phrases that the
user may elect to add to their profile. These phrases are
those reflecting the information’s key themes and
concepts and are automatically extracted using the
ProSum system. Thus Jasper II agents have the
capability to adaptively learn their user’s interests by
observing the user’s behaviour and

¢ for each document, it makes an entry in the Jasper II
store, holding keywords, an abridgement of the
document, document title, user annotation, universal
resource locator (URL), the sharer’s name and date of
storage.

_In summary, Jasper II allows a user to store information of
interest using an enhanced, shared community bookmark
concept. However, this facility goes well beyond the
bookmarks familiar from WWW browsers such as Netscape
Communicator, in that in addition to the reference to the
remote WWW document, a summary of the document, an

. annotation, date of storage and the user who stored the

information are recorded in a shared store. Furthermore,

Jasper 11 can be used to store and organise information from

many sources and in many formats (rather than only

WWW-based information).

95

Proactive Delivery

As described above, when information is stored by a Jasper
11 agent, the agent checks the profiles of other agents’ users
in its particular community (the set of users who contribute
to that particular Jasper II community). If the information
matches a user’s profile sufficiently strongly, an email
message is automatically generated by the agent and sent to
the user concemned, informing the user of the discovery of
the information. Thus in cases where a user’s profile
indicates that they would have a strong interest in the
information stored, they are immediately and proactively
informed about the appearance of the information.

Keyword Retrieval — Accessing Information and
People

From his or her Jasper II home page, a user can supply a
query in the form of a set of key words and phrases in the
way familiar from WWW search engines (see Figure 2).
The Jasper II agent then retrieves the most closely matching
pages held in the Jasper II store, using a vector space
matching and scoring algorithm [16].

In addition to these pages from the Jasper 1l store, the agent
can also retrieve a set of pages from an organisation’s
intranet and from the WWW. The agent then dynamically
constructs an HTML page with a ranked list of links to the
pages retrieved and their abridgements, along with the
scores of each retrieved page. In the case of pages from the
Jasper II store, any annotation made by the original user is
also shown.

Figure 2 depicts a typical Jasper 11 home page displaying
retrieved information. In addition, a series of buttons are
provided so that the user can:

e add their own comment or annotation to information
stored by another user,

e indicate interest or disinterest in a particular piece of
information — this feedback will be used to modify the
user’s profile,

e examine a locally held summary of the information
before deciding to download all the information, and

e ask their Jasper II agent to identify other users with an
interest in the information under consider-tion. We will
have more to say about this capability to identify other
users as well as information later in this paper when we
look at the role of Jasper II in managing the tacit
dimension of knowledge management.

T

) = Summary

{U sUsers

Q) = Add comment
@ sintercsted

@5 « Not intorestad

‘ lwhat's Newlivg

(::) P Mo s Wi PRg: DOOEE 15

witsche Telalom to o v Iemet ok hom sevarce m 399
i oFisiia ” ¢ Onm fi

[s RUR+ECHORA
Owams |
I

[sRUR +RCRCR
Onm

o0o®Ek
Qe E
[+

1 Apr 998 C efmtod nitas 1o KM Nk proposal
ISF (LAY
(Roger M)

¢ Goorms Goip ue I GRNEEnD €

Figure 2: A typical Jasper II home page

What's new

A user can ask his or her Jasper Il agent "What’s new?"
The agent then interrogates the Jasper 1 store and retrieves
the most recently stored information. It determines which of
these pages best match the user’s profile. A WWW page is
then presented to the user showing a list of links to the most
recently shared information, along with annotations where
provided, date of storage, the sharer and an indication of
how well the information matches the user’s profile (the
thermometer-style icon in Figure 2).

This What’s New information is in fact displayed on the
user’s Jasper Il home page, so that whenever they access
the system, they are shown the latest information.

Adaptive Agents

We have already mentioned that Jasper II agents adapt to
better understand their user’s interests over time. There are
two types of event which trigger the profile adaptation
process.

As discussed above, when a user is sharing some
information, if the sharer’s profile does not match the
information being stored Jasper I will automatically extract
the main themes from the information using ProSum. The
user’s agent then suggests to the user new phrases that they
may wish to add to their profile. The user can accept or
decline these suggestions.

Similarly, when information stored by another member of
the community is retrieved by a user using one of the
methods described earlier, a feedback mechanism is
provided whereby the user can indicate interest or
disinterest in the information by clicking on a button
(indicated by © or ® as shown in Figure 2). Again, the

. 1
agent will suggest to the user phrases that should be added '
to or removed from the profile.

SOCIALLY SITUATED DEPLOYMENT OF THE KSE
In the last section we focused on the fechnical aspects of
Jasper I and on the sharing and storing of explicit
knowledge. Explicit knowledge we take to be that
knowledge which has been codified in some way. This
codification can take place in many different media (paper,
WWW page, audio, video, and so on). This captured,
codified form is referred to as a “knowledge artifact” in the
discussions that follow. In the context of Jasper II, by
explicit knowledge, we mean the information shared in
Jasper 11, along with the meta-information associated with it
such as the sharer, the annotations attached to it, and so
forth.

We now turn to the social aspects of the system, involving
the organisational capture and utilization of socially

situated and contextual (sometimes tacit) knowledge. We -

revisit the issues of knowledge management highlighted at
the beginning of this paper and discuss the way in which the
features of a KSE like Jasper Il can be leveraged to
facilitate the more dynamic aspects of the knowledge
management process in virtual communities of practice.

Capture and Codification of Explicit Knowledge
and the Issue of Context-Specific Knowledge
Before looking at the socially situated processes of

knowledge management it is useful to review some of the

fundamental characteristics of knowledge reuse and the way
in which formal processes of knowledge capture and
codification deal with contextual knowledge.

The Formal Process

There are three major roles in the knowledge reuse process :

[3]):

o the knowledge producer (who originally expresses and

records explicit knowledge),

o the intermediary (who structures knowledge for reuse |

by indexing, summarising, sanitising and packaging it), :

and

e the knowledge consumer (who retrieves the knowledge

content and applies it in some way.

It has been shown that the way in which producers record

knowledge differs significantly depending on whether they
are recording it for themselves, for similar others or for
different others. 1

Whilst one individual can perform all three roles, it is .
generally considered inadvisable for the producer to also
act as the intermediary if the knowledge is intended for use*
by somebody else. This is because of the issue of context:
for individuals who work in similar contexts, contextualj
detail associated with the application of a piece of
knowledge is helpful in understanding the utility value Ofi

|

that knowledge. However for contextually distant workers,
the inclusion of detail creates confusion and acts as noise,
obfuscating the intrinsic value of the knowledge being
transmitted [17]. The producer is too close to the original
context to be able to sanitise the knowledge effectively.

The Need for a More Expedient Complementary
Mechanism

The formal knowledge capture process therefore has the
following characteristics:

e it is time consuming,

e it tends to sanitise (and strip away the context from)
knowledge descriptions and

e it tends to “frecze” knowledge definitions.

These characteristics contribute to the development of
validated, stable knowledge repositories. To reusc this
knowledge, the knowledge consumer must recognise or
(re)define the context within which to best leverage the
retrieved knowledge.

On the other hand if we are

e interested in capturing knowledge from the cycle on the
right hand side of Figure 1 (i.e. capturing the context
specific by-product of knowledge work), and

¢ dealing with dynamic contexts in which the pressures
to act appropriately in a given time and space are high,
so that the right context specific information is very
valuable, but the shelf-life of context-specific
knowledge is low (because the context is dynamic),

we need to find more expedient but robust ways of dealing
with the needs of knowledge workers in a complementary
fashion alongside the formal process (which remains
valuable for archiving validated knowledge claims and for
providing access to stable knowledge resources).

The KSE-Enabled Virtual Community of Practice
The virtual community of practice presents itself as a way
of organising the less formal, more socially embedded
knowledge management activities. The following discussion
is based on observations made over a period of time in
several different types of Jasper I communities.

As highlighted earlier, members of a community share a
degree of contextual proximity, rendering the sanitisation
process unnecessary, enabling the exploitation of contextual
information. As outlined below, a KSE-enabled community
of practice plays a variety of roles in the knowledge
management process:

As a medium for the diffusion of knowledge generated as a
by-product of knowledge reuse:

When a Jasper 11 user retrieves a useful knowledge artefact,
annotates it and decides to share it with the rest of the
community, the circulated artefact effectively incorporates
the sender’s judgement which is a product of his or her

e -

97

engagement with the artefact and his or her attempt to
evaluate its utility.

As a mechanism for facilitating and expediting the
knowledge reuse process

When a Jasper 11 user selects and commends a knowledge
artefact to his or her peers, the artefact enters the
community context. Subscquent annotations may serve to
refine the contextual utility of the artefact. The selection
and introduction of the knowledge artefact into the
community space and the subsequent additions of
annotations effectively act as collaborative filtering and
contextualisation mechanisms.

As a substrate for the co-evolution of shared
awareness

The sharing and annotation activities reinforce a shared
understanding amongst the members of the community.
Because Jasper Il agents arc able to search a variety of
internal and external sources, and because between them the
different individuals instruct their agents to search a
diversity of sources, the community space can be populated
with items of current relevance, and the annotation facility
enables capture of individual perspectives on the items.

Because Jasper Il enables this type of dynamic
contextualisation of retrieved knowledge artefacts, it can be
utilised to raise the collective awareness of

contemporaneous issues and views, and can help individual
perceptions to evolve in step with the demands of the
dynamic external context.

In summary, the mechanisms outlined above highlight the
way in which Jasper Il can support the dynamic,
instantaneous and sometimes transitory utilisation of
knowledge generated as a by product of knowledge work.
The process of annotating and sharing knowledge artefacts
can be considered to

e feed off the shared nature of the community context,
e reinforce the shared nature of community context and

o refresh and update the collective perception of the
community context.

This type of utilization of Jasper II is complementary to the
more formal processes described earlier. Formally
constructed archives are an information source for agents to
search. Jasper II logs constitute an organisational “memory”
in addition to providing up-to-date data that can be used in
formal processes for the evaluation of the popularity
(frequency of access) and utility of the knowledge artifacts.

A KSE-Enabled Social Network

One way in which a system such as Jasper II can encourage
the sharing of tacit knowledge is by using its knowledge of
the users within a community of interest to put people who
would benefit from sharing their knowledge in touch with
one another automatically.

One important way we gain new insights into problems is
through ‘weak ties’, or informal contacts with other people
(18, 19]. Everyone is connected to other people in social
networks, made up of stronger or weaker ties. Stronger ties
occur between close friends or parts of an organisation
where contact is maintained constantly. Weak ties are those
contacts typified by a ‘friend of a friend’ contact, where a
relationship is far more casual. Studics have shown that
valuable knowledge is gathered through these weak ties,
even over an anonymous medium such as electronic mail
and that weak ties are crucial to the flow of knowledge
through large organisations. People and projects connected
1o others through weak ties are more likely to succeed than
those that are isolated [20, 21].

Though Jasper II does not explicitly support weak ties,
initial trials of Jasper II have shown a number of features
that support social networking:

e people contributing information are more likely to
make informal contact with others using Jasper I,

e Jasper 1l can identify thosc people who could be
sources of information and

e the store of URLs, with associated annotations and
other meta-information, becomes a long-term memory
for the community.

User profiles can be used by the Jasper II system to enable
people to find other users with similar interests. The user
can request Jasper I via their WWW client to show them a
fist of people with similar interests to themselves. Jasper 11
then compares their profile with that of every user in the
store and returns to the WWW client for viewing by the
user a list of names of users whose interests closely match
their own. Each name is represented as a hypertext link
which when clicked initiates an email message to the named
user. Profiles in Jasper II are a set of phrases and the vector
space model can be used to measure the similarity between
two users. A threshold can then be used to determine which
users are of sufficient similarity to be deemed to ‘match’.

This notion is extended to allow a user to view a set of
users who are interested in a given document. When Jasper
11 presents a document to the user via their WWW client
using the “What's new?” facility (see above), there is also a
hyperlink presented which when clicked will initiate a
process in the Jasper Il system to match users against the
document in question, again using the vector cosine model.
Jasper Il determines which members of the community
match the relevant document above a predetermined
threshold figure and presents back to the user via their
WWW client a list of user names. As before, these names
are presented as hypertext links, allowing the user to initiate
an email message to any or all of the users who match the
document.

In addition, as discussed earlier, a user can carry out a
keyword search on other users and thus identify users with
an interest in a particular subject.

98

In this way, Jasper II, while not claiming to actually capture
tacit knowledge, provides an environment which actively
encourages the sharing of tacit knowledge, perhaps by
people who previously would not otherwise have been
aware of each other’s existence.

Networks of Communities

Because Jasper II allows individuals to be members of
multiple virtual communities concurrently, it supports
cross-fertilisation of ideas between communities. This has
obvious advantages for individuals who are involved in
cross-boundary projects, and it can serve to counteract the
institution of “silo” mentalities amongst members of close-
knit communities.

More significantly for the knowledge management process,
this structure of networked communities makes it possible
to deploy cross-functional, multi-skilled teams without
sacrificing access to the collective and specific expertise of
individual communities.

CONCLUSION

The main purpose of this paper was to explore the role of
KSEs in the facilitating knowledge capture and utilization
in virtual communities of practice. The following list
summarizes the key concepts emerging from this discussion

Organisational Learning

The discussion highlighted the importance of capturing and
reusing the knowledge that is generated as a by-product of
knowledge work. This is the knowledge resulting from
individual “leaming by doing”. In showing how features of
the KSE can be utilized to leverage this type of knowledge
in virtual communities, we effectively described a process
for the transfer of individual learning to organisational
learning.

Dynamic Contextualisation

The discussion also highlighted the importance of rapid
dynamic contextualisation of retrieved knowledge artifacts
and the role of the shared community understanding in
expediting this process.

Networking

The other important aspect to emerge from this discussion
was the notion of using KSEs to support networking at both
the individual and community levels. The importance of
social networks in knowledge management is well
established, and the concept of inter-community networking
represents an important mechanism for sustaining 2
diversity of community-based expertise within an open
structure enabling cross-fertilization of ideas between
different virtual communities.

In conclusion it is important to note that KSEs like Jasper 1I
are effective in supporting and sometimes enhancing formi}1
and informal practices of knowledge management, but their,

effcctiveness is predicated on their sensitive deployment
within the social and organisational contexts.

ACKNOWLEDGEMENTS

This research was carried out while the principal author was
visiting BTexact technologies as a Short Term Research
Fellow. We thank Nick Kings for his efforts in furnishing
her with background information about the rescarch at
BTexact and for his help in organising interviews with key
personnel.

REFERENCES

1. Merali, Y., "Information, Systems and Dasein”, in
Systems for Sustainability: People, Organisations and
Environments, Stowell, F. , McRobb, 1., Landor, R.,
Ison, R., Holoway, J., (Editors); pp 595-600, Plenum,
(1997).

2. Schumpeter, J.A, The Theory of Economic
Development. Harvard University Press, Cambridge.
MA, (1934).

3. Markus, M.L., "Toward a Theory of Knowledge
Reuse: Types of Knowlwdge Reuse Situations and
Factors in Reuse Success " Journal of Management
Information Systems, 18 (1), pp 57-93 (2001).

4. Polanyi, K., Personal Knowledge: Towards a Post-
Critical Philosophy, Routledge and Kegan Paul,
London, (1958).

5. Polanyi, K. ,The Tacit Dimension. Routledge and
Kegan Paul, London, (1967).

6. Nonaka, 1. and Takeuchi, H., The Knowledge-Creating
Company, Oxford University Press, New York, (1995).

7. Argyris, C. and Schon, D. A, Organisational
Learning, Addison-Wesley, Reading, MA, (1978).

8. Merali, Y., "Leveraging Capabilities: A Cognitive
Congruence Framework” in Knowledge Management
and Organizational Competence, Ed. Sanchez, R,
Oxford University Press, New York, (2001).

9. Merali, Y., "Individual and collective congruence in
the knowledge Management Process", Journal of
Strategic Information Management, 9 (2-3): Special
Issue on Knowledge Management and Knowledge
Management Systems, (2000), pp 213-234.

99

10. Wenger, E., Communities of Practice, Cambridge
University Press, Cambridge, UK, (1998).

11. Brown, J. S. and Duguid, P.. "Organizational learning
and communities of practice: Toward a unified view of
working, learning and innovation", Organization
Science, 2, pp 40-57, (1991).

12. Merali, Y. "Information Technology and Dasein"
Working Paper, Warwick Business School, (2000)

13.Harman, D., “Ranking Algorithms”, in [nformation
Retrieval, Frakes, W. and Bacza-Yates, R., Prentice-
Hall, New Jersey, USA, 1992.

14.Salton, G. & C. Buckley, “Term-weighting approaches
in automatic text retrieval”, Information Processing &
Management, 24(5), pp 8-36, 1988.

15. McGill, M.et al., 1979. “An evaluation of factors
affecting document ranking by IR Systems,” Project
Report. Syracuse, NY, USA: Syracuse University
School of Information Studies.

16. Salton, G., Automatic Text Processing. Reading, Mass.,,
USA: Addison-Wesley, (1989).

17. Ackerman, M.S. Definitional and Contextual Issues in
Organizational and Group Memories, University of
California, Irvine, (1994), Available at
http//www.ics.uci.edu/-ackerman/.

18. Granovetter, M., "The Strength of Weak Ties",
American Journal of Sociology, 78, 1360-1380,
(1974).

19. Granovetter, M., "The Strength of Weak Ties: A
Network Theory Revisited", in Social Structure and
Network Analysis, Marsden, P. and Nan, L. (Editors),
Sage Publications, California, (1982)

20. Constant, D., Sproull, L. and Kiesler, S., "The Kindness of
Strangers: The Usefulness of Electronic Weak Ties for
Technical Advice", Organization Science, 7 (2), 119-135,
(1996).

21. Hansen, M.T., "The Search-Transfer Problem: The
Role of Weak Ties in Sharing Knowledge Across
Organisation Subunits", Working Paper, Harvard
Business School, 1997

s

Capturing knowledge of User Preferences: Ontologies in
Recommender Systems

Stuart E. Middleton, David C. De Roure and Nigel R. Shadbolt
Department of Electronics and Computer Science
University of Southampton
Southampton, SO017 1BJ, UK
Email : {sem99r,dder,nrs}@ecs.soton.ac.uk

ABSTRACT

Tools for filtering the World Wide Web exist, but they are
hampered by the difficulty of capturing user preferences in
such a dynamic environment. We explore the acquisition of
user profiles by unobtrusive monitoring of browsing
behaviour and application of supervised machine-learning
techniques coupled with an ontological representation to
extract user preferences. A multi-class approach to paper
classification is used, allowing the paper topic taxonomy to
be utilised during profile construction. The Quickstep
recommender system is presented and two empirical studies
evaluate it in a real work setting, measuring the
effectiveness of using a hierarchical topic ontology
compared with an extendable flat list.

Keywords
Ontology, recommender system, user profiling, machine
learning

INTRODUCTION

The mass of content available on the World-Wide Web
raises important questions over its effective use. With
largely unstructured pages authored by a massive range of
people on a diverse range of topics, simple browsing has
given way to filtering as the practical way to manage web-
based information — and for most of us that means search
engines.

Search engines are Very effective at filtering pages that
match explicit queries. Unfortunately, most people find
articulating what they want extremely difficult, especially if
forced to use a limited vocabulary such as keywords. The
result is large lists of search results that contain a handful of
useful pages, defeating the purpose of filtering in the first
place.

Recommender Systems Can Help
Now people may find articulating what they want hard, but
they are very good at recognizing it when they see it. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-581 13-380-4/01/0010.$5.00

100

insight has led to the utilization of relevance feedback,
where people rate web pages as interesting or not
interesting and the system tries to find pages that match the
interesting examples (positive examples) and do not match
the mot intcresting examples (negative examples). With
sufficient positive and negative examples, modern machine
learning techniques can classify new pages with impressive
accuracy.

Obtaining sufficient examples is difficult however,
especially when trying to obtain negative examples. The
problem with asking people for examples is that the cost, in
terms of time and effort, of providing the examples
generally outweighs the reward they will eventually receive.
Negative examples are particularly unrewarding, since there
could be many irrelevant items to any typical query.

Unobtrusive monitoring provides positive examples of what
the user is looking for, without interfering with the users
normal activity. Heuristics can also be applied to infer
negative examples, although generally with less confidence.
This idea has led to content-based recommender systems,
which unobtrusively watch users browse the web, and
recommend new pages that correlate with a user profile.

Another way to recommend pages is based on the ratings of
other people who have seen the page before. Collaborative
recommender systems do this by asking people to rate
explicitly pages and then recommend new pages that similar |
users have rated highly. The problem with collaborative
filtering is that there is no direct reward for providing -
examples since they only help other people. This leads to .
initial difficulties in obtaining a sufficient number of ratings
for the system to be useful.

Hybrid systems, attempting to combine the advantages of
content-based and collaborative recommender systems,
have proved popular to-date. The feedback required for
content-based recommendation is shared, allowing
collaborative recommendation as well. A hybrid approach
is used by our Quickstep recommender system.

This work follows the tradition of over 30 years of
knowledge acquisition. Knowledge acquisition above the’
normal workflow is intrusive and counterproductive. W‘E
present a system with a low level of intrusiveness, driven byi

i
i

people making explicit choices that reflect the real world to
capture profiles.

The Problem Domain

As the trend to publish research papers on-line increases, -

rescarchers are increasingly using the web as their primary
source of papers. Typical researchers need to know about
new papers in their general field of interest, and older
papers relating to their current work. In addition,
rescarchers time is limited, as browsing competes with
other tasks in the work place. It is this problem our
Quickstep recommender system addresses.

Since rescarchers have their usual work to perform,
unobtrusive monitoring methods are preferred else they will
be reluctant to use the system. Also, very high
recommendation accuracy is not critical as long as the
system is deemed useful to them.

Evaluation of real world knowledge acquisition systems, as
Shadbolt [21] discusses, is both tricky and complex. A lot
of evaluations are performed with user log data (simulating
real user activity) or with standard benchmark collections.
Although these evaluations are useful, especially for
technique comparison, they must be backed up by real
world studics so we can see how the benchmark tests
generalize to the real world setting. Similar problems are
seen in the agent domain where, as Nwana [16] argues, it
has yet to be conclusively demonstrated if people really
benefit from such information systems.

This is why we have chosen a real problem upon which to
evaluate our Quickstep recommender system.

User Profiling in Recommender Systems

User modelling is typically either knowledge-based or
behaviour-based. Knowledge-based approaches engineer
static models of users and dynamically match users to the
closest model. Behaviour-based approaches use the users
behaviour itself as a model, often using machine-learning
techniques to discover useful patterns of behaviour. Kobsa
[10] provides a good survey of user modelling techniques.

The typical user profiling approach for recommender
systems is behaviour-based, using a binary model
representing what users find interesting and uninteresting.
Machine-learning techniques are then used to assess
potential items of interest in respect to the binary model.
There are a lot of effective machine learning algorithms
based on two classes. Sebastiani [20] provides a good
survey of current machine learning techniques and De
Roure [5] a review of recommender systems.

Although more difficult than the binary case, we choose to
use a multi-class behavioural model. This allows the classes
to represent paper topics, and hence domain knowledge to
be used when constructing the user profile. We thus bring
together ideas from knowledge-based and behaviour-based

modelling to address the problem domain.

101

Ontology Use and the World Wide Web

Ontologies are used both to structurc the web, as in
Yahoo’s search space categorization, and to provide a
common basis for understanding between systems, such as
in the knowledge query modclling language (KQML). In-
depth ontological representations arc also seen. in
knowledge-based systems, which use relationships between
web entities (bookmarks, web pages, page authors etc.) to
infer facts about given situations.

We use an ontology to investigatc how domain knowledge
can help in the acquisition of user preferences.

Overview of the Quickstep System

Quickstep unobtrusively monitors uscr browsing behaviour
via a proxy server, logging each URL browsed during
normal work activity. A machine-learning algorithm
classifies browsed URLs overnight, and saves each
classified paper in a central paper store. Explicit feedback
and browsed topics form the basis of the interest profile for
each user.

Each day a set of recommendations is computed, based on
correlations between user interest profiles and classified
paper topics. Any feedback offered on these
recommendations is recorded when the user looks at them.

Users can provide new examples of topics and correct
paper classifications where wrong. In this way the training
set improves over time.

World Wide . Users .
Web [:1/} i rofile
~ - - = /}7//

Sili=

i
;
3

Classifier

Classified papers

Figure 1 The Quickstep system
Empirical Evaluation
The current literature lacks many clear results as to the
extent knowledge-based approaches assist real-world
systems, where noisy data and differing user opinions exist.
For this reason we decided to compare the use of an
ontology against a simple flat list, to provide some
empirical evidence as to the effectiveness of this approach.

Two experiments are detailed within this paper. The first
has 14 subjects, all using the Quickstep system for a period

of 1.5 months. The second has 24 subjects, again over a
period of 1.5 months.

Both experiments divide the subjects into two groups.

The first group uses a flat, extensible list of paper topics.
Any new examples, added via explicit feedback, use this
flat list to select from. The users are frec to add to the list as
needed.

The second group uses a fixed size topic ontology (based
on the dmoz open directory project hierarchy [6]). Topics
are selected from a hierarchical list based on the ontology.
Interest profiles of this group take into account the super
classes of any browsed topics.

Performance metrics are measured over the duration of the
trial, and thus the effectiveness of both groups compared.

APPROACH

The Quickstep System

Quickstep is a hybrid recommendation system, combining
both content-based and collaborative filtering techniques.
Since both web pages and user interests are dynamic in
nature, catalogues, rule-bases and static user profiles would
quickly become out of date. A recommender system
approach thus appeared well suited to our problem.

Explicit feedback on browsed papers would be too
intrusive, so unobtrusive monitoring is used providing
positive examples of pages the user typically browses.
Many users will be using the system at once, so it is
sensible to share user interest feedback and maintain a
common pool of labelled example papers (provided by the
users as examples of particular paper topics).

Since there are positive examples of the kind of papers
users are interested in, we have a labelled training set. This
is ideal for supervised learning techniques, which require
each training example to have a label (the labels are then
used as classification classes). The alternative, unsupervised
learning, is inherently less accurate since it must compute
likely labels before classification (e.g. clustering
techniques). We shall use a term vector representation,
common in machine learning, to represent a research paper.
A term vector is a list of word weights, derived from the
frequency that the word appears within the paper.

We could have used a binary classification approach, with
classes for “interesting” and “not interesting”. This would
have led to profiles consisting of two term vectors, one
representing the kind of thing the user is interested in
(computed from the positive examples) and the other what
the user is not interested in (computed from the negative
examples). Recommendations would be those page vectors
that are most similar to the interesting class vector. The
binary case is the simplest class representation, and
consequently produces the best classification results when
compared with multi-class methods.

One problem with such a representation is that the explicit
knowledge of which topics the user is interested in is lost,

102

making it hard to benefit from any prior knowledge we may
know about the domain (such as the paper topics). With
Quickstep, we have chosen a multi-class rtepresentation,
with each class representing a research paper topic. This
allows profiles that consist of a human understandable list
of topics. The classifier assigns each paper a class based on
which class vector it is most similar to. Recommendationg
are selected from papers classified as belonging to a topic
of interest.

The profile itself is computed from the correlation between
browsed papers and paper topics. This correlation leads to a
topic interest history, and a simple time-decay function
allows current topics to be computed.

Details of Specific Techniques Used

Research Paper Representation

Research papers are represented as term vectors, with term
frequency / total number of terms used for a terms weight.
To reduce the dimensionality of the vectors, frequencies
less than 2 are removed, standard Porter stemming [18]
applied to remove word suffixes and the SMART [22] stop
list used to remove common words such as “the”. These
measures are commonly used in information systems; van
Rijsbergen [24] and Harman [9] provide a good discussion
of these issues.

Vectors with 10-15,000 terms were used in the trials along
with training set sizes of about 200 vectors. Had we needed
more dimensionality reduction, the popular term frequency-
inverse document frequency (TF-IDF) weighting could be
used (term weights below a threshold being removed) or
latent semantic indexing (LSI).

Only Postscript and PDF formats (and compressed formats)
are supported, to avoid noisy HTML pages. This makes
classification easier, at the expense of HTML only papers.

Research Paper Classification

The classification requirements are for a multi-class
learning algorithm learning from a multi-labelled training
set. To learn from a training set, inductive learning is
required. There are quite a few inductive learning
techniques to choose from, including information theoretic
ones (e.g. Rocchio classifier), neural networks (e.g
backpropagation), instance-based methods (e.g. nearest
neighbour), rule learners (e.g. RIPPER), decision trees (€.g.
C4.5) and probabilistic classifiers (e.g. naive Bayes).

Multiple classifier techniques such as boosting [7] exist as
well, and have been shown to enhance the performance of
individual classifiers.

After reviewing and testing many of the above options, we
decided to use a nearest neighbour technique. The nearest
neighbour approach is well suited to our problem, since the
training set must grow over time and consists of multi-class
examples. Nearest neighbour algorithms also degrade well,
with the next closest match being reported if the correct oneé
is not found. The IBk algorithm {1] we chose outperformed

naive Bayes and a J48 decision tree in our tests. We also
use the boosting technique AdaBoostM1 [7], which works
well for multi-class problems if the boosted classifier is
strong enough. We found that boosting always improved
the base classifiers performance in our tests.

Nearest neighbour algorithms represent instances of
documents as term vectors within a term vector space.
Proximity of vectors within this term vector space indicates
similarity. To classify a new paper, the vector distance from
each example instance is calculated, and the closest
neighbours rcturned as the most likely classes. Inverse
distance weighting is used to decrease the likelihood of
choosing distant neighbours.

AdaBoostM1 extends AdaBoost to handle multi-class cases
since AdaBoost itself is a binary classifier. AdaBoostM1
repeatedly runs a weak learning algorithm (in this case the
IBk classifier) for a number of iterations over various parts
of the training set. The classifiers produced (specialized for
particular classes) are combined to form a single composite
classifier at the end.

Profiling Algorithm

The profiling algorithm performs correlation between the
paper topic classifications and user browsing logs.
Whenever a research paper is browsed that has a classified
topic, it accumulates an interest score for that topic. Explicit
feedback on recommendations also accumulates interest
values for topics. The current interest of a topic is
computed using the inverse time weighting algorithm
below, applied to the user feedback instances.

n
Topic interest =Z Interest value(n) / days old(n)

1..no of instances

Interest values Paper browsed = 1
Recommendation followed = 2
Topic rated interesting = 10
Topic rated not interesting = -10

The profile for each user consists of a list of topics and the
current interest values computed for them (see below). The
interest value weighting was chosen to provide sufficient
weight for an explicit feedback instance to dominate for
about a week, but after that browsed URL’s would again
become dominant. In this way, the profile will adapt to
changing user interests as the trial progresses.

Profile = (<user>,<topic>,<topic interest value>)*

e.g. ((somconehypertext,-2.4)
(someone,agents,6.5)
(someone,machine learning,1.33))

If the user is using the ontology based set of topics, all
super classes gain a share when a topic receives some
interest. The immediate super class receives 50% the main

103

topics value. The next super class receives 25% and so on
until the most general topic in the is-a hierarchy is reached.
In this way, general topics are included in the profile rather
than just the most specific ones, producing a more rounded
profile.

Recommendation Algorithm

Recommendations are formulated from a correlation
between the users current topics of interest and papers
classified as belonging to those topics. A paper is only
recommended if it does not appear in the users browsed
URL log, ensuring that recommendations have not been
seen before. For each user, the top three interesting topics
are selected with 10 recommendations made in total
(making a 4/3/3 split of recommendations). Papers are
ranked in order of the recommendation confidence before
being presented to the user.

Recommendation confidence =classification confidence *
topic interest value

The classification confidence is computed from the
AdaBoostM1 algorithm’s class probability value for that
paper (somewhere between 0 and 1).

Research Paper Topic Ontology

The research paper topic ontology is based on the dmoz [6]
taxonomy of computer science topics. It is an is-a hierarchy
of paper topics, up to 4 levels deep (e.g. an “interfacc
agents” paper is-a “agents” paper). Pre-trial interviews
formed the basis of which additional topics would be
required. An expert review by two domain experts validated
the ontology for correctness before use in the trials.

Feedback and the Quickstep Interface

Recommendations are presented to the user via a browser
web page. The web page applet loads the current
recommendation set and records any feedback the user
provides. Research papers can be jumped to, opening a new
browser window to display the paper URL. If the user
likes/dislikes the paper topic, the interest feedback combo-
box allows “interested” or “not interested” to replace the
default “no comment”. Finally, the topic of each paper can
be changed by clicking on the topic and selecting a new one
from a popup menu. The ontology group has a hierarchical
popup menu; the flat list group has a single level popup
menu.

2 hitp /enc ecs soton ac /R ecommendalioni’ages/HRecommendationi‘age bim -
T, T

~1em3%/VsecInallanll

%

Resoiution for Temporal Logics of knowledge Clare Dixon,
Michael FisherMichael | . . _ rtepresenfation
DRAFT Specticalion of the KWL Agent: Cotnrmunication Language knowfedge

plus example agent . representation

The DARPA Knowtedge Sharing Effart Progress Report Raresh knowdedge

S Pabl USC Info Sci Inst Manna det Rey, Canfornia Richard B representation

Fihes Stanford UnnersityPalo. U
Logic Gioup First f January 1932 Repont Logic-92-1 Sunent
VersionJune1992 . . L ..
Unmersital Stutgart F akultaTtinformativ & Fobust and Eficient
Mechantsm fo

ASIP of [P-telephony Master's Thes Freank Fingat & Fatnk
Gustavsson 10Fe

knowledge
_ representation

wtemet communicadon [No Commere)

internet commumication

[
B rep Jerc scn soton o /- serS3 AdveeT natiact Aocormen 38 JTRRI

Figure 2 Quickstep’s web-based interface

New examples can be added via the interface, with users
providing a paper URL and a topic label. These are added
to the groups training set, allowing users to teach the system
new topics or improve classification of old ones.

All feedback is stored in log files, ready for the profile
builders run. The feedback logs are also used as the primary
metric for evaluation. Interest feedback, topic corrections
and jumps to recommended papers are all recorded.

EVALUATION

Details of the Two Trials

Two trials were conducted to assess empirically both the
overall effectiveness of the Quickstep recommender system
and to quantify the effect made by use of the ontology.

The first trial used 14 subjects, consisting of researchers
from the IAM research laboratory. A mixture of 2" year
postgraduates up to professors was taken, all using the
Quickstep system for a duration of 1.5 months.

The second trial used 24 subjects, 14 from the first trial and
10 more 1* year postgraduates, and lasted for 1.5 months.
Some minor interface improvements were made to make the
feedback options less confusing.

The pre-trial interview obtained details from subjects such
as area of interest and expected frequency of browser use.

The purpose of the two trials was to compare a group of
users using an ontology labelling strategy with a group of
users using a flat list labelling strategy. Subject selection for
the two groups balanced the groups as much as possible,
evening out topics of interest, browser use and research
experience (in that order of importance). Both groups had
the same number of subjects in them (7 each for the pilot
trial, 12 each for the main trial).

In the first trial, a bootstrap of 103 example papers covering
17 topics was used. The bootstrap examples were obtained
from bookmarks requested during the pre-trial interview.

In the second trial, a bootstrap of 135 example papers
covering 23 topics was used. The bootstrap training set was
updated to include examples from the final training sets of

104

the first trial. The first trials classified papers were also
kept, allowing a bigger initial collection of papers from
which to recommend in the second trial.

Both groups had their own separate training set of
examples, which diverged in content as the trial progressed.
The classifier was run twice for each research paper,
classifying once with the flat list groups training set and
once with the ontology groups training set. The classifier
algorithm was identical for both groups; only the training
set changed.

The system interface used by both groups was identical,
except for the popup menu for choosing paper topics. The
ontology group had a hierarchical menu (using the
ontology); the flat list group had a single layer menu.

The system recorded the times the user declared an interest
in a topic (by selecting “interesting” or “not interesting”),
jumps to recommended papers and corrections to the topics
of recommended papers. These feedback events were date
stamped and recorded in a log file for later analysis, along
with a log of all recommendations made. Feedback
recording was performed automatically by the system,
whenever the subjects looked at their recommendations.

Experimental Data

Since feedback only occurs when subjects check their
recommendations, the data collected occurs at irregular
dates over the duration of the trial. Cumulative frequency of
feedback events is computed over the period of the trial,
allowing trends to be seen as they develop during the trial.
Since the total number of jumps and topics differ between
the two groups, the figures presented are normalized by
dividing by the number of topics (or recommendations) up
to that date. This avoids bias towards the group that
provided feedback most frequently.

Figure 3 shows the topic interest feedback results. Topic
interest feedback is where the user comments on a
recommended topic, declaring it “interesting” or “not
interesting”. If no feedback is offered, the result is “no

comment”.

Topic interest feedback is an indication of the accuracy of
the current profile. When a recommended topic is correct
for a period of time, the user will tend to become content
with it and stop rating it as “interesting”. On the other hand,
an uninteresting topic is likely to always attract a “not
interesting” rating. Good topics are defined as either “no |
comment” or “interesting” topics. The cumulative
frequency figures are presented as a ratio of the total }
number of topics recommended. The not interesting ratio .
(bad topics) can be computed from these figures by
subtracting the good topic values from 1. /

The ontology groups have a 7 and 15% higher topic
acceptance. In addition to this trend, the first trial ratios are
about 10% lower than the second trial ratios.

Figure 4 shows the jump feedback results. Jump feedback is
where the user jumps to a recommended paper by opening
it via the web browser. Jumps are correlated with topic
interest feedback, so a good jump is a jump to a paper on a
good topic. Jump feedback is an indication of the quality of
the recommendations being made as well as the accuracy of
the profile. The cumulative frequency figures are presented
as a ratio of the total number of recommendations made.

There is a small 1% improvement in good jumps by the
ontology group. Both trials show between 8-10% of
recommendations leading to good jumps.

Good topics / total topics

20 30
Number of days into trial

50

Figure 3 Ratio of good topics / total topics

Corrections / recommendations

20
Number of days into trial

30 40 50

Figure 5 Ratio of topic corrections / total recommendations

A cross-validation test was run on each group’s final
training set, to assess the precision and recall of the
classifier using those training sets. The results are shown in
table 1.

yGroup(maI)t -« v 1 .Precision - Recall = Classes
¥Dridl 1, Ontology | 0.484 0903 27
Sl 1, Flatlise | | 0.52 1o 25
THal2, Ontology | 0457 0888 32
Wfnal2 Flatlist .| 0456 0972 32

‘Table 1 Classifier recall and precision upon trial completion

105

Figure 5 shows the topic correction results. Topic
corrections are where the user corrects the topic of a
recommended paper by providing a new one. A topic.
correction will add to or modify a groups training set so that
the classification for that group will improve. The number
of corrections made is an indication of classifier accuracy.
The cumulative frequency figures are presented as a ratio of
the total number of recommended papers seen.

Although the flat list group has more corrections, the
difference is only by about 1%. A clearer trend is for the
flat list group corrections to peak around 10-20 days into
the trial, and for both groups to improve as time goes on.

Good jumps / recommendations

20 30 40
Number of days into trial

50

Figure 4 Ratio of good jumps / total recomrﬁendations

Discussion of Trends Seen in the Experimental Data
From the experimental data of both trials, several
suggestive trends are apparent. The initial ratios of good
topics were lower than the final ratios, reflecting the time it
takes for enough log information to be accumulated to let
the profile settle down. The ontology users were 7-15%
happier overall with the topics suggested to them.

Our hypothesis for the ontology group’s apparently superior
performance is that the is-a hierarchy produces a rounder,
more complete profile by including general super class
topics when a specific topic is browsed by a user. This in
turn helps the profiler to discover a broad range of interests,
rather than just latching onto one correct topic.

The first trial showed fewer good topics than the second
trial (about a 10% difference seen by both groups). We
think this is because of interface improvements made for
the second trial, where the topic feedback interface was
made less confusing. Subjects were sometimes rating
interesting topics as not interesting if the paper quality was
poor. As there are more poor quality papers than good
quality ones, this introduced a bias to not interesting topic
feedback resulting in a lower overall ratio.

About 10% of recommendations led to good jumps. Since
10 recommendations were given to the users at a time, on
average one good jump was made from each set of
recommendations received. As with the topic feedback, the
ontology group again was marginally superior but only by a
1% margin. We think this smaller difference is due to
people having time to follow only 1 or 2 recommendations.
Thus, although the ontology group has more good topics,
only the top topic of the three recommended will really be
looked at; the result is a smaller difference between the
good jumps made and the good topics seen.

The flat list group has a poor correction / recommendation
ratio 10-20 days into the trial. We think this is due to new
topics being added to the system. Most new topics were
added after the users became familiar with the system, and
know which topics they feel are missing. The
familiarization process appeared to take about 10 days. The
classification accuracy of these new topics is poor until
enough examples have been entered, typically after another
10 days.

The ontology group has about 1% fewer corrections for
both trials. This is small difference may indicate the utility
of imposing a uniform conceptual model of paper topics on
the subjects (by using the common topic hierarchy).
Classifying papers is a subjective process, and will surely
be helped if people have similar ideas as to where topics fit
in a groups overall classification scheme.

These preliminary results need to be extended so as to
enable the application of more rigorous statistical analysis.
Nevertheless, we believe the trend. in the data to be
encouraging as to the utility of ontologies in recommender
systems.

When compared with other published systems, the
classification accuracy figures are similar, if on the low side
(primarily because we use multi-class classification).
Nearest neighbour systems such as NewsDude [3] and
Personal Webwatcher {14] report 60-90% classification
accuracy based on binary classification. The higher figures
tend to be seen with benchmark document collections, not
real-world data. NewsWeeder [12] reports 40-60%
classification accuracy using real user browsing data from
two users over a period of time, so this would be the best
comparison. If the number of classes we classify is taken
into consideration, our system compares well.

106

Multi-class classification is not normally applied o'
recommender systems making direct comparison of similar’
systems difficult. We would have liked to compare the
usefulness of our recommender to that of other systems, byt
the lack of published experimental data of this kind meang
we can only usefully compare classification accuracy.

CONCLUSIONS

Most recommender systems use a simple binary clagg
approach, using a user profile of what is interesting or not
interesting to the user. The Quickstep recommender system
uses a multi-class approach, allowing a profile in terms of
domain concepts (research paper topics) to ‘be built. The
multi-class classification is less accurate than other binary
classification systems, but allows class specific feedback
and the use of domain knowledge (via an is-a hierarchy) to
enhance the profiling process.

Two experiments are performed in a real work setting,
using 14 and 24 subjects over a period of 1.5 months. The
results suggest how using an ontology in the profiling
process results in superior performance over using a flat list
of topics. The ontology users tended to have more
“rounder” profiles, including more general topics of interest
that were not directly suggested. This increased the
accuracy of the profiles, and hence usefulness of the
recommendations.

The overall performance compares reasonably with other
recommender systems.

Related Work

Collaborative recommender systems utilize user ratings to
recommend items liked by similar people. Examples of
collaborative filtering are PHOAKS [23], which
recommends web links mentioned in newsgroups and
Group Lens [11], which recommends newsgroup articles.

Content-based recommender systems recommend items
with similar content to things the user has liked before.
Examples of content-based recommendation are Fab [2],
which recommends web pages and ELFI [19], which
recommends funding information from a database.

Personal web-based agents such as Letizia [13], Syskill &
Webert [17] and Personal Webwatcher [14] track the users
browsing and formulate user profiles. Profiles are
constructed from positive and negative examples of interest,
obtained from explicit feedback or heuristics analysing
browsing behaviour. They then suggest which links are
worth following from the current web page by
recommending page links most similar to the users profile.

News filtering agents such as NewsWeeder [12] and News
Dude [3] recommend news stories based on content
similarity to previously rated examples.

Systems such as CiteSeer [4] usc content-based similarity
matching to help search for interesting research papers
within a digital library. Ontologies are also used to improve
content-based search, as seen in OntoSeek [8].

Miladenic [15] provides a good survey of text-learning and
agent systems, including content-based and coliaborative
approaches.

Future Direction of Work

The next step for this work is to run more trials and perform
rigorous statistical analysis on the results. As the subjects
increase in number, we can become increasingly confident
of the power of the effects we are seeing.

Paper quality ratings will be elicited from users, so once an
interesting topic has been discovered, good quality papers
can be recommended before poorer quality papers.

The idca of building a profile that is understandable by the
users could be extended to actually visualizing the
knowledge contained within it. This will allow the
recommender to engage the user in a dialogue about what
exactly they are interested in. The knowledge elicited from
this dialogue should aliow further improvements to the
recommendations made. Additionally, visualizing the
profile knowledge will allow users to build a better
conceptual model of the system, helping to engender a
feeling of control and eventually trust in the system.

ACKNOWLEDGEMENTS
This work is funded by EPSRC studentship award number
99308831.

REFERENCES
1. Aha, D. Kibler, D. Albert, M. Instance-based learning
algorithms, Machine Learning, 6:37-66, 1991

2. Balabanovi, M. Shoham, Y. Fab: content-based,
collaborative recommendation, Communications of the
ACM Volume 40, No. 3 (Mar. 1997)

3. Billsus, D. Pazzani, M. A Personal News Agent that
Talks, Learns and Explains, Proceedings of the Third
International Conference on Autonomous Agents (Agents
'99), Seattle, Washington, 1999

4. Bollacker, K.D. Lawrence, S. Giles, C.L. CiteSeer: An
Autonomous Web Agent for Automatic Retrieval and
Identification of Interesting Publications, Proceedings of
the Second International Conference on Autonomous
Agents, Minneapolis MN, USA, 1998

5. De Roure, D. Hall, W. Reich, S. Hill, G. Pikrakis, A.
Stairmand, M. MEMOIR - an open framework for
enhanced navigation of distributed information,
Information Processing and Management, 37, 53-74, 2001

6. dmoz open directory project, Project home page
http://dmoz.org/

7. Frecund, Y. Schapire, R.E. Experiments with a New
Boosting Algorithm, Proceedings of the Thirteenth
International Conference on Machine Learning, 1996

8. Guarino, N. Masolo, C. Vetere, G. OntoSeek: Content-
Based Access to the Web, IEEE Intelligent Systems, Vol.
14, No. 3, May/June 1999

107

9. Harman, D. An Experimental Study of Factors Important
in Document Ranking. Proceedings of 1986 ACM
conference on Research and development in information
retrieval, September 1986, Pisa Italy

10.Kobsa, A. User Modeling in Dialog Systems: Potentials
and Hazards, Al & Society: The Journal of Human and
Machine Intelligence, 4:214-231, 1990

11.Konstan, J.A. Miller, B.N. Maltz, D. Herlocker, J.L.
Gordon, L.R. Riedl, J. GroupLens: applying collaborative
filtering to Usenet news, Communications of the ACM
Volume 40, No. 3 (Mar. 1997)

12. Lang, K. NewsWeeder: Learning to Filter NetNews,
ICML’95 Conference Proceedings, Tahoe City, CA, July
1995, pp 331-339

13.Lieberman, H. Letizia: An Agent That Assists Web
Browsing, Proceedings of the 1995 International Joint
Conference on Artificial Intelligence, Montreal, Canada,
August 1995

14. Mladenic, D. Personal WebWatcher: Implementation and
Design, Technical Report 1JS-DP-7472, Department of
Intelligent Systems, J.Stefan Institute, Slovenia, 1996

15.Mladenic, D. Text-Learning and Related Intelligent
Agents: A Survey, IEEE Intelligent Systems, Vol. 14, No.
4, July/August 1999

16. Nwana, H.S. Software agents: an overview. The
Knowledge Engineering Review, Vol. 11:3, 1996, 205-
244.

17.Pazzani, M. Muramatsu J. Billsus, D. Syskill & Webert:
Identifying interesting web sites, Proceedings of the
National Conference on Artificial Intelligence, Portland,
Oregon, 1996

18. Porter, M. An algorithm for suffix stripping, Program 14
(3), July 1980, pp. 130-137

19. Schwab, 1. Pohl, W. Koychev, 1. Learning to Recommend
from Positive Evidence, Proceedings of Intelligent User
Interfaces 2000, ACM Press, pp 241-247

20.Sebastiani, F. Machine Learning in Automated Text
Categorization. Consiglio Nazionale delle Ricerche, Italy.

21.Shadbolt, N. O’Hara, K. Crow, L. The experimental
evaluation of knowledge acquisition -techniques and
methods: history, problems and mnew directions,
International Journal of Human-Computer Studies (1999)
51, pp 729-755 -

22.SMART Staff, User's Manual for the SMART
Information Retrieval System, Technical Report 71-95,
Revised April 1974, Comell University (1974)

23.Terveen, L. Hill, W. Amento, B. McDonald, D. Creter, J.
PHOAKS: a system for sharing recommendations,
Communications of the ACM Volume 40, No. 3 (Mar.
1997)

24.van Rijsbergen, C.J. Information retrieval. Department of
Computing Science, University of Glasgow.

Human Directability of Agents

Karen L. Myers

myers@ai.sri.com

Abstract

Many potential applications for agent technology require hu-
mans and agents to work together in order to achieve com-
plex tasks effectively. In contrast, much of the work in the
agents community to date has focused on technologies for
fully autonomous agent systems. This paper presents a frame-
work for the directability of agents, in which a human su-
pervisor can define policies to influence agent activities at
execution time. The framework focuses on the concepts of
adjustable autonomy for agents (i.e., varying the degree to
which agents make decisions without human intervention)

David N. Morley
Artificial Intelligence Center
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

morley @ai.sri.com

and strategy preference (i.e., recommending how agents should

accomplish assigned task). The directability framework has
been implemented within a PRS environment, and applied to
a multiagent intelligence-gathering domain.

Keywords
Advisable Systems, Agents, Mixed-initiative Control

INTRODUCTION

The technical and public press are filled these days with vi-
sions of a not-too-distant future in which humans rely on
software and hardware agents to assist with problem solv-
ing in environments both physical (e.g., smart offices, smart
homes) and virtual (e.g., the Internet). The notion of dele-
gation plays a central role in these visions, with humans off-
Joading responsibilities to agents that can perform activities
in their place. i

Successful delegation requires more than the assignment of
tasks. A good manager generally provides directions to a
subordinate so that tasks are performed to his or her lik-
ing. To ensure effectiveness, the manager will monitor the
progress of the subordinates, occasionally interrupting to pro-
vide advice or to resolve problems.

The agents research community has, for the most part, fo-
cused on the mechanics of building autonomous agents and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/for a fee.

K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010. .. $5.00

108

techniques for communication and coordinationamong agents,
In contrast, little attention has been paid to supporting human
interactions with agents of the type required for extended
problem-solving sessions. Most agent frameworks fall at the
extremes of the interaction spectrum, either assuming full au-
tomation by the agents with no means for user involvement,
or requiring human intervention at each step along the way.
Recently, however, there has been increased interest in agent
systems designed specifically to support interaction with hu-
mans (e.g., [2, 3, 5, 16]).

We are developing a framework, called Taskable Reactive
Agent Communities (TRAC), that supports directability of a
team of agents by a human supervisor. Within TRAC, the
human assigns tasks to agents along with guidance that im-
poses boundaries on agent behavior. By adding, deleting, or
modifying guidance at execution time, the human can man-
age agent activity at a level of involvement that suits his or
her needs. In essence, our approach can be viewed as form of
process management technology that enables human control
of agent communities.

A key issue in developing technology to support agent di-
rectability is determining the types of guidance to be pro-
vided. This paper focuses on guidance for adjustable agent
autonomy and strategy preferences. Guidance for adjustable
autonomy enables a supervisor to vary the degree to which -
agents can make decisions withouthuman intervention. Guid-
ance for strategy preferences constitutes recommendations
on how agents should accomplish assigned tasks.

The main contributions of this paper are the characterization :
of these forms of guidance, presentation of a formal language
for representing such guidance, the description of a seman- |
tic model for satisfaction of such guidance by an agent, and 4
techniques for enforcing such guidance during agent opera- ;
tion.

Effective delegation and management by a human supervisor:
also requires visibility into ongoing agent operations. Al-
though not described in this paper, the TRAC framework in-
cludes a capability for customizable reporting that enables a
supervisor to tailor the amount, type, and frequency of in-
formation produced by agents to meet his evolving needs.

Details can be found in [12].

The paper begins with a description of our underlying model

for agents. From there, we present an informal characteriza-
tion of guidance for adjustable autonomy and strategy prefer-

ences. Next, we describe a multiagent system, called TIGER,
which instantiates the TRAC approach to directability for the

application of multiagent intelligence gathering in a simu-

lated natural disaster scenario. We use TIGER to provide
concrete examples of the directability concepts throughout
the paper. Following this description, we present our repre-

sentation for guidance and describe both our semantic.model

for guidance satisfaction and techniques for guidance enforce-
ment. The paper concludes with a discussion of related work
and directions for further research.

AGENT MODEL

We adopt a typical Belief-Desire-Intention (BDI) model of
agency in the style of [14], whereby an agent undertakes ac-
tions to address its desires, relative to its current beliefs about
the operating environment. BDI agents are so-called due to
the three components of their “mental state™: beliefs that the
agent has about the state of the world, desires to be achieved,
and intentions corresponding to actions that the agent has
adopted to achieve its desires.

Each agent has a library of plans that define the range of
activities that an agent can perform to respond to events or
to achieve assigned tasks; our plan model is based on [17].
Plans are parameterized templates of activities that may re-
quire variable instantiations to apply to a particular situation.
The cue of a plan specifies a stimulus that activates the plan,
either a new goal or a change in the agent’s beliefs. Precon-
ditions associated with plans define gating constraints that
must be satisfied in order for a plan to be applied. A plan
is said to be applicable to a world change (e.g., new goal
or belief change event) when the plan cue matches the stim-
ulus, and the plan preconditions are satisfied in the current
world state. The body of a plan specifies how to respond to
the stimulus, in terms of actions to perform and subgoals to
achieve.

An agent’s plan library will generally contain a range of plans
describing alternative responses to posted goals or events.
Sets of these plans may be operationally equivalent (i.e., they
share the same cue and preconditions) but differ in the ap-
proach that they embody. Some form of meta-control policy
can be defined to select among such altematives, should the
need arise.

A BDI interpreter runs a continuous sense-decide-act loop.

In each iteration the agent executes a single step of one of its

intentions on the basis of its current beliefs about the state

of the world. This entails performing actions, adopting new

goals to achieve, updating its set of beliefs, and updating the

set of current intentions. Within this paradigm, agents make
 three classes of decisions:

109

D1 whether to respond to new goals and events
D2 how to select among multiple applicable plans
D3 how to select instantiations for plan variables.

Our directability framework assumes that agents are capable
of fully autonomous operation. More concretely, an agent’s
plan library covers the range of activities required to perform
its assigned tasks. This assumption means that agents do not
depend on the human supervisor to provide knowledge for
task execution. Within this setting, guidance provides cus-
tomization of agent behavior to suit the preferences of the
human supervisor. In many applications, such guidance will
enable superior performance, given that few plan libraries
will reflect the full the experience, breadth of knowledge, and
reasoning capabilities that a human supervisor can bring to
the decision-making process.

TRAC FRAMEWORK FOR AGENT DIRECTABILITY

Our mode] of agent directability focuses on general and task-
specific policies to influence the activities undertaken by agents
in their execution of assigned tasks. In particular, we empha-
size the areas of (a) adjustable levels of agent autonomy and
(b) strategy preferences that describe approaches to be used
by an individual agent in executing assigned tasks. Given the
need to adjust to dynamic environments, these guidance poli-
cies can be defined and modified at any point during agent
execution.

Adjustable Autonomy

We define the autonomy of an agent to be the extent to which
it is allowed to make decisions (specifically, D1 - D3) on
its own. In situations where activities are routine and deci-
sions straightforward, a human may be content to delegate all
problem-solving responsibility to an agent. However, in sit-
uations where missteps could have severe consequences, the
degree of autonomy of an individual agent should necessarily
be controllable by a human.

Because we are interested in domains where agents will need
to operate with high degrees of autonomy, we assume a per-
missive environment: unless stated otherwise, agents are al-
lowed to operate independent of human interaction. Our ap-
proach allows the human to adjust the scope of operations
that can be undertaken by an agent on its own terms, focus-
ing on the notions of permission requirements for action ex-
ecution and consultation requirements for decision making.

Permission Requirements Permission requirements declare
conditions under which an agent must elicit authorization
from the human supervisor before executing actions. For ex-
ample, the directive “Obtain permission before abandoning
survey tasks with Priority > 3” imposes the constraint that
an agent request approval from its supervisor to abandon a
certain class of tasks.

Consultation Requirements Consultationrequirements des-
ignate a class of agent decisions that should be deferred to the
human supervisor. These decisions relate to the selection of

values for variable instantiation, for example, “Consult when
selecting locations for staging bases.”

Our model of permission and consultation requirements, like
earlier work on authority models, provides a mechanism to
block performance of certain actions by an agent. However,
authority models are generally static (e.g., the levels of au-
tonomy in [2]) and often derived from organizational struc-
tures. In contrast, our approach provides a rich language for
expressing permission and consultation policies, which can
vary throughout a problem-solving session.

Strategy Preference

Strategy preferences express recommendations on how an
agent should accomplish tasks. These preferences could in-
dicate specific plans to employ or restrictions on plans that
should not be employed, as well as constraints on how plan
variables can be instantiated.

For example, the directive “Try contacting Nongovernmen-
tal Organizations for information before sending vehicles to
towns on the west coast” expresses a preference for select-
ing among operationally equivalent plans. On the other hand,
the directive “Only use helicopters for survey tasks in sectors
that are expected to be inaccessible by truck for more than 1
week” restricts the choice of resource type for instantiating
certain plan variables.

THE TIGER SYSTEM

We have developed a prototype implementation of our TRAC
framework for agent guidance on top of the Procedural Rea-
soning System (PRS) [7]. The TRAC implementation has
been used as the basis for a demonstration system called
TIGER (TRAC Intelligence Gathering and Emergency Re-
sponse) that serves as a testbed for exploring our ideas on
agent directability. Within TIGER, a human supervisor can
delegate tasks to agents while providing guidance to control
their runtime behavior.

TIGER Functionality

TIGER provides control over a collection of simulated phys-
ical assets (trucks and aircraft), each embodied as a separate
agent. These physical assets can be tasked to perform a range
of actions related to intelligence gathering, and to provide
assistance with eventualities such as medical emergencies,
evacuations, and infrastructure repair.

