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1    Introduction 

Observations have shown that convecting storms create significant internal wave ac- 

tivity; see for example the recent satelite observations of Dewan, et al [1]. Direct 

numerical simulations [2, 3, 4, 5] also have identified convective storms as a source 

of gravity waves. There is little doubt that convection creates wave energy in the 

atmosphere. Internal waves in the atmosphere may be created by other phenomena, 

as well as convection. The other phenomena most often blamed for wavemaking are 

jet streams, fronts, and flow over mountains. The relative importance of the different 

wave sources is a topic of current debate. 

The mechanism of gravity wave generation by convecting storms is not clear. Clark 

[2] claims there are two mechanisms. The first mechanism concerns the zonal flow 

(average horizontal flow) that usually exists in the atmosphere. Convection acts as 

an obstruction to this flow, deflecting the airflow over and around the thunderstorm, 

analogous to flow over a mountain. This obstruction creates a pattern of steady 

waves, analogous to mountain waves. 

The second mechanism concerns an oscillation of the flow inside a thunderstorm, 

which can act as a mechanical wavemaker. Fovell, et al, [4] studied the second mecha- 

nism using an artificial mechanical oscillator in a realistic atmosphere. The results of 

Fovell are two-dimensional direct numerical simulations. Fovell found that the simple 

mechanical oscillator created a fixed V-shaped pattern of waves. Fovell showed that 

the wave pattern is largely influenced by the zonal shear flow, and by the orienta- 

tion of the mechanical oscillator. They argue that the stratospheric waves apparent 

in the simulations are the result of an interaction between the convection and the 

tropopause. P^ealistic simulations of convecting storms have also been performed by 

Lane, et al [3], and Holton and Alexander [5]. The V-shaped wave pattern is clearly 

evident in both sets of results, similar to the waves produced by Fovell. 

Numerical simulations of a simple model of convection are considered below. The 

simulations are restricted to two spatial dimensions. The convection is modeled as a 

vortex pair, scaled to match the typical size and strength of a real convecting storm. 

However, the tremendous complexity of an actual storm is not included. Instead, by 



including only the simple model of the large scale flow, and the resulting gravity wave 

activity, the relationship between convection and waves is more easily understood. 

Previous numerical simulations by Hill [6] also considered a vortex pair in a strat- 

ified fluid. Waves are not mentioned in Hill's work, and the results focus on the 

movement of the center of the vortex. The size and strength of the vortices of Hill 

were chosen to represent the motion of trailing vortices behind an aircraft, rather 

than the large scale motion of storms. The stratification is weak when considering an 

aircraft's trailing vortex. The scale of a converting storm is large, and the stratifica- 

tion is relatively strong, which accounts for the difference between Hill's results and 

the results given below. 

The equations treated here are the anelastic equations. The anelastic equations 

model the dynamics of an adiabatic atmosphere approximately, and do not allow 

sound wave propagation. The lack of sound waves does not seriously affect the dy- 

namics of the internal waves, but does allow a significantly larger time step when 

compared to a numerical model of the fully compressible equations. The anelastic 

equations were first suggested by Batchelor [7], and then further developed by several 

authors [8],[9],[10]. The original anelastic equations have a flaw; the linear solution 

does not match the linear solution of the fully compressible equations. It was later 

shown that the pressure term was incorrect. Bacmeister and Schoeberl [11] provide 

a concise derivation of the corrected anelastic equations. 

The numerical method is spectral in space with periodic sidewall boundaries, and 

rigid boundaries on the top and bottom. A wave damping layer is also included near 

the top boundary. The temporal algorithm is semi-implicit, and uses a formulation 

where the pressure and the horizontal velocity are eliminated from the linear terms 

in the equations. Details are provided by McHugh [12]. 

Three base states are considered; a constant density case, a constant Brunt-Vaisala 

case, and a case with two layers, each with its own constant value of the Brunt-Vaisala 

frequency. This last case models the atmosphere in the region of the tropopause. 



2    Governing equations 

Although the results given later are two dimensional, the equations and numerical 

methods are capable of three dimensions, and are developed here in three dimensions. 

The reduction to two dimensions is discussed where appropriate. 

