
AFRL-IF-WP-TR-2001-1549

COMPUTER AIDED ENGINEERING FOR
RECONFIGURABLE COMPUTING
(CAERC)

DR. RANGA VEMURI

UNIVERSITY OF CINCINNATI
LABORATORY FOR DIGITAL DESIGN ENVIRONMENTS
DEPARTMENT OF ECECS, ML. 30
CINCINNATI, OH 45221-0030

OCTOBER 2001

FINAL REPORT FOR PERIOD 25 JULY 1997 - 30 SEPTEMBER 2001

l Approved for public release; distribution unlimited

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

20020621 048

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE
(NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING
FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

AL SCARPELLI ^
Project Engineer/Team Leader
Embedded Info Sys Engineering Branch
Information Technology Division

feMES S. WILLIAMSON, Chief
Embedded Info Sys Engineering Branch
Information Technology Division
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a specific document requires its return.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)

October 2001

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

07/25/1997 - 09/30/2001
4. TITLE AND SUBTITLE

COMPUTER AIDED ENGINEERING FOR RECONFIGURABLE
COMPUTING (CAERC)

5a. CONTRACT NUMBER

F33615-97-C-1043
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62204F

6. AUTHOR(S)

DR. RANGA VEMURI
5d. PROJECT NUMBER

6096
5e. TASK NUMBER

40
5f. WORK UNIT NUMBER

37
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UNIVERSITY OF CINCINNATI
LABORATORY FOR DIGITAL DESIGN ENVIRONMENTS
DEPARTMENT OF ECECS, ML. 30
CINCINNATI, OH 45221-0030

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSEES)

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/IFTA

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-IF-WP-TR-2001 -1549

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT (Maximum 200 Words)

Synthesis and Partitioning for Adaptive and Reconfigurable Computing Systems (SPARCS) is a computer aided engineering
environment for reconfigurable computers. SPARCS contains software implementations of a variety of methods and algorithms for
various subproblems for automating the task of producing designs for multi-FPGA (Field Programmable Gate Array) based
reconfigurable computers. The SPARCS system includes tools for temporal partitioning, spatial partitioning, high-level synthesis,
physical design, and arbiter synthesis. This is a comprehensive report on the SPARCS project, describing various techniques
developed for solving these problems. In addition, this report contains some experimental results demonstrating the effectiveness of
the SPARCS tools.

15. SUBJECT TERMS:

Reconfigurable Computing, Computer Aided Design, Design Automation, Field Programmable Gate Arrays, Partitioning,
Synthesis

16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

186

19a NAME OF RESPONSIBLE PERSON (Monitor)

Alfred Scarpelli
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6548 x3603

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Contents

1 Introduction 1

1.1 Project Goals and Objectives 1

1.2 Summary of Technical Issues 2

1.3 Description of Tasks 4

1.4 Overview of the Report 5

2 RC Architecture Specification Style in VHDL 6

2.1 Introduction 6

2.2 BBIF Specification 7

2.3 USM Specification 8

2.3.1 Introduction 8

2.3.2 Unified Specification Model 8

2.3.3 Summary of USM Specification 19

3 Temporal Partitioning 20

3.1 Introduction 20

3.2 Motivation 22

3.3 Previous Work 24

3.4 System Design Flow 26

3.5 Architecture, Design Process, and Memory Model 27

3.5.1 Reconfigurable Architecture Model 27

3.5.2 Design Process Model 28

3.5.3 Memory Model 28

3.6 Temporal Partitioning and Design Space Exploration by an Optimal Search Algorithm 29

m

3.6.1 Preprocessing 30

3.6.2 Partition Space Exploration Algorithm 31

3.6.3 Experimental Results for Optimal Search Algorithm 35

3.7 Temporal Partitioning and Design Space Exploration by Iterative Search Algorithm 39

3.7.1 Preprocessing 39

3.7.2 Algorithm for Design Execution Time Reduction 40

3.7.3 Partition Space Exploration Algorithm 41

3.7.4 Modifications to the ILP model 41

3.7.5 Experimental Results for the Iterative Constraint Satisfaction Algorithm . . 42

3.8 Comparison with List Based Scheduling Algorithm 47

3.9 Extensions and Limitations of the Work 49

3.9.1 Intermediate Data Transfer Time 49

3.9.2 Intermediate Data Overhead 52

3.9.3 Limitations 53

3.10 Conclusion 53

4 Architecture-Driven Spatial Partitioning 54

4.1 Introduction 54

4.2 Input Specification Models 56

4.2.1 Specification for Fine-grained Partitioning 56

4.2.2 Specification for Coarse-grained Partitioning 57

4.3 Target RC Model 58

4.4 Data Flow Graph Partitioning 60

4.4.1 Partitioning and Synthesis Process for DFGs 60

4.4.2 Partition Cost Evaluation for DFG Partitioning 62

4.4.3 Partitioning Engine for DFG Partitioning 64

4.4.4 Experimental Results for DFG Partitioning 65

4.4.5 Observations and Summary for DFG Partitioning 67

4.5 Block Graph Partitioning 68

4.5.1 Partitioning and Synthesis Process for BBGs 69

4.5.2 Design Space Exploration Engine 70

IV

4.5.3 Partition Cost Evaluation 73

4.5.4 Integration of Partitioning with HLS Exploration 74

4.5.5 Experimental Results for Block-Level Partitioning 76

4.5.6 Observations and Summary of the Block-Level Partitioning 80

4.6 Conclusions 82

5 Partitioning with Synthesis 86

5.1 Introduction 86

5.2 Partitioning Knowledgeable Exploration Model for the USM 88

5.2.1 The Exploration Control Interface 90

5.3 The Exploration Algorithm 90

5.3.1 Implementing the ECI 93

5.3.2 Illustrative Example 94

5.4 Integrating Exploration and Partitioning in SPARCS 95

5.4.1 Interaction with Temporal Partitioning 95

5.4.2 Interaction with Spatial Partitioning 97

5.5 Results 97

5.5.1 Exploration Results from GA-/SA-based Spatial Partitioners 98

5.5.2 Onboard Testing 100

5.6 Summary 101

6 Light Weight Versions of Existing Synthesis Algorithms 102

6.1 Introduction 102

6.2 Related Work 103

6.3 Force Directed List Scheduling 104

6.4 Motivation through an Example 105

6.5 The Stability Concept 106

6.6 FDLS that uses a Stability Condition 107

6.7 Results HO

6.8 Conclusion H3

7 RC and FPGA FloorPlanning 114

7.1 Introduction 114

7.2 Floorplanning Problem 115

7.3 Solution 116

7.3.1 Initializing Bucket Size 119

7.3.2 Bucket List, L' 120

7.3.3 Clustering 120

7.3.4 Increment Bucket Size 122

7.3.5 Cluster Placement 122

7.3.6 Intracluster Placement 125

7.3.7 Intramacro Placement 126

7.3.8 Pack 126

7.4 Test Methodology 130

7.5 Results and Analysis 132

7.6 Conclusions 134

8 Portable RC Development for Demonstration 136

9 Prototype Software Development, Testing and Demonstration 138

9.1 Introduction 138

9.2 Design Example 139

9.3 The Design Flow 140

9.3.1 SPARCS System 140

9.3.2 DCT Task Graph 141

9.3.3 Temporal Partitioning 143

9.3.4 Spatial Partitioning 146

9.3.5 High-Level Synthesis 148

9.4 Experimental Results 150

9.5 Conclusions 153

A BBIF Specification 154

A.l BBIF Model and Formal Notations 154

A.2 Translation and Profiling 155

VI

A.3 Component Library and Functional Unit Instantiation 158

Bibliography 160

Vll

List of Figures

2.1 Hierarchical Modeling 7

2.2 USM Task Graph Example 9

2.3 Synchronization of Task Execution 11

2.4 Synchronization of Data Transfer 12

2.5 Conditional Task Execution 12

2.6 Loop Dependencies 13

2.7 Task Model 14

2.8 Example Flow Graph 15

2.9 Dependency Graph 17

2.10 Conditional Constructs 18

2.11 Loop Statement 19

3.1 Multiple design points for a task 22

3.2 Temporally partitioned design example 22

3.3 Design space exploration 24

3.4 Behavior task graph with implicit outer loop 26

3.5 System design flow 27

3.6 RTR architecture model 28

3.7 Block-processing model 29

3.8 Generation of partition size upper bound 31

3.9 Partition refinement procedure 32

3.10 Memory constraint 33

3.11 Execution time estimation 34

3.12 Task graph for DCT 36

Vlll

3.13 Iterative procedure for reducing design execution time 40

3.14 Partition refinement procedure 42

3.15 Task graph for the AR filter 43

3.16 Task graph for DCT, 8 of the 32 tasks are shown 44

3.17 Reduction of time for memory access 51

4.1 Vprod: DFG for 8x8 vector product: Example 57

4.2 Example of block graph, extracted from BBIP 58

4.3 Block Graph of 2D FFT 59

4.4 The Reconfigurable Architecture Model 59

4.5 RC Partitioning and Synthesis process for DFGs 61

4.6 Synthesis and Partitioning Environment for Block Graphs 69

4.7 Model for the Exploration Engine 70

4.8 Block Diagram of the HLS Exploration Engine 71

4.9 Flow chart for the HLS Exploration Engine 72

4.10 Template Partitioning Algorithm for Simulated Annealing 75

5.1 SPARCS Design Automation System for RCs 87

5.2 The USM exploration model 89

5.3 USM Exploration Algorithm 91

5.4 Design Space of a Task 92

5.5 Task Latencies During Exploration 94

5.6 During Exploration, Iteration Vs. : (a) Design Area and (b) Design Latency 95

5.7 Template of a GA-based or SA-based USM Partitioner 96

5.8 USM Exploration and Partitioning Results for DCT 98

6.1 Force Directed List Scheduling Algorithm 104

6.2 (a) Filter Behavioral Specification (b) The DFG 105

6.3 Topological ordering of ready operations and their descendants 106

6.4 Dynamic Successor Force Computation in FDLS 109

7.1 Example two-dimensional array L = {hj2,-Jw} of physical logic block
locations (WL = 4 and HL — 4). One logic block can be assigned to each
physical location k £ L 116

IX

7.2 Example L divided into a set L' of 4 buckets. The dimensions of V are
WLi = 2 buckets and Hv = 2 buckets. The dimensions of the example
bucket are WB — 2 logic blocks and HB - 2 logic blocks 117

7.3 Floorplanner execution flow 118

7.4 Example V made up of three 6x2 buckets 121

7.5 Example L' made up of four 3x3 buckets converted to two 3x6 buckets 123

7.6 Example set of hard and soft macros to be placed in Bucket 6 located at
coordinate (12,18) 127

7.7 Example hard macro placement for macros shown in previous figure ... 128

7.8 Example placement of hard and soft macros 128

7.9 Floorplan for CLA circuit 132

7.10 Floorplan for CPU circuit 132

7.11 Floorplan for MATMULT circuit 134

7.12 Floorplan for DCT circuit 134

7.13 Example circuit floorplanned using the pack(M,L) algorithm 135

8.1 PARC Power Circuit 137

9.1 JPEG Image Compression Standard 139

9.2 The SPARCS Design Flow 141

9.3 DCT Graph and Task Partitions 142

9.4 Temporal Partitions for DCT 146

9.5 Layout Integrated High-Level Synthesis 149

A.l VHDL Specification of an ALU 156

A.2 BBIF Specification of the ALU Example 157

A.3 Snapshot of a Typical Component Library 159

List of Tables

3.1 Design points for DCT tasks 36

3.2 Results for combined design-space exploration and block-processing 37

3.3 Results for different reconfiguration overheads 38

3.4 Results for design-space exploration 38

3.5 Design points for the AR filter tasks 43

3.6 Temporal partitioning of the AR filter, Rmax = 196, Or = 30 /J,S, 7 = 0,
6 = 100 (is, k = 3000 44

3.7 Design points for DCT tasks 45

3.8 DCT, Rman = 576, S = 1000/zs, 7 = 1,* = 3000 46

3.9 DCT, Rrnax = 576,6 = 1000/is, 7 = l,Jfc = 1 46

3.10 DCT, Rmax = 1024,(5 = 1000/xs,7 = l,k = 3000 47

3.11 DCT, Rmax = 1024,S = 100^s,7 = 1,k = 3000 48

3.12 Comparison with list based scheduling algorithm 49

3.13 Results for variation of the factor reducing memory access time 52

4.1 Design Data for DFG Partitioning 65

4.2 Results for DFG Partitioning 83

4.3 Results of Layout Synthesis and On-board Testing 84

4.4 Design Data for DFG Partitioning 84

4.5 Results for Block Graph Partitioning 85

5.1 USM Partitioning Results (with fitness < 1) for DCT 99

5.2 USM Partitioning Results for FFT 99

5.3 Results of DCT and FFT tested on Wilforce 100

6.1 Some simple stability conditions 108

XI

6.2 Information on the synthesis benchmarks used 110

6.3 Execution times for FDLS and Dynamic FDLS Ill

6.4 Total Execution Time saved during Design Space Exploration 112

7.1 Macro statistics for example floorplan 124

7.2 Circuit statistics 131

7.3 Tools used for placing (flat netlist) or floorplanning (macro based netlist)
test circuits. All circuit were routed using the corresponding Xilinx
Router. All timing static timing analysis was performed on routed circuits 131

7.4 Floorplanning or placement execution times 133

7.5 Floorplanned/placed circuit (post route) static timing analysis results . . 133

7.6 Floorplanned/placed circuit routing times 133

9.1 Estimates for DCT Operations 142

9.2 Area Estimates for DCT Tasks 142

9.3 Area and Delay Estimates for DCT tasks 150

9.4 Execution times for Static-JPEG 151

9.5 Execution times for Dynamic-JPEG 151

9.6 Average Execution Times 152

Xll

Chapter 1

Introduction

1.1 Project Goals and Objectives

Reconfigurable processors consisting of a sea of uncommitted FPGAs offer the same performance
advantages of custom computing while retaining the flexibility of general purpose instruction
architectures. In 1996, at the begining of this project, it was predicted that in near future
reconfigurable processors can offer lOOx performance improvement over contemporary
microprocessors, and 10-100x reduction in power/gate, 20x progress in density, and l,000,000x
reduction in reconfiguration time compared to current reconfigurable devices.

Unfortunately, state-of-the-art design synthesis methodologies were able to use perhaps 50-75% of
the available gates at 30-50% of the maximum clocking rate of single reprogrammable device and
were woefully inadequate in synthesizing multi-device systems. In order to deliver the
performance expectations of reconfigurable architectures, dramatic improvements in the synthesis
tools were necessary in both directions: (1) ability to synthesize to multiple device architectures,
and, (2) improvement in utilization and delivered performance of each device.

The goal of this project was to develop a coherent design synthesis and partitioning environment
for complete, automated synthesis for reconfigurable processors.

More specifically, the following goals were established for this project.

• Development of new architecture-driven algorithms for both temporal and spatial
partitioning of applications for reconfigurable processors.

• Development of a tool framework for fully coordinated partitioning-synthesis process and
integration of existing as well as new tools into this framework.

• Development of new performance-driven FPGA floor-planning algorithms and new FPGA
pin-assignment algorithms for efficient physical design of reconfigurable processors.

• Incorporation of physical synthesis algorithms into behavioral synthesis in order to generate
highly accurate resource and performance estimates during synthesis.

• Demonstration of the synthesis environment in conjunction with a low-cost, portable,
reconfigurable processor specifically developed for this program.

Based on the Air Force Research Laboratory's objectives stated in the PRDA announcement and
considering pragmatics of the state-of-the-art in the area we conceived this program with the
following primary objectives of equal importance:

• This program shall enhance the state-of-the-art multi-FPGA synthesis tools, developing new
algorithms where necessary as identified in this proposal, and integrate them into a coherent
design synthesis environment for complete, automated synthesis for reconfigurable processors.

• This program shall demonstrate complete, coordinated synthesis capability, combining both
university and industry tools, for delivering the intrinsic capacity of reconfigurable devices
outside the device boundaries, at the system reconfigurable system level.

Unique contributions of this program include,

• Specific targeting of all the tools to selectively reconfigurable architectures which are most
suitable for field-deployment in defense applications and which, as explained in the previous
section, accommodate both static and dynamic reconfigurability.

• Development of a architecture independent synthesis environment where all of tools accept
the architecture specification of the reconfigurable processor as an explicit input.

• Development of a tool framework for fully coordinated partitioning-synthesis process and
integration of existing as well as new tools into this framework.

• Development of new architecture-driven partitioning algorithms so as to make the
synthesis-partitioning process independent of the specific architecture of the reconfigurable
processor.

• Development of new performance-driven FPGA floor-planning and placement algorithms
and new FPGA pin-assignment algorithms for efficient physical design of reconfigurable
processors.

• Incorporation of physical synthesis algorithms into behavioral synthesis in order to generate
highly accurate resource and and performance estimates during synthesis.

• Demonstration of the synthesis environment in conjunction with a low-cost, field-deployable,
selectively reprogrammable multi-FPGA architecture, specifically developed for this
program for a selected avionics application.

1.2 Summary of Technical Issues

Following is a summary of key technical issues addressed in the proposed program.

1. Architecture specification

Our goal is to develop a synthesis and partitioning environment that is independent of the
specific architecture of the target reconfigurable processor. Key to this is the ability to

specify the key components of the architecture in way the tools can make use of them. This
task deals with the development of a notation for the specification of the target architecture
to the various tools in our environment. The notation will be VHDL-based and will make
use of the component declaration and configuration facilities in VHDL.

2. Architecture-Driven Partitioning

Partitioning continues to be a key element for any multi-FPGA system. In case of
reconfigurable processors partitioning has two dimensions:

• Temporal Partitioning:

Temporal partitioning deals with the partitioning of a specification into a number of
ordered subtasks so that the processor needs to be reconfigured between tasks. Recall
that the selectively reconfigurable architectures offer unlimited resources only a finite
number of which can be used at any time. The temporal partitioning step divides the
specification so that each specification segment can be mapped to the processor by
suitably configuring the FPGAs available. Primary issues to consider in temporal
partitioning include reconfiguration costs including the temporary memory needed for
live data storage (context) and reconfiguration time including the time to save and
restore the context.

• Spatial Partitioning:

Spatial partitioning deals with a more traditional task of partitioning a specification
subtask onto the multiple FPGA resource available in the processor. This is the step
where the basic reconfiguration sketch of the processor is determined.

The overall partitioning involves coordination between the temporal and spatial partitioning
steps. For a given specification, at most one temporal partitioning resulting in a number of
subtasks is necessary. For each temporal specification segment, a spatial partitioning is
necessary to determine optimal mapping of the subtask on the FPGAs and hence optimal
configuration.

Temporal partitioning yields a reconfiguration schedule that determines when the processor
will be reconfigured. Spatial partitioning yields a specific reconfiguration bit-streams for
each reconfiguration step in the reconfiguration schedule. Note that although the
reconfiguration schedule is statically determined, it is carried-out dynamically during the
application run-time. Note that both temporal and spatial partitioning should be driven by
the target architecture specification.

3. Macro Based Floor Planning and Pin-Assignment

Two important issues to address during physical design include floor planning and pin
assignment. As discussed in the previous section, lack of proper floor-planning considering
the macro-cell structures leads to poor utilization and poor performance. Similarly, lack of
proper signal to pin assignments at the board level results in poor board-level performance.
The pin assignment problem is complicated by the existence of certain pre-determined pins
and signal locations on reconfigurable boards.

4. High Level and Layout Synthesis Integration

As noted before, to obtain high-performance designs from high-level synthesis systems,
physical design automation tools must be integrated within the high-level synthesis flow.

The key impediment to this is the time consumed for each physical synthesis iteration
during the high-level synthesis process when a large number of alternative structures are
considered. Our approach involves complete integration of high level and layout synthesis
algorithms, by developing light weight versions of layout synthesis algorithms to be
integrated into the high level synthesis tool.

Partitioning-Synthesis Interaction

The question often asked is "Is partitioning first or synthesis first?". Our studies showed
that there is no answer that fits all specifications. Some (small to medium scale)
specifications can be more effectively partitioned at the RTL/gate levels whereas some
(relatively large scale) specifications can be more effectively partitioned at the behavior
level. It is however clear that regardless of when partitioning is done, it should effectively
interact with the subsequent synthesis step and vice-versa. It is best to view partitioning
and synthesis as integrated within the single task of evolving the best hierarchical structure.

1.3 Description of Tasks

The following specific tasks constituted the statement of work:

1. RC Architecture Specification Style

Develop a style for specification of selectively programmable reconfigurable computer
architectures.

2. Temporal Partitioning

Develop temporal partitioning algorithms for VHDL specifications of reconfigurable
computer applications.

3. Architecture-Driven Spatial Partitioning

Develop architecture-driven spatial partitioning algorithms, including pin-assignment, for
reconfigurable computer applications.

4. Partitioning with Synthesis

Integrate the spatial and temporal partitioning algorithms with light-weight synthesis
algorithms, at behavioral, RTL and gate levels.

5. High-level Synthesis with Physical DA

Integrate high-level synthesis algorithms with light-weight layout synthesis algorithms.

6. Light-weight versions of Existing Synthesis Algorithms

Develop light-weight versions of existing synthesis algorithms (behavioral, layout and logic)
suitable for embedding within other synthesis/partitioning programs.

7. RC and FPGA Floor-Planning

Develop algorithms for single and multiple FPGA floor planning taking performance
considerations into account.

8. Portable RC Development for Demonstration

Develop the portable reconflgurable computer system hardware for demonstration purposes.

9. Prototype Software Development, Testing and Documentation

All algorithms, techniques and tools shall be implemented on standard Unix workstations,
primarily in C and C++.

1.4 Overview of the Report

This is a comprehensive final technical report on the "Computer Aided Engineering for
Reconflgurable Computing (CAERC)" project. This report is divided into the following chapters:

1. Reconflgurable Computing (RC) architecture Specification Style in VHDL

Chapter 2 describes the Unified Specification Model (USM) developed for specification of
Reconflgurable Computing (RC) computations.

2. Temporal Partitioning

Chapter 3 describes the research on temporal partitioning of an application for mapping to
a reconflgurable architecture.

3. Architecture-Driven Spatial Partitioning

Chapter 4 describes methods for architecture-driven spatial partitioning for reconflgurable
computing applications.

4. Partitioning with Synthesis

Chapter 5 describes methods for integrating partitioning with synthesis at the behavior
level.

5. Light Weight Versions of Existing Synthesis Algorithms

Chapter 6 describes light weight synthesis algorithms for use in performance estimation
during partitioning.

6. RC and FPGA Floor Planning

Chapter 7 describes floor planning techniques for reconflgurable architectures.

7. Portable RC Development for Demonstration

Chapter 8 describes the Portable and Reconflgurable Computer (PARC) architecture.

8. Prototype Software Development, Testing and Demonstration

Chapter 9 describes the SPARCS (Synthesis and Partitioning for Adaptive, Reconflgurable
Computing Systems) system software. SPARCS is an implementation of the various
algorithms and techniques developed in this research.

Chapter 2

RC Architecture Specification Style in
VHDL

2.1 Introduction

This chapter describes the specification of an application in the RC framework1. The specification
language used to model an application is very important since it molds the application in a way
such that synthesis tools can process it. Furthermore, a good modeling language exposes many
characteristics of the application: parallel threads of execution can be neatly presented, data
structures readily formed, etc. In memory synthesis, the requirements of an efficient modeling
language include being able to introduce address generation logic without intrusive modifications.
Once data structures of the application are mapped to memory banks of the hardware, the
process of adding address generation logic and arbitration mechanisms should be straightforward.
Also, for memory synthesis, a succinct representation of the variables and data structures of an
application is essential. In order to map data structures of the application onto banks of the RC,
data structures should be extracted from the application and presented in a form suitable for
synthesis.

For the memory assignment problem described in this chapter, a hierarchical representation of an
application can capture the implicit parallelism of computational tasks in the design while hiding
the flow of each task's control thread. Furthermore, this hierarchical representation successfully
captures the relationship of computational tasks with the variables of the design.

The hierarchical representation presented in this chapter consists of two specification styles (an
illustrative example is shown in Figure 2.1):

• Fine-grain representation: First, each computational task is represented in the Behavior
Blocks Input Format (BBIF). This model, illustrated in Figure 2.1a is a hierarchical Control
Data Flow Graphs (CDFG) representation that captures the behavior of computations.
Section 2.2 further describes the BBIF format and Appendix A provides further formal
definitions.

'This work was done in conjunction with the SPARCS [26] research team.

Computational
"■•-... Task

Computational
Task

a) BBIF Specification b) USM Specification

Figure 2.1: Hierarchical Modeling

Coarse-grain representation: Second, the overall flow graph is represented in the Unified
Specification Model (USM) format. The USM, illustrated in Figure 2.1b captures the
concurrency and coordination model of a design in a style compatible with hardware
description languages such as VHDL. Section 2.3 defines the USM format.

2.2 BBIF Specification

A computational model is needed to capture the behavior of the fine-grain level of parallelism in a
design. The Behavior Blocks Input Format (BBIF)[49] is a hierarchical CDFG representation
with features well-suited for High-Level Synthesis. A BBIF model represents a behavioral task
with a single thread of control. The BBIF is organized as a list of behavior blocks, where the data
flow and computations are captured within each behavior block, while the control flow is captured
at the inter-block level. The task interacts with the environment through design input and output
ports that are visible across all behavior blocks. The control flow starts at the first behavior block
and transfers from one block to another through the branch construct provided at the end of each
block. The branch statement specifies either an unconditional transfer to a single successor block
or a conditional transfer to one of the series of successor blocks.

In conjunction with the USM specification presented in the next section, the BBIF specification
provides a modeling environment in which inter-task as well as intra-task parallelism can be
efficiently expressed.

The USM specification, presented in Section 2.3, plays an important role since the memory
mapping problem is concerned with the inter-task interface and protocol. BBIF definitions and

notations are provided in Appendix A. A formal and more detailed description of the BBIF
model is provided in [49].

2.3 USM Specification

2.3.1 Introduction

This section proposes a Unified Specification Model (USM) of concurrency and coordination
compatible with VHDL. The specification model embodies a uniform treatment of computation,
communication channels, and memories, facilitating its use across a variety of synthesis
applications. We discuss synthesis semantics of the USM representation and the advantages of the
USM synchronization model in comparison to similar VHDL motivated representations.

VHDL has been used for behavior level specifications for a variety of high-level synthesis tools,
hardware-software co-synthesis systems, and adaptive system synthesis environments. VHDL
provides a rich set of high-level constructs to permit succinct specification of concurrent and
coordinating processes. A variety of intermediate representations [10, 75, 72, 41, 54, 2] have been
proposed to capture various specification elements in VHDL in a form suitable for further
processing during synthesis. These include data-flow graphs (DFG), mixed control-data flow
graphs (CDFG), timed decision tables (TDT), and various flavors of graph-based and table-based
formalisms sometimes augmented with global flow information such as module call graphs
(MCG). Although many of these representations share common features, they also have
application-specific features that inhibit their use across various types of synthesis systems.

This section presents an overview of the Unified Specification Model, and provides insight on
compatibility with VHDL.

The USM representation can be used for: 1) high-level VLSI synthesis [32] where the goal is to
synthesize a CMOS ASIC; 2) hardware-software co-synthesis [62] where the target architecture
contains a general-purpose processor to implement software tasks and a coprocessor to implement
the hardware tasks; and 3) adaptive system synthesis [26] where the target architecture is a
dynamically reconfigurable multi-FPGA board with both local memories for each FPGA and a
shared memory, and a crossbar type communication fabric.

In the next sections, we present a detailed description of the Unified Specification Model and its
semantics.

2.3.2 Unified Specification Model

The Unified Specification Model is a hierarchical representation for specifying the behavior of a
design. The designer can also specify the behavior of the environment in which the design is to
execute. A USM example is shown in Figure 2.2. At the highest level of the USM are two types of
objects called tasks and memory segments. Tasks in the USM represent elements of computation
and memory segments represent elements of data storage. Tasks are classified into design tasks
and environment tasks. Environment tasks are written primarily to specify the I/O model
between the design tasks and the environment. Hence, design tasks are those that are synthesized
and environment tasks are only used to extract information about the I/O interface and protocol.

Shared Memory
Design
Task

channel

Dependency/

M3

Local Memory

Dependency J T/Q)

Environment
Task

Design
Task

Figure 2.2: USM Task Graph Example

All tasks in the USM axe simultaneously executing so as to model concurrency. USM objects
(tasks and memory segments) can be connected through edges that are either channels or
dependencies. USM allows the specification of dependencies among tasks in order to represent
coordination. Channels are used to represent inter-task and task-to-memory communications.

In the following paragraphs, we will present the semantics of the memory segments,
communication channels, dependencies, and finally present a detailed description of how the
computation within a task is specified in the USM.

Memory segments

A memory segment is an element of storage whose size and word length are defined by the user.
A memory segment can be declared as being local to a task (M3 in Figure 2.2), or shared between
multiple tasks (Ml in Figure 2.2). Both environment and design tasks have access to memory
segments.

When a memory segment is used by more than one task as a means of transferring data from one
task to another (i.e. one task is writing to and another is reading from the memory segment), the
designer is responsible for synchronizing the tasks using dependencies. However, if multiple tasks
are accessing different areas of the same segment, or if the tasks are only reading from the
segment, no synchronization is required. It is assumed that the synthesis process would introduce
memory arbitration between the tasks whenever needed. This way, the designer need not worry

about resolving conflicts between memory access operations. This keeps the design
architecture-independent: the synthesis process can map the memory segment to a physical
memory that has either one port or multiple ports; Also, the synthesis process can map multiple
memory segments to the same physical memory. Memory segments are easily implemented in
VHDL as local or shared variable arrays.

Communication channels

Channels provide the means of communication between tasks (environment as well as design
tasks), and between tasks and memory segments. Depending on the bitwidth required between
source and destination, the designer must fix the size of the channel. Between each pair of
communicating objects, one or more channels could be used. However, the design should not
share the same channel across different pairs of objects. Again, if the synthesis process decides to
share channels due to resource constraints, then it will automatically identify those channels and
provide arbitration. This simplifies the task of the designer since manual introduction of
arbitration mechanism for shared channels is not required.

A communication channel used by the designer is unidirectional. However, since synthesis tools
might introduce channel sharing, a physical channel might be bi-directional.

In VHDL, when implementing USM channels, signals with the appropriate bitwidths can be used.

Dependencies

Dependencies are used as means of providing explicit synchronization for data and control flow
between tasks. A dependency is a directed control line from a source task to a destination task.
The semantics of a dependency edge implies that a destination task waits until its corresponding
source tasks initiate its execution. Source and destination tasks can be cither environment or
design tasks. There can be multiple destination tasks dependent on a source task through a single
dependency edge. However, a task may be dependent on several tasks through separate
dependency edges. The flow of task execution is captured by the dependencies in the task graph.
More accurately, the role of a dependency edge is two-fold: it provides synchronization between
one-time executing tasks, and provides synchronization mechanism between tasks involved in
loops. The following two paragraphs present the semantics of these dependencies.

Synchronization using dependencies: Dependency edges provide a way of synchronizing
task execution. This is equivalent to synchronizing data transfer from one task to the other. A
1-bit control flag is associated with each dependency edge. This synchronization mechanism
allows tasks to start execution irrespective of the status of other tasks executing in parallel.

A dependency edge used to order execution of tasks is shown in Figure 2.3 and a dependency edge
used to synchronize data transfer is shown in Figure 2.4. In the example shown in Figure 2.3, task
T2 waits for the completion of task Tl before it begins execution. Whereas in Figure 2.4, task T2
waits for task Tl to write a value into the channel cl2. In these figures, notice that the constructs
Raise()/IsRaised() are used to set/check the value of the control flag. In order to synchronize two
tasks, the source task invokes the Raised() construct on a flag, whereas the destination task waits
in a loop invoking the IsRaisedQ construct on the same flag.

10

TaskTl

{

while not (IsRaised(fl)) nop;

Raise(f2);

}

Task T2

{
while not (IsRaised(f2)) nop;

Raise(ß);

}

Figure 2.3: Synchronization of Task Execution

This synchronization mechanism ensures that the destination task waits until the source task
triggers its execution or that the data is ready for consumption. Note that this type of
dependency edge also allows the conditional execution of tasks. For example in Figure 2.5, the
source task Tl raises either flag fl2 or fl3 based on a condition. Therefore, tasks T2 and T3 are
conditionally dependent on Tl.

Conditional dependencies imply that a destination task need not finish execution but may wait
indefinitely. Hence, the execution semantics of the USM is defined as follows: The execution cycle
for a collection of tasks is defined to finish when all the tasks are indefinitely waiting. The model
assumes that there is an indefinite wait at the end of each task.

In VHDL process synchronization, all tasks have to arrive at a wait state before waiting tasks can
be triggered. However, in USM, the triggering mechanism is not based on the wait command,
instead, each pair of tasks has its own busy-wait synchronization procedure. This allows multiple
processes to run concurrently without the need for global synchronization. On the other hand,
this busy-wait procedure can be easily implemented in VHDL. For simulation purposes, a
busy-wait can be replaced by a simple VHDL wait without loss of functionality.

Loops using dependencies: Dependency edges are also used to implement loops in a task
graph. Since tasks involved in loops might execute more than once, a mechanism is needed to
ensure proper inter-task synchronization.

The (Raised(), IsRaised()) mechanism explained in Section 2.3.1 is not adequate to represent a
loop dependency. This is because there is no control on the number of times a destination task
might execute: Once the flag it is waiting on is raised, a destination task might start executing its
first iteration and then incorrectly proceed to a subsequent iteration since the flag might still be
raised. A solution to this problem is to provide a dependency based on a flag that is toggled each
time the source needs to trigger.

11

Task Tl
{

cl2<=x;
Raise(fl);

i

Task T2
{

while not (IsRaised(fl)) nop;
y<=cl2;

}

Figure 2.4: Synchronization of Data Transfer

fl3

TaskTl
{

if(...)thenRaise(fl2);
else Raise (f 13);

}

Task T2

}

while not (IsRaised(fl2)) nop;
.. body of T2...

Task T3
{

while not (IsRaised(fl3)) nop;
... body of T3 ...

Figure 2.5: Conditional Task Execution

12

f4

fl2/
\ f31

,B
m

TaskTl

{
for(...)do
{

fl2 = not(fl2);

while (f31=old_f31) nop
old_f31=not(old_Gl);

}
Raise(f4);

Task T2

loop forever

while (fl2 = old_fl2) nop;
old_fl2 = not(old_fl2);

f23 = not(f23);

Task T3
{

loop forever
{

while (f23 = old_f23) nop;
old_f23 = not(old_f23);

f31=not(f31);

}

Figure 2.6: Loop Dependencies

Hence, to synchronize two tasks involved in a loop, a toggling dependency edge is used. Each
destination task should not only wait on the value of the flag but also on the event on the flag.
Thus, it is imperative for the destination task to keep track of the old value of the control flag.
This is advantageous since only a single bit value has to be passed between the source and the
destination tasks.

As a result, instead of using two dependency edges (with the Raise/IsRaised mechanism) to
ensure proper execution of loops, a toggling dependency edge solves the problem by introducing
only one flag (instead of two) and a local storage bit in the destination task.

Figure 2.6 shows an example of a loop involving three tasks: Tl, T2, and T3. The control flows
into Tl through the dependency fl. Tl triggers T2 for a number of times specified by the for loop
inside Tl, after which it raises flag f4 and stops. Task T2 is in turn dependent on Tl and will
only be triggered by flag fl2 originating in Tl. Similarly, T3 is dependent on T2 through flag f23.
Finally, T3 triggers the next iteration of Tl through flag f31.

Clearly, for a dependency edge involved in a loop, one 1-bit control flag is still needed but an
additional 1-bit storage in each destination task is required. Note that, initially, the value of the
control flag and all corresponding 1-bit storage flags should be the same (either 0 or 1).

Tasks

A Task (shown in Figure 2.7) consists of a set of inputs and outputs which can be flags, shared
memories and channels, some of which representing design I/O, and a set of local storage

13

Figure 2.7: Task Model

elements that are variables/constants, local memories, or flags. Flags, as mentioned before, are
special storage elements used to represent inter-task dependencies.

Computations within a task are represented as a Control Data Flow Graph (CDFG). The CDFG
is a directed acyclic graph where the nodes represent operations and the edges represent
data/control flow. A node in the CDFG can be represented by a 4-tuple given as:

< name, inputset, outputset, data-dependency set >

The name denotes the ID of the operation, the input_set is the set of all storage elements input to
the node, the output-set is the set of all storage elements output from the node, and the
data-dependency_set consists of the set of all source nodes that a node depends on.

The entire CDFG can be built in a two-step process. A flow graph from the source language can
be first generated and, after a detailed dependency analysis, a dependency graph can be
generated. In the case of a flow graph, the input and output sets of the nodes are formed and the
dependency sets of the nodes are empty.

An example flow graph and a corresponding input specification are shown in Figure 2.8. The
edges in the graph are annotated by the storage names that they represent.

The nodes in a CDFG can be broadly classified into these two types:

• Control Nodes: These nodes are used to represent the flow of control and the CDFG is
organized as a collection of control nodes connected by control edges. Conditional
constructs such as if-then-else and case are represented using the SELECT - END .SELECT
node pairs. The WUR (wait until raised) and WUL (wait until lowered) nodes are used to
represent inter-task dependencies. The LEAVE node is used to represent the exit point from
loops. Further an operation subgraph can be encompassed within a
BEGIN_CONTROLJBLOCK - END_CONTROL_BLOCK node pair. The semantics of these
will be become clear in the following section.

14

(a)

(b)

wait_until_raised (F);
v :=z;
x := v;
v:=a + b + c-d;

WUR

1
\ a 3—Jr ^ c\ / ^

(ST) vVn2 w"3

\ \"" (»+1>) /
X V_/12=(c"*

V~\n4 7\L\
(ST) \7jn5

\ | t3=(a+b*-c-d) /

V /-\n6
(ST)

r /
^--_. .--''

Figure 2.8: Example Flow Graph

• Simple Nodes: These represent relational, arithmetic, and logical operations. They are
binary operations and an expression can be decomposed into a tree of nodes as shown in
Figure 2.8. Also, a ST node is used to represent the assignment of a value to a storage
element.

The flow graph shown in Figure 2.8 captures only the flow of data, but fails to capture all the
concurrencies among the operations. This can be done by performing a detailed dependency
analysis.

Dependency analysis The edges in the CDFG represent dependencies among the nodes.
Dependencies can broadly be classified as: data and control dependencies. Data dependencies
capture the flow of data and hence the order of execution assignment statements. Control
dependencies capture the semantics of sequencing, conditional, and loop constructs. Both these
dependencies should be properly represented in a correct CDFG representation.

A data_dependency_set is a set of 2-tuples, (n,d) where n is an ancestor node and d is one of the
three types of data dependencies (described below) between the two nodes. In the following
paragraphs we will discuss data and control dependencies in some detail. [2] provides a more
detailed discussion on dependencies in programming languages.

Data Dependencies: Given any two operations represented by nodes Nl and N2, where Nl is a
predecessor or ancestor of N2 in the flow graph, we say that:

iV2 is flow dependent on Ni if outputset(Ni) n inputsetföz) ^ 0 (2.1)

15

N2 is anti dependent on N\ if inputset{N\) n outputset{N2) # 0 (2.2)

N2 is output dependent on iV~i if output „set{N{) n outputset{N2) ^ 0 (2.3)

A data dependency is said to exist between two nodes in the operation graph if any of the above
three types of dependencies holds between them. These dependencies can be extracted from
VHDL variable assignment statements. Consider a VHDL specification where A and B are any
two sequential variable assignment statements with A occurring before B. B is said to be flow
dependent on A if a variable that is written to in A is read in B. On the other hand, if the
variable is first read in A and later written to in S, then B is said to be anti-dependent on A. If
the same variable is written to in both A and B, B is said to be output dependent on A.

Control Dependencies: Gajski, Dutt, and Wu in [10] proposed a way to handle control constructs,
by mapping a control-flow representation to an equivalent data-flow representation. This has the
advantage of making the concurrencies in the design explicit but generates a complicated graph
representation that could get too large and has little correspondence to the original specification.
In this section, we will describe a representation that efficiently incorporates control constructs
and alleviates some of the problems that arise in a pure data flow style representation.

We will handle control dependencies with the aid of the control block demarcated by
BEGIN.CONTROLJBLK - END_CONTROL.BLK node pairs. A control block is a suitably
chosen subgraph of an operation flow graph with no other control nodes in it. Thus, edges within
a control block always denote data flow. A control block is said to have executed if the control flow
reaches its END_CONTROL_BLK node. Control flow enters a control block only after all previous
control blocks have executed.

We can thus view the CDFG of any specification as a series of control blocks. A control block
automatically enforces a control dependency, and thus reduces the overhead of maintaining input,
output, and dependency sets of the nodes in the operation graph. This simplifies, to a large
extent, the complexities involved in generating dependencies although there is some loss in
exploiting to the fullest the concurrencies present in the design2.

The dependency graph for the VHDL specification of Figure 2.8 after dependency analysis is
shown in Figure 2.9. Observe the differences between this representation and the earlier flow
graph representation. The subgraphs enclosed by dashed lines show the control blocks. The WUR
node specifies a control boundary. Therefore the control block encapsulating the first subgraph
ends before the WUR node and the second subgraph falls within a new control block. The control
block ensures that all preceding nodes are executed before the WUR node is executed and all
succeeding nodes are executed only after the WUR node is executed. The operation graph
correctly detects dependencies between nodes otherwise missed by the flow graph representation.

From the flow graph in Figure 2.8, it appears that nodes n4 and n6 can be executed in parallel
but the anti-dependence between them is clearly captured in the dependency graph in Figure 2.9.
Further, output dependency between nodes nl and n6 now enforces an order in their execution,
even in the absence of node n4- On the other hand, no order is specified in the execution of the

2This loss can be recovered to a large extent by the use of suitable behavioral transformations that facilitate code
motion across control blocks [18]

16

,END CONTROL BLOC ¥
WUR

/BEGIN_CONTROL BLOCKX

output ^(VA)
n6 /

Figure 2.9: Dependency Graph

nodes in the set {nl, n2, nS} and in the set {n4, n5}. As a result, the nodes in each of these sets
can be executed in parallel. Thus, dependency analysis serves to faithfully capture the semantics
and the concurrencies in the specification.

In the following sections we will explain in some detail the translation of conditionals, loops, and
wait constructs into a CDFG.

Translation of Conditionals, Loops, and Wait Constructs Conditionals: The most
popularly used conditional constructs are the 'if-then-else' statement and the 'case' statement.
These two are easily translated with the help of control blocks, the semantics of which was
explained earlier in Section 2.3.

Case Statement: A typical case statement is shown in Figure 2.10(a). The translated operation
graph of the case statement is shown in Figure 2.10(c). The case statement is translated into an
expression tree followed by a SELECT node whose input set has the final data flow edge in the
expression tree. Therefore, the select node is flow dependent on the final node of the case
expression tree. The select node has several branches with a set of select values for each branch.
The control flows only into that branch whose set of values match with the result of the case
expression. The select node in an operation graph represents this comparison operation that
determines the choice of the branch for control flow.

The statements in a case branch are translated into a subgraph, which is enclosed in a control
block, as shown in Figure 2.10.

17

Subgraph forj

case <expression> expression C X
when vl | v2 => Jflow

<stmt_list_l> / SELECTA
/ (VI.V2J OTHERS \

1
when others => | 1

<stmt_list_2> / BECIN_CONTROL_BLOCK\ / BEOIN_CONTROLBLOCK \

end case ;
' v

(a)
Subgraph foiT \
Stmt_list_l v_)

{ \ Subgraph for
^-\ J Stmt_Iist_2

if <conditional_expression>
then ' \

\ END_CONTROL.BLOCK / \ HND.CONTROL. BLOCK /

<branch-l>
else t t

<branch-2> \END^SELECT/

end if;
V

(b) (c)

Figure 2.10: Conditional Constructs

Therefore, the select node corresponding to a case statement would have as many branches as are
in the case statement, each branch having a control block. This ensures that the case expression
and the branching operation (represented by the select node) are executed before control can flow
into any one of the branches. This enforced control dependency also helps in restricting data
dependency analysis within each branch.

If-then-else Statement: A typical 'if-then-else' statement is shown in Figure 2.10(b). An
'if-then-else' statement can be treated as a case statement with two branches and the case
expression replaced by the conditional-expression. The select values for the first and the second
branches are the Boolean constants TRUE and FALSE, respectively. Any other kind of branching
constructs like the 'if-then-elsif-elsif-else-end if construct can be transformed into an
'if-then-else' statement, the else part of which having another 'if-then-else' statement.

Loops: Loops are usually of three types. The infinite loop with no loop condition, the 'for' loop,
and the 'while' loop. All three loop variations can be represented by the generic form shown in
Figure 2.11.

We will now describe the translation for the generic loop statement whose operation graph is
shown in Figure 2.11. The loop condition is translated into an expression tree followed by a select
node whose input is the resulting edge of the tree. The select node has two branches: (1) The
true select branch has the subgraph for the loop-body enclosed in a control block. (2) The false
select branch has a LEAVE node within a control block. These control blocks ensure that the
loop condition evaluation takes place before the control flows into any of these branches.
Semantics of the loop-block imply that control flow keeps looping inside until the loop condition

18

loop
<condition>

loop_body

end loop;

/ BECIN_CONTROL_BIOCK\^ / BEGrN_CONTKOL_BLOCK\

Subgraph for
loop_body

(LEAVE)

\ END,CONTROL_BLOCK /

rl_f-
\ END_SELECT/

\ENDJLOOP7

Figure 2.11: Loop Statement

evaluates to false and the leave node is reached.

Wait: The WaitJJntilJRaised (WUR) and WaitJJntilXowered (WUL) are implemented as
follows:

WUR(flag) = while (not(IsRaised(flag))) nop;

WUL(fiag) = while (IsRaised(flag)) nop;

Essentially, both the waits are special cases of the loop construct, where the loop condition
subgraph has a simple comparison operation for the raised/lowered value of the flag, and the
subgraph for the loop body is empty.

2.3.3 Summary of USM Specification

In this section, we presented an overview of the Uniform Specification Model. The USM provides
a hierarchical representation to succinctly capture inter-task level control and dataflow, as well as
intra-task operation-level dependencies. More importantly in this work, the USM allows easy
representation of the data structures in an application and provides a good memory synthesis
environment. Data structures are clearly delimited and defined in the USM; resource arbitration
is easily achievable in the USM; and the USM allows memory mapping across different levels of
design abstraction. The BBIF along with the USM specification styles provide an adequate
environment to clearly characterize data structures of a design and allow efficient mapping and
synthesis.

