
I 1 Defence Research and Recherche et d~veloppementDevelopment Canada pour la d6fense Canada

DEFENCE DEFENSE

Software Documentation for CF-18 ACD

Daniel Minor
Philip S.E. Farrell

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Defence R&D Canada - Toronto
Technical Memorandum

DRDC Toronto TM 2002-026

April 2002

Canada
20020618 173

Software Documentation for CF-18 ACD

Daniel Minor

Philip S. E. Farrell

Defence R&D Canada - Toronto

Technical Memorandum

DRDC Toronto TM 2002-026

April 2002

.// ' Author

Dan Minor

and~approvd dby

Head, Simulation adModelling, for Acquisition, Rehearsal, and Training

Approved for release by

K. M. Sutton

Chair, Document Review and Library Committee

© Her Majesty the Queen as represented by the Minister of National Defence, 2002

© Sa mnajestW]a reine, repr6sentde par le ministre de la D1fense nationale, 2002

Abstract

Since 1998, the Aircraft Crewstation Demonstrator (ACD) has provided the opportunity for
scientists and practitioners to review interface designs in a dynamic setting with the human-
in-the-loop. This document serves as a reference for the software developed to support the
CF-18 ACD that resides at DRDC Toronto.

The ACD has a very modular architecture, which allows for components to be added and
removed over time. As such, the ACD is best described in terms of its individual
components. The modular nature of the ACD, combined with the physical separation of the
software components across several computers, makes interprocess communication of central
importance to the software architecture. As such this document gives a comprehensive view
of the interprocess communication that occurs during the running of the ACD, before treating
each component in depth.

This document is current as of January 17, 2002. It is anticipated that as other components
are added to the CF-18 ACD, this reference document will also need to be updated.

Resume

Depuis 1998, le d6monstrateur de poste d'6quipage navigant (ACD) a donn6 l'occasion aux
chercheurs et aux sp6cialistes de revoir la conception des interfaces dans un environnement
dynamique auquel est int6gr6 l'8tre humain. Le pr6sent document sert de r6f6rence au logiciel
mis au point pour soutenir le d6monstrateur de poste d'6quipage navigant du CF-18 qui se
trouve au RDDC Toronto.

Le d6monstrateur est d'une architecture tr~s modulaire en ce qu'il permet d'aj outer ou de
retirer des composants avec le temps. Comme tel, le d6monstrateur se d6crit mieux en
fonction de chacun de ses composants. Le caract~re modulaire du d6monstrateur, combin6 A la
r6partition mat6rielle des composants du logiciel parmi plusieurs ordinateurs, fait de la
communication interprocessus un 616ment d'une importance primordiale dans l'architecture du
logiciel. Comme tel, le pr6sent document donne une vue d'ensemble complkte de la
communication interprocessus qui se produit pendant le fonctionnement du d6monstrateur,
avant de traiter de chaque composant en profondeur.

Le pr6sent document est A jour au 17 janvier 2002. I1 est pr6vu qu'A mesure que d'autres
composants seront ajout6s au d6monstrateur de poste d'6quipage navigant du CF- 18, le
pr6sent document de r6f6rence soit 6galement mis A jour.

DRDC Toronto TM 2002-026

This page intentionally left blank.

ii DRDC Toronto TM 2002-026

Executive summary v......Ee u t v .umr I.....................

Since 1998, the Aircraft Crewstation Demonstrator (ACD) has provided the opportunity for
scientists and practitioners to review interface designs in a dynamic setting with the human-
in-the-loop. The ACD continued to be developed with the addition of hardware and software
components. There exist three or four versions of the original ACD, one of which is the CF-
18 ACD that resides at DRDC Toronto.

This reference document details the software architecture of the CF- 18 Aircraft Crewstation
Demonstrator. It provides a complete description of the interprocess communication
framework for the simulator. The framework's software components are:

"* Controls

"* Data Collection

"* FLSIM

"* Scenario Framework

"* Helmet Mounted Display

"* Message Router

"* Polhemus Motion Tracker client

"* Simulations.

The description begins with an overview of the software component. Each component is
described in terms of its objects and functions. Its relationship to the overall architecture is
discussed.

This document is current as of January 17, 2002. It is anticipated that as other components
are added to the CF- 18 ACD, this reference document will also need to be updated.

Minor, D L ., and P.S.E. Farrell 2002. Software Documentation for CF-18 ACD. DRDC
Toronto TM 2002-015 Defence R&D Canada Toronto.

DRDC Toronto TM 2002-026 i

Sommaire_ __ _ _ _ _ _

Depuis 1998, le d6monstrateur de poste d'6quipage navigant (ACD) a donn6 1'occasion aux
chercheurs et aux sp~cialistes de revoir la conception des interfaces dans un environnement
dynamnique auquel est int~gr6 l'8tre humain. Le d~monstrateur continue d'8tre d~velopp6 par
l'ajout de composants mat~riels et logiciels. 11 existe trois ou quatre versions du d~monstrateur
d'origine, dont lPun est le d~monstrateur du CF-I 18, qui se trouve au RDDC Toronto.

Le pr6sent document de r6f6rence donne le d6tail de 1'architecture logicielle du ddmonstrateur
de poste d'6quipage navigant du CF- 18. 11 donne une description complkte du cadre de
communication interprocessus pour le simulateur. Les composants logiciels sont:

"* les commandes;

"* la saisie des donn~es;

"* FLSIM

"* le cadre de travail des sc6narios;

"* 1'affichage de casque;

"* le routeur de messages;

"* le dispositif de suivi de mouvement Poihemus;

"* les simulations.

La description commence par une vue d'ensemble du composant logiciel. Chaque composant
est d~crit en fonction de ses objets et de ses fonctions. 11 est question de ses rapports avec
Pensemble de 1'architecture.

Le present document est A jour au 17 janvier 2002. 11 est pr6vu qu'A mesure que d'autres
composants seront aj out6s au d~monstrateur de poste d'6quipage navigant du CF- 18, le
present document de r~f~rence soit 6galement mis A jour.

Minor, D L ., and P.S.E. Farrell. Software Documentation for CF-18 ACD. DRDC
Toronto TM 2002-015 Defence R&D Canada Toronto.

iv DRDC Toronto TM 2002-026

Table of contents

Abstract...............................

Executive summary...1i

Sommaire ... iv

Table of contents .. v

List of figures .. viii

List of tables ... ix

Introduction.............................1

The CF-i 18 ACD Software Architecture .. 3

Overview...........................3

Commercial Off The Shelf (COTS) Products .. 5

Interprocess Communication ... 5

Router Communication... 5

Direct UJDP Communication ... 6

Shared Memory Communication .. 6

Summary of Module IPC... 7

The Common Library... 9

Overview... 9

UTDPChannel-c .. 9

Timer_c ... 10

List-c .. 10

PeriodicProcess-c ... 11

Semaphore-c... 12

SharedPoolc .. 13

DRDC Toronto TM 2002-026 V

Controls ... 15

Overview .. 15

The Stick and Pedals (cfl 8_stick) .. 16

The Throttle (cfl 8_throttle) .. 17

The Gear Panel (cfl 8_gearp) .. 19

Data Collection .. 21

Overview .. 21

Database Design ... 21

The Data Collection Program (Datacol) ... 23

FLSIM ... 27

Overview .. 27

Simulator Application .. 27

Control Application ... 27

Fram ew ork .. 29

Overview .. 29

The M essageQueue c Class ... 29

The Entityc Class .. 29

The StaticTarget c Class .. 30

The StaticThreat c Class .. 30

The EntityListc Class .. 31

Scenario Configuration Files ... 32

The Fram ework Program ... 33

Fram ework M essage Types ... 34

W eapons M odels ... 35

Helm et M ounted Display ... 37

Overview .. 37

SIM EYE XL-100 ... 37

The Scene ... 37

G lobal Data Structures .. 37

Head Position and the Polhemus Tracker Client .. 38

System Pre-Sync Callback ... 39

Vi DRDC Toronto TM 2002-026

FLIR Simulation ... 39

Target Designation .. 43

Height Above Terrain (HAT) Calculation .. 43

The Entity List ... 43

The Router 45

Overview .. 45

The Router Server .. 45

The Router Client ... 46

Source code for a M inim al Client Application ... 47

The Tracker ... 49

Overview .. 49

trackercc ... 49

The Client Application .. 50

The Sim s .. 51

Overview .. 51

M ission Computer ... 51

Stores M anagem ent .. 53

Radar .. 54

Conclusion ... 57

Annex A .. 59

Header Files ... 59

Bibliography .. 73

List of symbols/abbreviations/acronym s/initialism s .. 75

DRDC Toronto TM 2002-026 Vii

List of figures

Figure 1. CF- 18 ACD Interprocess Communication ... 4

Figure 2. Location of Controls on the Stick ... 17

Figure 3. Location of Controls on the Throttle ... 18

Figure 4. Entity Relationship Diagram ... 22

Figure 5. FLIR Symbology Elements ... 41

Figure 6. Stations on a CF-18 .. 53

viii DRDC Toronto TM 2002-026

List of tables

Table 1. Summary of Router M essage Types ... 6

Table 2. Summary Direct UDP Communication. ... 6

Table 3. Summary of M odule IPC .. 7

Table 4: UDPChannel c M ethods .. 9

Table 5: Timer-c M ethods .. 10

Table 6: List-c M ethods ... 11

Table 7: PeriodicProcess c M ethods .. 12

Table 8: Semaphore c M ethods .. 12

Table 9: SharedPool c M ethods .. 13

Table 10: Discrete Values produced by the Stick .. 16

Table 11: Discrete Values produced by the Throttle .. 18

Table 12: Discrete Values produced by the Gear Panel ... 19

Table 13: Relations .. 23

Table 14:M essageQueuec M ethods ... 29

Table 15: StaticTargetc M ethods ... 30

Table 16: StaticThreat-c M ethods ... 31

Table 17: EntityList-c M ethods .. 32

Table 18: HM D Interprocess Communication ... 39

Table 19: FU R Symbology Elements .. 42

DRDC Toronto TM 2002-026 iX

Table 20: Router Client M ethods .. 47

Table 21: tracker-c M ethods ... 49

Table 22: Tracker Data Record Form at ... 50

Table 23: Sim Classes ... 51

Table 24: M ission Computer Discrete Value Handling .. 52

x DRDC Toronto TM 2002-026

Introduction

Virtual prototyping is a powerful tool for human factors engineering. The advantage of
virtual prototyping is the ability to rapidly visualize the results of design decisions in interface
design. When coupled with human-in-the-loop simulation, rapid prototyping allows an
emerging design to be evaluated under dynamic conditions. The recent availability of low
cost capable computer generated graphics has made this technology accessible to both
scientists and practitioners alike.

DRDC Toronto had been developing tools for human factors engineering since 1985. These
tools included constructive modelling and simulation environments for design and rapid
prototyping. By the mid 1990s the maturity of computer graphics (e.g., 30Hz update rates at
an affordable price) made the extension of these tools into a low fidelity, rapidly re-
configurable, human-in-the-loop aircraft crewstation simulation feasible. This device was
called the Aircraft Crewstation Demonstrator (ACD).

The first ACD was conceived in 1993 and delivered to the Director Technical Airworthiness
(DTA) in 1998. A second ACD, for research purposes, was installed at DRDC Toronto in the
same year. The idea for the use of the simulators was that new interfaces would be studied
with DRDC Toronto's ACD then passed onto DTA's ACD for test and evaluation. If
warranted, the interface could be tested in a higher fidelity simulator and then field-tested.
The interfaces that have been studied using the ACD include Direct Voice Input for a
helicopter's Control Display Unit, a helicopter's Heads Up Display symbology, and
comparing different Helmet Mounted Display systems for the CF- 18 ACD (which is the
current study).

The ACD is a low fidelity, rapidly re-configurable, human-in-the-loop simulator that allows
new (virtual or real) equipment or procedures to be attached and tested. The human interface
includes a projection of the Out-The-Window (OTW) scene, aircraft instrument displays on
computer screens, and aircraft controls. Normally, the ACD is enclosed in a structure that has
the look of a cockpit. At present, two shell types exist: 1) medium lift helicopter and 2) fast
jet. The ACD with the fast jet shell we call the CF-18 ACD.

The intent of this document is to archive the software architecture of the CF- 18 ACD that has
been developed over the years by contractors (primarily CMC Electronics and The HFE
Group) and research assistants (mostly student computer programmers). This is an
opportunity to describe the ACD software configuration in a systematic way for reference
purposes. Because capability will be added to the ACD continually, the document is dated
and will need to be revised as significant changes take place. It is hoped that scientists,
contractors, research assistants, and programmers will find this document useful in
reconfiguring the ACD for future studies and tests.

DRDC Toronto TM 2002-026

This page intentionally left blank

2 DRDC Toronto TM 2002-026

The CF-18 ACD Software Architecture

Overview

The CF-18 ACD has a very modular design. This has several advantages over a more tightly
integrated system. The various components of the simulation can be spread across several
computers, allowing for less computing intensive tasks to be done on older computers, thus
minimising the cost of the simulator. It also minimizes the interdependencies of the simulator
components, allowing for systems to be run in isolation. This in turn contributes to the
adaptability and portability of the software, making it relatively easy for the simulator to be
modified for various experimental conditions.