TIGER serves as part of a disaster response team whose ob-
jective is to provide humanitarian relief in the wake of a
natural disaster. Other organizations within the team pro-
vide logistics (e.g., supplies distribution), operations (e.g.,
repair of infrastructure), and medical services. These orga-
nizations have their own physical assets (trucks and aircraft)
available for their use. As would be expected, these organi-
zations need to share information and resources to perform
their functions effectively. A human commander oversees
operations, dynamically tasking organizations to implement

110

Supervisor g_\

rglnator ™

Comms
Agant

J

uncontrofled

Figure 1. TIGER Architecture

the relief process.*

The primary role for TIGER is to gather information in re-
sponse to requests initiated by other members of the disas-
ter response team or the supervisor. These requests can re-
sult in tasks to seek out information such as the current state
of infrastructure (roads, bridges) in designated regions, or to
collect supply requirements (medical, food, water, shelter)
of designated population centers within impacted regions.
There can also be requests to be informed of key events (such
as medical emergencies) as they become known.

A secondary role is to respond to certain types of unexpected
events (e.g., participating in evacuations, assisting with med-
ical emergencies). Thus, TIGER agents must incorporate re-
active capabilities that balance responsiveness with ongoing
goal attainment.

The scope and complexity of the intelligence-gathering op-
erations within the disaster relief context preclude step-by-
step management of agent operations by a human comman-
der. However, effective coordination of the available assets
requires human supervision. As such, this domain provides
an excellent example of an application that will benefit from
technology for agent directability.

Agent Community Organization

Figure 1 displays the organization of agents within TIGER.
The system has at its disposal a collection of simulated phys-
ical agents (trucks and helicopters) that can be used to gather
information and respond to emergencies. In addition, there is
a set of simulated communications agents (other relief orga-
nizations, nongovernment organizations, local officials) that
can be consulted to obtain information. TIGER contains a

IThe system operates within a testbed that simulates a major hur-
ricane in Central America; the testbed is built on the MAPLE system
(http://www.cs.cmu.edu/ "maple/).

separate controller for each of the physical agents, as well
as a communications manager for interacting with the var-
ious simulated communications agents. We refer to these
controller agents as the rask execution agents within TIGER,
because they instigate and manage the activities required to
perform assigned tasks.

The coordinator agent provides global management of tasks
within the community, acting as a mediator between the hu-
man supervisor and the task execution agents. It also man-
ages interactions with members of the disaster response team
who request information (i.e., its information clienfs).

Tasking Model

The TIGER coordinator agent places incoming task requests
into a pool of waiting tasks. It also maintains a pool of cur-
rently unallocated agents. The coordinator agent matches a
waiting task with an unallocated agent based on properties of
the task, the available agents, and current knowledge about
the state of the roads and bridges. Task properties include
location, priority (an integer from O to 10), rype (e.g., survey,
rescue), deadline (for completing the task), and szatus (e.g.,
pending, completed, failed). The agent properties include
agent type (helicopter or truck) and location.

Task management constitutes a major component of an exe-
cution agent’s decision-making process. An execution agent
must determine what to do if, while executing one task, the
coordinator agent passes it a second task. It must also decide
when to drop tasks that are not progressing well in favor of
new tasks with higher potential for success.

For simplicity, we limit each task execution agent to at most
one active task at any point in time. Agents may also have
pending tasks (which they intend to undertake) and preempted
tasks (which were begun but put aside for higher-priority
tasks). Tasks are assigned to individual agents and do not
require coordination with other agents for their completion.

Unexpected events, such as a medical emergency, may re-
quire immediate response. Events are characterized by the
properties location, time (of the event), severity (an integer 0
to 10), number of people affected, and type (e.g., evacuation,
medical). Rather than creating a new task for the task pool,
the coordinator agent selects an appropriate task execution
agent to deal directly with each event.

These characteristics of tasking simplify the decision process
for what an execution agent should do when it receives a task
request. The agent can choose among several combinations
of actions, including ignore the event, adopt a new task to re-
spond to the event, abandon the current active task, transfer
the task to another agent, or postpone the current task until
the new task is completed. Alternatives in the agent’s plan
library encode each of these choices.

111

REPRESENTATION OF GUIDANCE

Our language for representing agent guidance builds on three
main concepts: the underlying agent domain theory, a do-
main metatheory, and the connectives of first-order logic.
Using these elements, we develop the main concepts underly-
ing our model of agent guidance. These consist of an activity
specification for describing abstract classes of action, a de-
sire specification for describing abstract classes of goals, and
an agent context for describing situations in which guidance
applies.

Domain Metatheory _

A standard domain theory for an agent consists of four types
of basic element: individuals corresponding to real or ab-
stract objects in the domain, relations that describe charac-
teristics of the world, goals that an agent may adopt, and
plans that describe available means for achieving goals.

The domain metatheory provides an abstracted characteriza-
tion of elements of the domain theory that highlights key se-
mantic differences. As discussed in [11], a metatheory can
yield a rich vocabulary for describing activity, thus provid-
ing a powerful basis for supporting user communication. The
main concepts within our metatheory for agent guidance are
features and roles (similar in spirit to those of [10]) defined
for agent plans and goals.

Consider first plans. A plan feature designates an attribute of
interest for a plan that distinguishes it from other plans that
could be applied to the same task. For example, among plans
for route determination, there may be one that is OPTIMAL
but sLow with a second that is HEURISTIC but FAST; each
of these attributes could be modeled as a feature. Although
the two plans are operationally equivalent (i.e., same cue
and preconditions), their intrinsic characteristics differ sig-
nificantly. Features provide the means to distinguish between
such operationally equivalent alternatives.

A plan role describes a capacity in which a domain object is
used within a plan; it maps to an individual variable within
a plan. For instance, a route determination plan may contain
variables location.1 and location.2, with the former
corresponding to the START and the latter the DESTINATION.

In analogous fashion, roles and features can also be defined
for goals. For example, a goal of informing another party
of task progress may have a COMMUNICATION feature and
RECIPIENT role associated with it. These metatheoretic con-
structs can be used to specify the class of goals that involve
communicating with the commander.

Activity Specification

An activity specification characterizes an abstract class of
plan instances for an agent. Our domain metatheory provides
the basis for defining an activity specification, in terms of a
set of required and prohibited features on a plan, as well as
constraints on the way in which plan roles are filled.

Definition 1 (Activity Specification) An activity specifica-
tiona = (¥, F~, R, ¢) consists of

e a ser of required features F*

o a set of prohibited features F ~

e asetofrolesR = [Ry,..., Ri]and

e arole-constraint formula ¢[R1. Ri]

For example, the following activity specification describes
the class of plan instances with the feature SURVEY but not
HEURISTIC, where the variables that fill the roles START and
DESTINATION are instantiated to values in the same sector.

<{SURVEY}, {HEURISTIC},
{START, DESTINATION},
{(= (SECTOR START) (SECTOR DESTINATION))}>

Desire Specification

A desire specification constitutes the goal-oriented analogue
of an activity specification, consisting of a collection of re-
quired features, prohibited features, roles, and role constraints
for goals. We use the symbol 4 to represent a generic desire
specification.

Agent Context

Just as individual plans employ preconditions to limit their
applicability, guidance requires a similar mechanism for defin-
ing scope. To this end, we introduce the notion of an agent
context. While plan preconditions are generally limited to
beliefs about the world state, our model of agent context fo-
cuses on the full operational state of an agent, characterized
in terms of its beliefs, desires, and intentions. Beliefs are
specified in terms of constraints on the current world state.
Desires are specified as desire specifications that describe
goals that the agent has adopted. Intentions are specified
through activity specifications that describe plans currently
in execution by the agent.

Our model of agency assumes a hierarchical collection of
plans and goals; furthermore, agents are capable of multi-
tasking (i.e., addressing multiple goals in parallel). Within a
given phase of the BDI execution cycle, goals for an agent of
this type can be scoped in three different ways:

o Current goal: the goal for which the BDI interpreter is
selecting a plan to execute

o Local goals: the current goal, or any of its ancestors

e Global goals: any goal of the agent

By distinguishing these different scopes for goals, guidance
can be localized to more specific situations. Plans being exe-
cuted can be scoped in a similar fashion.

Definition 2 (Agent Context) Anagent context is defined by
atuple k = (®. A, A), where

o & is a set of well-formed formulae
e A= AC U AL U A% isaset of current, local, and global
desire specifications, respectively

112

o A = AL U A% isaset of local and global activity speci-
fications, respectively.®

Permission Requirements

Permission requirements are defined in terms of an agent
context and a permission-constrained activity specification.
The agent context defines conditions on the operating state
of the agent that limit the scope of the permission require-
ment. The permission-constrained activity specification des-
ignates a class of plan instances for which permission must
be obtained.

Definition 3 (Permission Requirement) A permission require-
ment {x,a) consists of an agent context s and an activity
specification a.

The interpretation of a permission requirement is that, when
an agent’s BDI state matches the specified agent context, per-
mission must be obtained from the supervisor in order to exe-
cute a plan instance that matches the permission-constrained
activity.

Example 1 (Permission Requirement) The statement “Seek
permission to abandon survey tasks with priority > 5 could
be translated into a permission requirement of the form

Agent Context:
Local Activity Spec:
Features+: SURVEY-TASK
Permission-Constrained Activity Spec:
Features+: ABANDON
Roles: CURRENT-TASK

Constraint: (> (TASK-PRIORITY CURRENT-TASK) 5)

Consultation Requirements

A consultation requirements consists of an agent context and
a consultation role. The interpretation of a consultation re-
quirement is that when an agent’s BDI state matches the agent
context, any instantiation decision for a variable correspond-
ing to the consultation role should be passed to the human
supervisor.

Definition 4 (Consultation Requirement) A consultationre-
quirement («, R) consists of an agent context x and a role R.

Example 2 (Consultation Requirement) The guidance
“When responding to medical emergencies, consult when se-
lecting a medical evacuation site™ would be translated into a
permission requirement of the form

Agent Context:
Local Activity Spec:
Features+: EMERGENCY-RESPONSE, MEDICAL
Consultation Role: MEDEVAC-SITE

2Because the motivation for guidance is to influence the choice of plan
for the current goal, we exclude the specification of a current plan from the
intentions of an agent context.

Strategy Preference

Strategy preference guidance consists of two components:
an agent context and a response activity specification. The
activity specification designates the class of recommended
plan instances to be applied (i.e., choice of plan and variable
instantiations for designated roles) when the agent enters a
state that matches the designated agent context.

Definition 5 (Strategy Preference) A strategy preference rule

is defined by a pair (x.) where « is an agent context and o
is an activity specification.

Example 3 The statement “Don't take on medical emergen-
cies involving fewer than 5 people when the current task pri-
ority exceeds the emergency severity” could be represented
by the following strategy preference:

Agent Context:
Current Desire Spec:
Features+: RESPOND-TO-EMERGENCY
Roles: EVENT
Constraint:
(AND
(= (EVENT-TYPE EVENT) MEDICAL)
(< (EVENT-NUMBER-AFFECTED EVENT)
Response Activity Spec:
Features-: ADOPT
Roles: EVENT, CURRENT-TASK
Constraint:
(TASK-PRIORITY CURRENT-TASK)
(EVENT-SEVERITY EVENT))

5))

(>

A goal with the feature RESPOND-TO-EMERGENCY and role

EVENT triggers consideration of the guidance, provided EVENT
is a an emergency of type MEDICAL, and fewer than 5 peo-

ple are affected. The response activity specification indicates

not to adopt responsibility for the emergency in the event that

the priority of CURRENT-TASK is greater than the severity of

EVENT.

SEMANTICS AND ENFORCEMENT OF GUIDANCE

Space limitations preclude full descriptions of the formal se-
mantics for satisfaction of guidance by agent execution and
algorithms for guidance enforcement. We present a brief
overview here; details can be found in [13].

Semantically, guidance acts as a filter on the plan instances
that an agent can execute. When a standard BDI agent at-
tempts to find an instance of a plan from its library to apply to
a goal, it determines a set of applicable plan instances based
on the plan cues and preconditions. The guidance limits this
set further in accord with the following conventions.

A guidance rule is deemed relevant at the time that the appli-
cable plans are being filtered if the agent context matches the
current operational state of the agent. Each relevant strategy
preference rule filters out plan instances that do not match
the response activity specification. Each relevant permission

113

requirement rule filters out plan instances that both match the
permission-constrained activity specification and are refused
permission by the supervisor. Each relevant consultation re-
quirement rule filters out plan instances that have the consul-
tation role but do not bind the corresponding role variable to
a value desired by the supervisor.

Enforcement of guidance is attained through a simple modifi-
cation to the standard BDI interpreter loop at the point where
where a plan instance is selected in response to a posted
goal. First, the current BDI operational state for an agent
is matched to the agent context components of all currently
defined guidance to determine the relevant guidance for the
current execution cycle. The relevant strategy preference
rules are then used to eliminate plan instances that do not
match their response activity specification. The remaining
plan instances are then ordered in accord with any meta-
control policies for plan ordering that may have been defined.
This list is then traversed in order to find the first for which
either the plan instance is not affected by relevant permis-
sion or consultation requirement rules, or queries to the hu-
man supervisor elicit any required execution permissions and
instantiations for role variables. The agent then applies the
selected plan instance to the current goal.

CONFLICTING GUIDANCE

User guidance provides a powerful mechanism for runtime
customization of agent behavior. However, it also introduces
the potential for problems in the event that the guidance rec-
ommends inconsistent responses. Robustness of operations
necessarily requires mechanisms that can detect problematic
user guidance and respond in a manner that does not jeopar-
dize the stability of an agent.

Conflicts can arise in different forms. Here, we distinguish
between direct and indirect conflicts.

Direct conflicts arise when guidance yields recommendations
that conflict with each other within a given cycle of the BDI
interpreter. For example, Execute plan P and Don'’t execute
plan P. Direct conflicts are easily detected. They can be re-
solved by associating weights with strategy preferences rules
that indicate degree of preference. A policy for combining
and comparing the weights associated with the strategy pref-
erence rules that made the conflicting recommendations can
then be used to select a preferred response. TIGER incorpo-
rates an approach of this type to deal with direct conflicts.

Indirect conflicts arise when guidance recommends multiple
plans for execution such that, while their execution can be
initiated, it is impossible for all of them to complete success-
fully. For example, the simultaneous execution of two plans
could lead to deadlock or livelock situations, or downstream
resource contention. Powerful detection mechanisms are re-
quired to deal with this class of conflict; TIGER does not yet
include capabilities of this type.

Figure 2. Selected Guidance Specification Tools

GUIDANCE INTERFACE TOOLS

The motivation for our work on agent directability is to en-
able users to more readily direct and manage agents in dy-
namic, unpredictable environments. The language presented
in earlier sections provides a highly expressive formalism in
which to define agent guidance; however, the complexity of
the language could overwhelm a typical user. For this rea-
son, we have been developing tools to help users define and
manipulate agent guidance. Figure 2 presents two such tools
from the TIGER system.

The first tool is a guidance authoring interface that walks the
user through the process of constructing complex pieces of
guidance. To enable a simple specification process, the tool
does not support the full expressivity of the formal guidance
language; however, it supports a broad range of expressions
(including the examples described in this paper).

The second tool is a permissions window. It enables users to

activate/deactivate permission requirements for certain classes
of action performed on certain types of task. In particular,

selections made through this interface are compiled into cor-

responding permission requirement structures. While this in-

terface limits the scope of permission requirements that can

be expressed, it provides a simple, accessible specification

mechanism.

In addition to the two tools described above, we have also
developed a guidance library that stores predefined pieces of
guidance. Users can then select from predefined guidance, as
appropriate, to address their needs in a particular situation.

RELATED WORK

Recognition of the need for technologies to support human-
agent interactions has grown substantially in the past few

114

years. To date, however, few concrete technical approaches
have been proposed to address the problem of agent directabil-

ity.

Scerri et al. [15] apply Markov decision processes (MDPs)
to provide a form of adjustable autonomy. Their approach
involves predefining an MDP for each agent to describe pos-
sible courses of action. The agent uses expected utility es-
timates from this model to determine when to consult the
supervisor, and adjusts the model parameters based on expe-
rience. To avoid learning inappropriatc behavior, users can
define predefined constraints on what can be learned. In con-
trast to our approach of having a human explicitly define a
policy for autonomy, an agent within this framework deter-
mines an appropriate level on its own.

Schreckenghost et al. [16] apply the concept of adjustable
autonomy to the management of space-based life support sys-
tems. In their system, a human can take over both the selec-
tion of tasks to perform and the execution of those tasks. In
contrast to our use of an explicit policy language, the level
of autonomy is specified by directly altering a “level of au-
tonomy” setting (manual versus autonomous) either for all
tasks, for a subsystem, or for an individual task.

Our strategy preference guidance selects among previously
defined alternative plans; it does not expand the behavioral
capabilities of the agent. In contrast, the work on policy-
based control for distributed systems managements supports
the runtime definition of new behaviors (e.g., [9]). Policy
languages in this community focus on the concepts of au-
thority and obligation to perform actions.

CONCLUSION

This paper presents a framework for human directability of

agents that enables a user to define polices for adjustable

agent autonomy and strategy preference. Through these mech-
anisms, a human supervisor can customize the operation of

agents to suit his individual preferences and the dynamics

of unexpected situations. In this way, system reliability and

user confidence can be increased substantially over fully au-

tonomous agent systems. The power of these ideas has been

demonstrated within the TIGER system, which supports a

human intelligence officer in managing a community of agents
engaged in tasks for information gathering and emergency

response.

Many outstanding issues in this area remain to be addressed;
we briefly describe three topics for future work.

Detecting and Resolving Guidance Conflicts As discussed
above, TIGER recognizes only a limited class of guidance-
related conflicts (namely, direct conflicts among guidance).
Indirect conflicts among guidance, and conflicts between guid-
ance and ongoing activities require more powerful detection
methods that reason about the downstream effects and re-
quirements of plans. We are also interested in expanding
our simple prioritization approach to resolving direct con-

flicts among guidance to incorporate more advanced conflict
resolution policies (e.g., [4, 8]).

Community Guidance The forms of agent directability de-
scribed in this paper focus on influencing the behavior of an
individual agent. Human supervisors will also want to ex-
press control at the community level, to encourage or dis-
courage various forms of collective or emergent behaviors.
The guidance Keep 2 trucks within 15 miles of headquarters.
provides an example. Enforcement of this type of guidance
will require mechanisms that support information exchange
and coordinated action selection among groups of agents.

Collaborative Control Our mode! of agent directability pro-
vides a form of supervised autononty [1] in which control
over autonomy rests solely with the human supervisor. Some
situations may benefit from a more collaborative approach
[6], where both sides share control over initiative. For ex-
ample, an agent may choose to initiate a dialogue with the
human in situations where adherence to guidance would in-
terfere with the pursuit of current goals, rather than blindly
following the user’s recommendations.

ACKNOWLEDGMENTS

The authors thank Eric Hsu for his contributions in develop-

ing the TIGER interface, and Sebastian Thrun and his group
at CMU for providing the MAPLE simulator. This research

was supported by DARPA Contract F30602-98-C-0160 un-

der the supervision of Air Force Research Laboratory - Rome.

REFERENCES
1. K.S. Barber and C. E. Martin. Agent autonomy: Spec-
ification, measurement, and dynamic adjustment. In
Proceedings of the Autonomy Control Software Work-
shop at Autonomous Agents, 1999.

2. P. Bonasso. Issues in providing adjustable autonomy in
the 3T architecture. In Proceedings of the AAAI Spring
Symposium on Agents with Adjustable Autonomy, 1999.

3. H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J.
Oh, D. Pynadath, T. A. Russ, and M. Tambe. Elec-
tric Elves: Applying agent technology to support hu-
man organizations. In Proceedings of the Thirteenth
Conference on Innovative Applications of Artificial In-
telligence, 2001.

4. F. Dignum, D. Morley, E. A. Sonenberg, and L. Cave-
don. Towards socially sophisticated BDI agents. In
Proceedings of the Fourth International Conference on
MultiAgent Systems (ICMAS '2000), 2000.

5. G. Ferguson and J. Allen. TRIPS: Towards a mixed-
initiative planning assistant. In Proceedings of the AIPS
Workshop on Interactive and Collaborative Planning,
1998.

6. T. Fong, C. Thorpe, and C. Baur. Collaborative control:
A robot-centric model for vehicle transportation. In

115

10.

11.

12.

13.

14.

15.

17.

Proceedings of the AAAI Spring Symposiunt on Agenis
with Adjustable Autonomy, 1999.

. M. P. Georgeff and F. F. Ingrand. Decision-making

in an embedded reasoning system. In Proceedings of
the Eleventh International Joint Conference on Artifi-
cial Intelligence, 1989.

E. Lupu and M. Sloman. Conflicts in policy-based dis-
tributed systems. IEEE Transactions on Software Engi-
neering, Special Issue on Inconsistency Management,
25(6), 1999.

. 1. D. Moffett and M. S. Sloman. Policy hierarchies for

distributed systems management. /EEE Journal on Se-
lected Areas in Communications, 11(9), 1993.

K. L. Myers. Strategic advice for hierarchical planners.
In L. C. Aiello, J. Doyle, and S. C. Shapiro, editors,
Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fifth International Conference
(KR *96). Morgan Kaufmann Publishers, 1996.

K. L. Myers. Domain metatheorics: Enabling user-
centric planning. In Proceedings of the AAAI-2000
Workshop on Representational Issues for Real-World
Planning Systems, 2000.

K. L. Myers and D. N. Morley. Directing agent com-
munities: An initial framework. In Proceedings of the
LJCAI Workshop on Autonomy, Delegation, and Con-
trol: Interacting with Autonomous Agents, 2001.

K. L. Myers and D. N. Morley. The TRAC framework
for agent directability. Technical report, Artificial Intel-
ligence Center, SRI International, 2001.

A.S. Rao and M. P. Georgeff. BDI agents: From theory
to practice. In Proceedings of the International Confer-
ence on Multi-Agent Systems (ICMAS-95), San Fran-
cisco, USA, 1995.

P. Scerri, D. Pynadath, and M. Tambe. Adjustable
autonomy in real-world multi-agent environments. In
Proceedings of the International Conference on Au-
tonomous Agents, 2001.

. D. Schreckenghost, J. Malin, C. Thronesbery, G. Watts,

and L. Fleming. Adjustable control autonomy for
anomaly response in space-based life support systems.
In Proceedings of the IJCAI Workshop on Autonomy,
Delegation, and Control: Interacting with Autonomous
Agents, 2001.

D. E. Wilkins and K. L. Myers. A common knowledge
representation for plan generation and reactive execu-
tion. Journal of Logic and Computation, 5(6), 1995.

Applying Natural Language Processing (NLP) Based
Metadata Extraction to Automatically Acquire User

Preferences
Waoojin Paik, Sibel Yilmazel, Eric Brown, Maryjane Poulin, Stephane Dubon, Christophe Amice

solutions-united, inc.
Syracuse, NY USA
{woojin, sibel, eric, mjp, stephane, chris }@solutions-united.com

Abstract

This paper describes a metadata extraction technique based
on natural language processing (NLP) which extracts per-
sonalized information from email communications between
financial analysts and their clients. Personalized means
connecting users with content in a personally meaningful
way to create, grow, and retain online relationships. Per-
sonalization often results in the creation of user profiles that
store individuals® preferences regarding goods or services
offered by various e-commerce merchants. With the intro-
duction of e-commerce, it has become more difficult to de-
velop and maintain personalized information due to larger
transaction volumes. <!metaMarker> is an NLP and Ma-
chine Learning (ML)-based automatic metadata extraction
system designed to process textual data such as emails, dis-
cussion group postings, or chat group transcriptions.
<!metaMarker> extracts both explicit and implicit metadata
elements including proper names, numeric concepts, and
topic/subject information. In addition, Speech Act Theory
inspired metadata elements, which represent the message
creators’ intention, mood, and urgency are also extracted.
In a typical dialogue between financial analysts and their
clients, clients often discuss the items that they liked or
have an interest. By extracting this information,
<!metaMarker> constructs user profiles automatically. This
system has been designed, implemented, and tested with
real-world data. The overall accuracy and coverage of ex-

tracting explicit and implicit metadata is about 90%. In .

summary, the paper shows that an NLP-based metadata
extraction system enables automatic user profiling with high
effectiveness.

Keywords
Natural Language Processing, user preference elicitation,
metadata extraction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...85.00

116

INTRODUCTION

For a number of years both manual and automatic ap-
proaches to the construction of knowledge bases have been
studied and implemented. Manual construction of knowl-
edge bases has been too expensive to be practical and
automatic approaches have not yet produced domain-
independent and usable knowledge bases [9].

Lack of practically usable knowledge bases led to two key
problems in preventing wide-scale deployment of knowl-
edge-based systems; that is the knowledge base and infer-
ence engine. These problems are commonly referred to as
brittleness and the knowledge acquisition bottleneck [8&9].
A brittle system can respond appropriately only to a narrow
range of questions. More precisely, such a system cannot
answer questions that were not originally anticipated by the
programmer. The other problem with knowledge-based
systems is that crafting the statements that are entered into
the knowledge base requires an enormous amount of train-
ing, time, and effort. Knowledge engineers tend to be highly
skilled people but few of them can enter more than a small
number of statements into a knowledge base in an average
day. Brittleness and the knowledge-acquisition bottleneck
are severe limitations.

In recent years there has been increased interest in textual
information extraction research using natural language
processing techniques. The most common medium of stor-
ing knowledge is text; textual information extraction is an
approach to acquire knowledge from text.

The study reported in this paper describes an adaptation of
a Natural Language Processing (NLP) based information
extraction system which was originally developed to auto-
matically populate knowledge bases, as a user preference
elicitation tool. The focus of this paper will be the applica-
tion of the information extraction technology to enable the
data-controlled personalization in the context of e-business
[14]. Personalization modifies an underlying system to bet-
ter address the preferences of end users, be they corporate
professionals or consumers [13]. It often results in the crea-
tion of user profiles that store individuals® preferences re-
garding goods or services offered by various e-commerce
merchants. Based on Gartner Group [14] it was predicted
that major enterprises with an Internet presence will analyze

their employees’ and clients’ behavior with a view toward
automatically tailoring online interaction by 2003.

The email communication between the financial analysts
and their clients was selected as the source for extracting
information to populate the client profiles. The personaliza-
tion information extraction system was able to achicve a
high level of accuracy.

PERSONALIZATION

In its most general form, personalization modifies an under-
lying system to better address the preferences of end users,
be they corporate professionals or consumers {13]. The
Profile, which is the collection of data describing the crite-
ria for customizing presentation or content, is the key to
personalization. Linguistically speaking, personalization
can be considered as a way to satisfy the Maxim of Relation
[3]. According to Grice, in a talk exchange the participants
are expected to be conscious of the so-called Cooperative
Principle, which states: "Make your conversational contri-
bution such as is required, at the stage at which it occurs, by
the accepted purpose or direction of the talk exchange in
which you are engaged” [3]. Conversing in accordance with
the Cooperative Principle will yield maxims of Quantity
(i.e. Don't say more or less than is required), Quality (i.e.
Tell what you believe is true, be sincerce), Relation (i.e. Be
relevant), and Manner (i.e. Avoid ambiguity and obscurity)
(1}

On the other hand, personalization has different meanings
to different people. Today, the three most common forms of
personalization are: Enterprise-Controlled, End-user Con-
trolled, and Data-Controlled [14]. The Enterprise-
controlled form of personalization is making decisions
based upon the preferences or predefined criteria set by the
owner of the content. Criteria may be based on the factors
of target platform, user role, level of service, or information
extracted from an enterprise or a third-party repository. The
systems of this type control access to content or functional-
ity based on what the user is likely to purchase or has li-
censed. End-user controlled content delivery is based on
criteria set by the customer. User controlled content appli-
cations in portals and in the enterprise context are examples
of end-user controlled form of personalization [13&14].
Data-controlled personalization is generated by affinity-
data; for instance, the purchasing patterns and preferences
of like consumer groups. Affinity-data are derived by
applying data-mining algorithms to market basket analysis.
Affinities can be used to fine-tune customer interaction. For
example, data-mining questionnaires can reveal the dislikes
of different customer groups which can be further used to
refine marketing campaigns. Furthermore, methods like
collaborative filtering explore the choices of similar peer
groups and recommend what other customers did at a cer-
tain point. Another form of data-controlled personalization
is to leverage similarity of product descriptions in elec-
tronic product catalogs to cross-market similar products,
given consumers' interest in a particular product [14].

117

APPLYING BOTH DOMAIN-INDEPENDENT &
DOMAIN DEPENDENT INFORMATION
EXTRACTION TO ACQUIRE USER PREFERENCES
One of the underlying text analysis models behind the in-
formation extraction system, which is described in this pa-
per, is a recently emerged broad & shallow information
extraction framework. This domain-independent informa-
tion extraction framework was used to develop an auto-
mated system to update knowledge bases [10]. In compari-
son to the traditional deep & narrow domain-dependent
information extraction systems such as the ones reported in
the Message Understanding Conferences [5,6,7,&8], which
require extensive manual development effort by the subject
matter experts, the broad & shallow information extraction
systems are considered to adapt more easily to new subject
domains [10].

Like many other systems, the domain-independent informa-
tion extraction algorithm is based on sub-language analysis
of text by taking advantage of the common practices of
writers on a similar subject [11]. For example, there are
regularities in the way that weather reports are composed. It
is fairly straightforward to develop rules to extract key in-
formation about the weather reports by anticipating what
type of information will be described in what manner. Simi-
larly, previous work has shown that it is possible to develop
a sub-language grammar to extract highly accurate informa-
tion from news type stories. In conjunction with the use of
case grammar type simple semantic relations such as
‘agent’, ‘location’, and ‘cause’, the use of sub-language
grammar has been shown to enable extraction of practical,
usable information from news type text. This approach to
extracting domain-independent information has been tested
and shown successful in the Defense Advanced Research
Project Agency (DARPA)’s High Performance Knowledge
Base (HPKB) program [10]. The system developed for
HPKB exhibited both high precision and high recall for
information extraction tasks.

In this paper, we describe <!metaMarker>, an eXtensible
Markup Language (XML)-based automatic metadata gen-
eration tool. <!metaMarker> is a novel hybrid information
extraction system, which utilizes both domain-independent
and domain-dependent information extraction algorithms.
<ImetaMarker> does not extract case grammar type seman-
tic relations like other information extraction systems.
However, <!metaMarker> extracts and classifies informa-
tion objects from numerous types of business communica-
tions. The foundation of <!metaMarker> is built upon the
richness and accuracy of Natural Language Processing
(NLP) techniques and the adaptability and customization
potential of Machine Leamning (ML). It utilizes an ex-
panded metadata framework developed for enterprise com-
munications consisting of?

o Traditional descriptive, citation-like features: author,
subject, time/date/place of creation

e Descriptive features unique to business communica-
tions: company/organization information, a specific or-
der, named product features

e Additional situational or use aspects which provide
critical contextual information: author’s intention or
goal, degree of urgency, mood or attitude

<ImetaMarker> also facilitates addition of custom catcgo-
rics by derivation from previously extracted information.
For example, extracted metadata elements such as ‘subject’,
‘intention’, and ‘mood’ might be used as
the basis for defining another tag ‘priority’ that could be
automatically assigned to a specific email based on the ex-
tracted values for the three original metadata elements. One
possible instantiation is ‘high’ valuc assigned to ‘priority’
clement if ‘return of purchased product’ was the value for
‘subject’ metadata element, ‘complain’ was the value for
‘intention’ element, and ‘angry’ was the value for ‘mood’
clement.

In applying <!metaMarker> to email communication, deri-
vation of relevant metadata elements was accomplished
through both inductive means by analyzing a large number
of emails, and deductive means by considering general
theories of human communications and research results in
the area of computer mediated communication. There were
some explicit metadata elements and their values which
were directly extractable from the body of email messages.
For example, typical biographical information such as
‘name of sender’, ‘title’, ‘affiliation’, ‘physical address’,
‘phone number’, ‘home page’, or ‘motto’, were extracted by
applying an email sublanguage grammar. The email sublan-
guage grammar was developed based on an analysis of out-
put from various natural language processing components
such as the ‘concept categorization module’.

There were also implicit metadata elements and their val-
ues, identifiable through an email discourse model analysis.
These elements were, ‘subject/topic’. ‘intention’, ‘mood’,
and ‘urgency’. Subject/topic refers to the classification of
the message contents into categories such as are used in a
general purpose thesaurus such as Roget’s. Some examples
of the values for this element are: law & politics, religion,
science & technology, business & economics, and recrea-
tion & sports. The ‘intention’ metadata element comes from
Searles’s [13] speech act theory, which focuses on what
people ‘do’ with language i.e. the various speech acts that
are possible within a given language. <!metaMarker> util-
izes discourse analysis of the email messages to classify
authors’ intentions into values such as ‘claims’, ‘promises’,
‘requests’, ‘blessing’, ‘thanking’, or ‘permitting’. The
‘mood’ element refers to the email authors’ emotional state.
The values for this element are: ‘strongly negative’, ‘nega-
tive’, ‘neutral’, and ‘positive’. Finally, ‘urgency’ is related
to time, i.e. when something needs to be done (or was sup-
posed to be done). The messages are classified and the
following values are assigned to each message: ‘very ur-
gent’, ‘urgent’, and ‘neutral’.

118

In the research reported in this paper, <!metaMarker> is
used as an implementation platform to automatically extract
metadata for user preferences by incorporating user prefer-
ences specific extraction and tagging algorithms. To adapt
<'metaMarker> to extract user preference specific metadata
elements, the situational or use aspect related metadata are
expanded to included new metadata elements such as ‘like’,
‘dislike’, ‘interested’, or ‘not-interested.” Specifically these
are the elements explaining the author’s intention or goal.
They are implicit in the text and thus derived through a text
discourse model analysis of email type communicative text.

The following is a sample email communication between a
financial analyst and his/her client.

Question from a client:

[think the key to the future is the use of personalization
software. Do you think BroadVision will rebound to its
high in the next six months?

Response from a financial analyst:

BroadVision is more heavily concentrated in the B2B mar-
ket, which, long term, we believe, is attractive. Though we
like BroadVision, we think Ariba; 12 Technologies, and
Commerce One will be the dominant players.

In addition to the typical metadata which are proper named
concepts or numeric concepts, the user preference specific
<!metaMarker> extracts the concepts that client liked, dis-
liked, and also was interested in from this example. When
the same type of information extraction is applied to the
financial analyst’s response, <!metaMarker> also extracts
the concepts that the financial analyst’s liked. In the follow-
ing, a step-by-step analysis of the client question will be
shown. This depiction shows the underlying NLP and ML
processing of <!metaMarker>.

Step #1 (NLP) — sentence boundary identification

<s#I> [think the key to the future is the use of personaliza-
tion software. </sttI> <s#2> Do you think BroadVision will
rebound to its high in the next six months? </st2>

<s> denotes the beginning of a sentence and </s> denotes
the end of a sentence.

Step #2 (NLP) - part-of-speech tagging

<s#1> I|PRP think|VBP the|DT key|NN t0|TO the|DT fu-
ture|NN is|VBZ the|DT use|NN of|IN personalization|NN
software|NN .|. </s#1> <s#2> Do|MD you|PRP think|VBP
BroadVision|NP will MD rebound\VB to|TO its|PRP$
highlJJ in|IN the|DT next|JJ six|CD months|NNS ?]
</s#2>

This step assigns part-of-speech information after each
word in the sentence. ‘| is used to delimit the word and the
corresponding part-of-speech tag. The tag set is based on
University of Pennsylvania’s Penn Treebank Project [12].
For example, PRP means ‘personal pronoun’, VBP means
‘present tense verb’, and DT means ‘determiner’.

Step #3 (NLP) — morphological analysis

<s#l> I|PRP think|VBP the|DT key|NN 10{TO the|DT fu-
ture|NN is|VBZ)be the|DT use|NN of|IN personalization| NN
software|NN .|. </s#1> <s#2> Do|MD you|PRP think|VBP
BroadVision|NP willMD rebound|VB 1t0|TO its|PRPS
high|JJ in|IN the|DT next|JJ six|CD months|NNS|month
?). </s#2>

This step determines the root form of each word and adds it

to ecach word. In this example, there are two cases. ‘is’ is
assigned with ‘be’ and ‘months’ is assigned with ‘month’.
Step #4 (NLP) — multi-word concept identification

<s#l> [|PRP think|VBP thelDT key|NN to\TO the|DT fu-
ture|NN is|VBZ|be the|DT use|NN of|IN <cn> personaliza-
tion|NN softwarelNN </cn> .|. </s#]> <s#2> Do|MD
you|PRP think|VBP <pn> BroadVision|NP </pn> will|AMD
rebound|VB to|TO its\PRP8 high|JJ in|IN thelDT <nc>
next)JJ six|CD months|NNS|\month </nc> ?|. </s#2>

This step identifies the boundary of the concepts. For ex-
ample, proper names are identified by <pn> tags. Numeric
concepts are delimited by <nc> tags. All other multi-word
concepts are bracketed by <cn> tags.

Step #5 (NLP) — concept categorization
<s#l> I|PRP think|VBP the|DT key|NN 10|TO the|DT fu-
ture\NN is|VBZ|be the|DT use|NN of|IN <cn> personaliza-
tion|NN softwarelNN </cn> .|. </s#l> <s#2> Do|MD
you|PRP think|VBP <pn cat=company> BroadVision|NP
</pn> will| MD rebound\VB to|TO its|PRP$ high|JJ in|IN
the|DT <nc cat=time> next|JJ six|CD months|NNS|month
</nc> ?|. </s#2>
Each proper name and numeric concept is assigned with its
semantic type information according to the predetermined
schema. Currently, there are about 60 semantic types, which
are automatically determined by <!metamarker>.
Step #6 (ML) — implicit metadata — mood, urgency, inten-
tion, and topic — generation
<s#1> I|PRP think|VBP the|DT key|NN to|TO the|DT fu-
ture|NN is|VBZ|be the|DT use|NN of|IN <cn> personaliza-
tion|NN software|NN </cn> .|.
<modalityInfo>

<mood> neutral </mood>

<urgency> neutral </urgency>

<intention> belief & judgment </intention>
</modalityInfo>
<topic> computer science & technology </topic>
</s#l>
<s#2>
Do|MD you|PRP think|VBP <pn cat=company> BroadVi-
sion|[NP </pn> willlMD rebound\VB to|TO its|PRP3
high|JJ in|IN the|DT <nc cat=time> next|JJ six|CD
months|NNS|month </nc> ?|.
<modalityInfo>

<mood> neutral </mood>

<urgency> neutral </urgency>

<intention> belief & judgment </intention>
</modalityInfo>
<topic> trade & commerce </topic>
</s#2>

This step assigns implicit metadata to each sentence by
categorizing each sentence according to the predetermined
schema of modality and topic/subject. The sentence-by-
sentence categorization is carried out by the text classifiers
such as Bayesian probabilistic classifier or k-Nearest
Neighbor classifier by utilizing a training data set, which
consists of a pre-coded set of example sentences. Each sen-
tence is represented as a feature vector, which consists of
NLP extracted explicit metadata from the steps #1 to #5. At
the end of this stage, <!metaMarker>, which is not adapted
to extract user preferences, is designed to generate a table
to be incorporated as a part of a relational databasc.

Step #7 (ML) — user preference extraction

<s#l1> I|PRP think|VBP the|DT key|NN to|TO the|DT fu-
ture|\NN is|VBZ|be the|\DT use|NN of|IN <cn> personaliza-
tion|NN software|NN </cn> _|.

<modalitylnfo>
<mood> neutral </mood>
<urgency> neutral </urgency>
<intention> belief & judgment
<like> personalization software </like>
</intention>
</modalitylnfo>
<topic> computer science & technology </topic>
</s#I>
<s#2>

Do|MD you|PRP think|VBP <pn cat=company> BroadVi-
sion|NP </pn> willMD rebound|VB 10|TO its|PRPS
high|lJJ in|IN the|DT <nc cat=time> next|JJ six|CD
months|NNS|month </nc> ?|.

<modalityInfo>
<mood> neutral </mood>
<urgency> neutral </urgency>
<intention> belief & judgment
<interested> BroadVision/company
</interested>
</intention>
</modalityInfo>
<topic> trade & commerce </topic>
</s#2>

Currently, the scope of the adaptation of <!metaMarker> to
extract user preferences is limited to four types of metadata.
They are ‘like’, ‘dislike’, ‘interested’, and ‘not interested’.
The user preference extraction is a combination of explicit

and implicit metadata gencration methods. First each sen-
tence is categorized according to the positive and negative
facets of ‘like’ and ‘interested’ user preferences. Then, cer-
tain explicit metadata extraction results such as proper
names and multi-word concepts other than numeric con-
cepts for each sentence is correlated with the user prefer-
ence information. The above output of the step #7 shows
that the client likes ‘personalization software’ and is inter-
ested in the company, BroadVision. This information will
be entered into the user preference database so that the next
interaction between the financial analyst and his/her client
can be better focused on the clients’ likes and interests. In
addition, it is also expected that the financial analyst can
push out certain relevant information to the client according
to his/her preferences.

APPLYING TEXT CLASSIFICATION TO EXTRACT
IMPLICIT METADATA AND USER PREFERENCE

To assign implicit metadata to each sentence, each sentence
is categorized according to the predetermined schema of
modality and topic/subject.

The first text classification task involves manually classify-
ing a set of training documents in preparation for feeding
the automatic system. Each training document is classified
as “in” or “out” of the individual classes as outlined by the
class definitions.

The next step is to take thesc manually classified documents
and process them through the trainable text classification
system. During the process it builds a vector of terms,
phrases, and entities extracted from the text. Multi-level
Natural Language Processing outputs are the basis for these
textual data feature representations.

This collection of automatically generated features is then
used to determine membership of new text within a particu-
lar class. The system determines the “certainty of member-
ship” for each of the documents compared to each of the
classes. If we consider a range of 1 to 0 where | means a
document is definitely a member of a certain class, and 0
means a document is definitely a non-member of a certain
class, we can say that values of 0 and 1 both have a “cer-
tainty of membership” value of 1. For either of these cases,
we can confidently conclude that the document either ‘does’
or ‘does not” belong within a given class. If we look at val-
ues close to .5 on the above scale, we have a “certainty of
membership” value close to 0. This means for these cases,
we cannot automatically determine whether or not a given
document should be assigned to a given class. These
documents are considered valuable in refining the classifi-
cation system. By manually classifying these documents,
and then feeding them back into the automatic system, we
truin it to recognize the subtle differences that distinguish
how these documents should be classified.

120

EXPERIMENTS & RESULTS
The system that was used for the evaluation is a research
version of the commercially available <!metaMarker> sys-
tem. The research system includes new and different algo-
rithms and functionalities, which are not fully tested and
incorporated in the commercial system. Thus, the experi-
ment results reported in this paper should not be used to
gauge the effectiveness of the commercial version.
Two methods of measuring effectiveness that are widely
used in the information extraction research community have
been selected to evaluate the metadata extraction including
the user preference extraction performance [2]. The meth-
ods are:
e Precision: the percentage of actual answers given that
are correct.

e Recall: the percentage of possible answers that are
correctly extracted.

Automatically extracted metadata was evaluated with the
following criteria:

e If the automatically extracted metadata and the answer
key, which is generated manually, are deemed to be
equivalent, then the automatic extraction output is con-
sidered as “correct.”

e If the automatically extracted information and the an-
swer key do not match then it is considered as “incor-
rect.”

Recall and precision are represented by the following equa-
tion (possible is defined as a sum of correctly extracted and
missing metadata, and actual is defined as a sum of cor-
rectly extracted and incorrectly extracted metadata:

Recall = correct/possible
Precision = correct/actual

Explicit metadata extraction rules were developed induc-
tively by analyzing randomly selected training data from a
collection of actual emails which were sent by the custom-
ers of a commercial e-commerce merchant to the merchant.
There were about 5,000 email messages in the training data
set. The text classifier used to generate the implicit meta-
data was trained by the same email messages after the ap-
propriate implicit metadata including the user preferences
was manually coded.

The following steps were followed to measure the effec-
tiveness of automatically extracting metadata from emails:

e Test data was randomly selected and consisted of a
pre-determined number of email messages that were
not used for training.

e A manual evaluation was conducted by presenting the
automatically extracted metadata and the source text to
three judges and asking them to categorize extracted

metadata as correct or incorrect, and to identify missing
information.

e Precision and recall were computed for the automati-
cally extracted metadata by applying the majority prin-
ciple (i.e. assume the correctness of a judgment if two
or more judges make the same judgment.)

e A failurc analysis was conducted of all incorrectly ex-
tracted missing information.

The metadata extraction experiment was conducted against
100 randomly selected customer inquiry email messages.
The evaluation result for the user preference specific meta-
data using this previously unseen data is shown in the Table
1.

Table 1. User Preference Extraction Evaluation Results

Precision Recall
Like 89% 85%
Dislike 91% 93%
Interested 88% 86%
Not Interested 82% 79%

It was expected that the ‘Not Interested’ category would
result in the worst score since the development of the train-
ing data for this category was the most difficult one for the
human coders. The humans had the most number of dis-
crepancies for this category. On the contrary, ‘Dislike’
category scored best. This was also consistent with the hu-
man coders’ experience with developing the training data
set. They had the least discrepancies in finding email mes-
sages, which belong to the ‘Dislike’ category.

Table 2 shows the Mood metadata element extraction
evaluation result using the same 100 email messages.

Table 2. Mood Extraction Evaluation Results

Precision Recall
Positive 71% 81%
Neutral 90% 95%
Negative 93% 90%
Strongly Negative 86% 44%

The working definition of each category is developed in-
ductively by analyzing the data. The ‘Positive’ category
should be assigned when the customer is pleased with the
transaction and openly expresses satisfaction and/or happi-
ness. The ‘Neutral’ category means that the customer states
fact or asks a question; does not express emotion either
positively or negatively. The customer has found no fault
with the service, web site, or product. The ‘Negative’ cate-
gory should be assigned when the customer is dissatisfied
with the transaction, and sometimes is openly negative,

121

finding fault with the service, web site, or product and per-
haps asking for clarification, explanation, or fix. The com-
munication may include mild sarcasm. Finally, the
‘Strongly Negative’ means that the customer is extremely
dissatisfied with the transaction - disgusted, irate, and many
times is going to cancel the order. This is communicated
directly in the e-mail. Many times the e-mail shows caustic
sarcasm.

We expected that if there is a small number of the training
data for a certain category then the categorization effective-
ness of that category is usually lower than the other catego-
ries with more training data. ‘Positive’ and ‘Strongly Nega-
tive’ categories had the lesser number of the training data in
comparison to ‘Negative’ and ‘Neutral’ categories. The
evaluation result confirms our hypothesis.

It was also expected that there were high correlation be-
tween the occurrences of ‘Positive’ mood category with
‘Like’ and ‘Interested’ user preference categories. It turned
out to be the case. In addition, ‘Negative’ and ‘Strongly
Negative’ categories had high correlation with ‘Dislike’
category. However, the correlation between the negative
mood categories and ‘Not Interested’ category had com-
paratively lower correlation. It seems that there are factors
other than mood or emotions, which contribute to a cus-
tomer not having interests in certain objects.

Table 3 shows the Urgency metadata element extraction
evaluation result using the same 100 email messages.

Table 3. Urgency Extraction Evaluation Results

Precision Recall
Neutral 69% 90%
Urgent 82% 85%
Very Urgent 86% 59%
Urgent + Very Urgent 95% 86%

The working definition of urgency is described in the fol-
lowing. The ‘Neutral’ category is assigned to the messages
when they convey no sense of urgency. The ‘Urgent’ cate-
gory means that the message conveys a need for action or
response within a reasonable timeframe. However, no spe-
cific time needs to be mentioned. The ‘Very Urgent’ cate-
gory means that the message conveys a need for an immedi-
ate action or response. Often times the action or response
was desired or needed by the customer prior to writing the
message. Finally, ‘Urgent + Very Urgent’ is used to cate-
gorize the messages at two dimensions namely that an ur-
gency is conveyed in the message or not.

We expected to see the better effectiveness when there is
less number of categories for the system to leam. The
evaluation results confirmed our expectation. The decision
to have more number of categories versus less number of
categories for a certain metadata element is dependent on

the application. The evaluation results shows one of the
trade-offs of making such decision.

In summary, the experiment result is consistent with the
previous evaluation of <!metaMarker>. The accuracy of
assigning the most appropriate ‘Intention’ type metadata to
cach sentence in emails also revealed the similar results.

There are five intention type metadata elements. They are:
background, beliefs & judgments, niceties, promise, and
request. The average precision of correctly assigning these
intention metadata elements was 89.40% and the recall was
89.20%. The maximum precision value was 95% and the
minimum precision value was 85%. The maximum recall
value was 97% and the minimum recall value was 77%.
These figures are based on the same experiment procedure
described for measuring user preference type metadata ele-
ment assignment effectiveness.

CONCLUSION

A combined NLP and ML approach to automate user pref-
erence extraction is introduced and its performance on a
number of email messages is described. The extended sys-
tem, which is based on a general-purpose metadata genera-
tion system, accurately extracts user preferences in addition
to the traditional descriptive, citation-like features, descrip-
tive features unique to business communications, and situ-
ational or use aspects which provide critical contextual in-
formation. This system is designed to be a part of a larger
Customer Relation Management (CRM) system that priori-
tizes & routes incoming customer inquiries and also popu-
lates user profiles.

The same underlying metadata extraction framework that is
implemented as <!metaMarker> is currently adapted for
other applications such as e-learning and monitoring con-
sumer perception of medical goods or services. The goal of
the e-learning application is to automatically assign relevant
metadata tags to educational resources. For example, Audi-
ence, Duration, Cataloging, Essential Resources, Educa-
tion Level, Pedagogy, Quality, and Standards are the edu-
cation specific metadata elements that-will be a part of the
newly adapted <!metaMarker>. The goal of the other appli-
cation is to monitor public perception of over-the-counter
and prescription drugs. There are hundreds of chat rooms
devoted to various medical conditions as well as discussion
groups that discuss a particular medicine and its side ef-
fects. The proposed system will automatically categorize
harvested information according to the newly developed
metadata elements such as Condition, Side Effects, Severity
of Side Effects, Off-label Use, Cures offered to Mitigate the
Side Effects, Alternative Medicine, Source, Usage, and
Attitude.

122

The major potential contribution of the research reported in
this paper is the demonstration of successfully using NLP
and ML techniques as part of a large-scale work flow sys-
tem {e.g., CRM system) to solve real-world problems. This

success became possible due to the advancement of hybrid '

domain-independent and domain-dependent NLP tech-
niques, which depart from the common practice of develop-
ing a specific one-off NLP application for each problem
area.

REFERENCES
[1] Brown, P. & Stephen C.L. Politeness: Some universals
in language usage. Cambridge: Cambridge UP, 1987.

[2] Chincor, N. MUC-4 Evaluation Metrics. Proceedings
of the Fourth Message Understanding Conference
(MUC-4), McLean, VA, 1992.

[3] Grice, H.P. Logic & Conversation. Syntax & Seman-
tics 3: 41-58, 1975.

[4] MUC-3. Proceedings of the Third Message Under-
standing Conference (MUC-3), San Diego, CA, Mor-
gan Kaufmann, 1991.

[5] MUC-4. Proceedings of the Fourth Message Under-
standing Conference (MUC-4), McLean, VA, Morgan
Kaufmann, 1992.

[6] MUC-5. Proceedings of the Fifth Message Understand-
ing Conference (MUC-5), Baltimore, MD, CA, Mor-
gan Kaufmann, 1993

[7] MUC-6. Proceedings of the Sixth Message Under-
standing Conference (MUC-6), Columbia, MD, Mor-
gan Kaufmann, 1995.

[8] Musen, M.A. Widening the Knowledge-Acquisition
Bottleneck: Automated Tools for Building and Extend-
ing Clinical Methods, in Hammond, W.E., Ed.,
AAAMSI Congress, San Francisco, CA, 1989.

[9] Paik, W. CHronological information Extraction SyS-
tem (CHESS), Ph.D. dissertation, Syracuse University,
Syracuse, NY, 2000.

[10]Sager, N., Friedman, C., & Lyman, M.S. Medical Lan-
guage Processing: Computer Management of Narrative
Data, Reading, MA: Addision-Wesley, 1987.

[11] Santorini, B. Part-of-speech Tagging Guidelines for the
Penn Treebank Project. Technical report, Department
of Computer & Information Science, U. of Penn, 1990.

[12]Searl, J.R. Speech Acts: an Essay in the Philosophy of
Language. Cambridge University Press. NY, 1969.

[13]Smith, D. There Are Myriad Ways to Get Personal,
Internet Week Online, 2000.

[14] Votsch V. & Linden, A. Do you know what personal-
ization means? Gartner Grp T-10-9346, 2000

Ontology-Guided Knowledge Discovery in Databases

Joseph Phillips
Intelligent Systems Program
University of Pittsburgh
Piusburgh, PA 15260, USA
josephp@cs.pitt.edu

ABSTRACT

We present work in progress on a new methodology for
leveraging the semantic content of ontologics to guide
knowledge discovery in databases. Our system scans new
databases to obtain type and constraint information, which
users verify. Our system then uses this information in the
context of a shared ontology to intelligently guide the
potentially combinatorial process of feature construction.
Further, our system learns each time it is applied, easing
the user’s verification task on subsequent runs.

KEYWORDS

Constructive induction, knowledge discovery in data-
bases, ontology.

INTRODUCTION

Knowledge discovery in databases (KDD) is the knowl-
edge-intensive process of discovering knowledge that is
implicit in large and diverse databases [7]. It is an inher-
ently iterative process of selecting data, preprocessing it,
transforming it into a workable form, data mining over it,
and interpreting the results. The process is knowledge
intensive because all steps require domain-specific knowl-
edge to decide which operations from a potentially large
set might prove most useful. The choice of vocabulary is
critical for discovery programs [17].

The growing importance of large scale, shared ontologies
is demonstrated by several projects to construct them in a
variety of domains. Two examples are Ontolingua [8] and
the Unified Medical Language System [13]. Ontologies
allow reasoning in hitherto intractable domains by codify-
ing specific knowledge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom usc is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission andjor a fec.

K-CAP U1, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...85.00

123

Bruce G. Buchanan
Intelligent Systems Program
University of Pittsburgh
Pittsburgh, PA 15260, USA
buchanan@cs.pitt.edu

Our goal is to exploit the information contained in ontolo-
gies to the help KDD process. Specifically, we hope to:

1. automatically suggest and generate new attributes
based upon semantic and domain information,

2. capture useful knowledge for reuse, and

3. reduce the user’s workload to interpret new tables.

A tool that gradually accumulates knowledge of the data-
bases of a domain is appropriate for and applicable to
KDD because KDD is an iterative process. Rescarchers
often rework their data. Integrating this knowledge with an
ontology extends the ontologies usefulness.

The feature construction task shows the value of ontolo-
gies clearly. The composition of the most useful con-
structed attributes depends upon the semantic relationships
among the attributes. For example, we expect to create a
useful attribute by multiplying one attribute called “length
of X" by another called “width of X". Expectations of use-
fulness diminish when we multiply “length of X by
“width of Y” for different X and Y.

Databases do not have the required semantic knowledge to
intelligently guide feature construction because they were
not designed to store it. Databases may specify constraints
among attribute values (e.g., for all X: length(X) >
width(X)). This, however, is not the same as describing the
relationships among the attributes themselves. Ontologies
are designed to hold this meta-knowledge.

It is already well-accepted that knowledge-based learning
and discovery can be enhanced with automatic feature
construction [5]{15][18], and by learning the historically
best operators [16]. Mostly, however, the prior knowledge
is specified separately for each new problem. Here we
extend this line of research to develop general programs
that can capture prior knowledge found to be useful for
one problem area and reuse it in another domain. The
shared knowledge is stored in a simple ontology, which,
presumably, will be part of a much larger ontology like
CYC[11].

We do not presume that an ontology is complete at the
time a new data mining application is begun; to the con-

trary, we believe that new domains will bring new types of
variables and knowledge about them. However, we also
believe that data mining is not simply the one-time appli-
cation of a program to a new database. In our own work,
data mining frequently starts with small pilot studies and
manual bias space search, including feature construction.
With preliminary confirmation that the programs can find
some interesting relationships, more data and greater
expectations are introduced.

This paper is organized as follows. The next section men-
tions tools for related, but different, problems. The third
section shows our process by stepping through an example
database. The following section details and discusses
experiments. The last section concludes.

RELATED WORK

Constructive induction is the process of creating new
attributes from old ones for the purpose of knowledge dis-
covery. Our work complements IDP and other approaches
that use information theory metrics by specifying semantic
constraints that can be applied in parallel. Donoho & Ren-
dell [5] describe several types of domain knowledge that
assist feature construction for data mining or discovery. In
this paper, we extend that work to show how the ontology
encoding that knowledge can be extended by the user of a
discovery system in the context of a new problem.

Several tools exist to assist with refining and debugging
knowledge bases for knowledge-based systems (e.g.,
[11{31[41[121[14][19][20]). (See Boose [2] and Gaines &
Shaw [9]{10] for systematic discussions of the types of
tools that have been proposed.) Our goal, however, is use
an ontology to help discover knowledge from databases.
Unlike Boose [1], and others working on interactive
knowledge elicitation tools, we try to reduce the amount of
time required of a domain expert by starting with data in a
database and inferring facts and relations about the vari-
ables using an underlying ontology. Unlike Erikson, et al.
(6], and others working on construction of ontology edi-
tors, we rely on human efforts already invested in problem
definition. That is, we assume that a person constructing a

database has provided a considerablec amount of structure
in the domain, and that automated tools can capture that
structure and reuse it.

PROCESS
Overview

Our system has three components that work as follows
(please see figure 1). The table interpreter reads a flat file
of attribute names and their values. It infers attribute
domains from the values, and verifies the domains by ask-
ing the user. Next, it re-reads the flat file to create a Prolog
program that incorporates this data. The Prolog program
also contains attribute annotations that tell how that
attribute may be used.

Second, Prolog is invoked. Prolog uses an existing ontol-
ogy and the newly created program to invent attributes
according to defined rules. These rules are guided by the
attribute annotations created by the table interpreter. The
program generates values of both the existing attributes
given in the table and the newly created attributes created
by the rules. The values are written to a file.

The last component recomposes the Prolog program’s out-
put into a new flat file table. This flat file has both the
attributes of the original table, and the new attributes cre-
ated by the Prolog rules. This file can be used as input fora
variety of machine learning and data mining programs.

A Running Example

Table 1 is referred to as a running example throughout the
paper. It lists a subset of data about patients who received
orthopedic treatments in a rehabilitation ward at the Uni-
versity of Pittsburgh.