19

Chapter 3

Temporal Partitioning

3.1 Introduction

Reconfigurable Field Programmable Gate Arrays (FPGAs) [29, 28, 88] built of SRAM-based logic
provide designers with flexible computing systems. In these devices, the state of the internal static
memory cells determines the logic functions and interconnections resident within the FPGA
device. This uncommitted array of programmable logic and interconnect on these devices allows
reconfiguration between algorithm implementation on the devices. This advantage of FPGAs over
Application Specific Integrated Circuits (ASICs) allows the user to use the same circuitry for
completely different algorithms by configuring the device between applications. This design
approach is generally referred to as Compile-Time or Static Reconfiguration [89]. Statically
configured FPGAs have been used successfully in the rapid prototyping of designs [90, 91]. The
long fabrication times associated with ASIC design is eliminated. But the device capacity of
FPGAs is far less than that of ASIC chips. Therefore, when synthesizing large designs on FPGAs,
usually multi-FPGA boards are used to increase device capacity. This necessitates spatial
partitioning of the application. In this style of static FPGA design, the FPGA is configured once
at the start of the application, and the same configuration continues till the execution ends.

However, by extending the idea of reconfiguration to intra-application reconfiguration an
application which does not fit on the device is divided into multiple segments and multiple
configurations of the same application are loaded at run-time. This technique is referred to as
Run-Time or Dynamic Reconfiguration (RTR) [89]. Current design tools provide support for
static reconfiguration, but little tool support exists for dynamic reconfiguration.

When a design is partitioned into mutually exclusive partitions that will execute serially on the
reconfigurable processor, the design uses Global Run Time Reconfiguration. All modern FPGAs,
whether fully (XC4000, XCV000) or partially (XC6200, XCV000) reprogrammable, can support
this reconfiguration step. In partially programmable FPGAs the inactive parts of the FPGA can
be reconfigured at run-time even while other parts of the FPGA are active. This flexibility of
partial reconfiguration can be exploited in a design approach where subsets of the application are
reconfigured as the application executes. This can reduce the time to reconfigure the FPGAs by
making it possible to load only the necessary parts of the FPGA. However this increased
flexibility also introduces a lot of complexity in the CAD process needed to design applications for
such a design style.

20

The temporal partitioning approach that we have undertaken focuses on generating global run
time reconfigured designs from behavior specifications of the design. We perform run time
reconfiguration in which the entire device is reprogrammed at the boundaries of the temporal
segments and data is passed from one temporal segment to the next through a RAM which is not
part of the reconfigurable logic. Due to this, structural design is not necessary; behavioral
synthesis can be effectively used.

A shortcoming of current automated temporal partitioning techniques is that they choose the
underlying implementation of the components of their design before partitioning is performed.
Since there are multiple implementations of the components of the designs that vary in the
area/delay, it would be more effective to choose the design implementation while partitioning the
design by exploring different design options. The search of the design space while partitioning
would lead to better partitioned designs.

Due to very high reconfiguration overheads for commercially available reconfigurable hardware,
existing automated temporal partitioning techniques [139, 95, 99, 104, 107] usually focus on
reducing the latency of the temporally partitioned design by minimizing the number of temporal
partitions in the design. But, many DSP applications process an infinite or semi-infinite stream of
input data. We will demonstrate that the design with minimum latency may not be the best
overall solution if we can process multiple inputs on each temporal partition. This technique,
called block-processing can be used to reduce the the reconfiguration overhead.

If the reconfiguration overhead is ignored, the latency of a temporally partitioned design is
usually less than the latency of a static design due to the larger area available. But since the
reconfiguration overhead is an important factor in determining the run time of a design, an RTR
system may perform poorly as compared to a static design if the reconfiguration overhead
dominates the execution time of the design. To overcome the effects of high reconfiguration
overhead, we demonstrate [105] how block processing can be introduced at a post-processing step
after temporally partitioning a design to increase the throughput. In the current work, we develop
a temporal partitioning technique to incorporate block-processing and design space exploration
and demonstrate how this integrated processing can be used to search for optimal temporally
partitioned designs. In this chapter, an Integer Linear Programming (ILP) based integrated
temporal partitioning and design space exploration technique forms a core solution method. For
small sized design problems we solve the ILP model to obtain an optimal solution, and we
demonstrate the effectiveness of our technique with experimental results. To handle large design
problems with our technique we also present an iterative refinement procedure that iteratively
explores different regions of the design space and leads to reduction in the execution time of the
partitioned design. The ILP based integrated temporal partitioning and design space exploration
technique forms a core solution method which is used in a constraint satisfying approach to
explore different regions of the design space. Again, we demonstrate the effectiveness of this
technique with experimental results.

We present the motivation of our work in Section 3.2, previous work in Section 3.3, the design
flow of our tool in Section 3.4, the architecture model, design process model and memory model
in Section 3.5, the ILP model, the optimal search algorithm and its results in Section 3.6, the
iterative algorithm and its experimental results in Section 3.7, results on random graphs and
comparison with other works in Section 3.8, some discussions on extensions and limitations in ■
Section 3.9, and the conclusions in Section 3.10.

21

A B

\ /
C

"

D

3;

Design Point t : 4 multipliers, 2 adden

-

50 ns A B 3',

500 ns - -

80 ns C
V, /

D
>■

3 rt)
Design Point 2 : 2 multipliers. I wider

(a) (b)

Figure 3.1: Multiple design points for a task examDie

3.2 Motivation

In the following discussion we present the problem of task level design space exploration in
temporal partitioning and how its integration with block-processing techniques can improve the
execution time of an RTR design.

Input Specification as Task Graphs: Growing design complexity has led designers to
generate designs at higher levels of abstraction, such as the behavior level. The designer can
concentrate on the required behavior of the application, rather than its implementation. Also
simulation at behavior level is much faster than Register Transfer level (RTL) or gate level
simulation. In this chapter, we concentrate on behavior level design descriptions to be temporally
partitioned. We assume the input specification to be a task graph, where each task consists of a
set of operations. Task boundaries can be given by the designer or, tasks can be automatically
derived from the behavior specification by clustering or template extraction techniques [110]. Our
approach can handle tasks of any level of granularity.

Design Alternatives for Tasks: Depending on the resource/area constraint for the design,
different implementations of the same task which represent different area-time tradeoff points can
be contemplated. These different implementations are design points/Parcto points [113] in the
design space of a task. In Figure 3.1, a task and two different implementations of the task are
represented. Design Point 1 uses two adders and four multipliers, and is scheduled in two control
steps. Design point 2, on the other hand uses less resources and more control steps. If a task is
implemented with less resources then the operations in the task will be executed serially, thus
increasing the latency of the task. On the other hand, an implementation with more resources
reduces the latency but increases the area. Choosing the best design point for each task may not
necessarily result in the best overall design for the specification. The most optimal point for a
task in the context of optimizing the overall throughput of the design will depend on the
architectural constraints of the reconfigurable hardware and the dependency constraints among
the tasks. In the subsequent discussion we will express the latency of a design point in terms of
total execution time and not in number of clock cycles.

If the number of design alternatives for a task are too many, then exploring the large design space
can become too computationally expensive. In such cases, a few 'candidate' design points must be
obtained by effective design space pruning techniques, such as discussed in [110]. Since there is a
gap between the behavior description and the final synthesized design, it is important that we
have accurate synthesis estimates for the tasks. As the size of a task in the task graph is quite
small, we use sophisticated High-Level Synthesis estimators which incorporate layout estimation

22

techniques. Such partitioned designs, can then be predictably taken down to the actual FPGA
layout [100, 44].

Block-Processing in Temporally Partitioned Designs: In many application domains eg.,
Digital Signal Processing, computations are defined on very long streams of input data. In such
applications an approach known as block-processing is used to increase the throughput of a system
through the use of parallelism and pipelining in the area of parallel compilers [114] and VLSI
processors [115]. Block-processing is not only beneficial in parallelizing/pipelining of applications,
but in all cases where the net cost of processing k samples of data individually is higher than the
net cost of processing k samples simultaneously. We can also apply the concept of
block-processing to a single processor reconfigurable system to speedup the processing time.

Figure 3.2 illustrates the use of block-processing to speed up computation in a temporally
partitioned design. The task graph consists of 4 tasks A, B, C, D. It is partitioned into two
temporal partitions as shown in Figure 3.2(b). The latency of temporal partition 1 is 50 ns and of
partition 2 is 80 ns. The reconfiguration time is 500 ns. The latency of the design is
50+500+80+500 = 1130 ns. A single iteration of the task graph executes in 1130 ns. Now three
iterations of this temporally partitioned design will take 3x1130 = 3390 ns. However if we perform
block-processing by sequencing all 3 computations on each temporal partition, the time taken for
the execution is (50+50+50)+500+(80+80+80)+500 = 1390 ns. Thus block-processing amortizes
the reconfiguration overhead over the 3 computations. Block-processing is possible only for
applications that process a large stream of inputs. We represent such applications by a task graph
having an implicit outer loop as shown in Figure 3.2(a). Note that block-processing is possible if
there are no dependencies among the computations for different inputs. In compiler terminology
this means there should be no loop-carried dependencies due to the implicit outer loop, among
different iterations of this loop. In this chapter, we deal with applications for which no
dependencies among computations is present. Most DSP applications such as Image processing,
Template Matching, Encryption algorithms etc. fall in this category. The examples investigated
in the RC community include DCT, FFT, DFT, FIR filter and various image averaging,
smoothing and filtering algorithms. Also many matrix based computations eg. LU Decomposition
for solving linear equations, polynomial interpolation, extrapolation etc. are acyclic in nature.

Integrating Design-Space Exploration and Block-Processing in Temporal
Partitioning: For FPGA based architectural synthesis, the constraints of area of the FPGA in
terms of CLBs (Configurable Logic Blocks)/FGs (Function Generators) and memory are to be
met by the partitioned design. The design alternatives or solutions will vary in the number of
temporal partitions and the latency of the partitioned design. For the spatial partitioning problem
(partitioning of the design for a fixed number of co-existing FPGAs on a board), increasing the
number of partitions has the effect of increasing the overall area for the design, and directly affects
the latency of the design. Increasing the area, generally increases the number of operations that
can execute in parallel (if no dependency constraints exist) and thus decreases the latency of the
design. However, for a temporal partitioning system, increasing the number of partitions increases
the area available for the design, but this increase is 'over time' and not 'over space'. This increase
in number of partitions may or may not result in the reduction of the latency of the design.

When the reconfiguration overhead is very large compared to the execution time of the task it is
clear that minimizing the number of temporal partitions will achieve the smallest latency in the
overall design. In the resultant solution each task will usually be mapped to the smallest area
design point among the set of design points for a task. However, it is not necessary that the
minimum latency design is the best solution. We illustrate this idea with an example. In the

23

Design Pt. 1 :

Design Pi I

Area= 100. Delay = 100ns

Design Pi I

Area= 150. Delay = 200ns

Design Pi. 2

Area - 200. Dela\ A

Area = 100, Delays 100ns

Design Pi. 2 : A A
-5ft

' " Design Pt. 1 : 1 ' '
Design Pi. 2

Area = 300. Delay E

Area = 150, Delay = 200ns

Design Pi. 2 :

Area = 300, Delay = 70ns
B B -7ft

leconfiguralion Time *~- 500 micro sec

FPGA size = 300

Latency = 50C us + 00 cs + 200ns
L-»y. 2'500 us + 50 ns + 70ns

Figure 3.3: Design space exploration

Figure 3.3(a) a task graph is shown. Each task has two different design points on which it can be
mapped. Two different solutions (b) and (c) are shown. If minimum latency solution is required
then solution (b) will be chosen over solution (c) because the latency of (b) is 500.3 /x sec and
latency of (c) is 1000.12 /i sec. Now, if we use (b) and (c) in the block-processing framework to
process 5000 computations on each temporal partition, then the execution time for solution (b) is
2000 fi seconds and for solution (c) is 1600 fi seconds. Therefore if we can integrate the knowledge
about block-processing while design space exploration is being done, then it is possible to choose
more appropriate solutions.

The price paid for block-processing is the higher memory requirements for the reconfigured design.
We call the number of data samples or inputs to be processed in each temporal partition to be the
the block-processing factor, k. This is given by the user and is the minimum number of input data
computations that this design will execute for typical runs of the application. The amount of
block-processing is limited by the amount of memory available to store the intermediate results.

3.3 Previous Work

Design for reconfigurable architectures involves temporal and spatial partitioning and synthesis
[100]. There has been significant research on spatial partitioning [101, 102, 103] and synthesis
[44, 111], though the research on temporal partitioning is in a nascent stage. Currently many
designers perform temporal partitioning manually [92, 93] or the designer needs to specify the
partitioning points of the application to the partitioning tool [96]. Luk, Shirazi and Cheung [97]
take advantage of the partial reconfiguration capability of FPGAs and automate techniques of
identifying and mapping reconfigurable regions from pre-temporally partitioned circuits. Chu et.
al [98] present a partial evaluation technique in their circuit generator. In this technique the
programmer can provide partial evaluation routines for his components. These partial evaluation
routines can then be used to reduce the complexity of the component based on its inputs available
at run-time. This technique also utilizes the partial programming capability of the FPGAs,
however the programmer has to explicitly define the components that can be partially evaluated
and also the method to do so.

Existing automated temporal partitioning techniques, extend scheduling and clustering techniques
of high-level synthesis [139, 95, 99, 107] and focus on minimizing the number of partitions of the
design. In [95, 99, 107] the temporal partitioning technique involves partitioning gate-level

24

designs. Since the design to be partitioned is already synthesized, different synthesis options for
achieving partitioned solutions with lower execution times cannot be explored. Since the
reconfiguration overhead for currently available hardware is very large and dominates the latency
of the design, we need to concentrate on techniques to minimize the effects of the reconfiguration
overhead. We present an automated technique for DSP style applications, that automatically
sequences multiple computations in each temporal partition to reduce the reconfiguration
overhead. To our knowledge, no existing tools perform automated block-processing techniques to
reduce the reconfiguration overhead in the context of reconfigurable processors. Our technique
can also simultaneously handle multiple design constraints, eg., FPGA resources, on-board
memories, and perform design exploration that cannot be handled by current techniques in
[139, 95, 99, 107]. Kaul and Vemuri [104] presented a mathematical model for combined temporal
partitioning and synthesis. In this approach, synthesis cost exploration is performed at an
operation level in the task graph, and the number of alternative solutions explored becomes very
large. This approach can be used to synthesize small-scale behavior specifications. Kaul and
Vemuri also demonstrated the technique of integrated temporal partitioning and design-space
exploration for large design problems by using an iterative constraint satisfaction approach [36].
The design space exploration was performed without considering block-processing, so the goal of
the system was to minimize the latency of the design.

Wirthlin and Hutchings [94] developed an automated technique that uses partial reconfiguration
to load custom instructions at run-time. The instructions in an application are loaded in a
demand-driven manner, and unused instructions are removed. This work is in contrast to our
approach as it performs the loading and unloading of instructions at run time, whereas in our
approach the partitioning into global configurations is performed before the design executes and
not at run time.

Kalavade [109] presents an extended bi-partitioning problem for co-design, where partitioning and
design point selection is performed sequentially, unlike our combined approach. Interger Linear
Programming (ILP) models of other partitioning and synthesis problems have been addressed by
researchers. Simultaneous spatial partitioning and synthesis is formulated as an ILP by Gebotys
in [106]. Niemann and Marwedel [108] present an ILP-based methodology for hardware software
partitioning of co-design systems. Resource constrained scheduling and binding at operation level
for ASICs has been formulated as an ILP by Gebotys in [145].

Our temporal partitioning approach is for a globally configured system and we do not consider
the partial reconfiguration approach for designing a RTR system. We attempt to perform
temporal partitioning at a high-level together with design-space exploration. No other approach
to temporal partitioning has attempted to do so. The disadvantage of our technique is that it
cannot make use of the partial reconfiguration capability of the FPGAs. This would involve
FPGA-specific tools as the different FPGAs have different kinds of partial reconfiguration
capabilities. However, our current work is focussed on developing a general purpose tool that can
be used to develop temporal partitioned systems for any class of FPGAs on which global
reconfiguration can be performed. Some of the partial reconfiguration techniques [97] assume that
temporal partitions already exists when they attempt to find matching circuits across temporal
partitions. Our technique can be used to automatically generate the temporal partitions that can
then be used by such techniques to generate partial reconfigurations.

Contribution of this work: The current work makes several important contributions to the
area of reconfigurable design synthesis. It has the following primary features that distinguish it
from other works:

25

Tl T

VT7 T
, /

1 /
T

Figure 3.4: Behavior task graph with implicit outer loop

We have integrated the problem of design space exploration into partitioning by using the
idea of considering multiple design points for each task in the task-graph. This reduces the
complexity of the design space search for the high-level synthesis process by making it
concentrate on small portions of the design.

Our approach performs design space exploration at the behavior level of abstraction, so that
multiple design options are explored while performing temporal partitioning and
appropriate design points based on the constraints of the architecture are chosen.

Unlike traditional approaches that concentrate on minimizing the number of temporal
partitions of the design, our approach introduces a novel concept of block-processing
multiple computations to reduce the reconfiguration overhead and demonstrates that a
temporal partitioning approach which combines block-processing and design-space
exploration can reduce the design execution time.

By using ILP as the core engine in an iterative search process we have the flexibility to
produce optimal/near-optimal partitioned designs. User controlled parameters influence the
search process. If the search for an optimal solution is too time intensive, then suitable
search parameters can be given to produce near-optimal results in less run-time.

3.4 System Design Flow

The input specification, is a behavior level design description of the application to be implemented
on the reconfigurable hardware. The input specification is shown in Figure 3.4. In Figure 3.5, we
present the design flow for building a Run-Time Reconfigured (RTR) design. It consists of an
acyclic data flow task graph, with an outer implicit loop. The implicit loop signifies the successive
items of input data that will be executed on this task graph. There are no inter-loop dependencies
in the task graph due to this implicit loop, i.e., the processing of each input data is independent
of any other input. Thus it is possible to perform block-processing for this task graph.

Task Estimation: First, the behavior level estimation engine, which is part of the SPARCS
design environment [100], generates multiple design points for each task separately based on the
architecture and user constraints. The architecture constraints are the resources available on the
reconfigurable hardware, the user constraints are the maximum clock-width for the design. The
High-Level Synthesis (HLS) tool makes use of a component library, characterized for the
particular reconfigurable processor, to estimate the resource and delay.

26

Macro Behavior Task
Component Graph

Block-Processing
Constraints Factor

Library
1 1 ' '

HLS Estimation

"
Temporal
Partitioning

1
Design

Transformation

Configuration fHigh Level Synthesis

Sequencer I i ■

Bitmap files
for each
configuration

Figure 3.5: System design flow

Temporal Partitioning: Next, the temporal partitioning tool divides the task graph into
multiple temporal segments, while mapping each task to its appropriate design point. We discuss
the ILP formulation used to solve the multi-constraint temporal partitioning problem later in
detail.

Design Transformation: Some design transformations are needed so that block-processing can
be performed on each temporal partition. This design transformation and the software code to
sequence the configurations from the host is generated in this step.

High Level Synthesis: The high level synthesis system in SPARCS [100] is used to generate the
RTL design for each temporal segment.

Logic/Layout Synthesis: We use commercial tools, for logic synthesis (Synplify tools from
Synplicity) and layout synthesis (Xilinx Ml tools) to convert the RTL description of each
configuration into bitmap files.

3.5 Architecture, Design Process, and Memory Model

3.5.1 Reconfigurable Architecture Model

In Figure 3.6, the reconfigurable architecture on which the Run-Time Reconfigured (RTR) design
is to be mapped is shown. It consists of a reconfigurable hardware communicating with an
external memory. Each temporal partition is mapped to the reconfigurable hardware, and the
data flowing between two temporal partitions is mapped to the memory. The host stores all the
temporal configurations. It interacts with the reconfigurable hardware to load new configurations
and with the memory to load input data and retrieve output data at the end of the execution of
the design. Except for the first and last temporal configuration it does not read or write to the
memory at any other intermediate configuration.

27

HOST
Data

MEMORY

Data

Configuration Reconfigurable
Hardware

Figure 3.6: RTR architecture model

3.5.2 Design Process Model

• Each behavior specification is in the form of a acyclic task graph. A task however has no
restrictions and can contain any control structure within it. Each task is indivisible and
parts of a task cannot be mapped across partitions.

• Each task has a set of distinct implementation options called design points. These are
usually obtained by a high level estimation tool or can be specified by the user. No possible
restrictions on the implementation of a task is required, only that the area and delay
associated with each design point should be available.

• The high level synthesis process that will be used to synthesize the tasks in each temporal
partition is expected to parallelize the intermediate memory transfer with the execution of
operations in the task graph. We are assuming that there is enough slack available to do so.
Therefore we do not add the intermediate data transfer time to the execution time of the
design. If a simple synthesis system is used that does all the memory access in serial with
the operations, then we need to add the memory access times in the execution time of the
design. We have discussed this further in Section 3.9.

• The estimation process that develops the design point should be closely related to the
actual synthesis process that will synthesize the temporal partition after the partitioning is
performed. For our design process this implies that the area of the; design point should
reflect the data path, controller and routing resources required for the task. Xu and
Kurdahi [44] and Ouaiss et. al [100] discuss some of the estimation techniques that
incorporate low level details in the estimation process. However, if the estimation process is
not a true reflection of the ultimate synthesis process then it is required that the user of our
system should generate experimentally a factor that reflects the deviation of the actual
values from the estimated ones. The area of the FPGA should be reduced by this factor.

3.5.3 Memory Model

• The host writes to the memory of the reconfigurable architecture before the start of the first
configuration to place all the data that is to be read as input by the design, and reads from
the last configuration's memory all the output data of the design.

• The intermediate data that is needed to be transferred from one configuration to another is
written into the memory of the reconfigurable architecture.

28

\J7

Original Graph Block Processing

Figure 3.7: Block-processing model

• All data to be read in a configuration and written in a configuration is alive for the
existence of the whole configuration. The input data from the host is present from the first
configuration till the last configuration it is read from. The output data to the host is
present from the configuration it is written till the last configuration. Data written in a
configuration will remain alive in all subsequent configurations till it is consumed.

• The model for block processing is shown in Figure 3.7. Each configuration processes the
whole block of k computations completely and stores the intermediate data. This is
repeated for all configurations. Currently, we do not support pipelining of the different
computations in the same temporal partition. Therefore the delay for k computations is
then equal to fc*delay for processing one computation.

3.6 Temporal Partitioning and Design Space Exploration by an
Optimal Search Algorithm

The inputs to our Temporal Partitioning system are - (1) Behavior Specifications (2) Target
Architecture Parameters (3) Block-processing Factor.
In formal notation, the inputs are stated as -

T set of tasks in the task graph.
ti —> tj a directed edge between tasks, U,tj € T, exists in the task graph.
B(ti,tj) number of data units to be communicated between tasks ti and tj.
B(env,tj) number of data units to be read by task tj from the environment.
B(t{, env) number of data units to be written from task U to the environment.
Rmax resource capacity of the reconfigurable processor.
Mmax memory size of the RTR architecture.
CT reconfiguration time of the reconfigurable processor.
k the block-processing factor for the design.

The behavior specifications are in the form of a directed graph called the Task Graph. The
vertices in the graph denote tasks, and the edges denote the dependency among tasks. Data
communicated between two tasks, B(ti,tj), will have to be stored in the on-board memory of the
processor, if the two tasks connected by an edge are placed in different temporal partitions. The
target architecture parameters specify the underlying resources and the reconfiguration time, CT,

for the device. Typically, resource capacity, Rmax, is the combinational logic blocks/function
generators on the FPGAs of the reconfigurable device. Mmax, is the memory for storage of
intermediate data available on the reconfigurable processor, k, the block-processing factor is the

29

lower bound on the number of computations that this design will usually perform. The total
intermediate data for k computations of the task graph has to fit in the memory Mmax of the
RTR processor.The user can give k to be the minimum number of iterations of the implicit loop,
I, shown in Figure 3.4 for typical runs of the application.

3.6.1 Preprocessing

Design Point Generation: Each task in the task graph is processed by a design space
exploration and estimation tool [100] which is part of a high level synthesis system. The high level
estimation tool generates a set of design points for each task. Each design point is characterized
by its area and latency. Each task t will have a set of estimated design points, Mt. We state this
formally as -

Mt set of design points, m, for a task t G T.
R(m) area of a design point m 6 Mf.
D{m) latency of a design point m £ Mt.

Partition Bounds Estimation: To find the number of partitions over which the temporal
partitioning solution should be explored we calculate two bounds -
1. Lower Bound: For calculating the lower bound on number of partitions JVJL-,,, we sum the
minimum area design point, m, for each task. This value divided by the FPGA area will be the
minimum number of partitions required to obtain a solution.

NLn = J2 R(m)/Rmax, {m\\/m£ Mu min(R(m))} (3.1)
t€T

2. Upper Bound: Ideally, we would like to establish an upper bound on the number of partitions
needed to be explored by the paxtitioner when the maximum area design point for each task is
chosen. However, we cannot accurately establish this upper bound on the maximum number of
partitions. This is because if a task is too large to fit in some temporal partition, it must go to a
later partition. Then all the descendents of this task also cannot occupy the earlier temporal
partition even if they can fit in it because the dependency among the tasks will be violated. This
will leave some area on temporal partitions unoccupied due to dependency constraints, and the
task graph will not fit even though there is enough area left unoccupied on the partitions. We
could have established an upper bound on the maximum number of partitions to be equal to the
number of tasks in the task graph. However, this is a very pessimistic bound and usually so many
partitions need not be explored. We first define, the minimum number of partitions, N^in, that
need to be explored if the maximum area design point for each task is mapped by the partitioner,
to be -

Nmin =]C R(m)/Rmax, {m | Vm e Mu max{R{m))} (3.2)

To determine the upper bound on the number of temporal partitions that need be explored to
get an optimal solution, we define a user controlled parameter 7, called the Partition Relaxation.
7 defines the number of partitions beyond N^in that must be explored while searching for better
solutions. We have introduced parameter, 7, so that a user can direct the partition space search if
the user has more knowledge of the solution to the problem. Or, this evaluation of 7 can be be
done automatically by the tool using heuristic techniques. Using a heuristic, if we map the
maximum area design points for each task we arrive at a solution with partition size N". This

30

G 20

70 5
X so p-

H d]
D

F

m Q

H |m
| G

00
I'll H 1

D

F Q

UJr G

HeuristK Solution (6 partitions) Optimal Solution (5 partitions)

Figure 3.8: Generation of partition size upper bound

Nmin- We give an can be an upper bound on the partition size. If N" > N^in, then 7 = N"
example of how this can be done in Figure 3.8. A task graph annotated with the maximum area
of each task is shown. If i?™^ is 100, then we calculate N^in to be 4 partitions. A heuristic
algorithm maps the tasks as shown into 6 partitions. Therefore N" = 6, and 7 = 6-4 = 2. The
optimal solution for this graph is obtained in 5 partitions. We claim that any solution obtained
by a heuristic using the maximum area (minimum delay) design points will never have its number
of partitions less than that of an optimal solution for the same graph. We are currently studying
how to achieve tighter upper and lower bounds for partition size and incorporating them
automatically in our algorithm. However, the facility of giving 7 will still be provided to the user.

In the worst case, the total number of partitions to be explored range from the partition lower
bound, Nl

min, to the number of tasks in the task graph,|T|. Therefore the value of 7 can range
from 0 to \T\ - N^in. We may not get the optimal solution possible for the task graph if the value
of 7 is not set correctly.

3.6.2 Partition Space Exploration Algorithm

To explore better solutions for the temporal partitioning problem, we need to explore more than
one partition bound. The partition bound is the number of partitions for which the current model
has been formed and a solution is being explored. Finding the ideal partitions for the overall
optimal solution is an iterative procedure, shown in Figure 3.9. Informally, the algorithm consists
of the following steps -
1. The starting partition bound is N = Nl

min.
2. Obtain an optimal solution for the given partition bound, N. The design execution time
achieved after solving for this partition bound is Da. If N = N^in + 7, then stop.
3. Increase the partition bound, N = N + 1, and reformulate the problem with the new partition
size.

Also introduce a design execution time constraint so that the result is bounded by the
execution time delay already achieved, Da. Go to step 2.
We calculate the bounds on the number of partitions, Nl

min and N^in, as described earlier. We
start the search at Nl

min and obtain an optimal solution, by forming and solving an ILP model of
the temporal partitioning problem. The details of the model are described below. For the first
ILP model there is no upper bound on the constraint on the execution time of the design. The
result of solving this model is a temporal partitioning solution for N partitions and the execution

31

Algorithm RefineJPartitionJBound()
begin

N£in <- MaxAreaPartitions()
Nl

min <r- MinAreaPartitions()
N f- Nl

min I* starting partition bound */
FormILPModel() /* Model with no execution time constraint */
Da <- SolveILPModeLOptimal()
while Da = 0 and N < N£in + 7/* Partition bound was infeasible */

N «— N + 1 /* next partition bound */
FormILPModel() /* Model with no execution time constraint */
Da «- SolveILPModeLOptimal()

end while
while N < N£in + 7

N «- N + 1 /* Relax N */
FormlLPModelO /* Model with execution time constraint < Da */
D'a f- SolveILPModeLOptimal()
if D'a ^ 0 /* solution is feasible */

Da*-D'a

end if
end while
return(£)„) /* return with the last known best solution */

end Algorithm Refine-PartitianJBawnd

Figure 3.9: Partition refinement procedure

time Da of the solution. We now relax JV by 1, form and solve the ILP model again. This time
since we are looking for a better solution than the one we have already achieved, Da is the
execution time constraint for the new ILP model. We continue to relax JV and look for better
solutions until the value of N reaches N^in + 7.

ILP formulation for Design Space Exploration

We build the temporal partitioning model for the given tasks and their design points and the
values of N and k. In the following discussion we present the variables and equations of the ILP
model.

Variable ytpm models partitioning and design point selection for a task and is described formally
as -

Htpm
1 if task t G T is placed in partition p, 1 < p < N, using design point m £ Mt

0 otherwise

where,
JV is bound on the number of partitions.

Variable ytprn is a 0-1 variable.
Uniqueness Constraint: Each task should be placed in exactly one partition among the N
temporal partitions, while selecting one among the various design points for the task.

JV

W£T ■ E Y,ytPm = i (3.3)
mEMt p=l

Temporal Order Constraint: Because we are partitioning over time, a task ti on which
another task t2 is dependent cannot be placed in a later partition than the partition in which task

32

M,

to

MODELLING EQUATIONS:

W »BfUj'k + W *B(1.3)'k + W •B(2,3)'k<=M
212 213 223 «v>:

W3,'B(l,2)»k+l^|3'B(Urk + W *B(2J)-k<-Mn].ix

RESULT EQUATIONS:

W 'BU^'k + W *B<U)*k + W •B(2^)*k<-Mm.|

W3|*B(U)'k + W • B(2.3)'k <= M ^

Figure 3.10: Memory constraint

%2 is placed. It has to be placed either in the same partition as fe or in an earlier one. This
constraint makes sure that the dependency constraints among the tasks are maintained. No task
should execute earlier than a task on which it is dependent.

Vfe, V*i-*fc, Vp2, l<p2<N-l : J2 £ yuPimi+ £ yt2P2TO2<l (3.4)
mieMtl p2<pi<N m2eMt2

Resource Constraint: The sum of area costs of all the tasks mapped to a temporal partition
must be less than the overall resource constraint of the reconfigurable processor. Typical FPGA
resources include function generators, configurable logic blocks etc. Similar equations can be
added if multiple resource types exist in the FPGA.

Vp, l<P<iV : £ ,£(ytPm*R{m))<Rmax (3.5)
meMt t&T

Memory Constraint: Intermediate data due to data transfer among dependent tasks will be
stored in a partition under two conditions. If the memory has been written in an earlier partition,
and is to be read in this partition or any partition later than this partition. Or, if memory is
being written in the current partition and is destined to be read in a later partition. Data transfer
through memory will not take place if two dependent tasks are placed in the same temporal
partition. Variable wptlt2 models data transfer requirement across partition boundaries for
dependent tasks. It is stated formally as -

1 if task ti is placed in any partition 1 • • -p - 1 and t2 is placed in any of
p---N and t\ -* i2

1 if task t\ is placed in partition p and i2 is placed in any of p + 1 • • • TV and ti ->• t2

0 otherwise

wptlt2 = <

wptlt2 is a 0-1 variable. It is a secondary variable which is described in terms of the ytpm variables.

The intermediate data needs to be stored and should be less than the memory. Mmax, of the
reconfigurable processor. The variable wptlt2, if 1, signifies that tj and t2 have; a data dependency
and are being placed across temporal partition p. Therefore the data being communicated
between them, Bfa, t2), will have to be stored in the memory of partition p. The following
equation represents the memory constraint. It contains terms to represent the intermediate data
transfer due to dependent tasks as discussed earlier. Since our memory model is such that all
external inputs and outputs with the host also takes place through the memory, the equation also
contains terms to represent the amount of data that has to read as input from the environment
(host) and written out to the environment (host) by the tasks.

Vp, l<p<iV :£ Y, E ytP2m*B(env,t)*k + J2 £ Y, Vtpam*B(t,env)*k+
t€Tp<p2<Nm€Mt (gTKp3<pmeM,

£ £ (wptita * B(tuh) *k)< Mmax (3.6)
t2eTti-n2

33

Temporal partition if \ 100 ns ||^| 200 ns
Delay = 400 ns \J ^tS?

Temporal partition 2 /$Hy 300 ns f) 50 ns
Delay = 300 ns ^^ o

I
(~~\ 150 ns

Total delay = 400 + 300 + 2 "C,

Figure 3.11: Execution time estimation

As discussed earlier the variable wptlt2 has to model communication among tasks which can be
mapped to adjacent and non-adjacent temporal partitions. In Figure 3.10, we show how this
variable models data transfer for a small taskgraph fragment. In the example shown there is no
data transfer from the host only tasks communicating to each other.We show in the figure the
original equations used to model the constraints for Temporal Partitions 2 and 3. The result
equations show the wptlt2 variables which will be 1 in the mapping of tasks to partitions shown in
the example and the constraints which has to be satisfied. wptlt2 are non-linear terms and can be
generated by the following set of equations -

Vp, l<p<iV, Vt2Gr, V*!-^, :wptit2> £ £ ytmrm* £ £ Vt2p2m2

l<pi<pmieMtl p<p2<N m2eMtj

(3.7)
Vp, 1<P<N, Vi2 GT, Vh-+h, :wptlt2> £ ytljmi* £ £ yt2P2m2 (3.8)

rrcieMtj p+l<p2<N m2£Mt2

Equations (3.7) and (3.8) are non-linear. We can use linearization techniques [121, 122] to
transform the non-linear equations into linear ones, so that the model can be solved by a Linear
Program solver. Linearization techniques have been used successfully before in [104] to solve the
combined temporal partitioning and synthesis problem.

Execution Time Constraint: When the problem is formulated we have as input the partition
bound N over which the current solution is to be explored. Variable n is the actual number of
partitions finally used in the solution and will be less than or equal to N. Variable dp models the
execution time of a temporal partition.

7? = Number of partitions actually used in solution.

dp = execution time of partition p.

rj is an integer variable and dp can be an integer or real variable depending on whether the
latency values are integer or real. The following definitions will be used to generate the execution
time constraint -
Da constraint on the execution time of the design.
Ti set of tasks tt G T, where Vt,- G T, -.(i* ->tj), (leaf tasks ofT).
Tr set of tasks tj G T, where Vi* G T, -.(i; -> tj), (root tasks ofT).

ti -> tj a directed path from tt eT to tj €T.

-^4r { *i ~* Aj I (*« e Tr) A (tj G T()}; (set of paths from root tasks to leaf tasks).

34

The execution time of a partition will be the maximum execution time among all the paths of the
task graph mapped to that partition. In Figure 3.11, we show how the execution time for a
partition is determined. The final mapping of tasks to partitions, with the latency value for each
task, is shown. In partition 1, three paths are mapped. The latency of this partition is the
greatest latency along a path mapped to the partition, i.e., maximum among 350ns, 400ns, 150ns.
The maximum latency in partition 2 is 300ns. If the block-processing factor is k, then the
execution time of the partition is the latency multiplied by the block-processing factor. Formally
the execution time of a temporal partition is given as -

Vp, 1<P<N, Vfe-HOe^U, = E E (ytpm*D(m)*k)<dp (3.9)

All temporal partitions 1 ■ ■ ■ N used in the formulation, may not be used in the final solution, if
the tasks can fit in lesser number of partitions. To calculate the actual number of partitions used
in the solution, we determine the highest numbered partition used by any leaf level task in the
task graph by the following equation -

N

W^Ti ■ E]C(P*lfem.)<»7 (3-10)

Now the execution time constraint on the overall design can be stated in terms of equations (3.9)
and (3.10) as -

N

V*CT + J2dP^Da (3.11)
P=l

As discussed earlier, this constraint is used to search for a better solution as different partition
bounds are being explored in Algorithm Refine -Partition JBound in Figure 3.9.
Optimality Goal: The most optimal solution will be the design with the least execution time.

TV

Minimize : 77 * CT + E 4P (3.12)

The solution of this ILP model gives us the optimum temporal partitioning for the give partition
bound JV, the block-processing factor k, and the set of design points for the tasks. If the amount
of intermediate memory required to process k computations exceeds the memory constraint Mmax

of the architecture then the user needs to reduce k and temporally partition the design again.

3.6.3 Experimental Results for Optimal Search Algorithm

We performed temporal partitioning on the 4x4 Discrete Cosine Transform (DCT) which is the
most computationally intensive part of the JPEG [120] algorithm. In this study, the DCT is a
collection of 16 tasks as shown in the Figure 3.12. On the left of the figure we show the internal
structure of a task in the DCT. There are two kinds of tasks in the task graph, Tl and T2, whose
structure is similar but whose operations have different bit widths. Task Tl represents two vector
multiplications in the first dimension of the DCT. Task T2 represents two vector multiplications
in the second dimension of the DCT.We obtained all the design points for each kind of tasks by
using estimation tools integrated in the SPARCS design environment [100], on the individual
tasks. The functional units, area and latency costs for each is shown in Table 3.1.

35

Task Structure

Tl = {*[9]; + [15}; + [16]i

T2={*[17]; + [23]; + [24]}

Tl/ \T1

£X2
T2 / \ T2

Tl / \TI

fxi
T2 / \ T2

Tl / \T1

1X1
T2 / \ T2

Figure 3.12: Task graph for DCT

Table 3.1: Design points for DCT tasks

Task Desgn. Pt.
Characteristics

Area (CLBs) Latency (ns) *9 + 16 *16 +24
Tl 1 336 375 8 4 - -

2 286 500 6 2 - -
3 220 625 4 2 - -
4 194 750 2 2 - -
5 174 875 1 2 - -

T2 1 396 420 - - 8 4
2 356 560 - - 6 2
3 292 700 - - 4 2
4 276 840 - - 2 2

36

Table 3.2: Results for combined design-space exploration and block-processing

Exp. ■Rraox(CLBs) CT(ßs) k N Latency (ns)
Design Execution

Time
Design Execution

Time/it
Mem.

Overhead T(s)
1 4,000 30 3,000 1 31,590 4,800 fjs 1,600 ns 0 1

2 60,795 2,445 /zs 815 ns 48,000 1
3 - - - - Infeasible

2 4,000 30 1 1 31,590 31,590 ns 31,590 ns 0 1
3 2,304 30 3,000 2 61,590 4,830 fjs 1,610 ns 48,000 11

3 91,215 3,735 JUS 1,245 ns 48,000 22
4 - - - - Infeasible

4 2,304 30 1 2 61,590 61,590 ns 61,590 ns 16 57

In Tables 3.2 - 3.4 we present the results of our temporal partitioning tool. In all the tables, Rmax

is the resource constraint of the FPGA, CT the reconfiguration time, k the block-processing
factor, and N the number of partitions onto which the design is partitioned. The latency of the
final design (with the reconfiguration overhead), is shown in the column Latency. The execution
time of the design for the k blocks of data is given in the column Design Execution Time. Design
Execution Time/fc shows the average execution time per computation, Mem. Overhead shows the
amount of maximum memory stored in any of the temporal partitions (excluding the memory
used to store the input and outputs) of the solution in terms of the number of words of the
hardware. T(s) is the time taken by our temporal partitioning tool to execute in seconds. All
experiments were run using an ILP solver called CPLEX on an UltraSparc Machine running at
175 MHz with 120 MB memory.

In Table 3.2, we present the result of temporal partitioning and design space exploration of the
DCT with and without block-processing factors. In all experiments the reconfiguration time
considered is similar to the Xilinx 6200 series FPGAs. In Exp. 1, for a block-processing factor of
3,000, our temporal partitioning tool explores 3 temporal partitions for the design and results in a
latency of 60,795 ns. In Exp. 2, with a block-processing factor of 1 (i.e., no computations are
being sequenced), the tool gives a minimum latency design of 31,590 ns and uses just one temporal
partition. This results in a statically configured design. Even though, the latency of the statically
configured design in Exp. 2 is less than that of Exp. 1, this is not the best possible solution. This
is because, if multiple computations are computed on both the static and RTR design, the RTR
design will outperform the static design. For executing 3,000 computations, the RTR design will
take 2,445 ß sec, while the static design will take 4,800 ^sec. This is a 49% improvement of the
RTR design over the static design. Exp. 3 and 4 were performed for different FPGA size of 2,304
CLBs, which is the size of a Xilinx XC4062. In Exp. 3, again with a block-processing factor of
3000, the optimal design takes 3 temporal partitions with the latency of the design being 91,215
ns. For Exp. 4, with no block-processing factor the optimal latency of the design is 61,590 ns.
Again, the actual execution time of the design when the block-processing factor is considered
while exploring the design space is superior. In all the experiments the value of Mmax is 64 K.

The experiments in Table 3.2 illustrate that combining block-processing and design space
exploration gives better temporal partitioning solutions. If the block-processing factor is not
considered at the time of temporal partitioning (i.e., is equal to 1), then the temporal partitioning
tool will tend to pick the design with minimum number of temporal partitions. If a relevant

37

Table 3.3: Results for different reconfiguration overheads

Exp. Rmax (CLBs) CT k N Latency (ns) Design Execution Time Mem. Overhead Tfs)
5 2,304 30 ns 300 2 1,650 477.06 fis 4,800 17

3 1,305 364.59 fis 4,800 19
6 2,304 30 ns 50 2 1,650 79.56 /us 700 25

3 1,305 60.84 fis 700 7
7 2,304 3 ms 3,000 2 6,001,590 10,770 fis 48,000 80
8 2,304 3 ms 30,000 2 6,001,590 53,700 fis 480,000 29

3 9,001,340 45,450 fis 480,000 36

Table 3.4: Results for design-space exploration

Exp. Rmax (CLBs) CT (fis) jfc N Latency (ns) Design Execution Time Mem. Overhead T(s)
9 2,304 30 3,000 2 61,715 5,145.6 fis 48,000 1
10 2,304 30 3,000 2 61,590 4,080 fis 48,000 22

3 91,215 3,735 fis 48,000 204

block-processing factor is given the tool will search for a faster design with more temporal
partitions, because block-processing will amortize the effects of reconfiguration overhead. Since
we understand that the block-processing is necessary for good performance of a temporally
partitioned design, we must integrate this idea early in the design process, while partitioning and
design point selection is being performed.

Similar results will hold if the reconfiguration overheads are varied. In Table 3.3, we show results
for different reconfiguration overheads. In Exp. 5 and 6, the reconfiguration overhead is in
nano-seconds (similar to the reconfiguration overheads of context-switching FPGAs like the Time
Multiplexed FPGA [116, 117]). In Exp. 7 and 8, the reconfiguration overhead is in milli-seconds
(similar to commercially available reconfigurable hardware, the Wildforce board with Xilinx
FPGAs [118]). As the reconfiguration overhead decreases we observe that for small values of k,
the exploration process chooses more temporal partitions. However, for the reconfiguration
overheads in milli-seconds even for values of k as large as 3,000 the temporal partitioner chooses
designs with minimum temporal partitions. So for an architecture which has a very high
reconfiguration a large number of blocks must be processed to amortize the cost of the
reconfiguration overhead. Such is the case in Exp. 8 where for an overhead of 3 ms, 30,000
computations need to be sequenced to overcome the effect of the reconfiguration overhead and for
the tool to partition the design over 3 temporal partitions. From these experiments we see that
given the block-processing factor and the architecture constraints the temporal partitioning tool
will select the most appropriate design point and the placement of tasks on partitions.

In Table 3.4, we illustrate how design space exploration is beneficial. For same values of the
block-processing factor k, we perform experiment with and without design space exploration. In
Exp. 9, temporal partitioning is performed with only one design point for each task, the minimal
area design point. In Exp. 10, all the design points are used. Again we observe that the tool
chooses the most appropriate design points for the given constraints, when multiple design points

38

are given to it, and results in a 27% improvement of the design in Exp. 10. Therefore design
space exploration must be integrated with and performed during the temporal partitioning
process, rather than choosing the design point before temporal partitioning is performed.

The optimal solution process described in this section produced results in less run-times of the
temporal partitioning tool when the size of the problem to be solved is not very large. For eg., a
task graph of size 15 tasks, 3 temporal partitions and 3 design points per task solved quickly. But
a task graph of 30 tasks, 6 temporal partitions and 3 design points per task took many hours to
solve.

3.7 Temporal Partitioning and Design Space Exploration by
Iterative Search Algorithm

To handle larger problem sizes, we have therefore developed a novel method of solving the ILP
problem iteratively. With this method we break the large solution space and window in to smaller
regions of the solution space progressively, to obtain near-optimal solutions for the problems.
Instead of solving each ILP problem to global optimality we break the search space of the
algorithm into smaller sections. An ILP problem for a section of the search space is formed and a
constraint satisfying solution is generated. Success or failure of a search guides the algorithm to
move iteratively into the next region of search while improving the solution. There can be many
ways of dividing the search space into smaller sections. We have approached the problem by
dividing the search space by a binary subdivision method.

3.7.1 Preprocessing

In this section, we discuss the additional preprocessing steps which need to be undertaken for the
new algorithm that iteratively explores different regions of the design space. The other
preprocessing steps of Design Point Generation and Partition bounds Estimation are as discussed
in Section 3.6.

Execution Time Bounds Calculation: The execution time of the temporally partitioned
design will involve two components - (1) execution time due to the actual execution of the tasks
in each temporal partition for the given block-processing factor k, (2) execution time due to the
reconfiguration overhead. For a given number of temporal partitions, N, we can calculate the
upper and lower bounds on the execution time of the design as follows -

1. Maximum Execution Time: The worst case execution time Dmax, will occur when all tasks are
serially executed. For upper bound calculation, we will use the design point with maximum
execution time for each task. The execution time for each task multiplied to the block-processing
factor will give us the execution time of the design without considering the overhead of
reconfiguration. This time added to the reconfiguration overhead will be the upper bound design
execution time for N partitions.