Much of this modularity comes from the use of a central message router for interprocess
communication, rather than direct connections between the different modules. Each module
has to know only the location of the router, not the location of the source of the information it
desires. If another module is added that needs access to this information, the first module
does not have to be modified; the new module can obtain the information from the message
router. Finally, a module can be removed and replaced with another module without any
changes being made to the rest of the system. For example, the current architecture makes use
of a simple Scenario Framework application that generates and moves computer-controlled
entities in the simulation. Should future experiments have more sophisticated requirements,
this Framework could be removed and replaced with one or more applications (possibly
commercial products) without any changes being made to the rest of the architecture.

A brief overview of each module is given below. Generally, a module corresponds to one
subdirectory of the source code, and usually with one compiled application. The modules are
discussed in alphabetical order in this document.

"* Controls: The controls module consists of three applications: cfl8_stick, cf18_throttle
and cfl 8_gearp. These applications retrieve information from the controls via BG Cereal
Boxes, and communicate the information to the Sims and FLSIM (see below).

"• Datacol: This module is responsible for data collection for the CF-18 ACD. It subscribes
to messages of interest via the router, and stores experimental data in text files.

"* DDIs: DDI stands for Direct Digital Interface. The DDIs are VAPS applications that
display mission information on to the screens of the ACD.

"* FLIR: The FLIR module provides a visual simulation of a FLIR (Forward Looking
Infrared) sensor.

" FLSIM: FLSIM is a commercial flight simulator product that provides the flight model
for the ACD. It consists of two applications, modified with custom code: cfl 8_flsim sim
runs the flight model, and cfl 8_flsim-con provides a command line utility to control the
execution of the flight model.

DRDC Toronto TM 2002-026 3

" Framework: As mentioned above, the Scenario Framework provides a simple means of
generated targets and threats in the simulation. The scenario is configured via text files.

" Helmet Mounted Display: The helmet mounted display provides the visual display of
the CF-18 ACD.

" Router: The router handles interprocess communication between the different modules of
the simulation.

" Simulations (the Sims): The Sims are a collection of classes that simulate various flight
systems. The majority simply extract data retrieved from FLSIM, and send it to the DDIs
to be displayed. Of importance are the Stores Management System, which handles
onboard stores and weapons firing, the radar, which provides a simulation of A/A radar
and the Mission Computer, which processes control inputs.

Tracker: The tracker module provides a client application for a Polhemus motion tracker.

FILSIM
Tracker

Data Collection
J Router .Controls

FU iuainThe S~ims ~.- DDIs S°iot o 1...

HMD Scenario
Framework (or
STRIVE, etc.)

Figure 1. CF-18 ACD Interprocess Communication

In addition to these modules, there are several classes that are used throughout the simulation,
for example, the class used for router connections, and a class handling timers. These are
described below in the section on Utility classes.

4 DRDC Toronto TM 2002-026

Commercial Off The Shelf (COTS) Products

The CF-18 takes advantage of several commercial software products. These are summarized
below:

" FLSIM: FLSIM is a commercial flight simulator product that provides a flight model
for the CF-18 ACD. FLSIM is a product of Virtual Prototypes Inc.

" VAPS: VAPS is a rapid prototyping application for aircraft instrumentation. It is
used to draw the DDI displays. VAPS is a product of Virtual Prototypes Inc.

" VEGA: VEGA is a 3D graphics API that provides a convenient interface to the SGI
OpenGL and Performer APIs. It comes with several modules; one of these,
SensorWorks is used to simulate the FLIR sensor. VEGA is a product of Multigen-
Paradigm Inc.

Interprocess Communication

As mentioned above, the CF-18 ACD has a very modular design. This makes it quite
dependent upon interprocess communication. Much of this communication takes place via
the message router, but shared memory and direct socket connections are also used.

All socket communication, including communication via the message router, utilizes the User
Datagram Protocol (UDP). UDP was chosen because it is a stateless protocol, which means
that the processes communicating with each other do not negotiate a connection, but send data
to one another directly. If one process is absent, it will not adversely affect another process,
unless that process is directly dependent upon information from the first. This enhances the
modularity of the ACD. Also, a stateless protocol avoids the overhead involved in
maintaining a connection between two processes, and so is more efficient.

Communication by direct UDP connections and via shared memory is more efficient than
communication through the router, but information passed by these mechanisms is
inaccessible to data collection. Additionally, it reduces the modularity of the ACD; in
particular, communication by shared memory is only possible between processes residing on
the same computer. For these reasons, data is passed through the router whenever it is
practical to do so.

Router Communication

The router serves as an intermediary between modules wishing to communicate with each
other. Currently, there are 17 message types passed through the router. However, the
functionality of the router is not dependent upon knowledge of the message types that it is
handling. The message types are listed in table 1:

DRDC Toronto TM 2002-026 5

Table 1. Summary of Router Message Types

MESSAGE TYPE PURPOSE DATA TYPE

CREATEENTITY Entity creation event. CreationMsg_s
DESIGNATE Hold location that the pilot has designated. DesignateMsg s
DESTROYENTITY Remove an entity from the simulation. DestroyMsg_s
EXPLODEENTITY Cause an entity to explode. ExplodeEntityMsg_s
FLIR ACTIVE Indicate that the FLIR is active. None.
FLIR DATA Hold status of FLIR controls. flirdata_s
HAT Indicate height above terrain. HatMsg_s
MASTER_MODE Indicates a change in the master mode of the CF-1 8. MasterModeMsg_s
POSITIONENTITY Position an entity. PosUpdateMsg_s
POSITIONOWNSHIP Hold positional information for the CF-18. PosUpdateMsg_s
RADARUPDATE Target information for the radar simulation. RadarMsg_s
THREAT-DETECTED Indicate a threat has been detected. None.
TRACKERUPDATE Hold status of Polhemus Tracker. PosData s
TT REL Time until weapon can be released. TTRelMsg_s
TTI Time until weapon impact with target TTIMsg s

UNDESIGNATE Release designation. None.
WEAPONFIRED Hold weapon fire information. WeaponFireMsg_s

Direct UDP Communication

Some components of the simulation bypass the message router and use direct UDP
connections in order to send information. This is more efficient than using the router;
however, the information sent is not visible to the data collection utility, and the overall
modularity of the ACD is reduced. Direct UDP connections are summarized in Table 2:

Table 2. Summary Direct UDP Communication

MESSAGE TYPE MESSAGE SUBTYPE DATA TYPE

CF18_MSGFLTCTRL CF18 FLTCTL STREAM STICK-DATA CF18_FItCtlStickPedalGearP s
CF18 FLTCTL STREAM THR DATA CF18 FItCtrl Throttle s
CF18_FLTCTLSTREAMTDC DATA CF18 FItCtrI TDC s
CF18_FLTCTLEVENT DATA CF18 FItCtrl_Discrete s

CF18 MSG DISPLAY N/A CF18_MesageToDisplays s
CF18 MSG AUDIO N/A CF18 Audio s
CF18 FLSIM EXPORT N/A Flsim Export Msg

Configuration for the UDP connections is done by editing the udpsettings.h file found in the
common directory on ACD2. It is necessary to recompile the affected applications in order
for the changes to take effect.

Shared Memory Communication

Communication between the Sims and the DDIs takes place via shared memory. Shared
memory allows one process direct access to memory belonging to another process, and hence
provides a quick, efficient mechanism for interprocess communication.

6 DRDC Toronto TM 2002-026

Summary of Module IPC

This table presents a list of the modules in the CF- 18 ACD that communicate via the router,
and details the messages types that each module sends and receives.

Table 3. Summary of Module IPC

MODULE SENDS RECEIVES
Controls CF18_FLTCLTSTREAMTDCDATA None.

CF18_FLTCTLEVENTDATA
CF18_FLTCTLSTREAMSTICKDATA
CF18_FLTCTLSTREAMTHRDATA

Datacol None. CREATEENTITY
DESTROYENTITY
EXPLODEENTITY
FLIRACTIVE
POSITIONENTITY
POSITIONOWNSHIP
THREAT-DETECTED
TRACKERUPDATE
WEAPONFIRED

DDI's CF18_MSGDISPLAY

FLIR Simulation DESIGNATE CREATEENTITY
UNDESIGNATE DESTROYENTITY

EXPLODEENTITY
FLIR_DATA
POSITIONENTITY
TTREL
TTI

FLSIM CF18_FLSIMEXPORT CF18_FLTCTLSTREAMSTICKDATA
POSITIONOWNSHIP CF18_FLTCTLSTREAMTHR_DATA

HAT
Framework CREATEENTITY POSITIONOWNSHIP

DESTROYENTITY TRACKERUPDATE
EXPLODEENTITY TTI
POSITIONENTITY WEAPONFIRED

HMD HAT CREATE_ENTITY
DESTROYENTITY
EXPLODEENTITY
POSITIONENTITY
POSITIONOWNSHIP
TTREL
TTI

The Sims CFI8_MSGDISPLAY CF18_FLSIMEXPORT
FLIRACTIVE CFI8_FLTCLTSTREAMTDCDATA
MASTERMODE CFI8_FLTCTLEVENTDATA
THREATDETECTED CF18_MSGAUDIO
TTREL DESIGNATE
TTI RADARUPDATE
WEAPONFIRED UNDESIGNATE

Tracker TRACKERUPDATE None.

DRDC Toronto TM 2002-026 7

This page intentionally left blank

8 DRDC Toronto TM 2002-026

T h e C o m m o n L ib ra ry

Overview

A statically linked archive, called libcommon.a, contains several classes used throughout the
CF-1 8 ACD source code. Having the code contained within a common library avoids the
administrative problems that result from multiple versions of the same code spread throughout
the source tree and ensures that updates made to the code are reflected in every application
that makes use of it.

The header files for the components of the common library appear in Annex A, for ease of
reference.

UDPChannelc

UDPChannelc is used for all UDP communications in the CF- 18 ACD, including those
involving the router. It is defined in the files udp comm.h and udp_comm.cpp. Its interface
is defined by the following methods:

Table 4: UDPChannel c Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS
UDPChannelc UDPSEND, or Constructor. None.

UDPRECEIVE, or
UDPTRANSCEIVE (default)

-UDPChannelc None. Destructor. Calls Stop, None.
then exits.

Start None. Starts the UDP channel. None.
Stop None. Stops the UDP channel. None.
Set One of: Sets socket properties. None.

UDPRECEIVE PORT, port no.
UDPSENDPORT, port no.
UDPRECVBUF, buffer size
UDPSENDBUF, buffer size
UDPRECVADDR, ip address
UDP SEND ADDR, ip address

RecvMessage buffer Attempts to receive a Size of message
message size message through the received, or 0 if no
timeout (optional, in socket. message is received.
milliseconds)

SendMessage buffer Sends a message The value 1, indicating
message size through the socket. success.

DRDC Toronto TM 2002-026 9

Timer c

Timerc provides a convenient wrapper function for the Unix time functions gettimeofday
and nanosleep. It also maintains two variables, startSeconds, and startUSeconds, which track
the time that the Timer c class object was instantiated, or the time of the last call to Reset.
This allows for events to be timed. Timer-c is defined in the files timer.h and timer.cpp.

Table 5: Timer c Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS

Timer c None. Constructor. None.
-Timerc None. Destructor. None.
ElapsedMicroseconds None. Returns number of Integer value representing

microseconds since last microseconds.
reset.

ElapsedMilliseconds None. Returns number of Integer value representing
milliseconds since last milliseconds.
rest.

ElapsedSeconds None. Returns number of Integer value representing
seconds since last reset, seconds.

GetCurrentTimelnSeconds None. Returns number of Integer value representing
seconds since January 1, seconds.
1970.

WaitMilliseconds milliseconds Waits for a specified None.
number of milliseconds.

Reset None. Sets values for None.
startSeconds and
startUSeconds to current
time.

A common use of Timer c is to ensure that a given section of code is executed no more often
than a given frequency. For example, to ensure that the body of a loop is executed no more
frequently than every 10 seconds, the following code would be used:

while(!done) {
timer- >ResetO;

timer-> WaitMilliseconds(1 0 - timer->ElapsedMillisecondso);

List c

Listc maintains a linked list made up of nodes with the following structure, which is defined
in list.h:

struct list-node {
struct listnode *next, *prevw
int priority;
void *data;

typedef struct listnode ListNode_s;

10 DRDC Toronto TM 2002-026

Two functions are provided to maintain nodes: CreateNode and MakeNode. Both functions
accept a pointer to a buffer and an integer representing the size of the buffer. CreateNode
makes a copy of the contents of the buffer, and has data point to the copy, while MakeNode
simply has data point to the location of the buffer. Listc is defined in the files list.h and
list.cpp.

The methods defined in List c are as follows:

Table 6: List c Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS

List c None. Constructor. None.
-List c None. Destructor. None.
IsEmpty None. Determines whether list True (1) if list is empty.

is empty or not.
Empty None. Removes all nodes from None.

list.
FirstElement None. Returns first node in list. First node in list.
LastElement None. Returns last node in list. Last node in list.
NextElement Pointer to current node. Returns next node in list. Next node in list.
PrevElement Pointer to current node. Returns previous node in Previous node in list.

list.
InsertAfter pointer to node. Inserts a node in to the None.

pointer to node to insert. list.

