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Chapter 1 

Introduction 

1.1    Project Goals and Objectives 

Reconfigurable processors consisting of a sea of uncommitted FPGAs offer the same performance 
advantages of custom computing while retaining the flexibility of general purpose instruction 
architectures. In 1996, at the begining of this project, it was predicted that in near future 
reconfigurable processors can offer lOOx performance improvement over contemporary 
microprocessors, and 10-100x reduction in power/gate, 20x progress in density, and l,000,000x 
reduction in reconfiguration time compared to current reconfigurable devices. 

Unfortunately, state-of-the-art design synthesis methodologies were able to use perhaps 50-75% of 
the available gates at 30-50% of the maximum clocking rate of single reprogrammable device and 
were woefully inadequate in synthesizing multi-device systems. In order to deliver the 
performance expectations of reconfigurable architectures, dramatic improvements in the synthesis 
tools were necessary in both directions: (1) ability to synthesize to multiple device architectures, 
and, (2) improvement in utilization and delivered performance of each device. 

The goal of this project was to develop a coherent design synthesis and partitioning environment 
for complete, automated synthesis for reconfigurable processors. 

More specifically, the following goals were established for this project. 

• Development of new architecture-driven algorithms for both temporal and spatial 
partitioning of applications for reconfigurable processors. 

• Development of a tool framework for fully coordinated partitioning-synthesis process and 
integration of existing as well as new tools into this framework. 

• Development of new performance-driven FPGA floor-planning algorithms and new FPGA 
pin-assignment algorithms for efficient physical design of reconfigurable processors. 

• Incorporation of physical synthesis algorithms into behavioral synthesis in order to generate 
highly accurate resource and performance estimates during synthesis. 

• Demonstration of the synthesis environment in conjunction with a low-cost, portable, 
reconfigurable processor specifically developed for this program. 



Based on the Air Force Research Laboratory's objectives stated in the PRDA announcement and 
considering pragmatics of the state-of-the-art in the area we conceived this program with the 
following primary objectives of equal importance: 

• This program shall enhance the state-of-the-art multi-FPGA synthesis tools, developing new 
algorithms where necessary as identified in this proposal, and integrate them into a coherent 
design synthesis environment for complete, automated synthesis for reconfigurable processors. 

• This program shall demonstrate complete, coordinated synthesis capability, combining both 
university and industry tools, for delivering the intrinsic capacity of reconfigurable devices 
outside the device boundaries, at the system reconfigurable system level. 

Unique contributions of this program include, 

• Specific targeting of all the tools to selectively reconfigurable architectures which are most 
suitable for field-deployment in defense applications and which, as explained in the previous 
section, accommodate both static and dynamic reconfigurability. 

• Development of a architecture independent synthesis environment where all of tools accept 
the architecture specification of the reconfigurable processor as an explicit input. 

• Development of a tool framework for fully coordinated partitioning-synthesis process and 
integration of existing as well as new tools into this framework. 

• Development of new architecture-driven partitioning algorithms so as to make the 
synthesis-partitioning process independent of the specific architecture of the reconfigurable 
processor. 

• Development of new performance-driven FPGA floor-planning and placement algorithms 
and new FPGA pin-assignment algorithms for efficient physical design of reconfigurable 
processors. 

• Incorporation of physical synthesis algorithms into behavioral synthesis in order to generate 
highly accurate resource and and performance estimates during synthesis. 

• Demonstration of the synthesis environment in conjunction with a low-cost, field-deployable, 
selectively reprogrammable multi-FPGA architecture, specifically developed for this 
program for a selected avionics application. 

1.2    Summary of Technical Issues 

Following is a summary of key technical issues addressed in the proposed program. 

1. Architecture specification 

Our goal is to develop a synthesis and partitioning environment that is independent of the 
specific architecture of the target reconfigurable processor. Key to this is the ability to 



specify the key components of the architecture in way the tools can make use of them. This 
task deals with the development of a notation for the specification of the target architecture 
to the various tools in our environment. The notation will be VHDL-based and will make 
use of the component declaration and configuration facilities in VHDL. 

2. Architecture-Driven Partitioning 

Partitioning continues to be a key element for any multi-FPGA system. In case of 
reconfigurable processors partitioning has two dimensions: 

• Temporal Partitioning: 

Temporal partitioning deals with the partitioning of a specification into a number of 
ordered subtasks so that the processor needs to be reconfigured between tasks. Recall 
that the selectively reconfigurable architectures offer unlimited resources only a finite 
number of which can be used at any time. The temporal partitioning step divides the 
specification so that each specification segment can be mapped to the processor by 
suitably configuring the FPGAs available. Primary issues to consider in temporal 
partitioning include reconfiguration costs including the temporary memory needed for 
live data storage (context) and reconfiguration time including the time to save and 
restore the context. 

• Spatial Partitioning: 

Spatial partitioning deals with a more traditional task of partitioning a specification 
subtask onto the multiple FPGA resource available in the processor. This is the step 
where the basic reconfiguration sketch of the processor is determined. 

The overall partitioning involves coordination between the temporal and spatial partitioning 
steps. For a given specification, at most one temporal partitioning resulting in a number of 
subtasks is necessary. For each temporal specification segment, a spatial partitioning is 
necessary to determine optimal mapping of the subtask on the FPGAs and hence optimal 
configuration. 

Temporal partitioning yields a reconfiguration schedule that determines when the processor 
will be reconfigured. Spatial partitioning yields a specific reconfiguration bit-streams for 
each reconfiguration step in the reconfiguration schedule. Note that although the 
reconfiguration schedule is statically determined, it is carried-out dynamically during the 
application run-time. Note that both temporal and spatial partitioning should be driven by 
the target architecture specification. 

3. Macro Based Floor Planning and Pin-Assignment 

Two important issues to address during physical design include floor planning and pin 
assignment. As discussed in the previous section, lack of proper floor-planning considering 
the macro-cell structures leads to poor utilization and poor performance. Similarly, lack of 
proper signal to pin assignments at the board level results in poor board-level performance. 
The pin assignment problem is complicated by the existence of certain pre-determined pins 
and signal locations on reconfigurable boards. 

4. High Level and Layout Synthesis Integration 

As noted before, to obtain high-performance designs from high-level synthesis systems, 
physical design automation tools must be integrated within the high-level synthesis flow. 



The key impediment to this is the time consumed for each physical synthesis iteration 
during the high-level synthesis process when a large number of alternative structures are 
considered. Our approach involves complete integration of high level and layout synthesis 
algorithms, by developing light weight versions of layout synthesis algorithms to be 
integrated into the high level synthesis tool. 

Partitioning-Synthesis Interaction 

The question often asked is "Is partitioning first or synthesis first?". Our studies showed 
that there is no answer that fits all specifications. Some (small to medium scale) 
specifications can be more effectively partitioned at the RTL/gate levels whereas some 
(relatively large scale) specifications can be more effectively partitioned at the behavior 
level. It is however clear that regardless of when partitioning is done, it should effectively 
interact with the subsequent synthesis step and vice-versa. It is best to view partitioning 
and synthesis as integrated within the single task of evolving the best hierarchical structure. 

1.3    Description of Tasks 

The following specific tasks constituted the statement of work: 

1. RC Architecture Specification Style 

Develop a style for specification of selectively programmable reconfigurable computer 
architectures. 

2. Temporal Partitioning 

Develop temporal partitioning algorithms for VHDL specifications of reconfigurable 
computer applications. 

3. Architecture-Driven Spatial Partitioning 

Develop architecture-driven spatial partitioning algorithms, including pin-assignment, for 
reconfigurable computer applications. 

4. Partitioning with Synthesis 

Integrate the spatial and temporal partitioning algorithms with light-weight synthesis 
algorithms, at behavioral, RTL and gate levels. 

5. High-level Synthesis with Physical DA 

Integrate high-level synthesis algorithms with light-weight layout synthesis algorithms. 

6. Light-weight versions of Existing Synthesis Algorithms 

Develop light-weight versions of existing synthesis algorithms (behavioral, layout and logic) 
suitable for embedding within other synthesis/partitioning programs. 

7. RC and FPGA Floor-Planning 

Develop algorithms for single and multiple FPGA floor planning taking performance 
considerations into account. 



8. Portable RC Development for Demonstration 

Develop the portable reconflgurable computer system hardware for demonstration purposes. 

9. Prototype Software Development, Testing and Documentation 

All algorithms, techniques and tools shall be implemented on standard Unix workstations, 
primarily in C and C++. 

1.4    Overview of the Report 

This is a comprehensive final technical report on the "Computer Aided Engineering for 
Reconflgurable Computing (CAERC)" project. This report is divided into the following chapters: 

1. Reconflgurable Computing (RC) architecture Specification Style in VHDL 

Chapter 2 describes the Unified Specification Model (USM) developed for specification of 
Reconflgurable Computing (RC) computations. 

2. Temporal Partitioning 

Chapter 3 describes the research on temporal partitioning of an application for mapping to 
a reconflgurable architecture. 

3. Architecture-Driven Spatial Partitioning 

Chapter 4 describes methods for architecture-driven spatial partitioning for reconflgurable 
computing applications. 

4. Partitioning with Synthesis 

Chapter 5 describes methods for integrating partitioning with synthesis at the behavior 
level. 

5. Light Weight Versions of Existing Synthesis Algorithms 

Chapter 6 describes light weight synthesis algorithms for use in performance estimation 
during partitioning. 

6. RC and FPGA Floor Planning 

Chapter 7 describes floor planning techniques for reconflgurable architectures. 

7. Portable RC Development for Demonstration 

Chapter 8 describes the Portable and Reconflgurable Computer (PARC) architecture. 

8. Prototype Software Development, Testing and Demonstration 

Chapter 9 describes the SPARCS (Synthesis and Partitioning for Adaptive, Reconflgurable 
Computing Systems) system software. SPARCS is an implementation of the various 
algorithms and techniques developed in this research. 



Chapter 2 

RC Architecture Specification Style in 
VHDL 

2.1    Introduction 

This chapter describes the specification of an application in the RC framework1. The specification 
language used to model an application is very important since it molds the application in a way 
such that synthesis tools can process it. Furthermore, a good modeling language exposes many 
characteristics of the application: parallel threads of execution can be neatly presented, data 
structures readily formed, etc. In memory synthesis, the requirements of an efficient modeling 
language include being able to introduce address generation logic without intrusive modifications. 
Once data structures of the application are mapped to memory banks of the hardware, the 
process of adding address generation logic and arbitration mechanisms should be straightforward. 
Also, for memory synthesis, a succinct representation of the variables and data structures of an 
application is essential. In order to map data structures of the application onto banks of the RC, 
data structures should be extracted from the application and presented in a form suitable for 
synthesis. 

For the memory assignment problem described in this chapter, a hierarchical representation of an 
application can capture the implicit parallelism of computational tasks in the design while hiding 
the flow of each task's control thread. Furthermore, this hierarchical representation successfully 
captures the relationship of computational tasks with the variables of the design. 

The hierarchical representation presented in this chapter consists of two specification styles (an 
illustrative example is shown in Figure 2.1): 

• Fine-grain representation: First, each computational task is represented in the Behavior 
Blocks Input Format (BBIF). This model, illustrated in Figure 2.1a is a hierarchical Control 
Data Flow Graphs (CDFG) representation that captures the behavior of computations. 
Section 2.2 further describes the BBIF format and Appendix A provides further formal 
definitions. 

'This work was done in conjunction with the SPARCS [26] research team. 



Computational 
"■•-... Task 

Computational 
Task 

a) BBIF Specification b) USM Specification 

Figure 2.1: Hierarchical Modeling 

Coarse-grain representation: Second, the overall flow graph is represented in the Unified 
Specification Model (USM) format. The USM, illustrated in Figure 2.1b captures the 
concurrency and coordination model of a design in a style compatible with hardware 
description languages such as VHDL. Section 2.3 defines the USM format. 

2.2    BBIF Specification 

A computational model is needed to capture the behavior of the fine-grain level of parallelism in a 
design. The Behavior Blocks Input Format (BBIF)[49] is a hierarchical CDFG representation 
with features well-suited for High-Level Synthesis. A BBIF model represents a behavioral task 
with a single thread of control. The BBIF is organized as a list of behavior blocks, where the data 
flow and computations are captured within each behavior block, while the control flow is captured 
at the inter-block level. The task interacts with the environment through design input and output 
ports that are visible across all behavior blocks. The control flow starts at the first behavior block 
and transfers from one block to another through the branch construct provided at the end of each 
block. The branch statement specifies either an unconditional transfer to a single successor block 
or a conditional transfer to one of the series of successor blocks. 

In conjunction with the USM specification presented in the next section, the BBIF specification 
provides a modeling environment in which inter-task as well as intra-task parallelism can be 
efficiently expressed. 

The USM specification, presented in Section 2.3, plays an important role since the memory 
mapping problem is concerned with the inter-task interface and protocol. BBIF definitions and 



notations are provided in Appendix A. A formal and more detailed description of the BBIF 
model is provided in [49]. 

2.3    USM Specification 

2.3.1    Introduction 

This section proposes a Unified Specification Model (USM) of concurrency and coordination 
compatible with VHDL. The specification model embodies a uniform treatment of computation, 
communication channels, and memories, facilitating its use across a variety of synthesis 
applications. We discuss synthesis semantics of the USM representation and the advantages of the 
USM synchronization model in comparison to similar VHDL motivated representations. 

VHDL has been used for behavior level specifications for a variety of high-level synthesis tools, 
hardware-software co-synthesis systems, and adaptive system synthesis environments. VHDL 
provides a rich set of high-level constructs to permit succinct specification of concurrent and 
coordinating processes. A variety of intermediate representations [10, 75, 72, 41, 54, 2] have been 
proposed to capture various specification elements in VHDL in a form suitable for further 
processing during synthesis. These include data-flow graphs (DFG), mixed control-data flow 
graphs (CDFG), timed decision tables (TDT), and various flavors of graph-based and table-based 
formalisms sometimes augmented with global flow information such as module call graphs 
(MCG). Although many of these representations share common features, they also have 
application-specific features that inhibit their use across various types of synthesis systems. 

This section presents an overview of the Unified Specification Model, and provides insight on 
compatibility with VHDL. 

The USM representation can be used for: 1) high-level VLSI synthesis [32] where the goal is to 
synthesize a CMOS ASIC; 2) hardware-software co-synthesis [62] where the target architecture 
contains a general-purpose processor to implement software tasks and a coprocessor to implement 
the hardware tasks; and 3) adaptive system synthesis [26] where the target architecture is a 
dynamically reconfigurable multi-FPGA board with both local memories for each FPGA and a 
shared memory, and a crossbar type communication fabric. 

In the next sections, we present a detailed description of the Unified Specification Model and its 
semantics. 

2.3.2    Unified Specification Model 

The Unified Specification Model is a hierarchical representation for specifying the behavior of a 
design. The designer can also specify the behavior of the environment in which the design is to 
execute. A USM example is shown in Figure 2.2. At the highest level of the USM are two types of 
objects called tasks and memory segments. Tasks in the USM represent elements of computation 
and memory segments represent elements of data storage. Tasks are classified into design tasks 
and environment tasks. Environment tasks are written primarily to specify the I/O model 
between the design tasks and the environment. Hence, design tasks are those that are synthesized 
and environment tasks are only used to extract information about the I/O interface and protocol. 
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Figure 2.2: USM Task Graph Example 

All tasks in the USM axe simultaneously executing so as to model concurrency. USM objects 
(tasks and memory segments) can be connected through edges that are either channels or 
dependencies. USM allows the specification of dependencies among tasks in order to represent 
coordination. Channels are used to represent inter-task and task-to-memory communications. 

In the following paragraphs, we will present the semantics of the memory segments, 
communication channels, dependencies, and finally present a detailed description of how the 
computation within a task is specified in the USM. 

Memory segments 

A memory segment is an element of storage whose size and word length are defined by the user. 
A memory segment can be declared as being local to a task (M3 in Figure 2.2), or shared between 
multiple tasks (Ml in Figure 2.2). Both environment and design tasks have access to memory 
segments. 

When a memory segment is used by more than one task as a means of transferring data from one 
task to another (i.e. one task is writing to and another is reading from the memory segment), the 
designer is responsible for synchronizing the tasks using dependencies. However, if multiple tasks 
are accessing different areas of the same segment, or if the tasks are only reading from the 
segment, no synchronization is required. It is assumed that the synthesis process would introduce 
memory arbitration between the tasks whenever needed. This way, the designer need not worry 



about resolving conflicts between memory access operations. This keeps the design 
architecture-independent: the synthesis process can map the memory segment to a physical 
memory that has either one port or multiple ports; Also, the synthesis process can map multiple 
memory segments to the same physical memory. Memory segments are easily implemented in 
VHDL as local or shared variable arrays. 

Communication channels 

Channels provide the means of communication between tasks (environment as well as design 
tasks), and between tasks and memory segments. Depending on the bitwidth required between 
source and destination, the designer must fix the size of the channel. Between each pair of 
communicating objects, one or more channels could be used. However, the design should not 
share the same channel across different pairs of objects. Again, if the synthesis process decides to 
share channels due to resource constraints, then it will automatically identify those channels and 
provide arbitration. This simplifies the task of the designer since manual introduction of 
arbitration mechanism for shared channels is not required. 

A communication channel used by the designer is unidirectional. However, since synthesis tools 
might introduce channel sharing, a physical channel might be bi-directional. 

In VHDL, when implementing USM channels, signals with the appropriate bitwidths can be used. 

Dependencies 

Dependencies are used as means of providing explicit synchronization for data and control flow 
between tasks. A dependency is a directed control line from a source task to a destination task. 
The semantics of a dependency edge implies that a destination task waits until its corresponding 
source tasks initiate its execution. Source and destination tasks can be cither environment or 
design tasks. There can be multiple destination tasks dependent on a source task through a single 
dependency edge. However, a task may be dependent on several tasks through separate 
dependency edges. The flow of task execution is captured by the dependencies in the task graph. 
More accurately, the role of a dependency edge is two-fold: it provides synchronization between 
one-time executing tasks, and provides synchronization mechanism between tasks involved in 
loops. The following two paragraphs present the semantics of these dependencies. 

Synchronization using dependencies:    Dependency edges provide a way of synchronizing 
task execution. This is equivalent to synchronizing data transfer from one task to the other. A 
1-bit control flag is associated with each dependency edge. This synchronization mechanism 
allows tasks to start execution irrespective of the status of other tasks executing in parallel. 

A dependency edge used to order execution of tasks is shown in Figure 2.3 and a dependency edge 
used to synchronize data transfer is shown in Figure 2.4. In the example shown in Figure 2.3, task 
T2 waits for the completion of task Tl before it begins execution. Whereas in Figure 2.4, task T2 
waits for task Tl to write a value into the channel cl2. In these figures, notice that the constructs 
Raise()/IsRaised() are used to set/check the value of the control flag. In order to synchronize two 
tasks, the source task invokes the Raised() construct on a flag, whereas the destination task waits 
in a loop invoking the IsRaisedQ construct on the same flag. 
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TaskTl 

{ 

while not (IsRaised(fl)) nop; 

Raise(f2); 

} 

Task T2 

{ 
while not (IsRaised(f2)) nop; 

Raise(ß); 

} 

Figure 2.3: Synchronization of Task Execution 

This synchronization mechanism ensures that the destination task waits until the source task 
triggers its execution or that the data is ready for consumption. Note that this type of 
dependency edge also allows the conditional execution of tasks. For example in Figure 2.5, the 
source task Tl raises either flag fl2 or fl3 based on a condition. Therefore, tasks T2 and T3 are 
conditionally dependent on Tl. 

Conditional dependencies imply that a destination task need not finish execution but may wait 
indefinitely. Hence, the execution semantics of the USM is defined as follows: The execution cycle 
for a collection of tasks is defined to finish when all the tasks are indefinitely waiting. The model 
assumes that there is an indefinite wait at the end of each task. 

In VHDL process synchronization, all tasks have to arrive at a wait state before waiting tasks can 
be triggered. However, in USM, the triggering mechanism is not based on the wait command, 
instead, each pair of tasks has its own busy-wait synchronization procedure. This allows multiple 
processes to run concurrently without the need for global synchronization. On the other hand, 
this busy-wait procedure can be easily implemented in VHDL. For simulation purposes, a 
busy-wait can be replaced by a simple VHDL wait without loss of functionality. 

Loops using dependencies: Dependency edges are also used to implement loops in a task 
graph. Since tasks involved in loops might execute more than once, a mechanism is needed to 
ensure proper inter-task synchronization. 

The (Raised(), IsRaised()) mechanism explained in Section 2.3.1 is not adequate to represent a 
loop dependency. This is because there is no control on the number of times a destination task 
might execute: Once the flag it is waiting on is raised, a destination task might start executing its 
first iteration and then incorrectly proceed to a subsequent iteration since the flag might still be 
raised. A solution to this problem is to provide a dependency based on a flag that is toggled each 
time the source needs to trigger. 

11 



Task Tl 
{ 

cl2<=x; 
Raise(fl); 

i 

Task T2 
{ 

while not (IsRaised(fl)) nop; 
y<=cl2; 

} 

Figure 2.4: Synchronization of Data Transfer 

fl3 

TaskTl 
{ 

if(...)thenRaise(fl2); 
else Raise (f 13); 

} 

Task T2 

} 

while not (IsRaised(fl2)) nop; 
.. body of T2... 

Task T3 
{ 

while not (IsRaised(fl3)) nop; 
... body of T3 ... 

Figure 2.5: Conditional Task Execution 
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TaskTl 

{ 
for(...)do 
{ 

fl2 = not(fl2); 

while (f31=old_f31) nop 
old_f31=not(old_Gl); 

} 
Raise(f4); 

Task T2 

loop forever 

while (fl2 = old_fl2) nop; 
old_fl2 = not(old_fl2); 

f23 = not(f23); 

Task T3 
{ 

loop forever 
{ 

while (f23 = old_f23) nop; 
old_f23 = not(old_f23); 

f31=not(f31); 

} 

Figure 2.6: Loop Dependencies 

Hence, to synchronize two tasks involved in a loop, a toggling dependency edge is used. Each 
destination task should not only wait on the value of the flag but also on the event on the flag. 
Thus, it is imperative for the destination task to keep track of the old value of the control flag. 
This is advantageous since only a single bit value has to be passed between the source and the 
destination tasks. 

As a result, instead of using two dependency edges (with the Raise/IsRaised mechanism) to 
ensure proper execution of loops, a toggling dependency edge solves the problem by introducing 
only one flag (instead of two) and a local storage bit in the destination task. 

Figure 2.6 shows an example of a loop involving three tasks: Tl, T2, and T3. The control flows 
into Tl through the dependency fl. Tl triggers T2 for a number of times specified by the for loop 
inside Tl, after which it raises flag f4 and stops. Task T2 is in turn dependent on Tl and will 
only be triggered by flag fl2 originating in Tl. Similarly, T3 is dependent on T2 through flag f23. 
Finally, T3 triggers the next iteration of Tl through flag f31. 

Clearly, for a dependency edge involved in a loop, one 1-bit control flag is still needed but an 
additional 1-bit storage in each destination task is required. Note that, initially, the value of the 
control flag and all corresponding 1-bit storage flags should be the same (either 0 or 1). 

Tasks 

A Task (shown in Figure 2.7) consists of a set of inputs and outputs which can be flags, shared 
memories and channels, some of which representing design I/O, and a set of local storage 

13 



Figure 2.7: Task Model 

elements that are variables/constants, local memories, or flags. Flags, as mentioned before, are 
special storage elements used to represent inter-task dependencies. 

Computations within a task are represented as a Control Data Flow Graph (CDFG). The CDFG 
is a directed acyclic graph where the nodes represent operations and the edges represent 
data/control flow. A node in the CDFG can be represented by a 4-tuple given as: 

< name, inputset, outputset, data-dependency set > 

The name denotes the ID of the operation, the input_set is the set of all storage elements input to 
the node, the output-set is the set of all storage elements output from the node, and the 
data-dependency_set consists of the set of all source nodes that a node depends on. 

The entire CDFG can be built in a two-step process. A flow graph from the source language can 
be first generated and, after a detailed dependency analysis, a dependency graph can be 
generated. In the case of a flow graph, the input and output sets of the nodes are formed and the 
dependency sets of the nodes are empty. 

An example flow graph and a corresponding input specification are shown in Figure 2.8. The 
edges in the graph are annotated by the storage names that they represent. 

The nodes in a CDFG can be broadly classified into these two types: 

•  Control Nodes: These nodes are used to represent the flow of control and the CDFG is 
organized as a collection of control nodes connected by control edges. Conditional 
constructs such as if-then-else and case are represented using the SELECT - END .SELECT 
node pairs. The WUR (wait until raised) and WUL (wait until lowered) nodes are used to 
represent inter-task dependencies. The LEAVE node is used to represent the exit point from 
loops. Further an operation subgraph can be encompassed within a 
BEGIN_CONTROLJBLOCK - END_CONTROL_BLOCK node pair. The semantics of these 
will be become clear in the following section. 
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Figure 2.8: Example Flow Graph 

• Simple Nodes: These represent relational, arithmetic, and logical operations. They are 
binary operations and an expression can be decomposed into a tree of nodes as shown in 
Figure 2.8. Also, a ST node is used to represent the assignment of a value to a storage 
element. 

The flow graph shown in Figure 2.8 captures only the flow of data, but fails to capture all the 
concurrencies among the operations. This can be done by performing a detailed dependency 
analysis. 

Dependency analysis    The edges in the CDFG represent dependencies among the nodes. 
Dependencies can broadly be classified as: data and control dependencies. Data dependencies 
capture the flow of data and hence the order of execution assignment statements. Control 
dependencies capture the semantics of sequencing, conditional, and loop constructs. Both these 
dependencies should be properly represented in a correct CDFG representation. 

A data_dependency_set is a set of 2-tuples, (n,d) where n is an ancestor node and d is one of the 
three types of data dependencies (described below) between the two nodes. In the following 
paragraphs we will discuss data and control dependencies in some detail. [2] provides a more 
detailed discussion on dependencies in programming languages. 

Data Dependencies: Given any two operations represented by nodes Nl and N2, where Nl is a 
predecessor or ancestor of N2 in the flow graph, we say that: 

iV2 is flow dependent on Ni if outputset(Ni) n inputsetföz) ^ 0 (2.1) 
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N2 is anti dependent on N\ if inputset{N\) n outputset{N2) # 0 (2.2) 

N2 is output dependent on iV~i if output „set{N{) n outputset{N2) ^ 0 (2.3) 

A data dependency is said to exist between two nodes in the operation graph if any of the above 
three types of dependencies holds between them. These dependencies can be extracted from 
VHDL variable assignment statements. Consider a VHDL specification where A and B are any 
two sequential variable assignment statements with A occurring before B. B is said to be flow 
dependent on A if a variable that is written to in A is read in B. On the other hand, if the 
variable is first read in A and later written to in S, then B is said to be anti-dependent on A. If 
the same variable is written to in both A and B, B is said to be output dependent on A. 

Control Dependencies: Gajski, Dutt, and Wu in [10] proposed a way to handle control constructs, 
by mapping a control-flow representation to an equivalent data-flow representation. This has the 
advantage of making the concurrencies in the design explicit but generates a complicated graph 
representation that could get too large and has little correspondence to the original specification. 
In this section, we will describe a representation that efficiently incorporates control constructs 
and alleviates some of the problems that arise in a pure data flow style representation. 

We will handle control dependencies with the aid of the control block demarcated by 
BEGIN.CONTROLJBLK - END_CONTROL.BLK node pairs. A control block is a suitably 
chosen subgraph of an operation flow graph with no other control nodes in it. Thus, edges within 
a control block always denote data flow. A control block is said to have executed if the control flow 
reaches its END_CONTROL_BLK node. Control flow enters a control block only after all previous 
control blocks have executed. 

We can thus view the CDFG of any specification as a series of control blocks. A control block 
automatically enforces a control dependency, and thus reduces the overhead of maintaining input, 
output, and dependency sets of the nodes in the operation graph. This simplifies, to a large 
extent, the complexities involved in generating dependencies although there is some loss in 
exploiting to the fullest the concurrencies present in the design2. 

The dependency graph for the VHDL specification of Figure 2.8 after dependency analysis is 
shown in Figure 2.9. Observe the differences between this representation and the earlier flow 
graph representation. The subgraphs enclosed by dashed lines show the control blocks. The WUR 
node specifies a control boundary. Therefore the control block encapsulating the first subgraph 
ends before the WUR node and the second subgraph falls within a new control block. The control 
block ensures that all preceding nodes are executed before the WUR node is executed and all 
succeeding nodes are executed only after the WUR node is executed. The operation graph 
correctly detects dependencies between nodes otherwise missed by the flow graph representation. 

From the flow graph in Figure 2.8, it appears that nodes n4 and n6 can be executed in parallel 
but the anti-dependence between them is clearly captured in the dependency graph in Figure 2.9. 
Further, output dependency between nodes nl and n6 now enforces an order in their execution, 
even in the absence of node n4- On the other hand, no order is specified in the execution of the 

2This loss can be recovered to a large extent by the use of suitable behavioral transformations that facilitate code 
motion across control blocks [18] 
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Figure 2.9: Dependency Graph 

nodes in the set {nl, n2, nS} and in the set {n4, n5}. As a result, the nodes in each of these sets 
can be executed in parallel. Thus, dependency analysis serves to faithfully capture the semantics 
and the concurrencies in the specification. 

In the following sections we will explain in some detail the translation of conditionals, loops, and 
wait constructs into a CDFG. 

Translation of Conditionals, Loops, and Wait Constructs    Conditionals: The most 
popularly used conditional constructs are the 'if-then-else' statement and the 'case' statement. 
These two are easily translated with the help of control blocks, the semantics of which was 
explained earlier in Section 2.3. 

Case Statement: A typical case statement is shown in Figure 2.10(a). The translated operation 
graph of the case statement is shown in Figure 2.10(c). The case statement is translated into an 
expression tree followed by a SELECT node whose input set has the final data flow edge in the 
expression tree. Therefore, the select node is flow dependent on the final node of the case 
expression tree. The select node has several branches with a set of select values for each branch. 
The control flows only into that branch whose set of values match with the result of the case 
expression. The select node in an operation graph represents this comparison operation that 
determines the choice of the branch for control flow. 

The statements in a case branch are translated into a subgraph, which is enclosed in a control 
block, as shown in Figure 2.10. 
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Figure 2.10: Conditional Constructs 

Therefore, the select node corresponding to a case statement would have as many branches as are 
in the case statement, each branch having a control block. This ensures that the case expression 
and the branching operation (represented by the select node) are executed before control can flow 
into any one of the branches. This enforced control dependency also helps in restricting data 
dependency analysis within each branch. 

If-then-else Statement: A typical 'if-then-else' statement is shown in Figure 2.10(b). An 
'if-then-else' statement can be treated as a case statement with two branches and the case 
expression replaced by the conditional-expression. The select values for the first and the second 
branches are the Boolean constants TRUE and FALSE, respectively. Any other kind of branching 
constructs like the 'if-then-elsif-elsif-else-end if construct can be transformed into an 
'if-then-else' statement, the else part of which having another 'if-then-else' statement. 

Loops: Loops are usually of three types. The infinite loop with no loop condition, the 'for' loop, 
and the 'while' loop. All three loop variations can be represented by the generic form shown in 
Figure 2.11. 

We will now describe the translation for the generic loop statement whose operation graph is 
shown in Figure 2.11. The loop condition is translated into an expression tree followed by a select 
node whose input is the resulting edge of the tree. The select node has two branches: (1) The 
true select branch has the subgraph for the loop-body enclosed in a control block. (2) The false 
select branch has a LEAVE node within a control block. These control blocks ensure that the 
loop condition evaluation takes place before the control flows into any of these branches. 
Semantics of the loop-block imply that control flow keeps looping inside until the loop condition 
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Figure 2.11: Loop Statement 

evaluates to false and the leave node is reached. 

Wait: The WaitJJntilJRaised (WUR) and WaitJJntilXowered (WUL) are implemented as 
follows: 

WUR(flag) = while (not(IsRaised(flag))) nop; 

WUL(fiag) = while (IsRaised(flag)) nop; 

Essentially, both the waits are special cases of the loop construct, where the loop condition 
subgraph has a simple comparison operation for the raised/lowered value of the flag, and the 
subgraph for the loop body is empty. 

2.3.3     Summary of USM Specification 

In this section, we presented an overview of the Uniform Specification Model. The USM provides 
a hierarchical representation to succinctly capture inter-task level control and dataflow, as well as 
intra-task operation-level dependencies. More importantly in this work, the USM allows easy 
representation of the data structures in an application and provides a good memory synthesis 
environment. Data structures are clearly delimited and defined in the USM; resource arbitration 
is easily achievable in the USM; and the USM allows memory mapping across different levels of 
design abstraction. The BBIF along with the USM specification styles provide an adequate 
environment to clearly characterize data structures of a design and allow efficient mapping and 
synthesis. 
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Chapter 3 

Temporal Partitioning 

3.1    Introduction 

Reconfigurable Field Programmable Gate Arrays (FPGAs) [29, 28, 88] built of SRAM-based logic 
provide designers with flexible computing systems. In these devices, the state of the internal static 
memory cells determines the logic functions and interconnections resident within the FPGA 
device. This uncommitted array of programmable logic and interconnect on these devices allows 
reconfiguration between algorithm implementation on the devices. This advantage of FPGAs over 
Application Specific Integrated Circuits (ASICs) allows the user to use the same circuitry for 
completely different algorithms by configuring the device between applications. This design 
approach is generally referred to as Compile-Time or Static Reconfiguration [89]. Statically 
configured FPGAs have been used successfully in the rapid prototyping of designs [90, 91]. The 
long fabrication times associated with ASIC design is eliminated. But the device capacity of 
FPGAs is far less than that of ASIC chips. Therefore, when synthesizing large designs on FPGAs, 
usually multi-FPGA boards are used to increase device capacity. This necessitates spatial 
partitioning of the application. In this style of static FPGA design, the FPGA is configured once 
at the start of the application, and the same configuration continues till the execution ends. 

However, by extending the idea of reconfiguration to intra-application reconfiguration an 
application which does not fit on the device is divided into multiple segments and multiple 
configurations of the same application are loaded at run-time. This technique is referred to as 
Run-Time or Dynamic Reconfiguration (RTR) [89]. Current design tools provide support for 
static reconfiguration, but little tool support exists for dynamic reconfiguration. 

When a design is partitioned into mutually exclusive partitions that will execute serially on the 
reconfigurable processor, the design uses Global Run Time Reconfiguration. All modern FPGAs, 
whether fully (XC4000, XCV000) or partially (XC6200, XCV000) reprogrammable, can support 
this reconfiguration step. In partially programmable FPGAs the inactive parts of the FPGA can 
be reconfigured at run-time even while other parts of the FPGA are active. This flexibility of 
partial reconfiguration can be exploited in a design approach where subsets of the application are 
reconfigured as the application executes. This can reduce the time to reconfigure the FPGAs by 
making it possible to load only the necessary parts of the FPGA. However this increased 
flexibility also introduces a lot of complexity in the CAD process needed to design applications for 
such a design style. 
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The temporal partitioning approach that we have undertaken focuses on generating global run 
time reconfigured designs from behavior specifications of the design. We perform run time 
reconfiguration in which the entire device is reprogrammed at the boundaries of the temporal 
segments and data is passed from one temporal segment to the next through a RAM which is not 
part of the reconfigurable logic. Due to this, structural design is not necessary; behavioral 
synthesis can be effectively used. 

A shortcoming of current automated temporal partitioning techniques is that they choose the 
underlying implementation of the components of their design before partitioning is performed. 
Since there are multiple implementations of the components of the designs that  vary in the 
area/delay, it would be more effective to choose the design implementation while partitioning the 
design by exploring different design options. The search of the design space while partitioning 
would lead to better partitioned designs. 

Due to very high reconfiguration overheads for commercially available reconfigurable hardware, 
existing automated temporal partitioning techniques [139, 95, 99, 104, 107] usually focus on 
reducing the latency of the temporally partitioned design by minimizing the number of temporal 
partitions in the design. But, many DSP applications process an infinite or semi-infinite stream of 
input data. We will demonstrate that the design with minimum latency may not be the best 
overall solution if we can process multiple inputs on each temporal partition. This technique, 
called block-processing can be used to reduce the the reconfiguration overhead. 

If the reconfiguration overhead is ignored, the latency of a temporally partitioned design is 
usually less than the latency of a static design due to the larger area available. But since the 
reconfiguration overhead is an important factor in determining the run time of a design, an RTR 
system may perform poorly as compared to a static design if the reconfiguration overhead 
dominates the execution time of the design. To overcome the effects of high reconfiguration 
overhead, we demonstrate [105] how block processing can be introduced at a post-processing step 
after temporally partitioning a design to increase the throughput. In the current work, we develop 
a temporal partitioning technique to incorporate block-processing and design space exploration 
and demonstrate how this integrated processing can be used to search for optimal temporally 
partitioned designs. In this chapter, an Integer Linear Programming (ILP) based integrated 
temporal partitioning and design space exploration technique forms a core solution method. For 
small sized design problems we solve the ILP model to obtain an optimal solution, and we 
demonstrate the effectiveness of our technique with experimental results. To handle large design 
problems with our technique we also present an iterative refinement procedure that iteratively 
explores different regions of the design space and leads to reduction in the execution time of the 
partitioned design. The ILP based integrated temporal partitioning and design space exploration 
technique forms a core solution method which is used in a constraint satisfying approach to 
explore different regions of the design space. Again, we demonstrate the effectiveness of this 
technique with experimental results. 

We present the motivation of our work in Section 3.2, previous work in Section 3.3, the design 
flow of our tool in Section 3.4, the architecture model, design process model and memory model 
in Section 3.5, the ILP model, the optimal search algorithm and its results in Section 3.6, the 
iterative algorithm and its experimental results in Section 3.7, results on random graphs and 
comparison with other works in Section 3.8, some discussions on extensions and limitations in ■ 
Section 3.9, and the conclusions in Section 3.10. 
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3.2    Motivation 

In the following discussion we present the problem of task level design space exploration in 
temporal partitioning and how its integration with block-processing techniques can improve the 
execution time of an RTR design. 

Input Specification as Task Graphs: Growing design complexity has led designers to 
generate designs at higher levels of abstraction, such as the behavior level. The designer can 
concentrate on the required behavior of the application, rather than its implementation. Also 
simulation at behavior level is much faster than Register Transfer level (RTL) or gate level 
simulation. In this chapter, we concentrate on behavior level design descriptions to be temporally 
partitioned. We assume the input specification to be a task graph, where each task consists of a 
set of operations. Task boundaries can be given by the designer or, tasks can be automatically 
derived from the behavior specification by clustering or template extraction techniques [110]. Our 
approach can handle tasks of any level of granularity. 

Design Alternatives for Tasks: Depending on the resource/area constraint for the design, 
different implementations of the same task which represent different area-time tradeoff points can 
be contemplated. These different implementations are design points/Parcto points [113] in the 
design space of a task. In Figure 3.1, a task and two different implementations of the task are 
represented. Design Point 1 uses two adders and four multipliers, and is scheduled in two control 
steps. Design point 2, on the other hand uses less resources and more control steps. If a task is 
implemented with less resources then the operations in the task will be executed serially, thus 
increasing the latency of the task. On the other hand, an implementation with more resources 
reduces the latency but increases the area. Choosing the best design point for each task may not 
necessarily result in the best overall design for the specification. The most optimal point for a 
task in the context of optimizing the overall throughput of the design will depend on the 
architectural constraints of the reconfigurable hardware and the dependency constraints among 
the tasks. In the subsequent discussion we will express the latency of a design point in terms of 
total execution time and not in number of clock cycles. 

If the number of design alternatives for a task are too many, then exploring the large design space 
can become too computationally expensive. In such cases, a few 'candidate' design points must be 
obtained by effective design space pruning techniques, such as discussed in [110]. Since there is a 
gap between the behavior description and the final synthesized design, it is important that we 
have accurate synthesis estimates for the tasks. As the size of a task in the task graph is quite 
small, we use sophisticated High-Level Synthesis estimators which incorporate layout estimation 
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techniques. Such partitioned designs, can then be predictably taken down to the actual FPGA 
layout [100, 44]. 

Block-Processing in Temporally Partitioned Designs:    In many application domains eg., 
Digital Signal Processing, computations are defined on very long streams of input data. In such 
applications an approach known as block-processing is used to increase the throughput of a system 
through the use of parallelism and pipelining in the area of parallel compilers [114] and VLSI 
processors [115]. Block-processing is not only beneficial in parallelizing/pipelining of applications, 
but in all cases where the net cost of processing k samples of data individually is higher than the 
net cost of processing k samples simultaneously. We can also apply the concept of 
block-processing to a single processor reconfigurable system to speedup the processing time. 

Figure 3.2 illustrates the use of block-processing to speed up computation in a temporally 
partitioned design. The task graph consists of 4 tasks A, B, C, D. It is partitioned into two 
temporal partitions as shown in Figure 3.2(b). The latency of temporal partition 1 is 50 ns and of 
partition 2 is 80 ns. The reconfiguration time is 500 ns. The latency of the design is 
50+500+80+500 = 1130 ns. A single iteration of the task graph executes in 1130 ns. Now three 
iterations of this temporally partitioned design will take 3x1130 = 3390 ns. However if we perform 
block-processing by sequencing all 3 computations on each temporal partition, the time taken for 
the execution is (50+50+50)+500+(80+80+80)+500 = 1390 ns. Thus block-processing amortizes 
the reconfiguration overhead over the 3 computations. Block-processing is possible only for 
applications that process a large stream of inputs. We represent such applications by a task graph 
having an implicit outer loop as shown in Figure 3.2(a). Note that block-processing is possible if 
there are no dependencies among the computations for different inputs. In compiler terminology 
this means there should be no loop-carried dependencies due to the implicit outer loop, among 
different iterations of this loop. In this chapter, we deal with applications for which no 
dependencies among computations is present. Most DSP applications such as Image processing, 
Template Matching, Encryption algorithms etc. fall in this category. The examples investigated 
in the RC community include DCT, FFT, DFT, FIR filter and various image averaging, 
smoothing and filtering algorithms. Also many matrix based computations eg. LU Decomposition 
for solving linear equations, polynomial interpolation, extrapolation etc. are acyclic in nature. 

Integrating Design-Space Exploration and Block-Processing in Temporal 
Partitioning: For FPGA based architectural synthesis, the constraints of area of the FPGA in 
terms of CLBs (Configurable Logic Blocks)/FGs (Function Generators) and memory are to be 
met by the partitioned design. The design alternatives or solutions will vary in the number of 
temporal partitions and the latency of the partitioned design. For the spatial partitioning problem 
(partitioning of the design for a fixed number of co-existing FPGAs on a board), increasing the 
number of partitions has the effect of increasing the overall area for the design, and directly affects 
the latency of the design. Increasing the area, generally increases the number of operations that 
can execute in parallel (if no dependency constraints exist) and thus decreases the latency of the 
design. However, for a temporal partitioning system, increasing the number of partitions increases 
the area available for the design, but this increase is 'over time' and not 'over space'. This increase 
in number of partitions may or may not result in the reduction of the latency of the design. 

When the reconfiguration overhead is very large compared to the execution time of the task it is 
clear that minimizing the number of temporal partitions will achieve the smallest latency in the 
overall design. In the resultant solution each task will usually be mapped to the smallest area 
design point among the set of design points for a task. However, it is not necessary that the 
minimum latency design is the best solution. We illustrate this idea with an example. In the 
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Figure 3.3: Design space exploration 

Figure 3.3(a) a task graph is shown. Each task has two different design points on which it can be 
mapped. Two different solutions (b) and (c) are shown. If minimum latency solution is required 
then solution (b) will be chosen over solution (c) because the latency of (b) is 500.3 /x sec and 
latency of (c) is 1000.12 /i sec. Now, if we use (b) and (c) in the block-processing framework to 
process 5000 computations on each temporal partition, then the execution time for solution (b) is 
2000 fi seconds and for solution (c) is 1600 fi seconds. Therefore if we can integrate the knowledge 
about block-processing while design space exploration is being done, then it is possible to choose 
more appropriate solutions. 

The price paid for block-processing is the higher memory requirements for the reconfigured design. 
We call the number of data samples or inputs to be processed in each temporal partition to be the 
the block-processing factor, k. This is given by the user and is the minimum number of input data 
computations that this design will execute for typical runs of the application. The amount of 
block-processing is limited by the amount of memory available to store the intermediate results. 

3.3    Previous Work 

Design for reconfigurable architectures involves temporal and spatial partitioning and synthesis 
[100]. There has been significant research on spatial partitioning [101, 102, 103] and synthesis 
[44, 111], though the research on temporal partitioning is in a nascent stage. Currently many 
designers perform temporal partitioning manually [92, 93] or the designer needs to specify the 
partitioning points of the application to the partitioning tool [96]. Luk, Shirazi and Cheung [97] 
take advantage of the partial reconfiguration capability of FPGAs and automate techniques of 
identifying and mapping reconfigurable regions from pre-temporally partitioned circuits. Chu et. 
al [98] present a partial evaluation technique in their circuit generator. In this technique the 
programmer can provide partial evaluation routines for his components. These partial evaluation 
routines can then be used to reduce the complexity of the component based on its inputs available 
at run-time. This technique also utilizes the partial programming capability of the FPGAs, 
however the programmer has to explicitly define the components that can be partially evaluated 
and also the method to do so. 

