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1 Introduction

Observations have shown that convecting storms create significant internal wave ac-
tivity; see for example the recent satelite observations of Dewan, et al [1]. Direct
numerical simulations [2, 3, 4, 5] also have identified convective storms as a source
of gravity waves. There is little doubt that convection creates wave energy in the
atmosphere. Internal waves in the atmosphere may be created by other phenomena,
as well as convection. The other phenomena most often blamed for wavemaking are
jet streams, fronts, and flow over mountains. The relative importance of the different
wave sources is a topic of current debate. l

The mechanism of gravity wave generation by convecting storms is not élear. Clark
[2] claims there are two mechanisms. The first mechanism concerns the zonal flow
(average horizontal flow) that usually exists in the atmosphere. Convection acts as
an obstruction to this flow, deflecting the airflow over and around the thunderstorm,
analogous to flow over a mountain. This obstruction creates a patterﬁ of steady
waves, analogous to mountain waves. |

The second mechanism concerns an oscillation of the flow inside a thunderstorm,
which can act as a mechanical wavemaker. Fovell, et al, [4] studied the second mecha-
nism using an artificial mechanical oscillator in a realistic atmosphere. The results of
Fovell are two-dimensional direct numerical simulations. Fovell found that the simple
mechanical oscillator created a fixed V-shaped pattern of waves. Fovell showed that
the wave pattern is largely influenced by the zonal shear flow, and by the orienta-
tion of the mechanical oscillator. They argue that the stratospheric waves apparent
in the simulations are the result of an interaction between the convection and the
tropopause. Realistic simulations of convecting storms have also been performed by
Lane, et al [3], and Holton and Alexander [5]. The V-shaped wave pattern is clearly
evident in both sets of results, similar to the waves produced by Fovell.

Numerical simulations of a simple model of convection are considered below. The
simulations are restricted to two spatial dimensions. The convection is modeled as a
vortex pair, scaled to match the typical size and strength of a real convecting storm.

However, the tremendous complexity of an actual storm is not included. Instead, by




including only the simple model of the large scale flow, and the resulting gravity wave
activity, the relationship between convection and waves is more easily understood.

Previous numerical simulations by Hill [6] also considered a vortex pair in a strat-
ified fluid. Waves are not mentioned in Hill’s work, and the results focus on the
movement of the center of the vortex. The size and strength of the vortices of Hill |
were chosen to represent the motion of trailing vortices behind an aircraft, rather
than the large scale motion of storms. The stratification is weak when considering an
aircraft’s trailing vortex. The scale of a conv_ecfing storm is large, and the stratifica-
tion is relatively strong, which accounts for the difference between Hill’s results and
the results given below. |

The equations treated here are the anelastic equations. The anelastic equations
model the dynamics of an adiabatic atmosphere approximately, and do not allow
sound wave propagation. The lack of sound waves does not seriously affect the dy- |
namics of the internal waves, but does allow a 51gn1ﬁcantly larger time step when
compared to a numerical model of the fully compressible equations. The anelastlc
equations were first suggested by Batchelor [7], and then further developed by several
~ authors [8],[9],[10]. The original anelastic equations have a flaw; the linear solution
does ndt match the linear solution of the fully compressible equations. It was later
shown that the pressure term was incorrect. Bacmeister and Schoeberl [11] prov1de ‘
a concise derivation of the corrected anelastic equations.

The numerical method is spectral in space with periodic sidewall bounciaries, and
rigid boundaries on the top and bottom. A wave damping layer is also included near
the top boundary. The temporal algorithm is semi-implicit, and uses a formulation
where the pressure and the horizontal velocity are eliminated from the linear terms
in the equations. Details are provided by McHugh [12].

‘Three base states are considered; a constant density case, a constant Brunt-Vaisala
case, and a case with two layers, each with its own constant value of the Brunt-Vaisala

frequency. This last case models the atmosphere in the region of the tropopause.




2 Governing equations

Although the results given later are two dimensional, the equations and numerical
methods are capable of three dimensions, and are developed here in three dimensions.
The reduction to two dimensions is discussed where appropriate.