InsertBefore pointer to node. Inserts a node in to the None.
pointer to node to insert. list.

Enqueue pointer to node, or Inserts a node at the end Node.
pointer to buffer of the list.

size of buffer
AddNodeWithPriority pointer to node Inserts a node in to the None.

priority, or, list by order of priority.

pointer to buffer
buffer size
priority

Push pointer to node Inserts a node at the None.
beginning of the list.

Delete pointer to node Calls free(data), and None.
removes node from list.

Count None. Returns number of items Number of items in list.
in list.

PeriodicProcess c

The PeriodicProcessc allows a user function to be run at a set period, given in milliseconds.

PeriodicProcessc starts a thread to run the PeriodicUpdate function. This function utilizes
the Timer c class discussed above to time the execution of the user function. If the user
function takes less time than the period of the periodic process, the WaitMilliseconds method
of the Timer c class is called to make up the difference. The user function is not pre-empted
if it takes more time than is allotted to it, so this class does not provide true real time
functionality. It is possible to pause and resume the user function because the PeriodicUpdate

DRDC Toronto TM 2002-026 11

function waits on a mutex, called _pauseResume, at the beginning of each iteration of its main
loop.

PeriodicProcessc is implemented in the files periodic.h and periodic.cpp. The following
methods are defined:

Table 7: PeriodicProcessc Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS

PeriodicProcessc pointer to function Constructor. None.
period (in milliseconds)
1 = start immediately (default) or

0 = deferred execution
-PeriodicProcessc None. Destructor. None.

Start None. Creates a thread to execute None.
the PeriodicUpdate function.

Pause None. Sets _pauseRelease mutex. None.
Resume None. Releases _pauseRelease None.

mutex.
Kill / Exit None. Ends execution of None.

PeriodicUpdate function.

SetPeriod period (in milliseconds) Sets period. None.

GetPeriod None. Returns the period of the Period in
process. milliseconds.

WaitForCompletion None Waits for the thread to None.
terminate.

DoOnce pointer to function Calls the pthreadonce None.
function, with the user
function as an argument.

Semaphore_c

Semaphores provide a means of coordinating data access between two or more processes. In
some cases, if two or more processes are allowed to access the same data structure
concurrently, unpredictable and undesirable results will occur. Semaphores are used to
control concurrent access. Each semaphore has a count associated with it. When the count is
zero, a process increments the count, accesses the data structure, then decrements the count.
If the count is not zero, a process waits on the semaphore until the count is zero.

The Semaphore c class provides a wrapper around the Unix semop system call. The methods
are defined as follows:

Table 8: Semaphore c Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS
Semaphore c Semaphore Id. Constructor. None.
-Semaphore c None. Destructor. None.

Lock None. Lock the semaphore. None.
Unlock None. Unlock the semaphore. None.
Increment None. Increments the count on the None.

12 DRDC Toronto TM 2002-026

semaphore.
Decrement None. Decrements the count on the None.

semaphore.
Destroy None. Destroys the semaphore. None.

SharedPool c
SharedPool_c is the shared memory class used in the CF-18 ACD. The SharedPool_c
allocates an area of shared memory, and then uses a directory to provide named access to
areas of the shared memory pool. Semaphores (see Semaphorec above) are used to prevent
concurrent access to the directory data structure, and so ensure its integrity.

The methods defined by SharedPoolc are detailed below:

Table 9: SharedPool c Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS
SharedPoolc shared memory key, or, Creates a shared memory pool None.

key and attaches to it.

size
number of entries
semaphore key

-SharedPoolc None. Deletes the semaphore for the None.
memory pool, and then
detaches from it.

Destroy None. Removes shared memory pool.
Exists None. Returns true if a handle to a True if shared

shared memory area exists.
Allocate name Allocates an area of memory in Pointer to memory

the shared memory pool. area allocated.
Name to be used for the
area, amount of memory to
allocate.

Deallocate Name of the area to Removes a named area of Null.
deallocated, memory from the shared

memory pool.
GetAddressOf Name of the area for which Returns address of a named Pointer to named

to get the address. area in the shared memory area in the shared
pool. memory pool.

GetSizeOf Name of the area for which Returns size of a named area Size in bytes.
to get the size. in the shared memory pool.

Size None. Returns the size of the shared Size in bytes.
memory

Lock None. Locks shared memory so that None.
updates to the directory
structure can take place.

Unlock None. Unlocks shared memory. None.
GetDirectoryHeader None. Returns header structure for Pointer to a

the shared pool directory. DirectoryHeader s.
Directory Index of the directory Returns a directory entry from Pointer to a

header to return the shared pool directory. DirectoryEntrys.

DRDC Toronto TM 2002-026 13

This page intentionally left blank

14 DRDC Toronto TM 2002-026

Controls

Overview

There are three modules responsible for the CF-18 ACD controls. They are cfl 8_stick,
cfl 8_throttle, and cfl 8_gearp. They function in a similar way. Each accepts serial input from
a Cereal Box, processes it, and sends messages via UJDP to the Mission Computer simulation
and FLSIM indicating the state of the controls.

The following controls are operational on the ACD:

1. Stick (cfI 8_stick)
* Trigger
* Undesignate
"* Weapon Select
"* Castle Switch
* Weapon Release
* Trim Switch

2. Pedals (cfl 8_stick)
3. Throttle (cfl 8 throttle)

Sensor Switch
* ATC Switch
"* TDC Position (streaming)
"* TDC (press to designate)
* Chaff/Flares Switch
* Comm Switch

Cage/Uncage Switch
* Speed Brake

4. Gear Panel (cfl 8_gearp)
"* Gear Switch
"* Flap Switch
"* Parking Brake / Emergency Brake

Note: Although some of the code in the Sims seems to indicate that the bezel switches are
operational, this is not the case.

DRDC Toronto TM 2002-026 15

The Stick and Pedals (cfl8_stick)

The stick module is responsible for the stick and the pedals. It communicates with the
Mission Computer simulation and FLSIM via UDP connections. In addition to stick and
pedal position, which are streaming values, the stick produces the following discrete values,
which are defined in the cfl 8_msgtypes.h header file, which is included in Annex A.

Table 10: Discrete Values produced by the Stick

CONTROL DISCRETE VALUES

Trim Switch CF18_TRIMSWLWD
CF18_TRIMSWRWD
CF18_TRIMSWAND
F18_TRIMSWANU
F18 TRIMSWOFF

Castle Switch CF18_SENSORSWUP
CF18_SENSORSWLFT
CF18_SENSORSW-DN
CF18_SENSORSWRGT

Weapon Release CF18_WPNRELSWOFF
CF18_WPNRELSWDEP

Weapon Select CF18_WPNSELSWGUN
CF18_WPNSELSWAIM9
CF18_WPNSELSWAIM7

Undesignate CF18_UNDESIGNSWOFF
CF18_UNDESIGNSWDEP

Trigger CF18_TRIGERSWOFF
CF18_TRIGERSWDET1
CF18_TRIGERSWDET2

Pedals CF18_LEFTBRAKE OFF
CF18_LEFTBRAKEON
CF18_RIGHTBRAKEOFF
CF18_RIGHTBRAKE ON.

16 DRDC Toronto TM 2002-026

T T o ec8Castlei •e~a:n I I . 1&tc•

I eapon

Select I I (behind)

iUndesignate•I"Trge

(behid

Figure 2. Location of Controls on the Stick

The Throttle (cf1 8_throttle)

The throttle module is quite similar in function to the stick. It initialises three UDP
connections, one to send streaming throttle positional information to FLSIIM, one to send
TDC positional information to the Mission Computer simulation, and one to send discrete
values to the Mission Computer. The discrete values are enumerated in cfl 8msgtypes.h
(included in Annex A) and are summarized in the following table:

DRDC Toronto TM 2002-026 17

Table 11: Discrete Values produced by the Throttle

CONTROL DISCRETE VALUES

Sensor Switch CF18_RAIDFLIRSWDEP
CF18_RAIDFLIRSWOFF

ATC Switch CF18_ATDSW DEP
CF18_ATCSW OFF

TDC Button CF18 TDCSW DEP
CF18_TDCSWOFF

Light Switch Non-functional.

Comms Switch CF18_COMMSW_NO1
CF18_COMMSW_N02
CF18 COMMSWOFF

Chaff/Flare Switch CF18_CHAFFLARSWFLARE
CF18_CHAFFLARSWCHAFF
CF18_CHAFFLARSW OFF

Cage/Uncage Switch CF18_CAGEUNCAGEDEP
CF18_CAGEUNCAGEOFF

Speed Brake CF18_SPEEDBRAKE RET

CF18_SPEEDBRAKE EXT
CF18_SPEEDBRAKEOFF

Top View I Side View

Comms_ TDC Button

Sensor ATC Switch TD
SwitchS

Button

chaff/flare

cage Speed
cage/Brake

Figure 3. Location of Controls on the Throttle

18 DRDC Toronto TM 2002-026

The Gear Panel (cfl 8_gearp)

The gear panel differs from the stick and the throttle in that it communicates only with
FLSIM. It produces the following discrete values, again defined in cfl 8_msg,_types.h:

Table 12: Discrete Values produced by the Gear Panel

CONTROL DISCRETE VALUES

Gear Switch CF18_GEARSWITCHUP
CF18 GEARSWITCHDN

Flap Switch CF18_FLAPSWITCHFULL
CF18_FLAPSWITCHAUTO
CF18_FLAPSWITCHHALF

Parking Brake CF1 8_PARKBRAKEON
Emergency Brake CF18_PARKBRAKEEMERG

CF18 PARKBRAKE OFF

DRDC Toronto TM 2002-026 19

This page intentionally left blank

20 DRDC Toronto TM 2002-026

Data Collection

Overview

Data is collected via the router. The data collection program registers with the router,
subscribes to message types of interest, and stores messages in text files as comma separated
values (CSVs). The program determines a unique session identifier, and this is used to key all
information written to the text files, allowing for later retrieval during analysis. The text files
are always appended to, never overwritten, reducing the chance of data loss.

Database Design

Although data are stored as CSVs, the architecture itself is designed in accordance with
relational database principles. Each text file corresponds to a relation in a database, and the
relations are in Boyce-Codd Normal Form. This means that each attribute a relation is either
a key of that relation, or functionally dependent upon a key of that relation. An attribute is
functionally dependent upon another attribute if its value is determined by that attribute. For
example, the author and title of a book are functionally dependent upon the ISBN number,
since for each ISBN there is a specific author and title that are determined by it.

Figure 4 shows the structure of the relations. Primary keys are indicated by the V# sign. All
of the relationships are one to many between Session and the other relations.

DRDC Toronto TM 2002-026 2"1

OAVNSHIP

Session ID
Timestamp

Position TRACKER
Velocity

ENlITYPOSITION Acceleration # Session ID
#Timestamp

#Session ID • Position
"#rim estam p

Name

"RSESSIONEATTCTE

fi# Session ID
Subject Name # Session ID

"- ENTITY EVENT Condition , iesam

Session ID Tsime Elaps de

Entity NameE R o D
Entity Type
"2ime CreatedT RDCTo 2"Time Exploded THETDTCE

l(_ Time Destroyed •WEAPON # Session ID

#Session ID •# "Timestamp

Timestamp
Name
Target
Target Position

k.Weapon Ty p~e _j

Figure 4. Entity Relationship Diagram

As mentioned above, the data collection program determines a unique session identifier for
each experimental trial. This identifier serves a primary key for~the session relation, and in
foreign key relationships with the other relations. These relationships are illustrated in the
following Entity Relationship diagram:

22 DRDC Toronto TM 2002-026

Here is a summary of the relations, giving their purpose, filename, and the message types that
they track:

Table 13: Relations

RELATION NAME PURPOSE FILENAME MESSAGE TYPES

SESSION Store session information. data/session.txt None.

ENTITYEVENT Store entity creation and destruction data/entityevent.txt CREATEENTITY
events. EXPLODEENTITY

DESTROYENTITY

ENTITYPOSITION Store entity positional information, data/entitypos.txt POSITIONENTITY

OWNSHIP Store positional information for the CF-18. data/ownship.txt POSITIONOWNSHIP

TRACKER Store head positional information. data/tracker.txt TRACKERUPDATE

FLIRACTIVE Record times that the FLIR is active. data/flir.txt FLIRACTIVE

THREATDETECTED Record times that a threat was detected. data/threat.txt THREATDETECTED

WEAPON Record weapon firing information. data/weapon.txt WEAPONFIRED

Data types are as follows:

"* Session ID is an integer.

"* Time Began is a character string giving the date and time in the form YYYY-MM-DD
HH:MM.

"* Timestamp, Time Created, Time Exploded, Time Destroyed and Time Elapsed are all
integers giving the number of milliseconds elapsed since the experiment began.

"* Position, Velocity, and Acceleration are vectors of the form x, y, z, h, p, r and are floating
point values given to a precision of 3 decimal places.

"* Target position is a vector of the form x, y, z, which are given to a precision of 3 decimal
places.

"* The remaining types are character strings.

The Data Collection Program (Datacol)

The data collection program is implemented in C++. It has a multi-threaded design: in
general, one thread is allocated to each relation, and has its own file handles and connection to
the message router. This allows for messages received to be processed independently of one
another. This is done for two reasons: it minimizes the chances of lags in data collection, and
it allows a frequency of collection to be assigned to streaming data.