Existing automated temporal partitioning techniques, extend scheduling and clustering techniques 
of high-level synthesis [139, 95, 99, 107] and focus on minimizing the number of partitions of the 
design. In [95, 99, 107] the temporal partitioning technique involves partitioning gate-level 
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designs. Since the design to be partitioned is already synthesized, different synthesis options for 
achieving partitioned solutions with lower execution times cannot be explored. Since the 
reconfiguration overhead for currently available hardware is very large and dominates the latency 
of the design, we need to concentrate on techniques to minimize the effects of the reconfiguration 
overhead. We present an automated technique for DSP style applications, that automatically 
sequences multiple computations in each temporal partition to reduce the reconfiguration 
overhead. To our knowledge, no existing tools perform automated block-processing techniques to 
reduce the reconfiguration overhead in the context of reconfigurable processors. Our technique 
can also simultaneously handle multiple design constraints, eg., FPGA resources, on-board 
memories, and perform design exploration that cannot be handled by current techniques in 
[139, 95, 99, 107]. Kaul and Vemuri [104] presented a mathematical model for combined temporal 
partitioning and synthesis. In this approach, synthesis cost exploration is performed at an 
operation level in the task graph, and the number of alternative solutions explored becomes very 
large. This approach can be used to synthesize small-scale behavior specifications. Kaul and 
Vemuri also demonstrated the technique of integrated temporal partitioning and design-space 
exploration for large design problems by using an iterative constraint satisfaction approach [36]. 
The design space exploration was performed without considering block-processing, so the goal of 
the system was to minimize the latency of the design. 

Wirthlin and Hutchings [94] developed an automated technique that uses partial reconfiguration 
to load custom instructions at run-time. The instructions in an application are loaded in a 
demand-driven manner, and unused instructions are removed. This work is in contrast to our 
approach as it performs the loading and unloading of instructions at run time, whereas in our 
approach the partitioning into global configurations is performed before the design executes and 
not at run time. 

Kalavade [109] presents an extended bi-partitioning problem for co-design, where partitioning and 
design point selection is performed sequentially, unlike our combined approach. Interger Linear 
Programming (ILP) models of other partitioning and synthesis problems have been addressed by 
researchers. Simultaneous spatial partitioning and synthesis is formulated as an ILP by Gebotys 
in [106]. Niemann and Marwedel [108] present an ILP-based methodology for hardware software 
partitioning of co-design systems. Resource constrained scheduling and binding at operation level 
for ASICs has been formulated as an ILP by Gebotys in [145]. 

Our temporal partitioning approach is for a globally configured system and we do not consider 
the partial reconfiguration approach for designing a RTR system. We attempt to perform 
temporal partitioning at a high-level together with design-space exploration. No other approach 
to temporal partitioning has attempted to do so. The disadvantage of our technique is that it 
cannot make use of the partial reconfiguration capability of the FPGAs. This would involve 
FPGA-specific tools as the different FPGAs have different kinds of partial reconfiguration 
capabilities. However, our current work is focussed on developing a general purpose tool that can 
be used to develop temporal partitioned systems for any class of FPGAs on which global 
reconfiguration can be performed. Some of the partial reconfiguration techniques [97] assume that 
temporal partitions already exists when they attempt to find matching circuits across temporal 
partitions. Our technique can be used to automatically generate the temporal partitions that can 
then be used by such techniques to generate partial reconfigurations. 

Contribution of this work: The current work makes several important contributions to the 
area of reconfigurable design synthesis. It has the following primary features that distinguish it 
from other works: 
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We have integrated the problem of design space exploration into partitioning by using the 
idea of considering multiple design points for each task in the task-graph. This reduces the 
complexity of the design space search for the high-level synthesis process by making it 
concentrate on small portions of the design. 

Our approach performs design space exploration at the behavior level of abstraction, so that 
multiple design options are explored while performing temporal partitioning and 
appropriate design points based on the constraints of the architecture are chosen. 

Unlike traditional approaches that concentrate on minimizing the number of temporal 
partitions of the design, our approach introduces a novel concept of block-processing 
multiple computations to reduce the reconfiguration overhead and demonstrates that a 
temporal partitioning approach which combines block-processing and design-space 
exploration can reduce the design execution time. 

By using ILP as the core engine in an iterative search process we have the flexibility to 
produce optimal/near-optimal partitioned designs. User controlled parameters influence the 
search process. If the search for an optimal solution is too time intensive, then suitable 
search parameters can be given to produce near-optimal results in less run-time. 

3.4    System Design Flow 

The input specification, is a behavior level design description of the application to be implemented 
on the reconfigurable hardware. The input specification is shown in Figure 3.4. In Figure 3.5, we 
present the design flow for building a Run-Time Reconfigured (RTR) design. It consists of an 
acyclic data flow task graph, with an outer implicit loop. The implicit loop signifies the successive 
items of input data that will be executed on this task graph. There are no inter-loop dependencies 
in the task graph due to this implicit loop, i.e., the processing of each input data is independent 
of any other input. Thus it is possible to perform block-processing for this task graph. 

Task Estimation: First, the behavior level estimation engine, which is part of the SPARCS 
design environment [100], generates multiple design points for each task separately based on the 
architecture and user constraints. The architecture constraints are the resources available on the 
reconfigurable hardware, the user constraints are the maximum clock-width for the design. The 
High-Level Synthesis (HLS) tool makes use of a component library, characterized for the 
particular reconfigurable processor, to estimate the resource and delay. 
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Figure 3.5: System design flow 

Temporal Partitioning: Next, the temporal partitioning tool divides the task graph into 
multiple temporal segments, while mapping each task to its appropriate design point. We discuss 
the ILP formulation used to solve the multi-constraint temporal partitioning problem later in 
detail. 

Design Transformation: Some design transformations are needed so that block-processing can 
be performed on each temporal partition. This design transformation and the software code to 
sequence the configurations from the host is generated in this step. 

High Level Synthesis: The high level synthesis system in SPARCS [100] is used to generate the 
RTL design for each temporal segment. 

Logic/Layout Synthesis: We use commercial tools, for logic synthesis (Synplify tools from 
Synplicity) and layout synthesis (Xilinx Ml tools) to convert the RTL description of each 
configuration into bitmap files. 

3.5    Architecture, Design Process, and Memory Model 

3.5.1    Reconfigurable Architecture Model 

In Figure 3.6, the reconfigurable architecture on which the Run-Time Reconfigured (RTR) design 
is to be mapped is shown. It consists of a reconfigurable hardware communicating with an 
external memory. Each temporal partition is mapped to the reconfigurable hardware, and the 
data flowing between two temporal partitions is mapped to the memory. The host stores all the 
temporal configurations. It interacts with the reconfigurable hardware to load new configurations 
and with the memory to load input data and retrieve output data at the end of the execution of 
the design. Except for the first and last temporal configuration it does not read or write to the 
memory at any other intermediate configuration. 
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3.5.2 Design Process Model 

• Each behavior specification is in the form of a acyclic task graph. A task however has no 
restrictions and can contain any control structure within it. Each task is indivisible and 
parts of a task cannot be mapped across partitions. 

• Each task has a set of distinct implementation options called design points. These are 
usually obtained by a high level estimation tool or can be specified by the user. No possible 
restrictions on the implementation of a task is required, only that the area and delay 
associated with each design point should be available. 

• The high level synthesis process that will be used to synthesize the tasks in each temporal 
partition is expected to parallelize the intermediate memory transfer with the execution of 
operations in the task graph. We are assuming that there is enough slack available to do so. 
Therefore we do not add the intermediate data transfer time to the execution time of the 
design. If a simple synthesis system is used that does all the memory access in serial with 
the operations, then we need to add the memory access times in the execution time of the 
design. We have discussed this further in Section 3.9. 

• The estimation process that develops the design point should be closely related to the 
actual synthesis process that will synthesize the temporal partition after the partitioning is 
performed. For our design process this implies that the area of the; design point should 
reflect the data path, controller and routing resources required for the task. Xu and 
Kurdahi [44] and Ouaiss et. al [100] discuss some of the estimation techniques that 
incorporate low level details in the estimation process. However, if the estimation process is 
not a true reflection of the ultimate synthesis process then it is required that the user of our 
system should generate experimentally a factor that reflects the deviation of the actual 
values from the estimated ones. The area of the FPGA should be reduced by this factor. 

3.5.3 Memory Model 

• The host writes to the memory of the reconfigurable architecture before the start of the first 
configuration to place all the data that is to be read as input by the design, and reads from 
the last configuration's memory all the output data of the design. 

• The intermediate data that is needed to be transferred from one configuration to another is 
written into the memory of the reconfigurable architecture. 
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• All data to be read in a configuration and written in a configuration is alive for the 
existence of the whole configuration. The input data from the host is present from the first 
configuration till the last configuration it is read from. The output data to the host is 
present from the configuration it is written till the last configuration. Data written in a 
configuration will remain alive in all subsequent configurations till it is consumed. 

• The model for block processing is shown in Figure 3.7. Each configuration processes the 
whole block of k computations completely and stores the intermediate data. This is 
repeated for all configurations. Currently, we do not support pipelining of the different 
computations in the same temporal partition. Therefore the delay for k computations is 
then equal to fc*delay for processing one computation. 

3.6    Temporal Partitioning and Design Space Exploration by an 
Optimal Search Algorithm 

The inputs to our Temporal Partitioning system are - (1) Behavior Specifications (2) Target 
Architecture Parameters (3) Block-processing Factor. 
In formal notation, the inputs are stated as - 

T set of tasks in the task graph. 
ti —> tj a directed edge between tasks, U,tj € T, exists in the task graph. 
B(ti,tj) number of data units to be communicated between tasks ti and tj. 
B(env,tj) number of data units to be read by task tj from the environment. 
B(t{, env) number of data units to be written from task U to the environment. 
Rmax resource capacity of the reconfigurable processor. 
Mmax memory size of the RTR architecture. 
CT reconfiguration time of the reconfigurable processor. 
k the block-processing factor for the design. 

The behavior specifications are in the form of a directed graph called the Task Graph. The 
vertices in the graph denote tasks, and the edges denote the dependency among tasks. Data 
communicated between two tasks, B(ti,tj), will have to be stored in the on-board memory of the 
processor, if the two tasks connected by an edge are placed in different temporal partitions. The 
target architecture parameters specify the underlying resources and the reconfiguration time, CT, 

for the device. Typically, resource capacity, Rmax, is the combinational logic blocks/function 
generators on the FPGAs of the reconfigurable device. Mmax, is the memory for storage of 
intermediate data available on the reconfigurable processor, k, the block-processing factor is the 
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lower bound on the number of computations that this design will usually perform. The total 
intermediate data for k computations of the task graph has to fit in the memory Mmax of the 
RTR processor.The user can give k to be the minimum number of iterations of the implicit loop, 
I, shown in Figure 3.4 for typical runs of the application. 

3.6.1    Preprocessing 

Design Point Generation:    Each task in the task graph is processed by a design space 
exploration and estimation tool [100] which is part of a high level synthesis system. The high level 
estimation tool generates a set of design points for each task. Each design point is characterized 
by its area and latency. Each task t will have a set of estimated design points, Mt. We state this 
formally as - 

Mt       set of design points, m,  for a task t G T. 
R(m)   area of a design point m 6 Mf. 
D{m)   latency of a design point m £ Mt. 

Partition Bounds Estimation: To find the number of partitions over which the temporal 
partitioning solution should be explored we calculate two bounds - 
1. Lower Bound: For calculating the lower bound on number of partitions JVJL-,,, we sum the 
minimum area design point, m, for each task. This value divided by the FPGA area will be the 
minimum number of partitions required to obtain a solution. 

NLn = J2 R(m)/Rmax,    {m\\/m£ Mu min(R(m))} (3.1) 
t€T 

2. Upper Bound: Ideally, we would like to establish an upper bound on the number of partitions 
needed to be explored by the paxtitioner when the maximum area design point for each task is 
chosen. However, we cannot accurately establish this upper bound on the maximum number of 
partitions. This is because if a task is too large to fit in some temporal partition, it must go to a 
later partition. Then all the descendents of this task also cannot occupy the earlier temporal 
partition even if they can fit in it because the dependency among the tasks will be violated. This 
will leave some area on temporal partitions unoccupied due to dependency constraints, and the 
task graph will not fit even though there is enough area left unoccupied on the partitions. We 
could have established an upper bound on the maximum number of partitions to be equal to the 
number of tasks in the task graph. However, this is a very pessimistic bound and usually so many 
partitions need not be explored. We first define, the minimum number of partitions, N^in, that 
need to be explored if the maximum area design point for each task is mapped by the partitioner, 
to be - 

Nmin = ]C R(m)/Rmax,    {m | Vm e Mu max{R{m))} (3.2) 

To determine the upper bound on the number of temporal partitions that need be explored to 
get an optimal solution, we define a user controlled parameter 7, called the Partition Relaxation. 
7 defines the number of partitions beyond N^in that must be explored while searching for better 
solutions. We have introduced parameter, 7, so that a user can direct the partition space search if 
the user has more knowledge of the solution to the problem. Or, this evaluation of 7 can be be 
done automatically by the tool using heuristic techniques. Using a heuristic, if we map the 
maximum area design points for each task we arrive at a solution with partition size N". This 
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Figure 3.8: Generation of partition size upper bound 

Nmin- We give an can be an upper bound on the partition size. If N" > N^in, then 7 = N" 
example of how this can be done in Figure 3.8. A task graph annotated with the maximum area 
of each task is shown. If i?™^ is 100, then we calculate N^in to be 4 partitions. A heuristic 
algorithm maps the tasks as shown into 6 partitions. Therefore N" = 6, and 7 = 6-4 = 2. The 
optimal solution for this graph is obtained in 5 partitions. We claim that any solution obtained 
by a heuristic using the maximum area (minimum delay) design points will never have its number 
of partitions less than that of an optimal solution for the same graph. We are currently studying 
how to achieve tighter upper and lower bounds for partition size and incorporating them 
automatically in our algorithm. However, the facility of giving 7 will still be provided to the user. 

In the worst case, the total number of partitions to be explored range from the partition lower 
bound, Nl

min, to the number of tasks in the task graph,|T|. Therefore the value of 7 can range 
from 0 to \T\ - N^in. We may not get the optimal solution possible for the task graph if the value 
of 7 is not set correctly. 

3.6.2    Partition Space Exploration Algorithm 

To explore better solutions for the temporal partitioning problem, we need to explore more than 
one partition bound. The partition bound is the number of partitions for which the current model 
has been formed and a solution is being explored. Finding the ideal partitions for the overall 
optimal solution is an iterative procedure, shown in Figure 3.9. Informally, the algorithm consists 
of the following steps - 
1. The starting partition bound is N = Nl

min. 
2. Obtain an optimal solution for the given partition bound, N. The design execution time 
achieved after solving for this partition bound is Da. If N = N^in + 7, then stop. 
3. Increase the partition bound, N = N + 1, and reformulate the problem with the new partition 
size. 

Also introduce a design execution time constraint so that the result is bounded by the 
execution time delay already achieved, Da. Go to step 2. 
We calculate the bounds on the number of partitions, Nl

min and N^in, as described earlier. We 
start the search at Nl

min and obtain an optimal solution, by forming and solving an ILP model of 
the temporal partitioning problem. The details of the model are described below. For the first 
ILP model there is no upper bound on the constraint on the execution time of the design. The 
result of solving this model is a temporal partitioning solution for N partitions and the execution 
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Algorithm RefineJPartitionJBound() 
begin 

N£in <-  MaxAreaPartitions() 
Nl

min <r-  MinAreaPartitions() 
N f- Nl

min I* starting partition bound */ 
FormILPModel() /* Model with no execution time constraint */ 
Da <- SolveILPModeLOptimal() 
while  Da = 0 and N < N£in + 7/* Partition bound was infeasible */ 

N «— N + 1 /* next partition  bound */ 
FormILPModel() /* Model with no execution time constraint */ 
Da «- SolveILPModeLOptimal() 

end while 
while   N < N£in + 7 

N «- N + 1 /* Relax N */ 
FormlLPModelO /* Model with execution time constraint < Da */ 
D'a f- SolveILPModeLOptimal() 
if D'a ^ 0 /* solution is feasible */ 

Da*-D'a 

end if 
end while 
return(£)„) /* return with the last known best solution */ 

end Algorithm Refine-PartitianJBawnd 

Figure 3.9: Partition refinement procedure 

time Da of the solution. We now relax JV by 1, form and solve the ILP model again. This time 
since we are looking for a better solution than the one we have already achieved, Da is the 
execution time constraint for the new ILP model. We continue to relax JV and look for better 
solutions until the value of N reaches N^in + 7. 

ILP formulation for Design Space Exploration 

We build the temporal partitioning model for the given tasks and their design points and the 
values of N and k. In the following discussion we present the variables and equations of the ILP 
model. 

Variable ytpm models partitioning and design point selection for a task and is described formally 
as - 

Htpm 
1    if task t G T is placed in partition p, 1 < p < N, using design point m £ Mt 

0   otherwise 

where, 
JV   is bound on the number of partitions. 

Variable ytprn is a 0-1 variable. 
Uniqueness Constraint:    Each task should be placed in exactly one partition among the N 
temporal partitions, while selecting one among the various design points for the task. 

JV 

W£T   ■ E Y,ytPm = i (3.3) 
mEMt p=l 

Temporal Order Constraint: Because we are partitioning over time, a task ti on which 
another task t2 is dependent cannot be placed in a later partition than the partition in which task 
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W3|*B(U)'k + W    • B(2.3)'k <= M ^ 

Figure 3.10: Memory constraint 

%2 is placed. It has to be placed either in the same partition as fe or in an earlier one. This 
constraint makes sure that the dependency constraints among the tasks are maintained. No task 
should execute earlier than a task on which it is dependent. 

Vfe,   V*i-*fc,   Vp2,   l<p2<N-l      :    J2        £    yuPimi+    £    yt2P2TO2<l      (3.4) 
mieMtl p2<pi<N m2eMt2 

Resource Constraint: The sum of area costs of all the tasks mapped to a temporal partition 
must be less than the overall resource constraint of the reconfigurable processor. Typical FPGA 
resources include function generators, configurable logic blocks etc. Similar equations can be 
added if multiple resource types exist in the FPGA. 

Vp,   l<P<iV      :   £   ,£(ytPm*R{m))<Rmax (3.5) 
meMt t&T 

Memory Constraint: Intermediate data due to data transfer among dependent tasks will be 
stored in a partition under two conditions. If the memory has been written in an earlier partition, 
and is to be read in this partition or any partition later than this partition. Or, if memory is 
being written in the current partition and is destined to be read in a later partition. Data transfer 
through memory will not take place if two dependent tasks are placed in the same temporal 
partition. Variable wptlt2 models data transfer requirement across partition boundaries for 
dependent tasks. It is stated formally as - 

1   if task ti is placed in any partition 1 • • -p - 1 and t2 is placed in any of 
p---N and t\ -* i2 

1   if task t\ is placed in partition p and i2 is placed in any of p + 1 • • • TV and ti ->• t2 

0   otherwise 

wptlt2 = < 

wptlt2 is a 0-1 variable. It is a secondary variable which is described in terms of the ytpm variables. 

The intermediate data needs to be stored and should be less than the memory. Mmax, of the 
reconfigurable processor. The variable wptlt2, if 1, signifies that tj and t2 have; a data dependency 
and are being placed across temporal partition p. Therefore the data being communicated 
between them, Bfa, t2), will have to be stored in the memory of partition p.   The following 
equation represents the memory constraint. It contains terms to represent the intermediate data 
transfer due to dependent tasks as discussed earlier. Since our memory model is such that all 
external inputs and outputs with the host also takes place through the memory, the equation also 
contains terms to represent the amount of data that has to read as input from the environment 
(host) and written out to the environment (host) by the tasks. 

Vp,   l<p<iV      :£    Y,      E ytP2m*B(env,t)*k + J2   £     Y,  Vtpam*B(t,env)*k+ 
t€Tp<p2<Nm€Mt (gTKp3<pmeM, 

£   £ (wptita * B(tuh) *k)< Mmax (3.6) 
t2eTti-n2 
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Temporal partition if    \ 100 ns        ||^| 200 ns 
Delay = 400 ns     \J ^tS? 

Temporal partition 2 /$Hy 300 ns        f     )  50 ns 
Delay = 300 ns    ^^ o 

I 
(~~\ 150 ns 

Total delay = 400 + 300 + 2 "C, 

Figure 3.11: Execution time estimation 

As discussed earlier the variable wptlt2 has to model communication among tasks which can be 
mapped to adjacent and non-adjacent temporal partitions. In Figure 3.10, we show how this 
variable models data transfer for a small taskgraph fragment. In the example shown there is no 
data transfer from the host only tasks communicating to each other.We show in the figure the 
original equations used to model the constraints for Temporal Partitions 2 and 3. The result 
equations show the wptlt2 variables which will be 1 in the mapping of tasks to partitions shown in 
the example and the constraints which has to be satisfied. wptlt2 are non-linear terms and can be 
generated by the following set of equations - 

Vp,   l<p<iV,   Vt2Gr,   V*!-^,    :wptit2>    £       £    ytmrm*    £       £    Vt2p2m2 

l<pi<pmieMtl p<p2<N m2eMtj 

(3.7) 
Vp,   1<P<N,   Vi2 GT,   Vh-+h,    :wptlt2>    £    ytljmi*      £ £    yt2P2m2     (3.8) 

rrcieMtj p+l<p2<N m2£Mt2 

Equations (3.7) and (3.8) are non-linear. We can use linearization techniques [121, 122] to 
transform the non-linear equations into linear ones, so that the model can be solved by a Linear 
Program solver. Linearization techniques have been used successfully before in [104] to solve the 
combined temporal partitioning and synthesis problem. 

Execution Time Constraint: When the problem is formulated we have as input the partition 
bound N over which the current solution is to be explored. Variable n is the actual number of 
partitions finally used in the solution and will be less than or equal to N. Variable dp models the 
execution time of a temporal partition. 

7? =   Number of partitions actually used in solution. 

dp =   execution time of partition p. 

rj is an integer variable and dp can be an integer or real variable depending on whether the 
latency values are integer or real. The following definitions will be used to generate the execution 
time constraint - 
Da constraint on the execution time of the design. 
Ti set of tasks tt G T, where Vt,- G T, -.(i* ->tj), (leaf tasks ofT). 
Tr set of tasks tj G T, where Vi* G T, -.(i; -> tj), (root tasks ofT). 

ti -> tj   a directed path from tt eT to tj €T. 

-^4r       { *i ~* Aj I (*« e Tr) A (tj G T()}; (set of paths from root tasks to leaf tasks). 
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The execution time of a partition will be the maximum execution time among all the paths of the 
task graph mapped to that partition. In Figure 3.11, we show how the execution time for a 
partition is determined. The final mapping of tasks to partitions, with the latency value for each 
task, is shown. In partition 1, three paths are mapped. The latency of this partition is the 
greatest latency along a path mapped to the partition, i.e., maximum among 350ns, 400ns, 150ns. 
The maximum latency in partition 2 is 300ns. If the block-processing factor is k, then the 
execution time of the partition is the latency multiplied by the block-processing factor. Formally 
the execution time of a temporal partition is given as - 

Vp,   1<P<N,   Vfe-HOe^U,      =   E     E   (ytpm*D(m)*k)<dp (3.9) 

All temporal partitions 1 ■ ■ ■ N used in the formulation, may not be used in the final solution, if 
the tasks can fit in lesser number of partitions. To calculate the actual number of partitions used 
in the solution, we determine the highest numbered partition used by any leaf level task in the 
task graph by the following equation - 

N 

W^Ti      ■   E  ]C(P*lfem.)<»7 (3-10) 

Now the execution time constraint on the overall design can be stated in terms of equations (3.9) 
and (3.10) as - 

N 

V*CT + J2dP^Da (3.11) 
P=l 

As discussed earlier, this constraint is used to search for a better solution as different partition 
bounds are being explored in Algorithm Refine -Partition JBound in Figure 3.9. 
Optimality Goal:   The most optimal solution will be the design with the least execution time. 

TV 

Minimize     : 77 * CT + E 4P (3.12) 

The solution of this ILP model gives us the optimum temporal partitioning for the give partition 
bound JV, the block-processing factor k, and the set of design points for the tasks. If the amount 
of intermediate memory required to process k computations exceeds the memory constraint Mmax 

of the architecture then the user needs to reduce k and temporally partition the design again. 

3.6.3    Experimental Results for Optimal Search Algorithm 

We performed temporal partitioning on the 4x4 Discrete Cosine Transform (DCT) which is the 
most computationally intensive part of the JPEG [120] algorithm. In this study, the DCT is a 
collection of 16 tasks as shown in the Figure 3.12. On the left of the figure we show the internal 
structure of a task in the DCT. There are two kinds of tasks in the task graph, Tl and T2, whose 
structure is similar but whose operations have different bit widths. Task Tl represents two vector 
multiplications in the first dimension of the DCT. Task T2 represents two vector multiplications 
in the second dimension of the DCT.We obtained all the design points for each kind of tasks by 
using estimation tools integrated in the SPARCS design environment [100], on the individual 
tasks. The functional units, area and latency costs for each is shown in Table 3.1. 
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Task Structure 

Tl = {*[9]; + [15}; + [16]i 

T2={*[17]; + [23]; + [24]} 

Tl/ \T1 

£X2 
T2 / \ T2 

Tl / \TI 

fxi 
T2 / \ T2 

Tl / \T1 

1X1 
T2 / \ T2 

Figure 3.12: Task graph for DCT 

Table 3.1: Design points for DCT tasks 

Task Desgn. Pt. 
Characteristics 

Area (CLBs) Latency (ns) *9 + 16 *16 +24 
Tl 1 336 375 8 4 - - 

2 286 500 6 2 - - 
3 220 625 4 2 - - 
4 194 750 2 2 - - 
5 174 875 1 2 - - 

T2 1 396 420 - - 8 4 
2 356 560 - - 6 2 
3 292 700 - - 4 2 
4 276 840 - - 2 2 

36 



Table 3.2: Results for combined design-space exploration and block-processing 

Exp. ■Rraox(CLBs) CT(ßs) k N Latency (ns) 
Design Execution 

Time 
Design Execution 

Time/it 
Mem. 

Overhead T(s) 
1 4,000 30 3,000 1 31,590 4,800 fjs 1,600 ns 0 1 

2 60,795 2,445 /zs 815 ns 48,000 1 
3 - - - - Infeasible 

2 4,000 30 1 1 31,590 31,590 ns 31,590 ns 0 1 
3 2,304 30 3,000 2 61,590 4,830 fjs 1,610 ns 48,000 11 

3 91,215 3,735 JUS 1,245 ns 48,000 22 
4 - - - - Infeasible 

4 2,304 30 1 2 61,590 61,590 ns 61,590 ns 16 57 

In Tables 3.2 - 3.4 we present the results of our temporal partitioning tool. In all the tables, Rmax 

is the resource constraint of the FPGA, CT the reconfiguration time, k the block-processing 
factor, and N the number of partitions onto which the design is partitioned. The latency of the 
final design (with the reconfiguration overhead), is shown in the column Latency. The execution 
time of the design for the k blocks of data is given in the column Design Execution Time. Design 
Execution Time/fc shows the average execution time per computation, Mem. Overhead shows the 
amount of maximum memory stored in any of the temporal partitions (excluding the memory 
used to store the input and outputs) of the solution in terms of the number of words of the 
hardware. T(s) is the time taken by our temporal partitioning tool to execute in seconds. All 
experiments were run using an ILP solver called CPLEX on an UltraSparc Machine running at 
175 MHz with 120 MB memory. 

In Table 3.2, we present the result of temporal partitioning and design space exploration of the 
DCT with and without block-processing factors. In all experiments the reconfiguration time 
considered is similar to the Xilinx 6200 series FPGAs. In Exp. 1, for a block-processing factor of 
3,000, our temporal partitioning tool explores 3 temporal partitions for the design and results in a 
latency of 60,795 ns. In Exp. 2, with a block-processing factor of 1 (i.e., no computations are 
being sequenced), the tool gives a minimum latency design of 31,590 ns and uses just one temporal 
partition. This results in a statically configured design. Even though, the latency of the statically 
configured design in Exp. 2 is less than that of Exp. 1, this is not the best possible solution. This 
is because, if multiple computations are computed on both the static and RTR design, the RTR 
design will outperform the static design. For executing 3,000 computations, the RTR design will 
take 2,445 ß sec, while the static design will take 4,800 ^sec. This is a 49% improvement of the 
RTR design over the static design. Exp. 3 and 4 were performed for different FPGA size of 2,304 
CLBs, which is the size of a Xilinx XC4062. In Exp. 3, again with a block-processing factor of 
3000, the optimal design takes 3 temporal partitions with the latency of the design being 91,215 
ns. For Exp. 4, with no block-processing factor the optimal latency of the design is 61,590 ns. 
Again, the actual execution time of the design when the block-processing factor is considered 
while exploring the design space is superior. In all the experiments the value of Mmax is 64 K. 

The experiments in Table 3.2 illustrate that combining block-processing and design space 
exploration gives better temporal partitioning solutions. If the block-processing factor is not 
considered at the time of temporal partitioning (i.e., is equal to 1), then the temporal partitioning 
tool will tend to pick the design with minimum number of temporal partitions. If a relevant 
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Table 3.3: Results for different reconfiguration overheads 

Exp. Rmax  (CLBs) CT k N Latency (ns) Design Execution Time Mem. Overhead Tfs) 
5 2,304 30 ns 300 2 1,650 477.06 fis 4,800 17 

3 1,305 364.59 fis 4,800 19 
6 2,304 30 ns 50 2 1,650 79.56 /us 700 25 

3 1,305 60.84 fis 700 7 
7 2,304 3 ms 3,000 2 6,001,590 10,770 fis 48,000 80 
8 2,304 3 ms 30,000 2 6,001,590 53,700 fis 480,000 29 

3 9,001,340 45,450 fis 480,000 36 

Table 3.4: Results for design-space exploration 

Exp. Rmax (CLBs) CT (fis) jfc N Latency (ns) Design Execution Time Mem. Overhead T(s) 
9 2,304 30 3,000 2 61,715 5,145.6 fis 48,000 1 
10 2,304 30 3,000 2 61,590 4,080 fis 48,000 22 

3 91,215 3,735 fis 48,000 204 

block-processing factor is given the tool will search for a faster design with more temporal 
partitions, because block-processing will amortize the effects of reconfiguration overhead. Since 
we understand that the block-processing is necessary for good performance of a temporally 
partitioned design, we must integrate this idea early in the design process, while partitioning and 
design point selection is being performed. 

Similar results will hold if the reconfiguration overheads are varied. In Table 3.3, we show results 
for different reconfiguration overheads. In Exp. 5 and 6, the reconfiguration overhead is in 
nano-seconds (similar to the reconfiguration overheads of context-switching FPGAs like the Time 
Multiplexed FPGA [116, 117]). In Exp. 7 and 8, the reconfiguration overhead is in milli-seconds 
(similar to commercially available reconfigurable hardware, the Wildforce board with Xilinx 
FPGAs [118]). As the reconfiguration overhead decreases we observe that for small values of k, 
the exploration process chooses more temporal partitions. However, for the reconfiguration 
overheads in milli-seconds even for values of k as large as 3,000 the temporal partitioner chooses 
designs with minimum temporal partitions. So for an architecture which has a very high 
reconfiguration a large number of blocks must be processed to amortize the cost of the 
reconfiguration overhead. Such is the case in Exp. 8 where for an overhead of 3 ms, 30,000 
computations need to be sequenced to overcome the effect of the reconfiguration overhead and for 
the tool to partition the design over 3 temporal partitions. From these experiments we see that 
given the block-processing factor and the architecture constraints the temporal partitioning tool 
will select the most appropriate design point and the placement of tasks on partitions. 

In Table 3.4, we illustrate how design space exploration is beneficial. For same values of the 
block-processing factor k, we perform experiment with and without design space exploration. In 
Exp. 9, temporal partitioning is performed with only one design point for each task, the minimal 
area design point. In Exp. 10, all the design points are used. Again we observe that the tool 
chooses the most appropriate design points for the given constraints, when multiple design points 
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are given to it, and results in a 27% improvement of the design in Exp. 10. Therefore design 
space exploration must be integrated with and performed during the temporal partitioning 
process, rather than choosing the design point before temporal partitioning is performed. 

The optimal solution process described in this section produced results in less run-times of the 
temporal partitioning tool when the size of the problem to be solved is not very large. For eg., a 
task graph of size 15 tasks, 3 temporal partitions and 3 design points per task solved quickly. But 
a task graph of 30 tasks, 6 temporal partitions and 3 design points per task took many hours to 
solve. 

3.7    Temporal Partitioning and Design Space Exploration by 
Iterative Search Algorithm 

To handle larger problem sizes, we have therefore developed a novel method of solving the ILP 
problem iteratively. With this method we break the large solution space and window in to smaller 
regions of the solution space progressively, to obtain near-optimal solutions for the problems. 
Instead of solving each ILP problem to global optimality we break the search space of the 
algorithm into smaller sections. An ILP problem for a section of the search space is formed and a 
constraint satisfying solution is generated. Success or failure of a search guides the algorithm to 
move iteratively into the next region of search while improving the solution. There can be many 
ways of dividing the search space into smaller sections. We have approached the problem by 
dividing the search space by a binary subdivision method. 

3.7.1    Preprocessing 

In this section, we discuss the additional preprocessing steps which need to be undertaken for the 
new algorithm that iteratively explores different regions of the design space. The other 
preprocessing steps of Design Point Generation and Partition bounds Estimation are as discussed 
in Section 3.6. 

Execution Time Bounds Calculation:   The execution time of the temporally partitioned 
design will involve two components - (1) execution time due to the actual execution of the tasks 
in each temporal partition for the given block-processing factor k, (2) execution time due to the 
reconfiguration overhead. For a given number of temporal partitions, N, we can calculate the 
upper and lower bounds on the execution time of the design as follows - 

1. Maximum Execution Time: The worst case execution time Dmax, will occur when all tasks are 
serially executed. For upper bound calculation, we will use the design point with maximum 
execution time for each task. The execution time for each task multiplied to the block-processing 
factor will give us the execution time of the design without considering the overhead of 
reconfiguration. This time added to the reconfiguration overhead will be the upper bound design 
execution time for N partitions. 

Dmax = 5Z-°(m) *k + N*CT (3.13) 
teT 

2. Minimum Execution Time: For obtaining the lower bound for N partitions, we consider for 
each task the fastest (minimum latency) design point. We obtain the latency for all the paths in 
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Algorithm Reduce J5xecutionTime{N, Dmax, Dmin) 
begin 

A, <-0 
FormILPModel() 
if SolveILPModel_Feasible() = In feasible subject to Timeout 

retum(Da) 
Da ■<- CalculateSolnDelayO /* Achieved execution time of solution */ 
while (Dmax - Dmin > 6) and (Da - Dmin > S) 

D'     - n '-'max — '-'max 
/* Binary subdivision of achievable design execution time range */ 
Umax = {Umax + '-'min) I ^ 
while (Dmax > Da) 
/* we have already achieved execution time Da which is less than Dmax */ 

^m»i = l^mu T Djnin)12, 
end while 
FormlLPModelO 
if SolveILPModelJFeasible() = In feasible subject to Timeout 

/* increase lower bound to overcome infeasibility */ 
Umin = '-'max 
D       — D' '-'max — '-'max 

else 
Da <- CalculateSolnDelayO 

end if 
end while 
return(Z>a) 

end Algorithm Reduce JSxecutionTime 

Figure 3.13: Iterative procedure for reducing design execution time 

the task graph, by summing up the minimum latency of the tasks along each path. The 
maximum latency value over all such path latencies in the task graph gives us the lower bound on 
the latency. This latency value is multiplied by the block-processing factor to derive the execution 
time lower bound without reconfiguration overhead. This execution time added to the 
reconfiguration overhead will be the lower bound on design execution time for N partitions. In the 
following equation, p is a path in the task graph. 

Dmin — max { latency of p with fastest design point for each task in p }  * k + N * Cy    (3-14) 

3.7.2    Algorithm for Design Execution Time Reduction 

Figure 3.13, describes the design execution time reduction algorithm. It is an iterative procedure 
that obtains near-optimal execution time solutions for a given partition bound. N, and execution 
time bounds Dmax and Dmin. The procedure for obtaining appropriate partition bounds was 
explained in Section 3.6.1. It finds a constraint satisfying solution between D,nar and Dmtn. Once 
a solution is obtained, the upper bound is reduced to (Dmax + Dmin)/2, and a new solution for 
these constraints is found. If a feasible solution is obtained, then the obtained execution time of 
the solution becomes the upper bound for a new search. If no feasible solution is obtained, then 
this execution time becomes the new lower bound. It continues this binary subdivision on the 
execution time bounds, till the difference between the upper and lower bounds becomes very 
small, or no more feasible solutions are found. The tolerable difference between the lower and 

40 



upper execution time bounds for the design is a user defined parameter, J, called the Design 
Execution Time Tolerance. Design Execution Time Tolerance defines how much of the design 
space can be left unexplored in one run of the algorithm. If the tolerance is small, more iterations 
will be spent in obtaining a solution, thus increasing the run time. If a large run time is not 
acceptable then this tolerance can be increased. The optimality of the solution will be affected by 
the value of 6. If S is very large then the algorithm may miss some solution which is better than 
the one found. We have shown in the experiments the effect of changing the value of S on the 
search process. In practice, we can set the execution time tolerance to a small percentage of the 
MaxExecutionTime of the task graph. 

We again use the temporal partitioning and design space exploration problem as modeled as an 
ILP (presented in Section 3.6.2), with some modifications discussed later. We do not use the ILP 
for finding optimal solutions, but instead use it to obtain a feasible solution for a problem. That 
is, the optimization goal explained in Section 3.6.2 is removed and some new constraints are 
added. These constraints will be presented shortly. Our reduction procedure then makes the 
constraints tighter, reformulates the ILP and solves it for the new problem. For larger designs, 
therefore we have developed this directed search procedure, which reduces the search space for 
each run of the ILP solver, while still exploring the whole search space. This claim has been 
substantiated, by observing that for small designs the solution obtained by this procedure and an 
ILP solved to optimality is the same, as discussed in Section 3.6.3. In the algorithm, the 
procedure FormlLPModelQ forms the ILP model. The procedure SolvelLPMadel-FeasibleQ 
then solves the model by a linear program solver and returns with the first feasible constraint 
satisfying solution. 

3.7.3 Partition Space Exploration Algorithm 

The partition space exploration procedure for the iterative execution time search is shown in 
Figure 3.14. It is similar to the partition exploration procedure discussed earlier in Section 3.6.2, 
the only difference being that the iterative search algorithm Reduce JExecutionTime is called to 
explore different temporal partitioning solutions for each partition bound rather than solving the 
problem to optimality. Informally, the algorithm consists of the following steps - 
1. The starting partition bound is N = N^. 
2. Obtain a constraint satisfying solution for partition bound, N, and execution time constraints 
Dmax and Dmin for this partition bound. 
3. Find lower execution time solutions by progressively exploring different regions of the search 
space, by tightening the execution time constraints, for the current partition bound. If 
N = NLn+-y, then stop. 
4. Increase the partition bound, N — N + 1, and go to step 2. 

3.7.4 Modifications to the ILP model 

The ILP model discussed in the Section 3.6.2 remains the same, with some small modifications. 
We have two execution time constraints instead of Equation (3.11) in the model. These are 
described below - 

N 

V*CT + YldP<Dmax (3.15) 
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Algorithm Refine-PartitionJBcmndQ 
begin 

Nmin <- MaxAreaPartitions() 
Nl

min <- MinAreaPartitions() 
N <— Nl

min I* starting partition number */ 
Dmax <- MaxExecutionTime(N) 
Dmin <- MinExecutionTime(N) 
Da *- ReduceJExecutionTime{N,Dmax,Dm{n) 
while  Da = 0 /* Partition bound was infeasible */ 

N <- N +1 /* next partition number */ 
Dmn.x <- MaxExecutionTime(N) 
Dmin <- MinExecutionTime(N) 
Da <— Reduce-ExecutionTime(N, Dmax, Dmin) 

end while 
while  N<Nmin + 1 

N <- N + 1 /* Relax N */ 
Dmin <~ MinExecutionTime(N) 
if Dmin > Da 

return(£>a) /* This is the best solution */ 
else 
/* find a better solution by taking Da as upper bound */ 
D'a «— Reduce JExecutionT ime{N, Da, Dmin) 
if D'a^Q I* Feasible*/ 

Da*-D'a 

end if 
end if 

while 
return(.Da) /* return with the last known best solution */ 

end Algorithm Refine-PartitionJ3ound 

Figure 3.14: Partition refinement procedure 
N 

V*CT + J2dP^Dmin (3.16) 
p=l 

3.7.5    Experimental Results for the Iterative Constraint Satisfaction Algorithm 

Case Study of AR filter : 

We present a case study of the Auto Regressive (AR) lattice filter [119] that has applications in 
signal and speech processing applications. In this experiment we demonstrate the closeness of the 
solution obtained by the iterative constraint satisfaction algorithm presented in this section and 
the optimal algorithm described in Section 3.6. The task graph for the specification consists of 6 
tasks as shown in Figure 3.15. Tasks A and B show the internal structures of the filter tasks. 
Tasks Tl, T3, & T4 have a structure like Task A, but differ in the bit-widths of their operations. 
Tasks T2 and T5 are like Task B, but again differ in their bit-widths. The bit widths of each 
operation in each task is also shown in the figure. The design points are shown in Table 3.5. 
These design points were again estimated using an estimation tool integrated in [100]. Task Tl 
has three design points, tasks T3 & T4 have two design points each, and tasks T2 and T5 have 
one design point each. The result of the experimentation is shown in Table 3.6. N denotes the 
number of temporal partitions explored. The columns under Result (Iterative) state the result of 
running the iterative algorithm. I is the iteration of the algorithm, Dmax and Dmin are the design 
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Tl = { * [ 8 ]; • [ 8 ]; * [ S ]; * [ 8 ]; + [ 16 ]; + [ 16 ] } type TASK A 

T2={+[17]; + [17]}typeTASKB 

T3 - { * [ 18 ]; * [ 8 ]; » [ 18 ]; * [ 8 ]; + [ 26 ]; + [ 26 ] } type TASK A 

T4 = { * [ 27 ]; * [ 8 ]; * [ 27 ]; * [ 8 ]; + [ 35 ]; + [ 35 ] } type TASK A 

T5 - ( + [ 36 ]; + [ 36 ] } typeTASKB 

Figure 3.15: Task graph for the AR filter 

Table 3.5: Design points for the AR filter tasks 

t Mt 

Characteristics 
Area Latency *8 + 16 +17 *18 +26 *27 +35 +36 

Tl 1 120 250 4 2 
2 104 375 2 2 
3 84 625 1 1 

T2 1 30 125 2 
T3 1 170 320 2 2 2 

2 118 480 1 1 1 
T4 1 222 400 2 2 2 

2 155 600 1 1 1 
T5 1 54 200 2 
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Table 3.6: Temporal partitioning of the AR filter, ^ 
/is, k = 3000 

= 196, CT = 30 /is, 7 = 0, 6 = 100 

Result (Iterative) Result (Optimal) 
JV 1 -Dmax(MS) ■*--'mzn\ßS) Design Execution Time(^s) Design Execution Time (/zs) Mem. Overhead 
3 1 8,055 3,975 Inf. Inf. 
4 1 8,085 4,005 6,210 

5,355 15,000 

2 6,045 4,005 5,355 
3 5,025 4,005 Inf. 
4 5,280 5,025 Inf. 

5 1 5,355 4,035 5,010 

5,010 18,000 
2 4,650 4,035 Inf. 
3 4,950 4,650 Inf. 

Const. Const. 

u u u u 
Const. Const. 

Vector Product 
(Task ) 

Tl = {*[9]; + [15}; + [!6]}   T2 = { * [17]; + [ 23 ]; + [ 24] ] 

Figure 3.16: Task graph for DCT, 8 of the 32 tasks are shown 

execution time bounds for that iteration calculated by the algorithm. Da gives the design 
execution time of the solution. Result{Optimal) is the result achieved by solving the problem to 
optimality using the algorithm described in Section 3.6. Mem. Overhead shows the amount of 
maximum memory stored in any of the temporal partitions (excluding the memory used to store 
the input and outputs) of the solution in terms of the number of words of the hardware. We use 
CPLEX to solve the ILP problems both for constraint satisfaction and optimal solution. We see 
that the result of our algorithm matches the optimal solution for this task graph. We have 
performed a lot of experiments on small task graphs and the solution for our iterative procedure 
and an optimally solved ILP has been the same. 