-The anelastic equations for a compressible atmosphere are

Du op* 1 _,

= = — - 1
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u,v,w are the velocity components, z,y, z are the components of position, § is the
potentiél temperature, p and 8 are the basic state density and potential temperature,
¢p is the specific heat at constant pressure, R is the gas constant, p is the pressure,
and po is a constant. Equations (1-3) are the momentum equations, (4) is the energy
equation, and (5) is the continuity equation. They have been rescaled using a velocity
scale, U, to be defined later, and a length scale, L, which is the horizontal length
(parallel to the z direction) of the domain. Note that L,, L,, and L, are length scale
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ratios which account for the difference between the physical domain lengths and the
computational domain lengths. The density and potential temperature are rescaled
using their respective values at the bottom of the domain (75, f5). The Reynolds,
Prandtl, and Froude numbers are

UL l
R, = — - (10)
P==, Gy
F?= g;. (12)
The basic state is governed by the perfect gas law,
p=7AT, R
and the equation of static equilibrium, |

%ZZ = —pg. | | : ‘ (14)

Generally the base state temperature profile, T, is chosen, and the remaining base
state variables are determined using (7), (13), and (14). '

One important base state parameter is the Brunt-Vaisala frequency, defined as

g oo
o, 15
6 0z (15)
. Rescaling this frequency as before gives the Brunt-Vaisala parameter:
U200z F2002’
where z is now dimensionless. Another base state parameter is the scale héight,
1 7, |
-5 - (1)




3 The Numerical Scheme

The numerical method is that of McHugh [12]. It is similar to the normal velocity-
normal vorticity method of Kim, Moin, and Moser [13], who studied the incompress-

ible Navier-Stokes equations. The governing equations are reduced such that pressure

- and horizontal velocity components are eliminated from the linear terms, resulting in

2 1ol gy 2 (L) - Lol _gay y 204
{Bt RCVHV az( “’)} Vig=ViAt g o 18

where A; is the sum of the nonlinear terms for the i*» momentum equation,

A,; = Uy an (19)
z; .
and 52 L2 5
’ 2
= 2
Vi 63:2 L2 oy?’ - (20)
The order of (18) is reduced by introducing ¢:
| o (1 S
= V2 — = (=w). (2
$=Vw 0z (Hw) o (21)
Equation (18) then becomes
| 86 1, 0 a0 0A; |
R AL AR e (22)

- The variable ¢ is retained in the calculations, and w, ¢, and @ are determined si-

" multaneously using (21), (22), and the energy equation. The energy equation is now

written as

9 a9

ot 0z ’ (23)

* where B is the sum of the nonlinear terms for the energy equation,

B =uj—. - (29)
The boimdary conditions are

w=w,=0=0 (25)




" on the rigid boundaries. Note that the sidewalls are treated with periodic boundary
conditions, and no further enforcement is allowed. ‘

After w, ¢, and 0 are found, the remaining task is to determine the horizontal
velocity, u and v. There is a particularly straightforward method of finding the
horizontal velocity in two dimensions. Keeping x as the horizontal diféctio_n and z as

the vertical, the continuity equation is
uz:—[wz—k:—w]. o (26)

This equation is easily solved for u once w is available. ‘
In three dimensions, the vorticity equation is necessary, along with the continuity
- equation, to determine both components of velocity. ‘The vertical vor_ﬁicity eqliation
. for viscous flow is S
DL a2 g
~ where 7 is the vertical component of vorticity. The boundary condition on the rigid
boundaries is ) T
' n=0. Lo (28)
Equation (27) is solved for the vorticity, subject to (28), and then the definition of |

: vorticity provides one equation for horizontal velocity:
Uy — Uz = 7. | (29)
- This result, along with the continuity equation,

u$+vy=—[wz+&w], , (30)

are sufficient to determine u and v. ;

~ The spatial discretization is a spectral method. The horizontal directions are ex-
panded in Fourier series. The vertical direction uses a spectral elemeht method, using
: Lagrange interpolants within each subdomain, collocated on the Chébyshev-Gauss-
Lobatto points. A damping layer is used at the top of the domain as a non-reflecting
lid. Note that the damping layer is ineffective for gravity waves with wavelengths

greater than the damping layer thickness.