Dmax = 5Z-°(m) *k + N*CT (3.13)
teT

2. Minimum Execution Time: For obtaining the lower bound for N partitions, we consider for
each task the fastest (minimum latency) design point. We obtain the latency for all the paths in

39

Algorithm Reduce J5xecutionTime{N, Dmax, Dmin)
begin

A, <-0
FormILPModel()
if SolveILPModel_Feasible() = In feasible subject to Timeout

retum(Da)
Da ■<- CalculateSolnDelayO /* Achieved execution time of solution */
while (Dmax - Dmin > 6) and (Da - Dmin > S)

D' - n '-'max — '-'max
/* Binary subdivision of achievable design execution time range */
Umax = {Umax + '-'min) I ^
while (Dmax > Da)
/* we have already achieved execution time Da which is less than Dmax */

^m»i = l^mu T Djnin)12,
end while
FormlLPModelO
if SolveILPModelJFeasible() = In feasible subject to Timeout

/* increase lower bound to overcome infeasibility */
Umin = '-'max
D — D' '-'max — '-'max

else
Da <- CalculateSolnDelayO

end if
end while
return(Z>a)

end Algorithm Reduce JSxecutionTime

Figure 3.13: Iterative procedure for reducing design execution time

the task graph, by summing up the minimum latency of the tasks along each path. The
maximum latency value over all such path latencies in the task graph gives us the lower bound on
the latency. This latency value is multiplied by the block-processing factor to derive the execution
time lower bound without reconfiguration overhead. This execution time added to the
reconfiguration overhead will be the lower bound on design execution time for N partitions. In the
following equation, p is a path in the task graph.

Dmin — max { latency of p with fastest design point for each task in p } * k + N * Cy (3-14)

3.7.2 Algorithm for Design Execution Time Reduction

Figure 3.13, describes the design execution time reduction algorithm. It is an iterative procedure
that obtains near-optimal execution time solutions for a given partition bound. N, and execution
time bounds Dmax and Dmin. The procedure for obtaining appropriate partition bounds was
explained in Section 3.6.1. It finds a constraint satisfying solution between D,nar and Dmtn. Once
a solution is obtained, the upper bound is reduced to (Dmax + Dmin)/2, and a new solution for
these constraints is found. If a feasible solution is obtained, then the obtained execution time of
the solution becomes the upper bound for a new search. If no feasible solution is obtained, then
this execution time becomes the new lower bound. It continues this binary subdivision on the
execution time bounds, till the difference between the upper and lower bounds becomes very
small, or no more feasible solutions are found. The tolerable difference between the lower and

40

upper execution time bounds for the design is a user defined parameter, J, called the Design
Execution Time Tolerance. Design Execution Time Tolerance defines how much of the design
space can be left unexplored in one run of the algorithm. If the tolerance is small, more iterations
will be spent in obtaining a solution, thus increasing the run time. If a large run time is not
acceptable then this tolerance can be increased. The optimality of the solution will be affected by
the value of 6. If S is very large then the algorithm may miss some solution which is better than
the one found. We have shown in the experiments the effect of changing the value of S on the
search process. In practice, we can set the execution time tolerance to a small percentage of the
MaxExecutionTime of the task graph.

We again use the temporal partitioning and design space exploration problem as modeled as an
ILP (presented in Section 3.6.2), with some modifications discussed later. We do not use the ILP
for finding optimal solutions, but instead use it to obtain a feasible solution for a problem. That
is, the optimization goal explained in Section 3.6.2 is removed and some new constraints are
added. These constraints will be presented shortly. Our reduction procedure then makes the
constraints tighter, reformulates the ILP and solves it for the new problem. For larger designs,
therefore we have developed this directed search procedure, which reduces the search space for
each run of the ILP solver, while still exploring the whole search space. This claim has been
substantiated, by observing that for small designs the solution obtained by this procedure and an
ILP solved to optimality is the same, as discussed in Section 3.6.3. In the algorithm, the
procedure FormlLPModelQ forms the ILP model. The procedure SolvelLPMadel-FeasibleQ
then solves the model by a linear program solver and returns with the first feasible constraint
satisfying solution.

3.7.3 Partition Space Exploration Algorithm

The partition space exploration procedure for the iterative execution time search is shown in
Figure 3.14. It is similar to the partition exploration procedure discussed earlier in Section 3.6.2,
the only difference being that the iterative search algorithm Reduce JExecutionTime is called to
explore different temporal partitioning solutions for each partition bound rather than solving the
problem to optimality. Informally, the algorithm consists of the following steps -
1. The starting partition bound is N = N^.
2. Obtain a constraint satisfying solution for partition bound, N, and execution time constraints
Dmax and Dmin for this partition bound.
3. Find lower execution time solutions by progressively exploring different regions of the search
space, by tightening the execution time constraints, for the current partition bound. If
N = NLn+-y, then stop.
4. Increase the partition bound, N — N + 1, and go to step 2.

3.7.4 Modifications to the ILP model

The ILP model discussed in the Section 3.6.2 remains the same, with some small modifications.
We have two execution time constraints instead of Equation (3.11) in the model. These are
described below -

N

V*CT + YldP<Dmax (3.15)

41

Algorithm Refine-PartitionJBcmndQ
begin

Nmin <- MaxAreaPartitions()
Nl

min <- MinAreaPartitions()
N <— Nl

min I* starting partition number */
Dmax <- MaxExecutionTime(N)
Dmin <- MinExecutionTime(N)
Da *- ReduceJExecutionTime{N,Dmax,Dm{n)
while Da = 0 /* Partition bound was infeasible */

N <- N +1 /* next partition number */
Dmn.x <- MaxExecutionTime(N)
Dmin <- MinExecutionTime(N)
Da <— Reduce-ExecutionTime(N, Dmax, Dmin)

end while
while N<Nmin + 1

N <- N + 1 /* Relax N */
Dmin <~ MinExecutionTime(N)
if Dmin > Da

return(£>a) /* This is the best solution */
else
/* find a better solution by taking Da as upper bound */
D'a «— Reduce JExecutionT ime{N, Da, Dmin)
if D'a^Q I* Feasible*/

Da*-D'a

end if
end if

while
return(.Da) /* return with the last known best solution */

end Algorithm Refine-PartitionJ3ound

Figure 3.14: Partition refinement procedure
N

V*CT + J2dP^Dmin (3.16)
p=l

3.7.5 Experimental Results for the Iterative Constraint Satisfaction Algorithm

Case Study of AR filter :

We present a case study of the Auto Regressive (AR) lattice filter [119] that has applications in
signal and speech processing applications. In this experiment we demonstrate the closeness of the
solution obtained by the iterative constraint satisfaction algorithm presented in this section and
the optimal algorithm described in Section 3.6. The task graph for the specification consists of 6
tasks as shown in Figure 3.15. Tasks A and B show the internal structures of the filter tasks.
Tasks Tl, T3, & T4 have a structure like Task A, but differ in the bit-widths of their operations.
Tasks T2 and T5 are like Task B, but again differ in their bit-widths. The bit widths of each
operation in each task is also shown in the figure. The design points are shown in Table 3.5.
These design points were again estimated using an estimation tool integrated in [100]. Task Tl
has three design points, tasks T3 & T4 have two design points each, and tasks T2 and T5 have
one design point each. The result of the experimentation is shown in Table 3.6. N denotes the
number of temporal partitions explored. The columns under Result (Iterative) state the result of
running the iterative algorithm. I is the iteration of the algorithm, Dmax and Dmin are the design

42

Tl = { * [8]; • [8]; * [S]; * [8]; + [16]; + [16] } type TASK A

T2={+[17]; + [17]}typeTASKB

T3 - { * [18]; * [8]; » [18]; * [8]; + [26]; + [26] } type TASK A

T4 = { * [27]; * [8]; * [27]; * [8]; + [35]; + [35] } type TASK A

T5 - (+ [36]; + [36] } typeTASKB

Figure 3.15: Task graph for the AR filter

Table 3.5: Design points for the AR filter tasks

t Mt

Characteristics
Area Latency *8 + 16 +17 *18 +26 *27 +35 +36

Tl 1 120 250 4 2
2 104 375 2 2
3 84 625 1 1

T2 1 30 125 2
T3 1 170 320 2 2 2

2 118 480 1 1 1
T4 1 222 400 2 2 2

2 155 600 1 1 1
T5 1 54 200 2

43

Table 3.6: Temporal partitioning of the AR filter, ^
/is, k = 3000

= 196, CT = 30 /is, 7 = 0, 6 = 100

Result (Iterative) Result (Optimal)
JV 1 -Dmax(MS) ■*--'mzn\ßS) Design Execution Time(^s) Design Execution Time (/zs) Mem. Overhead
3 1 8,055 3,975 Inf. Inf.
4 1 8,085 4,005 6,210

5,355 15,000

2 6,045 4,005 5,355
3 5,025 4,005 Inf.
4 5,280 5,025 Inf.

5 1 5,355 4,035 5,010

5,010 18,000
2 4,650 4,035 Inf.
3 4,950 4,650 Inf.

Const. Const.

u u u u
Const. Const.

Vector Product
(Task)

Tl = {*[9]; + [15}; + [!6]} T2 = { * [17]; + [23]; + [24]]

Figure 3.16: Task graph for DCT, 8 of the 32 tasks are shown

execution time bounds for that iteration calculated by the algorithm. Da gives the design
execution time of the solution. Result{Optimal) is the result achieved by solving the problem to
optimality using the algorithm described in Section 3.6. Mem. Overhead shows the amount of
maximum memory stored in any of the temporal partitions (excluding the memory used to store
the input and outputs) of the solution in terms of the number of words of the hardware. We use
CPLEX to solve the ILP problems both for constraint satisfaction and optimal solution. We see
that the result of our algorithm matches the optimal solution for this task graph. We have
performed a lot of experiments on small task graphs and the solution for our iterative procedure
and an optimally solved ILP has been the same.

Case Study of DCT : For task graphs with larger number of tasks, the iterative constraint
satisfaction approach is able to explore in reasonable time more solution space than solving the
problem to optimality. To demonstrate this, we again undertook a case study of the 4x4 DCT,
however this time the size of each task is smaller. In this study, DCT was modeled in the form of
32 vector products. The entire DCT is a collection of 32 tasks, where each task is a vector
product. A vector product is shown in Figure 3.16. There are two kinds of tasks in the task

44

Table 3.7: Design points for DCT tasks

Task D.
Characteristics

Area Latency *9 +16 *16 +24
Tl 1 180 375 4 2

2 138 500 2 2
3 121 750 1 2

T2 1 216 420 4 2
2 188 560 2 2
3 162 840 1 2

graph, Tl and T2, whose structure is similar to the vector product, but whose bit-widths differ.
A collection of eight tasks, forms a row of the 4x4 output matrix, as shown in the figure. The
entire task graph consists of four such collections of tasks. Each task had three design points.
Area and latency of the tasks for these design points were carefully estimated using an estimation
tool [100]. The functional units, area and latency for each is shown in Table 3.7. The result of the
iterative refinement procedure for minimizing the design execution time of the temporally
partitioned DCT for various FPGA resource bound, Rmax, and reconfiguration overhead, CT,
values is shown in Tables 3.8 through 3.11. For the current set of experiments, column N denotes
the number of temporal partitions, Dmax and Dmin denote the maximum and the minimum
design execution time bounds for the model being solved in that iteration. The design execution
time of the solution produced is shown in the column Design Execution Time. Run times for the
temporal partitioning tool, in seconds, are shown for each iteration of the algorithm separately in
the column T(s). The total run time of the temporal partitioning tool in minutes for each
experiment is shown in column T(m). All experiments have been run on an UltraSparc 1 machine
running at 175 Mhz with 120 MB memory.

In the first experiment, shown in Table 3.8, Rmax = 576 CLBS (XC4013 FPGA) and CT is 30 ßs
and the block-processing factor k = 3000. The minimum number of partitions estimated by
MinAreaPartitionsQ is 8 and by MaxAreaPartitionsQ is 11. We are able to reduce the
execution time of the circuit in steps by doing a binary division. Once the difference between the
maximum and minimum execution time is less than S — 1000yus, we stop. Then, the algorithm
proceeds by searching the next partition bound by increasing N and repeats the iterative search
procedure. We sometimes need to have a timeout, either if the problem is infeasible or a solution
is too difficult to find. This timeout is shown in the results as Inf.. For this set of experiments we
kept the timeout to be 300 seconds to find each constraint satisfying solution. Notice that, while
we are tightening the design execution time constraint in each iteration of the solution, we are in
effect making the solver progressively look at different parts of the design space. Since Ending
Partition Relaxation, 7 — 1, we stop our search at N = 12.

In the second experiment shown in Table 3.9, we present the temporal partitioning of the same
design with no block-processing being performed i.e, k = 1. For this experiment, we have not
shown the value of reconfiguration overhead N * CT in the table. We start with 8 partitions, but
no solution is possible. Then we relax the partition bound by 1, to 9 and continue the search for a
solution. Notice that no relaxation of N was undertaken in this experiment, after a solution was
achieved in 9 partitions. This is because, the algorithm Refine-Partition^Bound calculates the
new lower bound, Dmin, and finds that it is greater than the already achieved execution time, so

45

Table 3.8: DCT, i?n 576,6 = 1000/xs, 7 = 1, k = 3000

CrM TV I
Bounds Result

Dmax (Ms) Dmin(ßs) Design Execution Time(/is) T(s) T(m)
30 8 1 76,580 2,625 Inf. 300

61.55

9 1 76,590 2,655 28,410 37.40
2 21,138 2,655 20,640 77.32
3 11,895 2,655 Inf. 300
4 16,515 11,895 Inf. 300
5 18,825 16,515 Inf. 300
6 19,980 18,825 Inf. 300

10 1 20,640 2,685 18,900 278.8
2 11,631 2,685 Inf. 300
3 16,104 11,631 Inf. 300
4 18,342 16,104 Inf. 300
5 18,621 18,342 Inf. 300

11 1 18,900 2,715 Inf. 300
12 1 18,900 2,745 Inf. 300

Table 3.9: DCT, Rmax = 576,6 = 1000//S, 7 = 1, k = 1

CT(MS) N /
Bounds (without N * CT) Result
Dmax{ns) Dmin (ns) Design Execution Time (without TV * Cr)(/is) T(s) T(m)

30
a = 0

8 1 25,440 795 Inf. 300

25.4

9 1 25,440 795 9,630 77.60
2 6,956 795 Inf. 300
3 9,266 6,956 9,100 78.95
4 8,111 6,956 8,100 185.73
5 7,533 6,956 7,380 281.93
6 7,244 6,956 Inf. 300

46

Table 3.10: DCT, Rmax = 1024, S = 1000/is,7 = 1, k = 3000

Crfos) N I
Bounds Result

£max(MS) DminilMS) Design Execution Time (/is) T(s) T(m)
30 5 1 76,410 2,535 18,240 20.92

45.00

2 11,775 2,535 Inf. 300
3 15,816 11,775 Inf. 300
4 17,709 15,816 16,980 288.46

6 1 16,980 2,565 11,760 76.43
2 9,772 2,565 Inf. 300
3 11,574 9,772 Inf. 300

7 1 11,760 2,595 11,520 214.4
2 7,146 2,595 Inf. 300
3 9,483 7,146 Inf. 300

8 1 11,520 2,625 Inf. 300

it stops. Again, if we compare this result with the experiment where we had considered
block-processing of designs, we see that the design in Table 3.8 will perform 3000 computations in
18,900 ft seconds while the current design will perform the computations in 22,410 [i seconds. So
it is important to integrate both block-processing and design space exploration as part of the
temporal partitioning process so that appropriate task mapping to partitions and design points is
performed to produce designs that will give better performance

In Table 3.10, we show the results on DCT with R^ = 1024 (XC4025 FPGA). In this
experiment the execution time tolerance ö is 1000 ßs. To show how varying the parameter ö
affects the performance of the algorithm, we reduce 5 to 100 fis and repeat the same experiment
whose results are shown in Table 3.11. The number of iterations spent looking for a solution
increases, thus increasing the runtime. But a better solution is achieved. We therefore observe
that reducing execution time tolerance increases the run time but achieves better solutions. For
all the experiments shown in this section, we also experimented with obtaining optimal solutions
as we have shown for the AR filter. However, in none of these experiments could the optimal
solution process get even a single feasible solution in the same run time as the iterative solution
process. This is because in the iterative solution process we are dividing the solution space into
smaller regions, thus reducing the size of the problem that the ILP solver has to solve in one run
of execution. Also, we are directing the search process to look from higher design execution time
solutions towards lower design execution time solutions and this directed search process seems to
help the solver when solving problems with very large solution spaces.

We have applied this technique to various other examples like 2D-FFT and FIR filter, median
filter. The results we noticed are similar and also since the their taskgraphs are very regular like
DCT we have instead included results for random unstructured graphs in the next section. This
shows the viability of the approach for both regular and non-regular graphs.

3.8 Comparison with List Based Scheduling Algorithm

Following the two case studies we demonstrate the results of our techniques with another temporal
partitioning algorithm based on the list scheduling technique. We will compare the results for the

47

Table 3.11: DCT, R^^ = 1024,6 = 100/is,7 = 1, k = 3000

CT(jx) N I
Bounds Result

Dmaz(ps) Dmin(tiS) Design Execution Time (/is) T(s) T(m)
30 5 1 76,410 2,535 18,240 20.92

49.4

2 11,775 2,535 Inf. 300
3 15,816 11,775 Inf. 300
4 17,709 15,816 16,980 288.46
5 16,761 15,816 16,020 74.17
6 15,934 15,816 Inf. 300

6 1 16,020 2,565 11,760 76.43
2 9,772 2,565 Inf. 300
3 11,574 9,772 Inf. 300
4 10,359 11,574 10,560 104.04
5 10,510 11,574 Inf. 300

7 1 10,560 2,595 Inf. 300
8 1 10,560 2,625 Inf. 300

DCT example which is a very regular graph. To find how our algorithm works on unstructured
graphs we also generated many random graphs. The characteristic feature in which they differ
from DCT is that they are graphs with more tasks in their critical path i.e. they are long graphs.
Also the various tasks are different in size and so vary in the number of design points.

We now discuss briefly the the scheduling algorithm which is similar to some other temporal
partitioning works in literature [139]. In other partitioning works temporal partitioning is
performed on an operation level data flow graph. Each operation in the data flow graph is placed
in a priority list honoring the dependency among the operations. The priority list is formed by
placing the nodes on the list one by one. A node is placed on the priority list if all its
predecessors are already on the priority list. Then the algorithm assigns nodes starting from
highest to the lowest priority in a partition until the area is filled. Once a partition is filled nodes
are assigned to the next temporal partition. Each operation has one area and delay value
associated with it. We will extend the same list based scheduling technique to work on task
graphs instead of operation graphs. However there is no easy way to incorporate multiple design
points in this technique. Therefore, going by the philosophy of this approach where the aim is to
minimize the number of partitions in the design we choose the least area design point for each
task prior to the start of the list based scheduling algorithm.

Table 3.12 presents the result of our comparison for the DCT and the random graphs. We have
shown the design execution times for our iterative search algorithm and the list based scheduling
algorithm. The results are presented for each partition bound for which a solution is generated by
the algorithms. Since the reconfiguration overheads for both the algorithms is the same we show
the design execution times without the reconfiguration overheads.

Graph Random 1 consists of 20 nodes, Random 2 has 30 nodes. Both the graphs have up to 4
design points per task. We have presented results for different area constraints and
block-processing factors. The set of results on the DCT example and the random graphs
demonstrate the improvement in performance of our algorithm over the list based scheduling
method. The results are for varying block-processing factors. In each of the results the
performance of our algorithm is superior by 7%-40%. This demonstrates the following two

48

Table 3.12: Comparison with list based scheduling algorithm

Exp. Rmax (CLBs) CT (/*») k N
Design Execution Time

% improv List Based Iterative
DCT 1024 30 1 5 7,200ns 4,610ns 35.97

3,000 5 21,450MS 16,680/iS 22.23
3,000 6 - ll,400jus 46.85
3,000 7 - ll,110/is 48.20

Random 1 1024 30 1 4 9,000ns 5,100ns 43.3
3,000 4 27,000/is 14,850jus 45

Random 2 1024 30 1 8 13,500ns 10,950ns 18.88
3,000 8 40,260/xs 27,450^s 31.8

Random 2 2034 30 1 2 6,450ns 4,290ns 33.48
3,000 2 19,350/as 13,500/zs 30.23

3 - 12,600/iS 34.88

significant points -

• Design space exploration without block-processing is meaningful because the exploration
process will choose the most appropriate design points for the given constraints. The first
line in Table 3.12 with no block processing demonstrates a performance improvement of
35% over the results from an algorithm that chooses the design points prior to the temporal
partitioning step.

• Design space exploration with block processing demonstrates that the amortization of the
reconfiguration overhead due to block processing will help in the usage of more temporal
partitions. For DCT the result demonstrates an up to 48% improvement over the list based
algorithm that does not consider block processing.

3.9 Extensions and Limitations of the Work

All our methodology is still applicable in case of inter-loop dependencies by simply setting the
block processing factor to T (i.e., no block processing). However, in the presence of inter-loop
dependencies (i.e., absence of block processing) temporal partitioning is generally not
time-effective for the devices like XC4000 that have high reconfiguration time. However, for
devices such as XC6200 and the context switching FPGAs, where reconfiguration time is
relatively low, temporal partitioning remains viable and useful. In either case our formulation will
produce an optimal or near-optimal temporal partitioning solution after performing design space
exploration and choosing the most appropriate design point for each task. (This solution may
have only one temporal segment for architectures with high reconfiguration overheads.) We now
present some of the extensions of our work and the limitations of the current technique.

3.9.1 Intermediate Data Transfer Time

In the design process model in Section 3.5, we have assumed that a suitable high level synthesis
system exists that can schedule memory accesses together with the operations in the task graph if
there is enough slack available. However if such a synthesis system is not available and the

49

memory accesses have to be performed prior to the execution of the task graph we need to
account for the memory read write access times in our model. In the model presented earlier we
have not integrated the calculation of read and write times for intermediate data in the
calculation of the delay of each temporal partition. However, our model is very extensible in this
respect. Since we are already calculating the amount of data transfer taking place across each
temporal partition, the current model can be extended by modifying the minimization goal of the
ILP model to include the intermediate memory read-write times. To do this we extend the
minimization goal to also include -

Amount of data transfer * (Memory read time + Memory write time).

We can exclude the memory read by the input tasks and memory written to by the output tasks
from the minimization goal as this factor is a constant of the graph and cannot be reduced.

In terms of the equations presented in Section 3.6.2, we already have a variable wptlt2 defined that
is representative of whether data is being transferred across temporal partition p due to tasks t\
and t2. To calculate the read and write times for the intermediate data we only need to know, if a
data transfer is taking place but are not concerned about the partition boundaries it is taking
place. Therefore, we can generate a new variable itlt2 that represents the data transfer due to
tasks *i and t2 without considering the partition where this transfer takes place. This can be done
in terms of the wptlt2 variables already generated. Formally, we generate the variable itlt2 below -

«*lt2
1 if task <i and t2 are not placed in the same temporal partition
0 otherwise

Vp, 1 < P < N, Via € T, Vii -> h : itlt3 > Wptlt2 (3.17)

Then the time required for the data transfer of intermediate data is equal to -

itxt2 * B(ti, t2) * k * Dmem

where,

Dmem is the sum of the read and write time for one memory element of the reconfigurable processor
Now the minimization goal for the new problem will be -

N

Minimize :n*CT + ^dp + itlt2* B{tut2) *k* Dmem (3.18)
p=i

To extend the technique presented in Section 3.7 we need to include the intermediate data read
and write time in the generation of the delay bounds Dmax and Dmin used in that algorithm. In
the preprocessing step where we generate Dmax and Dmin we can also generate upper and lower
bounds on the amount of data transfer that can take place for the given task graph. The upper
bound on the intermediate data transfer is given by the sum of all data transfers that can ever
take place in the task graph. This is available by summing all data transfers across all edges in
the task graph. This value multiplied by Dmcm is the upper bound on the time to transfer the
intermediate data for the task graph. The upper bound on execution delay of design (as calculated
in Section 3.7) + upper bound on the intermediate data transfer time will be the new Dmax . The
lower bound for the data transfer is 0, so Dmin will remain the same as calculated in Section 3.7.

50

Reconfigure
and load data

Configuration done

t
READ MEMORY

REGISTERS CONTROLLER

Program clock
for read controller — Send Start Read

for read controller

If
DATAPATH

DATAPATH
CONTROLLER

Wait for Read
done/configuration

sienal

w Read done

WRITE MEMORY

REGISTERS CONTROLLER

Program clock for
datapath controller

♦
(a)

Program clock
for write controller —

Wait for datapath
done signal

(b)
Conceptual view of dual clock system Conceptual view of reconfiguration controller on host

Figure 3.17: Reduction of time for memory access

With the above extension, the intermediate data transfer time will be incorporated in the
algorithm. The effect on the solution will be twofold. If the memory read/write time for tasks is
very small compared to the execution times of the tasks then results similar to our experimental
results will still be generated. However, if the memory read/write times are of comparable
magnitude, then we will see solutions that have a tendency to avoid cutting across intertask
edges. All the intermediate data-transfer time in Equation (3.18) is added to the design
execution time. However, in practice, part of this cost can be reduced in the following ways -

• It is not necessary to have a design where all the intermediate data is read and written
completely excluded to the execution of the design. Much of this read/write can be
performed in parallel to the execution of the rest of the design. We can also develop an
estimation process that calculates the overhead of intermediate data transfer for each design
point, if such a transfer were to take place because of a task being placed in the next
temporal partition. This can be incorporated in our model and accurate execution time
results will be generated. This estimation process and model is currently being investigated.

• Or, if the read and write have to be performed in serial to the design execution, we have
developed a model that will reduce the time to access memory by generating two separate
clocks - one for memory access and one for design execution. Figure 3.17 presents an
overview of this approach. If a single clocking scheme is used for the FPG A the clock width
is limited by the maximum combinational delay among all the functional units in the design.
Usually the memory access can take place at a much faster rate than the clock frequency
dictated by the design. Therefore we have split the memory access and the design execution
so that memory access can occur at a faster rate. The time to program the clock from the
host is usually negligible as it involves writing a single word to the reconfigurable processor.

We can extend Equation (3.18) by multiplying the data-transfer time with a constant 'reduction
factor' between 0 and 1 that can be used to appropriately scale down the memory access time by

51

Table 3.13: Results for variation of the factor reducing memory access time

Exp. Rrnax (CLBs) Reduction factor N Design Execution Time(/zs)
DCT

Umem
= 140 ns

2304 0 2 4,830
3 3,735

.2 2 5,408
3 5,063

.4 2 6,885
3 6,423

.6 2 7,860
AR filter

■Umem
= 140 ns

196 0 4 5,355
5 5,010

.2 4 5,940
5 5,845

.4 4 6,531

the average amount that it is being reduced by using one of the techniques discussed above. If the
factor is 0 then all the memory access costs have been absorbed. If the factor is 1 then none of
the costs have been absorbed. We now present a few experimental results in Table 3.13 for
different values of this reduction factor for the DCT and AR filter examples. For all the
experiments CT — 30/zs and k = 3,000. We see from the tables that for the DCT temporal
partitioning will be explored till the reduction factor is .4. For the reduction factor at .6 the
design with minimum number of partitions is the best solution. For AR filter the reduction factor
of > .4 stops the exploration process.

3.9.2 Intermediate Data Overhead

Intuitively we can understand that due to block processing the amount of memory required for
saving the intermediate data will be k times the amount of memory required for a temporally
partitioned solution that does no block processing. This would happen if a solution generated for
k = 1 (no block processing) is used to process blocks of data. However, it is not necessary that
the solution generated by our algorithm for both block processing and non block processing in a
design will give the same results. Formally, we can state the overhead of intermediate memory
needed for block processing in each temporal partition in terms of the variables of the ILP model.
The total amount of memory overhead in each partition is given by -

Y, S Y, ytP2m*B(env,t)*k+Yl J2]C ytP3m*B(t,env)*k+Y, £ (wptit2*B(tut2)*k)
tST p<p2<N meMt teTl<pz<pmeMt <2eTti-^2

(3.19)

The maximum of these values for all partitions would determine the size of the external RAM
required for the system.

If we run two versions of a specification through our system, with and without block processing,
we can determine the overhead due to block processing. As a byproduct of our model we can thus
calculate precisely the memory overhead due to block processing in each design.

52

3.9.3 Limitations

As we have discussed earlier in Section 3.8, our techniques demonstrate that design space
exploration with block processing is beneficial in amortizing the cost of the reconfiguration
overhead. However, if data is to be processed in real time where blocks of data are not available a
priori, our method can still be used to search for a temporally partitioned solution if one is
possible within the inter block-arrival time constraint. It is possible for our system to take the
inter block-arrival time constraint on the overall execution time rather than have one generated
by the tool. If a static/temporally-partitioned solution is possible it will be generated by our tool.
However, if the designer cannot specify an inter block-arrival time or if this time varies for various
inputs and cannot be know a priori then our methods cannot be applied.

The current implementation does not support pipelining of the different computations in the same
temporal partition. This would be particularly beneficial as it would reduce the execution time
for the designs. Another limitation of the approach is that even though tasks can be of arbitrary
granularity, splitting of tasks across temporal partitions is not allowed. Currently the memory
read/written in a temporal partition remains alive for the life of a temporal partition. More
detailed memory access models would require sophisticated foot-print analysis of the
memory-bound data structures and is beyond the scope of the current work. The partial RTR
capabilities of the reconfigurable device is also not exploited from within the algorithm.

3.10 Conclusion

We presented an automated temporal partitioning methodology, which demonstrates how
integrating design space exploration and block-processing procedures, can lead to performance
enhancements in dynamically reconfigured designs even when the reconfiguration overhead is a
dominating factor in the computation time. We have shown, that by using mathematical
programming techniques we can model the task level temporal partitioning and design
exploration problem incorporating multiple constraints of area, design execution time, and
memory. We have also developed a framework in which these techniques can be used in a novel
manner to solve constraint satisfaction problems for large specifications of real world examples
such as the DCT. We are able to get near-optimal solutions in short run times with this iterative
procedure. The effectiveness of the formulations and iterative procedure was demonstrated by the
case study of the DCT.

This technique can handle tasks of arbitrary granularity, so the same technique can be used to
handle task graphs with task sizes varying from small to very large. It is also possible to address
sharing of resources in a temporal partition though the problem size and complexity will be
increased as more variables will be added to the ILP model to model sharing of resources.

53

Chapter 4

Architecture-Driven Spatial
Partitioning

4.1 Introduction

Design process for RCs involves partitioning and synthesis of the given design specification onto
the FPGAs and memories on the RC and accordingly establishing the required pin-assignment
and inter-FPGA routing. Partitioning of a design may be performed at various levels: behavioral,
RTL, or gate-level. High level synthesis (HLS) process converts a behavioral specification into an
RTL design having data path (structural net-list of components) and a controller. Behavioral
partitioning is a pre-synthesis partitioning while structural partitioning is done after HLS. Studies
[38, 48, 20, 19] comparing Behavioral and RTL partitioning show the superiority of the former for
large designs.

Gate-level and RTL partitioning are both structural level partitioning problems that are typically
modeled as graph partitioning. In RTL partitioning the nodes are components from an RTL
library, while in gate-level partitioning the components are from the target specific device library.
In fact, the same structural partitioning engine has been used to perform both RTL and gate-level
partitioning [42]. Problem sizes for gate level partitioning are a magnitude larger than for RTL
partitioning. If the RTL components are pre-placed macros [44, 26] that must not be flattened
into gates, then gate level partitioning is not performed. Usually gate-level partitioning is used in
the context of certain placement algorithms that use recursive partitioning strategies to minimize
the wire length [47].

Behavioral partitioners must be guided by high-level estimators that make estimates on device
area, memory size, I/O, performance and power. These estimations are performed by light weight
synthesis estimators. These estimators have to be light weight because several thousand partition
options may be examined. However, being light and accurate at the same time is very difficult.
Sophisticated estimation techniques are used to alleviate this difficulty [26, 44, 22]. Behaviorally
partitioned system may use more gates, since hardware is not shared between partitions.
However, since RTL partitions are I/O dominated, the RTL partitions do not tend to under
utilize the device. Thus, this increase in gates is not much of a concern.

The RC research community has invested several efforts into multi-FPGA Partitioning
[57, 70, 35, 82, 51, 60, 11, 55]. However almost all of these have been post HLS partitioning

54

approaches. Chan et al. [57] partition with the aim of producing routable sub-circuits using a
pre-partition routability prediction mechanism. Sawkar and Thomas [55] present a set cover
based approach for minimizing the delay of the partitioned design. Limited logic duplication is
used to minimize the number of chip-crossings on each circuit path. Bi-partition orderings are
studied by Hauck and Borriello [70] to minimize critical bottlenecks during inter-FPGA routing.
Woo [51], Kuznar [60], and Haung [11] primarily limit their partitioners to handle device area and
pin constraints. A library of FPGAs is available and the objective is to minimize device cost and
interconnect complexity [11, 60]. Functional replication techniques have been used [60] to
minimize the cut size. Neogi and Sechen [35] presents a rectilinear partitioning algorithm to
handle timing constraints for a specific multi-FPGA system. Fang and Wu [82] present a
hierarchical partitioning approach, integrated with RTL/logic synthesis.

Behavioral partitioning has been promoted by several system level synthesis groups
[65, 37, 21, 48, 22, 78, 80]. In this chapter the behavioral partitioning approach was chosen for
RCs due to the drawbacks of structural, as mentioned above, and due to several studies that led
to the decision [48, 38, 61, 79]. We present two integrated partitioning and synthesis
methodologies RCs. In both approaches, we show that the physical memory on the RC can be
effectively used to alleviate the pin-out and inter-FPGA interconnection bottle-neck. First, we
present a data flow graph (DFG) partitioner. Following this a coarser block-level partitioner is
presented. The block-level partitioner is integrated with a dynamic design space exploration
engine. This chapter presents a fully automated framework for behavioral partitioning of a DFG
and a CDFG, with appropriate estimation and exploration techniques such that the RC resources
are effectively utilized. In addition, the chapter also provides a detailed summary of advantages
and disadvantages of both partitioning approaches.

Various aspects of the partitioning problem presented in the chapter and the hardware
area/performance estimation techniques bear similarities to the research in the area of
hardware-software codesign [64, 58, 52, 23]. There have been several approaches to solve the
problem of hardware-software partitioning for a range of granularity [65, 58, 30, 33, 13, 53, 76].
Fully automatic partitioners have been in existence for quite some time now [65, 58, 33]. Gupta
and De Micheli [65] start with an all hardware solution and iteratively move one task at a time to
software until no further improvement is possible. Ernst and Henkel [58] on the contrary follow a
software oriented approach which starts with an all software solution and uses a simulated
annealing partitioning engine. Hou and Wolf [33] proposed a process level partitioning heuristic
based on hierarchical clustering. Eles [53] performs a performance guided partitioning based on
simulated annealing and Tabu search. Thomas [13] presents a coarse grain partitioning
methodology at a functional level. The RC partitioning presented in this work does not have a
software estimation component. However, the communication model and the resource availability
(both for communication between partitions and hardware logic) is well defined and performance
overheads can be accurately computed within clock-cycle accuracy. The challenge is to
dynamically explore the hardware design space and efficiently use the available communication
resources inorder to generate the optimal design that satisfies resource constraints. It is typical of
an RC environment to have a host desk-top computer interacting with a FPGA based RC . In
such cases, RC hardware partitioning can follow functional level hardware-software partitioning.

The chapter is organized as follows. In the following section the DFG and block graph
specification models are presented. Section 4.3 presents the target RC architecture model.
Sections 4.4 and 4.5 present in detail the data flow graph and block graph partitioning
methodologies, experimental results, and observations. Our conclusions are presented in the final

55

section.

4.2 Input Specification Models

In this section we formally present the two specification models that are used this chapter - data
flow graph, and behavioral block graph.

4.2.1 Specification for Fine-grained Partitioning

Several digital signal processing (DSP) and image processing applications can be expressed as
simple graphs that have pure data flow or minimal control flow. Discrete cosine transforms
(DCT), Fast Fourier transforms (FFT), image filtering, and Jacobi transforms are some widely
used applications that can be expressed by data flow graphs.

The input to be partitioned is an acyclic graph whose nodes are the operations to be partitioned
across the FPGAs of the RC and the edges represent the data flow. The formal definition is as
follows.

Definition 4.1 A data How graph (DFG) is o directed acyclic graph, Q = (V,E,I, O). V is the
set of nodes representing the operations and E is the set of directed hyper-edges corresponding to
the data flow dependencies. I is the set of primary inputs and O is the set of primary outputs.
Following are the attributes related to nodes and edges.

• For each node v e V: areav : Area of the nodes in CLBs (Configurable Logic Blocks). iv :
Number of input wires feeding v. ov : Number of output wires fanning out v. levelv : Level
number of the node v, or its schedule time-step. For a valid DFG,

Vi,Vj E V A V{ ~> Vj => 0 < levelVi < levelVj,
Here, the symbol ~> denotes a directed path.

• For each edge e G E: source,, : Source node or the primary input, in I, that drives the
hyper-edge e. sinke : Set of nodes and primary outputs that are driven by the hyper-edge e.
widthe : Bit-width of the edge. modee : Data-transfer mode for the edge e, if it cuts
partition boundaries. If modee = MEM, then data-transfer is through memory transfer,
else modee — WIRE and data-transfer is through the interconnection-network of the RC.

G is a scheduled data flow graph with well defined modes for data transfer across partitions. All
primary inputs to the DFG must be available when the DFG starts execution (at time-step 0).
Primary outputs are available in the next time-step after they are computed.

Figure 4.1 shows the DFG for a 8x8 vector product equation of the form
z = ai.&i + 02.62 H 1- 08-&8- The DFG is scheduled in 5 time-steps. The level of an operation is
the time step (level) at which it is scheduled. For instance, in Figure 4.1, 4 operations have the
level attribute value of zero. All primary inputs to the DFG are fetched from the memory and all
primary outputs must be stored in memory. All internal nets by default are MEM mode unless
explicitly specified as WIRE. In Figure 4.1, two edges have WIRE mode, meaning, if these nets are
cut during partitioning, then they must be wired using the interconnect resources on the board.

56

Figure 4.1: Vprod: DFG for 8x8 vector product: Example

4.2.2 Specification for Coarse-grained Partitioning

The behavioral block graph in essence is a Control Data Flow Graph (CDFG), where the blocks
in the graph capture the data flow in the design and the edges across blocks capture both control
flow and data transfers. The block graph is extracted from the behavioral specification of the
design and is used as the intermediate format for the SPARCS synthesis tool called Asserta HLS
[50, 49]. Here is a more formal definition of the BBG.

Definition 4.2 A BBG is a directed graph, Q = {B,Ce,Ve,PI,PO), where

B = {&i, &25 ■ ■ ■, b}(} is the set of behavioral blocks in the design. PI and PO are the primary
input and primary output ports of the design.

Ce = {CE1: CE2, ■■■, CEN} is the set of control dependencies in the BBG. Each control edge,
CEi — < bSi,Bdi,fi > e Ce, denotes control dependency from BB bSi to the set of BBs in B^.
The control transfer from block bSi to one of the blocks in Bdi happens conditionally based on the
value that bSi sets on the flag fo. Informally, each control edge is a multi terminal edge from a
source block to multiple destination blocks, where the control transfer from source to one of the
destination blocks occurs conditionally. Data transfer takes place from the output port of a block
to the input port of another.

Ve = {DEi,DE2, ■ ■ ■ ,DEM} is the set of data dependencies in the BBG. Each data transfer edge,
DEi — < bSi,Bdi,Wi > e Ve, denotes multi-terminal net with BB bSi as the source and the set
of BBs in Bdi are the destination. Wi denotes the width of the data transfer edge. The source of
the data-transfer may be a primary input port in PI and similarly one or more destinations may
be primary output ports in PO. The variable modei denotes the data-transfer mode (Definition
4.1) ofDEi.

Each BB &,- e B is modeled as a four tuple, 6* = < Gu Iu OuFi> where, G{ is the DFG that
represents the behavior of the block &*. d follows the dataflow graph semantics, Definition 4.1. It

and Oi are the input and output ports of the behavior block &j. The input ports of the block may be
connected to one of the primary inputs (PI) or to the output ports of other blocks. Similarly ports
in Oi may be connected to primary outputs (PO) and/or to inputs ports of other blocks. The port
connectivity is also captured by the data dependency set, Ve.

57

Input Set

\
Local Set

<

Operation Graph
<DFG)

.....I.....
Output Set

(a) Example Block Graph (b) Behavioral Block

Figure 4.2: Example of block graph, extracted from BBIF

Figure 4.2(a) shows a block graph with 6 behavioral blocks. Figure 4.2(b) shows the structure of
a single block. Block Bl performs operations on the primary input and the control is transfered
to B2. On completion of B2, the control conditionally transfers to block B3 or B4. B5 executes
next when either of B3 or B4 finishes and finally B6 is executed. The block graph model permits
only a single thread of control. Exactly one block is active at any time during the execution of the
design. This allows a complete sharing of resources across blocks. The block graph model allows
operation-level parallelism within the behavioral blocks. Control constructs such as if then else,
case and while loops in BBIF can easily be translated into control flow in the block graph
[50, 49]. Figure 4.3 shows the BBG for the two dimensional FFT benchmark. The graph has 18
blocks and 25 edges. Notice that there are two loops in the graph.

4.3 Target RC Model

We consider a multi-FPGA RC architecture that has multiple FPGAs sharing a single physical
memory. The FPGAs are interconnected by a fixed interconnection network and all the FPGAs
can access the "memory through a shared memory bus. Figure 4.4 shows the RC architecture
model that is considered.

Formally, the RC has K FPGAs, T = {/i, /2, ■ • •, IK) that share a physical memory M. For
/£f, Aredf is the area of the FPGA in terms of the available CLBs. We define conn to be the
connectivity matrix, where for 1 < i < j < K, conn^ is the number of wires in the channel
connecting FPGA -i and FPGA -j. The connectivity matrix is derived from the fixed
interconnection network.

The FPGAs can communicate data either through the shared memory or directly through
channels (wires) in the interconnection network. For DFG and block graph partitioning, all
primary design inputs are assumed to be present in the memory, and all primary outputs are

58

1
1
/

Blk_l |

1 l
Blk 2

Blk 3

"/. A 1 Blk_5| 1 Blk 6l 1

->—4 Blk 9

1

Blk_7 1 Blk_8 | | Blk_10|

1 Blk_ll |

| Blk
/ \T~^^

| Blk_13 _14 | | Blk_I5 | | Blk 16 |

1 Blk_17 |

Figure 4.3: Block Graph of 2D FFT

RAM

Addf« it/Doto Ltrwi

l A-i |
! |

FPGA I FPGA 1 FPGA FPGA

I

Fixed Interconnection Network
-I/O

- Host
Computer

Figure 4.4: The Reconfigurable Architecture Model

59

written back to the memory. For DFG partitioning, when the internal edges in the DFG are cut,
data communication is made through either memory or channels depending on their user-specified
mode (Definition 4.1).

4.4 Data Flow Graph Partitioning

In this section we present the DFG partitioning methodology. First, we explain the partitioning
and synthesis process. Following this the various details about the cost estimation and partition
evaluation methodologies are presented. We briefly describe the iterative partitioning engine used.
Elaborate experimental results are presented and the observations are summarized at the end of
this section.

4.4.1 Partitioning and Synthesis Process for DFGs

The goal of the RC synthesis process is to partition and synthesize a behavioral specification and
to efficiently utilize the underlying RC resources. The quality of the design is determined by the
cost metrics, discussed later in Section 4.4.2. The primary goal of this process is to successfully
obtain a partitioned design that satisfies all board-level constraints such as area, interconnect,
and memory resources. The secondary, but an important factor is measured in terms of the
performance (throughput) of the design.

Figure 4.5 shows the partitioning and synthesis design flow for DFG partitioning onto RCs. First
the DFG is extracted from a behavioral specification in C [3] or VHDL (Very high speed
integrated circuit Hardware Description Language) [27]. Design space exploration is performed to
generate a schedule [10] for the DFG that is suitable for the underlying RC. The scheduled DFG
is then passed as an input to the partitioner. The DFG partitioner generates multiple control
data flow graphs (CDFGs). Each CDFG is synthesized for an individual FPGA on the RC. The
control structures in the CDFG are a simple synchronization mechanism between the multiple
communicating DFGs.

Any iterative partitioning engine such as simulated annealing (SA) [71], genetic algorithm (GA)
[31], or Fiduccia-Mattheyses (FM) may be used by the partitioner. The most crucial component
of the partitioner that determines its convergence is the partition cost evaluator. The evaluator
estimates the cost and performance of the contemplated partition against the target RC model, as
presented in Section 4.4.2.

Following partitioning, we generate a block graph (CDFG) for each partition segment of the
original DFG. Each block graph is then individually synthesized to a RTL implementation by the
Asserta [50] HLS tool. Asserta is a formally asserted high-level synthesis system, that can
produce RTL designs for any user specified RTL component library. The RTL designs produced
by Asserta have two components. The first component is a simple FSM (finite state machine)
that acts as the controller and the second component is data path of components from the RTL
component library. The synthesized designs are translated to VHDL, integrated together with the
RC VHDL templates, usually provided by the RC vendor. The integration process involves
connecting the design I/O to the pads in the RC template and generating additional glue logic, if
necessary. Commercial VHDL simulators are used to simulate the partitioned design and verify
timing and functionality of the partitioned design.

60

Behavioral Specification
(C/VHDÜ

Target RC Model &
Constraints

<fTranstaH«o

Generate Schedule

Target RC Model«
Constraints,

Partition
Cost Evaluate»

Scheduled DFG

DFG
Partitioner

RTL
Component

Library

RTL Component
Library

Multiple Interacting
CDFGS

JUX
High-Level Synthesis

(ASSERTA)

T~RTL

RCVHDL
Templates

RTL2VHDLTranslafion
and Integration

RTL Simulation
(Synoptys)

Logic Synthesis (Synplify)
+

Layout Synthesis (Xiinx Ml Tools)

Board Level Testing
and Partitioned
Design Vallddion.

Rcconfigurablc Board

Figure 4.5: RC Partitioning and Synthesis process for DFGs

61

After successful RTL simulation, logic and layout synthesis is performed on each design that is
mapped to an FPGA. The template host program is accordingly modified to setup the memory
for inputs and provide the necessary signals to start and recognize the finish of the design on the
RC. Finally the design is downloaded on the RC and board-level testing is performed. In practice,
layout synthesis may fail during place and route. The information is fed back to the partitioner,
respective constraints are tightened and the design process is carried out again. Due to this time
expensive design cycle, the cost evaluators are carefully fine tuned so that such failures, late in
the design process, can be minimized.

4.4.2 Partition Cost Evaluation for DFG Partitioning

Partitions are evaluated based on their architectural constraint-satisfaction and how well the
performance is optimized. For DFG partitioning we consider number and area of the FPGAs and
the inter-FPGA interconnection resources to be the constraints on the RC. The RC constraints
are available from the RC architecture model (Figure 4.5). The optimization goal for the
partitioner is to minimize the latency of the design. Before presenting the combined cost function,
the area, interconnect and latency estimation techniques are presented.

Area Estimation

The area of each partition segment s is constrained by the number of CLBs available on the
FPGA to which it is mapped. In the case of ASIC design both computation resources (ALU
components such as, adders and subtracters) and storage resources (registers) are considered alike
because both occupy silicon area. However, in FPGAs, the LUT (Loop Up Table) based function
generators in the CLBs provide the computation resources while the flip-flops in the CLBs
provide the storage resources. Hence in the case of FPGAs, computation area estimation and
storage area estimation (register estimation) must be performed separately and individual
constraint-satisfaction checked.