Case Study of DCT :    For task graphs with larger number of tasks, the iterative constraint 
satisfaction approach is able to explore in reasonable time more solution space than solving the 
problem to optimality. To demonstrate this, we again undertook a case study of the 4x4 DCT, 
however this time the size of each task is smaller. In this study, DCT was modeled in the form of 
32 vector products. The entire DCT is a collection of 32 tasks, where each task is a vector 
product. A vector product is shown in Figure 3.16. There are two kinds of tasks in the task 
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Table 3.7: Design points for DCT tasks 

Task D. 
Characteristics 

Area Latency *9 +16 *16 +24 
Tl 1 180 375 4 2 

2 138 500 2 2 
3 121 750 1 2 

T2 1 216 420 4 2 
2 188 560 2 2 
3 162 840 1 2 

graph, Tl and T2, whose structure is similar to the vector product, but whose bit-widths differ. 
A collection of eight tasks, forms a row of the 4x4 output matrix, as shown in the figure. The 
entire task graph consists of four such collections of tasks. Each task had three design points. 
Area and latency of the tasks for these design points were carefully estimated using an estimation 
tool [100]. The functional units, area and latency for each is shown in Table 3.7. The result of the 
iterative refinement procedure for minimizing the design execution time of the temporally 
partitioned DCT for various FPGA resource bound, Rmax, and reconfiguration overhead, CT, 
values is shown in Tables 3.8 through 3.11. For the current set of experiments, column N denotes 
the number of temporal partitions, Dmax and Dmin denote the maximum and the minimum 
design execution time bounds for the model being solved in that iteration. The design execution 
time of the solution produced is shown in the column Design Execution Time. Run times for the 
temporal partitioning tool, in seconds, are shown for each iteration of the algorithm separately in 
the column T(s). The total run time of the temporal partitioning tool in minutes for each 
experiment is shown in column T(m). All experiments have been run on an UltraSparc 1 machine 
running at 175 Mhz with 120 MB memory. 

In the first experiment, shown in Table 3.8, Rmax = 576 CLBS (XC4013 FPGA) and CT is 30 ßs 
and the block-processing factor k = 3000. The minimum number of partitions estimated by 
MinAreaPartitionsQ is 8 and by MaxAreaPartitionsQ is 11. We are able to reduce the 
execution time of the circuit in steps by doing a binary division. Once the difference between the 
maximum and minimum execution time is less than S — 1000yus, we stop. Then, the algorithm 
proceeds by searching the next partition bound by increasing N and repeats the iterative search 
procedure. We sometimes need to have a timeout, either if the problem is infeasible or a solution 
is too difficult to find. This timeout is shown in the results as Inf.. For this set of experiments we 
kept the timeout to be 300 seconds to find each constraint satisfying solution. Notice that, while 
we are tightening the design execution time constraint in each iteration of the solution, we are in 
effect making the solver progressively look at different parts of the design space. Since Ending 
Partition Relaxation, 7 — 1, we stop our search at N = 12. 

In the second experiment shown in Table 3.9, we present the temporal partitioning of the same 
design with no block-processing being performed i.e, k = 1. For this experiment, we have not 
shown the value of reconfiguration overhead N * CT in the table. We start with 8 partitions, but 
no solution is possible. Then we relax the partition bound by 1, to 9 and continue the search for a 
solution. Notice that no relaxation of N was undertaken in this experiment, after a solution was 
achieved in 9 partitions. This is because, the algorithm Refine-Partition^Bound calculates the 
new lower bound, Dmin, and finds that it is greater than the already achieved execution time, so 
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Table 3.8: DCT, i?n 576,6 = 1000/xs, 7 = 1, k = 3000 

CrM TV I 
Bounds Result 

Dmax (Ms) Dmin(ßs) Design Execution Time(/is) T(s) T(m) 
30 8 1 76,580 2,625 Inf. 300 

61.55 

9 1 76,590 2,655 28,410 37.40 
2 21,138 2,655 20,640 77.32 
3 11,895 2,655 Inf. 300 
4 16,515 11,895 Inf. 300 
5 18,825 16,515 Inf. 300 
6 19,980 18,825 Inf. 300 

10 1 20,640 2,685 18,900 278.8 
2 11,631 2,685 Inf. 300 
3 16,104 11,631 Inf. 300 
4 18,342 16,104 Inf. 300 
5 18,621 18,342 Inf. 300 

11 1 18,900 2,715 Inf. 300 
12 1 18,900 2,745 Inf. 300 

Table 3.9: DCT, Rmax = 576,6 = 1000//S, 7 = 1, k = 1 

CT(MS) N / 
Bounds (without N * CT) Result 
Dmax{ns) Dmin (ns) Design Execution Time (without TV * Cr)(/is) T(s) T(m) 

30 
a = 0 

8 1 25,440 795 Inf. 300 

25.4 

9 1 25,440 795 9,630 77.60 
2 6,956 795 Inf. 300 
3 9,266 6,956 9,100 78.95 
4 8,111 6,956 8,100 185.73 
5 7,533 6,956 7,380 281.93 
6 7,244 6,956 Inf. 300 
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Table 3.10: DCT, Rmax = 1024, S = 1000/is,7 = 1, k = 3000 

Crfos) N I 
Bounds Result 

£max(MS) DminilMS) Design Execution Time (/is) T(s) T(m) 
30 5 1 76,410 2,535 18,240 20.92 

45.00 

2 11,775 2,535 Inf. 300 
3 15,816 11,775 Inf. 300 
4 17,709 15,816 16,980 288.46 

6 1 16,980 2,565 11,760 76.43 
2 9,772 2,565 Inf. 300 
3 11,574 9,772 Inf. 300 

7 1 11,760 2,595 11,520 214.4 
2 7,146 2,595 Inf. 300 
3 9,483 7,146 Inf. 300 

8 1 11,520 2,625 Inf. 300 

it stops. Again, if we compare this result with the experiment where we had considered 
block-processing of designs, we see that the design in Table 3.8 will perform 3000 computations in 
18,900 ft seconds while the current design will perform the computations in 22,410 [i seconds. So 
it is important to integrate both block-processing and design space exploration as part of the 
temporal partitioning process so that appropriate task mapping to partitions and design points is 
performed to produce designs that will give better performance 

In Table 3.10, we show the results on DCT with R^ = 1024 (XC4025 FPGA). In this 
experiment the execution time tolerance ö is 1000 ßs. To show how varying the parameter ö 
affects the performance of the algorithm, we reduce 5 to 100 fis and repeat the same experiment 
whose results are shown in Table 3.11. The number of iterations spent looking for a solution 
increases, thus increasing the runtime. But a better solution is achieved. We therefore observe 
that reducing execution time tolerance increases the run time but achieves better solutions. For 
all the experiments shown in this section, we also experimented with obtaining optimal solutions 
as we have shown for the AR filter. However, in  none of these experiments could the optimal 
solution process get even a single feasible solution in the same run time as the iterative solution 
process. This is because in the iterative solution process we are dividing the solution space into 
smaller regions, thus reducing the size of the problem that the ILP solver has to solve in one run 
of execution. Also, we are directing the search process to look from higher design execution time 
solutions towards lower design execution time solutions and this directed search process seems to 
help the solver when solving problems with very large solution spaces. 

We have applied this technique to various other examples like 2D-FFT and FIR filter, median 
filter. The results we noticed are similar and also since the their taskgraphs are very regular like 
DCT we have instead included results for random unstructured graphs in the next section. This 
shows the viability of the approach for both regular and non-regular graphs. 

3.8    Comparison with List Based Scheduling Algorithm 

Following the two case studies we demonstrate the results of our techniques with another temporal 
partitioning algorithm based on the list scheduling technique. We will compare the results for the 
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Table 3.11: DCT, R^^ = 1024,6 = 100/is,7 = 1, k = 3000 

CT(jx) N I 
Bounds Result 

Dmaz(ps) Dmin(tiS) Design Execution Time (/is) T(s) T(m) 
30 5 1 76,410 2,535 18,240 20.92 

49.4 

2 11,775 2,535 Inf. 300 
3 15,816 11,775 Inf. 300 
4 17,709 15,816 16,980 288.46 
5 16,761 15,816 16,020 74.17 
6 15,934 15,816 Inf. 300 

6 1 16,020 2,565 11,760 76.43 
2 9,772 2,565 Inf. 300 
3 11,574 9,772 Inf. 300 
4 10,359 11,574 10,560 104.04 
5 10,510 11,574 Inf. 300 

7 1 10,560 2,595 Inf. 300 
8 1 10,560 2,625 Inf. 300 

DCT example which is a very regular graph. To find how our algorithm works on unstructured 
graphs we also generated many random graphs. The characteristic feature in which they differ 
from DCT is that they are graphs with more tasks in their critical path i.e. they are long graphs. 
Also the various tasks are different in size and so vary in the number of design points. 

We now discuss briefly the the scheduling algorithm which is similar to some other temporal 
partitioning works in literature [139]. In other partitioning works temporal partitioning is 
performed on an operation level data flow graph. Each operation in the data flow graph is placed 
in a priority list honoring the dependency among the operations. The priority list is formed by 
placing the nodes on the list one by one. A node is placed on the priority list if all its 
predecessors are already on the priority list. Then the algorithm assigns nodes starting from 
highest to the lowest priority in a partition until the area is filled. Once a partition is filled nodes 
are assigned to the next temporal partition. Each operation has one area and delay value 
associated with it. We will extend the same list based scheduling technique to work on task 
graphs instead of operation graphs. However there is no easy way to incorporate multiple design 
points in this technique. Therefore, going by the philosophy of this approach where the aim is to 
minimize the number of partitions in the design we choose the least area design point for each 
task prior to the start of the list based scheduling algorithm. 

Table 3.12 presents the result of our comparison for the DCT and the random graphs. We have 
shown the design execution times for our iterative search algorithm and the list based scheduling 
algorithm. The results are presented for each partition bound for which a solution is generated by 
the algorithms. Since the reconfiguration overheads for both the algorithms is the same we show 
the design execution times without the reconfiguration overheads. 

Graph Random 1 consists of 20 nodes, Random 2 has 30 nodes. Both the graphs have up to 4 
design points per task. We have presented results for different area constraints and 
block-processing factors. The set of results on the DCT example and the random graphs 
demonstrate the improvement in performance of our algorithm over the list based scheduling 
method. The results are for varying block-processing factors. In each of the results the 
performance of our algorithm is superior by 7%-40%. This demonstrates the following two 
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Table 3.12: Comparison with list based scheduling algorithm 

Exp. Rmax (CLBs) CT (/*») k N 
Design Execution Time 

% improv List Based Iterative 
DCT 1024 30 1 5 7,200ns 4,610ns 35.97 

3,000 5 21,450MS 16,680/iS 22.23 
3,000 6 - ll,400jus 46.85 
3,000 7 - ll,110/is 48.20 

Random 1 1024 30 1 4 9,000ns 5,100ns 43.3 
3,000 4 27,000/is 14,850jus 45 

Random 2 1024 30 1 8 13,500ns 10,950ns 18.88 
3,000 8 40,260/xs 27,450^s 31.8 

Random 2 2034 30 1 2 6,450ns 4,290ns 33.48 
3,000 2 19,350/as 13,500/zs 30.23 

3 - 12,600/iS 34.88 

significant points - 

• Design space exploration without block-processing is meaningful because the exploration 
process will choose the most appropriate design points for the given constraints. The first 
line in Table 3.12 with no block processing demonstrates a performance improvement of 
35% over the results from an algorithm that chooses the design points prior to the temporal 
partitioning step. 

• Design space exploration with block processing demonstrates that the amortization of the 
reconfiguration overhead due to block processing will help in the usage of more temporal 
partitions. For DCT the result demonstrates an up to 48% improvement over the list based 
algorithm that does not consider block processing. 

3.9    Extensions and Limitations of the Work 

All our methodology is still applicable in case of inter-loop dependencies by simply setting the 
block processing factor to T (i.e., no block processing). However, in the presence of inter-loop 
dependencies (i.e., absence of block processing) temporal partitioning is generally not 
time-effective for the devices like XC4000 that have high reconfiguration time. However, for 
devices such as XC6200 and the context switching FPGAs, where reconfiguration time is 
relatively low, temporal partitioning remains viable and useful. In either case our formulation will 
produce an optimal or near-optimal temporal partitioning solution after performing design space 
exploration and choosing the most appropriate design point for each task. (This solution may 
have only one temporal segment for architectures with high reconfiguration overheads.) We now 
present some of the extensions of our work and the limitations of the current technique. 

3.9.1    Intermediate Data Transfer Time 

In the design process model in Section 3.5, we have assumed that a suitable high level synthesis 
system exists that can schedule memory accesses together with the operations in the task graph if 
there is enough slack available. However if such a synthesis system is not available and the 
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memory accesses have to be performed prior to the execution of the task graph we need to 
account for the memory read write access times in our model. In the model presented earlier we 
have not integrated the calculation of read and write times for intermediate data in the 
calculation of the delay of each temporal partition. However, our model is very extensible in this 
respect. Since we are already calculating the amount of data transfer taking place across each 
temporal partition, the current model can be extended by modifying the minimization goal of the 
ILP model to include the intermediate memory read-write times. To do this we extend the 
minimization goal to also include - 

Amount of data transfer * (Memory read time + Memory write time). 

We can exclude the memory read by the input tasks and memory written to by the output tasks 
from the minimization goal as this factor is a constant of the graph and cannot be reduced. 

In terms of the equations presented in Section 3.6.2, we already have a variable wptlt2 defined that 
is representative of whether data is being transferred across temporal partition p due to tasks t\ 
and t2. To calculate the read and write times for the intermediate data we only need to know, if a 
data transfer is taking place but are not concerned about the partition boundaries it is taking 
place. Therefore, we can generate a new variable itlt2 that represents the data transfer due to 
tasks *i and t2 without considering the partition where this transfer takes place. This can be done 
in terms of the wptlt2 variables already generated. Formally, we generate the variable itlt2 below - 

«*lt2 
1    if task <i and t2 are not placed in the same temporal partition 
0   otherwise 

Vp,   1 < P < N,   Via € T,   Vii -> h      : itlt3 > Wptlt2 (3.17) 

Then the time required for the data transfer of intermediate data is equal to - 

itxt2 * B(ti, t2) * k * Dmem 

where, 

Dmem   is the sum of the read and write time for one memory element of the reconfigurable processor 
Now the minimization goal for the new problem will be - 

N 

Minimize      :n*CT + ^dp + itlt2* B{tut2) *k* Dmem (3.18) 
p=i 

To extend the technique presented in Section 3.7 we need to include the intermediate data read 
and write time in the generation of the delay bounds Dmax and Dmin used in that algorithm. In 
the preprocessing step where we generate Dmax and Dmin we can also generate upper and lower 
bounds on the amount of data transfer that can take place for the given task graph. The upper 
bound on the intermediate data transfer is given by the sum of all data transfers that can ever 
take place in the task graph. This is available by summing all data transfers across all edges in 
the task graph. This value multiplied by Dmcm is the upper bound on the time to transfer the 
intermediate data for the task graph. The upper bound on execution delay of design (as calculated 
in Section 3.7) + upper bound on the intermediate data transfer time will be the new Dmax . The 
lower bound for the data transfer is 0, so Dmin will remain the same as calculated in Section 3.7. 
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Figure 3.17: Reduction of time for memory access 

With the above extension, the intermediate data transfer time will be incorporated in the 
algorithm. The effect on the solution will be twofold. If the memory read/write time for tasks is 
very small compared to the execution times of the tasks then results similar to our experimental 
results will still be generated. However, if the memory read/write times are of comparable 
magnitude, then we will see solutions that have a tendency to avoid cutting across intertask 
edges.   All the intermediate data-transfer time in Equation (3.18) is added to the design 
execution time. However, in practice, part of this cost can be reduced in the following ways - 

• It is not necessary to have a design where all the intermediate data is read and written 
completely excluded to the execution of the design. Much of this read/write can be 
performed in parallel to the execution of the rest of the design. We can also develop an 
estimation process that calculates the overhead of intermediate data transfer for each design 
point, if such a transfer were to take place because of a task being placed in the next 
temporal partition. This can be incorporated in our model and accurate execution time 
results will be generated. This estimation process and model is currently being investigated. 

• Or, if the read and write have to be performed in serial to the design execution, we have 
developed a model that will reduce the time to access memory by generating two separate 
clocks - one for memory access and one for design execution. Figure 3.17 presents an 
overview of this approach. If a single clocking scheme is used for the FPG A the clock width 
is limited by the maximum combinational delay among all the functional units in the design. 
Usually the memory access can take place at a much faster rate than the clock frequency 
dictated by the design. Therefore we have split the memory access and the design execution 
so that memory access can occur at a faster rate. The time to program the clock from the 
host is usually negligible as it involves writing a single word to the reconfigurable processor. 

We can extend Equation (3.18) by multiplying the data-transfer time with a constant 'reduction 
factor' between 0 and 1 that can be used to appropriately scale down the memory access time by 
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Table 3.13: Results for variation of the factor reducing memory access time 

Exp. Rrnax  (CLBs) Reduction factor N Design Execution Time(/zs) 
DCT 

Umem 
= 140 ns 

2304 0 2 4,830 
3 3,735 

.2 2 5,408 
3 5,063 

.4 2 6,885 
3 6,423 

.6 2 7,860 
AR filter 

■Umem 
= 140 ns 

196 0 4 5,355 
5 5,010 

.2 4 5,940 
5 5,845 

.4 4 6,531 

the average amount that it is being reduced by using one of the techniques discussed above. If the 
factor is 0 then all the memory access costs have been absorbed. If the factor is 1 then none of 
the costs have been absorbed. We now present a few experimental results in Table 3.13 for 
different values of this reduction factor for the DCT and AR filter examples. For all the 
experiments CT — 30/zs and k = 3,000. We see from the tables that for the DCT temporal 
partitioning will be explored till the reduction factor is .4. For the reduction factor at .6 the 
design with minimum number of partitions is the best solution. For AR filter the reduction factor 
of > .4 stops the exploration process. 

3.9.2    Intermediate Data Overhead 

Intuitively we can understand that due to block processing the amount of memory required for 
saving the intermediate data will be k times the amount of memory required for a temporally 
partitioned solution that does no block processing. This would happen if a solution generated for 
k = 1 (no block processing) is used to process blocks of data. However, it is not necessary that 
the solution generated by our algorithm for both block processing and non block processing in a 
design will give the same results. Formally, we can state the overhead of intermediate memory 
needed for block processing in each temporal partition in terms of the variables of the ILP model. 
The total amount of memory overhead in each partition is given by - 

Y,    S      Y, ytP2m*B(env,t)*k+Yl   J2     ]C ytP3m*B(t,env)*k+Y,   £ (wptit2*B(tut2)*k) 
tST p<p2<N meMt teTl<pz<pmeMt <2eTti-^2 

(3.19) 

The maximum of these values for all partitions would determine the size of the external RAM 
required for the system. 

If we run two versions of a specification through our system, with and without block processing, 
we can determine the overhead due to block processing. As a byproduct of our model we can thus 
calculate precisely the memory overhead due to block processing in each design. 
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3.9.3    Limitations 

As we have discussed earlier in Section 3.8, our techniques demonstrate that design space 
exploration with block processing is beneficial in amortizing the cost of the reconfiguration 
overhead. However, if data is to be processed in real time where blocks of data are not available a 
priori, our method can still be used to search for a temporally partitioned solution if one is 
possible within the inter block-arrival time constraint. It is possible for our system to take the 
inter block-arrival time constraint on the overall execution time rather than have one generated 
by the tool. If a static/temporally-partitioned solution is possible it will be generated by our tool. 
However, if the designer cannot specify an inter block-arrival time or if this time varies for various 
inputs and cannot be know a priori then our methods cannot be applied. 

The current implementation does not support pipelining of the different computations in the same 
temporal partition. This would be particularly beneficial as it would reduce the execution time 
for the designs. Another limitation of the approach is that even though tasks can be of arbitrary 
granularity, splitting of tasks across temporal partitions is not allowed. Currently the memory 
read/written in a temporal partition remains alive for the life of a temporal partition. More 
detailed memory access models would require sophisticated foot-print analysis of the 
memory-bound data structures and is beyond the scope of the current work. The partial RTR 
capabilities of the reconfigurable device is also not exploited from within the algorithm. 

3.10    Conclusion 

We presented an automated temporal partitioning methodology, which demonstrates how 
integrating design space exploration and block-processing procedures, can lead to performance 
enhancements in dynamically reconfigured designs even when the reconfiguration overhead is a 
dominating factor in the computation time. We have shown, that by using mathematical 
programming techniques we can model the task level temporal partitioning and design 
exploration problem incorporating multiple constraints of area, design execution time, and 
memory. We have also developed a framework in which these techniques can be used in a novel 
manner to solve constraint satisfaction problems for large specifications of real world examples 
such as the DCT. We are able to get near-optimal solutions in short run times with this iterative 
procedure. The effectiveness of the formulations and iterative procedure was demonstrated by the 
case study of the DCT. 

This technique can handle tasks of arbitrary granularity, so the same technique can be used to 
handle task graphs with task sizes varying from small to very large. It is also possible to address 
sharing of resources in a temporal partition though the problem size and complexity will be 
increased as more variables will be added to the ILP model to model sharing of resources. 
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Chapter 4 

Architecture-Driven Spatial 
Partitioning 

4.1     Introduction 

Design process for RCs involves partitioning and synthesis of the given design specification onto 
the FPGAs and memories on the RC and accordingly establishing the required pin-assignment 
and inter-FPGA routing. Partitioning of a design may be performed at various levels: behavioral, 
RTL, or gate-level. High level synthesis (HLS) process converts a behavioral specification into an 
RTL design having data path (structural net-list of components) and a controller. Behavioral 
partitioning is a pre-synthesis partitioning while structural partitioning is done after HLS. Studies 
[38, 48, 20, 19] comparing Behavioral and RTL partitioning show the superiority of the former for 
large designs. 

Gate-level and RTL partitioning are both structural level partitioning problems that are typically 
modeled as graph partitioning. In RTL partitioning the nodes are components from an RTL 
library, while in gate-level partitioning the components are from the target specific device library. 
In fact, the same structural partitioning engine has been used to perform both RTL and gate-level 
partitioning [42]. Problem sizes for gate level partitioning are a magnitude larger than for RTL 
partitioning. If the RTL components are pre-placed macros [44, 26] that must not be flattened 
into gates, then gate level partitioning is not performed. Usually gate-level partitioning is used in 
the context of certain placement algorithms that use recursive partitioning strategies to minimize 
the wire length [47]. 

Behavioral partitioners must be guided by high-level estimators that make estimates on device 
area, memory size, I/O, performance and power. These estimations are performed by light weight 
synthesis estimators. These estimators have to be light weight because several thousand partition 
options may be examined. However, being light and accurate at the same time is very difficult. 
Sophisticated estimation techniques are used to alleviate this difficulty [26, 44, 22]. Behaviorally 
partitioned system may use more gates, since hardware is not shared between partitions. 
However, since RTL partitions are I/O dominated, the RTL partitions do not tend to under 
utilize the device. Thus, this increase in gates is not much of a concern. 

The RC research community has invested several efforts into multi-FPGA Partitioning 
[57, 70, 35, 82, 51, 60, 11, 55]. However almost all of these have been post HLS partitioning 
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approaches. Chan et al. [57] partition with the aim of producing routable sub-circuits using a 
pre-partition routability prediction mechanism. Sawkar and Thomas [55] present a set cover 
based approach for minimizing the delay of the partitioned design. Limited logic duplication is 
used to minimize the number of chip-crossings on each circuit path. Bi-partition orderings are 
studied by Hauck and Borriello [70] to minimize critical bottlenecks during inter-FPGA routing. 
Woo [51], Kuznar [60], and Haung [11] primarily limit their partitioners to handle device area and 
pin constraints. A library of FPGAs is available and the objective is to minimize device cost and 
interconnect complexity [11, 60]. Functional replication techniques have been used [60] to 
minimize the cut size. Neogi and Sechen [35] presents a rectilinear partitioning algorithm to 
handle timing constraints for a specific multi-FPGA system. Fang and Wu [82] present a 
hierarchical partitioning approach, integrated with RTL/logic synthesis. 

Behavioral partitioning has been promoted by several system level synthesis groups 
[65, 37, 21, 48, 22, 78, 80]. In this chapter the behavioral partitioning approach was chosen for 
RCs due to the drawbacks of structural, as mentioned above, and due to several studies that led 
to the decision [48, 38, 61, 79]. We present two integrated partitioning and synthesis 
methodologies RCs. In both approaches, we show that the physical memory on the RC can be 
effectively used to alleviate the pin-out and inter-FPGA interconnection bottle-neck. First, we 
present a data flow graph (DFG) partitioner. Following this a coarser block-level partitioner is 
presented. The block-level partitioner is integrated with a dynamic design space exploration 
engine. This chapter presents a fully automated framework for behavioral partitioning of a DFG 
and a CDFG, with appropriate estimation and exploration techniques such that the RC resources 
are effectively utilized. In addition, the chapter also provides a detailed summary of advantages 
and disadvantages of both partitioning approaches. 

Various aspects of the partitioning problem presented in the chapter and the hardware 
area/performance estimation techniques bear similarities to the research in the area of 
hardware-software codesign [64, 58, 52, 23]. There have been several approaches to solve the 
problem of hardware-software partitioning for a range of granularity [65, 58, 30, 33, 13, 53, 76]. 
Fully automatic partitioners have been in existence for quite some time now [65, 58, 33]. Gupta 
and De Micheli [65] start with an all hardware solution and iteratively move one task at a time to 
software until no further improvement is possible. Ernst and Henkel [58] on the contrary follow a 
software oriented approach which starts with an all software solution and uses a simulated 
annealing partitioning engine. Hou and Wolf [33] proposed a process level partitioning heuristic 
based on hierarchical clustering. Eles [53] performs a performance guided partitioning based on 
simulated annealing and Tabu search. Thomas [13] presents a coarse grain partitioning 
methodology at a functional level. The RC partitioning presented in this work does not have a 
software estimation component. However, the communication model and the resource availability 
(both for communication between partitions and hardware logic) is well defined and performance 
overheads can be accurately computed within clock-cycle accuracy. The challenge is to 
dynamically explore the hardware design space and efficiently use the available communication 
resources inorder to generate the optimal design that satisfies resource constraints. It is typical of 
an RC environment to have a host desk-top computer interacting with a FPGA based RC . In 
such cases, RC hardware partitioning can follow functional level hardware-software partitioning. 

The chapter is organized as follows. In the following section the DFG and block graph 
specification models are presented. Section 4.3 presents the target RC architecture model. 
Sections 4.4 and 4.5 present in detail the data flow graph and block graph partitioning 
methodologies, experimental results, and observations. Our conclusions are presented in the final 
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section. 

4.2    Input Specification Models 

In this section we formally present the two specification models that are used this chapter - data 
flow graph, and behavioral block graph. 

4.2.1    Specification for Fine-grained Partitioning 

Several digital signal processing (DSP) and image processing applications can be expressed as 
simple graphs that have pure data flow or minimal control flow. Discrete cosine transforms 
(DCT), Fast Fourier transforms (FFT), image filtering, and Jacobi transforms are some widely 
used applications that can be expressed by data flow graphs. 

The input to be partitioned is an acyclic graph whose nodes are the operations to be partitioned 
across the FPGAs of the RC and the edges represent the data flow. The formal definition is as 
follows. 

Definition 4.1 A data How graph (DFG) is o directed acyclic graph, Q = (V,E,I, O). V is the 
set of nodes representing the operations and E is the set of directed hyper-edges corresponding to 
the data flow dependencies. I is the set of primary inputs and O is the set of primary outputs. 
Following are the attributes related to nodes and edges. 

• For each node v e V: areav : Area of the nodes in CLBs (Configurable Logic Blocks). iv : 
Number of input wires feeding v. ov : Number of output wires fanning out v. levelv : Level 
number of the node v, or its schedule time-step. For a valid DFG, 

Vi,Vj E V A V{ ~> Vj => 0 < levelVi < levelVj, 
Here, the symbol ~> denotes a directed path. 

• For each edge e G E: source,, : Source node or the primary input, in I, that drives the 
hyper-edge e. sinke : Set of nodes and primary outputs that are driven by the hyper-edge e. 
widthe : Bit-width of the edge. modee : Data-transfer mode for the edge e, if it cuts 
partition boundaries. If modee = MEM, then data-transfer is through memory transfer, 
else modee — WIRE and data-transfer is through the interconnection-network of the RC. 

G is a scheduled data flow graph with well defined modes for data transfer across partitions. All 
primary inputs to the DFG must be available when the DFG starts execution (at time-step 0). 
Primary outputs are available in the next time-step after they are computed. 

Figure 4.1 shows the DFG for a 8x8 vector product equation of the form 
z = ai.&i + 02.62 H 1- 08-&8- The DFG is scheduled in 5 time-steps. The level of an operation is 
the time step (level) at which it is scheduled. For instance, in Figure 4.1, 4 operations have the 
level attribute value of zero. All primary inputs to the DFG are fetched from the memory and all 
primary outputs must be stored in memory. All internal nets by default are MEM mode unless 
explicitly specified as WIRE. In Figure 4.1, two edges have WIRE mode, meaning, if these nets are 
cut during partitioning, then they must be wired using the interconnect resources on the board. 

56 



Figure 4.1: Vprod: DFG for 8x8 vector product: Example 

4.2.2    Specification for Coarse-grained Partitioning 

The behavioral block graph in essence is a Control Data Flow Graph (CDFG), where the blocks 
in the graph capture the data flow in the design and the edges across blocks capture both control 
flow and data transfers. The block graph is extracted from the behavioral specification of the 
design and is used as the intermediate format for the SPARCS synthesis tool called Asserta HLS 
[50, 49]. Here is a more formal definition of the BBG. 

Definition 4.2 A BBG is a directed graph, Q = {B,Ce,Ve,PI,PO), where 

B = {&i, &25 ■ ■ ■, b}(} is the set of behavioral blocks in the design. PI and PO are the primary 
input and primary output ports of the design. 

Ce = {CE1: CE2, ■■■, CEN} is the set of control dependencies in the BBG. Each control edge, 
CEi  —   < bSi,Bdi,fi >    e Ce, denotes control dependency from BB bSi to the set of BBs in B^. 
The control transfer from block bSi to one of the blocks in Bdi happens conditionally based on the 
value that bSi sets on the flag fo. Informally, each control edge is a multi terminal edge from a 
source block to multiple destination blocks, where the control transfer from source to one of the 
destination blocks occurs conditionally. Data transfer takes place from the output port of a block 
to the input port of another. 

Ve = {DEi,DE2, ■ ■ ■ ,DEM} is the set of data dependencies in the BBG. Each data transfer edge, 
DEi  —   < bSi,Bdi,Wi >   e  Ve, denotes multi-terminal net with BB bSi as the source and the set 
of BBs in Bdi are the destination. Wi denotes the width of the data transfer edge. The source of 
the data-transfer may be a primary input port in PI and similarly one or more destinations may 
be primary output ports in PO.  The variable modei denotes the data-transfer mode (Definition 
4.1) ofDEi. 

Each BB &,- e B is modeled as a four tuple, 6* = < Gu Iu OuFi> where, G{ is the DFG that 
represents the behavior of the block &*. d follows the dataflow graph semantics, Definition 4.1. It 

and Oi are the input and output ports of the behavior block &j. The input ports of the block may be 
connected to one of the primary inputs (PI) or to the output ports of other blocks. Similarly ports 
in Oi may be connected to primary outputs (PO) and/or to inputs ports of other blocks. The port 
connectivity is also captured by the data dependency set, Ve. 
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Figure 4.2: Example of block graph, extracted from BBIF 

Figure 4.2(a) shows a block graph with 6 behavioral blocks. Figure 4.2(b) shows the structure of 
a single block. Block Bl performs operations on the primary input and the control is transfered 
to B2. On completion of B2, the control conditionally transfers to block B3 or B4. B5 executes 
next when either of B3 or B4 finishes and finally B6 is executed. The block graph model permits 
only a single thread of control. Exactly one block is active at any time during the execution of the 
design. This allows a complete sharing of resources across blocks. The block graph model allows 
operation-level parallelism within the behavioral blocks. Control constructs such as if then else, 
case and while loops in BBIF can easily be translated into control flow in the block graph 
[50, 49]. Figure 4.3 shows the BBG for the two dimensional FFT benchmark. The graph has 18 
blocks and 25 edges. Notice that there are two loops in the graph. 

4.3    Target RC Model 

We consider a multi-FPGA RC architecture that has multiple FPGAs sharing a single physical 
memory. The FPGAs are interconnected by a fixed interconnection network and all the FPGAs 
can access the "memory through a shared memory bus. Figure 4.4 shows the RC architecture 
model that is considered. 

Formally, the RC has K FPGAs, T = {/i, /2, ■ • •, IK) that share a physical memory M. For 
/£f, Aredf is the area of the FPGA in terms of the available CLBs. We define conn to be the 
connectivity matrix, where for 1 < i < j < K, conn^ is the number of wires in the channel 
connecting FPGA -i and FPGA -j. The connectivity matrix is derived from the fixed 
interconnection network. 

The FPGAs can communicate data either through the shared memory or directly through 
channels (wires) in the interconnection network. For DFG and block graph partitioning, all 
primary design inputs are assumed to be present in the memory, and all primary outputs are 
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written back to the memory. For DFG partitioning, when the internal edges in the DFG are cut, 
data communication is made through either memory or channels depending on their user-specified 
mode (Definition 4.1). 

4.4    Data Flow Graph Partitioning 

In this section we present the DFG partitioning methodology. First, we explain the partitioning 
and synthesis process. Following this the various details about the cost estimation and partition 
evaluation methodologies are presented. We briefly describe the iterative partitioning engine used. 
Elaborate experimental results are presented and the observations are summarized at the end of 
this section. 

4.4.1    Partitioning and Synthesis Process for DFGs 

The goal of the RC synthesis process is to partition and synthesize a behavioral specification and 
to efficiently utilize the underlying RC resources. The quality of the design is determined by the 
cost metrics, discussed later in Section 4.4.2. The primary goal of this process is to successfully 
obtain a partitioned design that satisfies all board-level constraints such as area, interconnect, 
and memory resources. The secondary, but an important factor is measured in terms of the 
performance (throughput) of the design. 

Figure 4.5 shows the partitioning and synthesis design flow for DFG partitioning onto RCs. First 
the DFG is extracted from a behavioral specification in C [3] or VHDL (Very high speed 
integrated circuit Hardware Description Language) [27]. Design space exploration is performed to 
generate a schedule [10] for the DFG that is suitable for the underlying RC. The scheduled DFG 
is then passed as an input to the partitioner. The DFG partitioner generates multiple control 
data flow graphs (CDFGs). Each CDFG is synthesized for an individual FPGA on the RC. The 
control structures in the CDFG are a simple synchronization mechanism between the multiple 
communicating DFGs. 

Any iterative partitioning engine such as simulated annealing (SA) [71], genetic algorithm (GA) 
[31], or Fiduccia-Mattheyses (FM) may be used by the partitioner. The most crucial component 
of the partitioner that determines its convergence is the partition cost evaluator. The evaluator 
estimates the cost and performance of the contemplated partition against the target RC model, as 
presented in Section 4.4.2. 

Following partitioning, we generate a block graph (CDFG) for each partition segment of the 
original DFG. Each block graph is then individually synthesized to a RTL implementation by the 
Asserta [50] HLS tool. Asserta is a formally asserted high-level synthesis system, that can 
produce RTL designs for any user specified RTL component library. The RTL designs produced 
by Asserta have two components. The first component is a simple FSM (finite state machine) 
that acts as the controller and the second component is data path of components from the RTL 
component library. The synthesized designs are translated to VHDL, integrated together with the 
RC VHDL templates, usually provided by the RC vendor. The integration process involves 
connecting the design I/O to the pads in the RC template and generating additional glue logic, if 
necessary. Commercial VHDL simulators are used to simulate the partitioned design and verify 
timing and functionality of the partitioned design. 
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After successful RTL simulation, logic and layout synthesis is performed on each design that is 
mapped to an FPGA. The template host program is accordingly modified to setup the memory 
for inputs and provide the necessary signals to start and recognize the finish of the design on the 
RC. Finally the design is downloaded on the RC and board-level testing is performed. In practice, 
layout synthesis may fail during place and route. The information is fed back to the partitioner, 
respective constraints are tightened and the design process is carried out again. Due to this time 
expensive design cycle, the cost evaluators are carefully fine tuned so that such failures, late in 
the design process, can be minimized. 

4.4.2    Partition Cost Evaluation for DFG Partitioning 

Partitions are evaluated based on their architectural constraint-satisfaction and how well the 
performance is optimized. For DFG partitioning we consider number and area of the FPGAs and 
the inter-FPGA interconnection resources to be the constraints on the RC. The RC constraints 
are available from the RC architecture model (Figure 4.5). The optimization goal for the 
partitioner is to minimize the latency of the design. Before presenting the combined cost function, 
the area, interconnect and latency estimation techniques are presented. 

Area Estimation 

The area of each partition segment s is constrained by the number of CLBs available on the 
FPGA to which it is mapped. In the case of ASIC design both computation resources (ALU 
components such as, adders and subtracters) and storage resources (registers) are considered alike 
because both occupy silicon area. However, in FPGAs, the LUT (Loop Up Table) based function 
generators in the CLBs provide the computation resources while the flip-flops in the CLBs 
provide the storage resources. Hence in the case of FPGAs, computation area estimation and 
storage area estimation (register estimation) must be performed separately and individual 
constraint-satisfaction checked. 

The total area of a segment is composed of the component area, and multiplexor areas due to 
component and register sharing. The area of each component is available from the RTL library. 
Multiplexor area characterization for Xilinx 4000 series FPGAs [43] shows that a four input 
multiplexor needs a unit CLB resource and the area increases linearly with the input size. 

During synthesis, all inputs and outputs of every node in the DFG are stored in a register. 
Trivially if every input and output bit of a node is stored in a flip-flop, then the storage resource 
required is a function of sum of the I/O bits of all nodes in the partition segment. Approximately, 
for every two 4-bit registers that are shared, a unit CLB cost will be incurred for multiplexing. 
We use empirical formulas to compute the register and multiplexor area costs [77] based on an 
expected register sharing behavior. 

Let si, s2 ■ ■ ■ sK be the K segments to be mapped onto the K FPGAs on the RC (Section 4.3). 
Then, we define the AreaPenalty of the partition as, 

,       _      , A   AAi 
AreaPenalty = >  (4 i) 

f^Areah ^ • > 
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where, AA-= { °,      ,   ,    if ^ea(Si)< Areafi 
I  Area(Si) — Area^   otherwise 

Area(si) is the estimated axea of the segment S{ and Area^ (Section 4.3) is the area of the FPGA 
to which the segment is mapped. Notice that no negative penalties are assigned to segments with 
areas lesser than the FPGA area. More importantly we normalize the area violations to the 
amount of area available. This is important when partitions are evaluated for multiple conflicting 
constraints. A value of zero for the AreaPenalty implies that the partition does not violate area 
constraint. Negative area penalties are avoided because the goal is to generate the 
performance-optimal design that does not violate resource constraints for a fixed RC. Negative 
penalties needlessly avoid search spaces thereby increasing the chances of being held at a locally 
optimal solutions. 

Interconnect Estimation 

The inter-FPGA interconnection resource constraints are derived from the connectivity matrix 
(conn) that is part of the RC specification model (Section 4.3). Let S\,S2---SK be the K 
partition segments. Each edge e in the original DFG contributes a wire requirement of size 
widthe, if modee is Wire and edge e communicates between two different segments s, and Sj. 
Another component that adds to the interconnection cost is the routing of synchronization lines 
to the communicate end of a block execution. 

Let si, s2 • • ■ SK be the K segments to be mapped onto the K FPGAs on the RC (Section 4.3). 
For 1 < i < j < K, Wij is the number of wires required between partition segments s, and Sj (as 
computed by the function EstimateJVires(si, Sj). Then, we define the InterconectPenalty of the 
partition as, 

Inter connectPenalty =     Y^      — (4.2) 
l<i<i<K connij 

where A7« = I ° if Wij ~ C(mnij 

I   "ij ~ connij   otherwise 

Notice that similar to the AreaPenalty computation (Section 4.4.2), no negative; penalty is 
assigned for constraint satisfying solutions. Again, the interconnect penalty is normalized with 
respect to the number of channels available on the RC for inter-FPGA routing. 

Latency Estimation and Memory Utilization 

A partition solution of a DFG is constraint-satisfying if both area and interconnect penalties are 
zero. When multiple constraint satisfying partitions are obtained, the partitioner selects the 
solution with the least design latency. Latency is the the total number of c-steps (clocks) to 
process a single set of inputs to the DFG. If the input specification were not partitioned but 
implemented on a single FPGA the total latency will be the schedule length of the DFG plus the 
time for reading primary inputs from the memory and writing primary outputs back to the 
memory. 

In the case of a partitioned DFG, additional clocks are spent in data transfer across partitions 
and in synchronization of block execution across multiple segments. The latency of a partitioned 
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design is composed of four components. 

1. DFG schedule length : This is the number of time steps in the scheduled DFG. This is equal 
to the maximum of the level numbers of all nodes in the DFG. Formally, schedule length = 
Max(Vt; € V : levelv), refer Definition 4.1. 

2. I/O latency : Primary inputs and outputs are stored in the memory. Since we consider a 
shared memory RC model, the I/O latency is a linear function of the number of primary 
inputs and outputs of the DFG. If each memory read and write operation takes r and w 
cycles then the I/O latency for a DFG Q = (V,E,I, O) is \I\.r + \0\.w. For the Wildforce 
[84] architecture, r is 3 cycles and w is 1 cycle. 

3. Data transfer latency : When edges in the DFG cut segment boundaries, the data transfer 
between FPGAs may be either through the shared memory or through the channels in the 
interconnection network. Each data transfer through memory will consume r + w cycles, 
and each wired data transfer will consume two cycles, assuming unit cycle for port read and 
write. If there are M data transfers through memory and W wired data transfers then the 
data transfer latency is (r + w).M + 2.W. 

4. Synchronization latency: Insertion of synchronization blocks introduces extra clock ticks to 
write the done signal and recognize it. The synchronization latency is the number of 
synchronization blocks in the design multiplied by a constant factor. The value of the 
constant depends on the synthesis process. The HLS tool used (Asserta [50]) in our 
partitioning environment (Figure 4.5) consumes 4 extra cycles for every synchronization 
block. 

The total latency is the sum of the four components discussed above. As seen from the above 
discussion, the latency of the the design can be accurately computed and the time to compute 
linearly increases with the number of edges in the DFG. 

4.4.3    Partitioning Engine for DFG Partitioning 

We use a GA (Genetic Algorithm) [31, 12] based partition engine to perform the DFG 
partitioning. GAs capture the solution in a structural representation and the convergence is based 
on genetic operations - selection, crossover and mutation. The genetic operators work on a 
population of solutions, also called generation. We now present the details of the adaptation of 
GA for DFG partitioning. We model the partitioning problem as a simple integer-coded genetic 
algorithm. Each partition solution is represented as an integer array whose length is equal to the 
number of nodes in the DFG and each location of the array has a value between 1 and the 
number of partition segments K. The selection operator probabilistically selects highly fit 
solutions in the current generation. The GA uses uniform crossover operation [39]. A mutation 
operator randomly changes the integer values in the integer arrays. The population size varies 
between 100 and 200. Selection percentage is set to 20% and mutation probability is 0.10. 

The convergence of the GA is primarily dependent on the fitness computation function. 
fitness(x) = 

1 + AreaPenalty(x) + InterconnectPenalty(x)' 

64 



Table 4.1: Design Data for DFG Partitioning 

Example Num Num Area Latency 

Name Nodes Edges (CLBs) (c-steps) 

Vprod 15 14 258 55 

StatFn 23 22 187 33 

Reverb 22 24 1424 34 

FIR 23 22 1044 81 

Elliptic 36 49 1176 48 

FFT-1D 40 16 736 74 

FFT-2D 88 112 1652 80 

MatMult 112 96 1905 117 

DCT4x4 224 256 8200 166 

DCT8x8 1929 2304 13999 835 

Equation 4.3 shows how fitness of a partition, x is computed. AreaPenalty and 
InterconnectPenalty are computed as presented in Sections 4.4.2. Thus, when both area and 
interconnect penalties are zero, the fitness of the solution is 1. 

The selection operator first sorts the solutions in the current population in decreasing order of 
quality (Equation 4.4). For two solutions x and y, the solution with 

quality(x) > quality (y) <S=^ 

(fx > fy)   V((/* = fv) A (lat* < latv)) (4.4) 

where, fx and latx are the fitness and latency values for the solution x. 

The selection operator selects 20% of the population, with a high probability of selecting solutions 
lower (high quality solutions) in the sorted array. Selecting the lower 20% of the sorted array may 
make the GA converge too fast. The crossover operator also selects good quality solutions for 
crossover. 

4.4.4    Experimental Results for DFG Partitioning 

In this section we present the results of partitioning several DFG benchmarks of varying sizes 
onto multi-FPGA RC architectures. The genetic partitioning engine and the estimation 
algorithms are implemented in C++ and all results are reported for a two processor Sun 
UltraSparc workstation running at 296Mhz with 384MB RAM. 

Table 4.1 shows the various designs that are partitioned. All examples were first written in 
straight-line (i.e, no loops or conditionals) C [3] and translated into the DFG format. The input 
operators are nibble sized. 

• The Vprod DFG is shown in Figure 4.1. Vprod has 15 nodes and 14 edges (number of 
edges does not include the primary input/output connections). Column 4 of Table 4.1 gives 
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the area required to implement the design on a single FPGA. Column 5 is the latency of a 
single FPGA implementation. This latency is the sum of DFG schedule length and the I/O 
latency (Section 4.4.2). Column 5 also gives the lower bound on the latency that can be 
achieved by any multi-partition implementation of the corresponding DFG. 