DRDC Toronto TM 2002-026 23

The main function of the data collection program performs following tasks:

1. On start up, the main function reads the session data file and determines the next
available session identifier.

2. Once the session identifier is determined, a record containing the session identifier,
the subject's name, the experimental condition, and the data and time that the session
began is appended to the session data file.

3. A Timer-c instance, called simtimer is created to provide a master timer for the
simulation. This is used to timestamp all incoming records.

4. Next, the message handling threads are created. The threads are coordinated by
means of two mechanisms:

"* A global variable, done, is used to control the main loop of each thread. When
this is set to true (which occurs when a SIGINT signal is received) each thread
exits its main loop and proceeds to clean up its file and router connections.

"* A globalflags array is maintained. When a thread exits, it sets the corresponding
flag in this array to true. The main loop waits on all the flags before exiting to
ensure that each thread is given a change to terminate normally.

5. When done is set to true, the main loop writes the time the session ended to the
session data file, and closes it. It then waits for all of the flags to be set to true before
exiting.

Threads handling streaming data maintain their own timer, which is reset every time a
message is written to file. Messages are written to file only if a set amount of time has
elapsed, which is currently set to be 100 milliseconds. The threads handletracker,
handleownship and handle_flir active operate in this manner.

The functions generally behave in the following manner:

1. Open output file. If this fails, exit.

2. Connect to router and subscribe to message type of interest. If this fails, exit.

3. Set up the thread timer.

4. Enter run time loop, checking for messages. If less than a set number of milliseconds
have elapsed on the thread timer, discard the message. Otherwise, get timestamp
from master time, and reset thread timer. Output message to file.

5. On exit, unregister from the router, close output file and set thread completion flag.

The handle-entity thread maintains the ENTITYEVENT and ENTITYPOSITION relations.
It maintains a linked list of entity4events structures, which track entity creation, explosion
and destruction times. It adds to this list only when it receives a CREATEENTITY message

24 DRDC Toronto TM 2002-026

about an entity type of interest. Currently only targets or threats are considered to be
interesting. It identifies these by a naming convention: the name of a target starts with
"target", whereas the name of a threat begins with "threat." As it receives
POSITIONENTITY, EXPLODEENTITY or DESTROYENTITY messages, it acts on
them only if the entity name is contained in the list of interesting entities. This prevents a
large amount of irrelevant information from being collected. POSITIONENTITY messages
are written to file as soon as they are received. POSITIONENTITY messages are not
currently considered to be streaming, as there are few moving entities in the simulation, and
so all messages received are stored. The information tracked by the entityevents is written
only when data collection ends. This allows for all information about an entity to be stored in
one line of the file. Should the program terminate abnormally, this data will be lost.

The remaining thread, handleothers, collects data for the WEAPON and
THREATDETECTED relations. It is functionally similar to the threads handling streaming
data, except it does not maintain a timer.

The data collection program is currently has a command line interface, and is invoked as
follows:

datacol <subject name> <condition>

Data collection terminates when a SIGINT signal is received, i.e. Ctrl-C is pressed.

DRDC Toronto TM 2002-026 25

This page intentionally left blank

26 DRDC Toronto TM 2002-026

FLSIM

Overview

FLSIM is a Commercial-Off-The-Shelf flight simulation that is used to provide the flight
model for the CF-1 8 ACD. FLSINM is a very extensible product; its functionality can be
linked in via a library to a custom application. This allows for the addition of user-defined
modules to the simulation. For the ACD, two modifications have been made. One allows for
information from the controls to be received via UDP, and the other replaces the FLSIM
Database Editor with a user application to control the execution of the simulation.

Both applications are based on samples that came with the FLSIM distribution. Refer to the
FLSIM Programmer's Guide for more information.

Simulator Application

The simulator application is called cfl 8_flsimsim. It takes advantage of FLSIM's
extensibility to add code to handle UDP communications from the controls. The interface for
the user module to drive the controls is contained in the flsim-pilotdriver.h header file. It
consists of an interface name, and a large number of pointers to functions that are used to
supply the functionality of the user controls. The majority of these functions are quite
straightforward, returning specific values from an internal data structure; of interest are
initialize, read-device and close-device.

"* initialize sets up three UDP channels to communicate with the controls, one for
the stick, one for the throttle and one for discrete values.

"* readdevice checks for received messages on the UDP channels and update the
internal data structure.

"* close-device closes the UDP channels.

c.f. FLSIM Programmer's Guide, Chapter 5

Control Application

The control application is called cfl 8_flsim con. It replaces the FLSIM Database Editor as
the mechanism for starting and stopping execution for the simulator. This was done, as the
full functionality of the Database Editor was not required, and a command line based
application was desirable. This also provided a convenient place to export
POSITIONOWNSHIP messages, as well as the FLSIM data required to display the DDI's.

An outline of the functionality follows:

DRDC Toronto TM 2002-026 27

1. On commencing execution, the application attempts to connect the FLSIM simulator
application. If successful, it initialises a data link, and retrieves control information.
Any failures in this part of the application cause the application to terminate.

2. If the FLSIM initialisation section completes successfully, a connection to the
message router is attempted. If this succeeds, the application subscribes to HAT
(height above terrain) messages.

3. An UDP channel connection is established with the Sims. FlsimExport Buffer
messages are sent across this, so that the DDI displays can be updated.

4. The firuntimestarto function is called to commence the run time loop in the FLSIM
simulator application. The control application enters its main loop.

5. In the main loop, a timer is continually checked. If more than 250 milliseconds have
elapsed, a POSITIONOWNSHIP message is sent to the router, and the
FlsimExportMsg is sent over the UDP connection to the Sims.

6. The main loop is terminated when a SIGINT signal is received (i.e. Ctrl-C is pressed.)
or the aircraft crashes. When the main loop exits, it causes the simulation process to
end the simulation and exit.

c.f. FLSIM Programmer's Guide, Chapter 7.

28 DRDC Toronto TM 2002-026

Framework

Overview
The simulation framework serves a substitute for STAGE, STRIVE or similar simulation
framework development applications. The HMD experiment involved few entities with
simple behaviours; so in house development was a viable alternative to the use of a
commercial product. There were also requirements for very fine control over the creation of
threats. It was much simpler to implement this in custom code, rather than trying to utilize a
commercial application.

The MessageQueuec Class
The MessageQueuec class is used to enqueue messages to be sent to the message router.
The message queue it implements follows a strict First-In First-Out discipline. The method
enqueue adds a message to the end of the list, and the method dequeue sends the first message
on the list to the router. The constructor for the MessageQueue c takes a pointer to the
IpcClientc to be used to send messages to the router. The destructor calls the dequeue
method repeatedly until no messages are left on the message queue, and then exits. Because
of this it is important to delete the MessageQueuec before deleting the IpcClient-c that is
used to send messages to the router.

Table 14:MessageQueuec Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS
MessageQueue c pointer to lpcClientc Constructor None.
-MessageQueuec None. Sends all messages in the None.

queue through the router.
enqueue pointer to IpcMessages Adds a copy of the None.

message to the queue.
dequeue None. Removes a message from 0 if no message is sent

the queue and sends it to (the queue is empty.)
the router. 1 if a message is sent.

The Entityc Class

An abstract Entity class, called Entity c is defined in the entity.h header file. All other entity
types, and the EntityListc container type are subclasses of Entity-c. An interface is defined
by five methods. The first four methods correspond roughly to the entity update message
types: create, update, explode, and destroy. The last method, nameof, provides a means of
identifying an entity, which is used during searches.

This architecture was chosen since it allows for new entity types to be added to the simulation
relatively easily. As long as the new entity classes are derived from the base Entity c class, it
will not be necessary to change the EntityList c to support it. The only changes necessary are
to the scenario configuration file parser, so that it knows about the new type, assuming that all
of the entity's behaviour can be modelled in the update method for it.

DRDC Toronto TM 2002-026 29

In practice, separate EntityList c objects may be necessary for performance reasons. By
separating non-moving entities from moving entities, the calling of update methods for non-
moving entities that have no effect can be avoided, for example. Similar changes to the code
in interest of efficiency may become necessary.

The StaticTargetc Class
The StaticTarget c class is a subclass of the Entityc class. It is used to model any target that

will not move, typically buildings. The methods are defined as follows:

Table 15: StaticTarget c Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS

StaticTarget-c Entity name, entity type, Initialises object variables. None.
initial x, y, z, and h
position. Pointer to
MessageQueuec to use
for enqueing messages.

-StaticTarget c None. None. None.
create None. Creates and enqueues a None.

CREATEENTITY and a
POSITION ENTITY
message for this entity.

update None. None. (Non-moving None.
entities never update their
status.)

explode None. Creates and enqueues an None.
EXPLODEENTITY
message for this entity.

destroy None. Creates and enqueues a None.
DESTROYENTITY
message for this entity.

nameof None. Returns the name of the A constant pointer to the
entity. name of the entity.

The StaticThreat c Class

The static threat class implements the ground and air threats required for the HMD
experiment. The experimental requirements stipulated that an air threat would appear at an
offset relative to the subject's head position, and remain stationary there for a fixed amount of
time.

30 DRDC Toronto TM 2002-026

The methods are defined as follows:

Table 16: StaticThreatc Methods

METHODS ARGUMENTS FUNCTIONALITY RETURNS

StaticThreat-c Accepts entity name and Initialises object variables. None.
type, heading and pitch
offsets from head location,
threshold distance for
appearance, time to live,
and pointers to ownship
position, tracker position,
distance to target and the
message queue to use to
send messages to the
router.

-StaticThreatc None. None. None.
create None. Determines threat location None.

based on subject's head
position, and enqueues
CREATEENTITY and
POSITION_ENTITY
messages.

update None. Checks to see if threshold None.
distance has been passed.
If so, calls create method.
Now checks against time-
to-live. If this has expired,
calls destroy method.

explode None. None. (Threats cannot be None.
attacked.)

destroy None. Enqueues a None.
DESTROYENTITY
message for this entity.

nameof None. Returns the name of the A constant pointer to the
entity. name of the entity.

The EntityList c Class

The EntityList_c acts as a container for Entity_c and its subclasses. It is implemented as a
linked list of pointers to Entityc objects. The EntityListc is itself a subclass of Entity-c,
and so presents much the same interface. Three additional methods are present, however:
add, remove, and find, which define how entities are added, removed and found on the linked
list.

DRDC Toronto TM 2002-026 31

The methods are summarized in the following table:

Table 17: EntityList c Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS

EntityList c The entity list's name. Initialises object variables. None.
-EntityList c None. Removes all nodes from None.

the list, deleting each entity
as it proceeds.

create None. Calls the create method of None.
every entity on the list.

update None. Calls the update method of None.
every entity on the list.

explode None. None. None.
destroy None. Calls the destroy method of None.

every entity on the list.

nameof None. None. Constant pointer to the
name of the list.

add A pointer to the entity to Adds an entity to the end of None.
add. the list.

remove A pointer to the entity to Searches through the list, None.
remove, and removes the entity if it

is present on the list.
find The name of the entity to Attempts to find the entity A pointer to the entity if

find. on the list of entities. successful, otherwise a
null pointer.

Scenario Configuration Files

Scenario configuration files obey the following conventions:

"• Comments are indicated by '#'

"• An entity must be defined on one line.

"* Static entities have the following format: <static> <name> <type> <x> <y> <z> <h>. See
the constructor for StaticTarget-c. The <static> indicates the entity should be placed on
the list of static entities.

"• An entity that is to be a mission target has a name that begins with 'target'.

"• Threat entities have the following format: <threat> <name> <type> <h> <p> <distance>
<ttl>. See the constructor for StaticThreatc. The <threat> indicates the entity should be
placed on the list of threat entities.

"• An entity that is a threat has a name that begins with 'threat'.

"• The order that the entities are listed in does not matter. However, the last mission target
in the list is assumed to be the primary target, and is used when calculating whether a
threat should appear.

32 DRDC Toronto TM 2002-026

A sample scenario configuration file is given below:

Scenario File for Condition 1
<static> building]I house2 20762 -320 0 0
<static> building_2 house] 21291 -315 0 90
<static> target]I church 20920 -325 0 180
<threat> threat] foo -10 15 8500 5

The Framework Program

The framework program is itself relatively straightforward. The majority of the simulation is
implemented in the various subclasses of Entity c. The framework program performs the
following tasks:

1. Registers with the router, and subscribes to POSITIONOWNSHIP,
TRACKERUPDATE, WEAPONFIRED and TTI.

2. Creates a new MessageQueuec to communicate with the router. Creates two

EntityListc classes, one to handle targets, the other to handle threats.

3. Parses the scenario file.

4. Creates two threads to handle messages received from the router, and another to
periodically update threats.

5. The main loop consists of repeatedly calling the dequeue method of the
MessageQueue-c at 10 millisecond intervals.

6. The checkmessages thread operates on the message types as follows:

* POSITIONOWNSHIP: update the position of the ownship stored in the
pos_ownship global variable.

"* TRACKERUPDATE: update the position of the subject's head stored in the
postracker global variable.

"* WEAPON FIRED: look up the entity fired at based upon name and stores it in
the entity global variable. If no entity was the target, 0 is stored in entity instead.