The total area of a segment is composed of the component area, and multiplexor areas due to
component and register sharing. The area of each component is available from the RTL library.
Multiplexor area characterization for Xilinx 4000 series FPGAs [43] shows that a four input
multiplexor needs a unit CLB resource and the area increases linearly with the input size.

During synthesis, all inputs and outputs of every node in the DFG are stored in a register.
Trivially if every input and output bit of a node is stored in a flip-flop, then the storage resource
required is a function of sum of the I/O bits of all nodes in the partition segment. Approximately,
for every two 4-bit registers that are shared, a unit CLB cost will be incurred for multiplexing.
We use empirical formulas to compute the register and multiplexor area costs [77] based on an
expected register sharing behavior.

Let si, s2 ■ ■ ■ sK be the K segments to be mapped onto the K FPGAs on the RC (Section 4.3).
Then, we define the AreaPenalty of the partition as,

, _ , A AAi
AreaPenalty = > (4 i)

f^Areah ^ • >

62

where, AA-= { °, , , if ^ea(Si)< Areafi
I Area(Si) — Area^ otherwise

Area(si) is the estimated axea of the segment S{ and Area^ (Section 4.3) is the area of the FPGA
to which the segment is mapped. Notice that no negative penalties are assigned to segments with
areas lesser than the FPGA area. More importantly we normalize the area violations to the
amount of area available. This is important when partitions are evaluated for multiple conflicting
constraints. A value of zero for the AreaPenalty implies that the partition does not violate area
constraint. Negative area penalties are avoided because the goal is to generate the
performance-optimal design that does not violate resource constraints for a fixed RC. Negative
penalties needlessly avoid search spaces thereby increasing the chances of being held at a locally
optimal solutions.

Interconnect Estimation

The inter-FPGA interconnection resource constraints are derived from the connectivity matrix
(conn) that is part of the RC specification model (Section 4.3). Let S\,S2---SK be the K
partition segments. Each edge e in the original DFG contributes a wire requirement of size
widthe, if modee is Wire and edge e communicates between two different segments s, and Sj.
Another component that adds to the interconnection cost is the routing of synchronization lines
to the communicate end of a block execution.

Let si, s2 • • ■ SK be the K segments to be mapped onto the K FPGAs on the RC (Section 4.3).
For 1 < i < j < K, Wij is the number of wires required between partition segments s, and Sj (as
computed by the function EstimateJVires(si, Sj). Then, we define the InterconectPenalty of the
partition as,

Inter connectPenalty = Y^ — (4.2)
l<i<i<K connij

where A7« = I ° if Wij ~ C(mnij

I "ij ~ connij otherwise

Notice that similar to the AreaPenalty computation (Section 4.4.2), no negative; penalty is
assigned for constraint satisfying solutions. Again, the interconnect penalty is normalized with
respect to the number of channels available on the RC for inter-FPGA routing.

Latency Estimation and Memory Utilization

A partition solution of a DFG is constraint-satisfying if both area and interconnect penalties are
zero. When multiple constraint satisfying partitions are obtained, the partitioner selects the
solution with the least design latency. Latency is the the total number of c-steps (clocks) to
process a single set of inputs to the DFG. If the input specification were not partitioned but
implemented on a single FPGA the total latency will be the schedule length of the DFG plus the
time for reading primary inputs from the memory and writing primary outputs back to the
memory.

In the case of a partitioned DFG, additional clocks are spent in data transfer across partitions
and in synchronization of block execution across multiple segments. The latency of a partitioned

63

design is composed of four components.

1. DFG schedule length : This is the number of time steps in the scheduled DFG. This is equal
to the maximum of the level numbers of all nodes in the DFG. Formally, schedule length =
Max(Vt; € V : levelv), refer Definition 4.1.

2. I/O latency : Primary inputs and outputs are stored in the memory. Since we consider a
shared memory RC model, the I/O latency is a linear function of the number of primary
inputs and outputs of the DFG. If each memory read and write operation takes r and w
cycles then the I/O latency for a DFG Q = (V,E,I, O) is \I\.r + \0\.w. For the Wildforce
[84] architecture, r is 3 cycles and w is 1 cycle.

3. Data transfer latency : When edges in the DFG cut segment boundaries, the data transfer
between FPGAs may be either through the shared memory or through the channels in the
interconnection network. Each data transfer through memory will consume r + w cycles,
and each wired data transfer will consume two cycles, assuming unit cycle for port read and
write. If there are M data transfers through memory and W wired data transfers then the
data transfer latency is (r + w).M + 2.W.

4. Synchronization latency: Insertion of synchronization blocks introduces extra clock ticks to
write the done signal and recognize it. The synchronization latency is the number of
synchronization blocks in the design multiplied by a constant factor. The value of the
constant depends on the synthesis process. The HLS tool used (Asserta [50]) in our
partitioning environment (Figure 4.5) consumes 4 extra cycles for every synchronization
block.

The total latency is the sum of the four components discussed above. As seen from the above
discussion, the latency of the the design can be accurately computed and the time to compute
linearly increases with the number of edges in the DFG.

4.4.3 Partitioning Engine for DFG Partitioning

We use a GA (Genetic Algorithm) [31, 12] based partition engine to perform the DFG
partitioning. GAs capture the solution in a structural representation and the convergence is based
on genetic operations - selection, crossover and mutation. The genetic operators work on a
population of solutions, also called generation. We now present the details of the adaptation of
GA for DFG partitioning. We model the partitioning problem as a simple integer-coded genetic
algorithm. Each partition solution is represented as an integer array whose length is equal to the
number of nodes in the DFG and each location of the array has a value between 1 and the
number of partition segments K. The selection operator probabilistically selects highly fit
solutions in the current generation. The GA uses uniform crossover operation [39]. A mutation
operator randomly changes the integer values in the integer arrays. The population size varies
between 100 and 200. Selection percentage is set to 20% and mutation probability is 0.10.

The convergence of the GA is primarily dependent on the fitness computation function.
fitness(x) =

1 + AreaPenalty(x) + InterconnectPenalty(x)'

64

Table 4.1: Design Data for DFG Partitioning

Example Num Num Area Latency

Name Nodes Edges (CLBs) (c-steps)

Vprod 15 14 258 55

StatFn 23 22 187 33

Reverb 22 24 1424 34

FIR 23 22 1044 81

Elliptic 36 49 1176 48

FFT-1D 40 16 736 74

FFT-2D 88 112 1652 80

MatMult 112 96 1905 117

DCT4x4 224 256 8200 166

DCT8x8 1929 2304 13999 835

Equation 4.3 shows how fitness of a partition, x is computed. AreaPenalty and
InterconnectPenalty are computed as presented in Sections 4.4.2. Thus, when both area and
interconnect penalties are zero, the fitness of the solution is 1.

The selection operator first sorts the solutions in the current population in decreasing order of
quality (Equation 4.4). For two solutions x and y, the solution with

quality(x) > quality (y) <S=^

(fx > fy) V((/* = fv) A (lat* < latv)) (4.4)

where, fx and latx are the fitness and latency values for the solution x.

The selection operator selects 20% of the population, with a high probability of selecting solutions
lower (high quality solutions) in the sorted array. Selecting the lower 20% of the sorted array may
make the GA converge too fast. The crossover operator also selects good quality solutions for
crossover.

4.4.4 Experimental Results for DFG Partitioning

In this section we present the results of partitioning several DFG benchmarks of varying sizes
onto multi-FPGA RC architectures. The genetic partitioning engine and the estimation
algorithms are implemented in C++ and all results are reported for a two processor Sun
UltraSparc workstation running at 296Mhz with 384MB RAM.

Table 4.1 shows the various designs that are partitioned. All examples were first written in
straight-line (i.e, no loops or conditionals) C [3] and translated into the DFG format. The input
operators are nibble sized.

• The Vprod DFG is shown in Figure 4.1. Vprod has 15 nodes and 14 edges (number of
edges does not include the primary input/output connections). Column 4 of Table 4.1 gives

65

the area required to implement the design on a single FPGA. Column 5 is the latency of a
single FPGA implementation. This latency is the sum of DFG schedule length and the I/O
latency (Section 4.4.2). Column 5 also gives the lower bound on the latency that can be
achieved by any multi-partition implementation of the corresponding DFG.

• StatFn computes a statistical function of an array of 8 nibble-sized inputs. It first finds the
mean, then computes the deviation from the mean of each input. It then outputs the mean
and the sum of products of the adjacent odd and even values in the deviation array. The
design has 23 nodes and 22 edges.

• Reverb, FIR, Elliptic, FFT-1D are computationally small designs (number of nodes,
edges < 50) like Vprod and StatFn. FIR performs finite impulse response function on 16
inputs.

Elliptic is the elliptic wave filter and Reverb is an implementation of the reverberation filter.
FFT1-D does the one dimensional fast Fourier transform on a 4x4 matrix. The reason for
increased area sizes of Reverb, FIR, FFT-1D and Elliptic is because the operator sizes are
much larger (16-bit) than that of Vprod and StatFn.

• FFT-2D and MatMult are medium scale examples that have about 100 nodes and as
many edges. The solution space of a partitioning problem is nK where n is the number of
nodes and K is the number of partition segments. Thus the solution space increases much
rapidly with the increase in the size of the DFG. FFT-2D is the DFG of a two-dimensional
fast Fourier transform and MatMult is a matrix multiplication operations of two 4x4
matrices.

• DCT4x4 and DCT8x8 are both DFG for two dimensional discrete cosine transform
operation of 4x4 and 8x8 matrices. Both are large examples, the latter being a much larger
example with around 2000 nodes and edges. Two dimensional DCT involves two matrix
multiplication operations, one for each dimension.The DFG for these examples have several
large 9-bit and 20-bit multipliers.

We partition the designs in Table 4.1 for the Wildforce family of architectures. Wildforce has 4
FPGAs, Wildchild has 8 and Wildfire has 16 FPGAs on the board. The FPGAs are Xilinx 4000
series FPGAs. For our experiments we consider the target RC to be one of the Wildforce family
boards with all the FPGAs being the same Xilinx device. The Xilinx FPGAs we allow are
XC4005 (196 CLBs), XC4013 (576 CLBs), XC4025 (1024 CLBs), xc403ü (1296 CLBs) and
XC4085 (3136 CLBs). One of the memory devices on the board acts as the shared memory and a
common memory bus (address, data and read/write control) is routed through all the FPGAs.

Only limited wires are available for data transfer across FPGAs. If the inter-FPGA interconnect
resource is unavailable, the partitioner automatically transfers data through the shared memory.

Table 4.2 shows the results of partitioning the DFG designs presented in Table 4.1. Column 2 is
the type of RC architecture and the FPGA device that is used. The designs Vprod, and StatFn
are targeted to a board with 2 XC4005 devices and MatMult is targeted to an RC with two
XC4025S. The rest of the designs are partitioned onto a Wildforce family board.

The DFGs are scheduled to match the constraints posed by the target RC. For the smaller
examples (Vprod • • • MatMult) in Table 4.1, the area and the latency correspond to the fastest
(ASAP) schedule of the graph. The DFG for DCT4x4 and DCT8x8 have several multipliers of
very large sizes (>20 bits wide) therefore the ASAP schedule was infeasible. In fact the ASAP

66

area estimates for DCT4x4 is «40000 CLBs and for DCT8x8 the estimate is «150000 CLBs.
Hence a highly serial (slow) schedule, with aggressive sharing of operators, was generated for
these two examples. The area and latency estimates for DCT in Table 4.1 corresponds to the slow
schedule.

Column 3 of Table 4.2 shows the estimated areas of all the partition segments. The number of
segments is equal to the number of FPGA devices on the board. Notice that some of the segments
may be empty {FIR, EUip, FFT1D). In fact as the number of segments increases, the latency of
the design tends to decrease. This is illustrated by the results for DCT4x4 example. We target
DCT4x4 to Wildforce (4 segments), Wildchild (8 segments) and Wildfire (16 segments). The size
of the FPGA device decreases with the number of FPGAs on the board. We see that the design
executes fastest on Wildforce architecture, followed by Wildchild then the Wildfire. The latency
of an unpartitioned design (reported in Table 4.1), provides a lower bound on the design latency.
Column 5 of Table 4.2 reports the latency of the partitioned design. Notice that the more the
number of partition segments, the greater is the deviation from the lower bound.

The estimated area of the unpartitioned DFG (as in Table 4.1 is the lower bound on the total
area. Column 4 of Table 4.2 reports the total area of the partitioned designs. We infer from the
results that limited larger FPGAs is a better alternative than several smaller FPGAs. The
run-times for the genetic algorithm rapidly increases with the size of the DFG. The last column in
Table 4.2 reports the execution time to complete 1000 generations of the genetic algorithm.

For a few examples (Table 4.3), we performed logic and layout synthesis and compared our
estimated area and performance measures against the actual values after synthesis. The designs
Vprod and StatFn were successfully implemented and tested on the Wildforce [84] board. Table
4.3 shows estimated and actual areas after synthesis of the partition segments for each design.
Similarly, the estimated and actual latency (obtained from RC VHDL template simulation) of the
partitioned design is reported. We observe a very small deviation in the latency computation.
The deviation in area estimates and actual area is due to the approximations made for
interconnect and the controller area. However the error margin is less than 20%, making the
estimation process reliable.

4.4.5 Observations and Summary for DFG Partitioning

We presented a simple and efficient methodology for partitioning data-flow graphs onto
multi-FPGA shared memory RC architectures. A fully automatic design flow from a behavioral
specification in C, or VHDL is accomplished. There are various advantages of this process.

• For small designs, it is straight forward to specify the design as a DFG.

• The user is oblivious to the underlying RC architecture. The specification is implementation
independent. The data transfers and the DFG I/O are automatically mapped to the
memory or the inter-FPGA wires automatically.

• Given a scheduled DFG, area and latency of the partitioned design can be estimated with
reasonable accuracy.

• The partitioned implementation exploits the inherent operator level parallelism in the DFG.
Multiple operations in the same and different FPGAs may be active at the same time.

67

• Typically, pin-outs and inter-FPGA routing resources are one of the primary bottlenecks to
implement large designs on RCs. Our DFG partitioning methodology is an approach to
minimize this bottleneck by seamlessly transferring inter-FPGA communication through the
memory. This is done at the cost of increased latency of the design. However, if not for this,
most of the useful designs tend to be infeasible.

• The partitioned design model is simple and closely resembles the original DFG in its
structure. The simple partitioning process poses very limited scope for error when
generating the partitioned design. Moreover verification of the partitioned design is not
difficult.

The advantages of DFG partitioning come with several disadvantages too.

• The design space exploration process is not fully integrated with the partitioning process.
Since partitioning is done at a fine-grained level (operation-level partitioning), the problem
size increases exponentially with the number of nodes. Design space exploration (i.e.,
determination of an efficient schedule of operations), during partition is extremely time
consuming and is feasible only for very small examples. In the DFG partitioning
methodology, design space exploration is performed a priori based on the constraints posed
by the target RC.

• The lack of control structures, such as conditional branching and loops, makes it tedious to
specify larger designs. For ease of specification, if control constructs such as loops were
allowed, the following are the drawbacks: 1) the transformation process into a DFG may be
complex and prone to errors. 2) verification of the specification against the final design will
be much more difficult.

The DFG model is insufficient to express designs with control flow, a traffic light controller,
for instance. However DFG specification is useful for a restricted domain of data dominant
applications.

• Due to operator level partitioning, the problem size is much larger than functional
partitioning. For instance, partitioning a 4x4 Matrix multiplication DFG is several times
faster than an 8x8 multiplication. This is not true about block level or function level
partitioning. As seen from the results (Table 4.2), run-times for DCT8x8 design is several
days.

We see a need for coarser grain partitioned that keep the partition problem size within
reasonable limits. Integrated design space exploration during partitioning is possible with coarser
grain partitioners but not during DFG partitioning. Control structures such as loop and
conditionals enhance the applicability of the methodology. RCs with fewer and larger FPGAs are
more useful than those with several smaller devices.

4.5 Block Graph Partitioning

In this section, we present the block graph (coarse-grained) partitioning methodology. We
illustrate the advantages of integrated design space exploration during partitioning. The design
space exploration engine and the various cost estimation techniques are described in adequate
detail.

68

RC
Architecture

Model

Behavioral Specification
(VHDL/C)

Translator

Profile FT>I i ^
sü»uii Throughput

Constraints

Profiler

Synthesis and Partioning Engine

HLS Exploration

Engine
Parti tioner

Multiple BBIFs

Test Vectors

RTL Simulation

High Level Synthesis j Component
Library

RTL Design
for each partition

Logic/Layout Synthesis

FPGA bit-streams

On-Board Testing and Design Validation

Figure 4.6: Synthesis and Partitioning Environment for Block Graphs

4.5.1 Partitioning and Synthesis Process for BBGs

Figure 4.6, shows our approach to integrated synthesis and partitioning. The design to be
partitioned is specified in a high level specification language such as VHDL [27] or C [3]. The
input translator converts the specification into an equivalent block graph specification (Section
4.2.2). A profiler computes the average execution count (AEC) and maximum execution count
(MEC) for each behavioral block in the (block graph). AEC of a block is the average number of
times the block is invoked per profile vector, averaged over a large set of profiling stimuli. MEC of
a block is the maximum number of times the block is invoked during any single profile run. AEC
values of blocks may be greater than one in the presence of loops and they may be fractional
values less than one due to conditional invocation of blocks.

The core of the environment is the HLS exploration engine [69] integrated with an iterative
partitioning engine. The unique feature of the exploration engine is that it views a partitioned
model of the block graph and performs design space exploration to globally optimize the
partitioned design. Traditionally design space exploration engines [59, 45, 14, 63, 9] do not
consider partitioned design models for exploration. Instead area-time trade-off can be performed
on each partition without the knowledge of other partitions. Thus each partition is locally
optimized but global optimization of the partitioned design cannot be performed. We explain the
multi-partition exploration engine in Section 4.5.2, and a more detailed description and analysis
may be found in [69].

The partitioner has iterative partitioning engines such as the SA and the FM heuristics. The
partitioners interact with the exploration engine through an application program interface (API).
The API provides various useful functions that are used to efficiently perform design space
exploration on a partitioned block graph. The various API functions and the modes of interaction
between the partitioner and the exploration engine are presented in Sections 4.5.2 and 4.5.4.

69

DMlgnPoJnf 2 1

I D»llpnPoint N

Figure 4.7: Model for the Exploration Engine

The result of partitioning is a collection of block graphs, one for each partition segment of the
original block graph. Each partition segment is targeted to a single FPGA on the RC. HLS is
performed on each partitioned block graph and a set of RTL designs are generated. Logic and
layout synthesis is performed on the partitioned designs to generate the required configuration
streams for the FPGA s. In our design process, the Asserta system [50] is used to perform HLS.
Commercial simulation (Synopsys' VHDL simulator), logic synthesis (Synplicity's Synplify) and
layout synthesis (Xilinx Ml) tools are used.

4.5.2 Design Space Exploration Engine

The exploration engine [69] provides the framework to integrate any iterative partitioner, such as,
SA, FM, and GA. The partitioners can invoke the exploration algorithm through a range of
interface functions and get area and latency estimates about individual blocks, partition
segments, or for the complete partitioned design itself. In addition to estimation, the exploration
engine can efficiently explore the design space of the blocks (finding the best schedule for each
partition segment), such that a constraint-satisfying solution that is optimal in terms of latency is
produced.

Figure 4.7 shows the exploration model. On the left is the partitioned block graph. Each
segment, s, has a set of design points associated with it, {DP{, DP$, ■ ■ ■ DP^}. The design
points are shown in the center of the Figure 4.7. Each design point DP? corresponds to a
particular schedule of the segment s. A schedule of the segment s, is derived from the schedule of
the individual blocks in s and the sharing information between the blocks. Given a design point
for a segment s, various estimates about the RTL design corresponding to that design point can
be made. These estimates include details about ALU, register, and multiplexor areas. In
addition, the controller information such as the number of states, inputs and outputs are also
available. The exploration engine also maintains the necessary information about sharing of
resources within and across the blocks in any segment.

The overview of the exploration engine is presented in Figure 4.8. The inputs to the exploration
are the BBIF corresponding to the block graph to be partitioned (with blocks assigned to
segments), the design latency constraint, and the characterized RTL component library. The

70

Design Latency Component
Constraint BBIF Library

1 1 1

E
S 00

c
_o

"E. a. <

Design

Analyzer

Resource
Estimator

^^
To

Partitioner

Resource and
Time Constrained

Schedulers

/

Behavioral

Estimator

Figure 4.8: Block Diagram of the HLS Exploration Engine

exploration engine has three main components 1) The design analyzer 2) the design explorer and
3) the application program interface (API) to the partitioner. The exploration engine also has a
resource estimator, fast time-constrained and resource-constrained schedulers and a behavioral
estimator that can estimate the area and performance of the RTL design corresponding to a
scheduled block graph.

The first call made by the partitioner to the exploration engine is to initialize the exploration
engine and setup partition invariant information about the design. The design analyzer module
does such initialization. Following are the phases of the design analyzer.

1. Initialization: Dependency graphs for each block and the entire control flow graph of the
design is built.

2. Resource Estimation: For each block in the graph a 7ocai resource set is formed. The
resource set contains components from the RTL library that are potentially required to
implement the block. A global resource set for the entire graph is formed based on the
individual local sets.

3. Design Latency Function: The function to compute the design latency is determined.
Design latency is the number of clock cycles required for a single execution of the design.
The design latency, £d, is the sum of the number of clocks spent in each block of the design.
Formally,

Cd «- y^scheduleJengthjb) x EC{b)
beB

(4.5)

EC(b) is the execution count of the block b. The execution count may either be set to the
average execution count (AEC) or the maximum execution count (MEC) of the block. This
choice is made by the user. Usually AEC is the default choice unless the latency constraints
are very crucial and must not be violated. The user may choose to specify a specific latency
computation function that is different from the above. The HLS exploration engine only
generates schedules that satisfy the user given design latency constraint, i.e., Cd < design
latency constraint.

4. Bounding Schedule Lengths: The fastest and the slowest schedule lengths for each block are
computed. The fastest schedule length corresponds to the length of the ASAP [10] schedule

71

5*1 at blocks to their ASAP Schedule

Estimate the areas of ad Segmenti

count = count* 1

HLS

Arcs Estimator

Datum Schedules
of Blocks

Time-Constrained

Scheduler

Select oiurrobte Block

lighten the Block by on» ctockstep

Perform ttme-constrained scheduling

Select a suitable block from the segment

that vtolatei the area

Relax the block by ona ctockstep

Performtlme-eofistrained scheduling

Figure 4.9: Flow chart for the HLS Exploration Engine

and the slowest schedule length is the length of the optimal schedule possible with the
minimal resource bag (exactly one instance of each component in the local set). Based on
the fastest and the slowest schedule lengths, the lower and upper bounds on the latency, Cd

is computed. A legal design latency constraint must lie within these bounds.

5. Initial Schedule for Blocks: Initially, the design points for all blocks are set to the ASAP
schedule of the block (Figure 4.9). Thus the initial design of the block graph will not violate
any legal design latency constraint. However, one or more segments may violate the area
constraint.

The working of the design exploration algorithm is explained through the flow chart in Figure 4.9.
First all blocks in all partition segments are set to their respective ASAP schedules and areas of
all segments estimated. If none of the segments violate the FPGA area constraints, then the
algorithm returns the computed schedules, else, the exploration process begins. First the latency
slack (£siack) available for the design is computed. The slack is the difference between the current
design latency and the constraint, mathematically, Csiack — design latency constraint - Ld.
The algorithm guarantees that given a legal latency constraint, £siack is always > 0.

If slack is available, a block {Brelax) is chosen from the segment that violates the area the most,
and is relaxed. If slack is unavailable, a block (Btighten) is chooses from the segment that violates
the area the least and is tightened. Since the block graph is a single control thread, tightening
any block in the design will minimize the design latency (also refer to definition of Cd). The block
BTeiax is chosen such that relaxing it (i.e, increasing its scheduling length by one extra cycle),
potentially causes the maximum decrease in resource requirement. Similarly the block for Btighten

is chosen such that tightening (constraining its schedule by one less clock step) it has the least
potential to increase in area of the segment.

The design space for all the blocks and in turn the design space for the partition segments are
explored by this process of tightening and relaxing the schedules of the blocks. The algorithm

72

successfully exits when it finds a design that satisfies the area and latency constraint. Notice that
since we start from the fastest design, the performance of the constraint satisfying design is
automatically optimized. The algorithm returns the best available solution when an area
constraint satisfying solution is be found. Notice that due to the nature of the algorithm, a
latency constraint violating solution is never generated.

A combination of cone-based fist scheduling (CBLS) [66] algorithm and the improved version of
the Paulin and Knight's force-directed list scheduling (FDLS) [56, 74] algorithm is used to
perform the time-constrained scheduling of the blocks. The same scheduler is used to estimate the
areas for the entire segment and to generate the corresponding schedule. The time-constrained
scheduler is shown in a shaded box in Figure 4.9. Another important component of the
exploration engine is an area estimator (shaded box in Figure 4.9). The area estimator computes
the number of CLBs required to implement each partition segment. The area of a segment is
computed based on the following - the data path component areas, register area1, multiplexor
area due to ALU and register sharing, and finally the controller area.

Exploration Engine API Functions

The exploration engine provides the following four interface functions.

1. ExploreDesign(): Given the block graph, the binding of blocks to segments, and the area
constraint on each segment, this function performs the algorithm in Figure 4.9, as explained
above. This may be a time expensive algorithm because this involves iteratively
rescheduling several blocks in the entire graph. The function returns the area estimates for
all the segments based on the best solution obtained through exploration.

2. ExploreSegments(5): This function is a restriction of the above function. Only the
blocks in the partition segments s e S are explored. The schedules for other blocks remain
the same. This function is considerably faster than ExploreDesign() when the number of
segments is large and S is a small subset. After the exploration process, the segments in S
are estimated for area and the values are returned.

3. ExploreBlock(jB): This function explores only the block B. Area estimation is performed
for the segment to which B belongs and the value obtained is returned.

4. EstimateDesign(): This function does not do any exploration. Instead areas of all
segments are estimated based on the current design points (schedules) of the blocks.

5. EstimateMove(ß, s;, Sj): The binding of the block B is changed from segment Sj to
segment Sj and the areas of two segments are re-estimated. This function does not perform
any exploration. The function is very fast and extremely useful in the case of partitioners
like FM [7] and SA [71], where the partitioner makes incremental moves by changing the
segment binding of one node at a time.

4.5.3 Partition Cost Evaluation

The partition cost evaluation is similar to the evaluation criteria followed for DFG partitioning in
Section 4.4.2. FPGA area and the inter-FPGA interconnect resources are the architectural
constraints. The architectural constraints (Figure 4.6) are available from the RC architecture

Register area is computed separately as the number of flip-flops in the target FPGA device.

73

model. As described in Section 4.5.2, the exploration engine can handle a legal design latency
constraint (Figure 4.8). The exploration algorithm, as explained in the previous section,
guarantees the satisfaction of latency constraint and also optimizes the design for latency when
multiple area constraint satisfying solutions exist.

Area Estimation: Let si, s2 • • • sK be the K segments to be mapped onto the K FPGAs on the
RC (Section 4.3). Then, we define the AreaPenalty of the partition as,

K A^4
AreaPenalty — Y^ — — (4 6)

f^0Areafi ' >

where, A4 = J ° , , ^f ^ea(Si)< Areafi
1 Area(Si) - Area^ otherwise

Area(si) is the estimated area of the segment s,- and Areafi (Section 4.3) is the area of the FPGA
to which the segment is mapped. The AreaPenalty is computed similar to the computation for
DFG partitioning, Section 4.4.2. Here the estimated area of the segments (Area{s)) are obtained
through the exploration and estimation functions provided by the API of the exploration engine.

Interconnect Estimation: The interconnect estimation procedure and the InterconnectPenalty
computation is identical to the approach presented earlier for DFG partitioning, Section 4.4.2.

Latency Estimation: As mentioned above, latency of the partitioned design is posed as a
constraint to the HLS exploration engine. The estimated latency of the partitioned RTL design is
reported by the exploration engine. This value may be lesser than the constraint but is never
greater.

The ßtness and quality of partitions are computed based on Equations 4.3 and 4.4, as defined in
Section 4.4.3.

4.5.4 Integration of Partitioning with HLS Exploration

We consider the simulated annealing algorithm for partitioning because it is most suitable for
interaction with the interface provided by the exploration engine. Simulated annealing is more
suitable for incremental estimation. The algorithm starts with an initial random partition, which
we will synonymously refer to as the initial configuration. The partitioner moves from one
configuration to another, typically making incremental moves. The incremental exploration and
estimation functions provided by the HLS exploration engine can be efficiently used by the
partitioner.

The partitioning engine communicates the initial configuration to the exploration engine. From
then on, throughout the partitioning process, both the partitioning engine and the exploration
engine maintain the same current configuration. As and when the partitioner changes its
configuration by moving blocks across segments, the configuration in the exploration engine is
changed accordingly. In addition to maintaining the configuration information, the HLS
exploration engine, at any given time, maintains design space for all partition segments. For each
block in the block graph, the exploration engine has a current design point (CDP) for the block
(= current schedule for the block).

At the start of partitioning, for all blocks Bu CDP{ is set to the ASAP schedule of the block.
From then on, CDPi is changed only when any of the exploration functions (ExploreDesignQ,

74

Alge

1

2

3
4
5
6

7

8

9

10
11
12

13

14 <

irithm: Simulated-Annealing

Ccurrent = Random Initial Configuration

Evaluate Ccurrent

Tei

wr
np = Initial Temperature
lile (Temp > Final Temperature')
for (.Iteration — 1 to ItersPerTemp)

^new = * ertUTD ((^current)

Evaluate Cnew

if (acceptable(CneW)Cc«rrent»Temp))

^current — ^new

end if
end for
Temp = a * Temp

Conditionally Perturb Ccurrent

en< i while

Figure 4.10: Template Partitioning Algorithm for Simulated Annealing

ExploreSegmentsQ, or ExploreBlockQ) changes the schedule of block Bj. We now present the
template of the SA algorithms and its interaction with the exploration engine.

Figure 4.10 presents the template of the SA based partitioning algorithm. The statements that
are boxed (statements 1, 2, 7, 9, and 13) are the stages in the algorithm when the partitioner
interfaces with the exploration engine.

• Statement 1: SA creates a random initial configuration Ccurrent. This initial configuration is
communicated to the HLS exploration engine. The partitioner also invokes the design
analyzer (Figure 4.8) to perform the initialization routines of the exploration engine, as
mentioned in Section 4.5.2.

• Statement 2: The cost of Ccurre„t is evaluated (Section 4.5.3). An interconnection estimator
(Section 4.4.2) is invoked to compute the interconnect penalty. To compute the area
penalties, the ExploreDesign() function is called to explore and generate the best design
points (DP) for all blocks, for Ccurrent. The exploration engine reports the estimates
obtained for the RTL designs for the best DPs. It must be understood that the quality of
the design space is dependent on the configuration. A set of DPs for blocks that are
optimal with respect to one configuration may be poor for another.

After computing the area and interconnect penalties, the fitness function in Equation 4.3 is
used to compute the fitness of the configuration. The quality of the partition is used as the
evaluation metric. The quality of partitions are evaluated based on the relation defined by
Equation 4.4.

• Statement 7: At this stage the SA is looking at a neighborhood configuration to move to. In
statement 6, the new configuration Cnew is generated. Interconnect penalty is computed the
same way as before. Ideally, invoking the ExploreDesignQ function for Cnew will produce the

75

optimal design space and the corresponding RTL estimates. However, ExploreDesignQ is a
time expensive function and more importantly, Statement 7 is within the inner loop (stmt 5
- 11) of the SA. To keep the execution time of the SA under control, the
EstimateDesign() function is invoked2.

The premise here is that, since the Cnew is in the neighborhood of Ccurrent, the optimal
design space for Ccurrent is usually near-optimal, or good at the least, for Cnew If Cnew is
obtained from Ccurrent by moving exactly one block from its current segment to another,
then the EstimateMove(...) function may be invoked. This provides additional speedup
in comparison to the EstimateDesign() function.

• Statement 9: The current configuration in the partitioner is updated. Accordingly, the
configuration within the exploration engine must be changed. The ExploreDesign() is
called to create the best design space for the newly accepted configuration.

• Statement 13: This is a minor variation to the standard SA algorithm. If CCUrrent has not
changed over several temperatures, then it is more than likely that SA is a local-minima. To
get SA out of the local-minima, we perturb Ccurrent randomly3. The newly obtained
configuration is communicated to the exploration engine and ExploreDesign() is invoked to
create the best design space for the new configuration.

The template for the SA shows how a move based partitioning algorithm can be efficiently
integrated with the exploration engine. The time expensive exploration and the fast estimation
functions are appropriately used by the partitioner. The integration of design space exploration
during the partitioning process is possible due to the reduced problem size of block-level
partitioning in comparison to DFG partitioning.

4.5.5 Experimental Results for Block-Level Partitioning

In this section we present the results of block-level partitioning and design space exploration. We
study the behavior of block-level partitioning for several benchmarks that were used for DFG
partitioning (Table 4.1), with minor or no variation. We compare the block-level partitioning and
synthesis methodology with the DFG synthesis and partitioning methodology presented in
Section 4.4. The main difference is the presence of control in the specification and the reduction
in the problem size of block graph partitioning in comparison with the DFG counterpart. This
allows dynamic design space exploration during the process of partitioning. We implemented the
simulated annealing (SA) based partitioning engine and the exploration engine discussed in
Sections 4.5.4 and 4.5.2. The implementations are in C++ and all results are reported for a two
processor Sun UltraSparc workstation running at 296Mhz and 384MB RAM.

The details of the SA based implementation are as follows. The initial solution was created
randomly, and solutions were perturbed by changing the partition of one of the blocks in the
design. The starting temperature was 30,000 and was cooled down very slowly, using a cooling
factor of 0.999997, to a final temperature of 0.1. The SA was allowed to iterate 50 times at each
temperature value. The fitness value of the partition is recomputed after each perturbation. If fc

2In fact, we did experiment with ExploreDesign() function at this stage of the SA but run times were prohibitively
high (> 12hrs) for even for relatively small examples, like FFT, Figure 4.3.

At any time, SA stores of the best configuration obtained thus far. Hence, it is not a concern if the current
configuration is indeed the global optima.

76

is the fitness of the current solution and fp is the fitness of the solution after perturbation, then
the improvement factor, IF is defined as (fp - fc)/fc. Perturbed solutions with positive
improvement are always accepted and those with negative improvement factor are accepted with
a probability of e

IF/T*c, where T is the current temperature and C is a constant factor with a
value of 0.000003. All constants were are results of tuning over a large set of runs.

Table 4.4 presents the details of the block graph benchmarks. All designs were first written in
behavioral VHDL [27] and translated into BBIF (the internal format to store the block graph for
partitioning and synthesis). Unlike the specification for DFG partitioning, loops and conditionals
may be present in the VHDL specification of the design. Several of the benchmarks in Table 4.4,
such as, Reverb, FIR, FFTs and DCTs, are functionally identical4 to the examples used in
Section 4.4.4. As mentioned in Section 4.4.4, the examples in Table 4.1 were translated from a
straight-line5 C [3] code. However the block graphs in Table 4.4 are translated from VHDL
descriptions that may have loops, conditionals and case statements.

The VHDL descriptions were written in a manner favorable for block-level partitioning. Block
boundaries in the VHDL specification usually occur at control expressions, such as loops and
conditionals. Block separation also takes place at points where there are I/O reads or writes in
the specification. The user has to intelligently write the VHDL specification. Larger, but fewer
number of blocks, reduces the size of the block graph but on the flip-side may require larger
FPGAs in the RC because blocks cannot be partitioned across partition boundaries. Smaller, but
several blocks introduce two problems: 1) the size of the block graph increases and so will the
time to partition; and more importantly, 2) the lower bound on the achievable design latency
increases due to clocks spent on transfer between block. Moreover, blocks execute serially, hence
parallelizing operations in different blocks is not possible even when the required resources are
available.

Table 4.4 provides the following information about the benchmark block graphs. The first column
is the name of the example. Column 2 shows the number of blocks in the block graph. Note that
not all blocks in the block graph perform active computations. There may be several I/O blocks
and simple condition evaluation blocks, depending on the nature of the VHDL specification.
Column 3 is the number of data edges in the graph. The number of loops in the VHDL
specification of the block graph is in Column 4. The table does not show details about the
number of conditional expressions (if-then-else and case-when).

The Lmin of the design is the lower bound on the achievable latency6 of the design. This
corresponds to the ASAP [10] schedule length of the design when implemented as a single
partition. £max is the tight upper bound on the latency (refer to Bounding Schedule Lengths,
Section 4.5.2). Amax is the maximum area required by any implementation of the design that
achieves Cmin. Amin is the minimum area required by any implementation of the design that is
no slower than Lmax. Informally, these are tight bounds on the latency and area required for
implementing the design. Their values axe computed as follows.

• £min is computed by performing an ASAP schedule of all blocks in the graph

• £>max is derived by performing a resource-constrained scheduling of the design where exactly
one resource of each required type is available.

Same input/output functionality and bit-widths. But the timing aspects may be different.
5No control constructs.
Latency includes the time required to read/write primary inputs/outputs from and to the memory.

77

• Amax and Amin are produced by time-constrained scheduling of the design where the
constraints on the schedule are £min and Lmax respectively.

Following is the description of the block graph benchmarks in Table 4.4.

• Find: Find is a control dominated design with 3 loops and several conditional evaluations.
Find first sorts an array of 8 16-bit integers using the bubble sort algorithm. After the sort,
it can take one 16-bit input per run and search for the existence of the input number in the
sorted array using a binary search mechanism. Clearly control dominated examples such as
Find cannot be written as DFGs. The Find block graph has 22 blocks and 30 edges. There
are 3 loops and several conditionals (not mentioned in the table) in its VHDL specification.
The minimum and maximum latency bounds of Find are the same (584 cycles) because one
resource of each type is sufficient to achieve the ASAP schedule length.

• ALU is a small design that reads two 8-bit numbers and a 2-bit opcode and produces a
16-bit result. Depending on the opcode, the result is either the sum, difference or the
sum-of-products of the two numbers. There is no appreciable difference in the lower and
upper bound values of latency and area.

• MeanVar reads in 8 4-bit integers and produces the mean and the 11-bit variance as the
result.

• Reverb, FIR, Elliptic, FFT-1D are functionally identical to the DFG graphs in Section
4.4.4. Their functional descriptions are also available in Section 4.4.4. Notice that FFT1D is
implemented with one loop. In general, for these examples there is not a great difference
between the Amax and the Amin values.

The Cmin value is comparable to the ASAP schedule length of the corresponding DFG, as
reported in Table 4.1. The £min values are always marginally more than the DFG's ASAP
values. This is due to the additional clocks for block transfers and the potential parallelism
that may be lost between operations in different blocks. The important values to observe in
the table are the Amin and Amax values. Notice that both these values are much smaller
than the area required for the ASAP schedule of the DFGs. In the case of the FFT-1D the
difference is large. The reduction in area values is through the use of efficient schedulers
[66, 74, 56].

• FFT-2D, MatMult, DCT4x4 and DCT8x8 are the larger (in terms of problem size, and
more in terms of the area of the design) set of benchmarks. These are functionally identical
to their DFG counterparts in Section 4.4.4. Notice that the difference between the Lmin and
C-max increases with increasing number of operations in the design. For DCT8x8, Cmax is
more than 3 times £m,„ (over 1000 clocks slower). Accordingly, we see a similar trend in the
Amin and Amax values. For DCT8x8, Amax is about 3.5 times Amin. The area estimates are
comparable to the DFG area estimates in Table 4.1. As mentioned in Section 4.4.4, the
DFG for the DOT benchmarks correspond to their slowest schedules. Hence for the DCT
examples compare their Amin values with the areas reported in Table 1.1.

Similar to the results presented for DFG partitioning (Section 4.4.4), we try to partition the block
graphs in Table 4.4 for the Wildforce [84] family of architectures. Wildforce has 4 FPGAs,
Wildchild has 8 and Wildfire has 16 FPGAs on the board. The FPGAs are Xilinx 4000 series
FPGAs. For our experiments we consider the target RC to be one of the Wildforce family boards

78

with all the FPGAs being the same Xilinx device. In order to effectively compare the DFG and
block level partitioning we use the same FPGA devices that were used for DFG partitioning. The
Wildforce architectures can host the following Xilinx FPGAs - XC4005 (100 CLBs), XC4005 (196
CLBs), XC4013 (576 CLBs), XC4025 (1024 CLBs), XC4036 (1296 CLBs) and xc4085 (3136
CLBs). One of the memory devices on the board acts as the shared memory and a common
memory bus (address, data and read/write control) is routed through all the FPGAs.

Only limited wires are available for data transfer across FPGAs. During partition cost evaluation,
edges in the block graph that cut segment boundaries are automatically converted to memory
based data transfer. Accordingly a latency penalty is introduced. In our experimentation, we
associate a latency penalty of 6 cycles (3 for memory read + 1 for memory write and 2 for
synchronization) for each data transfer through memory. Thus a partition with a larger cut-set
will have a larger latency.

Table 4.5 presents the results of partitioning the block graphs in Table 4.4. Column 2 is the type
of RC architecture and the FPGA device that is used. The designs ALU, MeanVar, Find, and
MatMult are targeted to a 2-FPGA RC board where the FPGAs are XC4003, XC4005, XC4013
and XC4025 respectively. Rest of the the designs are partitioned onto a Wildforce family RC
board. To aid effective comparison between the partitioners, for the benchmarks common to
Table 4.2 and Table 4.5, the same identical target architectures are chosen.

We analyze the results in Table 4.5 based on Design Area, Design Latency and partitioner
Run time.

Design Area

The total design area for all benchmarks is close to, or is comparable to their corresponding Am{n

value in Table 4.4. This shows that the partitioner, with the aid of the design space exploration
engine, converges to design configuration that minimizes duplication of resources (functional units
and ALUs) in multiple FPGAs. We see that the total design area after behavioral partitioning is
comparable to the total design area of the unpartitioned design.

For almost all benchmarks (DCT4x4 being the exception), the total estimated design area after
block graph partitioning (Table 4.5) is less than the total estimated design area after DFG
partitioning (Table 4.2). The design space exploration engine utilized the available area better
and produced a faster design. For the largest design, DCT8x8, total area after block partitioning
is much smaller than the design after DFG partitioning (22183 CLBs vs. 36556 CLBs).

For the FFT1D benchmark, block partitioning only required two XC4005 FPGAs while the DFG
partitioner required two XC 4013s. The total design area of the FFT1D after block partitioning is
335 CLBs (this is fit on a single XC4013), while after DFG partitioning it is 736 CLBs (Tables
4.5, and 4.2). The estimated design latencies are comparable (91 and 109 clocks steps). The
reason for the reduced area with comparable performance is due to the efficient design space
exploration during the partitioning process.

The DFG partitioner failed to partition DCT8x8 onto a Wildchild board. It required Wildfire
board with 16 xc4085s (the largest FPGA chip available). Table 4.5 shows two runs for the
DCT8x8 benchmark. After the first run we noticed that the estimated areas of some of the
partition segments were very close to the area of the FPGA (3196 CLBs). Hence we tightened the
area constraint to 2900 and partitioned the design again. As expected, the latency of the design
increased from 1752 cycles to 1806. Interestingly the maximum area of any segment reduced to
2900 but the total design area increased. This is because, as constraint is tightened, certain

79

blocks that shared resources with other blocks in the segment are forced to other segments
resulting in new resources being instanced. This goes back to the observation made at the end of
in Section 4.4.5 that fewer larger FPGAs are better than several smaller devices.

Design Latency

For most of the examples the design latency after partitioning (Table 4.5) is comparable to its
Lmin value. For most benchmarks, the estimated design latency of the block partitioned designs is
better than or close to the latency of designs resulting from DFG partitioning (Compare Tables
4.5, and 4.2 for Reverb, FIR, Ellip, FFT2D and DCT4x4). FFT1D after block partitioning has a
slower latency because the design is much smaller (in terms of number of CLBs) and hence is a
slower implementation. In general DFGs are larger and have more nodes and edges when
compared to equivalent block graphs. Due to this, the number of edges that cut partitioning
boundaries in a design resulting from DFG partitioning tends to be more than block partitioning.
As designs get larger, partitioning the DFGs gets more complex and the design latency is
dominated by the data transfer component (Section 4.4.2. For this reason, the DFG partitioning
for DCT8x8 produced a design with very high latency (about 14000 clock cycles) while block
partitioning generates a design with a much lower latency 1800 clock cycles.

Partitioning Run times

For the smaller designs (ALU • • • FFT1D), partitioning run time is only a few seconds (< 10
seconds). For FFT2D and MatMult the SA run time is between 20-25 seconds. For the DCT
examples, the run times is about 5 minutes for DCT4x4 and about 2 hours for DCT8x8. In
comparison to DFG partitioning, this is a tremendous improvement in partitioning run times
(Table 4.2). For the DCT8x8 benchmark, the DFG partitioner did not converge even after a run
time of 182 hours. These results show the feasibility of block graph partitioners to handle large
designs. As we tighten the constraints for block partitioner (for example, by making FPGAs, on
the RCs smaller), the block partitioning run times are bound to increase. However, based on the
above results, it is highly likely that a good-quality solution will be produced in a reasonably
small run time.

From our experiments, we see that block level partitioning is superior to DFG partitioning both
in terms of quality of the partitioned design and also in terms of partitioning run time. The DFG
partitioning methodology is useful only for relatively small designs that have no control flow. We
performed logic and layout synthesis for the partitioned designs of ALU and MeanVar and
successfully verified the estimates and the functionality of the synthesized designs.

4.5.6 Observations and Summary of the Block-Level Partitioning

We observe that the block level partitioner has the following advantages.

• Typically, block graphs can be modeled much smaller (using loops) than the equivalent
(un-rolled) DFGs. The integrated design space exploration engine can generate an
implementation of the design that is optimal with respect to the current partition
configuration for the area constraints posed by the target RC.

• The RTL implementation model of the block graph is simple. Each partition segment is
implemented as a single controller, single datapath design.

• Experiments show that the quality of the resulting partitioned designs are superior to that

80

generated from DFG partitioning. This is attributed to efficient dynamic exploration of
possible schedules for the blocks in the design.

• Various implementation alternatives can be tried by varying the design area and latency
constraints. Experiments and our experience with the partition and synthesis environment
shows that the response of the partitioner to changes in user constraints is very intuitive
and can be easily understood, and effectively used.

• Block graph model provides the user with the flexibility to specify very large designs. In the
case of DFGs, the partitioning and synthesis complexity increases exponentially with the
problem size. However, efficient modeling of design in terms of block graphs keeps the
problem size under control. For example, the DCT8x8, a 1929 node DFG, design is
efficiently modeled as a 56 node block graph, thereby keeping the problem size under control.

