
'Computing Platform Coverage via Light Host-based Intrusion Detection'

June 2002

Final Technical Report
CDRL A004

Sponsored by

Defense Advanced Research Projects Agency (DOD)

ARPA Order Nr. C043/37

Issued by U.S. Army Aviation and Missile Command Under
Contract No. DAAH01-00-C-R222

Contract Start Date: August 28, 2000
Contract End Date: March 8, 2002

Cigital
{P.O.C. Matthew Schmid, mschmid@cigital.com}

Distribution Statement: Approved for public release; distribution is unlimited.

20020625 080

Computing Platform Coverage via Light Host-based Intrusion Detection
Contract No. DAAH01-00-C-R222
Final Technical Report
Cigital*

1 Executive Summary

Malicious software and hostile intrusions represent two of the largest threats to
information systems today. During the course of this project we developed solutions that
address both of these issues. The BayeScan prototype is a novel approach to detecting
malicious software before it has a chance to strike. The AppID prototype provides a
framework for the development of real-time host-based intrusion detection technology.
The creation of these tools provides users with access to leading-edge research
technologies in the fight against malicious software and malicious attackers.

Today's commercial antivirus software is based largely on pattern recognition
techniques. While effective at identifying known malicious software, this approach is
notoriously poor at finding novel attacks. This leaves computer systems highly
vulnerable to newly created viruses and Trojan horse programs. To address this problem
we explored a number of standard data mining techniques to develop an accurate
classifier for previously unseen programs. The classification techniques that we explored
were rated by their ability to accurately identify an unknown executable as being
malicious or benign. The most successful classification technique that we explored was
Nai've Bayes classification. Our successful experiments with this approach led to the
development of the BayeScan and Malicious Email Filter prototypes. BayeScan
implements a graphical user interface on the Windows platform to enable users to easily
scan executables for sign of maliciousness. The Malicious Email Filter integrates with
the UNIX procmail system to provide gateway protection against malicious software.

The steady increase in penetration attacks against computers running the Windows
operating system, combined with the heavy reliance of government and commercial
clients on these machines, led us to revisit some of the research conducted during phase
one of this contract. During phase one we had experimented with using Cigital's
intrusion detection technology to detect attacks against Windows applications. On this
contract we developed a framework for extending the phase one work to perform real-
time host-based intrusion detection for Windows NT/2000 systems. This framework,
known as AppID, enables researchers to quickly develop and evaluate intrusion detection
algorithms for Windows platforms.

We are delivering to the government the BayeScan, Malicious Email Filter, and AppID
prototypes. We have included full source code to these tools as well as additional
documentation (see the BayeScan User Guide and AppID User Guide). The BayeScan
and AppID prototypes are also delivered in binary form and packaged for easy
installation.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

2 Introduction

Two of the greatest threats to information systems today are damage caused by malicious
software and attacks by malicious individuals. During the course of this project we
developed solutions that address both of these issues. The BayeScan prototype is a novel
approach to detecting malicious software before it has a chance to strike. The AppID
prototype provides a framework for the continuing development of intrusion detection
technology. While neither of these tools provides a complete solution to the problem,
they each represent advances in the fight against malicious software and malicious
attackers.

2.1 The malicious software threat

New malicious software is developed every day. Virus writers modify existing viruses to
be more dangerous and less detectable, or develop novel attacks that make the job of the
antivirus expert increasingly difficult. In recent years the expanding presence of the
Internet and the predominance of the Windows operating system contribute to a fertile
environment for the spread of malicious software. Computer viruses benefit from the
homogeneity of the operating systems connecting computers around the world. Just as
most commercial software will run equally well on all Windows platforms, so will most
malicious programs.

Most antivirus software is reactionary by nature. The most common method of detecting
malicious software is through software scanning. Antivirus software analyzes a program
in an attempt to determine the presence or absence of known instruction patterns that
have been determined by antivirus experts. Over the last decade significant
improvements have been made to antivirus software. The scanners are faster, more
robust, and better able to determine inexact pattern matches. They have also been
improved to handle encrypted or polymorphic viruses. The best-regarded virus scanners
are capable of detecting all of the viruses on the so-called WildList [1] in addition to
thousands of less common threats.

One major problem remains to be overcome. Commercial antivirus software is
notoriously bad at detecting new malicious software. New malware contains patterns of
instructions that have never been seen before and may not contain any of the signatures
of known viruses. The speed with which many viruses spread means that many hosts can
be attacked before antivirus companies release a solution. This window of attack leaves
computers vulnerable to a barrage of new attacks.

On this project we have developed a technology that can help to detect new, unknown,
malicious software. The prototype that we developed, known as BayeScan, uses data '
mining techniques to extract characteristics from an executable and to classify that
program as malicious or benign. Experiments conducted by Columbia University
illustrate the viability of this approach [2].

2.2 The intrusion threat

In addition to the malicious software threat, the number of remote attacks against
Windows machines has also risen significantly in the last few years. These attacks can be
initiated by an individual, or, as in the case of the Code Red attacks, they can propagate
among computers without human interaction. In either case the approach is the same:
identify a process on the remote machine that is accepting connections and exploit it to
perform actions on that machine.

Cigital has been developing technologies for detecting intrusions for the last several
years. The approach that we have taken is to perform host-based anomaly detection. The
basic idea of anomaly detection to learn an application's normal behavior, then identify
deviations from this normal behavior. This approach is not unique to Cigital - it has been
studied at various institutions around the globe [3,4,5,6]. Our intrusion detection
techniques, however, have demonstrated strong performance in evaluations including the
Lincoln Laboratories intrusion detection evaluation in 1998 [12].

A major obstacle to deployment of our system was the need for an intrusion detection
architecture that could collect and process system data in real-time. Another issue was
the increasing need for intrusion detection systems that would run on Windows operating
systems. We utilized resources on this project to develop an architecture that supported
the real-time processing of Windows system data. This provides a framework for the
continued development of intrusion detection tools that can be rapidly deployed in real
environments.

3 Detecting malicious software

The approach that we are using to detect malicious software was built on the research
done by our partner in this contract, Columbia University. The six-month technical
report (CDRL A003) discusses this work in detail. The latter half of this contract was
primarily a development effort to transition the research idea into a tool that would be
useful to both antivirus researchers and end users. To meet this goal we developed a
testing framework that facilitates malicious software detection experimentation and a
graphical user interface designed for the end-user.

3.1 Research overview

Our approach to this problem was to explore a number of standard data mining
techniques to develop an accurate classifier for previously unseen binaries. We gathered
a large set of programs from public sources and separated the programs into two classes:
malicious and benign executables. The classification techniques that we explored were
rated by their ability to accurately identify the appropriate category for an unknown
executable.

The framework supports different methods for feature extraction and different data
mining classifiers. We used system resource information, strings, and byte sequences
that were extracted from the malicious executables in the data set as different types of
features. We experimented with both an inductive rule-based learner that generates
boolean rules based on feature attributes, and a probabilistic method that generates

probabilities that an example was in a class, given a set of features. This report focuses
on our use of a Naive Bayes classification system because it produced the most promising
results. For a full description of the experimental process see [2].

3.1.1 Naive Bayes

The Naive Bayes classifier computes the likelihood that a program is malicious given the
features that are contained in the program. We will describe our experiments using the
Naive Bayes algorithm with the features extracted using the strings program to perform a
classification.

In [13] the authors performed a similar experiment when they classified text documents
according to which newsgroup they originated from. In this method we treated each
executable's features as a text document and classified based on that. The main
assumption in this approach is that the binaries contain similar features such as
signatures, machine instructions, etc.

Specifically, we wanted to compute the class of a program given that the program
contains a set of features. We define C to be a random variable over the set of classes:
benign, and malicious executables. That is, we want to compute P(C \ F), the probability
that a program is in a certain class given the program contains the set of features F. We
apply Bayes rule and express the probability as:

F(C|F)=f(F'C),f(C)

P(F)

Equation 1

To use the naive Bayes rule we assume that the features occur independently from one
another. If the features of a program F include the features Fi, F2, F3, ... Fn, then
Equation 1 becomes:

Equation 2

Each P(Ft\ C) is the frequency that string Ft occurs in a program of class C. P(C) is the
proportion of the class C in the entire set of programs.

The output of the classifier is the highest probability class for a given set of strings.
Since the denominator of Equation 1 is the same for all classes we take the maximum
class over all classes of the probability of each class computed in Equation 2 to get:

MostLikelyClass = max(P(C)JJn
= P(F, \ C))

Equation 3

In Equation 3, we use max to denote the function that returns the class with the highest
c °

probability. Most Likely Class is the class in C with the highest probability and hence the
most likely classification of the example with features F.