The anelastic equations for a compressible atmosphere are 

Du        dp*       1 ,_,, .„, 
-      y  +irV2u, (1) 

Dt dx      R e 

Dv        Lxdp*  ,   1    2 

Dt        Ly dy     R, 
+ TTV\ (2) 

Dw        Lxdp*  ,   1 9 ,   1    2 

Dt Lz 8z      F?9     R{ 
+ I^TT + ir™, (3) 

where 

DO       Lxd9        1   „2/1 

D-t+mtTz = R^Ve' (4) 

dpu     Lx dpv     Lx &pw _ 
dx      Ly dy      Lz dz 

0 = T{^)\ (7) 

D       d        d        Lx d        Lx d 

Di = d-tJrUTx+vTy'dy + W^^ () 

V* = -*+£*_ + £-* (9) 
dx2     L2

ydy2     L2
zdz2' {> 

u, v, w are the velocity components, x, y, z are the components of position, 9 is the 

potential temperature, p and 9 are the basic state density and potential temperature, 

Cp is the specific heat at constant pressure, R is the gas constant, p is the pressure, 

and po is a constant. Equations (1-3) are the momentum equations, (4) is the energy 

equation, and (5) is the continuity equation. They have been rescaled using a velocity 

scale, U, to be defined later, and a length scale, L, which is the horizontal length 

(parallel to the x direction) of the domain. Note that Lx, Ly, and Lz are length scale 



Pr-- 
V 

~    ) 
K 

F? = 
u2 

ratios which account for the difference between the physical domain lengths and the 

computational domain lengths. The density and potential temperature are rescaled 

using their respective values at the bottom of the domain (pö, 0O). The Reynolds, 

Prandtl, and Froude numbers are 

Re = ™, (10) 

(11) 

(12) 

The basic state is governed by the perfect gas law, 

p = pRT, . ■    ■   ■  .  (13) 

and the equation of static equilibrium, 

Generally the base state temperature profile, T, is chosen, and the remaining base 

state variables are determined using (7), (13), and (14). 

One important base state parameter is the Brunt-Vaisala frequency, defined as 

9~- (15) 

Rescaling this frequency as before gives the Brunt-Vaisala parameter: 

2=L£l^ = J_l^ 
U29dz      F?ddz' {    } 

where z is now dimensionless. Another base state parameter is the scale height, 

1 p. 

H     -J< <17> 



3    The Numerical Scheme 

The numerical method is that of McHugh [12]. It is similar to the normal velocity- 

normal vorticity method of Kim, Moin, and Moser [13], who studied the incompress- 

ible Navier-Stokes equations. The governing equations are reduced such that pressure 

and horizontal velocity components are eliminated from the linear terms, resulting in 

d dAi 
 V2 

dt     Re 

y2" -1 Gh J_V2* 2 Vl V?= = V2A3 + 
F/ ' l9      ' "" ' dzdxC 

where A{ is the sum of the nonlinear terms for the ith momentum equation, 

_     dui 
Ai — Uj , 

(18) 

(19) 

and 

V? 
d2 

+ Lid2 

dx2     L2 dy2' 

The order of (18) is reduced by introducing <f>: 

d n 
cf) = Vzw 

Equation (18) then becomes 

d+ - ^V2^ 

dz \H 

,9 

;W 

d dAi 
dt     RK '  r     Fr

2Vl6     V Ä3 + dzdxi 

(20) 

(21) 

(22) 

The variable (f) is retained in the calculations, and w, <j>, and 9 are determined si- 

multaneously using (21), (22), and the energy equation. The energy equation is now 

written as _ mm 
B, (23) 

89_ 

dt dz 

where B is the sum of the nonlinear terms for the energy equation, 

B = Uj- (24) 

The boundary conditions are 

w = wz = 9 = 0 (25) 



on the rigid boundaries. Note that the sidewalls are treated with periodic boundary- 

conditions, and no further enforcement is allowed. 

After w, <j>, and 6 are found, the remaining task is to determine the horizontal 

velocity, u and v. There is a particularly straightforward method of finding the 

horizontal velocity in two dimensions. Keeping x as the horizontal direction and z as 

the vertical, the continuity equation is 

ux = wz + —w 
P 

'(26) 

This equation is easily solved for u once w is available. 