" TTI: if the value of the TTI message is 0, and the entity exists, the explode
method is called for that entity. If the entity doesn't exist, an
EXPLODEENTITY message is generated with an entity name of 'NULL.'

7. The update-threats thread calls the update method of the EntityList c handling threats
periodically every 250 milliseconds.

DRDC Toronto TM 2002-026 33

Framework Message Types

Information about entities is communicated by four messages types: CREATEENTITY,
POSITIONENTITY, EXPLODEENTITY and DESTROYENTITY.

The data structure for CREATEENTITY messages is defined in ipc msg.h and looks like
this:

typedefstruct {
char name[32]; //entity name
char type[32], I/entity type

} CreationMsg_s,"

There are two naming conventions for entity, as mentioned above: target entities have names
beginning with target, and threat entities have names beginning with threat. Entity type is
used by the VEGA applications (the FLIR, the HMD) to assign an object to the entity. As
such, the entity type must match the name of an object defined in the ADF file used for by the
VEGA applications.

POSITIONENTITY messages have the following data structure:

typedef struct f
double x, y, z, h, p, r,

I PosData_s,

typedef struct (
char name[32]; //entity name
PosData s loc;
PosData s vel;
PosData__s acc;

} PosUpdateMsgs,;

If a module in the simulation receives a message updating the position of an entity for which
it has received no CREATEENTITY message, the message is discarded. Location, velocity,
and acceleration are stored in the three PosData s structures loc, vel, and acc. Since none of
the entities in the HMD experiment move, the velocity and acceleration information is not
necessary. However, PosUpdateMsgs is shared with the POSITION_OWNSHIP message
type, and in the future, it may become necessary to track an entity's velocity and acceleration.
The data structure was defined like this, so that it is compatible with STRIVE.

EXPLODEENTITY messages contain the following data structure:

typedef struct (
char name[32];

} ExplodeEntityMsg_s,"

34 DRDC Toronto TM 2002-026

Name is the name of the entity that has exploded. If a non-entity is the target, the name is set
to NULL, so that a visual explosion effect can still be generated.

Finally, DESTROYENTITY messages have this data structure:

typedef struct f
char name[32];

} DestroyMsg_s;

Name is the name of the entity to remove from the simulation.

Weapons Models

Currently, only an extremely simple laser guided bomb model exists in the Simulation
Framework. It is entirely dependent upon the weapon firing mechanisms in the Stores
Management Simulation. The bomb goes directly to the target at which it was fired, and
explodes when the time-to-impact (TTI) calculated by the Stores Management Simulation
reaches zero. The software is flexible enough to allow the insertion of a more sophisticated
model.

DRDC Toronto TM 2002-026 35

This page intentionally left blank

36 DRDC Toronto TM 2002-026

Helmet Mounted Display.H e e t M o n t d.is .!......y

Overview

The SIMEYE XL-100 Helmet Mounted Display is used to display the Out-The-Window
(OTW) scene for the CF-18 ACD. This section briefly discusses the physical characteristics
of the SIMEYE, before turning to an in-depth treatment of the VEGA application providing
the visual simulation.

SIMEYE XL-100

The SIMEYE provides a field of view of 62' x 480 at 100% overlap. The use of 100%
overlap is recommended in order to reduce eyestrain and simplify rendering. Each projector
is capable of displaying 1024 x 768 pixels. The image is provided via a standard RGB cable.
The Polhemus tracker was integrated by attaching the tracker transmitter to the underside of
the helmet, underneath the foam padding. It was placed directly beneath the centre point of
the helmet, but rotated 1800 about the x-axis. Due to this, all roll values obtained from the
tracker are reversed by 1800. For more details on the SIMEYE, see the owner's manual.

The Scene

A VEGA application is used to generate the out the window scene which is rendered on the
helmet mounted display. It uses three channels; one for each eye, and a third to render the
FLIR sensor as an overlay over the right eye. The VEGA application runs as three separate
processes in order to take advantage of the multiple processors in the Onyx 3200.

Global Data Structures

Two global data structures track the current state of the out-the-window scene. This is
necessary, because the VEGA application runs as three separate processes, and therefore
needs to set up a shared memory area in order for the processes to utilize a consistent set of
information.

The two structures store different sets of information. One, called otwData, stores
information regarding the state of the CF-18 and the FUR sensor. It contains information
such as the current position, airspeed and altitude of the aircraft, the zoom level of the FLIR,
and the range to the current designated target. The other global variable, called simply
GlobalData, stores pointers to a number of VEGA objects, as well as the router client and a
number of runtime timers.

The otwData structure is of particular interest, as it contains the values required in order to
properly render the symbology set:

DRDC Toronto TM 2002-026 37

typedefstruct
pos s cfl8 ; //cfl 8 position
pos-s head, //head position
pos-sflir; //flir position

int airspeed;
int altitude;

float aoa; //angle of attack
float mach; //mach number
float acc; //acceleration
float peak acc; //peak acceleration

int ttrtti; A/ if TTR, 1 if TTG
int ttgseconds; //number of seconds for TTR/TTG
int isdesignated; // if undesignated, 1 if designated

int wpnumber; //current way point number
float distance-to wp; //distance to waypoint
int mastermode; //current master mode

char target name[32];
pos-s targetloc;
float target bearing;
float target elevation;
float targetrange;

intflirýzoom;
intflir mode;

int blink, //used to control elements that blink

} otwdata_s;

Note that poss is defined as a struct containing six floats (x, y, z, h, p, r) containing the x, y,
z, heading, pitch and roll of the aircraft. The full definition is in the header file types.h, a
copy of which is provided in Annex A.

Head Position and the Polhemus Tracker Client

The OTW scene application connects via shared memory to the Polhemus tracker client in
order to determine the current head position. Before the head position is used however, it is
adjusted by two offsets. One offset, stored in the GlobalData variable under the values
eyeOffset is read from the ADF file, and represents the position of the cockpit. A second
group of offsets, defined as constants in the main.cpp file, are used for fine-tuning. These are
named DEFAULTTRACKERADJ.

38 DRDC Toronto TM 2002-026

While the application is running, it is possible to reposition the eyepoint using the arrow keys.
Pressing the left and right keys toggles through adjusting X, Y, Z, heading, pitch and roll.
Pressing up and down increments and decrements the current offset. In order for these
changes to be made permanent, it is necessary to adjust either the values defined as constants
in the main.cpp file, or to modify the ADF file currently being used.

System Pre-Sync Callback

A system pre-sync callback handles all external information coming to the HMD. It updates
the current head position via the shared memory connection to the tracker application, and
checks for incoming messages from the message router. The messages it handles are detailed
in the following table:

Table 18: HMD Interprocess Communication

MESSAGE TYPE ACTION
FLIRDATA If the zoom, designate or undesignated buttons were pushed, the corresponding

functions are called. Then the x and y values of the TDC button are examined,
scaled to a useful magnitude, and noise is eliminated. If they are significant, the
otwData global variable is updated, and if the FLIR is in DESIGNATE mode, the
designate function is called.

POSITIONOWNSHIP The position of the CF-18 is updated in the otwData global variable.
CREATEENTITY The create-entity function is called to add the entity to the linked list containing

known entities.
POSITIONENTITY The position-entity function is called to update the position of the entity.
EXPLODEENTITY The explode entity function in the entlist module is called.
DESTROYENTITY The destroy entity function in the ent list module is called.
TTI Sets ttrtti in otwData to 1, and sets ttgseconds to value contained in message.
TTREL Sets ttr.tti in otwData to 0, and sets ttgseconds to value contained in message.

The pre-sync callback also updates the head position in otwData with the current tracker
position coordinates read by shared memory from the tracker application. This is offset by the
current eye position offset and tracker position offset.

After every iteration, the pre-sync callback recalculates the relative bearing, elevation and
range of the designated target, if a target has been designated.

FLIR Simulation

An important component of the Helmet Mounted Display is the FLIR sensor overlay. The
simulation is a visual approximation of a FLIR sensor, generated using VEGA SensorWorks
and OpenGL. The sensor is implemented using a separate VEGA channel that serves as an
overlay over the channel for the right eye of the helmet mounted display. Currently, only the
Air-to-Ground mode of the FLIR sensor is emulated.

The FUR is controlled via buttons on the throttle and stick. The current state of the FLIR is
contained in the flir position, flir-zoom and flir-mode members of the global otwData
structure. A summary of the functionality follows:

DRDC Toronto TM 2002-026 39

1. The position of the FUR is stored in the flir member of the global otwData structure.
The x, y and z components are the offset of the FLIR from the aircraft's centre of
gravity. The heading and pitch components (or Azimuth and elevation) are controlled
via the TDC (Target Designator Computer) button on the throttle. The button
functions similarly to a joystick, and reports the amount of movement in a given
direction as ± x and ± y. The TDC button is somewhat noisy, so near zero values are
put to zero in the simulation, to avoid a jittering effect.

2. Zoom level is controlled by the ATC Switch on the throttle. Currently, two levels are
supported, wide and narrow. Wide is defined as a field of view of 120 by 12', and
narrow is a field of view of 3' by 3'. Field of view is changed in the simulation via
the VEGA API call vgChanFOV.

3. Mode indicates the level and type of target designation, and controls the sort of FLIR
stabilization that is done. When no target is designated, the mode is SNOWPLOW
and no stabilization occurs, so that the ground appears to rush by as the aircraft
moves. By clicking the TDC button, the pilot designates a point on the ground. The
mode becomes DESIGNATE, and the FLIR is stabilized to the location on the ground
that was designated. This means that as the aircraft moves, the FLIR automatically
adjusts its azimuth and elevation so that it remains pointed on the same point on the
ground. Designation is released by pushing the undesignate button on the stick. A
third mode, AUTOTRACK, is left unimplemented. It allows the FLIR to
automatically follow a moving target.

A minimal symbology set for the FUR was developed in OpenGL. The screenshot on the
following page illustrates the location of each component.

40 DRDC Toronto TM 2002-026

F L I R S t a t s .A z i m u t h

Laser Status

Elevation k "":,:.

Target Designator
Flange to Target,

Figure 5. FLIR Symbology Elements

DRDC Toronto TM 2002-026 41

Table 19: FLIR Symbology Elements

SYMBOLOGY ELEMENT PURPOSE

FLIR Status Displays 'OPR' if the FLIR is operational, or 'OPR' with two lines through it, if the
FLIR is disabled.

Field of View Displays the current field of view of the FLIR. Wide (120 x 120) is indicated as
'WIDE', narrow (30 x 30) is indicated as 'NAR.'

Azimuth Indicates the current azimuth (heading) of the FLIR. 'R' indicates the azimuth is to
the right, 'L' indicates that the azimuth is to the left.

Laser Status Indicates current laser status. At a distance from the target of greater than 10
nautical miles, or if no target is designated, the laser status is LTD. Within 10
nautical miles, the status changes to L/ARM. When the laser is firing, the status
indicator changes to LTD/R, and blinks at a frequency of 5hz.

Range to Target Indicates the current slant range to the target, in nautical miles. Blank if no target is
designated.

Time to Impact If a weapon has been released, the number of seconds until impact is indicated
below the range to the target.

Target Designator If a target is designated, the target designator appears as a diamond with a dot in
the centre (as above.) If no target is designated, the target designator appears as
crosshairs. If the FLIR is in the Wide field of view, a rectangle appears around the
target designator, indicating what the field of view would be if the FLIR were in
Narrow mode.

Elevation Indicates the current elevation (pitch) of the FLIR sensor.

The implementation of the FLIR symbology is the in the function draw flir symbology,
which is defined in the flir.cpp source file. It is registered as a postdraw callback for the FLIR
channel. The symbology elements are drawn using OpenGL. The parameters controlling the
drawing are stored in the otwData global variable, which is passed to the callback through a
pointer to void. The functionality of the drawjflir-symbology function is summarized below:

1. The drawSymbology function commences by saving the rendering state of the VEGA
application by calls to pfPushState, pfBasicState, and pfPushIdentMatrix.

2. Next the OpenGL context is set up. The following code fragment sets a view port of
480 x 480 pixels and sets up an orthographic rendering context:

glViewport(O, 0, 480, 480);
glMatrixMode(GLPROJECTION);
glLoadIdentityO;
glOrtho(O, 480, 0, 480, -1.0, 1.0);
glMatrixMode(GLMODEL VIEW);
glColor3f(0.0, 1.0, 0.0);
glLoadIdentity(;

3. After this, the actual drawing calls are made. The line segments are drawn with
GLLINES. The VEGA vgDrawFont function is used for the text.

4. Once the symbology is drawn, the VEGA rendering context is restored by calls to
pfPopMatrix and pfPopState.

42 DRDC Toronto TM 2002-026

Target Designation

Target designation for ground targets occurs when the TDC button is pressed. It is handled by
the designate routine, which performs the following functions:

" It calculates the point of intersection, using a VEGA Isector. The properties of this
Isector are set such that it will only intersect with the terrain. If no intersection occurs
(i.e. the FUR is not pointed at the ground) the FUR state remains SNOWPLOW.

" If the first Isector intersects with the ground, another Isector is used to try to determine
which target has been designated. This Isector is set such that it will only intersect with
entities, but not with the terrain. If an intersection is found, the entity name is copied to
the target designation message. Otherwise, a null string is used.