To train the classifier, we recorded how many programs in each class contained each
unique feature. We used this information to classify a new program into an appropriate
class. We first used feature extraction to determine the features contained in the program.
Then we applied Equation 3 to compute the most likely class for the program.

3.1.2 Performance

We estimate our results over new data by using 5-fold cross validation. Cross validation
is the standard method to estimate likely predictions over unseen data in data mining
techniques. For each set of binary profiles we partitioned the data into 5 equal size
groups. We used 4 of the partitions for training and then evaluated the rule set over the
remaining partition. Then we repeated the process 5 times leaving out a different
partition for testing each time. This gives a reliable measure of our method's accuracy
over unseen data. We averaged the results of these five tests to obtain a measure of how
the algorithm performs over the entire set.

To evaluate our system we are interested in several quantities:

• True Positives (TP): the number of malicious executable examples classified as
malicious executables

• True Negatives (TN): the number of benign programs classified as benign.
• False Positives (FP): the number of benign programs classified as malicious

executables
• False Negatives (FN): the number of malicious executables classified as benign

binaries.

We were interested in the detection rate of the classifier. In our case this was the
percentage of the total malicious programs labeled malicious. We were also interested in
the false positive rate. This was the percentage of benign programs that were labeled as
malicious, also called false alarms.

TP FP
The Detection Rate is defined as , False Positive Rate as , and Overall

TP + FN TN + FP
TP+TN

Accuracy as
TP + TN+FP+FN

3.1.2.1 Results from Columbia work

The initial data set consisted of a total of 4,266 programs split into 3,265 malicious
binaries and 1,001 clean programs. There were no duplicate programs in the data set and
every example in the set is labeled either malicious or benign by the commercial virus
scanner.

The malicious executables were downloaded from various FTP sites and were labeled by
a commercial virus scanner with the correct class label (malicious or benign) for our
method. Five executables in the data set were Trojans and the other 95 consisted of
viruses. Most of the clean programs were gathered from a freshly installed Windows 98
machine running MSOffice 97 while others are small executables downloaded from the
Internet. The entire data set is available on the Columbia University website
(http://www.cs.columbia.edu/ids/mef/software/).

The results of these experiments are presented in Table 1.

Classifier True
Positives

True
Negatives

False
Positives

False
Negatives

Detection
Rate

False
Positive

Rate

Accuracy

Naive Bayes
(initial data set)

3176 960 41 89 97.43% 3.80% 97.11%

Table 1: Initial data set results

The Naive Bayes algorithm using strings as features performed the best out of the
learning algorithms and better than the signature method in terms of false positive rate
and overall accuracy (see Table 1). It is the most accurate algorithm with a 97.11%
detection rate.

3.1.2.2 Revised data collection

During a second set of experiments we restricted our data set to a collection of currently
active malicious threats. The data that we are using for training and testing in this
experiment consists entirely of 32-bit Microsoft Windows binaries. The benign programs
in our test set are a combination of those taken from a Windows NT 4.0 installation and
those found on the Internet. There are 725 benign files in our data set. The malicious
programs that were used during this phase of the experiment consist of first generation
32-bit viruses collected from the Internet. There are 236 malicious files in our data set.

Classifier True
Positives

True
Negatives

False
Positives

False
Negatives

Detection
Rate

False
Positive

Rate

Accuracy

Naive Bayes
(W32 data set)

188 695 30 48 79.67% 4.14% 91.88%

Table 2: Win32 results

Though smaller, this data set is more representative of current threats against Windows
systems. The reduction in the detection rate and accuracy is likely due to having fewer
examples in our training set. As the number of malicious threats continues to grow we
will expand our training set to include these new examples.

3.1.3 Improvements

We experimented with a variety of minor changes to the techniques used for feature
extraction with the goal of improving the effectiveness of our tool. These changes
resulted in slight improvements to the detection rate and overall accuracy.

3.1.3.1 Unicode

The GNU strings program does not handle Unicode strings. Unicode strings are formed
using two bytes to represent each character instead of just one as with ASCII strings.
Some Windows applications make use of Unicode strings. In this experiment we have
tweaked the feature extractor to extract Unicode strings and to include these in the
detection model. It is important to note that this feature extractor also extracts strings
from the entire file. The other settings are the same as those in the baseline experiment.

3.1.3.2 Lengths

In the baseline experiment we extracted any strings that consisted of four or more
printable ASCII characters. In this experiment we explored the effects of varying the
minimum string length.

3.1.3.3 Unique strings

The baseline system made use of each feature that it was given, regardless of whether or
not it had seen that feature before. We wrote a feature extractor that would extract only
one instance of each string. If a string appeared more than one time in a file the classifier
only counted it once.

3.1.3.4 Entire file

By default, the GNU strings program only extracts strings that are located in the code
section of a program. We explored the effects of extracting strings from all parts of the
binary.

3.1.3.5 Results

Table 3 shows the results of combining all of our successful tweaks into one classifier.
Scanning the entire file for strings is an improvement over just looking at the code
section of the program. Extending the feature extractor to include Unicode strings had a
marginal impact on performance. Looking at only unique strings resulted in worse
performance than the original classifier. Combining several of these improvements did
produce a classifier that is slightly more accurate than the original.

Classifier True
Positives

True
Negatives

False
Positives

False
Negatives

Detection
Rate

False
Positive

Rate

Accuracy

Naive Bayes
(W32 data set)

192 708 17 44 81.36% 2.34% 93.65%

Table 3: Improved Win32 results

3.1.4 Limitations

Although these experiments demonstrate promising results they are not necessarily
indicative of real world performance. Here we discuss additional experimentation that
needs to be performed.

The malicious programs used in training were raw viruses not infected programs. In
most cases, an executable virus is a program in itself. This program contains the logic

necessary for the virus to locate a suitable host program and infect that host in such a way
that when the host is executed it will invoke the virus code. When viruses are
encountered in the wild they are usually already attached to a host program. This is the
virus' method of disguising itself and therefore continuing its existence.

From the perspective of this experiment, the primary difference between raw viruses and
infected executables is that infected executables will contain a large number of benign
characteristics as well as the malicious characteristics from the virus. As the system is
currently trained, it is likely to identify an infected executable as benign due to the large
number of benign characteristics that it will find.

This problem needs to be addressed through the introduction of more training data. The
training data should consist of benign executables and benign executables that have been
infected by viruses. We were unable to obtain the quantity of data necessary to conduct a
statistically valid experiment that met these criteria. Infecting executables is time-
consuming and sometimes fruitless exercise. Viruses have an infinite number of
infection methods at their disposal, and it is not always clear what will trigger them. The
statistical classifiers that we are using require large amounts of data to function
accurately, and unfortunately we do not have this data at our disposal.

We believe that the classifiers that we used during this experiment can be adapted to
work on the suggested training data. The result of training on infected executables and
benign executables should be a classifier that learns that benign characteristics are not
statistically important while malicious characteristics (or the absence of malicious
characteristics) are the key factors in the classification.

Another aspect of training on infected executables is that some viruses decrypt the bulk
of their functionality on the fly. An encrypted virus that changes its encryption key will
not have string characteristics that we can identify via static analysis. Although many
encrypted viruses do exists, many more lack this stealth. The classifier used in our
experiments will be effective against unencrypted viruses.

3.2 Development

The data mining approach to detecting malicious software outlined above led to the
development of three related tools. The first is a framework for conducting experiments
and tuning the algorithms and selection of features. The second is the BayeScan
prototype. This is a Windows based tool with a graphical user interface that enables end-
users to easily analyze suspicious executables. The final tool is the Malicious Email
Filter (MEF), which is an incorporation of our classification technology into a gateway
email scanner. This section describes the key aspects of these tools.

3.2.1 Testing framework

The testing framework that we developed enables researchers to easily make changes to
the existing malicious software detection system and to analyze the performance of these
modifications. It simplifies the management of a malicious software collection and the
running of experiments.

3.2.1.1 Architecture

This section describes the role of the classes that are essential to the running of an
experiment.

Configurations
The configuration class manages the data contained in a configuration file for use by the
other classes. In addition to specifying the location of data files for the classification
model and testing, the configuration file also allows the user to toggle options such as
uniqueness or filtering. Appendix A contains a summary of the options controlled using
configuration files.

Models
The role of the model is to extract data from executables and to manage this data. The
base model is a pure virtual class whose implementation is the responsibility of the
subclasses. An example of a frequently used model in our experimentation is the
OnlineStringModel. This model extracts strings from an executable and maintains a
database containing the frequency of these strings in benign and malicious programs.