The block level partitioning has the following disadvantages.

• The RTL synthesis model of the block graph serializes the block execution. Exactly one
block is active at any time. Due to this, operators in different blocks cannot be parallelized
even when adequate resources are available. Thus, as the number of blocks in the design
increases, the lower bound on the achievable latency tends to increase. To avoid this
operators that may be executed in parallel must be in the same block. A poorly crafted
block graph is bound to generate a low quality design.

• The DFG specification of a design is straightforward. Given a set of operators such as 2
input adders, subtracters and multipliers, the user expresses the design as a set of
assignment statements. The extraction of the DFG from such a specification is trivial and is
well understood by an average user.

The block graph model is extracted from a high level specification in VHDL. Since the
VHDL specification subset is rich (allows loops, conditionals, waits and regular signal
assignment), there are several different ways in which a design can be specified. The
translation from VHDL to block graph, or equivalently, the extraction of block graph is
highly dependent on the specification style. For instance, a port read or a write in the
VHDL specification forces a block separation. The different cases of a conditional are in
separate blocks. These rules about the translation process must be well understood by the
designer.

More importantly, the block graph specification has precise synthesis [49] semantics that are
strictly honored by the Asserta HLS system [50]. The performance and area of the
synthesized design are closely related to the exact nature of the BBIF. Also, the amount of
data communicated between adjacent blocks,7 or equivalently, the number of edges in the
block graph is dependent on the specification.

In essence, it is possible for a naive user of the system to specify an unsuitable behavioral
specification. In order to efficiently use the partitioning and synthesis environment (Section
4.5.1), the user must have a good understanding of the following 1) behavioral specification
to block graph translation process 2) synthesis semantics of the block graph 3) partitioning
semantics.

7This is determined based on data dependency analysis. In the BBIF representation [49], all variables that are
live across adjacent blocks are passed from the source block to the adjacent destination block. This translates to an
edge in the block graph.

81

4.6 Conclusions

In this chapter we presented novel partitioning and synthesis methodologies for DFG and block
graph partitioning for RCs with multiple-FPGA and a shared memory. The unique feature of the
partitioners is that they seamlessly transform inter-FPGA nets into memory based
communication thereby alleviating the pin-out and interconnection bottleneck. This is done at
the expense of minimal increase in the latency of the design. Results of block graph partitioning
illustrates the effectiveness of dynamic design space exploration during partitioning.

Dynamic design space exploration was possible due to coarser-grain specification models. In the
case of DFG partitioning, the problem size is dominated by the different possible partition
configurations. However, in the case of block graph partitioning, the problem complexity shifted
to design space exploration. Results show that coarser grain partitioning with effective dynamic
design space exploration improves performance and run-times for large designs. In order to
efficiently utilize an RC, the focus of the research must be on specification, implementation,
cost-evaluation models, and design space exploration techniques. Research efforts to develop new
partitioning heuristics, or improve existing algorithms, are useful, but should not be the primary
focus in the context of RCs.

The efficiency of block level partitioning is dependent on the quality of the input specification. In
general VLSI CAD frameworks address complex problems that make it almost impossible to find
optimal solutions without the efficient involvement of the user. Most state-of-the-art VLSI CAD
tools are developed for use by qualified VLSI designers. Given this, it is appropriate to assume a
fair amount for user contribution to make such CAD frameworks successful.

The inherent drawback of the block graph model is its single thread of control. Exactly one block
is active at any time. Since blocks cannot be fragmented across segment boundaries, at most one
FPGA device is active at any time. This is clearly not an efficient model for RCs with several
FPGAs. To avoid such under utilization of resources multi-threaded models for synthesis and
partitioning must be considered. Efficient multi-threaded models for RCs with distributed
memories are addressed as part of the SPARCS (Synthesis and Partitioning for Adaptive
Reconfigurable Computing Systems) system [26, 68, 78, 77] in the next chapter.

82

Table 4.2: Results for DFG Partitioning

Example RC Architecture

(Name, FPGA -Type)

Segment Areas

(CLBs)

Total Area

(CLBs)

Latency

(c-steps)

GA Run-Time

(h.m.s)

Vprod 2-FPGAs, XC4005 139, 119 258 64 Im

| StatFn 2-FPGAs, XC4005 141, 93 234 69 lm40s

Reverb Wildforce, XC4013 356, 516, 292, 292 1456 , 83 3m35s

| FIR Wildforce, XC4013 210, 0, 504, 330 1044 117 2m30s

| Ellip Wildforce, XC4013 452, 0, 564, 452 1468 126 7ml5s

| FFT1D Wildforce, XC4013 0, 218, 518, 0 736 91 3ml0s

| FFT2D Wildforce, XC4013 128, 544, 461, 574 1707 187 llmös

MatMult 2-FPGAs, XC4025 896, 896 1792 125 6m43s

DCT4x4 Wildforce, xc4085 2412, 1686, 1149, 2224 7471 597 lhlöm

DCT4x4 WüdChild, xc4036 1080, 1210, 1267, 1101,

1181, 1233, 840, 726 8638 1084 4h

DCT4x4 Wildfire, XC4025

952, 184, 710, 543,

212, 660, 691, 778,

811, 836, 790, 605,

713, 590, 672, 884

10631 1295 6h

DCT8x8 Wildfire, XC4085

1786, 2239, 2611, 1990,

2046, 1907, 2370, 2446,

2412, 1958, 2446, 2691,

2867, 2201, 2577 2009

36556 14045 142h

83

Table 4.3: Results of Layout Synthesis and On-board Testing

Example Area (CLBs) Latency (c-steps)

Estimated Actual Estimated Actual

Vprod «l 139 158 64 65

«2 119 135

StatFn «1 141 165 69 72

*2 93 102

MatMult Si 816 729 125 123

S2 816 728

Table 4.4: Design Data for DFG Partitioning

Example Num Num Num r . r •Amax •Amin

Blk Edg Loop c-stp c-stp CLBs CLBs

Find 22 30 3 584 584 746 746

ALU 9 12 0 18 21 151 149

MeanVar 11 10 0 37 56 330 196

Reverb 10 10 0 38 45 910 639

FIR 10 9 0 85 93 643 504

Ellip 21 21 0 59 70 1006 831

FFT1D 16 20 1 79 93 297 266

FFT2D 32 40 2 150 194 1500 905

MatMult 26 34 2 160 232 1349 978

DCT4x4 104 136 8 357 517 8129 5541

DCT8x8 56 72 2 517 1573 72008|19874

84

Table 4.5: Results for Block Graph Partitioning

Example RC Architecture

(Name, FPGA -Type)

Segment Areas

(CLBs)

Total Area

(CLBs)

Latency

(c-steps)

SA Run-Time 1

(h.m.s) 1

Find 2-FPGAs, XC4013 535, 481 1016 596 4s]

ALU 2-FPGAs, XC4003 52, 91 143 34 6s |

MeanVar 2-FPGAs, XC4005 104, 159 263 51 8s [

Reverb Wildforce, XC4013 439, 451, 0, 0 890 52 4s

FIR Wildforce, XC4013 0, 301, 0, 464 765 97 10s |

Ellip Wildforce, xc4013 436, 132, 365 0 933 80 9s |

FFT1D Wildforce, XC4005 0, 169, 166, 0 335 109 8s

FFT2D Wildforce, xc4013 528, 314, 405, 0 1247 179 24s |

MatMult 2-FPGAs, XC4025 669, 798 1467 160 20s |

DCT4x4 Wildforce, XC4085 1263, 2432, 2462, 1988 8145 556 5ml5s

DCT8x8 WildChild, XC4036 2250, 2478, 2907, 3051,

2572, 2797, 2508, 3026 21589 1752 lh40m

DCT8x8 WildChild, XC4036 2545, 2900, 2611, 2763,

2858, 2797, 2878, 2831 22183 1806 2h05m

85

Chapter 5

Partitioning with Synthesis

5.1 Introduction

The Reconfigurable Computer (RC) consisting of multiple FPGA devices, memory banks, and
device interconnections, offers a variety of resources but is limited in hardware. Design automation
for RCs from a behavioral specification consists of three fundamental problems: (i) Temporal
Partitioning - This generates a sequence of temporal segments, each of which utilizes all the RC
resources. The temporal segments may then be executed on the RC in the specified sequence,
thereby sharing all the RC resources over time; (ii) Spatial Partitioning - Each temporal segment
can further be divided into spatial partitions in order to effectively utilize the multiplicity of
resources available on the RC; (iii) High-Level Synthesis (HLS) - This involves synthesizing each
spatial partition into an Register-Transfer Level (RTL) design intended for a device on the RC.

Figure 5.1 shows an overview of the SPARCS system [26, 68] consisting of a synthesis framework
that interacts with a partitioning environment. The RC is viewed as a co-processor that is
controlled by a host computer. The SPARCS system accepts a behavioral specification in the
form of a Unified Specification Model (USM) [25]. The USM can capture a parallel-process
specification in VHDL [27], and embodies features that are highly suited for RC synthesis. The
USM is essentially a graph consisting of: (i) task nodes that are used to capture elements of
computation in the behavior. Each task is a Control Data Flow Graph (CDFG, [10]) representing
a single thread of control (a VHDL process); (ii) logical memory nodes that are elements of data
communication between the tasks; and (iii) flag edges that are used to synchronize the execution
of tasks. A flag between two tasks (£,, tj) specifies the dependency of tj on f;.

Temporal partitioning in SPARCS uses the inter-task dependencies to derive a temporal schedule
of tasks. The schedule consists of a sequence of temporal segments where each segment is a
subgraph of the USM. The primary goal of temporal partitioning is to minimize the delay of the
temporal schedule, defined as JV * R + £jli U * CP. Here, N is the number of temporal
segments, R is the reconfiguration time of the RC, and CP is the user-given clock period for the
design. The temporal schedule so generated has a corresponding latency constraint (L,-) on each
temporal segment i. The temporal partitioner also ensures that: (i) the collection of tasks in each
temporal segment after synthesis will fit within the RC, and (ii) the memory requirements for
each temporal segment are within the available physical memory on the RC.

Spatial partitioning in SPARCS involves partitioning each temporal segment such that: (i) the set

86

USM Specification, RC Architecture, Design Constraints

RC Synthesis Framework Partitioning
Environment

Figure 5.1: SPARCS Design Automation System for RCs

of tasks in each spatial partition after synthesis will fit within the corresponding device; (ii) the
latency constraint is satisfied; (iii) the logical memories are mapped to the physical memory
banks on the RC; and (iv) the flags and the memory buses are routed through the interconnection
network on the RC. It is imperative that spatial partitioning that follows temporal partitioning be
done with utmost care so as to satisfy the RC and design constraints. Henceforth, we will use the
term partition to denote a spatial partition.

Both temporal and spatial partitioning require design estimates that are used to evaluate the
partitioning costs. In order to generate efficient Register-Transfer Level (RTL) designs that
implement the given behavior, HLS and partitioning techniques need to carefully select
implementations that best satisfy the constraints. The synthesis framework in SPARCS allows
tight integration of the partitioning environment with a design space exploration engine through
an Exploration Control Interface (ECI). The ECI consists of exploration/estimation methods that
a partitioning tool may call to select design points (possible implementations) and obtain
estimates. After the partitioning and exploration is completed, the back-end HLS tool is
constrained by the selected design points to synthesize RTL designs that satisfy these estimates.

Traditional approaches [83, 19, 48] to integrate HLS and spatial partitioning perform exploration
and estimation along with partitioning. In the traditional heterogeneous model of HLS and spatial
partitioning, the partitioner invokes a HLS estimator to obtain the area/latency of each spatial
partition. Several heterogeneous systems, such as SpecSyn [9], Chop [34] and Vulcan I [59],
focussed on providing good design estimates while not performing complete HLS. Later,
researchers (COBRA-ABS [1], Multipar [86]) developed a completely homogeneous model, wherein
HLS and partitioning are performed in a single step. The COBRA-ABS system has a Simulated
Annealing (SA) based model and Multipar has an ILP based model for synthesis and partitioning.

87

However, unification of spatial partitioning and HLS into a homogeneous model adds to the
already complex sub-problems of HLS, leading to a large multi-dimensional design space.
Therefore, the cost (design automation time) of having a homogeneous model is very high, i.e,
either the run times are quite high (COBRA-ABS [1]) or the model cannot handle large problem
sizes (Multipar [86]). The traditional heterogeneous model, although less complex, also has a
significant drawback of performing exploration on a particular partition segment, which is only a
locality of the entire design space.

In this chapter, we propose a spatial partitioning knowledgeable exploration technique that
combines the best flavors of both the models. The exploration technique has the capability to
simultaneously explore the design space of multiple spatial partitions. This enables exploration
and spatial partitioning to generate constraint satisfying designs in cases where the traditional
heterogeneous model fails. In [69], we introduced the idea of a partitioning-based exploration
model for single-threaded behavioral specifications. In this chapter, we extend this to
parallel-process (USM) specifications and present the integration of design space exploration with
spatial and temporal partitioning in the SPARCS [26] system.

The rest of the chapter is organized as follows. Section 5.2 describes the proposed partitioning
knowledgeable exploration model for a USM specification. Section 5.3 presents the exploration
algorithm in detail with an illustrative example. Section 5.4 presents the integration with the
temporal and spatial partitioning in SPARCS. Section 5.5 presents results comparing the
traditional and proposed exploration techniques. Finally, we present a summary in Section 5.6.

5.2 Partitioning Knowledgeable Exploration Model for the USM

The USM embodies a task graph that consists of a collection tasks (Ntasks) and edges representing
dependencies (flags) between them. Each task is a CDFG consisting of blocks of computation and
edges representing control flow. Each block in a task in-turn has a simple data flow graph, while
the collection of blocks (in a task) represent a single-thread of control. The collection of tasks the
USM represent a parallel control-thread model.

Definitions for Partitioned Task Graph: We define following terms with respect to our
partitioned task graph model:
• A partition Pi C Ntasks, is a subset of tasks in the task graph.
• A configuration Cset = {Pi | (i* n Pj = 0) A (T, £ Ntasks => 3Pk : Tt £ Pk)} is a set of mutually
exclusive partitions of all the tasks.
• A design point DPijk corresponds to a specific implementation i of a task k. A design point is
essentially a collection of schedules [10], one for each block in the CDFG of the task.
• A L(t) is the latency of the task t, defined as the number of clocks cycles per input vector.
• Lmin(t) is the fastest latency of the task i, corresponding to the ASAP schedules of all its blocks.
• Lmax{t) is the slowest latency of the task f, corresponding to the slowest (smallest resource bag)
schedules of all its blocks.
• Amin(t) and Amax(t) represent the smallest and largest design areas of task t corresponding to
the slowest and fastest schedules, respectively.
• A design space of a task t is the set of all possible design points bounded by Lmin(t) and
Lmax{t)- Further, the design space of a partition is the union of the design spaces of all tasks in
that partition.

For the partitioned USM shown in Figure 5.2(a), Cset = {Pu P2}, where Py = {TUT2,T3} and

RTL1

RTL2

RTL3

ALUs
Registers

Multiplexers

| controller |

ALUs
Registers

Multiplexers

ALUs
Registers

Multiplexers

~-x

ALUs
Registers

Multiplexers

n <i | controller j

Device-2

"'-N

ALUs
Registers

Multiplexers

RTL5 J controller |

(a) Design Partitions (b) Design Points (c) RTL Estimates

Figure 5.2: The USM exploration model

P2 = {T4,T5}. Figure 5.2(b) shows the design points corresponding to each task. Note that
within each design point, a collection of block-level schedules are maintained. From each design
point, an RTL design for the corresponding task can be synthesized. In addition, the RTL
resource requirements for each individual block of any task is also maintained. Note that the
blocks belonging to a task share all the datapath resources and a single finite state machine
controller. Thus, for each design point detailed RTL design estimates are maintained. As shown
in Figure 5.2(c), each partition P, is synthesized as a collection of RTL designs for the
corresponding device in the B.C.

The exploration model currently does not share hardware between tasks, instead, performs an
efficient allocation of the device area to the tasks that are assigned to that partition. In addition,
the exploration model attempts to minimize design latency by exploiting the task-level and
operation-level parallelism. Nevertheless, the model can be changed to allow sharing by simply
modifying the RTL estimation mechanism and introducing a suitable controller model [32].

Design Constraints: The goal of the exploration process is to generate design points for any
given USM configuration, such that the following design constraints are best satisfied:
• Design Latency{LconstTaint): is a constraint on the set of tasks belonging to one temporal
segment. It is defined as:

52teCpMt) < ^constraint, where CP C Ntasks, is the critical path of tasks in the graph. We
define the critical path as the path that determines the largest total latency.
• Device Area(DeviceAreak)- The target architecture consists of multiple devices each of which
can have different area. Therefore, each device k imposes an area constraint on the corresponding
partition Pk of the USM, defined as: DesignArea{Pk) < DeviceAreak, where Design Ar ea(Pk) is
the estimated RTL design area of partition Pk.

89

• Component Library: is an user-specified RTL component library from which the exploration
engine selects a set of resources (ALUs) to perform scheduling and allocation. The user may
specify a specific component library for each task.

5.2.1 The Exploration Control Interface

The exploration technique provides an Exploration Control Interface (ECI) that facilitates tight
integration with any partitioning algorithm. The interface consists of a collection of exploration
and design area estimation methods that generate design points and area estimates for the
current USM configuration. These methods can be collectively used to control the trade-off between
the time spent in exploration and the amount of design space explored. Here we provide a brief
description of the intent of these methods. In the following section, we will correlate these
methods to the exploration algorithm. These methods are listed in the decreasing order of their
complexity or the amount of design space explored, Therefore, they also fall in the decreasing
order of the time spent in exploration.

Explore Design(Pset): Given a current configuration (Cset) and a subset of partitions
{Pset Q Cset), the exploration engine attempts to generate a design point for each partition in Pset

such that the design latency constraint and all device areas constraints are best satisfied. For
example in Figure 5.2, we can re-generate new design points for the five tasks, by simultaneously
exploring both partitions Pi and Pi.

Explore Partition(Pt): This is a more constrained exploration that generates new design points
for the tasks in one partition P^. The goal again is to satisfy the design latency and the device
area constraints. Note that this method does not change the design points of tasks in any
partition other than P*. For example in Figure 5.2, we can just generate new design points for
tasks Ti and T5 by exploring only partition Pi.

Explore Task(Tj): This method reschedules only the task T{ at various time constraints, until
the latency and area constraints are met or all possible schedule lengths for the task T{ have been
explored.

Estimate Design(Pfc): For partition pt, at any time during the design process, there exists a
collection of design points. Using these design points, the method determines RTL design
parameters for each task and estimates the design area of partition P^.

5.3 The Exploration Algorithm

In this section, we describe the exploration algorithm elaborately. However, a reader may proceed
to the following section without any loss in understanding the overall exploration and partitioning
methodology presented in this chapter.

The exploration algorithm is shown in Figure 5.3. Given a subset of partitions Pset C Cset, the
algorithm determines the set of tasks Tset = UpkepaetPk that need to be explored. The goal of the
algorithm is to generate design points for the tasks in Tset such that the design constraints are best
satisfied. For each task t € Tset, the algorithm initially generates a design point DPfasttt
corresponding to the fastest schedule. Therefore, initially each task would have a worst case area
but least latency (£m,n(i)). The design points (or schedules) for the rest of the tasks Ntasks — Tset

are left untouched.

90

Algorithm: USMJExploration D> Explore_Design(Pset)
Input: Design constraints and a set of task partitions Pset

Output: A DPi: VT* £ Ph VP* G Pset
and the RTL estimates VP,- G Pset

Begin
1 Tset = {Ti | Ti G Ph VP* G Pset}
2 VT, G Tset : Initialize(Tj)
3 Iteration = 0 [> relax-tighten loop
4 while (Iteration < UpperBound)
5 Compute critical path
6 Compute design costs
7 Update Sbest

8 if (design fits) then exit
9 Tust = sorted Tset, using cost functions:

10 1. Decreasing PAVt
11 2. Non Critical tasks followed by Critical tasks (Ct)
12 3. Increasing LAt cost
13 TT = Select Task from Tnst for Relaxation
14 Tt = Select Task from THst for Tightening
15 if (Tr # 0) then
16 Relax(Tr) D> bock-level exploration
17 else if (Tt # 0) then
18 Tighten{Tt) 1> block-level exploration
19 else exit
20 end if
21 end while
22 if (design did not fit)
23 Restore using S\,est
24 Re-compute critical path and design costs
25 end if
End

Figure 5.3: USM Exploration Algorithm

The algorithm performs exploration in a loop (lines 4-21), where each iteration relaxes or tightens
the schedule of a task. Relaxing a task corresponds to a latency increase and an area reduction,
and tightening works vice versa. During each iteration, the critical path and the design costs are
evaluated. The algorithm maintains the best solution (S),est, a collection of design points
V t G Tset) obtained so far, defined as the one that has the least total

AreaPenalty = Zpkecset AO{Pk), where the Area Overshoot AO{Pk) = { fAk %£££ ° , and

AAh = DesignArea(Pk) — DeviceAreak-

At the core of the exploration algorithm is a collection of cost functions that determine the task
to be selected for relaxation (Tr) or tightening (Tt). Using these cost functions the tasks in Tset
are sorted to form a priority list (Pust)- While selecting a task for relaxation, the priority list is
traversed from left to right, and for tightening from right to left. Each cost function captures an
essential aspect of the partitioning-based exploration model and these functions collectively guide
the exploration engine in finding a constraint satisfying design. These cost functions have been

91

DESIGN
SPACE
for Task-t

X DP fast,t

,' ^ Lmin r j' ', ; ^ Lmax

■ *.^ i^-^*" ,' Latency Axis ',

• *^ •— T—r- •
Amax "--......-- AreaAXlS Ami"

Figure 5.4: Design Space of a Task

listed in the order in which they are applied for sorting the list of tasks:

• Partition Area Violation (PAVt): represents the area violation of the partition to which the

task belongs. PAVt = Ce'^Ar
D

e^gee/tfea*, and t G Pk. The tasks are ordered in
increasing PAVt such that, tasks belonging to the most occupied device are selected for
relaxation and tasks belonging to the least occupied device are selected for tightening. Note
that all tasks belonging to the same partition will have the same PAV.

• Criticality (Ct): A critical task Ct is one that is on the critical path. Between the set of
tasks that belong to one partition, those that do not fall on the critical path are ordered
before those that are on the critical path. This is because, non-critical tasks are good
candidates for relaxation, since the design latency will not be increased. Similarly, critical
tasks are good candidates for tightening, since the design latency will be decreased.

• Latency-Area Tradeoff (LAt): This is the most important cost function that determines the
task that is selected among those have equal PAVt and Ct. For a task t, and the
corresponding design point DPittl we define the latency-area tradeoff cost as follows:

LAt = £n0Tm(DPitt) + AnoTm(DPijt), where (5.1)

Cnorm{DPitt) = (f^ ~ f™",('}) * 100, and

Anarm{DPht) = (Arxi(}~A
A
{DP;?h * 100

We will explain the terms used in this cost:

_ £-norm{DPi,t) represents the normalized latency percentage of the current design point
with respect to the latency bounds.

- •A-norrn{DPiit) represents the normalized area percentage of the current design point
with respect to the latency bounds.

92

- C(DPiit) represents the current latency of the task t, with respect to the current design
point DPiit.

- A(DPijt) represents the current area of the task t, with respect to the current design
point DPijt.

We will explain this cost function using the pictorial view of the design space of a task
shown in Figure 5.4. For a task t, the set of all design points can be ordered in the latency
axis from its Lmin(t) to Lmax(t). Correspondingly, the design points for the task t can be
ordered on the area axis from Amax(t) to Amin{t). As shown in Figure 5.4, for any two
design points DPiyt and DPjjt their ordering in both the latency and area axis need not be
the same. However, the issue of concern is how close or far a design point is from the
respective bounds. The cost Cnorm(DPiit) is a metric for measuring the distance of the
design point DP^t from the latency lower bound Lmin(t). Similarly, the cost Anorm{DPi!t) is
a metric for measuring the distance of the design point DPiit from the area upper bound
Amax{t)- Both the costs have been normalized within their ranges such that they can be
summed up to provide a closeness factor {LAt) of the design point with respect to the
latency and area lower bounds.

A low value LAt implies that the tasks' current area is close to its upper bound and the
current latency is close to its lower bound. This means that tasks with low LAt are good
choices for relaxation so that their latency can be increased and their area can be reduced.
Similarly, tasks with high LAt are good choices for tightening. The tasks in priority list are
ordered in increasing values of LAt.

After these costs are applied and the priority list is ordered, the algorithm selects a task for
relaxation or tightening. If there exists a task whose latency can be relaxed and still remains
within the bound, then the algorithm relaxes it, otherwise a task is selected and tightened. In
order to relax or tighten a task, the algorithm invokes the block-level exploration algorithm [69].
The block-level algorithm, based on the internal cost metrics of the task, selects and re-schedules
the best block [69] within that task. For scheduling a task, we use a low-complexity
time-constrained scheduling algorithm [67]. The criteria for the relaxation and tightening a task
are: (i) the tasks' latency should remain within the bounds, and (ii) the design latency should
remain within the given constraint (£TieCP Latency(Ti) < Lconstraint).

The relax-tighten loop stops when any one of these conditions are met: (i) the design fits - all
device area constraints are satisfied, (ii) none of the tasks can be relaxed or tightened, or (iii) A
lot of exploration time (iterations) has been spent. This is provided so that the exploration time
can be cut-off for large design spaces. At the end of the relax-tighten loop, if the design did not
fit the best solution is restored.

5.3.1 Implementing the ECI

Here, we provide a short description of the algorithms used by the ECI methods and their
correlation to the exploration algorithm.

Explore Design(Pset): This method is implemented by invoking the exploration algorithm on
the given Pset. The method generates a schedule for each task in Pset - {T, | VPfc € Pset,Ti £ Pfc},
and estimates the design areas of all partitions in Pset, such that the constraints are best satisfied.
Since the exploration engine maintains the current configuration of the entire USM, it can find
constraint satisfying solutions where a traditional exploration/estimation technique would fail.

93

o
o

20

■§ 15
o c 10

Task tl
Task t3
Task t4
Task t5

Task t2

0 10 20 30 40 50 60 70
Iteration Number during exploration

Figure 5.5: Task Latencies During Exploration

Explore Partition(Pfc): This method is also implemented by invoking the exploration algorithm
on Pset — {Pk}- This method is equivalent the traditional exploration technique that only
performs a local search of the design space of one partition. Hence, this is a more constrained
method that may not be able to satisfy the design latency and device area constraints as well as
the Explore.DesignQ method.

Explore Task(i): This method invokes the block-level exploration algorithm [69] on all blocks in
task t. The goal of the algorithm to generate a set of schedules for all blocks in the task t such
that the area constraint on partition Pk 3 t and design latency are best satisfied.

Estimate Design(Pfc): When this method is invoked there always exist a design point for each
task t £ Pk. This method performs a post-scheduling estimation to estimate RTL design area of
each task. Currently, the partition area is computed as the sum of all task areas. If a shared
datapath is implemented, then the estimation method need may be modified accordingly.

5.3.2 Illustrative Example

We will use the example shown in Figure 5.2(a) to illustrate the effectiveness of the task-level
exploration using the ExplorcDesignQ method. The example has five tasks Tx - T5 in two
partitions, Px = {Ti,T2,T3} and P2 = {T4,T5}. The behavior of each task has four vector
products consisting of sixteen 8-bit multiplications, eight 16-bit additions and four 17-bit
additions. The design space for each task on the latency axis varies from 5 to 20 clocks and on
the area axis from 120 to 5,200 CLB s. It can be seen that the design space of the entire design is
very large, ((20 - 5)5) possible latency combinations for the five tasks.

We have shown as a collection of three plots, the progress of the exploration algorithm. The plot
in Figure 5.5 shows the latency of each task during each iteration of the algorithm. The plots in
Figure 5.6 show the variation of design area and latency over iterations of the algorithm. A
latency constraint of 49 clocks was provided as a constraint for the exploration algorithm. Area
constraints of 900 clbs and 570 clbs were imposed on partitions P\ and P2, respectively.

Initially, all tasks have their fastest (latency = 15) implementation and their design areas in both
partitions are at the upper bounds. Initially T5 that is not on the critical path is relaxed leading

94

W
£>
u
0)
si
u
<
c
w>

• H

u
Q

Design Area in Partition-1 -

Design Area in Partition-2 •
Area Constraint (900) on PI -
Area Constraint (570) on P2

10
J _L

Design Latency
Constraint (49)
 i i

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

Iteration Number during exploration Iteration Number during exploration

Figure 5.6: During Exploration, Iteration Vs. : (a) Design Area and (b) Design Latency

to a drop in the area of P2. Now, the area violation in Px is much higher hence the algorithm
proceeds to relax the tasks {Ti,T2,T3} 6 Pi. Task T2 being non-critical is selected and relaxed
for the next 6 iterations leading to a drop in the area of Pi. Again the area violation of P2 is
higher, hence T5 (non-critical) is relaxed leading to a significant drop in the area of P2. During
the next 28 iterations (10-38), the algorithm attempts to relax the tasks in Px which now has a
high PAV. The tasks T2 and T3 are relaxed alternatively, and at iteration 38, the area of Pi has
decreased considerably. Hence, T5 (non-critical) is selected and relaxed for the next 10 iterations
with a few relaxations of T4 which is critical. At iteration 56, finally the area of Pi falls below the
constraint. From this point, the algorithm attempts further combinations to fit P2. It can been
seen that when the design latency reaches the constraint value (at iteration 61), the algorithm
does not allow any further relaxation, thereby keeping the design latency always within the
constraint. During iterations iteration 61-67, T3 € Pi is tightened and the slack obtained is used
to finally relax T4 to fit P2.

This way the algorithm effectively distributes the latency among the tasks, so as to pick design
points that effectively satisfy the individual device area constraints.

5.4 Integrating Exploration and Partitioning in SPARCS

The SPARCS design flow consists of temporal partitioning followed by spatial partitioning and
finally high-level synthesis, as described earlier in Section 5.1. In this section, we will describe the
integration of design space exploration with temporal and spatial partitioning algorithms in
SPARCS.

5.4.1 Interaction with Temporal Partitioning

For a temporal partitioner, there are two ways to integrate the exploration engine. One approach
is through a spatial partitioner that in turn interacts with the exploration engine. The ECI

95

ExpEngine.Initialize(Cc„r7.ent)

Algorithm: Template for GA or SA
1 ^current — Random Initial Configuration

2

3
4
5
6
7

Gen/Temp = Initial Generation or Temperature
while (Gen/Temp < Final Value) D> GA or SA loop

while (PopSize/Iters < Max Value) D> GA(PopSize) or SA(Iters) loop

for each (Temporal Segment G{ e USM)

9

10

11

12
13

14

15
16
17

ExpEngine.SetConfig(Gj, Cn

ExpEngine. SetLatency (L(

ExpEngine.TaskJLevel-Exploration O single or multi-partition

ExpEngine.EstimateJDesignQ

end for
if (acceptable (Cj, •i^current) -LcmpJJ

^current — Cn

end if
end while

end while
D> PopSize/Iter loop

O Gen/Temp loop

Figure 5.7: Template of a GA-based or SA-based USM Partitioner

directly supports a tight interaction with a spatial partitioner. Therefore, it would be ideal for a
temporal partitioner to interact through a spatial partitioner. This way it will have accurate
estimates on the utilization of RC resources. However, this approach would be time consuming
since spatial partitioning is done in conjunction with temporal partitioning.

For temporal partitioners that are based on optimal models such as ILP, such as in SPARCS [36],
this approach will be impractical. A second approach to integrate the exploration engine with a
temporal partitioner, is to assume that the RC has a single device whose area is the sum of the
areas of the all the devices. In SPARCS, the temporal partitioner assumes such a lumped model
of the RC and without considering the effects of spatial partitioning in detail. Nevertheless,
SPARCS incorporates a detailed feedback to temporal partitioning, in the case when spatial
partitioning fails on any temporal segment.

The lumped RC area is set as a constraint to the exploration engine and all tasks are placed in
one partition. The Explore^designQ method is invoked several times with varying design latency
constraints at equidistant points within the bounds on the entire design latency (for all tasks).
For each invocation of Explore.designQ, a design point is generated for each task. Thus, prior to
temporal partitioning in SPARCS, several design points are generated for each task in the USM.
This enables the temporal partitioner to contemplate multiple implementations of a task, while
trying to optimize design latency. At the end of temporal partitioning, a latency constraint is
imposed on each temporal segment such that the entire design delay (see Section 5.1) is
minimized.

96

5.4.2 Interaction with Spatial Partitioning

Following temporal partitioning, each temporal segment is spatially partitioned by the SPARCS
system. As described earlier in Section 5.1, the goals of the spatial partitioning are to fit the
temporal segment on the devices while satisfying the latency, memory and interconnection
constraints.

The spatial partitioning system [26, 81] consists of two partitioning algorithms: (i) A Simulated
Annealing (SA-based) and (ii) Genetic Algorithm (GA-based). These algorithms interact with the
exploration engine in order to dynamically generate design points that satisfy the device area and
latency constraint on each temporal segment. The other two constraints on memories and
interconnections are handled within the spatial partitioner.

Figure 5.7 presents an abstract template representing both algorithms. The boxed lines indicated
places of interaction between the partitioner and the exploration engine. Initially, one (or more)
random configuration(s) are generated and the exploration engine is initialized with these. The
loop in line-4 represents the outer-loop of the GA generations or the SA temperatures. The loop
in line-5 represents the inner-loop of the GA population size or the SA iterations per temperatures.

In order to achieve efficient memory utilization, the spatial partitioning of all temporal segments
are performed simultaneously by the USM spatial partitioner [26, 81]. For this purpose, these
algorithms maintain a super-configuration that is the set of all configurations (spatial partitions)
over all temporal segments. During each iteration, the algorithms generate a new
super-configuration {Cnew) by perturbing the existing super-configuration (CCUTrent). Note that,
any super-configuration is composed of a set of configurations, one corresponding to each
temporal segment (subgraph Gi e USM) of the USM. Here, G, contains the set of all tasks
belonging to the temporal segment i.

The lines 8-11 pass each such configuration (of Gi) to the exploration engine and set the
corresponding latency constraint (Li) of the temporal segment. Then, the exploration algorithm
is invoked on a temporal segment and the design areas of all spatial partitions in that temporal
segment are estimated. This way, exploration and estimation are performed for all temporal
segments (Gi G USM) in a sequence. During the spatial partitioning process, when any
configuration is accepted (at line-14) by the GA or SA, the exploration engine is again invoked
(the same way) to generate new design points and estimates design areas.

Note: For experimentation, we developed two versions for each partitioning algorithm. The first
one represents the traditional model of exploration where at any time during spatial partitioning
(at line-10) only the single-partition exploration is performed using the Explore-PartitionQ
method. The other version represents the proposed model where at line-10 the multi-partition
exploration is always performed using the Explore-DesignQ method. Thus, the proposed model
always performs a partitioning knowledgeable exploration on multiple spatial partitions, whereas
the traditional model performs a local search on individual spatial partitions.

5.5 Results

First, we present results demonstrating the effectiveness of the multi-partition exploration
technique as compared to the traditional model of exploring a single partition. Then, we present
results of some designs that were synthesized through SPARCS and tested on a commercial RC

97

from SA- ioner loner
1.1

8 0.7

0.5
0,4
03

II,::!

y Y Y V Y V -_A'

\ \

x- \
''X, \

''X,
'X.

" Proposed Exp.Model -^— x
" Traditional Exp.Model •■■■*■■■

i i i i i i i i '*

0,9

B5

§ 0,7

0,5

i i i

-x—X—X—X—X-

''•X,

0,3 J I L

AreafforL0=120.Ll=60) Area(forL0=120.LI=60)
Figure 5.8: USM Exploration and Partitioning Results for DCT

board.

5.5.1 Exploration Results from GA-/SA-based Spatial Partitioners

We have run a number of experiments on a constructed DCT example consisting of 12 tasks. Each
task has four vector products consisting of sixteen 8-bit multiplications, eight 16-bit additions and
four 17-bit additions. The design space for each task on the latency axis varies from 5 to 20 clocks
and on the area axis from 120 to 5,200 CLB s. It can been seen that the design space of the entire
design is very large; (20 - 5)12 possible design points, or latency combinations for all tasks.

We have considered the Wildforce [84] target architecture consisting of four FPGA devices, with
fixed and programmable interconnections and 32 K memory banks. The DCT example uses two
memory segments with 16 words each for the input and the output 4x4 matrices. The there are
eights flags that synchronize the execution of the tasks. The twelve tasks in the DCT example
were temporally partitioned into two segments with the 9 tasks in one and three in the other. We
ran both the GA and SA spatial partitioners on a Sun Workstation with a 128MB RAM and a
143 Mhz Sparc-5 processor. Both partitioners have a built-in Wildforce-specific router and
memory estimator [81], that handle the interconnection and memory constraints.

We fixed the latency constraints of the two temporal segments at their upper bound values (120
and 60 clocks) and ran both the partitioning algorithms (SA and GA) by varying the device area
constraint. Figure 5.8 shows two plots of the results from the SA-based and the GA-based
partitioners. Each plot has the device area constraint on the x-axis and solution fitness [26, 81] on
the y-axis. Fitness is a measure of the solution quality in terms of the area, memory and

98

Table 5.1: USM Partitioning Results (with fitness < 1) for DCT

•^■device Algo. Exp.Model Fitness Design Areas in TPO Design Areas in TP1

700
SA Single

Multi
.541
.994

{996, 695, 664, 664}
{702, 499, 468, 468}

{0, 355, 332, 332}
{234, 23, 0, 680}

GA Single
Multi

.702

.994
{1027, 664, 664, 664}
{702, 468, 265, 702}

{355, 332, 0, 332}
{234, 0, 257, 545}

650
SA Single

Multi
.436
.862

{996, 695, 664, 664}
{468, 702, 490, 585}

{0, 355, 332, 332}
{234, 234, 22, 545}

GA Single
Multi

.608

.925
{664, 683, 996, 686}
{588, 702, 487, 468}

{332, 0, 332, 354}
{256, 545, 234, 0}

Table 5.2: USM Partitioning Results for FFT

■^constraint

-^■device Exp.Model Fitness
Design Areas

TPO TP1 TPO TP1
154 80 576 Single

Multi
1.0
1.0

{514, 572, 558, 514}
{438, 558, 484, 553}

{94, 300, 323, 0}
{0, 306, 402, 0}

162 82 576 Single
Multi

1.0
1.0

{514, 572, 558, 514}
{439, 560, 459, 481}

{94, 300, 323, 0}
{113, 307, 285, 0}

158 80 570 Single
Multi

0.995
0.995

{514, 572, 558, 488}
{514, 572, 558, 488}

{268, 126, 323, 0}
{268, 126, 323, 0}

160 8U 570 Single
Multi

0.996
0.996

{462, 572, 558, 436}
{462, 572, 558, 436}

{268, 126, 323, 0}
{268, 126, 323, 0}

interconnect constraints. Any solution always satisfies the latency constraint. A fitness value of 1
indicates that all constraints are satisfied and a lower fitness value indicates a higher violation of
constraints.

Each plot, has two curves representing the solutions generated by invoking the traditional
single-partition (dashed lines) and proposed multi-partition exploration models (solid lines)
during spatial partitioning. As shown in both plots, for an area constraint of 1000 clbs (and
higher), both exploration models of exploration found constraint satisfying solutions. As we
tighten the area (lower than 1000 clbs), the SA and GA versions that perform a multi-partition
exploration find constraint satisfying solutions whereas their traditional counterparts do not. In
fact for the traditional models, we can see that the solution quality becomes poorer (fitness < 1)
with tighter area constraints. For all these cases, the proposed model found a solution in a few
seconds to minutes, whereas, the traditional model could not even after running for over 4-6
hours. This shows that the solution found by the multi-partition exploration doesn't even exist in
the local search space of the traditional single-partition exploration.

At tight area constraints (650 and lower) both models do not find constraint satisfying solutions.
Nevertheless, the solution generated by the proposed model is superior (higher fitness) to that of
the traditional model. Table 5.1 lists the resulting design areas (in all spatial partitions, for the
two temporal segments TPO, TP1) for solutions whose fitness are less than 1. We see that even
in all these cases the solutions generated the proposed model is better (in area) than that of the
traditional.

In Table 5.2 we have shown the results for partitioning the Fast Fourier Transform (FFT)
benchmark. The FFT was modeled as a twelve task design and was temporally partitioned into

99

Table 5.3: Results of DCT and FFT tested on Wilforce

Design
Name

Device
No.

Temporal Partition 1 Temporal Partition 2
Tasks Area(CLBs)

(Est., Actual)
Tasks Area(CLBs)

(Est., Actual)

DCT
1
2
3
4

t4_diml_rows34
tl_diml_rowsl2
t2_dimljrows34
t3_diml_rowsl2

(521, 548)
(532, 563)
(536, 563)
(523, 548)

- -

FFT
1
2
3
4

£2,f3
g3real,g4real

f4,glreal,glimg
fl,g2real

(285, 264)
(392, 370)
(432, 370)
(432, 388)

g3img
g4img
g2img

(113, 94)
(307, 223)
(285, 228)

two segments. The table lists the latency constraints (Lconstraint) on both temporal partitions and
the device area {Adevice) m the first three columns. For each set of constraints, the models
(single-partition and multi-partition) of exploration were performed. The first two sets of
constraints represent the experiment for a XC4013 device with the minimal (154,80) and the
maximal (162,82) latency constraint on each temporal segment. In these cases, both models found
a constraint satisfying solution. Nevertheless, it can be seen that the multi-partition exploration
finds a better solution (lower design areas).

The next two sets of constraints are with a slightly tighter device area constraint and varying
latency constraint on temporal segment TPO. For these cases (and others not shown here), both
models of exploration generate identical results. This can be explained as follows. FFT is not as
compute-intensive as the DCT example and each FFT task has only two or three possible
implementations with little variation in the design area and latency. This provides no leverage to
exploration engine to perform a latency-area trade-off on the tasks. Due to the very limited set of
available design points, both exploration models converge easily to the best possible solution.

For all the experimental runs, we provided a relaxed memory and interconnection constraint and
these were satisfied by all generated solutions. Therefore, the comparative results (solution
fitness) directly denotes the ability of the proposed exploration technique to efficiently perform
area-latency tradeoff by performing a multi-partition exploration.

5.5.2 Onboard Testing

We modeled the DCT example as a four task design and automatically partitioned and
synthesized this for the Wildforce board [84], from Annapolis Micro Systems. The tasks £1 and t2
perform the first dimension matrix multiplication of DCT and the tasks 23 and t4 perform the
second dimension. There was no necessity for temporal partitioning since all four tasks fit within
the four XC4013s on Wildforce. The spatial partitioning and exploration process completed in
less than a minute on a 143 Mhz Sun Sparc-5 processor with 128 MB RAM. Table 5.3 shows
results of USM spatial partitioning with exploration.

We automatically partitioned and synthesized the FFT example for the Wildforce board [84].
This design was temporally partitioned into two temporal segments with nine tasks in the first
segment and three tasks in the second temporal segment. Using the USM partitioning and

100

exploration environment, both temporal segments were spatially partitioned into the four XC4013
devices on the board. The spatial partitioning and exploration process completed in 130 seconds
on a 143 Mhz Sun Sparc-5 processor with 128 MB RAM. Table 5.3 shows results of USM spatial
partitioning with exploration.

These examples were further synthesized through commercial logic (Synplicity) and layout (Xilinx
Ml) synthesis tools to generate the FPGA bitmaps. These design were loaded and successfully
executed on the Wildforce board. After behavioral modeling, the complete design automation
process including simulations and testing using the SPARCS tools was performed within a day,
for each example.

5.6 Summary

This chapter describes the tight integration of design space exploration with spatial and temporal
partitioning algorithms in the SPARCS system [26]. In particular, this chapter proposes a spatial
partitioning knowledgeable exploration technique for parallel-process behavioral specifications. The
exploration technique has the capability to simultaneously explore the hardware design space of
multiple spatial partitions. This enables exploration and spatial partitioning to generate
constraint satisfying designs in cases where the traditional exploration model fails. In [69], we
introduced the idea of a partitioning-based exploration model for single-process behavioral
specifications. In this chapter, we extend the model to handle parallel-process (USM)
specifications. Results are presented to demonstrate the effectiveness of the exploration technique
and design automation process using SPARCS.

101

Chapter 6

Light Weight Versions of Existing
Synthesis Algorithms

6.1 Introduction

The traditional view of high level or behavioral synthesis (HLS) [124] involves transforming the
behavioral specification of a design into a register transfer level (RTL) specification which usually
consists of a data path and a controller. The first step in HLS involves extracting an intermediate
form from the behavioral specification. The intermediate form is usually a
dependency/precedence graph (DG or DFG) representing the behavioral specification. The DFG
(data flow graph) is a directed acyclic graph which consists of nodes that represent operations
and edges that represent either a control dependency or a data dependency [125]. The RTL
design is produced by gradually performing the various synthesis tasks [126] on the DFG.

High level synthesis [124] has gained popularity in the last decade, the key reasons being: (i)
Design specifications at higher levels of abstraction are easier to write and allow functionality and
design constraints to be clearly stated; (ii) Synthesis algorithms that perform design
optimizations have been well established; (iii) HLS allows the designer to explore a large design
space in a relatively small amount of time.

Scheduling is an important step in HLS [126, 123, 127]. Scheduling can be described as the
process of dividing the DFG into time steps that correspond to clock cycles at the RTL level.
Therefore, scheduling directly controls the throughput rate of the RTL design produced.
However, for large designs the task of finding optimal schedules is a bottleneck in terms of
synthesis time. Therefore, there exists a tradeoff between the scheduling time and design
performance. A designer would try to exploit this tradeoff using good scheduling algorithms that
need to be computationally simple, and at the same time produce high-quality schedules.

Scheduling can be done either under resource constraints (design area and component library) or
under time constraints (design speed). A wide variety of algorithms [123, 128, 129, 130] exist in
the current literature to perform both kinds of scheduling. In this chapter we are primarily
concerned about the Force Directed Scheduling (FDS) algorithm [123] that takes resource
constraints and tries to optimize the latency (or throughput) of the design. In this section, we will
call the resource-constrained FDS algorithm the Force directed List Scheduling (FDLS) algorithm.
FDLS produces good quality schedules but at the cost of computationally intense force

102

calculations. Moreover, FDLS would perform poorly without a lookahead into the descendant
operation forces, as shown in the results of [131]. Therefore for data flow dominated designs,
FDLS is inefficient in terms of scheduling time. In this chapter, we present a technique to cut-off
force calculation of an operation at a certain level of its descendants. This would considerably
reduce the scheduling time without degrading the schedule quality.

In the following section we will present a discussion of related work. In Section 6.3 we will briefly
describe the force directed list scheduling algorithm. Section 6.4 presents an example to show the
performance of FDLS and an improvement that can be done. Section 6.5 describes the new
technique of force calculations based on a concept of stability. Section 6.6 describes how the
stability concept can be extended to any DFG, using stability conditions. It also presents the
FDLS algorithm that is coupled with a stability condition. Finally, in Section 6.7, we present
detailed results for a suite of high level synthesis benchmarks. The results show a clear
improvement in the performance of FDLS when coupled with the stability condition.