Table 1 lists the following attributes. Person gives a
unique label to each patient that masks their identity. The
attributes age and sex both have their conventional English
meaning. Start_time tells when the patient entered the
ward after some arbitrary reference time and duration
tells the patient’s time in the ward. Both are in days.

FIGURE 1. Overview of process

5

Table interpreter

{Attribute name readerl

la)ject annotator |

| Object writer |

Prolog
ontology

Prolog

Table
recomposer

124

Admit_health and discharge_health values are based on
the patient’s Functional Independence Measurement

(FIMSM) at admit and discharge times. The FIM score is a
gross indicator of how independently a patient can live
without assistance from caregivers. It has been renamed
“health™ both for reader convenience and to signify that it
is no longer the FIM score but the result of a transform on
the FIM score. Numbers were changed to showcase the
system’s strengths (and weaknesses), and to further
obscure patient identity.

TABLE 1. Orthopedic patient ward table (abbrev.)

dis-
start dur- admit_ charge_
person age sex _time | ation health health
pl 63 female 10 6 9.5 11.5
p2 69 male 20 8 8.4 10.3
p3 79 female 30 9 7.6 10.3

Reading tables

The first step of the first program is to read the original flat
file. This provides it with the names of the attributes and a
guess of their domains.

Attribute names are assumed to be on the first (or desig-
nated) line of the file in columns separated by tabs or com-
mas. We also assume that all names come from the same
natural language. We are building a list of likely synonyms
of common attributes to enhance the program’s knowledge
of attribute names. For example: sex, gender and M/F are
commonly used to refer to the same demographic informa-
tion. Additional synonyms encountered in the future can
be added.

Attribute domains are inferred by reading the values on
subsequent lines. (They also are assumed to be in tab or
comma separated columns.) Domains may be either sym-
bolic, floating point, fixed point, integer, or integer coded.

Attributes that have text values underneath them are con-
sidered symbolic, and are assumed to have a fixed set of
values associated with them. These values may have a nat-
ural order (e.g., {before, during, after}) or may be unor-
dered (e.g., {female, male}). Attributes person and sex of
table 1 would be considered symbolic attributes.

Attributes with numeric values that contain decimal
points, are written in scientific notation, or that are too big
or too small to represent as integers are considered floating
point. Floating point domains have a maximum value, a
minimum value, a mantissa size and an exponent size.
Admit_health and discharge_health of table 1 would be
considered floating point.

Floating point attributes may later be recast to fixed point
attributes. Fixed point numbers cover the same range as

125

floating point numbers, but all values between their mini-
mum and maximum must be able to be generated by inte-
ger multiples of a fixed floating point increment. For
example, a database of earthquakes may give quake mag-
nitudes as fixed point numbers from 4.0 to 9.0 with fixed
increment 0.1.

Most attributes with numeric values that are not floating
point (or fixed point) are considered integer. (Read the
next paragraph for the exception.) Integer domains also
have minimum and maximum values associated with
them. Attributes start_time and age of table I would be
considered integer.

Attributes with integer values that are all between 0 and
some small limit (currently 10) are assumed to have inte-
ger-coded domains. The numbers are assumed to be a code
for text. Integer coded domains are really ordered sym-
bolic domains (e.g. {l=before, 2=during, 3=after}) or
unordered symbolic domains (e.g. {O=female, 1= male}).
Attribute duration of table 1 would (incorrectly) be con-
sidered integer-coded because all values are between 0 and
10.

The user can, of course, override any default domain iden-
tification, and change domain properties such as the mini-
mum or maximuir.

Flat files are both the input and output of this process.
Although flat files are not as informative as other standard
database formats, they have the advantage of being easily
generated and read by most database programs. Also,
many machine learning and data mining tools expect or
may utilize flat files as input. We are considering extend-
ing our tool to read common database formats. This would
help identify domains.

Automatic and manual annotation of attributes

Although many possible semantic relationships may be
invented, we seek a small set that is general and may b:
extended as needed. Therefore, knowledge of relations
among attributes is organized in terms of processes and
states (in addition to domain objects and classes). All data-
base tuples are treated as associating values with an explic-
itly or implicitly stated process. For example, in a database
of earthquakes, each quake is a process. In the hospital
admittance and discharge data in table 1, each treatment
tuple is a process. Both earthquakes and patient treatments
are subclasses of the more general frame process_class.
Both have unique properties specific to their domains, and
both inherit properties just by being processes. Chief
among these inherited properties are start and stop states,
and duration.

States tell what is true at a particular time for a subset of
the Universe. All transitory information is associated with

some state. States have at least one key attribute that help
to uniquely identify them. The key attribute that all states
share is time. Like processes, states are objects that may
have and inherit values.

After reading the initial database, the table interpreter has
gained as much information as it can from the source doc-
ument. Its knowledge, however, is very approximate and
poorly describes the relations among attributes. Complete
attribute annotations specify the attribute name, domain
and the object or process that the attribute’s values
describe. It now turns to two auxiliary sources of knowl-
edge: records of attributes from prior tables stored in a
shared ontology, and the user.

The program looks for the previously seen attribute
description that best matches each attribute read from the
new table. The program uses both pieces of information
that it knows about the read table attribute: its name and its
domain. For now, the name match is a simple string prefix
comparison that would match age with age at admission
but not with present age. We envision a more sophisti-
cated matching routine that matches more freely by con-
sulting dictionaries of synonyms, efc. In general, such
routines would be specific to a given natural language’s
morphology. That is beyond the scope this research.

The domain match follows the name match, but it too
must yield success before the overall comparison is con-
sidered to match. Attributes match adequately if they have
similar data types (e.g., float-type and fixed type), match
better if the data types are identical, and match the best if
they specify similar sets of values (e.g., minima and max-
ima, or similar lists of symbols).

The system verifies as much as it can without bothering
the user by integrating both read and matched domain
information. If a match was found then the user is asked
which description is more accurate.-After the single most
accurate attribute description is selected, either explicitly
by the user or implicitly by lack of matching alternative,
the user may accept this attribute’s domain and “describes
attribute” (see below) and go on to consider the next
attribute.

Users who do not accept the system’s attribute description
must revise both the attribute’s domain and its “describes
attribute”. The “describes attribute” tells the other tuple
value that is described by a given attribute. By default all
attributes describe the process, but this is not always the
case. For example age, sex, admit_health and
discharge_health arc all generally considered properties
of person, not of the rchabilitation process itself.

126

Users are asked to revise domains in the following manner.
The program shows the properties of the user’s explicitly
or the system’s implicitly closest attribute. The user is then
allowed to change the properties. In our running example,
attribute start_time should be recast to an ordinary integer
domain, with minimum value 1 and maximum value 365,
Figure 2 shows the interactive dialog for this revision.

FIGURE 2. Revision of attribute start_time of Table 1.
(Text in boldface is supplied by the user.)

Attribute start_time has an int domain from 10 to 30:

Attribute describes the process.
please choose one of the following:
(0) Accept as-is
(1) Accept after changing parameters
(2) Cast to int-coded-type
(3) Cast to fixed-type
(4) cast to float-type

Your choice? 1
The current lo value is 10, new value? 0
The current hi value is 30, new value? 365
Does this attr describe another attr instead of a
process (Y/N)? N

States are annotated after the attributes. Time helps to
uniquely identify states because it is their primary (key)
attribute. The program asks which attributes signify the
starting time, stopping time and duration of the process.
Starting and stopping times are later associated with the
process’s starting and stopping states. The duration is asso-
ciated with the process itself. The program asks if there are
any other attribute pairs that form <before,after> pairs. In
this example there is one: admit_health and
discharge_health. The program then asks for a name that
represents the quantity in both states. In this case, it is just
health.

Creating the Prolog program

The last step of the table interpreter is to re-read the file
and format it into a Prolog program segment that contains
this information. Three distinct ground clauses exist to
specify attribute identities and domains, to tell which sym-
bolic and integer-coded domains are ordered, and to spec-
ify the “describes attribute” of any attribute that does not
describe the process.)

States and “timeless” facts have distinct ground clauses.
Values of attributes associated with a state are written on
that state. Such values may describe the state itself {e.g.,
time) or another entity (e.g., the health of the person at 2
particular time). Values of attributes that are not associated
with states are considered “timeless facts™ that are true in
all states.

Intelligent attribute construction

The next step is to run the constructed program with a Pro-
log interpreter. There are two components to the con-

S

structed program: the newly-created attribute and data
describing file (see above) and the pre-existing ontology.

The ontology organizes knowledge hierarchically by stat-
ing more specific facts further from the root. All knowl-
edge is organized into <gbject, attribute, value> tuples.
The ontology uses directly stated <object, attribute, value>
tuples, inherited <attribute,value> pairs, decision trees and
simple equations to answer querics.

The value of ontologies derives from our abilities to query
them and re-use them in other domains. Associated with
each query is a current statc and a list of things that cur-
rently may be assumed to hold true. The current state can
be blank to specify “query results must hold in all states”.
The “may assume” list is a means of both augmenting the
knowledge in states (e.g., “Given that X is true in state S,
what is the value of V?™) and of obtaining the information
recorded in states by holding key values that must be
matched (e.g., the knowledge “Assume time = T,” allows

the knowledge at any state with time T, to be used).

Legal queries may ask:

1. for the value, given the object and attribute,

2. for the attribute and value, given the object, and
3. for the object, given the attribute and value.
Subsequent queries for a value given the same object and

attribute may return other values, but the first value should
always be trusted more than subsequent ones.

Attributes can be constructed from the following generic
rules:

TABLE 2. Domain non-specific attribute rules

Rule Applicability Description
pred(attr) ordered symbol predecessor of
domain ordered symbol
value
succ(attr) ordered symbol successor of ordered
domain symbol value

delta(attr)

rate(attr)

gen(attr)

state-dependent
numeric domain

same as
delta(attr) AND
process duration
information

symbolic domain
with hierarchy
info in ontology

change of attribute
between start and
stop states

average rate of
change of attribute

generalizes attribute
values one level up
in hierarchy

127

If attribute_set[0] represents the original set of attributes
and attribute_set[1] represents the new set after applying
the rules to attribute_set[0], one can imagine re-applying
the rules on attribute_set{N-1] to generate attribute_set[N]
for any desired, positive N (e.g., gen(gen(attr)) is in
attribute_set[2]).

EXPERIMENTS and DISCUSSION

Recall that the goals of this research are threefold: (1) to
automatically suggest and generate new attributes based
upon available semantic and domain information, (2) to
capture useful knowledge for reuse, and (3) to reduce the
user’s workload to interpret new tables.

Our experiments directly test these assertions. To test the
second and third goals we re-ran the program using table 3
as input to see if the table annotation task is easier. This is
measured by the number responses that the user must give.
To test the first goal we comment on the usefulness of the
output from tables 1, 3 and 5.

After running the program on the orthopedic patient data
in table 1, we re-ran it on a database of amputation patients
in table 3. Tables 1 and 3 describe distinct sets of people
who are from the same rehabilitation service and whosc
data are recorded in the same database with the same
attributes. They were deliberately selected for their simi-
larity, yet there are differences. For example, the average
orthopedic patient is 14 years older than the average ampu-
tation patient in the larger databases from which tables 1
and 3 were drawn. The data of table 3 has been trans-
formed in the same manner as the data in table 1.

TABLE 3. Amputation patient ward data (abbrev.)

dis-
start dur- admit_ charge_
person age sex _time ation health health
p4 38 male 40 12 10.2 10.9
pS 47 male 50 16 103 11.7
pé 63 female 60 26 8.7 10.2

Our system was able to transfer knowledge between the
databases despite the domain differences. The original run
required the user to answer 34 attribute verification ques-
tions while the second run only required 19. The system’s
matching mechanism made attribute annotation easier.
Figure 3 shows that only two questions had to be answered
for start_time instead of the four in figure 2.

FIGURE 3. Revision of attribute start_time of Table 3.
(Text in boldface is supplied by the user.)
Current attribute start_time:
Attribute start_time has an int domain from 40 to 60

Attribute describes the process.

Closest stored attribute start_time:

Attribute start_time has an int domain from 0 to 365
Attribute describes the process.

Is the stored attribute a petter description (Y/N}? Y

Attribute start_time has an int domain from 0 to 365
Attribute describes the process.

please choose one of the following:

(0} Accept as-is

(1) Accept after changing parameters

(2) cast to int-coded-type

(3) Cast to fixed-type

(4) Cast to float-type

Your choice? 0

The results from tables 1 and 3 are combined in table 4.
Our system constructed two new features.

TABLE 4. System results on tables 1 and 3:

dura-

person tion delta_health rate_health age sex

pl 6 2 0.333333 63 female
p2 8 19 0.2375 69 male
p3 9 2.7 0.3 79 female
pd 12 0.7 0.0583333 38 male
pS 16 14 0.0875 47 male
p6 26 1.5 0.0576923 63 female

Delta_health is the difference between admit_health and
discharge_health, and was constructed by applying the
delta rule of table 2. Rate_health is that difference divided
by duration. It was constructed from delta_health and the
rate rule. Attributes delta_health and rate_health have
been used by a rule inducing program. The resulting rules
were verified by a practicing rehabilitation doctor as hav-
ing accurately encapsulated some the background rehabili-
tation knowledge (e.g., younger people heal faster).

As another test database from a very different domain
(deliberately chosen for its differences), we entered the
seismological data of table 5. These-data were obtained

TABLE 5. Table of earthquakes (abbrev.)

scalar
latitude longitude start_time duration moment
30.66 137.06 04817314 36 1.34e+24
-7.90 109.00 0.733273 X
o 32 60 7.72¢+24
-10.1 8. 413 |
7 11899 14135231 120 3070424

from Harvard University’s Centroid Moment Tensor
(CMT) catalog. Latitude and longitude are in degrees.
Time is in fractions of a day since the midnight 1976
December 31. Duration is twice the recorded “half dura-
tion™ of the quake, which is itself an estimated value. It is
given above in seconds for understandability. It was, how-

ever, entered into the initial database in fractions of a day.
Finally, scalar_moment is a mcasure of the energy
released by the earthquake in dyne-cm.

The system’s output for the data of table 5 is shown in
table 6.

TABLE 6. System resuits of data from table 5

dura- delga_scalur rate_scalar_
latitude longitude tion _moment moment
30.66 137.06 3.6 1.34¢+24 3.21605¢+28
-7.90 109.00 6.0 7.72e+24 1.11169¢+29
-10.17 118.99 12.0 3.07c+24 2.21041¢+28

The seismological experiment demonstrates our three
goals clearly. Although it was a very different domain,
starting time domain information was transferred between
the rehabilitation and the seismological domains. A slight
reduction in cognitive load was achieved by having the
system correctly guess and suggesting some of the domain
properties as shown in figure 4. Finally, the system created
useful attributes. The quantity that it calls
rate_scalar_moment is inversely correlated with the
complexity of the focal mechanism of the quake. Quake
focal mechanism complexity is attributed to the several
faults breaking in series, perhaps in slightly different direc-
tions. This in turn can be due to networks of interlacing
and paraliel faults. Hence, our tool has found a potentially
very useful attribute for KDD.

FIGURE 4. Knowledge transfer between domains

Current attribute start_time:

Attribute start_time has a floating pt. domain from
0.481731 to 1.41352 (mantis=24, exp=5)

Attribute describes the process.

Closest stored attribute start_time:
Attribute start_time has an int domain from 0 to 365
Attribute describes the process.

Is the stored attribute a better description (Y/N)? Y

Attribute start_time has an int domain from 0 to 365
Attribute describes the process.
please choose one of the following:
(0) Accept as-is
(1) Accept after changing parameters
(2} Cast to int-coded-type
(3) Cast to fixed-type
(4) Cast to float-type
Your choice? 4
current lo value 0, new value? 0
Current hi value 365, new value? 365
please enter mantissa size: 24
please enter exponent size: 7
Does this attr describe another instead of a process
(Y/N}? N

As we have shown above, we are on track to achieve our
goals. The annotation task has been eased. Domain knowl-
edge has been transferred across table interpreting tasks.
Also, we have constructed useful attributes.

Transfer between such dissimilar domains was achieved in
part by using databases that were on similar time scales (in
this case, on the scale of days in a year). We plan to make
use of units and dimensionality information to make it
more robust to different scales.

Data transforming and feature construction are only two
subtasks in the larger KDD effort. Many, perhaps most, of
the constructed features may not prove useful. This, how-
ever, is an issue for the data mining or machine leaming
tool to address. Our mission here is to create a smaller set
of features than a purely naive attribute constructor would,
where the fraction of potential useful attributes has been
increased over the naive approach’s baseline.

The complexity of the expressions generated by the ontol-
ogy’s rules limit this approach. The table interpreter is not
a bottleneck: it makes two passes through the data and
keeps no records other than gross statistical measures.
However, the Prolog program currently grows linearly
with the size of the initial database. We plan to address this
by using a Prolog interpreter outfitted with a database for
efficient retrieval of ground clauses.

Our ontology consisted of 147 inference rules and associ-
ated ground clauses. This small ontology served our pur-
poses as a proof-of-concept, since we believe that the same
kinds of information are readily available in most fully
developed ontologies.

CONCLUSION

KDD is an inherently iterative process, and our tool accel-
erates our turn-around time between iterations. Table
annotation is facilitated by a tool that intelligently guesses
attribute domains based upon the given values, examples
from other tables, and selected user querying. Feature con-
struction is supported by using the semantic and domain
constraints obtained from the first step to guide the cre-
ation of selected attributes.

This system is meant to be a subcomponent in the overall
KDD process. Its usage of knowledge obtained from prior
examples makes it applicable when several related data-
bases are examined. Still, there is a (lessened) need for an
information gain or other usefulness-based metric to prune
created attributes to offset their eventual combinatorial
explosion. Our approach assumes the same term has
equivalent meanings in different settings and that someone

129

will identify and organize the useful terms. Most ontology
efforts share these assumptions.

This work can be extended in a varicty of ways. Domain
identification may be given a more clever attributc name
matching routine, may use unit and dimension information
for attributes, etc. Feature construction may be made more
specific by being able to turn specific rules on and off by
specifying particular domains. Prolog may be given the
ability to read ground clauses from a database. We believe
that this approach convincingly addresses a pressing KDD
need.

ACKNOWLEDGEMENTS

We gratefully acknowledge Louis Penrod, M.D. and Greg
Cooper, M.D., for their help in obtaining and interpreting
these data. This work was funded in part by grants from
the NSF and the National Library of Medicine.

REFERENCES

[1] Boose, J. “Uses of repertory grid centered knowledge
acquisition tools for knowledge based systems.” Inter-
national Journal of Man Machine Studies, 29: 287
(1988).

[2] Boose, J. “A survey of knowledge acquisition tech-
niques and tools.” Knowledge Acquisition, 1(1); 3-37
(1989).

[3] Carbonara, L., Sleeman, D. “Effective and efficient
knowledge base refinement.” Machine Learning, 37:
143-181 (1999).

[4] Craw, S., Boswell, R. “Debugging knowledge-based
applications with a generic toolkit.” Proceedings of
the 12th International Conference on Tools with Artifi-
cial Intelligence (ICTAI-2000), IEEE Press, Vancou-
ver, Canada (2000).

[5] Donoho, S. and Rendell, L. “Consfructive induction
using fragmentary knowledge.” In L. Saitta, editor,
Proceedings of International Conference on Machine
Learning (ICML-96), 113-121. Morgan Kaufmann
Publishers (1996).

[6] Erikson, H., Fergerson, R. W., Shuval, Y., Musen, M.
“Automatic Generation of Ontology Editors.” Techni-
cal Report SMI-1999-0809, Stanford University Sec-
tion of Medical Informatics (1999).

(7] Fayyad, U., Piatetsky-Shapiro, G, Smyth, P. “From
data mining to knowledge discovery: an overview.” In
Fayyad, U., Piatetsky-Shapiro, G, Smyth, P., Uthuru-
samy, R. (eds.) Advances in Knowledge Discovery and
Data Mining. Menlo Park, CA: AAAI Press (1996).

[8] Fikes, R., Farquhar, A. “Large-Scale Repositories of
Highly Expressive Reusable Knowledge.” Knowledge
Systems Laboratory, KSL-97-02, Stanford University
(1997).

(9] Gaines, B.R. and Shaw, M.L.G. “Integrated knowledge
acquisition architectures.” Journal for Intelligent
Information Systems 1(1) 9-34 (1992).

{10] Gaines, B., Shaw, M. “Knowledge acquisition tools
based on personal construct psychology.” The Knowl-
edge Engineering Review, 8(1), (1993).

[11] Lenat, D. B. “Cyc: A Large-Scale Investment in
Knowledge Infrastructure.” Communications of the
ACM 38, no. 11 (1995).

[12] Murphy, P. M., Pazzani, M. J. “Revision of production
system rule-bases.” Proc. ICML 11th International
Conference on Machine Learning, 199-207. San
Mateo, CA: Morgan Kaufmann (1994).

(13] National Library of Medicine Unified Medical Lan-
guage Systems Knowledge Sources, 9th Ed. U.S.
Dept. of Health and Human Services, National Insti-
tutes of Health, National Library of Medicine (1998).

[14] Ourston, D., Mooney, R. “Theory refinement combin-
ing analytical and empirical methods.” Artificial
Intelligence, 66: 273-309 (1994).

130

{15] Parson, R., Khan, K., Muggleton, S. “Theory recov-
ery” Inductive Logic Programming Lecture Notes in
Artificial Intelligence, 257-267. Berlin: Springer-Ver-
lag (1998).

[16] Phillips, J. Representation Reducing Heuristics for
Semi-Automated Scientific Discovery, Ph.D. Thesis,
University of Michigan (2000).

[17] Provost, E. J. Buchanan, B. G. “Inductive Policy, The
Pragmatics of Bias Selection.” Machine Learning,
20: 1/2, 35-61 (1995).

[18] Srinivasan, A. and King, R. D. “Feature construction
with Inductive Logic Programming: a study of quan-
titative predictions of biological activity aided by
structural attributes.” Data Mining and Knowledge
Discovery, 3(1):37-57, (1999).

[19] Wilkins, D. “Knowledge base refinement as improv-
ing an incorrect and incomplete domain theory.” In
Machine Learning: An Artificial Intelligence
Approach, Vol. I, 493-513. San Mateo, CA: Morgan
Kaufmann (1994).

[20] Woodward, B. “Knowledge engineering at the front-
end: defining the domain.” Knowledge Acquisition
2(1) 73-94 (1990).

A Methodology for Ontology Integration

Helena Sofia Pinto & Joao P. Martins
Grupo de Inteligéncia Artificial

Departamento de Eng. Informatica

Instituto Superior Técnico
Av. Rovisco Pais, 1049-001 Lisboa, Portugal
sofia,jpm @ gia.ist.utl.pt

Abstract

Although ontology reuse is an important research issue only
one of its subprocesses (merge) is fairly well understood.
The time has come to change the current state of affairs with
the other reuse subprocess: integration. In this paper we de-
scribe the activities that compose this process and describe a
methodology to perform the ontology integration process.

INTRODUCTION AND MOTIVATION

Ontologies aim at capturing static domain knowledge in a
generic way and provide a commonly agreed upon under-
standing of that domain, which may be reused and shared
across applications and groups [4]. Therefore, one can de-
fine an ontology as a shared specification of a conceptualiza-
tion. Ontology reuse is now one of the important research
issues in the ontology ficld. There are two different reuse
processes [18]: merge and integration. Merge is the pro-
cess of building an ontology in one subject reusing two or
more different ontologies on that subject [18]. In a merge
process source ontologies are unified into a single one, so
it usually is difficult to identify regions in the resulting on-
tology that were taken from the merged ontologies and that
were left more or less unchanged.! It should be stressed that
in a merge process source ontologies are truly different on-
tologies and not simple revisions, improvements or variations
of the same ontology. Integration is the process of building
an ontology in one subject reusing one or more ontologies
in different subjects? [18]. In an integration process source
ontologies are aggregated, combined, assembled together, to
form the resulting ontology, possibly after reused ontologies
have suffered some changes, such as, extension, specializa-

1 In some cases, knowledge from merged ontologies is homogenized and
altered through the influence of one source ontology on another (is spite of
the fact that source ontologies do influence knowledge represented in the
resulting ontology). In other cases, knowledge from one particular source
ontology is scattered and mingled with knowledge that comes from the other
sources.

2The subjects of the different ontologies may be related.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the frs¢ page. To copy oth-
erwise, or republish, to post on servers or to roist:iGute to lists, requires
prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victesia Tiitish Columbia, Canada.
Copyright 2001 ACM 1-58113-380-¢,01;4010.. . $5.00

131

tion or adaptation. In an integration process onc can iden-
tify in the resulting ontology regions that were taken from
the integrated ontologies. Knowledge in those regions was
left more or less unchanged. It should be noted that both
reuse processes are included in the overall process of ontol-
ogy building.

A lot of research work has been conducted under the merge
area. There is a clear definition of the process [21], op-
erations to perform merge have been proposed [16, 25], &
methodology is available [8] and several ontologies have been
built by merge [22, 8]. The first tools to help in the merge
process are now available [16, 14]. In the integration arca a
similar effort is now beginning. The most representative on-
tology building methodologies [24, 13, 7] recognize integra-
tion as part of the ontology development process, but none
really addresses integration. Integration is only recognized
as a difficult problem to be solved. They don't even agree on
what integration is: for some it is an activity, for others a step.
We have been involved in two integration experiences where
publicly available ontologies were reused: we built the Ref-
erence ontology [1, 19, 17] and we were involved in building
some of the subontologies needed to build an Environmen-
tal Pollutants ontology (EPO), namely the Monoatomic Ions
ontology [19, 17, 10].

We have found that integration is far more complex than pre-
viously hinted. It is a process of its own [17, 19]. Other
important conclusions are that integration takes place along
the entire life cycle and should begin as early as possible in
the ontology building life cycle so that the overall ontology
building process is simplified [17, 19]. In both our expe-
riences, integration began as early as the conceptualization
phase.

In this article we begin by describing our assumptions and
some terminology. Then we discuss and analyze the inte-
gration process in relation to the overall ontology building
process. Finally, we present our methodology, namely we
describe each ontology integration activity and the methods,
guidelines and procedures developed to perform them. As
far as we know, this is the first integration methodology pro-
posed in the area.

ASSUMPTIONS AND TERMINOLOGY

Ontology building is.a process composed of several activi-
ties. Some are performed at particular stages: specification,
conceptualization, formalization, implementation and main-
tenance. Others take place along the entire life cycle: knowl-
edge acquisition, documentation and evaluation. The devel-
opment of an ontology follows an evolving prototyping life
cycle [6]. Since integration is a process that takes place along
the entire life cycle, integration activities can take place for
one ontology in any stage of the ontology building process.

The aim of the conceptualization phase is to describe in a
conceptual model the ontology that should be built. We as-
sume that, in this phase of any ontology building process
questions like the following are answered: (1) what should
be represented in the ontology? (2) how should it be repre-
sented (as a class, relation, etc.)? (3) which relation should
be used to structure knowledge in the ontology? (4) which
structure is the ontology going to have (graph, tree, etc.)?
(5) which ontological commitments and assumptions should
the ontology comply to? (6) which knowledge representation
ontology should be used? (7) should the ontology be divided
in modules? (8) in which modules should the ontology be
divided?

At conceptualization, one uses knowledge level [15] repre-
sentations of ontologies. Usually, only implemented ontolo-
gies are publicly available at ontology libraries. If the knowl-
edge level representation of an ontology is not available, then
an ontological reengineering process {10] can be applied.
This process returns one possible® conceptual model of an
implemented ontology. When one begins integration as early
as conceptualization, one needs the ontologies that are going
to be considered for integration represented in an adequate
form. Any conceptual model representation is adequate. In
our case, we had access to knowledge level representations of
most reused ontologies as proposed by METHONTOLOGY
[6]: (KA)? [2] to build the Reference ontology and Chemi-
cals [7] to build the Monoatomic Ions subontology of EPO.
In the case of (KA)? and Chemicals we had access to the ac-
tual conceptual models that produced their Ontolingua ver-
sions, but in the case of EPO, a reengineering process was
applied [10] to produce one conceptual model of Standard
Units {12] (which is reused by Chemicals). However, any
knowledge leve! representation would be appropriate. More-
over, due to the particular framework that was used, ODE
[7], all of our work was done at the knowledge level. This
simplified the overall process of integration a lot. Since in
conceptualization much of the design of the ontology is spec-
ified, it is considerably more difficult to try to integrate an on-
tology at the implementation phase because, unless one has
prior knowledge of the ontologies available for reuse, avail-

3This process may not produce the actual conceptual model that origi-
nated the final ontology. Moreover, if the conceptual model found for the
ontology after the reverse engineering step shows some deficiencies, it may
be improved through a restructuring step.

132

able ontologies will rarely match the needs and the concep-
tual model found for the resulting ontology. One of the con-
sequences of this conclusion is that more integration effort
should be made at the earliest stages, specially in conceptual-
ization and formalization, than at final ones, implementation
or maintenance {19]. We would like to point out that in both
our experiences there was no need to translate ontologies be-
tween different knowledge representation languages. Trans-
lation of ontologies is a very important and difficult problem
to be solved in order to allow more generalized reuse of on-
tologies.

For us, an ontology consists of: classes, instances, relations,
functions and axioms. Each one of the components of an on-
tology is generically referred to as a knowledge piece. Each
knowledge piece is associated with a name, a documentation
and a definition.

A METHODOLOGY

As any process, integration is composed of several activities.
We have identified the activities that should take place along
the ontology building life cycle to perform integration. All
integration activities assume that ontology building activities
are also performed, that is, the integration process does not
substitute the ontology building process, it rather is a part of
it. We now describe each activity and the methods, guide-
lines and procedures developed to perform them. Examples
from case studies are partially described in {17, 19]

Identify integration possibility

The framework being used to build the ontology should allow
some kind of knowledge reuse. For instance, the Ontolingua
Server maintains an ontology library and allows integration
operations, such as inclusion or restriction. More general
systems, such as KACTUS, do not allow such kind of oper-
ations, but allow pre-existent ontologies to be imported and
edited. In other cases, integration (or any kind of reuse) may
involve rebuilding an ontology in a framework different from
the one where the ontology is available. In some cases, this
may be cost-effective, in others it may be more cost-effective
to build a new ontology from scratch that perfectly meets
present needs and purposes than to try to rebuild and adapta
pre-existent ontology.

Identify modules

The modules (building blocks) needed to build the future
ontology are identified, that is, the subontologies in which
the future ontology should be divided (in integration, the
modules are obviously related to ontologies). In integra-
tion upper-level modules and domain modules are identified.
Representation ontologies are chosen in any ontology build-
ing process, therefore they are not specifically addressed in
integration.

Identify assumptions and ontological commitments
One needs to identify the assumptions and ontological com-
mitments [11] that each module should comply to. They are

described in the conceptual model and in the specification re-
quirements document of the future ontology. This is one of
the activitics where documentation of an ontology can be cru-
cial to allow better, faster and easier reuse. The assumptions
and ontological commitments of the building blocks should
be compatible among themselves and should be compatible
with the assumptions and ontological commitments found for
the resulting ontology.

Identify knowledge to be represented in each module
One needs to identify what knowledge should be represented
in each building block. At this stage, one is only trying to
have an idea of what the modules that will compose the future
ontology should “look like™ in order to recognize whether
available ontologies are adequate to be reused. At this stage
one only identifies a list of essential concepts. The concep-
tual model of the ontology and abstraction capabilities are
used to produce this list.*

Identify candidate ontologies

This is subdivided into: (1) finding available ontologies, and
(2) choosing from the available ontologies which ones are
possible candidates to be integrated. To find possible ontolo-
gies one uses ontology sources. Since available ontologies
arec mainly implemented ones one should look for them in
ontology libraries, as for instance, in the Ontolingua Server
(http://WWW-KSL-SVC.stanford.edu:5915)for ontolo-
gies written in Ontolingua, in Ontosaurus (http://www.
isi.edu/isd/ontosaurus.html)forontologies implem-
ented in Loom or in the Cyc Server (http://www.cyc.
com) for Cyc’s upper-level ontology. Conceptualized or for-
malized ontologies are more difficult to find. Sometimes they
are available in the literature or can be obtained by contacting
ontology builders. However, not every ontology in a given
subject will be appropriate to be reused (some may lack some
important concepts, etc.).

To choose candidate ontologies one analyzes all available on-
tologies according to a series of features. At this stage of the
ontology integration process one does not want to leave out
any possible candidate. Therefore, only a very general anal-
ysis is made. Some of the features are strict requirements:
(1) domain, (2) is the ontology available? (3) formalism
paradigms in which the ontology is available, (4) main as-
sumptions and ontological commitments, (5) main concepts
represented. If the ontology does not have adequate values
for these properties they cannot be considered for integra-
tion. Therefore, these properties are used to eliminate on-
tologies. Some of these features can only be analyzed at a
qualitative level (main concepts represented, main assump-
- tions and ontological commitments). Other features are de-
sirable requirements or desirable information: (1) where is
the ontology available? (2) at what level is the ontology

4 At later stages one will need to know to what level of detail should
that knowledge be represented, which relations should organize (structure)
the ontology, and it would be helpful to know how it should be represented
(concept, relation, etc.).

133

available? (3) what kind of documentation is available (tech-
nical reports, articles, etc.)? (4) where is that documentation
available? If some of the properties have certain values, the
ontology is a better candidate: if the knowledge level rep-
resentation of an ontology is available, then this ontology is
a better candidate since the reengineering process would not
have to be performed, if the internal and external documenta-
tion is available, then the most relevant information about the
construction and choices made during the construction of the
ontology is available, but if only articles are available about
the ontology, then it is likely that some of the choices are
not explained. If all of the values of these properties are un-
known, that is, if one cannot find where the ontology and the
documentation is available, then one cannot reuse it, there-
fore, the ontology is not a candidate. However, if there is
enough documentation available, then it may be possible to
reconstruct the ontology, and if the ontology is available, then
it may be possible to understand it, provided that the domain
is common enough and the ontology is simple and not very
large (and possibly after some knowledge acquisition). One
can use a very simple metric to combine these features. If
strict requirements do not have adequate values, the ontol-
ogy is eliminated. If desirable requirements have appropriate
values, then the ontology is a better candidate. If none of
the desirable requirements have appropriate values, then the
ontology is not a candidate. One does not want to eliminate
any possible candidate at this stage of the process, only those
that are of no use at all. If, in a particular integration process,
other features should be considered while choosing candidate
ontologies, the metric can be easily updated. One only has
to decide whether the features are strict or desirable require-
ments. For instance, one can impose the condition that only
already evaluated ontologies should be considered as candi-
dates. In that case, one should add this feature as a strict
requirement. If one only wishes to prefer already evaluated
ontologies, then this feature should be added as a desirable
requirement. The advantage of the flexibility of this met-
ric is the fact that it can be adapted to integration processes
that should take into account particular features during the
choice of one ontology. In particular, this kind of changes
can narrow down the possible ontologies to choose from, if
one introduces more strict requirements.

Get candidate ontologies

Getting candidate ontologies in an appropriate form includes,
not only, their representations, but also, all available docu-
mentation. As already discussed, one should prefer to work
with the knowledge level representation of an ontology. In
some cases, this representation can be found in the litera-
ture (technical reports, books, thesis, etc.), or at least parts of
it. Another possibility is contact ontology developers. How-
ever, in most cases, only the implementation level representa-
tion of an ontology is available. Therefore, the reengineering
process may be applied using the particular framework that
was adopted to design the resulting ontolosy. If the ontology
is not available (either at the implementation or knowledge

-5 ‘jo-hed ‘y's] ‘ojdwrexo 1oj ‘vone|al padajiaud suo
g Surpiodoe paziuedlo 10 paImionns se Jo y3nowy aq ued A3ojouo uy ¢

‘(A1p1des K194 9AJOAD

_0U S0P UIEWIOP U} Jey) papiaoid) A3o[0juo 9[qels Ssaf 10

I grow & 9q p[noys A30j01u0 Y], "dlepipued poo3 e st suon

* “gordde ui pasn A30[01U0 niEW Y "PIJEN[EAD U3 SBY I 10
1' Jinq AJ[nJO1ED U2dq Sy I 3§ eprpued pood e aq ued A3o[0u0
) pg;uaula[dwg uy °$0091d o3poymouy daneiuasaidar surejuod
- £quo ojdurexs oy vy (srmjew ‘payuowoidunr ‘ajdwexa £o)

“gur08-uo ‘papudtul) pasnal aq 0) A30[0IUO UE JO SSAUIPEAI JO
" a0130p 9y} INOQE UONBULIOJU] SIALT STUDIS wadojanaq "A30

-Joluo 9y} INOge UOHEULIOJUI [e1ouad oAI8 saIned) [eIeudn)

‘1 2131 ‘se1nyesy Jo Awouo
-xe) ® 0} SUIp1000€ pazk|eur aq P[noYs SIAZ0[OIUO IePIPULd
ey osodoxd opq "sseo01d sy} UT [RIOMID JIB saskeue Is130
-jowo pue uadxs urewoq "parerdaul 3q 03 pAAINS Isaq dIe
$9130[0JUO SIEPIPUED YOI PUY O} SALI U0 3BE)S 3514 33 U]

"$23D1S om1 Ol
papiap 2q pinoys 1t yey) asodoid am ‘so130]01u0 JepIpUEd
guisooyo ueyd xojdwod d1ow yYonur st SAFO[OIUO IINOS JO
20101 3} SOUIS "PIA[OAUI 1€ S10adSE JUIIIJJIP JO 10T B 1M
21040 BLINIS-NNW X3[duI0D ISyl € ST SIY], "Uulewop Jeyl Jo
MIIA JO Sitod JUDIGHIP SISNO0J SUO YIB3 JI UIBWOP uoAId e
u1 £50]03U0 SUO UE} 2I0W ISOOYD UED JUO ‘SIWNIWOS "9UI
-10U0D [[BIOAO SUISOUOD JRUM Ul A[QWEU ‘SIA[IsWIdY) Fuowe
sjquedwos a1e sa13o[ojuo pasnal ey} Juepoduwt st "A30]01
-UO UG UB) IOW SNDI UBd QUO $$9001d UoHRIZAUT UR Ul
ou1s pasnal aq o) Futog a1k 1By} S2130[0IUO I1DYIO Y3 UO JuD)
-xa owos 0y spuadop osje 3210y SIY L, "AB0[0JUO PapIdU)
swo0q 0) pavdepe aq (suonerado ssaf Fuisn) £jisea aroul 10
(A[os0[0 210wW) Ia13aq UED 1Byl 2UO dYi S1 KZO[OIO d1epIpuEd
159q QUL ‘POpIdU SI Jeym 9q A[oexa jou Aeur 3t ‘st eyt <013
‘paroudl st 9Fpapmouy awos ey dnnbar Kewr ‘9Fpajmouy
}or[Aew pasnal 2q 01 udsoyd (sar)A30[o3uo oY) ‘urede 20UQ
-osodind pue spasu Ino 1N 152q Je1f) (S1F0[03U0 20IN0S JO 135
10) £30]01UO H2INOS U} ISOOYD O} SEY JUO JUDIISSISSE Josn
PUB UONEN{BAD [BOIUYDI) PAUDLIO-UONIRIFAUI UI 1S9q PaI0ods
Jeys osoy) Suowe pue sjudwannbar 1w passed ey I3
-0[0JUO 21epIpuERd YY) Juowy opew g ISl SIJIOYD Jeuy
a1 *sis13oj0juo pu spadxa urewop £q pauojied sa1dojoiuo
alepipued Jo S1sAeue pue Apms aij) uaAtd pue ‘afes syl 1V

sa16ojojuo aa4nos Buisooyd

‘paruasaidal a1e $3031d 38 pajmouy
meudoidde (e pue pauasaidal 9q pNOYS JeYl SAUO Y Ale
(papnjout o) pojuasaidor saoatd a3pamowy 2y (L) ‘£3ojouo
9Y1 JO uonRIUAWNIOP o) Jo Aijenb oy (9) (rBINOIR pUE 3SID
-o1d ‘— A[[eonormuAs pue £[[edixoj— 199103 12[dwod 9ud)
-SISUOd ‘as1ou0d ‘1ed[d ‘opdwis ore ‘swaned payrun mol[oj
Koy op) suoniuyop a3 jo Ayifenb ay) (§) tesnal ajowoxd pue
9520 A21]) I9119YM SSISSE O} PISN SN UOKRUIAUOD SultIe oY)
(1) ‘ouo paimnbal oYy SI 1 19YIAYM SSISSE 0} AFOJOIUO A} Ul
;98pamouy 2INJONIIS 0) PIsN UONR[AI) (¢) ‘paxmnboar (A
-fenb pue Kijuenb) souo oyt £[10€X9 pUE JUBAJAL 1B 1]
1oy SS3SSE 01 3]Ing St A30]01U0 3y Yorym uodn (£3ojoruo

pel

atp U1 paquIosap s1daduod 9 JO opew BLIALIO UOHEIYISSE[D)
suonsunsip ay (7) 010 ‘A3ojo3uo ay3 woiy sFpajmouy yeud
-oxdde 1oju1 UBD SWSIUBYIOW SIURILIAYUI JBY) OS 2INJOMIS 3Y)
ur paoed,, A[1001109 s1 agpspmouy ‘wede royuny pajuosaidas
a1e 190U TR[IWIS SS3] SEAIAYM 1050]0 pajuasaldai are sydad
-u00 Iejius ‘Ansroarp ysnous pue sjenbape ‘s3doduod Jo uon
-ezi[e10ads y3nous pue ajenbope ‘senpows ySnous pue djenb
-ape ‘aimonns (peoueeq-[lom Ajqesojeid pue) ojenbope ue
sey £30[01U0 2y} 1Yoy SSasse 0} AS0[0IU0 Ay} JO IMONNS
[{e1or0 aus (1) 61 ‘211 03 uonuane jeioads Aed pinoys 1518
-O[OIO $2180]0110 2]DPIPUDI SSISSD 425N O, "A30[0IUO A} JO
uoneyuasaidal [oas] 98pormouy & uaald oq Lqeisyaid pinoys
Aot [] pueistapun 03 JnoyJ1p serdojouo yuawsidwi 0} pasn
sofenSue| oy puy Ajfensn spedxo urewiop 2dUlS ‘opewl 99
pnoys safueyd ssonoeid yorym (g) ‘opewl aq pnoys sasueyd
uonuysp YoM (1) ‘pautioptad oq pjnoys sedueyd A3o[ourw
-101 Yorym (9) ‘paunioyiad 9q pnoys saSueyd UOHERIUSWINIOP
yorgm (g) ‘pountoprad aq pinoys so3ueyd $adIos a3pajmotny
yorym (4) ‘peresofal aq pnoys a3pajmotn] Yorym (g) ‘pasowral
2q pinoys a3pamowy] 1eym (7) (919 ‘suonefol ‘s1daou09s) 3ul
-sstut st aFpapmowy 1eym (1) :[61 ‘£ 1] 01 uonuane [eroads Aed
pInoys suadxa urewop $2150j010 2DPIPUDI AIDNIDAS DI
-1§22) 0], "So130]0JUO 1BPIPUERD [[B PUE 9[OYM SSISSE puk Jjen
-[eAs pinoys s1s130[ojuo pue spadxa urewop yog ‘uonn.Sal
-u1 01 pa1uaLio BRI paziferoads ysnomy s1s180jo1uo Kq sord
-O[OJUO JBPIPUBD JO JUUISSISSD 4aS7 (T) PUL UONDIZIIU] 01
Pa1ua1I0 BURLID pazife1dads ydnony suadxa uiop £q sa3
-O[OIUO DJBPIPUED JO UOUDNDA2 [DI1UYI2] (1) SONIANOR OM]
unrograd 1snw om s2180[0JUO SrEpIpUEd 9ZATEUR PUB ADNIS O,

saibojojuo ajepipued jo sishjeue pue fpmg

"UOTIRIUSWNIOP [BOTUYOS) S} JO Uon
-IUYap S O} SS9D08 IABY ISNUI JUO sueaw £30{0juo papnjoul
e ur pauyop a001d 93pajmouy auo Jeym mowy pue A30[0Ju0
a4} puBISIapUN O} JAPIO Ul ‘d10ja1ayl ‘A30103UO Y} JO SUOn
-UYSp 943 UI Pasn 9q UEd SAIFo[ojUo papnour woyy sedord
a8pajmouy] "A30703u0 1) Jo Wed e 21k SAIFO[OIO PIPR[OU]
‘kK3ojo1u0 oY) ur pejuasaidor 25a1d 98papmoun A19ad JO uon
-ugop K19A9 Sopnjdul yotym ‘Aj[nj 1 pueisIopun isnui ouo
£3ojowuo ouo Fuisn/Iuisnal uoypy "se1S0joIuo papn[oul Ay
108 0S[e P[NOYs U0 ‘sAFO[OIUO IAI0 SIpR[oUl AZ0[0IUO)
1 ey juepodu st 7 xajdwod ‘fesoudd ul ‘sy ssa001d uone|
-suen 9YJ, ‘A[qR[IBAR 10U A[jusund ole sofenZur| UOHEIUDSSAI
-do1 [245] 28 pajmoly 1UDISHIP USIMIRq SIotE|SUBL], “puey £q
poaoidul 9q pIROYS SUOISIAA [B1)IUT 9SIY) ‘UDYL, "SUOISIOA BN
-tut 9onpoid o3 pasn aq pnoys Kai) dqe[reae a1k SIOE[SuULn
J1 "S®1 ROYSIP 1oysed € st siojejsuen Sunsixs Sutaoiduit pue
anjewiw [fus st A8010uta9) J19y) ‘2[qe[IBAR SI0JR[SUEN Aueur
Jou a1e o10y) ‘[erauad uy oz ‘gzl iy 183U Y} Ul SSOO
-oxd snewoine A[[ny & Suroq wouy ey st uone|suel], ‘sidwone
uone[Suen mdj € A[uo aye oroyl, -eoeid aye) isnut ssa00:d
wonupjsupa o3paymowy e (£30101u0 Junnsal oyy wasaidar o)
uosoyo d3engdue o) s8enSue] olenbope Y1 UI USHLIM JOU SI
A3ojowo oy J1 A8010ju0 UE JO UONEBIUISIIADI [9AD] UOHEIUOW
-opdwi oy Sumed oy “UONEBIUSWINOOD dfqe[leAe Sulsn ‘)i
Jo sued sea] 1B IO)1 JONNSU0I3L 0} A1} 1S UBD JUO ([2A9)

e general
- type (general, domain)
- formality
- development status
e development
- knowledge acquisition
= quality of knowledge sources
= adequacy of knowledge acquisition practices
- maintenance
- is it maintained?
= who does maintenance?
- how is maintenance done?
- documentation
= quality of the documentation available
~ is the available documentation complete?
- implementation
~ language issues
- language(s) in which it is available
« translators: are there translators? for which languages? quality of
those translators
- properties needed of the KR system in which it is built
e content
~ level of detail
- modularity
- adequacy from the domain expert point of view
- adequacy from the ontologist point of view

Figure 1: Choosing source ontologies, first stage

Development features are related to how the ontology was
built. The quality of knowledge sources and adequacy of
knowledge acquisition practices are analyzed during the do-
main expert integration-driven technical evaluation. The on-
tology should be maintained. One interesting finding about
ontologies is the fact that they evolve, are “living”, since their
domains also evolve. Therefore, if they are maintained, it is
most likely that they are updated. Maintenance policies differ
in who changes the ontology (can anybody change the ontol-
ogy, or only authorized personnel?) and how those changes
are performed (is the ontology changed regardless of peo-
ple that built it, use it or reuse it? are the suggestions of
change previously discussed among those groups? is there
any attempt to reach a consensus between groups? is there
a special board that decides upon suggestions for changes?).
The documentation should have enough quality (it is clear, it
describes the domain, the ontology, the alternative represen-
tations and the preferred alternatives) and is complete (the
ontology is completely described). If the ontology is avail-
able in the required language the task is greatly simplified
(translation is avoided). Otherwise, it is important to know
whether translators from those languages are available, for
which languages and their qualiry. One needs to know which
reasoning capabilities are required by the ontology from the
knowledge representation system where it is implemented,
in order to know whether it can be represented under a dif-
ferent knowledge representation system. Full translation be-
tween different knowledge representation systems may not
be possible. For instance, while translating an ontology rep-
resented in first order logic into a pure frame system, if ax-
ioms are represented, they are lost. Therefore, one needs to
know, among other issues: (1) formalism paradigm {frames,
semantic networks, description logics, etc.), (2) needed infer-
-ence mechanisms (general purpose, automated concept clas-

135

sifier, inheritance,® monotonic vs modal vs nonmonotonic),

3) are contexts required?

Content features give information about what is represented
in the ontology and how that knowledge is represented. One
needs to know whether the ontology has an adequate level
of detail (enough intermediate concepts are represented be-
tween two arbitrary concepts) and which concepis are repre-
sented in which modules. Under the feature adequacy from
the domain expert point of view several analyses arc made:
does the content of the ontology include most of the rele-
vant knowledge pieces of the domain? is the terminology
adequate? are the definitions adopted correct and widcly
accepted? is the ontology complete in relation to present
needs (at least, one needs to know what important knowl-
edge pieces are missing)? is there superfluous knowledge
that should be removed from the ontology while integrating
it? Under the feature adequacy from the ontologist point of
view several analyses are made: are the basic distinctions rep-
resented in the ontology appropriate? does the ontology have
an adequate structure? is the ontology structured accord-
ing to appropriate relations? are needed knowledge pieces
represented (including the appropriate relations, and certain
key concepts)? are those knowledge picces adequately rep-
resented (this covers issues like fidelity, minimal encoding
bias, correction, coherence, granularity, conciseness, efficien-
¢y in terms of time and space”)? do they follow adequate
naming convention rules? can missing knowledge pieces be
added to the ontology without sacrificing coherence and clar-
ity (extendible)? is the ontology clear?

The preponderant parts in this choice are played by the ad-
equacy analyses that domain experts and ontologists have
made of candidate ontologies. Since this choice is rather
complex, simple metrics as the ones proposed to choose can-
didate ontologies are rather limited. The development of
more accurate metrics is an open research area in the OE
field. After the first stage, one has chosen one possible set
of ontologies to be integrated. It may be possible to have
more than one ontology about one particular domain in that
set. Those different ontologies represent knowledge about
the domain from different perspectives. Those different per-
spectives should have been found important to be present in
the resulting ontology (there should not be duplicated knowl-
edge represented in the resulting ontology). However, chosen
ontologies may not be compatible among themselves.

In the second stage one tackles compatibility and complete-
ness of possibly chosen ontologies in relation to the desired
resulting ontology, Figure 2. If the ontologies which are pos-
sibly going to be chosen are not coherent in what concerns
the terminology and the definitions of the concepts that arc
common to more than one ontology, then they are not com-
patible and, therefore, cannot be assembled. Sometimes the

SWhich kind?: defeasible, strict, mixed; credulous vs skeptical; on-path
vs off-path; bottom-up vs top-down.

7One needs to know if we are reusing an ontology that is not going to
meet our needs and the means that we currently have at our disposal.

o compatibility R
- terminology of common concepts
- definitions of common concepts
o completeness

Figure 2: Choosing source ontologies, second stage

same concept is named differently in different ontologies. In
the resulting ontology one concept only has one denomina-
tion, thereforc one must be adopted. If one concept has the
same definition in all chosen ontologies but different denom-
inations, then a change in terminology can solve the prob-
lem. All definitions involving the renamed concept have to
be checked and revised accordingly. Sometimes different on-
tologies adopt different definitions for the same concept. One
cannot have this kind of inconsistencies in the resulting on-
tology. One definition should be chosen and adopted all over.
It is more difficult to ensure that the same definition can be
adopted by all integrated ontologies. A thorough analysis of
all ontologies where one particular concept has a different
definition from the adopted one has to be made. It is obvi-
ous that only a coherent set of ontologies should be consid-
ered for integration purposes. If chosen ontologies are not
compatible among themselves, then this may imply choos-
ing another possible set of ontologies by combining candi-
date ontologies into a different set, or it may imply building
ontologies from scratch (if none of the candidate ontologies
adopts the adequate terminology and definitions, or profound
changes have to be made to them in order to integrate them).
If chosen ontologies are not complete, that is, they do not
comprehend all the ontology that has to be built, then this
must be known so that missing knowledge pieces are built
from scratch and added or another compatible ontology that
contains those knowledge pieces is integrated. Since one of
the issues involved in the domain expert analysis is missing
knowledge, one can check whether it is not represented in
another ontology about the same domain that is also (or can
also be) integrated.

The problem of choosing the appropriate set of source on-
tologies is also rather complex. From the set of candidate on-
tologies, a coherent and adequate subset must be found that is
as close as possible to the resulting ontology. Once again, the
ontologies in that set may not be perfect candidates. As long
as the changes to be made are not very extensive it is more
cost effective to reuse the ontologies. This analysis has to be
performed on a case by case basis. If it is more cost effective
to build the ontology from scratch, then existing ontology
building methodologies can be used to build an ontology that
perfectly suits our needs. If not, ontologies should be reused
and integration operations applied so that adequate changes
transform the ontologies into perfect candidates. The result
of this activity is a set of ontologies that can and should be
assembled together, a description of lacking knowledge that
is going to be built from scratch and included in the resulting
ontology (since none of the chosen ontologies has it and that

136

knowledge has been identified as essential knowledge that
must exist in the resulting ontology) and a description of the
changes that should be performed to the integrated ontolo-
gies so that they can be perfect candidates and successfully
reused (which is the starting point for the application of the
integration operations).

Apply integration operations

All activities described so far precede integration of knowl-
edge from source ontologies into the resulting ontology. They
help the ontologist to analyze, compare, and choose the on-
tologies that are going to be reused. When this part of the
process ends, that is the appropriate ontologies to be reused
in one particular integration process are found, we must inte-
grate the knowledge of those ontologies. For that, one needs
integration operations and integration oriented design crite-
ria. Integration operations specify how knowledge from an
integrated ontology is going to be included and combined
with knowledge in the resulting ontology, or modified before
its inclusion. These can be viewed as composing, combin-
ing, modifying or assembling operations. Knowledge from
integrated ontologies can be, among other things, (1) used
as it is, (2) adapted (or modified), (3) specialized (leading to
a more specific ontology on the same domain) or (4) aug-
mented (either by more general knowledge or by knowledge
at the same level). Sometimes the adaptation of ontologies
may require restructuring activities similar to those that are
performed in reengineering processes. Moreover, it may re-
quire introduction/removal of knowledge pieces, correction
and improvement of the definitions, terminology and docu-
mentation of the knowledge pieces represented in the ontol-
ogy, etc. These adaptations transform the chosen ontology
into the needed ontology. In [5, 3, 19, 17] initial sets of inte-
gration operations are proposed. Integration operations can
be divided into two groups: basic and non-basic. While the
former can be algebraically specified the latter can be de-
fined from the former but are custom-tailored operations to
be defined in a case by case basis. We have developed an
algebraic specification of 39 basic integration operations and
specified how 12 non-basic operations can be defined from
the previous ones. Design criteria guide the application of in-
tegration operations so that the resulting ontology has an ad-
equate design and is of quality. We identified a set of criteria
to guide integration of knowledge [1]: modularize, special-
ize, diversify each hierarchy, minimize the semantic distance
between sibling concepts, maximize relationships between
taxonomies and standardize names of relations.

Analyze resuiting ontology

After integration of knowledge one should evaluate and an- -

alyze the resulting ontology. Besides having an adequaté

design [11] and compliance with evaluation criteria [9] the
ontology should have a regular
regular level of detail we mean that there are no “islands” of

exaggerated level of detail and other parts with an adequate
one. None of the parts should have less level of detail that

level of detail all over. BY -

Figure 3: The integration process

the required one or else the ontology would be useless, since
it would not have sufficient knowledge represented. It should
be noted that the features involved in evaluation and design
criteria are analyzed in relation to the resulting ontology, for
instance, the resulting ontology should be consistent and co-
herent all over (although composed by knowledge from dif-
ferent ontologies).

DISCUSSION

In Figure 3 we present the activities that compose the on-
tology integration process. Although ontology building and
consequently ontology integration follows an evolving pro-
totyping life cycle, some order must be followed. In gen-
eral, the activities that compose the integration process tend
to be performed following the order by which they were pre-
sented. However, some of the activities (and subactivities) to
be performed before applying integration operations are in-
terchangeable and some may be even performed in parallel.
For instance, integration-oriented technical evaluation and
user assessment of candidate ontologies. Moreover, the aux-
iliary subprocesses, reengineering and translation, may not
occur in a particular integration process. If we find an ontol-
ogy that matches the whole ontology that one needs to build,
then one does not need to apply integration operations or an-
alyze the resulting ontology. However, finding candidate on-
tologies, getting them, their evaluation and assessment for
integration purposes, and the choice of the most adequate
one remain essential activities to be performed. Finally, one
can go back from any stage in the process to any other stage
as entailed by the kind of life cycle. The important issue is
‘that these activities are present in any integration process,

137

Figure 4: Integration effort along the ontology building
process

although sometimes not explicitly or with different levels
of importance and effort. All activities, in particular those
that precede application of integration operations, should be
performed preferably in conceptualization or in formaliza-
tion stages, that is, before implementation. However, if inte-
gration begins later in the ontology development life cycle,
they still have to be performed. In both our integration ex-
periences the framework that we used, ODE, automatically
generated the implemented versions of the resulting ontolo-
gies. Therefore, we performed all integration activities dur-
ing conceptualization and formalization stages. Using other
frameworks may extend the process a bit. If the framework
being used does not generate the implementation of the re-
sulting ontology from the conceptual representations, after
performing all activities at the knowledge level, the imple-
mented versions of the chosen ontologies must be obtained
and then one must apply the already determined sequence
of integration operations in order to build the implemented
version of the resulting ontology. In this case, only two ac-
tivities (get ontologies and apply integration operations) had
to be performed at the implementation level. This particular
process falls into a typical evolving prototyping life cycle.
One important aspect of integration is the fact that this pro-
cess is included in the overall ontology building process. The
relation between the integration process and the overall on-
tology building process is shown in Figure 4. The integration
effort is not null during maintenance since integrated ontolo-
gies may themselves change due to maintenance activities
making it necessary (or desirable) to reapply the integration
process.

CONCLUSIONS

In this article we describe the activities that compose the on-
tology integration process and present a methodology that
provides support and guidance to perform those activities.
The advantages of the proposed integration methodology are
a direct consequence of its generality. One of the advan-
tages of our integration methodology is the fact that it can
be used with different methodologies to build ontologies from
scratch. The only assumption made by this methodology is
that knowledge should be represented at the knowledge level.