Classifiers
All classifiers inherit from the virtual class ClassifierBase. The classifier implements the
algorithm that distinguishes between malicious and benign executables. It uses data
contained in a model class to classify a file that is supplied as an argument.

Filters
A classifier may choose to use a filter class to filter the data that is passed to the
classifier's.algorithm. An example of a filter class is the BenignOccursOnce class that is
used to cause a classifier to ignore any strings that occur with a frequency of one in our
data set of benign programs.

3.2.1.2 Running an analysis

The analysis program produces a series of output files containing the classification results
of the various classifiers implemented within the application. Each output shares a
common format. The first line of each results file contains two numbers. The first
number is the number of training benign files, and the second number is the number of
training malicious files used to construct the classification model. For example, the first
line of scale5.0 is "551 178". The remainder of the results file contains the scores for
each file in the test set. After the first row, each row of the results file lists the following
information: V or 'b' to indicate the actual class of the test file (virus or benign); the
benign score; the malicious (virus) score; and the name of the test file.

For some classification algorithms only the benign score is given a value - the malicious
score is listed as '0'; For these result files, the benign or virus classification is dependent
on a range being developed for both classifications. As an example, the benign file may
have a score less than 500, and all files with whose score is 500 or greater would be
classified as a virus. The single score method is used for the following classification
algorithms: Bytes, Bytesfound, Items, Itemsfound, and Percentage.

The naming convention for the output files is:

<algorithm_name>[min_feature_size].<cross-validation_set#>

For instance, the output file for the first cross-validation set using the classification
Minimum String Length Scaled algorithm and a minimum string length of 10 would be
"scalelO.O".

3.2.1.3 Analyzing results using the accuracy program

The accuracy program is used to provide automated analysis of the accuracy of a
specified classifier or classification algorithm. For the specified result files from the
analysis program, the program creates a spreadsheet showing the overall accuracy of the
classifier and the affect of a range of thresholds on the accuracy. The range of threshold
values used is determined by the accuracy program based on the benign and malicious
scores in the results files. For each threshold value in the range, the spreadsheet
produced by the program lists a detection rate and a false-positive rate.

The accuracy program is a command-line executable. The format used for executing the
program is as follows:

accuracy <file> <low #> <high #> [yes]

• file is the name of the results files to analyze minus the cross-validation set number.
• low # is the low number of the cross-validation set, usually '0'
• high # is the high number of the cross-validation set, usually '4'
• yes produces detailed output to be printed to the command line window.

For instance, for the Minimum String Length Scaled algorithm where '5' is the minimum
string length, the analysis program produces results files scale5.0, scale5.1, scale5.2,
scale5.3, and scale5.4. The command line for executing the accuracy program on this set
of results files is "accuracy scale5. 0 4".

The accuracy program produces an .xls spreadsheet file and a .txt text file. The name of
the output files corresponds to the results files used as input. For the example above, the
accuracy program will produce "scale5.0-4.xls" and "scale5.0-4.txt". Sample output is
shown below.

#False Positives Detection Threshold
4.05797 86.0119 -152.582
3.76812 86.0119 -145.515
3.04348 86.0119 -138.449
2.75362 85.1786 -131.382
2.31884 85.1786 -124.316

3.2.2 BayeScan prototype

The BayeScan prototype provides a graphical user interface that enables a user to analyze
suspicious executables. The prototype implements the Naive Bayes classifier described
above using the Minimum String Length Scaled algorithm with a minimum string length
of 5. The classification model is comprised of strings extracted from the collection of
malicious first-order 32-bit executables - viruses and trojans (see section 3.1.2.2) - and a
collection of benign Win32 programs from a typical Windows 2000 workstation.

3.2.2.1 Installation

An InstallShield wizard is provided for installing BayeScan on a user's desktop. To
install BayeScan, simply double-click the setup executable (setup.exe) in the BayeScan
folder on the CD, or run setup.exe from the Start Menu's Run command. By default, all
files associated with the application are installed in a folder named "BayeScan" inside
"Program Files\Cigital" on the desktop's c: drive, but the user has the option to change
the location during installation. In addition to the executable, the model file
(BayeScan.mdl) and a corresponding hash file (BayeScan.hsh) are installed. The
installation program also sets register settings for the location and name of the model file
as well as the threshold used by the program. Refer to the BayeScan User's Guide for
more information on the installation (Appendix B).

3.2.2.2 Executable analysis

BayeScan provides analysis of untrusted executables by comparing the features (strings)
in the file to features in the BayeScan classification model. For each feature in the
executable that is found in the model, a benign score and a malicious score is updated
corresponding to the number of times the feature appears in the files that comprise the
model. After examining all strings for an executable, the malicious score is subtracted
from the benign score, and the threshold is added to the difference to determine the
normalized score. A negative score indicates that the executable is believed to be
malicious and a positive score indicates the executable is believed not malicious. The
more negative the score (-100 is more negative than -20), the higher the likelihood the
classification is correct. Likewise, the greater the score, the more likely a file is not
malicious.

3.2.2.3 Updating models

The classification model can be updated in three ways: add a new executable to the
model; add multiple executables to the model; merge a different model to the existing
model.

When adding data from executable files to the model, BayeScan first compares the hash
of each new executable to the hash of each file already contained in the model. The hash
for each file used to make up the model is stored in the hash file with the same name as
the model file. If the hash of the new file matches a hash in the hash file, BayeScan does
not add the string data from the new file in the updated model since it already exists.

BayeScan allows the user to add feature data from a new executable to the model. The
new executable can be benign (e.g., a new application recently installed on the

Workstation) or malicious (e.g., a new virus). Additionally, BayeScan allows the user to
add more than one executable at a time to the existing classification model. To add data
from multiple files, a list file (.1st) with the full path name of the executables to add to the
model must be created. The list must contain only one type of file - malicious or benign.

The merge models functionality is designed to merge distinct models. For instance, if a
model is built for a new class of files that were previously not in the original model, the
merge functionality is an effective way to expand the range of protection provided by
BayeScan. Merge models is also the method used for updating the model for a new
group of viruses or benign executables that have been analyzed to form a new model -
effectively a "BayeScan update" model.

3.2.3 Malicious email filter

The malicious email filter (MEF) was developed by Columbia University. A full
description of the work can be found in [7]. The MEF provides detection of known and
unknown malicious email attachments using detection models obtained by data mining
over known malicious attachments as filters. Combined with a central server, the
malicious email filter provides for automated propagation of models used for detecting
malicious attachments. Additionally, the filter included a system to monitor the spread of
malicious attachments.

The malicious email filter is a network level application that resides on a UNIX server.
As email enters the system, the tool filters Windows binaries that are attachments to
email, and can wrap malicious email attachments. This method has the potential to stop
malicious executables entering the network. This approach also removes the task of
downloading virus scanner updates from the end-user, and places the responsibility on
the system administrator for updating the filter's detection models.

Since the methods employed by the malicious email filter are probabilistic, the filter can
detect a binary that is considered borderline. A borderline binary is a program exhibiting
similar probabilities for both benign and malicious classes. If a binary is considered
borderline, then there is an option in the network filter to send a copy of the malicious
executable to a central repository such as CERT, allowing the binary to be examined by
human experts.

3.2.3.1 Incorporation into Procmail

The malicious email filter examines email attachments by replacing the standard virus
filter in Procmail with the detection model generated thru data mining. The UNIX-based
email server extracts attachments using Procmail. The current supported email server is
sendmail.

After an attachment is detected, the tool decodes the binary and examines it via data
mining. The binary's byte strings are compared to the byte-sequences in the detection
model and the probability of the string being malicious is calculated. If the probability of
being malicious is greater than the probability of being benign, the binary is classified as
malicious. Otherwise, the binary is classified as benign. If the attachment is classified as

benign, Procmail allows the email to pass to the recipient. If the attachment in instead
classified as malicious, the recipient is warned that the attachment is malicious.

3.2.3.2 Borderline Classification

As stated earlier, it is possible for an attachment to exhibit near equal amounts of
malicious and benign byte strings. In the event of an attachment being called borderline,
a human expert must be used to make the determination of the binary's malicious or
benign classification. Once the attachment is classified, its byte strings should be added
to the detection model to aid the probability that a similar binary will be classified
correctly using the malicious email filter. As the data set for the detection model grows,
the likelihood of false positives and false negatives is reduced.

3.2.3.3 Updates to the Detection Model

In order to continually make the detection model better and more complete, it was
necessary to create a method for adding new classified data to the model from formerly
unclassified binaries. Updates to the model are accomplished easily due to the format of
the detection model. The model is comprised of unique byte strings along with a binary
and malicious score. The benign score is simply the number of times that the byte string
appears in a benign binary, and the malicious score is the number of times that the byte
string appears in a malicious binary.