• StatFn computes a statistical function of an array of 8 nibble-sized inputs. It first finds the 
mean, then computes the deviation from the mean of each input. It then outputs the mean 
and the sum of products of the adjacent odd and even values in the deviation array. The 
design has 23 nodes and 22 edges. 

• Reverb, FIR, Elliptic, FFT-1D are computationally small designs (number of nodes, 
edges < 50) like Vprod and StatFn. FIR performs finite impulse response function on 16 
inputs. 

Elliptic is the elliptic wave filter and Reverb is an implementation of the reverberation filter. 
FFT1-D does the one dimensional fast Fourier transform on a 4x4 matrix. The reason for 
increased area sizes of Reverb, FIR, FFT-1D and Elliptic is because the operator sizes are 
much larger (16-bit) than that of Vprod and StatFn. 

• FFT-2D and MatMult are medium scale examples that have about 100 nodes and as 
many edges. The solution space of a partitioning problem is nK where n is the number of 
nodes and K is the number of partition segments. Thus the solution space increases much 
rapidly with the increase in the size of the DFG. FFT-2D is the DFG of a two-dimensional 
fast Fourier transform and MatMult is a matrix multiplication operations of two 4x4 
matrices. 

• DCT4x4 and DCT8x8 are both DFG for two dimensional discrete cosine transform 
operation of 4x4 and 8x8 matrices. Both are large examples, the latter being a much larger 
example with around 2000 nodes and edges. Two dimensional DCT involves two matrix 
multiplication operations, one for each dimension.The DFG for these examples have several 
large 9-bit and 20-bit multipliers. 

We partition the designs in Table 4.1 for the Wildforce family of architectures. Wildforce has 4 
FPGAs, Wildchild has 8 and Wildfire has 16 FPGAs on the board. The FPGAs are Xilinx 4000 
series FPGAs. For our experiments we consider the target RC to be one of the Wildforce family 
boards with all the FPGAs being the same Xilinx device. The Xilinx FPGAs we allow are 
XC4005 (196 CLBs), XC4013 (576 CLBs), XC4025 (1024 CLBs), xc403ü (1296 CLBs) and 
XC4085 (3136 CLBs). One of the memory devices on the board acts as the shared memory and a 
common memory bus (address, data and read/write control) is routed through all the FPGAs. 

Only limited wires are available for data transfer across FPGAs. If the inter-FPGA interconnect 
resource is unavailable, the partitioner automatically transfers data through the shared memory. 

Table 4.2 shows the results of partitioning the DFG designs presented in Table 4.1. Column 2 is 
the type of RC architecture and the FPGA device that is used. The designs Vprod, and StatFn 
are targeted to a board with 2 XC4005 devices and MatMult is targeted to an RC with two 
XC4025S. The rest of the designs are partitioned onto a Wildforce family board. 

The DFGs are scheduled to match the constraints posed by the target RC. For the smaller 
examples (Vprod • • • MatMult) in Table 4.1, the area and the latency correspond to the fastest 
(ASAP) schedule of the graph. The DFG for DCT4x4 and DCT8x8 have several multipliers of 
very large sizes ( >20 bits wide) therefore the ASAP schedule was infeasible. In fact the ASAP 
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area estimates for DCT4x4 is «40000 CLBs and for DCT8x8 the estimate is «150000 CLBs. 
Hence a highly serial (slow) schedule, with aggressive sharing of operators, was generated for 
these two examples. The area and latency estimates for DCT in Table 4.1 corresponds to the slow 
schedule. 

Column 3 of Table 4.2 shows the estimated areas of all the partition segments. The number of 
segments is equal to the number of FPGA devices on the board. Notice that some of the segments 
may be empty {FIR, EUip, FFT1D). In fact as the number of segments increases, the latency of 
the design tends to decrease. This is illustrated by the results for DCT4x4 example. We target 
DCT4x4 to Wildforce (4 segments), Wildchild (8 segments) and Wildfire (16 segments). The size 
of the FPGA device decreases with the number of FPGAs on the board. We see that the design 
executes fastest on Wildforce architecture, followed by Wildchild then the Wildfire. The latency 
of an unpartitioned design (reported in Table 4.1), provides a lower bound on the design latency. 
Column 5 of Table 4.2 reports the latency of the partitioned design. Notice that the more the 
number of partition segments, the greater is the deviation from the lower bound. 

The estimated area of the unpartitioned DFG (as in Table 4.1 is the lower bound on the total 
area. Column 4 of Table 4.2 reports the total area of the partitioned designs. We infer from the 
results that limited larger FPGAs is a better alternative than several smaller FPGAs. The 
run-times for the genetic algorithm rapidly increases with the size of the DFG. The last column in 
Table 4.2 reports the execution time to complete 1000 generations of the genetic algorithm. 

For a few examples (Table 4.3), we performed logic and layout synthesis and compared our 
estimated area and performance measures against the actual values after synthesis. The designs 
Vprod and StatFn were successfully implemented and tested on the Wildforce [84] board. Table 
4.3 shows estimated and actual areas after synthesis of the partition segments for each design. 
Similarly, the estimated and actual latency (obtained from RC VHDL template simulation) of the 
partitioned design is reported. We observe a very small deviation in the latency computation. 
The deviation in area estimates and actual area is due to the approximations made for 
interconnect and the controller area. However the error margin is less than 20%, making the 
estimation process reliable. 

4.4.5    Observations and Summary for DFG Partitioning 

We presented a simple and efficient methodology for partitioning data-flow graphs onto 
multi-FPGA shared memory RC architectures. A fully automatic design flow from a behavioral 
specification in C, or VHDL is accomplished. There are various advantages of this process. 

• For small designs, it is straight forward to specify the design as a DFG. 

• The user is oblivious to the underlying RC architecture. The specification is implementation 
independent. The data transfers and the DFG I/O are automatically mapped to the 
memory or the inter-FPGA wires automatically. 

• Given a scheduled DFG, area and latency of the partitioned design can be estimated with 
reasonable accuracy. 

• The partitioned implementation exploits the inherent operator level parallelism in the DFG. 
Multiple operations in the same and different FPGAs may be active at the same time. 
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• Typically, pin-outs and inter-FPGA routing resources are one of the primary bottlenecks to 
implement large designs on RCs. Our DFG partitioning methodology is an approach to 
minimize this bottleneck by seamlessly transferring inter-FPGA communication through the 
memory. This is done at the cost of increased latency of the design. However, if not for this, 
most of the useful designs tend to be infeasible. 

• The partitioned design model is simple and closely resembles the original DFG in its 
structure. The simple partitioning process poses very limited scope for error when 
generating the partitioned design. Moreover verification of the partitioned design is not 
difficult. 

The advantages of DFG partitioning come with several disadvantages too. 

• The design space exploration process is not fully integrated with the partitioning process. 
Since partitioning is done at a fine-grained level (operation-level partitioning), the problem 
size increases exponentially with the number of nodes. Design space exploration (i.e., 
determination of an efficient schedule of operations), during partition is extremely time 
consuming and is feasible only for very small examples. In the DFG partitioning 
methodology, design space exploration is performed a priori based on the constraints posed 
by the target RC. 

• The lack of control structures, such as conditional branching and loops, makes it tedious to 
specify larger designs. For ease of specification, if control constructs such as loops were 
allowed, the following are the drawbacks: 1) the transformation process into a DFG may be 
complex and prone to errors. 2) verification of the specification against the final design will 
be much more difficult. 

The DFG model is insufficient to express designs with control flow, a traffic light controller, 
for instance. However DFG specification is useful for a restricted domain of data dominant 
applications. 

• Due to operator level partitioning, the problem size is much larger than functional 
partitioning. For instance, partitioning a 4x4 Matrix multiplication DFG is several times 
faster than an 8x8 multiplication. This is not true about block level or function level 
partitioning. As seen from the results (Table 4.2), run-times for DCT8x8 design is several 
days. 

We see a need for coarser grain partitioned that keep the partition problem size within 
reasonable limits. Integrated design space exploration during partitioning is possible with coarser 
grain partitioners but not during DFG partitioning. Control structures such as loop and 
conditionals enhance the applicability of the methodology. RCs with fewer and larger FPGAs are 
more useful than those with several smaller devices. 

4.5    Block Graph Partitioning 

In this section, we present the block graph (coarse-grained) partitioning methodology. We 
illustrate the advantages of integrated design space exploration during partitioning. The design 
space exploration engine and the various cost estimation techniques are described in adequate 
detail. 
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Figure 4.6: Synthesis and Partitioning Environment for Block Graphs 

4.5.1    Partitioning and Synthesis Process for BBGs 

Figure 4.6, shows our approach to integrated synthesis and partitioning. The design to be 
partitioned is specified in a high level specification language such as VHDL [27] or C [3]. The 
input translator converts the specification into an equivalent block graph specification (Section 
4.2.2). A profiler computes the average execution count (AEC) and maximum execution count 
(MEC) for each behavioral block in the (block graph). AEC of a block is the average number of 
times the block is invoked per profile vector, averaged over a large set of profiling stimuli. MEC of 
a block is the maximum number of times the block is invoked during any single profile run. AEC 
values of blocks may be greater than one in the presence of loops and they may be fractional 
values less than one due to conditional invocation of blocks. 

The core of the environment is the HLS exploration engine [69] integrated with an iterative 
partitioning engine. The unique feature of the exploration engine is that it views a partitioned 
model of the block graph and performs design space exploration to globally optimize the 
partitioned design. Traditionally design space exploration engines [59, 45, 14, 63, 9] do not 
consider partitioned design models for exploration. Instead area-time trade-off can be performed 
on each partition without the knowledge of other partitions. Thus each partition is locally 
optimized but global optimization of the partitioned design cannot be performed. We explain the 
multi-partition exploration engine in Section 4.5.2, and a more detailed description and analysis 
may be found in [69]. 

The partitioner has iterative partitioning engines such as the SA and the FM heuristics. The 
partitioners interact with the exploration engine through an application program interface (API). 
The API provides various useful functions that are used to efficiently perform design space 
exploration on a partitioned block graph. The various API functions and the modes of interaction 
between the partitioner and the exploration engine are presented in Sections 4.5.2 and 4.5.4. 
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The result of partitioning is a collection of block graphs, one for each partition segment of the 
original block graph. Each partition segment is targeted to a single FPGA on the RC. HLS is 
performed on each partitioned block graph and a set of RTL designs are generated. Logic and 
layout synthesis is performed on the partitioned designs to generate the required configuration 
streams for the FPGA s. In our design process, the Asserta system [50] is used to perform HLS. 
Commercial simulation (Synopsys' VHDL simulator), logic synthesis (Synplicity's Synplify) and 
layout synthesis (Xilinx Ml) tools are used. 

4.5.2    Design Space Exploration Engine 

The exploration engine [69] provides the framework to integrate any iterative partitioner, such as, 
SA, FM, and GA. The partitioners can invoke the exploration algorithm through a range of 
interface functions and get area and latency estimates about individual blocks, partition 
segments, or for the complete partitioned design itself. In addition to estimation, the exploration 
engine can efficiently explore the design space of the blocks (finding the best schedule for each 
partition segment), such that a constraint-satisfying solution that is optimal in terms of latency is 
produced. 

Figure 4.7 shows the exploration model. On the left is the partitioned block graph. Each 
segment, s, has a set of design points associated with it, {DP{, DP$,   ■ ■ ■ DP^}. The design 
points are shown in the center of the Figure 4.7. Each design point DP? corresponds to a 
particular schedule of the segment s. A schedule of the segment s, is derived from the schedule of 
the individual blocks in s and the sharing information between the blocks. Given a design point 
for a segment s, various estimates about the RTL design corresponding to that design point can 
be made. These estimates include details about ALU, register, and multiplexor areas. In 
addition, the controller information such as the number of states, inputs and outputs are also 
available. The exploration engine also maintains the necessary information about sharing of 
resources within and across the blocks in any segment. 

The overview of the exploration engine is presented in Figure 4.8. The inputs to the exploration 
are the BBIF corresponding to the block graph to be partitioned (with blocks assigned to 
segments), the design latency constraint, and the characterized RTL component library. The 
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Figure 4.8: Block Diagram of the HLS Exploration Engine 

exploration engine has three main components 1) The design analyzer 2) the design explorer and 
3) the application program interface (API) to the partitioner. The exploration engine also has a 
resource estimator, fast time-constrained and resource-constrained schedulers and a behavioral 
estimator that can estimate the area and performance of the RTL design corresponding to a 
scheduled block graph. 

The first call made by the partitioner to the exploration engine is to initialize the exploration 
engine and setup partition invariant information about the design. The design analyzer module 
does such initialization. Following are the phases of the design analyzer. 

1. Initialization: Dependency graphs for each block and the entire control flow graph of the 
design is built. 

2. Resource Estimation: For each block in the graph a 7ocai resource set is formed. The 
resource set contains components from the RTL library that are potentially required to 
implement the block. A global resource set for the entire graph is formed based on the 
individual local sets. 

3. Design Latency Function: The function to compute the design latency is determined. 
Design latency is the number of clock cycles required for a single execution of the design. 
The design latency, £d, is the sum of the number of clocks spent in each block of the design. 
Formally, 

Cd «- y^scheduleJengthjb) x EC{b) 
beB 

(4.5) 

EC(b) is the execution count of the block b. The execution count may either be set to the 
average execution count (AEC) or the maximum execution count (MEC) of the block. This 
choice is made by the user. Usually AEC is the default choice unless the latency constraints 
are very crucial and must not be violated. The user may choose to specify a specific latency 
computation function that is different from the above. The HLS exploration engine only 
generates schedules that satisfy the user given design latency constraint, i.e., Cd < design 
latency constraint. 

4. Bounding Schedule Lengths: The fastest and the slowest schedule lengths for each block are 
computed. The fastest schedule length corresponds to the length of the ASAP [10] schedule 
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Figure 4.9: Flow chart for the HLS Exploration Engine 

and the slowest schedule length is the length of the optimal schedule possible with the 
minimal resource bag (exactly one instance of each component in the local set). Based on 
the fastest and the slowest schedule lengths, the lower and upper bounds on the latency, Cd 

is computed. A legal design latency constraint must lie within these bounds. 

5. Initial Schedule for Blocks: Initially, the design points for all blocks are set to the ASAP 
schedule of the block (Figure 4.9). Thus the initial design of the block graph will not violate 
any legal design latency constraint. However, one or more segments may violate the area 
constraint. 

The working of the design exploration algorithm is explained through the flow chart in Figure 4.9. 
First all blocks in all partition segments are set to their respective ASAP schedules and areas of 
all segments estimated. If none of the segments violate the FPGA area constraints, then the 
algorithm returns the computed schedules, else, the exploration process begins. First the latency 
slack (£siack) available for the design is computed. The slack is the difference between the current 
design latency and the constraint, mathematically, Csiack — design latency constraint - Ld. 
The algorithm guarantees that given a legal latency constraint, £siack is always > 0. 

If slack is available, a block {Brelax) is chosen from the segment that violates the area the most, 
and is relaxed. If slack is unavailable, a block (Btighten) is chooses from the segment that violates 
the area the least and is tightened. Since the block graph is a single control thread, tightening 
any block in the design will minimize the design latency (also refer to definition of Cd). The block 
BTeiax is chosen such that relaxing it (i.e, increasing its scheduling length by one extra cycle), 
potentially causes the maximum decrease in resource requirement. Similarly the block for Btighten 

is chosen such that tightening (constraining its schedule by one less clock step) it has the least 
potential to increase in area of the segment. 

The design space for all the blocks and in turn the design space for the partition segments are 
explored by this process of tightening and relaxing the schedules of the blocks. The algorithm 
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successfully exits when it finds a design that satisfies the area and latency constraint. Notice that 
since we start from the fastest design, the performance of the constraint satisfying design is 
automatically optimized. The algorithm returns the best available solution when an area 
constraint satisfying solution is be found. Notice that due to the nature of the algorithm, a 
latency constraint violating solution is never generated. 

A combination of cone-based fist scheduling (CBLS) [66] algorithm and the improved version of 
the Paulin and Knight's force-directed list scheduling (FDLS) [56, 74] algorithm is used to 
perform the time-constrained scheduling of the blocks. The same scheduler is used to estimate the 
areas for the entire segment and to generate the corresponding schedule. The time-constrained 
scheduler is shown in a shaded box in Figure 4.9. Another important component of the 
exploration engine is an area estimator (shaded box in Figure 4.9). The area estimator computes 
the number of CLBs required to implement each partition segment. The area of a segment is 
computed based on the following - the data path component areas, register area1, multiplexor 
area due to ALU and register sharing, and finally the controller area. 

Exploration Engine API Functions 

The exploration engine provides the following four interface functions. 

1. ExploreDesign(): Given the block graph, the binding of blocks to segments, and the area 
constraint on each segment, this function performs the algorithm in Figure 4.9, as explained 
above. This may be a time expensive algorithm because this involves iteratively 
rescheduling several blocks in the entire graph. The function returns the area estimates for 
all the segments based on the best solution obtained through exploration. 

2. ExploreSegments(5): This function is a restriction of the above function. Only the 
blocks in the partition segments s e S are explored. The schedules for other blocks remain 
the same. This function is considerably faster than ExploreDesign() when the number of 
segments is large and S is a small subset. After the exploration process, the segments in S 
are estimated for area and the values are returned. 

3. ExploreBlock(jB): This function explores only the block B. Area estimation is performed 
for the segment to which B belongs and the value obtained is returned. 

4. EstimateDesign(): This function does not do any exploration. Instead areas of all 
segments are estimated based on the current design points (schedules) of the blocks. 

5. EstimateMove(ß, s;, Sj): The binding of the block B is changed from segment Sj to 
segment Sj and the areas of two segments are re-estimated. This function does not perform 
any exploration. The function is very fast and extremely useful in the case of partitioners 
like FM [7] and SA [71], where the partitioner makes incremental moves by changing the 
segment binding of one node at a time. 

4.5.3    Partition Cost Evaluation 

The partition cost evaluation is similar to the evaluation criteria followed for DFG partitioning in 
Section 4.4.2. FPGA area and the inter-FPGA interconnect resources are the architectural 
constraints. The architectural constraints (Figure 4.6) are available from the RC architecture 

Register area is computed separately as the number of flip-flops in the target FPGA device. 
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model. As described in Section 4.5.2, the exploration engine can handle a legal design latency 
constraint (Figure 4.8). The exploration algorithm, as explained in the previous section, 
guarantees the satisfaction of latency constraint and also optimizes the design for latency when 
multiple area constraint satisfying solutions exist. 

Area Estimation: Let si, s2 • • • sK be the K segments to be mapped onto the K FPGAs on the 
RC (Section 4.3). Then, we define the AreaPenalty of the partition as, 

K    A^4 
AreaPenalty — Y^ — — (4 6) 

f^0Areafi ' > 

where, A4 = J °       ,   ,    ^f ^ea(Si)< Areafi 
1  Area(Si) - Area^   otherwise 

Area(si) is the estimated area of the segment s,- and Areafi (Section 4.3) is the area of the FPGA 
to which the segment is mapped. The AreaPenalty is computed similar to the computation for 
DFG partitioning, Section 4.4.2. Here the estimated area of the segments (Area{s)) are obtained 
through the exploration and estimation functions provided by the API of the exploration engine. 

Interconnect Estimation: The interconnect estimation procedure and the InterconnectPenalty 
computation is identical to the approach presented earlier for DFG partitioning, Section 4.4.2. 

Latency Estimation: As mentioned above, latency of the partitioned design is posed as a 
constraint to the HLS exploration engine. The estimated latency of the partitioned RTL design is 
reported by the exploration engine. This value may be lesser than the constraint but is never 
greater. 

The ßtness and quality of partitions are computed based on Equations 4.3 and 4.4, as defined in 
Section 4.4.3. 

4.5.4    Integration of Partitioning with HLS Exploration 

We consider the simulated annealing algorithm for partitioning because it is most suitable for 
interaction with the interface provided by the exploration engine. Simulated annealing is more 
suitable for incremental estimation. The algorithm starts with an initial random partition, which 
we will synonymously refer to as the initial configuration. The partitioner moves from one 
configuration to another, typically making incremental moves. The incremental exploration and 
estimation functions provided by the HLS exploration engine can be efficiently used by the 
partitioner. 

The partitioning engine communicates the initial configuration to the exploration engine. From 
then on, throughout the partitioning process, both the partitioning engine and the exploration 
engine maintain the same current configuration. As and when the partitioner changes its 
configuration by moving blocks across segments, the configuration in the exploration engine is 
changed accordingly. In addition to maintaining the configuration information, the HLS 
exploration engine, at any given time, maintains design space for all partition segments. For each 
block in the block graph, the exploration engine has a current design point (CDP) for the block 
(= current schedule for the block). 

At the start of partitioning, for all blocks Bu CDP{ is set to the ASAP schedule of the block. 
From then on, CDPi is changed only when any of the exploration functions (ExploreDesignQ, 
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Figure 4.10: Template Partitioning Algorithm for Simulated Annealing 

ExploreSegmentsQ, or ExploreBlockQ) changes the schedule of block Bj. We now present the 
template of the SA algorithms and its interaction with the exploration engine. 

Figure 4.10 presents the template of the SA based partitioning algorithm. The statements that 
are boxed (statements 1, 2, 7, 9, and 13) are the stages in the algorithm when the partitioner 
interfaces with the exploration engine. 

• Statement 1: SA creates a random initial configuration Ccurrent. This initial configuration is 
communicated to the HLS exploration engine. The partitioner also invokes the design 
analyzer (Figure 4.8) to perform the initialization routines of the exploration engine, as 
mentioned in Section 4.5.2. 

• Statement 2: The cost of Ccurre„t is evaluated (Section 4.5.3). An interconnection estimator 
(Section 4.4.2) is invoked to compute the interconnect penalty. To compute the area 
penalties, the ExploreDesign() function is called to explore and generate the best design 
points (DP) for all blocks, for Ccurrent. The exploration engine reports the estimates 
obtained for the RTL designs for the best DPs. It must be understood that the quality of 
the design space is dependent on the configuration. A set of DPs for blocks that are 
optimal with respect to one configuration may be poor for another. 

After computing the area and interconnect penalties, the fitness function in Equation 4.3 is 
used to compute the fitness of the configuration. The quality of the partition is used as the 
evaluation metric. The quality of partitions are evaluated based on the relation defined by 
Equation 4.4. 

• Statement 7: At this stage the SA is looking at a neighborhood configuration to move to. In 
statement 6, the new configuration Cnew is generated. Interconnect penalty is computed the 
same way as before. Ideally, invoking the ExploreDesignQ function for Cnew will produce the 
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optimal design space and the corresponding RTL estimates. However, ExploreDesignQ is a 
time expensive function and more importantly, Statement 7 is within the inner loop (stmt 5 
- 11) of the SA. To keep the execution time of the SA under control, the 
EstimateDesign() function is invoked2. 

The premise here is that, since the Cnew is in the neighborhood of Ccurrent, the optimal 
design space for Ccurrent is usually near-optimal, or good at the least, for Cnew If Cnew is 
obtained from Ccurrent by moving exactly one block from its current segment to another, 
then the EstimateMove(...) function may be invoked. This provides additional speedup 
in comparison to the EstimateDesign() function. 

• Statement 9: The current configuration in the partitioner is updated. Accordingly, the 
configuration within the exploration engine must be changed. The ExploreDesign() is 
called to create the best design space for the newly accepted configuration. 

• Statement 13: This is a minor variation to the standard SA algorithm. If CCUrrent has not 
changed over several temperatures, then it is more than likely that SA is a local-minima. To 
get SA out of the local-minima, we perturb Ccurrent randomly3. The newly obtained 
configuration is communicated to the exploration engine and ExploreDesign() is invoked to 
create the best design space for the new configuration. 

The template for the SA shows how a move based partitioning algorithm can be efficiently 
integrated with the exploration engine. The time expensive exploration and the fast estimation 
functions are appropriately used by the partitioner. The integration of design space exploration 
during the partitioning process is possible due to the reduced problem size of block-level 
partitioning in comparison to DFG partitioning. 

4.5.5    Experimental Results for Block-Level Partitioning 

In this section we present the results of block-level partitioning and design space exploration. We 
study the behavior of block-level partitioning for several benchmarks that were used for DFG 
partitioning (Table 4.1), with minor or no variation. We compare the block-level partitioning and 
synthesis methodology with the DFG synthesis and partitioning methodology presented in 
Section 4.4. The main difference is the presence of control in the specification and the reduction 
in the problem size of block graph partitioning in comparison with the DFG counterpart. This 
allows dynamic design space exploration during the process of partitioning. We implemented the 
simulated annealing (SA) based partitioning engine and the exploration engine discussed in 
Sections 4.5.4 and 4.5.2. The implementations are in C++ and all results are reported for a two 
processor Sun UltraSparc workstation running at 296Mhz and 384MB RAM. 

The details of the SA based implementation are as follows. The initial solution was created 
randomly, and solutions were perturbed by changing the partition of one of the blocks in the 
design. The starting temperature was 30,000 and was cooled down very slowly, using a cooling 
factor of 0.999997, to a final temperature of 0.1. The SA was allowed to iterate 50 times at each 
temperature value. The fitness value of the partition is recomputed after each perturbation. If fc 

2In fact, we did experiment with ExploreDesign() function at this stage of the SA but run times were prohibitively 
high (> 12hrs) for even for relatively small examples, like FFT, Figure 4.3. 

At any time, SA stores of the best configuration obtained thus far.   Hence, it is not a concern if the current 
configuration is indeed the global optima. 

76 



is the fitness of the current solution and fp is the fitness of the solution after perturbation, then 
the improvement factor, IF is defined as (fp - fc)/fc. Perturbed solutions with positive 
improvement are always accepted and those with negative improvement factor are accepted with 
a probability of e

IF/T*c, where T is the current temperature and C is a constant factor with a 
value of 0.000003. All constants were are results of tuning over a large set of runs. 

Table 4.4 presents the details of the block graph benchmarks. All designs were first written in 
behavioral VHDL [27] and translated into BBIF (the internal format to store the block graph for 
partitioning and synthesis). Unlike the specification for DFG partitioning, loops and conditionals 
may be present in the VHDL specification of the design. Several of the benchmarks in Table 4.4, 
such as, Reverb, FIR, FFTs and DCTs, are functionally identical4 to the examples used in 
Section 4.4.4. As mentioned in Section 4.4.4, the examples in Table 4.1 were translated from a 
straight-line5 C [3] code. However the block graphs in Table 4.4 are translated from VHDL 
descriptions that may have loops, conditionals and case statements. 

The VHDL descriptions were written in a manner favorable for block-level partitioning. Block 
boundaries in the VHDL specification usually occur at control expressions, such as loops and 
conditionals. Block separation also takes place at points where there are I/O reads or writes in 
the specification. The user has to intelligently write the VHDL specification. Larger, but fewer 
number of blocks, reduces the size of the block graph but on the flip-side may require larger 
FPGAs in the RC because blocks cannot be partitioned across partition boundaries. Smaller, but 
several blocks introduce two problems: 1) the size of the block graph increases and so will the 
time to partition; and more importantly, 2) the lower bound on the achievable design latency 
increases due to clocks spent on transfer between block. Moreover, blocks execute serially, hence 
parallelizing operations in different blocks is not possible even when the required resources are 
available. 

Table 4.4 provides the following information about the benchmark block graphs. The first column 
is the name of the example. Column 2 shows the number of blocks in the block graph. Note that 
not all blocks in the block graph perform active computations. There may be several I/O blocks 
and simple condition evaluation blocks, depending on the nature of the VHDL specification. 
Column 3 is the number of data edges in the graph. The number of loops in the VHDL 
specification of the block graph is in Column 4. The table does not show details about the 
number of conditional expressions (if-then-else and case-when). 

The Lmin of the design is the lower bound on the achievable latency6 of the design. This 
corresponds to the ASAP [10] schedule length of the design when implemented as a single 
partition. £max is the tight upper bound on the latency (refer to Bounding Schedule Lengths, 
Section 4.5.2). Amax is the maximum area required by any implementation of the design that 
achieves Cmin. Amin is the minimum area required by any implementation of the design that is 
no slower than Lmax. Informally, these are tight bounds on the latency and area required for 
implementing the design. Their values axe computed as follows. 

• £min is computed by performing an ASAP schedule of all blocks in the graph 

• £>max is derived by performing a resource-constrained scheduling of the design where exactly 
one resource of each required type is available. 

Same input/output functionality and bit-widths. But the timing aspects may be different. 
5No control constructs. 
Latency includes the time required to read/write primary inputs/outputs from and to the memory. 
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• Amax and Amin are produced by time-constrained scheduling of the design where the 
constraints on the schedule are £min and Lmax respectively. 

Following is the description of the block graph benchmarks in Table 4.4. 

• Find: Find is a control dominated design with 3 loops and several conditional evaluations. 
Find first sorts an array of 8 16-bit integers using the bubble sort algorithm. After the sort, 
it can take one 16-bit input per run and search for the existence of the input number in the 
sorted array using a binary search mechanism. Clearly control dominated examples such as 
Find cannot be written as DFGs. The Find block graph has 22 blocks and 30 edges. There 
are 3 loops and several conditionals (not mentioned in the table) in its VHDL specification. 
The minimum and maximum latency bounds of Find are the same (584 cycles) because one 
resource of each type is sufficient to achieve the ASAP schedule length. 

• ALU is a small design that reads two 8-bit numbers and a 2-bit opcode and produces a 
16-bit result. Depending on the opcode, the result is either the sum, difference or the 
sum-of-products of the two numbers. There is no appreciable difference in the lower and 
upper bound values of latency and area. 

• MeanVar reads in 8 4-bit integers and produces the mean and the 11-bit variance as the 
result. 

• Reverb, FIR, Elliptic, FFT-1D are functionally identical to the DFG graphs in Section 
4.4.4. Their functional descriptions are also available in Section 4.4.4. Notice that FFT1D is 
implemented with one loop. In general, for these examples there is not a great difference 
between the Amax and the Amin values. 

The Cmin value is comparable to the ASAP schedule length of the corresponding DFG, as 
reported in Table 4.1. The £min values are always marginally more than the DFG's ASAP 
values. This is due to the additional clocks for block transfers and the potential parallelism 
that may be lost between operations in different blocks. The important values to observe in 
the table are the Amin and Amax values. Notice that both these values are much smaller 
than the area required for the ASAP schedule of the DFGs. In the case of the FFT-1D the 
difference is large. The reduction in area values is through the use of efficient schedulers 
[66, 74, 56]. 

• FFT-2D, MatMult, DCT4x4 and DCT8x8 are the larger (in terms of problem size, and 
more in terms of the area of the design) set of benchmarks. These are functionally identical 
to their DFG counterparts in Section 4.4.4. Notice that the difference between the Lmin and 
C-max increases with increasing number of operations in the design. For DCT8x8, Cmax is 
more than 3 times £m,„ (over 1000 clocks slower). Accordingly, we see a similar trend in the 
Amin and Amax values. For DCT8x8, Amax is about 3.5 times Amin. The area estimates are 
comparable to the DFG area estimates in Table 4.1. As mentioned in Section 4.4.4, the 
DFG for the DOT benchmarks correspond to their slowest schedules. Hence for the DCT 
examples compare their Amin values with the areas reported in Table 1.1. 

Similar to the results presented for DFG partitioning (Section 4.4.4), we try to partition the block 
graphs in Table 4.4 for the Wildforce [84] family of architectures. Wildforce has 4 FPGAs, 
Wildchild has 8 and Wildfire has 16 FPGAs on the board. The FPGAs are Xilinx 4000 series 
FPGAs. For our experiments we consider the target RC to be one of the Wildforce family boards 
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with all the FPGAs being the same Xilinx device. In order to effectively compare the DFG and 
block level partitioning we use the same FPGA devices that were used for DFG partitioning. The 
Wildforce architectures can host the following Xilinx FPGAs - XC4005 (100 CLBs), XC4005 (196 
CLBs), XC4013 (576 CLBs), XC4025 (1024 CLBs), XC4036 (1296 CLBs) and xc4085 (3136 
CLBs). One of the memory devices on the board acts as the shared memory and a common 
memory bus (address, data and read/write control) is routed through all the FPGAs. 

Only limited wires are available for data transfer across FPGAs. During partition cost evaluation, 
edges in the block graph that cut segment boundaries are automatically converted to memory 
based data transfer. Accordingly a latency penalty is introduced. In our experimentation, we 
associate a latency penalty of 6 cycles (3 for memory read + 1 for memory write and 2 for 
synchronization) for each data transfer through memory. Thus a partition with a larger cut-set 
will have a larger latency. 

Table 4.5 presents the results of partitioning the block graphs in Table 4.4. Column 2 is the type 
of RC architecture and the FPGA device that is used. The designs ALU, MeanVar, Find, and 
MatMult are targeted to a 2-FPGA RC board where the FPGAs are XC4003, XC4005, XC4013 
and XC4025 respectively. Rest of the the designs are partitioned onto a Wildforce family RC 
board. To aid effective comparison between the partitioners, for the benchmarks common to 
Table 4.2 and Table 4.5, the same identical target architectures are chosen. 

We analyze the results in Table 4.5 based on Design Area, Design Latency and partitioner 
Run time. 

Design Area 

The total design area for all benchmarks is close to, or is comparable to their corresponding Am{n 

value in Table 4.4. This shows that the partitioner, with the aid of the design space exploration 
engine, converges to design configuration that minimizes duplication of resources (functional units 
and ALUs) in multiple FPGAs. We see that the total design area after behavioral partitioning is 
comparable to the total design area of the unpartitioned design. 

For almost all benchmarks (DCT4x4 being the exception), the total estimated design area after 
block graph partitioning (Table 4.5) is less than the total estimated design area after DFG 
partitioning (Table 4.2). The design space exploration engine utilized the available area better 
and produced a faster design. For the largest design, DCT8x8, total area after block partitioning 
is much smaller than the design after DFG partitioning (22183 CLBs vs. 36556 CLBs). 

For the FFT1D benchmark, block partitioning only required two XC4005 FPGAs while the DFG 
partitioner required two XC 4013s. The total design area of the FFT1D after block partitioning is 
335 CLBs (this is fit on a single XC4013), while after DFG partitioning it is 736 CLBs (Tables 
4.5, and 4.2). The estimated design latencies are comparable (91 and 109 clocks steps). The 
reason for the reduced area with comparable performance is due to the efficient design space 
exploration during the partitioning process. 

The DFG partitioner failed to partition DCT8x8 onto a Wildchild board. It required Wildfire 
board with 16 xc4085s (the largest FPGA chip available). Table 4.5 shows two runs for the 
DCT8x8 benchmark. After the first run we noticed that the estimated areas of some of the 
partition segments were very close to the area of the FPGA (3196 CLBs). Hence we tightened the 
area constraint to 2900 and partitioned the design again. As expected, the latency of the design 
increased from 1752 cycles to 1806. Interestingly the maximum area of any segment reduced to 
2900 but the total design area increased. This is because, as constraint is tightened, certain 
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blocks that shared resources with other blocks in the segment are forced to other segments 
resulting in new resources being instanced. This goes back to the observation made at the end of 
in Section 4.4.5 that fewer larger FPGAs are better than several smaller devices. 

Design Latency 

For most of the examples the design latency after partitioning (Table 4.5) is comparable to its 
Lmin value. For most benchmarks, the estimated design latency of the block partitioned designs is 
better than or close to the latency of designs resulting from DFG partitioning (Compare Tables 
4.5, and 4.2 for Reverb, FIR, Ellip, FFT2D and DCT4x4). FFT1D after block partitioning has a 
slower latency because the design is much smaller (in terms of number of CLBs) and hence is a 
slower implementation. In general DFGs are larger and have more nodes and edges when 
compared to equivalent block graphs. Due to this, the number of edges that cut partitioning 
boundaries in a design resulting from DFG partitioning tends to be more than block partitioning. 
As designs get larger, partitioning the DFGs gets more complex and the design latency is 
dominated by the data transfer component (Section 4.4.2. For this reason, the DFG partitioning 
for DCT8x8 produced a design with very high latency (about 14000 clock cycles) while block 
partitioning generates a design with a much lower latency 1800 clock cycles. 

Partitioning Run times 

For the smaller designs (ALU • • • FFT1D), partitioning run time is only a few seconds (< 10 
seconds). For FFT2D and MatMult the SA run time is between 20-25 seconds. For the DCT 
examples, the run times is about 5 minutes for DCT4x4 and about 2 hours for DCT8x8. In 
comparison to DFG partitioning, this is a tremendous improvement in partitioning run times 
(Table 4.2). For the DCT8x8 benchmark, the DFG partitioner did not converge even after a run 
time of 182 hours. These results show the feasibility of block graph partitioners to handle large 
designs. As we tighten the constraints for block partitioner (for example, by making FPGAs, on 
the RCs smaller), the block partitioning run times are bound to increase. However, based on the 
above results, it is highly likely that a good-quality solution will be produced in a reasonably 
small run time. 

From our experiments, we see that block level partitioning is superior to DFG partitioning both 
in terms of quality of the partitioned design and also in terms of partitioning run time. The DFG 
partitioning methodology is useful only for relatively small designs that have no control flow. We 
performed logic and layout synthesis for the partitioned designs of ALU and MeanVar and 
successfully verified the estimates and the functionality of the synthesized designs. 

4.5.6     Observations and Summary of the Block-Level Partitioning 

We observe that the block level partitioner has the following advantages. 

• Typically, block graphs can be modeled much smaller (using loops) than the equivalent 
(un-rolled) DFGs. The integrated design space exploration engine can generate an 
implementation of the design that is optimal with respect to the current partition 
configuration for the area constraints posed by the target RC. 

• The RTL implementation model of the block graph is simple. Each partition segment is 
implemented as a single controller, single datapath design. 

• Experiments show that the quality of the resulting partitioned designs are superior to that 
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generated from DFG partitioning. This is attributed to efficient dynamic exploration of 
possible schedules for the blocks in the design. 

• Various implementation alternatives can be tried by varying the design area and latency 
constraints. Experiments and our experience with the partition and synthesis environment 
shows that the response of the partitioner to changes in user constraints is very intuitive 
and can be easily understood, and effectively used. 

• Block graph model provides the user with the flexibility to specify very large designs. In the 
case of DFGs, the partitioning and synthesis complexity increases exponentially with the 
problem size. However, efficient modeling of design in terms of block graphs keeps the 
problem size under control. For example, the DCT8x8, a 1929 node DFG, design is 
efficiently modeled as a 56 node block graph, thereby keeping the problem size under control. 

The block level partitioning has the following disadvantages. 

• The RTL synthesis model of the block graph serializes the block execution. Exactly one 
block is active at any time. Due to this, operators in different blocks cannot be parallelized 
even when adequate resources are available. Thus, as the number of blocks in the design 
increases, the lower bound on the achievable latency tends to increase. To avoid this 
operators that may be executed in parallel must be in the same block. A poorly crafted 
block graph is bound to generate a low quality design. 

• The DFG specification of a design is straightforward. Given a set of operators such as 2 
input adders, subtracters and multipliers, the user expresses the design as a set of 
assignment statements. The extraction of the DFG from such a specification is trivial and is 
well understood by an average user. 

The block graph model is extracted from a high level specification in VHDL. Since the 
VHDL specification subset is rich (allows loops, conditionals, waits and regular signal 
assignment), there are several different ways in which a design can be specified. The 
translation from VHDL to block graph, or equivalently, the extraction of block graph is 
highly dependent on the specification style. For instance, a port read or a write in the 
VHDL specification forces a block separation. The different cases of a conditional are in 
separate blocks. These rules about the translation process must be well understood by the 
designer. 

More importantly, the block graph specification has precise synthesis [49] semantics that are 
strictly honored by the Asserta HLS system [50]. The performance and area of the 
synthesized design are closely related to the exact nature of the BBIF. Also, the amount of 
data communicated between adjacent blocks,7 or equivalently, the number of edges in the 
block graph is dependent on the specification. 

In essence, it is possible for a naive user of the system to specify an unsuitable behavioral 
specification. In order to efficiently use the partitioning and synthesis environment (Section 
4.5.1), the user must have a good understanding of the following 1) behavioral specification 
to block graph translation process 2) synthesis semantics of the block graph 3) partitioning 
semantics. 

7This is determined based on data dependency analysis. In the BBIF representation [49], all variables that are 
live across adjacent blocks are passed from the source block to the adjacent destination block. This translates to an 
edge in the block graph. 
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4.6    Conclusions 

In this chapter we presented novel partitioning and synthesis methodologies for DFG and block 
graph partitioning for RCs with multiple-FPGA and a shared memory. The unique feature of the 
partitioners is that they seamlessly transform inter-FPGA nets into memory based 
communication thereby alleviating the pin-out and interconnection bottleneck. This is done at 
the expense of minimal increase in the latency of the design. Results of block graph partitioning 
illustrates the effectiveness of dynamic design space exploration during partitioning. 

Dynamic design space exploration was possible due to coarser-grain specification models. In the 
case of DFG partitioning, the problem size is dominated by the different possible partition 
configurations. However, in the case of block graph partitioning, the problem complexity shifted 
to design space exploration. Results show that coarser grain partitioning with effective dynamic 
design space exploration improves performance and run-times for large designs. In order to 
efficiently utilize an RC, the focus of the research must be on specification, implementation, 
cost-evaluation models, and design space exploration techniques. Research efforts to develop new 
partitioning heuristics, or improve existing algorithms, are useful, but should not be the primary 
focus in the context of RCs. 

The efficiency of block level partitioning is dependent on the quality of the input specification. In 
general VLSI CAD frameworks address complex problems that make it almost impossible to find 
optimal solutions without the efficient involvement of the user. Most state-of-the-art VLSI CAD 
tools are developed for use by qualified VLSI designers. Given this, it is appropriate to assume a 
fair amount for user contribution to make such CAD frameworks successful. 

The inherent drawback of the block graph model is its single thread of control. Exactly one block 
is active at any time. Since blocks cannot be fragmented across segment boundaries, at most one 
FPGA device is active at any time. This is clearly not an efficient model for RCs with several 
FPGAs. To avoid such under utilization of resources multi-threaded models for synthesis and 
partitioning must be considered. Efficient multi-threaded models for RCs with distributed 
memories are addressed as part of the SPARCS (Synthesis and Partitioning for Adaptive 
Reconfigurable Computing Systems) system [26, 68, 78, 77] in the next chapter. 
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Table 4.2: Results for DFG Partitioning 

Example RC Architecture 

(Name, FPGA -Type) 

Segment Areas 

(CLBs) 

Total Area 

(CLBs) 

Latency 

(c-steps) 

GA Run-Time 

(h.m.s) 

Vprod 2-FPGAs, XC4005 139, 119 258 64 Im 

|   StatFn 2-FPGAs, XC4005 141, 93 234 69 lm40s 

Reverb Wildforce, XC4013 356, 516, 292, 292 1456 ,      83 3m35s 

|     FIR Wildforce, XC4013 210, 0, 504, 330 1044 117 2m30s 

|     Ellip Wildforce, XC4013 452, 0, 564, 452 1468 126 7ml5s 

| FFT1D Wildforce, XC4013 0, 218, 518, 0 736 91 3ml0s 

|  FFT2D Wildforce, XC4013 128, 544, 461, 574 1707 187 llmös 

MatMult 2-FPGAs, XC4025 896, 896 1792 125 6m43s 

DCT4x4 Wildforce, xc4085 2412, 1686, 1149, 2224 7471 597 lhlöm 

DCT4x4 WüdChild, xc4036 1080, 1210, 1267, 1101, 

1181, 1233, 840, 726 8638 1084 4h 

DCT4x4 Wildfire, XC4025 

952, 184, 710, 543, 

212, 660, 691, 778, 

811, 836, 790, 605, 

713, 590, 672, 884 

10631 1295 6h 

DCT8x8 Wildfire, XC4085 

1786, 2239, 2611, 1990, 

2046, 1907, 2370, 2446, 

2412, 1958, 2446, 2691, 

2867, 2201, 2577 2009 

36556 14045 142h 
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Table 4.3: Results of Layout Synthesis and On-board Testing 

Example Area (CLBs) Latency (c-steps) 

Estimated Actual Estimated Actual 

Vprod «l 139 158 64 65 

«2 119 135 

StatFn «1 141 165 69 72 

*2 93 102 

MatMult Si 816 729 125 123 

S2 816 728 

Table 4.4: Design Data for DFG Partitioning 

Example Num Num Num r   . r •Amax •Amin 

Blk Edg Loop c-stp c-stp CLBs CLBs 

Find 22 30 3 584 584 746 746 

ALU 9 12 0 18 21 151 149 

MeanVar 11 10 0 37 56 330 196 

Reverb 10 10 0 38 45 910 639 

FIR 10 9 0 85 93 643 504 

Ellip 21 21 0 59 70 1006 831 

FFT1D 16 20 1 79 93 297 266 

FFT2D 32 40 2 150 194 1500 905 

MatMult 26 34 2 160 232 1349 978 

DCT4x4 104 136 8 357 517 8129 5541 

DCT8x8 56 72 2 517 1573 72008|19874 
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Table 4.5: Results for Block Graph Partitioning 

Example RC Architecture 

(Name, FPGA -Type) 

Segment Areas 

(CLBs) 

Total Area 

(CLBs) 

Latency 

(c-steps) 

SA Run-Time 1 

(h.m.s)        1 

Find 2-FPGAs, XC4013 535, 481 1016 596 4s          ] 

ALU 2-FPGAs, XC4003 52, 91 143 34 6s           | 

MeanVar 2-FPGAs, XC4005 104, 159 263 51 8s           [ 

Reverb Wildforce, XC4013 439, 451, 0, 0 890 52 4s 

FIR Wildforce, XC4013 0, 301, 0, 464 765 97 10s          | 

Ellip Wildforce, xc4013 436, 132, 365 0 933 80 9s           | 

FFT1D Wildforce, XC4005 0, 169, 166, 0 335 109 8s 

FFT2D Wildforce, xc4013 528, 314, 405, 0 1247 179 24s          | 

MatMult 2-FPGAs, XC4025 669, 798 1467 160 20s          | 

DCT4x4 Wildforce, XC4085 1263, 2432, 2462, 1988 8145 556 5ml5s 

DCT8x8 WildChild, XC4036 2250, 2478, 2907, 3051, 

2572, 2797, 2508, 3026 21589 1752 lh40m 

DCT8x8 WildChild, XC4036 2545, 2900, 2611, 2763, 

2858, 2797, 2878, 2831 22183 1806 2h05m 
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Chapter 5 

Partitioning with Synthesis 

5.1    Introduction 

The Reconfigurable Computer (RC) consisting of multiple FPGA devices, memory banks, and 
device interconnections, offers a variety of resources but is limited in hardware. Design automation 
for RCs from a behavioral specification consists of three fundamental problems: (i) Temporal 
Partitioning - This generates a sequence of temporal segments, each of which utilizes all the RC 
resources. The temporal segments may then be executed on the RC in the specified sequence, 
thereby sharing all the RC resources over time; (ii) Spatial Partitioning - Each temporal segment 
can further be divided into spatial partitions in order to effectively utilize the multiplicity of 
resources available on the RC; (iii) High-Level Synthesis (HLS) - This involves synthesizing each 
spatial partition into an Register-Transfer Level (RTL) design intended for a device on the RC. 