In three dimensions, the vorticity equation is necessary, along with the continuity 

equation, to determine both components of velocity. The vertical vorticity equation 

for viscous flow is 

m=Re
WT] + -dx---di> : '(27) 

where r\ is the vertical component of vorticity. The boundary condition on the rigid 

boundaries is 

»7 = 0. ; (28) 

Equation (27) is solved for the vorticity, subject to (28), and then the definition of 

vorticity provides one equation for horizontal velocity: 

uy-vx = r]. (29) 

This result, along with the continuity equation, 

(30) Ux + Vy — wz + —w 
p 

are sufficient to determine u and v. 

The spatial discretization is a spectral method. The horizontal directions are ex- 

panded in Fourier series. The vertical direction uses a spectral element method, using 

Lagrange interpolants within each subdomain, collocated on the Chebyshev-Gauss- 

Lobatto points. A damping layer is used at the top of the domain as a non-reflecting 

lid. Note that the damping layer is ineffective for gravity waves with wavelengths 

greater than the damping layer thickness. 

8 



4    Initial Conditions: A vortex pair 

The initial conditions are a pair of point vortices. The velocity field for a point vortex 

is taken from the well-known similarity solution for a diffusing line vortex, as discussed 

in Sherman [14]. This similarity solution is an exact solution to the Navier-Stokes 

equations for constant density, viscous flow. In cylindrical coordinates, the velocity 

field for a single vortex located at the origin is 
r _.d. 
hrr   -    r ..   (31) 

where v is now the azimuthal velocity, r is the radial distance from the center of the 

vortex, r is the circulation around the vortex, and v is the kinematic viscosity. The 

radial component of velocity is zero. This solution is rescaled using the same length 

and velocity scale as before. The resulting azimuthal velocity is 

""s^1-«"*]• /■'■■ (32) 

where v, r, and t are now dimensionless, and the dimensionless vortex strength is 

defined as 

(?=—.'■ (33) 

Note that the solution given by (32) depends on time as well as space. Only one 

value of time was used to start the simulations. The vortex was merely used to start 

a flow that has the general characteristics of the vortex pair being studied.;   ; 

An obvious alternative to the viscous vortex is the well-known irrotational inviscid 

vortex. Similations with the irrotational vortex led to numerical instabilities, clearly 

originating at the core, where the analytic solution is unbounded. Attempts to smooth 

the initial conditions at the core, and then advance the solution with the chosen 

spectral method, were tedious and only marginally successful. Hence the irrotational 

vortex was not pursued. 

5    Results and Discussion 

The flow is initiated by releasing a pair of counterrotating vortices in an otherwise 

motionless flow. The vortex pair is chosen to rotate with a downward velocity in the 

9 



Table 1: Dimensionless parameter values 

Reynolds number 2000 

Prandtl number 1 

Froude number 1 

Vortex strength 1 

Lx/Lz 1 

region between the vortices. This choice is based on the initiation of a storm event 

.in the atmosphere, which is well-known to result in a downward wind in the storm 

center. The vortices are initially located at one quarter of the domain height from 

the bottom (z=-0.5), and a dimensionless distance of 1.0 from the horizontal center. 

There is no zonal flow in the present simulations, which means that a velocity scale 

must be selected from other parameters. The velocity scale is chosen to be U = \fg~L, 

where g is the gravitational constant, and L is horizontal domain length. The Froude 

number becomes unity, the Prandtl number and the scale height are unchanged, and 

the other parameters are now 

(34) R = 

G = 

VF& 
V 

r 

TV2 

(35) 

(36) 
_1Ö0 

~6dz 

Before discussing the results for the stratified case, it is useful to consider a flow 

without stratification. The base state density, potential temperature, and pressure- 

are chosen to be constant, and the flow is started with the same initial conditions 

as the stratified case. Since the boundary conditions on temperature are homoge- 

neous, and the initial temperature field is zero, the potential temperature remains 

zero throughout the simulation for this case. The total effect is that the equations 

are reduced to the incompressible Navier-Stokes equations. Table 1 lists the chosen 

dimensionless parameter values. Table 2 lists the physical parameter values on which 