"* The target position in otwData is updated to the currently designated location, and these
values are copied to the target designation message. The message is then sent to the
router.

Every time the position of the FLIR changes, the designation routine is called, so that is it
possible to move the FLIR when it is in DESIGNATE mode.

The FUR communicates the designation state by means of two messages: DESIGNATE and
UNDESIGNATE. DESIGNATE messages are defined in the DesignateMsg_s data structure,
which looks like this:

typedef struct {
char name[32];
double x, y, z,;

} DesignateMsg_s,"

If the point designated contains an entity then the name contains the entity's name, otherwise
the name contains a null string. The x, y, and z values contain the location where the line of
sight of the FLIR sensor intersects the ground. UNDESIGNATE messages contain no data.

Height Above Terrain (HAT) Calculation

Height above terrain is calculated by use of an HAT Isector. This information is sent to
FLSIM via the message router. At present, this is disabled since the current terrain database's
elevation is uniform.

The Entity List

Information about entities is stored in a linked list data structure that is maintained by the
ent-list module.

The entity list is based on the following data structure:

DRDC Toronto TM 2002-026 43

struct entity s {
char name[32];
char type[32];
vgPlayer *entityjplyr;
vgObject *entityobj;

entity"s *next;

The name and type values from the CREATEENTITY message are stored in name and type.
The variables vgPlayer and vgObject contain pointers to the VEGA representation of the
entity. Next points to the next entity in the list. Entlist maintains two global pointers to the
entity list: one, called first, points to the first node on the list, while current points to the last
node on the list, where new entities are added.

Entities are added to the list when CREATEENTITY messages are received. The following
actions occur:

"* A new entitys is inserted in to the list.

"* The name and type of the entity are copied from the CreationMsgs that was received.

"* A new VEGA object is created based on the type of the entity.

"• A new VEGA player is created, and the VEGA object is associated with it.

A POSITIONENTITY message updates the position of the VEGA player associated with the
entity.

An EXPLODEENTITY message causes current VEGA object associated with the entity to
be removed, and to be replaced with a damaged model.

A DESTROYENTITY message causes the entity to be removed from the list.

44 DRDC Toronto TM 2002-026

The Router

Overview
The router was designed with the goals of small size, efficiency, and flexibility.

The Router Server

The router was written in Python. Python was chosen because of its fast native support for
associative arrays and socket communications. The simplicity of the router lies in the fact that
every message the router handles has the same basic structure. It is defined in ipc-client.h,
and is given below:

typedef struct {
char type[32];
int size;

} IpcMessageHeader_s,"

typedefstruct {
IpcMessageHeader-s hdr;
char data[BUFFER_SIZE];

} IpcMessage_s;

BUFFERSIZE is currently set to 960 bytes. By having a standardized header, the router can
handle any message it receives, regardless of the message type.

When the router begins execution, it establishes two UDP receive sockets on ports 9000, and
9001. It listens on port 9000 for control messages, which are of four types: register,
unregister, subscribe and unsubscribe, and deal with client management. Port 9001 is used for
content messages that will be passed on to subscribers.

It is only necessary for a client to register and subscribe with the router if it intends to receive
messages from other clients. Clients producing data, but not receiving it, such as the
Polhemus tracker client, can send information directly to port 9001, and it will be passed on to
any subscribers to tracker information.

Internally, the tracker maintains two dictionaries, which is the Python term for an associative
array, to handle registrations and subscriptions. The clients dictionary is indexed by the name
of the client, and contains a socket for outward communication to that client. A registration
message contains the name, hostname, and port number for a client, which is used to create a
new UDP send socket. This socket is then added to the clients dictionary, and indexed by the
client name. The messages dictionary is indexed by message type, and contains a list of
clients, which have subscribed to a particular message type. A subscription request is handled
by adding the client name to the corresponding list. Unregistration and unsubscription
requests are handled by removing the client from the appropriate dictionaries. The code is

DRDC Toronto TM 2002-026 45

somewhat more complicated than is implied here, because of the need to handle special cases,
such as when a message type did not previously exist, or when a client unregisters without
unsubscribing from previously subscribed messages.

Content messages that are received are passed on to subscribers by looking up the message
type in the messages dictionary, and iterating through the list of clients contained therein. The
client is then found in the client dictionary, and the message is sent through the socket
associated with that particular client.

Message Router:

Initialize dictionaries for clients and messages.
Initialize list of message types.

Set up sockets for incoming control and message communications.

While not done:

Determine if there are incoming messages.

If incoming control message:
If registration message:

Create socket for new client.
Add socket to clients dictionary.
Send acknowledgement.

If unregistration message:
Send acknowledgement.
Remove client from clients dictionary.
Remove client from messages dictionary.

If subscribe message:
Add client to messages dictionary for that message type.

If unsubscribe message:
Remove client from messages dictionary for that message
type.

If incoming message:
Determine message type.
Send message to all clients registered for that message type.
If send connection fails, remove client as described in unregister
above.

The Router Client
The client API is essentially a wrapper around the existing UDP communication class, which
handles control functions in a more transparent manner than would otherwise be the case. A

46 DRDC Toronto TM 2002-026

IpcClientc is defined to handle all communication with the router, as well as a generic
IpcMessages data structure that is used to store all messages to and from the router. The
header file ipc settings.h contains the IP address of the router, the port numbers to connect to,
as well as the client's IP address.

The interface to the router is defined through six methods: Register, Unregister, Subscribe,
Unsubscribe, Send and Receive, as well as the constructor and destructor. These methods
function in a fairly straightforward manner, and are summarized in the following table:

Table 20: Router Client Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS

IpcClient-c A character string for the Creates sockets for sending None.
client name, and an and receiving messages.
integer for the port.

-IpcClientc None. Closes socket connections to None.
router.

Register None. Sends registration message to True if router sends
router. acknowledgement.

Unregister None. Sends an unregistration to the True if router sends
message router, acknowledgement.

Subscribe Message type as a Sends a subscription request True if message sent
character string, to the message router. successfully.

Unsubscribe Message type as a Sends an unsubscription to the True if message sent
character string, message router, successfully.

Send IpcMessages structure to Sends a message to the True if message sent
send. router. successfully.

Receive lpcMessage s structure to Checks if a message has been True if message has
store received message in. received. (Timeout is set to 2 been received.

seconds.)

Source code for a Minimal Client Application

The following source code implements an application that communicates with the router. It
can serve as a template for future ACD modules.

#include <stdio.h>

#include "ipc_client. h"

int main (int argc, char **argv) {

//display usage if wrong number of command line arguments
if (argc !=3) {

printf("Usage: os <client name> <port> \n '" argv[O]);
return 1;}

int port = atoi (argv[2]);

IpcClientc *router = new IpcClient c(argv[1], port);

DRDC Toronto TM 2002-026 47

IpcMessages message 1, message2;

if (!router->RegisterO) {
printf("Error: Failed to connect to router. In");
return 1;

}

printf("Client registration was successfulhn") ;

router- >Subscribe("TESTMESSA GE"));

//set up test message
sprintf(messagel. hdr. type, "TESTMESSAGE');
messagel.hdr.size = 13;
sprintf(messagel.data, "Hello, World!'");

router->Send(messagel);

I/wait for message to be received
while(]) f

if (router- >Receive(&message2)) {
printf ("Received message: In'";
printf("%s ln ", recvMessage- >hdr. type);
break,;

I

router-> UnregisterO,;
delete'router));

return 0;
4

48 DRDC Toronto TM 2002-02 6

The Tracker

Overview

A Polhemus motion tracker device is used to determine head movements relative to a fixed
base. The client program communicates with the tracker via a serial port, and sends x, y, z,
heading, pitch and roll information by UDP to the message router.

tracker c

A C++ class, trackerc, handles communication with the Polhemus motion tracker. It sets up
a shared memory area, which is accessed by other applications in order to determine the
current position of the tracker. The methods are summarized in the following table:

Table 21: trackerc Methods

METHOD ARGUMENTS FUNCTIONALITY RETURNS

tracker co A character string Initialises tracker device. None.
representing the device
the tracker is connected to.

-tracker co None. Closes tracker device and None.
removes shared memory area.

updateo None. Polls for a record from the None.
tracker device, and copies it to
the shared memory area.

set-verboseo None. Toggles verbosity. When None.
verbose, the tracker prints
every record read to the
standard output.

DRDC Toronto TM 2002-026 49

The trackerc constructor assumes default alignment and hemisphere position, and sets the
baud rate to 38400. It sets up the tracker to produce the following record format:

Table 22: Tracker Data Record Format

BYTE VALUE

0 0 (indicates data record)

1 Tracker station number

2 System Error Code

3-6 X

7-10 Y

11-14 Z

15-18 Heading

19-22 Pitch

23-26 Roll

27- 28 <cr><If> (indicates end of record)

The Client Application

The client application is called tracker, and is invoked as follows:

tracker <port name>

Optionally, a -v option can be specified on the command line, in which case the tracker will
operate in verbose mode, printing each record sent to the screen as well as sending it to the
router.

The client application creates a tracker-c object that handles all communication with the
tracker. It maintains a timer, which is used to send tracker positional information to the
message router (for data collection purposes.) The frequency that messages are sent is
controlled by the SENDFREQ constant.

50 DRDC Toronto TM 2002-026

The Sims

Overview

The Sims provide simulations for the flight systems of the CF-I 8 ACD. The majority of the
simulations are quite straightforward, extracting data from FLSIM and providing it to the
VAPS display. Only the Mission Computer, the Stores Management System and the Radar
provide much functionality beyond this, and are discussed in detail below. The remaining
simulations are summarized in the table below:

Table 23: Sim Classes

NAME DATA TYPE FILES PURPOSE

ADI (Attitude Direction ADIc adi.h, adi.cpp Get AD! data from FLSIM, and
Indicator) copy in to shared memory

area.
Audio Audioc audio.h, audio.cpp Handle communication with an

external audio process.
Bezel Bezel c bezel.h, bezel.cpp Handle bezel presses.

Checklist CHKLSTc chklst.h, chklst.cpp Get checklist data from FLSIM,
and copy in to shared memory
area.

DDI Manager DDlmgrc ddi-mgr.h, ddi-mgr.cpp Manage DDI displays

Engines ENGc eng.h, eng.cpp Get engines data from FLSIM,
and copy in to shared memory
area.

FCS (Flight Control System) FCS-c fcs.h, fcs.cpp Get fcs data from FLSIM and
copy in to shared memory
area.

Mission Computer MissionCompc mc.h, mc.cpp Process input from controls.

Radar RDRc rdr.h, rdr.cpp A/A radar simulation

Sim N/A sim.cpp, main.cpp Get data from FLSIM via UDP.
Handle execution of other
classes in the simulation.

Sim Module SimModulec simmodule.h, Super class for other classes
sim_module.cpp in the Sims. Handles shared

memory.

Mission Computer

The mission computer simulation processes messages received from the controls and passes it
along to other parts of the ACD. It updates the shared memory pool that is used to
communicate with FLSIM. It calls methods of other classes in the Sim to update values
(particularly for the Radar and the Stores Management System.) It also sends messages to
router.

DRDC Toronto TM 2002-026 51

The mission computer has two modes, based on whether the FUR is active or not. When the
FLIR is active, button presses and streaming TDC data that would normally be passed along
to the Stores Management simulation are instead sent to the router in a FLIRDATA message.

The following table summarizes the action of the mission computer when a particular discrete
value is received:

Table 24: Mission Computer Discrete Value Handling

DISCRETE VALUE ACTION

CF18_WPNSELSWAIM7 Calls SetAAWeapon in stores management simulation.
CF18_WPNSELSWAIM9
CF18 WPNSELSWGUN
CF18_TRIGERSWOFF Calls FireTriggerRelease method in stores management simulation.

CF18_SENSORSWRGT Deactivates FLIR and calls SetTdcHome method in ddimgr.
CF18_SENSORSWLFT
CF18_SENSORSWDN
CF18_SENSORSWUP Activates FLIR.

CF18_WPNRELSWOFF Sets _wpnrel dep to false in stores management simulation.

CF18_WPNRELSWDEP Sets _wpnrel dep to true in stores management simulation,

CF18_TDCSWOFF Calls TdcRelease method in ddi-mgr.

CF18_TDCSWDEP If FLIR is active, sets designate to true; otherwise, calls TdcPress method in
ddimgr.

CF18_COMMSWOFF Sets mastermode to Navigation. Calls SetMasterMode method in stores
management simulation, and SetRdrMasterMode in radar simulation.

CF18_COMMSWNO1 Sets mastermode to Air-to-Air. Calls SetMasterMode method in stores
management simulation, and SetRdrMasterMode in radar simulation.
Sends a MASTERMODE message to the router.

CF18_COMMSW_NO2 Sets master mode to Air-to-Ground. Calls SetMasterMode method in stores
management simulation, and SetRdrMasterMode in radar simulation.
Sends a MASTERMODE message to the router.

CF18_CAGEUNCAGEOFF None.
CF18_CAGEUNCAGEDEP
CF18_CHAFFLARSWOFF None.
CF18_CHAFFLARSWFLARE
CF18_CHAFFLARSWCHAFF Sends a THREATDETECTED message to the router.

CF18_ATDSWDEP If the FLIR is active, sets zoom to true.