Special emphasis is given to the quality of the ontologies in-
volved in a particular integration process. Our methodology
proposes that all reused ontologies should be evaluated by
domain experts from a technical point of view and assessed
by ontologists from a user point of view. This assures that
reused ontologies have enough technical quality to be used
in the process. The analysis of the resulting ontology assurcs
that it has enough quality to be made available and (re)used.

REFERENCES

1.

10.

11.

J. Arpirez-Vega, A. Gomez-Pérez, A. Lozano-Tello, H.
Sofia Pinto. Reference Ontology and (ONTO)?Agent:
the Ontology Yellow Pages. Knowledge and Information
Systems, 2(4):387-412, 2000.

V.R. Benjamins, D. Fensel. The Ontological Engineering
Initiative (KA)?. In N. Guarino (ed.), Formal Ontology in
Information Systems, pages 287-301. 10S Press, 1998.

. P. Borst, H. Akkermans, J. Top. Engineering Ontolo-

gies. International Journal of Human Computer Studies,
46(2/3):365-406, 1997.

. B. Chandrasekaran, J. Josepheson, V.R. Benjamins. On-

tologies: What are they? Why do we need them? [EEE
Intelligent Systems, 14(1):20-26, 1999.

A. Farquhar, R. Fikes, J. Rice. Tools for Assembling
Modular Ontologies in Ontolingua. In Proc. AAAI97,
pages 436-441. AAAI Press, 1997.

. M. Fernandez, A. Gémez-Pérez, N. Juristo. METHON-

TOLOGY: From Ontological Art Towards Ontological
Engineering. In Proc. of AAAI97 Spring Symposium Se-
ries, Workshop on Ontological Engineering, pages 33-
40. AAAT Press, 1997.

. M. Fernandez, A. Gomez-Pérez, A. Sierra, J. Sierra.

Building a Chemical Ontology Using METHONTOL-
OGY and the Ontology Design Environment. IEEE In-
telligent Systems, 14(1):37-46, 1999.

. A. Gangemi, D. Pisanelli, G. Steve. Ontology Integra-

tion: Experiences with Medical Terminologies. In N.
Guarino (ed.), Formal Ontology in Information Systens,
pages 163-178. 10S Press, 1998.

. A. Goémez-Pérez, N. Juristo, J. Pazos. Evaluation and As-

sessment of the Knowledge Sharing Technology. In N.
Mars (ed.), Towards Very Large Knowledge Bases, pages
289-296. 10S Press, 1995.

A. Gomez-Pérez, D. Rojas-Amaya. Ontological Reengi-
neering for Reuse. In D. Fensel, R. Studer (eds.), Proc.
of EKAW99, pages 139-156. Springer Verlag, 1999.

T. Gruber. Towards Principles for the Design of Ontolo-
gies for Knowledge Sharing. International Journal of
Human Computer Studies, 43(5/6):907-928, 1995.

138

14.

15.

17.

20.

21.

22.

23.

24.

25.

. T. Gruber, G. Olsen. An Ontology for Engineering Math-
ematics. In J. Doyle, E. Sandewall, P. Torasso (eds.),
Proc. KR94, pages 258-269. Morgan Kaufmann, 1994,

. M. Gruninger. Designing and Evaluating Generic On-
tologies. In Proc. of ECAI96’s Workshop on Ontological
Engineering, pages 53-64, 1996.

D. McGuiness, R. Fikes, J. Rice, S. Wilder. An Environ-
ment for Merging and Testing Large Ontologies. In A,
Cohn, F. Giunchiglia, B. Selman (eds.), Proc. KR2000,
pages 483-493. Morgan Kaufmann, 2000.

A. Newell. The Knowledge Level. Artificial Intelligence,
18(1):87-127, 1982.

. N. Noy, M. Musen. PROMPT: Algorithm and Tool for
Automated Ontology Merging and Alignment. In Proc.
AAAI2000, pages 450-455. AAAI Press, 2000.

H. Sofia Pinto. Towards Ontology Reuse. In Proc. of
AAAI99's Workshop on Ontology Management, pages
67-73. AAAI Press, 1999.

_H. Sofia Pinto, A. Gomez-Pérez, J. P. Martins. Some
Issues on Ontology Integration. In Proc. of IJCAI99's
Workshop on Ontologies and Problem Solving Methods:
Lessons Learned and Future Trends, 1999.

_ H. Sofia Pinto, J.P. Martins. Reusing Ontologies. In
Proc. of AAAI2000 Spring Symposium Series, Workshop
on Bringing Knowledge to Business Processes, pages 77-
84. AAAI Press, 2000.

T. Russ, A. Valente, R. MacGregor, W. Swartout. Prac-
tical Experiences in Trading Off Ontology Usability and
Reusability. In Proc. of KAW99, 1999.

J. Sowa. Knowledge Representation: logical, philosoph-
ical and computational foundations. Brooks/Cole, 2000.

B. Swartout, R. Patil, K. Knight, T. Russ. Toward Dis-
tributed Use of Large-Scale Ontologies. In Proc. of
AAAI97 Spring Symposium Series, Workshop on Onto-
logical Engineering, pages 138-148. AAAI Press, 1997.

M. Uschold, M. Healy, K. Williamson, P. Clark, S.
Woods. Ontology Reuse and Application. In N. Guarino
(ed.), Formal Ontology in Information Systems, pages
179-192. 10S Press, 1998.

M. Uschold, M. King. Towards a Methodology for
Building Ontologies. In Proc. of IJICAI95's Workshop on
Basic Ontological Issues in Knowledge Sharing, 1995.

G. Wiederhold. Interoperation, Mediation and Ontolo-
gies. In Proc. of the Intern. Symposium on the 5th Gen-
eration Computer Systems, Workshop on Heterogeneol
Cooperative Knowledge-Bases, 1994.

Untangling Taxonomies and Relationships:
Personal and Practical Problems in Loosely Coupled
Development of Large Ontologies

Alan L. Rector, Chris Wroe, Jeremy Rogers, Angus Roberts
Medical Informatics Group, Department of Computer Science, University of Manchester
Manchester, UK
email {rcctor\wroccljrogerslaroberts}@cs.man.ac.uk

Abstract

The GALEN programme has been developing medical
ontologies collaboratively for nearly a decade. The
ontologies are large and formulated in a specialised
description logic, GRAIL. The programme is a broad
collaboration of over a dozen groups, most with no prior
experience of developing formal ontologies. The
programme has developed a methodology for loosely
coupled development using layers of intermediate
representations, guidelines and tools which minimises
training requirements for domain experts and effort by
central knowledge engineers.

Issues arise both from problems in formal representations
and from the idiosyncrasies of the medical domain. Issues
dealt with include ‘tangled’ taxonomies, part-whole and
locative relationships, defaults and exceptions, semantic
normalisation, and the difference between medical
convention and strict logical criteria for correctness.

Keywords:
Cooperative development; ontology development; ontology
design; very large ontologies, medical

INTRODUCTION

The GALEN programme has been developing medical
ontologies collaboratively for nearly a decade. (The current
versions are available through OpenGALEN at
www.opengalen.org.) The ontologies are large — over
20,000 surgical procedures, nearly 10,000 anatomical
concepts and over 10,000 drugs and related notions; the
schemas are detailed — between fifty and one hundred
families of link types covering different flavours of
partonomy and location, function, and causation; and the
definitions are complex — a dozen or more conjuncts
embedded to four or five levels are not uncommon. They
are formulated in a specialised description logic,
GRAIL[15-17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom usc is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copics bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...85.00

The programme is a loose collaboration which has varied
over time from seven to more than a dozen groups. Most of
those contributing to the development have little prior
experience of building formal ontologies, although many
have long experience of developing and or testing medical
terminologies. Some were actively sceptical or even hostilc
to the ideas of formality and standardisation. In the testing
phase of the programme, most groups were part of other
larger efforts with a their own primary goals, so that the
effort available for this project was limited. Training time
for most workers had to be confined to no more than six
days divided into two workshops.

The same methods have been applied to the development of
a large ontology of drugs, their uses, actions, side effects,
etc. as part of the UK PRODIGY and Drug Ontology
projects [20, 30].

This paper describes the interplay of the different
methodological and technical elements which have been
brought to bear on this problem and the overall approach
and rationale for ontology development which has emerged
from it. We view the problems of ontology development as
an intimate mix of organisational and technical issues in
which different interests and priorities must be reconciled
to achieve a successful outcome.

BASIC ELEMENTS OF ONTOLOGY CONSTRUCTION IN
GALEN

Goals And Criteria for Correctness

OpenGALEN aims to produce clinical ontologies which

are:

e Logically correct and therefore suitable for use in
retrieval, rule based systems, etc. For example, all and
only “heart diseases” should be classified under “heart
disease”, all and only procedures on the liver under
“liver procedures” etc. Any given concept should be
classified in as many ways as appropriate.

e Reusable and therefore suitable support system
integration, communication etc. The resulting
classifications must therefore to contain as finc a
grained detail and support as many alternative views as
are required by the union of the applications that might
reasonably be expected to use them.

By contrast most cxisting medical terminologies, with the
exception of SNOMED-RT {22], have been designed for
single applications - e.g. bibliographic retricval,
remuneration, or epidemiological reporting — and organised
to facilitate access intuitive access by clinicians rather than
logical correctness or accuracy of retrieval.

Basis of the approach

OpenGALEN’s requirements are for distributed loosely

coupled development of complex ontologies with only

modest need for central coordination and limited possibility

of central control. The vast majority of the participants are

interested in the outcomes rather than the underlying

process.

There are four groups who need to participate in the

development of an ontology:

e Content contributors

e Domain experts who capture and quality assure that
bulk of the content formally, usually but not always
based on some external source of content

e Knowledge engineers who design and maintain the
formal ontology itself

e Logicians who develop and maintain the underlying
logic engines and representations

A comprehensive methodology must coordinate the
activities of all four groups and provide clean interfaces
between them. However, OpenGALEN concentrates on
reconciling viewpoints of different domain experts — often
distributed amongst many centres with many different
priorities ~ with those of the knowledge engineers. This
distributed approach has led us to a different emphasis from
that of authors such as Uschold [26].

The goal has been to allow domain expert’s to work as
independently as possible with guidelines and agreements
which are intuitive at a domain level while, at the same
time, allowing the knowledge engineers maximum freedom
to develop the underlying description logic ontology.

Domain experts therefore work in tailored ‘intermediate
representations’ which are transformed algorithmically into
the underlying description logic based ontology. The use
of intermediate representations has a long history in
knowledge based systems generally [3], and the use of
schemas to create specialist environments for domain
experts has many analogies with the approaches of
PROTEGE [11, 24, 25]and KADS[27]. However, it has
been less widely used in ontology development, although
Staab [23] describes the use of a somewhat lower level
intermediate representation to separate developers from the
details of implementation. Staab’s intermediate
representation is closer to the level of GRAIL or the rapidly
developing interchange language, OIL[1]. It addresses the
issues of translating these relatively high level
representations into low level expressive description logics
such as FaCT [7, 8]. However, our domain experts find
even languages at the level of GRAIL or OIL difficult to
manage. We therefore envisage the continuing need both

140

for a knowledge engineering intermediate language at
roughly the level of GRAIL, OIL or Staab’s representation
and for a still higher level user-oriented intermediate
representation.

A key aspect of OpenGALEN’s intermediate
representations is that they are ‘soft’ and can be adapted to
the requirements of individual sites. An intermediate
representation consists of a) a set of user oriented
‘descriptors’ or terms b) mappings of those terms to
concepts in the underlying ontology ¢) a set of constrained
templates providing the links between the descriptors d) a
set of transformations between the intermediate
representation and expressions in the underlying ontology.
Within broad limits, sites can author their ontologies using
descriptors and templates tailored to their needs and tastes.
All intermediate representations can then be transformed
into a common underlying representation [21].

However, the transformation process is not infinitely
flexible; some consistency is required from the domain
authors. Therefore, in addition to the intermediate
representation, guidelines and examples are required for
semantic normalisation as described below.

Furthermore, although the intermediate representations are
relatively comprehensible, in many applications simple
generated pseudo-natural language noun phrases arc more
compact and familiar and can be adapted to the user’s own
language. OpenGALEN has found natural language
generation essential to user acceptance. Most language
generation is general, but additions to lexicons and
grammars are usually required for each new application.
Finally, any real application requires a set of quality
assurance criteria and the tools to test them. These should
be developed and agreed at the same time as the
intermediate representations although, in practice, they
often evolve in the course of development.

Development phases

OpenGALEN therefore divides development of large
ontologies into two phases: design and population. In
practice, these phases are iterative, but it is easier to
describe the processes as if they were sequential.

The Design Phase
In the design phase, knowledge engineers extend the basic
ontological schema and prepare user-authors’ views or
Intermediate Representations. The outputs from the design
phase configure two sets of tools, one for the knowledge
engineers and one for the domain experts. In the
population phase, domain experts populate the ontology
using intermediate representations which are transformed
into the underlying description logic representation. '
The goal of the design phase is to produce five related
outputs and incorporate them into a set of tools for the
domain experts to use in the population phase as shown in
Figure 1:
o [Intermediate Representations adapted to each major
group of domain expert authors’ requirements

¢ Guidelines for domain expert authors

e Schemas for the underlying ontology, along with
transformation rules from the Intermediate
Representation to the underlying ontology.

o Lexicons and Grammars for natural language
generation for display of results to users
o Quality assurance(QA) criteria based on the

combination of the above threc. Ideally quality
assurance criteria are set at the time of the original
design and modified iteratively, although this idcal is
not always achieved in practice.

Extended

Schemas
rans
forms,

Authar-wser

l

Experence
Authoring & QA
Design Process Tntermedinte Eavironments for
UntaegHag Representation Population
Gathering evidence Phase
Ontotogical Reconstructing
Guidelines for

schemas
Author-users

Ontological
principies

I ¥

Figure 1: The design phase of OpenGALEN development

The population phase

The population phase is best described by two views: a
layered view as in Figure 2 showing the different
components and how they interact, and an iterative view as
in figure 3 showing the flow of information and interaction
between domain experts and the central knowledge
engineering team.

In the population phase, domain experts usually work from
sources such as existing terminologies or classifications.
The first step is to paraphrase the phrases or ‘rubrics’” from
those sources into unambiguous statements to be
represented in the intermediate representation. Separating
the paraphrase step from the representation step allows
quality assurance and discussion of the domain experts’
interpretation of the sources to be separated from their
representation of those sources in an intermediate
representation.

To transform thc paraphrase into the intermediate
representation and organise the results, the domain experts
interact with documentation and tools incorporating the
quartet of resources developed in the design phase:
guidelines, tools, intermediate representations, and quality
assurance criteria. This quartet of resources is linked to the
formal ontology through the transforms between the
intermediate representation and the underlying formal
ontology. (The addition of a classifier at the level of FaCT
is likely to produce a further layer of Implementation Logic
as shown in grey.)

141

This methodology provides clear regions of interaction

‘between the various groups involved in the process. The

domain expert authors and the knowledge engineers
interact over the intermediate representation; the
knowledge engineers and logicians over the transformation
to the implementation logic and the formal ontology
language; the domain experts and the content originators
over the paraphrase of the original sources.

i " imples

g

< Lranstorms Jone 2in

Formal Ontology

Knowledge
Engincers

Intermediate Representation

Domain
Expert
Authors Guidelin Quality Assurance criteria
l Tools including Language generation
Paraphrases !
Content 3
Originators

Figure 2: Layering of the population phase of
OpenGALEN development with extrapolation
to an additional layer of implementation logic

N

Formal ontology used to

organise and classify routine

constructs tically K ledge engi e

update schemas, ontology, &
intermediate representation
for novel constructs

Distributed domain Experts
author intermediate }
representation constructs

\

Same or independent domain
experts quality assure results

Language
Generation

Figure 3: OpenGALEN Population Cycle
In practice the primary interaction is between the domain
experts, who often work in independent units, and the
knowledge engineers, who are usually a central resource.
In general, the domain experts can author content in the
intermediate representation and have it structured,
classified, and ready for quality assurance without any
intervention from the central knowledge engineers. New
concepts in existing categories can be authored locally and
reported to the centre automatically. However, novel
concepts and constructs require the intervention of the
central knowledge engineering team as does the overall
reconciliation and integration of the work of the centres.
This combination of local autonomy with central support
and integration produces the double cycle is shown in
Figure 3 which is characteristic of development using
GALEN. This pattern is effective at maximising local
autonomy and minimising the requirement for central

coordination. Overall, in an established arca of
devclopment, central services require about 10% of the
total effort.

DESIGN ISSUES

The layered architecture has allowed OpenGALEN to

evolved a principled and systematic approach to designing

ontologies for clinical applications which addresses a wide
range of issues:

e Issues in design of the ontology itself and the
transforms between the intermediate representation and
ontology. The goal is that domain experts be largely
unaware of these choices because they are handled by
the transformation between thc intermediate
representations and the ontology. In most cases,
technical changes to the ontology should not require any
recourse to the domain experts.

e Issucs in dealing with the idiosyncrasies of the domain
which can only be implemented as guidelines to the
domain experts or constraints within the tools.

Key issues from both sets are discussed below along with
how their interrelation with the underlying ontology and the
intermediate representation.

Issues in the design of the ontology and
transforms

Untangling taxonomies

GALEN’s source material typically consists of seriously
tangled hierarchies, typically derived from ‘broader than’/
‘narrower than’ constructs in traditional library science and
thesauri rather than the formal inferential meaning of
subsumption in description logics. The hierarchies
typically mix the notions of kinds, parts, function, use etc.
The patterns are familiar to users, make for easy access to
terms, but make formal inference all but impossible. For
example, heart diseases are found in thirteen of the eighteen
chapters of the International Classification of Diseases.

GALEN’s approach is to separate out each ‘axis’ into a
scparate taxonomy of elementary concepts, and then
recombine as expressions in the description logic. Where
two axes are highly correlated, this can involve introducing
much seemingly redundant information — e.g. separating
the ‘action” and ‘use’ of drugs may lead to recording
separately an action of ‘bronchodilation’ and a indicated for
‘bronchodilation’. However, in other cases the use and
action may be quite different - eg an action of
‘vasodilation’ and a use of ‘management of hypertension’.

Operationally, OpenGALEN maintains the principle
modularity by specifying that elementary concepts should
break down into disjoint taxonomies, i.e. each elementary
concept should have only one elementary parent and be
disjoint from all its ‘sibling’ elementary concepts. The
taxonomies of elementary first class concepts are open —
i.e. at cach level of the hicrarchy siblings are disjoint but do
not exhaust the parent concept. This reflects the reality that
lists of diseases, abnormalities, and even anatomy can
almost never be fully exhaustive, especially when the

possibility of congenital abnormalities are taken into
account. By contrast taxonomies of modifying concepts
such as ‘severity’ may exhaustive and therefore closed. All
multiple classification and overlapping of concepts are the
result of definitions and descriptions. This may involve
creating artefactual concepts known as ‘roles’, e.g. “doctor”
is defined as a “person who plays a ‘doctor role’” and a
hormone as a “substance which plays a ‘hormonal role’”,
(This use of word “role” is not to be confused with the use
of “Role” for semantic relation in description logic
parlance.) This allows clean disjoint taxonomies for the
notions of ‘organism’, ‘person’, etc. and for ‘social role’,
‘clinical role’, ‘doctor role’, etc.

The structures which result from untangling taxonomies
and recombining them through logical definitions are
consistent but contain detail which is irrelevant to users,
Some of this detail can be hidden by definitions in the
ontology itself, but an important function of the
intermediate representation is to hide the rest.

Locations, parts, wholes & related spatial notions
Much of the power of OpenGALEN’s ontology stems from
its distinction between different sorts of part-whole and
other spatial relations. Although adapted from Winston’s
structure[13, 28], it differs from it and distinguishes:
Location — Lesions and abnormalities are ‘located’ in
things rather than part of them or contained in them. (If
physical containment is implied, as in foreign bodies it
is specified additionally and separately.)
Parts — in four main flavours
Division — Roughly self similar parts having the same
layers, e.g. hand and arm

Layers — horizontal layers such as the skin which
extend across divisions

Structural Components — discrete parts which normally
reside in only one division

Functional Components — parts of a functional unit
which may or may not be contained in or contiguous
with the whole, e.g. the various glands which make
up the endocrine system.

Containment — physical containment of one structure by
another where there is quite different function and
origin, e.g. bone marrow in bones

Connections — which may or may not be considered part of
the things connected.

There are also distinctions drawn between two- d1mensnonal ;

and three-dimensional parts analogous to those in the

Digital Anatomist project [18]. -

A second issue is that the part-whole structure requires the !

usc of propagation (‘specialised by’) axioms similar t0~

Cyc’s TRANSFERS-THRO [10] to cope with the paradigm tha s

“diseases/procedures of a parts are diseases/procedures ‘:t;,

wholes The general schema required is equivalent tQ

°R2 d Rl >,
for at least a restricted set of roles R, and Rz[15

Classification algorithms for description logics supportils;

[

o

p
4

:
{

[
i

such schemas remain an outstanding problem [2] [Franconi,
personal communication]. GRAIL implements a partial
solution for restricted cases. Shulz and Hahn have
suggested an alternative construct that covers most cases
[5].

Establishing the schemas for anatomical structure and the
propagation axioms requires careful consideration by the
knowledge engincers. Once the anatomical structure is
established, the use of the different relations in descriptions
of surgical procedures, discascs, etc. can be determined
automatically based on the concept types by the transforms
between the intermediate representations and the
underlying ontology.

Defaults and ‘Extrinsics’

A major function of Frame systems is to deal with default
knowledge - i.e. information which Is true in general but
subject to exceptions. Formal description logics do not
support default reasoning, However, they can provide a
framework for separate default reasoners,

In a static system it is always possible ‘compile out’
default knowledge out by re-representing each item at all
highest levels below which there are no exceptions.
However, this Strategy is inappropriate for knowledge
acquisition and for use in many dynamic systems because it
may not provide default values for new information when
added, which is a key function in many such applications.
For example, drug-drug interactions are best specified at
the level of drug classes with the exceptions enumerated
explicitly, so that when a new drug is added, it acquires the
default ‘safe’ set of interactions unless they are explicitly
overridden.

GRAIL provides a special mechanism for attaching
‘extrinsic’ statements to concepts which do not affect their
classification but which can be manipulated by a special set
of operations based around the notion of retrieving the set
of ‘most specific’ extrinsic statments of a given type. This
mechanism is also used for handling complex mappings to
external classifications and terminologies and for links to
natural language applications.

The distinction between extrinsic (default) and intrinsic
(definitional and descriptive) information is not at all
intuitive to domain experts. The decision as to which
constructs should be ‘extrinsic’ is made by the knowledge
engineers and implemented in the transforms between the
intermediate representation and description logic so as to be
transparent to domain experts.

. Reification of relations and ‘wrapping’
As stated in Section 2.1,
:, ¥OpenGALEN is consistent
sthan any notion of ‘naturalness’.
‘“usable representation within the underlying ontology
i‘fl'equires a number of complex constructs which are
" fconcealed from users by the intermediate representation

L" B For many purposes, all diseases are ‘wrapped’ and

the criteria for correctness in
classification and re-use rather
To achieve consistent re-

Tepresented as collections of one or more disease

143

concepts in order to cope with common constructs as
used in medical records and existing coding systems
such as ‘A with B’, ‘A without B, etc.

* To cope with the fact that GRAIL does not handle
negation explicitly and to make the distinction between
absence of information and negative information
unambiguous, diseasc and procedures arc usually
expressed with a second layer of wrapping as
‘presence/absence of condition, ‘Performance/
Nonperformance of procedure’, etc.

* All modifying relations are reified as ‘features’ which
may be chained in order to allow consistent re-usable
patterns. For example “clevated temperature” s
represented in the ontology itself analogously to
patient-hasFealure-lemperature-hasFeauture-elevation-
hasState-elevated rather than patient-hasTemperature-
elevated,

All of these transformations are hidden from the domain
expert, so that a simple notion which appears to the user as
‘Diabetes hasState severe’ in the intermediate
representation is transformed into an internal representation
in the ontology analogous to ClinicalSituation-involves-
(Presence-isExistentialStateOf-(Diabetes—hasFearw'e-
(Severity-hasV, alue-severe))).

Dealing with the idiosyncrasies of the domain
knowledge : '

Semantic normalisation

It is easy to agree that all surgical procedure are constituted
by an ‘act’ on some ‘thing” which either is, or is located in,
an anatomical structure. It is less €asy to agree on what
constitutes an ‘act’ when there is a hierarchy of
motivations: for example, “Inserting a pins to fixatc a
fractured bone” or “destruction of a polyp by cautery” and
“removal of a polyp (by excision)”. Furthermore,
important classifications hang notions of motivation such as
“palliative surgery” and “corrective surgery”. In addition,
some systems wish to be able to record operations just as
‘correction of X’ without describing the exact ‘act’ while
others wish to record ‘insertion of pins in fractured bone’
without recording that the purpose is fixation.

To address this problem, one of the project members
proposed a classification into four levels: [.4 Clinical Goal
(palliation, Cure); L3 Physiologic goal: (correction,
destruction, ...); L2 primary surgical method (excision,
insertion, lysis,...); and L1: low level surgical act (cutting,
cautery, ...) [19]. It was tempting to believe that a list of
concepts in each category could be agreed, so that
resolution could be done automatically. However,
intuitions and requirements clashed sufficiently to make
this difficult. For example, ‘Cautery’ can sometimes be a
low level act or sometimes a primary method. These
ambiguities are dealt with in the formal ontology by
having concepts for “simple cautery” and “removal by
cauterisation”.

Concealing such distinctions from the domain experts
completely sometimes adds more confusion than it avoids.
Therefore, semantic normalisation is dealt with by a
combination of guidelines for how things should be done,
transforms which recognise anomalies, and quality
assurance procedures to catch remaining inconsistencies.

Dealing with implied and normative knowledge

A key problem in dealing with pre-existing terminologies is
that much of the information is implied rather stated.
Hence the requirement that each term or ‘rubric’ be
paraphrased before being represented. Many of the
guidelines concern paraphrasing of different sorts of
rubrics.

A key part of this process is expanding expressions such as
“insertion of pins in the Femur” to “Fixation of Femur by
means of insertion of pins”. That the intended meaning
includes fixation can only be inferred from context and
general medical knowledge — if the insertion were for any
other purpose it would be stated in the rubric since fixation
constitutes the overwhelming majority of reasons for
inserting pins into femurs - so much so that it is not stated
in the rubric. It is part of the meaning in context but not of
the literal meaning. Similarly many disease classifications
depend on normative anatomy which is not invariably true.
For example, the thyroid gland is almost always located in
the neck but may be ectopically located in the chest.

Idiomatic meaning vs logical definition

A closely related problem occurs when describing
important abstractions such as ‘Heart Valve’ or ‘Endocrine
Surgery’. These concepts might naturally be defined as
“Valve in the heart” or “Surgery on an endocrine organ”
respectively. Both produce results which surprise
clinicians. ‘Heart Valve’ conventionally means one of the
four main valves at the entrance and exit of the ventricles
rather than any of the other valvular structures, many of
which are normally active only prior to birth. Similarly,
‘Endocrine surgery’ typically refers to a particular set of
operations on endocrine organs excluding the reproductive
tract, even though all would agree that the gonads have
endocrine function. i

Achieving a familiar structure: Tagging vs Mapping to
original sources

The untangling process by itself provides descriptions of
leaf concepts, but may not provide the higher level
abstractions users expect. One important requirement is
often to provide additional tagging to reproduce the
familiar hierarchies, so that users can find concepts where
they expect them. This is usually done by adding the
mapping as part of the description of leaf concepts, and
then creating concepts such as ‘drugs in chapter three’ as
abstractions.

Note that this tagging is used only to mark high level
constructs in the source classifications. Detailed mapping
of leaf nodes in source classifications almost always
requires taking into account special rules of usage unique to

144

that classification and so requires further inference
mechanisms beyond the scope of this paper.

Pathology and abnormality

Being ‘normal’ or ‘abnormal’, ‘pathological’ or
‘physiological’ are key notions in medicine. However,
what is meant by such terms is a thorny issue in general
medical usage let alone formal ontologies. OpenGALEN
has established a consistent approach: “Abnormal”
indicates “clinically noteworthy”; “pathological indicates
“in need of clinical management (possibly by doing
nothing)”. This approach is reflected at all three levels, the
ontology, intermediate representations, and guidelines, but
the complex interrelations and inferences are confined to
the underlying ontology and hidden from domain experts.

AN OUTLINE EXAMPLE
The following is an abbreviated example of the process as
applied to analysis of surgical procedure terminologies
from original rubric through paraphrase, intermediate
representation, transformation to generated natural
language.
RUBRIC: Insertion of pins in neck of femur
PARAPHRASE: Fixation of femur by insertion of pins in
neck of femur
INTERMEDIATE REPRESENTATION:

MAIN fixation
ACTS-ON femur
BY-MEANS-OF insertion
ACTS-ON pins
INTO neck
IS-PART-OF FEMUR

GRAIL/GALEN Ontology

Performance which isOf
(‘SurgicalFixation’ which
<actsOn Femur
hasSubprocedure (Performance which isOf
‘Surgicallnsertion’ which
<actsOn Pins
hasLocation (AnatomjicalNeck which
isLinearDivisionOf Femur)>)>)
GENERATED LANGUAGE:

“Fixation of femur by means of insertion of pins in
neck of femur"”
(In the GRAIL representation, concepts in single quotes are
further defined elsewhere and which is a keyword
introducing a series of attribute-value pairs bracketed by
<...>. See [15] for full details of notation.)

Note that the transform from intermediate representation to
the GALEN Ontology has supplied the context specific
mapping of INTO to hasLocation and IS-PART-OF to
IsLinearDivisionOf based on the classification of Pins,
AnatomicalNeck, and Femur. Given different categories of
object and value, /NTO might have been transformed as
contains and IS-PART-OF might have been transformed as
isComponentOf, isLayerOf, contains, etc. Note also that

the ‘wrapping’ Performance has been provided which
allows for combinations which involve NonPerformance.
Here the generated language is close to the original
paraphrase, but more complex cases lead to less felicitous
language.

RESULTS AND DISCUSSIONS
OpenGALEN has been used in two major areas:

e Developing and maintaining surgical procedure
classification in several European countries including
being the primary development vehicle for the new
classification in France reconciling previously separate
systems used in public and private sectors. *

e Developing a drug ontology for use in prescribing
support in the UK as part of the PRODIGY project [9,
14].

The methodology for distributed loosely —coupled
development has been used primarily in the surgical
procedure development during the EU funded GALEN-IN-
USE project where it allowed nine centres in seven
countries to co-operate on various aspects of developing
and integrating surgical procedure classifications. The
introduction of the intermediate representation reduced the
training time required for domain experts to roughly three
days plus telephonc and email support, sometimes
supplemented by a one or two further days of advanced
training. This contrasts the several months training
required for a knowledge engineer to be able to use the
underlying ontology. Just as important, it dramatically
reduced the time and effort required to reach consensus.
Domain experts did not have to deal with what they
regarded as arcane distinctions, and controversial decisions
could be deferred until sufficient data was gathered to make
choices based on evidence rather than dogma. The fear of
wasting effort was reduced, because it was possible to
preserve the intermediate representations and change only
the transforms to the underlying description logic.

Natural language generation has proved unexpectedly to be

essential to acceptance by users — no matter how intuitive

the intermediate representation appears to designers, simple
noun phrases are more compact and accessible to domain
experts, especially for quality assurance.

At this level, the method appears cost effective compared

with the alternative manual development of classifications.

Replication is required, but a preliminary study by the

Dutch collaborators indicated that the cost of using

OpenGALEN techniques was on the order of 25% that of

using conventional techniques even including the one-time-

only cost of take on, primarily because the techniques
reduced the number of costly meetings of expert
committees and led to more rapid consensus [P Zanstra,

Personal communication].

The importance of the approach to ‘untangling taxonomies’

can perhaps best be illustrated by recent experience with

the major medical standards body Health Level Seven

(HL7). The seemingly simple problem of classifying the

forms and routes by which a medication can be given —

145

“oral tablets”, “nasal sprays”, “ointments to be rubbed on
the skin” had caused serious difficulties. There are at least
five different axes involved. Between the various providers
of drug information there are over 800 concepts —a fraction
of what are involved in other OpenGALEN knowledge
bases but nonetheless, a significant number. Developing a
classification manually had proved a daunting task and was
still incomplete after over a year developing the
classification using OpenGALEN’s formal methods was
completed with a few weeks effort with contributions from
five sources, none of them with previous involvement with
OpenGALEN or any formal training {29].

The separation into of the development into design and
population phase, and the separation of the design issues
between those involving the underlying ontology and those
involving the domain itself have improved the ability to
reach consensus and vastly reduced the number of
arguments — a major cost in ontology development in our
experience. This approach contrasts sharply with the more
centralised approach taken in the Convergent Terms Project
and SNOMED-Reference-Terminology projects [4, 22].

The layered architecture seems to us almost incvitable for
the design of large re-usable ontologies. The predecessor
application, PEN&PAD [6, 12] based the implementation
directly on the ontology without an intervening layer. Asa
result, the developers frequently succumbed to the
temptation to change the ontology to fit the application,
sacrificing re-use to expediency. GALEN’s intermediate
representations provide a sounder alternative.

We believe the need for such intermediate representations
will become more, rather than less, critical as more
powerful description logics such as FaCT and ShiQ [8]
come into use. While it is tempting to believe that OIL (1]
will provide a suitable vehicle for direct development, our
preliminary experience suggests that it is best treated as a
language of similar level to GRAIL - a better vehicle for
knowledge engineers but best hidden from domain experts
who will still require environments oriented to their
specific needs and packaged together with specialist tools
for reasoning, access to information, calculation, and other
services, presented at a level which corresponds to the
issues which concern them, with contact with the
implementation in formal logic only where necessary .

At the same time the use of intermediate representations
presents an important route for adapting re-usable
ontologies to specific applications. For architectures such
as PROTEGE, in which applications are developed based”
on an ontology, the hope is that ‘meta authoring’ of suitable
intermediate representations and views onto a more general
re-usable ontology might replace the repeated development
of bespoke ontologies. This is already occurring to some
degree within the PRODIGY project [14, 20].

ACKNOWLEDGEMENTS
This work has been supported in part by the Europcan
Commission and the UK Department of Health.

REFERENCES

1. The OIL Home Page. www.ontoknowledge.org/oil/

2. Artale A, Franconi E, Guarino N. Open problems for
part-whole relations. In: International Workshop on
Descripition Logics; 1996; Boston, MA; 1996.
http://www.dl.kr.org/d196/.

3. Boose }, Gaines B, (eds). Knowledge Acquisition Tools
for Expert Systems. Academic Press; 1988.

4. Campbell K. Scalable methodologics for distributed
development of logic-based convergent medical
terminology. Meth Inf Med 1998;37(426-439).

5. Hahn U, Schulz S, Romacker M. Partonomic reasoning
as taxonomic reasoning in medicine. In: Proc. of the
16th National Conf. on Al & 11th Innovative
Applications of Al (AAAI-99/TAAI-99); 1999;
Orlando FL: AAAI Press/MIT Press; 1999. p. 271-276.

6. Horan B, Rector A, Sneath E, Goble C, Howkins T,
Kay S, et al. Supporting a Humanly Impossible Task:
The Clinical Human-Computer Environment,. In:
Diaper D, (eds). Interact 90; 1990: Elsevier Scicnce
Publishers, B.V.North-Holland; 1990. p. 247-252.

7. Horrocks 1. Using an expressive description logic: FaCT
or Fiction. In: Cohn AG, Schubert LK, Shapiro SC,
(eds). Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixth Int Confon
Knowledge Representation (KR 98); Morgan
Kaufmann; 1998. p. 634-647.

8. Horrocks I, Staller U, Tobies S. Practical reasoning for
very expressive description logics. Journal of the
Interest Group in Pure and Applied Logics (IGPL)
2000;8(3):293-323.

9. Johnson PD, Tu S, Booth N, Sugden B, Purves I. Using
scenarios in chronic disease management guidelines for
primary care. J Am Med Assoc 2000 (Symposium
Special Issue):389-393.

10. Lenat DB, Guha RV. Building Large Knowledge-Based
Systems: Representation and inference in the Cyc
Project. Reading, MA: Addison-Wesley; 1989.

11.Musen M. Modem architectures for intelligent systems:
reusable ontologies and problem-solving methods. J Am
Med Inf Assoc 1998 (Symposium supplement):46-54.

12. Nowlan WA. Clinical workstation: Identifying clinical
requirements and understanding clinical information.
Intl J Bio-Med Comput 1994;34:85-94.

13.Odell JJ. Six different kinds of composition. Journal of
Objcet Oriented Programming 1994;5(8):10-15.

14. Johnson PD, Tu S, Booth N, Sugden B, Purves I. Using
scenarios in chronic disease management guidelines for
primary care.] Am Med Assoc 2000 (Symposium
Special Issue):389-393.

15. Rector A, Bechhofer S, Goble C, Horrocks I, Nowlan
W, Solomon W. The GRAIL concept modelling
language for medical terminology. Al in Medicine
1997;9:139-171.

16. Rector AL. Clinical Terminology: Why is it so hard?
Meth Inf Med 1999;38:239-252.

17. Rector AL, Zanstra PE, Solomon WD, Rogers JE, Baud
R, Ceusters W, et al. Reconciling Users' Needs and
Formal Requirements: Issues in developing a Re-
Usable Ontology for Medicine. IEEE Trans Inf Tech in
BioMedicine 1999;2(4):229-242.

18. Rosse C, Shapiro IG, Brinkley JF. The Digital
Anatomist foundational model: Principles for defining
and structuring its concept domain. J Am Med Inf
Assoc 1998(Fall Symposium Special issue):820-824.

19. Rossi Mori A, Gangemi A, Steve G, Consorti F,
Galeazzi E. An ontological analysis of surgical deeds.
In: Al in Medicine Europe (AIME-97); 1997; Springer
Verlag; 1997. p. 361-372.

20. Solomon DS, Wroe C, Rogers JE, Rector A. A
reference terminology for drugs. J Am Med Inf Assoc
1999 (Fall Symposium Special Issue):152-155.

21. Solomon W, Roberts A, Rogers J, Wroe C, Rector A.
Having our cake and eating it too: How the GALEN
Intermediate Representation reconciles internal
complexity with users' requirements for appropriateness
and simplicity. J Am Med Inf Assoc 2000 (Fall
Symposium Special Issue):819-823.

22. Spackman KA, Campbell KE, C6té RA. SNOMED-RT:
A reference Terminology for Health Care. J Am Med
Inf Assoc (J Am Med Assoc) 1997 (Symposium special
issue):640-644.

23. Staab S, Maedche A. Ontology engineering beyond the
modeling of concepts and relations. In: Benjamins RV,
A. Gomez-Perez, N. Guarino, Uschold M, (eds). ECAI
2000. 14th European Conference on Artificial
Intelligence; Workshop on Applications of Ontologies
and Problem-Solving Methods; 2000; 2000.

24.Tu S, Eriksson H, Gennari J, Shahar Y, Musen M.
Ontology-based configuration of problem-solving
methods and generation of knowledge-acquisition tools
- application of PROTEGE-II to protocol-based
decision-support. Al in Medicine 1995;7:257-289.

25. Tu SW, Musen MA. A flexible approach to guideline
modelling. In: AMIA Fall Symposium; 1999;
Washington DC: Hanley and Belfus; 1999. p. 420-424.

26. Uschold M, Gruninger M. Ontologies: principles,
methods and applications. Knowledge Engineering
Review 1996;11(2).

27. Wielinga B, Van de Velde W, Schreiber G, Akkermans
H. The KADS Knowledge Modelling Approach. In:
The Japanese Knowledge Acquisition Workshop
(JKAW '92); 1992; 1992.

28. Winston M, Chaffin R, Hermann D. A taxonomy of
part-whole relations. Cog Sci 1987;11:417-444.

29. Wroe C, Cimino J. Using openGALEN techniques to
develop the HL7 drug formulation vocabulary. In: J Am
Med Inf Assoc (Fall Symposium special issue); 2001;
(Submitted for publication).

30. Wroe C, Solomon W, Rector A, Rogers J. Inheritance
of drug information.] Am Med Inf Assoc 2000 (Annual
Symposium Special Issue):1158.

Inferring the Environment in a Text-to-Scene Conversion
System

Richard Sproat
Human/Computer Interaction Research
AT&T Labs — Research
180 Park Avenue
Florham Park, NJ 07932, USA
rws @research.att.com

Abstract

There has been a great deal of work over the past decade on
inferring semantic information from text corpora. This paper
is another instance of this kind of work, but is also slightly
different in that we are interested not in extracting seman-
tic information per se, but rather real-world knowledge. In
particular, given a description of a particular action — e.g.
John was eating breakfast — we want to know where John is
likely to be, what time of day it is, and so forth. Humans on
hearing this sentence would form a mental image that makes
a lot of inferences about the environment in which this ac-
tion occurs: they would probably imagine someone in their
Kitchen in the morning, perhaps in their dining room, seated
at a table, eating a meal.

We propose a method that makes use of Dunning’s likeli-
hood ratios to extract from text corpora strong associations
between particular actions and locations or times when those
actions occur. We also present an evaluation of the method.
The context of this work is a text-to-scene conversion system
called WordsEye, where in order to depict an action such as
John was eating breakfast, it is desirable to make reasonable
inferences about where and when that action is taking place
so that the resulting picture is a reasonable match to one’s
mental image of the action.

Keywords
Common sense knowledge; statistical natural language pro-
cessing; text-to-scene conversion.

INTRODUCTION

There has been a great deal of work over the past decade
on inferring semantic information from text corpora; see [9,
8, 17, 18, 2, 19, 12, 13] for some examples. This paper is
another instance of this kind of work, but is also slightly
different in that we are interested not in extracting seman-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on scrvers or to redistribute to lists, requires
prior specific permission and/or a fee.

K-CAP’01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-581 13-380-4/01/0010. ..$5.00

147

tic information per se, but rather real-world knowledge. In
particular, given a description of a particular action — €.g.
John was eating breakfast — we want to know where John is
likely to be, what time of day it is, and so forth. Humans on
hearing this sentence would probably form a mental image
of someone in their kitchen, perhaps in their dining room,
seated at a table, eating a meal in the moming. But note that
the sentence omits a lot of this information, and says noth-
ing explicit about the location of the action, or the time of
day. Nonetheless, people would usually make these infer-
ences about the environment in which the particular action
occurs.

The context of this work is a text-to-scene conversion sys-
tem called WordsEye, which we describe in the next section.
Subsequent sections describe the method for extracting in-
formation about the environment from text corpora, and an
evaluation of the method.

THE WORDSEYE SYSTEM

WordsEye [5] is a system for converting from English text
into three-dimensional graphical scenes that represent that
text. WordsEye works by performing syntactic and seman-
tic analysis on the input text, producing a description of the
arrangement of objects in a scene. An image is then gener-
ated from this scene description. At the core of WordsEye
is the notion of a “pose”, which can be loosely defined as a
figure (c.g. a human figure) in a configuration suggestive of
a particular action. For example a human figure holding an
object in its hand ina throwing position would be a pose that
suggests actions such as throw or {0ss. Substituting for the
figure or the object will allow one to depict different state-
ments, such as John threw the egg or Mary tossed the small
toy car.

The natural language component in the current incarnation of
WordsEye is built in part on several already existing compo-
nents, including Church’s [3) part of speech tagger, Collins’
head-driven stochastic parser [4] and the WordNet semantic
hierarchy [7]. The parsed sentence is first converted into a
dependency representation. Then lexical semantic rules are
applied to this dependency representation to derive the com-

Figure 1: Mary uses the crossbow. She rides the horse by
the store. The store is under the large willow. The small al-
losaurus is in front of the horse. The dinosaur faces Mary.
A gigantic teacup is in front of the store. The gigantic mush-
room is in the teacup. The castle is to the right of the store.

ponents of the scene description. For instance the verb throw
invokes a semantic rule that constructs a scene component
representing an action (ultimately mapped to a pose) where
the lefthand noun phrase dependent represents an actor, the
righthand noun phrase dependent a patient, and some depen-
dent prepositional phrases the path of the patient.! WordNet
is used as part of the implementation of noun semantics, both
to derive appropriate sets of objects (e.g. the vehicle will get
all vehicle objects by inheritance from WordNet subclasses
such as car, airplane, etc.); and in subsequent reference res-
olution (so that one can refer to, e.g., an allosaurus and sub-
sequently use dinosaur to refer to the previously evoked al-
Josaurus).

The depiction module of WordsEye interprets the scene de-
scription to produce a set of low-level depictors represent-
ing poses, spatial relations, color attributes etc. Transduction
rules are applied to resolve conflicts and add implict con-
straints. The resulting depictors are then used (while main-
taining constraints) to manipulate the 3D objects that consti-
tute the final, renderable 3D scene. An example of a fairly
complex scene constructed with WordsEye is shown in Fig-
ure 1.

One problem that arises in such a system is how to derive the
large amount of knowledge that is needed in order to give rea-
sonable depictions. Suppose I say: John was driving to the
store. In understanding this sentence and visualizing what it
means, a human would probably assume that John was in the
driver’s seat of a car, on a road, possibly passing buildings,
and so forth. Many of these inferences are defeasible: I can
easily cancel the inference about the road, for example, by
saying John was driving 1o the store across the muddy field.
But without such explicit cancellation the inferences seem

1'We have just started investigating the use of FrameNet [10] for verbal
semantics.

Figure 2: John was eating breakfast. The light in the sky
coming through the window is morning light (though that
may be hard to see in a black and white version).

fairly robust. To take another example, if we say John ate his
dinner at 7, we assume that it is 7 in the evening (possibly
near twilight), that he is in a room such as his dining room or
his kitchen (or possibly in a restaurant), and that he is seated
at a table. Or if John was eating breakfast, we would usu-
ally assume that it is morning, and that John is in his kitchen
or dining room. See Figure 2. Finally, if John is shoveling
snow, it is probably winter.

Some of this knowledge is represented in WordsEye as part
of the word’s meaning. For example, the depiction phase of
WordsEye knows that for drive, the driver should be using
some sort of vehicle, and will select an appropriate vehicle
and place the driver in the driver’s seat. But other common
sense knowledge is more tenuously linked: if John is wash-
ing his face, he is probably in a bathroom, but need not be:
there is nothing in the meaning of wash face, that implies a
bathroom.

An important problem is how to acquire this kind of knowl-
edge. One approach would of course be to do it by hand,
possibly making use of already hand-built ontologies such as
Cyc [14], or Mikrokosmos [15]. In this paper we explore
the alternative of deriving this kind of information from text
corpora.?

The question posed by this paper can therefore be stated as
follows: if John is eating dinner, can we infer from text cor-
pora where he is and what time of day it is? If John is raking
leaves, can we infer from text corpora what season it is and
where he is likely to be?

METHOD
The first step involves computing a set of concordance lines
for terms that can denote elements of the set of interest. For

2We do not mean to imply, however, that hand-built ontologies such as
Cyc and statistical methods such as the one proposed here, are at odds with
one another. Rather, the two approaches complement one another, as we
will suggest in the final section.

example, if one is interested in activities that can take place in
various rooms of a house, one would compute concordance
lines for terms like kitchen, living room, dining room, hall-
way, laundry room and so forth: so, for the key word kitchen,
one would simply find all places in a corpus that have the
word kitchen, and for each of these, output a line containing
the key word surrounded by words in a predetermined win-
dow of that corpus location.

We used a corpus of 415 million words of English text, con-
sisting of about nine years of the Associated Press newswire,
the Bible, the Brown corpus {11], Grolier's Encyclopedia,
about 70 texts of various kinds published by Harpér and Row,
about 2.7 million words of psychiatry texts, a corpus of short
movie synopses, and 62 million words of the Wall Street
Journal. The texts in this corpus had already been automati-
cally tagged with a part of speech tagger [3] and so the con-
cordance lines also contain part of speech information for
each word.”

Sample concordance lines for various rooms from the 1996
Associated Press newswire are given in Figure 3. (Here we
omit the part of speech information for readability.) ~ As
expected, the data are noisy: for example in the third line,
Kitchen is a family name, not a room in the house. Note that
in the actual implementation, a window of 40 words on each
side of the target is used, wider than what is shown here.

Once the concordance lines are collected, and after sorting to
remove duplicates (newswire text especially contains a lot of
repeated stories), we extract verb-object (e.g. wash face) and
verb-preposition-object (e.g. get into bed) tuples. Unlike
verbs alone, verb-argument tuples of this kind are usually
pretty good indicators of a particular action. Thus, whereas
wash is consistent with many activities (e.g. washing one-
self, washing one’s car, washing clothes), a particular verb-
object construction such as wash clothes is usually indicative
of a particular activity. In the present system, the tuples are
extracted using a simple matching algorithm that looks for
verbal part-of-speech tags and then searches for what looks
like the end of the following noun phrase, with a possible
intervening preposition.? Verb-object and verb-preposition-
object tuples extracted from the concordance lines in Fig-
ure 3 are shown in Figure 4.

Once again the data are noisy, and include misanalyscs (didn’t
window) and complex nominals that are not instances of verb-
object constructions (swimming pool). Apart from misanaly-
ses of the tuples, one also finds many instances where the tar-
get term does not have the intended denotation. For example,

3The concordance itself is computed using a corpus encoding represen-
tation and a set of corpus tools developed at AT&T, but this could just as
easily have been done with any of a number of other concordancing soft-
ware packages.

4This is currently done with an ad hoc script, though we are investigating
using Cass [1], a robust chunk parser, in the future. Note that while the
Coliins parser is used in the runtime version of WordsEye, it is far too slow
to use to parse large amounts of text.

149

a concordance line matching kitchen will not always have to
do with kitchens. As we saw above, Kitchen may be a fam-
ily name, but a more common instance is that it is part of a
complex nominal, such as kitchen knife. In such instances the
text is not generally talking about kitchens, but rather about
kitchen knives, which can be used in rooms besides kitchens.
To remove such cases we filter the concordance lines to re-
move the most frequent collocations (for example the 200
most frequent ones).

The next step is to compute the association between cach of
the tuples and the target term, such as the name of a room.
For this stage we use likelihood ratios {6, 16], which com-
pute the relative likelihood of two hypotheses concerning two
events ¢; and es:

e Hypothesis 1: p(ez|er) = p = plea|er)

e Hypothesis 2: p(ez|e1) = pi # p2 = plea|nen)

Hypothesis 1 simply says that the probability of ¢, occur-
ring given e; is indistinguishable from the probability of ¢,
occurring given something other than ¢»: i.e., the e is not
particularly expected (or unexpected) given ¢ . Hypothesis 2
says, in contrast, that therc is a difference in expectation, and
that e, is dependenton e;.

We can estimate the probabilitics p, py and p» by the max-
imum likelihood estimate as follows, where ¢y, ¢2 and ¢z
are, respectively the frequency of ey, of ey, and of ¢ and ¢y
cooccurring; and N is the size of the corpus:

C2 C12
pP= b= ——
]\f’ C1 ’
Co — €12
P2=
]\T—Cl

If we assume a binomial distribution

b(k;n,z) = () (1 -)k

then the likelihoods of the two hypotheses, given the ob-
served counts e, es and e, can be computed as:

L(H,) = b(cr2; c1, p)b(ez — c12s N = ¢, p)
L(H,) = bleiz; c1, pr)blea — cioi N — ¢1,p2)

The log likelihood ratio for the two hypotheses then reduces
as follows:

L(H,)
logh = log———
I YL(H)
= logL(cia,¢1,p) + logL(ca — c12, N — ¢1, 1)
—logL(c12,¢1,p1) — logL{ca — ¢c12, N — c1,p2)
where:

. i, S RS — " T 2

anything else, her books are about memories:

both videotapes and photos of her in bathrooms and
" will happen to Mr Tarkanian,” said Jack

grounded for telling his parents he didn't open his
gone, replaced by a big house with five

The second child was born in a

beds in semiprivate rooms at onc end of a

and the couple’s 15-month-old son use a downstairs
of the halls, equipped with microwaves and other

kitchen memories, bamyard memories, family memories
bedroom and asks for an unspecified amount of

Kitchen , one of the NCAA's lawyers

bedroom window. He confessed in

bathroom and an indoor swimming pool.

bedroom of their home near Scottsdale after Corvin
halbway separated from the “older adult”

bedroom that lies in Granite City along with

kitchen appliances not allowed in individual rooms.

Figure 3: Sample concordance lines from the 1996 Associated Press.

asks

happen to
grounded
telling

didn’t

replaced by
swimming

born in
use in
lics in
equipped with
allowed in

Figure 4: Some verb-argument combinations extracted from Figure 3.

Lk, n,r) =251 —z)"*

Following [6, 16] we make use of the fact that —2logA is
asymptotically x? distributed, and compute —2log, rather
than just logA. In what follows we assume p value of 0.03,
which has a critical x? value of 3.84 for one degree of free-
dom. Thus any —2logA value of 3.84 or above will be con-
sidered evidence of association.

After the likelihood ratios for each tuple-term pair are com-
puted, we then sort the tuple-term pairs, and filter to remove
those that are below the significance.threshold; in the pro-
cess of doing this, we also lemmatize the verb forms, or in
other words replace inflected verbs (e.g. eats) by their base
forms (e.g. eat). A sample of the highest ranking tuple-term
associations is given in Figure 5. Again, there is still noise,
including a misanalyzed complex nominal (dine room from
dining room), misparsed examples (find in Simpson from find
in Simpson’s X) and so forth.

The final stage is to filter the list for tuples that designate
reasonable depictable actions. We do this by extracting ac-
tivities from the set of sentences input to the WordsEye sys-
tem; at the time of writing this consisted of 20K words (about
3,400 sentences). We then use these activities to filter the raw
likelihood-ratio-ordered list. An example of a filtered list is
shown in Figure 6. A similar example for times of day is
shown in Figure 7.

amount bedroom
Tarkanian kitchen
parents bedroom
parents bedroom
window bedroom
house bathroom
pool bathroom
home bedroom
City bedroom
City bedroom
microwaves kitchen
rooms kitchen
EVALUATION

150

The system has been evaluated by human subjects on its pre-
dictions for the rooms, seasons and times of day in which
particular actions or situations occur. Clearly these are not
the only things that one would like to infer about a scene,
but they are three fairly obvious ones, and serve to give us a
metric for evaluating the method as a whole.

The test used sentences constructed based on verb-object or
verb-preposition-object tuples from the final filtered lists for
rooms, seasons and times, as described in the last section.
This meant that the system would be able to predict an an-
swer for at least one of these categories for each of the sen-
tences, but at the same time there was no guarantee that the
prediction would be correct. This resulted in 106 sentences
from which 90 were randomly selected. Of these 90, 30 were
submitted to the system to label the choices for the three vari-
ables listed above; 30 were given to a human for labeling;
and 30 — the “baseline” system — had the answers labeled
randomly.

The three sets of judgments were randomized, and presented
via a web-based interface to subjects, who were informed
that they were judging the output of an automatic system,
subjects were not informed that some sentences had been la-
beled randomly, or that some had been labeled by a human.
(For those who are interested, the exact instructions given to
subjects are shown in the Appendix.)

dine room

find in Simpson
serve in room
designate areas
eat in room
wash clothes

dining room
bedroom
dining room
dining room
dining room
laundry room

306.585215 143 424 10227
196.753628 63 65 32243
150.457758 29 31 10227
137.680378 35 51 10227
117.189848 23 25 10227
109.719646 25 29 12457
107.275571 24 30 10227
100.616896 19 19 12457
96.602198 205 575 32243
79.429912 15 15 12457
76.659647 43 68 28224
61528933 49 64 51214
61.103395 30 47 24842
61.067298 18 18 32243
58.542468 16 16 28224
54.146381 18 21 24842
51.280771 21 54 10227
51.111709 26 28 51214
49.807875 10 10 14575
49.807875 10 10 14575
47.564595 13 13 28224

cook on premises dining room
sell in America laundry room
live room bedroom
cook appliances laundry room
kill people garage

sit at table kitchen

give birth bathroom

see socks bedroom
rent van garage

wash hands bathroom
dine rooms dining room
prepare meals kitchen

push down gantlet hallway

form gantlet hallway
carry bomb garage

Figure 5: Most likely actions associated with particular rooms. Columns represent, from left to right: the likelihood
ratio; the frequency of the tupleftarget-term pair; the frequency of the tuple; the frequency of the target term; the tuple;

and the target term.

The full set of choices for each of the categories were as fol-
lows:

Room: bedroom, kitchen, laundry room, living room, bath-
room, hallway, garage, ANY, NONE OF ABOVE

Time of day: morning, midday, afternoon, evening, night,
ANY

Season: winter, spring, summer, autumn, ANY

“ANY" indicates that any of the choices would be acceptable.
“NONE OF ABOVE”, in the case of rooms, indicates that
the action could not occur in any of the rooms; typically this
would be because the action occurs outside.

The interpretation of the subjects’ judgments are as follows:

o If the preselected choice is left alone it is assumed correct.

o If the preselected choice is changed to “ANY™, it is as-
sumed that the preselected choice may be okay.

o If the preselected choice is changed to any other selection,
it is assumed to be incorrect.

63 subjects, all employees at AT&T Labs, participated in the
experiment. Subjects were rewarded with a bar of chocolate
of their choice. Results are presented in Table 1. In this table,
“human” denotes the 30 human-judged sentences; “system”
the sentences tagged by the system; and “baseline™ the ran-
domly tagged 30 sentences. Note that since we are dealing

with three predictions in each case (room, season and time of
day), we have a total of 90 judgments for each of the human,
system and baseline conditions. For each condition we re-
port total errors, and real errors, which are errors where the
subject changed the setting to something other than “ANY™.
As indicated in the table, all differences between the baseline
and the system were significant at at least the p < 0.01 level
on a two-sample t-test, except for the real errors for times,
which were significant at the p < 0.05 level. All differences
between the human and the system were significant at at least
the p < 0.01 level.

So while the system does significantly better than the random
baseline, it also does significantly worse than a human, and
there is thus still room for improvement. An interesting gen-
eral point is that the strength of the judgments seem to vary
greatly across the three types — rooms, times and seasons.
The subjects marked the most errors for rooms, but fewer er-
rors for time of day or season. This suggests that, at least for
the kinds of actions studied here, getting the location right is
more important than getting the time of day or season right.