Therefore, to add data from a newly classified binary (e.g., a borderline binary that has
been classified by human experts) to the existing detection model, the byte strings from
the newly classified binary are extracted and added to the model. If a byte string from the
new binary is unique (i.e., not in the current detection model), it is added to the model
and the correct score, binary or malicious, is given a value of one. The other score is
given a value of zero. Otherwise, for each byte string in the new binary that is also in the
detection model, the appropriate score is incremented by one.

Encrypted email is used to disseminate detection models. Once a new model is received,
the Procmail filter can automatically update the detection model. Emails containing the
new models can be addressed and formatted appropriately to allow the automated update.

4 The AppID intrusion detection framework

The AppID framework was designed to support the research and development of real-
time intrusion detection tools. The design is flexible enough to be used by many host-
based systems. During this effort we developed additional support for the collection and
processing of Windows system data. The result of our work is a framework that
facilitates future research and evaluation of intrusion detection algorithms.

4.1 Cigital intrusion detection

Cigital's intrusion detection technology is based on anomaly detection. Anomaly
detection consists of two phases: (1) A training phase, where the normal behavior
observed on an information system is used to automatically construct a model of normal
behavior, and (2) a detection phase, where the behavior of the information system is

monitored in the field, and deviations from the original model of normal behavior are
reported as signs of a possible intrusion.

Cigital's intrusion detection work, to date, has focused on host-based approaches.
Certain aspects of each application's behavior are captured and used to characterize its
behavior for the purposes of anomaly detection. Often, the captured data represents a
series of calls to operating-system functions, though it should be noted that this is not a
requirement. Cigital's anomaly detection technology simply requires a behavior stream,
which consists of a series of symbols characterizing the behavior of something, and that
thing may be an application, a resource, an interaction between two objects, and so on.

One way we can create an anomaly detector that judges whether behavior is normal or
abnormal, within a certain context, is to build finite-state machines that model normal
behavior. Recall that a finite state machine (FSM) consists of states and labeled
transitions between states. When an FSM sees an input symbol, it looks for a transition
out of its current state whose label corresponds to this symbol. If such a transition is
found, the FSM follows that transition and enters a new state, but if no transition is found
then the FSM is said to reject the entire sequence of symbols.

At any given time, the set of allowable transitions depends on the state that the FSM is
currently in. The current state encodes the series of transitions that were taken to get to
that state, so, in some sense, it encodes the long-term history of the application's behavior
as well as the short-term history. Therefore, it is appealing to use FSMs as models of
program behavior.

Cigital's integration of vocabulary extraction methods with the FSM has produced a more
robust intrusion detection system. The principle of vocabulary extraction can be
concisely expressed as follows: we automatically find common idioms in behavior traces
so that those behavior traces can be represented more compactly. In our current
approach, the idioms are repeated sequences of symbols in the behavior data, and
sequences of symbols that always occur together. The immediate benefit of vocabulary
extraction is that it can serve as a method of eliminating false positives generated by
other anomaly detectors. This is because our approach leads to the creation of regular
expression parsers that recognize repeated subsequences and indivisible substrings when
they occur in new behavior data. If a substring has been accepted by one of these parsers
we can regard it as normal — after all, the parsers are created on the basis of what was
observed in normal behavior data — and if another intrusion detector sees an anomaly
within such a substring we can ignore that alarm. With this improvement, we found that
we could attain a reduction of about 30 percent in the false-alarm rates of the detectors in
our experiments.

A method for automatic tuning of the IDS further improves the performance. Our
approach uses the following steps:

1. The user specifies an acceptable false-alarm rate, which will be the same for all
detectors.

2. For each application that is going to be monitored, the system builds a series of
increasingly precise detectors. This continues until the user-specified false-alarm
rate is exceeded, at which time the system outputs the last detector that did not
exceed the threshold

3. If the detector for some application is too weak according to some heuristic
estimate, then the user is warned that attacks on that application are unlikely to be
detected. The user can then supply more training data (if desired), perhaps using
automatic test data generation or by monitoring live applications.

The benefits of automatic tuning are quite dramatic on the Lincoln Labs data. We found
that all attacks in the range of our detectors could be detected with a false-alarm rate of
around seven one-thousandths of one percent. This is an improvement of over two orders
of magnitude over our original results.

4.2 Development

The intrusion detection techniques described in section 4.1 were all evaluated through a
process of off-line testing. System data was gathered ahead of time, pre-processed, and
used during experimentation. Actual deployment and use of an intrusion detection
system based on these techniques requires that data be processed as it is generated. The
AppID intrusion detection framework was developed to provide this capability.

4.2.1 Collecting system data

As discussed above, host-based intrusion detection tools are often based on the analysis
of local system data. Some of this data is available through built-in operating system
mechanisms, but additional data sources are often desirable.

4.2.1.1 Base-object auditing

One method tracking system data that was considered, but not implemented is base-
object auditing. Windows NT/2000 provides a level of base-object auditing that allows
users to audit access to objects. Within the Local Polices inside Local Security Settings,
a user can turn on several auditing options, including object access and system events.
When enabled, base-object auditing can audit access success, failure, or both to objects
and events. One shortcoming of this approach is that the auditing method does not
provide desirable information such as the thread that triggered an event. Since essentially
flipping an on-off switch controls base-object auditing, the information available is all or
nothing without any way to modify the data available.

4.2.1.2 StraceforNT

The method of system call tracking implemented for AppID was StraceforNT, a utility
for NT system calls made by a process based on the strace on Linux and other Unix
operating system [11]. One advantage over base-object auditing is that strace provides
an open-source implementation. Because it's open-source, we are able to control what
strace audits. When an application the user is interested in is launched, strace provides a
way to control and log what system calls an application is allowed to use. The strace
utility uses a hooking method performed by a device driver that hooks all system calls
and checks for the SeDebugPrivilege before allowing the application to open it. The

device driver responsible for the hooking also collects data that in turn can be utilized by
auditing components within AppID.

4.2.2 Architecture

4.2.2.1 Pipe-line design

AppK) is a pipeline-based system with data being collected at a source, processed
through various components, and finally sent to a data sink where important information
is reported to the user. Using a pipeline architecture means that AppID is extensible and
modifiable. For example, components can be written and inserted into the pipeline to
perform a new functions on the source data. Specifically, the intrusion detection
algorithms employed by AppID can be easily changed or complemented by additional
algorithms. The figure below shows the pipeline utilized for NT-based systems for
auditing system access.

NTCollector >
 1 NTtolD NGram

Algorithm
 >
 }

Report
Manager

K ̂
•*< s N

Log File
Destination

Event Log
Destination

4.2.2.2 Components

The two principle components of the pipeline are sources and sinks. Additional
components perform various tasks such as parsing data and performing anomaly analysis.
Sources are the input for the pipeline, and are responsible for taking data from wherever
it is stored and feeding it to the pipeline for analysis. The source implemented for AppID
is an NTCollector that works in conjunction with the Strace device driver. This source
takes data from Strace, and stores it in memory until it is processed thru the pipeline.
Sinks are the final step in the pipeline, and are used to process data and transform or
convert the data into its final format. As an example, a sink will receive the data that has
been produced by the other components of the pipeline and write messages to the
Windows Event Log where the data can be used by other applications. Several sinks are
available in AppID and are determined by the mode (e.g., data collection or recall) in
which the user is running AppID.

The components in the pipeline are specified using a configuration file. The first
component in the system must be a source, and as indicated above, AppID utilizes an
NTCollector source. As shown in the sample pipeline above, the next component for the
NT based system is a component that converts NT type data to a generic type of data
known as IDData. This component also adds various NT-specific data to the IDData

data, such as process name. The next component is a Configuration component, which
sets up all the proper sub-components for using the NGram Algorithm. After data has
passed through the NGram algorithm, it is sent directly to the sink, which in this case is
Report Manager.

4.2.2.3 Algorithms

For purposes of testing the AppID framework we implemented the relatively simple and
well-known stide algorithm[8]. This algorithm works by sliding a window of fixed size
over the normal behavior data, which consists of sequences of system calls. Each series
of n consecutive system calls is recorded in a database. When the system is used in the
field, any sequence of six system calls leads to an alarm if it is not already in the
database. This approach is based on the assumption that all normal sequences were seen
and recorded during training. A weakness of this approach is that it can detect n-grams
that have never occurred during the normal behavior of an application, but it cannot
detect n-grams that have occurred in some contexts but not in others.