CF18_ATCSWOFF None.

CF18_RAIDFLIRSWDEP None.

CF18_UNDESIGSWDEP If the FLIR is active, sets undesignate to true, and sets is designated to
false in the stores management simulation; otherwise, calls the
BumpAcquisition method in the radar simulation.

52 DRDC Toronto TM 2002-026

Stores Management

In addition to tracking the levels of stores present on the CF-18, the Stores Management
Simulation also controls weapons firing.

An environmental variable, CF 18_SMSDATA, contains the location of the Stores
configuration file. A CF-1 8 has nine stations on which weapons can be mounted. On stations
2 and 8 it is possible to mount more than one weapon. The stations on a CF- 18 are illustrated
in Figure 6, below.

9 8R 8L T 3 2R 2L 1

6 5 4

Figure 6. Stations on a CF-18

The Stores configuration file defines the contents of each station. Each line contains
information for one of the stations. The format is as follows:

<station> <weapon type> <# of rounds>

Station 0 represents the gun. The available weapon types are GBU 12, GBU16, GBU24,
AIM7, AIM9, FUEL, and FLIR. FUEL represents a weapon station that is taken up by a fuel
container. The FLIR pod also takes up a station, and is normally mounted on station 3.

As mentioned above, the Stores Management system also handles weapons firing. Different
firing mechanisms are present for A/A and A/G weapons. The A/A weapons were supported
in a previous configuration of the ACD, but are not part of the present experimental
requirements. The code implementing them was updated so that it made use of the message
router, but the code was otherwise untouched. Previously, there was no support for A/G -
weapons at all, so this has been added. The remainder of this section discusses A/G weapons
only.

The weapon firing mechanism relies upon receiving DESIGNATE and UNDESIGNATE
messages from the router. When a DESIGNATE message is received, a copy of the
DesignateMsgs is placed in the member variable _designated target, and the boolean
-is designated is set to true. An UNDESIGNATE message sets is designated to false. The
target information is used when generating a WEAPON FIRED message. The

is designated must be set in order for a weapon to be fired.

If the ACD is in A/G master mode and a target is designated, the Stores Management
simulation immediate begins calculating time-to-go (TTG) and producing TT REL messages
twice per second. These values are determined by the ground range between the CF-18 and
the target, and based upon the air speed of the CF-18. TT REL messages are used to
determine when to display the bomb release indicator on the HMD symbology.

DRDC Toronto TM 2002-026 53

When TTG reaches zero, the FireAGWeapon method is called. This method will fire a bomb
at the designated target, if the following conditions are true: the master mode is A/G, the CF-
18 weapon systems are armed, a target is designated, and the weapon release button has been
depressed. If a weapon is fired, a WEAPONFIRED message is sent to the router, and the
_wpn fired flag is set to true. This flag prevents another weapon from being released until
the current weapon impacts. Now, instead of TTREL messages, the Stores Management
simulation produces TTI messages containing the time to impact.

TTRelMsg_s and TTIMsgs define TTREL and TTI messages respectively. Both contain
one variable, seconds, which is a double. WEAPONFIRED messages have the following
structure:

typedefstruct (
char name[32];
char target[32];
double x, y, z;
char weapon type[32];

} WeaponFireMsg_s,"

Name contains the name of the entity that is firing a weapon. For the CF-I18, it is set to
ownship. Target is the name of the entity being fired at. X, Y, Z contain the location of the
entity being fired at. Weapon type is the type of weapon being released. Currently, it will
one of: LGB (for any bomb), A1M7, AIM9 or GUN.

Radar

The radar simulation receives RADARUPDATE messages from the message router and
processes the information for the VAPS radar display.

RADARUPDATE messages are defined by the following two data structures:

typedef struct {
float srange; //slant range
float bearing; //relative bearing
float elevation; I/elevation
float relalt; //relative altitude
float balt; //barometric altitude
float tas; //true airspeed
float cl-rate; //closure rate
float thdg; I/true heading
float mach; //mach number
float brg2ownAc; //bearing from tgt to ownship

} RadarTgtlnfos;

typedef struct {
char name[32]; //entity name
char action[32]; I/either DELETE or UPDA TE
int tgtidx, //target index number
RadarTgtlnfo s tgt info;

54 DRDC Toronto TM 2002-026

} RadarMsgs;

The radar simulation uses a target index (tgtidx) internally to track entities. The name is
used to produce DESIGNATE messages for the router. The number of targets the radar can
track is defined by the constant MAXTGT. The value is currently 10.

The radar simulation does not determine what entities are visible to it, so any entity passed to
it in a RADAR UPDATE message will be displayed upon the radar. When STAGE was used
as the scenario framework, it provided the radar model for the ACD. The Scenario
Framework does not currently have a radar model, as it is anticipated that STRIVE will
eventually be used to provide this functionality.

DRDC Toronto TM 2002-026 55

This page intentionally left blank

56 DRDC Toronto TM 2002-026

Conclusion

This document has outlined the software architecture of the CF-18 ACD, concentrating on the
interprocess communication that ties together the various components of the whole. In
particular, the following components were discussed:

"* Controls

"* Data Collection

"* FLSIM

* Scenario Framework

"* Helmet Mounted Display

"* Message Router

"• Polhemus Motion Tracker client

"* Simulations.

It is envisioned that as components are added to the CF-18 ACD, this document will need to
be revised. Specifically, it is anticipated that the following sections will be added in the next
revision:

"* Weapons Models

"* Scene Generation Interface

"* Experimenters Workstation

"* VAPS Applications

DRDC Toronto TM 2002-026 57

This page intentionally left blank

58 DRDC Toronto TM 2002-026

Annex A

Header Files

The header files defining the most commonly used data types in the CF-18 ACD are
reproduced here for convenience.

ACDMSG.H

#ifndef _ACDMSG_H
#define _ACDMSG_H

/ CONSTANTS

#define MAXBUFSIZE 4600

/ STRUCTURES

typedef struct
{

nt msgType ;
int msgSubType ;

int size;
} AcdMsgHdr-s;

typedef struct

AcdMsgHdrs hdr;
char data[MAX_BUF_SIZE];

} AcdMsg_s;

#endif

CF18_MSGTYPES.H

#ifndef _CF18_MSGTYPES_H
#define _CF18_MSGTYPES_H

/ CONSTANTS

const int MAXRADARTARGETS = 10;

/ ENUMERATIONS

typedef enum
{

CF18_MSG_FLTCTRL = 80,

DRDC Toronto TM 2002-026 59

CF18_MSGSENSOR,
CF18_MSGSTORES,
CF18_MSGEW,

CF18_MSGMC,
CF18_MSGNAy,
CF18_MSGCOMM,
CFiBMSGDISPLAY,

CF18_MSGAUDIO

ICF18-MsgTypes~e;

typedef enuin

CF18_FLTCTLSTREAMSTICKDATA 8000,
CF18-FLTCTL-STREAM_-THR-DATA,
CF18_FLTCTLSTREAMTDC-DATA,

CF18-FLTCTL-EVENT_-DATA
ICFl8FltCtltoSimFlsimMsgSubTypes-e;

typedlef enuin

{ F8TIS-N 00
CF18_TRIMSWANU 8020,

CF18_TRIMSW_-RWD I 8022

CF18_TRIMSW__LWDI 8023

CR18_TRIMSW__OFFI 8024

CR18_SENSORSWJJP, II8025
CF18_SENSORSW-DN, II8026
CF18_SENSORSW RGT, II8027
CR18_SENSORSWýLFT, II8028
CF18_WPNSELSW-AIM7, II8029
CF18 WPNSELSW AIM9, II8030
CR18_WPNSELSW -GUN, //8031
CR18_TRIGERSW-OFF, //8032

CF18_TRIGERSW-DET1, //8033
CF18_TRIGERSW-DET2, II8034
CF18-UNDESIGSW OFF, II8035
CF18_UNDESIGSW-DEP, II8036
CF18_WPNRELSW OFF, II8037
CF18_WPNRELSW-DEP, II8038
CF18_PADELSW OFF, //8039
CR18_PADELSW-DEP, II8030
CF18_RAIDFLIRSWOFF, II8041
CR18_RAIDFLIRSW_-DEP, II8042
CR18_SPEEDBR.AKEOFF, II8043
CF18_SPEEDBRAKEEXT, II8044
CR18_SPEEDBRAKERET, II8045
CR18_TDCSW OFF, II8046
CF18_TDCSW-DEP, II8047
CF18_COMMSW OFF, II8048
CF18-COMMSW -Nol, 1/8049
CF18_COMMSWNO2, II8050
CF18_CAGEUNCAGEOFF, II8051
CR18_CAGEUNCAGEDEP, II8052
CF18-CHAFFLARSW_-OFF, II8053
CR18_CHAFFLARSWFLARE, II8054
CF18_-CHAFFLARSWCHAFF, II8055
CF18_ATCSW OFF, II8056
CF18-ATDSWDEPI 8057
CR18_IDENTSWOFFI 8058
CR18_IDENTSWDEPI 8059

60 DRDC Toronto TM 2002 -026

CF18_RDROPRSOFF, /18060
CF18_RDROPRSSTBY, II8061
CF18_RDROPRSOPR, //8062
CF18_RDROPRSEMERG, 1/8063
CF18_MKASTERARM ARM, 1/8064
CF184MASTERARM SAFE, II8065
CF18-MASTERMYODE AAI 8066
CF18j-MASTERMODE-AG, II 067
CF18_MASTERMODE-NAV, /18068
CF18_LEFTBRAKE OFF, /18069
CF18_LEFTBRAKE-ON, /18070
CF18_RIGHTBRAI{E OFF, /18071
CF18_RIGHTBRAKE-ON, II8072
CF18-GEARSWITCH UP, II8073
CF18-GEARSWITCH-DN, II8074
CF18-FLAPSWITCH -FULL, II8075
CF18-FLAPSWITCH-HALF, II8076
CF18_FLAPSWITCH AUTO, 1/8077
CF18_PARKBRAKE OFF, 1/8078
CF18_PAPRKBRAKE-ON, II8079
CF18_PARKBRAKE-EMERG 1/8080

}CF18_FltCtlSwitchTypes~e;

typedef enum

CF18_RDRTGTADD =8100,
CF18_RDRTGTDEL,
CF18_LRDR_-TGT_UPDT

ICF1 8StgToRdrMsgSubTypes-e;

typedef enuin

CF18_RDRMODE_.AA = 8150,
CF18_RDRMODE AG,
CF18_RDRMODENAV
// etc ...

}CF18_RdrToStgMsgSubTypes-e;

typedef enum

CF18_WPNRELEASE = 8200,
CF18_WPNJETTISON,
CF18_WPNSTOP-FIRE

ICF18_SmsToStgMsgSubTypes-e;

typedef enum

CF18_AUDGUNSTART = 8800,
CF18_,AUD_GUNSTOP,
CF18__AUDMISSILEFIREL,
CF18_AUDMISSILEFIRER,
CF18_AUD_CHAFF,
CF18_AUDFLARE,
CF18_AUDAIM9_SRCH,
CF18_AUDAIM9_LOCK,
CF18_AUDAIM9_STOP

ICF18_AudiomsgSubTypes-e;

IISTRUCTURES

DRDC Toronto TM 2002-026 61

typedef struct

float srange;
float bearing; //relative bearing
float elevation;
float relalt;
float balt;
float tas;
float cl-rate;
float thdg;
float mach;
float brg2ownAc; IIrelative bearing

ICFl8_StgToRdrTargetlnfo~s;

typedef struct

mnt tgt-idx;
CFl8-StgToRdrTargetlnfo-s tgt-info;

ICFl8-StgToRdrTargetMsg-s;

typedef struct
int new-page;

ICFl8-MessageToDisplays~s;

typedef struct

mnt tgt;
mnt wpn;

ICF18_SiinToStgWpni4sg-s;

typedef struct (
float stickLat;
float stickLon;
float pedal;
float rightBrakePos;
float leftBrakePos;
mnt trimSw;

ICFl8-FltCtl_StickPedalGearP~s;

typedef struct (
float leftTLA;
float rightTLA;
float TDClon;
float TDClat;
float antEle;
float speedBrakePos;

ICFlBFltCtrlThrottle~s;

typedef struct

fla{Dln
float TDClon;

ICF1l8FltCtrl-TDC-s;

typedef struct

mnt event;
ICF18_FltCtrl_Discrete~s;

62 DRDC Toronto TM 2002-026

typedef struct

int event;
I CF18_Audio~s;

#endif

IPCCLIENT.H

#ifndef _IPCCLIENTH
#define _IPC-CLIENTH

#include "udp-comxn.h"

#include "ipc-settings~h

/ /CONSTANTS
#define MAX_LEN 1024
#define BUFFER-SIZE 960
#define ACKTIMEOUT 2000
const int MAXCONNECTATTEMPTS =5;

//DATA TYPES

typedef struct{
char type[32];
int size;

I IpcMessageHeader-s;

typedef struct f
IpcMessageHeader-s hdr;

char data[BUFFER SIZE];
I IpcMessage~s;

typedef struct
char name[32];
char addr[32];
int port;

} IpcRegMsg-s;

typedef struct
char naine[32];
char type[32];