Figure 5.1 shows an overview of the SPARCS system [26, 68] consisting of a synthesis framework 
that interacts with a partitioning environment. The RC is viewed as a co-processor that is 
controlled by a host computer. The SPARCS system accepts a behavioral specification in the 
form of a Unified Specification Model (USM) [25]. The USM can capture a parallel-process 
specification in VHDL [27], and embodies features that are highly suited for RC synthesis. The 
USM is essentially a graph consisting of: (i) task nodes that are used to capture elements of 
computation in the behavior. Each task is a Control Data Flow Graph (CDFG, [10]) representing 
a single thread of control (a VHDL process); (ii) logical memory nodes that are elements of data 
communication between the tasks; and (iii) flag edges that are used to synchronize the execution 
of tasks. A flag between two tasks (£,, tj) specifies the dependency of tj on f;. 

Temporal partitioning in SPARCS uses the inter-task dependencies to derive a temporal schedule 
of tasks. The schedule consists of a sequence of temporal segments where each segment is a 
subgraph of the USM. The primary goal of temporal partitioning is to minimize the delay of the 
temporal schedule, defined as JV * R + £jli U * CP. Here, N is the number of temporal 
segments, R is the reconfiguration time of the RC, and CP is the user-given clock period for the 
design. The temporal schedule so generated has a corresponding latency constraint (L,-) on each 
temporal segment i. The temporal partitioner also ensures that: (i) the collection of tasks in each 
temporal segment after synthesis will fit within the RC, and (ii) the memory requirements for 
each temporal segment are within the available physical memory on the RC. 

Spatial partitioning in SPARCS involves partitioning each temporal segment such that: (i) the set 
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USM Specification, RC Architecture, Design Constraints 

RC Synthesis Framework Partitioning 
Environment 

Figure 5.1: SPARCS Design Automation System for RCs 

of tasks in each spatial partition after synthesis will fit within the corresponding device; (ii) the 
latency constraint is satisfied; (iii) the logical memories are mapped to the physical memory 
banks on the RC; and (iv) the flags and the memory buses are routed through the interconnection 
network on the RC. It is imperative that spatial partitioning that follows temporal partitioning be 
done with utmost care so as to satisfy the RC and design constraints. Henceforth, we will use the 
term partition to denote a spatial partition. 

Both temporal and spatial partitioning require design estimates that are used to evaluate the 
partitioning costs. In order to generate efficient Register-Transfer Level (RTL) designs that 
implement the given behavior, HLS and partitioning techniques need to carefully select 
implementations that best satisfy the constraints. The synthesis framework in SPARCS allows 
tight integration of the partitioning environment with a design space exploration engine through 
an Exploration Control Interface (ECI). The ECI consists of exploration/estimation methods that 
a partitioning tool may call to select design points (possible implementations) and obtain 
estimates. After the partitioning and exploration is completed, the back-end HLS tool is 
constrained by the selected design points to synthesize RTL designs that satisfy these estimates. 

Traditional approaches [83, 19, 48] to integrate HLS and spatial partitioning perform exploration 
and estimation along with partitioning. In the traditional heterogeneous model of HLS and spatial 
partitioning, the partitioner invokes a HLS estimator to obtain the area/latency of each spatial 
partition. Several heterogeneous systems, such as SpecSyn [9], Chop [34] and Vulcan I [59], 
focussed on providing good design estimates while not performing complete HLS. Later, 
researchers (COBRA-ABS [1], Multipar [86]) developed a completely homogeneous model, wherein 
HLS and partitioning are performed in a single step. The COBRA-ABS system has a Simulated 
Annealing (SA) based model and Multipar has an ILP based model for synthesis and partitioning. 
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However, unification of spatial partitioning and HLS into a homogeneous model adds to the 
already complex sub-problems of HLS, leading to a large multi-dimensional design space. 
Therefore, the cost (design automation time) of having a homogeneous model is very high, i.e, 
either the run times are quite high (COBRA-ABS [1]) or the model cannot handle large problem 
sizes (Multipar [86]). The traditional heterogeneous model, although less complex, also has a 
significant drawback of performing exploration on a particular partition segment, which is only a 
locality of the entire design space. 

In this chapter, we propose a spatial partitioning knowledgeable exploration technique that 
combines the best flavors of both the models. The exploration technique has the capability to 
simultaneously explore the design space of multiple spatial partitions. This enables exploration 
and spatial partitioning to generate constraint satisfying designs in cases where the traditional 
heterogeneous model fails. In [69], we introduced the idea of a partitioning-based exploration 
model for single-threaded behavioral specifications. In this chapter, we extend this to 
parallel-process (USM) specifications and present the integration of design space exploration with 
spatial and temporal partitioning in the SPARCS [26] system. 

The rest of the chapter is organized as follows. Section 5.2 describes the proposed partitioning 
knowledgeable exploration model for a USM specification. Section 5.3 presents the exploration 
algorithm in detail with an illustrative example. Section 5.4 presents the integration with the 
temporal and spatial partitioning in SPARCS. Section 5.5 presents results comparing the 
traditional and proposed exploration techniques. Finally, we present a summary in Section 5.6. 

5.2    Partitioning Knowledgeable Exploration Model for the USM 

The USM embodies a task graph that consists of a collection tasks (Ntasks) and edges representing 
dependencies (flags) between them. Each task is a CDFG consisting of blocks of computation and 
edges representing control flow. Each block in a task in-turn has a simple data flow graph, while 
the collection of blocks (in a task) represent a single-thread of control. The collection of tasks the 
USM represent a parallel control-thread model. 

Definitions for Partitioned Task Graph: We define following terms with respect to our 
partitioned task graph model: 
• A partition Pi C Ntasks, is a subset of tasks in the task graph. 
• A configuration Cset = {Pi | (i* n Pj = 0) A (T, £ Ntasks => 3Pk : Tt £ Pk)} is a set of mutually 
exclusive partitions of all the tasks. 
• A design point DPijk corresponds to a specific implementation i of a task k. A design point is 
essentially a collection of schedules [10], one for each block in the CDFG of the task. 
• A L(t) is the latency of the task t, defined as the number of clocks cycles per input vector. 
• Lmin(t) is the fastest latency of the task i, corresponding to the ASAP schedules of all its blocks. 
• Lmax{t) is the slowest latency of the task f, corresponding to the slowest (smallest resource bag) 
schedules of all its blocks. 
• Amin(t) and Amax(t) represent the smallest and largest design areas of task t corresponding to 
the slowest and fastest schedules, respectively. 
• A design space of a task t is the set of all possible design points bounded by Lmin(t) and 
Lmax{t)- Further, the design space of a partition is the union of the design spaces of all tasks in 
that partition. 

For the partitioned USM shown in Figure 5.2(a), Cset = {Pu P2}, where Py = {TUT2,T3} and 
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Figure 5.2: The USM exploration model 

P2 = {T4,T5}. Figure 5.2(b) shows the design points corresponding to each task. Note that 
within each design point, a collection of block-level schedules are maintained. From each design 
point, an RTL design for the corresponding task can be synthesized. In addition, the RTL 
resource requirements for each individual block of any task is also maintained. Note that the 
blocks belonging to a task share all the datapath resources and a single finite state machine 
controller. Thus, for each design point detailed RTL design estimates are maintained. As shown 
in Figure 5.2(c), each partition P, is synthesized as a collection of RTL designs for the 
corresponding device in the B.C. 

The exploration model currently does not share hardware between tasks, instead, performs an 
efficient allocation of the device area to the tasks that are assigned to that partition. In addition, 
the exploration model attempts to minimize design latency by exploiting the task-level and 
operation-level parallelism. Nevertheless, the model can be changed to allow sharing by simply 
modifying the RTL estimation mechanism and introducing a suitable controller model [32]. 

Design Constraints: The goal of the exploration process is to generate design points for any 
given USM configuration, such that the following design constraints are best satisfied: 
• Design Latency{LconstTaint): is a constraint on the set of tasks belonging to one temporal 
segment. It is defined as: 

52teCpMt)   <  ^constraint, where CP C Ntasks, is the critical path of tasks in the graph. We 
define the critical path as the path that determines the largest total latency. 
• Device Area(DeviceAreak)- The target architecture consists of multiple devices each of which 
can have different area. Therefore, each device k imposes an area constraint on the corresponding 
partition Pk of the USM, defined as: DesignArea{Pk) < DeviceAreak, where Design Ar ea(Pk) is 
the estimated RTL design area of partition Pk. 
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• Component Library: is an user-specified RTL component library from which the exploration 
engine selects a set of resources (ALUs) to perform scheduling and allocation. The user may 
specify a specific component library for each task. 

5.2.1    The Exploration Control Interface 

The exploration technique provides an Exploration Control Interface (ECI) that facilitates tight 
integration with any partitioning algorithm. The interface consists of a collection of exploration 
and design area estimation methods that generate design points and area estimates for the 
current USM configuration. These methods can be collectively used to control the trade-off between 
the time spent in exploration and the amount of design space explored. Here we provide a brief 
description of the intent of these methods. In the following section, we will correlate these 
methods to the exploration algorithm. These methods are listed in the decreasing order of their 
complexity or the amount of design space explored, Therefore, they also fall in the decreasing 
order of the time spent in exploration. 

Explore Design(Pset): Given a current configuration (Cset) and a subset of partitions 
{Pset Q Cset), the exploration engine attempts to generate a design point for each partition in Pset 

such that the design latency constraint and all device areas constraints are best satisfied. For 
example in Figure 5.2, we can re-generate new design points for the five tasks, by simultaneously 
exploring both partitions Pi and Pi. 

Explore Partition(Pt): This is a more constrained exploration that generates new design points 
for the tasks in one partition P^. The goal again is to satisfy the design latency and the device 
area constraints. Note that this method does not change the design points of tasks in any 
partition other than P*. For example in Figure 5.2, we can just generate new design points for 
tasks Ti and T5 by exploring only partition Pi. 

Explore Task(Tj): This method reschedules only the task T{ at various time constraints, until 
the latency and area constraints are met or all possible schedule lengths for the task T{ have been 
explored. 

Estimate Design(Pfc): For partition pt, at any time during the design process, there exists a 
collection of design points. Using these design points, the method determines RTL design 
parameters for each task and estimates the design area of partition P^. 

5.3    The Exploration Algorithm 

In this section, we describe the exploration algorithm elaborately. However, a reader may proceed 
to the following section without any loss in understanding the overall exploration and partitioning 
methodology presented in this chapter. 

The exploration algorithm is shown in Figure 5.3. Given a subset of partitions Pset C Cset, the 
algorithm determines the set of tasks Tset = UpkepaetPk that need to be explored. The goal of the 
algorithm is to generate design points for the tasks in Tset such that the design constraints are best 
satisfied. For each task t  €  Tset, the algorithm initially generates a design point DPfasttt 
corresponding to the fastest schedule. Therefore, initially each task would have a worst case area 
but least latency (£m,n(i)). The design points (or schedules) for the rest of the tasks Ntasks — Tset 

are left untouched. 
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Algorithm: USMJExploration   D>   Explore_Design(Pset) 
Input: Design constraints and a set of task partitions Pset 

Output: A DPi:   VT* £ Ph VP* G Pset 
and the RTL estimates VP,- G Pset 

Begin 
1 Tset = {Ti | Ti G Ph VP* G Pset} 
2 VT, G Tset  : Initialize(Tj) 
3 Iteration = 0 [> relax-tighten loop 
4 while (Iteration < UpperBound) 
5 Compute critical path 
6 Compute design costs 
7 Update Sbest 

8 if (design fits) then exit 
9 Tust = sorted Tset, using cost functions: 

10 1. Decreasing PAVt 
11 2. Non Critical tasks followed by Critical tasks (Ct) 
12 3. Increasing LAt cost 
13 TT = Select Task from Tnst for Relaxation 
14 Tt = Select Task from THst for Tightening 
15 if (Tr  # 0) then 
16 Relax(Tr) D>  bock-level exploration 
17 else if (Tt # 0) then 
18 Tighten{Tt) 1>  block-level exploration 
19 else     exit 
20 end if 
21 end while 
22 if (design did not fit) 
23 Restore using S\,est 
24 Re-compute critical path and design costs 
25 end if 
End 

Figure 5.3: USM Exploration Algorithm 

The algorithm performs exploration in a loop (lines 4-21), where each iteration relaxes or tightens 
the schedule of a task. Relaxing a task corresponds to a latency increase and an area reduction, 
and tightening works vice versa. During each iteration, the critical path and the design costs are 
evaluated. The algorithm maintains the best solution (S),est, a collection of design points 
V t G Tset) obtained so far, defined as the one that has the least total 

AreaPenalty = Zpkecset AO{Pk), where the Area Overshoot AO{Pk) = { fAk   %£££ ° , and 

AAh = DesignArea(Pk) — DeviceAreak- 

At the core of the exploration algorithm is a collection of cost functions that determine the task 
to be selected for relaxation (Tr) or tightening (Tt). Using these cost functions the tasks in Tset 
are sorted to form a priority list (Pust)- While selecting a task for relaxation, the priority list is 
traversed from left to right, and for tightening from right to left. Each cost function captures an 
essential aspect of the partitioning-based exploration model and these functions collectively guide 
the exploration engine in finding a constraint satisfying design. These cost functions have been 
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listed in the order in which they are applied for sorting the list of tasks: 

• Partition Area Violation (PAVt): represents the area violation of the partition to which the 

task belongs. PAVt = Ce'^Ar
D

e^gee/tfea*, and t G Pk. The tasks are ordered in 
increasing PAVt such that, tasks belonging to the most occupied device are selected for 
relaxation and tasks belonging to the least occupied device are selected for tightening. Note 
that all tasks belonging to the same partition will have the same PAV. 

• Criticality (Ct): A critical task Ct is one that is on the critical path. Between the set of 
tasks that belong to one partition, those that do not fall on the critical path are ordered 
before those that are on the critical path. This is because, non-critical tasks are good 
candidates for relaxation, since the design latency will not be increased. Similarly, critical 
tasks are good candidates for tightening, since the design latency will be decreased. 

• Latency-Area Tradeoff (LAt): This is the most important cost function that determines the 
task that is selected among those have equal PAVt and Ct. For a task t, and the 
corresponding design point DPittl we define the latency-area tradeoff cost as follows: 

LAt = £n0Tm(DPitt) + AnoTm(DPijt), where (5.1) 

Cnorm{DPitt) = (f^   ~ f™",('}) * 100, and 

Anarm{DPht) = (Arxi(}~A
A
{DP;?h * 100 

We will explain the terms used in this cost: 

_ £-norm{DPi,t) represents the normalized latency percentage of the current design point 
with respect to the latency bounds. 

- •A-norrn{DPiit) represents the normalized area percentage of the current design point 
with respect to the latency bounds. 
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- C(DPiit) represents the current latency of the task t, with respect to the current design 
point DPiit. 

- A(DPijt) represents the current area of the task t, with respect to the current design 
point DPijt. 

We will explain this cost function using the pictorial view of the design space of a task 
shown in Figure 5.4. For a task t, the set of all design points can be ordered in the latency 
axis from its Lmin(t) to Lmax(t). Correspondingly, the design points for the task t can be 
ordered on the area axis from Amax(t) to Amin{t). As shown in Figure 5.4, for any two 
design points DPiyt and DPjjt their ordering in both the latency and area axis need not be 
the same. However, the issue of concern is how close or far a design point is from the 
respective bounds. The cost Cnorm(DPiit) is a metric for measuring the distance of the 
design point DP^t from the latency lower bound Lmin(t). Similarly, the cost Anorm{DPi!t) is 
a metric for measuring the distance of the design point DPiit from the area upper bound 
Amax{t)- Both the costs have been normalized within their ranges such that they can be 
summed up to provide a closeness factor {LAt) of the design point with respect to the 
latency and area lower bounds. 

A low value LAt implies that the tasks' current area is close to its upper bound and the 
current latency is close to its lower bound. This means that tasks with low LAt are good 
choices for relaxation so that their latency can be increased and their area can be reduced. 
Similarly, tasks with high LAt are good choices for tightening. The tasks in priority list are 
ordered in increasing values of LAt. 

After these costs are applied and the priority list is ordered, the algorithm selects a task for 
relaxation or tightening. If there exists a task whose latency can be relaxed and still remains 
within the bound, then the algorithm relaxes it, otherwise a task is selected and tightened. In 
order to relax or tighten a task, the algorithm invokes the block-level exploration algorithm [69]. 
The block-level algorithm, based on the internal cost metrics of the task, selects and re-schedules 
the best block [69] within that task. For scheduling a task, we use a low-complexity 
time-constrained scheduling algorithm [67]. The criteria for the relaxation and tightening a task 
are: (i) the tasks' latency should remain within the bounds, and (ii) the design latency should 
remain within the given constraint (£TieCP Latency(Ti)   < Lconstraint). 

The relax-tighten loop stops when any one of these conditions are met: (i) the design fits - all 
device area constraints are satisfied, (ii) none of the tasks can be relaxed or tightened, or (iii) A 
lot of exploration time (iterations) has been spent. This is provided so that the exploration time 
can be cut-off for large design spaces. At the end of the relax-tighten loop, if the design did not 
fit the best solution is restored. 

5.3.1    Implementing the ECI 

Here, we provide a short description of the algorithms used by the ECI methods and their 
correlation to the exploration algorithm. 

Explore Design(Pset): This method is implemented by invoking the exploration algorithm on 
the given Pset. The method generates a schedule for each task in Pset - {T, | VPfc € Pset,Ti £ Pfc}, 
and estimates the design areas of all partitions in Pset, such that the constraints are best satisfied. 
Since the exploration engine maintains the current configuration of the entire USM, it can find 
constraint satisfying solutions where a traditional exploration/estimation technique would fail. 

93 



o 
o 

20 

■§   15 
o c 10 

Task tl 
Task t3 
Task t4 
Task t5 

Task t2 

0     10    20    30    40    50    60    70 
Iteration Number during exploration 

Figure 5.5: Task Latencies During Exploration 

Explore Partition(Pfc): This method is also implemented by invoking the exploration algorithm 
on Pset  —  {Pk}- This method is equivalent the traditional exploration technique that only 
performs a local search of the design space of one partition. Hence, this is a more constrained 
method that may not be able to satisfy the design latency and device area constraints as well as 
the Explore.DesignQ method. 

Explore Task(i): This method invokes the block-level exploration algorithm [69] on all blocks in 
task t. The goal of the algorithm to generate a set of schedules for all blocks in the task t such 
that the area constraint on partition Pk  3 t and design latency are best satisfied. 

Estimate Design(Pfc): When this method is invoked there always exist a design point for each 
task t  £ Pk. This method performs a post-scheduling estimation to estimate RTL design area of 
each task. Currently, the partition area is computed as the sum of all task areas. If a shared 
datapath is implemented, then the estimation method need may be modified accordingly. 

5.3.2    Illustrative Example 

We will use the example shown in Figure 5.2(a) to illustrate the effectiveness of the task-level 
exploration using the ExplorcDesignQ method. The example has five tasks Tx - T5 in two 
partitions, Px = {Ti,T2,T3} and P2 = {T4,T5}. The behavior of each task has four vector 
products consisting of sixteen 8-bit multiplications, eight 16-bit additions and four 17-bit 
additions. The design space for each task on the latency axis varies from 5 to 20 clocks and on 
the area axis from 120 to 5,200 CLB s. It can be seen that the design space of the entire design is 
very large, ((20 - 5)5) possible latency combinations for the five tasks. 

We have shown as a collection of three plots, the progress of the exploration algorithm. The plot 
in Figure 5.5 shows the latency of each task during each iteration of the algorithm. The plots in 
Figure 5.6 show the variation of design area and latency over iterations of the algorithm. A 
latency constraint of 49 clocks was provided as a constraint for the exploration algorithm. Area 
constraints of 900 clbs and 570 clbs were imposed on partitions P\ and P2, respectively. 

Initially, all tasks have their fastest (latency = 15) implementation and their design areas in both 
partitions are at the upper bounds. Initially T5 that is not on the critical path is relaxed leading 
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Figure 5.6: During Exploration, Iteration Vs. : (a) Design Area and (b) Design Latency 

to a drop in the area of P2. Now, the area violation in Px is much higher hence the algorithm 
proceeds to relax the tasks {Ti,T2,T3}  6 Pi. Task T2 being non-critical is selected and relaxed 
for the next 6 iterations leading to a drop in the area of Pi. Again the area violation of P2 is 
higher, hence T5 (non-critical) is relaxed leading to a significant drop in the area of P2. During 
the next 28 iterations (10-38), the algorithm attempts to relax the tasks in Px which now has a 
high PAV. The tasks T2 and T3 are relaxed alternatively, and at iteration 38, the area of Pi has 
decreased considerably. Hence, T5 (non-critical) is selected and relaxed for the next 10 iterations 
with a few relaxations of T4 which is critical. At iteration 56, finally the area of Pi falls below the 
constraint. From this point, the algorithm attempts further combinations to fit P2. It can been 
seen that when the design latency reaches the constraint value (at iteration 61), the algorithm 
does not allow any further relaxation, thereby keeping the design latency always within the 
constraint. During iterations iteration 61-67, T3  €  Pi is tightened and the slack obtained is used 
to finally relax T4 to fit P2. 

This way the algorithm effectively distributes the latency among the tasks, so as to pick design 
points that effectively satisfy the individual device area constraints. 

5.4    Integrating Exploration and Partitioning in SPARCS 

The SPARCS design flow consists of temporal partitioning followed by spatial partitioning and 
finally high-level synthesis, as described earlier in Section 5.1. In this section, we will describe the 
integration of design space exploration with temporal and spatial partitioning algorithms in 
SPARCS. 

5.4.1    Interaction with Temporal Partitioning 

For a temporal partitioner, there are two ways to integrate the exploration engine. One approach 
is through a spatial partitioner that in turn interacts with the exploration engine. The ECI 
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ExpEngine.Initialize(Cc„r7.ent) 

Algorithm: Template for GA or SA 
1  ^current — Random Initial Configuration 

2 

3 
4 
5 
6 
7 

Gen/Temp = Initial Generation or Temperature 
while (Gen/Temp    <  Final Value)     D>   GA or SA loop 

while (PopSize/Iters   <  Max Value)     D>   GA(PopSize) or SA(Iters) loop 

for each (Temporal Segment G{  e  USM) 

9 

10 

11 

12 
13 

14 

15 
16 
17 

ExpEngine.SetConfig(Gj, Cn 

ExpEngine. SetLatency (L( 

ExpEngine.TaskJLevel-Exploration     O   single or multi-partition 

ExpEngine.EstimateJDesignQ 

end for 
if (acceptable (Cj, •i^current) -LcmpJJ 

^current — Cn 

end if 
end while 

end while 
D>    PopSize/Iter loop 

O   Gen/Temp loop 

Figure 5.7: Template of a GA-based or SA-based USM Partitioner 

directly supports a tight interaction with a spatial partitioner. Therefore, it would be ideal for a 
temporal partitioner to interact through a spatial partitioner. This way it will have accurate 
estimates on the utilization of RC resources. However, this approach would be time consuming 
since spatial partitioning is done in conjunction with temporal partitioning. 

For temporal partitioners that are based on optimal models such as ILP, such as in SPARCS [36], 
this approach will be impractical. A second approach to integrate the exploration engine with a 
temporal partitioner, is to assume that the RC has a single device whose area is the sum of the 
areas of the all the devices. In SPARCS, the temporal partitioner assumes such a lumped model 
of the RC and without considering the effects of spatial partitioning in detail. Nevertheless, 
SPARCS incorporates a detailed feedback to temporal partitioning, in the case when spatial 
partitioning fails on any temporal segment. 

The lumped RC area is set as a constraint to the exploration engine and all tasks are placed in 
one partition. The Explore^designQ method is invoked several times with varying design latency 
constraints at equidistant points within the bounds on the entire design latency (for all tasks). 
For each invocation of Explore.designQ, a design point is generated for each task. Thus, prior to 
temporal partitioning in SPARCS, several design points are generated for each task in the USM. 
This enables the temporal partitioner to contemplate multiple implementations of a task, while 
trying to optimize design latency. At the end of temporal partitioning, a latency constraint is 
imposed on each temporal segment such that the entire design delay (see Section 5.1) is 
minimized. 
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5.4.2    Interaction with Spatial Partitioning 

Following temporal partitioning, each temporal segment is spatially partitioned by the SPARCS 
system. As described earlier in Section 5.1, the goals of the spatial partitioning are to fit the 
temporal segment on the devices while satisfying the latency, memory and interconnection 
constraints. 

The spatial partitioning system [26, 81] consists of two partitioning algorithms: (i) A Simulated 
Annealing (SA-based) and (ii) Genetic Algorithm (GA-based). These algorithms interact with the 
exploration engine in order to dynamically generate design points that satisfy the device area and 
latency constraint on each temporal segment. The other two constraints on memories and 
interconnections are handled within the spatial partitioner. 

Figure 5.7 presents an abstract template representing both algorithms. The boxed lines indicated 
places of interaction between the partitioner and the exploration engine. Initially, one (or more) 
random configuration(s) are generated and the exploration engine is initialized with these. The 
loop in line-4 represents the outer-loop of the GA generations or the SA temperatures. The loop 
in line-5 represents the inner-loop of the GA population size or the SA iterations per temperatures. 

In order to achieve efficient memory utilization, the spatial partitioning of all temporal segments 
are performed simultaneously by the USM spatial partitioner [26, 81]. For this purpose, these 
algorithms maintain a super-configuration that is the set of all configurations (spatial partitions) 
over all temporal segments. During each iteration, the algorithms generate a new 
super-configuration {Cnew) by perturbing the existing super-configuration (CCUTrent). Note that, 
any super-configuration is composed of a set of configurations, one corresponding to each 
temporal segment (subgraph Gi  e  USM) of the USM. Here, G, contains the set of all tasks 
belonging to the temporal segment i. 

The lines 8-11 pass each such configuration (of Gi) to the exploration engine and set the 
corresponding latency constraint (Li) of the temporal segment. Then, the exploration algorithm 
is invoked on a temporal segment and the design areas of all spatial partitions in that temporal 
segment are estimated. This way, exploration and estimation are performed for all temporal 
segments (Gi  G  USM) in a sequence. During the spatial partitioning process, when any 
configuration is accepted (at line-14) by the GA or SA, the exploration engine is again invoked 
(the same way) to generate new design points and estimates design areas. 

Note: For experimentation, we developed two versions for each partitioning algorithm. The first 
one represents the traditional model of exploration where at any time during spatial partitioning 
(at line-10) only the single-partition exploration is performed using the Explore-PartitionQ 
method. The other version represents the proposed model where at line-10 the multi-partition 
exploration is always performed using the Explore-DesignQ method. Thus, the proposed model 
always performs a partitioning knowledgeable exploration on multiple spatial partitions, whereas 
the traditional model performs a local search on individual spatial partitions. 

5.5    Results 

First, we present results demonstrating the effectiveness of the multi-partition exploration 
technique as compared to the traditional model of exploring a single partition. Then, we present 
results of some designs that were synthesized through SPARCS and tested on a commercial RC 
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board. 

5.5.1     Exploration Results from GA-/SA-based Spatial Partitioners 

We have run a number of experiments on a constructed DCT example consisting of 12 tasks. Each 
task has four vector products consisting of sixteen 8-bit multiplications, eight 16-bit additions and 
four 17-bit additions. The design space for each task on the latency axis varies from 5 to 20 clocks 
and on the area axis from 120 to 5,200 CLB s. It can been seen that the design space of the entire 
design is very large; (20 - 5)12 possible design points, or latency combinations for all tasks. 

We have considered the Wildforce [84] target architecture consisting of four FPGA devices, with 
fixed and programmable interconnections and 32 K memory banks. The DCT example uses two 
memory segments with 16 words each for the input and the output 4x4 matrices. The there are 
eights flags that synchronize the execution of the tasks. The twelve tasks in the DCT example 
were temporally partitioned into two segments with the 9 tasks in one and three in the other. We 
ran both the GA and SA spatial partitioners on a Sun Workstation with a 128MB RAM and a 
143 Mhz Sparc-5 processor. Both partitioners have a built-in Wildforce-specific router and 
memory estimator [81], that handle the interconnection and memory constraints. 

We fixed the latency constraints of the two temporal segments at their upper bound values (120 
and 60 clocks) and ran both the partitioning algorithms (SA and GA) by varying the device area 
constraint. Figure 5.8 shows two plots of the results from the SA-based and the GA-based 
partitioners. Each plot has the device area constraint on the x-axis and solution fitness [26, 81] on 
the y-axis. Fitness is a measure of the solution quality in terms of the area, memory and 
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Table 5.1: USM Partitioning Results (with fitness < 1) for DCT 

•^■device Algo. Exp.Model Fitness Design Areas in TPO Design Areas in TP1 

700 
SA Single 

Multi 
.541 
.994 

{996, 695, 664, 664} 
{702, 499, 468, 468} 

{0, 355, 332, 332} 
{234, 23, 0, 680} 

GA Single 
Multi 

.702 

.994 
{1027, 664, 664, 664} 
{702, 468, 265, 702} 

{355, 332, 0, 332} 
{234, 0, 257, 545} 

650 
SA Single 

Multi 
.436 
.862 

{996, 695, 664, 664} 
{468, 702, 490, 585} 

{0, 355, 332, 332} 
{234, 234, 22, 545} 

GA Single 
Multi 

.608 

.925 
{664, 683, 996, 686} 
{588, 702, 487, 468} 

{332, 0, 332, 354} 
{256, 545, 234, 0} 

Table 5.2: USM Partitioning Results for FFT 

■^constraint 

-^■device Exp.Model Fitness 
Design Areas 

TPO TP1 TPO TP1 
154 80 576 Single 

Multi 
1.0 
1.0 

{514, 572, 558, 514} 
{438, 558, 484, 553} 

{94, 300, 323, 0} 
{0, 306, 402, 0} 

162 82 576 Single 
Multi 

1.0 
1.0 

{514, 572, 558, 514} 
{439, 560, 459, 481} 

{94, 300, 323, 0} 
{113, 307, 285, 0} 

158 80 570 Single 
Multi 

0.995 
0.995 

{514, 572, 558, 488} 
{514, 572, 558, 488} 

{268, 126, 323, 0} 
{268, 126, 323, 0} 

160 8U 570 Single 
Multi 

0.996 
0.996 

{462, 572, 558, 436} 
{462, 572, 558, 436} 

{268, 126, 323, 0} 
{268, 126, 323, 0} 

interconnect constraints. Any solution always satisfies the latency constraint. A fitness value of 1 
indicates that all constraints are satisfied and a lower fitness value indicates a higher violation of 
constraints. 

Each plot, has two curves representing the solutions generated by invoking the traditional 
single-partition (dashed lines) and proposed multi-partition exploration models (solid lines) 
during spatial partitioning. As shown in both plots, for an area constraint of 1000 clbs (and 
higher), both exploration models of exploration found constraint satisfying solutions. As we 
tighten the area (lower than 1000 clbs), the SA and GA versions that perform a multi-partition 
exploration find constraint satisfying solutions whereas their traditional counterparts do not. In 
fact for the traditional models, we can see that the solution quality becomes poorer (fitness <  1) 
with tighter area constraints. For all these cases, the proposed model found a solution in a few 
seconds to minutes, whereas, the traditional model could not even after running for over 4-6 
hours. This shows that the solution found by the multi-partition exploration doesn't even exist in 
the local search space of the traditional single-partition exploration. 

At tight area constraints (650 and lower) both models do not find constraint satisfying solutions. 
Nevertheless, the solution generated by the proposed model is superior (higher fitness) to that of 
the traditional model. Table 5.1 lists the resulting design areas (in all spatial partitions, for the 
two temporal segments TPO, TP1) for solutions whose fitness are less than 1. We see that even 
in all these cases the solutions generated the proposed model is better (in area) than that of the 
traditional. 

In Table 5.2 we have shown the results for partitioning the Fast Fourier Transform (FFT) 
benchmark. The FFT was modeled as a twelve task design and was temporally partitioned into 
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Table 5.3: Results of DCT and FFT tested on Wilforce 

Design 
Name 

Device 
No. 

Temporal Partition 1 Temporal Partition 2 
Tasks Area(CLBs) 

(Est., Actual) 
Tasks Area(CLBs) 

(Est., Actual) 

DCT 
1 
2 
3 
4 

t4_diml_rows34 
tl_diml_rowsl2 
t2_dimljrows34 
t3_diml_rowsl2 

(521, 548) 
(532, 563) 
(536, 563) 
(523, 548) 

- - 

FFT 
1 
2 
3 
4 

£2,f3 
g3real,g4real 

f4,glreal,glimg 
fl,g2real 

(285, 264) 
(392, 370) 
(432, 370) 
(432, 388) 

g3img 
g4img 
g2img 

(113, 94) 
(307, 223) 
(285, 228) 

two segments. The table lists the latency constraints (Lconstraint) on both temporal partitions and 
the device area {Adevice) m the first three columns. For each set of constraints, the models 
(single-partition and multi-partition) of exploration were performed. The first two sets of 
constraints represent the experiment for a XC4013 device with the minimal (154,80) and the 
maximal (162,82) latency constraint on each temporal segment. In these cases, both models found 
a constraint satisfying solution. Nevertheless, it can be seen that the multi-partition exploration 
finds a better solution (lower design areas). 

The next two sets of constraints are with a slightly tighter device area constraint and varying 
latency constraint on temporal segment TPO. For these cases (and others not shown here), both 
models of exploration generate identical results. This can be explained as follows. FFT is not as 
compute-intensive as the DCT example and each FFT task has only two or three possible 
implementations with little variation in the design area and latency. This provides no leverage to 
exploration engine to perform a latency-area trade-off on the tasks. Due to the very limited set of 
available design points, both exploration models converge easily to the best possible solution. 

For all the experimental runs, we provided a relaxed memory and interconnection constraint and 
these were satisfied by all generated solutions. Therefore, the comparative results (solution 
fitness) directly denotes the ability of the proposed exploration technique to efficiently perform 
area-latency tradeoff by performing a multi-partition exploration. 

5.5.2    Onboard Testing 

We modeled the DCT example as a four task design and automatically partitioned and 
synthesized this for the Wildforce board [84], from Annapolis Micro Systems. The tasks £1 and t2 
perform the first dimension matrix multiplication of DCT and the tasks 23 and t4 perform the 
second dimension. There was no necessity for temporal partitioning since all four tasks fit within 
the four XC4013s on Wildforce. The spatial partitioning and exploration process completed in 
less than a minute on a 143 Mhz Sun Sparc-5 processor with 128 MB RAM. Table 5.3 shows 
results of USM spatial partitioning with exploration. 

We automatically partitioned and synthesized the FFT example for the Wildforce board [84]. 
This design was temporally partitioned into two temporal segments with nine tasks in the first 
segment and three tasks in the second temporal segment. Using the USM partitioning and 
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exploration environment, both temporal segments were spatially partitioned into the four XC4013 
devices on the board. The spatial partitioning and exploration process completed in 130 seconds 
on a 143 Mhz Sun Sparc-5 processor with 128 MB RAM. Table 5.3 shows results of USM spatial 
partitioning with exploration. 

These examples were further synthesized through commercial logic (Synplicity) and layout (Xilinx 
Ml) synthesis tools to generate the FPGA bitmaps. These design were loaded and successfully 
executed on the Wildforce board. After behavioral modeling, the complete design automation 
process including simulations and testing using the SPARCS tools was performed within a day, 
for each example. 

5.6    Summary 

This chapter describes the tight integration of design space exploration with spatial and temporal 
partitioning algorithms in the SPARCS system [26]. In particular, this chapter proposes a spatial 
partitioning knowledgeable exploration technique for parallel-process behavioral specifications. The 
exploration technique has the capability to simultaneously explore the hardware design space of 
multiple spatial partitions. This enables exploration and spatial partitioning to generate 
constraint satisfying designs in cases where the traditional exploration model fails. In [69], we 
introduced the idea of a partitioning-based exploration model for single-process behavioral 
specifications. In this chapter, we extend the model to handle parallel-process (USM) 
specifications. Results are presented to demonstrate the effectiveness of the exploration technique 
and design automation process using SPARCS. 
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Chapter 6 

Light Weight Versions of Existing 
Synthesis Algorithms 

6.1    Introduction 

The traditional view of high level or behavioral synthesis (HLS) [124] involves transforming the 
behavioral specification of a design into a register transfer level (RTL) specification which usually 
consists of a data path and a controller. The first step in HLS involves extracting an intermediate 
form from the behavioral specification. The intermediate form is usually a 
dependency/precedence graph (DG or DFG) representing the behavioral specification. The DFG 
(data flow graph) is a directed acyclic graph which consists of nodes that represent operations 
and edges that represent either a control dependency or a data dependency [125]. The RTL 
design is produced by gradually performing the various synthesis tasks [126] on the DFG. 

High level synthesis [124] has gained popularity in the last decade, the key reasons being: (i) 
Design specifications at higher levels of abstraction are easier to write and allow functionality and 
design constraints to be clearly stated; (ii) Synthesis algorithms that perform design 
optimizations have been well established; (iii) HLS allows the designer to explore a large design 
space in a relatively small amount of time. 

Scheduling is an important step in HLS [126, 123, 127]. Scheduling can be described as the 
process of dividing the DFG into time steps that correspond to clock cycles at the RTL level. 
Therefore, scheduling directly controls the throughput rate of the RTL design produced. 
However, for large designs the task of finding optimal schedules is a bottleneck in terms of 
synthesis time. Therefore, there exists a tradeoff between the scheduling time and design 
performance. A designer would try to exploit this tradeoff using good scheduling algorithms that 
need to be computationally simple, and at the same time produce high-quality schedules. 

Scheduling can be done either under resource constraints (design area and component library) or 
under time constraints (design speed). A wide variety of algorithms [123, 128, 129, 130] exist in 
the current literature to perform both kinds of scheduling. In this chapter we are primarily 
concerned about the Force Directed Scheduling (FDS) algorithm [123] that takes resource 
constraints and tries to optimize the latency (or throughput) of the design. In this section, we will 
call the resource-constrained FDS algorithm the Force directed List Scheduling (FDLS) algorithm. 
FDLS produces good quality schedules but at the cost of computationally intense force 
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calculations. Moreover, FDLS would perform poorly without a lookahead into the descendant 
operation forces, as shown in the results of [131]. Therefore for data flow dominated designs, 
FDLS is inefficient in terms of scheduling time. In this chapter, we present a technique to cut-off 
force calculation of an operation at a certain level of its descendants.  This would considerably 
reduce the scheduling time without degrading the schedule quality. 

In the following section we will present a discussion of related work. In Section 6.3 we will briefly 
describe the force directed list scheduling algorithm. Section 6.4 presents an example to show the 
performance of FDLS and an improvement that can be done. Section 6.5 describes the new 
technique of force calculations based on a concept of stability. Section 6.6 describes how the 
stability concept can be extended to any DFG, using stability conditions. It also presents the 
FDLS algorithm that is coupled with a stability condition. Finally, in Section 6.7, we present 
detailed results for a suite of high level synthesis benchmarks. The results show a clear 
improvement in the performance of FDLS when coupled with the stability condition. 

6.2    Related Work 

In the past there have been improvements suggested to the Force-Directed Scheduling (FDS) 
algorithm. Here we will compare our improvement with some of these. We assume that the reader 
is familiar with Paulin and Knight's FDS algorithm [123]. 

Verhaegh et al. in [132] proposed an improvement to the time-constrained FDS algorithm (that 
minimizes resources within a given schedule length), using a gradual time frame reduction 
technique. Instead of directly scheduling an operation to a time step within its time frame (as 
suggested by Paulin and Knight in [123]), the time frame for the chosen operation is reduced by 
one time step. Our implementation of the resource-constrained FDS algorithm follows a very 
similar approach. At each time step, if an operation is not chosen for scheduling then its time 
frame is reduced by one time step. The only difference is that we use a more rigorous force 
function. The authors in [132] also suggest a way of computing the force of an operation using a 
requirement distribution function similar to the one suggested by Paulin and Knight. Their force 
of scheduling an operation at a time step is computed by summing the changes in the probabilities 
of all the operations. Operations whose time frames have not been affected would contribute a 
zero force. In our implementation of the resource-constrained FDS algorithm we only accumulate 
the forces of descendants of the operation, since only their time frames would be affected. 

Verhaegh et al. in [133] propose an incremental way of computing forces, to reduce the 
complexity of the time-constrained FDS algorithm. Initially, the set of operations whose time 
frames have changed is determined. Then depending on whether an operation belongs to this set, 
they either compute the force by summing only the changes in other forces or recompute the 
entire force. As mentioned earlier, our implementation of the resource-constrained FDS algorithm 
computes forces only for those operations whose time frames have changed, but we have not done 
incremental computation. 

We observe that none of the improvements mentioned earlier suggest the possibility that the 
forces of certain descendant operations need not be summed up even though their time frames 
might have changed. The technique suggested in this chapter dynamically determines the number 
of descendant operations whose forces have to be summed to get the force of an operation. The 
improvement suggested in this chapter is independent of those suggested in the past and can be 
used in conjunction with them for further improvement. Since our implementation of the 
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ForceJDirected_List_Scheduling(DFG, Tlset) 
Begin 

Tmax *- Critical Path Length in the DFG 
Tstep <— 1 
while (Tstep < Tmax)    > Each iteration corresponds to a Tstep 

Evaluate Time Frames 
C-readv «- { All operations whose time frames intersect with Tstep} 
while (Tlset not sufficient)    t> Need to defer an operation 

if (all operations in Cready ire on critical path) then 
'max 4      I max   ~r    1 
Evaluate Time Frames 

end if 
Compute-Deferral-ForcesQ 
Op «- Operation in Cready with the least force 
Cready *~ Cready  ~  {Op}    > Defer the operation 

end while 
for each (operation Op € Cready) 

Schedule Op at Tstep 
end for 
I step *~  'step   +   1 

end while 
End 

Figure 6.1: Force Directed List Scheduling Algorithm 

improved resource-constrained FDS algorithm already incorporates some of the improvements 
suggested in the past, the speed-up results shown in this chapter justify the fact that the 
improvement achieved by using our technique is independent of others. 

6.3    Force Directed List Scheduling 

The FDLS (resource-constrained FDS) algorithm proposed by Paulin and Knight [123] is a very 
popular technique of scheduling, widely used in many synthesis tools that exist in the current 
literature. The FDLS algorithm shown in Figure 6.1, is based on the well known list scheduling 
algorithm [134]. Operations are sorted in a topological order based on the control and data 
dependencies extracted from the DFG. At each time step (TsteP) a list of operations that are 
ready to be scheduled, called the ready list (CTeady) is formed. As long as the resource set (Tlset) 
is not sufficient to schedule the operations in the ready list the inner-while loop (See Figure 6.1) 
keeps deferring an operation in each iteration. In order to select an operation to defer, a deferral 
force is calculated for each of the ready list operations and the least force operation is picked. 
When the resources are sufficient the remaining operations in the ready list are scheduled in the 
current time step. 

There are two main tasks in each iteration (time step) of FDLS, namely, the evaluation of the 
time frames and computation of the deferral forces for each operation in the ready list. The time 
frame of an operation is specified by its As Soon As Possible (ASAP) and As Late As Possible 
(ALAP) time steps. The evaluation of a time frame would simply involve updating of these two 
values. On the other hand, a deferral force calculation involves updating of the distribution graph 
[123] of the operation and computation of the deferral force of the operation. The force of 
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Figure 6.2: (a) Filter Behavioral Specification (b) The DFG 

deferring an operation to a time step (i), as suggested by Paulin and Knight [123] is 1: 

Force(i) - Self-Force(i) + SuccessorJForces 

The self-force of an operation determines the average competition offered by those operations that 
appear in its time frame and compete for its resources. The successorJbrces are computed by 
summing up the self-forces of all the descendants whose time frames would be modified due to the 
deferral of the parent operation. Note that, a force calculation is a more computationally 
intensive task than the evaluation of a time frame. More importantly, note that the deferral forces 
are computed for all the operations in the ready list, in each iteration of the inner-while loop 
(Figure 6.1). The time frames of the operations are not necessarily evaluated in each iteration. In 
our experience, we have observed for many design examples that the most computational intensive 
task of the FDLS algorithm is the calculation of successor forces. 