10 



Figure 3: Surface plot of velocity magnitude for the constant density case with t=1.0 

Figure 4: Surface plot of velocity magnitude for the constant density case with t=32.0 
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Figure 5: Contour plot of vorticity for the constant density case with t=1.0 
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Figure 6: Contour plot of vorticity for the constant density case with t=32.0 
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Figure 7: Base state density profiles 
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atively short time span of t=32 dimensionless units. The vortices move together 

slightly, reminiscent of the Bernoulli effect between two spinning cylinders. The vor- 

tices also decay in strength, and diffuse outward from the center of the vortex. The 

close proximity of the two vortices causes them to become elongated in the vertical, 

and to induce an upwards motion of the vortex pair. This vertically induced motion 

of a vortex pair is well-known, and is discussed in Lamb [15]. 

Now consider stratified flow. The base state is chosen to have a contant Brunt- 

Vaisala frequency, achieved with a linear variation in temperature. Figure 7 shows 

the base state density profile. The dimensionless parameter values are the same as 

those for the constant density case, as shown in Table 2, with the addition of the 

Brunt-Vaisala parameter value of 0.32. 

The results of this stratified case are shown in figures 8-19, using the same com- 

bination of velocity vector plots, surface plots of the velocity magnitude, and colored 

contour plots of the vorticity. 

The dynamics of the vortices in stratified flow are dramatically different than the 
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Figure 8: Velocity vector plot for the constant N case with t=1.0 

Figure 9: Velocity vector plot for the constant N case with t=18.0 
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Figure 10: Velocity vector plot for the constant N case with t=25.0 
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Figure 11: Velocity vector plot for the constant N case with t=32.0 
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Figure 12: Surface plot of velocity magnitude for the constant N case with t=1.0 

i 

Figure 13: Surface plot of velocity magnitude for the constant JV case with t=18.0 
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Figure 14: Surface plot of velocity magnitude for the constant N case with t=25.0 

Figure 15: Surface plot of velocity magnitude for the constant N case with t=32.0 
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Figure 16: Contour plot of vorticity for the constant N case with t=1.0 
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Figure 17: Contour plot of vorticity for the constant N case with t=18.0 
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Figure 18: Contour plot of vorticity for the constant N case with t=25.0 
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Figure 19: Contour plot of vorticity for the constant iV case with t=32.0 
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constant density case. As soon as the vortices are released in the stratified flow, they 

very rapidly lose virtually all of the kinetic energy, as shown in figures 12-15. The 

surface plot in figure 12 clearly shows the two initial vortices, although they have 

decayed somewhat when compared to the surface plot for the constant density case 

at the same time, shown in figure 1. However, the coherency of the vortices disappears 

very quickly, and is replaced with an internal wave pattern, as shown in figures 13-15. 

This conversion of energy in the vorticies into wave energy occurs in approximately 

one Brunt-Vaisala period, 
2TT ,    N 

T = N> (37) 

defined as the time for one oscillation at the Brunt-Vaisala frequency, and has a 

dimensionless value of approximately 9.8 for the chosen Brunt-Vaisala parameter value 

of 0.32. The wave motion continues, and the initial vortex pair is never reformed. 

Interaction with the damping layer at the top, and viscous dissipation, finally cause 

the wave action to decay to zero. 

It should be noted that the motion, initially symmetric about the vertical center 

of the domain, retains this symmetry during the entire simulation. Clearly the waves 

propagate rapidly to the sidewalls, and interact with the motion on the other side. 

Since the sidewalls are periodic, one may think of an identical motion on each side of 

the domain, evolving simultaneously. The results are therefore also symmetric about 

the vertical sidewall, and when wave energy impinges the sidewall, it is perfectly 

reflected due to this symmetry. This effect does not model the real atmosphere, 

although the solutions are accurate and satisfy all equations and boundary conditions. 

The results presented here focus on the motion before this reflection occurs. 

Figures 5-6 show the time evolution of the vorticity for the constant density case, 

The initial vortices retain their identity, but dissipate, elongate, and move together 

and upwards. Note that the vorticity field is antisymmetric, and the dark and bright 

spots are due to the counterrotating nature of the vortex pair. 