Prior work in intrusion detection has shown this to be the most effective means of
detecting anomalies with the least amount of false positives when the training data set is
large [9]. In this paper, the authors achieved best results for the n-gram algorithm when n
had the value three. This yielded detection rates well above 90% with false positives
approaching less than 2%.

5 Conclusions and Future Work

The technologies developed for this contract address two of today's critical security
issues. The BayeScan prototype and Malicious Email Filter provide end-users with
access to new techniques for identifying novel malicious software before it has a chance
to damage a system. These prototypes are based on leading research into using data
mining techniques for identifying malicious programs. The resulting tools extend
existing antivirus solutions with additional detection capabilities. Appendix B contains a
complete guide to installing and using BayeScan.

The AppID framework facilitates future research and development of real-time host-
based intrusion detection technologies. At Cigital we have developed a number of
promising intrusion detection techniques that would benefit from the AppID framework.
At this time we have only fitted AppID with the simple stide algorithm. This enabled
functional evaluation of AppID, but does not produce very strong intrusion detection
results. Future work would include incorporating state-of-the-art intrusion detection
algorithms into the AppID framework. Appendix C contains a guide for installing and
using AppID, along with instructions for developing new AppID components.

6 References

1. The WildList Organization International, http://www.wildlist.org (June 10, 2002).

2. M. Schultz, E. Eskin, E. Zadok, and S. Stolfo. "Data Mining Methods for Detection
of New Malicious Executables," in 2001 IEEE Symposium on Security and Privacy,
May 2001.

3. B. P. C. Wartender, S. Forrest, "Detecting intrusions using system calls: Alternative
data models," in 1999 IEEE Symposium on Security and Privacy, pp. 133-145,1999.

4. A.P. Kosoresow and S. A. Hofmeyr, "Intrusion detection via system call traces,"
IEEE Software, vol. 14, pp. 24-42, Sept/Oct. 1997.

5. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, "A fast automaton-based method
for detecting anomalous program behaviors," in 2000 IEEE Symposium on Security
and Privacy, pp. 144-155, IEEE Computer Society, 2000.

6. R. Sekar and P. Uppuluri, "Synthesizing fast intrusion prevention/detection systems
from high-level specifications," in Proceedings of the 8th USENIX Security
Symposium (SECURITY-99), (Berkely, CA), pp. 63-78, Usenix Association, Aug.
23-26 1999.

7. M. Schultz, E. Eskin, and S. Stolfo. "MEF: Malicious Email Filter - A UNIX Mail
Filter that Detects Malicious Windows Executables," in USENIX Annual Technical
Conference - FREENIX Track, Boston, MA, June 2001.

8. S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, "A sense of self for
Unix processes," in Proceedinges of the 1996 IEEE Symposium on Research in
Security and Privacy, pp. 120-128, IEEE Computer Society, IEEE Computer Society
Press, May 1996.

9. C. C. Michael and A. Ghosh, "Two state-based approaches to program-based
anomaly detection," in Proceedings of ACS AC 2000, pp. 21-30, December 2000.

10. C. C. Michael and A. Ghosh, "Simple state-based approaches to program-based
anomaly detection." To appear in ACM TISSEC, August 2002.

11. Strace for NT readme file, http://razor.bindview.com/tools/desc/strace readme html
(June 10,2002).

12. A.K. Ghosh, A. Schwartzbard and M. Schatz, "Learning Program Behavior Profiles
for Intrusion Detection," 1st USENIX Workshop on Intrusion Detection and Network
Monitoring, 1999.

13. K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. "Learning to classify text from
labeled and unlabeled documents," in Proceedings of the 15th National Conference
on Artificial Intelligence, AAAI-98,1998.

Appendix A: Test framework configuration file options

This section explains the available configuration options for working with the malicious
software detection framework.

• command - the command option determines whether the analysis program will be executed in the
default cross-validation mode, or in interactive mode. Setting the command option to "generate"
causes the program to build a classification model using the full data set of benign and malicious
programs. If the command option is not specified, the program uses cross-validation, dividing the
data sets into five equal sets, four of which will be used to build the classification model for
classifying the remaining set.

• file - the file option is used in conjunction with the "generate" command option to specify the name
of the file to be created to store the classification model.

• unique - the unique option is a flag that is set to "true" or "false", with "false" as the default value
used when the unique option is not specified.

• malicious - the malicious option is used to specify the list file (.list) containing the list of viruses to
be used in the test, both for training (building the model) and testing

• benign - the benign option is used to specify the list file (.list) containing the list of benign files to
be used in the test, both for training and testing.

• increment - the increment option is used to specify the step increment to be used when selecting
files for training and testing sets. By default the increment is 1, but a different integer value can be
specified to reduce the size of the data sets used for the test.

• include_train - the includejrain option is a flag that is set to "true" or "false", with "false" as the
default value used when the include_train option is not specified for a Date-Ordered test (see test
option "3" below). If set to "true" the includejxain flag causes the training set for a Date-Ordered
test to include the training files in the test set.

• input_directory - the input_directory option is used to specify the location of the intermediate
listing files containing the testing and training file lists. This option is used only for test option "6"
(see test option below).

• output_directory - the output directory option is used to specify the directory location to be used
by the analysis program to store all output files. The output files contain the results of the various
tests under each algorithm (classifier).

• write_model - the write_model option is a flag that is set to "true" or "false", with "false" as the
default value used when the write_modeI option is not specified. If the flag is set to "true", the
classification model, containing a list of features along with the corresponding number of times they
occur in benign files, and the number of times they occur in malicious files, is written to a file

• min_size - the min_size option specifies the lower bound on the size of features to be used for
classifying each file

• max_size - the max_size option specifies the upper bound on the size of features to be used for
classifying each file

• use_reducing - the usejreducing option is a flag that is set to "true" or "false", with "false" as the
default value used when the use_reducing option is not specified.

• use_size - the use_size option is a flag that is set to "true" or "false", with "false" as the default
value used when the use_size option is not specified.

• single_test - the single_test option is a flag that is set to "true" or "false", with "false" as the default
value used when the single_test option is not specified.

• test - the test option specifies the test to be executed by the analysis program.
• "1" - executes the Sample algorithm using cross-validation
• "2" - executes a Random sampling procedure to select training and test data sets from the

available data set for a cross-validation test

"3" - executes a Date-Ordered test. A training set of malicious files is selected based on the
date associated with the virus executable. The set of benign files for the model is selected using
a random sampling procedure. The remaining virus files are tested in a date order, earlier files
first, with the tested file assimilated into the classification model afterwards.
"4" - executes a Reversed Date-Ordered test. The procedure used above for test "3" is used, but
all ordered file selections are done by selecting the most recent files from the data set first.
"5" - executes a Random sampling short test.

"6" - executes a test using the same classification models as the previous execution. A
single_test can also be specified for this test - see single_test option below.

Appendix B: BayeScan User's Guide

1. Installing BayeScan

An InstallShield wizard is provided for installing BayeScan on a user's desktop. To
install BayeScan, simply double-click the setup executable (setup.exe) in the BayeScan
folder on the CD, or run setup.exe from the Start Menu's Run command.

InstallShield Wizard

Choose Destination Location

Select folder where Setup will install files.

">.'.'!

JR
SääSSv-'

miL&M

Setup will install BayeScan in the following folder

; To install to this folder, click Next. To install to a different folder, click Browse and select
another folder

r Destination Folder-

C:\Program FilesSCigitalVEayeScanV I Browse.;

UristallShield';

ISÖSÄ Next> Cancel

Once the installation program begins, the user is asked to specify the directory in which
to install BayeScan. To install BayeScan in a location other than the default directory,
click the Browse button and either browse to, or enter, the desired location. After
verifying that the Destination Folder is correct, click the Next button to begin the install
process. During the installation, the status of the install is displayed. The user is notified
upon completion of the install.

2. Using BayeScan

To start BayeScan, double-click the executable (BayeScan.exe) from inside Windows
Explorer.

2.1. Selecting a Classification Model

The Model/Select menu item is used to select the classification model for BayeScan to
use. To verify the current model or change to a different model, choose Select from the
Model menu dropdown.

©BayeScan

\ File I Model

Flle Modify

I Threshold

. Select File : ! Analyze

-Results

Normalized Score:

: Malicious

«fife M

0 I' Benign.;

The Model/Select menu option opens the Model Selection window shown below.

Model Selection

; Current Model'

[C SProgram FilesSCigital\BayeScan\BayeScan mdl
lv \ *■ ■> ? * ■■ ^

Select Model

ttffiratistSsä

Malicious Files:; 180 Minimum Length J5

Benign Files J920 Maximum Length-put) '

OK 3 Cancel

The Model Selection window displays data pertaining to the model - the number of
malicious files and benign files used to construct the model, as well as the minimum and
maximum string length for strings in the model. If the current model listed in the Model
Selection window is the model you want to use/modify, click OK. To select a different
model, click the Select Model button and browse to find and select the desired model.
Click OK.