6.4    Motivation through an Example 

In this section, we present an example to show that FDLS is not efficient in its successor force 
calculations. When resources are insufficient, FDLS computes forces in order to select an 
operation for deferral. As described earlier, when computing the force of an operation, FDLS also 
computes the self-forces of all the descendants of that operation. However, it may not always be 
necessary to compute the forces of all the descendants, in order to make an effective deferral 
decision. 

Consider the portion of a behavioral specification for a filter example shown in Figure 6.2.a and 
the corresponding DFG in Figure 6.2.b. The previous state variables (s2 through s8) and the 
filter input (I) are summed up and used in the computation of the next state values and the filter 
output, using the filter coefficients (FcoeflLl and Fcoeff_2). This computation is done in the two 
DAG fragments (DAGl and DAG2), as shown in Figure 6.2.b. The operations (nodes) in the 
DFG are marked by the corresponding variable names in the behavioral specification. Consider a 
resource set that has only one adder. At the first time step, the ready list has the four addition 
operations A, B, C and D. In order to pick an operation for deferral, FDLS computes the forces of 
all these operations and then defers the least force operation. 

See [123] for a detailed explanation of this function. We assume that the reader is familiar with [123] 
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Figure 6.3: Topological ordering of ready operations and their descendants 

When computing the successor force of operations A, B, C and D, FDLS goes all the way down 
till the end of DAG1 and DAG2, and computes the self forces of all their descendants. But an 
important point to note here is that the operation T is a common descendant of the four addition 
operations in the ready list. This implies that all descendants of A, B, C and D that are also 
descendants of T, would equally contribute to the force of the operations A, B, C and D. For 
example, the self-force of the descendants X and Y would be added to the force of all the four 
addition operations since X and Y are also descendants of T. Therefore addition of the self-forces 
of X and Y and any other descendants of T, would not change the selection of one of the four 
additions for deferral. In other words, we can state that if there exists a common descendant for 
the ready list operations and all other descendants are either predecessors or successors of the 
common descendant (i.e, this is a bottle neck descendant), it is enough if we compute self-force of 
those descendants that axe predecessors of the common descendant, including the common 
descendant. In this example, while computing successor forces of A, B, C and D, it is enough if 
the self-forces of the operations Tl, T2 and T are computed, since Tl and T2 are the only 
descendants that are predecessors of the closest common descendant T. This observation can be 
suitably extended to the case of a set of common descendants. 

6.5    The Stability Concept 

In the previous section we presented an example to show that successor force computation can be 
limited to a subset of descendants of the ready list operations. However, the concept cannot be 
easily extended to all DFGs, since there may not be a common descendant for all the operations 
in the ready list. In such a case, we would have to find common descendants for mutually 
exclusive partitions of the ready list. Even then, we can only state that it is not necessary to 
compute successor forces beyond the closest common descendant for operations in that partition 
of the ready list. However, the actual deferral operation could belong to any partition. Therefore, 
successor force computation, beyond such common descendants may still affect the deferral 
decision. The problem is therefore not solved. 

We can however look at the problem from a different point of view. Consider a ready list shown 
in Figure 6.3. The operations and their descendants are topologically sorted into levels. The list 
of ready operations (a, b, c ..) are considered to be in level-0. Their immediate successors are 
considered to be in level-1. For example, Al is the set of immediate successors of the operation 
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'a', Bl has the immediate successors of the operation 'b' and so on. Similarly, A2 is the set of all 
immediate successors of each of the operations in the successor set Al. Therefore Al is defined as 
the parent set of A2. We recursively define an ith level successor set of an operation in the ready 
list to be the set of immediate successors of all the operations in the parent set at the (i-l)th level. 
Also for any ith level successor set (Ai) we define a corresponding parent operation (a) in the 
ready list. If the ith level successor set of any operation in the ready list is empty, then successor 
sets at all levels greater than i are also empty. 

The computation of successor forces for the operations in the ready list can now be done level by 
level. At each level-i starting from the first, the self-forces of all the operations in the ith level 
successor set is added to the corresponding parent operation in the ready list. Let n be the 
farthest level of successors for any operation in the ready list. FDLS would compute successor 
forces at each level, until level-n and pick the least force operation for deferral. If we sort the 
ready list operations in the order of their force values, it is very well possible that there exists a 
level-k (k less than n) after which this order stabilizes, i.e, does not change. We call this level-k as 
the stability level. 

For example, if there exists a common descendant for the ready list operations then the stability 
level is level-k where k is the length of the path from any ready operation to that common 
descendant. Due to the common descendant, after this level-k the addition of successor forces 
would equally contribute to the forces of all the operations in the ready list, thereby preserving 
the order of the operations. There could be several other reasons why this stability level can exist, 
a few of them are: (i) Successor forces after a certain level k might become zero if the successors 
after level-k have similar distribution graphs; (ii) After level-k, the successors may contribute the 
same force to each of the ready operations. This could be true if successors at level-k have similar 
time frames and equal competition; (iii) When there is no single common descendant for all 
operations in the ready list, but only for mutually exclusive partitions of the ready list, the 
stability level could still exist. This would be true if the addition of successor forces does not 
change the ordering of operations between the partitions of the ready list. 

The problem at our hand is to find this stability level. If we can dynamically detect the stability 
level then we can stop computation of successor forces at that level and pick the least force 
operation for deferral. Since the relative ranking (with respect to forces) of the operations at the 
stability level is the same as what it would be after all the n levels of successors force calculations, 
the operation selected for deferral would also be the same.  Therefore, we can be assured that the 
schedule quality would be preserved. 

6.6    FDLS that uses a Stability Condition 

In order to dynamically (at run time) detect the stability level in each iteration of FDLS, we have 
to look at the forces of the ready list operations after each level of successor force computation. 
We now define a stability condition (SC) as a condition which when true indicates that stability 
level has been reached. The stability condition will be used in the FDLS to dynamically detect 
the stability level and stop successor force computation. Table 6.1 presents three simple stability 
conditions that have their own advantages and disadvantages. 

In Table 6.1, the stability condition SC-1 checks if the force value of any one of the ready list 
operations has changed between two consecutive levels of successor forces computation. The 
intuition is that, if none of the force values of the ready list operations have changed, then the 
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Table 6.1: Some simple stability conditions 

Sorting 
S.No Stability Condition Required 
SC-1 Force of any operation changed. No 
SC-2 For each Op-type, least force 

Operation Set is preserved. 
Yes 

SC-3 Top N forces of each 
OpJype remain unchanged. 

Yes 

order of operations is preserved, identifying stability. SC-2 works based on a different approach to 
stability. At each level, there is a set of least force operations, since more than one operation can 
have the least force value. SC-2 detects stability if this least force operation set remains the same 
overs two levels of successor force computation. This intuition is that, if the set of least force 
operations remain the same then it is highly possible that one of them is the actual operation 
that would have been selected for deferral, after all levels successor force computation. SC-3 on 
the other hand looks at the other extreme. It checks if the forces of the top N operations remain 
fixed, i.e, force values did not change. Here N is the number of resource of this operation type 
available. The ready list is assumed to be organized as a collection of operation types and 
operations belonging to each type. Intuitively, if the top N forces remain fixed, then there is a 
high probability that one of these operations is chosen for scheduling in this time step. Note that 
SC-2 and SC-3 check individually for each operation type in the ready list and require sorting 
after each level of successor force computation. SC-1 is too strong a stability condition and 
therefore might miss some cases of actual stability. On the other hand SC-2 and SC-3 are 
relatively more tolerant in stability detection. Each of these stability conditions is only a heuristic 
and therefore may fail to detect stability in some cases. But it is important to see how often such 
cases appear in real life design examples, which can only be seen by experimentation. 

We have constructed a stability condition that takes the best aspects of the three conditions 
presented above. Figure 6.4 shows the procedure for deferral force computation in FDLS with our 
stability condition plugged in. The figure also shows the computation of successor forces level by 
level, starting from the first. The initial for-loop computes forces of ready operation at level-0. 
Each iteration of the second for-loop corresponds to a successor level. The body of second for 
loop has two parts: (i) the computation of successor forces at the current level and (ii) the 
stability condition, as shown by the commented lines in Figure 6.4. 

Our stability criterion checks for two conditions: (1) Order of all the operations (relative ranking 
with respect to forces) is preserved, and (2) At least one force value does not change for each 
operation type in the ready list. The first condition ensures that the same order of operations is 
preserved over two consecutive successor levels but is too weak by itself. For example, if the forces 
of all operations were to change by a constant value, the order is preserved. But this might not be 
point of the stabilization of the order because all the force values have just changed and there is a 
probability that some of them might change in the next level, leading to instability. However, in 
conjunction with the second condition it would not detect stability since none of the force values 
remained the same. Therefore, adding the second condition makes it a bit more tolerant. Also we 
have added one more condition to make it efficient in sorting. Sorting is done only when any of 
the forces have changed their values. Finally, we have the Req_Csl (Required number of 
Consecutive Stability Levels) criterion that adds a user specified level of tolerance to the 
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Compute JDeferralJEbrces() 
Begin 

for each (operation Op € jCready) 
Op.force <- Self.force of Op 

end for 
Sort operations based on their forces 
Req.Csl <- Required number of consequetive stability levels 
Nsl <— 0    > Number of stabilized levels 
for (succJevel «- 1 to Critical .Path-Length) do 

t> COMPUTATION OF SUCCESSOR FORCES 

for each (operation Op € Cready) 
Determine Successor.Set at 'succJevel' 
succ-force <- Sum of Self forces of all SuccessorJSet operations 
Op.force <- Op.force + succ.force 

end for 
> STABILITY CONDITION 
Order.Changed <— False 
if (any force value changed) then 

Sort operations based on their forces 
if (any change occurred in the order) then 

Order.Changed <— True 
end if 

end if 
if (Order.Changed) then 

Nsl <— 0   > Reset. Instability before Req.Csl reached 
else 

if (for each op.type, at least one force did not change) then 
Nsl <- Nsl +  1   >  One more level of stability reached 

else 
Nsl <-Q   > Reset. Instability before Req.Csl reached 

end if 
end if 
if (Nsl = Req-Csl) then 

break   >   STOP. Desired level of stability reached 
end if 

end for 
End 

Figure 6.4: Dynamic Successor Force Computation in FDLS 
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Table 6.2: Information on the synthesis benchmarks used 

Design Total Design Critical 
Example Operation information from DFG Operations Space Path Len. 
1. EWF {26 : [+], 8 : [*]} 34 36 15 
2. LSS {12 : [+], 16 : [-=-], 16 : [*]} 44 3072 4 
3. DCT4x4 {96 : [+], 128 : [*],  16 : [+]} 240 49152 8 
4. TN-1 {416 : [+], 512 : [*], 96 : [-=-]} 1024 3.6 * 106 14 
5. TN-2 {640 : [+], 768 : [*], 128 : [-]} 1536 2.9 * 107 9 
6. DCT8x8 {896 : [+], 1024 : [*], 64 : [-=-]} 1984 1.4 * 107 10 

condition. The condition can be tuned to check for stability over 'Req.Csl' number of consecutive 
successor levels. We have compared the performance of FDLS with and without this stability 
condition. Results presented in the following section show considerable improvement in execution 
time for the same schedule quality, for different synthesis benchmarks. 

6.7    Results 

In this section we will compare the performance of the two versions of FDLS: with and without 
the stability condition. For obtaining the results, we have considered a suite of high level 
synthesis benchmarks, that is shown in Table 6.2. We use a library of parameterized RTL 
components using which the scheduler generates resource sets for a given design. For each 
example in the table, we have shown the operation information, the total number of operations, 
the number of generated resource sets (design space) and the critical path length in the DFG. 

The design examples shown in Table 6.2 are listed in the order of increasing sizes (number of 
operations in the DFG). Our first example, the smallest in the suite, is an Elliptic Wave Filter 
(EWF) taken from Kung, Whitehouse and Kailath's book on signal processing [136]. It contains 
34 operations that are subjected to over fifty precedence constraints. This was also chosen as a 
benchmark for the 1988 High-level synthesis workshop. Our largest design example (DCT8x8), 
computes the Discrete Cosine transform (DCT) [135] of an 8x8 matrix. DCT8x8 has a total of 
1984 operations in the DFG, out of which 896 are additions, 1024 are multiplications and 64 are 
divisions. It has a design space consisting of more than ten million resource sets. The second 
example, is a Linear System Solver (LSS) [137], which is a popular method of solving a linear 
system of equations using matrix inversion. This LSS example computes the solution to a system 
of four equations with four variables each. The third example (DCT4x4), is a smaller version of 
DCT that computes the transform of a 4x4 matrix. The Threshold Network (TN) [138] is widely 
known as the perceptron network in neural systems. Each node in the network takes a variable 
number of inputs and generates the average of their weighted sum as the output. We have 
considered two versions of the threshold network (TN-1 and TN-2), each having nodes that take 
either four or eight inputs, but the number of nodes and their connectivity are different. 

Table 6.3 compares the execution times of the two FDLS versions: the original FDLS and our 
Dynamic-FDLS (D-FDLS) that dynamically cuts off successor force computation using the 
stability condition presented in Section 6.6. We have measured the execution times using the 
commercial Quantify tool. The results have been taken on a Sparc-20 machine with a 256 
Megabyte memory and a clock speed of 75 MHz. Note that, for the smaller examples the 
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Table 6.3: Execution times for FDLS and Dynamic FDLS 

Design 
Example 

Execution Time Schedule Length 
Resource Set Information FDLS D-FDLS Reduction(%) FDLS D-FDLS 
{1 ■[+}, I ■■[-}} 9.43ms 8.23ms 12.7 21 21 
{1 [+], 2:[-]} 9.42ms 8.17ms 13.2 21 21 

1.EWF {1 [+], 3:[-]} 6.85ms 5.50ms 19.6 21 21 
{2 [+],! = [-]} 4.72ms 4.15ms 11.9 16 16 
{2 [+]. 2:[-]} 4.67ms 4.12ms 11.7 16 16 
{3 [+]. 2:[-]} 2.96ms 2.96ms 0 15 15 
{3 [+]. 1 = H, 4:[*]} 33.03ms 25.04ms 24.2 19 19 
{3 [+], 2: [-=-], 4:[*]} 17.65ms 13.50ms 23.5 13 13 
{6 [+], 2 : H, 8 : [*]} 17.65ms 13.46ms 23.7 11 11 
{3 [+], 4 : H, 4 : [*]} 10.11ms 7.82ms 22.7 10 10 

2.LSS {6 [+], 4:[-r], 8:[*]} 9.54ms 7.32ms 23.4 8 8 
{6 [+], 8:H,8:M} 4.54ms 3.55ms 22.0 6 6 
{12 : [+], 8 : [-], 16 : [*]} 4.47ms 3.47ms 22.5 5 5 
{12 : [+], 16 : [-], 16 : [*]} 1.63ms 1.63ms 0 4 4 
{3 : [+], 4 : [*], 16 : [*]} 2489.29ms 869.96ms 65.05 39 39 
{6:[+], 8:[*], 16:[-]} 1041.93ms 368.46ms 64.64 23 23 
{12 : [+], 16 : [*], 16 : [+]} 396.8ms 125.47ms 68.38 15 15 

3.DCT4x4 {18 : [+], 24 : [*], 16 : [-]} 233.05ms 63.69ms 72.71 12 12 
{24:[+], 32:[*], 16 : [-]} 158.92ms 45.11ms 71.61 10 10 
{36 : [+], 48 : [*], 16 : [-=■]} 114.62ms 36.9ms 67.81 10 10 
{48 : [+], 64 : [*], 16 : [-]} 24.65ms 24.65ms 0 8 8 
{?:[+], 8 :[*], 2:[*]} 338.63s 167s 50.68 91 91 
{14 : [+], 16 : [*], 4 : [-]} 129.43s 57.89s 55.27 47 47 
{28 : [+], 32 : [*], 8 : [+]} 35.13s 3.11s 91.1 25 25 

4.TN-1 {56 : [+], 64 : [*], 16 : [*]} 16.19s 0.55s 96.6 17 17 
{112 : [+], 128 : [*], 32 : [-]} 1.21s 0.28s 76.53 15 15 
{224 : [+], 256 : [*], 64 : [*]} 0.4s 0.4s 0 14 14 
{7:[+], 8:[*], 2 : [-]} 310.63s 199s 35.94 107 107 
{14:[+], 16 : [*], 4 : [-=-]} 141.2s 88.07s 37.63 55 55 
{28 : [+], 32 : [*], 8 : [-]} 58.19s 30.91s 46.88 29 29 

5.TN-2 {56 : [+], 64 : [*], 16 : [■=-]} 11.68s 2.98s 74.49 16 16 
{112 : [+], 128 : [*], 32 : [-]} 9.63s 2.33s 75.8 12 12 
{224 : [+], 256 : [*], 64 : [*]} Is 0.67s 33 10 10 
{448 : [+], 512 : [*], 128 : [-]} 0.91s 0.91s 0 9 9 
{?:[+], 8: M, 64: [-]} 1335.27s 288.33s 78.22 140 140 
{14:[+], 16:[*], 64 : [-]} 621.62s 135.38s 78.41 76 76 
{21:[+], 24:[*], 64 : [-]} 389.65s 88.50s 77.29 50 50 
{28 : [+], 32 : [*], 64 : [-]} 270.84s 60.36s 77.71 44 44 
{42:[+], 48:[*], 64 : [-]} 233.37s 49.19s 78.92 31 31 

6.DCT8x8 {56 : [+], 64 : [*], 64 : [-]} 110.24s 24.67s 77.62 28 28 
{84 : [+], 96 : [*], 64 : [-]} 65.61s 15.92s 75.73 19 19 
{112 : [+], 128 : [*], 64 : [-]} 43.97s 8.14s 81.48 16 16 
{384 : [+], 128 : [*], 64 : [+]} 44.57s 8.77s 80.32 13 13 
{224:[+], 256 : [*], 64 : [-]} 19.81s 2.55s 87.13 12 12 
{448 : [+], 512 : [*], 64 : [+]} 1.43s 1.43s 0 10 10 
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Table 6.4: Total Execution Time saved during Design Space Exploration 

Design Av. Exec. Av. % Av. Time Total Total Time 
Example Time Reduction Saved Res. Sets Saved 
1. EWF 6.2ms 13.8 0.855ms 36 30.78ms 
2. LSS 17.33ms 23.1 4.003ms 3072 12.23s 
3. DCT4x4 1301.95ms 68.3 890.01ms 49152 12hrs 9min 
4. TN-1 169.92s 74 125.74s 3.6 * 106 14 years 
5. TN-2 155.82 50.6 78.84s 2.9 * 107 72 years 
6. DCT8x8 668.35s 79.3 530s 1.4 * 107 235 Years 

execution times are in the order of milliseconds and for the larger examples, they are in the order 
of seconds. We have chosen resource sets at evenly spaced design points in the design space of 
each example. The resource sets for each of these examples are listed in the order of increasing 
areas, starting from the smallest area resource set. For each entry we show the quantity and 
function of each resource used. Note that for all the examples the schedule length produced by 
FDLS with the stability condition is the same the one produced by the original FDLS. The 
stability condition proposed is Section 6.6 has not failed in any of these cases. For all the 
examples, we had set the number of consecutive levels of stability (Req_Csl) as 1. Note that if 
there is no stability point, the stability condition would let FDLS compute successor forces till the 
last successor level thereby producing the same schedule. For the last four examples, FDLS with 
the stability condition was able reduce at least 50% (on an average) of the execution time. This 
implies two points: (i) There does exist a stability level for a considerable number of time steps 
and for all possible resource sets; (ii) Most of the execution time in FDLS is spent in the 
computation of successor forces. For the EWF and the LSS examples which are comparatively 
smaller, FDLS with the stability condition still was able to reduce on an average, 13% (for EWF) 
and 23% (for LSS) of the execution time. Note that for the largest possible resource set of each of 
these examples, the execution times are identical since forces are not computed at any time step; 
as the resource sets are sufficiently large, no deferrals are required. 

Table 6.4 shows the average execution time, average percentage reduction in execution time and 
the average time saved for any module set. Since evenly spaced design points were chosen (most 
parallel, most serial and in between), we can say that the average value is reasonably accurate. If 
a synthesis tool were to completely explore the entire design space of these examples over all 
possible resource sets (shown in the fifth column of the table) then the amount of time saved in 
generating all the schedules is given in the last column. Even for the TN-1 example which is much 
smaller than DCT8x8, the amount of scheduling time saved is in the order of years. Although, 
high level synthesis tools do not explore design space exhaustively, this clearly shows that the 
stability condition coupled with FDLS would be highly useful in better space exploration. 

It is possible that in some cases our algorithm cannot find a stability level for any deferral 
decision either because our stability criterion could not discover stability or because there exists 
no stability level due to the structure of the DFG. In such cases our algorithm incurs a overhead 
in execution time due to the need for re-sorting the ready list when operator forces change. This 
overhead is negligible due to efficient implementation of the re-sorting operation. 
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6.8    Conclusion 

The widely used Force Directed List Scheduling spends a major portion of its execution time in 
the calculation of successor forces. In this chapter, we have presented a concept of stability by 
which successor force computation in FDLS can be dynamically cut-off thereby leading to a 
reduction in execution time. The stability level is identified with the help of a stability condition. 
In general, it is very difficult to come up with a single stability condition that would work for all 
kinds of DFGs. In fact, a version of FDLS could also use multiple stability conditions for different 
time steps of the schedule. We have shown three different stability conditions and formed one 
which takes the best aspects of these, and plugged it into FDLS. Results presented in this chapter 
show that this stability condition results in considerable reduction in the execution time of FDLS 
for the same schedule quality, for a suite of high level synthesis benchmarks. 
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Chapter 7 

RC and FPGA FloorPlanning 

7.1    Introduction 

Placement and floorplanning are extensively studied topics. However, the importance of 
placement and floorplanning cannot ever be ignored due to changing design complexities and 
requirements. Currently, commercially available devices can map up to one million gate 
equivalent designs [29] (and some of the newly announced products like Altera's APEX series will 
map over two million gate equivalent designs[28]). Such complex design densities also demand 
tools that can efficiently and quickly make use of available gates. 

Improvements in CAD tools for FPGAs have not kept pace with hardware improvements. The 
available tools typically require from minutes to hours to map1 designs (or circuits) with just a few 
thousand gates, and as design sizes increase the execution time will increase. One way to address 
the problem of long mapping times is create designs that use premapped macros2 to create larger 
designs (macro based circuits). Then, floorplan and route these macro based circuits. This 
approach combines the technology mapping and physical placement steps of the circuit mapping 
process. In general, floorplanning is an NP-hard problem [73]. For FPGAs, it is more difficult due 
to fixed logic resources. Additionally, the netlist is not always complete. In certain instances (for 
example high level synthesis) the circuit netlist may not contain any interconnect information. In 
this case, the floorplanning problem reduces to the two-dimensional packing problem. 

To address the problem of mapping large designs to large FPGA circuits, we have taken a macro 
based approach [16, 17]. When a complete netlist (set of macros and interconnects) is available, 
we floorplan interconnected macro based circuits. For the case where we have no interconnect 
information or there are problems making the circuit fit the available area, we perform 
two-dimensional packing on the set of macros. At the lowest level, a macro is composed of one or 
more interconnected and relatively placed logic blocks. In this dissertation, we present a method 
(based on clustering and tabu search (TS) optimization) to quickly floorplan interconnected, 
macro based circuits (circuits composed of interconnected macros) while attempting to minimize 
throughput delay and meet area and routability constraints. For the case when interconnect 
information is unavailable or there are problems making the circuit fit the given area, we present 
a method (based on grouping soft and hard macros) to quickly floorplan the set of macros making 

typical mapping steps include design entry, technology mapping, placement, and routing 
2macros are predefined circuit components like adders, shifters, decoders, multipliers, signal processors, CPUs, 

etc. 
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up the circuit. 

The basic flow of our method is summarized as follows. We start with a set of macros (M) 
interconnected by a set of signals (S). Each macro is composed of a set of interconnected 
relatively placed logic blocks. If | S | > 0, we then group (cluster) macros together to form 
clusters. Each cluster in the set of clusters (B) is smaller in area than some predefined limit3. We 
then use TS optimization to perform two-dimensional placement on the set of clusters B. Then, 
for each cluster that is composed of more than one macro, we perform intracluster placement4. 
Finally, for any macro whose shape was changed during the intracluster placement process, we 
perform intramacro placement5. 

In the event | S | = 0 or the set M will not fit using the process described above, we separate the 
set M into two non-overlapping sets of soft and hard macros. We then perform two-dimensional 
packing on the set of hard macros. If the hard macros fit the given area, we go back and floorplan 
the soft macros and change their shape as necessary. 

In this chapter we present our floorplanning methodology. In section 7.2 we formally describe the 
floorplanning problem and lay the foundation for the solution. In section 7.3 we describe our tabu 
search (TS) based floorplanner and methodology. In section 7.4 we explain our test methodology, 
and in section 7.5 we analyze the data. Finally in section 7.6 we provide conclusions for our 
methodology. 

7.2    Floorplanning Problem 

Given a set of macros M = {mi, m2, ..., mn} and a set of signals S = {si, s2, ..., sg}, we 
associate with each macro m, G M, a size ai (number of logic blocks in m*); a width Wi 
(maximum width of nn in number of logic blocks); a height hi (maximum height of m, in number 
of logic blocks); a flexibility ft (0 for hard/fixed macros or 1 for soft /flexible macros); and a set of 
interconnecting signals Smi (Smi Q S). For hard macros (macros with fixed size, shape, and 
internal placement), Wi and hi axe both fixed and ft = 0. For soft macros (macros with fixed size 
and variable shape), Wi and hi are considered flexible (both Wi and hi can take on a range of 
values typically between 1 and a*) and ft = 1. Additionally, for the case when | S \ > 0, with each 
signal Si G S we associate a set of macros MH where MH = {rrij | s, G Smj}- MSi is said to be a 
signal net. We can divide M into two distinct sets, MS and MH (subset of soft macros and 
subset of hard macros), where M = { MH U MS | MH n MS = 0, ft = 0 V m, G MH, and ft 
= 1 V raj G MS }. We are also given a target set L = {h, l2, ..., lp} of locations where 

I L l> X)l=i ai- For the case of mapping m* G M to a regular two-dimensional array, each lj G L is 
represented by a unique (xj,yj) location6 on the surface of the two-dimensional array where Xj 
and yj are integers. Additionally, we define the two-dimensional array L by the width of physical 
logic block locations, WL, and the height of physical logic block locations, HL. Figure 7.1 shows 
the 16 element set L for an example 4x4 two-dimensional array (WL — 4 and HL = 4). When 
| S | > 0, the floorplanning problem becomes how to assign each soft macro m; G MS a shape and 
each macro rrij G M = MH U MS a unique location in L such that an objective function is 

predefined limit implies the total area of each cluster (sum of the areas of the macros within the cluster) is less 
than some maximum 

intracluster placement is the task of assigning the macros that make up the cluster a physical location and 
reshaping any macro whose shape must be altered to meet area constraints 

5intramacro placement is the process of relatively placing the logic blocks that make up a macro component 
for our application, the location represents a physical logic block location on the PPGA 
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Figure 7.1: Example two-dimensional array L = {h,h,...,l16} of physical logic block 
locations (WL = 4 and HL = 4). One logic block can be assigned to each physical 
location k E L 

optimized. (Here, uniqueness implies no macro overlaps.) In this case, our goal is to optimize the 
floorplanned circuit's performance while meeting area and routing constraints. When | S | = 0, 
the floorplanning problem becomes how to assign each soft macro m; € MS a shape and each 
macro rrij £ M = MH U MS a unique location in L such that area constraints are satisfied. 

7.3    Solution 

In this section, we give an overview of our method, and in following subsections we describe each 
step in detail. First, some preliminary definitions are required. As stated earlier, a macro is a set 
of one or more interconnected and relatively placed logic blocks. We are given a set M of macros 
in our circuit or design netlist. When necessary, we group macros in M together to form clusters. 
Therefore, we define a cluster as a set of one or more macros, and B = {b\, b2, ..., bp} as the set 
of all clusters. (For initialization, there is a one to one mapping of the elements of the set M to 
the elements of the set B, and therefore, initially \B\ = \ M \.) As stated earlier, we are 
floorplanning the set of macros M on the two-dimensional array L of physical logic block 
locations. Once macros are grouped to form clusters, our approach is to perform two-dimensional 
placement of clusters on L. To perform this placement, we divide our target two-dimensional 
array L into a two-dimensional array of buckets where each bucket (of physical logic block 
locations) has the same size and shape. (We define the bucket size by a width of WB logic blocks 
and a height of HB logic blocks.) We define the set of buckets as the set {l[, 1'2, ..., l'm) = L\ 
where the number of buckets m equals | V |. (The two-dimensional array L' is defined by a width 
of Wv buckets and a height of HL> buckets.) Then, instead of performing two-dimensional 
placement of clusters directly on L, we perform two-dimensional placement of clusters on the 
smaller set L'. Figure 7.2 shows the example L divided into four equally sized buckets of physical 
logic block locations where each bucket is 2 logic blocks x 2 logic blocks. 

Figure 7.3 shows a flow chart of our floorplanning methodology. In Figure 7.3, we read in the sets 
M, S, and L. If | S | = 0, we proceed to the two-dimensional packing stage. If | S | > 0, we 
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Figure 7.2: Example L divided into a set L' of 4 buckets. The dimensions of L' are WL> 
— 2 buckets and Hv = 2 buckets. The dimensions of the example bucket are WB = 2 
logic blocks and HB = 2 logic blocks 

initialize the set of clusters B. Initially, each element of B contains one element from M, so there 
is a one to one mapping of the elements of M to the elements of B. After initialization of B, we 
initialize the bucket width, WB, and bucket height, HB, using the procedure Create_Buckets(M). 
Details for Create_Buckets(M) are found in subsection 7.3.1. After bucket size initialization, we 
create the set of buckets, L', as outlined in subsection 7.3.2. Next, we check the fit of B on L'. (It 
should be noted that we create and maintain the bucket width WB and bucket height HB so any 
single macro in M will fit in any bucket in L' 7. This allows us to skip the clustering step if | B | 
is less than or equal to | L' |. This usually occurs when low device utilization is sufficient and 
allows for very fast floorplanning.) If there is a fit, we proceed to the placement phase; if there is 
not a fit we proceed to the clustering phase. 

In Figure 7.3, if | B \ is not less than or equal to | V |, we proceed to the clustering phase. To 
ensure fit, our methodology requires | B | is less than or equal to | L' |, and therefore, the goal of 
the clustering phase is to group smaller macros together thereby reducing | B | until | B | is less 
than or equal to | L' |. Additionally, it is required that each cluster fy £ B has size less than or 
equal to the bucket size. This ensures each cluster will fit in any bucket. The details of clustering 
are found in subsection 7.3.3. After clustering if | B | is less than or equal to | V \ then we 
proceed to the placement phase else we iteratively increase the bucket size (as described in 
subsection 7.3.4) and continue clustering until | B \ is less than or equal to | L' \ or the bucket size 
exceeds the dimensions of L. 

In Figure 7.3, if | B \ is less than or equal to | V |, we proceed to the placement phase, otherwise, 
we proceed to the two-dimensional packing phase. In the placement phase we use TS based 
placement to assign each ^eStoa bucket (see subsection 7.3.5). Then, in intracluster 
placement, we assign each macro within each cluster a physical location and shape (see subsection 
7.3.6). Finally, in intramacro placement, we place the logic blocks within any soft macro whose 
shape has been altered during intracluster placement (see subsection 7.3.7). After this phase, 
every logic block making up the circuit or design netlist will have a physical location on the 

The initial bucket size is based on the dimensions of the largest elements of M. 
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Algorithm TSJFP(M,S,L) 
begin 

let success = TRUE; 
if | S | > 0 then 

(* initialize the buckets *) 
V mi E M let fy = {mj; 
(* determine initial bucket size, HB and WB *) 
Create_Buckets(M); 

create V where Wv = L$£J and Hv = L^J; 
success = checkfit (B,L'); 
while(NOT success AND WB < WL AND HB < HL) 

B = c\usteT(M,S,HB,WB); 
success = checkfit (B,L'); 
if NOT success then 

increment bucket size (HB and/or WB); 

update V so Wv = L^J and Hv = [f^J; 
end if; 

end while; 
if success then 

TSjplace(B,S,L'); 
V h € B{ 

intracluster_place (6i ,HB, WB); 
V m.j 6 bi intramacro_place(mj,&j,JllB,Wiß); 

} 
end if; 

if | S | = 0 OR NOT success then 
success = pack(M,L); 

end if; 
if NOT success then 

return "ERROR: circuit not floorplanned"; 
end if; 

end; 

two-dimensional array L. 

In Figure 7.3, if | S \ — 0 or if | B | > | L' |, we proceed to the two-dimensional packing (see 
subsection 7.3.8). In this phase we separate M into MH and MS. Then, we perform packing on 
MH. If MH fits the given area, we floorplan the soft macros in MS. If A! fits, after this phase, 
every logic block making up the circuit or design netlist will have a physical location on the 
two-dimensional array L. Otherwise, the circuit does not currently fit the given area. The 
floorplanning process is summarized in Algorithm TSJFP(M,S,Z-). 

In Figure 7.3, if the circuit or design netlist will not fit we have four options. We can reduce the 
size of the macro set M by partitioning the design spatially or temporally. We can increase the 
size of the target two-dimensional array L. This assumes a larger FPGA part is available. We can 
flatten the netlist and attempt to use standard placement techniques. This will become more 
difficult as design sizes get larger. Finally, if possible we can soften some of the hard macros to 
allow better space utilization. 

7.3.1    Initializing Bucket Size 

In this subsection, we describe the method for determining the initial bucket size which 
subsequently defines | L' \. The main goal of our floorplanning method was fast execution time. 
Therefore, we quickly initialize the width of the bucket, WB, to the width of the widest macro cell 
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(hard or soft8). Similarly we initialize the height of the bucket, HB, to the height of the tallest 
macro cell (hard or soft). This guarantees that any macro m2 G M will fit in any bucket. The 
procedure used to determine the initial WB and HB is shown in procedure Create_Buckets(M). 
In procedure Create_Buckets(M), H{mi) returns the height of macro m* and W(rm) returns the 
width of macro m,. 

7.3.2 Bucket List, V 

The set of buckets9, L', is created by dividing the set L into rectangles of equal size. The width of 
V (in number of buckets) is defined as Wy = Lw^J and the height of V (in number of buckets) 

is defined as Hy = [-g^J. (Note, WL and HL define the width and the height (in number of logic 
blocks) respectively of the two-dimensional array L.) Therefore, | L' | = Hy x Wy. Figure 7.4 
shows an example V for a 7 logic block x 6 logic block L (WL = 6 and HL - 7) and a 6 logic 
block x 2 logic block bucket (WB = 2 and HB = 6). 

7.3.3 Clustering 

As stated earlier, the set B is created or initialized by assigning each m; G M to 6,; G B, and 
initially, \ B \ = \ M \. When necessary, the size of set B is reduced by clustering elements of M 
so more than one element of M is in some bi G B. There is no limit placed on the maximum 
number of macros in each 6, as long as size constraints are satisfied. Size restrictions (described 
below) limit the macros used to form each cluster, bi G B. 

Each cluster bi G B is divided into two parts, a hard macro part and a soft macro part. The size 
restriction on bt requires the total area of the hard macro part plus the total area of the soft 
macro part be less than or equal to the size of the bucket (HB x WB). We define the width of the 
hard macro part of each cluster bi as the sum of the width of the hard macros in bi, 

HMW(bi)  = Y, W(mj) , (7.1) 
VmjG6;|mj is hard 

where W(m,j) is the width of macro rrij in cluster bt. We define the area for the hard macro part 
for each cluster b, as the width of the hard macro part times the height of the bucket 

HMA{bi)  = HMW(bi) x HB   . (7.2) 

The size for the soft macro part for bi is defined as the width of the bucket minus the width of the 
hard macro part times the height of the bucket 

SMA(bi) = (WB - HMW(bi)) x HB   . (7.3) 

The sum of the areas of all soft macros in bi must be less than or equal to SMA{bi). 

With these area constraints in mind, the set M is clustered to form the set B. The clustering 
method is derived from the connectivity work done in [87]. The connectivity cost function 

This assumes soft macros are supplied with some initial shape.   Effort is made to maintain the shape of soft 
macros. The shape of soft macros is only changed if required to make the circuit fit the given area. 

9a bucket is a set or group of physical logic block locations from L such that each bucket has the same size and 
shape (HB X WB) 
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Procedure CreateJBuckets(M): 
begin 

initialize WB — HB = 0; 
for i = 1 to | M | 

V£WB <W{mi) then 
WB = W(mi); 

end if; 
if HB < H{rrii) then 

HB = H(mi); 
end if; 

end for; 
return W# and HB; 

end; 
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Figure 7.4: Example L' made up of three 6x2 buckets 
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Procedure Cluster(M,S,HB,WB,L'): 
begin 

V TOj € M let bi — {mi}; 
calculate c^- V b\ and bj £ B; 
while \B\> \L'\ AND 3cy > 0 

choose rrii and m^ with highest connectivity, Cy-; 
let 6, = rn, U m;-; 
let 6j — ^>; 
update connectivity between clusters; 

end while; 
return B; 

end; 

includes area constraints. Our connectivity cost function is summarized below. 

c* = feasd, j) •£       lr^rT) ■ -^- ■ =^4 
skesminsmj (I Sk I _1)   a< + ai    rnax{ai,aj) 

(7.4) 

where a, and Oj are areas of macro m2 and m, respectively, Atot is the total area of all macros, 
| Sk | is the number of pins on signal s^ which connects macros m2 and rrij, Sm D Sm. is the set of 
all signals that connect macros mi and rrij, and feas(ij) returns the feasibility of clustering m; 
and rrij under size constraints described above. feas(i,j) returns a 1 if it is possible to combine 
rrii with rrij else it returns a 0. 

The clustering algorithm combines clusters with the highest connectivity to form larger clusters. 
In order to enhance routability, once area constraints have been met (i.e. | B | < | L' \) the 
algorithm stops and returns the set B. The clustering algorithm is summarized in procedure 
Clustei{M,S,HB,WB,L'). 

After clustering is complete, it returns the set B. The empty elements of B arc removed, and each 
bi € B consists of a unique list of elements from M. Here uniqueness implies bt D bj = </> V bi A 
bj€B\i? j. 

7.3.4 Increment Bucket Size 

In the event that the first pass of clustering does not lead to a valid solution, the bucket size is 
increased to allow more flexibility during clustering. This increases the complexity of intracluster 
placement but allows more macros to fit in the same area. For example, consider floorplanning 
the 5 macros described in Table 7.1 so they fit on an L with WL = HL = (i and | L |= 36. For the 
set M, both WB and HB will be set to 3 since these values reflect the largest macro width and 
height respectively. Figure 7.5 shows the buckets on L. Therefore, L' will initially have 4 buckets 
and M will not fit since | B \ > | L' |. However, by doubling the width of the bucket, we can 
cluster mi and m2 into one cluster and m3, m^ and m5 into a second cluster that will fit in L. 

7.3.5 Cluster Placement 

Once the circuit is guaranteed to fit (| B \<\ L' \) then the clusters bi e B are placed using a 
two-step tabu search10 (TS) based two-dimensional placement algorithm [15]. The first step of the 

tabu search is a meta-heuristic approach to solving optimization problems that (when used properly) approaches 
near optimal solutions in a relatively short amount of time compared to non-deterministic random move based 
methods [24]. Unlike approaches like simulated annealing or genetic algorithms that rely on a good random choice, 
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Table 7.1: Macro statistics for example floorplan 

Macro Statistics 
mi Wi hi /i 

m\ 3 3 0 
m2 3 3 0 
m3 2 3 1 
wi4 2 3 1 
m5 2 3 1 

placement strategy minimizes the circuit's total wire length thereby enhancing the routability of 
the circuit. The second step attempts to average the circuit's edge lengths by weighting graph 
edges and minimizing the maximum weighted edge lengths. 

For our TS approach, we convert each multi-terminal net to a set of edges where each edge 
consists of the driving terminal and one driven terminal. We use this model to keep net sources 
and sinks in close proximity thereby enhancing circuit performance. We create the set of edges by 
converting the hyper-graph input circuit model described earlier to a graph G = (V,E) where 
V - {vuv2, -vn}, I V |= n, E = {ei, e2, ...em}, and \ E \= m. Each vertex Vi G V corresponds to 
a cluster bi G B (if pad 10 locations are available, we also include preplaced pseudo-elements of V 
representing the pad locations to help guide the placement). Each edge e, G E connects a pair of 
vertices (vj,vk) \ Vj,vk G V. The elements of E are created by considering each signal, s; G S. If 
we let msource (where mSOUTce G MSi and msource G bj) be the source macro for signal s* then an 
edge (vj,Vk) is added to E for each sink on st such that msink G Ms., msink G bk, and j jt k. (In 
other words, an edge is added for each source/sink combination that are not in the same cluster.) 
At any given time, each element of V is mapped to a unique element of L', and the minimum 
requirement for mapping is | V \<\ L' |. 

The two-dimensional placement stage basically assigns each cluster to a unique bucket. After 
placement of each bi G B, each bi G B will have associated with it a unique bucket l'j G L'. The 
physical location (on L) of each bi G B in bucket l'j can be found from the following equations: 

X(bi)  = X(l'A x WB (7.5) 

and 

Y(bi)  = Yil'j) x HB. (7.6) 

where X^) returns the X-axis coordinate of l'j on V and Y(l'j) returns the Y-axis coordinate of 
l'j on L'. After each cluster bi G B is assigned a unique location on i, intracluster placement takes 
place to assign each mj G bi G B a physical location on L. Intracluster placement also reshapes 
soft elements mk G MS G B that require further modification. 

TS exploits both good and bad strategic choices to guide the search process. As a meta-heuristic, TS guides local 
heuristic search procedures beyond local optima. In TS, a list of possible moves is created. In the short term, as 
moves in the list are executed, tabu, or restrictions, are placed on the executed moves in order to avoid local optima. 
This tabu is typically in the form of a time limit, and unless certain conditions are met (e.g. aspiration criteria), the 
move will not be performed again until the time limit has expired. 
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7.3.6    Intracluster Placement 

Once each cluster is assigned a location on L, the macros making up each cluster must be placed. 
Each macro rrij G M has associated with it a reference coordinate used to describe its physical 
location on the FPGA. Each logic block within each rrij also has a reference coordinate that 
describes its physical location relative to the reference coordinate for rrij. Intracluster placement 
is the task of assigning a reference coordinate from the set L to each macro rrij G bi, V6j G B, and, 
for any soft macro in M whose shape has changed, the task of assigning a set of reference 
coordinates for the logic blocks within the soft macro11. 

Intracluster or intrabucket placement for each bi e B takes place in three steps. First, we place all 
hard macros by assigning each one an X,Y reference coordinate corresponding to some lj G L. 
Second, we place all soft macros by assigning each one an X,Y reference coordinate from L. 
Third, we change the shape of any soft macro that requires modification by assigning it a set of 
logic block coordinates relative to the reference coordinate of the soft macro. Figure 7.6 shows an 
example set of macros to be placed in the 9 x 12 Bucket 6 located at coordinates X — 12 and Y 
= 18. In Figure 7.6 each hard macro is labeled with / = 0 and each soft macro is labeled with 
/ = 1. In this subsection we will describe each of the steps for intracluster placement. 

Our feasibility check during clustering guarantees the hard macros in each bi will fit by ordering 
them in the horizontal direction. Therefore for each bi G B, we place hard macros in a row, each 
with the same Y-axis coordinate. The Y-axis coordinate of each hard rrij G bi is found from the 
following equation: 

Y(rrij)=Y(bi) (7.7) 

where Y(bi) returns the Y-axis coordinate (from the set L) of the bucket where cluster bi was 
placed. To compute the X-axis coordinate of each hard rrij G bi a sort key is computed for each 
hard rrij G h by averaging the X-axis coordinates of all bk G B connected to rrij (this includes 10 
position information). Then the hard macros in bi are reverse ordered according to the sort key 
and stored in an ordered list {qi,q2, -,Qn} = Q- After ordering each hard macro in bi, the X-axis 
coordinate of each hard macro in 6, is determined by the following. If we let qk denote the fcth 
element in the reverse ordered list of hard macros in bi, then 

X(qk) = X(qk^) - W(qk)   Vbl (7.8) 

where W{qk) is the width of macro qk, X(qk^) is the X-axis coordinate of macro qk_u and Xfa) 
= X(bi) + Bw - W{q1). For our example macros in Figure 7.6, since the Y-axis coordinate of 
the bucket is 18, the Y-axis coordinate for each hard macro( mi6, mw, ro27, and mn) is 18. If we 
assume the key for m16 is 3, mw is 14, m27 is 13, and m4i is 43 then the X-axis coordinate for 
each hard macro is X(m16) = 16, X(m19) = 20, X(m27) = 18, and X(mix) = 22. Figure 7.7 
shows the hard macros from Figure 7.6 placed in example Bucket 6. 