CONCLUSIONS & FUTURE WORK

The method we describe in this paper is fully implemented
and forms part of the WordsEye system. While the technique
clearly works better than a random assignment of environ-
mental properties, it is still significantly worse than human
judgments, so a major component of future work will be try-
ing to close this gap. We are also working to expand the cov-

151

92282095 175 433 24730
73.256801 17 21 7906
51.118373 18 20 21056
35.438165 19 26 23479
34.289413 18 26 21056
30.699638 16 23 21056
16.510044 5 5 23479
16.107447 18 29 32408
14.545979 4 6 7906
14.284725 11 18 24730
13.490176 10 18 21056
13.286761 5 5 32408
12.792577 4 4 24730
11.718897 11 20 24730
10.559389 3 3 21056
10.329526 9 13 32408
9.594336 3 3 24730
9.594336 3 3 24730
8.774370 5 11 12756
8.495289 5 6 32408
8.240026 4 5 24730
8.177386 6 8 32408
7.971921 3 3 32408
7.945854 11 24 24730
7.945854 11 24 24730

Figure 6: Most likely actions associated with particular rooms,

input sentences. Columns are as in Figure 5.

erage of the technique, in particular by investigating other
(implicit) features of the environment that can be predicted
by corpus-based methods.

The evaluation of the system reported here evaluates only
descriptions for which the system can make a prediction: in
effect, then, we have considered the precision of the method.
What we do not have a measure for at present is the recall,
or in other words the percentage of sentences for which one
ought to make a prediction, but for which we do not have the
data to do so. In future work we hope to be able to say more
about recall, and propose measures for evaluating it.

Finally, the work reported here considers only classes of in-
formation — time of day, location, and so forth — which
were selected by hand. As reviewers have noted, and as we
are aware, this is not ideal: onc would like to be able to let
a method loose on a large text corpus, and have it learn in-
teresting associations of all kinds, not just associations that
we happened to think of. At present it is not clear how to do
this. One thing that is clear is that the more unconstrained the
search is, the more “sanity checks™ will have to be in place
to make sure that the system does not learn useless or absurd
associations. It is possible, as some reviewers have noted,
that large ontologies such as Cyc may be of use in filtering
more absurd associations.

152

live room bedroom
wash clothes laundry room
wash hands bathroom
drive car garage
go to bathroom bathroom
brush tecth bathroom
run car garage
wash dishes kitchen
go to store laundry room
go to bed bedroom
take shower bathroom
see in kitchen kitchen
sit on sofa bedroom
sit on bed bedroom
sit on toilet bathroom
sit at table kitchen
hold knife bedroom
climb over wall bedroom
sit on floor hallway
make breakfast kitchen
play guitar bedroom
eat meal kitchen
cook meal kitchen
leave house bedroom
knock on door bedroom

after filtering with tuples extracted from the WordsEye

ACKNOWLEDGMENTS

I thank Owen Rambow, Bob Coyne and Candy Kamm for
suggestions and help with setting up the evaluation exper-
iment. I also thank Fritz Lehmann, Doug Lenat, and two
anonymous reviewers for useful comments.

REFERENCES
1. S. Abney. Partial parsing via finite-state cascades. In
J. Carroll, editor, Workshop on Robust Parsing, pages
8-15. ESSLLI, Prague, 1996.

_ M. Berland and E. Charniak. Finding parts in very large
corpora. In Proceedings of the North American ACL,
pages 57-64, College Park, MD, 1999.

3. K. Church. A stochastic parts program and noun phrase
parser for unrestricted text. In Proceedings of the Sec-
ond Conference on Applied Natural Language Pro-
cessing, pages 136-143. Association for Computational
Linguistics, 1988. .

M. Collins. Head-Driven Statistical Models for Natural
Language Parsing. PhD thesis, University of Pennsyl-
vania, Philadelphia, PA, 1999.

5. B. Coyne and R. Sproat. WordsEye: An automatic text-

35729439 28 40 385312 read newspapers morning
33.804553 32 50 385312 eat breakfast morning
26.415083 15 32 166691 drink tea evening
19.529204 38 48 743374 sleep on floor night

17.679023 13 18 385312 look in mirror morning
13.972083 7 8§ 385312 celebrate Easter ~morning

11.686620 8 8 743374 play trumpet night

11.240171 10 28 176501 catlunch afternoon

10322243 126 213 743374 gotobed night
9.572043 15 60 166691 eat dinner evening
9.413257 6 14 166691 cook meal evening
9232992 16 32 385312 take shower morming
8.673155 2 2 176501 see boat afternoon
8.673155 2 2 176501 roll in front afternoon
8.673155 2 2 176501 rake leaves afternoon
8.573500 2 3 71317 sleep in chair noon
8.325358 3 3 385312 throw egg morning
8.325358 3 3 385312 take tohills morning
7824066 17 22 743374 sleep in bed night

Figure 7: Most likely actions associated with particular times of day, after filtering with tuples extracted from the
WordsEye input sentences. Columns are as in Figure 5.

ERR Real ERR rERR Real rERR sERR Real sERR | tERR Real tERR
H | 8.2*%(6.2) 3.7%%(3.3) 4.2%* (3.0) 2.7%% (2.4) 1.0%* (1.1) 0.1%* (0.3) [3.2**(3.0) 1.1%* (1.7)
S | 22.8(8.3) 12.3(5.7) 10.9 (2.7) 8.0(2.4) 6.6 (2.6) 1.5 (0.9) 5.7 (3.8) 3.23.7)
B [56.4%* (19.7) 27.4%* (1.9) | 23.0°* (44) 21.0**(3.8) |18.1**(6.8) 2.3** (12) |164**(87) 4.6*(4.2)

Table 1: Results of an evaluation on rooms, seasons, and times of day. “H(uman)” denotes the 30 human-judged sen-
tence; “S(ystem)” the sentences tagged by the system; and “B(aseline)” the randomly tagged 30 sentences. Shown are
the means and (standard deviations) for 63 subjects for: total errors ERR (= all changes including “ANY?”); total real
errors (= changes not counting “ANY”); and total and real errors for rooms (rERR), seasons (sERR) and times (tERR).
Differences between the baseline and the system were significant at at least the p < 0.01 level on a two-sample t-test
where indicated with a ‘*** on the mean for the baseline, and at the p < 0.05 level otherwise. Significances for the
difference between the system and human are similarly indicated with asterisks on the means for the human-assigned
judgments.

to-scene conversion system. In SIGGRAPH 2001, Los 10. C. Johnson, C. Fillmore, E. Wood, I. Ruppenhofer,
Angeles, CA, 2001, M. Urban, M. Petruck, and C. Baker. The FrameNet

. o project: Tools for lexicon building, version 0.7. Tech-

6. T. E. .Dunmng. ’Ac.curate methods for the statistics of nical report, International Computer Science Institute,
surprise and coincidence. Computational Linguistics, University of California, Berkeley, Berkeley, CA, 2001.
19(1):61-74,1993. :

www.icsi.berkeley. edu/~framenet/book.html.

7. C. Fellbaum, editor. WordNet: An Electronic Lexical

Database. MIT Press, Cambridge, MA, 1998. 11. H. Kucera and W. Francis. Computational Analysis

of Present-Day American English. Brown University
8. M. Hearst. Automatic acquisition of hyponyms for Press, Providence, 1967.
large text corpora. In Proceedings of the Fourteenth

International Conference on Computational Linguistics 12. M. Lapata. The automatic interpretation of nominal-

(COLING), Nantes, France, 1992. izations. In Proceedings ot the 17th National Confer-
ence on Artificial Intelligence (AAAI), pages 716-721,
9. D. Hindle. Noun classification from predicate- Austin, TX, 2000.
argument structures. In Proceedings of the 28th Annual
Meeting of the Association for Computational Linguis- 13. M. Lapata. A corpus-based account of regular poly-
tics, pages 268-275, Pittsburgh, PA, 1990. ACL. semy: The case of context-sensitive adjectives. In Pro-

153

ceedings of the North American ACL, Pittsburgh, PA,
2001.

. D. B. Lenat. Cyc: A large-scale investment in knowl-
edge infrastructurc. Communications of the ACM,
38(11), November 1995.

_ K. Mahesh and S. Nirenburg. Semantic classification
for practical natural language processing. In Proceed-
ings of the Sixth ASIS SIG/CR Classification Research
Workshop: An Interdisciplinary Meeting, Chicago, IL,
October 1995.

. C. Manning and H. Schiitze. Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge,
MA, 1999.

. F Percira, N. Tishby, and L. Lee. Distributional cluster-
ing of english words. In Proceedings of the 31st Annual
Meeting of the Association for Computational Linguis-
tics, Columbus, OH, 1993,

. E. Riloff. Automatically generating extraction pat-
terns from untagged text. In Proceedings ot the 13th
National Conference on Artificial Intelligence (AAAI),
pages 1044-1049, 1996.

. E. Riloff and R. Jones. Learning dictionaries for infor-
mation extraction by multi-level bootstrapping. In Pro-
ceedings ot the 16th National Conference on Artificial
Intelligence (AAAI), pages 474-479, 1999.

APPENDIX: INSTRUCTIONS FOR THE RATING EXPERI-
MENT

You are helping us evaluate part of one component of a text-
to-scene conversion system, specifically a part that attempts
to make some “common sense” inferences about sentences.

You will be presented with a list of 90 sentences. Each of
these sentences describes some action or situation. Associ-
ated with each sentence are three suggestions for answers to
the following questions about the sentence:

e What room in a house does the described action or situa-
tion occur in?

o At what time of day does it occur?

e In what season does it occur?

154

The answers have been provided by an automatic procedure
that attempts to predict the answers on the basis of the actions
mentioned in the sentence. Your task is to decide if these
predictions are correct. Specifically:

o If the prediction is correct — i.c. accords with your judg-
ment — then leave the selection alone.

o If the prediction is clearly wrong then change it to what, in
your view, is the correct answer.

In each case the correct answer is one of a selected group
of answers (e.g. for season: summer, winter, spring, au-
tumn), or ANY. ANY should be chosen if the action or situ-
ation does not seem to imply a particular location or time.

There may be some instances in which more than one, but
not all of the answers are possible. For example something
may be likely to take place at any time during the day, but
not at night. In such cases you should be lenient with prese-
lected answers that are in the acceptable set (i.e. don’t change
the selection), but if the preselected answer is not in the ac-
ceptable set, then choose one member of the acceptable set
(rather than ANY) as your answer. For example if the pro-
vided answer is “night”, and the activity could take place at
any time during the day (but not at night), then select, say,
“afternoon”, or “morning”.

For rooms, there is the additional option NONE OF ABOVE.
This should be selected if in your view the action or situation
must occur outside or in any event cannot be in one of the
listed rooms.

You should try to base your judgments on what first comes to
mind, rather than on deep introspection. For example, if the
sentence is

John is washing his dog

and the first thing that comes to mind is that he must be in the
bathroom, then that should be considered the correct answer.
You may then reason that perhaps he has a tub of water in
his living room, but you should avoid considering that as the
correct answer.

SEAL — A Framework for Developing
SEmantic PortALs

Nenad Stojanovic
Institutec AIFB
University of Karlsruhe
D-76128 Karlsruhe, Germany
nst@aifb.uni-karlsruhe.de

Abstract

The core idea of the Semantic Web is to make information
accessible to human and software agents on a semantic basis.
Hence, Web sites may feed directly from the Semantic Web
exploiting the underlying structures for human and machine
access. We have developed a domain-independent approach
for developing semantic portals, viz. SEAL (SEmantic por-
{AL), that exploits semantics for providing and accessing in-
formation at a portal as well as constructing and maintaining
the portal. In this paper we focus on semantics-based means
that make semantic Web sites accessible from the outside, Le.
semantics-based browsing, semantic querying, querying with
semantic similarity, and machine access to semantic informa-
tion. In particular, we focus on methods for acquiring and
structuring community information as well as methods for
sharing information.

As a case study we refer to the AIFB portal — a place that is
increasingly driven by Semantic Web technologies. We also
discuss lessons learned from the ontology development of the
AIFB portal.

Keywords: Ontology, Knowledge portal, Semantic Web

INTRODUCTION

The widely-agreed core idea of the Semantic Web is the de-
livery of data on a semantic basis. Intuitively the delivery of
semantically processable data should help with establishing a
higher quality of communication between the information
provider and the consumer. The vison of the Semantic Web is
closely related to ontologies as a sound semantic basis that is
used to define the meaning of terms and hence to support
intelligent providing and access to information on the Web.

The topic of this paper is 2 framework for developing ontol-
& Also Ontoprise GmbH, Haid-und-Neu Str. 7, D-76131 Karlsruhe

¢ Also Ontoprise GmbH and FZI Research Center for information Technologies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.

K-CAP 01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-581 13-380-4/01/0010...$5.00

Alexander Maedche
FZI Research Center for Information
Technologies
Haid-und-Neu Strafic 10-14
D- 76131 Karlsruhe, Germany
macdche@fzi.de

155

Steffen Staab*,

Rudi Studer®, York Sure
Institute AIFB
University of Karlsruhe
D-76128 Karlsruhe, Germany
staab,studer,sure@aifb.uni-
karlsruhe.de

ogy-based portal applications, namely SEAL (SEmantic Por-
tAL) and its semantic mechanism for acquiring, structuring
and sharing community information between human and/or
machine agents. Ontologies constitute the foundation of our
SEAL approach. The origins of SEAL lie in Ontobroker [3],
which was conceived for semantic search of knowledge on
the Web and also used for sharing knowledge on the Web [2].
It then developed into an overarching framework for search
and presentation offering access at a portal site [17]. This
concept was then transferred to further applications [1] and is
currently extended into a commercial solution (cf-
http://www.time2research.de). We herc describe the SEAL
core modules and its overall architecture (Section SEAL In-
frastructure and core modules). As a case study we refer to
the AIFB portal (¢f. http://www.aifb.uni-karlsruhe.de). There-
after, we go into scveral technical details that are important
for human and machine access to a semantic portal.

In particular, we describe a general approach for semantic
ranking (Section Semantic Ranking). The motivation for se-
mantic ranking is that even with accurate semantic access, one
will often find too much information. Underlying semantic
structures, e.g. topic hierarchies, give an indication of what
should be ranked higher on a list of results. Also, we present
mechanisms to deliver and collect machine-understandable
data (Section RDF Outside) and discuss how this approach
establishes the road to the Semantic Web. These mechanisms
extend previous means for better digestion of Web site data
by software agents. Finally, we describe some experiences
made during the development of the ontology for our AIFB
portal (Section Experience with ontology engineering). Be-
fore we conclude, we give a short survey of related work.

SEAL INFRASTRUCTURE AND CORE MODULES

In this section, we first elaborate on the general architecture
for SEAL (SEmantic PortAL) and then we explain functional-
ities of its core modules. As a running example we refer to the
AIFB portal, which aims at presenting information to human
and software agents taking advantage of semantic structures.

Architecture

The overall architecturc and environment of SEAL is de-
picted in Figure 1. The backbone of the system consists of the
knowledge warehouse, i.e. the ontology and knowledge base,

and the Ontobroker system [3], i.e. the principal inferencing
mechanism. The latter functions as a kind of middleware run-
time system, possibly mediating between different informa-
tion sources when the environment becomes more complex
than it is now.

T T Communtty
Software e

ot tsers
) agents 3o | 4 -« -
theludiny, U e® S O :
BDF Craswle : 3**\ 4 &,;49
lq'“)((l.(*— 'S <t /'t, . ‘-"‘“
A e T T T

ROKER
Koowledge

(=] . Outology Kinowlcdge !

A e Base_ -

Figure 1: SEAL - System architecture

At the front end one may distinguish between three types of
agents: software agents, community users and general users.
All three communicate with the system through the Web
server, The three different types of agents correspond to three
primary modes of interaction with the system.

First, remote applications (e.g. software agents) may process
information stored in the portal. For this purpose, the RDF
generator presents RDF facts through the Web server. Soft-
ware agents with RDF crawlers may collect the facts and,
thus, have direct access to semantic knowledge stored at the
Web site.

Second, community users and general users can access infor-
mation contained at the Web site. Two forms of accessing are
supported: navigating through the portal by exploiting hyper-
link structure of documents-and searching for information by
posting queries. The hyperlink structure is partially given by
the portal builder, but it may be extended with the help of the
navigation module. The navigation module exploits inferenc-
ing capabilities of the inference engine in order to construct
conceptual hyperlink structures. Searching and querying is
performed via the guery module. In addition, the user can
personalise the search interface using the semantic personal-
ization module and/or rank retrieved results according to se-
mantic similarity (done by the module for semantic ranking).
Queries also take advantage of the Ontobroker inferencing
capabilities.

Third, only community users can provide data. In the AIFB
portal application, typical information community user con-
tribute include personal data, information about research ar-
eas, publications and other research information. For each
type of information they may contribute there is (at least) one
concept in the ontology. By retrieving parts of the ontology,
the template module may semi-automatically produce suitable
HTML forms for data input. The community users fill in these

|
i
\
i
i
|

156

forms and the template module stores the data in the knowl-
edge warehouse.

Core modules

The core modules have been extensively described in [17]. In
order to give the reader a compact overview we here shortly
survey their function. In the remainder of the paper we delve
deeper into those aspects that have been added or considera-
bly extended recently, viz. semantic ranking (Section Seman-
tic Ranking), and semantic access by software agents (Section
RDF Qutside).

Ontobroker

The Ontobroker system [3] is a deductive, object-oriented
database system operating either in main memory or on a
relational database (via JDBC). It provides compilers for dif-
ferent languages to describe ontologies, rules and facts. Be-
side other usage, it is also used as an inference engine (server)
within SEAL. It reads input files containing the knowledge
base and the ontology, evaluates incoming queries, and re-
turns the results derived from the combination of ontology,
knowledge base and query. The possibility to derive addi-
tional factual knowledge from given facts and background
knowledge considerably facilitates the life of the knowledge
providers and the knowledge seekers. For instance, one may
specify that if a person belongs to a rescarch group of the
institute AIFB, he also belongs to AIFB. Thus, it is unneces-
sary to specify the membership to a research group and to
AIFB. Conversely, the info seeker does not have to take care
of inconsistent assignments, e.g. ones that specify member-
ship to an AIFB research group, but that have erroneously left
out the membership to AIFB.

Knowledge warehouse

The knowledge warehouse [17] serves as repository for data
represented in the form of F-Logic statements {6]. It hosts the
ontology, as well as the data proper. From the point of view
of inferencing the difference is negligible, but from the point
of view of maintaining the system the difference between
ontology definition and its instantiation is useful. The knowl-
edge warehouse is organised around a relational database,
where facts and concepts are stored in a reified format. It
states relations and concepts as first-order objects and it is
therefore very flexible with regard to changes and amend-
ments of the ontology.

Navigation module

Beside the hierarchical, tree-based hyperlink structure which
corresponds to the hierarchical decomposition of the domain,
the navigation module enables complex graph-based semantic
hyperlinking, based on ontological relations between concepts
(nodes) in the domain. The conceptual approach to hyperlink-
ing is based on the assumption that semantically relevant hy-
perlinks from a Web page correspond to conceptual relations,
such as memberOf or haspart, or to attributes, like hasName.
Thus, instances in the knowledge base may be presented by
automatically generating links to all related instances. For
example, on personal Web pages there are, among others,

hyperlinks to Web pages that describe the corresponding re- topic tree, from which query events are triggered when par-
scarch groups, secretary and professional activitics (¢f. Figure ticular nodes in the tree are sclected.

2, higher part).
i T Template module

In order to facilitate the contribution of information by com-
= munity users, the template module generates an HTML form
- », for each concept that a user may instantiate. For instance, the
AIFB portal includes an input template (¢f. Figure 2, left up-
per part) generated from the concept definition of person (¢f.
Figure 2, lower left). The data is later on used by the naviga-
tion module to produce the corresponding person Web page
(c¢f- Figure 2, right part). In order to reduce the data required
for input, the portal builder specifies which attributes and
relations are derived from other templates. For example, in
our case the portal builder has specified that project member-
ship is defined in the project template. The coordinator of a
project enters information which persons are participants of
the project and this info is used when generating the person
Web page taking advantage of a corresponding inversc rela-
tionship, between relations works1n and membero£.

Personeneingabe Person andein

Vormeme ;
Nachname o Prot. De uds Studer O
huerzel —

e ptastos e g

£

Resonrch group

Figure 2: Templates generated from concept definitions Ontology lexicon

Query module The different modules described here make extensive use of
The query module puts an easy-to-use interface on the query the lexicon component of the ontology (cf. Section Experi-
capabilities of the F-Logic query interface of Ontobroker. The ence with ontology engineering). The most prevalent use is
portal builder models Web pages that serve particular query the distinction between English and German. In the future we
needs. For this purpose, selection lists that restrict query pos- envision that one may produce more adaptive Web sites mak-
sibilities are offered to the user. ing use of the explicit lexicon. For instance, we will be able to

produce short descriptions when the context is sufficiently
narrow, e.g. working with ambiguous acronyms like ASP (c.g.
IE active server pages vs. active service providers).

v sl ot [+
Find Frerse it peiel o]

reth tmsearstooro g, [or a

P S
TEsuess Iomormamon and T arrune anor, <5
imgierty Monogement

SEMANTIC RANKING
This section describes the architecture component ,.Semantic
Ranking® which has been developed in the context of our
framework. First, we will introduce and motivate the require-
ment for a ranking approach with a small example. Second,
U e - we will show how the problem of semantic ranking may be
Iﬁ reduced to the comparison of two knowledge bases. Query
s P B X results are reinterpreted as ,,query knowledge bases* and their
similarity to the original knowledge base without axioms
yields the basis for semantic ranking. Thercoy, we reduce our
notion of similarity between two knowledge bases to the simi-

larity of concept pairs.

+1910) 721 £0BATS1 Of
~47i0) 721 6415 €59,
e I2IE0STIED

Figure 3: Query form based on definition of concept Person Let us assume the following ontology:

The selection lists are compiled using knowledge from the 1: Person::Object [worksIn =»> Project}.
ontology and/or the knowledge base. For instance, the query i: };roj.emégo_bj i‘;t [::ST?p;: =2 ?p?ci ' .
. : C: ec = .
interface for persons on the AIFB portal, allows to search for op* ’ Suptopienh =x> ToRie
. 4: FORALL X,Y,Z Z[hasTopic -»>>Y] <~
people according to research groups they are members of.) ,
. . . X[subtopicOf ->>Y] and Z[hasTopic -»>>X].
The list of research groups is dynamically filled by an F-

Logic query and presented to the user for easy choice by a To give an intuition of the semantic of the F-Logic statements,
drop-down list (cf; snapshot in Figure 3) in line 1 one finds a concept definition for a person being an

. .))] object with a relation worksIn. The range of the relation is
Even simpler, one may associate a hyperlink with an F-Logic restricted to Project.

query that is dynamically evaluated when the link is hit. More

complex, one may construct an isa, a hasPart,of @ hasSub- Ontology axioms like the one given in line 4 (1) use this syn-

tax to describe regularities. Line 4 states that if some Z has

157

topic X and X is a subtopic of Y then Z also has topic Y. Let
us further assume the following knowledge base:
5. KnowledgeManagement :Topic.
6: KnowledgeDiscovery:
Topic [subtopicOf ->s>KnowledgeManagement] .
7. Gerd:Person[worksIn —>>OntoWise] .
8: OntoWise:
project (hasTopic ->>¥nowledgeManagement] .
9. Andreas:Person[worksIn ->>TelekomProject] .
10: TelekomProject:
project [hasTopic ->>¥nowledgeDiscovery] .
Definitions of instances in the knowledge base are syntacti-
cally very similar to the concept definition in F-Logic. In line
6 the instance knowledgeDiscovery of the concept Topic is
defined. Furthermore, the relation subtopicof is instantiated
between KnowledgeDiscovery and KnowledgeManagement.
Similarly in linc 7, it is stated that Gerd is a person working
in the project OntoWise.

Now, an F-Logic query may ask for all people who work in a
knowledge management project by:

FORALL Y,2Z <— Y[worksIn —->> Z] and

Z:Project (hasTopic ->> KnowledgeManagement]
which may result in the tuples (Gerd,
and (Andres, TelekomProjet). Obviously, both answers are
correct with regard to the given knowledge base and ontol-
ogy, but the question is, what would be a plausible ranking for
the correct answers. This ranking should be produced from a
given query without assuming any modification of the query.

(3)

OntoWise}

Reinterpreting queries

Our principal consideration builds on the definition of seman-
tic similarity that we have first described in [10]. There, we
have developed a measure for the similarity of two knowledge
bases. Here, our basic idea is to reinterprete possible query
results as a ,,query knowledge base* and compute its similar-
ity to the original knowledge base while abstracting from se-
mantic inferences. The result of an F-Logic query may be
reinterpreted as a query knowledge base (QKB) by the fol-
lowing approach.

An F-Logic query is of the form or can be rewritten into the
form (¢f negation requires special treatment):

FORALL X « P(X,k) (4)

With X being a vector of variables (X,..., X), k being a

vector of constants, and P being a vector of conjoined predi-
cates. The result of a query is a two-dimensional matrix M of
size mxn, with 1 being the number of result tuples and m be-

ing the length of X and, heéfice, the length of the result tuples.
Hence, in our example above: X =, 2), k = (“Knowl-
edgeManagement”x Z;ZZ (}%,13), 1ﬂ(a,b,c):= a[worksIn
->>b], Py(a,b,¢):= b[nasTopic->>c]and

Gerd
OntoWise TelekomProjekt '

Andreas

M=(M;,M;)=((5)

158

Now, we may define the query knowledge base i(OKB;) by
OKB, = P(M,,k).

Similarity of knowledge bases

The similarity between two objects (concepts and or in-
stances) may be computed by considering their relative place
in a common hierarchy H. H may, but nced not be a taxon-
omy H . For instance, in above example we have a categoriza-
tion of research topics, which is not a taxonomy.

(6)

Our principal measures are based on the cotopics of the corre-
sponding objects as defined by a given hierarchy H, e.g. an
ISA hierarchy H, a part-whole hierarchy, or a categorization
of topics. Here, we use the upwards cotopy (UC) defined as
follows:

UC(0;,H)=10;1 H(0;,0,)v0; = 0;}
Concepts are taxonomically related by the irreflexive, acyclic,
transitive relation H,(H ¢ CxC). H(C;,C,) means that

C, is a subconcept of C, . UC is overloaded in order to allow

(7)

for a set of objects M as input, viz.

UCM, H) = U{Oj |H(0,,0,)v 0, =0,}
0,eM
Based on the definition of the upwards cotopy (UC) the ob-
ject match (OM) is defined by:

UC(0,, HYNUC(0,,H
OM(OI,OZ,H)::| (1s)m C(2)|
Basically, OM reaches when two concepts coincide (number
of intersections of the respective upwards cotopies and num-
ber of unions of the respective cotopies is equal); it degrades
to the extent to which the discrepancy between intersections
and unions increases (a OM between concepts that do not
share common super-concepts yields value 0).

(8)

The match introduced above may easily be generalized to
relations using a relation hierarchy H g into account. Hence,
it may also be generalized to instantiated relations. Thus, the
predicate match (PM) for two n-ary predicates B, P, is de-
fined by a mean value. Thereby, we use the geometric mean
in order to reflect the intuition that if the similarity of one of
the components approaches 0 the overall similarity between
two predicates should approach 0 as well — which need not
be the case for the arithmetic mean:

PMB(L, D), B0 ,)) =
nJOM(R, Py, Hy) OM(,,J H)- . OM(1,,, J ,, H)

This result may be averaged over an array of predicates. We
here simply give the formula for our actual needs, where 2
query knowledge basc is compared against a given knowledge
base KB:

Simil(QKB,, KB) = Simil(P(M,k),KB) =

1 —
T 2o, e ko PM(E (M1 0, QM)
ﬁeﬁ

(10)

(1n

Example. We here give a small example for computing UC
and OM based on a given categorization of objects H. Figure
4 depicts the example scenario.

H

¥nowledgetonagement Optmuaton

¥noededgolscovety CSCH GlobaOptmue aton

Figure 4: Example for computing UC and OM

The upwards cotopy UC(knowledgeDiscovery,) is given
by The
upwards cotopy UC(optimization, /f) computes to {opti-
mization}. Computing the object match OM between know1 -

{KnowledgeDiscovery, KnowledgeManagement}

edgeManagement and optimization results in 0, the OtjCCt’

match between cscw and KnowledgeDiscovery computes to
/3.

For instance, we compare the two result tuples from our ex-
ample above with the given knowledge base: Our first result

tuple is M,T :=(Gerd, ontoWise). Then, we have the query
knowledge base (QKB,) :

Gerd [worksIn —>>OntoWise] . (12)
OntoWise [hasTopic -»>KnowledgeManagement] .
Its relevant counterpart predicates in the given knowledge

base (KB) are

Gerd {worksIn-»>>OntoWise] . (13)

OntoWise [hasTopic-»>>KnowledgeManagement]

This is a perfect fit. Simil(QKB,, KB)computes to 1.

Our second result tuple is MZT :=(Andreas, TelekomPro-

ject). Then, we have the query knowledge base (OKB,) :
Andreas:Person (worksIn ->»>TelekomProject] (14)
TelekomProject [hasTopic—»>>KnowledgeManagement] .

Its relevant counterpart predicates in the given knowledge
base (KB) are

Andreas [worksIn —»>>TelekomProject]. (15)
TelekomProject [hasTopic ->»KnowledgeDiscovery].

Hence, the similarity of the first predicate indicates a perfect
fit and evaluates to 1, but the congruency of
ject [hasTopic->>KnowledgeManagement]
TelekomProject [hasTopic-»>KnowledgeDiscovery]
measures less than 1. The instance match of knowledgeDis-
covery and KnowledgeManagement returns % in the given
topic hicrarchy. Therefore, the predicate match PM retumns

3’1.1% ~0.79 . Thus, overall ranking of the second result is

TelekomPro-
with

based on Y4(1+0.79)=0.895. Therefore, the AIFB portal will
display (Gerd, ontowise) as the first result and (andreas,
TelekomProject) as the second one.

159

Remarks on semantic ranking. The rcader may note some
basic propertics of the ranking: (i) similarity of knowledge
bases is an asymmetric measure, (i) the ontology defincs a
conceptual structure useful for defining similarity, (iii) the
core concept for evaluating semantic similarity is cotopy de-
fined by a dedicated hierarchy. The actual computation of
similarity depends on which conceptual structures (e.g. hier-
archies like taxonomy, part-whole hierarchies, or topic hicrar-
chies) are selected for evaluating conceptual neamess. Thus,
similarity of knowledge bases depends on the view selected
for the similarity measure. Ranking of semantic querics using
underlying ontological structures is an important means in
order to allow users a more specific view onto the underlying
knowledge basc. The method that we propose is based on a
few basic principles:

Reinterprete the combination of query and results as
query knowledge bases that may be compared with the explic-
itly given information.

Give a measure for comparing two knowledge bascs,
thus allowing rankings of query results.

The reader should be aware that our measure may produce
some rankings for results that are hardly comparable. For
instance, results may differ slightly because of imbalances ina *
given hierarchy or due to rather random differences of depth
of branches. In this case, ranking may perhaps produce results
that are not better than unranked ones — but the results will
not be any worse either

RDF OUTSIDE — FROM A SEMANTIC WEB SITE TO THE
SEMANTIC WEB

In the preceding sections we have described the components
and the underlying techniques of the SEAL framework and its
instantination in the AIFB portal. Since we want to embed
SEAL-based portals into the Semantic Web, we have devel-
oped means for RDF-capable software agents to process the
portal data. Therefore, we have built an automatic RDF
GENERATOR that dynamically generates RDF statements on
each of the static and dynamic pages of the semantic knowl-
edge portal.

Our current AIFB portal is ,,Semantic Web-ized** using RDF
facts instantiated and defined according to the underlying
AIFB ontology. This means, that e.g. for each person from the
institute, contact information (telephone, fax, e-mail address)
as well as professional information (research-area, research-
group, projects involved in) are available for processing from
world-wide software agents which understand this form of
metadata representation.

The RDFMAKER established in the Ontobroker framework
(¢f [3)) was a starting point for building the RDF
GENERATOR. The idea of RDFMAKER was, that from
Ontobroker’s internal knowledge warchouse RDF statements
are generated.

RDF GENERATOR follows a similar approach and cxtends
the principal ideas. In a first step it generates an RDF(S)-

based ontology that is stored on a specific XML namespace,
e.g. in our concrete application:
xmlns:aifb= "http://ontobroker.semanticweb.org/
ontologies/aifb-2001-01-01.rdfs#"
Additionally, it queries the knowledge warchouse. Data, e.g.
for a person, is checked for consistency, and, if possible,
completed by applying the given F-Logic rules. We here give
a short example of information, namely name, phone, fax, e-
mail and supervisor, which may be generated and stored on a
specific home-page of a researcher in the position of PhD
student :

<rdf:RCF xmlns:rdf="http://www.w3.0org/1999/02/22-

rdf-syntax-ns#"
xmlns:aifb="http://ontobroker.

web.org/ontologies/aifb-2001-01-01.rdfs#">

<aifb:PhDStudent rdf:ID="per:ama">
<aifb:name>Alexander Maedche</aifb:name>
<aifb:phone>+49-(0)721-608 558</aifb:phone>
<aifb:fax>+49-(0)721-608 6580</aifb:fax>
<aifb:email>maedche@fzi.de</aifb:email>
<aifb:supervisor rdf:resource="http://www.
aifb.uni-karlsruhe.de/studer html#per:rst"/>
</aifb:PhDStudent>
</rdf :RDF>
RDF GENERATOR is a configurable tool, in some cases one
may want to use inferences to generate materialized, complete
RDF descriptions on a home page, in other cases one may
want to generate only ground facts of RDF. Therefore, RDF
GENERATOR allows to switch axioms on and off in order to
adopt the generation of results to varying needs. In order to
collect RDF annotateted information from dedicated sources,
software agents have to crawl that portion of the Web — by
using RDF CRAWLER.

The RDF CRAWLER (¢f RDF CRAWLER free download-
able at http://ontobroker.semanticweb.org/rdfcrawler) is a tool
which downloads interconnected fragments of RDF from the
internet and builds a knowledge base from this data. Building
an external knowledge base for the AIFB portal (its re-
searcher, its projects, its publications, ...) becomes easy using
the RDF CRAWLER and the machine-processable RDF data
currently defined on AIFB portal. In general, RDF data may
appear in Web documents in several ways. We distinguish
between pure RDF (files that have an extension like ,,*.rdf*),
RDF embedded in HTML and RDF embedded in XML. Our
RDF CRAWLER wuses RDF-API (¢f RDF-API free
downloadable at http://www-db.stanford.edu
/melnik/rdf/api.html) that can deal with the different embed-
dings of RDF as described above.

semantic-

EXPERIENCES WITH ONTOLOGY ENGINEERING

The conceptual backbone of our SEAL approach is an ontol-
ogy. For our AIFB portal application, we had to model con-
cepts relevant in this setting. As SEAL has been maturing, we
have developed a methodology for setting up ontology-based
knowledge systems {18]. Our approach (¢f Figure 5) is
mainly based on [16] and [5] but focuses on the application-
driven development of ontologies. We here describe some

160

experiences made during the ontology development for our
AIFB portal.

ORSD +
Initial lexicon

Ontology
kickoft

Figure 5: Ontology Development

Kickoff phase for ontology development

Setting up requirements for the AIFB ontology we had to deal
mainly with modeling the research and teaching topics ad-
dressed by different groups of our institute and personal in-
formation about members of our institute. We took ourselves
as an ,,input source® and collected a large set of lexical entries
for research topics, teaching related topics and personal in-
formation, which represent the lexicon component of the on-
tology. By the sheer nature of these lexical entries, the ontol-
ogy developers were not able to come up with all relevant
lexical entries by themselves. It was necessary to go through
several steps with domain experts (viz. our colleagues) in the
refinement phase.

Refinement phase

We started to develop a baseline taxonomy that contained a
heterarchy of research topics identified during the kickoff
phase. An important result for us was to recognize that cate-
gorization was not based on an isa-taxonomy, but on a much
weaker Hassubtopic relationship. E.g. ,,KDD" is a subtopic
of ,Knowledge Management“, which means that it covers
some aspects of ,,Knowledge Management“ — but it does not
reflect inheritance provided by an isa-taxonomy. It then took
us three steps to model the currently active ontology. In the
first step, lexical entries were collected by all members from
the institute. Though we had already given the possibility to
provide a rough categorization, the categories modeled by
non-knowledge engineers were not oriented towards a model
of the world, but rather towards the way people worked in
their daily routine. Thus, their categorization reflected a par-
ticular rather than a shared view onto the domain. A lesson
learned from this was that people need an idea about the na-
ture of ontologies to make sound modeling suggestions. It was
helpful to show existing prototypes of ontology-based systems
to the domain experts.

In the second step, we worked towards a common understand-
ing of the categorization and the derivation of implicit know!-
edge, such as ,someone who works in logic also works in
theoretical computer science and inverseness of relations,
e.g. ,an author has a publication* is inverse to ,,a publication
is written by an author*.

In the third step, we mapped the gathered lexical entries to
concepts and relations and organized them at a middle level.

Naturally, this level involved the introduction of more generic
concepts that people would usually not use when characteriz-
ing their work (such as ,,optimization®), but it also included
wpolitically desired concepts®, because one own’s ontology
exhibits one’s view onto the world. Thus, the ontology may
become a political issue.

Modeling during early stages of the refinement phase was
done with pen and paper, but soon we took advantage of our
ontology environment OntoEdit (c¢/ free downloadable at
http://www.ontoprise.de/) that supports graphical ontology
engineering at an epistemological level as well ag formaliza-
tion of the ontology. Like in other ontology engineering pro-
jects, the formalization of the ontology is a non-trivial process
where the ontology enginecr has to draw the line between
ontology and knowledge base. Therefore our final decisions
were much disputed.

Evaluation phase

After all we found that participation by users in the construc-
tionof the ontology was very good and met the previously
defined requirements, as people were very interested to see
their work adequately represented. Some people even took the
time to learn about OntoEdit. However, the practical problem
we had was that our environment does not yet support an on-
tology management module for cooperative ontology engi-
neering. We embedded the ontology into our AIFB portal. It
contains around 170 concepts (including 110 research topics)
and 75 relations. This version is still running, but we expect
maintenance to be a relevant topic soon. Therefore we are
collecting feedback from our users - basically colleagues and
students from our institute.

RELATED WORK

This section positions our work in the context of existing Web
portals and also relates our work to other basic methods and
tools that are or could be deployed for the construction of
community Web portals, especially to related work in the area
of semantic ranking of query results.

Related Work on Knowledge Portals. One of the well-
established Web portals on the Web is Yahoo (cf.
http://www.yahoo.com). In contrast to our approach Yahoo
only utilizes a very light-weight ontology that solely consists
of categories arranged in a hierarchical manner. Yahoo offers
keyword search (local to a selected topic or global) in addi-
tion to hierarchical navigation, but is only able to retrieve
complete documents, i.e. it is not able to answer queries con-
cerning the contents of documents, not to mention to combine
facts being found in different documents or to include facts
that could be derived through ontological axioms. We get rid
of these shortcomings since our portal is built upon a rich
ontology enabling the portal to give integrated answers to
queries.

The Ontobroker project [3] lays the technological foundations
for the AIFB portal. On top of Ontobroker the portal has been
built and organizational structures for developing and main-
taining it have been established.

161

The approach closest to Ontobroker is SHOE [8]. In SHOE,
HTML pages are annotated via ontologies to support informa-
tion retrieval based on semantic information. Besides the use
of ontologies and the annotation of Web pages the underlying
philosophy of both systems differs significantly: SHOE uses
description logic as its basic representation formalism, but it
offers only very limited inferencing capabilities. Ontobroker
relics on Frame-Logic and supports complex inferencing for
query answering. Furthermore, the SHOE search tool does not
provide means for a semantic ranking of query results. A
more detailed comparison to other portal approaches may be
found in [17].

Related Work on Semantic Similarity. Since our semantic
ranking is based on the comparison of the query knowledge
base with the given ontology and knowledge base, we relate
our work to the comparison of ontological structures and
knowledge bases (covering the same domain) and to measur-
ing the similarity between concepts in a hierarchy. Although
there has been a long discussion in the literature about evalu-
ating knowledge-bases [12], we have not found any discus-
sion about comparing two knowledge bases covering the
same domain that corresponds to our ranking approach. Simi-
larity measures for ontological structures have been investi-
gated in areas like cognitive science, databases or knowledge
engineering (¢f. e.g., (14, 13, 15, 9]). However, all these ap-
proaches are restricted to similarity measures between lexical
entries, concepts, and template slots within one ontology.

Closest to our measure of similarity is work in the NLP com-
munity, named semantic similarity {14] which refers to simi-
larity between two concepts in a isaA-taxonomy such as the
WordNet or CYC upper ontology. Our approach differs in
two main aspects from this notion of similarity: Firstly, our
similarity measure is applicable to a hierarchy which may, but
not need be a taxonomy and secondly it is taking into account
not only commonalties but also differences between the items
being compared, expressing both in semantic-cotopy terms.
This second property enables the measuring of self-similarity
and subclass-relationship similarity, which are crucial for
comparing results derived from the inferencing processes,
executed in the background.

Conceptually, instead of measuring similarity between iso-
lated terms (words), that does not take into account the rela-
tionship among word senses that matters, we measure similar-
ity between ,,words in context*, by measuring similarity be-
tween Object-Attribute-Value pairs, where each term corre-
sponds to a concept in the ontology. This enables us to exploit
the ontological background knowledge (relations between
concepts) in measuring the similarity, which expands our ap-
proach to a methodology for comparing knowledge bases.

From our point of view, our SEAL framework is rather
unique with respect to the collection of methods used and the
functionality provided. We have extended our community
portal approach that provides flexible means for providing,
integrating and accessing information [17], semantic ranking
of generated answers and a smooth integration with the evolv-

ing Semantic Web. All these methods are integrated into one
uniform environment, the SEAL framework.

CONCLUSION

In this paper we have shown our comprehensive approach
SEAL for building semantic portals. In particular, we have
focused on three issues.

First, we have described the general architecture of the SEAL
framework, which is also used for our real-world case study,
the AIFB portal. The architecture integrates a number of
components that we have also used in other applications, like
Ontobroker, the navigation and query module. Second, we
have extended our scmantic modules to include a larger di-
versity of intelligent means for accessing the Web site, viz.
semantic ranking and machine access by crawling. Third, we
have presented some experiences made during the ontology
development for our case study - AIFB portal.

For the future, we sce a number of new important topics ap-
pearing on the horizon. For instance, we consider approaches
for ontology learing in order to semi-automatically adapt to
changes in the world and to facilitate the engineering of on-
tologies [11].

Currently, we work on providing intelligent means for provid-
ing semantic information, i.e. we elaborate on a semantic an-
notation framework that balances between manual provision-
ing from legacy texts (e.g. Web pages) and information ex-
traction [4], [7].

Finally, we envision that once semantic Web sites are widely
available, their automatic exploitation may be brought to new
levels. Semantic Web mining considers the level of mining
Web site structures, Web site content, and Web site usage on
a semantic rather than at a syntactic level yielding new possi-
bilities, e.g. for intelligent navigation, personalization, or
summarization, to name but a few objectives for semantic
Web sites.

Acknowledgements The research presented in this paper would not
have been possible without our collecagues and students at the Insti-
tute AIFB, University of Karlsruhe, and Ontoprise GmbH. Research
for this paper was partially financed by Ontoprise GmbH, Karlsruhe,
Germany, by US Air Force in the DARPA DAML project “On-
toAgents”, by EU in the IST-1999-10132 project “On-To-
Knowledge” and by BMBF in the project “GETESS” (01IN901C0).

REFERENCES

[1]Angele, J., Schnurr, H.-P., Staab, S., and Studer, R. The times
they are changing- the corporate history analyzer. In D. Mahling, U.
Reimer, editors, Proceedings of the Third International PAKM Con-
ference, pages 1.1-1.11, Basel, October, 2000.

{2] Benjamins, V.R., Fensel, D, Decker, S., and Perez, A.G. (KA):
Building ontologics for the internct. International Journal of Hu-
man-Computer Studies, 51(1):687-712, 1999

Systems, 16(1):26-34, 2001.

162

[3] Decker, S., Erdmann, M., Fensel, D., and Studer, R. Ontobroker:
Ontology Based Access to Distributed and Semi-Structured Informa-
tion. In R. Mcersman et al., editors, Darabuse Semantics: Semantic
Issues in Multimedia Systems, pages 351-369. Kluwer Academic
Publisher, 1999.

[4] Erdmann, M., Maedche, A., Schnurr H.-P., and Staab, S. From
manual to semi-automatic semantic annotation: About ontology-
based text annotation tools. ETAI Journal - Section on Semantic
Web, 6(2001).

[5] Gomez-Perez, A. A framework to verify knowledge sharing
technology. Expert Systems with Application, 11(4):519-529, 1996.

[6] Kifer, M., Lausen, G., Wu, J. Logical Foundations of Object-
Oriented and Frame-Based Languages. Journal of the ACM | Vol.
42, 741-883, 1995

{7] Handschuh, S., Staab, S., Maedche, A. CREAM - Creating rela-
tiona!l metadata with a component-based, ontology-driven annotation
framework. ACM K-CAP 2001. October, Vancouver, in press

[8] Heflin, J. and Hendler, J. Searching the Web with SHOE. In
Artificial Intelligence for Web Search. AAAl Workshop. WS-00-
01,pages 35-40. AAAI Press, 2000.

[9] Hovy, E. Combining and standardizing large-scale, practical
ontologies for machine translation and other uses. In Proc. Of the
First Int. Conf. on Language Resources and Evaluation (LREC),
1998.

[10] Maedche, A. and Staab, S. Discovering conceptual relations
from text. In Proceedings of ECAI-2000, pages 321-324 10S Press,
Amsterdam, 2000.

[11] Maedche, A., Staab, S. Ontology Leamning for the Semantic
Web. IEEE Intelligent Systems, 16(2):72-79, 2001.

{12] Menzis, T.J. Knowledge maintenance: The state of the art. The
Knowledge Engineering Review, 10(2), 1998.

{13} Rada, R., Mili, H., Bicknell, E. and Blettner, M. Development
and application of a metric on semantic nets. /[EEE Trans. on Sys-
tems, Man, and Cybernetics, 19(1), pages 17-30, 1989.

[14] Resnik, P. Using information content to evaluate semantic simi-
larity in a taxonomy. In Proceedings of IJCAI-95, pages 448-453,
Montreal, Canada, 1995.

[15] Richardson, R., Smeaton, A.F. and Murphy, J. Using Wordnet
as knowledge base for measuring semantic similarity between words.
Technical Report CA-1294, Dublin City University, School of
Computer Applications, 1994.

[16] Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R,
Shadbolt, N., Van de Velde, W., and Wielinga, B. Knowledge Engi-
neering and Management — The CommonKADS Methodology. The
MIT Press, 1999.

[17} Staab, S., Angele, J., Decker, S., Hotho, A., Maedche, A.,
Schnurr, H.-P., Studer, R. and Sure, Y. Al for the Web — ontology-
based community Web portals. In 444! 2000/IAA1 2000, pages
1034-1039, AAAI Press/MIT Press, 2000.

[18] Staab, S., Schnurr, H.-P., Studer, R. and Sure, Y.
Knowledge processes and ontologies. IEEE Intelligent.

Ontology-Based Metadata Generation from
Semi-Structured Information

Heiner Stuckenschmidt
Center for Computing Technologics
University of Bremen
P.O.B: 33 04 40 D-28334 Bremen, Germany
heiner@1zi.de

Abstract

Content-related metadata plays an important role in intelli-
gent information systems. Especially on the world-wide web
meaningful metadata describing the contents of a web-site
is the key to intelligent retrieval and access of information.
Metadata description standards like RDF and RDF schema
have been developed and work in progress addresses the use
of ontologics to provide a logical foundation for metadata.
However, the acquisition of appropriate metadata is still a
problem. The main part of the paper is concerned with the
specification of ontologies and metadata models. We de-
scribe the Spectacle approach, a knowledge-based approach
for metadata validation and gencration as well as tools re-
lated to the ontology language OIL. We conclude that the
specification of ontologies and the generation of metadata
models are processes that supplement each other and propose
a method for semi-automatic generation of metadata models
on the basis of ontologies.

Motivation

The information society demands large-scale availability of
data and information. With the advent of the World Wide
Web, huge amounts of information is available in principle,
but the size and the inherent heterogeneity of the Web make
it difficult to find and to access useful information. A suit-
able information source must be located which contains the
data needed for a given task. Once the information source
has been found, access to the data therein has to be provided.
A common approach to this problem is to provide so-called
metadata, i.e. data about the actual information. This data
may cover very different aspects of information: technical
data about storage facilities and access methods co-exist with
content descriptions and information about intended uses,
suitability and data quality. Concerning the problem of find-
ing and accessing information, metadata help to find, to ac-
cess and to interpret information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission andfor a fee.

K-CAP'0l, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010.... $5.00

163

Frank van Harmelen
Aldministrator BV, Amerfoort, and
Al Department, Vrije Universiteit Amsterdam

De Boelelaan 1081a, 108 1HV Amsterdam, The Netherlands

frankh@cs.vu.nl

In this paper we focus on a specific type of metadata, namely
metadata related to the contents of a web-page. A typical ap-
proach to capture this kind of metadata is so-called web-page
categorization [10]. Here, web pages as a whole are assigned
to a set of classes representing a certain topic area the page
belongs to. In order to apply this approach there has to be a
set of classes to be used as targets for the classification task.
The idea of using ontologies in order to define these classes is
straightforward and does not need too much argumentation.

A problem that remains is the classification itself which can
be a tremendous effort considering the size of normal web-
sites or even the web itself. There is a need for automatic
or semi-automatic support for the classification process that
has already been observed by others. Jenkins and others,
for example, use text mining technology in order to gener-
ate RDF models describing the contents of web-pages [9]. It
has been argued that web page classification can be signif-
icantly improved by using additional information like other
kinds of metadata [10] or linguistic features [1]. We propose
an approach that exploits another kind of additional infor-
mation namely the syntactic structure of a web page. This
can be done because it has been shown that it is possible to
identify syntactic commonalities between web-pages infor-
mation about similar topics [S]. We use an existing approach
for classifying web-pages on the basis of their structure and
show how this approach can be used to relate web-pages to a
pre-existing ontology in such a way that the formal semantics
of the ontology remains available for consistency checking
and filtering of web-pages.

The paper is organized as follows. In section we introduce
the Spectacle approach for semi-automatically classifying in-
dividual web-pages based on their structure. In section we
present the use of Spectacle for the generation of contents
metadata on the basis of ontologies in some more details.
The current state of the technology used as well as two case
studies using the approach are the topic of section . We con-
clude with a critical view on the scaleability of the approach
and topics for further research brought up by the case studies.

The Spectacle Approach

We have developed an approach to solve the problems
of completeness, cohsistcncy and accessibility of metadata
identified above. This is done on the basis of rules which
must hold for the information found in the Web site, both
the actual information and the metadata (and possibly their
relationship). This means that besides providing Web site
contents and metadata, an information providers also for-
mulate classification rules (also called: integrity constraints)
which should hold on this information. An inference en-
gine then applies these integrity constraints to identify the
places in the Web site which violate these constraints. This
approach has been implemented in the Spectacle Work-
bench, developed by the Dutch company Aldministrator
(http://www.aidministrator.nl). In this section,
we will describe the different steps of our approach. Formu-
lating and applying classification criteria and integrity con-
straints is done in a three step process [13].

Constructing a Web-site Model

The first step in our approach to content-based verification
and visualization of web-pages is to define a model of the
contents of the web-site. Such a model identifies classes of
objects on our web-site, and defines subclass relationships
between these classes. For example, pages can be about
water, soil, air, energy, etc. Each of these types of pages
can again be subdivided into new subclasses: water-pages
can be about waste-water, drinking water, river-drainage, etc.
This leads to a hierarchy of pages which is based on page-
contents, such as the example shown in Figure 1.

. _e o @
(watercourses:-) (animals™<) (plantse=) (zone::)

-

 J

(rivers:-) (takes:-)

Figure 1: An Example Classification Tree

A subtle point to emphasize is that the objects in this ontol-
ogy are objects on the web-site, and not objects in the real-
world described by the web-site. For example, the elements
in the class “rivers” are not (denotations of) different rivers in
a specific region, but they are web-pages (in this case: web-
pages talking about rivers). As a result, any properties we
can validate for these objects are properties of the pages on
the web-site, as desired for our validation purposes.

164

Defining Syntactic Criteria for Classes

The first step only defines the classes of our ontology, but
does not tell us which instances belong to which class. In
the second step, the user defines rules (compare [11]) that
determine which Web pages will be members of which class.
In this section, we will briefly illustrate these rules by means
of threc examples.

Figure 2 specifies that a rule is about "watercourses” if the
keyword "Gewsser™ appears in the meta-information of the
web-page. The rule succeeds if for example the following
code appears in the web-page:

<META HNAME="Keywords" CONTENT:"Gewss<r, Berichu™,

In the typical case, a page belongs to a class if the rule de-
fined for that class succeeds for the page. However, it is also
possible to define classes by negation: a page belongs to a
class when the corresponding rule fails on that page. This is
indicated by a rectangle in the class-hierarchy (instead of a
rounded box).

Figure 2: Example of a Classification Rule Using Meta-
data

Classifying Individual Pages

While the human user of Spectacle performs the previous
steps, the next step is automatic. The definition of the hi-
erarchy in the first step and the rules in the second step allow
the Spectacle inference engine to automatically classify each
page in the class hierarchy. Note that classes may overlap (a
single page may belong to multiple classes).

The rule format has been defined in such a way as to pro-
vide sufficient expressive power while still making it possible
to perform such classification inference on large numbers of
pages (many thousands in human-acceptable response time).

Generating Metadata

After these three steps, we have a class hierarchy that is pop-
ulated with all the pages of a given site. Such a populated
class hierarchy can be stored in a combined RDF and RDF
Schema format [3]. The following statements are taken from
the RDF Schema encoding of the Spectacle type hierarchy.
The first three show how of the types "watercourses”, “lake”™
and “river” and their sub-type relationship are encoded in
standard RDF Schema.

<rdfs:Class rdf:Ib="watercouracs®/,
<rafs:Class rdf 1D “lake.
<rdfs:subClassCf rdf:resource="fwater"/,
<« rdfs:Class,
<rdfs:Class rdf:I1b-="ziver"s
<rdfs:subflassOf rif :resource
< ‘rdfs:Class

MEaator /.

The following is an example of an RDF encoding of instance
information: the URL mentioned in the “about™ attribute is
declared to be a member of the class "water™ (and conse-
quently of all its super-types, by virtue of the RDF Schema
semantics).

<rdf:Description ab
vhttp://www. umwelit .bremen.de/buisy/scripts/buisy.asp?
doc=Badegewae guete+Bremen™,
<raf:type resource:"fwatercourses"/>
</rdf:Description>

These automatically generated annotations constitute an ag-
gregated description of a web site that can be used to get an
overview of its content.

Ontology-Based Metadata Generation

In this section we propose a method to generate content-
related metadata in terms of a web-page categorization. The
idea behind the method is based on the following observa-
tions: Ontologies are intentional models of information con-
tents with a well-defined logical basis which can be used for
reasoning. Metadata, on the other hand, are extensional mod-
els summarizing existing information and can therefore be
extracted from an information source. We conclude that both
can supplement each other in the process of generating meta-
data. In the following we describe an integrated method to
generate metadata models on the basis of content ontologies.
We illustrate the method with experiments conducted using
an existing information system.

Building Content Ontologies

Ontologies have set out to overcome the problem of implicit
and hidden knowledge by making the conceptualization of a
domain (e.g. environmental protection) explicit. This corre-
sponds to one of the definitions of the term ontology most
popular in computer science [7]:

165

"An ontology is an explicit specification of a concep-
tualization.”

An ontology is used to make assumptions available about the
meaning of a term. In the context of the general metadata
architecture this means that terms are specified by restrictions
on their interpretation and their relation to other terms used
in the metadata description. In this section we describe how
an ontology about the contents of a web-site can be built and
used for reasoning.

The OIL language has been developed in the context of the
On-To-Knowledge Project (www.ontoknowledge.org) as a
proposal for a language for the specification and exchange of
ontologies [6]. OIL tries to provide a core set of features that
have been widely accepted to be useful for the description
of vocabularies and terminologies. OIL combines object-
oriented modeling primitives, reasoning facilities from De-
scription Logics, and a tight interaction with RDF and XML.

A couple of tools have been developed to support the ap-
plication of the OIL language on the World-Wide Web, in-
cluding the Ontology Editor OILed which has already been
proven useful for real applications [12]. OILed can be used
to develop ontologies that contain the following language el-
ements.

Class Hierarchies: The basic structure of an OIL ontology
is a set of classes arranged in a subclass hierarchy. Each
class is a place-holder for a specific set of entities. We can
use class hierarchies to define different sub-disciplines of for
example environmental protection, namely emission control,
nature preservation, soil protection and water pollution con-
trol. These disciplines might be used to structure an infor-
mation system and can provide guidance for content-based
search or navigation. Therefore a clear notion of these terms
is important to provide meaningful metadata.

Slot Definitions: OIL is capable of defining binary relations
(so-called slots) between classes in the hierarchy. Range and
domain of these relations can be restricted to special classes
described by their name or an intentional description of their
members (see below). Further it is possible to define inverse
relations, hierarchies of relations and to assign a couple of
mathematical properties (e.g. transitivity) to relations. In our
case an 'about’ relation, for example, connects disciplines
(referred to as topic area) to specific contents or spatial lo-
cations. Note that we can use Boolean operations on class
names to describe this fact.

Concept Definitions: Classes can not only be defined by
their position in the class hierarchy, but also by constraints
on objects they may relate to. Figure 3 shows a simple class
definition.

about

has value

Figure 3: The Class Definition Editor

The figure shows the (strongly simplified) definition of the
topic area water-pollution-control. The definition claims that
the contents of each instance of that topic area are concerned
with watercourses or with wastewater. This definition re-
stricts the way of how a piece of information can be inter-
preted. For example, it does not allow us to classify an in-
formation item which is only concerned with animals as be-
longing to the topic area of water pollution control.

Individuals: The last feature of the OIL language we need
in order to build an ontology about the vocabulary used to
describe the contents of a web-based information system (in
our case an environmental information system) are instances
of classes. In our case, we can use individuals to describe ex-
isting objects in the world like real watercourses, lakes and
rivers, but also to refer to pages in the information system
and relate these pages to real world objects they contain in-
formation about. The dummy page shown in the picture, for
example, is said to be about the *Sodenmattsee’, a lake in the
district "Huchting’.