4 Initial Conditions: A vortex pair

' The initial conditions are a pair of point vortices. The velocity field for a pdint vortex
is taken from the well-known similarity solution for a diffusing line vortex, as discussed

in Sherman [14]. This similarity solution is an exact solution to the Navxer—Stolxes'

equatxons for constant density, viscous flow. In cylindrical coordmates the velomty
- field for a single vortex located at the origin is co '

. T , _ A

v-—‘27rr[1—e M], - -(31)
~ where v is now the azimuthal velocity, r is the radial distance from the center of the
vortex, T is the circulation around the vortex, and v is the kinematic v1sc081ty The

' radial component of velocity is zero. This solution is rescaled using the same length‘
- and velocity scale as before. The resulting azimuthal velocity is c

v=— G [1—6 R;tz], | L (32)

2Qrr

‘where v, 7, and t are now dimensionless, and the dimensionless vortex strength is .

defined as
: r

| G_LU : - -v';:(33)‘_
Note that the solution given by (32) depends on time as well as space. Only one
value of time was used to start the simulations. The vortex was merély used to start
~ a flow that has the general characteristics of the vortex pair being studied.: .
’ An obvious alternative to the viscous vortex is the well-known irrotatibﬁél' inviscid" _
~ vortex. Similations with the irrotational vortex led to numerical 1nstab111t1es clearly
- originating at the core, where the analytic solution is unbounded. Attempts to smooth
the initial conditions at the core, and then advance the solution with the chosenv
. spectral method, were tedious and only marginally successful. Hence the 1rrotat10nal |

vortex was not pursued.

5 Results and Discussion

The flow is initiated by releasing a pair of counterrotating vortices in an otherwise

motionless flow. The vortex pair is chosen to rotate with a downward velocity in the

9




Table 1: Dimensionless parameter values

Reynolds number | 2000
Prandtl number |1

Froude number

1
Vortex strength | 1
L,/ L, 1

region between the vortices. This choice is based on the initiation of a storm event

.in the atmosphere, which is well-known to result in a downward wind in :lth'e'storm

center. The vortices are initially located at one quarter of the domain height: from

the bottom (z=-0.5), and a dimensionless distance of 1.0 from the horiz'ontél:eenter..

There is no zonal flow in the present simulations, which means that a veloeity scale

must be selected from other parameters The velocity scale i is chosen tobe U = /gL
’ where ‘g isthe grav1tat10nal constant, and L is horizontal domain length. The Froude
" number becomes unity, the Prandtl number and the scale helght are unchanged and

: the other parameters are now

"R= , | | | (34) |

G=—= | (35)
100
N2 = ==
60z 7
Before discussing the results for the stratified case, it is useful to consider a flow

"‘~. (36)‘

without stratification. The base state density, potential temperature, and pressure-

are chosen to be constant, and the flow is started with the same initi_al conditions

‘as the stratified case. Since the boundary conditions on temperature arehomoge-' ,

neous, and the initial temperature field is zero, the potential temperature remains
zero throughout the simulation for this case. The total effect is that the equations
are reduced to the incompressible Navier-Stokes equations. Table 1 lists the chosen

dimensionless parameter values. Table 2 lists the physical parameter values on which

10




: Figufe 3: Surface plot of velocity magnitude for the constant density case with t=1.0
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Figure 4: Surface plot of velocity magnitude for the constant density case with 'g-;32.0
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Figure 5: Contour plot of vorticity for the constant density case with t=1.0
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Figure 6: Contour plot of vorticity for the constant density case with t=32.0
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Figure 7: Base state density profiles
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atively short time span of t=32 dimensionless units. The vortices move together
slightly, reminiscent of the Bernoulli effect between two spinning cylindefs. The vor-
tices also decay in strength, and diffuse outward from the center of the‘ vdrtex? The
close proximity of the two vortices causes them to become elongated in the ﬁrertical,
and to induce an upwards motion of the vortex pair. This vertically induced motion
of a vortex paif is well-known, and is discussed in Lamb [15]. _
Now consider stratified flow. The base state is chdsen to have a contant Brunt-
Vaisala frequency, achieved with a linear variation in temperature. Figure 7 shows
the base state density profile. The dimensionless parameter values-are the same as

, with the addition of the

[\%]

those for the constant density case, as shown in Table
Brunt-Vaisala parameter value of 0.32. A

The results of this stratified case are shown in figures 8-19, using the same com-
bination of velocity vector plots, surface plots of the velocity magnitude, and colored
contour plots of the vorticity.