Figure 16 shows the vorticity contours for the stratified case after a mere ten 

time steps, and clearly the vortices are still coherent, and nearly identical to figure 

5.   Figure 17 shows two streaks of vorticity after an elapsed dimensionless time of 
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18, corresponding to the time for several oscillations at the Brunt-Vaisala frequency. 

Also evident in figure 17 are several other dark and bright spots of vorticity, in the 

vicinity of the streaks. The initial vortices do not evolve into these dark and light 

streaks, as one might assume. Instead, the initial vortices are now the small patches 

of vorticity visible on the outside of the larger streaks. The streaks of vorticity have 

been generated by the appearance of an internal wave motion, beginning to dominate 

the flow pattern. If the vorticity patches from the initial conditions are tracked, they 

are found to disappear within a time equivalent to three oscillations at the Brunt- 

Vaisala frequency. The motion of the vortex center is nearly horizontal, and moving 

away from the domain center. 

Figures 18 and 19 are later time slices of the vorticity, showing regular patterns 

of positive and negative vorticity. These patterns indicate wave motion, rather than 

any historical result of the initial vortices. It is interesting to note in figure 19 that 

two intense patches of vorticity appear near the upper corners of the domain, ap- 

proximately equal in strength to the original vortex. These patches appear as the 

wave motion reaches its greatest amplitude, as can be seen in figures 12-15, which are 

surface plots of the magnitude of the velocity at times corresponding to figures 16-19. 

This wave is not breaking, meaning the vertical gradient of potential temperature is 

a stable gradient, and the flow at this Reynolds number is not unstable. Yet one 

wonders if this motion at other parameter values could result in a Helmholtz shear 

type instability near the wave crest, and a resulting patch of turbulence. 

The third base state is a two layer case, with constant Brunt-Vaisala frequency 

in each layer. The interface between layers is located at the vertical center of the 

domain. Figure 7 shows the base state density profile for this case, as well as the 

previous case. The parameter values are identical to the second case, except now the 

upper half of the domain has a Brunt-Vaisala parameter value of 0.62, corresponding 

to a Brunt-Vaisala frquency of 0.02 1/s, typical of the stratosphere. 

The results of the two-layer case are shown in figures 20 through 31, using the same 

time values and graphics as the constant N case. The dynamics of the atmosphere 

for this two layer case is very similar to the single layer of constant N. The vortices 

lose coherency very quickly and form an internal wave pattern.   The amplitude of 
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the waves in the upper layer for this two layer case are generally greater than the 

amplitude in the one layer case. This increase in amplitude is due primarily to the 

lower density at the higher elevations, rather than any dynamic effect at the interface 

of the two layers. Note that the waves in the upper layer reach a maximum amplitude 

more quickly compared with the single layer case. 

Perhaps the most significant difference is evident in the contour plots, figures 28- 

31. Figure 28 shows the vorticity after a mere 10 time steps, and should be compared 

with figure 16, the vorticity contours for the single layer case at the same time. 

The vorticity with two layers at this early stage is nearly identical to the single layer, 

except at an elevation just above the interface between the two layers. A narrow strip 

with high levels of vorticity appears, as evident in figure 28. The dynamics in figure 

28 are not yet dominated by internal waves, but the sudden change in Brunt-Vaisala 

frequency is clearly generating a layer of motion with enhanced vorticity. 

Figure 29 shows that this layer of enhanced vorticity has evolved and generated 

two spots of strong vorticity, in addition to the spots and streaks of vorticity that 

existed with a single layer shown in figure 17. Except for this new layer of vorticity 

just above the interface of the two layers, the vorticity pattern matches the single 

layer case rather closely. 

Figures 30 and 31 show the vorticity contours for the time values corresponding to 

the single layer case, shown in figures 18 and 19. Below the interface, the dynamics of 

the two layer case appear nearly identical to the single layer case. Above the interface, 

where the Brunt-Vaisala parameter is much different, the wave motion evolves on a 

different time scale. But the basic motion is similar. This is evident by the strong 

spots of vorticity, appearing at a time of 32 for the single layer case, but near a time 

of 25 for the two layer case. In fact the basic patterns of vorticity above the interface 

between figure 19 and figure 30 compare rather well, considering the time difference 

between the two figures. 