Assigning Pages to Classes

The definition of a content ontology provided us with an in-
tentional model of the domain. The next step is to relate this
model to real information from the system. This step, also
referred to as grounding, is a crucial one, because it is time-
consuming and error-prone. The size of modem information
systems forces us to provide some tool support. We claim
that the Spectacle Workbench is a very helpful tool for this
task, because it automatically classifies pages into ontologi-
cal concepts on the basis of syntactic rules. In order to make
use of the system’s capabilities we have to import the previ-
ously built contents ontology and define classification rules
for each concept from the ontology. Note that the ontology
already defines criteria for class membership, but does not

166

define criteria that can be checked on a web page. Conse-
quently, we define two sets of criteria for each class in the
ontology.

¢ Intentional Criteria: Restrictions on the way a term
might be interpreted. This is done in the content ontology.

o Extensional Criteria: Properties of information related to
that class allowing us to find it in on a web-site: These
criteria are specified using the Spectacle System.

In order to use Spectacle for the definition of syntactic cri-
teria, we import the subclass hierarchy from the content on-
tology into the Workbench and proceed by defining syntactic
classification rules for each class. In principle, we have three
possibilities:

1. using metadata to classify web-pages
2. using arbitrary page-contents to classify web-pages

3. using external properties of web-pages for classification

The first possibility applies if already some kind of meta-
data have been included in the system. A typical example is
the use of keywords. We discussed this example in section
. The rule displayed in figure 2, for example, can be used as
a syntactic criterion for the class watercourses. In order to
distinguish the sub-types of watercourses we can no longer
use existing metadata. In this case, we can use Spectacle to
perform a free-text search in the body of web-pages and look
for the German terms corresponding to lake and river. Figure
4 shows the result of the search.

0390 [) C \E gore D atomontSubmrmsmons V. CAP L ahes i

WebMaster results of Sat Apr 14 18:29:40 GMT+02:00 2001
Oveeview of the type Mararcky (starting st Lakes)
© Lakes (60)
Contonts ol the type Weraedhy ~° . - -
Type Lakes (60)

ity tharww umwek bremen defbussy/seriptabgb/bogb aep?SeexWerdersee
[rorerw umwek beemen s+ 7doc=NSGH ertSee

thwrww ety st 2. see &t 1999

hittp fwww uprarek bremen defbuisyiscnptsbgh/bewerpng psp?ScePohenser &Tabr=1999
hetp S uerawel bremea de/b\lgx/lcmldb&’bew&g asp?See=Buhensee&Tahr=1998

bitp /hwrerwr vensrek bremen defusyisb{allgesetze verordaungenfyw-sbfg him
hittp lwrvew umwek bremen deusylicriptabab/bewertung asp?See=Werdersee 8Tabr=1999
Iararw upswel bremen de serptubgbibe 7See=WerderseedJahe 1998

ohfhrwerbne nm?ﬁan«dtrtnn Iahree 1997
TS e I |

Flgure 4: Pages classified to belong to the class ’lake’

From the results displayed in figure 4 we can easily gencrate
a metadata description of the pages classified to belong to the
class lakes. The metadata description of the page highlighted
in the screenshot is the following:

<rdf :Description about:

"http://www.umwelt .bremen.de/buisy/scripts/bgb/bewertung.asp?

Sece-SodenmatteeetJahr - 2000
<rdf itype resources="#lakes" />
</rdf:Description»

Corresponding descriptions are generated for all pages on the
web-site which could be classified. In parallel, we supple-
ment the contents ontology by creating an individual for ev-
ery page and assigning it to the corresponding concepts that
have been detected.

Ontology-Based Post-Processing

One of the major benefits of using the OIL language for spec-
ifying ontologics is the availability of reasoning support for
a limited number of tasks concerned with ontology manage-
ment. The reasoning support is based on Description Logic,
i.e. on the correspondence of OIL with the language SHZ Q.
OIL specifications are translated into this logic and standard
reasoning techniques are used to support the following tasks:

Consistency Checking: The reasoner is able to check the
satisfiability of the logical model of the ontology. In par-
ticular, inconsistent concept definitions are detected. If we,
for example, defined animals to have four legs and we try
to include an instance of the class animal with five legs, the
reasoner will find the contradiction.

Computation of Subclass Relations: An ontology normally
contains two different kinds of sub-class relations: explicitly
defined relations from the class hierarchy and implicit sub-
class relations implicd by the logical definitions of concepts.
The latter can be detected using the reasoning support of the
OIL language and included into the ontology thus complet-
ing it.

A special case of the computation of subclass relation is
the automatic classification of individuals. OIL allows us
to describe an individual by its relation to other individuals
without naming all classes it belongs to. The reasoner will
find the classes we omitted in the definition. An exmaple
would be if we only defined our dummy page to be about the
*Sodenmattsee’ without assigning it to a special topic area.
However, we stated that the domain of the *about’ relation is
the class topic area and we defined water-pollution-control to
be concerned with watercourses. This information provided
and the fact that the *Sodenmattsee’ is a lake and therefore a
watercourse enables the reasoner to decide that our dummy
page should be classified as belonging to the topic area wa-
ter pollution control’.

OIL uses the FaCT reasoner, a system which implements
highly optimized algorithms for providing the above men-
tioned reasoning support [8]. FaCT is implemented in LISP,
but it offers a CORBA interface that allows easy access to
the system using a well-defined interface [2]. The OlLed
Editor can be directly connected with the reasoner providing
reasoning support at development time. Inconsistencies are

highlighted and missing subclass relations are added. There-
fore, OlLed and FaCT offer a comfortable development en-
vironment for ontologies.

Using this environment we can check the result of the meta-
data generation for consistency. This is necessary becausc
the criteria used to describe classes in the Spectacle systems
only refer to syntactic structures of the page contents. Espe-
cially, Spectacle has no possibility to check whether the clas-
sification of a page makes sense from a logical point of vicw.
For example, we can include a description of the administra-
tive units in our ontology and classify pages according to the
unit which is concerned with the specific topic of the page.
We will define the units to be mutually disjoint because the
competency is strictly separated. If we now classify one page
to belong to both units we get a clash in the logical model.
In this case, we have to check the page and assign the right
administrative unit by hand. Thus the logical models helps
us to find shortcomings of the generated model.

The second benefit of the logical grounding of the metadata
model is the possibility to derive hidden class memberships.
This is important because the RDF metadata schema makes
some assumptions about implicit knowledge. Examples of
these assumptions can be found in [4]. We use the following
axiom as an example:

T(r,xdf : type,c;) AT (c;,xdfs : subClassOf. cg)
T(r.rdf : type.cz)

The equation states that every resource r (i.e. web-
page) that is member of class c¢; (indicated by the
triple 7 (r,rdf : type,c;)) is also member of class
cog (T(r,rdf : type.c2)) if c¢; is a subclass of «,
(T(cy,rdfs : subClass0f, ¢z)). This correlation can eas-
ily be computed using the FaCT reasoner by querying all
super-concepts of a given concept. The result of this query
can be used to supplement the description of a page. The de-
scription of the page referred to above, for example, will be
extended with the following statement.

" <rdf:type resource="#watercourse"/>

167

In the same way, other axiomatic properties of RDF schema
can be implemented in order to produce a more complete
metadata model.

Applying the Method

The generated metadata model can be used in various ways.
In the introduction, we already mentioned the general appli-
cation areas search, access and interpretation. In this section,
we will briefly discuss the use of metadata for intelligent
search for web pages. We implemented a universal search
engine which relies on an ontology-based metadata model

in order to search for web resources with certain properties.
The search engine imports the content ontology and asks the
user for a concept to be queried. Based on the definition of
that concept (i.e. the attached slots) a query interface is gen-
erated that allows the user to specify restrictions on the slot
fillers. The query engine searches the metadata model and
returns all pages that fall under these restrictions.

The search engine is intended to be used as a component
in web-based information systems rather than the complete
web. In such a system we can assume the existence of a com-
mon ontology which can be used as a basis for generating the
metadata model necessary to support the search process.

Tool Support and Interaction

We are currently implementing the approach described above
making use of mostly pre-existing technology already men-
tioned in the previous sections. Figure S shows the interac-
tion of these tools, namely the OILed ontology editor, the
FaCT reasoning system, the spectacle workbench and our
own search engine ASK-Me (Automatic Selection of Knowl-
edge resources based on Metadata).

| OlLed
y b oo
_/;/5 6. \\x\
R T A1
! setacle 7 : e g o " o’ !
Speetcle P I A2 4 e |
e
[ASK-Mc |

Figure 5: Interaction of Tools in the Overall Process

The figure depicts a typical run through the metadata gener-
ation process that contains the following steps.

. Import of Content Ontology into the ontology editor.

2. Export of the ontology as RDFS model.

3. Import of the Class Hierarchy in to the Spectacle work-
bench as basis for the classification.

4. Export of instantiated ontology, where each web-page is
described and assigned to one or more classes in the hier-
archy

5. Import of the instances into the editor in order to supple-
ment the content ontology.

6. Export of the instantiated ontology in OIL format

7. Import of the ontology into the FaCT reasoner for consis-
tency checking and computation of subsumption relations.

8. Export of the verified and completed ontology in OIL

168

Finally the search engine is supplied with the metadata model
as well as with the ontology in order to provide a content
filtering service on the basis of a target concept specified by
the user. The system uses the Ontology in order to relate the
query concept to concepts assigned to web-pages as well as
the RDF model in order to retricve the web-pages assigned
to these classes.

At the moment, the right hand side of the figure, namely
the interaction between editor, reasoner and search cngine
is completely implemented. We are currently working on
the RDF part. Open tasks include the alignment of the RDF
Models supported by Spectacle one and OlLed on the other
hands. Further we have to extend the search engine to com-
pletely work on RDF instead of a relational database we use
at the moment.

Case Studies

We have two different case studies we use in order to evaluate
the approach presented. The first one the examples found in
this paper are taken from is concerned with the environmen-
tal information system of the City of Bremen and has already
been finalized. The second one is a rather new attempt to pro-
vide an integrated information system for scientific services
provided by organizations in the city of Bremen. This project
called City-of-Science has just started. We briefly describe
these case studies in the following.

BUISY: An Environmental Information System The advent
of web-based information systems camec with an attractive
solution to the problem of providing integrated access to en-
vironmental information according to the duties and needs
of modern environmental protection. Many information sys-
tems were set up either on the Internet in order to provide
access to environmental information for everybody or in in-
tranets to support monitoring, assessment and exchange of
information within an organization. One of the most recent
developments in Germany is BUISY, an environmental infor-
mation system for the city of Bremen which has been devel-
oped by the Center for Computing Technologies of the Uni-
versity of Bremen in cooperation with the public authorities.
The development of the system was aimed at providing uni-
fied access to the information existing in the different orga-
nizational units for internal use as well as for the publication
of approved information on the internet.

Figure 6 shows the main screen of the BUISY system with
the main topic area covered by the system. The first step of
the proposed method now consists of the development of an
ontology about the domain. The definition of the topic ar-
eas and the vocabulary used within these areas is of major
interest. In the previous section we already sketched the idea
of how such an ontology could be built and showed some
example definitions as screenshots from the OlILed Editor.
The result of this first step will be an extended RDF model
that contains additional modeling primitives of the OIL lan-
guage. Such a model can be generated by OILed without

«*

thee Hereorey

Figure 6: The main topic areas of the BUISY System

further modeling effort. Below is a corresponding definition
of the topic-area water pollution control that we already men-
tioned in the last scction.

contrllt.

Lo HLoD L

arnat . ralziTiang

Tion,

<oil:HasVal
<oil:onProperty rdf treso.,
“/oil:onFroperty .

rocs"Eabout

redf taboun s Mhwa e

‘lass .
</oil:hasOperand.
coil:hasOperand,

<rdfs:Class rdf:abcun="&
</rdfs:Class>
</oil:hasOperand>
</oil:0r>
</ojl:tcClass>
</oil:HasValue>
</oil:hasPropertyRestriction>
</rdfs:Class>

In the course of our case study on the BUISY system eight
groups of Al students with some experience in knowledge
representation and knowledge-based systems independently
built ontologies covering the contents of the BUISY system.
They used the Spectacle System in order to assign web-pages
to concepts from the ontology and conducted experiments
with querying the system using concept expressions.

City Of Science: An Information System for Scientific Services
The government of the City of Bremen recently recognized
the need to support technology transfer from research orga-
nizations to the local industry. One of the activities started
in connection with this goal is the establishment of an infor-
mation system for scientific services. The idea is to provide
a uniform interface and intelligent access methods to pro-
files of potential providers of scientific services. A standard
profile has been created which each provider has to spec-
ify according to the kinds of services he wants to advertise.

rzstewater’

169

Examples of information given by each organizatibn are the
following:

Type of Organization: Providers of scientific services arc
categorized due to their legal status and organizational na-
ture. Categories include universities, rescarch institutes,
consortia and companies.

Area of Expertise: A rough description of the arcas of re-
search the corresponding service provider works in and
claims to have expertise.

Technical Equipment: Non standard equipment needed to
perform special tasks. Typical examples are laboratories
but this notion also includes special function buildings.

There are also other kinds of information like previous
projects or mode of funding. However, we only refer to the
three properties above.

In a case study, we investigate how contents related meta-
data can improve the search methods provided to the user
in order to find the service he needs. We just finished the
development of the content ontology defining the properties
mentioned above on a logical basis. Each service provider is
modeled as an instance of the concept service-provider with
further specifications of the properties using properties from
the city of science namespace denoted by coc. An example
is the following:

MU
chShip"/>
chPost"/>»

w/y

ratories"/»

= rdf:resource="MarineReserach"/>

rdf :resource="EnvironmentalResearch"/-~
réf:resource="UniversityOfBremen”/>
nscrriumy

The next step in this case study will be an investiga-
tion of how the Spectacle system can be used in order to
semi-automatically describe new profiles added by service
providers by annotating descriptions like the one shown
above.

Discussion and Future Work

We discussed the role of metadata for intelligent search, ac-
cess, and interpretation of information in web-based infor-
mation systems. We described the Spectacle approach for
the generation of metadata models and the OIL approach to
ontology building. We concluded that both approaches can
be combined to achieve a semi-automatic procedure to build
metadata models. We also described the current status of the
implementation and two applications of the approach.

Lessons learned from the case studies: Our approach
of combining ontology building with metadata gencration
comes with benefits for both previously existing approaches.
On one hand, metadata generation with Spectacle takes ad-
vantage of the logical foundation provided by the ontology
in terms of consistency checking and subsumption reason-
ing. On the other hand it helps to acquire ontological knowl-
edge by providing a tool for the automatic population of the
ontology with individuals. The BUISY Casc study showed
that users with some knowledge in Al are able to build con-
tent ontologies and to apply the Spectacle system for gener-
ating metadata. However, the definition of syntactical criteria
for web-pages of a certain class is still a difficult and time-
consuming task which requires some knowledge about the
information to be annotated. In order to avoid the effort of
analyzing the whole web-site we are currently developing an
approach for automatically learning page structure from ex-
amples and partial specifications. The city of science case
study revealed that it is often not enough to analyze web-
pages as a whole. In the case of the city of science project,
metadata related to special aspects described in single para-
graphs has to be generated. We therefore have to refine the
analysis to include single elements on a web-page.

In general, an open problem of the approach is the applica-
tion to arbitrary web resources. The approach relies on the
existence of a single ontology all pages can be related to. At
the moment this can only be achieved by restricting the ap-
plication to information systems with a well-defined domain.
Intranets, for example, fulfill this requirement.

REFERENCES
1. Roberto Basili, Alessandro Moschitti, and Maria Teresa
Pazienza. Nlp-driven ir: Evaluating performances over
a text classification task. In B. Nebel, editor, Proceed-
ings of the 13th International Joint Conference on Arti-
ficial Intelligence IJCAI-01, 2001.

2. S. Bechhofer, 1. Horrocks, P. F. Patel-Schneider, and
S. Tessaris. A proposal for a description logic interface.
In Proc. of DL’99, pages 33-36, 1999.

3. D. Brickley, R. Guha, and A. Layman. Re-
source description framework (rdf) schema spec-

ification. Working draft, W3C, August 1998.
http:/fwww.w3c.org/TR/WD-rdf-schema.
4. Pierre-Antoine Champin. Rdf tutorial. Available

at http://www710.univ-lyonl.fr/ champin/rdf-tutorial/,
June 2000.

5. M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. Learning to
construct knowledge bases from the world wide web.
Artificial Intelligence, 118(1-2):69-113, 2000.

6. D. Fensel, . Horrocks, F. Van Harmelen, S. Decker,
M. Erdmann, and M. Klein. Oil in a nutshell. In J2th In-
ternational Conference on Knowledge Engineering and

170

10.

11.

12

13.

Knowledge Management EKAW 2000, Juan-les-Pins,
France, 2000.

_ T.R. Gruber. A translation approach to portable ontol-

ogy specifications. Knowledge Acquisition, 5(2), 1993.

. 1. Horrocks. The FaCT system. In H. de Swart, editor,

Automated Reasoning with Analytic Tableaux and Re-
lated Methods: International Conference Tableaux'98,
number 1397 in Lecture Notes in Artificial Intelligence,
pages 307-312. Springer-Verlag, Berlin, May 1998.

. C. Jenkins, M. Jackson, P. Burdon, and J. Wallis. Au-

tomatic rdf metadata generation for resource discovery.
Computer Networks, 31:1305-1320, 1999.

John M. Pierre. On the automated classification of web
sites. LInkping Electronic Articles in Computer and In-
formation Science, 6, 2001.

M.-C. Rousset. Verifying the world wide web: a posi-
tion statement. In F. van Harmelen and J. van Thienen,
editors, Pro-ceedings of the Fourth European Sympo-
sium on the Validation and Verification of Knowledge
Based Systems (EUROVAV97), 1997

R. Stevens, L. Horrocks, C. Goble, and S. Bechofer.
Building a reason-bale bioinformatics ontology using
oil. In A. Gomez-Perez, M. Gruninger, H. Stuck-
enschmidt, and M. Uschold, editors, Proceedings of
the 1JCAI-01 Workshop on Ontologies and Information
Sharing, August 2001.

Frank van Harmelen and Jos van der Meer. Webmaster:
Knowledge-based verification of web-pages. In M. Ali
and 1. Imam, editors, Proceedings of the Twelfth Inter-
national Conference on Industrial and Engineering Ap-
plications of Artificial Intelligence and Expert Systems,
(LEA/AEI99), LNAL Springer Verlang, 1999.

Discovery of Ontologies from Knowledge Bases'

Hendra Suryanto and Paul Compton

School of Computer Science and Engineering
University of New South Wales
Sydney 2052, Australia
{hendras, compton}@cse.unsw.edu.au

Abstract .

Current approaches to building knowledge-based systems
propose the development of an ontology as a precursor to
building the problem-solver. This paper outlines an attempt
to do the reverse and discover interesting ontologies from
systems built without the ontology being explicit. In par-
ticular "the paper considers large classification knowledge
bases used for the interpretation of medical chemical pa-
thology results and built using Ripple-Down Rules (RDR).
The rule conclusions in these knowledge bases provide
free-text interpretations of the results rather than explicit
classes. The goal is to discover implicit ontological rela-
tionships between thesc interpretations as the system
evolves. RDR allows for incremental development and the
goal is that the ontology emerges as the system evolves.
The results suggest that approach has potential, but further
investigation is required before strong claims can be made

Keywords
Knowledge acquisition, machine learning, ontology.

INTRODUCTION

Current knowledge acquisition (KA) methodologies, based
on knowledge-level modelling frameworks, attempt to build
a number of models, before building the particular problem
solver; e.g KADS and CommonKADS [22], Protege2000
[26]. There is an increasingly strong emphasis in this on
developing an ontology, and modern KA tools are increas-
ingly tools for developing an ontology. Although this ap-
proach facilitates re-use there are still major maintenance
issues in making additions and corrections.

With RDR the emphasis is not on the preparation, but in
making it as simple as possible to make corrections. Hence,
the only domain model is the data representation
scheme[4]. The assumption is, that if sufficient heuristics
are added, they will compensate for the lack of a substantial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...85.00

ontology. The focus of the approach is therefore to make
the addition of each incrementally added piece of knowl-
edge as simple and as reliable as possible. Although this
approach facilitates KA and maintenance, it does not facili-
tate reuse.’

Our aim in this study is to see if some aspects of an ontol-
ogy can be automatically learned from the rules of an RDR
knowledge base. Qur particular focus here is to discover an
ontology for the rule conclusions. Our strategy is to com-
pare the bodies of rules that give different classifications.
Because the same conclusion may be given by more than
one rule, the rule comparisons are combined to give overall
or ‘average’ relationships between classes.

There is no class structure for these conclusions. When a
Multiple Classification RDR (MCRDR) KB makes an error,
the task of the expert is to specify the correct conclusion
and identify the attributes and values that justify this con-
clusion. In adding the conclusion, the expert can select
from a list of pre-existing conclusions organized into broad
categories, but can also simply type in a new conclusion. In
medical pathology result interpretation, the evaluation do-
main here, the conclusions added by the pathologist may
provide advice to the referring clinician on patient diagno-
sis, management, how treatment is progressing, whether the
tests ordered were appropriate, what tests might still be
necessary or any combination of the above. It is quite clear
to both the expert and the receiver of the advice what in-
formation is being provided in the free text interpretation,
but these interpretations are a long way from the well de-
fined classes of a formal ontology. A task analysis would
assess this domain as a classification problem, but this does
not imply well defined classes. Hence the problem is not
only that disjuncts for a class (separate rule paths) may be
scattered across the KB, but that the same class may be
represented by different text strings. Such text strings may
cover a combination of different classes.

The question perhaps arises of whether it would be more
appropriate to start with a well-developed ontology, as sug-
gested by most KA researchers, rather than allow this situa-
tion to evolve. There have been a number of RDR papers

: TAn earlier version of this paper appeared in the ECAI’2000 Workshop

on Ontology Learning

over the years presenting data on the practical advantages
of the incremental KA approach provided by RDR [7].
Commercial RDR systems for Clinical Pathology arc now
available from Pacific Knowledge Systems Pty. Ltd and in
routine use in a number of laboratorics. These systems are
used to add clinical comments to pathology reports to pro-
vide advice to the referring clinician. The knowledge bases
can be built and maintained while in routine clinical use.
Pathologists require about two hours training to be able to
build rules and the KA time is about one minute per rule,
and high levels of accuracy are rapidly achieved. Knowl-
edge bases range in sizc from hundreds to thousands of
rules. Since development is incremental there is minimal
impact on the laboratory’s normal work-flow. These in-
formal, but industrial-use results, strongly confirm the pre-
vious RDR rescarch results. Rather than leading to the
conclusion that it would be better to start with a well-
developed ontology, this experience perhaps suggests that it
may be simpler to re-develop rather than re-use! However,
if we can discover the ontologics implicit in these incre-
mentally developed systems, we may be able to have the
best of both worlds.

These studies have used knowledge bases made available
by Pacific Knowledge Systems (http://www.pks.com.au).

Figure 1. Example of the simple MCRDR knowledge
based system

except

Rule 2: Rule 8:
o sky=SUNNY then i wind > 30 km/
Go Swimming then Play chess
exc except lexcept
Rute 3 except Rule 9
o ultraViolet=VERY HIGH f uttiraViolet=LOW then
then Swimming at Go Swimming
NG00 swirnming pool
except
Rule 4- Rute 10.
o wave = LOW than o sky=RAINY then
Swimmeng in the beach Play chess
Rute 5.
excepy # ulraViolet=MEDIUM and
wind<=30 then
Swimming in the beach
except
Ruse 6:
if wind > 40 ke/h
then Piay Chess

Rule 7

¥ ky=CLOUDY then

Swimeming st indoor
swimming pool

ONTOLOGY LEARNING OVERVIEW
The ontology learning (OL) approach we use could be ap-
plied to any rule-based system; it is specified here in terms

172

of MCRDR. A class in MCRDR is the set of disjunct rule
paths giving the same conclusion.

The ontology learning method discovers three type of rela-
tion between these classes: mutual-exclusivity, similarity
and subsumption. All of these relations arc assessed by
comparing the rule paths between classes and arc based on
the commonalities and differences between the conditions
used in rules in the rule paths

Mutual-exclusivity is the relation between 2 classes such
that both of them can not appear together. (In MCRDR, we
can have more that one rule path providing an interpretation
for a case). A simple example of how this relation might be
used is as follows. One might discover that the interpreta-
tions "bald" and "pregnant" are 90% mutually exclusive.
(We will discuss how to calculate this 90% value later).

Subsumption is the relation between two classes such that
class? is a spccialization of classl. In current implementa-
tions of MCRDR, it is possible for the expert to define in-
termediate classes. This suggests two kinds of subsumption
in MCRDR, i.e. semantic subsumption and syntactic sub-
sumption. An intermediate conclusion gives syntactic sub-
sumption. Although formal semantic subsumption is not
necessary in MCRDR, the exception structure of MCRDR
generally implies semantic subsumption. That is, if class2 is
always an exception of classl, we say that semantically
class] subsumes class2.

Similarity between two classes is a measure of how alike
two classes are. If classl is very similar to class2, the sys-
tem might suggest to the expert that classl is perhaps the
same as class2. Another motivation for a similarity metric is
to visualize the classes in 2D space, to support the expert if
they wish to split a large RDR-KBS into several more ho-
mogenous KBS.

Similar notions, but unrelated to ontology learning have
been investigated by Hamming [12] for coding and infor-
mation theory. Flax [8] also investigated the hamming dis-
tance between 2 logical formulac. Our investigation is
based on similar notions since we compute a distance be-
tween two classes by taking the average of all the pairs of
difference between the disjunctions for each class.

A complexity in this is that attributes tend to be multi-
valued rather than boolean. So that in rules, conditions can
subsume each other, be disjoint, etc. For example age >10
subsumes age 50, whereas age >40 and age <10 are clearly
disjoint. The measures to be proposed need to address the
way in which conditions based on multi-valued attributes
interrelate.

ONTOLOGY LEARNING AND MCRDR

A rule path consists of all conditions from all predecessor
rules plus conditions of this particular node's rule. For
example, from figure 1 :

rule path 6: class Play Chess if wind > 40,
wave=LOW, sky=SUNNY

Firstly we discover the class rclations between rules for
subsumption, mutual-cxclusivity and similarity. Secondly
we specify some compound relations using these three basic
relations. We use these compound relations to extract
matching relations from all the basic relations. Finally we
build a class model using the matched compound relations.

The central idea of the technique is to group all rules of the
same class and compute a quantitative measurement (from 0
to 1) for each rclation (subsumption, mutual-exclusivity,
similarity) between every pair of classes. We use this quan-
titative measurement as an informal confidence measure as
to whether these relations exist. The algorithm will be dis-
cussed in detail below, but when applied to the example in
figure 1 it gives: class Go Swimming subsumes class
Swimming in the beach with degree of confidence 0.83;
class Play Chess and class Go Swimming are mutually ex-
clusive with degree of confidence 0.17; class Go Swimming
and class Play Chess have degree of similarity 0.50.

This quantitative measure enables us to group different ex-
amples of the class and provides information on whether
across these examples, a class tends to subsume another
class (for example, class Go Swimming subsumed class
Swimming in the beach with degree of confidence 0.83.
Using this quantitative measure we can say class Go Swim-
ming tends to subsume or almost subsumes class Swimming
in the beach, rather than simply saying class Go Swimming
subsumes class Swimming in the beach or class Go Swim-
ming does not subsume class Swimming in the beach.

These measures become interesting when applied to real
examples such as: class Mild hypothyroidism may contrib-
ute to hyperlipidaemia is subsumed by class Hypothyroid-
ism may exacerbate hyperlipidaemia with degree of confi-
dence 0.75.

Boolean values are inadequate for subsumption, mutual-
exclusivity, and similarity, relations in real domains. We
found that in a 3710 rule KBS we considered, there were
only 4 subsumption relations with degree of confidence 1.0;
181 mutual-exclusive relations with degree of confidence
1.0 and no similarity relations with degrec of confidence
1.0.

One of the advantages of learning from rules is that we can
assume that irrelevant attributes have already been dis-
carded. This is significant as in our application domain
there are hundreds of attributes. Gaines [9] argues that a
rule in a knowledge base is worth many cases for learning.
We adopt the same viewpoint and note that although there
is research on combining KA and machine learning and
using background knowledge in machine learning, there
seems little research so far in learning from a KBS rather
than from cases [19], [10].

The immediate precursor of this work [19] applied formal
concept analysis to ontology discovery in knowledge bases.
This provided a useful way to explore concepts in a knowl-
edge base, but because of the complexity of the conceptual
lattice it was necessary to consider sub-sections of the lat-

173

tice, selected by the user or by a simple nearest neighbour
algorithm [20]. The critical difference from the work here,
is that in formal concept analysis the difference between
individual concepts is emphasised. Here we attempt to
combine all the concepts that represent a class and consider
relations between classes rather than between concepts. In
the knowledge bases we considered, there was an average
of about 10 rule paths (concepts) per conclusion, making
some sort of merging very desirable. Some earlier results
using this approach have been published in [25]

RIPPLE DOWN RULES (RDR)

Although our technique could be applied to probably all
rule-based classification KBS, we have developed it spe-
cifically to deal with RDR knowledge bases. RDR is an
attempt to deal with the problem that experts never explain
how they reach a conclusion, rather they justify why their
conclusion is appropriate and this justification varies with
the context in which it is given [4]. With the RDR approach
the expert only corrects errors made by the KB. The expert
decides a case should have a different conclusion from the
one given by the KBS and justifies this by indicating fea-
tures in the case which distinguish it from a case for which
the conclusion provided by the KBS would have been ap-
propriate. This results in the exception structure shown in
figure 1 illustrating where rule 10, for example, has been
added to correct the error that rule 9°s conclusion was inap-
propriate for a case. This particular structure supports mul-
tiple conclusions for a case. Any case for which a rule is
added is also stored with that rule and is known as a ‘cor-
nerstone case’. When a new rule is added, any ‘cornerstone
cases’ that can reach the parent rule are retrieved. The ex-
pert has to add a rule which excludes all of these comer-
store cases or he or she can decide to add this conclusion as
an extra conclusion for these cases. In practice, even with
hundreds of cornerstone cases that might reach the rule, the
expert selects conditions to make a sufficiently precise rule
after no more than two or three comerstone case have been
shown to the expert. This is essentially a verification and
validation technique incorporated into knowledge acquisi-
tion [15].

The RDR exception structure provides a compact represen-
tation of knowledge 3], [11], [16], [21], (23]. In particular,
despite the random order in which cases are presented, and
the likelihood of experts providing less than ideal rules,
manually built RDR systems produce compact KBs [5],
[13], [24]. Initial RDR development was concerned with
classification tasks, first single and later multiple classifica-
tion (The knowledge bases considered here ae multiple
classification). RDR has been extended to configuration
[18], heuristic search [2], document retrieval [14] and a
more general RDR system for construction tasks has been
proposed [6].

THE CLASS RELATIONS

The class relations model shows the relations subsumption,
mutual-exclusivity and similarity between classes and the
degree of confidence that the particular relation exists. We
note that the measures we derive are strictly heuristic.
Other superior and perhaps more well founded measures
may be possible. The results here represent simply a first
attempt at carrying out this type of analysis. The second
point to note is that these relations have to deal with non-
boolean as well as boolean data.

The technique is based on set theory. If we have two sets A
and B, then the following relations between them are possi-
ble. {ACB,BCA AnB*xO, AnB=0,A=B, A=
B}.

Figure 2

Figure 2 shows a particular example where: B C A, CcA,
B,BNC=. Thatis, Band Care mutually exclusive.

We use the following definitions:

Let X be a class in the MCRDR framework. {X,... X} is a
set of rules which have class X as the conclusion. {Xj ...
X} is a set of conditions for rule X; where i = 0...n, n is the
number of distinct conditions in the rule path; m is number
of rule paths for class X. In the MCRDR framework the
class is given as a disjunction of rule paths (Richards and
Compton 1997). Then:

classX=v (A Xj)
=0 j=0

That is, X stands for an individual condition in a rule path
for the class X. i

We further define a quality measurc Q for a rule. This
measure was introduced to counteract the significance of
rules which are a gross overgeneralisation so that after cor-
rections are added few conclusions are provided by the
original rule.

Q(X;) = number of cases with conclusions given by X; /
(number of cases given by descendants of X; + number of
cases with conclusions given by X;).

If we have no information about the number of cases, the
default for Q is 1.

If the quality of a rule is close to 100%, it means that nearly
all cases reaching this rule are processed by the the rule
with few cases being processed by child rules. On the other
hand if the quality of a rule is 10%, it means 90% of the

174

cases that satisfy the rule are passed to its children. That is
the rule is too general and can be regarded as not being a
particularly good rule and so it should not be given as
strong consideration in developing the relations in the sys-
tem.

Similarity
If X is a class and Y is also a class, we could define a simi-
larity measure as follows:

Sim (Xij ,Yij) =0if Xij sYij are different

Sim (Xu sYij) =1 if Xij ,Yij are same

If o is set of distinct attributes in rule path X;, P is set of
distinct attributes in rule path Y;, then we can definc:

z Slm(XU ,Yij)
j=0
Similar(X;,Y;) = —————— * Q(X) * Q(Y)
[B
For example, from figure 1 (and assuming Q is 1):

Similar(rulepath-2, rulepath-6) = 1/3, Similar(rulepath-8,
rulepath-9) = 1/2, Similar(rulepath-9, rulepath-10)= 2/3.
Function Similar() measures a similarity between 2 node
(each node contains a rule path).

Figure 3. Similarity of 2 nodes.

vl

o)
)

Figure 3 suggests how from rule similarities we can find a
similarity measure between 2 classes. It shows that Class X
is the disjunction of nodes 1,2 and 3 and Class Y is the
disjunction of nodes 4 and 5. We propose that ClassSimi-
larity(X,Y) = (vl + v2 + v3) / 3 ,where we choose the v
such that all nodes are covered by at least one edge and the
sum of v (eg. vl + v2 + v3) is maximal. Note that v stands
for the Similar() function. In later similar diagrams v stands
for the Subsume() and MutualEx() measures. Eg. Class-
Similarity(Go swimming, Play chess) = ((1/3) + 1/2) +
(2/3))/3=025.

Subsumption

We can define a subsumption measure as follows with Xj
and Yj; standing for individual conditions in rule paths for
the relevant classes as above.

Sub (X;;,Y) = 0 if X;; does not subsume Yj

Sub (X, Yyy) = 1 if X subsumes or same Y; (for example
A>5 subsumes A>10)

If o is set of distinct attributes in rule X;, P is set of distinct
attributes in rule Y;, then we can define:

T Sub(X,,Yy)

j=0

Subsume(X;,Y;) = —————————— * Q(X)*Q(Y)

e

Joew Bl

Function Subsume () measures a degree of confidence that
the first rule path subsumes the second rule path.

Figure 4. Subsumption of 2 nodes

For example subsume (rulepath-2,rulepath-4) = 2/2,
(rulepath-2 sky=SUNNY, rulepath-4 sky=SUNNY,
wave=LOW), |aw B|=2, that is {sky, wave}. Since
rulepath-2 does not have an attribute wave, we consider
rulepath-2 is more general than rulepath-4 with an attribute
wave. Therefore there are 2 conditions in rulepath-2 which
are same or more general than rulepath-4. Similarly, sub-
sume (rulepath-2, rulepath-5) =2/3.

Figure 4 illustrates how from rule subsumption we can find
a subsumption measure between 2 classes. It shows Class
X as a disjunction of nodes 1,2 and 3 and Class Y as a dis-
junction of nodes 4, 5 (each node contains a rule path).

We compute ClassSubsume(X,Y) = (vl + v3) / 2. We
choose the v such that all nodes of class Y are covered by at
least one edge and sum of v (eg. v1 + v3) is maximal. Eg.
classSubsume (Go swimming, Swimming in the beach) =
(1+0.667)/2. We then compute TotalSubsume XY) =
ClassSubsume (X,Y)-ClassSubsume (Y,X). If the value of
TotalSubsume (X,Y) is negative, then we exchange X and
Y, so we can convert the value to positive. Since classSub-
sume (Swimming in the beach, Go swimming) = 0, Total-
Subsume(Go Swimming, Swimming in the beach) = 0.83.

Mutual Exclusivity

We can define a mutually exclusive measure as follows
with X; and Yy standing for individual conditions in rule
paths for the relevant classes as above.

Mut (X ,Yy) = 0 if X;; and Yj are not mutually exclusive.

175

Mut (X ,Yy) = 1if X and Y;; are mutually exclusive (for
example A>5 and A<2).

MutualEx(X;, Yi) = 1, if at least one of Mut(X; ,Y;)=!
MutualEx(X;,Y;) = 0, otherwise
Figure 5. MutualExclusivity of 2 nodes

Y

Function MutualEx() measures a degree of confidence that
the first rule subsume the second rule. For example

MutualEx(rulepath-2, rulepath-10) = 1.0,

Figure 5 illustrate how from rule mutual-exclusivity can
find a mutual exclusivity measure between 2 classes. It
shows that Class X is a disjunction of nodes 1,2 and 3 and
Class Y is a disjunction of nodes 4 and 5. We compute
ClassMutualEx(X,Y) = (vl + v2 +v3 +v4 + v5 + v6) / 6. X
and Y are mutually exclusive iff all nodes of X and Y are
mutually exclusive with respect to each other (sce Figure
5). Therefore ClassMutualEx (Go swimming, Play chess) =
1/6, since Go Swimming has 2 rulepaths, Play chess has 3
rulepaths and all MutualEx() between those rulepaths are
0.0, except for MutualEx(rulepath-2, rulepath-10) = 1.0.

EXPERIMENTAL RESULTS

Class relations model

Results from an endocrine knowledge base are shown in the
table 1. The results shown in each table are the class pairs
with the highest similarity, subsumption, or mutual exclu-
sivity measures. Only results with high values for these
relations are shown.

Extracting patterns from the class relation graph
Since there are many classes (from 25 to 100), it is impos-
sible to consider all possible pairs of relations between the
classes.

We therefore extract specific patterns which seem likely to
be components of a meaningful taxonomy. For example:

Subsume(A,B)=1.0,
Subsume(A,C)=1.0,
MutualExclusive(B,C)>0.5

for all sets of three classes A,B,C from a knowledge bascs

We can then combine such elements. E.g we may join Tri-
angle(A,B,C) and Triangle(D,E,F) if A=D and MutualEx-
clusive({B,C}, {E,F}, > 0.5). If MutualExclusive(B, C,
==1.0), we could say {B,C} arc exhaustive subclass parti-
tions of A [23].

We applied this technique to the thyroid knowledge base
and obtained the result in figure-6.

Table 1. some examples of class relations.

Hormone knowledge bases system similarity-value > 0.66

Class description Class description

5. Satisfactory prolactin level. 12. Satisfatory prolactin level.

14. Consistent with premature 28 Consistent with premature

ovarian failure. ovarian failure. Suggest
repeat FSH and oestradiol in 2-3

months to confirm.

Hormone knowledge bases system subsumption-value =1

Class description Class description

6. Elevated prolactin 33. Elevated prolactin persists.

persists. Suggest TSH. Primary hypothyroidism

has been excluded. IV sampling thro-
ugh an in-dwelling cannula can help
exclude stress-related elevations of
prolactin. Pituitary imaging may be

required.

36 Elevated prolactin persists.
Await TSH.

7. Raised prolactin in females is [23. Raised prolactin in men is

commonly due to medication, commonly due to stress,
strees or lactation. medications and occasionally
Suggest TSH to exclude hypothyroidism. Suggest TSH and

hypothyroidism and repeat repeat prolactin after 30 minutes rest.

prolactin after 30 minutes rest. 30. Raised prolactin in females
-is commonly due to medication,
stress or lactation. Hypothy-
roidism has been excluded. Suggest

review medications and repeat prolac-

tin after 30 minutes rest.

Hormone knowledge bases system mutual-exclusivity-value=1

Class description Class description

4. Consistent with 9. No evidence of perimenopause,

perimenopause unless patient is on oestrogen

therapy.

5. Satisfactory prolactin level. 5 Elevated prolactin

persists. Suggest TSH

176

DISCUSSION

It is beyond the scope of this paper (and the authors) to
provide a detailed medical analysis of the ontologics pro-
duced by these techniques; however, it is worth noting some
lay observations.

The mutually-exclusive classes in Table I seem reasonable.
However, we also have some cases where very similar con-
clusions are identificd as mutually exclusive. This occurs
when experts make up rules that include different values for
the same attribute. For example, some mutually exclusive
conclusions scem to give the same clinical advice but spe-
cifically refer to a patient being male or female. This may
or may not be of clinical importance, but there is an obvious
opportunity to have a further superclass.

The most interesting issues arise with the naturc of sub-
sumption. A superclass subclass relation may arisc where
one rule specifies a value for an attribute and another does
not. For example a key factor in comments 6,7, 23, 30,33
and 36 is whether or not a TSH measurement should be
ordered and whether or not primary hypothyroidism hat
been excluded. TSH results are important in the diagnosis
of primary hypothyroidism. The generic comment suggest:
ing a TSH measurement is given when there is no TSH rc-
sult available. The comment also suggests the clinica
cause of the high prolactin level remains unknown. Whet
there is a TSH result available this provides some evidence
to confirm or exclude one of the causes of the high prolac:
tin. These relations appears to us as ontologically reason
able. However, the wording of the actual comments doe:
not readily indicate such relationships. It would be intcrest
ing to know how the expert would react and how comment:
might be worded if this ontological information was avail
able as rules were being developed.

A more general example of this pattern is the commen
[0]:“patient has ovulated” which is at the top level of th
taxonomy in Figure 6. This subsumes a whole range o
more specific comments related to other attributes. Again
would be interesting to see if this taxonomic informatio
influenced the expert’s wording.

Figure 6. Partial taxonomy of the thyroid knowledge
base

.) S : \,"‘ “ L
,4/ ¢ / ’ \\b\‘v \\
‘// / ,// ' // 1 - . N N \\X \
i~ . \,/ ¥ ~ /x\ PN 3 7/ \\‘(, ‘
OIS EICIORIVIVIVICAVES
§oX
.
@ &)

FURTHER WORK

The results above seem promising. However, we should
note that in other knowledge bases we have examined, the
ontological relations seem much more idiosyncratic. It was
expected that the free-text interpretations might combine
classes and other complexities. However, some seem to be
best described as part of a conversation. For example in a
comment suggesting a specific follow-up procedure the
pathologist may note that this procedure has been suggested
previously. The present methods we are using are simply
heuristics that seem appropriate to a classification system.
To deal with more idiosyncratic relationships, we will need
to develop further heuristics. We anticipate that these will
include ways of clustering similar classes and then looking
at the relationships between the clusters, as well as within.

Finally, the present technique considers only the conditions
in rule paths. It does not consider any other information
about the classes themselves. The refinement structure for
RDR does not assume any ontological refinement; the ex-
pert is simply indicating that a conclusion is inappropriate
and so should be replaced by another. It may be possible in
some domains to provide some constraints on how refine-
ments are added so that the ontological relationships that
emerge are more well defined.

CONCLUSION

The work we have presented is an attempt to develop tech-
niques to discover the ontologies implicit in knowledge
bases. We belicve it will be of increasing importance to
carry out this particular kind of knowledge discovery as
larger and larger knowledge bases come into use and we
seek to exploit the knowledge in the knowledge bases in
different ways. We do not make any particular claim for
the techniques we have developed to date, except that they
suggest that such ontology discovery is possible. The key
idea in the techniques we have developed is that is seems
reasonable to use heuristic quantitative measures to group
classes and class relations. This then enables possible on-
tologies to be explored on a reasonable scale

Acknowledgement

The authors gratefully acknowledge the assistance of Pa-
cific Knowledge System (http://www.pks.com.au) in provid-
ing knowledge bases for this study. This research is partly
funded by the Australian Research Council and by the
Asian Development Bank.

REFERENCES

[1] Agrawal, R., H. Mannila, et al. (1996). Fast Discovery
of Association Rules, AAAI/MIT Press chapter 12,
307-328.

[2] Beydoun, G. and A. Hoffmann (1997). NRDR for the
Acquisition of Search Knowledge. 10th Australian
Conference on Artificial Intelligence. 1-16.

(3] Catlett, J. (1992). Ripple Down Rules as a Mediating
Representation in Interactive Induction. Proceedings

177

of the Second Japancse Knowledge Acquisition for
Knowledge Based Systems Workshop, Kobe, Japan.
155-170

Compton, P. and R. Jansen. (1990). A philosophical
basis for knowledge acquisition. Knowledge Acquisi-
tion 2: 241-257.

Compton, P., P. Preston, et al. (1995). The Use of
Simulated Experts in Evaluating Knowledge Acquisi-
tion. 9th AAAI-sponsored Banff Knowledge Acquisi-
tion for Knowledge Base System Workshop, Canada.
12.1-12.18

Compton, P. and D. Richards (2000). Generalising
Ripple-Down Rules. Knowledge Engincering and
Knowledge Management (12" International Confer-
ence EKAW2000). Springer, Berlin. 380-386.

Edwards, G., P. Compton, R. Malor, A. Srinivasan, and
L. Lazarus (1993) PEIRS: a pathologist maintained
expert system for the interpretation of chemical pa-
thology reports Pathology 25: 27-—34.

(4]

(7]

[8] Flax, Lee. Application of hamming distance between
logical formulae to statistical sontingency tables.
Technical Report, Computing Departement, Macquarie

University, Australia.

Gaines, B. R. (1989). Ounce of Knowledge is Worth a
Ton of Data: Quantitative Studies of the Trade-off be-
tween Expertise and Data based on Statistically Well-
Jfounded Empirical Induction, Proceeding of the sixth
International Workshop on Machine Learning. San
Mateo, California: Morgan Kaufmann, 1989. 156-159

[10]Gaines, B. R. (1995). Transforming Rules and Trees
into Comprehensible Knowledge Structures, Advance
in Knowledge discovery and Data Mining. AAAI/MIT
Press. 205-226

[11]Gaines, B. R. and P. J. Compton (1992). Induction of
Ripple Down Rules. Fifth Australian Conference on
Artificial Intelligence, World Scientific, Singapore.
Hobart. 349-354

[12]Hamming, R. W. Coding and infromation theory.
Prentice Hall 1986.

[13]Kang, B., P. Compton, et al. (1998). Simulated Expert
Evaluation of Multiple Classification Ripple Down
Rules. 11th Banff knowledge acquisition for knowl-
edge-based systems workshop, Banff, SRDG Publica-
tions, University of Calgary. 1-19

[14]Kang, B., Yoshida, et al. (1997). 4 help desk system
with intelligent interface. Applied Artificial Intelli-
gence 11((7-8)): 611-631. ’

[15]Kang, B. H., W. Gambetta, et al. (1996). Verification

and Validation with Ripple Down rules. International
Journal of Human-Computer Studies 44: 257-269.

(91

[16]Kivinen, J., H. Mannila, et al. (1993). Learning Rules
with Local Exceptions. European Conference on Com-
putational Theory.

[17] Perez, A. G. (1999). Evaluation of Taxonomic Knowl-
edge in Ontologies and Knowledge Bases. KAW'99,
Twelfth Workshop on Knowledge Acquisition, Model-
ing and Management, Voyager Inn, Banff, Alberta,
Canada. 6.1.1 - 6.1.18

[18]Ramadan, Z., P. Compton, et al. (1998). From Multiple
Classification RDR to Configuration RDR. 11th Banff
Knowledge Acquisition for Knowledge Base System
Workshop, Canada. 1-19

[19]Richards, D. and P. Compton (1997). Uncovering the
conceptual models in RDR KBS. International Confer-
ence on Conceptual Structures ICCS'97, Seattle,
Springer Verlag. 198-212

[20] Richards, D. (1998). Ripple Down Rules with Formal
Concept Analysis: A Comparison (o Personal Con-
struct Psychology. Procecdings of KAW'98, Eleventh
Workshop on Knowledge Acquisition, Modelling and
Management, Banff, Alberta, Canada. 1-20

[21]Scheffer, T. (1996). Algebraic foundations and im-
proved methods of induction or ripple-down rules. 2nd
Pacific Rim Knowledge Acquisition Workshop. 279-
292

178

{22]Schreiber, G., B. Wielinga, et al. (1993). KADS A
Principled Approach to Knowledge-Based System De-
velopment, Academic Press.

[23]Siromoney, A. and R. Siromoney (1993). Variations
and Local Exception in Inductive Logic Programming.
Machine Intelligence - Applied Machine Intelligence.
K. Furukawa, D. Michie and S. Muggleton. 14: 213 -
234,

[24]Suryanto, H., D. Richards, et al. (1999). The automatic
compression of Multiple Classification Ripple Down
Rule Knowledged Based Systems: Preliminary Ex-
periments. Knowledge-based Inteiligence Information
Engineering Systems, Adelaide, South Australia, IEEE.
203-206

{25]Suryanto, H., Compton, P. (2000). Discovery of Class
Relations in Exception Structured Knowledge Bases.
International Conference on Conceptual Structures,
ICCS 2000. 113-126

[26]William E. Grosso, H. E, Ray W Fergeson (1999).
Knowledge Modeling at the Millenium (The Design
and Evolution of Protege-2000). Twelfth Workshop on
Knowledge Acquisition, Modeling and Management,
Voyager Inn, Banff, Alberta, Canada. 7.4.1 — 7.4.36

Learning Procedural Knowledge through Observation

Michael van Lent
Institute for Creative Technologies
University of Southern California

13274 Fiji Way
Marina del Rey. CA 90292
vnnlont@ic}Ansc.cdu

ABSTRACT

The research presented here describes a framework that pro-
vides the necessary infrastructure to learn procedural knowl-
edge from observation traces annotated with goal transition
information. One instance of a learning-by-observation sys-
tem, called KnoMic (Knowledge Mimic), is developed within
this framework and evaluated in a complex domain. This
evaluation demonstrates that learning by observation can
acquire procedural knowledge and can acquire that knowl-
edge more efficiently than standard knowledge acquisition.

Keywords

Machine learning. knowledge acquisition, rule learning, user
modeling

INTRODUCTION

Software agents are being used to perform a wide range
of tasks in a variety of applications such as military sim-
ulations [6], on-line training exercises [10] and computer
games [11]. As with most intelligent systems, these agents
require large amounts of knowledge to successfully perform
their tasks. Acquiring procedural knowledge from experts
and encoding it into a suitable representation is a costly
process. In the TacAir-Soar project [10] more than ten per-
son years of effort were required to acquire and encode the
knowledge necessary for a medium fidelity agent. The re-
search presented here explores the application of machine
learning techniques to this problem of acquiring and encod-
ing procedural knowledge.

Machine-learning approaches can be viewed as points along
a continuum of expert and knowledge engineer effort vs. re-
search effort (see Figure 1). Moving to the right on this
continuum represents a long term improvement in efficiency,
since the research needs only be done once while the ex-
perts and engincers must put in the requisite effort for each
new task. At one end of the continuum lies the standard
knowledge-acquisition approach [5). This approach requires

Permission to make digital or hard copies of all or part of this work for
personal or classroom usc is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or t0 redistribute to lists,
requires prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00.

179

John E. Laird
Artificial Intelligence Laboratory
University of Michigan
1101 Beal Ave.

Ann Arbor. MI 48109
laird@umich.edu

Figure 1: Expert effort vs research effort for a vari-
ety of knowledge acquisition approaches.

a great deal of effort from the expert to organize and teach
the knowledge to the knowledge engineer who must then en-
code the knowledge. At the other end of the continuum lic
a variety of unsupervised machine-learning techniques (17].
Unsupervised machine learning requires no effort from an
expert but is an extremely challenging research problem for
complex procedural knowledge. Moreover, these techniques
do not necessarily result in behavior matching a human ex-
pert, an important consideration in training tasks and mil-
itary simulations. Our research explores the middle of this
expert effort vs. research effort continuum. Our hypothe-
sis is that learning procedural knowledge from observations
of an expert is more efficient than the standard knowledge-
acquisition approach and is a more tractable research prob-
lem than the unsupervised learning approach. The obser-
vations of the expert’s behavior consist of the sensor inputs
seen by the expert, the expert’s operator selections, and the
actions performed to achieve these operators. Learning by
observation does not require a knowledge engineer to encode
the knowledge or the expert to organize and communicate
knowledge to an engineer. Instead, the expert simply per-
forms the task at which he or she is an expert [18].

The primary goal of this research is to explore and evalu-
ate observation as a knowledge source for learning procedu-
ral knowledge. The first step is to develop a general frame-
work for learning-by-observation systems that casts the is-
sue of acquiring knowledge from observations as a machine-
learning problem. Plugging different components (learn-

ing algorithms, execution architectures,...) into this frame-
work results in different learning-by-observation systems.
Based on this framework, we have developed a learning-
by-observation system called KnoMic (Knowledge Mimic)
that uses a simple inductive learning algorithm and then the
Soar architecture to execute the learned knowledge. KnoMic
is evaluated in a complex real-world domain to show that
procedural knowledge can be learned from observation even
with a simple learning algorithm. As the complexity of the
domain increases, especially when observations contain a
great deal of noise, more powerful learning algorithms can
be substituted. However, the learning-by-observation frame-
work will apply equally well to these complex domains and
powerful learning algorithims.

RELATED WORK

The rescarch described here expands on previous research
into learning by observation such as behavioral cloning (1.
7, 15], OBSERVER [19]. and TRAIL [3]. KnoMic com-
bines aspects of these three efforts and includes a number of
novel contributions to significantly extend the capabilities of
the learning-by-observation paradigm. There has also been
some research in the robotics community looking at learn-
ing robot motor control by observation and imitation {4,
16]. However. the research is only peripherally related as
the learned motor control knowledge isn’t procedural and is
usually non-syvmbolic.

Behavioral Cloning

Bain and Sammut [1, 15] used behavioral cloning, their term
for learning by observation, to learn the knowledge neces-
sary to fly a simulated airplane along a specific flight plan
in the Silicon Graphics flight simulator. Behavioral cloning
applies the C4.5 induction algorithm {14] to situation/action
examples taken from observations of an expert. These ob-
servations are used to build decision trees that decide which
actions to take based on current sensor input. These deci-
sion trees then mimic the expert’s behavior and fly the plane
by setting each control to the value specified by applying the
current sensor inputs to the decision tree. One of the most
impressive aspects of behavioral cloning is its effectiveness
in a complex, non-deterministic, and dynamic environment.

Behavioral cloning manually segments the flight plan into
seven stages and a separate decision tree is learned for each
stage. Separate decision trees arc needed because each stage
represents a different step in the task, requiring a different
procedure to perform that step. Therefore, the expert’s re-
sponses to sensor inputs differ in the different stages. Be-
havioral cloning does not learn knowledge that allows the
agent to dynamically select goals and procedures. The seven
phases of the task are hard-coded into the interface between
the agent and the environment. If the agent’s task were
changed even slightly the decision trees would have to be
relearned from a new set of observations.

The OBSERVER system

The OBSERVER system {19] learns STRIPS-style opera-
tors [8] using a learning method similar to version spaces.
Wang developed OBSERVER and applied it to a process-
planning domain, in which the task is to generate a plan to
produce machine parts meeting a set of specifications. This
design task is less complex and does not share all of the same

180

properties as most of the procedural tasks we have exam-
ined such as dynamic, non-deterministic environments and
durative actions. An advantage the OBSERVER system has
over behavioral cloning is that it lecarns a more expressive
knowledge format. Unlike behavioral cloning. OBSERVER’s
STRIPS-style operators are procedural. Each operator in-
cludes pre-conditions allowing the agent to dynamically se-
lect which operator (procedure) to execute based on the
current sensor input. However. the STRIPS-style opera-
tors assume that operator actions are always performed in
a single time step and without error. This is acceptable for
OBSERVER's simulated design task but is likely to cause
problems in more complex tasks where the agent’s actions
may fail or only gradually achicve the desired effect over
multiple time steps. Since the design task contains no noise
or dynamic changes. OBSERVER can and does generate
knowledge based on a single observation.

The TRAIL system

Scott Benson’s TRAIL system [3] combines a learning al-
gorithm and a planning algorithm to create teleo-operators
(TOPs) which are similar to STRIPS operators. The learn-
ing algorithm uses traces of both undirected exploration by
the agent and directed exploration based on observation.
The behavioral traces are annotated to indicate which TOP
the expert is performing for each segment. From these traces
TRAIL learns the pre-conditions and effects of the procedu-
ral teleo-operators. TRAIL uses inductive logic program-
ming to learn TOPs based on positive and negative exam-
ples from the traces. Positive instances are steps where the
actions achieved the TOP’s post-conditions and negative in-
stances include time steps in which the post-conditions were
not achieved. As with OBSERVER, TRAIL's TOPs can
have difficultly in complex domains with uncertain action
outcomes and durative actions. However, TRAIL’s segmen-
tation of the observation traces according to the expert’s
goal selection helps focus the learning algorithm. The seg-
mentation allows TRAIL to easily locate transitions between
TOPs and identify the positive and negative instances of
TOP selection.

KNOMIC

KnoMic is a learning-by-observation system based on a gen-
eral framework for learning procedural knowledge from ob-
servations of an expert. The knowledge KnoMic learns is
represented as a fairly general hicrarchy of operators which
can be formatted into a number of specific representations
including production rules for intelligent architectures and
decision trees. This section first describes KnoMic’s general
knowledge representation, followed by a high-level descrip-
tion of the learning-by-observation framework. Following
this description, each component of the framework is de-
scribed in more detail.