6.2 Related Work

In the past there have been improvements suggested to the Force-Directed Scheduling (FDS)
algorithm. Here we will compare our improvement with some of these. We assume that the reader
is familiar with Paulin and Knight's FDS algorithm [123].

Verhaegh et al. in [132] proposed an improvement to the time-constrained FDS algorithm (that
minimizes resources within a given schedule length), using a gradual time frame reduction
technique. Instead of directly scheduling an operation to a time step within its time frame (as
suggested by Paulin and Knight in [123]), the time frame for the chosen operation is reduced by
one time step. Our implementation of the resource-constrained FDS algorithm follows a very
similar approach. At each time step, if an operation is not chosen for scheduling then its time
frame is reduced by one time step. The only difference is that we use a more rigorous force
function. The authors in [132] also suggest a way of computing the force of an operation using a
requirement distribution function similar to the one suggested by Paulin and Knight. Their force
of scheduling an operation at a time step is computed by summing the changes in the probabilities
of all the operations. Operations whose time frames have not been affected would contribute a
zero force. In our implementation of the resource-constrained FDS algorithm we only accumulate
the forces of descendants of the operation, since only their time frames would be affected.

Verhaegh et al. in [133] propose an incremental way of computing forces, to reduce the
complexity of the time-constrained FDS algorithm. Initially, the set of operations whose time
frames have changed is determined. Then depending on whether an operation belongs to this set,
they either compute the force by summing only the changes in other forces or recompute the
entire force. As mentioned earlier, our implementation of the resource-constrained FDS algorithm
computes forces only for those operations whose time frames have changed, but we have not done
incremental computation.

We observe that none of the improvements mentioned earlier suggest the possibility that the
forces of certain descendant operations need not be summed up even though their time frames
might have changed. The technique suggested in this chapter dynamically determines the number
of descendant operations whose forces have to be summed to get the force of an operation. The
improvement suggested in this chapter is independent of those suggested in the past and can be
used in conjunction with them for further improvement. Since our implementation of the

103

ForceJDirected_List_Scheduling(DFG, Tlset)
Begin

Tmax *- Critical Path Length in the DFG
Tstep <— 1
while (Tstep < Tmax) > Each iteration corresponds to a Tstep

Evaluate Time Frames
C-readv «- { All operations whose time frames intersect with Tstep}
while (Tlset not sufficient) t> Need to defer an operation

if (all operations in Cready ire on critical path) then
'max 4 I max ~r 1
Evaluate Time Frames

end if
Compute-Deferral-ForcesQ
Op «- Operation in Cready with the least force
Cready *~ Cready ~ {Op} > Defer the operation

end while
for each (operation Op € Cready)

Schedule Op at Tstep
end for
I step *~ 'step + 1

end while
End

Figure 6.1: Force Directed List Scheduling Algorithm

improved resource-constrained FDS algorithm already incorporates some of the improvements
suggested in the past, the speed-up results shown in this chapter justify the fact that the
improvement achieved by using our technique is independent of others.

6.3 Force Directed List Scheduling

The FDLS (resource-constrained FDS) algorithm proposed by Paulin and Knight [123] is a very
popular technique of scheduling, widely used in many synthesis tools that exist in the current
literature. The FDLS algorithm shown in Figure 6.1, is based on the well known list scheduling
algorithm [134]. Operations are sorted in a topological order based on the control and data
dependencies extracted from the DFG. At each time step (TsteP) a list of operations that are
ready to be scheduled, called the ready list (CTeady) is formed. As long as the resource set (Tlset)
is not sufficient to schedule the operations in the ready list the inner-while loop (See Figure 6.1)
keeps deferring an operation in each iteration. In order to select an operation to defer, a deferral
force is calculated for each of the ready list operations and the least force operation is picked.
When the resources are sufficient the remaining operations in the ready list are scheduled in the
current time step.

There are two main tasks in each iteration (time step) of FDLS, namely, the evaluation of the
time frames and computation of the deferral forces for each operation in the ready list. The time
frame of an operation is specified by its As Soon As Possible (ASAP) and As Late As Possible
(ALAP) time steps. The evaluation of a time frame would simply involve updating of these two
values. On the other hand, a deferral force calculation involves updating of the distribution graph
[123] of the operation and computation of the deferral force of the operation. The force of

104

A = I + S2;

B = S3 + S4;

C = S5 + S6;

D = S7 + S8;

A
V) (T)

(+j

T1=A + B;

T2 = C + D; T (+J
T = T1+T2; y-ry

/
?-\Y

X = Fcoeff_l *T; (*JI (* K

Y = Fcoeff_2
i
■
i

*T;

\ DAGl] (DAG2

(a) (b)

T2

Figure 6.2: (a) Filter Behavioral Specification (b) The DFG

deferring an operation to a time step (i), as suggested by Paulin and Knight [123] is 1:

Force(i) - Self-Force(i) + SuccessorJForces

The self-force of an operation determines the average competition offered by those operations that
appear in its time frame and compete for its resources. The successorJbrces are computed by
summing up the self-forces of all the descendants whose time frames would be modified due to the
deferral of the parent operation. Note that, a force calculation is a more computationally
intensive task than the evaluation of a time frame. More importantly, note that the deferral forces
are computed for all the operations in the ready list, in each iteration of the inner-while loop
(Figure 6.1). The time frames of the operations are not necessarily evaluated in each iteration. In
our experience, we have observed for many design examples that the most computational intensive
task of the FDLS algorithm is the calculation of successor forces.

6.4 Motivation through an Example

In this section, we present an example to show that FDLS is not efficient in its successor force
calculations. When resources are insufficient, FDLS computes forces in order to select an
operation for deferral. As described earlier, when computing the force of an operation, FDLS also
computes the self-forces of all the descendants of that operation. However, it may not always be
necessary to compute the forces of all the descendants, in order to make an effective deferral
decision.

Consider the portion of a behavioral specification for a filter example shown in Figure 6.2.a and
the corresponding DFG in Figure 6.2.b. The previous state variables (s2 through s8) and the
filter input (I) are summed up and used in the computation of the next state values and the filter
output, using the filter coefficients (FcoeflLl and Fcoeff_2). This computation is done in the two
DAG fragments (DAGl and DAG2), as shown in Figure 6.2.b. The operations (nodes) in the
DFG are marked by the corresponding variable names in the behavioral specification. Consider a
resource set that has only one adder. At the first time step, the ready list has the four addition
operations A, B, C and D. In order to pick an operation for deferral, FDLS computes the forces of
all these operations and then defers the least force operation.

See [123] for a detailed explanation of this function. We assume that the reader is familiar with [123]

105

Ready List

level-0

CAP) CBD CCD level-1

C*D C^D CCT> ^ level-2

CD (D © leve,-k

C5D CjjD C^>

Stability level

level-n

Figure 6.3: Topological ordering of ready operations and their descendants

When computing the successor force of operations A, B, C and D, FDLS goes all the way down
till the end of DAG1 and DAG2, and computes the self forces of all their descendants. But an
important point to note here is that the operation T is a common descendant of the four addition
operations in the ready list. This implies that all descendants of A, B, C and D that are also
descendants of T, would equally contribute to the force of the operations A, B, C and D. For
example, the self-force of the descendants X and Y would be added to the force of all the four
addition operations since X and Y are also descendants of T. Therefore addition of the self-forces
of X and Y and any other descendants of T, would not change the selection of one of the four
additions for deferral. In other words, we can state that if there exists a common descendant for
the ready list operations and all other descendants are either predecessors or successors of the
common descendant (i.e, this is a bottle neck descendant), it is enough if we compute self-force of
those descendants that axe predecessors of the common descendant, including the common
descendant. In this example, while computing successor forces of A, B, C and D, it is enough if
the self-forces of the operations Tl, T2 and T are computed, since Tl and T2 are the only
descendants that are predecessors of the closest common descendant T. This observation can be
suitably extended to the case of a set of common descendants.

6.5 The Stability Concept

In the previous section we presented an example to show that successor force computation can be
limited to a subset of descendants of the ready list operations. However, the concept cannot be
easily extended to all DFGs, since there may not be a common descendant for all the operations
in the ready list. In such a case, we would have to find common descendants for mutually
exclusive partitions of the ready list. Even then, we can only state that it is not necessary to
compute successor forces beyond the closest common descendant for operations in that partition
of the ready list. However, the actual deferral operation could belong to any partition. Therefore,
successor force computation, beyond such common descendants may still affect the deferral
decision. The problem is therefore not solved.

We can however look at the problem from a different point of view. Consider a ready list shown
in Figure 6.3. The operations and their descendants are topologically sorted into levels. The list
of ready operations (a, b, c ..) are considered to be in level-0. Their immediate successors are
considered to be in level-1. For example, Al is the set of immediate successors of the operation

106

'a', Bl has the immediate successors of the operation 'b' and so on. Similarly, A2 is the set of all
immediate successors of each of the operations in the successor set Al. Therefore Al is defined as
the parent set of A2. We recursively define an ith level successor set of an operation in the ready
list to be the set of immediate successors of all the operations in the parent set at the (i-l)th level.
Also for any ith level successor set (Ai) we define a corresponding parent operation (a) in the
ready list. If the ith level successor set of any operation in the ready list is empty, then successor
sets at all levels greater than i are also empty.

The computation of successor forces for the operations in the ready list can now be done level by
level. At each level-i starting from the first, the self-forces of all the operations in the ith level
successor set is added to the corresponding parent operation in the ready list. Let n be the
farthest level of successors for any operation in the ready list. FDLS would compute successor
forces at each level, until level-n and pick the least force operation for deferral. If we sort the
ready list operations in the order of their force values, it is very well possible that there exists a
level-k (k less than n) after which this order stabilizes, i.e, does not change. We call this level-k as
the stability level.

For example, if there exists a common descendant for the ready list operations then the stability
level is level-k where k is the length of the path from any ready operation to that common
descendant. Due to the common descendant, after this level-k the addition of successor forces
would equally contribute to the forces of all the operations in the ready list, thereby preserving
the order of the operations. There could be several other reasons why this stability level can exist,
a few of them are: (i) Successor forces after a certain level k might become zero if the successors
after level-k have similar distribution graphs; (ii) After level-k, the successors may contribute the
same force to each of the ready operations. This could be true if successors at level-k have similar
time frames and equal competition; (iii) When there is no single common descendant for all
operations in the ready list, but only for mutually exclusive partitions of the ready list, the
stability level could still exist. This would be true if the addition of successor forces does not
change the ordering of operations between the partitions of the ready list.

The problem at our hand is to find this stability level. If we can dynamically detect the stability
level then we can stop computation of successor forces at that level and pick the least force
operation for deferral. Since the relative ranking (with respect to forces) of the operations at the
stability level is the same as what it would be after all the n levels of successors force calculations,
the operation selected for deferral would also be the same. Therefore, we can be assured that the
schedule quality would be preserved.

6.6 FDLS that uses a Stability Condition

In order to dynamically (at run time) detect the stability level in each iteration of FDLS, we have
to look at the forces of the ready list operations after each level of successor force computation.
We now define a stability condition (SC) as a condition which when true indicates that stability
level has been reached. The stability condition will be used in the FDLS to dynamically detect
the stability level and stop successor force computation. Table 6.1 presents three simple stability
conditions that have their own advantages and disadvantages.

In Table 6.1, the stability condition SC-1 checks if the force value of any one of the ready list
operations has changed between two consecutive levels of successor forces computation. The
intuition is that, if none of the force values of the ready list operations have changed, then the

107

Table 6.1: Some simple stability conditions

Sorting
S.No Stability Condition Required
SC-1 Force of any operation changed. No
SC-2 For each Op-type, least force

Operation Set is preserved.
Yes

SC-3 Top N forces of each
OpJype remain unchanged.

Yes

order of operations is preserved, identifying stability. SC-2 works based on a different approach to
stability. At each level, there is a set of least force operations, since more than one operation can
have the least force value. SC-2 detects stability if this least force operation set remains the same
overs two levels of successor force computation. This intuition is that, if the set of least force
operations remain the same then it is highly possible that one of them is the actual operation
that would have been selected for deferral, after all levels successor force computation. SC-3 on
the other hand looks at the other extreme. It checks if the forces of the top N operations remain
fixed, i.e, force values did not change. Here N is the number of resource of this operation type
available. The ready list is assumed to be organized as a collection of operation types and
operations belonging to each type. Intuitively, if the top N forces remain fixed, then there is a
high probability that one of these operations is chosen for scheduling in this time step. Note that
SC-2 and SC-3 check individually for each operation type in the ready list and require sorting
after each level of successor force computation. SC-1 is too strong a stability condition and
therefore might miss some cases of actual stability. On the other hand SC-2 and SC-3 are
relatively more tolerant in stability detection. Each of these stability conditions is only a heuristic
and therefore may fail to detect stability in some cases. But it is important to see how often such
cases appear in real life design examples, which can only be seen by experimentation.

We have constructed a stability condition that takes the best aspects of the three conditions
presented above. Figure 6.4 shows the procedure for deferral force computation in FDLS with our
stability condition plugged in. The figure also shows the computation of successor forces level by
level, starting from the first. The initial for-loop computes forces of ready operation at level-0.
Each iteration of the second for-loop corresponds to a successor level. The body of second for
loop has two parts: (i) the computation of successor forces at the current level and (ii) the
stability condition, as shown by the commented lines in Figure 6.4.

Our stability criterion checks for two conditions: (1) Order of all the operations (relative ranking
with respect to forces) is preserved, and (2) At least one force value does not change for each
operation type in the ready list. The first condition ensures that the same order of operations is
preserved over two consecutive successor levels but is too weak by itself. For example, if the forces
of all operations were to change by a constant value, the order is preserved. But this might not be
point of the stabilization of the order because all the force values have just changed and there is a
probability that some of them might change in the next level, leading to instability. However, in
conjunction with the second condition it would not detect stability since none of the force values
remained the same. Therefore, adding the second condition makes it a bit more tolerant. Also we
have added one more condition to make it efficient in sorting. Sorting is done only when any of
the forces have changed their values. Finally, we have the Req_Csl (Required number of
Consecutive Stability Levels) criterion that adds a user specified level of tolerance to the

108

Compute JDeferralJEbrces()
Begin

for each (operation Op € jCready)
Op.force <- Self.force of Op

end for
Sort operations based on their forces
Req.Csl <- Required number of consequetive stability levels
Nsl <— 0 > Number of stabilized levels
for (succJevel «- 1 to Critical .Path-Length) do

t> COMPUTATION OF SUCCESSOR FORCES

for each (operation Op € Cready)
Determine Successor.Set at 'succJevel'
succ-force <- Sum of Self forces of all SuccessorJSet operations
Op.force <- Op.force + succ.force

end for
> STABILITY CONDITION
Order.Changed <— False
if (any force value changed) then

Sort operations based on their forces
if (any change occurred in the order) then

Order.Changed <— True
end if

end if
if (Order.Changed) then

Nsl <— 0 > Reset. Instability before Req.Csl reached
else

if (for each op.type, at least one force did not change) then
Nsl <- Nsl + 1 > One more level of stability reached

else
Nsl <-Q > Reset. Instability before Req.Csl reached

end if
end if
if (Nsl = Req-Csl) then

break > STOP. Desired level of stability reached
end if

end for
End

Figure 6.4: Dynamic Successor Force Computation in FDLS

109

Table 6.2: Information on the synthesis benchmarks used

Design Total Design Critical
Example Operation information from DFG Operations Space Path Len.
1. EWF {26 : [+], 8 : [*]} 34 36 15
2. LSS {12 : [+], 16 : [-=-], 16 : [*]} 44 3072 4
3. DCT4x4 {96 : [+], 128 : [*], 16 : [+]} 240 49152 8
4. TN-1 {416 : [+], 512 : [*], 96 : [-=-]} 1024 3.6 * 106 14
5. TN-2 {640 : [+], 768 : [*], 128 : [-]} 1536 2.9 * 107 9
6. DCT8x8 {896 : [+], 1024 : [*], 64 : [-=-]} 1984 1.4 * 107 10

condition. The condition can be tuned to check for stability over 'Req.Csl' number of consecutive
successor levels. We have compared the performance of FDLS with and without this stability
condition. Results presented in the following section show considerable improvement in execution
time for the same schedule quality, for different synthesis benchmarks.

6.7 Results

In this section we will compare the performance of the two versions of FDLS: with and without
the stability condition. For obtaining the results, we have considered a suite of high level
synthesis benchmarks, that is shown in Table 6.2. We use a library of parameterized RTL
components using which the scheduler generates resource sets for a given design. For each
example in the table, we have shown the operation information, the total number of operations,
the number of generated resource sets (design space) and the critical path length in the DFG.

The design examples shown in Table 6.2 are listed in the order of increasing sizes (number of
operations in the DFG). Our first example, the smallest in the suite, is an Elliptic Wave Filter
(EWF) taken from Kung, Whitehouse and Kailath's book on signal processing [136]. It contains
34 operations that are subjected to over fifty precedence constraints. This was also chosen as a
benchmark for the 1988 High-level synthesis workshop. Our largest design example (DCT8x8),
computes the Discrete Cosine transform (DCT) [135] of an 8x8 matrix. DCT8x8 has a total of
1984 operations in the DFG, out of which 896 are additions, 1024 are multiplications and 64 are
divisions. It has a design space consisting of more than ten million resource sets. The second
example, is a Linear System Solver (LSS) [137], which is a popular method of solving a linear
system of equations using matrix inversion. This LSS example computes the solution to a system
of four equations with four variables each. The third example (DCT4x4), is a smaller version of
DCT that computes the transform of a 4x4 matrix. The Threshold Network (TN) [138] is widely
known as the perceptron network in neural systems. Each node in the network takes a variable
number of inputs and generates the average of their weighted sum as the output. We have
considered two versions of the threshold network (TN-1 and TN-2), each having nodes that take
either four or eight inputs, but the number of nodes and their connectivity are different.

Table 6.3 compares the execution times of the two FDLS versions: the original FDLS and our
Dynamic-FDLS (D-FDLS) that dynamically cuts off successor force computation using the
stability condition presented in Section 6.6. We have measured the execution times using the
commercial Quantify tool. The results have been taken on a Sparc-20 machine with a 256
Megabyte memory and a clock speed of 75 MHz. Note that, for the smaller examples the

110

Table 6.3: Execution times for FDLS and Dynamic FDLS

Design
Example

Execution Time Schedule Length
Resource Set Information FDLS D-FDLS Reduction(%) FDLS D-FDLS
{1 ■[+}, I ■■[-}} 9.43ms 8.23ms 12.7 21 21
{1 [+], 2:[-]} 9.42ms 8.17ms 13.2 21 21

1.EWF {1 [+], 3:[-]} 6.85ms 5.50ms 19.6 21 21
{2 [+],! = [-]} 4.72ms 4.15ms 11.9 16 16
{2 [+]. 2:[-]} 4.67ms 4.12ms 11.7 16 16
{3 [+]. 2:[-]} 2.96ms 2.96ms 0 15 15
{3 [+]. 1 = H, 4:[*]} 33.03ms 25.04ms 24.2 19 19
{3 [+], 2: [-=-], 4:[*]} 17.65ms 13.50ms 23.5 13 13
{6 [+], 2 : H, 8 : [*]} 17.65ms 13.46ms 23.7 11 11
{3 [+], 4 : H, 4 : [*]} 10.11ms 7.82ms 22.7 10 10

2.LSS {6 [+], 4:[-r], 8:[*]} 9.54ms 7.32ms 23.4 8 8
{6 [+], 8:H,8:M} 4.54ms 3.55ms 22.0 6 6
{12 : [+], 8 : [-], 16 : [*]} 4.47ms 3.47ms 22.5 5 5
{12 : [+], 16 : [-], 16 : [*]} 1.63ms 1.63ms 0 4 4
{3 : [+], 4 : [*], 16 : [*]} 2489.29ms 869.96ms 65.05 39 39
{6:[+], 8:[*], 16:[-]} 1041.93ms 368.46ms 64.64 23 23
{12 : [+], 16 : [*], 16 : [+]} 396.8ms 125.47ms 68.38 15 15

3.DCT4x4 {18 : [+], 24 : [*], 16 : [-]} 233.05ms 63.69ms 72.71 12 12
{24:[+], 32:[*], 16 : [-]} 158.92ms 45.11ms 71.61 10 10
{36 : [+], 48 : [*], 16 : [-=■]} 114.62ms 36.9ms 67.81 10 10
{48 : [+], 64 : [*], 16 : [-]} 24.65ms 24.65ms 0 8 8
{?:[+], 8 :[*], 2:[*]} 338.63s 167s 50.68 91 91
{14 : [+], 16 : [*], 4 : [-]} 129.43s 57.89s 55.27 47 47
{28 : [+], 32 : [*], 8 : [+]} 35.13s 3.11s 91.1 25 25

4.TN-1 {56 : [+], 64 : [*], 16 : [*]} 16.19s 0.55s 96.6 17 17
{112 : [+], 128 : [*], 32 : [-]} 1.21s 0.28s 76.53 15 15
{224 : [+], 256 : [*], 64 : [*]} 0.4s 0.4s 0 14 14
{7:[+], 8:[*], 2 : [-]} 310.63s 199s 35.94 107 107
{14:[+], 16 : [*], 4 : [-=-]} 141.2s 88.07s 37.63 55 55
{28 : [+], 32 : [*], 8 : [-]} 58.19s 30.91s 46.88 29 29

5.TN-2 {56 : [+], 64 : [*], 16 : [■=-]} 11.68s 2.98s 74.49 16 16
{112 : [+], 128 : [*], 32 : [-]} 9.63s 2.33s 75.8 12 12
{224 : [+], 256 : [*], 64 : [*]} Is 0.67s 33 10 10
{448 : [+], 512 : [*], 128 : [-]} 0.91s 0.91s 0 9 9
{?:[+], 8: M, 64: [-]} 1335.27s 288.33s 78.22 140 140
{14:[+], 16:[*], 64 : [-]} 621.62s 135.38s 78.41 76 76
{21:[+], 24:[*], 64 : [-]} 389.65s 88.50s 77.29 50 50
{28 : [+], 32 : [*], 64 : [-]} 270.84s 60.36s 77.71 44 44
{42:[+], 48:[*], 64 : [-]} 233.37s 49.19s 78.92 31 31

6.DCT8x8 {56 : [+], 64 : [*], 64 : [-]} 110.24s 24.67s 77.62 28 28
{84 : [+], 96 : [*], 64 : [-]} 65.61s 15.92s 75.73 19 19
{112 : [+], 128 : [*], 64 : [-]} 43.97s 8.14s 81.48 16 16
{384 : [+], 128 : [*], 64 : [+]} 44.57s 8.77s 80.32 13 13
{224:[+], 256 : [*], 64 : [-]} 19.81s 2.55s 87.13 12 12
{448 : [+], 512 : [*], 64 : [+]} 1.43s 1.43s 0 10 10

111

Table 6.4: Total Execution Time saved during Design Space Exploration

Design Av. Exec. Av. % Av. Time Total Total Time
Example Time Reduction Saved Res. Sets Saved
1. EWF 6.2ms 13.8 0.855ms 36 30.78ms
2. LSS 17.33ms 23.1 4.003ms 3072 12.23s
3. DCT4x4 1301.95ms 68.3 890.01ms 49152 12hrs 9min
4. TN-1 169.92s 74 125.74s 3.6 * 106 14 years
5. TN-2 155.82 50.6 78.84s 2.9 * 107 72 years
6. DCT8x8 668.35s 79.3 530s 1.4 * 107 235 Years

execution times are in the order of milliseconds and for the larger examples, they are in the order
of seconds. We have chosen resource sets at evenly spaced design points in the design space of
each example. The resource sets for each of these examples are listed in the order of increasing
areas, starting from the smallest area resource set. For each entry we show the quantity and
function of each resource used. Note that for all the examples the schedule length produced by
FDLS with the stability condition is the same the one produced by the original FDLS. The
stability condition proposed is Section 6.6 has not failed in any of these cases. For all the
examples, we had set the number of consecutive levels of stability (Req_Csl) as 1. Note that if
there is no stability point, the stability condition would let FDLS compute successor forces till the
last successor level thereby producing the same schedule. For the last four examples, FDLS with
the stability condition was able reduce at least 50% (on an average) of the execution time. This
implies two points: (i) There does exist a stability level for a considerable number of time steps
and for all possible resource sets; (ii) Most of the execution time in FDLS is spent in the
computation of successor forces. For the EWF and the LSS examples which are comparatively
smaller, FDLS with the stability condition still was able to reduce on an average, 13% (for EWF)
and 23% (for LSS) of the execution time. Note that for the largest possible resource set of each of
these examples, the execution times are identical since forces are not computed at any time step;
as the resource sets are sufficiently large, no deferrals are required.

Table 6.4 shows the average execution time, average percentage reduction in execution time and
the average time saved for any module set. Since evenly spaced design points were chosen (most
parallel, most serial and in between), we can say that the average value is reasonably accurate. If
a synthesis tool were to completely explore the entire design space of these examples over all
possible resource sets (shown in the fifth column of the table) then the amount of time saved in
generating all the schedules is given in the last column. Even for the TN-1 example which is much
smaller than DCT8x8, the amount of scheduling time saved is in the order of years. Although,
high level synthesis tools do not explore design space exhaustively, this clearly shows that the
stability condition coupled with FDLS would be highly useful in better space exploration.

It is possible that in some cases our algorithm cannot find a stability level for any deferral
decision either because our stability criterion could not discover stability or because there exists
no stability level due to the structure of the DFG. In such cases our algorithm incurs a overhead
in execution time due to the need for re-sorting the ready list when operator forces change. This
overhead is negligible due to efficient implementation of the re-sorting operation.

112

6.8 Conclusion

The widely used Force Directed List Scheduling spends a major portion of its execution time in
the calculation of successor forces. In this chapter, we have presented a concept of stability by
which successor force computation in FDLS can be dynamically cut-off thereby leading to a
reduction in execution time. The stability level is identified with the help of a stability condition.
In general, it is very difficult to come up with a single stability condition that would work for all
kinds of DFGs. In fact, a version of FDLS could also use multiple stability conditions for different
time steps of the schedule. We have shown three different stability conditions and formed one
which takes the best aspects of these, and plugged it into FDLS. Results presented in this chapter
show that this stability condition results in considerable reduction in the execution time of FDLS
for the same schedule quality, for a suite of high level synthesis benchmarks.

113

Chapter 7

RC and FPGA FloorPlanning

7.1 Introduction

Placement and floorplanning are extensively studied topics. However, the importance of
placement and floorplanning cannot ever be ignored due to changing design complexities and
requirements. Currently, commercially available devices can map up to one million gate
equivalent designs [29] (and some of the newly announced products like Altera's APEX series will
map over two million gate equivalent designs[28]). Such complex design densities also demand
tools that can efficiently and quickly make use of available gates.

Improvements in CAD tools for FPGAs have not kept pace with hardware improvements. The
available tools typically require from minutes to hours to map1 designs (or circuits) with just a few
thousand gates, and as design sizes increase the execution time will increase. One way to address
the problem of long mapping times is create designs that use premapped macros2 to create larger
designs (macro based circuits). Then, floorplan and route these macro based circuits. This
approach combines the technology mapping and physical placement steps of the circuit mapping
process. In general, floorplanning is an NP-hard problem [73]. For FPGAs, it is more difficult due
to fixed logic resources. Additionally, the netlist is not always complete. In certain instances (for
example high level synthesis) the circuit netlist may not contain any interconnect information. In
this case, the floorplanning problem reduces to the two-dimensional packing problem.

To address the problem of mapping large designs to large FPGA circuits, we have taken a macro
based approach [16, 17]. When a complete netlist (set of macros and interconnects) is available,
we floorplan interconnected macro based circuits. For the case where we have no interconnect
information or there are problems making the circuit fit the available area, we perform
two-dimensional packing on the set of macros. At the lowest level, a macro is composed of one or
more interconnected and relatively placed logic blocks. In this dissertation, we present a method
(based on clustering and tabu search (TS) optimization) to quickly floorplan interconnected,
macro based circuits (circuits composed of interconnected macros) while attempting to minimize
throughput delay and meet area and routability constraints. For the case when interconnect
information is unavailable or there are problems making the circuit fit the given area, we present
a method (based on grouping soft and hard macros) to quickly floorplan the set of macros making

typical mapping steps include design entry, technology mapping, placement, and routing
2macros are predefined circuit components like adders, shifters, decoders, multipliers, signal processors, CPUs,

etc.

114

up the circuit.

The basic flow of our method is summarized as follows. We start with a set of macros (M)
interconnected by a set of signals (S). Each macro is composed of a set of interconnected
relatively placed logic blocks. If | S | > 0, we then group (cluster) macros together to form
clusters. Each cluster in the set of clusters (B) is smaller in area than some predefined limit3. We
then use TS optimization to perform two-dimensional placement on the set of clusters B. Then,
for each cluster that is composed of more than one macro, we perform intracluster placement4.
Finally, for any macro whose shape was changed during the intracluster placement process, we
perform intramacro placement5.

In the event | S | = 0 or the set M will not fit using the process described above, we separate the
set M into two non-overlapping sets of soft and hard macros. We then perform two-dimensional
packing on the set of hard macros. If the hard macros fit the given area, we go back and floorplan
the soft macros and change their shape as necessary.

In this chapter we present our floorplanning methodology. In section 7.2 we formally describe the
floorplanning problem and lay the foundation for the solution. In section 7.3 we describe our tabu
search (TS) based floorplanner and methodology. In section 7.4 we explain our test methodology,
and in section 7.5 we analyze the data. Finally in section 7.6 we provide conclusions for our
methodology.

7.2 Floorplanning Problem

Given a set of macros M = {mi, m2, ..., mn} and a set of signals S = {si, s2, ..., sg}, we
associate with each macro m, G M, a size ai (number of logic blocks in m*); a width Wi
(maximum width of nn in number of logic blocks); a height hi (maximum height of m, in number
of logic blocks); a flexibility ft (0 for hard/fixed macros or 1 for soft /flexible macros); and a set of
interconnecting signals Smi (Smi Q S). For hard macros (macros with fixed size, shape, and
internal placement), Wi and hi axe both fixed and ft = 0. For soft macros (macros with fixed size
and variable shape), Wi and hi are considered flexible (both Wi and hi can take on a range of
values typically between 1 and a*) and ft = 1. Additionally, for the case when | S \ > 0, with each
signal Si G S we associate a set of macros MH where MH = {rrij | s, G Smj}- MSi is said to be a
signal net. We can divide M into two distinct sets, MS and MH (subset of soft macros and
subset of hard macros), where M = { MH U MS | MH n MS = 0, ft = 0 V m, G MH, and ft
= 1 V raj G MS }. We are also given a target set L = {h, l2, ..., lp} of locations where

I L l> X)l=i ai- For the case of mapping m* G M to a regular two-dimensional array, each lj G L is
represented by a unique (xj,yj) location6 on the surface of the two-dimensional array where Xj
and yj are integers. Additionally, we define the two-dimensional array L by the width of physical
logic block locations, WL, and the height of physical logic block locations, HL. Figure 7.1 shows
the 16 element set L for an example 4x4 two-dimensional array (WL — 4 and HL = 4). When
| S | > 0, the floorplanning problem becomes how to assign each soft macro m; G MS a shape and
each macro rrij G M = MH U MS a unique location in L such that an objective function is

predefined limit implies the total area of each cluster (sum of the areas of the macros within the cluster) is less
than some maximum

intracluster placement is the task of assigning the macros that make up the cluster a physical location and
reshaping any macro whose shape must be altered to meet area constraints

5intramacro placement is the process of relatively placing the logic blocks that make up a macro component
for our application, the location represents a physical logic block location on the PPGA

115

(1 4)

t u

(1 3)

1
9

(1, 2)

/
5

(1, 1)

'/■

(2 4)

r '/*

(2 3!

f
10

(2, 2)

/
6

(2, 1)

l2

(3 4)

1
'is

<3 3)

7
U

(3, 2)

/
7

(3, 1)

/
3

(4 4)

1
16

(4 3)

I
12

(4, 2)

?
8

(4, 1)

/
4

Figure 7.1: Example two-dimensional array L = {h,h,...,l16} of physical logic block
locations (WL = 4 and HL = 4). One logic block can be assigned to each physical
location k E L

optimized. (Here, uniqueness implies no macro overlaps.) In this case, our goal is to optimize the
floorplanned circuit's performance while meeting area and routing constraints. When | S | = 0,
the floorplanning problem becomes how to assign each soft macro m; € MS a shape and each
macro rrij £ M = MH U MS a unique location in L such that area constraints are satisfied.

7.3 Solution

In this section, we give an overview of our method, and in following subsections we describe each
step in detail. First, some preliminary definitions are required. As stated earlier, a macro is a set
of one or more interconnected and relatively placed logic blocks. We are given a set M of macros
in our circuit or design netlist. When necessary, we group macros in M together to form clusters.
Therefore, we define a cluster as a set of one or more macros, and B = {b\, b2, ..., bp} as the set
of all clusters. (For initialization, there is a one to one mapping of the elements of the set M to
the elements of the set B, and therefore, initially \B\ = \ M \.) As stated earlier, we are
floorplanning the set of macros M on the two-dimensional array L of physical logic block
locations. Once macros are grouped to form clusters, our approach is to perform two-dimensional
placement of clusters on L. To perform this placement, we divide our target two-dimensional
array L into a two-dimensional array of buckets where each bucket (of physical logic block
locations) has the same size and shape. (We define the bucket size by a width of WB logic blocks
and a height of HB logic blocks.) We define the set of buckets as the set {l[, 1'2, ..., l'm) = L\
where the number of buckets m equals | V |. (The two-dimensional array L' is defined by a width
of Wv buckets and a height of HL> buckets.) Then, instead of performing two-dimensional
placement of clusters directly on L, we perform two-dimensional placement of clusters on the
smaller set L'. Figure 7.2 shows the example L divided into four equally sized buckets of physical
logic block locations where each bucket is 2 logic blocks x 2 logic blocks.

Figure 7.3 shows a flow chart of our floorplanning methodology. In Figure 7.3, we read in the sets
M, S, and L. If | S | = 0, we proceed to the two-dimensional packing stage. If | S | > 0, we

116

(1,4) (2,4)

Logic Block

(1,3)

L

(2,3)

Bucket

(1,2) S;t2|2|;T

(1,1) (2,1)

(3,4) IHSi

(3,3) (4,3)

(3,2)

.''7 •

(4,2)

(3,1) atgw

Figure 7.2: Example L divided into a set L' of 4 buckets. The dimensions of L' are WL>
— 2 buckets and Hv = 2 buckets. The dimensions of the example bucket are WB = 2
logic blocks and HB = 2 logic blocks

initialize the set of clusters B. Initially, each element of B contains one element from M, so there
is a one to one mapping of the elements of M to the elements of B. After initialization of B, we
initialize the bucket width, WB, and bucket height, HB, using the procedure Create_Buckets(M).
Details for Create_Buckets(M) are found in subsection 7.3.1. After bucket size initialization, we
create the set of buckets, L', as outlined in subsection 7.3.2. Next, we check the fit of B on L'. (It
should be noted that we create and maintain the bucket width WB and bucket height HB so any
single macro in M will fit in any bucket in L' 7. This allows us to skip the clustering step if | B |
is less than or equal to | L' |. This usually occurs when low device utilization is sufficient and
allows for very fast floorplanning.) If there is a fit, we proceed to the placement phase; if there is
not a fit we proceed to the clustering phase.

In Figure 7.3, if | B \ is not less than or equal to | V |, we proceed to the clustering phase. To
ensure fit, our methodology requires | B | is less than or equal to | L' |, and therefore, the goal of
the clustering phase is to group smaller macros together thereby reducing | B | until | B | is less
than or equal to | L' |. Additionally, it is required that each cluster fy £ B has size less than or
equal to the bucket size. This ensures each cluster will fit in any bucket. The details of clustering
are found in subsection 7.3.3. After clustering if | B | is less than or equal to | V \ then we
proceed to the placement phase else we iteratively increase the bucket size (as described in
subsection 7.3.4) and continue clustering until | B \ is less than or equal to | L' \ or the bucket size
exceeds the dimensions of L.

In Figure 7.3, if | B \ is less than or equal to | V |, we proceed to the placement phase, otherwise,
we proceed to the two-dimensional packing phase. In the placement phase we use TS based
placement to assign each ^eStoa bucket (see subsection 7.3.5). Then, in intracluster
placement, we assign each macro within each cluster a physical location and shape (see subsection
7.3.6). Finally, in intramacro placement, we place the logic blocks within any soft macro whose
shape has been altered during intracluster placement (see subsection 7.3.7). After this phase,
every logic block making up the circuit or design netlist will have a physical location on the

The initial bucket size is based on the dimensions of the largest elements of M.

117

M,S,L

Create Bucket

List, L'

Placement
Phase:

TS_Place

Intracluster Place

Intramacro Place

(Floorplan J

Clustering Phase:

T
Cluster

Increment Bucket

Size, WD and HD

! Packing Phase:

Two-Dimensional
Pack

(No Fit)

Figure 7.3: Floorplanner execution flow

118

Algorithm TSJFP(M,S,L)
begin

let success = TRUE;
if | S | > 0 then

(* initialize the buckets *)
V mi E M let fy = {mj;
(* determine initial bucket size, HB and WB *)
Create_Buckets(M);

create V where Wv = L$£J and Hv = L^J;
success = checkfit (B,L');
while(NOT success AND WB < WL AND HB < HL)

B = c\usteT(M,S,HB,WB);
success = checkfit (B,L');
if NOT success then

increment bucket size (HB and/or WB);

update V so Wv = L^J and Hv = [f^J;
end if;

end while;
if success then

TSjplace(B,S,L');
V h € B{

intracluster_place (6i ,HB, WB);
V m.j 6 bi intramacro_place(mj,&j,JllB,Wiß);

}
end if;

if | S | = 0 OR NOT success then
success = pack(M,L);

end if;
if NOT success then

return "ERROR: circuit not floorplanned";
end if;

end;

two-dimensional array L.

In Figure 7.3, if | S \ — 0 or if | B | > | L' |, we proceed to the two-dimensional packing (see
subsection 7.3.8). In this phase we separate M into MH and MS. Then, we perform packing on
MH. If MH fits the given area, we floorplan the soft macros in MS. If A! fits, after this phase,
every logic block making up the circuit or design netlist will have a physical location on the
two-dimensional array L. Otherwise, the circuit does not currently fit the given area. The
floorplanning process is summarized in Algorithm TSJFP(M,S,Z-).

In Figure 7.3, if the circuit or design netlist will not fit we have four options. We can reduce the
size of the macro set M by partitioning the design spatially or temporally. We can increase the
size of the target two-dimensional array L. This assumes a larger FPGA part is available. We can
flatten the netlist and attempt to use standard placement techniques. This will become more
difficult as design sizes get larger. Finally, if possible we can soften some of the hard macros to
allow better space utilization.

7.3.1 Initializing Bucket Size

In this subsection, we describe the method for determining the initial bucket size which
subsequently defines | L' \. The main goal of our floorplanning method was fast execution time.
Therefore, we quickly initialize the width of the bucket, WB, to the width of the widest macro cell

119

(hard or soft8). Similarly we initialize the height of the bucket, HB, to the height of the tallest
macro cell (hard or soft). This guarantees that any macro m2 G M will fit in any bucket. The
procedure used to determine the initial WB and HB is shown in procedure Create_Buckets(M).
In procedure Create_Buckets(M), H{mi) returns the height of macro m* and W(rm) returns the
width of macro m,.

7.3.2 Bucket List, V

The set of buckets9, L', is created by dividing the set L into rectangles of equal size. The width of
V (in number of buckets) is defined as Wy = Lw^J and the height of V (in number of buckets)

is defined as Hy = [-g^J. (Note, WL and HL define the width and the height (in number of logic
blocks) respectively of the two-dimensional array L.) Therefore, | L' | = Hy x Wy. Figure 7.4
shows an example V for a 7 logic block x 6 logic block L (WL = 6 and HL - 7) and a 6 logic
block x 2 logic block bucket (WB = 2 and HB = 6).

7.3.3 Clustering

As stated earlier, the set B is created or initialized by assigning each m; G M to 6,; G B, and
initially, \ B \ = \ M \. When necessary, the size of set B is reduced by clustering elements of M
so more than one element of M is in some bi G B. There is no limit placed on the maximum
number of macros in each 6, as long as size constraints are satisfied. Size restrictions (described
below) limit the macros used to form each cluster, bi G B.

Each cluster bi G B is divided into two parts, a hard macro part and a soft macro part. The size
restriction on bt requires the total area of the hard macro part plus the total area of the soft
macro part be less than or equal to the size of the bucket (HB x WB). We define the width of the
hard macro part of each cluster bi as the sum of the width of the hard macros in bi,

HMW(bi) = Y, W(mj) , (7.1)
VmjG6;|mj is hard

where W(m,j) is the width of macro rrij in cluster bt. We define the area for the hard macro part
for each cluster b, as the width of the hard macro part times the height of the bucket

HMA{bi) = HMW(bi) x HB . (7.2)

The size for the soft macro part for bi is defined as the width of the bucket minus the width of the
hard macro part times the height of the bucket

SMA(bi) = (WB - HMW(bi)) x HB . (7.3)

The sum of the areas of all soft macros in bi must be less than or equal to SMA{bi).

With these area constraints in mind, the set M is clustered to form the set B. The clustering
method is derived from the connectivity work done in [87]. The connectivity cost function

This assumes soft macros are supplied with some initial shape. Effort is made to maintain the shape of soft
macros. The shape of soft macros is only changed if required to make the circuit fit the given area.

9a bucket is a set or group of physical logic block locations from L such that each bucket has the same size and
shape (HB X WB)

120

Procedure CreateJBuckets(M):
begin

initialize WB — HB = 0;
for i = 1 to | M |

V£WB <W{mi) then
WB = W(mi);

end if;
if HB < H{rrii) then

HB = H(mi);
end if;

end for;
return W# and HB;

end;

D D D
D
D .

D
D 1
D D

D D

□ D
D D
D D
D D

D L

D
D
□
D D
D
D D

Logic Block

Bucket

Figure 7.4: Example L' made up of three 6x2 buckets

121

Procedure Cluster(M,S,HB,WB,L'):
begin

V TOj € M let bi — {mi};
calculate c^- V b\ and bj £ B;
while \B\> \L'\ AND 3cy > 0

choose rrii and m^ with highest connectivity, Cy-;
let 6, = rn, U m;-;
let 6j — ^>;
update connectivity between clusters;

end while;
return B;

end;

includes area constraints. Our connectivity cost function is summarized below.

c* = feasd, j) •£ lr^rT) ■ -^- ■ =^4
skesminsmj (I Sk I _1) a< + ai rnax{ai,aj)

(7.4)

where a, and Oj are areas of macro m2 and m, respectively, Atot is the total area of all macros,
| Sk | is the number of pins on signal s^ which connects macros m2 and rrij, Sm D Sm. is the set of
all signals that connect macros mi and rrij, and feas(ij) returns the feasibility of clustering m;
and rrij under size constraints described above. feas(i,j) returns a 1 if it is possible to combine
rrii with rrij else it returns a 0.

The clustering algorithm combines clusters with the highest connectivity to form larger clusters.
In order to enhance routability, once area constraints have been met (i.e. | B | < | L' \) the
algorithm stops and returns the set B. The clustering algorithm is summarized in procedure
Clustei{M,S,HB,WB,L').

After clustering is complete, it returns the set B. The empty elements of B arc removed, and each
bi € B consists of a unique list of elements from M. Here uniqueness implies bt D bj = </> V bi A
bj€B\i? j.

7.3.4 Increment Bucket Size

In the event that the first pass of clustering does not lead to a valid solution, the bucket size is
increased to allow more flexibility during clustering. This increases the complexity of intracluster
placement but allows more macros to fit in the same area. For example, consider floorplanning
the 5 macros described in Table 7.1 so they fit on an L with WL = HL = (i and | L |= 36. For the
set M, both WB and HB will be set to 3 since these values reflect the largest macro width and
height respectively. Figure 7.5 shows the buckets on L. Therefore, L' will initially have 4 buckets
and M will not fit since | B \ > | L' |. However, by doubling the width of the bucket, we can
cluster mi and m2 into one cluster and m3, m^ and m5 into a second cluster that will fit in L.

7.3.5 Cluster Placement

Once the circuit is guaranteed to fit (| B \<\ L' \) then the clusters bi e B are placed using a
two-step tabu search10 (TS) based two-dimensional placement algorithm [15]. The first step of the

tabu search is a meta-heuristic approach to solving optimization problems that (when used properly) approaches
near optimal solutions in a relatively short amount of time compared to non-deterministic random move based
methods [24]. Unlike approaches like simulated annealing or genetic algorithms that rely on a good random choice,

122

after

D D
D

>"

before

Logic Block

Bucket

Logic Block

Bucket

D D D
D D D

Figure 7.5: Example L' made up of four 3x3 buckets converted to two 3x6 buckets

123

Table 7.1: Macro statistics for example floorplan

Macro Statistics
mi Wi hi /i

m\ 3 3 0
m2 3 3 0
m3 2 3 1
wi4 2 3 1
m5 2 3 1

placement strategy minimizes the circuit's total wire length thereby enhancing the routability of
the circuit. The second step attempts to average the circuit's edge lengths by weighting graph
edges and minimizing the maximum weighted edge lengths.

For our TS approach, we convert each multi-terminal net to a set of edges where each edge
consists of the driving terminal and one driven terminal. We use this model to keep net sources
and sinks in close proximity thereby enhancing circuit performance. We create the set of edges by
converting the hyper-graph input circuit model described earlier to a graph G = (V,E) where
V - {vuv2, -vn}, I V |= n, E = {ei, e2, ...em}, and \ E \= m. Each vertex Vi G V corresponds to
a cluster bi G B (if pad 10 locations are available, we also include preplaced pseudo-elements of V
representing the pad locations to help guide the placement). Each edge e, G E connects a pair of
vertices (vj,vk) \ Vj,vk G V. The elements of E are created by considering each signal, s; G S. If
we let msource (where mSOUTce G MSi and msource G bj) be the source macro for signal s* then an
edge (vj,Vk) is added to E for each sink on st such that msink G Ms., msink G bk, and j jt k. (In
other words, an edge is added for each source/sink combination that are not in the same cluster.)
At any given time, each element of V is mapped to a unique element of L', and the minimum
requirement for mapping is | V \<\ L' |.

The two-dimensional placement stage basically assigns each cluster to a unique bucket. After
placement of each bi G B, each bi G B will have associated with it a unique bucket l'j G L'. The
physical location (on L) of each bi G B in bucket l'j can be found from the following equations:

X(bi) = X(l'A x WB (7.5)

and

Y(bi) = Yil'j) x HB. (7.6)

where X^) returns the X-axis coordinate of l'j on V and Y(l'j) returns the Y-axis coordinate of
l'j on L'. After each cluster bi G B is assigned a unique location on i, intracluster placement takes
place to assign each mj G bi G B a physical location on L. Intracluster placement also reshapes
soft elements mk G MS G B that require further modification.