We now describe the method for determining the X,Y reference coordinates for each soft macro. 
Similar to the method of ordering the list of hard macros for bi, a sorting key is determined for 
each soft rrij G h by averaging the X-axis coordinates of all clusters connected to soft macro rrij 
(this includes 10 position information). Then the soft macros in bi are ordered according to the 
sort key and stored in an ordered list {n, r2, ... , rn} = R. After ordering each soft macro in b{ 

the X,Y reference coordinate of each soft macro in bt is determined. If we let rk denote the fcth 
element in the ordered list of soft macros in bt then the X-axis reference location of rk is found 

Note: here only a set of reference coordinates is assigned for the set of logic blocks in the soft macro. The specific 
coordinates for each logic block in an altered soft macro are found during intramacro placement. 
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Procedure Find_Soft_X(6i,rA:): 
begin 

if X{bi) + X(rk-\) is even then 
if lastY(rk^) # Y(bi) + HB - 1 then 

X(rk) = X(rfe_!); 
else 

X{rk) = X{rk.x) + 1; 
end else if; 

else 
if lastY(rk-i) ^ 0 then 

X(rk) = X(rk^); 
else 

X{rk) = X{rk-X) + 1; 
end else if; 

end else if 
end; 

from the procedure Find-Soft JC. In Find_SoftJC, lastY(rk) returns the Y-axis coordinate of the 
last element in macro rk and X(r0) - X(bi). If it is required that the soft macro rfc's shape be 
adjusted, then its Y-axis reference location is Y(bi), but if the soft macro's shape does not require 
adjustment, then rks Y-axis reference location is set relative to the Y-axis location of the last 
logic block in rfc_! (lastY(rk„i)). If we assume rx = m2i, r2 - m7, r3 = m6, and r4 = mn for 
the soft macros in the example shown in Figure 7.6, then using the above methodology Figure 7.8 
shows the final placement and shape for the macros assigned to example Bucket 6. 

7.3.7 Intramacro Placement 

After assigning the reference coordinates for hard and soft macros in each cluster, the logic blocks 
that make up any reshaped soft macro are placed using intramacro-place. Currently we use two 
methods for intramacro_place, and both are described below. Instead of actually performing full 
placement on the logic blocks within the soft macro, we incrementally reconfigure the placement 
of the logic blocks using a transform that matches the X and Y coordinates of the soft macro to 
the X and Y coordinates of the available space on L. 

The first method for incrementally reconfiguring the placement is of 0(n) complexity, where n is 
the number of logic blocks within the reshaped soft macro. Starting from the leftmost-lowest 
coordinate of the soft macro, the logic blocks within the soft macro are matched to the 
leftmost-lowest coordinate available in the area of the bucket set aside for the soft macro. This 
methodology, though fast, in execution, can substantially increase the length of nets connecting 
logic blocks; however, since the delay of the logic block is currently much greater than the 
interconnect delay, no substantial degradation to performance was noted. 

The second method (designed to counter any performance degradation due to increased 
interconnect length) uses a minimax matching strategy to match locations of the logic blocks 
within the soft macro to coordinates available in the area of the bucket set aside for the soft 
macro. We use general minimax grid matching to accomplish this match. 

7.3.8 Pack 

In the event that no circuit netlist is available or the circuit will not fit using the above 
floorplanning strategy, two-dimensional packing is performed. Several methods of packing were 
investigated [40, 6, 8, 5, 46, 4]. A method similar to [4] was developed because the method in [4] 
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Figure 7.6: Example set of hard and soft macros to be placed in Bucket 6 located at 
coordinate (12,18) 
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Procedure pack(M,L) 
begin 

let success = TRUE; 
let MS — set of soft macros in M; 
let MH = M - MS; 
let Ws = soft_pack(M5,L); 
let WH = hard.pack(MF,L); 
if Ws + WH > WL then 

success = FALSE; 
end if; 
return success; 

end; 

Procedure pack_soft(MS,L) 
begin 

let Ws = infinity; 
intracluster_place(M,S',.Hi,,Ws); 
V rrij e MS intramacro_place(m:7-,MS,Hi,Ws); 
let Ws be the minimum width required for mapping MS; 
return Ws; 

end; 

has a runtime complexity of 0(n ■ log{n)) where n is the number of modules and it bounds the 
width of final placement by § x the optimal value. Our method consists of a simple modification 
to the method presented in [4], and it is summarized below in procedure pack(M,L). First, we 
divide the set M into two sets MH and MS. Then, the elements of the set MS are floorplanned 
using procedure pack_soft(M5,i). The procedure packjsoft(M5,L) returns the width, Ws (in 
logic blocks), required to place (in a snake like pattern) the soft macros on the left hand side of L. 
It sets the coordinates and mapping for each logic block in each m* 6 MS. After 
pack_soft(MS,L), pack_hard(MIf,L) is executed. It returns the width required for floorplanning 
the hard macros (WH) and the x-axis and y-axis location for each hard macro. If the circuit fits, 
pack(M,i) returns success; otherwise, it returns unsuccessful. 

The procedure pack_hard(MiJ,L) is used to perform two-dimensional packing on the set of hard 
macros MH. The method first divides the set MH into five regions: Ri \ i 6 {1,2,...5}. Each 
element rrij e MH is assigned to one of regions Rj-i to Ri=4 if its height falls into one of the 
following ranges: 

1     „ 1 
T-timax   j      . Umax /■   .   ■.s-^-^max    j      .^max j ('-9) (% + 1) I J v       ' 

where 1 < i < 4 and Hmax is the height of the widest element of MH. Otherwise it is assigned to 
region R5. The procedure pack_hard(MH,L) describes the procedure used to pack the set of hard 
macros. 

In procedure pack_hard(Mi?,L), algorithm Left-Topmost, LT(i?,), packs pieces in the range 
(l/(i + 1) Hmax, 1/i Hmax). First, LT orders the elements in Ri by height, the highest elements 
are at the beginning of Ri. Then, LT packs pieces in order of non-increasing height by placing 
each piece as far left as possible in the region, and as high as possible at this leftmost position. In 
this way, the total height used decreases from left to right. This leaves a space increasing in 
height from left to right at the bottom of the region. The algorithm ROW uses this empty area of 

129 



Procedure pack_hard(AfS,,I<) 
begin 

let WH = infinity; 
let W = l; 
for i = 1 to 4; 

LT(ifc); 
ROW(i^+1); 
NFDW(i^+1); 
let Wi = width of Rf, 
let W = W + Wt; 

end for; 
NFDWOR5); 
let W# be the width required for mapping MH; 
return WH; 

end; 

each region to pack in a row, pieces decreasing in height from right to left. When all pieces higher 
than Hmax/5 have been packed, pieces of height at most Hmax/5 are packed between LT packed 
pieces and the ROW packed pieces using the next-fit-decreasing-width (NFDW) algorithm. Also 
any pieces remaining in R5 are packed using NFDW. Procedure NFDW packs pieces in irregular 
shaped regions. It packs pieces between widths labeled LEFTMOST and RIGHTMOST. 
According to [4], this method guarantees the packing to be within 5/4 x the optimum width. 
Additionally, the complexity of the algorithm is 0(n ■ log(n)), where n is the number of macros in 
M [4]. 

7.4    Test Methodology 

We empirically tested the floorplanning methodology described above using several macro based 
circuits (the circuits included both hard and soft macros). The top level macro based circuits 
were described using the Xilinx Netlist Format (XNF). The macros were also described using 
XNF files; however, they also included logic block placement information in the form of RLOCs so 
that all hard and soft macros were preplaced. The designs were mapped to the Xilinx XC4000E 
or XC4000XL family of FPGAs. Statistics for the macro based circuits are shown in Table 7.2. 

For each circuit we obtained data for comparison in three ways. The first way we obtained data 
was to place and route flattened designs. We flattened each circuit netlist and removed all RLOC 
information. Then we used the Xilinx tools in the standard mapping approach (placement of logic 
blocks then routing of logic blocks) to map the circuit netlist. In the following tables, the results 
of this method are shown in columns labeled Xilinx Flat. The second way we obtained data for 
comparison was to floorplan and route the macro based circuits using the Xilinx tools. In the 
following tables, the results of this method are shown in columns labeled Xilinx Macro. The 
third way we obtained data was to floorplan the circuit with our TS_FP tool and route the 
circuits using the Xilinx tools. In the following tables, the results of this method are shown in 
columns labeled TSJFP Macro. 

We used statistics available for the Xilinx tools to compare the three mapping methods. 
Specifically, we used static timing analysis available from Xilinx tools to compare the quality of 
the mapped circuits and report data from Xilinx tools to determine placement and routing times 
for Xilinx tools. Table 7.3 shows the tool used to place (flat designs only) or floorplan (macro 
based designs) each of the circuits as well as the Xilinx tool suite used for routing and static 
timing analysis. We used the unix time function to determine system floorplanning times for 
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Table 7.2: Circuit statistics 

Macro Based Circuit Statistics 
Circuit 
Name Part \M\ 

Total 
Area \B\ \s\ 

Num 
IOs 

BOOTH 4013 64 264 72 473 33 
CLA 4025 128 736 100 1024 133 
CPU 4020 183 654 16 1051 38 
MEDIAN 4013 39 295 15 392 80 
MATMULT 4085 45 1998 35 891 306 
BTCOMP 4036 97 403 81 768 264 
XP-RI8 4025 31 723 12 417 170 
XP-PJ16 4085 18 2709 3 736 320 
DOT 4085 122 3095 77 1089 113 

Table 7.3: Tools used for placing (flat netlist) or floorplanning (macro based netlist) test 
circuits. All circuit were routed using the corresponding Xilinx Router. All timing 
static timing analysis was performed on routed circuits 

Placement or Floorplanning Tools 
Circuit 
Name 

Xilinx 
Flat 

Xilinx 
Macro 

TS_FP 
Macro 

BOOTH PPR PPR TSJFP 
CLA PPR PPR TS_FP 
CPU PPR PPR TS_FP 
MEDIAN PPR PPR TS-FP 
MATMULT Ml Ml TS-FP 
BTCOMP Ml Ml TSJFP 
XP-RI8 PPR PPR TS-FP 
XP-PJ16 Ml Ml TS-FP 
DCT Ml Ml TS-FP 

TS-FP. 

For the packing algorithm, we used the same macro based, benchmark circuits; however, we 
removed the interconnects and set | S | to 0. Then, we floorplanned the circuits using only the 
two-dimensional packing procedure. After floorplanning, we added the interconnects to the 
floorplanned circuits and checked to see if the floorplanned circuits were routable. 

An additional test was run using the floorplanning algorithm with a modified net length 
estimator. The modified net length estimator was based on work done at the University of 
California, Irvine by Min Xu [85]. The net length estimator takes advantage of the three line 
lengths available for routing in the Xilinx 4000 series of FPGAs (single, double, and long). It 
places a higher cost on routes that use more Programmable Interconnection Points (pips) (more 
pips are required to route nets that use multiple short segments instead of one longer segment). 
Used as a cost function to guide the floorplanner, this method adjusts the estimated cost of a net 
by looking at the Manhattan length of the horizontal and vertical components of the net, and 
assigning a cost that assumes the net will use the "best" length wiring resources when it is 
routed. Basically, each of the test circuits was floorplanned using this modified cost function. 
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Figure 7.9: Floorplan for CLA circuit     Figure 7.10: Floorplan for CPU circuit 

7.5    Results and Analysis 

Table 7.4 shows the execution times required to floorplan (or place in the case of the flattened 
netlists) the circuits. Column TS JFP Macro shows the execution times required by our 
methodology. Columns Xilinx Flat12 and Xilinx Macro13 show the execution times required 
by the Xilinx tools. Column TS JFP Macro shows a 45X improvement in execution time for our 
methodology over that of the commercial Xilinx tools. Table 7.4 also demonstrates execution 
speedup for working with macro based circuits versus flattened netlists. (It should be noted that 
the DCT design was not floorplanned using the Xilinx tools. On our Sun Ultra 2, we 
experienced memory faults during the circuit mapping process using the Ml tool. For the same 
reason, we could not route or perform static timing analysis on the DCT design after 
floorplanning with our methodology; however, floorplanning execution time using our tool is 
shown.) All circuits (that did not cause memory faults) were 100% routable. 

Table 7.5 shows the results of static timing analysis performed on the floorplanned circuits (Note: 
this data is taken from completely routed circuits). The values shown indicate the worst case pad 
to pad delay (in the case of combinational circuits) or the minimum allowable clock period (in the 
case of sequential circuits). From Table 7.5 we see the circuits floorplanned with our floorplanning 
methodology are similar in quality to those floorplanned by the commercial tools. Table 7.5 also 
shows there is not a substantial difference between delays encountered for our circuits with flat 
versus macro based netlists. This is probably due to the fact that logic block delay (for short 
distances or routes with few pips) is substantially greater than interconnect delay. 

Table 7.6 gives the time taken for the Xilinx tools to route the circuits. This Table shows the 
time taken to route our floorplanned designs is similar to that of the Xilinx placed and routed 
designs. It should be noted that this time could be significantly reduced by using not just 
preplaced macros, but preplaced and prerouted macros. Figures 7.9, 7.10, 7.11, and 7.12 show 
example floorplans (from TSJFP) for the CLA, CPU, MATMULT, and DCT circuits respectively. 

For the packing algorithm, we used the same macro based benchmark circuits. Not all packed 
circuits were routable, and of those that were routable, static timing analysis showed very poor 

12Flattened netlist placed and routed by the Xilinx tools. 
13Macro based netlist placed and routed by the Xilinx tools. 
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Table 7.4: Floorplanning or placement execution times 
Execution times (cpu sees) 

Circuit 
Name 

Xilinx 
Flat 

Xilinx 
Macro 

TS_FP 
Macro 

BOOTH 131 36 3.1 
CLA 87 61 5.5 
CPU 210 101 6.9 
MEDIAN 70 34 1.3 
MATMULT 876 634 3.2 
BTCOMP 107 87 1.2 
XP-RI8 315 83 1.2 
XP-RI16 698 92 2.6 
DCT - - 3.2 

Table 7.5: Floorplanned/placed circuit (post route) static timing analysis results 
Static Timing Analysis (ns) 

Circuit 
Name 

Xilinx 
Flat 

Xilinx 
Macro 

TS_FP 
Macro 

BOOTH 49.5 46.8 50.0 
CLA 97.2 105.1 124.4 
CPU 95.6 106.9 103.3 
MEDIAN 267.0 287.2 265.6 
MATMULT 285.33 160.72 117.62 
BTCOMP 124.09 150.74 127.58 
XP-PJ8 90.5 101.4 103.9 
XP-RI16 296.86 283.70 289.21 
DCT - - - 

Table 7.6: Floorplanned/placed circuit routing times 
Routing Times (cpu sees) 

Circuit 
Name 

Xilinx 
Flat 

Xilinx 
Macro 

TS_FP 
Macro 

BOOTH 38 31 53 
CLA 307 386 374 
CPU 410 376 332 
MEDIAN 30 116 44 
MATMULT 358 271 295 
BTCOMP 25 32 33 
XP-PJ8 552 776 1106 
XP-RI16 192 507 596 
DCT - - - 
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Figure 7.12: Floorplan for DCT circuit 

performance. We did show the circuits could be floorplanned in the given area. An example 
circuit floorplanned using the pack algorithm is shown in Figure 7.13. 

In this paragraph, we describe the results of using our TS based floorplanner with a cost function 
modified to reflect the work of Xu [85]. Overall, circuits floorplanned with this modified cost 
function were unroutable. Basically, the cost function placed a lower weight on long nets. This 
caused an unusually large number of nets to require "long" wiring resources for routing. Since 
these "long" wiring resources were quickly exhausted, the router had to revert to the "single" and 
"double" length wiring resources to route the nets. Due to the excessive total wire length in the 
mapped circuit, these resources were also quickly exhausted and the circuits were unroutable. 
One possible way to improve the use of this modified cost function is to limit the number of nets 
that can utilize the "long" lines and the "double" length lines available on the Xilinx architecture. 

7.6    Conclusions 

We have presented a performance driven fast floorplanning methodology for floorplanning macro 
based circuits. The methodology includes a clustering algorithm, placement algorithms, and a 
transform algorithm to quickly floorplan large macro based circuits. In the event that 
interconnect information is not available at the time of floorplanning our method uses 
two-dimensional packing to provide a preliminary floorplan. While flattening the netlist should 
provide better (relative to performance) results during the placement phase of the circuit, ever 
increasing circuit densities require an alternative method to handle large circuits in a timely 
(relative to execution time) fashion. Our approach shows dramatic improvement in the execution 
time without significant impact on quality of the mapped design. 
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Figure 7.13: Example circuit floorplanned using the pack(M,L) algorithm 
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Chapter 8 

Portable RC Development for 
Demonstration 

A Portable Reconfigurable Computer Chasis called PARC has been developed for demonstration 
of field applications. Following are the key required components of PARC. 

1. Motherboard 
A PCI based motherboard for any processor which must be able to handle 1 full size PCI card, 
have builtin IDE support, be able to operate without a keyboard and be able to support 
ATAPI/IDE removable disk drives - the ZIP disk. Any chipset will work (VIA, SiS, Intel). 

2. Video Card 
Any video card will work. Recommend finding motherboard with built-in video cards. Common 
motherboards with built-in video use VIA or SiS chipsets which are acceptable. 

3. Memory 
Any memory of any size will work. A minimum of 32MB is recommended. 

4. ZIP Disk 
Must use an internal ZIP disk. Must be an ATAPI/IDE zip disk. There are different versions of 
ATAPI/IDE zip disk, recommended is the ATAPI version (for removable media recognition 
inter face). There is an IDE only version, but that will not boot properly. 

5. Battery 
Need a 12 volt battery. Must have smallest dimensions to fit case. Must have highest mAh rating 
for size.Currently PARC has 3600 mAh battery (you will have to measure to get size). Estimated 
current draw without Wildforce board is 1200 mA per hour - 3 hour battery life. Estimated 
current with Wildforce is 1800-2000 mA per hour -   2 hour battery life. 

6. Case 
Need the cheapest case - those tend to be made with aluminum chassis. Smaller the case, the less 
room for battery. Aluminum chassis are lightest cases. Make sure chassis has room for battery. 

7. Powerverter 
Need a powerverter to create 120 volts from 12 volts. Recommend Tripplite PV300 which is an 
ultra compact powerverter that handles 300 watts and has best current handling capabilities. 
Figure 8.1 shows the Power circuit for PARC. 

8. PPGA Co-Processor 
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Any user-provided PCI - compatible FPGA card can be accomadated. For demonstrations, an 
AMS Wildforce board has been used. 

1. DPST Switch 

1. That DPDT switch is the Bottom View. Must be able to handle 120 Volts and at 1 Amp. 

2. This switch can be SPST or DPDT but must handle 3 Amps atleast 

3. The Recharger Plug must have Disconnect feature.( see * in the figure) 

Figure 8.1: PARC Power Circuit 
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Chapter 9 

Prototype Software Development, 
Testing and Demonstration 

9.1    Introduction 

With the advancement of the field-programmable device technology, the Reconfigurable Computer 
(RC) that consists of a multi-FPGA board with memory banks and interconnection fabric, is 
being widely used for realizing fast implementation of wide classes of algorithms. Over the last 
couple of years there have been some research efforts [139, 140] towards design automation 
techniques for dynamic reconfiguration of the RC during the execution of a single application, 
leading to better performance and cost advantages. In order to achieve this, it is necessary to 
develop efficient partitioning and synthesis techniques that are independent of the RC 
architecture. In particular, the tasks of Temporal Partitioning, Spatial Partitioning, and 
High-Level Synthesis are central to the design process for dynamically reconfigurable architectures. 

In the last decade, logic and layout synthesis techniques for FPGA s have matured greatly and 
commercial tools were developed to automate these tasks. However, high-level synthesis and 
multi-FPGA partitioning, both spatial and temporal, are still in their nascent stages and need to 
be further developed before commercial tools can appear. 

The SPARCS system [140] (Synthesis and Partitioning for Adaptive Reconfigurable Computing 
Systems) is a prototype design environment that incorporates efficient techniques for temporal 
and spatial partitioning and high-level synthesis. It provides a tightly integrated collection of 
partitioning and synthesis tools that help in automation of the design process for dynamically 
reconfigurable architectures. A brief summary of each major task in the SPARCS design flow is 
presented. For a more detailed discussion of SPARCS environment and its tasks, we refer the 
reader to [140]. 

In this chapter, we illustrate the steps involved in a typical partitioning and synthesis design flow 
for dynamically reconfigurable architectures, such as the SPARCS design flow. Using a real world 
design example, the Discrete Cosine Transform (DCT) subtask of the JPEG still image 
compression algorithm, this chapter aims to show that: 

• A well-defined design flow, consisting of a tightly integrated collection of partitioning and 
synthesis tools, can provide a realistic design environment for dynamically reconfigurable 
architectures. 
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Figure 9.1: JPEG Image Compression Standard 

• Dynamic reconfiguration does provide a performance/cost advantage over static 
configuration, for typical applications such as the JPEG that demand high-performance and 
inexpensive implementations. 

The rest of this chapter is organized as follows: Section 9.2 explains the design example used for 
this chapter and the corresponding experimental setup. Section 9.3 provides an overview of the 
SPARCS design flow and related algorithms. It also briefly discusses the partitioning and 
synthesis of the design example. In Section 9.4, we present a detailed discussion of the results 
comparing the two versions of the JPEG algorithm that have the DCT subtask statically and 
dynamically reconfigured. Finally we make some concluding remarks in Section 9.5. 

9.2    Design Example 

The Joint Photographic Experts Group established the JPEG still image compression standard 
[141, 142]. The tasks of the JPEG compression standard are shown in Figure 9.1. The 
pre-processing stage partitions an image into 8x8 blocks of pixels, each of which pass through the 
following four major subtasks: The Discrete Cosine Transform (DCT), Quantization, Zig-Zag 
transformation, and Huffman encoding. We designed a JPEG-like still image compression 
algorithm [143] that works on 4x4 image blocks instead of the standard 8x8. Our implementation 
of the JPEG image compression algorithm, after extensive testing over several image files, 
achieved an average compression factor of 30. 

We modeled our JPEG-like image compression algorithm as a Hardware-Software Codesign [143]. 
Software profiling of the JPEG compression algorithm revealed that DCT was the most 
computationally intensive subtask, consuming over 77% of the execution time. Therefore, we 
decided to implement DCT in hardware and the rest of the JPEG subtasks in software. The 
hardware that was used, is a Wildforce reconfigurable board consisting of two Xilinx XC4005 
FPGAs having 196 CLBs each, and two 8K memory banks with a 16-bit word. The host 
computer that was used, is a Pentium PC with a 100MHz processor. The board can be plugged 
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into the backplane of the host computer through a PC Bus. 

The FPGA-board follows a simple handshaking protocol with the host PC. The software that 
runs on the host initiates the communication by writing data on the board memory and then 
issues a signal for the board to start execution. When the board executes the design, the FPGAs 
can read/write data from/to their local memories. After the board finishes execution, the 
software running on the host PC reads back the resulting data values. 

In order to study the partitioning and synthesis design flow through SPARCS, we considered the 
DCT subtask as our design example. The DCT for a 4x4 image block can be defined by 
Equation 9.1, given below. This equation has been derived from the definitions given in [141]. 

-, 3     3 

F{u,v) =  7C(u)C(«)[££ /(*,y) * coeff(x,y,u,v)} (9.1) 
x=0y=0 

where   coeff(x,y,u,v) = cos ^x+pU7r cos ^M±pIE 

The DCT is the first subtask of the JPEG compression algorithm. It processes one image block 
(4x4 pixels) at a time and produces a set of discrete cosine transform coefficients, one 
corresponding to every pixel entry in the 4x4 image block. Taking a closer look at Equation 9.1, 
we can simplify the discrete cosine transform by pre-computing the cosine coefficients and storing 
them in a 4x4 DCT coefficient matrix. Now the DCT can be viewed as two consecutive 4x4 
matrix multiplications, as defined by Equation 9.2. 

DCT = ±C * (C * if (9.2) 

Here, I is an input image block (4x4 pixel matrix) and C is the 4x4 matrix of DCT coefficients. A 
portion of the 4x4 DCT dataflow graph that performs two-vector (row * column) multiplications 
is shown in Figure 9.3. The following section presents a typical design flow through the SPARCS 
system using the DCT example as a case study. 

9.3    The Design Flow 

We present a typical design flow for dynamically reconfigurable architectures using the SPARCS 
system [140] and the DCT example as a case study. Section 9.3.1 briefly discusses the SPARCS 
system. Section 9.3.2 discusses the DCT Task Graph. Section 9.3.3 presents a typical ILP 
formulation for temporal partitioning. Section 9.3.4 presents a typical genetic algorithm based 
solution to the spatial partitioning problem. Finally, section 9.3.5 discusses issues related to 
high-level synthesis. 

9.3.1    SPARCS System 

In this section, we only present an overview of the SPARCS system. For more details, we refer 
readers to [140]. Figure 9.2 shows the design flow through SPARCS. The SPARCS system accepts 
a design specification at the behavior level, in the form of task graphs, specified in VHDL. The 
tasks may communicate to each other either directly (following a protocol) or through shared 
memories. In order to re-target the design to different FPGA boards, the SPARCS system takes, 
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Figure 9.2: The SPARCS Design Flow 

as an input, the target architecture specification to which the design has to be mapped. In 
addition, the system takes user constraints and requires a macro component library. 

The SPARCS system contains a temporal partitioning tool to temporally divide and schedule the 
tasks on the reconfigurable architecture, a spatial partitioning tool to map the tasks to individual 
FPGAs, and a high-level synthesis tool to synthesize efficient register-transfer level designs for 
each set of tasks destined to be down-loaded on each FPGA. Following partitioning and synthesis, 
commercial logic and layout synthesis tools are used to generate bit-map files for each 
configuration of each FPGA. The SPARCS system also generates a reconfiguration program 
which can be used to control the RC's reconfiguration and execution from a host computer. 

9.3.2    DCT Task Graph 

As our first step, the behavioral specification of the 4x4 DCT was modeled in the form of 32 
matrix equations (16 for each matrix multiplication) and simulated in VHDL. We then 
partitioned the entire DCT dataflow graph into a collection of tasks. The task partitions for a 
single DCT block is shown in Figure 9.3. There are 16 such blocks in the entire 4x4 DCT 
dataflow graph. The two inputs to each multiplication operation are: a constant DCT coefficient 
and either an input pixel (for tasks Tl and T2), or an intermediate output of an 18-bit addition 
(for tasks T3, T4, T6, and T7). Notice that while deciding on task boundaries, we ensured that 
each task does not exceed an area of 196 CLBs for the XC4005. This is because the SPARCS 
system requires that each task should individually fit on the FPGA. For example, task Tl 
consists of two 9-bit multiplications, a 17-bit addition and an 18-bit addition, for a total of 134 
CLBs. Whereas tasks T4 and T6 contain one 16-bit multiplication which in itself occupies 127 
CLBs. Table 9.1 shows the area and delay estimates for all operations in the graph, and Table 9.2 
shows the summed up areas for each task. These value were obtained from the pre-characterized 
RTL component library that is used by SPARCS system. The task boundaries were also based on 
minimizing the amount of communication between the tasks. After drawing the task boundaries, 
the DCT task graph consisted of a total of 112 tasks. 
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Figure 9.3: DCT Graph and Task Partitions 

Table 9.1: Estimates for DCT Operations 

Operation Area 
(CLBs) 

Delay 
(ns) Type Bits 

* 9 42 68 
+ 18 25 80 
* 16 127 115 
+ 24 34 86 

Note that the tasks also contain memory read and write operations but these are not shown in 
the figure for the sake of clarity. Another goal while deciding the task boundaries was to minimize 
the number of memory read/write operations. Since the SPARCS design model allows direct 
communication between tasks, certain inter-task communications were not done through memory. 
For example, the output of task T2 is directly communicated to task Tl, thereby reducing two 
memory cycles. This direct communication channel is viewed as a constraint by the SPARCS 
partitioning system. For example, the temporal partitioner is restricted to hold these tasks 
together in the same temporal segment. 

Table 9.2: Area Estimates for DCT Tasks 

Task   Tl    T2   T3   T4   T5 

Area   134  109  160  127   34 
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9.3.3    Temporal Partitioning 

As mentioned in Section 9.3.1, the behavior specification is in the form of a task-level dependency 
graph. The control dependency represents the execution sequence of the tasks. If the execution of 
task B is control-dependent on task A, then A has to be executed in the same or earlier segment 
as B. The channel dependencies have edge weights that represent the amount of data to be stored 
and retrieved, if the two tasks connected by an edge are placed in different temporal segments. 

The temporal partitioner has an abstract view of the underlying board resources and uses 
aggregate costs for temporal partitioning. Prom the RC architecture specification, the overall 
resource constraint (C) and shared memory size (Ms) are derived. For example, a typical resource 
constraint would be the total number of function generators (FGs) derived by adding the FGs of 
all the FPGAs on the board. 

The temporal partitioner heuristically estimates the upper-bound on the number of temporal 
segments (N) for the Non-Linear Programming (NLP) formulation using a fast list-scheduling 
heuristic (a variation of [139]). As part of the formulation, we have incorporated a synthesis 
model to determine the resource sharing among tasks. This requires an operation level modeling 
of each task for the synthesis subproblem.   The NLP model is linearized and solved by an ILP 
(Integer Linear Program) solver. 

Terminology:   t{ -> tj - directed edge between tasks, £j, tj G T, representing a control or channel 
dependency; ii -4 ij - a directed edge between operations, ii,ij £ I exists; Bandwidth(ti,tj) - 
number of data units to be communicated between tasks ij and tj; Op(t) - the set of all the 
operations in the operation graph of task t. The operation graph for a task are all the operations 
in the task with their data/control flow dependencies; Fu(i) - the set of functional units on which 
operation i can execute; CS(i) - the set of control steps over which operation i can be scheduled. 
CS(i) ranges from ASAP(i) to ALAP(i) + L, where L is the relaxation over the maximum ALAP 
for the schedule. ASAP(i) and ALAP(i) are the As Soon As Possible and As Late As Possible 
control steps for operation i, which are derived by scheduling operations on unlimited resources; 
CS~1(j) - the set of operations which can be scheduled on control step j; F - the set of functional 
units corresponding to the most parallel schedule obtained from the high-level synthesis estimator; 
N - the upper bound on the number of temporal segments. The segments are numbered 1 to N, 
the index of the segment specifies the order of execution of the segments. Note that the generated 
optimal solution may have fewer than N segments; Ms - the shared memory available for storage 
between temporal segments; FG(k) - the number of function-generators used for functional unit 
k; C - the resource capacity of the board; I - the set of all operations in the specification. 

We assume for the current model that the latency of each functional unit is one control step, and 
the result of an operation is available at the end of the control step. 

Non-Linear 0-1 Model:    In this section, we describe the variables, constraints, and cost 
function used in the formulation of our non-linear programming model. 

1.  Variables: We have four sets of decision variables: ytp models the partitioning at the task 
level, Xijk models the synthesis subproblem at the operation level, wptlt2 models the 
communication cost incurred if two tasks connected to each other are not placed in the 
same segment and upk determines whether a functional unit has been used in a segment (F, 
obtained initially, is an upper-bound on the number of functional units that can be used in 
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a temporal segment.) All are 0-1 variables. 

Vtp 

•Eijk 

Wptiti = < 

1   if task t € T is placed in segment p, 
1 <P< N 

0   otherwise 

1   if operation i e I is placed in 
control step j € C5(i) and uses 
functional unit k G Fu(i) 

0 otherwise 

1 if task 11 is placed in any segment 
1 • • ■ p — 1 and ^2 is placed in any 
of p ■ ■ ■ N and <i -> t2 

0   otherwise 

Upk — < 
1   if functional unit k € F is used in 

segment p, 1 < p < N 
0   otherwise 

yip and Xijk are the fundamental modeling variables. All other variables are secondary and 
are non-linearly constrained in terms of the fundamental variables. 

2.  Constraints Temporal partitioning and synthesis has the following constraints: 

Uniqueness Constraint: Each task should be placed in exactly one segment among the N 
temporal segments. N 

VteT     :X>„ = 1 (9.3) 
P=I 

Temporal order Constraint: A task 11 on which another task t2 is dependent cannot be 
placed in a later segment than the segment in which task t2 is placed. 

Vi2,   Vii -> t2,   Vp2,   1 < P2 < N - 1      : 

Yl   yt1Pi + yt2P2 < l (9.4) 
P2<Pl<N 

Shared Memory Constraint: The amount of intermediate data stored between segments 
should be less than the shared memory Ms. wptit2, if 1, signifies that ix and t2 have a data 
dependency and are being placed across temporal segment p. Therefore, the data being 
communicated between them, Bandwidth(ti,t2), will have to be stored in the memory of 
segment p. The sum of all the data being communicated across a segment should be less 
than the available shared memory. 

Vp,   2 < p < N      : 

y~l   ^ (wptit2 * Bandwidth(ti,t2)) < Ms (9.5) 

Unique Operation Assignment Constraint: Each operation should be scheduled at one 
control step and on only one functional unit. 

Vi      :    £      E   xijk = l (9.6) 
keFu(i) j£CS(i) 
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Temporal Mapping Constraint: This constraint prevents more than one operation from 
being scheduled at the same control step on the same functional unit. 

V-7      :    E        E     xHk<l (9.7) 
keFu{i)ieCS-1{j) 

Dependency Constraint: To maintain the dependency relationship between operations, an 
operation iu whose output is necessary for operation i2, should not be assigned a later 
control step than the control step to which i2 is assigned. 

Vt'i -> »2,  VJ2 < h,  h e CS(h),  j2 G CS(i2)     : 

E      Xidlki +      E      X*2J2*2 < 1 (9-8) 
kiCFu(ii) k2€Fu(i2) 

Resource Constraint: Resource constraints are in terms of variables upk. Typical FPGA 
resources include function generators, combinational logic blocks (CLB) etc. Similar 
equations can be added if multiple resource types exist in the FPGAs. a is a user defined 
logic-optimization factor in the range [0;1]. Typical values [147] of a using Synopsis FPGA 
components are in the range [0.6;0.8]. 

Vp,l<p<JV     :a*Y/(uPk*FG(k)) <C (9.9) 
keF 

Unique Control Step Constraint: Each control step is mapped uniquely to a temporal 

segment. ^   ^ ^ ^   v^ e Op^),   Vi2 G Opfo), 

V? G CS(h) n CS(i2),   Vpi, 1 < pi < N, 

VP2 /pi,l <p2 < N      : 

E   xidki * ytlPi +   E   ^2^2 * yt2P2 < ! (9.10) 
fcieFu(ii) *;2ei;'«(i2) 

3.  Cosf Function: Minimize the cost of data transfer between temporal segments. 
Minimize: v^   v^     v^   / x-,     ,     ,   , 

2^   2^,    2-,   {wpt1t2*Bandwtdth(tut2)) (9.11) 
t2er*i-t-t2i<p<iv 

We have presented only a part of the NLP model here. For more details about other constraints, 
linearization, and solution by ILP techniques refer to [144]. To reduce the amount of time 
required for solving the ILP model, the model may be solved to find a constraint satisfying 
solution rather than an optimal one. This leads to significant speedup in solving the ILP model. 

For the DCT example, the temporal partitioning system will try to minimize the cost of data 
transfer. Consider the temporal partitioning of tasks Tl, T2 and T3 shown in Figure 9.3. Under 
the given area constraint (196 CLBs per FPGA ), all three tasks cannot fit together on a single 
temporal segment. Since there is a direct data transfer between task Tl and T2 the partitioner 
will place these tasks in the same temporal segment rather than placing tasks Tl & T3 or T2 & 
T3 together. For the same reason, the temporal partitioner will place tasks T3 and T4 in one 
temporal segment; this will minimize the data transfer between temporal segments. Given the 
DCT task graph as an input, the SPARCS temporal partitioner produced fifty temporal 
configurations as shown in Figure 9.4. 
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Spatial Partitioning 
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Problem Formulation: 

Let F = {fi, f2, ■ ■ ■ /N} be the N FPGAs available on the target reconfigurable board. Each 
FPGA has a set of attributes associated with it. For any / £ T : 

• C(f) = number of function generators in /, 
• F(f) = number of flip-flops in /, 
• P(f) = number of uncommitted I/O pins in /, 
• L(f) = size of the local memory of /. 

CM represents the direct connection matrix. It defines the number of dedicated lines pre-routed 
between each pair of FPGAs. Ic denotes the number of programmable interconnection channels 
available on the board. 

A spatial partition of a task graph, TG = (V, M, E), where V is the set of task nodes, M is the 
set of memory segments, and E is the set of dependency edges and channels, is a binding of each 
task in V to a unique FPGA and each logical memory segment to a unique local/shared memory, 
such that all architectural constraints are satisfied. These constraints are satisfied based on 
performance estimates obtained from a light-weight high-level synthesis estimator. When multiple 
valid spatial partitions exist, the one which produces the fastest implementation is chosen. 

Spatial Partitioning Algorithm: 

We model and solve the spatial partitioning problem through a Genetic Algorithm (GA). The 
genetic search procedure was developed by John Holland in 1975 [31], and since then has been 
used successfully for solving several combinatorial problems in VLSI design automation 
[148, 149, 61]. A genetic algorithm consists of an iterative procedure during which a series of 
generations of populations, one per iteration, are created. Each member of a population, also 
called chromosome, represents a solution of the problem being solved. The solution representation 
is based on a suitable encoding of the solution space. 
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Prom the minimization perspective, genetic algorithms attempt to discover an optimal - least cost 
- solution to the problem. The cost of a chromosome is evaluated by the partition performance 
and cost estimator which are discussed later. The GA uses an evolution function to generate a 
new generation pi+1 from an existing generation p^ The evolution function usually consists of 
three components, called operators: Selection, Crossover and Mutation. 

Following the generation of the new population, the current population is discarded and the new 
population becomes current. This evolution process continues until termination condition has 
been reached. The termination condition is either a constraint satisfying solution or an upper 
limit of the number of generations that GA explores. 

Genetic Modeling for Spatial Partitioning: 

Encoding: The solution representation must capture the binding of tasks to the FPGAs and the 
binding of logical memory segments to local/shared physical memories. We use a simple integer 
array to encode the above information. Each chromosome has two integer arrays - task array TA 
and memory array MA. The length of the TA is equal to the number of tasks in the task graph 
(t) and the length of the MA is equal to the number of memory segments (m). Consider a board 
having N FPGAs with local memories and a shared memory. For 1 < i < t, the variable TA[i], 
ranging from 1 through N, represents the FPGA number to which task i is assigned. Similarly, 
for 1 < i < m, the variable MA[i], ranging from 0 through JV, represents the memory bindings. 
MA[i] = 0 implies that the memory segment i is mapped to the shared memory. 

Initial Population: The task arrays for all chromosomes in the initial population are set to 
random legal values. Then based on the task assignments, for each chromosome, we assign the 
logical memory segments to local physical memories. If the majority of the tasks which access a 
memory segment are assigned to FPGA k then we bind the memory segment to the local memory 
of FPGA k. 

Crossover: We use a uniform crossover operator. A binary string, T, whose length is equal to 
the greater of the number of tasks and the number of memory segments, is generated. Each bit in 
this template is randomly set to either 0 or 1. Next, two parents are probabilistically selected for 
mating. Let pti, pt2 be the task arrays and pmi,pm2 be the memory arrays in the parents. Then 
cti, cf2, cmi, and cro2, are the corresponding arrays in the two child chromosomes resulting from a 
crossover that is defined as: 

l[l ~ { Ph[i\   otherwise (9J2) 

. ,.,     / phli]   ifT(i) = 1 
Ch[t] = \ptM   otherwise (9"13) 

l[3l~\pm2[j]   otherwise (9"14) 

r.,      f pm-Ai]   ifT(?) = l 
^b] = {prnM   otherwise <9-15) 

In the above equations, i and j have legal values based on the number of tasks and memory 
segments in the task graph. 
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Mutation: The mutation operator randomly selects an entry from the chromosome arrays and 
changes its value to another legal value. Effectively, the mapping of a single task or a memory 
segment is modified. 

Partition Cost Estimation: 

The cost of each chromosome (spatial partition) is dependent on several constraint satisfaction 
requirements: 

• Area Constraint (^4) and Speed Constraint (S): The spatial partitioner invokes 
high-level synthesis estimation routines (light-weight HLS) to gather area estimates and 
verify speed constraint satisfaction. The HLS routines report all area and speed constraint 
violations. 

• Pin Constraints (P): The spatial partitioner ensures that there are enough pins available 
on the FPGAs to perform inter-FPGA and FPGA -memory communications. 

• Interconnect Constraint (7): The reconfigurable board usually has a limited number of 
programmable channels to interconnect the FPGA and memories. There may also be 
dedicated lines between FPGAs. 

• Memory Constraint (M): Logical memory assignments must not violate the memory 
bandwidth requirements on all physical memories at any time during the execution of the 
design. 

Let AA, AS, AP, AI, and AM be the respective constraint violation values for a given 
chromosome c. In the case when any constraint is met, the A value is zero. For example, if all 
area constraints are met then AA is zero. The cost of the chromosome c is given by: 

. ,     AA       AS       AP       AI       AM ,       x cost(c) = _ + _ + _ + _ + __ (9.16) 

The above form of cost function is widely used in several domains where a set of conflicting 
constraints are to be met [61, 150, 80]. In the case when the spatial partitioner cannot achieve a 
constraint satisfying solution, it flags a failure and returns tighter constraints for use by the 
temporal partitioner. The new aggregate constraints are based on the degree of cost violated by 
the best achieved partition. 

For the case study example, the spatial partitioner will use area estimates of the DCT tasks listed 
in Table 9.2. The spatial partitioner uses the HLS tool as an estimator to get estimates on a 
spatial partition (collection of tasks) that it is contemplating for a single FPGA. For all tasks 
except T5, the areas are such that no two tasks can fit into the same FPGA. So the job of the 
spatial partitioner is simple, as can been seen in the temporal segments 1 through 48, shown in 
Figure 9.4. However, since task T5 is small, the spatial partitioner fitted four tasks in each FPGA 
as shown in the temporal segment numbers 49 and 50. While doing this, the spatial partitioner 
will consider the memory constraints among these tasks. The goal will be to join those tasks that 
access data from the same local memory. 

9.3.5    High-Level Synthesis 

The behavioral description (corresponding to a collection of tasks specified by the spatial 
partitioner) along with a pre-characterized macro library and the user constraints are taken 
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Figure 9.5: Layout Integrated High-Level Synthesis 

through High-Level Synthesis (HLS) to obtain an equivalent Register-Transfer Level (RTL) 
implementation that can fit into a single FPGA chip. The RTL design [126, 152] consists of a 
Datapath which is a netlist of components picked from the component library, and a Controller 
which is a finite state machine that sequences the datapath components to perform the 
computations specified in the behavior of the design. 

In the Layout-Integrated HLS design process shown in Figure 9.5, a collection of light-weight 
layout algorithms are integrated into HLS. The first is a floorplanner that picks the macros (from 
the pre-characterized macro library) and tries to place them on the FPGA , simultaneously trying 
to reduce the overall area and delay of the design. The second is a routability analyzer that 
checks the feasibility of routing after completing the placement. Finally, the performance 
estimator predicts the area and delay of the generated floorplan. The RTL design and the 
floorplan are then predictably taken through necessary phases of logic and layout synthesis to 
obtain the bit-stream for the FPGA configuration. Therefore, the estimates made during HLS are 
preserved and the FPGA implementation definitely satisfies the required constraints. There is 
another on-going work [151] that follows a similar approach. 

At the core of the SPARC S system is a high-level synthesis tool, Asserta, which accepts 
behavioral descriptions specified in VHDL (as a collection of processes/tasks) and performance 
constraints in terms of the desired clock width and the upper limit on the area. The Asserta tool 
has been tailored to suit the layout-integrated synthesis approach for the SPARCS system, as 
shown in Figure 9.5. Asserta satisfies the clock width constraint by trying to minimize the 
maximum combinational delay of any register transfer. The area constraint is satisfied by trying 
to minimize the size of both the datapath and the controller. The HLS process consists of 
component set generation, scheduling and performance estimation, register and interconnect 
optimization, and controller generation. For a detailed discussion of these phases, we refer the 
reader to Roy et al. [32]. 
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Table 9.3: Area and Delay Estimates for DCT tasks 

DCT Area Clk Period Number of 
Task (CLBs) (NanoSecs) C-steps 
Tl 186 177 5 
T2 159 155 4 
T3 168 163 4 
T4 180 210 2 
T5 45 150 6 

For the case study, the tasks in the partitioned DCT, shown in Figure 9.4, were taken through 
Asserta to generate the RTL designs. The RTL designs were then taken through logic synthesis 
(Synopsys FPGA compiler) and layout synthesis (Xilinx Ml tools) to produce the FPGA 
configuration files. For the tasks Tl through T5, Table 9.3 shows the area estimates provided by 
the Xilinx PAR (Partitioning And Routing) tool, timing estimates provided by the Xilinx 
TRACE (Timing Analyzer) tool, and the number of control steps (C-steps) provided by Asserta. 
Notice that the area values are more than the initial task areas shown in Table 9.2. This is 
because the initial task area is simply the ALU area and does not include the interconnect and 
controller components. 