Knowledge Representation

To perform complex, real-world tasks agents must constantly
react to changes in complicated, dynamic environments by
selecting appropriate goals and performing actions to achieve
and maintain those goals. Frequently, procedural knowledge
is represented by a collection of operators composed of pre-
conditions and effects (as used in STRIPS [8]). KnoMic uti-
lizes a modified, more robust version of this standard opera-

tor representation. Where STRIPS operators include effects,
denoting direct changes to the current state, KnoMic opera-
tors include actions which are commands to be implemented
in the environment by the environmental interface. Unlike
STRIPS operators, the effects of KnoMic's commands are
determined by the environment and may or may not have
the expected outcome. In addition, KnoMic is designed to
be effective in domains that include non-deterministic envi-
ronments and other agents who are often unpredictable. For
these multiple reasons, KnoMic’s operators must be able to
recover when the actions and environment don’t behave as
expected. This is handled by expanding the operator rep-
resentation to include a set of goal conditions. A Knoblic
operator will remain active while its pre-conditions are sat-
isfied and until it achieves its goal conditions. Thus, if the
operator’s actions don’t have the intended effect of achieving
the goal conditions, the operator will remain active and al-
ternate approaches to achieving the goal can be attempted.
Since the operator’s actions are conditional each operator
can include multiple approaches to achieving the goal. Ad-
ditionally, operators are arranged into an operator hierar-
chy with sub-operators only being candidates for activation
when their parent operators arc active. At any given time
only one operator at each level of the hierarchy can be ac-
tive. An operator can achieve its goal conditions through
its actions or through the actions of sub-operators. Often
sub-operators will represent either a sequence of steps that
achieve the super-operator’s goal or a number of alternate
approaches to achieving the super-operator’s goal. Thus,
each of KnoMic’s operators can have multiple procedures
for achieving its goals, represented either as conditional ac-
tions or sub-operators. An example of a learned operator is
shown in figures 7, 8, and 9

A second aspect of KnoMic’s knowledge representation is
the classification of cach operator as homeostatic, one-time,
or repeatable. These classifications denote how the operator
will behave after its goals conditions are achieved. A home-
ostatic operator will always attempt to maintain its goal
conditions as true once they are achieved. Thus, if a home-
ostatic operator’s goal conditions become untrue, the oper-
ator can be immediately re-activated to re-achieve the goal.
A one-time operator, on the other hand, will only achieve
its goal conditions once and then never be re-activated. A
repeatable operator will not be immediately re-activated if
its goal becomes unachieved but can be reselected at a later
time if triggered by another operator. Our experience in
applying the Soar architecture to a variety of complex do-
mains has shown these three classes of operator behavior to
be necessary in many cases [10, 11, 18].

Learning-by-Observation Framework

The learning-by-observation framework, shown in Figure 2.
consists of modular components that work in concert to
learn task knowledge from annotated observations. The ar-
rows labeled with step numbers in Figure 2 do not repre-
sent a constant flow of information but rather a series of
five discrete steps. A high-leve! description of each step is
presented here with more detailed descriptions in the fol-
lowing subsections. In the first step, a number of observa-
tion traces are generated. The environmental interface sits
between the expert and the environment and sends sensor
and parameter information to the expert and returns the
expert’s commands to the environment. The observation

181

Parameters &

Sensors
Environmental .
Expert © Environment
Interface >
Output
e[s
Annotations Observation Execution
Generation Architecture
Step 2
i Formatted
Observation Traces .
bservation Traces Step 5 Knowledge
Condition | Step 3 Operator Step4 | Knowledge
Learning Classification Formatting
Operator Leamed
Conditions Task
Knowledge

Figure 2: The learning-by-observation framework.

generation component gathers the sensor and parameter in-
puts, the expert’s output commands. and the expert’s goal-
change annotations (which segment the traces in a fashion
similar to TRAIL) and creates observation traces. The ex-
pert annotates the observation trace by specifying the points
where he/she changed goals because a goal was achieved or
abandoned. These goals correspond to the operator goals
in the learned knowledge. The expert can work out a goal
hierarchy for the task in advance to aid in specifying goal
transitions. KnoMic can then learn operators that fit into
this hierarchy. Although observation is the primary source
of knowledge. the framework could also be viewed as a hy-
brid observation/automated knowledge acquisition system
due to the annotations the expert adds. These annotations
require the expert to consider how the task knowledge will
be represented, a hallmark of automated knowledge acquisi-
tion. The future work section will discuss some approaches
to eliminating the need for annotations in the observation
trace.

Once a set of observation traces (typically 4-8 are re-
quired) are available, the second step is to learn the operator
conditions using the condition learning algorithm. After the
operator conditions have been learned, the operator classi-
fication component uses the conditions and the observation
traces to classify each operator and determine the persis-
tence of an internal feature representing that the operator’s
goal has been achieved. Once the classification step is com-
plete, the fourth step takes the learned task knowledge and
formats it in the representation required by the execution ar-
chitecture. This step maintains the independence between
the learning system and the specific execution architecture.
Once the knowledge is in the correct representation, the ex-
ecution architecture can replace the expert and perform the
task by interacting through the environmental interface.

A major advantage of the learning-by-observation frame-
work is its modularity. The observation generation, con-
dition learning, and operator classification components all
act relatively independently. Thus. it is possible to change
learning algorithms, execution architectures, or domains with-
out modifying the other components in the framework. Ob-

Parametess &

Senson
Environmental
Expert ModSAF
Interface >
Qutput
Commands
Annotations Soar
Architecture

Soar
Productions

Observation Traces

Leamed
Tash
Knowledge

Conditions

Figure 3: The KnoMic system, which is an instanti-
ation of the learning-by-observation framework.

viously, the knowledge formatting component and the exe-
cution architecture are closely related but these two com-
ponents can also be modified independently of the previ-
ous three. KnoMic is one instantiation of the learning-by-
observation framework. As shown in Figure 3. KnoMic uses
a simple specific-to-general inductive learning algorithm and
generates productions for the Soar architecture from the
learned procedural knowledge.

Observation Trace Generation

An expert’s interaction with the environment while perform-
ing a task is a communication loop. The interface to the
environment sends symbolic sensor and task parameter in-
formation to the expert and the expert reacts to this in-
formation by sending symbolic actions to the environmental
interface. The interface causes these actions to be performed
in the environment and the sensor information changes to
reflect the effects of these actions. The observation genera-
tion component records the sensar inputs the expert receives
and the actions the expert performs each cycle through the
loop. In addition, the expert annotates the observation trace
whenever the goal he/she is seeking to achieve changes - an
approach similar to that used by the TRAIL system. The
expert can add annotations as the task is being performed
or during a review of his/her behavior to avoid interrupting
the performance of the task. For the experiments described
later the expert annotated the observation traces while per-
forming the task by clicking on the active operators in a
hierarchical display as shown in Figure 4. The problem of
segmenting observation traces into chunks corresponding to
individual procedures is faced by many systems and an area
of active research [2].

Specifc-to-General Condition Learning

The condition learning component takes a list of observation
traces and incrementally learns the operator pre-conditions,
action conditions, and goal conditions. As the focus of the
research here is the development of the framework, not the

182

Figure 4: The hierarchical display used by the ex-
pert to annotate his behavior while performing the
task.

development of new learning algorithms, KnoMic is based on
a simple, efficient and well-known learning algorithm. The
learning algorithm is a slightly improved version of the Find-
S specific-to-general induction algorithm [12]. Although this
algorithm is fairly successful. it is doubtful it will work for all
domains. However, due to the modularity of the learning-
by-observation framework, it can casily be replaced with
more powerful learning algorithms without requiring major
changes to the rest of the system. The observation trace
is examined cycle by cycle to extract the instances used to
learn the conditions. Each step in the observation trace that
includes an operator change annotation is used as a positive
instance of that operator’s pre-conditions and also a positive
instance of the previous operator's goal conditions. A pos-
itive instance includes all the current sensor inputs as well
as any relations (<,>, and =) between sensors or between
sensors and task parameters that recently (as defined by a
parameter to the learning system) became true. This bias
towards recent sensor/parameter relations secks to reduce
the vast number of relations that would otherwise have to be
considered. In addition, each sensor and parameter is classi-
fied according to the unit (feet, seconds...) it is represented
in and relations are only allowed between inputs represented
in the same type of units. The Find-S learning algorithm
treats the first positive instance as an initial, most-specific
hypothesis and generalizes that hypothesis to cover each ad-
ditional positive instance. If generalizing to cover a new in-
stance results in an empty set of pre-conditions, a second,
disjunctive set of operator pre-conditions is created. Each
new positive instance is then applied to the set of conditions
that requires the least generalization to cover it. Once all
the observation traces have been processed the result is one
or more sets of pre-conditions (disjunctive pre-conditions if
more than one set) for each operator the expert was observed
to perform. Goal conditions are learned in a similar fash-
jon. The only difference is that only the sensor inputs that
changed recently are included in the goal condition positive
instances. Since goal conditions represent changes made by
the operator, they should only test for changes in the envi-
ronment due to the recent actions of the operator. Finally,
action conditions and values are learned using each time step
in which the expert performs an action as a positive instance
of that action’s conditions and values.

Operator Classifcation

Once the conditions and actions for each operator are learned.
KnoMic makes another pass through the observation trace
to classify each operator as homeostatic, one-time or repeat-
able. Operators arc classified by examining if and when the
expert resclects an operator as its goal conditions change
from achieved to unachieved. If the expert reselects the op-
erator cach time the goal conditions are no longer true the
operator is homcostatic. If the operator is not reselected
immediately, it is repeatable and if the operator is never
resclected it is a one-time operator. This classification de-
terinines whether cach operator’s internal goal-achieved fea-
ture should be persistent or non-persistent. Persistent goal-
achieved features allow the agent to recall that past goals
have been achieved, and should not be pursued again, even
if the goal conditions of those operators are no longer satis-
fied. Non-persistent goal-achieved features are useful if a set
of goal features should be achieved and maintained. Homeo-
static operators will have non-persistent goal features while
one-time and repeatable operators have persistent goal fea-
turcs. In the case of repeatable operators, operators that
can trigger re-activation are given new actions to remove
the repeatable operator’s goal-achievement feature.

Soar Production Generation

The task-performance knowledge that KnoMlic learns is in-
dependent of any specific execution architecture although
it is inspired by the Soar architecture. It is a hierarchi-
cal, symbolic, propositional representation allowing some
numerical relations. Before the knowledge can be used, it
must be translated by the knowledge generation component
into a representation appropriate for an available architec-
ture. Production generation takes the learned knowledge
and creates three classes of Soar productions: operator pre-
condition productions, goal-achieved productions and action
application productions. Although KnoMic currently only
generates productions formatted for the Soar architecture,
it would be possible to generate knowledge for other similar
architectures.

EXPERIMENTS AND RESULTS

This section presents two experiments showing that all the
elements of the procedural knowledge representation described
previously can be learned and reporting on the accuracy of
the learned knowledge. The first experiment explores the
accuracy of the KnoMic system when provided with error-
frec observation traces. The second experiment explores
KnoMic’s accuracy with more realistic observation traces
generated from observations of a human expert. Previous re-
search has compared the efficiency of learning by observation
to standard knowledge acquisition showing that learning by
observation is almost four times faster than the estimated
typical knowledge engineer [18]. The domain used in these
experiments is the air combat domain, although similar ex-
periments have also been run in a second domain using the
commercial computer game Quake II.

Air Combat Domain

The air combat domain is a complex domain that includes
properties of particular interest, such as a highly dynamic
environment and the need for agents that behave in a re-
alistic, human-like fashion. In the air combat domain, the

183

Get Steering
- Circle

Fire-Missile

Figure 5: The operator hierarchy (except initializa-
tion operators) learned by KnoMic in the air combat
domain.

expert, or an intclligent agent, controls a military aircraft
in the ModSAF battlefield simulator [6]. The specific task
studied here involves taking off, flying to a specificd way-
point, and flying a patrol pattern called a racetrack. If an
enemy plane is detected and satisfies the commit criteria
parameters, the expert or agent must intercept the enemy
plane, shoot it down, and return to flying the racetrack. The
environmental interface provides the expert with 54 sensor
inputs, 23 task parameters and 22 output commands. On a
standard workstation (300 MHz Pentium 1T), ModSAF up-
dates the sensor inputs and accepts output commands 8-10
times a second. The time granularity of actions varies from
seconds (when turning during the patrol) to tenths of a scc-
ond (when firing missiles). However, for the learning system
to be effective, the expert must perform actions within half
a second of the triggering sensor changes. The knowledge
required for the air combat domain consists of 31 operators
in a four level hierarchy. The operator hierarchy, shown in
Figure 5, includes ten initialization operators, one takeoff
operator, one execute mission operator, four operators used
to perform the racetrack, and twelve operators for the inter-
cept.

The air combat domain is well suited to learning by ob-
servation for a number of reasons. First, the operator con-
ditions are, for the most part, conjunctive and when dis-
junctive there isn’t any overlap between components of the
disjunction. The current learning algorithm would not be
effective in a domain that included partially overlapping
disjunctive condition sets. Second, the operator transitions
and actions required by the domain are triggered by external
events sensed by the expert. Tasks involving extensive inter-
nal planning or time delays between trigger and action are
difficult since these aspects of the task aren’t apparent to the
observation system. Third, the task doesn’t involve many
negated conditions. The simple specific-to-general learning
algorithm KnoMic currently doesn’t make use of negative
instances and as a result is only able to learned negated
conditions in a very limited sense. Of these three limita-

Productions

Apphcatons
Production Type

Proposals

Figure 6: The number of correct (realistic), func-
tionally correct (unrealistic) and incorrect produc-
tions after four observation of a software expert.

tions, only the first is an inherent limitation of the learning-
by-observation approach. The other two limitations can be
overcome with more sophisticated learning algorithms.

Evaluation Criteria

The procedural knowledge learned by KnoMlic is checked for
correctness in two different ways. First, using the learned
knowledge, the agent perforins the task in the same situa-
tions used to generate the observation traces. Due to the
non-determinism of the environment the agent won’t en-
counter the exact observed situations but to some extent
this constitutes a test of the learned knowledge on the train-
ing data. Second, the actual learned rules are compared to
rules for the same task created by a human programmer
using the standard knowledge acquisition approach. This
second evaluation criteria serves two purposes. The direct
comparison with hand-coded, verified knowledge is a rigor-
ous test of the learned knowledge that will discover errors
that aren’t apparent in the previous test. This direct com-
parison also highlights the fact that the knowledge learned
by KnoMic is easily understood and modified by a knowl-
edge engineer. This is important as learning by observation
is unlikely to ever provide fully correct knowledge and some
debugging will always be necessary. The two tests classify
cach learned rule as fully correct, functionally correct, or
incorrect. Functionally correct knowledge doesn’t cause er-
rors in the observed situations (first test) but doesn’t match
the hand-coded knowledge (second test) and therefore may
cause errors in novel situations.

Experiment 1

The first experiment evaluates the correctness of the knowl-

edge learned by KnoMic from the error-free observation traces

provided by an expert system hand-coded to perform the
air combat task. The expert system is able to generate per-
fect observation traces, in that the timing and content of
all output commands and operator annotations are correct.
Variations between traces include differences in altitudes,
speeds, relative angles, and similar factors due to variations
in starting conditions and non-determinism in the environ-

i aincorrect
u Unrealistc
@ Realstc

184

nment. This experiment is an expanded version of a pre
viously reported experiment [18]. The results here includs
an expanded task requiring more task knowledge (31 oper.
ators rather than 22 previously) and improvements to the
learning algorithm to support disjunctive pre-conditions anc
goals conditions as well as sensor/sensor relation conditions
Four observation traces were generated and used by KnoMi
to learn task knowledge. The task takes about 30 minute:
for the expert system to perform. Each observation trace in
cludes approximately 19,000 decision cycles. There are ap
proximately 25,000 sensor input changes recorded, 40 goa
annotations and 140 output commands issued. From the
four observation traces, KnoMic successfully learns the 3
operators in the four level hierarchy. Encoded as Soar pro
ductions, the learned task knowledge consists of 140 pro
ductions. Of these 140 productions, 101 are fully correc
and an additional 29 are functionally correct (sce Figure 6)
The productions that are incorrect fall into three categorie:
Six of the 10 incorrect productions have extrancous con
ditions representing over-specialized condition sets. Thre
of the remaining incorrect rules are due to missing sensor
in the environmental interface. The final incorrect produc
tion requires a negated test for a sensor input that KnoMi
is unable to learn from only positive instances. As show:
in Figure 6, 23 of the 29 functionally correct production
are operator proposal productions. All of these production
vary from the hand-coded productions due to extrancou
conditions testing either internal goal-achieved features o
external sensors. Figure 7 is an example of an learned op:
erator proposal production with extrancous conditions (fig
ure 8 and figure 9 show the rest of the productions learne
for the fly-to-racetrack operator). In this case the extranc
ous conditions include both internal goal-achieved featurc
and external sensors (such as the radar condition). Thes
extraneous conditions don’t cause problems in the observe
situations (which is why they were not generalized away
but may cause errors in unobserved situations. Because th
recent-changes heuristic is not used when learning operatc
pre-conditions, the space of potential pre-conditions is muc
larger. The larger space of pre-conditions includes senso:
that change infrequently and therefore are likely to have th
same values or relationships with parameters each time a
operator is selected. This makes it easier for extraneous col
ditions to remain in operator pre-conditions than action ¢
goal conditions. It is possible that more observation trace
perhaps with greater variations in behavior. could eliminat
some of these extraneous conditions.

Experiment 2

The second experiment evaluates the correctness of the kno
edge learned by KnoMic from observation traces generate
by observing a human expert. Two observation traces we!
generated from observations of a human expert performii
the initialization, takeoff and racetrack part of the task. B
cause it is difficult to successfully perform the intercept po
tion of the task consistently, this experiment will focus on
subset of the full task. These traces included greater vai
ations in the factors mentioned above as well as variatio:
in the timing of the actions and annotations due to the h
man’s limited reaction time. These traces do not include a1
outright errors in task performance or annotations. Trac
generated from observations of human experts include mo
variability in the task performance than the expert syste

sp {propose*fly—to-racetrack
(state <ts> “superstate nil
~goal-features <gf>)

(state <s> ~superstate <ss>)

(<ss> ~“operator.name racetrack)
(<ts> “observe.station-4 loaded)
(<ts> “observe.cannon loaded)
(<ts> ~observe.station-1 loaded)
(<ts> ~observe.station-3 loaded)
(<ts> -observe.station-5 loaded)
(<ts> ~observe.station-9 loaded)
(<ts> ~observe.station-11 loaded)
(<ts> ~observe.initialized *yes*)
(<ts> ~observe.io.input.vehicle.radar tus-auto)
(<gf> "init-agent.goal achieved)

(<gf1> "station-4.goal achieved)

(<gf> "init-agent <gf1>)

(<gf2> ~cannon.goal achieved)

(<gf> “init-agent <gf2>)

(<gf3> ~station-1.goal achieved)

(<gf> "init-agent <gf3>)

(<gf4> "station-5.goal achieved)

(<gf> "init-agent <gfd>)

(<gf5> ~station-9.goal achieved)

(<gf> "init-agent <gf5>)

(<gf6> ~station-11.goal achieved)

(<gf> "init-agent <gf6>)

(<gf> ‘wait—to—start—vehicle.goal achieved)
(<gf> ~jnit-plane.goal achieved)

- (<gf10> ‘fly—to—racetrack.goal achieved)
(<gfit> ~racetrack <gf10>)

(<gf> -execute-mission <gf11>)

-—>

(<s> ~operator <o>)

(<o0> “name fly-to-racetrack)

}

Figure 7: The operator proposal production learned
for the fly-to-racetrack operator. This proposal
includes extraneous internal goal-achieved features
and external sensor features.

sp {f1y-to—racetrack*apply*desired—turn—rate
(state <ts> “superstate nil)

(state <s> “operator.name fly-to-racetrack)
(<ts> ~io.output-link <out>)

-—>

(<out> “desired-turn-rate moderately-hard)

}

sp {fly—to—racetrack*apply*desired—heading
(state <ts> “superstate nil)

(state <s> “operator.name fly-to-racetrack)
(<ts> "io.output-link <out>)

(<ts> “input.waypoint—comp‘bearing.round <val>)
-=>

(<out> ~“desired-heading <val>)

}

Figure 8: Two Soar producticns that jssue actions
associated with the fly-to-racetrack operator.

185

sp {goal*achieved*f1y—to—racetrack*persistent
(state <ts> "superstate nil

“goal-features <gf>)

(state <s> “operator.name fly—to—racetrack)

(<ts> ~observe.param.waypoint-range <id0>)

- (<ts> ‘input.waypoint—comp.range.rnd { > <ido> 1)
(<gfi> ~racetrack <gf0>)

(<gf> “execute-mission <gf1>)

(<gf0> ~fly-to-racetrack <goal>)

-—>

(<goal> “goal achieved)

}

Figure 9: The goal-achieved production for the fly-

to-racetrack operator.

In some cases this extra variability aids
KnoMic in generalizing away extrancous conditions but it
also makes KnoMic’s job more difficult as the positive in-
stances taken from human observations aren’t always consis-
tent. The human expert controls an aircraft in the ModSAT
simulator using an instrument panel that gets sensor input
from ModSAF and passes the human's commands to Mod-
SAF. The human expert also uses a graphical goal selection
tool (shown in Figure 4) to aid in generating the operator
annotations in the observation trace. Of the 45 productions
learned by KnoMic for this subset of the task, 28 are cor-
rect, 13 are functionally correct and 3 are incorrect. As
shown in Figure 10, four of the 13 unrealistic productions
are operator proposal productions while 5 are applications
and 4 are goal productions. In some cases. mostly involving
pre-conditions, the extra variability inherent in the human
behavior helped KnoMic eliminate unnecessary conditions.
However, in other cases the variability in the timing of the
annotations and actions caused errors that did not occur
while learning from the expert system. This experiment
shows that KnoMic can successfully learn from observations
of human experts but additional research needs to explore
a more robust learning algorithm.

generated traces.

FUTURE WORK

The next clear step in this research is to study the im-
pact of more complex learning algorithms on the learning-
by-observation framework. Some work has begun exploring
the use of some inductive logic programming systems in the
framework. A better learning algorithm, perhaps in con-
junction with more powerful biases, should aid in remov-
ing the additional extraneous conditions that caused most
of the errors in the first experiment and will be more ro-
bust to the noise and variability in the human generated
observations. This research is also secking to expand the
learned knowledge representation to include structured sen-
sors, operator parameters, and the incorporation of prior,
hand-coded knowledge. :

The process of annotating the observation traces with op-
erator transition information is tedious. A technique for
automatically segmenting the observation traces based on
changes in the expert’s behavior could make this process
much easier. One possible approach is to have the expert
annotate a subset of the behavior traces then use the initial
operator conditions learned from these initial annotations

Productions

Figure 10: The number of correct (realistic), func-
tionally correct (unrealistic), and incorrect produc-
tions after learning from two observations of a hu-
man expert.

Proposats

to detect when operators would be selected and terminated.
Based on these preliminary operators, the rest of the traces
could be automatically annotated. It might also be possible
to detect shifts in behavior through statistical analysis of the
behavior traces. It would also be interesting to include sepa-
rate annotations for “goal-complete” and “goal-abandoned.”
Currently these two cases are not distinguished which can
result in unnecessarily complex goal conditions.

As stated previously, it is unlikely that learning by ob-
servation will ever result in perfect knowledge. A number
of systems exist that take partially correct knowledge and
seek to verify and correct that knowledge [9, 13]. We are
beginning to look at these systems with the goal of applying
them to procedural knowledge with the aid of the learning-
by-observation concepts.

CONCLUSION

The research presented here focuses on the application of a
relatively simple learning algorithm to a real world problem.
Much of the recent research in_the field of machine learning
has focused on incremental improvements to state of the art
learning algorithms that are tested on benchmark data sets.
Surprisingly, there is not a great deal of research on the
infrastructure necessary to move the application of these
learning algorithms beyond the benchmarks. As demon-
strated here, even a simple learning algorithm can be ef-
fective when embedded in a carefully designed framework.
Hopefully, future research will find that more sophisticated
learning algorithms are even more effective.

REFERENCES

{I] M. Bain and C. Sammut. A framework for behavioral
cloning. In S. Muggleton, K. Furakawa, and D. Michie.
editors, Machine Intelligence 14. Oxford University
Press, 1995.

(2] M. Bauer and C. Rich. Learning how to do things:
Papers from the 2000 aaai fall symposium. Technical
Report Technical Report FS-00-02, AAAI, 2000.

Qincoreect
MUnrearste
MReausic

186

&)

(7

(8]

(10]

(11])

(12}
(13]

(14]

(16}

(17]

(18]

(19]

S. S. Benson. Learning Action Models for Reactive
Autonomous Agents. PhD thesis, Computer Science
Dept., Stanford University. 1996.

A. Billard and M. J. Mataric. A biologically inspired
robotic model for learning by imitation. In Proceedings
of the Fourth International Conference on
Autonomous Agents, pages 373-380, Barcelona,
Catalonia, Spain, 2000. ACNI Press.

B. G. Buchanan and D. C. Wilkins, editors. Readings
in Knowledge Acquisition and Learning. Morgan
Kaufman, 1993.

R. Calder, J. Smith, A. Courtemanche, J. Mar, and
A. Ceranowicz. Modsaf behavior simulation and
control. In Proceedings of the Third Conference on
Computer-Generated Forces and Behavioral
Representation, 1993.

R. Chambers and D. Michie. Boxes: An experiment
on adaptive control. In E. Dale and D. Michie, editors,
Machine Intelligence 2. pages 125-133. 1968.

R. E. Fikes and N. J. Nilsson. Strips: a new approach
to the application of theorem proving to problem
solving. Artificial Intelligence, 2:189-208, 1971.

Y. Gil and E. Melz. Explicit representations of
problem-solving strategies to support knowledge
acquisition. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 469-476,
1996.

R. M. Jones, J. E. Laird, P. E. Nielsen, K. J. Coulter,
P. Kenny, and F. V. Koss. Automated intelligent
pilots for combat flight simulation. Al Magazine,
20:27-41, 1999.

J. E. Laird and M. C. van Lent. Human-level ai’s
killer application: Interactive computer games. In
Proceedings of the Eighteenth National Conference on
Artificial Intelligence. 2000.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
D. J. Pearson and J. E. Laird. Towards incremental
knowledge correction for agents in complex
environments. In Machine Intelligence, volume 15.
Oxford University Press, 1996.

J. R. Quinlan and R. M. Cameron-Jones. Combining
instance-based and model-based learning. In
Proceedings of the Tenth International Conference on
Machine Learning, pages 236-243, 1993.

C. Sammut, S. Hurst. D. Kedzier, and D. Michie.
Learning to fly. In Proceedings of the Ninth
International Conference on Machine Learning, pages
385-393, 1992.

S. Schaal. Is imitation learning the route to humanoid
robots? Trends in Cognitive Sciences, 3:233-242, 1999.
W. Shen and H. A. Simon. Rule creation and rule
learning through environmental exploration. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pages 675-680, 1989.

M. C. van Lent and J. E. Laird. Learning hierarchical
performance knowledge by observation. In Proceedings
of the 1999 International Conference on Machine
Learning, pages 229-238, 1999.

X. Wang. Learning Planning Operators by Observation
and Practice. PhD thesis, Computer Science Dept.,
Carnegie Mellon University, 1996.

A Grammar-Driven Knowledge Acquisition Tool
that incorporates Constraint Propagation

Simon White"
Accelrys Ltd.,

230/250 The Quorum,
Barnwell Road, Cambridge, CBS 8RE.
England, UK.
cmail swhite@accelrys.com

Abstract

To acquire knowledge that is fit for a specific purpose, it is
very desirable to have a structured, declarative expression of
the knowledge that is needed. This paper introduces a stand-
alone knowledge acquisition tool, called COCKATOO (Con-
straint-Capable Knowledge Acquisition Tool), which uses
constraint technology to specify the knowledge it requires.
The language in which these specifications are given is based
on the meta-language notation of context-free grammars.
However, we also took the opportunity to build a tool that is
both more flexible and powerful by augmenting context-free
grammars with the expressiveness of constraints.
COCKATOO was implemented using the SCREAMER+
declarative constraints package.

Keywords
Knowledge Acquisition, Formal Grammars, Constraints,
Constraint-Augmented Grammars, SCREAMER+

INTRODUCTION

Previous work has addressed the problem of determining
whether existing KBs (Knowledge Bases) can be used to-
gether with a selected problem-solver to satisfy a given prob-
lem-solving goal [15], [16]. We refer to this task as assessing
the fitness-for-purpose of a KB, When the assessment identi-
fics a mismatch between the given KBs and the problem-
solver’s expected KBs, we recognise two possible responses.
Either the available KBs are totally inappropriate, in which
case it is necessary to acquire them ab initio, or the existing
KBs are close to being usable but need to be modified (possi-
bly in a number of ways). This paper addresses the first of
these actions; namely, to acquire knowledge ab initio such
that it meets the problem solver's requirements. In current
practice, a knowledge engineer uscs a knowledge acquisition
tool, or other elicitation method(s), to acquire the knowledge
nceded by a problem solver. Afterwards, the knowledge must

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00

187

Derek Sleeman
Computing Science Department,
University of Aberdeen.

Old Aberdeen, AB24 3FX
Scotland, UK.
ecmail dsleeman@csd.abdn.ac.uk

usually be transformed, because the output of the knowledge
acquisition tool cannot be used directly as input to the prob-
lem solver. We call such transformations post-acquisitional
transformations. In this paper, we introduce the
COCKATOO knowledge acquisition tool, which aims to
minimise the need for post-acquisitional transformations. Our
tool is generic, in the sense that it is independent of task,
problem solver, and domain. On the other hand, it is highly
configurable, and can be configured to acquire knowledge
suited to a particular purpose (i.c., a problem-solving role).

The paper is organised as follows. In the next scction,
‘Grammar-Driven Knowledge Elicitation’, we argue the
benefits of using a context-free grammar as the basis for the
specification of knowledge to satisfy a problem-solving role.
In the section on ‘Constraint-Augmented Grammars’, we
highlight some of the limitations of a purely grammar-driven
approach to this task, suggesting the judicial use of con-
straints within the grammar to overcome some of the difficul-
ties. We call this formalism a constraint-augmented gram-
mar. The constraints are expressed using the declarative con-
straints package SCREAMER+ [14], [16], an extension of
SCREAMER [11], [12]. The section on ‘Grammar Develop-
ment and Maintenance’ outlines a process for building a con-
straint-augmented grammar that supports knowledge capture.
Finally, we discuss the benefits and limitations of our work,
and relate it to other work in the field.

GRAMMAR-DRIVEN KNOWLEDGE ELICITATION

When eliciting knowledge, it is desirable to have a structured,
declarative specification of the body of knowledge that needs
to be acquired. This can be used as both the target of the
knowledge acquisition process and the criterion by which the
acquired knowledge is assessed. Formal grammars provide a
means for specifying knowledge to be acquired, arc struc-
tured and declarative, and are also widely understood by
knowledge engineers and computer scientists. However, there
is an important difference in the way that formal grammars
are “traditionally” used, and the way that they have been ap-
plied here. Traditionally, grammars are used to solve the
parsing problem; that is, to determinc whether some given

* also affiliated with the Computing Science Department, University of
Aberdeen, Old Aberdeen, AB24 3FX, Scotland, UK.

formation -3 <lithology>+

rock-hardness — (very-soft

[<lithology-length>])

lithology —» (<rock> <lithology-depths>
rock — (<rock-type> <rock-hardness>)
rock-type — (shale | clay | chalk | granite | other)

| soft | medium | hard | very-hard)

Figure 1: EBNF Grammar for acquiring knowledge of rock formations

‘clay 'chalk 'granite ‘'other))

(defclause formation ::= (repeat+ <lithclogy>))

(defclause lithology ::= (seg <rocks <lithology-depth>
(defclause rock ::= (seq <rock-type> <rock-hardness>)
(defclause rock-type ::= (one-of 'shale

(defclause rock-hardness ::= (one-of 'very-soft ‘soft

Figure 2: COCKATOO Grammar for acquiring knowledge of rock formations

(opticonal <lithology-lengths)})

‘medium 'hard ‘very-hard))

text conforms to some given formal grammar. For example, a
C compiler must determine whether a given program consists
entirely of legal C syntax. In grammar-driven knowledge
elicitation, however, one attempts to acquire structured text
such that it conforms to the given grammar,

We chose to represent EBNF grammars using a “LISPified”
equivalent to the meta-notation of EBNF. This meta-language
needs to:

¢ provide for the definition of grammar clauses of the target
language;

e differentiate between a grammar’s terminal and non-
terminal symbols;

e provide the standard operators of an EBNF grammar,
namely, sequential composition, the expression of alter-
natives, repetition, and optionality.

We illustrate our ideas with a simplified example from the
domain of petroleum geology, and, in particular, the acquisi-
tion of a case base of oil well drilling experiences. The
knowledge captured in this way is used to support subsequent
drill bit run modelling and optimisation; for example, to help
choose the right drill bit for a given formation sequence [8).
The EBNF grammar in figure 1 both describes and specifies a
rock formation and its constituent lithologies (basic rock-
types). The same grammar can be expressed in COCKATOO's
syntax as shown in figure 2. (The correctness of the domain
knowledge in our example has nor been verified by a domain
expert.)

Note that the non-terminal symbols 1ithology-depth
and lithology-length have numeric values, and are
more difficult to specify concisely with a grammar. We return
to this issue in the following section. Note also that although
our simple example illustrates only repetitions of ‘one or
more’ (in this case, lithologies), COCKATOO also provides
for repctitions of ‘zero or more’ with the keyword ‘re-
peat*’,

188

COCKATOO grammars are interpreted top-down, left to right.
Usually, a special parameter to the de fgrammar macro (not
described here for lack of space) informs COCKATOO which
is the ‘top-most’ grammar clause. So, for example, in the
grammar of figure 2, we would tell COCKATOO to start with
the formation clause. The interpretation of this clause
leads to the acquisition of a repetition of lithologies, each in
turn consisting of a sequence of a rock, a 1ithology-
depth, and an optional 1ithology-length. A rock,
in turn, consists of a sequence of a rock-type and a
rock-hardness. The acquisition of either of these two
non-terminal symbols involves the capture of a decision from
the user among a number of distinct options (e.g., shale,
clay, chalk, granite or other). These options arc
presented on-screen to the user by COCKATOO, so that a
choice can be made and recorded. COCKATOO is sensitive to
the number of possible values available. If there are too many
values to be listed (i.e., more than a configurable upper limit),
then the upper and lower bounds of the symbol (internally, a
constraint variable) are provided to the user as additional
support. If these values are not available at acquisition time,
then the user is dependent upon the guidance provided by the
knowledge engineer in the form of comments and questions
(see below).

It is unrealistic to expect users to base their interaction with a
knowledge acquisition tool on their understanding of an
EBNF grammar. To help the user understand what informa-
tion is required, and how it can be supplied, each clause of a
grammar can be “decorated” with a question and/or a com-
ment. A guestion should be a request for feedback which is
directed at the user, such as “What is the rock-
type?”. A comment provides additional information, such
as the meaning of particular terms, the exact format of the
input, or other explanatory or “small-print” material. An ex-
ample comment for the lithology clause might be “A
lithology consists of a rock-type, a
depth, an optional 1length, and a hard-
ness”.

Even when the expert provides the knowledge acquisition
tool with the knowledge content required by a problem
solver, the format of the expert’s inputs arc seldom exactly
the same as the format required by the problem solver. Usu-
ally, some kind of syntactic transformation needs to be per-
formed. To achieve this functionality, COCKATOO allows a
post-processing function to be specified for each clause. This
is a single argument function that is applied to the valuc ac-
quired by the clause. As a simple example, a question which
the expert answered with ‘yes’ or ‘no’ is more likely to be
represented by a LISP program with t (true) or nil (false).
The post-processing function converts. the terminol-
ogy/representation of the expert to that of the problem solver.
Note that the mechanism accommodates arbitrary post-
acquisitional transformations. We have used this mechanism
for simple syntactic transformations; we believe it could also
be used as the call-out mechanism for supporting decper se-
mantic transformations. Currently, the full power of this
mechanism is available only to knowledge engineers who are
competent in LISP; later, we may devise a more user friendly
interface for the description of such transformations. Addi-
tionally, we may allow adapters written in other languages to
be linked in.

CONSTRAINT-AUGMENTED GRAMMARS

This section shows how a knowledge elicitation grammar can
be augmented with constraint expressions. We claim that this
can improve the conciseness and readability of the grammar,
reduce its development time, and enhance its expressiveness.
This view of knowledge elicitation is not inconsistent with the
definition of a constraint satisfaction problem (CSP). (A CSP
is defined by a set of variables, each of which has a known
domain, and a set of constraints on some or all of these vari-
ables. The solution to a CSP is a set of variable-value as-
signments that satisfy all the constraints.) For example, con-
sider a structured interview in which the answers to the
knowledge engineer’s agenda of questions are the variables
of the problem, and there are concrete expectations about
what their allowable values (the variables’ domains) might
be.

As we have seen, Grammar-Driven Knowledge Elicitation is
a precise and powerful mechanism for acquiring knowledge.
However, by combining the grammar-driven approach with
constraint technology, we gain the following advantages.

Concise Specifications — Knowledge specifications for
some tasks can be written much more concisely, thus
giving a more readable specification, and also saving
development time.

Single-Input Property Checking — The required properties
of each user input can be checked at acquisition time,
rather than prior to problem solving or at problem-
solving time. That is, inadmissible values are identi-
fied early in the knowledge acquisition cycle. The
properties that help to identify the admissibility of an
input value are expressed naturally as constraints.

189

Multiple-Input Property Checking — Required properties
of multiple inputs can also be checked at acquisition
time. A property of this kind is expressed as a con-
straint among multiple inputs.

Reactive User-Interfaces — Constraints among multiple
inputs can be constructed in such a way that the uscr-
interface appears to react to the user’s inputs. For ex-
ample, the choice of a particular value for one input
might narrow the domain of another.

Concise Specifications

The value of a COCKATOO clause can be specified by com-
bining concrete values with the keywords seq, one-of,
optional, repeat+ and repeat*. Alternatively, a
clause can be defined as an arbitrary LISP expression, such
as a constraint expression. For example, the following con-
cise clause accepts only an integer in the (inclusive) range 10
to 5000:

{defclause lithology-depth ::=
(an-integer-betweenv 10 5000)
.comment "The depth is given in metres (10 <=
depth <= 5000)")

With a purely grammar-driven approach, a part of the
acquisition grammar would have to be dedicated to accepting
either the sequence of characters that compose the integers of
the range, or the enumeration of all acceptable values. For
problems such as this, the simple constraint-based clause is
much more maintainable than the equivalent grammar-based
solutions without constraints.

Single-Input Property Checking

In the previous section, we argued that a grammar would be
capable of describing the set of integers in the range 10-5000,
but the introduction of constraints made the solution much
more concise. For that problem, the constraint-based ap-
proach was no more powerful (in terms of expressiveness)
than the purely grammar-based approach’, though it clearly
offered advantages. However, a constraint-augmented gram-
mar also provides for the verification of properties beyond
the power of a purely grammar-driven approach. As an ex-
ample, consider prime numbers. It is not possible to define a
formal grammar that admits any prime number, but disallows
non-primes. However, a constraint-augmented grammar can
include a clause that admits only prime numbers by constrain-
ing the input value to satisfy a predicate that tests for prime-
ness>.

In LISP, membership of a type can be subject to satisfaction

of a arbitrary LISP predicate, so the mechanism for checking
the properties of a single input value is general and powerful.

! Both approaches solved the problem.
2 The example is given in full in [16].

Multiple-Input Property Checking

Another way of specifying values that could not be expressed
by a context-free grammar is by asserting constraints across
multiple input values. For example, a context-free grammar
would not be able to constrain two variables to have different
values unless it explicitly represented all those situations in
which the values were different. At best, this represents much
work for the implementer of the grammar. If the variables
have an infinite domain, however, it is not even possible. The
following clause returns a sequence of two rock-types which
arc constrained to be different.

(defclause rock-types ::=

(let ({(type-1 {make-variable))
(type-2 (make-variable)))
(assert! (not-equalv type-1 type-2))

(seq type-1 type-2)})

A similar technique can be used in the grammar given earlier
to prevent the rock-types of consccutively acquired litholo-
gics to be the same (if consccutive rock-types were the same,
it would be a single lithology). When acquiring a valuc for
this clause, the second value must be different to the first:

LISP> (find-clause

Input a value: granite

(acquire 'rock-tygpes))
Input a value: granite
That value causes a conflict. Please try another

value. ..

Input a value: shale

(GRANITE SHALE)

Here, (GRANITE SHALE), is the return value of the
rock-types clause.

Reactive User-Interfaces

Constraints can also be used to modify the behaviour of the
acquisition tool, depending on the values supplied by the
expert. The idea is that inputting a value in answer to one
question may trigger a reduction in the set of possible an-
swers to a different question. This is the issue of reactive
knowledge acquisition mentioned earlier. Reconsider the
example of acquiring a pair of rock types that are constrained
to be different. This time, we reuse the clause first given in
figurc 2 that acquires a single rock type:

(defclause rock-type ::=

(one-of 'shale 'clay 'chalk 'granite 'other))

When this clause is interpreted, it creates a constraint variable
whose domain (set of possible values) consists of the rock
types shale, clay, chalk, granite and other.
COCKATOO uses the domain of a variable when displaying
the possible input values to the user. The following clause
uses the rock-type clause to return a sequence of two rock
types. The values of the rock types type-1 and type-2,
which are not known until acquisition time, are constrained to

be different:

190

(defclause rock-types ::=

(let ((type-1 (find-clause 'rock-type))
(type-2 (find-clause 'rock-type)))
(assert! (not-equalv (acquired-valuev type-1)

facquired-valuev type-2)))
(seq type-1 type-2)))

Note that the constraint on type-1 and type-2, imposed
by the assert! function, is declarative and therefore sym-
metrical, allowing either of the two valucs to be acquired
first. The return value, on the other hand, is a sequence that is
interpreted such that type-1 is acquired before type-2. If
the expert inputs shale as the first value of the pair, it
should not be offered as a possible value for the second value
of the pair. Instead, the user-interface should react to the ex-
pert's inputs, as illustrated below:

LISP> (acquire (find-clause 'rock-types)

The possible values are:

A. SHALE
B. CLAY

C. CHALK
D. GRANITE
E. OTHER

Which value? : granite

The possible values are:

A. SHALE
B. CLAY

C. CHALK
D. OTHER

Which value? : shale
(GRANITE SHALE)

When acquiring the second rock-type, GRANITE was not
offered as a possible value because choosing that value would
be inconsistent with the disequality constraint. Such behav-
iour cannot be realised by a context-frec grammar because the
rock-type is not known unti] acquisition time. A context-free
grammar cannot build in such conditions at ‘compile time’.

We have shown that the determination of a variable’s value at
acquisition time can cause the domain of another variable to
be reduced. Sometimes, the domain of a variable might be
reduced to a single value, causing that variable to become
bound. When this happens, the value of that variable need not
be acquired from the expert, as it has already been inferred.

GRAMMAR DEVELOPMENT AND MAINTENANCE

It is important for a knowledge specification to be easily
rcadable so that persons other than the KA tool developer can
understand it. Readable specifications tend to be easier to
write, discuss, and maintain. COCKATOO has two main fea-
tures that enhance both the readability and maintainability of
its knowledge specifications. Firstly, it has developed an ap-
proach based on the use of (EBNF-like) formal grammars,
which are a well-known type of formal specification, and in
widespread use. Secondly, COCKATOO makes a clear separa-

tion between the knowledge specification and the acquisition
enginc that acquires the knowledge. This leads to concise
specifications, which contain only pertinent material, as well
as a general purpose acquisition tool which is reusable across
domains. By way of contrast, consider a custom-tailored ac-
quisition tool that embeds the knowledge specification within
its program’s source code. Such a tool would not be rcusable
across different problem domains, and even with optimal
coding style, only those with knowledge of the programming
language would be able to understand the specification.

COCKATOO already provides mechanisms for specifying the
required knowledge at a “high level”. That is, during (gram-
mar) development, the knowledge engincer can concentrate
on the nature of the knowledge to be acquired, rather than the
program that acquires it. Grammar development using
COCKATOO is a (cyclic) refinement process, which includes
the following chronological stages.

Knowledge Analysis — The aim of this stage is to capture
the most important concepts of the domain and the re-
lationships between their instances. In effect, we aim
to derive a basic domain ontology.

Grammar Construction — In this stage, we decide which of
the ontological elements from the previous stage will
be included in the knowledge capture. A further
analysis of these elements (for example, a structural
decomposition) leads to a grammar that captures the
basic knowledge requirements in terms of those ele-
ments and their multiplicitics (e.g., one-one, one-
many, many-many).

Adding Constraints — An optional stage to enhance the
grammar with constraints. When used, the aim of the
stage is twofold: firstly, to remove unwanted or non-
sensical input combinations from the specification;
and secondly, to eliminate redundant questions.

Embellishment — Embellishing the grammar with questions
and comments.

Notice that the system’s communication with the expert is not
considered until the final stage of development, reflecting the
attention paid to the correctness of the knowledge specifica-
tion in the early stages.

The examples presented throughout this paper have demon-
strated COCKATOO’s flexibility for use in many different
domains. COCKATOO can also be configured quickly for use
in a new domain. For example, three sample grammars pre-
sented in [16] were developed (and refined) in less than a day
each! The main reason for the ease with which COCKATOO
can be reused is the clear separation between the data that
drives knowledge acquisition (the grammar) and the more
generic tool that processes the data (the COCKATOO acquisi-
tion engine). COCKATOO is, in effect, a knowledge acquisi-
tion shell that supports the building of custom-tailored KA
tools.

Although it was developed to acquire knowledge bases for
use within the MUSKRAT toolbox [16], a KA tool such as

191

COCKATOO has the potential to be applied to a very wide
range of application domains. Not only can it acquire simplc
knowledge elements, it can manage complex constraint rela-
tionships between them, and post-process user inputs for fur-
ther compatibility with other tools. With regard to
COCKATOO’s suitability for different acquisition tasks, it
could be used in most situations that involve a substantial
amount of numerical, textual or symbolic user input. It is
well-suited to supporting knowledge acquisition for both
classification and configuration (or limited design) tasks. For
classification tasks, we must acquire example cases and their
associated class; for configuration tasks, the building blocks
of the design are well-known, but their combinations may be
explored. Although all the design decisions arc made by the
human user, the output is nevertheless constrained to be
within the “space” specificd by the grammar.

DISCUSSION

This paper has argued the value of a declarative specification
of the knowledge to be acquired, and introduced the
COCKATOO tool, which acquires knowledge by interpreting
a constraint-augmented grammar. This approach offers en-
hanced readability, eased maintenance, and a reduced initial
development effort compared with the construction of multi-
ple customised tools for different domains. Augmenting a
context-free grammar with constraints increases both the ex-
pressiveness and conciseness of the notation. The power of
the tool that interprets the notation is also increased because
in some situations its behaviour can be altered by the user’s
responses to questions. Conciseness of the notation is im-
proved because admissible values do not always have to bc
detailed down to the level of individual characters or sym-
bols.

Related Work

COCKATOO is an automated knowledge elicitation tool, but
differs considerably from current knowledge elicitation tools
based on repertory grids, sorting, and laddering (see, for ex-
ample, 1], [10], and PC-PACK?), because they cannot be
tightly coupled with an application. The knowledge acquired
using these tools must be post-processed “by hand” before
they can be used by a problem solver or other application
program. COCKATOO, on the other hand, provides a very
general post-processing facility which allows the acquired
knowledge to be packaged in a form suitable for subsequent
use.

Generalised Directive Models (GDMs) [13], [7] also use
grammars, but for a different purpose to COCKATOO.
COCKATOO uses a grammar to guide the acquisition of do-
main knowledge from a domain expert, such that the knowl-
edge can be used by an existing problem solver. GDMs, on
the other hand, apply grammars to assist knowledge engineers
with task decomposition when building a knowledge-based

3 PC-PACK is a softwarc package marketed by Epistemics Ltd. See

www.epistemics.co.uk

system. The purpose of a GDM grammar is to guide the
knowledge engincer to classify the task(s) at hand, so that an
appropriate knowledge elicitation tool can be selected. Thus,
the grammars of the two approaches describe sentences of
quite different natures: a COCKATOO scntence describes a
domain structure, whercas a GDM sentence describes the
decomposition of a task into subtasks and their respective
types. It may also help to consider the meanings of the termi-
nal symbols in each of the two formalisms. A terminal symbol
of a COCKATOO grammar represents a domain concept or
value; a terminal symbol of a GDM represents a task type
whose association with a knowledge elicitation tool is known.
The two approaches are complementary, and could even be
used together — a terminal node of the GDM grammar could
be associated with COCKATOO as the most appropriate elici-
tation tool for the node’s task type.

It is interesting to compare COCKATOO with the Protégé
project and, in particular, the Maitre tool [2]. Protégé, like
COCKATOO, is a general tool (a “knowledge acquisition
shell”) whose output is in a format that can be rcad by other
programs (CLIPS expert systems). Also, before using Protégé
to acquirc knowledge, the knowledge engineer must first con-
figurc it with an “Ontology Editor” subsystem, called Maitre.
This tool enables the knowledge engineer to define an ontol-
ogy, which is then used as the basis for knowledge acquisi-
tion. The ontology plays the same role in Protégé as the con-
straint-augmented grammar in COCKATOO — it specifies the
knowledge to be acquired. Another subsystem of Protégé,
called Dash, can be used interactively to define a graphical
user-interface for the KA tool. Although the graphical user
interfaces are very appealing, we do not believe that Protégé
has the same knowledge specification power as COCKATOO,
since it is not supported by an underlying constraints engine.

The idea of minimising the number of questions asked of the
user was inspired by the questioning techniques of MOLE
[3], and the intelligent mode of the MLT Consultant [5].
However, the approach taken by COCKATOO is different
from both of these systems. MOLE reduces the amount of
questioning by making intelligent guesses about the values of
undetermined variables, and subsequently requesting- the
user’s feedback. MLT Consultant uses an information theo-
retic measure to determine which questions are asked. In
contrast, COCKATOO uses local propagation techniques to
identify redundant questions.

A so-called Adaptive Form [4] is a graphical user-interface
for acquiring structured data that modifies its appearance
depending on the user’s inputs. For example, a form for
entering personal details would only show a field for entering
the spouse’s name if the user had entered married in the
marital status ficld. Although this kind of behaviour is very
similar to the reactive knowledge acquisition of COCKATOO,
Adaptive Forms arc driven by (context-frec and regular-
expression) grammars alone, and do not support more com-
plex constraints. The system uses look-ahead parameters to
decide which unbound fields to display at any given time. We

192

also note that Frank and Szckely extended their grammar
notation to include ‘labels’, which have the same function as
the questions of COCKATOO. They do not provide the
equivalent of comments, name spaces, or post-processing.
The Amulet system [6] does use a constraint solver to man-
age its user-interface, but employs it to control the positioning
and interactions of graphical objects, rather than to support
knowledge acquisition.

Limitations

COCKATOO currently docs not allow the user to backtrack
from a given user input, and try something else. Once an in-
put has been entered, the user is committed to that value and
cannot change it later. This is a serious limitation because not
only docs it not allow for typographical errors; it also pre-
vents the user from experimenting with the COCKATOO
grammar in a ‘what-if’ mode. Of course, COCKATOO can
always be aborted and the acquisition restarted from the be-
ginning, but a more flexible backtracking capability is a de-
sirable feature that should be addressed. Ideally, at each stage
of the acquisition process the user should be given the option
to go back to the previous stage, retract the previous input,
and input a new value. The problem is that retracting an input
is not simple, because the constraint-based assertions associ-
ated with that input may already have caused propagation to
other constraint variables. To retract an input, one must be
able to recover the states of all constraint variables before the
assertion was made. One option to achieve this functionality
is to record the states of all constraint variables before each
user input; another option is to record the changes that occur
after each user input, so that they may be reversed. Ideally,
the constraints package would provide a retraction facility of
its own [16].

There are two types of propagation that should be supported
by a KA tool for MUSKRAT; namely inter-KB propagation
and intra-KB propagation. In the former case, knowledge is
propagated from one knowledge base to a different knowl-
edge base. In the latter case, knowledge is propagated from
one part of a knowledge base to a different part of the same
knowledge base.

For inter-KB propagation, we require a mechanism by Wthh
the knowledge contained in an existing knowledge bascxjﬂ
made available to COCKATOO for acquiring a different, .b,wi
related, knowledge base. We have not yet addressed 1(1_3!‘
problem. However, COCKATOO already provides a mecl ".
nism for intra-KB propagation through the functions £ind®
clause and acquired-valuev. The function fl
clause can be used from within a grammar to search-
known clause, thus offering a facility for grammar mﬂq{m
tion. The function acquired-valuev is used to,JuAs™
assertions about the value that a clause (eventually) acques
These two functions can therefore be used together t0 § D

at acquisition time the knowledge that some other”&
should acquire. This is the behaviour of intra-KB W
tion.

We feel that the usability of COCKATOO would be signifi-
cantly improved by the addition of graphical user-interfaces
at two levels. Firstly, a graphical user-interface ‘front-end’ to
COCKATOO would provide the opportunity for enhanced
end-user support; for example, through the use of distinct
graphical input forms (with appropriate widgets, such as text
boxes and drop-down menus). Secondly, a graphical user-
interface could provide uscful support for the acquisition of
grammars, so that the knowledge engineer would no longer
have to input COCKATOO grammars in their ‘LISPified’ Syn-
tax. Such a ‘meta-tool” would output a COCKATOO grammar
(perhaps as the result of post-processing). It would be inter-
esting to investigate whether COCKATOO is flexible enough
to act as both the meta-tool and the domain expert’s tool.

COCKATOO will be used by a class of undergraduate students
in the autumn of 2001, and we expect it to be used subse-
quently by the Advanced Knowledge Technologies (AKT)
project.

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support provided for
this work through an EPSRC studentship.

REFERENCES

(1] Diaper, D., (1989), “Knowledge Elicitation: Principles,
Techniques and Applications”, Ellis Horwood, Chiches-
ter, England, UK

Eriksson, H., Puerta, A. R, Gennari, J. H., Rothenfluh,
T. E.,, Samson, W, T., Musen, M., (1994), “Custom-
Tailored Development Tools for Knowledge-Based Sys-
tems”, Technical Report KSL-94-67, Section on Medi-
cal Informatics, Knowledge Systems Laboratory, Stan-
ford University, California, USA.

Eshelman, L. (1988), “MOLE: A Knowledge-
Acquisition Tool for Cover-and-Differentiate Systems”,
in Marcus, S., (Ed), “Automating Knowledge Acquisi-
tion for Expert Systems”, Kluwer Academic Publishers,
pp. 37-80.

Frank, M. R., Szekely, P., (1998), “Adaptive Forms: An
Interaction Technique for Entering Structured Data”,
Knowledge-Based Systems, Vol. | 1, pp. 37-45.

Kodratoff, Y., Sleeman, D, Uszynski, M., Causse, K.,
Craw, S., (1992), “Building a Machine Learning Tool-
box”, in Enhancing the Knowledge Engineering Process,
Steels, L., Lepape, B, (Eds.), North-Holland, Elsevier
Science Publishers, pp. 81-108.

Myers, B. A, Mecdaniel, R. G., Miller, R. C,, Ferrency,
A. S, Faulring, A, Kyle, B. D, Mickish, A, Klimovit-
ski, A., And Doane, P., (1997), “The Amulet Environ-

(2]

[3]

(4]

[5]

(6]

193

ment: New Models for Effective User Interface Software
Development”, IEEE Transactions on Software Engi-
neering, Vol. 23, No. 6, pp. 347-365.

O’Hara, K., Shadbolt, N., Van Heijst, (1998), “General-
ised Directive Models: Integrating Model Development .
and Knowledge Acquisition”, International Journal of
Human-Computer Studies, Vol. 49, No. 4, pp. 497-522.

Precce, A., Flett, A, Sleeman, D., Curry, D, Meany, N,
Perry, P, (2001), “Better Knowledge Management
through Knowledge Engineering”, IEEE Intelligent Sys-
tems, Vol. 16, No. 1, pp. 36-43.

Reichgelt, H., Shadbolt, N., (1992), “ProtoKEW: A
knowledge-based system for knowledge acquisition”, in
Artificial Intelligence, Sleeman, D, and Bernsen, NO
(Eds.), Research Directions in Cognitive Science: Euro-
pean Perspectives, volume 6, Lawrence Erlbaum, Hove,
UK.

[10] Shadbolt, N, R., (2000), Knowledge Elicitation Tech-
niques In Knowledge Engineering & Management: The
CommonKADS MethodologyA G. Schreiber, H, Akker-
mans, A. Anjewierden, R. de Hoog, N. Shadbolt, W, van
der Velde & B. Wielinga. Pub: MIT Press.

[11] Siskind, J. M., McAllester, D. A., (1993), “Nondeter-
ministic LISP as a Substrate for Constraint Logic Pro-
gramming”, in proceedings of AAAI-93.

[12] Siskind, J. M., McAllester, D, A, (1994),
“SCREAMER: A Portable Efficient Implementation of
Nondeterministic Common LISP™, Technical Report
IRCS-93-03, Uni. of Pennsylvania Inst. for Research in
Cognitive Science.

[13] Van Heijst, G., Terpstra, P., Wielinga, B., Shadbolt, N.,

(7]

(8]

(1992), “Using generalised directive models in knowl-
edge acquisition”, in Proceedings of EKAW-92,
Springer Verlag.

[14] White, S., Sleeman, D., (1998), “Constraint Handling in
Common LISP”, Department of Computing Science
Technical Report AUCS/T R9805, University of Aber-
deen, Aberdeen, UK.

{15] White, S., Sleeman, D., (1999), “A Constraint-Based
Approach to the Description of Competence”, in Fensel,
D., Swder, R, (Eds.), Proceedings of the Eleventh
European Workshop on Knowledge Acquisition, Model-
ling, and Management (EKAW-99), LNCS, Springer
Verlag, pp. 291-308.

[16] White, S., (2000), “Enhancing Knowledge Acquisition
with Constraint Technology”, PhD Thesis, University of
Aberdeen, Scotland, UK.

From Thesaurus to Ontology

B. J. Wielinga A. Th. Schreiber

J. Wielemaker

J. A. C. Sandberg

University of Amsterdam, Social Science Informatics
Roetersstraat 15, NL 1018 WB Amsterdam, The Netherlands
{wielinga,schreiber,jan,sandberg} @swi.psy.uva.nl

Abstract .

Thesauri such as the Art and Architecture Thesaurus (AAT)
provide structured vocabularies for describing art objects.
However, if we want to create a knowledge-rich description
of an (image of an) art object, such as required by the “se-
mantic web”, thesauri turn out to provide only part of the
knowledge needed. In this paper we look at problems re-
lated to capturing background knowledge for art resources.
We describe a case study in which we attempt to construct
an ontology for a subsct of art-object descriptions, namely
antique furniture, using AAT as well as metadata standards
as input. We discuss the representation requirements for such
an ontology as well as representational problems for our sam-
ple ontology with respect to the emerging web standards for
knowledge representation (RDF, RDFS, OIL).