2.2. Analyzing an Executable

BayeScan provides a user the ability to analyze the maliciousness of a new un-trusted
executable. To analyze a new file, click the Select File button and select the un-trusted
file.

;l!i r[- '-"; '■"•■■': ■•^•'

Look in: £3 Temp 3 «-■;sdc\&!

! File name: : |Win32. FunLove.4070.exe

Files of iype: | ExecutablesC.exe)

JH Open as read-only

Open |

3 Cancel'!

/

After identifying the file to classify, click the Analyze button.

BayeScan will then assign a score for the maliciousness of the file. A negative score
indicates that the file is classified as malicious, and a positive score indicates that the file
is classified as benign. The lower the score, the more likely an executable is malicious.
For instance, a file with a score of-500 is much more likely to be malicious than a file
with a score of-10. Likewise, a file with a score of 1000 is more likely to be benign that
a file with a score of 50. The variation in the scores is predicated on the number of
matches found when comparing the strings in the analyzed executable to the strings in the
classification model.

'File Model

: File to be Analyzed

C:\TempSWin32.FunLove.4070.exe

. Select File ('.""Analyze"":]|•.:

Results-

HBH M

Normalized Score: -74 \

 J ;

Malicious Benign

2.3. Modifying the Current Model

The Model/Modify menu item is used to update the current classification model being
used by BayeScan. To update the current model, select the Modify option from the
Model menu dropdown.

©BayeScan ■HHBSS^^'-'"'
^

File ÜHB^^^S

Fl>e 1
P-J^^^P^«
; "Select File j ^ ;: toalyze

■ r Results ■ ■

\'_ Normalized Score:

1 |

Malicious .

J
Benign

After selecting the Modify option, the Model Modification window is displayed.

Model Modification

^.Action—. - . ■ ..' .';_ ■'■

C Add new executable .

f* Add list of executables

f Merge models

lil

; Select File

Proceji ■ I Close

The classification model can be modified in three ways: add a new executable to the
model; add multiple executables to the model; merge a different model to the existing
model.

2.3.1. Adding a New Executable to the Model

BayeScan allows the user to add new executables to the existing classification model. To
add a new executable to the model, first select "Add new executable" from the Model
Modification menu.

Model Modification

r Action -

; (* &dd hew'executable] !

; '<**":Add list of .executables.!

<"" Merge models

*J

File

■ Select File \

Prl-i : Close

Next, click the Select File button and select the executable (.exe) file to add to the model.
In the example below, the ScriptGuard executable, ScriptGuard.exe, is selected.

Look h J 03 ScriptGuard

21*1
~3 ^aöi'i

] help files
scriptguard user manualjiles

I Filename: [SciiptGuardexe

Files öf type: < | Executablesf.exe)

i H. Open as read-only

-flpen " [I

; Cancel

A

Once the file is selected, click the Process button.

Model Modification

' r Action ,',.,'■."' —-—|

'\'(* Add hew executable .

<~' Add list of executables.

C Merge models tllljilS

File

xJ

CAProgram Files\Cigital\Scfipt6uard\Script6uard.exe

SelecfeiiJel

Process Close

The user must then tell BayeScan if the executable file is a malicious or benign. If the
executable is malicious click Yes, and otherwise click No.

Malicious files'? X]

Are these file(s) malicious?

1. Yes m§ Cancel

A Results window pops up after the new file is processed, and indicates if the new
executable has been added to the model. If the file already exists as part of the model, the
file will not be added to the model and the Results window will say "Added 0 file(s)".

»"■""■■'"■• '"* ■"

{Results !6L *1
'ile(s) Processed 1 file(s), Added 1

• - OK z|.

2.3.2. Adding Multiple Executables to the Model

BayeScan allows the user to add more than one executable at a time to the existing
classification model by creating a list (.1st) file with the full path name of the executables
to add to the model. Below is an example of a list file with three files.

C:\WINNT\discover.exe
C:\WINNT\explorer.exe
C:\WINNT\system32\cleanmgr.exe

Note that the list must contain only one type of file - malicious or benign. Once the list
file has been created, select "Add list of executables" from the Model Modification
menu, and click on the "Select File" button to select the name of the list file.

Model Modification

r Action -

C ■ Add new executable ,

C Mergemodels

File

• Select File ■

Picioeii issiii

Like the process for adding a single executable to the model, the user must tell BayeScan
whether or not the files in the list are malicious. Depending on the number of files in the
list and the size of the executable files, this process may take several minutes to
complete. Upon completion, a Results window will be displayed showing the number of
files processed and the number of files added to the model (remember that only new files
are added to the model).

I Results -^^^teffiffl

Processed 1368 file(s), Added 919 file(s)

I'^jytZIi
- ~ i

2.3.3. Merging Model Files

BayeScan allows the user to combine two distinct classification models to form a new
updated model. To merge a new model to the current model, first select "Merge models'
from the Model Modification menu and click the Select File button. After selecting the
new model (.mdl) file, click the Process button.

Model Modification *i
• Action-

\ f* Add new executable

i <*'';Add list of executable?.;

*•" Merge ip|^^^tt|

IÜI
C \Piogram FilesMDigital\Baj>eScarAupdate mdl

Process I Close !

Select File

Before merging the two models, BayeScan will analyze the two models and if an overlap
is found between the two models - one or more files used to create the models appears in
both models - an Overlap Present message appears.

Overlap present

Overlap present between models
35 Files in common between models
Continue with merge?

Yes lip;

If you elect to merge the two models, a Results window will pop up at the completion of
the merge summarizing the changes made to the current model.

■HS x]

385 Files in original model
Added 479 iles in mergedmodel
35 Overlapping files between models

OK a
The Merge Models functionality is designed to merge distinct models. For instance, if a
model is built for a new class of files that were previously not in the original model, the
merge functionality is an effective way to expand the range of protection provided by
BayeScan. Merge Models is also the method used for updating the model for a new
group of viruses or benign executables that have been analyzed to form a new model,
effectively a "BayeScan update" model.

2.4. Changing the Classification Threshold

BayeScan allows the user to change the threshold used for classification. The threshold
is a means of fine-tuning the BayeScan classifier by adding (or subtracting in the case of
a negative threshold) a standardized value to the analysis score when deciding if a new
executable is malicious. A threshold of 150 is the default threshold for BayeScan.

To change the threshold, select Threshold from the Model dropdown menu.

<S)BayeScan

I File.} Model ':\

Select

r

m *j

Select File I ' •- Analyze -I:

- Results—— : —'■^-

i Normalized 5 core

a!

Malicious ''UV; Benign

The Model Threshold window displays the current threshold, and allows the user to select
a preset threshold - Low, Medium, or High - or enter a new Custom Threshold. To use a
preset threshold, simply select the desired value. Otherwise, select Custom Threshold,
enter the new threshold value, and click the OK button.

Model Threshold

1 Heuristic Sensitivity-—-

f* Low.

C Medium

;C High

<* Custom Threshold

xJ

200(

WM Cancel

The new threshold value will then be used for all BayeScan classifications until the user
sets a different threshold.

2.5. Exiting the Application

In order to exit the application, the user must use the Exit item in the File menu
dropdown.

^o) BayeScan

I File Model

fha :r.i«iuunwialyzed|

Select File J . Analyze

Normalized Score:

Malicious

S'fe' ''_'• '■ xl

-J
Benign

Closing the BayeScan window by clicking the 'X' on the title bar simply hides the
window, and does not actually end the program. To reopen the BayeScan user window,
just click on the application's icon in the Windows system tray.

Appendix C: AppID User's Guide

Introduction

Appld (Application Intrusion Detection) was developed to provide real-time detection of intrusions by
comparing current program behaviors to a set of known "normal" behaviors. Appld works by collecting
data on a set of applications during normal usage. Appld is then put into a training mode where it builds
a model of normal behavior based upon the collected data. Following training, Appld is put into a recall
mode where it compares the current behavior for these applications against the normal behavior model
and reports any anomalous behavior as possible intrusions.

The overall architecture of Appld is a data pipeline. System data is fed into a source component at the
beginning of the pipeline. It is processed using various components along the way, and at the end of the
pipeline a report detailing a detected intrusion is sent to the user. All of the pipeline components inherit
from generic component classes. This allows those components to be replaced transparently without
requiring recoding of the rest of the pipeline. This would allow new intrusion detection algorithms to be
introduced into the system. There is a pipeline-manager that assembles the pipeline based upon a
configuration file, and handles the passing of data between pipeline components.