The dynamics of the vortices in stratified flow are dramatically different than the

15
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o | . Figure 14: Surface plot of velocity magnitude for the constant N case with t=25.0
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Figure 16: Contour plot of vorticity for the constant N case with t=1.0
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Figure 17: Contour plot of vorticity for the constant N case with t=18.0
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Figure 18: Contour plot of vorticity for the constant N case with t=25.0
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constant density case. As soon as the vortices are released in the stratified flow, they
very rapidly lose virtually all of the kinetic energy, as shown in figures 12-15. The
surface plot in figure 12 clearly shows the two initial vortices, although they have
decayed somewhat when compared to the surface plot for the constant dénsity case
at the same time, shown in figure 1. However, the coherency of the vortices disappears
very quickly, and is replaced with an internal wave pattern, as shown in figures 13-15.
This conversion of energy in the vorticies into wave energy occurs in approximately
one Brunt-Vaisala period, :

- (37)

N

defined as the time for one oscillation at the Brunt-Vaisala frequency, and has a
dimensionless value of approximately 9.8 for the chosen Brunt-Vaisala parameter value
of 0.32. The wave motion continues, and the initial vortex pair is never reformed.
JInteraction with the damping layer at the top, and viscous dissipation, finally cause
the wave action to decay to zero. _ ,

It should be noted that the motion, initially symmetric about the vertical center
of the domain, retains this symmetry during the entire simulation. Clearly the waves
propagate rapidly to the sidewalls, and interact with the motion on the other side.
~ Since the sidewalls are periodic, one may think of an identical motio_nlon_ each side of
the domain, evolving simultaneously. The results are therefore also symméfric about
the vertical sidewall, and when wave energy impinges the sidewall, it is perfectly
reflected due to this symmetry. This effect does not model the real atmosphere,
although the solutions are accurate and satisfy all equations and boundary conditions.
».Th_e results presented here focus on the motion before this reflection occurs.
| Figures 5-6 show the time evolution of the vorticity for the constant deﬁsity case,
‘The initial vortices retain their identity, but dissipate, elongate, and move together
“and upwards. Note that the vorticity field is antisymmetric, and the dark and bright
spots are due to the counterrotating nature of the vortex pair. '

Figure 16 shows the vorticity contours for the stratified case after a mere ten
time steps, and clearly the vortices are still coherent, and nearly identical to figure

5. Figure 17 shows two streaks of vorticity after an elapsed dimensionless time of
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18, corresponding to the time for several oscillations at the Brunt-Vaisala frequency.
Also evident in figure 17 are several other dark and bright spots of vorticity, in the
vicinity of the streaks. The initial vortices do not evolve into these dark and light
streaks, as one might assume. Instead, the initial vortices are now the small patches
of vorticity visible on the outside of the larger streaks. The streaks of vorticity have
been generated by the appearance of an internal wave motion, beginning to dominate
the flow pattérn. If the vorticity patches from the initial conditions are tracked, they
are found to disappear within a time equivalent to three oscillations at the Brunt-
Vaisala frequency. The motion of the vortex center is nearly horizontal, and moving
away from the domain center. |

Figures 18 and 19 are later time slices of the vorticity, showing regular patterns
of positive and negative vorticity. These patterns indicate wave motion, rather than
any historical result of the initial vortices. It is interesting to note in figure 19 that
two intense patches of vorticity appear near the upper corners of the domain, ap-
proximately equal in strength to the original vortex. These patches appear as the
wave motion reaches its greatest amplitude, as can be seen in figures 12-15, which are
surface plots of the magnitude of the velocity at times corresponding to figures 16-19.
This wave is not breaking, meaning the vertical gradient of potential temperature is
a stable gradient, and the flow at this Reynolds number is not unstable. Yet one
wonders if this motion at other parameter values could result in a Helmholtz shear
type instability near the wave crest, and a resulting patch of turbulence.

The third base state is a two layer case, with constant Brunt-Vaisala frequency
in each layer. The interface between layers is located at the vertical center of the
domain. Figure 7 shows the base state density profile for this case, as well as the
previous case. The parameter values are identical to the second case, except now the
upper half of the domain has a Brunt-Vaisala parameter value of 0.62, corresponding
to a Brunt-Vaisala frquency of 0.02 1/s, typical of the stratosphere.

The results of the two-layer case are shown in figures 20 through 31, using the same
time values and graphics as the constant N case. The dynamics of the atmosphere
for this two layer case is very similar to the single layer of constant N. The vortices