TS exploits both good and bad strategic choices to guide the search process. As a meta-heuristic, TS guides local
heuristic search procedures beyond local optima. In TS, a list of possible moves is created. In the short term, as
moves in the list are executed, tabu, or restrictions, are placed on the executed moves in order to avoid local optima.
This tabu is typically in the form of a time limit, and unless certain conditions are met (e.g. aspiration criteria), the
move will not be performed again until the time limit has expired.

124

7.3.6 Intracluster Placement

Once each cluster is assigned a location on L, the macros making up each cluster must be placed.
Each macro rrij G M has associated with it a reference coordinate used to describe its physical
location on the FPGA. Each logic block within each rrij also has a reference coordinate that
describes its physical location relative to the reference coordinate for rrij. Intracluster placement
is the task of assigning a reference coordinate from the set L to each macro rrij G bi, V6j G B, and,
for any soft macro in M whose shape has changed, the task of assigning a set of reference
coordinates for the logic blocks within the soft macro11.

Intracluster or intrabucket placement for each bi e B takes place in three steps. First, we place all
hard macros by assigning each one an X,Y reference coordinate corresponding to some lj G L.
Second, we place all soft macros by assigning each one an X,Y reference coordinate from L.
Third, we change the shape of any soft macro that requires modification by assigning it a set of
logic block coordinates relative to the reference coordinate of the soft macro. Figure 7.6 shows an
example set of macros to be placed in the 9 x 12 Bucket 6 located at coordinates X — 12 and Y
= 18. In Figure 7.6 each hard macro is labeled with / = 0 and each soft macro is labeled with
/ = 1. In this subsection we will describe each of the steps for intracluster placement.

Our feasibility check during clustering guarantees the hard macros in each bi will fit by ordering
them in the horizontal direction. Therefore for each bi G B, we place hard macros in a row, each
with the same Y-axis coordinate. The Y-axis coordinate of each hard rrij G bi is found from the
following equation:

Y(rrij)=Y(bi) (7.7)

where Y(bi) returns the Y-axis coordinate (from the set L) of the bucket where cluster bi was
placed. To compute the X-axis coordinate of each hard rrij G bi a sort key is computed for each
hard rrij G h by averaging the X-axis coordinates of all bk G B connected to rrij (this includes 10
position information). Then the hard macros in bi are reverse ordered according to the sort key
and stored in an ordered list {qi,q2, -,Qn} = Q- After ordering each hard macro in bi, the X-axis
coordinate of each hard macro in 6, is determined by the following. If we let qk denote the fcth
element in the reverse ordered list of hard macros in bi, then

X(qk) = X(qk^) - W(qk) Vbl (7.8)

where W{qk) is the width of macro qk, X(qk^) is the X-axis coordinate of macro qk_u and Xfa)
= X(bi) + Bw - W{q1). For our example macros in Figure 7.6, since the Y-axis coordinate of
the bucket is 18, the Y-axis coordinate for each hard macro(mi6, mw, ro27, and mn) is 18. If we
assume the key for m16 is 3, mw is 14, m27 is 13, and m4i is 43 then the X-axis coordinate for
each hard macro is X(m16) = 16, X(m19) = 20, X(m27) = 18, and X(mix) = 22. Figure 7.7
shows the hard macros from Figure 7.6 placed in example Bucket 6.

We now describe the method for determining the X,Y reference coordinates for each soft macro.
Similar to the method of ordering the list of hard macros for bi, a sorting key is determined for
each soft rrij G h by averaging the X-axis coordinates of all clusters connected to soft macro rrij
(this includes 10 position information). Then the soft macros in bi are ordered according to the
sort key and stored in an ordered list {n, r2, ... , rn} = R. After ordering each soft macro in b{

the X,Y reference coordinate of each soft macro in bt is determined. If we let rk denote the fcth
element in the ordered list of soft macros in bt then the X-axis reference location of rk is found

Note: here only a set of reference coordinates is assigned for the set of logic blocks in the soft macro. The specific
coordinates for each logic block in an altered soft macro are found during intramacro placement.

125

Procedure Find_Soft_X(6i,rA:):
begin

if X{bi) + X(rk-\) is even then
if lastY(rk^) # Y(bi) + HB - 1 then

X(rk) = X(rfe_!);
else

X{rk) = X{rk.x) + 1;
end else if;

else
if lastY(rk-i) ^ 0 then

X(rk) = X(rk^);
else

X{rk) = X{rk-X) + 1;
end else if;

end else if
end;

from the procedure Find-Soft JC. In Find_SoftJC, lastY(rk) returns the Y-axis coordinate of the
last element in macro rk and X(r0) - X(bi). If it is required that the soft macro rfc's shape be
adjusted, then its Y-axis reference location is Y(bi), but if the soft macro's shape does not require
adjustment, then rks Y-axis reference location is set relative to the Y-axis location of the last
logic block in rfc_! (lastY(rk„i)). If we assume rx = m2i, r2 - m7, r3 = m6, and r4 = mn for
the soft macros in the example shown in Figure 7.6, then using the above methodology Figure 7.8
shows the final placement and shape for the macros assigned to example Bucket 6.

7.3.7 Intramacro Placement

After assigning the reference coordinates for hard and soft macros in each cluster, the logic blocks
that make up any reshaped soft macro are placed using intramacro-place. Currently we use two
methods for intramacro_place, and both are described below. Instead of actually performing full
placement on the logic blocks within the soft macro, we incrementally reconfigure the placement
of the logic blocks using a transform that matches the X and Y coordinates of the soft macro to
the X and Y coordinates of the available space on L.

The first method for incrementally reconfiguring the placement is of 0(n) complexity, where n is
the number of logic blocks within the reshaped soft macro. Starting from the leftmost-lowest
coordinate of the soft macro, the logic blocks within the soft macro are matched to the
leftmost-lowest coordinate available in the area of the bucket set aside for the soft macro. This
methodology, though fast, in execution, can substantially increase the length of nets connecting
logic blocks; however, since the delay of the logic block is currently much greater than the
interconnect delay, no substantial degradation to performance was noted.

The second method (designed to counter any performance degradation due to increased
interconnect length) uses a minimax matching strategy to match locations of the logic blocks
within the soft macro to coordinates available in the area of the bucket set aside for the soft
macro. We use general minimax grid matching to accomplish this match.

7.3.8 Pack

In the event that no circuit netlist is available or the circuit will not fit using the above
floorplanning strategy, two-dimensional packing is performed. Several methods of packing were
investigated [40, 6, 8, 5, 46, 4]. A method similar to [4] was developed because the method in [4]

126

m 0 0 0 m m 0 m 0 0 o 0
0 m 0 0 0 0 0 m 0 O 0 0
0 □ :0 0 H 0 0 m 0 -m 0 0
0 s 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 m 0 0 ■ 0 0 0
0 m m 0 0 0 0 0 0 m 0 0
H □ 0 0 0 0 m H 0 0 o a
0 s 0 B 0 0 m 0 0 0 0 0

0 m 0 0 0 0 0 0 0 0 0
(12,18) z Bucket 6

Figure 7.6: Example set of hard and soft macros to be placed in Bucket 6 located at
coordinate (12,18)

127

DDDD D D D D
m19

D D
D D D D
DDDD m16

D D
m41

DDDD m27

DDDD
DDDD
DDDD
DDDD
DDDD

Figure 7.7: Example hard macro placement for macros shown in previous figure

m.

m.

m

m,

I Li

DDDD
D D m 19

D D

m
41

Figure 7.8: Example placement of hard and soft macros

128

Procedure pack(M,L)
begin

let success = TRUE;
let MS — set of soft macros in M;
let MH = M - MS;
let Ws = soft_pack(M5,L);
let WH = hard.pack(MF,L);
if Ws + WH > WL then

success = FALSE;
end if;
return success;

end;

Procedure pack_soft(MS,L)
begin

let Ws = infinity;
intracluster_place(M,S',.Hi,,Ws);
V rrij e MS intramacro_place(m:7-,MS,Hi,Ws);
let Ws be the minimum width required for mapping MS;
return Ws;

end;

has a runtime complexity of 0(n ■ log{n)) where n is the number of modules and it bounds the
width of final placement by § x the optimal value. Our method consists of a simple modification
to the method presented in [4], and it is summarized below in procedure pack(M,L). First, we
divide the set M into two sets MH and MS. Then, the elements of the set MS are floorplanned
using procedure pack_soft(M5,i). The procedure packjsoft(M5,L) returns the width, Ws (in
logic blocks), required to place (in a snake like pattern) the soft macros on the left hand side of L.
It sets the coordinates and mapping for each logic block in each m* 6 MS. After
pack_soft(MS,L), pack_hard(MIf,L) is executed. It returns the width required for floorplanning
the hard macros (WH) and the x-axis and y-axis location for each hard macro. If the circuit fits,
pack(M,i) returns success; otherwise, it returns unsuccessful.

The procedure pack_hard(MiJ,L) is used to perform two-dimensional packing on the set of hard
macros MH. The method first divides the set MH into five regions: Ri \ i 6 {1,2,...5}. Each
element rrij e MH is assigned to one of regions Rj-i to Ri=4 if its height falls into one of the
following ranges:

1 „ 1
T-timax j . Umax /■ . ■.s-^-^max j .^max j ('-9) (% + 1) I J v '

where 1 < i < 4 and Hmax is the height of the widest element of MH. Otherwise it is assigned to
region R5. The procedure pack_hard(MH,L) describes the procedure used to pack the set of hard
macros.

In procedure pack_hard(Mi?,L), algorithm Left-Topmost, LT(i?,), packs pieces in the range
(l/(i + 1) Hmax, 1/i Hmax). First, LT orders the elements in Ri by height, the highest elements
are at the beginning of Ri. Then, LT packs pieces in order of non-increasing height by placing
each piece as far left as possible in the region, and as high as possible at this leftmost position. In
this way, the total height used decreases from left to right. This leaves a space increasing in
height from left to right at the bottom of the region. The algorithm ROW uses this empty area of

129

Procedure pack_hard(AfS,,I<)
begin

let WH = infinity;
let W = l;
for i = 1 to 4;

LT(ifc);
ROW(i^+1);
NFDW(i^+1);
let Wi = width of Rf,
let W = W + Wt;

end for;
NFDWOR5);
let W# be the width required for mapping MH;
return WH;

end;

each region to pack in a row, pieces decreasing in height from right to left. When all pieces higher
than Hmax/5 have been packed, pieces of height at most Hmax/5 are packed between LT packed
pieces and the ROW packed pieces using the next-fit-decreasing-width (NFDW) algorithm. Also
any pieces remaining in R5 are packed using NFDW. Procedure NFDW packs pieces in irregular
shaped regions. It packs pieces between widths labeled LEFTMOST and RIGHTMOST.
According to [4], this method guarantees the packing to be within 5/4 x the optimum width.
Additionally, the complexity of the algorithm is 0(n ■ log(n)), where n is the number of macros in
M [4].

7.4 Test Methodology

We empirically tested the floorplanning methodology described above using several macro based
circuits (the circuits included both hard and soft macros). The top level macro based circuits
were described using the Xilinx Netlist Format (XNF). The macros were also described using
XNF files; however, they also included logic block placement information in the form of RLOCs so
that all hard and soft macros were preplaced. The designs were mapped to the Xilinx XC4000E
or XC4000XL family of FPGAs. Statistics for the macro based circuits are shown in Table 7.2.

For each circuit we obtained data for comparison in three ways. The first way we obtained data
was to place and route flattened designs. We flattened each circuit netlist and removed all RLOC
information. Then we used the Xilinx tools in the standard mapping approach (placement of logic
blocks then routing of logic blocks) to map the circuit netlist. In the following tables, the results
of this method are shown in columns labeled Xilinx Flat. The second way we obtained data for
comparison was to floorplan and route the macro based circuits using the Xilinx tools. In the
following tables, the results of this method are shown in columns labeled Xilinx Macro. The
third way we obtained data was to floorplan the circuit with our TS_FP tool and route the
circuits using the Xilinx tools. In the following tables, the results of this method are shown in
columns labeled TSJFP Macro.

We used statistics available for the Xilinx tools to compare the three mapping methods.
Specifically, we used static timing analysis available from Xilinx tools to compare the quality of
the mapped circuits and report data from Xilinx tools to determine placement and routing times
for Xilinx tools. Table 7.3 shows the tool used to place (flat designs only) or floorplan (macro
based designs) each of the circuits as well as the Xilinx tool suite used for routing and static
timing analysis. We used the unix time function to determine system floorplanning times for

130

Table 7.2: Circuit statistics

Macro Based Circuit Statistics
Circuit
Name Part \M\

Total
Area \B\ \s\

Num
IOs

BOOTH 4013 64 264 72 473 33
CLA 4025 128 736 100 1024 133
CPU 4020 183 654 16 1051 38
MEDIAN 4013 39 295 15 392 80
MATMULT 4085 45 1998 35 891 306
BTCOMP 4036 97 403 81 768 264
XP-RI8 4025 31 723 12 417 170
XP-PJ16 4085 18 2709 3 736 320
DOT 4085 122 3095 77 1089 113

Table 7.3: Tools used for placing (flat netlist) or floorplanning (macro based netlist) test
circuits. All circuit were routed using the corresponding Xilinx Router. All timing
static timing analysis was performed on routed circuits

Placement or Floorplanning Tools
Circuit
Name

Xilinx
Flat

Xilinx
Macro

TS_FP
Macro

BOOTH PPR PPR TSJFP
CLA PPR PPR TS_FP
CPU PPR PPR TS_FP
MEDIAN PPR PPR TS-FP
MATMULT Ml Ml TS-FP
BTCOMP Ml Ml TSJFP
XP-RI8 PPR PPR TS-FP
XP-PJ16 Ml Ml TS-FP
DCT Ml Ml TS-FP

TS-FP.

For the packing algorithm, we used the same macro based, benchmark circuits; however, we
removed the interconnects and set | S | to 0. Then, we floorplanned the circuits using only the
two-dimensional packing procedure. After floorplanning, we added the interconnects to the
floorplanned circuits and checked to see if the floorplanned circuits were routable.

An additional test was run using the floorplanning algorithm with a modified net length
estimator. The modified net length estimator was based on work done at the University of
California, Irvine by Min Xu [85]. The net length estimator takes advantage of the three line
lengths available for routing in the Xilinx 4000 series of FPGAs (single, double, and long). It
places a higher cost on routes that use more Programmable Interconnection Points (pips) (more
pips are required to route nets that use multiple short segments instead of one longer segment).
Used as a cost function to guide the floorplanner, this method adjusts the estimated cost of a net
by looking at the Manhattan length of the horizontal and vertical components of the net, and
assigning a cost that assumes the net will use the "best" length wiring resources when it is
routed. Basically, each of the test circuits was floorplanned using this modified cost function.

131

M » " * ,. ,. « „, ' ,„

*. .
* '■ v " " " " • <•' "1

r 1 1
" "*' - m ■ " » » " l

lit 1 m j

M •»■;: - '.. » • ; • ,» "
ii 1 n 1 _

M ■ "', «
iM

K - ,» a

lift TU 1
V .' . * . » " « »" "• " »

, 1 1 t. j
«

w. ■ » " » „' - "
.,, f 1 1

" : 4-J

;<r
" "■ * . "

ft ■■■I mi | |
«■■ w • "' •■ " - "

« 1 m 1
* . b>

- ■■,
- -. w .,. » "

•■ «

u M

•

M

» " „
1»

-

)T

., -
I* in "

113 ir*

111

)«
m

"

I«

r
i» .

» 132 111 in "'
m

in.

w 1W

" .» i*

1

"
" "

«
« »

•

■«

• - m

S*l a „

.. "
""

>»
11 ,.

" "

!»

M

- " " M Ift. IW wi

M ""-
„ „

"
ii

-

n ,.

12.

J M

" " ,« H
JL ,

Figure 7.9: Floorplan for CLA circuit Figure 7.10: Floorplan for CPU circuit

7.5 Results and Analysis

Table 7.4 shows the execution times required to floorplan (or place in the case of the flattened
netlists) the circuits. Column TS JFP Macro shows the execution times required by our
methodology. Columns Xilinx Flat12 and Xilinx Macro13 show the execution times required
by the Xilinx tools. Column TS JFP Macro shows a 45X improvement in execution time for our
methodology over that of the commercial Xilinx tools. Table 7.4 also demonstrates execution
speedup for working with macro based circuits versus flattened netlists. (It should be noted that
the DCT design was not floorplanned using the Xilinx tools. On our Sun Ultra 2, we
experienced memory faults during the circuit mapping process using the Ml tool. For the same
reason, we could not route or perform static timing analysis on the DCT design after
floorplanning with our methodology; however, floorplanning execution time using our tool is
shown.) All circuits (that did not cause memory faults) were 100% routable.

Table 7.5 shows the results of static timing analysis performed on the floorplanned circuits (Note:
this data is taken from completely routed circuits). The values shown indicate the worst case pad
to pad delay (in the case of combinational circuits) or the minimum allowable clock period (in the
case of sequential circuits). From Table 7.5 we see the circuits floorplanned with our floorplanning
methodology are similar in quality to those floorplanned by the commercial tools. Table 7.5 also
shows there is not a substantial difference between delays encountered for our circuits with flat
versus macro based netlists. This is probably due to the fact that logic block delay (for short
distances or routes with few pips) is substantially greater than interconnect delay.

Table 7.6 gives the time taken for the Xilinx tools to route the circuits. This Table shows the
time taken to route our floorplanned designs is similar to that of the Xilinx placed and routed
designs. It should be noted that this time could be significantly reduced by using not just
preplaced macros, but preplaced and prerouted macros. Figures 7.9, 7.10, 7.11, and 7.12 show
example floorplans (from TSJFP) for the CLA, CPU, MATMULT, and DCT circuits respectively.

For the packing algorithm, we used the same macro based benchmark circuits. Not all packed
circuits were routable, and of those that were routable, static timing analysis showed very poor

12Flattened netlist placed and routed by the Xilinx tools.
13Macro based netlist placed and routed by the Xilinx tools.

132

Table 7.4: Floorplanning or placement execution times
Execution times (cpu sees)

Circuit
Name

Xilinx
Flat

Xilinx
Macro

TS_FP
Macro

BOOTH 131 36 3.1
CLA 87 61 5.5
CPU 210 101 6.9
MEDIAN 70 34 1.3
MATMULT 876 634 3.2
BTCOMP 107 87 1.2
XP-RI8 315 83 1.2
XP-RI16 698 92 2.6
DCT - - 3.2

Table 7.5: Floorplanned/placed circuit (post route) static timing analysis results
Static Timing Analysis (ns)

Circuit
Name

Xilinx
Flat

Xilinx
Macro

TS_FP
Macro

BOOTH 49.5 46.8 50.0
CLA 97.2 105.1 124.4
CPU 95.6 106.9 103.3
MEDIAN 267.0 287.2 265.6
MATMULT 285.33 160.72 117.62
BTCOMP 124.09 150.74 127.58
XP-PJ8 90.5 101.4 103.9
XP-RI16 296.86 283.70 289.21
DCT - - -

Table 7.6: Floorplanned/placed circuit routing times
Routing Times (cpu sees)

Circuit
Name

Xilinx
Flat

Xilinx
Macro

TS_FP
Macro

BOOTH 38 31 53
CLA 307 386 374
CPU 410 376 332
MEDIAN 30 116 44
MATMULT 358 271 295
BTCOMP 25 32 33
XP-PJ8 552 776 1106
XP-RI16 192 507 596
DCT - - -

133

'
;

- • • •

■L"i

•L7f| "■f 1 I |f ■l 1
•"11

im
|

x:: -r r

n n ■ I
Figure 7.11: Floorplan for MATMULT
circuit

Figure 7.12: Floorplan for DCT circuit

performance. We did show the circuits could be floorplanned in the given area. An example
circuit floorplanned using the pack algorithm is shown in Figure 7.13.

In this paragraph, we describe the results of using our TS based floorplanner with a cost function
modified to reflect the work of Xu [85]. Overall, circuits floorplanned with this modified cost
function were unroutable. Basically, the cost function placed a lower weight on long nets. This
caused an unusually large number of nets to require "long" wiring resources for routing. Since
these "long" wiring resources were quickly exhausted, the router had to revert to the "single" and
"double" length wiring resources to route the nets. Due to the excessive total wire length in the
mapped circuit, these resources were also quickly exhausted and the circuits were unroutable.
One possible way to improve the use of this modified cost function is to limit the number of nets
that can utilize the "long" lines and the "double" length lines available on the Xilinx architecture.

7.6 Conclusions

We have presented a performance driven fast floorplanning methodology for floorplanning macro
based circuits. The methodology includes a clustering algorithm, placement algorithms, and a
transform algorithm to quickly floorplan large macro based circuits. In the event that
interconnect information is not available at the time of floorplanning our method uses
two-dimensional packing to provide a preliminary floorplan. While flattening the netlist should
provide better (relative to performance) results during the placement phase of the circuit, ever
increasing circuit densities require an alternative method to handle large circuits in a timely
(relative to execution time) fashion. Our approach shows dramatic improvement in the execution
time without significant impact on quality of the mapped design.

134

123456789 10 11 1213 14 1516 17 1819 20 21 2223 24 2626

,1
51

4P as-l J 5'. J« 1 ,-1 103

« V :i 38 63 75 9*

im 14 1U_ »3

Ho

116

lü

14i 7 36 54 62 7J

■>1 IM ■.-*

13 Mi 61 HO

5 W 45 ;i

« 97- jÄ 138

; 12

üi_

n'i

i'j 109

25 « «0

69 96

3 11 Ä>': 60 108 w s 131

£q? - 25 42

67 79 95

2 IU 2Z. 100

:« 41 59

111

Ü 131

~i 17 m &:'-:■£•

9' « 7«. : "

s;i 16 a <i> 6» 65' S4 • 12*

3 77 194

15 22 3? 57 64 13 107 fkf 127

76

Figure 7.13: Example circuit floorplanned using the pack(M,L) algorithm

135

Chapter 8

Portable RC Development for
Demonstration

A Portable Reconfigurable Computer Chasis called PARC has been developed for demonstration
of field applications. Following are the key required components of PARC.

1. Motherboard
A PCI based motherboard for any processor which must be able to handle 1 full size PCI card,
have builtin IDE support, be able to operate without a keyboard and be able to support
ATAPI/IDE removable disk drives - the ZIP disk. Any chipset will work (VIA, SiS, Intel).

2. Video Card
Any video card will work. Recommend finding motherboard with built-in video cards. Common
motherboards with built-in video use VIA or SiS chipsets which are acceptable.

3. Memory
Any memory of any size will work. A minimum of 32MB is recommended.

4. ZIP Disk
Must use an internal ZIP disk. Must be an ATAPI/IDE zip disk. There are different versions of
ATAPI/IDE zip disk, recommended is the ATAPI version (for removable media recognition
inter face). There is an IDE only version, but that will not boot properly.

5. Battery
Need a 12 volt battery. Must have smallest dimensions to fit case. Must have highest mAh rating
for size.Currently PARC has 3600 mAh battery (you will have to measure to get size). Estimated
current draw without Wildforce board is 1200 mA per hour - 3 hour battery life. Estimated
current with Wildforce is 1800-2000 mA per hour - 2 hour battery life.

6. Case
Need the cheapest case - those tend to be made with aluminum chassis. Smaller the case, the less
room for battery. Aluminum chassis are lightest cases. Make sure chassis has room for battery.

7. Powerverter
Need a powerverter to create 120 volts from 12 volts. Recommend Tripplite PV300 which is an
ultra compact powerverter that handles 300 watts and has best current handling capabilities.
Figure 8.1 shows the Power circuit for PARC.

8. PPGA Co-Processor

136

Any user-provided PCI - compatible FPGA card can be accomadated. For demonstrations, an
AMS Wildforce board has been used.

1. DPST Switch

1. That DPDT switch is the Bottom View. Must be able to handle 120 Volts and at 1 Amp.

2. This switch can be SPST or DPDT but must handle 3 Amps atleast

3. The Recharger Plug must have Disconnect feature.(see * in the figure)

Figure 8.1: PARC Power Circuit

137

Chapter 9

Prototype Software Development,
Testing and Demonstration

9.1 Introduction

With the advancement of the field-programmable device technology, the Reconfigurable Computer
(RC) that consists of a multi-FPGA board with memory banks and interconnection fabric, is
being widely used for realizing fast implementation of wide classes of algorithms. Over the last
couple of years there have been some research efforts [139, 140] towards design automation
techniques for dynamic reconfiguration of the RC during the execution of a single application,
leading to better performance and cost advantages. In order to achieve this, it is necessary to
develop efficient partitioning and synthesis techniques that are independent of the RC
architecture. In particular, the tasks of Temporal Partitioning, Spatial Partitioning, and
High-Level Synthesis are central to the design process for dynamically reconfigurable architectures.

In the last decade, logic and layout synthesis techniques for FPGA s have matured greatly and
commercial tools were developed to automate these tasks. However, high-level synthesis and
multi-FPGA partitioning, both spatial and temporal, are still in their nascent stages and need to
be further developed before commercial tools can appear.

The SPARCS system [140] (Synthesis and Partitioning for Adaptive Reconfigurable Computing
Systems) is a prototype design environment that incorporates efficient techniques for temporal
and spatial partitioning and high-level synthesis. It provides a tightly integrated collection of
partitioning and synthesis tools that help in automation of the design process for dynamically
reconfigurable architectures. A brief summary of each major task in the SPARCS design flow is
presented. For a more detailed discussion of SPARCS environment and its tasks, we refer the
reader to [140].

In this chapter, we illustrate the steps involved in a typical partitioning and synthesis design flow
for dynamically reconfigurable architectures, such as the SPARCS design flow. Using a real world
design example, the Discrete Cosine Transform (DCT) subtask of the JPEG still image
compression algorithm, this chapter aims to show that:

• A well-defined design flow, consisting of a tightly integrated collection of partitioning and
synthesis tools, can provide a realistic design environment for dynamically reconfigurable
architectures.

138

Image
Data

Pre-
Process

1
4x4

Block

t

DCT

|
Quantization

Quantization Table

1
Zig-Zag

Transfomi

1
Run-Length

Encoding

I
Quantization Huffman

Encoding Table

1

JPEG
Compression
Flow

Compressed
Data

Figure 9.1: JPEG Image Compression Standard

• Dynamic reconfiguration does provide a performance/cost advantage over static
configuration, for typical applications such as the JPEG that demand high-performance and
inexpensive implementations.

The rest of this chapter is organized as follows: Section 9.2 explains the design example used for
this chapter and the corresponding experimental setup. Section 9.3 provides an overview of the
SPARCS design flow and related algorithms. It also briefly discusses the partitioning and
synthesis of the design example. In Section 9.4, we present a detailed discussion of the results
comparing the two versions of the JPEG algorithm that have the DCT subtask statically and
dynamically reconfigured. Finally we make some concluding remarks in Section 9.5.

9.2 Design Example

The Joint Photographic Experts Group established the JPEG still image compression standard
[141, 142]. The tasks of the JPEG compression standard are shown in Figure 9.1. The
pre-processing stage partitions an image into 8x8 blocks of pixels, each of which pass through the
following four major subtasks: The Discrete Cosine Transform (DCT), Quantization, Zig-Zag
transformation, and Huffman encoding. We designed a JPEG-like still image compression
algorithm [143] that works on 4x4 image blocks instead of the standard 8x8. Our implementation
of the JPEG image compression algorithm, after extensive testing over several image files,
achieved an average compression factor of 30.

We modeled our JPEG-like image compression algorithm as a Hardware-Software Codesign [143].
Software profiling of the JPEG compression algorithm revealed that DCT was the most
computationally intensive subtask, consuming over 77% of the execution time. Therefore, we
decided to implement DCT in hardware and the rest of the JPEG subtasks in software. The
hardware that was used, is a Wildforce reconfigurable board consisting of two Xilinx XC4005
FPGAs having 196 CLBs each, and two 8K memory banks with a 16-bit word. The host
computer that was used, is a Pentium PC with a 100MHz processor. The board can be plugged

139

into the backplane of the host computer through a PC Bus.

The FPGA-board follows a simple handshaking protocol with the host PC. The software that
runs on the host initiates the communication by writing data on the board memory and then
issues a signal for the board to start execution. When the board executes the design, the FPGAs
can read/write data from/to their local memories. After the board finishes execution, the
software running on the host PC reads back the resulting data values.

In order to study the partitioning and synthesis design flow through SPARCS, we considered the
DCT subtask as our design example. The DCT for a 4x4 image block can be defined by
Equation 9.1, given below. This equation has been derived from the definitions given in [141].

-, 3 3

F{u,v) = 7C(u)C(«)[££ /(*,y) * coeff(x,y,u,v)} (9.1)
x=0y=0

where coeff(x,y,u,v) = cos ^x+pU7r cos ^M±pIE

The DCT is the first subtask of the JPEG compression algorithm. It processes one image block
(4x4 pixels) at a time and produces a set of discrete cosine transform coefficients, one
corresponding to every pixel entry in the 4x4 image block. Taking a closer look at Equation 9.1,
we can simplify the discrete cosine transform by pre-computing the cosine coefficients and storing
them in a 4x4 DCT coefficient matrix. Now the DCT can be viewed as two consecutive 4x4
matrix multiplications, as defined by Equation 9.2.

DCT = ±C * (C * if (9.2)

Here, I is an input image block (4x4 pixel matrix) and C is the 4x4 matrix of DCT coefficients. A
portion of the 4x4 DCT dataflow graph that performs two-vector (row * column) multiplications
is shown in Figure 9.3. The following section presents a typical design flow through the SPARCS
system using the DCT example as a case study.

9.3 The Design Flow

We present a typical design flow for dynamically reconfigurable architectures using the SPARCS
system [140] and the DCT example as a case study. Section 9.3.1 briefly discusses the SPARCS
system. Section 9.3.2 discusses the DCT Task Graph. Section 9.3.3 presents a typical ILP
formulation for temporal partitioning. Section 9.3.4 presents a typical genetic algorithm based
solution to the spatial partitioning problem. Finally, section 9.3.5 discusses issues related to
high-level synthesis.

9.3.1 SPARCS System

In this section, we only present an overview of the SPARCS system. For more details, we refer
readers to [140]. Figure 9.2 shows the design flow through SPARCS. The SPARCS system accepts
a design specification at the behavior level, in the form of task graphs, specified in VHDL. The
tasks may communicate to each other either directly (following a protocol) or through shared
memories. In order to re-target the design to different FPGA boards, the SPARCS system takes,

140

Behavioral Specification

and Constraints

Temporal
Partitioning

Spatial
Partitioning

High-Level
Synthesis

RTL Design + FJoorpI;

Estimates Based
on Light-Weight

High-Level Synthesis

Estimates Based
on Light-Weight

^ Layout Synthesis J

Figure 9.2: The SPARCS Design Flow

as an input, the target architecture specification to which the design has to be mapped. In
addition, the system takes user constraints and requires a macro component library.

The SPARCS system contains a temporal partitioning tool to temporally divide and schedule the
tasks on the reconfigurable architecture, a spatial partitioning tool to map the tasks to individual
FPGAs, and a high-level synthesis tool to synthesize efficient register-transfer level designs for
each set of tasks destined to be down-loaded on each FPGA. Following partitioning and synthesis,
commercial logic and layout synthesis tools are used to generate bit-map files for each
configuration of each FPGA. The SPARCS system also generates a reconfiguration program
which can be used to control the RC's reconfiguration and execution from a host computer.

9.3.2 DCT Task Graph

As our first step, the behavioral specification of the 4x4 DCT was modeled in the form of 32
matrix equations (16 for each matrix multiplication) and simulated in VHDL. We then
partitioned the entire DCT dataflow graph into a collection of tasks. The task partitions for a
single DCT block is shown in Figure 9.3. There are 16 such blocks in the entire 4x4 DCT
dataflow graph. The two inputs to each multiplication operation are: a constant DCT coefficient
and either an input pixel (for tasks Tl and T2), or an intermediate output of an 18-bit addition
(for tasks T3, T4, T6, and T7). Notice that while deciding on task boundaries, we ensured that
each task does not exceed an area of 196 CLBs for the XC4005. This is because the SPARCS
system requires that each task should individually fit on the FPGA. For example, task Tl
consists of two 9-bit multiplications, a 17-bit addition and an 18-bit addition, for a total of 134
CLBs. Whereas tasks T4 and T6 contain one 16-bit multiplication which in itself occupies 127
CLBs. Table 9.1 shows the area and delay estimates for all operations in the graph, and Table 9.2
shows the summed up areas for each task. These value were obtained from the pre-characterized
RTL component library that is used by SPARCS system. The task boundaries were also based on
minimizing the amount of communication between the tasks. After drawing the task boundaries,
the DCT task graph consisted of a total of 112 tasks.

141

T3 T4 T6 T7

16-bit \{*J '•,'>(*)/' '<(*)// (*)

Figure 9.3: DCT Graph and Task Partitions

Table 9.1: Estimates for DCT Operations

Operation Area
(CLBs)

Delay
(ns) Type Bits

* 9 42 68
+ 18 25 80
* 16 127 115
+ 24 34 86

Note that the tasks also contain memory read and write operations but these are not shown in
the figure for the sake of clarity. Another goal while deciding the task boundaries was to minimize
the number of memory read/write operations. Since the SPARCS design model allows direct
communication between tasks, certain inter-task communications were not done through memory.
For example, the output of task T2 is directly communicated to task Tl, thereby reducing two
memory cycles. This direct communication channel is viewed as a constraint by the SPARCS
partitioning system. For example, the temporal partitioner is restricted to hold these tasks
together in the same temporal segment.

Table 9.2: Area Estimates for DCT Tasks

Task Tl T2 T3 T4 T5

Area 134 109 160 127 34

142

9.3.3 Temporal Partitioning

As mentioned in Section 9.3.1, the behavior specification is in the form of a task-level dependency
graph. The control dependency represents the execution sequence of the tasks. If the execution of
task B is control-dependent on task A, then A has to be executed in the same or earlier segment
as B. The channel dependencies have edge weights that represent the amount of data to be stored
and retrieved, if the two tasks connected by an edge are placed in different temporal segments.

The temporal partitioner has an abstract view of the underlying board resources and uses
aggregate costs for temporal partitioning. Prom the RC architecture specification, the overall
resource constraint (C) and shared memory size (Ms) are derived. For example, a typical resource
constraint would be the total number of function generators (FGs) derived by adding the FGs of
all the FPGAs on the board.

The temporal partitioner heuristically estimates the upper-bound on the number of temporal
segments (N) for the Non-Linear Programming (NLP) formulation using a fast list-scheduling
heuristic (a variation of [139]). As part of the formulation, we have incorporated a synthesis
model to determine the resource sharing among tasks. This requires an operation level modeling
of each task for the synthesis subproblem. The NLP model is linearized and solved by an ILP
(Integer Linear Program) solver.

Terminology: t{ -> tj - directed edge between tasks, £j, tj G T, representing a control or channel
dependency; ii -4 ij - a directed edge between operations, ii,ij £ I exists; Bandwidth(ti,tj) -
number of data units to be communicated between tasks ij and tj; Op(t) - the set of all the
operations in the operation graph of task t. The operation graph for a task are all the operations
in the task with their data/control flow dependencies; Fu(i) - the set of functional units on which
operation i can execute; CS(i) - the set of control steps over which operation i can be scheduled.
CS(i) ranges from ASAP(i) to ALAP(i) + L, where L is the relaxation over the maximum ALAP
for the schedule. ASAP(i) and ALAP(i) are the As Soon As Possible and As Late As Possible
control steps for operation i, which are derived by scheduling operations on unlimited resources;
CS~1(j) - the set of operations which can be scheduled on control step j; F - the set of functional
units corresponding to the most parallel schedule obtained from the high-level synthesis estimator;
N - the upper bound on the number of temporal segments. The segments are numbered 1 to N,
the index of the segment specifies the order of execution of the segments. Note that the generated
optimal solution may have fewer than N segments; Ms - the shared memory available for storage
between temporal segments; FG(k) - the number of function-generators used for functional unit
k; C - the resource capacity of the board; I - the set of all operations in the specification.

We assume for the current model that the latency of each functional unit is one control step, and
the result of an operation is available at the end of the control step.

Non-Linear 0-1 Model: In this section, we describe the variables, constraints, and cost
function used in the formulation of our non-linear programming model.

1. Variables: We have four sets of decision variables: ytp models the partitioning at the task
level, Xijk models the synthesis subproblem at the operation level, wptlt2 models the
communication cost incurred if two tasks connected to each other are not placed in the
same segment and upk determines whether a functional unit has been used in a segment (F,
obtained initially, is an upper-bound on the number of functional units that can be used in

143

a temporal segment.) All are 0-1 variables.

Vtp

•Eijk

Wptiti = <

1 if task t € T is placed in segment p,
1 <P< N

0 otherwise

1 if operation i e I is placed in
control step j € C5(i) and uses
functional unit k G Fu(i)

0 otherwise

1 if task 11 is placed in any segment
1 • • ■ p — 1 and ^2 is placed in any
of p ■ ■ ■ N and <i -> t2

0 otherwise

Upk — <
1 if functional unit k € F is used in

segment p, 1 < p < N
0 otherwise

yip and Xijk are the fundamental modeling variables. All other variables are secondary and
are non-linearly constrained in terms of the fundamental variables.

2. Constraints Temporal partitioning and synthesis has the following constraints:

Uniqueness Constraint: Each task should be placed in exactly one segment among the N
temporal segments. N

VteT :X>„ = 1 (9.3)
P=I

Temporal order Constraint: A task 11 on which another task t2 is dependent cannot be
placed in a later segment than the segment in which task t2 is placed.

Vi2, Vii -> t2, Vp2, 1 < P2 < N - 1 :

Yl yt1Pi + yt2P2 < l (9.4)
P2<Pl<N

Shared Memory Constraint: The amount of intermediate data stored between segments
should be less than the shared memory Ms. wptit2, if 1, signifies that ix and t2 have a data
dependency and are being placed across temporal segment p. Therefore, the data being
communicated between them, Bandwidth(ti,t2), will have to be stored in the memory of
segment p. The sum of all the data being communicated across a segment should be less
than the available shared memory.

Vp, 2 < p < N :

y~l ^ (wptit2 * Bandwidth(ti,t2)) < Ms (9.5)

Unique Operation Assignment Constraint: Each operation should be scheduled at one
control step and on only one functional unit.

Vi : £ E xijk = l (9.6)
keFu(i) j£CS(i)

144

Temporal Mapping Constraint: This constraint prevents more than one operation from
being scheduled at the same control step on the same functional unit.

V-7 : E E xHk<l (9.7)
keFu{i)ieCS-1{j)

Dependency Constraint: To maintain the dependency relationship between operations, an
operation iu whose output is necessary for operation i2, should not be assigned a later
control step than the control step to which i2 is assigned.

Vt'i -> »2, VJ2 < h, h e CS(h), j2 G CS(i2) :

E Xidlki + E X*2J2*2 < 1 (9-8)
kiCFu(ii) k2€Fu(i2)

Resource Constraint: Resource constraints are in terms of variables upk. Typical FPGA
resources include function generators, combinational logic blocks (CLB) etc. Similar
equations can be added if multiple resource types exist in the FPGAs. a is a user defined
logic-optimization factor in the range [0;1]. Typical values [147] of a using Synopsis FPGA
components are in the range [0.6;0.8].

Vp,l<p<JV :a*Y/(uPk*FG(k)) <C (9.9)
keF

Unique Control Step Constraint: Each control step is mapped uniquely to a temporal

segment. ^ ^ ^ ^ v^ e Op^), Vi2 G Opfo),

V? G CS(h) n CS(i2), Vpi, 1 < pi < N,

VP2 /pi,l <p2 < N :

E xidki * ytlPi + E ^2^2 * yt2P2 < ! (9.10)
fcieFu(ii) *;2ei;'«(i2)

3. Cosf Function: Minimize the cost of data transfer between temporal segments.
Minimize: v^ v^ v^ / x-, , , ,

2^ 2^, 2-, {wpt1t2*Bandwtdth(tut2)) (9.11)
t2er*i-t-t2i<p<iv

We have presented only a part of the NLP model here. For more details about other constraints,
linearization, and solution by ILP techniques refer to [144]. To reduce the amount of time
required for solving the ILP model, the model may be solved to find a constraint satisfying
solution rather than an optimal one. This leads to significant speedup in solving the ILP model.

For the DCT example, the temporal partitioning system will try to minimize the cost of data
transfer. Consider the temporal partitioning of tasks Tl, T2 and T3 shown in Figure 9.3. Under
the given area constraint (196 CLBs per FPGA), all three tasks cannot fit together on a single
temporal segment. Since there is a direct data transfer between task Tl and T2 the partitioner
will place these tasks in the same temporal segment rather than placing tasks Tl & T3 or T2 &
T3 together. For the same reason, the temporal partitioner will place tasks T3 and T4 in one
temporal segment; this will minimize the data transfer between temporal segments. Given the
DCT task graph as an input, the SPARCS temporal partitioner produced fifty temporal
configurations as shown in Figure 9.4.

145

Temporal

1 CD*CD
2 CSD * CD

16 CD* CD
17 CD * CD
18 CD* CD

32 CD* CD
33 CD * CD
34 CD * CD

48 CD* CD
49 © © © @ * © © © ©
50 @©©@*©©©©

9.3.4

Figure 9.4:

Spatial Partitioning

Temporal Partitions for DCT

Problem Formulation:

Let F = {fi, f2, ■ ■ ■ /N} be the N FPGAs available on the target reconfigurable board. Each
FPGA has a set of attributes associated with it. For any / £ T :

• C(f) = number of function generators in /,
• F(f) = number of flip-flops in /,
• P(f) = number of uncommitted I/O pins in /,
• L(f) = size of the local memory of /.

CM represents the direct connection matrix. It defines the number of dedicated lines pre-routed
between each pair of FPGAs. Ic denotes the number of programmable interconnection channels
available on the board.

A spatial partition of a task graph, TG = (V, M, E), where V is the set of task nodes, M is the
set of memory segments, and E is the set of dependency edges and channels, is a binding of each
task in V to a unique FPGA and each logical memory segment to a unique local/shared memory,
such that all architectural constraints are satisfied. These constraints are satisfied based on
performance estimates obtained from a light-weight high-level synthesis estimator. When multiple
valid spatial partitions exist, the one which produces the fastest implementation is chosen.

Spatial Partitioning Algorithm:

We model and solve the spatial partitioning problem through a Genetic Algorithm (GA). The
genetic search procedure was developed by John Holland in 1975 [31], and since then has been
used successfully for solving several combinatorial problems in VLSI design automation
[148, 149, 61]. A genetic algorithm consists of an iterative procedure during which a series of
generations of populations, one per iteration, are created. Each member of a population, also
called chromosome, represents a solution of the problem being solved. The solution representation
is based on a suitable encoding of the solution space.

146

Prom the minimization perspective, genetic algorithms attempt to discover an optimal - least cost
- solution to the problem. The cost of a chromosome is evaluated by the partition performance
and cost estimator which are discussed later. The GA uses an evolution function to generate a
new generation pi+1 from an existing generation p^ The evolution function usually consists of
three components, called operators: Selection, Crossover and Mutation.

Following the generation of the new population, the current population is discarded and the new
population becomes current. This evolution process continues until termination condition has
been reached. The termination condition is either a constraint satisfying solution or an upper
limit of the number of generations that GA explores.

Genetic Modeling for Spatial Partitioning:

Encoding: The solution representation must capture the binding of tasks to the FPGAs and the
binding of logical memory segments to local/shared physical memories. We use a simple integer
array to encode the above information. Each chromosome has two integer arrays - task array TA
and memory array MA. The length of the TA is equal to the number of tasks in the task graph
(t) and the length of the MA is equal to the number of memory segments (m). Consider a board
having N FPGAs with local memories and a shared memory. For 1 < i < t, the variable TA[i],
ranging from 1 through N, represents the FPGA number to which task i is assigned. Similarly,
for 1 < i < m, the variable MA[i], ranging from 0 through JV, represents the memory bindings.
MA[i] = 0 implies that the memory segment i is mapped to the shared memory.

Initial Population: The task arrays for all chromosomes in the initial population are set to
random legal values. Then based on the task assignments, for each chromosome, we assign the
logical memory segments to local physical memories. If the majority of the tasks which access a
memory segment are assigned to FPGA k then we bind the memory segment to the local memory
of FPGA k.

Crossover: We use a uniform crossover operator. A binary string, T, whose length is equal to
the greater of the number of tasks and the number of memory segments, is generated. Each bit in
this template is randomly set to either 0 or 1. Next, two parents are probabilistically selected for
mating. Let pti, pt2 be the task arrays and pmi,pm2 be the memory arrays in the parents. Then
cti, cf2, cmi, and cro2, are the corresponding arrays in the two child chromosomes resulting from a
crossover that is defined as:

l[l ~ { Ph[i\ otherwise (9J2)

. ,., / phli] ifT(i) = 1
Ch[t] = \ptM otherwise (9"13)

l[3l~\pm2[j] otherwise (9"14)

r., f pm-Ai] ifT(?) = l
^b] = {prnM otherwise <9-15)

In the above equations, i and j have legal values based on the number of tasks and memory
segments in the task graph.

147

Mutation: The mutation operator randomly selects an entry from the chromosome arrays and
changes its value to another legal value. Effectively, the mapping of a single task or a memory
segment is modified.

Partition Cost Estimation:

The cost of each chromosome (spatial partition) is dependent on several constraint satisfaction
requirements:

• Area Constraint (^4) and Speed Constraint (S): The spatial partitioner invokes
high-level synthesis estimation routines (light-weight HLS) to gather area estimates and
verify speed constraint satisfaction. The HLS routines report all area and speed constraint
violations.

• Pin Constraints (P): The spatial partitioner ensures that there are enough pins available
on the FPGAs to perform inter-FPGA and FPGA -memory communications.

• Interconnect Constraint (7): The reconfigurable board usually has a limited number of
programmable channels to interconnect the FPGA and memories. There may also be
dedicated lines between FPGAs.

• Memory Constraint (M): Logical memory assignments must not violate the memory
bandwidth requirements on all physical memories at any time during the execution of the
design.

Let AA, AS, AP, AI, and AM be the respective constraint violation values for a given
chromosome c. In the case when any constraint is met, the A value is zero. For example, if all
area constraints are met then AA is zero. The cost of the chromosome c is given by:

. , AA AS AP AI AM , x cost(c) = _ + _ + _ + _ + __ (9.16)

The above form of cost function is widely used in several domains where a set of conflicting
constraints are to be met [61, 150, 80]. In the case when the spatial partitioner cannot achieve a
constraint satisfying solution, it flags a failure and returns tighter constraints for use by the
temporal partitioner. The new aggregate constraints are based on the degree of cost violated by
the best achieved partition.