Page 1

Installation

When the Appld installation zip file is expanded, an Appld install folder will be created (see Figure 1).
Double click the setup.exe file to begin the install.

iRBlffiNHNflHi
Wmm

[ßrogram jiiesl System32

Appld. msi setup, exe

4 objects); [5.15MB J,

Figure 1 - Appld Install Folder

The InstallShield program will being executing and present the user with an initial welcome screen (see
Figure 2) after some operating system information has been collected.

Welcome to tha IntWtShield Waati for Appld

Figure 2 - Appld InstallShield

Selecting the Next button will send the user to the location selection dialog (see Figure 3). The user may
select an install location for Appld. A default location is suggested, but any location is acceptable.
Once the location has been selected, the user should select the Next button.

Page 2

: Choose DeiUnation Location
I SdectfoHeiwh»e Setup wBimtal He:,

\ Se»n)«<rBlalA|>iW.nllK>ta«wi>3toto .

;. To>^tofetcto.cick^TomW[oadlta»ntfota,cfck8ic™^rel»ct *
, omtt»fc|det ,t , >),,.' ":

Siffii
-DMiialnnroMei-'

CViogtam Fkl\DgitBUpplD\

>.}**. | Noo | Cwd |

Figure 3- Location Selection Dialog

Once the installation is complete, InstallShield will display the installation complete dialog (see Figure
4). Once InstallShield has completed, the user must reboot the system to begin using Appld.

minRfliniiTfifflMnB

.mtatlShield Wizard Complete

The IndaförM Wizard h»*ucce*.fully installed Appld
8 efore you can ute the progtam, you must restart your
compute!.

(? Ye*, 1 want to restart my computer now.

f> No, I vd restart my computer later.

Remove enp did« from their drives, and then cfck Finish to
complele setup.

• I "' i >

* ' ' * , fite^ j F^h |' t^ntf' >j
, ^ 1 , 1 - ' '

Figure 4 - Installation Complete Dialog

Page 3

Using the Program

Appld Control Panel

The main interface to Appld is the Appld control panel. To access the control panel, select the Start
Menu in the lower left corner of the windows desktop, then select Settings, then Control Panel. It will
bring up a window similar to Figure 5. Double click the icon labeled Appld to access the Appld system.

.(■)
mmmmmmmmm

A^d^fiemovel x^wü/ AvanlGo Console Data Sourest Dais/Time
[„ Proben« J ^—— Connect (ODBC]

Device» Dsptay FindF«! Fonts Interne! JavaPluo-h
Optioni 1.3.1_02

^
Joystick Keyboard Mau Modems Mouse Multimedia

% % #
Network PC Card Port» Printer« QuickTime Regional

(PCMCIA) Settrg»

SCSI Adapters Server Services Sounds System Tape Devices

I At
TSSMonlsgo T«tophom> TmakUl UPS

IIAudo

mgRmmmfflfflw&WBfflRB&m
Figure 5 - Windows Control Panels

The Appld control panel (see Figure 6) allows the user to perform mode selection (data collection,
training, and recall), start and stop of the service, alter the configuration files, and modify the current
application set.

l'Ailt. "- --,*•:>

«,«ri*»<f- r ■--
I'i

;i4|n»<!«i __ _ iä%sS?"S|fSfe»

*<v *

OsWe .—; - If
-i.

1
L V-ogrMi He» £igI*i\Apol AcorrigurMon-racat

fM^te^ltSÄlffiSi^^SlÄllll EMACS.EXE
NOTEPAD.EXE

1

iffij&äjät*^^

?tf^MJ&&ffr$-$$£;
—;—-

Figure 6 - Appld Control Panel

Page 4

Mode

The mode can be selected by using the drop down menu on the Appld Control Panel (see Figure 7).
This menu will only be activated if the system is in the stopped state. Selecting one of the modes will
cause the configuration for that mode to become active (see Figure 8). The mode that is currently
selected will be the default startup mode.

ümii m
Cotsetion

T A»s»»ftS«H

»111

Hifiiiii
EMACS.EXE
NOTEPAD.EXE

'm&£j\ XSiS&Jl.'i
I^^^spl

Figure 7 - Mode Selection Menu

>BBMMB2

, ICPlpoanl flMSCigtarAMicfVunigwdOoKlianng''

IMACS .EXE
IOTEPAD.EXE

Figure 8 - Data Collection Configuration

Appld can be run in one of three modes (Data collection, Training, and Recall). Data collection mode
allows Appld to collect information on applications that are specified in the current application set. An
application set is a list of applications that the user is interested in monitoring for intrusions. When the
system is running in data collection mode and an application in the current application set is launched,
Appld will begin to collect data on how the application interacts with the operating system. The data
collected will constitute "normal" behavior for the application. The user should use the applications
during data collection mode as thoroughly as possible in the way they anticipate them being used during
the recall mode. This is important so that Appld can get a representation of the normal behavior for the
application. For example, if the user wants to monitor a web server and plans to deploy Java server
pages soon, then Appld must watch the system after the Java server pages have been deployed or their
deployment will appear to deviate from "normal" behavior and be seen as an anomaly and therefore, an
intrusion.

Page 5

Once the user has gather sufficient data, the system can be trained and a model of "normal" behavior
built. The system can then be put into recall mode. Appld will begin to compare the current behavior of
the system to the "normal" behavior that has been trained into the model. The user will be informed
when the current behavior deviates from the "normal" behavior.

Figure 9 shows the recall configuration available after the recall mode has been selected. The user can
use the configuration area to select a new configuration file or to edit the current configuration file for
the current mode. Pressing the Select button (see Figure 10) for any of the configurations will bring up a
file selection box (see Figure 11). Pressing the Edit button (see Figure 12) will bring the current
configuration file up inside of Notepad so that it can be altered.

,f fete
ff Slafved

%^''iTr ff^tmlMfM^i "1 CW» 1
''','r'n^:-'*r'"W^jVr"'1'^JuWf,"r:'-^----t*-'*''l''-t- — -•^■V-iJ'i'"Y-

wSäM

1

V^IM

~"~;'&&*>^
v^ncfotiflwnFinVOQplrfAp^^^axJoJaWftrfeel-;.'. ■ Xt\

;.^rS*li(j-rrf ">,; Efc %V>*| 'J ;.-"* Tfc J\" NOTEPAO.EXE

fill
^^^^Hl

Figure 9 - Recall Mode Selected

3P r BS* rjii!lOtf'TiJ;^

jHpsfi
5v..p\^aipl[WGafcMp^

Ji^wS^^fep^^^w^^S^ !—1

^sMßWwifufMf

kl^^^j,:;<V; :|i™,

*>-jf [CVPipörtm Fl«\CijttMprt(f,c*rfi9üffliic*.t!«)^ '■" '■!'■' 1

i^^^^^^^^^i^^s
Figure 10 - Select Button

Page 6

1 *
ÖNTOolaD*g
HNTOala&lJfi
□ NTNGi««T(|
HNTRecalex'i
QOnlneDetecf:
|5] output'tog t|

.* •■ J1

D D«taSlotaga

!§J£3 MwMStoiags

j&Jnf'AIeitGuSispfay.Bxe

I© AppldControPanelcpl
IIJM corfigZtrainng

^[acorfiguralion

M confgualion.collecSQn
HJ cofifigualion,f8C«l
kfl corfigualion.tr*nmg
^corTiguatnn2
C3EvenlLoglnilMfiief.exe
O'NGiamTtainsr.exa

\<\ _ . j ,
^^«sJare? iffffissaw,'®' s iy^was* are««!»«!*«' ■p8—" ;'■'-.-■

i-r-t; 81» SSBSBtfB^ a ■■-r^-i-:
Figure 11 - File Selection Box

•iMii

109*1 Fit»\QötllU«>ldyQnllgu«Köftr«Ml H

g;CDi

<4>«M*lifit<iiitei»»i»»r>r

Figure 12-Edit Button

^i^glili^PJlS^lifi^SS^iSgiüü
SOURCE-NTColtetor
COMPONENT-NTtoID
CONFIGURATION - NGramConfiguratlon,3
SINK - ReportManager
REPORT - LogFlleDestina«on^:\onlIn8\outpuMog
REPORT - EventLogDestination,plastered
REPORT - LogFUeDestlnatlon

m
ft
to

Figure 13 - Notepad being used to edit a configuration file

Page 7

Status

The Control Panel also shows the current status of Appld (see Figure 14). The system can either be
active (i.e. running) or stopped. If the system is active, it will remain active upon reboot (i.e. the system
will automatically come up in the active status). If the system is stopped, it will not run automatically
upon reboot.