The HLS tool can be used in a lighter form in order to obtain area and performance estimates on 
the RTL design. This light-weight version of HLS will be used by the partitioning tools to get 
quick design estimates. This would invoke only the initial design space exploration phases of HLS 
(refer to Figure 9.5). As a light-weight estimator, the HLS tool simply selects a component bag (a 
collection of RTL components) that corresponds to an efficient RTL implementation and also 
provides the corresponding estimates. The HLS estimator always over-estimates the design 
performance, ensuring that the actual HLS process will generate only a better RTL 
implementation. Also since the estimation process does not go through the entire (heavy-weight) 
HLS process, it will be considerably faster than the actual HLS. 

9.4    Experimental Results 

We developed two versions of the JPEG compression algorithm: In the static-JPEG version the 
board was configured only once to perform DCT . Whereas in the dynamic-JPEG version, we 
have generated multiple configurations for the DCT subtask using the SPARCS design tools. 
Each of these configurations were down-loaded once on the board to perform the DCT on an 
entire image file. 

In order to obtain the one-time configuration of DCT for the static-JPEG version, we first 
partitioned DCT using the SPARCS spatial partitioner and used the Asserta synthesis tool [32] to 
synthesize the DCT partitions onto the FPGAs. The board having two XC4005 FPGAs, was then 
configured once to perform DCT, and the rest of the JPEG subtasks written in software ran on 
the host PC . 

The static-JPEG codesign was tested on the six image files of varying sizes, listed in Table 9.4. 
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Table 9.4: Execution times for Static-JPEG 

Images No. of 
pixels 

Static JPEG Codesign 
JPEG DCT in hardware 
exec, 
(sec) 

exec. 
(sec) 

%of 
JPEG exec. 

Scenery 592704 34.88 31.01 88.9 
Portrait 576000 34.06 30.14 88.5 
Parrots 294912 17.57 15.44 87.8 
Turbo 69888 4.19 3.67 87.3 
Group 56400 3.36 2.96 88.1 
XV 54896 3.31 2.88 87 

Table 9.5: Execution times for Dynamic-JPEG 

Images 
Dynamic Codesign Version of JPEG 
JPEG 
exec. 
(sec) 

DCT in hardware 
exec, 
(sec) 

%of 
JPEG exec. 

Scenery 6.16 2.29 37.2 
Portrait 6.15 2.24 36.4 
Parrots 3.52 1.39 39.5 
Turbo 1.24 0.71 57.3 
Group 1.08 0.67 62.0 
XV 1.09 0.67 61.5 

Table 9.4 shows the execution times for the entire static-JPEG codesign as well as the static DCT 
subtask. The images are listed in the decreasing order of their sizes. The execution times were 
measured using the commercial Quantify tool from Pure Soft Inc. On an average, DCT consumes 
about 88% of the total static-JPEG execution time, the rest of JPEG tasks running on the host 
PC consume about 6%, and the remaining time is spent in file I/O. 

The DCT task graph shown in Figure 9.3 and the board architecture (two XC4005s and 8K 16-bit 
memories) were then fed to the SPARCS design system. The DCT task graph was taken through 
the design process as described in Section 9.3. The HLS tool in the SPARCS system produced a 
reconfiguration schedule and a collection of RTL designs. The reconfiguration schedule for the 
DCT task graph is shown in Figure 9.4. Using commercial synthesis tools, FPGA bit-map files 
were generated from the RTL designs. The configuration program was plugged into the JPEG 
software that ran on the host PC. The dynamic-JPEG codesign was then tested on the six image 
files. During the execution of the dynamic-JPEG codesign, the software running on the host PC 
would automatically down-load the DCT configurations one at a time, run the entire image file, 
and read the intermediate results back from the board. In this fashion, each of the DCT 
configurations was down-loaded only once for an entire image file. 
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Table 9.6: Average Execution Times 

Images # of 4x4 
blocks 

DCT Exec, time per 
4x4 blocks in /xsecs Improv. 

factor Static Dynamic 

Scenery 37044 837.1 61.82 13.54 
Portrait 36000 837.3 62.22 13.46 
Parrots 18432 837.7 75.41 11.11 
Turbo 4368 839.3 162.5 5.16 
Group 3525 839.7 190.1 4.42 
XV 3431 839.9 195.3 4.30 

Table 9.5 shows the execution times for the dynamic-JPEG codesign as well as the dynamically 
reconfigured DCT subtask. Notice that, on an average, DCT consumes only about 50% of the 
total dynamic-JPEG execution time, as opposed to 88% for the static-JPEG version. This shows 
that the dynamically reconfigured DCT version takes much less execution time when compared to 
the static DCT version. 

We can take a closer look at the average time spent by both DCT versions on each 4x4 block of 
an image, as shown in Table 9.6. Notice that the dynamically reconfigured DCT version shows up 
to 13 times improvement for the larger images. Also notice that, as the image size (or number of 
blocks) decreases, the average execution time for the dynamically reconfigured DCT increases and 
the improvement factor decreases. This is because as the image size becomes smaller the 
reconfiguration overhead defeats the gain obtained due to dynamic reconfiguration. This is the 
same reason why the percentage of the dynamic-JPEG execution time spent on the DCT subtask 
(shown in the last column of Table 9.5) increases as the image size decreases. In general, the 
minimum number of 4x4 blocks (Z?) that is required for the dynamic-JPEG case to show an 
improvement over the static-JPEG case is given in Equation 9.17. 

B > 
{T - i) * n 

v static - v, dynamic 
(9.17) 

where B is the number of blocks in an image, Vstatic and Vdynamic are the time taken (without the 
reconfiguration overhead) by the static and dynamic DCT versions to execute one image 
partition, TZ is the reconfiguration time for the FPGA board, and T is the number of temporal 
configurations generated for the dynamic JPEG . 

We computed the values of T>static and T>dynamic to be 837.8 /usecs and 48.24 /zsecs respectively. 
These values were computed by taking a product of the clock period and the number of clock 
cycles that the design requires to process one 4x4 block. Fifty temporal configurations (T) were 
generated for DCT, and assuming a 10 milliseconds reconfiguration time, we can substitute these 
values in Equation 9.17 to get a value of 621 for B. Therefore, there will be an improvement for 
any image that has more than 621 4x4 blocks. For images containing less than 621 blocks, the 
reconfiguration overhead becomes large enough to inhibit any gain due to dynamic 
reconfiguration. 
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9.5    Conclusions 

In this chapter, we have presented an unified approach for design partition and synthesis onto 
dynamically reconfigurable multi-FPGA architectures. Using a real world design example, the 
DCT subtask of the JPEG still image compression standard, we showed that it is possible to 
achieve improvement if we perform dynamic reconfiguration instead of static (one-time) 
configuration. We also derived a general equation (Equation 9.17) and discussed the trade-off 
between the reconfiguration overhead and the gain achieved due to dynamic reconfiguration. We 
have presented a typical design flow through the SPARCS partitioning and synthesis 
environment, using the DCT as a case study example. The SPARCS design environment was used 
to automate the design process for dynamically reconfigurable architectures. The results 
presented in this chapter show that dynamic reconfiguration does provide a performance/cost 
advantage over static configuration for typical applications such as the JPEG algorithm that 
demand high performance. 
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Appendix A 

BBIF Specification 

The following sections provide details on the BBIF model. A formal and more detailed 
description of the BBIF model is available in [49]. 

A.l    BBIF Model and Formal Notations 

A BBIF model can be represented as a four-tuple: 

BBIF < Blocks, ControlDeps, INports, OUTports > 

where Blocks is a set of behavior blocks, ControlDeps is a set of control dependency edges, where 
each edge < BuBj > represents the control flow from block Bt to Bj, and INports and OUTpoTts 

represent the set of design input and output ports respectively. 

In the BBIF model the atomic storage element is a carrier represented as a tuple, 

Carrier < Id, Width > 

consisting of an index Id and a non-zero positive integer Width. The carrier Id is a unique index 
used for carrier set operations such as union and intersection. The design input and output ports 
are essentially carriers sets. A behavior block is an 8-tuple 

BehaviorBlock < Blkld, Type, 1, O, £, C, T, FG > 

consisting of a block index (Blkld), a block type (Type), five carrier sets and a flow graph (FG). 
A behavior block can be either of type compute or io. Computations in a task are specified only 
within the compute blocks and interaction with the environment through the design ports are 
specified only within io blocks. The five carrier sets are: 

• The set I(-Bj) represents the set of input carriers of block Bj,. These are input carriers that 
are passed from every parent block that branches to block B{. 

• The set ö(Bi) represents the set of output carriers of block B{. These are output carriers 
that are passed through the branches to every child of block B{. 

• The set £(£?,) represents the set of local carriers of block JBj. These carriers are visible only 
within block Bi and are used to capture the data flow across computations within the block. 
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• The set C(Bi) represents the set of constants that are visible only within block £?j. A 
constant is essentially a carrier with an additional string field that represents the actual 
constant value. 

• The set F(Bi) represents the set of flag carriers of block 5*. These carriers are visible only 
within block B{ and are used to hold the resulting values of conditional expressions in the 
behavior. The flags are used for conditional branching at the end of the block. 

In addition, a behavior block also consists of a flow graph FG, represented as a tuple, 

FG < OprNodes, DataFlowDeps > 

consisting of operation nodes (OprNodes) and data dependency edges (DataFlowDeps). An 
operation node is a 5-tuple 

Operation < Oprld, OprType, Inputs, Outputs, ConDeps > 

consisting of a unique operation index (Oprld), the operation type (OprType), the input carrier 
set, the output carrier set and an explicit control dependency set (ConDeps). Each operation 0{, 
has a set of input carriers Inputs(Oi) that are read and a set of output carriers Outputs(Oi) that 
are written. Both these sets may contain zero or more carriers. A data flow dependency is a 
directed edge between a parent operation O, and a child operation Oj, represented as a tuple 
< Oi, Oj >. This dependency edge exists if and only if the following condition is satisfied: 

DataFlowDependency < Oi, Oj >     <$=*•    (Outputs(Oi) n Inputs(Oj)) =£ 0 

The operation nodes in a block follow single assignment semantics by writing exactly once to a 
particular carrier. In other words, any output, local, or flag carrier in a block will appear exactly 
in only one output carrier set of an operation node. Therefore, there are no anti or output 
dependencies and the order of operations in the BBIF specification does not matter in deriving 
the flow graph. 

The operations in the BBIF are classified as pre-defined and user-defined. There are three 
pre-defined operation types in the BBIF. The io block supports the two types namely, getport 
and putport to facilitate design port accesses. The third pre-defined operation type is the 
transfer that is supported in any behavior block. The transfer operation denotes an assignment 
of one carrier to another, and corresponds to an assignment statement in the behavior. The 
user-defined operations are uninterpreted. In other words, the synthesis system does not attach 
any functional semantics to the user-defined operations and expects the user to specify a 
component library that supports these operations. 

A.2    Translation and Profiling 

Figure A.l shows the VHDL specification of an ALU example. The ALU takes two data inputs 
and a mode of operation, and generates a result. Depending on the mode of operation the ALU 
generates the sum, difference, product, or the sum of squares of the inputs. Figure A.2 shows the 
BBIF that was automatically translated from the VHDL specification of the ALU. The start io 
block Blk_2 reads the design ports into the corresponding carriers and passes them to Blk_3. The 
TRUE_BRANCH statement represents an unconditional branch to a subsequent block. Blk_3 
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entity ALU is port ( Datal, Data2 : in integer; 
Mode : in bit_vector(l downto 0); 
RESULT : out integer 

); 
end ALU; 

architecture behavior of ALU is 
begin 

compute: process       : 

variable A, B, value : integer; 
variable M : bit_vector(l downto 0); 

begin 
Datal; 
Data2; 
Mode ; 

case M is 
when "00" => value := A + B; 
when "01" => value := A - B; 
when "10" => value := A * B; 
when others => value := (A * A) + (B * B); 

end case; 
RESULT <= value; 

end process; 
end behavior; 

Figure A.l: VHDL Specification of an ALU 
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(INPORT (datal 16) (data2 16) (mode 2)) 
(OUTPORT (result 16)) 

(BB Blk_2 
(LOCAL (a 16) (b 16) (m 2)) 

1 (GET.PORT (datal) (a)) () 
2 (GET_P0RT (data2) (b)) () 
3 (GET.PORT (mode) (m)) () 
(TRUE.BRANCH Blk_3(a b m)) 

) 
(BB Blk_3 ( (a 16) (b 16) (m 2) ) 

(LOCAL (flag_l 1) (flag_2 1) (flag_3 1)) 
(CONSTANT (cl2 2 00) (cl5 2 01) (cl8 2 10)) 

4 (eq (m cl2) (flag.l)) () 
5 (eq (m cl5) (flag.2)) () 
6 (eq (m cl8) (flag_3)) () 
(flag_l Blk_4(a b) 
(flag_2 Blk_5(a b) 
(flag_3 Blk_6(a b) Blk_7(a b)))) 
) 
(BB Blk_4 ( (a 16) (b 16) ) 

(LOCAL (value 16)) 
7 (plus (a b) (value)) () 
(TRUE_BRANCH Blk_8(value)) 

) 

(BB Blk_6 ( (a 16) (b 16) ) 
(LOCAL (value 16)) 

9 (mult (a b) (value)) () 
(TRUE.BRANCH Blk_8(value)) 
) 
(BB Blk_7 ( (a 16) (b 16) ) 

(LOCAL (t22 32) (t23 32) (value 16)) 
10 (mult (a a) (t22)) () 
11 (mult (b b) (t23)) () 
12 (plus (t22 t23) (value)) () 
(TRUE.BRANCH Blk_8(value)) 
) 
(BB Blk_8 ( (value 16) ) 
13 (PUT_P0RT (value result) ()) () 
(TRUE.BRANCH Blk_2()) 

) 

Figure A.2: BBIF Specification of the ALU Example 
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has three inputs a,  b and m, whereas Blk_2 does not have any. The compute block Blk_3 performs 
all the condition evaluations of the case statement and generates three flags. Based on the values 
of these flags, four branches arise from Blk_3 leading to the blocks Blk_4,Blk_5, Blk_6 and 
Blk_7. The four blocks perform the four types of the ALU operations. For example, the sum of 
squares is performed in the three operation statements of Blk_7. Each of these four blocks call the 
io block Blk_8 to write the results to the output port. Note that Blk_8 calls the start block Blk_2 
forming an overall infinite loop that represents the implicit loop of corresponding VHDL process. 

A.3    Component Library and Functional Unit Instantiation 

The component library {Cub), supplied by the user, specifies a list of combinational and sequential 
components with a list of operations supported by them. For every user-defined operation in the 
BBIF, there should exist at least one component in the library that supports that operation. For 
sequential components and for components that can support multiple operations, the user is also 
expected to provide the control signal that facilitates the selection of each of these operations. 
This information will be used by the synthesis system while generating the control logic. 

Figure A.3 shows a portion of a typical component library. The class of a component denotes 
whether it is combinational (denoted by ALU) or sequential (denoted by REG). The first 
component compare, supports multiple operation types as specified in its MODE field, and its 
CONTROL field provides the control signal information for each operation type it supports. 
Components can be parameterized over their port sizes as well as over the number of ports. In 
the figure, the component that supports the bit-wise and operation is parameterized both on the 
number of inputs and port widths. Since all user-specified operations in the input description are 
uninterpreted, the library should provide all relevant information that the synthesis process might 
subsequently require. The SIGNATURE field specifies the ports of the component that are used 
to support an operation type. For example, compare has two inports and three outports while 
one of its operation type, grt uses the first two inports to read inputs and uses the third outport 
to write the output. 

Given a BBIF specification and a component library, the HLS system performs resource set 
generation. For each unique operation type in the BBIF, one or more functional units are 
generated from the parameterized components in the given library. A functional unit is a library 
component that is instantiated with specific values to its generic parameters. This is done by 
matching the type of each BBIF operation with the MODE field of each component. 
Consequently, from the input and output carrier sets of the BBIF operation the generic 
parameters of the component are instantiated, resulting in a new functional unit. For example, 
the eq operations 4, 5 and 6 of block Blk_3 in Figure A.2 would lead to a functional unit 
instantiation from component compare with generic parameter values of widthl = 2, and width2 
= 1. The functional units are unique with respect to the component name and the parameter 
values. If resource folding needs to be performed, functional units may remain unique only based 
on the component name. 
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(COMP compare (widthl width2) 
(CLASS ALU) 
(MGDE less grt eq) 
(INPORT (a widthl) (b widthl)) 
(OUTPORT (c width2) (d width2) (e width2)) 
(SIGNATURE 
(less (1 2) (1)) 
(grt (1 2) (2)) 
(eq (1 2) (3)) 

) 
(CONTROL 2 (NOP 00) (less 01) (grt 10) (eq 11)) 

) 

(COMP and (ins widthl width2) 
(CLASS ALU) 
(MODE and) 
(INPORT (ins widthl)) 
(OUTPORT (out width2)) 
(CONTROL) 

) 

(COMP REG (bitwidth) 
(CLASS REGISTER) 
(MODE reg) 
(INPORT (input bitwidth)) 
(OUTPORT  (output bitwidth)) 
(CONTROL 2  (NOP 00)   (LOAD 01)   (RESET 10)) 

) 

Figure A. 3: Snapshot of a Typical Component Library 

159 



Bibliography 

[1] A. A. Duncan, D. C. Hendry and P. Gray. "An Overview of the Cobra-ABS High-Level 
Synthesis System for Multi-FPGA Systems". In Proceedings of FPGAs for Custom Computing 
Machines (FCCM), pages 106-115, Napa Valley, California, 1998. 

[2] A.E. Casavant, D.D. Gajski, and D.J. Kuck. "Automatic Design with Dependence Graph". 
In 17th Design Automation Conference", pages 506-515, 1980. 

[3] B. Kernighan, D.M. Ritchie. The C Programming Language. Prentice-Hall, Englewood Cliffs, 
N.J., 1978. 

[4] B. S. Baker, D. J. Brown, and H. P Katseff. A 5/4 Algorithm for Two-Dimensional Packing. 
Journal of Algorithms, 2:348-368, 1981. 

[5] B. S. Baker, E. G. Coffman, and R. L Rivest. Orthogonal Packings in Two Dimensions. Siam 
Journal of Computing, 9:846-855, November 1980. 

[6] B. S. Baker and J. S. Schwarz. Shelf Algorithms for Two-Dimensional Packing Problems. Siam 
Journal of Computing, 12:508-525, August 1983. 

[7] CM. Fiduccia, R.M. Mattheyses. "A Linear Time Heuristic for Improving Network Partitions". 
In Proc. of 19th Design Automation Conference, pages 175-181, 1982. 

[8] E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance Bounds For 
Level-Oriented Two-Dimensional Packing Algorithms. Siam Journal of Computing, 9:808- 
826, November 1980. 

[9] D. D. Gajski, F. Vahid, et al. . "Specification and Design of Embedded Systems". In Prentice- 
Hall Inc., Upper Saddle River, NJ, 1994. 

[10] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin.   "High-Level Synthesis, Introduction to 
Chip and System Design". Kluwer Academic Publishers, 1992. 

[11] D. Huang, A.B. Kahng. "Multi-Way System Partitioning into a Single Type or Multiple Types 
of FPGAs". In Proc. of 3rd Int. Symp. FPGAs, pages 140-145, 1995. 

[12] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison- 
Wesley, Reading, MA„ 1989. 

[13] D.E. Thomas J.K. Adams, H. Schmit.   "A Model and Methodology for Hardware-Software 
Codesign". In IEEE. Design & Test of Computers, pages 6-15, September 1992. 

160 



[14] E.D.Lagnese and D.E.Thomas. "Architerctural partitioning of system level synthesis of inte- 
grated circuits". In IEEE Transactions on CAD, volume 9, No.9, pages 847-860, July 1991. 

[15] J. M. Emmert and D. K. Bhatia. TABU Search for Fast Timing Driven Placement of Circuits 
on FPGAs. University of Cincinnati Technical Report Number: TR219/09/98/ECECS, 1998. 

[16] J. M. Emmert and D. K. Bhatia. A Methodology for Fast FPGA Floorplanning. In ACM 
Seventh International Symposium on Field-Programmable Gate Arrays, pages 47-56, Feburary 
1999. 

[17] J. M. Emmert, A. Randhar, and D. K. Bhatia. Fast Floorplanning for FPGAs. In Lecture 
Notes in Computer Science, volume 1482, pages 129-138. Springer-Verlag, 1998. 

[18] D.E. Thomas et al. "Algorithmic and Register Transfer Level Synthesis: The System Architect's 
Workbench". Kluwer Academic Publishers, 1990. 

[19] F. Vahid. "Functional Partitioning Improvements Over Structural Partitioning for Packaging 
Constraints and Synthesis: Tool Performance". In ACM Transactions on Design Automation 
of Electronic Systems, Vol 3, No. 2, pages 181-208, April 1998. 

[20] F. Vahid. "Techniques for Minimizing and Balancing I/O During Functional Partitioning". In 
IEEE Trans, on CAD, vol. 18 No. 1, pages 69-75, Jan 1999. 

[21] F. Vahid, D.D. Gajski. "Specification Partitioning for System Design". In Proc. of 29th Design 
Automation Conference, pages 219-224, 1992. 

[22] F. Vahid, D.D. Gajski. "Incremental Hardware Estimation During Hardware/Software Func- 
tional Partitioning". In IEEE Trans, on VLSI Systems, Vol 3, No 3, September 1995. 

[23] G. De Micheli. "Computer-Aided Hardware Software Codesign". In IEEE Micro, pages 10-16, 
Aug 1994. 

[24] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997. 

[25] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul and R. Vemuri. "A Unified Specification 
Model of Concurrency and Coordination for Synthesis from VHDL". In Proceedings of the 4th 
International Conference on Information Systems Analysis and Synthesis (ISAS), July 1998. 

[26] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, R. Vemuri. "An Integrated Partition- 
ing and Synthesis System for Dynamically Reconfigurable Multi-FPGA Architectures". In 
Proceedings of Parallel and Distributed Processing, (RAW98), pages 31-36. Springer, March 
1998. 

[27] IEEE Standards Office. "IEEE Standard VHDL Language Reference Manual". In IEEE 
Standards Office, New York, NY, 1993. 

[28] Altera Inc. http://www.altera.com. 

[29] Xilinx Inc. http://www.xilinx.com. 

[30] J. Henkel, R. Ernst. "The Interplay of Run-time Estimation and Granularity in HW/SW 
Partitioning". In Fourth International Workshop on Hardware/Software codesign, pages 52- 
58, March 1996. 

161 



[31] J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan 
Press, 1975. 

[32] J. Roy, N. Kumar, R. Dutta and R. Vemuri. "DSS: A Distributed High-Level Synthesis 
System". In IEEE Design and Test of Computers, June 1992. 

[33] J.Hou, W. Wolf. "Process Partitioning for Distributed Embedded Systems". In Fourth Inter- 
national workshop on Hardware/Software codesign, pages 70-76, March 1996. 

[34] K. Kucukcakar, and A. Parker. "CHOP: A constraint-driven system-level partitioner". In 
Proceedings of the Conference on Design Automation, pages 514-519, 1991. 

[35] K. Roy-Neogi, C. Sechen. "Multiple FPGA Partitioning with Performance Optimization". In 
Proc. of 3rd Int. Symp. FPGAs, pages 146-151, 1995. 

[36] M. Kaul and R. Vemuri. "Temporal Partitioning combined with Design Space Exploration for 
Latency Minimization of Run-Time Reconfigured Designs". In Design, Automation and Test 
in Europe, DATE, pages 202-209. IEEE Computer Society Press, 1999. 

[37] K. Kucukcakar. System-Level Synthesis Techniques With Emphasis on Partitioning and Design 
Planning. PhD thesis, University of Southern California, CA, 1991. 

[38] N. Kumar. High Level VLSI Synthesis for Multichip Designs. PhD thesis, University of 
Cincinnati, 1994. 

[39] L. Davis. Handbook of Genetic Algorithms. Van Nostrand, Reinhold, NY, 1989. 

[40] K. Li and K. Cheng. On Three-Dimensional Packing. Siam Journal of Computing, 19:847-867, 
October 1990. 

[41] M. J. Farland. "Value Trace". Carnegie Mellon University, Internal Report, Pittsburgh, PA, 
1978. 

[42] M. Vootukuru. "Partitioning of Register Transfer Level Designs for Multi-FPGA Synthesis". 
In VIUF Conference, Spring 1996. 

[43] M. Vootukuru. "Performance Estimation and Partitioning of VHDL Models for FPGA Imple- 
mentation". Master's thesis, University of Cincinnati, USA, July 1996. 

[44] Min Xu, F.J. Kurdahi. "Layout-Driven High Level Synthesis for FPGA Based Architectures". 
In Proc. of Design Automation and Test in Europe, pages 446-450, February 1998. 

[45] M.J.McFarland and T.Kowalski. "Incorporating bottom-up design into hardware synthesis". 
In IEEE Transactions on CAD, volume 9, No.9, September 1990. 

[46] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-Packing-Based Module 
Placement. In Proceedings of the IEEE International Conference on Computer-Aided Design, 
pages 472-479, November 1995. 

[47] N. A. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Academic Pub- 
lishers, Boston, 1993. 

162 



[48] N. Kumar, V. Srinivasan, and R. Vemuri. "Hierarchical Behavioral Partitioning for Multi 
Component Synthesis". In Proc. European Design Automation Conference, pages 212-219, 
1996. 

[49] N. Narasimhan. "Formal-Assertions Based Verification in a High-Level Synthesis System". 
PhD thesis, University of Cincinnati, ECECS Department, 1998. 

[50] N. Narasimhan, et al. Theorem Proving Guided Discovery of Formal Assertions in Resource- 
Constrained Scheduler for High-Level Synthesis. In Intl. Conference on Computer Design, Oct 
1998. 

[51] N-S Woo, J. Kim. "An Efficient Method of Partitioning Circuits for Multi-FPGA Implemen- 
tations". In Proc. 30th ACM/IEEE Design Automation Conference, pages 202-207, 1993. 

[52] N. Woo, A.E. Dunlop, W. Wolf. "Codesign from Cospecification". In IEEE. Computer, pages 
42-47, January 1994. 

[53] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli. System Level Hardware/Software Partitioning 
Based on Simulated Annealing and Tabu Search. In Design Automation for Embedded Systems, 
2, Kluwer Academic Publishers, pages 5-32, 1997. 

[54] P. Harper, S. Krolikoski, and O. Levia. "Using VHDL as a Synthesis Language in the Honeywell 
VSYNTH System". In Proceedings of Computer Hardware Description Languages and their 
Applications, pages 315-330. Elsevier, June 1989. 

[55] P. Sawkar, D. Thomas. "Multi-way Partitioning for Minimum Delay for Look-Up Table Based 
FPGAs". In Proc. 32nd ACM/IEEE Design Automation Conference, pages 201-205, 1995. 

[56] P.G.Paulin and J.P.Knight. "Force Directed Scheduling for the Behavior Synthesis of ASICs". 
In IEEE Transactions on CAD, volume 8, pages 661-679, June 1989. 

[57] P.K. Chan, M. Schlag, J. Zien. "Spectral-Based Multi-Way FPGA Partitioning". In Proc. of 
3rd Int. Symp. FPGAs, pages 133-139, 1995. 

[58] R. Ernst, J. Henkel, T. Benner. "Hardware-Software Cosynthesis for Microcontrollers". In 
IEEE. Design & Test of Computers, pages 64-75, December 1993. 

[59] R. K. Gupta and G. De Micheli. "Partitioning of funtional models of synchronous digital 
systems". In Proceesings of the International Conference on Computer-Aided Design, pages 
216-219, 1990. 

[60] R. Kuznar, F. Brglez, B. Zajc. "Multi-way Netlist Partitioning into Heterogeneous FPGAs 
and Minimization of Total Device Cost and Interconnect". In Proc. 31st ACM/IEEE Design 
Automation Conference, pages 228-243, 1994. 

[61] R. Vemuri. Genetic algorithms for Partitioning, Placement, and Layer Assignment for Multi- 
chip Modules. PhD thesis, University of Cincinnati, USA, July 1994. 

[62] R. Vemuri, H. Carter, and P. Alexander. "Board and MCM Level Synthesis for Embedded 
Systems: The COMET Cosynthesis Environment". In Proceedings of First Annual RASSP 
Conference, August 1994. 

163 



[63] R.Camposano and V.J. Eijndhoven. "Partitioning a design in structural synthesis". In Pro- 
ceedings of the European Conference on Design Automation, pages 14-18, 1987. 

[64] R.K. Gupta, G.De Micheli. "Hardware-Software Cosynthesis for Digital Systems". In IEEE. 
Design & Test of Computers, pages 29-40, September 1992. 

[65] R.K. Gupta, G.De Micheli. "System-level Synthesis using Re-programmable Components". In 
Proc. European Design Automation Conference, pages 2-7, 1992. 

[66] S. Govindarajan and R. Vemuri. "Cone-Based Clustering Heuristic for List Scheduling Al- 
gorithms". In Proceedings of European Design & Test Conference (ED&TC), pages 456-462, 
Paris, France, March 1997. IEEE Computer Society. ISBN 0-8186-7786-4. 

[67] S. Govindarajan and R. Vemuri. "An Efficient Clustering-Based Heuristic for Time- 
Constrained Static-List Scheduling. In Proceedings of the IEEE Design, Automation and Test 
in Europe, DATE Conference, 2000. 

[68] S. Govindarajan, I. Ouaiss, V. Srinivasan, M. Kaul and R. Vemuri. "An Effective Design 
System for Dynamically Reconfigurable Architectures". In Proceedings of Sixth Annual IEEE 
Symposium on FPGAs for Custom Computing Machines (FCCM), pages 312-313, Napa, Cal- 
ifornia, April 1998. IEEE Computer Society. ISBN 0-8186-8900-5. 

[69] S. Govindarajan, V. Srinivasan, P. Lakshmikanthan, and R. Vemuri. A Technique for Dynamic 
High-Level Exploration During Behavioral-Partitioning for Multi-Device Architectures. In 
Proc. of the 13th IEEE Intl. Conf. on VLSI Design, Calcutta, India, January 2000. Received 
the Best Paper Award. 

[70] S. Hauck, G. Borriello. "Logic Partition Orderings for Multi-FPGA Systems". In Proc. of 3rd 
Int. Symp. FPGAs, pages 32-38, 1995. 

[71] S. Kirkpatrick, CD. Gelatt, M.P. Vecchi. "Optimization by Simulated Annealing". In Science, 
vol 220, no.4598„ pages 671-680, 1983. 

[72] S. P. Levitan et al. "Using VHDL as a Language for Synthesis of CMOS VLSI Circuits". 
In Proceedings of Computer Hardware Description Languages and their Applications, pages 
331-346. Elsevier, June 1989. 

[73] S. M. Sait and H. Youssef.  VLSI Physical Design Automation. IEEE Press, 1995. 

[74] S.Govindarajan and R.Vemuri. Dynamic Bounding of Successor Force Computations in the 
Force Directed List Scheduling Algorithm. In Proceedings of IEEE International Conference 
on Computer Design (ICCD), pages 752-757, Austin, Texas, October 1997. 

[75] U. Steinhausen, R. Camposano, et al. "System-Synthesis Using Hardware / Software Code- 
sign". In International Workshop on Hardware-Software Co-Design, October 1993. 

[76] V. Catania, M. Malgeri, M. Russo. "Applying Fuzzy Logic To Codesign Partitioning". In 
IEEE Micro, pages 62-70, June 1997. 

[77] V. Srinivasan. Partitioning for FPGA-Based Reconfigurable Computers. PhD thesis, University 
of Cincinnati, USA, August 1999. 

164 



[78] V. Srinivasan, R. Vemuri. "Task-level Partitioning and RTL Design Space Exploration for 
Multi-FPGA Architectures". In Int. Symposium on Field-Programmable Custom Computing 
Machines, April 1999. 

[79] V. Srinivasan, Ram Vemuri, Ranga Vemuri. Genetic Algorithms for Physical Design of Multi- 
Chip Modules. Submitted to the IEEE Trans, on VLSI Systems. 

[80] V. Srinivasan, S. Radhakrishnan, and R. Vemuri. Hardware/Software Partitioning with In- 
tegrated Hardware Design Space Exploration. In Proc. of Design Automation and Test in 
Europe, pages 28-35, February 1998. 

[81] Vinoo Srinivasan. "Partitioning in Reconfigurable Computing Environments". PhD thesis, 
University of Cincinnati, ECECS Department, 1999. 

[82] W-J Fang, A. Wu.   "A Hierarchical Functional Structuring and Partitioning Approach for 
Multi-FPGA Implementations". In IEEE Trans, on CAD, vol. 9 No. 5, pages 500-511, Nov 
1990. 

[83] W. J. Fang and A. C. H. Wu. "Integrating HDL Synthesis and Partitioning for Multi-FPGA 
Designs". In IEEE Design and Test of Computers, pages 65-72, April-June 1998. 

[84]  "Wildforce". Wildforce Reference Manual, Document #11849-0000. 

[85] M. Xu. Linking High Level Synthesis with Physical Design. PhD thesis, University of California, 
Irvine, 1997. 

[86] Y. Chen, Y. Hsu, and C. King. "MULTIPAR: Behavioral partition for synthesizing multipro- 
cessor architectures". In IEEE Transactions on VLSI systems, volume 2, No. 1, pages 21-32, 
March 1994. 

[87] T. Yamanouchi, K. Tamakashi, and T. Kambe. Hybrid Floorplanning Based on Partial Clus- 
tering and Module Restructuring. In Proceedings of the IEEE International Conference on 
Computer-Aided Design, pages 478-483, 1996. 

[88] Atmellnc, "Configurable Logic: Design and Application Book",http://www.atmel.com. 

[89] B. L. Hutchings and M. J. Wirthlin, "Implementation Approaches for Reconfigurable Logic 
Applications", Field-Programmable Logic and Applications, FPL 1995, pp. 419-428. 

[90] M. Dorfel and R. Hofmann, "A Prototyping System for High Performance Communication 
Systems", IEEE Workshop on Rapid System Prototyping, RSP 1998, pp. 84-88. 

[91] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki and A. Agarwal, "Logic emulation with vir- 
tual wires", IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 
vl6, n6, June 1997. 

[92] R. D. Hudson, D. I. Lehn and P. M. Athanas, "A Run-Time Reconfigurable Engine for Image 
Interpolation", IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998, 
pp. 88-95. 

[93] M. J. Wirthlin and B. L. Hutchings, "Sequencing Run-Time Reconfigured Hardware with Soft- 
ware", ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA 
1996, pp. 122-128. 

165 



[94] M. J. Wirthlin and B. L. Hutchings, "A Dynamic Instruction Set Computer", IEEE Symposium 
on FPGAs for Custom Computing Machines, FCCM 1995, pp. 99-106. 

[95] K. M. GajjalaPurna and D. Bhatia, "Emulating Large Designs on Small Reconfigurable Hard- 
ware", IEEE Workshop on Rapid System Prototyping, RSP 1998, pp. 58-63. 

[96] M. B. Gokhale and J. M. Stone, "NAPA C:Compiling for Hybrid RISC/FPGA Architectures", 
IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998, pp. 126-135. 

[97] W. Luk, N. Shirazi and P. Cheung, "Automating Production of Run-Time Reconfigurable 
Designs", IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998, pp. 
147-156. 

[98] M. Chu, N. Weaver, K. Sulimma, A. DeHon and J. Wawrzynek, "Object Oriented Circuit- 
Generators in Java", IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 
1998, pp. 158-166. 

[99] J. Spillane and H. Owen, "Temporal Partitioning for Partially-Reconfigurable-Field- 
Programmable Gate", Reconfigurable Architectures Workshop in 12th International Par- 
allel Processing Symposium and 9th Symposium on Parallel and Distributed Processing, 
IPPS/SPDP 1998, pp. 37-42. 

[100] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul and R. Vemuri, "An Integrated Parti- 
tioning and Synthesis System for Dynamically Reconfigurable Multi-FPGA Architectures", 
Reconfigurable Architectures Workshop in 12th International Parallel Processing Symposium 
and 9th Symposium on Parallel and Distributed Processing, IPPS/SPDP 1998, pp. 31-36. 

[101] K. Roy-Neogi and C. Sechen, "Multiple FPGA partitioning with performance optimization", 
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA 1995, pp. 
146-152. 

[102] P. Chan, M. Schlag and J. Zien, "Spectral-based multi-way FPGA partitioning", 
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA 1995, 
pp. 133-139. 

[103] W. Fang and A. Wu, "A Hierarchical Functional Structuring and Partitioning Approach for 
Multiple-FPGA Implementations", IEEE Transactions on Computer-Aided Design, vl6, nlO, 
Oct 1997, pp. 1188-1195. 

[104] M. Kaul and R. Vemuri, "Optimal Temporal Partitioning and Synthesis for Reconfigurable 
Architectures", Design and Test in Europe, DATE 1998, pp. 389-396. 

[105] M. Kaul, R. Vemuri, S. Govindarajan and I. Ouaiss, "An Automated Temporal Partitioning 
and Loop Fission approach for FPGA based reconfigurable synthesis of DSP applications", 
36th Design Automation Conference, DAC 1999. 

[106] C. H. Gebotys, "Optimal Synthesis of Multichip Architectures", IEEE ICC AD, Nov. 1992, 
pp. 238-241. 

[107] S. Trimberger, "Scheduling designs into a Time-Multiplexed FPGA", ACM/SIGDA Interna- 
tional Symposium on Field Programmable Gate Arrays, FPGA 1998, pp. 153-160. 

166 



[108] R. Niemann and P. Marwedel, "An Algorithm for Hardware/Software Partitioning Using 
Mixed Integer Linear Programming", Proceedings of the European Design and Test Conference, 
ED&TC, 1996. 

[109] A. Kalavade, "System-Level Codesign of Mixed Hardware-Software Systems", Ph.D. Disser- 
tation, University of California, Berkeley, 1995. 

[110] D. S. Rao and F. Kurdahi, "Hierarchical Design Space Exploration for a Class of Digital 
Systems", IEEE Transactions on VLSI, v 1, n 3, Sept 1993, pp. 282-294- 

[111] H. Schmit, L. Arnstein, D. Thomas and E. Lagnese,"Behavioral Synthesis for FPGA-based 
Computing", IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1994, 
pp. 125-132. 

[112] R. Dutta, J. Roy, and R. Vemuri, "Distributed Design Space Exploration for High-Level 
Synthesis Systems", 29th Design Automation Conference, DAC 1992, pp. 644-650. 

[113] G. D. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994. 

[114] M. Wolf, High Performance Compilers for Parallel Computing, Addison-Wesley Publishers, 
1996. 

[115] S. Y. Kung, VLSI Array Processors, Prentice Hall 1988. 

[116] S. Trimberger, "A Time-Multiplexed FPGA", IEEE Symposium on FPGAs for Custom Com- 
puting Machines, FCCM 1997, pp. 22-28. 

[117] S.M. Scalera, J. R. Vazquez, "The Design and Implementation of a Context Switching FPGA", 
IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998, pp. 78-85. 

[118] WILDFORCE Reference Manual, Document #1189 - Release Notes, Annapolis Micro Sys- 
tems, Inc.. 

[119] Y. Hung, A. C. Parker, "High-Level Synthesis with Pin Constraints for Multiple-Chip De- 
signs", 29th Design Automation Conference, 1992. 

[120] G. K. Wallace, "The JPEG Still Picture Compression Standard", ACM Communications, 
1991. 

[121] P. Hansen, B. Jaumard and V. Mathon, "Constrained Nonlinear 0-1 programming", ORSA 
Journal of Computing, v5, n2, 1993, pp. 97-119. 

[122] F. Glover and E. Woolsey, "Converting the 0-1 Polynomial Programming Problem to a 0-1 
Linear Program", Operations Research 21:1, 1974, PP- 156-161. 

[123] Pierre G. Paulin and John P. Knight, "Force Directed Scheduling for the behavioral synthesis 
of ASICs," IEEE Trans. Computer Aided Design, Vol.8, pp. 661-679, June 1989. 

[124] Raul Camposano, Wayne Wolf, "High-Level VLSI Synthesis", Kluwer Academic Publishers, 
1991. 

[125] Daniel Gajski, Nikil Dutt, "High-Level Synthesis", Kluwer Academic Publishers, 1992. 

167 



[126] D.D. Gajski, N.D. Dutt, and B.M. Pangrle, "Silicon compilation (tutorial)," in Proc. IEEE 
1986 Custom Integrated Conf. (Rochester NY), May 1986, pp. 102-110. 

[127] Jan Vanhoof et. al., "High-Level Synthesis for Real-Time Digital Signal Processing", Kluwer 
Academic Publishers, 1993. 

[128] J. Lee, Y. Hsu, and Y. Lin, "A new Integer Linear Programming Formulation for the Schedul- 
ing Problem in Data-Path Synthesis," Proc. of the Int. conf. on Computer-Aided Design, pp. 
20-23, 1989. 

[129] I-C. Park and C-M. Kyung, "Fast and Near Optimal Scheduling in Automatic Data Path 
Synthesis," Proc. of the 28th DAC, pp. 680-685, 1991. 

[130] R. Camposano, "Path-Based Scheduling for Synthesis," IEEE Trans, on CAD of Integ. Cir. 
and Systems, vol. 10, no. 1, pp. 85-93, Jan 1991. 

[131] Sriram Govindarajan and Ranga Vemuri, "Cone-Based Clustering Heuristic for List- 
Scheduling Algorithms", Proceedings of the ED&TC 1997, Session 9C: New Ideas in Schedul- 
ing. 

[132] W.J.F Verhaegh, et al., "Improved Force-Directed Scheduling", Proceedings of the ED AC, 
pp. 430-435, 1991. 

[133] W.J.F Verhaegh, et al., "Efficiency Improvements for Force-Directed Scheduling", Proceed- 
ings of the ICCAD, pp. 286-291, 1992. 

[134] S.Davidson et.al., "Some Experiments in local microcode compaction for horizontal ma- 
chines", IEEE Trans. Comp., pp. 460-477, July 1981. 

[135] Phillip E. Mattison, "Practical Digital Video with Programming Examples in C", John Wiley 
& Sons, Inc., 1994. 

[136] S.Y.Kung, H.J.Whitehouse, T.Kailath, "VLSI and Modern Signal Processing", Prentice-Hall, 
Inc., 1985. 

[137] Michael Wolfe, "High Performance Compilers for Parallel Computing", Addison-Wesley Pub., 
1996. 

[138] Jacek M. Zurada, "Introduction to Artificial Neural Systems", West Publishing Company, 
1992. 

[139] M. Vasilko and D. Ait-Boudaoud, "Architectural Synthesis Techniques for Dynamically Re- 
configurable Logic", FPL'96. 

[140] Iyad Ouaiss et al., "An Integrated Partitioning and Synthesis System for Dynamically Re- 
configurable Multi-FPGA Architectures", Fifth Reconfigurable Architectures Worshop, March 
1998. 

[141] Gregory K. Wallace, "The JPEG Still Picture Compression Standard", Communications of 
the ACM, pages 30-44, April 1991. 

[142] Mattison E. Phillip, "Practical Digital Video with Programming in C", Wiley, New York, 
1994 

168 



[143] Naren Narasimhan et al., "Rapid Prototyping of Reconfigurable Coprocessors", International 
Conference on Application-specific Systems, Architectures and Processors, August 1996. 

[144] M. Kaul and R. Vemuri, "Optimal Temporal Parititioning and Synthesis for Reconfigurable 
Architectures", to appear in Design and Test in Europe '98. 

[145] C.H. Gebotys and M. I. Elmasry, "Optimal VLSI Architectural Synthesis: Area, Performance 
and Testability",  Kluwer Academic Publishers, 1992. 

[146] B. Landwehr, P. Marwedel and R. Domer, "OSCAR: Optimum Simultaneous Scheduling, 
Allocation and Resource Binding Based on Integer Programming", Proceedings of the EuroDac, 
p90-95, 1994. 

[147] M. Vootukuru, R. Vemuri, and N. Kumar, "Resource Constrained RTL Partitioning for Syn- 
thesis of Multi-FPGA Designs", Proceedings of the 10th International Conference on VLSI 
Design, IEEE Press, 12 pages, 140-144, January 1997. 

[148] Cohoon J. and W. Paris, "Genetic Placement", IEEE Trans, on CAD, vol. CAD-6 No. 6, 
pages 956-964, November 1987. 

[149] Shahookar K. and P. Mazumdar, "A Genetic Approach to Standard Cell Placement using 
Meta-genetic Parameter Optimization", IEEE Trans, on CAD, vol. 9 No. 5, pages 500-511, 
Nov. 1990. 

[150] S. Raman and L. M. Patnaik, "Performance-Driven MCM Partitioning Through an Adaptive 
Genetic Algorithm", IEEE Trans, on VLSI Systems, vol. 4(4), pp. 434-444, Dec 1996. 

[151] Sreenivasa Rao D., F.J.Kurdahi, "Hierarchical design space exploration for a class of digital 
systems", IEEE Transactions on VLSI Systems, 1993. 

[152] Jan Vanhoof et al., "High-Level Synthesis for Real-Time Digital System Processing", Kluwer 
Academic Publishers, 1993. 

169 