For the case study example, the spatial partitioner will use area estimates of the DCT tasks listed
in Table 9.2. The spatial partitioner uses the HLS tool as an estimator to get estimates on a
spatial partition (collection of tasks) that it is contemplating for a single FPGA. For all tasks
except T5, the areas are such that no two tasks can fit into the same FPGA. So the job of the
spatial partitioner is simple, as can been seen in the temporal segments 1 through 48, shown in
Figure 9.4. However, since task T5 is small, the spatial partitioner fitted four tasks in each FPGA
as shown in the temporal segment numbers 49 and 50. While doing this, the spatial partitioner
will consider the memory constraints among these tasks. The goal will be to join those tasks that
access data from the same local memory.

9.3.5 High-Level Synthesis

The behavioral description (corresponding to a collection of tasks specified by the spatial
partitioner) along with a pre-characterized macro library and the user constraints are taken

148

Behavioral Specification

Light-Wefght
HLS design
Estimators

Register
Estimation

Interconnect
Estimation

Controller
Estimation

HLS 1
Performance
Estimator

Light-Weight
Layout
Estimators

COMPONENT SET
GENERATION

REGISTER

OPTIMIZATION

INTERCONNECT

OPTIMIZATION

CONTROLLER

GENERATION

Design-Space
Exploration
Phases of HLS

Floorplanncr

Routability

Analyzer

Performance

Estimator

RTL + Floorplan

Figure 9.5: Layout Integrated High-Level Synthesis

through High-Level Synthesis (HLS) to obtain an equivalent Register-Transfer Level (RTL)
implementation that can fit into a single FPGA chip. The RTL design [126, 152] consists of a
Datapath which is a netlist of components picked from the component library, and a Controller
which is a finite state machine that sequences the datapath components to perform the
computations specified in the behavior of the design.

In the Layout-Integrated HLS design process shown in Figure 9.5, a collection of light-weight
layout algorithms are integrated into HLS. The first is a floorplanner that picks the macros (from
the pre-characterized macro library) and tries to place them on the FPGA , simultaneously trying
to reduce the overall area and delay of the design. The second is a routability analyzer that
checks the feasibility of routing after completing the placement. Finally, the performance
estimator predicts the area and delay of the generated floorplan. The RTL design and the
floorplan are then predictably taken through necessary phases of logic and layout synthesis to
obtain the bit-stream for the FPGA configuration. Therefore, the estimates made during HLS are
preserved and the FPGA implementation definitely satisfies the required constraints. There is
another on-going work [151] that follows a similar approach.

At the core of the SPARC S system is a high-level synthesis tool, Asserta, which accepts
behavioral descriptions specified in VHDL (as a collection of processes/tasks) and performance
constraints in terms of the desired clock width and the upper limit on the area. The Asserta tool
has been tailored to suit the layout-integrated synthesis approach for the SPARCS system, as
shown in Figure 9.5. Asserta satisfies the clock width constraint by trying to minimize the
maximum combinational delay of any register transfer. The area constraint is satisfied by trying
to minimize the size of both the datapath and the controller. The HLS process consists of
component set generation, scheduling and performance estimation, register and interconnect
optimization, and controller generation. For a detailed discussion of these phases, we refer the
reader to Roy et al. [32].

149

Table 9.3: Area and Delay Estimates for DCT tasks

DCT Area Clk Period Number of
Task (CLBs) (NanoSecs) C-steps
Tl 186 177 5
T2 159 155 4
T3 168 163 4
T4 180 210 2
T5 45 150 6

For the case study, the tasks in the partitioned DCT, shown in Figure 9.4, were taken through
Asserta to generate the RTL designs. The RTL designs were then taken through logic synthesis
(Synopsys FPGA compiler) and layout synthesis (Xilinx Ml tools) to produce the FPGA
configuration files. For the tasks Tl through T5, Table 9.3 shows the area estimates provided by
the Xilinx PAR (Partitioning And Routing) tool, timing estimates provided by the Xilinx
TRACE (Timing Analyzer) tool, and the number of control steps (C-steps) provided by Asserta.
Notice that the area values are more than the initial task areas shown in Table 9.2. This is
because the initial task area is simply the ALU area and does not include the interconnect and
controller components.

The HLS tool can be used in a lighter form in order to obtain area and performance estimates on
the RTL design. This light-weight version of HLS will be used by the partitioning tools to get
quick design estimates. This would invoke only the initial design space exploration phases of HLS
(refer to Figure 9.5). As a light-weight estimator, the HLS tool simply selects a component bag (a
collection of RTL components) that corresponds to an efficient RTL implementation and also
provides the corresponding estimates. The HLS estimator always over-estimates the design
performance, ensuring that the actual HLS process will generate only a better RTL
implementation. Also since the estimation process does not go through the entire (heavy-weight)
HLS process, it will be considerably faster than the actual HLS.

9.4 Experimental Results

We developed two versions of the JPEG compression algorithm: In the static-JPEG version the
board was configured only once to perform DCT . Whereas in the dynamic-JPEG version, we
have generated multiple configurations for the DCT subtask using the SPARCS design tools.
Each of these configurations were down-loaded once on the board to perform the DCT on an
entire image file.

In order to obtain the one-time configuration of DCT for the static-JPEG version, we first
partitioned DCT using the SPARCS spatial partitioner and used the Asserta synthesis tool [32] to
synthesize the DCT partitions onto the FPGAs. The board having two XC4005 FPGAs, was then
configured once to perform DCT, and the rest of the JPEG subtasks written in software ran on
the host PC .

The static-JPEG codesign was tested on the six image files of varying sizes, listed in Table 9.4.

150

Table 9.4: Execution times for Static-JPEG

Images No. of
pixels

Static JPEG Codesign
JPEG DCT in hardware
exec,
(sec)

exec.
(sec)

%of
JPEG exec.

Scenery 592704 34.88 31.01 88.9
Portrait 576000 34.06 30.14 88.5
Parrots 294912 17.57 15.44 87.8
Turbo 69888 4.19 3.67 87.3
Group 56400 3.36 2.96 88.1
XV 54896 3.31 2.88 87

Table 9.5: Execution times for Dynamic-JPEG

Images
Dynamic Codesign Version of JPEG
JPEG
exec.
(sec)

DCT in hardware
exec,
(sec)

%of
JPEG exec.

Scenery 6.16 2.29 37.2
Portrait 6.15 2.24 36.4
Parrots 3.52 1.39 39.5
Turbo 1.24 0.71 57.3
Group 1.08 0.67 62.0
XV 1.09 0.67 61.5

Table 9.4 shows the execution times for the entire static-JPEG codesign as well as the static DCT
subtask. The images are listed in the decreasing order of their sizes. The execution times were
measured using the commercial Quantify tool from Pure Soft Inc. On an average, DCT consumes
about 88% of the total static-JPEG execution time, the rest of JPEG tasks running on the host
PC consume about 6%, and the remaining time is spent in file I/O.

The DCT task graph shown in Figure 9.3 and the board architecture (two XC4005s and 8K 16-bit
memories) were then fed to the SPARCS design system. The DCT task graph was taken through
the design process as described in Section 9.3. The HLS tool in the SPARCS system produced a
reconfiguration schedule and a collection of RTL designs. The reconfiguration schedule for the
DCT task graph is shown in Figure 9.4. Using commercial synthesis tools, FPGA bit-map files
were generated from the RTL designs. The configuration program was plugged into the JPEG
software that ran on the host PC. The dynamic-JPEG codesign was then tested on the six image
files. During the execution of the dynamic-JPEG codesign, the software running on the host PC
would automatically down-load the DCT configurations one at a time, run the entire image file,
and read the intermediate results back from the board. In this fashion, each of the DCT
configurations was down-loaded only once for an entire image file.

151

Table 9.6: Average Execution Times

Images # of 4x4
blocks

DCT Exec, time per
4x4 blocks in /xsecs Improv.

factor Static Dynamic

Scenery 37044 837.1 61.82 13.54
Portrait 36000 837.3 62.22 13.46
Parrots 18432 837.7 75.41 11.11
Turbo 4368 839.3 162.5 5.16
Group 3525 839.7 190.1 4.42
XV 3431 839.9 195.3 4.30

Table 9.5 shows the execution times for the dynamic-JPEG codesign as well as the dynamically
reconfigured DCT subtask. Notice that, on an average, DCT consumes only about 50% of the
total dynamic-JPEG execution time, as opposed to 88% for the static-JPEG version. This shows
that the dynamically reconfigured DCT version takes much less execution time when compared to
the static DCT version.

We can take a closer look at the average time spent by both DCT versions on each 4x4 block of
an image, as shown in Table 9.6. Notice that the dynamically reconfigured DCT version shows up
to 13 times improvement for the larger images. Also notice that, as the image size (or number of
blocks) decreases, the average execution time for the dynamically reconfigured DCT increases and
the improvement factor decreases. This is because as the image size becomes smaller the
reconfiguration overhead defeats the gain obtained due to dynamic reconfiguration. This is the
same reason why the percentage of the dynamic-JPEG execution time spent on the DCT subtask
(shown in the last column of Table 9.5) increases as the image size decreases. In general, the
minimum number of 4x4 blocks (Z?) that is required for the dynamic-JPEG case to show an
improvement over the static-JPEG case is given in Equation 9.17.

B >
{T - i) * n

v static - v, dynamic
(9.17)

where B is the number of blocks in an image, Vstatic and Vdynamic are the time taken (without the
reconfiguration overhead) by the static and dynamic DCT versions to execute one image
partition, TZ is the reconfiguration time for the FPGA board, and T is the number of temporal
configurations generated for the dynamic JPEG .

We computed the values of T>static and T>dynamic to be 837.8 /usecs and 48.24 /zsecs respectively.
These values were computed by taking a product of the clock period and the number of clock
cycles that the design requires to process one 4x4 block. Fifty temporal configurations (T) were
generated for DCT, and assuming a 10 milliseconds reconfiguration time, we can substitute these
values in Equation 9.17 to get a value of 621 for B. Therefore, there will be an improvement for
any image that has more than 621 4x4 blocks. For images containing less than 621 blocks, the
reconfiguration overhead becomes large enough to inhibit any gain due to dynamic
reconfiguration.

152

9.5 Conclusions

In this chapter, we have presented an unified approach for design partition and synthesis onto
dynamically reconfigurable multi-FPGA architectures. Using a real world design example, the
DCT subtask of the JPEG still image compression standard, we showed that it is possible to
achieve improvement if we perform dynamic reconfiguration instead of static (one-time)
configuration. We also derived a general equation (Equation 9.17) and discussed the trade-off
between the reconfiguration overhead and the gain achieved due to dynamic reconfiguration. We
have presented a typical design flow through the SPARCS partitioning and synthesis
environment, using the DCT as a case study example. The SPARCS design environment was used
to automate the design process for dynamically reconfigurable architectures. The results
presented in this chapter show that dynamic reconfiguration does provide a performance/cost
advantage over static configuration for typical applications such as the JPEG algorithm that
demand high performance.

153

Appendix A

BBIF Specification

The following sections provide details on the BBIF model. A formal and more detailed
description of the BBIF model is available in [49].

A.l BBIF Model and Formal Notations

A BBIF model can be represented as a four-tuple:

BBIF < Blocks, ControlDeps, INports, OUTports >

where Blocks is a set of behavior blocks, ControlDeps is a set of control dependency edges, where
each edge < BuBj > represents the control flow from block Bt to Bj, and INports and OUTpoTts

represent the set of design input and output ports respectively.

In the BBIF model the atomic storage element is a carrier represented as a tuple,

Carrier < Id, Width >

consisting of an index Id and a non-zero positive integer Width. The carrier Id is a unique index
used for carrier set operations such as union and intersection. The design input and output ports
are essentially carriers sets. A behavior block is an 8-tuple

BehaviorBlock < Blkld, Type, 1, O, £, C, T, FG >

consisting of a block index (Blkld), a block type (Type), five carrier sets and a flow graph (FG).
A behavior block can be either of type compute or io. Computations in a task are specified only
within the compute blocks and interaction with the environment through the design ports are
specified only within io blocks. The five carrier sets are:

• The set I(-Bj) represents the set of input carriers of block Bj,. These are input carriers that
are passed from every parent block that branches to block B{.

• The set ö(Bi) represents the set of output carriers of block B{. These are output carriers
that are passed through the branches to every child of block B{.

• The set £(£?,) represents the set of local carriers of block JBj. These carriers are visible only
within block Bi and are used to capture the data flow across computations within the block.

154

• The set C(Bi) represents the set of constants that are visible only within block £?j. A
constant is essentially a carrier with an additional string field that represents the actual
constant value.

• The set F(Bi) represents the set of flag carriers of block 5*. These carriers are visible only
within block B{ and are used to hold the resulting values of conditional expressions in the
behavior. The flags are used for conditional branching at the end of the block.

In addition, a behavior block also consists of a flow graph FG, represented as a tuple,

FG < OprNodes, DataFlowDeps >

consisting of operation nodes (OprNodes) and data dependency edges (DataFlowDeps). An
operation node is a 5-tuple

Operation < Oprld, OprType, Inputs, Outputs, ConDeps >

consisting of a unique operation index (Oprld), the operation type (OprType), the input carrier
set, the output carrier set and an explicit control dependency set (ConDeps). Each operation 0{,
has a set of input carriers Inputs(Oi) that are read and a set of output carriers Outputs(Oi) that
are written. Both these sets may contain zero or more carriers. A data flow dependency is a
directed edge between a parent operation O, and a child operation Oj, represented as a tuple
< Oi, Oj >. This dependency edge exists if and only if the following condition is satisfied:

DataFlowDependency < Oi, Oj > <$=*• (Outputs(Oi) n Inputs(Oj)) =£ 0

The operation nodes in a block follow single assignment semantics by writing exactly once to a
particular carrier. In other words, any output, local, or flag carrier in a block will appear exactly
in only one output carrier set of an operation node. Therefore, there are no anti or output
dependencies and the order of operations in the BBIF specification does not matter in deriving
the flow graph.

The operations in the BBIF are classified as pre-defined and user-defined. There are three
pre-defined operation types in the BBIF. The io block supports the two types namely, getport
and putport to facilitate design port accesses. The third pre-defined operation type is the
transfer that is supported in any behavior block. The transfer operation denotes an assignment
of one carrier to another, and corresponds to an assignment statement in the behavior. The
user-defined operations are uninterpreted. In other words, the synthesis system does not attach
any functional semantics to the user-defined operations and expects the user to specify a
component library that supports these operations.

A.2 Translation and Profiling

Figure A.l shows the VHDL specification of an ALU example. The ALU takes two data inputs
and a mode of operation, and generates a result. Depending on the mode of operation the ALU
generates the sum, difference, product, or the sum of squares of the inputs. Figure A.2 shows the
BBIF that was automatically translated from the VHDL specification of the ALU. The start io
block Blk_2 reads the design ports into the corresponding carriers and passes them to Blk_3. The
TRUE_BRANCH statement represents an unconditional branch to a subsequent block. Blk_3

155

entity ALU is port (Datal, Data2 : in integer;
Mode : in bit_vector(l downto 0);
RESULT : out integer

);
end ALU;

architecture behavior of ALU is
begin

compute: process :

variable A, B, value : integer;
variable M : bit_vector(l downto 0);

begin
Datal;
Data2;
Mode ;

case M is
when "00" => value := A + B;
when "01" => value := A - B;
when "10" => value := A * B;
when others => value := (A * A) + (B * B);

end case;
RESULT <= value;

end process;
end behavior;

Figure A.l: VHDL Specification of an ALU

156

(INPORT (datal 16) (data2 16) (mode 2))
(OUTPORT (result 16))

(BB Blk_2
(LOCAL (a 16) (b 16) (m 2))

1 (GET.PORT (datal) (a)) ()
2 (GET_P0RT (data2) (b)) ()
3 (GET.PORT (mode) (m)) ()
(TRUE.BRANCH Blk_3(a b m))

)
(BB Blk_3 ((a 16) (b 16) (m 2))

(LOCAL (flag_l 1) (flag_2 1) (flag_3 1))
(CONSTANT (cl2 2 00) (cl5 2 01) (cl8 2 10))

4 (eq (m cl2) (flag.l)) ()
5 (eq (m cl5) (flag.2)) ()
6 (eq (m cl8) (flag_3)) ()
(flag_l Blk_4(a b)
(flag_2 Blk_5(a b)
(flag_3 Blk_6(a b) Blk_7(a b))))
)
(BB Blk_4 ((a 16) (b 16))

(LOCAL (value 16))
7 (plus (a b) (value)) ()
(TRUE_BRANCH Blk_8(value))

)

(BB Blk_6 ((a 16) (b 16))
(LOCAL (value 16))

9 (mult (a b) (value)) ()
(TRUE.BRANCH Blk_8(value))
)
(BB Blk_7 ((a 16) (b 16))

(LOCAL (t22 32) (t23 32) (value 16))
10 (mult (a a) (t22)) ()
11 (mult (b b) (t23)) ()
12 (plus (t22 t23) (value)) ()
(TRUE.BRANCH Blk_8(value))
)
(BB Blk_8 ((value 16))
13 (PUT_P0RT (value result) ()) ()
(TRUE.BRANCH Blk_2())

)

Figure A.2: BBIF Specification of the ALU Example

157

has three inputs a, b and m, whereas Blk_2 does not have any. The compute block Blk_3 performs
all the condition evaluations of the case statement and generates three flags. Based on the values
of these flags, four branches arise from Blk_3 leading to the blocks Blk_4,Blk_5, Blk_6 and
Blk_7. The four blocks perform the four types of the ALU operations. For example, the sum of
squares is performed in the three operation statements of Blk_7. Each of these four blocks call the
io block Blk_8 to write the results to the output port. Note that Blk_8 calls the start block Blk_2
forming an overall infinite loop that represents the implicit loop of corresponding VHDL process.

A.3 Component Library and Functional Unit Instantiation

The component library {Cub), supplied by the user, specifies a list of combinational and sequential
components with a list of operations supported by them. For every user-defined operation in the
BBIF, there should exist at least one component in the library that supports that operation. For
sequential components and for components that can support multiple operations, the user is also
expected to provide the control signal that facilitates the selection of each of these operations.
This information will be used by the synthesis system while generating the control logic.

Figure A.3 shows a portion of a typical component library. The class of a component denotes
whether it is combinational (denoted by ALU) or sequential (denoted by REG). The first
component compare, supports multiple operation types as specified in its MODE field, and its
CONTROL field provides the control signal information for each operation type it supports.
Components can be parameterized over their port sizes as well as over the number of ports. In
the figure, the component that supports the bit-wise and operation is parameterized both on the
number of inputs and port widths. Since all user-specified operations in the input description are
uninterpreted, the library should provide all relevant information that the synthesis process might
subsequently require. The SIGNATURE field specifies the ports of the component that are used
to support an operation type. For example, compare has two inports and three outports while
one of its operation type, grt uses the first two inports to read inputs and uses the third outport
to write the output.

Given a BBIF specification and a component library, the HLS system performs resource set
generation. For each unique operation type in the BBIF, one or more functional units are
generated from the parameterized components in the given library. A functional unit is a library
component that is instantiated with specific values to its generic parameters. This is done by
matching the type of each BBIF operation with the MODE field of each component.
Consequently, from the input and output carrier sets of the BBIF operation the generic
parameters of the component are instantiated, resulting in a new functional unit. For example,
the eq operations 4, 5 and 6 of block Blk_3 in Figure A.2 would lead to a functional unit
instantiation from component compare with generic parameter values of widthl = 2, and width2
= 1. The functional units are unique with respect to the component name and the parameter
values. If resource folding needs to be performed, functional units may remain unique only based
on the component name.

158

(COMP compare (widthl width2)
(CLASS ALU)
(MGDE less grt eq)
(INPORT (a widthl) (b widthl))
(OUTPORT (c width2) (d width2) (e width2))
(SIGNATURE
(less (1 2) (1))
(grt (1 2) (2))
(eq (1 2) (3))

)
(CONTROL 2 (NOP 00) (less 01) (grt 10) (eq 11))

)

(COMP and (ins widthl width2)
(CLASS ALU)
(MODE and)
(INPORT (ins widthl))
(OUTPORT (out width2))
(CONTROL)

)

(COMP REG (bitwidth)
(CLASS REGISTER)
(MODE reg)
(INPORT (input bitwidth))
(OUTPORT (output bitwidth))
(CONTROL 2 (NOP 00) (LOAD 01) (RESET 10))

)

Figure A. 3: Snapshot of a Typical Component Library

159

Bibliography

[1] A. A. Duncan, D. C. Hendry and P. Gray. "An Overview of the Cobra-ABS High-Level
Synthesis System for Multi-FPGA Systems". In Proceedings of FPGAs for Custom Computing
Machines (FCCM), pages 106-115, Napa Valley, California, 1998.

[2] A.E. Casavant, D.D. Gajski, and D.J. Kuck. "Automatic Design with Dependence Graph".
In 17th Design Automation Conference", pages 506-515, 1980.

[3] B. Kernighan, D.M. Ritchie. The C Programming Language. Prentice-Hall, Englewood Cliffs,
N.J., 1978.

[4] B. S. Baker, D. J. Brown, and H. P Katseff. A 5/4 Algorithm for Two-Dimensional Packing.
Journal of Algorithms, 2:348-368, 1981.

[5] B. S. Baker, E. G. Coffman, and R. L Rivest. Orthogonal Packings in Two Dimensions. Siam
Journal of Computing, 9:846-855, November 1980.

[6] B. S. Baker and J. S. Schwarz. Shelf Algorithms for Two-Dimensional Packing Problems. Siam
Journal of Computing, 12:508-525, August 1983.

[7] CM. Fiduccia, R.M. Mattheyses. "A Linear Time Heuristic for Improving Network Partitions".
In Proc. of 19th Design Automation Conference, pages 175-181, 1982.

[8] E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance Bounds For
Level-Oriented Two-Dimensional Packing Algorithms. Siam Journal of Computing, 9:808-
826, November 1980.

[9] D. D. Gajski, F. Vahid, et al. . "Specification and Design of Embedded Systems". In Prentice-
Hall Inc., Upper Saddle River, NJ, 1994.

[10] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin. "High-Level Synthesis, Introduction to
Chip and System Design". Kluwer Academic Publishers, 1992.

[11] D. Huang, A.B. Kahng. "Multi-Way System Partitioning into a Single Type or Multiple Types
of FPGAs". In Proc. of 3rd Int. Symp. FPGAs, pages 140-145, 1995.

[12] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, MA„ 1989.

[13] D.E. Thomas J.K. Adams, H. Schmit. "A Model and Methodology for Hardware-Software
Codesign". In IEEE. Design & Test of Computers, pages 6-15, September 1992.

160

[14] E.D.Lagnese and D.E.Thomas. "Architerctural partitioning of system level synthesis of inte-
grated circuits". In IEEE Transactions on CAD, volume 9, No.9, pages 847-860, July 1991.

[15] J. M. Emmert and D. K. Bhatia. TABU Search for Fast Timing Driven Placement of Circuits
on FPGAs. University of Cincinnati Technical Report Number: TR219/09/98/ECECS, 1998.

[16] J. M. Emmert and D. K. Bhatia. A Methodology for Fast FPGA Floorplanning. In ACM
Seventh International Symposium on Field-Programmable Gate Arrays, pages 47-56, Feburary
1999.

[17] J. M. Emmert, A. Randhar, and D. K. Bhatia. Fast Floorplanning for FPGAs. In Lecture
Notes in Computer Science, volume 1482, pages 129-138. Springer-Verlag, 1998.

[18] D.E. Thomas et al. "Algorithmic and Register Transfer Level Synthesis: The System Architect's
Workbench". Kluwer Academic Publishers, 1990.

[19] F. Vahid. "Functional Partitioning Improvements Over Structural Partitioning for Packaging
Constraints and Synthesis: Tool Performance". In ACM Transactions on Design Automation
of Electronic Systems, Vol 3, No. 2, pages 181-208, April 1998.

[20] F. Vahid. "Techniques for Minimizing and Balancing I/O During Functional Partitioning". In
IEEE Trans, on CAD, vol. 18 No. 1, pages 69-75, Jan 1999.

[21] F. Vahid, D.D. Gajski. "Specification Partitioning for System Design". In Proc. of 29th Design
Automation Conference, pages 219-224, 1992.

[22] F. Vahid, D.D. Gajski. "Incremental Hardware Estimation During Hardware/Software Func-
tional Partitioning". In IEEE Trans, on VLSI Systems, Vol 3, No 3, September 1995.

[23] G. De Micheli. "Computer-Aided Hardware Software Codesign". In IEEE Micro, pages 10-16,
Aug 1994.

[24] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[25] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul and R. Vemuri. "A Unified Specification
Model of Concurrency and Coordination for Synthesis from VHDL". In Proceedings of the 4th
International Conference on Information Systems Analysis and Synthesis (ISAS), July 1998.

[26] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, R. Vemuri. "An Integrated Partition-
ing and Synthesis System for Dynamically Reconfigurable Multi-FPGA Architectures". In
Proceedings of Parallel and Distributed Processing, (RAW98), pages 31-36. Springer, March
1998.

[27] IEEE Standards Office. "IEEE Standard VHDL Language Reference Manual". In IEEE
Standards Office, New York, NY, 1993.

[28] Altera Inc. http://www.altera.com.

[29] Xilinx Inc. http://www.xilinx.com.

[30] J. Henkel, R. Ernst. "The Interplay of Run-time Estimation and Granularity in HW/SW
Partitioning". In Fourth International Workshop on Hardware/Software codesign, pages 52-
58, March 1996.

161

[31] J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan
Press, 1975.

[32] J. Roy, N. Kumar, R. Dutta and R. Vemuri. "DSS: A Distributed High-Level Synthesis
System". In IEEE Design and Test of Computers, June 1992.

[33] J.Hou, W. Wolf. "Process Partitioning for Distributed Embedded Systems". In Fourth Inter-
national workshop on Hardware/Software codesign, pages 70-76, March 1996.

[34] K. Kucukcakar, and A. Parker. "CHOP: A constraint-driven system-level partitioner". In
Proceedings of the Conference on Design Automation, pages 514-519, 1991.

[35] K. Roy-Neogi, C. Sechen. "Multiple FPGA Partitioning with Performance Optimization". In
Proc. of 3rd Int. Symp. FPGAs, pages 146-151, 1995.

[36] M. Kaul and R. Vemuri. "Temporal Partitioning combined with Design Space Exploration for
Latency Minimization of Run-Time Reconfigured Designs". In Design, Automation and Test
in Europe, DATE, pages 202-209. IEEE Computer Society Press, 1999.

[37] K. Kucukcakar. System-Level Synthesis Techniques With Emphasis on Partitioning and Design
Planning. PhD thesis, University of Southern California, CA, 1991.

[38] N. Kumar. High Level VLSI Synthesis for Multichip Designs. PhD thesis, University of
Cincinnati, 1994.

[39] L. Davis. Handbook of Genetic Algorithms. Van Nostrand, Reinhold, NY, 1989.

[40] K. Li and K. Cheng. On Three-Dimensional Packing. Siam Journal of Computing, 19:847-867,
October 1990.

[41] M. J. Farland. "Value Trace". Carnegie Mellon University, Internal Report, Pittsburgh, PA,
1978.

[42] M. Vootukuru. "Partitioning of Register Transfer Level Designs for Multi-FPGA Synthesis".
In VIUF Conference, Spring 1996.

[43] M. Vootukuru. "Performance Estimation and Partitioning of VHDL Models for FPGA Imple-
mentation". Master's thesis, University of Cincinnati, USA, July 1996.

[44] Min Xu, F.J. Kurdahi. "Layout-Driven High Level Synthesis for FPGA Based Architectures".
In Proc. of Design Automation and Test in Europe, pages 446-450, February 1998.

[45] M.J.McFarland and T.Kowalski. "Incorporating bottom-up design into hardware synthesis".
In IEEE Transactions on CAD, volume 9, No.9, September 1990.

[46] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-Packing-Based Module
Placement. In Proceedings of the IEEE International Conference on Computer-Aided Design,
pages 472-479, November 1995.

[47] N. A. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Academic Pub-
lishers, Boston, 1993.

162

[48] N. Kumar, V. Srinivasan, and R. Vemuri. "Hierarchical Behavioral Partitioning for Multi
Component Synthesis". In Proc. European Design Automation Conference, pages 212-219,
1996.

[49] N. Narasimhan. "Formal-Assertions Based Verification in a High-Level Synthesis System".
PhD thesis, University of Cincinnati, ECECS Department, 1998.

[50] N. Narasimhan, et al. Theorem Proving Guided Discovery of Formal Assertions in Resource-
Constrained Scheduler for High-Level Synthesis. In Intl. Conference on Computer Design, Oct
1998.

[51] N-S Woo, J. Kim. "An Efficient Method of Partitioning Circuits for Multi-FPGA Implemen-
tations". In Proc. 30th ACM/IEEE Design Automation Conference, pages 202-207, 1993.

[52] N. Woo, A.E. Dunlop, W. Wolf. "Codesign from Cospecification". In IEEE. Computer, pages
42-47, January 1994.

[53] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli. System Level Hardware/Software Partitioning
Based on Simulated Annealing and Tabu Search. In Design Automation for Embedded Systems,
2, Kluwer Academic Publishers, pages 5-32, 1997.

[54] P. Harper, S. Krolikoski, and O. Levia. "Using VHDL as a Synthesis Language in the Honeywell
VSYNTH System". In Proceedings of Computer Hardware Description Languages and their
Applications, pages 315-330. Elsevier, June 1989.

[55] P. Sawkar, D. Thomas. "Multi-way Partitioning for Minimum Delay for Look-Up Table Based
FPGAs". In Proc. 32nd ACM/IEEE Design Automation Conference, pages 201-205, 1995.

[56] P.G.Paulin and J.P.Knight. "Force Directed Scheduling for the Behavior Synthesis of ASICs".
In IEEE Transactions on CAD, volume 8, pages 661-679, June 1989.

[57] P.K. Chan, M. Schlag, J. Zien. "Spectral-Based Multi-Way FPGA Partitioning". In Proc. of
3rd Int. Symp. FPGAs, pages 133-139, 1995.

[58] R. Ernst, J. Henkel, T. Benner. "Hardware-Software Cosynthesis for Microcontrollers". In
IEEE. Design & Test of Computers, pages 64-75, December 1993.

[59] R. K. Gupta and G. De Micheli. "Partitioning of funtional models of synchronous digital
systems". In Proceesings of the International Conference on Computer-Aided Design, pages
216-219, 1990.

[60] R. Kuznar, F. Brglez, B. Zajc. "Multi-way Netlist Partitioning into Heterogeneous FPGAs
and Minimization of Total Device Cost and Interconnect". In Proc. 31st ACM/IEEE Design
Automation Conference, pages 228-243, 1994.

[61] R. Vemuri. Genetic algorithms for Partitioning, Placement, and Layer Assignment for Multi-
chip Modules. PhD thesis, University of Cincinnati, USA, July 1994.

[62] R. Vemuri, H. Carter, and P. Alexander. "Board and MCM Level Synthesis for Embedded
Systems: The COMET Cosynthesis Environment". In Proceedings of First Annual RASSP
Conference, August 1994.

163

[63] R.Camposano and V.J. Eijndhoven. "Partitioning a design in structural synthesis". In Pro-
ceedings of the European Conference on Design Automation, pages 14-18, 1987.

[64] R.K. Gupta, G.De Micheli. "Hardware-Software Cosynthesis for Digital Systems". In IEEE.
Design & Test of Computers, pages 29-40, September 1992.

[65] R.K. Gupta, G.De Micheli. "System-level Synthesis using Re-programmable Components". In
Proc. European Design Automation Conference, pages 2-7, 1992.

[66] S. Govindarajan and R. Vemuri. "Cone-Based Clustering Heuristic for List Scheduling Al-
gorithms". In Proceedings of European Design & Test Conference (ED&TC), pages 456-462,
Paris, France, March 1997. IEEE Computer Society. ISBN 0-8186-7786-4.

[67] S. Govindarajan and R. Vemuri. "An Efficient Clustering-Based Heuristic for Time-
Constrained Static-List Scheduling. In Proceedings of the IEEE Design, Automation and Test
in Europe, DATE Conference, 2000.

[68] S. Govindarajan, I. Ouaiss, V. Srinivasan, M. Kaul and R. Vemuri. "An Effective Design
System for Dynamically Reconfigurable Architectures". In Proceedings of Sixth Annual IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM), pages 312-313, Napa, Cal-
ifornia, April 1998. IEEE Computer Society. ISBN 0-8186-8900-5.

[69] S. Govindarajan, V. Srinivasan, P. Lakshmikanthan, and R. Vemuri. A Technique for Dynamic
High-Level Exploration During Behavioral-Partitioning for Multi-Device Architectures. In
Proc. of the 13th IEEE Intl. Conf. on VLSI Design, Calcutta, India, January 2000. Received
the Best Paper Award.

[70] S. Hauck, G. Borriello. "Logic Partition Orderings for Multi-FPGA Systems". In Proc. of 3rd
Int. Symp. FPGAs, pages 32-38, 1995.

[71] S. Kirkpatrick, CD. Gelatt, M.P. Vecchi. "Optimization by Simulated Annealing". In Science,
vol 220, no.4598„ pages 671-680, 1983.

[72] S. P. Levitan et al. "Using VHDL as a Language for Synthesis of CMOS VLSI Circuits".
In Proceedings of Computer Hardware Description Languages and their Applications, pages
331-346. Elsevier, June 1989.

[73] S. M. Sait and H. Youssef. VLSI Physical Design Automation. IEEE Press, 1995.

[74] S.Govindarajan and R.Vemuri. Dynamic Bounding of Successor Force Computations in the
Force Directed List Scheduling Algorithm. In Proceedings of IEEE International Conference
on Computer Design (ICCD), pages 752-757, Austin, Texas, October 1997.

[75] U. Steinhausen, R. Camposano, et al. "System-Synthesis Using Hardware / Software Code-
sign". In International Workshop on Hardware-Software Co-Design, October 1993.

[76] V. Catania, M. Malgeri, M. Russo. "Applying Fuzzy Logic To Codesign Partitioning". In
IEEE Micro, pages 62-70, June 1997.

[77] V. Srinivasan. Partitioning for FPGA-Based Reconfigurable Computers. PhD thesis, University
of Cincinnati, USA, August 1999.

164

[78] V. Srinivasan, R. Vemuri. "Task-level Partitioning and RTL Design Space Exploration for
Multi-FPGA Architectures". In Int. Symposium on Field-Programmable Custom Computing
Machines, April 1999.

[79] V. Srinivasan, Ram Vemuri, Ranga Vemuri. Genetic Algorithms for Physical Design of Multi-
Chip Modules. Submitted to the IEEE Trans, on VLSI Systems.

[80] V. Srinivasan, S. Radhakrishnan, and R. Vemuri. Hardware/Software Partitioning with In-
tegrated Hardware Design Space Exploration. In Proc. of Design Automation and Test in
Europe, pages 28-35, February 1998.

[81] Vinoo Srinivasan. "Partitioning in Reconfigurable Computing Environments". PhD thesis,
University of Cincinnati, ECECS Department, 1999.

[82] W-J Fang, A. Wu. "A Hierarchical Functional Structuring and Partitioning Approach for
Multi-FPGA Implementations". In IEEE Trans, on CAD, vol. 9 No. 5, pages 500-511, Nov
1990.

[83] W. J. Fang and A. C. H. Wu. "Integrating HDL Synthesis and Partitioning for Multi-FPGA
Designs". In IEEE Design and Test of Computers, pages 65-72, April-June 1998.

[84] "Wildforce". Wildforce Reference Manual, Document #11849-0000.

[85] M. Xu. Linking High Level Synthesis with Physical Design. PhD thesis, University of California,
Irvine, 1997.

[86] Y. Chen, Y. Hsu, and C. King. "MULTIPAR: Behavioral partition for synthesizing multipro-
cessor architectures". In IEEE Transactions on VLSI systems, volume 2, No. 1, pages 21-32,
March 1994.

[87] T. Yamanouchi, K. Tamakashi, and T. Kambe. Hybrid Floorplanning Based on Partial Clus-
tering and Module Restructuring. In Proceedings of the IEEE International Conference on
Computer-Aided Design, pages 478-483, 1996.

[88] Atmellnc, "Configurable Logic: Design and Application Book",http://www.atmel.com.

[89] B. L. Hutchings and M. J. Wirthlin, "Implementation Approaches for Reconfigurable Logic
Applications", Field-Programmable Logic and Applications, FPL 1995, pp. 419-428.

[90] M. Dorfel and R. Hofmann, "A Prototyping System for High Performance Communication
Systems", IEEE Workshop on Rapid System Prototyping, RSP 1998, pp. 84-88.

[91] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki and A. Agarwal, "Logic emulation with vir-
tual wires", IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
vl6, n6, June 1997.

[92] R. D. Hudson, D. I. Lehn and P. M. Athanas, "A Run-Time Reconfigurable Engine for Image
Interpolation", IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998,
pp. 88-95.

[93] M. J. Wirthlin and B. L. Hutchings, "Sequencing Run-Time Reconfigured Hardware with Soft-
ware", ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA
1996, pp. 122-128.

165

[94] M. J. Wirthlin and B. L. Hutchings, "A Dynamic Instruction Set Computer", IEEE Symposium
on FPGAs for Custom Computing Machines, FCCM 1995, pp. 99-106.

[95] K. M. GajjalaPurna and D. Bhatia, "Emulating Large Designs on Small Reconfigurable Hard-
ware", IEEE Workshop on Rapid System Prototyping, RSP 1998, pp. 58-63.

[96] M. B. Gokhale and J. M. Stone, "NAPA C:Compiling for Hybrid RISC/FPGA Architectures",
IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998, pp. 126-135.

[97] W. Luk, N. Shirazi and P. Cheung, "Automating Production of Run-Time Reconfigurable
Designs", IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998, pp.
147-156.

[98] M. Chu, N. Weaver, K. Sulimma, A. DeHon and J. Wawrzynek, "Object Oriented Circuit-
Generators in Java", IEEE Symposium on FPGAs for Custom Computing Machines, FCCM
1998, pp. 158-166.

[99] J. Spillane and H. Owen, "Temporal Partitioning for Partially-Reconfigurable-Field-
Programmable Gate", Reconfigurable Architectures Workshop in 12th International Par-
allel Processing Symposium and 9th Symposium on Parallel and Distributed Processing,
IPPS/SPDP 1998, pp. 37-42.

[100] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul and R. Vemuri, "An Integrated Parti-
tioning and Synthesis System for Dynamically Reconfigurable Multi-FPGA Architectures",
Reconfigurable Architectures Workshop in 12th International Parallel Processing Symposium
and 9th Symposium on Parallel and Distributed Processing, IPPS/SPDP 1998, pp. 31-36.

[101] K. Roy-Neogi and C. Sechen, "Multiple FPGA partitioning with performance optimization",
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA 1995, pp.
146-152.

[102] P. Chan, M. Schlag and J. Zien, "Spectral-based multi-way FPGA partitioning",
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA 1995,
pp. 133-139.

[103] W. Fang and A. Wu, "A Hierarchical Functional Structuring and Partitioning Approach for
Multiple-FPGA Implementations", IEEE Transactions on Computer-Aided Design, vl6, nlO,
Oct 1997, pp. 1188-1195.

[104] M. Kaul and R. Vemuri, "Optimal Temporal Partitioning and Synthesis for Reconfigurable
Architectures", Design and Test in Europe, DATE 1998, pp. 389-396.

[105] M. Kaul, R. Vemuri, S. Govindarajan and I. Ouaiss, "An Automated Temporal Partitioning
and Loop Fission approach for FPGA based reconfigurable synthesis of DSP applications",
36th Design Automation Conference, DAC 1999.

[106] C. H. Gebotys, "Optimal Synthesis of Multichip Architectures", IEEE ICC AD, Nov. 1992,
pp. 238-241.

[107] S. Trimberger, "Scheduling designs into a Time-Multiplexed FPGA", ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, FPGA 1998, pp. 153-160.

166

[108] R. Niemann and P. Marwedel, "An Algorithm for Hardware/Software Partitioning Using
Mixed Integer Linear Programming", Proceedings of the European Design and Test Conference,
ED&TC, 1996.

[109] A. Kalavade, "System-Level Codesign of Mixed Hardware-Software Systems", Ph.D. Disser-
tation, University of California, Berkeley, 1995.

[110] D. S. Rao and F. Kurdahi, "Hierarchical Design Space Exploration for a Class of Digital
Systems", IEEE Transactions on VLSI, v 1, n 3, Sept 1993, pp. 282-294-

[111] H. Schmit, L. Arnstein, D. Thomas and E. Lagnese,"Behavioral Synthesis for FPGA-based
Computing", IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1994,
pp. 125-132.

[112] R. Dutta, J. Roy, and R. Vemuri, "Distributed Design Space Exploration for High-Level
Synthesis Systems", 29th Design Automation Conference, DAC 1992, pp. 644-650.

[113] G. D. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

[114] M. Wolf, High Performance Compilers for Parallel Computing, Addison-Wesley Publishers,
1996.

[115] S. Y. Kung, VLSI Array Processors, Prentice Hall 1988.

[116] S. Trimberger, "A Time-Multiplexed FPGA", IEEE Symposium on FPGAs for Custom Com-
puting Machines, FCCM 1997, pp. 22-28.

[117] S.M. Scalera, J. R. Vazquez, "The Design and Implementation of a Context Switching FPGA",
IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998, pp. 78-85.

[118] WILDFORCE Reference Manual, Document #1189 - Release Notes, Annapolis Micro Sys-
tems, Inc..

[119] Y. Hung, A. C. Parker, "High-Level Synthesis with Pin Constraints for Multiple-Chip De-
signs", 29th Design Automation Conference, 1992.

[120] G. K. Wallace, "The JPEG Still Picture Compression Standard", ACM Communications,
1991.

[121] P. Hansen, B. Jaumard and V. Mathon, "Constrained Nonlinear 0-1 programming", ORSA
Journal of Computing, v5, n2, 1993, pp. 97-119.

[122] F. Glover and E. Woolsey, "Converting the 0-1 Polynomial Programming Problem to a 0-1
Linear Program", Operations Research 21:1, 1974, PP- 156-161.

[123] Pierre G. Paulin and John P. Knight, "Force Directed Scheduling for the behavioral synthesis
of ASICs," IEEE Trans. Computer Aided Design, Vol.8, pp. 661-679, June 1989.

[124] Raul Camposano, Wayne Wolf, "High-Level VLSI Synthesis", Kluwer Academic Publishers,
1991.

[125] Daniel Gajski, Nikil Dutt, "High-Level Synthesis", Kluwer Academic Publishers, 1992.

167

[126] D.D. Gajski, N.D. Dutt, and B.M. Pangrle, "Silicon compilation (tutorial)," in Proc. IEEE
1986 Custom Integrated Conf. (Rochester NY), May 1986, pp. 102-110.

[127] Jan Vanhoof et. al., "High-Level Synthesis for Real-Time Digital Signal Processing", Kluwer
Academic Publishers, 1993.

[128] J. Lee, Y. Hsu, and Y. Lin, "A new Integer Linear Programming Formulation for the Schedul-
ing Problem in Data-Path Synthesis," Proc. of the Int. conf. on Computer-Aided Design, pp.
20-23, 1989.

[129] I-C. Park and C-M. Kyung, "Fast and Near Optimal Scheduling in Automatic Data Path
Synthesis," Proc. of the 28th DAC, pp. 680-685, 1991.

[130] R. Camposano, "Path-Based Scheduling for Synthesis," IEEE Trans, on CAD of Integ. Cir.
and Systems, vol. 10, no. 1, pp. 85-93, Jan 1991.

[131] Sriram Govindarajan and Ranga Vemuri, "Cone-Based Clustering Heuristic for List-
Scheduling Algorithms", Proceedings of the ED&TC 1997, Session 9C: New Ideas in Schedul-
ing.

[132] W.J.F Verhaegh, et al., "Improved Force-Directed Scheduling", Proceedings of the ED AC,
pp. 430-435, 1991.

[133] W.J.F Verhaegh, et al., "Efficiency Improvements for Force-Directed Scheduling", Proceed-
ings of the ICCAD, pp. 286-291, 1992.

[134] S.Davidson et.al., "Some Experiments in local microcode compaction for horizontal ma-
chines", IEEE Trans. Comp., pp. 460-477, July 1981.

[135] Phillip E. Mattison, "Practical Digital Video with Programming Examples in C", John Wiley
& Sons, Inc., 1994.

[136] S.Y.Kung, H.J.Whitehouse, T.Kailath, "VLSI and Modern Signal Processing", Prentice-Hall,
Inc., 1985.

[137] Michael Wolfe, "High Performance Compilers for Parallel Computing", Addison-Wesley Pub.,
1996.

[138] Jacek M. Zurada, "Introduction to Artificial Neural Systems", West Publishing Company,
1992.

[139] M. Vasilko and D. Ait-Boudaoud, "Architectural Synthesis Techniques for Dynamically Re-
configurable Logic", FPL'96.

[140] Iyad Ouaiss et al., "An Integrated Partitioning and Synthesis System for Dynamically Re-
configurable Multi-FPGA Architectures", Fifth Reconfigurable Architectures Worshop, March
1998.

[141] Gregory K. Wallace, "The JPEG Still Picture Compression Standard", Communications of
the ACM, pages 30-44, April 1991.

[142] Mattison E. Phillip, "Practical Digital Video with Programming in C", Wiley, New York,
1994

168

[143] Naren Narasimhan et al., "Rapid Prototyping of Reconfigurable Coprocessors", International
Conference on Application-specific Systems, Architectures and Processors, August 1996.

[144] M. Kaul and R. Vemuri, "Optimal Temporal Parititioning and Synthesis for Reconfigurable
Architectures", to appear in Design and Test in Europe '98.

[145] C.H. Gebotys and M. I. Elmasry, "Optimal VLSI Architectural Synthesis: Area, Performance
and Testability", Kluwer Academic Publishers, 1992.

[146] B. Landwehr, P. Marwedel and R. Domer, "OSCAR: Optimum Simultaneous Scheduling,
Allocation and Resource Binding Based on Integer Programming", Proceedings of the EuroDac,
p90-95, 1994.

[147] M. Vootukuru, R. Vemuri, and N. Kumar, "Resource Constrained RTL Partitioning for Syn-
thesis of Multi-FPGA Designs", Proceedings of the 10th International Conference on VLSI
Design, IEEE Press, 12 pages, 140-144, January 1997.

[148] Cohoon J. and W. Paris, "Genetic Placement", IEEE Trans, on CAD, vol. CAD-6 No. 6,
pages 956-964, November 1987.

[149] Shahookar K. and P. Mazumdar, "A Genetic Approach to Standard Cell Placement using
Meta-genetic Parameter Optimization", IEEE Trans, on CAD, vol. 9 No. 5, pages 500-511,
Nov. 1990.

[150] S. Raman and L. M. Patnaik, "Performance-Driven MCM Partitioning Through an Adaptive
Genetic Algorithm", IEEE Trans, on VLSI Systems, vol. 4(4), pp. 434-444, Dec 1996.

[151] Sreenivasa Rao D., F.J.Kurdahi, "Hierarchical design space exploration for a class of digital
systems", IEEE Transactions on VLSI Systems, 1993.

[152] Jan Vanhoof et al., "High-Level Synthesis for Real-Time Digital System Processing", Kluwer
Academic Publishers, 1993.

169