I IpcSubMsg~s;

class IpcClient-c

private:
UDPChannel-c* _reg;
UDPChannel-c* _toRouter;
UDPChannel-c* _fromRouter;
int _registered.;
char _name[321;
mnt _port;

DRDC Toronto TM 2002-026 63

public:
IpcClient~c(char* name, int port);

int Registero;

int Unregister();

int Subscribe(char *type);
int Unsubscribe(char *type);

int Send(IpcMessage~s* message);
int Receive(IpcMessage-s* message);

#endif

IPCSETTINGS.H

#ifndef _IPCSETTINGSH_
#define _IPCSETTINGSH_

#define ROUTERREGPORT 9000
#define ROUTERCOMPORT 9001

const char DEFAULT_-ROUTER -HOST[32] ="acd2';
const char ROUTER ADDR[32] = '1131.136.72.3";
const char OWNADDR[32] "131.136.72.3";

#endif

LIST.H

#ifndef _LISTH
#define _LIST_H

//INCLUDES

#include <stdio.h>

IISTRUCTURES

struct list-node

struct list-node
*next,
*prev;

mnt priority;
void *data;

64 DRDC Toronto TM 2002-026

typedef struct list-node ListNode~s;

IICLASS DEFINITIONS

IIClass:

//Purpose:

//Created:

//Revisions:

#ifdef _W1N32_EXPORT
class __declspec(dllexport) List_c
#else
class List-c
#endif

protected:
ListNode-s *-pHead;
ListNode-s *-pTail;

public:

List-c(void);
-List-c(void);
int _count;

int IsEmpty(void) { return (pHead ==NULL); 1

void Empty(void);

ListNode-s *FirstElement(void);
ListNode-s *LastElement(void);
ListNode-s *NextElement(ListNode-s *current);
ListNode-s *PrevElement(ListNode-s *current);

void InsertAfter(ListNode_s *after, ListNode-s *pNewNode);
void InsertBefore(ListNode-s *before, ListNode~s *pNewNode);
void Enqueue(ListNode_s *pNewNode);
void Enqueue(void *data, mnt size);
void Push(void *data, mnt size);
void Push(ListNode-s *pNewNode);

mnt Count o;

void Delete(ListNode_s *element);

void AddNodeWithPriority(ListNode-s *pNewNode, mnt priority);
void AddNodewithPriority(void *data, mnt size, mnt priority);

//FUNCTION PROTOTYPES

DRDC Toronto TM 2002-026 65

ListNode-s *CreateNode(void *data, int size);
ListNode-s *MakeNode(void *data, int size);

#endif

PERIODICPROCESS.H

ifndef _PERIODICPROCESSH
#define _PERIODICPROCESSH

#include <pthread~h
#include 'tirner.h"

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

class PeriodicProcess-c

protected:

friend void *PeriodicUpdate(void *arg);

void (*_pFunc) (void *arg);
mnt _period; //msecs
Timer-c -updateTimer;

pthread-t _threadID;
pthread-once-t _doonce;
pthread-mutex-t _pauseResume;

mnt -done;

public:

PeriodicProcess-c(void (*func~ptr) (void *), mnt milliseconds, mnt
start=l);

void Start(void);
void Pause(void) { pthread_mutexjlock(&-pauseResume);)
void Resume(void) { pthread mutex_unlock(&_pauseResume); 1
void Kill (void) { -done =TRUE;)
void Exit(void) f -done =TRUE;)
void SetPeriod(int milliseconds) (_period = milliseconds;)
mnt GetPeriod(void) (return _period; };
void WaitForCompletion(void) { pthread-join(-threadIO, NULL); 1
void Doonce(void (*func~ptr) (void));

#endif

SEMAPHOR.H

#ifndef SEMAPHORH

66 DRDC Toronto TM 2002-026

#define SEMAPHOR_H

class Semaphore-c
{

public:

Semaphore_c(int semid);
-Semaphore_c(void) J}

void Lock(void);
void Unlock(void);

void Increment(void);
void Decrement(void);

void Destroy(void);

protected:

int _SemKey;
int _SemId;

}i;

#endif

SHMPOOL.H

#ifndef SHM_POOL_H
#define SHM_POOL_H

#include "semaphor.h"

#define POOLNAMESIZE 32
#define MAGICNAMESIZE 8

#define DEFAULT DIRSIZE 100

#define DEFAULTSHM_SIZE 50000

#define MAGICSTR "shmrpool"

#define ROUND-TO 64(size,new size) if ((size) % 8) \
(new-size) = (size) + (8 - ((size) % 8)); \
else (new-size) = (size);

enum
{

NOLOCK,
LOCK

typedef struct
{

char name[POOLNAMESIZE];
int offset,

size;
I DirectoryEntry s;

DRDC Toronto TM 2002-026 67

typedef struct

int free~ptr; //Pointer to the start of free memory
int number-of-entries; IISize of the directory
mnt size; //Size of the shared memory
mnt sem key; //Key for the semaphore used to lock this

memory
char magic[MAGIC_NAME_SIZE];

IDirectoryHeader~s;

class SharedPool-c

public:

SharedPool~c(unsigned mnt key, unsigned mnt size,
mnt dir-size=DEFAULTDIRSIZE, mnt sem key =-1);

SharedPool~c(unsigned mnt key);

-SharedPool-c(void);

mnt Destroy(void);
mnt Exists(void);

void *Allocate(char *name, unsigned mnt size);
mnt Deallocate(char *name);
void *GetAddress~f (char *name);
mnt GetSize~f(char *name);

mnt Size(void) { return -pDirHeader->size;)

void Lock(void) { -pSemaphore->Lock();)
void Unlock(void) { _pSemaphore->tinlock();)

DirectoryHeader_s *GetDirectoryHeader(void) { return _pDirHeader;
DirectoryEntry-s *Directory(int i) {return &-pDirectory~i];I

protected:

mnt Attach(void);
mnt Detach(void);
int Create(void);
mnt Get(void);
mnt RemoveExisting(void);

Semaphore-c *-pSemaphore;

unsigned mnt -size;
unsigned mnt -key;
mnt _shinHandle;

void *_pLogicalAddress;

DirectoryHeader~s *_pDirHeader;
DirectoryEntry-s *_pDirectory;

void DumpSegment (DirectoryEntry-s *ent);

#endif

68 DRDC Toronto TM 2002-026

TIMER.H

#ifndef _TIMER_H
#define _TIMER_H

class Timer_c
{

int startSeconds; // Seconds when timer was last reset
int startUseconds; // Microseconds remainder when timer was reset

public:

Timer_c(void) { Reset(););

void Reset(void);
int ElapsedMilliseconds(void);
int ElapsedMicroseconds(void);
int ElapsedSeconds(void);
int GetCurrentTimeInSeconds(void);
void WaitMilliseconds(int milli);

#endif

TYPES.H

#ifndef TYPESH_
#define TYPESH_

const double DTOR= 0.01745.3292519943295769236907684;
const double RTOD = 57.295779513082320876798154814105;

enum flirmode-e {SNOWPLOW, DESIGNATE, AUTOTRACK];

enum flir_zoom-e {WIDE, NARROW);

enumn ttge (TTG, TTI};

enum mmie {A.A, AG};

typedef struct {
float x, y, z, h, p, r;

] poss;

typedef struct {
pos-s cfl8; //cfl8 position
pos-s head; //head position
poss flir; //flir position

int airspeed;
int altitude;

float aoa; //angle of attack
float mach; //mach number
float acc; //accelaration

DRDC Toronto TM 2002-026 69

float peak-acc; //peak accelaration

int ttr-tti; I// if TTR, 1 if TTG
int ttg-seconds; I/number of seconds for TTR/TTG
int is-designated; I// if undesigated, 1 if designated

mnt wpnumTber; //current way point number
float distance-to-wp; //distance to waypoint
mnt master-mode; //current master mode

char target~name[32];
pos~s target-loc;
float target-bearing;
float target-elevation;
float target-range;

mnt flir-zoom;
mnt flir-mode;

mnt blink; I/used to control elements that blink

Iotw-data~s;

#endif

UDPCOMM.H

#ifndef _UDP_COM@4_H
#define _UDPCOI'4I-H

#include <netinet/in.h> /* sockaddr-in, s-addr ~

typedef enum

UDPACTIVE,
UDP_INACTIVE

IUDPState-e;

typedef enurn

UDPRECVPORT,
UDPRECVADDR,

UDPSEND_PORT,
UDPSENDADDR,
UDP_REC'V_BUF,
UD?_SENDBUF

IUDPAttr-e;

enuin

UDPTRANSCEIVE,
UDPSEND,
UDPRECEIVE

class UDPChannel-c

public:

70 DRDC Toronto TM 2002-026

UDPChannel-c (it mode=UDPTRM'ISCEIVE);
-UDPChannel~c(void);

mnt RecvMessage(char *msg,int maxilen);
int RecvMessage(char *msg,int max len,int milliseconds-timeout);

mnt SendMessage(char *msg,int size);

void Set(int which, mnt what);
void Set(int which, char *what);

void Start(void);

void Stop(void);

private:

mnt _recvChan;
mnt _sendChan;
mnt _sendPort,

-recvPort;
mnt _mode;

mnt _recvBufSize;
mnt _send~ufSize;

mnt _blockingForlo;

unsigned mnt _sendAddr,
-recvAddr;

char _ourHostnarne[128],
-ourlPStr[64];

UDPState-e _channeiState;

struct in-addr _ourlP;

struct sockaddr-in _sendSocketAddr,
-recvSocketAddr;

void CreateSendSocket(unsigned int send-addr);
void CreateRecvSocket(unsigned mnt recv-addr);

#endif

DRDC Toronto TM 2002-026 71

This page intentionally left blank

72 DRDC Toronto TM 2002-026

Bibliography_B ib_ _ .o Ra h Y ,

Kaiser Electro Optics, Inc., SIM EYE XL 1000 Owner's Manual. (1999)

Virtual Prototypes Inc., FLSIM Programmer's Guide Version 7. (1998)

DRDC Toronto TM 2002-026 73

This page intentionally left blank

74 DRDC Toronto TM 2002-026

List of symbols/abbreviations!acronyms/initial isms

A/A Air to Air

A/G Air to Ground

ACD Aircraft Crewstation Demonstrator

ADI Attitude Direction Indicator

API Application Program Interface

COTS Commercial Off The Shelf

CSV Comma Separated Value

DRDC Toronto Defence R&D Canada Toronto

DDI Digital Display Interface

DND Department of National Defence

FLIR Forward Looking Infrared

FOV Field of View

HAT Height Above Terrain

HMD Helmet Mounted Display

HOTAS Hands on Throttle and Stick

HUD Heads Up Display

IPC Interprocess Communication

LGB Laser Guided Bomb

OTW Out The Window

RGB Red Green Blue

TTI Time To Impact

UDP User Datagram Protocol

DRDC Toronto TM 2002-026 75

DOCUMENT CONTROL DATA SHEET

la. PERFORMING AGENCY 2. SECURITY CLASSIFICATION

DRDC Toronto UNCLASSIFIED

lb. PUBLISHING AGENCY

DRDC Toronto

3. TITLE

(U) Software documentation for CF-18 ACD

4. AUTHORS

Dan Minor, Philip S.E. Farrell

5. DATE OF PUBLICATION 6. NO. OF PAGES

April 1 ,2002 87

7. DESCRIPTIVE NOTES

8. SPONSORING/MONITORING/CONTRACTING/TASKING AGENCY
Sponsoring Agency: DRDC Toronto

Monitoring Agency:

Contracting Agency:

Tasking Agency:

9. ORIGINATORS DOCUMENT NO. 10. CONTRACT GRANT AND/OR 11. OTHER DOCUMENT NOS.

PROJECT NO.

Technical Memorandum TM 3ib15
2002-026

12. DOCUMENT RELEASABILITY

Unlimited distribution but distribution must be pre-approved by DRDC Toronto author

13. DOCUMENT ANNOUNCEMENT

Unlimited announcement

14. ABSTRACT

(U) Since 1998, The Aircraft Crewstation Demonstrator (ACD) has provided the opportunity for
scientists and practitioners to review interface designs in a dynamic setting with the human-in-the-loop.
This document serves as a reference for the software developed to support the CF-1 8 ACD that resides at
DCIEM.
The ACD has a very modular architecture, which allows for components to be added and removed over
time. As such, the ACD is best described in terms of its individual components. The modular nature of
the ACD, combined with the physical separation of the software components across several computers,
makes interprocess communication of central importance to the software architecture. As such this
document gives a comprehensive view of the interprocess communication that occurs during the running
of the ACD, before treating each component in depth.
This document is current as of January 17, 2002. It is anticipated that as other components are added to
the CF-1 8 ACD, this reference document will also need to be updated.

15. KEYWORDS, DESCRIPTORS or IDENTIFIERS

(U) software documentation; Aircraft Crewstation Demonstrator; Simulator; Helmet Mounted Display

Defence R&D Canada

is the national authority for providing

Science and Technology (S&T) leadership

in the advancement and maintenance

of Canada's defence capabilities.

R et D pour la d6fense Canada

est responsable, au niveau national, pour

les sciences et la technologie (S et T)

au service de l'avancement et du maintien des

capacit6s de d6fense du Canada.

DEFENCE DEFENSE

www.drdc-rddc.dnd.ca