Keywords

Ontology construction, thesaurus, web standards, image in-
dexing

INTRODUCTION

In this paper we address the problem of capturing knowl-
edge needed for indexing and retrieving image information
using highly structured semantic descriptions. Such struc-
tured descriptions can be much richer than the traditional
“set of terms approach”. In fact they come nearer to a de-
scription in natural language, often considered to be the ideal
way of describing and indexing pictorial material. In order
to circumvent the problems of ambiguity in natural language
descriptions and queries, structured descriptions should be
limited to a fixed set of predefined structures and a closed
vocabulary. In this paper we assume that the structured de-
scriptions are created by a human annotator using special-
ized tools. Two related problems arise in this approach: (1)
how can a human be supported during the annotation pro-
cess, and (2) where does the vocabulary or ontology for fill-
ing in the structured descriptions come from? The solution
to these problems that we will pursue in this paper is to ex-
tend an existing thesaurus with additional knowledge such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

K-CAP’0!, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010. .. $5.00

194

that is becomes an ontology suitable to support rich struc-
tured descriptions. The paper is structured as follows. First
we will discuss various alternative approaches to image in-
dexing and retrieval and the requirements that they pose on
the vocabulary. Then we will discuss the properties of a par-
ticular thesaurus, the Art and Architecture Thesaurus (AAT)
in the light of these requirements. We then discuss the con-
struction of an ontology for antique furniture using AAT and
existing metadata standards. With respect to knowledge rep-
resentation we have tried to adhere to the new web standards
as much as possible ‘and we discuss problems arising in the
pursuing this objective.

IMAGE RETRIEVAL
There are several paradigms for image retrieval currently in
use:

e Content-based image retrieval (CBIR)
¢ Text-based image retrieval

¢ Field-based image retrieval

¢ Structure-based image retrieval

We will discuss each of these approaches in turn.

The content-based image retrieval paradigm indexes images
on their intrinsic and primary features, which are computed
by various image analysis algorithms. These features include
color structure, shape properties, textures etc. This paradigm
will not be discussed here since the link with the more se-
mantically oriented other methods is very difficult to make
given the current state of the art in mage processing.

There are a number of different forms that text-based image
retrieval can take:

e Keyword search with free vocabulary

¢ Keyword search with a closed vocabulary

o Thesaurus-based search, where not only the vocabulary is
closed but also hierarchical (broader and narrower terms)
and other relations can be taken into account in the search
process.

The general characteristic of this method is that the query is
composed of a (possibly Boolean structured) set of terms.
The index usually consists of an unordered set of terms.
The indexing and retrieval process can both be supported by
tools to browse and select terms from the vocabulary. Such
browsers are available for large thesauri such as AAT, LCSH
and ICONCLASS.

iz furniture Prgtgo_o

Ve pe—r X
o T

: 2
§ ¢ [SIVRA_element
&[] creator
: [S]culture
o [Sldate
i [§] description
©-[Slid_number
©- [§] location .
¢ [Slmaterial

: [é]material medium

[@materiai.suppon

Q'E]measurements

AT TR Y

v

g

[y

¥
¥ B [Sﬂrecord,type
F : @relation
| [Srights
Y. [Slsource
o ¢ [Sléemeriad
: [é]style!period.dynasw

: @style!period.movemem
- [B) stylefperiod period
: @style!period.schom
@ style/period.style
E] stylesperiodgroun
: Eﬂsubject

= @technique

o P G WML S

rtifurniture.ppri)

Sheamat :
3C) <Colonial A tyles>
T) <modem American styles and
C) <Eyropean styles and periods

Figure 1: VRA element set defined as Protége slots.

The element qualifiers are defined as subslots, which translate to

RDFS subproperties. For a particular visual object multiple instances of a data element can be defined. For example,

one can define multiple styles for a piece of furniture.

The field-based approach describes or retrieves an item not
by a set of keywords, but by a set of attribute-value pairs.
Typically, a metadata schema is defined that describes the
elements (fields) and some indication is given what values
can be assigned to a particular field. The most widely used
schema is the Dublin Core metadata template (DC) [7] for
describing documents in general. For specialized domains
such as the description of art objects in museums, quali-
fied versions of DC have been created, such as the Visual
Resource Association (VRA) Core Categories. VRA ver-
sion 3.0 [3] defines 17 data elements for describing visual
resources. Some data elements have qualifiers which can
(optionally) be used to specify more detailed semantics of
the data value. For example, VRA defines a data element
style/period with qualifiers such as style, period and school.
The data elements are linked to one or more corresponding
DC elements. For example, style/period is linked to the DC
elements coverage and subject. For a particular visual object
multiple instances of a data element can be defined. For ex-
ample, one can define multiple styles for a piece of furniture.

195

Fig. 1 shows a representation of the set of VRA elements.
This representation was developed with the help of the
Protégé-2000 tool [6]. The data elements are represented.
as Protégé slots; the qualifiers as subslots, allowing one to
specialize the value set of the element for the qualifier. We
come back to this in more detail in the discussion about the
ontology.

Many of the field-based initiatives recommend the use of
closed vocabularies such as AAT [10], but do not associate
particular parts of a thesaurus with a field. As a consequence
the only support that a human indexer has is the thesaurus
browser. To improve the support for indexing a mapping is
required from the fields to particular parts of the thesaurus,
such that the indexer is only presented with terms that are
relevant for a particular field. As we will argue in subsequent
sections of the paper, this is not always easy to do.

Where the field-based approach essentially uses a flat struc-
ture of attribute-value pairs, the structure-based approach al-
Jows more complex descriptions involving relations. For ex-

ample, a description of a piece of furniture can include a de-
scription of its components, e.g. a drawer of a chest. The
components are again objects that can be described using a
number of attributes such as material, size, shape. Compo-
nents can even have components themselves, e.g. drawers
can have handles. The structure-based approach introduces
a large degree of complexity in the indexing process. Rela-
tional descriptions can vary widely between different cate-
gories of objects. Furniture can have components, but paint-
ings in general do not have components, they can be de-
scribed by a complex subject matter structure. A solution to
the problem of complexity of the indexing process is to use
contextual information to constrain the relations and terms
presented to the indexer. We first discuss what the knowledge
requirements are with respect to existing thesauri in order to
create knowledge-rich art-object descriptions.

ANALYSIS OF EXISTING THESAURI

A first requirement for a thesaurus to be useful in the field-
and structure-based approach is that it provides a hierarchical
structure that has an unambiguous interpretation. Some hi-
erarchically organized thesauri, such as ICONCLASS [12],
mix the sub/super class relation with a part-of relation [1].
AAT uses a strict sub/super class relation in a single inheri-
tance hierarchy. The single inheritance limits the amount of
information about a term that can be derived from its posi-
tion in the hierarchy, as terms can be classified in multiple
ways, e.g., material by form or by origin. AAT attacks this
problem through qualification of certain terms. For example,
the concept landscape is represented by two terms: landscape
(representation) and landscape (environment). This solution
has some drawbacks: the distinction between the two qual-
ified terms may not be clear to a user and it is difficult to
decide where subclasses of the concept should be placed.

A second requirement is that fields in a description can be
linked to particular parts of the thesaurus. For example, the
ficld material should be linked to the part of a thesaurus that
contains a hierarchy of material types. In some cases this is
straightforward. AAT for example has a hierarchy Materials,
which clearly defines the terms that can be used as value for
the material field. However, there are many cases where val-
ues to be assigned to a field are scattered over several parts
of the thesaurus. In AAT certain types of porcelain (e.g. five-
colored porcelain or Wucai) are situated under <Chinese ce-
ramics styles>, while ironstone (a semi-porcelain) is located
in the Object Genres hierarchy. This is not only a problem
when the user is presented with a hierarchy or list of values
from which a selection has to be made, but also a problem
for search processes that use inheritance. Searching for a ce-
ramics object requires knowledge about the various parts of
the thesaurus hierarchy.

A third requirement follows from the complexity of the in-
dexing space. A human indexer who uses the structure-based
approach, will be confronted with large sets of possible val-

196

ues to choose from. For example, the Materials hierarchy in
AAT contains several hundreds of terms. A solution to this
problem is to constrain the value-sets for a particular field,
based on a partial description of the image or object. For ex-
ample, when it is known that an object is a piece of furniture,
the possible materials, styles and periods of that object are
highly constrained. In some cases various fields can be in-
ferred from information available in other fields. If an object
is described as a Ming vase, the material is porcelain, the re-
gion of origin is China and the period is between 1368 and
1644,

EXTENDING THE AAT

As the basis for building an ontology for indexing images,
we have used the Art and Architecture thesaurus. The AAT
is the most elaborate and most standardized body of knowl-
edge concerning the classification of art objects. It contains
about 28.000 main terms agd 120.000 terms in all, including
synonyms and related terms. Besides it offers scope notes:
textual definitions of AAT concepts for a major part of main
terms. The AAT concepts are represented in 33 hicrarchics.
A particular concept occurs only once in the full AAT hier-
archy, following the ISO 5964 standard (Guidelines for the
Establishment and Development of Multilingual Thesauri).
AAT uses intermediate concepts (“guide terms™) to group
concepts lower in the hierarchy. For example, <ceramic and
ceramic products> is such an intermediate concept.

In an early attempt to use the AAT thesaurus as an ontol-
ogy [13] we treated the main terms as concept names in
the knowledge base. Although this is possible since each
main term in AAT is unique, it causes problems when a con-
cept can also be identified by its synonyms, as is the case in
WordNet synsets [9]. Searching AAT for the term wood re-
turns as first concept woods (area with trees) rather than wood
(material). It was decided to represent each concept in the
knowledge base by a unique identifier, derived from the AAT
record number.

The full AAT hierarchy was converted into a hierarchy of
concepts, where each concept has a label slot correspond-
ing with the main term in AAT and a synonyms slot where
alternate terms are represented. The knowledge base is rep-
resented in RDFS [2]. We constructed an RDFS browser to
inspect and browse the hierarchy. A snapshot of the browser
is shown in Fig. 2.

A second step was to augment a number of concepts with ad-
ditional slots and fillers. For example, concepts representing
a style or period were augmented with slots time period from,
time period to, general style and region. The values for these
slots were partly derived using explicit tables of periods, and
partly by using the intermediate concepts in AAT. For exam-
ple, the British fumiture style George IV (1820-1830) is aug-
mented with Regency as a more general style indication. A
third step was to add knowledge about the relation between
possible values of fields and nodes in the knowledge base.

| =Resource
B-aat_entity
eFurnishings
e-furnishings
e~<fumishings by form or function>
e-furniture
e~<furniture by form or function>
creens (furniture)
eating furniture
sleeping and reclining furniture>
support furniture>
storage and display furniture>
B-cases

[
l
b "
§
i
i

B30

hest of drawers

upboards

ardrobes (case furniture) i
ideboards (furniture) £V
desk al:

exhibit cases

ounters

arks

bookcase

orner shelves
dispensaries (furniture)
-étageres

Ry G
A

Xy
s

Class Prbberﬁeé }

7iallls

e dressing thests:

oA

I-canterburies (storage furniture) i

Properties

ookshelves
hina shelves

v e <

3 % Sy
e Fwe K - b SRS

1t il

Figure 2: Part of t
loaded

The nature of this knowledge is discussed below.

AN ONTOLOGY FOR FURNITURE

We developed an ontology for a subset of art objects, namely
antique Western furniture. This ontology was developed in
three steps:

1. Construction of a description template for antique furni-
ture: what kind of information does one want to record for
a particular furniture item?

2. Linking the furniture properties to specific subsets of AAT

that can be used as values for furniture properties.

3. Describing additional domain knowledge, in particular

about constraints between furniture-property values.

Furniture description template

Fig. 3 shows the template we developed for describing a
piece of antique furniture. A piece of furniture can be de-
scribed through 25 “descriptors™.! Of these 25 descrip-
tors, 17 are derived from the VRA Core Categories [3] (see
Fig. 1). The other descriptors are based on the results of the

European GRASP project [13]. This project developed an

1'The term descriptor is sometimes used to indicate an attribute value, but
we use it here in the “attribute™ sense.

197

he AAT hierarchy. The snap shot is of our RDFS browser in which an RDFS version of AAT has been

ontology for describing and retrieving stolen art objects. The
following “GRASP" slots were added to the VRA elements:
functional context (€.g., religious), intended location, form,
color, color cardinality (e.g., monochrome), color type (c.g.,
primary colors), marking, and component. This last de-
scriptor allows for describing subparts of a piece of furniture
(e.g., the feet or drawers of a chest). AAT provides a special
hierarchy of terms for this, namely <furniture components>.
Qualifiers of the data elements were defined as subslots.

We used Protégé-2000 [6] as ontology editor with RDFS as
the underlying representation language. The furniture con-
cept is represented as a Protégé class and the descriptors as
template slots of this class. Protégé slots are translated into
RDFS properties; the qualifiers are translated into subprop-
erties.

This simple representation leads to a long unstructured list
of furniture descriptors. In addition, we also wanted to rep-
resent natural groups of descriptors. We distinguished four
descriptor groups:

1. Production-related descriptors: e.g., creator (“maker™),
style/period, technique.

2. Physical descriptors: e.g., measurements, color, material,
etc.

furniture Protégé-2000
L g 5t T

i

AL RE T Rt Ak .

‘Type Cardinality BIEIY :
Instance multiple classes={c50124640,¢50131648) :
Instance multiple classes={furniture} !
Instance muttiple classes={ULAN_name} -+
Instance multiple classes=(c50107Q46,c50111149; '
String multiple .
String multiple
instance multiple classes={c50136953)
Symbo! multiple allowed-values={lady’s recreational profa. ||
Strina rmuftiple g
Symbol muttiple allowed-values={churchwall,roof garden, [!
String multiple . |
String multiple o
Instance multiple classes={c50010358,c50011915; ' l
String multipte A
Instance multiple classes={c50168686} R
Symbol required singte allowed-values={wark image; :
Any multiple " i
String multiple
String multipte N
Instance muttiple classes={c50018032,c50018115,c50111. [
Instance muttiple classes={ICONCLASS_category}
Instance multiple classes={c50155056}
Instance multiple classes={c50056362}
String multiple
Instance multiple classes={c50048628)

30 THING A
419 (0 SYSTEM-CLASS A
© cLassh
! SLOTA
. 1 8TANDARD-SLOTD
; € Crar_descriptor
i Clfunctional_descriptor 2
1 (C) general_descriptar aA73
€l natura!_hierarchy pp
{C) physical_descriptor Z
! =4 -aeser _ A [S] component
i production-related_descriptar gl 5] creator
: TF ETAQISpran i [S] cutture
: o Far 4 [S] gate
: SRS NTA o=
b P AAT C -:'uTF‘AINT A [S] description
i LG/ AAT category A8} form
¥l CHICONCLASS category 4) -
: T ULAN - 4 El(unchona!_comem
i _name A18]id_numser
1A 4 K
o \EMumiture 18] intended_location
: E ISliocation
! - A8 marking
i {74 1S material
" 7z A[S] measurements
i Superclasses] pattern
{ FOTHING A : [S]record_type
' I [S]relallon
A8 rights
11S] source
3] stylefperiod
E subject
Elechmque
31S)texture
[Shitie
7
118 type

Figure 3: Furniture description template. This template containis the 17 VRA data elements plus 8 additional elements

3. Functional descriptors: related to the intended usage of the
furniture item, e.g., intended location functional context.

4. Administrative descriptors: e.g., collection ID, rights, cur-
rent location.

It is tempting to represent these descriptor groups as an ag-
gregation: a furniture description has four subparts, one for
each descriptor group. However, one requirement we had
with respect to the use of RDFS/RDF was that a general
RDF-aware browser should be able to interpret as much as
possible the resulting furniture-item description. From this
point of view the representation of a furniture template as
consisting of subparts with their own set of descriptors is
cumbersome. It would mean that in the RDF representation
there is only an indirect link from the fumiture instance to
the descriptor triple:?

<rdf:Description about="furniture3é">
<physical_description rdf:resource="phdesc53"/>
</rdf :Description>

2As we will see further on, the specification of material in the example
using a class is problematic.

<physicalDescription rdf:about="phdesc53">
<material rdf:resource="&aat;mahogany"/>
</physicalDescriptions

We therefore refrained from using a part-of organization of
descriptors. Instead, we defined a metaclass art descriptor
with the descriptor groups as subclasses. Subsequently, the
furniture slots were defined as instances of the appropriate
art-descriptor subclass. For example, the property technique
is an instance of a production-related descriptor. The descrip-
tor metaclasses are listed in Fig. 3 (see the “class” tab at the
left).

One of the reasons we prefer Protégé as RDFS editor is that
it supports, as RDF/RDEFS does, treating instances as classes
and vice versa. Not allowing this is in fact a weakness of
many description-logic languages, which adhere to a strict
separation. Martin [8] considers class/instance flexibility as
a central requirement for adequate conceptual modelling.

The VRA eclement type plays a special role. This descriptor
is used to represent the natural category to which the fur-
niture item belongs, e.g. a case. For furniture we used the

AAT hierarchy under the “guide term™ <furniture by form
or function>> as the value set for the type element. Part of the
furniture hierarchy can be found in Fig. 2. Additional domain
knowledge is typically centered around these categories. For
indexing purposes the furniture category is crucial because
the categorization can be used during retrieval for query gen-
eralization (c.g., case — <storage and display furniture>) or
query specialization (e.g., case — chest-of-drawers).

Z\projects\MIA\ar...

vaterials (AAT class)

it| @ (CiAAT _category
(O materials
(E}<woodbycomposMon01onmn>
Colonial American styles>

C) «modern Ametrican styles and periods>
C) <furniture by form of function>

exture

American regions>

styles and periods by region=
<Eurgpean styles and periods>
C'<European regions>

neutrals

<chromatic colors>

:C3 «<shape’ fumityre>

@‘_} «woodworking and woodwarking procesg, - F
{C) <patterns by specific type> :
Ciecolor types>

%

¢50010358

Figure 4: AAT categories used for furniture descriptions.
All AAT terms in the hierarchy below the category can
act as a value for a particular furniture descriptor

Linking to AAT

For nine slots in the furniture template, parts of the AAT hi-
erarchy could be identified as slot value sets. Fig. 4 shows
the AAT categories we used. In some cases, multiple parts
of AAT act as alternative value sets for a single slot. For ex-
ample, the AAT categories neutrals and <chromatic colors>
provide the controlled vocabulary for the color slot. Both
are subclasses of the AAT category colors, to which also a
hierarchy of color types belongs which do not represent le-
gal values color slot. Fig. 1 shows another example: the slot
style/period can be filled with a term from three alternative
AAT hierarchies (e.g., <European styles and periods>).

What we frequently wanted to do is to specify a class in the
AAT hierarchy where all subclasses in this subpart of the hi-
erarchy are possible slot values for a descriptor. Representing
this kind of value types is not straightforward with the current
(web) representation methods. Protégé allows the specifica-

199

tion of a “class™ as the value type for a slot and asks for onc
or more superclasses for the allowed class values. However,
this information is lost in the translation to RDFS. Property
ranges are defined in RDFS through the class of the RDF in-
stance, which in this case is just class class. Using the OIL
language [5] instead of RDFS would not have helped us here.
OIL allows classes as slot-value types, but only when explic-
itly enumerated in a disjunction:

class-def furniture
slot-constraint color
has-value (black OR grey OR white OR ...)

We could have solved this problem by a different mapping
from AAT to RDFS/RDF. Currently, we map all terms in the
AAT hierarchy to RDFS classes. One could take the view
that leaf terms in AAT should be considered as instances.
However, this is not a realistic solution. Often, there are
many subtle term specializations in the AAT hierarchy. For
example, in the color hierarchy there is a term “pink”, which
also acts as a superclass for a whole range of pink colors
(e.g.., variants of “purplish pink™). Both pink and and its
specializations should be available as a value for the color
descriptor. Even the AAT “guide terms” can be useful as
a descriptor value, in situations where an indexer does not
know to which subcategory an item belongs.

We finally decided to represent descriptor values as instances
of RDFS classes representing AAT concepts. For example,
we defined the value of the descriptor color as an instance of
the AAT categories neutrals or chromatic colors. This means
that an RDF annotation of a piece of furniture cannot have
a property “color” with value “pink”. Instead, the property
value should be some instance of “pink”. With “pink™ rep-
resented by the AAT record aat:c50124707, the RDF for the
annotation becomes:

<rdf:Description about="furniture34">
<color>
<aat:¢50124707/>
</coloxr>
</rdf:Description>

This expression is the RDF serialization of two relations. The
first defines that the property “color” of furniture34 has
the value pink22 and the second defines that pink22 is an
instance of aat:c50124707, a class labeled “pink™. In these
relations pink22 is an anonymous resource generated by the
RDF parser.

From a philosophical point of view something can be said in
favor of this representation: “pink” can be considered to be
an idealization (in the Platonic sense) of a color, of which the
particular color of a piece of furniture is only an approxima-
tion. Still, the representation feels somewhat awkward.

Figure 5: Sample furniture piece: an 18th century chest-
of-drawers, Late Georgian style, made of mahogany.
“Chest of drawers” is a main term in AAT; the AAT de-
scription can be found in the right-hand part of Fig. 2

Adding domain knowledge

In addition to the fumniture descriptors and their value sets,
there is also a considerable amount of domain knowledge
about relationships between descriptor values. To illustrate
this we look at an example piece of antique furniture (Fig. 5,
taken from (4, p. 28]). The figure shows an 18th-century
chest-of-drawers in Late Georgian style (1760-1811), made
primarily of mahogany.

Several types of art-historic background knowledge can be
distinguished here: .

¢ Knowledge about the relationship between a style period
(“Late Georgian”) and a time period. Sometimes, the pe-
riod of a style is dependent on the “culture”, e.g. the British
Queen Anne style is shorter (1702-1714) than its Ameri-
can pendant (1702-1727).

o Knowledge about the relationship between style periods
and furniture characteristics. For example, Late Georgian
chests-of-drawers were typically made of mahogany.

This kind of domain knowledge can be extremely useful for
supporting both the image indexing and retrieval. During in-
dexing domain knowledge can be used to suggest descriptor
values, which puts less burden on the task of the annotator.
During retrieval, domain knowledge can be used to make se-
mantic matches, ¢.g. to retrieve images of Late Georgian
chests when a person is looking for “chest mahogany™.

However, there are a number of problems in representing this
domain knowledge. Firstly, there is no way in RDES to ex-
tend a set of class/property definitions with this kind of inter-
property constraints. The same holds for the OIL language.

200

The OIL slot constraints only apply to a single slot and can-
not be used to specify constraints between slots.

Protégé has a constraint language based on KIF and therefore
expressing these constraints in Protégé is possible. However,
we are then confronted with a second problem. The domain
knowledge does not consist of absolute statements about the
state of affairs in antique furniture, but provides us mainly
with elaborate default knowledge. For example, a Late Geor-
gian chest-of-drawers can be made from oak, but if we have
no knowledge to the contrary we can assume it is made from
mahogany. This default nature of domain knowledge is also
true for time periods of furniture styles, although the period
specification (Queen Anne: 1702-1714) may suggest other-
wise. The period borders are treated by art historians as in-
dicative only. The semantics of a first-order language are
therefore hardly appropriate for expressing the art-historic
domain knowledge in this domain. In an earlier case study
concerned with indexing photographs of apes [11] we were
confronted with similar problems (e.g., urang-utans typically
live in Indonesia and have an orange color).

DISCUSSION

One can view this paper as a case study in “real-life” knowl-
edge representation. Many of the issues raised have been dis-
cussed and solved in knowledge representation theory. How-
ever, in the context of web standards and existing knowledge
corpora severe constraints are placed on the representational
vehicles. One cannot just redfine the representation of a the-
saurus or define a new knowledge-representation standard for
the web:

The goal of the Semantic Web initiative is to annotate large
amounts of information resources with knowledge-rich meta-
data. In this paper we have argued that such annotations,
in particular of non-textual material such as images, should
be based on a rich metadata structure in connection with an
ontology. Building ontologies for large domains, such as
medicine or arts, is a costly affair. However, in many do-
mains thesauri have been built that can be a basis for the con-
struction of an ontology. A thesaurus should satisfy a number
of criteria: it should have a strict sub/superclass hierarchical
structure, it should be based on unique concepts rather than
on natural-language terms and it should be representable in a
format that is compliant with emerging web standards. In the
ontology construction process additional knowledge should
be added to the basic hierarchical structure of concepts de-
rived from the thesaurus. This knowledge can come from
different sources: the location of a concept in the hierarchy,
additional sources such as Wordnet, or special purpose doc-
uments. Through this process we have created a knowledge
base derived from the Art and Architecture Thesaurus (AAT)
represented in RDFS. In a case study we have used this on-
tology as basis for an annotation tool for describing (images
of) art objects, in particular antique furniture. The basis of
the tool is a metadata structure which is a highly qualified

and extended Dublin Core structure. Each of the descriptor
elements could be linked to one or more parts of the AAT,
thus providing constraints on the values that can be assigned
to the elements. An ever better support for annotation and re-
trieval can be given when additional constraints are added to
the ontology, which essentially consist of complex relations
between partial descriptions of objects or images. While the
basic metadata knowledge can be represented within the se-
mantic framework of RDFS, the constraint relations require
additional representational contructs not available in RDFS
and other semantic Web oriented languages, such as OIL.
For the time being we have designed a format for represent-
ing these constraints that can be used in our own tools, but
which is meaningless to the average RDFS application.

Acknowledgments

This work was supported by the ICES-KIS project “Multime-
dia Information Analysis” (MIA) funded by the Dutch gov-
ernment.

REFERENCES
1. S. Bechofer and C. Goble. Thesaurus construction
through knowledge representation. Data & Knowledge
Engineering, 37:25-45,2001.

2. D. Brickley and R. V. Guha. Resource description
framework (RDF) schema specification 1.0. Candidate
recommendation, W3C Consortium, 27 March 2000.
See: http://www.w3.org.

3. Visual Resources Association Standards Committee.
VRA core categories, version 3.0. Technical report,
Visual Resources Association, July 2000. URL:
www.gsd.harvard.edu/ staffaw3/vra/vracore3.htm.

4. R. Davidson. Miller’s Antique Checklist: Furniture.
Reed, London, 1991.

5. D. Fensel, I. Horrocks, F. van Harmelen, S. Decker,
M. Erdmann, and M. Klein. OIL in a nutshell. In
Knowledge Engineering and Knowledge Management:
12th International Conference EKAW2000,

201

10.

11

12.

13.

Juan-les-Pins, volume 1937 of Lecture Notes in
Artificial Intelligence, pages 1-16, Berlin/Heidelberg,
2000. Springer-Verlag.

. N. Fridman Noy, R. W. Fergerson, and M. A. Musen.

The knowledge model of Protégé-2000: combining
interoperability and flexibility. In Knowledge
Engineering and Knowledge Management: 12th
International Conference EKAW2000, Juan-les-Pins,
volume 1937 of Lecture Notes in Artificial -
Intelligence, pages 17-32, Berlin/Heidelberg, 2000.
Springer-Verlag. Also as: Technical Report Stanford
University, School of Medicine, SMI-2000-0830.

. Dublin Core Metadata Initiative. Dublin Core

Metadata Element Set Version 1.1: Reference
Description, July 1999. Url:
http://dublincore.org/documents/1999/07/02/dces/.

. J. Martin. Object-Oriented Methods - A Foundation.

UML edition. Prentice Hall, Upper Saddle River, NJ,
1997.

. G. Miller. WordNet: A lexical databasc for english.

Comm. ACM, 38(11), November 1995.

T. Peterson. Introduction to the Art and Architecture
Thesaurus. Oxford University Press, 1994. Sce also:
http://shiva.pub.getty.edu.

A. Th. Schreiber, B. Dubbeldam, J. Wielemaker, and
B. J. Wielinga. Ontology-based photo annotation.
IEEE Intelligent Systems, May/June, 2001.

H. van der Waal. ICONCLASS: An inconographic
classification system. Technical report, Royal Dutch
Academy of Sciences (KNAW), 1985.

B. J. Wielinga, J. A. C. Sandberg, and A. Th.
Schreiber. Methods and techniques for knowledge
management: What has knowledge engineering to
offer? Expert Systems With Applications, 13(1):73-84,
1997.

Web User Clustering from Access Log
Using Belief Function

Yunjuan Xie
Computer Science Department
Louisiana Tech University
Ruston, LA 71272 USA
yxi001@coes.latech.edu

Abstract '

In this work, we present a novel approach to clustering Web
site users into different groups and generating common user
profiles. These profiles can be used to make recommenda-
tions, personalize Web sites, and for other uses such as tar-
geting users for advertising. By using the concept of mass
distribution in Dempster-Shafer’s theory, the belief function
similarity measure in our algorithm adds to the clustering
task the ability to capture the uncertainty among Web user’s
navigation behavior. Our algorithm is relatively simple to
use and gives comparable results to other approaches re-
ported in the literature of web mining.

Keywords
Web mining, clustering, Dempster-Shafer, access log, per-
sonalization, common user profile

1 INTRODUCTION

The World Wide Web has become increasingly important
as a medium for commerce as well as for dissemination of
information. In E-commerce, companies want to analyze the
user’s preferences to place advertisements, to decide their
market strategy, and to provide customized guide to Web
customers. In today’s information based society, there is an
urge for Web surfers to find the needed information from
the overwhelming resources on the Internet.

Web access log contains a lot of information that allows us
to observe user’s interest with the site. Properly exploited,
this information can assist us to make improvements to the
Web site, create a more effective Web site organization and
to help users navigate through enormous Web documents.
Therefore, data mining, which is referred to as knowledge
discovery in database (KDD), has been naturally introduced
to the World Wide Web.

When applied to the World Wide Web, data mining is
called Web mining. In [1], Cooley, Mobasher and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

K-CAP'01, October 22-23, 2001, Victoria, British Columbia, Canada.
Copyright 2001 ACM 1-58113-380-4/01/0010...$5.00

Vir V. Phoha
Computer Science Department
Louisiana Tech University
Ruston, LA 71272 USA
phoha@coes.latech.edu

Strvastava give the taxonomy of Web mining. According to
them, there are two major approaches to mining the World
Wide Web. The first is Web content mining, which auto-
matically searches the information resources in the Web
pages. The other is Web usage mining, which focuses on
the discovery of user access patterns from Web usage data.
We will focus on Web usage mining.

In this paper, we present a novel algorithm for Web user
clustering based on access logs. We propose a distance
measure for clustering based on belief function in Demp-
ster-Shafer’s theory [5, 12]. By using the Dempster’s rule of
combining evidence to find and group pages that arc fre-
quently visited into different classes, we add to the cluster-
ing task the ability to capture the uncertainty among user
behavior.

Web usage data collected in access log is at a very fine
granularity. It usually includes every HTTP request from all
users. Each request contains at least the IP address, re-
quested pages, time requested, response code, and size of
the item requested. Therefore, while the access log has the
advantage of being extremely detailed, it also has some
drawbacks. When we apply statistical and probability
methods to it, we tend to get results that are too refined than
it should be because the analysis might focus on micro
trends rather than macro trends. However, based on our
observation, user’s browsing behavior on the Web is highlsl
uncertain. Users might browse the same page for different
purposes, spend various amounts of time on the same page
or make different number of visits on it, or even get to the
page from different sources each time. Therefore, micro
trends tend to be erroneous and not of much use.

In this paper, we use Dempster-Shafer theory of evidence to
model the uncertainty inherent in Web user access patterns.
We do not try to assign probabilities for single pages based
on the statistics from the Web usage data. Instead, prob-
abilities are assigned to groups of pages based on their co-
occurrence in sessions. These groups are refined when evi-
dence accumulates using Dempster’s rule of combination.
The refined groups of pages are common user profiles we
want. This theory is appropriate for clustering analysis be-
cause it provides an aggregation operator, Dempster’s rule
for combining evidence, which allows the expression of the
uncertainty with respect to aggregated components. Fur-

thermore, the set operation in Dempster’s rule is particu-
larly suitable for clustering pages into groups.

We first introduce the related work in clustering Web usage
data in section 2. In section 3, we give a brief description of
Dempster-shafer’s theory. In section 4, we explain the se-
lection of session as the unit of mining. And in section 5,
we propose an algorithm using Dempster-shafer’s theory
for usage data clustering analysis. After that in section 6 we
give an example of clustering a sample Web site and show
preliminary experimental results using the clustering analy-
sis algorithm. We conclude our work in section 7.

2 RELATED WORK

Data mining, which is referred to as knowledge discovery in
database, has become an important research area as a con-
sequence of the maturity of very large databases. It uses
techniques from areas such as machine learning, statistics,
neural networks, and genetic algorithms to extract implicit
information from very large amounts of data. The goals of
data mining are prediction, identification, classification, and
optimization. The knowledge discovered by data mining
includes association rules, sequential patterns, clusters, and
classification. Garofalakis [6] gives a review of popular
data mining techniques and the algorithms for discovering
the Web. Cooley ef al [1] proposes a taxonomy of Web
mining and identified further research issues in this field.
Yu {15] examines new developments in data mining and its
application to personalization in E-commerce.

Various data mining techniques have been successfully ap-
plied to Web access logs to extract useful information [4, 8,
9, 10, 11, 13, 14]. Among them, clustering allows us to
group together clients or data items that have similar char-
acteristics. The information discovered by this technique is
one of the most important types that has a wide range of
applications from real-time personalization to link predic-
tion. It can facilitate the development of future marketing
strategies, such as automated return mail, present adver-
tisements to clients falling within a certain cluster, or dy-
namically changing a particular site for a client on a return
visit based on past classification of that client. The key
problem lies in how we effectively discover clusters of Web
pages or users with common interest.

Clustering analysis to mine the Web is quite different from
traditional clustering due to the inherent difference between
Web usage data clustering and classic clustering. Therefore,
there is a need to develop specialized techniques for clus-
tering analysis based on Web usage data. Some approaches
to clustering analysis have been developed for mining the
Web access logs.

Perkowitz and Etzioni [10] discuss adaptive Web sites that
learn from user access patterns. The PageGather [10] algo-
rithm uses the page co-occurrence frequencies to find clus-
ters of related but unlinked pages. It creates a graph whose
nodes are pages and whose edge weights are page co-
occurrence frequencies. Clusters are found by finding the

203

cliques or connected components in this graph. Based on
the algorithm, new index pages are created for easier navi-
gation.

Mobasher, Cooley and Srivastava {8] propose a technique
for capturing common user profiles based on association-
rule discovery and usage-based clustering. This technique
directly computes overlapping clusters of URL references
based on their co-occurrence patterns across user transac-
tions. A hypergraph is built whose hyperedges are frequent
itemsets that are found by the a priori algorithm. The
weight of a hyperedge is calculated by averaging all the
confidences of association rules in this frequent itemset.
Clusters are obtained by applying the hypergraph partition-
ing algorithm to this hypergraph.

Nasraoui er al [9] defines a similarity measure between
sessions using a modified cosine angle similarity measurce
that takes the hierarchical structure of URL into considera-
tion. Then sessions are clustered by a Relational Fuzzy C-
Maximal Density Estimator (RFC-MDE) algorithm based
on pair-wise dissimilarities between sessions.

All these approaches find session clusters from all user ses-
sions. These approaches tend to find the frequent user ac-
cess pattern of all users. Our approach differs from these
clustering algorithms in that it finds user clusters. It sepa-
rates users into different groups and finds a common access
pattern for each group of users. To our knowledge, user
clustering has not been studied in the Web usage mining
field.

3 BACKGROUND

3.1 Dempster-Shafer’s Theory

Dempster-Shafer’s theory [6, 12] of combining evidence
has attracted considerable attention as a promising method
for dealing with some problems arising in combining of
evidence and data fusion. It starts by assuming a Universe
of Discourse U, also called Frame of Discernment, which is
a set of mutually exclusive alternatives. The frame of
discernment can consist of the possible values of an

ftttgibf‘égeto each subset A of U a basic probability assign-
ment (bpa) m(A), which represents the strength of some
evidence. For the empty set, m is 0; the sum of m over all
subsets of U is 1. That is:

m($)=0 > m(4,)=1.

A,cU

and

The basic probability assignment m is referred to as mass
distribution to distinguish it from the probability distribu-
tion. Note that it applies directly to the evidence (subscts of
the frame of discernment U), not to the elements of U as in
traditional probability theory.

A belief Bel(S) summarizes all our reasons to believe S:

Bel(S)=) m(4,). (1)

4,cS

3.2 Dempster’s Rule of Combination
Dempster-Shafer’s theory provides a means for combining
beliefs from distinct sources, known as Dempster’s rule of
combination. Suppose m; and m; are two bpa’s of the same
U from independent bodies of evidence, A; and B;. The
combined bpa can be computed as:

ZA,mB/:C m, (Ai)mZ (Bj)
=2 g oM (A (B))

m, ®m,(C)=

all non-empty C, (2)

-

where 1—2/4,0850 m,(A4;)m,(B,)is a normalization

factor, making the sum of m; @ m, (C) between 0 and 1.

In words, the Dempster’s combination rule computes a
measure of agreement between two bodies of evidence con-
cerning different propositions discerned from a common
frame of discernment. The rule focuses only on those
propositions that both bodies of evidence support.

If1- ZA[\BJ.:«? m, (A;)m,(B;)= 0, we say that m, and

m,, are incompatible, and m, @ m, is undefined.

SELECTION OF SESSION AS THE UNIT OF
MINING

Session, by definition, is the set of pages visited by a user in
one single visit. It is the basic unit in Web mining. For Web
data mining tasks, session is too coarse grained. Users may
perform multiple tasks in one single session. Based on this
observation, researchers developed specialized algorithms
to refine single user session into smaller units. Among
them, Mobasher er al [2] separates the pages for content
purpose from those for navigation purpose based on the
time spent on the page and divides user sessions into se-
mantically meaningful units, called transactions. The au-
thors define two types of transactions, auxiliary-content
transactions and content-only transactions. Chen, Park and
Yu [4] propose the maximal forward reference identifica-
tion. The former group of authors assumes that users travel
through auxiliary pages to get to content pages. And the
latter assumes that all the backward references are made for
ease of traveling but not for browsing. Both of them obtain
reasonable results based on these assumptions.

4

User navigation behavior is highly uncertain. Assumptions
about user access patterns should be made with utmost care.
Poor assumptions make the goal to find the common user
traversal pattern even more difficult. Based on our observa-
tion, the user may perform one or multiple rasks in one sin-
gle session. For example, a user may go through both the
financial part and the sports part of a news site in one ses-
sion. This is a two-task session. To perform one task, the
user needs to access a group of pages. So the pages needed

204

in one task tend to appear together. However, in contrast to
trying to explicitly divide sessions into tasks based on some
kind of assumption that does not accurately describe all the
user’s Web activities, in our approach, we directly overlap
clusters of URLs based on their co-occurrence patterns in
one session. As the process moves on, some tasks are sepa-
rated from sessions. The clusters obtained this way tend to
group related pages together across tasks to show a co-
occurrence pattern of a particular type of users, even though
these tasks are themselves not decmed to be similar. This
allows us to obtain clusters that potentially capture overlap-
ping interests of the same type of users.

Given a large access log, our goal is to cluster Web site
users into groups and find groups of pages that tend to co-
occur in visits by a certain type of user. Standard clustering
algorithms partition Web pages into a set of mutually exclu-
sive clusters. Whereas traditional clustering is concerned
with placing each page in exactly one cluster, ours may
place a single page in multiple overlapping clusters. Instead
of attempting to partition the entire log file into disjoint
clusters, the algorithm finds a small number of, possibly
overlapping, clusters. It can discover multiple interests of
the same type of user and group users into different types.

OUR APPROACH: CLUSTERING AND
COMMON USER PROFILE ANALYSIS USING
DEMPSTER-SHAFER’S THEORY

5

5.1 Extracting Content Pages from Access Log

A critical step in effective Web mining is the data preproc-
ess. It includes access log cleaning, session identification,
and transformation of access log data to an appropriate
format, according to the need of the mining analysis. In {3],
the authors give a detailed summary of data preparation
work for mining the World Wide Web. Generally, data
preparation needs to meet the requirements of the particular
mining task. For our clustering analysis, data preprocessing
contains three steps: access log cleaning, session identifica-
tion, and low support page filtering.

5.1.1 Access Log Cleaning

Redundant references (images, sound files, multiple frames,
and dynamic pages that have the same template) are re-
moved in this step, leaving only one entry per page request.
We climinate the irrelevant items by checking the suffix of
the URL requests. All log entries with filename suffixes
such as gif, jpeg, jpg, and map are removed.

5.1.2 Session Identification

Session identification identifies a set of user sessions by a
maximal elapsed time. If the time between page requests
exceeds a certain limit, we assume that the user is starting a
new session. Here, like many commercial products, we use
30 minutes as a default timeout.

5.1.3 Low Support Page Filtering

For the purposes of clustering analysis, only the content
pages are of interest. The pages used just to facilitate the
navigation are referred to as auxiliary pages. Filtering the
session files to remove these auxiliary pages is necessary to
remove noise from important data. Whether a page should
be classified as an auxiliary page or a content page for that
user is based on the time the user spends on that page. It is
expected that the variance of the time spent on auxiliary
pages is small. However, the length of time spent on content
pages is expected to vary widely from user to user. Gener-
ally, the time spent on a content page ismuch longer than
on an auxiliary page. In [2], the authors find that the distri-
bution of time and hits on Web page requests contains a
large exponential component. By evaluating the percentage
of auxiliary pages in a particular Web site, they calculate a
cutoff time between content pages and auxiliary pages
based on the exponential distribution. In contrast, we sort
all of the lengths from the log and then find the cutoff time
between auxiliary pages and content pages. All auxiliary
pages in sessions are filtered out. Now what remains in the
sessions are pure content pages. (If the same page appears
more than one time, the time spent on it is summed up).

However there are also content pages with very low hit
rates in the session. These pages represent only the personal
interest of individual users. They are also to be filtered out
since what we are interested in is the interests of a group of
users. These pages should be filtered out based on the aver-
age number of hits of content pages.

5.2 Basic Probability Assignment for Each User
Basic probability assignment (bpa) is assigned to each user.
After data preprocessing, we find that some sessions from
the same user can overlap because a user may perform the
same task in different sessions. A probability is assigned to
each unique session after data preprocessing; it is the frac-
tion of this unique session to the total number of user ses-
sions. This probability measures how likely the user will
perform the tasks identified in the unique session. The total
probability has measure one. It gives a big picture of what
the user usually does, as well as how often she does it in the
site. This assignment is reasonable since it captures the un-
certainty among visits to single pages. In our observation,
'session by itself is a semantically meaningful unit. It repre-
sents one or several tasks users tend to perform in one visit.
Users usually need to browse a group of pages, rather than a
single page, to accomplish one task. Therefore, assigning a
probability to a group of pages seems to fit perfectly the
semantic meaning of session.

5.3 Common User Profile Clustering Algorithm

5.3.1 Belief Function as Similarity Measure

Clustering, by definition, is to partition data points into
clusters, so that the data points within one cluster are more
similar to each other than data points in different clusters.

205

Therefore, some similarity measure should be adopted in
every clustering algorithm. For our Web user clustering
algorithm, we propose to use belief function as the similar-
ity measure.

Suppose m(A;), m(B;) are two bpas for two uscrs, A and B.
We also use A, B to represent the set of unique content
pages in the user’s profile, respectively. We define bel(A)
as the total belief that user A’ s profile can represent user
B’s profile:

bel(A) =Y m(B,).

In some cases, if B is contained in A, bel(A) = 1. However,
the reverse is not true. So we define the similarity between
A and B as:

sim(A, B) = min(Y m(4,), >, m(B,)).

ACB B,cA

3)

It measures the similarity between two user profiles.

5.3.2 Greedy Clustering Using Belief Function
(GCB)

We present a GCB algorithm for our clustering task using
the similarity measure we defined above. The greedy tech-
nique has been widely used in many algorithms as an effi-
cient and effective way to approach a goal. In this process
representatives of the clusters are picked iteratively, so that
the current representative is well separated from those that
have been chosen so far. An outline of the algorithm fol-
lows:

Input: K: number of cluster; S: a simple set of users
Output: M: the set of cluster representatives
begin
M= {o}
/select a random user m into the common profile set
M= {m;}
For each user profile x € S — M, calculate the distance
between x and m;
Dist(x) = -In(sim(x, m;))
Fori=2toK
begin
//choose representative m; to be far from previous
representatives
Let mye S — M, such that dist(m;) = max(dist(x)|xe
S-M)
M= Mu{m}
HUpdate the similarity of each point to the closest
representative
foreachxe S—M
dist(x) = min(dist(x), -In(sim(x, m;)))
end
return M
representatives
end

/M will contain a set of distinct cluster

5.3.3 Common User Profile Creation

A user is assigned to the cluster whose representative is
most similar to this user based on the similarity measure.
After we assign each user to different groups, we apply
Dempster’s rule of combination to get the common user
profiles.

In the definition, if 1~ z m, (A4,)m,(B,)=0,m,

ANB;=0
and m, are said to be incompatible, and m, ® m1, is unde-

fined. Here in our application, we need to restrict the condi-
tion to get higher quality clusters. So we define two bpa as
incompatible if one subset of one bpa has an empty inter-
section with any subset of the other bpa. In this case, these
two bpas should belong to two different profiles. The prob-
ability value for an empty set may get larger after iterations.
Normalization is used to eliminate the empty set. The prob-
ability portion for the empty set is subtracted and the prob-
ability distribution is recalculated, so that the total measure
is one. After iterations, the sets in the common profile be-
come separated and stable. Thus we get groups of pages in
each common user profile. It is expected that most of these
groups will represent a single task and some of them may
contain multiple tasks. Association rules can be found in the
co-occurrences of multiple tasks.

6 ILLURSTRATION AND EXPERIMENTAL
RESULTS

6.1 lllustration

In our work, the frame of discernment U contains all the
possible (and mutually exclusive) values (URLSs). An initial
belief function is defined over U describing our prior in-
formation about one user. As different users continue to
enter, different user evidence is then converted to corre-
sponding belief functions over U. These belief functions are
combined together through Dempster’s rule, to give rise to
a consensus answer to a common user profile.

In real-time recommendation, our task is to match the user’s
active session with the set of common user profiles obtained
from the system over time. If S is the set of pages of the
user’s active session, then the belief that the user belongs to
the group is:

Bel(S)= Y m(A).

AcS

Bel(S) calculates the similarity between a user and the com-
mon user profiles. The greater the belief value, the higher
the similarity. Recommendations are made based on the
common user profile that matches the user with the highest
value.

The following figure illustrates a sample Web site. In this
figure, A, B, C, D are auxiliary pages and filtered out in
data preprocessing. And F, G, H, E, J, P are content pages.

206

E
Figure 1. Sample Web site

Table 1 shows the profiles for thirteen users. Each includes
a basic probability assignment (bpa) and a unique content
page set. For example, for user 1, session (F, G) has a bpa
of 2/5, session (F, P) has a bpa of 2/5, and session (J) has a
bpa of 1/5--the total bpa will sum up to one. And the unique
content page set contains the unique pages from all sessions
of the user, in this case, F, G, P, and J. For each user pro-
file, we use the following notation below:

User profile: {(session;): bpa;, (session;): bpa,, ..., (scs-
sion,): bpa,}.
Table 1: Sample user profiles
User Profile Unique pages

1 {(F,G):2/5, (F, P)2/5,| (F,G,P,])
J):1/5}

2 {(F,H):172, (G):1/2} (F,H, G)

3 {(F, P): 3/3} (F,P)

4 {(G, N:172, (F):1/2} F,G, J)

5 {(G,H):2/3, (F):1/3} (G,H,E, J)

6 {(F,H):1/3, (G, H):1/3, (F,H, G)
(F,G):1/3}

7 | (GH)1/2, ()12} (G, H, J)

8 {(F.P,G):173, (3):2/3} (F,P,G,J)
{(F,G):3/3} (F, G)

10 | {(G):1/4, (H,)):3/4} (G,H,)

11 {(E,):4/4} (E,J)

12 | {(GHFEP):1/2, (EI:1/2} (G, H, F, P, E,

)
13 | ((F.P,G).1/4, (B)3/4) (F.P. G, E)

Table 2 shows the clustering analysis results obtained on
the sample user profiles in Table 1 with the number of clus-
ters, the input parameter, equaling 5. It includes three steps:

1. Find the cluster representatives by applying the GCB
algorithm. The results are shown in the “Representa-
tive” column.

2. Assign the rest of the users to the closest cluster based
on the similarity measure we defined in section 5.3.1.
The results are shown in the “Members” column.

3. Create common user profiles by applying Dempster’s
rule of combination to each cluster. The results arc
shown in the “Common user profile” column.

Table 2: Clustering result from sample user profile (K = 5)

Common
Cluster | Representa- | Members user
tive profile
User 7:
User I: {(F,P,G), ()}
{(F,G), (F,P), | User 12: {(F,G),
) (GHEP), | FP)
(E.)}
User 13:
{(F,P,G),
(E)}
User 5:
{(G,H),
User 2: (F.))
2 {(FH), @) | User& (), ©)}
{(F.H),
(G,H), (F, G)}
User 9:
{(F, G)}
3 User 3 R
{(F.P)}
4 User 4: o —
{(G.)), (B)}
User 7: User 10: {(H}
5 {(G.H), ()} {(G), (H,)}
User 11:
{(E,)}

Cluster § is {(J)}. Cluster 3 and 4 do not have members in
this case. -

6.2 Preliminary Experimental Results

We apply the GCB algorithm to the access log of the Web
site of the Boston University Computer Science department.
It was collected by the Oceans Research Group at Boston
University. It contains a total of 1,143,839 requests, repre-
senting a population of 762 different users. A portion of the
access log file is available at
http://ita.ee.lbl.gov/html/contrib/BU-Web-Client.html. Af-
ter access log cleaning, we get 667 sessions from a total of
50 users. Users are assigned an identification number from
I to 50. We choose a clustering factor of 5 because the
amount of data is small.

Table 3 shows five clusters we obtained. Not all users arc
assigned to these clusters because some users do not belong
to any of them due to the sparseness of the data.

Table 3: Clusters results from BU log (k =5)

Cluster | Mem- Common user profile
bers
{(/cs-www.bu.edw/),
I 1,3,4, (cs101al/Home.html),
13,14, | (¢5101b1/Home.htmi) }
39,43,
46
{(/cs-www.bu.cdw/),
2 2.6.7 (/faculty/heddaya/CS792/schedul
10.11. | ehtml),
27,28, | (faculty/kfoury/CS530/home.htm
29,32, | D
49 }
{/cs-www.bu.edu/,
3 11.8. 26 | /faculty/kfoury/CS520/grades.text
o /students/grads/ianw/cs530.html}
4 33,41, {/cs-www.bu.edu/
44 /ffaculty/mechen/cs320/Home.ht
ml }
{/cs-www.bu.edu/,
5 36, 17, /pointers/Home.html
48,9 /students/grads/Home.html }

From Table 2, we sec five users are first selected as repre-
sentatives for five clusters. Cluster 1 initially has User 1 as
the representative and ends up with Users 7, 12, and 13 as
members after step 2. The common user profile for Cluster
1 is {(F, G), (F, P)}. Cluster 2 initially has User 2 as the
representative and ends up with Users 5, 6, and 9 as mem-
bers. The common user profile for Cluster 2 is {(F), (G)}.
Cluster 5 initially has User 7 as the representative and ends
up with User 10 as a member. The common user profile for

207

The results show that;

e Different groups of users can be identified by the com-
mon courses they selected, such as cluster 1, 2, 3, 4.

e Some groups of users are discerned by their common
interest, such as cluster 5.

e /cs-www.bu.edw appears in every profile because as
the entry page to the site, it has both high hit rate and
long viewing time.

7 CONCLUSION AND FUTURE WORK

The ability to mine Web usage data provides E-commerce
companies with a great opportunity for personalizing their
Web site appearance to customers. Most current approaches
to personalization rely heavily on human participation to
collect profile information about users. Such practice suf-
fers from problems of being subjective, as well as getting
out of date as the user preferences change over time. In this
paper, we present an automatic Web personalization
method and introduce an effective clustering technique us-
ing belief function based on Dempster-Shafer’s theory.

This work still has several research issue$, which we plan to
address in the future. First, usage data by itself is not suffi-
cient for recommendation. The personalization and recom-
mendation process needs to have specific knowledge about
the particular domain to do anything besides filtering based
on statistical attributes of the discovered rules or patterns.

Another problem is the scalability problem. Usage data
collection on the Web is incremental. Hence, there is a need
for mining algorithms to be scalable. They should be able to
take as input the existing data, and mined knowledge, as
well as the new data, and develop a new model in an effi-
cient manner. Our future work will address these problems.

ACKNOWLEDGMENTS

The authors would like to thank Keith Emmert who re-
viewed and proofread the first manuscript. The access log
used in our experiment is available at The Internet Traffic
Archive (http://ita.ee.lbl.gov/index.html) sponsored by ACM
SIGCOMM. It was collected by the Oceans Research Group
(http://cs-www.bu.edu/groups/oceans/Home.html) at Boston
University for their work, “Characteristics of WWW Client
Traces”, which was authored by Carlos A. Cunha, Azer
Bestavros, and Mark E. Crovella.

REFERENCES

[1] Cooley, R., Mobasher, B., and Srivastava, J. Web Min-
ing: Information and Pattern Discovery on the World
Wide Web, ICTAI'97, 1997

Cooley, R., Mobasher, B., and Srivastava, J. Grouping
Web page references into transaction for mining world
wide Web browsing patterns, Proceedings of the 1997
IEEE Knowledge and Data Engineering Exchange
Workshop (KDEX '97), 1997

Cooley, R., Mobasher, B., and Srivastava, J. Data
preparation for mining world Wide Web browsing pat-
terns, Journal of Knowledge and Information Systems,
(1) 1, 1999

(2]

208

Chen, M. S., Park, J. S., and Yu, P. S. Efficient Data
Mining for Path Traversal Patterns, JEEE Transactions
on Knowledge and Data Engineering, Vol. 10, No. 2,
March/April, 1998

Dempster, A. P. A Generalization of Baycsian Infer-
ence J. Roy. Stat. Soc. B, 30(1968), 205-247

Garofalakis, M.N., Rastogi, R., Seshadri, S., and Shim,
K. Data mining and the Web: past, present and future
In Proceedings of the second international workshop
on Web information and data management, ACM 1999

(4]

(3]

(6]

Lalmas, M. Dempster-Shafer’s Theory of Evidence
applied to Structured Documents: modeling Uncer-
tainty, S/GIR97, Philadelphia, USA, 1997.

Mobasher, B., Cooley R., and Srivastava, J. Creating
Adaptive Web Sites Through Usage-based Clustering
of URLs, Proceedings of the 1999 Workshop on
Knowledge and Data Engineering Exchange, 1999

[9] Nasraoui, O., Frigui, H., Joshi, A., and Krishnapuram,
R. Mining Web access log using relational competitive
fuzzy clustering Proceedings of the Eight International

Fuzzy Systems Association World Congress, 1999

[10]Perkowitz, M., Etzioni, O. Adaptive Web sites: auto-
matically synthesizing Web pages in Proceedings of
Fifteenth National Conference on Artificial Intelli-
gence, Madison, WI, 1998

[11]Schechter, S., Krishnan, M., and Smith, M.D. Using
path profiles to predict HTTP requests. In Proceedings
of the Seventh International World Wide Web Confer-
ence, Brisbane, Australia, 1998

[12]Shafer, G. A Mathematical Theory of Evidence,
Princeton: Princeton University Press, 1976

[13]Shahabi, C. Zarkesh, A. M., Adibi, J., Shah, V. Knowl-
edge Discovery from Users Web-Page Navigation,
Proceeding of Workshop on Research Issues in Data
Engineering, Birmingham, England, IEEE, 1997

[14]Spiliopoulou, M. and Faulstich, L. C. WUM: A Web
Utilization Miner. In Proceedings of EDBT Workshop
WebDB98, Valencia, Spain, LNCS 1590, Springer
Verlag, 1999

[15]Yu, P. S. Data Mining and Personalization Technolo-
gies, Proceedings of the 6th International Conference
on Database Systems for Advanced Applications, 1998

[16]Zadeh, L. A. A simple view of the Dempster-Shafer
theory of evidence and its implication, 4/ Magazine
7,2 (1986), 85-90 1986

Author Index

Akkermans, H. ... 60
AMICE, C. it 116
ASPITez, J. Cooiii e 6
Barker, Koo 14,22, 38
Brown, E. oo 116
Buchanan, B. G. ... 123
Chaudhri, V..t 22
Clark, Poooiieeeeee 14,22, 38
Compton, P. e 171
COorby, Ot 52
Corcho, P e 6
DaVIES, J. oo e 92
De Roure, D. C. e 100
Dieng-Kuntz, R ..o 52
Domingue, J. ..o 30
Dubon, S. .o 116
Fan, J. e 38
Farnes, N. ..o,

Fernandez-LoOpez, M.
Forbus, K. D...oo e 3
Garland, A. ... 44
Gl Y e 22
Golebiowska, J..... .52
GOMEZ-PErez, A. ..ocooiiiiiiii e 6
Gordijnn, Jooooie e 60
Hahn, U. e 68
Handschuh, S. ..o 76
Harrison, . W. . .84
Hayes, P 22
Kalfoglou, Y. oo 30
Kuntz, R.D. e 52
Laird, J. E. oo 179
Lawrence, S...o...orierciee s 3
Lopez, M F. o 6
Lowrance, J. Do 84
Maedche, AL o 76, 155
Marks, K. G 68
Martins, J. P. oo 131
McCarthy, J...

Merall, Y. .o 92
Middleton, S. E. ..o 100
MIShra, S. oo 22

209

Morley, DN e 108
Motta, E. ..ot 30
Mousseau, D ..o 52
Myers, Ko Lo 108
Paik, W oo 116
Pérez, A. G. ...

Phillips, J.o oo
Phoba, V. V. . 202
Pinto, H. S 131
Porter, B 14,22, 38
Poulin, M. e 116
Rector, A. L. ...

Reichherzer, T. oo 22
RiCh, C. oo et 44
RODBEIS, AL oot 139
Rodriguez, A. oo
Rodriguez, A. C.....

ROZEIS, J. oo 139
Ryall, Koo 44
Sandberg, J. A C.oooiiiiiniic e 194
Schreiber, A. Th. oo 194
Shadbolt, N. R. oo 100
Shum, S. B oo 30
Sleeman, D......ooiicireccecccerie s 187
Sproat, R 147
Staab, S. oo 76, 155
Stojanovic, N. oo 155
Stuckenschmidt, Ho oo 163
Studer, R oo 155
SUTE, Y o e e 155
Suryanto, Hu ..o 171
ThOmETe, J. (v 22

Vargas-Vera, M. ... 30
WHIE, S. oo 187

Yilmazel, S. ..ot 116