The dispersion of energy from the original vortices is difficult to quantify, since the 

vortices become so ill-defined in a very short time. However, the flux of energy across 

a horizontal plane is a quantity indicative of the flux from the original vortex, and 

provides information concerning the later dynamics of the waves. Figure 39 shows the 
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Figure 20: Velocity vector plot for the two layer case with t=1.0 
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Figure 21: Velocity vector plot for the two layer case with t=18.0 
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Figure 22: Velocity vector plot for the two layer case with t=25.0 

Figure 23: Velocity vector plot for the two layer case with t=32-0 
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Figure 24: Surface plot of velocity magnitude for the two layer case with t=1.0 

Figure 25: Surface plot of velocity magnitude for the two layer case with t=18.0 
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Figure 26: Surface plot of velocity magnitude for the two layer case with t=25.0 

Figure 27: Surface plot of velocity magnitude for the two layer case with t=32.0 
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Figure 28: Contour plot of vorticity for the two layer case with t=1.0 
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Figure 29: Contour plot of vorticity for the two layer case with t=18.0 
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Figure 30: Contour plot of vorticity for the two layer case with t=25.0 
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Figure 31: Contour plot of vorticity for the two layer case with t=32.0 
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temporal evolution of the vertical energy flux for all three base states, where vertical 

energy flux is defined as 

Ew = w(u2 + w2), (38) 

and the overline represents a horizontal average. The value shown in figure 39 corre- 

sponds to the energy flux across the vertical center of the domain. 

The value of Ew for the constant density case starts out negative, as shown in 

figure 39, due to the strong downdraft in the region between the two vortices. As 

the vortices move upward, this energy flux gradually becomes positive and then stops 

increasing as the position of the center of the vortices approaches the vertical center 

of the domain. 

The value of Ew for the stratified cases are also shown in figure 38. Note the 

dramatic difference between the constant density case and the stratified cases. The 

single layer case very quickly shows large positive values of Ew, associated with the 

rapid transfer of vortical energy to wave energy. Then a very large negative energy 

flux occurs. This negative energy flux is associated with the complicated, wave mo- 

tion in the region between where the original vortices were located. This effect occurs 

before the elapsed time has reached even one Brunt- Vaisala period, and before any. 

significant energy has reached the boundaries. The remainder of the data shows some 

oscillations, centered around zero energy flux. The flow beyond a time of approx- 

imately 32 is likely to be affected by reflected waves off the sidewalks. Hence, the 

later wiggles in figure 38 may not be indicative of motion in a real nonsymmetric 

atmosphere. The energy flux for the two layer case is very similar to the single layer 

case. The rate of decay of the energy flux as the initial positive value changes to a 

negative value is nearly identical. 

Another measure of energy transfer is the temporal evolution of the total kinetic 

energy, defined as 

E= f p[u2 + v2) dV, (39) 

and is shown in figure 39, 'again for all three base states. The constant density case 

shows a rather slow exponential energy decay. This energy decay is clearly the result 

of viscous dissipation. Both stratified cases show much faster energy decay initially, 
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Figure 32: Vertical energy flux 

6e-06 

Constant density 
Constant N: 
Two layers 

30 40 

time 

60 70 

Figure 33: Total energy 

E 

1   ~i    ■        n 
Constant density 

Constant N 
Two layers 

70 

32 



followed by an oscillatory but gradual decay. This enhanced decay rate is caused by 

i waves rapidly transporting energy away from the vortices, finally reaching the upper 

; boundary where the energy 'escapes' by being absorbed by the damping layer.. 

6    Conclusions 

Several conclusions can be drawn: ..'■'>.■'■.'■ 
1. A vortex pair in a strongly stratified fluid rapidly loses energy to internal wave 

; motion. 

2. The original vortices move horizontally, instead of the vertical motion in a 

"I constant density flow. : ;.: !i:V';. 

3. The narrow region above the interface between layers of constant Brunt-Vaisala 

... frequency experiences an enhanced level of vorticity during the motion-:, .   ii. 
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