lose coherency very quickly and form an internal wave pattern. The amplitude of
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the waves in the upper layer for this two layer case are generally greater than the
amplitude in the one layer case. This increase in amplitude is due primarily' to the
lower density at the higher elevations, rather than any dynamic effect at thé interface
" of the two layers. Note that the waves in the upper layer reach a maximum amphtude
more quickly compared with the single layer case. 7
Perhaps the most significant difference is evident in the contour plots, ﬁgufes 28-
31. Figure 28 shows the vorticity after a mere 10 time steps, and should _bevcd_mpared-
~with figure 16, the vorticity contours for the single layer case at the same time.
The vorticity with two layers at this early stage is nearly identical to the sin'glle ldyer,
except at an elevation just above the interface between the two layers. A narrdw strip
with high levels of vorticity appears, as evident in figure 28. The dynamics.i:n figure
28 are not yet dominated by internal waves, but the sudden change in Brunt-Vaisala
frequency is clearly generating a layer of motion with enhanced vorticity. .
Figure 29 shows that this layer of enhanced vorticity has evolved and generated
- two spots of strong vorticity, in addition to the spots and. streaks of vort1c1ty that
~existed with a smgle layer shown in figure 17. Except. for this new layer of vorticity 7
~just above the interface of the two layers, the vorticity pattern matches the smgler_:
-la.yer case rather closely. - |
Figures 30 and 31 show the vorticity contours for the time values cqrrespdnding to
the single la.yér case, shown in figures 18 and 19. Below the interface, the dynamics of -
the two layer case appear nearly identical to the single layer case. Above the _interface,
. where the Brunt-Vaisala parameter is much different, the Wave motion evo}Ve_s ona
different time scale. But the basic motion is similar. This is evident by the strongA
spots of vorticity, appearing at a time of 32 for the single layer case, but near a time
of 25 for the two layer case. In fact the basic patterns of vorticity above the interface
between figure 19 and figure 30 compare rather well, considering the time difference
between the two figures. | '
The dispersion of energy from the original vortices is difficult to quantify, since the
vortices become so ill-defined in a very short time. However, the flux of energy across
a horizontal plane is a quantity indicative of the flux from the original vortex, and

provides information concerning the later dynamics of the waves. Figure 39 shows the
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Figure 20: Velocity vector plot for the two layer case with t=1.0
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Figure 22
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‘Figure 25: Surface plot of velocity magnitude for the two layer case with t=180 S
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.- Figure 26: Surface 'plot of velocity magnitude for the two layer case With ft:25.0

4
.0.0%

AR YRR AR SRR

or -

Figure 27;. Surface plot of velocity magnitude for the two layer case With t=320
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Figure 28

Figure 29:

: Contour plot of vorticity for the two layer case with t=1.0
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® Figure 30: Contour plot of vorticity for the two layer case with t=25.0
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Figure 31: Contour plot of vorticity for the two layer case with t=32.0
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temperal evolution of the vertical energy flux for all three base states, where vertical

energy flux is defined as
E, = w (u? + w?), (38)

and the overline represents a horizontal average. The value shown in figure 39 corre-
sponds to the energy flux across the vertical center of the domain. '

The value of E,, for the constant density case starts out ﬂegative, as shown in
figure 39, due to the strong downdraft in the region between the two vortices. As
the vortices move upward, this energy flux gradually becomes positive and then stops
increasing as the position of the center of the vortices approaches the vertical center
of the domain. | o

The value of E, for the stratified cases are also shown in ﬁgure 38. Note the
dramatic dlfference between the constant density case and the stratified ca.ses The

single layer case very qulcldy shows large positive values of Ew, assoc1ated Wlth the_‘ B
| rapid transfer of vortical energy to wave energy. Then a very large negatlve energy‘:
B 'ﬁux occurs. This negative energy flux is associated w1th the comphcated wave mo- |
tion in the region between where the original vortices were located. ThlS effect occurs'_
before the elapsed time has reached even one Brunt- Vaisala penod and before any.
significant energy has reached the boundaries. The remainder of the data shows som‘ev

oscillations; centered around zero energy flux. The flow b‘eyorid‘ a time of :ep:prox-
| imately 32 is likely to be affected by reflected waves off the sidewalle.. Hehce, the
later wiggles in figure 38 may not be indicative of motiqﬁ, in a real n'o'nsymm’etric; :
atmosphere. The energy flux for the two layer case is very similar to the :si'n'gle_ 'layer;
case. The rate of decay of the energy flux as the initial positive value changes to a .
" negative value is nearly identical. ‘
Another measure of energy transfer is the temporal evolutlon of the total klnetlc _
- energy, defined as

E=/Vp(u2+v.2)dV, o ;v(39)

and is shown in figure 39, ‘again for all three base states. The constant density case
shows a rather slow exponential energy decay. This energy decay is clearly the result

of viscous dissipation. Both stratified cases show much faster energy decay initially,
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Figure 32: Vertical energy flux
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6 :Conchmions'
l motron

',-.y frequency experrences an enhanced level of vortxcrty durmg the mot1on
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