Mumiunmun——— m

I ICSPieOop FM»\CgMAA^dWftjij#fbft

-'■•■'"Site.■;]\.i' ''iii''-iS- iL.''•

2Vrööi«*FS*^C^^jS^«rt^uiÄ0ftü%rthg

rtAtpfcaKonSld.'.:

' "Mi ' . f '„öä '

WACS.EXE
I0TEPA0.E

 LJ

Figure 14 - Status Area of the Appld Control Panel

Selecting the Go button (see Figure 15) while the system is stopped will start the system running in
whatever mode is currently selected in the mode selection menu. Once the system has started, the
Appld Control Panel will update the status to active (see Figure 16). The Stop button will now be
enabled and can be selected to stop the system.

CB33SD3BI m

-jm.

Figure 15 - Go Button

Page 8

MI'IHMIffll m
■|"r=.' PI jJCsäS

i^^^^^^^^S^B
V,;-: :;1;i^-;.,.i',-^i

.■

ippfSw??

EMACS.EXE
NOTEPAD EXE

Figure 16 - Appld in Active State

If the user selects the Go button while in training mode (see Figure 17), the program will immediately
run the training manager program in another window (see Figure 18). This operation cannot be stopped
or canceled.

IMlHBUMBBMi ■ Mi ■psf

L:\Piogrvn E^\Q9MV^dV«ir4wi|i<xi coStcron: :

f^'Jhtis^Pk»)D^titiA^khxf^a6oniwdi-i

[■t-.'SMaM''.

i ABffc]AGn5s< -j

4I

Tjirpng'CcWigijMtionr^

Figure 17 - Training Mode Selected

Figure 18 - Active Training Mode

Page 9

Application Set

Appld can monitor a user-specified set of applications. The current applications being monitored are
listed in the application set portion of the control panel (see Figure 19). This list can be modified by
using the Add or Delete buttons found in the application set portion of the control panel. Selecting the
Add button (see Figure 20) will bring up a file selection dialog box (see Figure 21). Since Appld can
only monitor executable programs, only executable programs (i.e. ending in .exe) will be shown to the
user in the file dialog box. Adding or removing an application from the list will activate the Save and
Reload buttons (see Figure 22). The Save button will save the current altered application set while the
Reload button will return the previously saved application set. To delete an application from the list,
select it in the list and then press the Delete button.

■'.' :.D'e*Cefec^t«^«tf(ii---;

m
IStSwili

ifiiPslfiti ̂ ^»
SCT/^j»»|feS3SfSg|

A* ' "*"• \

Figure 19 - Application Set Portion of the control panel

I
f Ace«

"tF Stafnoü

- SCM .:.'jColecKn ^'.".V-Ji-.^;'.;-.'»'.!"'!-;.'.,,-••.'

:*•ri :Öi»# Cefcsititi &rf9jntäH=^7?7?te'-'r~r^J~:~±'?.

"* 1

il

ji-

■'■ ■ '1 s*» r| IfTa,"^' *' •<■ ' j '

|HNNN| -..IDA«" ^
\^rfitut^ex(bed_ j X -\TS ̂ L^ ^^^^^Ml NOTEPAD.EXE

^I^^M^^^^^^^^^^^P^^^^^^lb

Figure 20 - Add Button

Page 10

Ittrf* JH^T
I £) DataSlaage
I Si ModalStoiaga
$ ItTAIeitGuJDisplay.exe
jf 3EvertLodni6alaer.ew
■jr 0'NGi«nTr«ner.«M
| ÜjNTDalaColecta.eita

■■■■■BE]

■p ■*■*

r,ffctia(iW»:.:jD<ECUIA9LES(-e.e|

ONTDal«ColedofSeivic8.«(B □ Iranian1

C3MTNGramTrainet.eie I
QNTRecalaxe &
HQnlineDetect«.exe)|
QnagitbyRebadexe \t
Q Swvcolnslallef.»e

«_tl:

Figure 21 - File selection box to add applications to watch

m
fSüieäion __ gl CWra.

SSMl
'r-Aefefii

ABfc.lnr.3«!

! NTNGRAMTRAINER.D«S
I; EMACS.EXE Hi
E NOTEPAD.EXE

rr- -J :,;

Figure 22 - Enabled Save and Reload buttons

Page 11

Configuration Files

Each mode of Appld has a related configuration file. These configuration files allow Appld to be
configured dynamically at runtime. The configuration file specifies the order and type of components
within Appld. Appld is a pipeline-based system with data being collected at a source, processed through
various components, and finally sent to a data sink where important information is reported to the user.
Each component is built to take inputs and to produce outputs. The components must be linked together
in the correct order or the system will not function. An example configuration file for Recall mode is
shown in Figure 23.

SOURCE - NTCollector
COMPONENT - NTtoID
CONFIGURATION - NGramConfiguration,3
SINK - ReportManager
REPORT - LogFileDestination,C:\Program Files\Cigital\AppId\output-log
REPORT - EventLogDestination

Figure 23 - Sample Configuration File for Recall Mode

The first component in the system must be a source and, for NT-based systems, must be an NTCollector
source. The next component for NT-based systems is a simple component that converts NT type data to
a generic type of data known as IDData. This component also adds various NT-specific data to the
DDData data, such as process name. The next component is a Configuration component, which sets up
all the proper sub-components for using the NGram Algorithm. After data has passed through the
NGram algorithm, it is sent directly to the Report Manager. The Report Manager can have any number
of report destinations. These report destinations handle the report in the most appropriate manner for the
destination. For example, writing to the windows event log requires special commands that are
embedded within the event log destination component. The pipeline built by the configuration file
shown in Figure 23 can be seen in Figure 24.

NTCollector >
 r NTtoID

NGram
Algorithm

 >
 1

' Report
Manager

K S ^ s N

Log File
Destination

Event Log
Destination

Figure 24 - Pipeline for Recall

An example configuration file in the same type of format for data collection is shown in Figure 25. The
pipeline for data collection is very similar in terms of getting the data from the operating system. The
source of the data is the NTCollector. The data is passed to the NTtoID component for conversion to
IDData. The data is then sent to the Process Splitter, a sink that writes the information out to data files.
These data files will be used during training to build the model of normal behavior. The pipeline built
by the configuration file shown in Figure 25 can be seen in Figure 26.

Page 12

SOURCE - NTCollector
COMPONENT - NTtoID
SINK-ProcessSplitter

Figure 25 - Sample Configuration File for Collection

NTCollector NTtoID
Process
Splitter

Figure 26 - Pipeline for Data Collection

The configuration file for training will be manipulated more often that the recall or data collection
configuration files. A sample configuration file for training is shown in Figure 27. The first line of the
file is the name of the training executable to use. Since only one algorithm is distributed with the
system, the training executable must be NTNGramTrainer.exe. The remaining lines in the configuration
file are command line arguments for the training executable. NTNGramTrainer executable takes the
size of the NGram window as its first argument. The remaining arguments are data files to send to the
training algorithm. The output of NTNGramTrainer executable will be model files written into the
ModelStorage directory, which is located in the Appld install directory.

NTNGramTrainer.exe
3
C:\ProgramFiles\Cigital\AppId\DataStorage\Notepad
C :\Program Files\Cigital\AppId\DataStorage\Emacs

Figure 27 - Configuration file for training

Modification of the training configuration file can be done with another executable found in the Appld
install directory. NGramConfigurationBuilder.exe (see Figure 28) was built to provide a user-friendly
way to modify the NGram training configuration file.

BBBO
.-D«uFfeitoUi»OvxnsTt'«w«- --'--

JSl

Da.rfa
CAProfliam File*\Cigital*ApplD\DalaSloiage\NOTEPAD

mm
i^

:Cor/WJälionFI.NimeJ

WanlktotiSiBi (l 3,.:

;;6«K

Figure 28 - NgramConfigurationBuilder Application

The user can modify the list of data files that the training algorithm will use by selecting the Add or
Delete buttons. The user can chose the name of the configuration file to build by pressing the Select

Page 13

button. A file selection box will be presented (see Figure 29) to select an existing file to overwrite or to
enter the name of a new configuration file. Figure 30 shows a configuration file that has been selected.

^Datastorage

Ü^ModeBtorage

jSfAlertGuiajplay.exe
äflppI<KontroParwl.cpl

I») flppIOToo(tLoQ.dl

Q tonfiguratkm.collecUcn

«J
: Fior.

\.n»dtyrm -I"

■] cor/lguratlan.recal

jj] corfigu'aUon.tf «Wng

0 NGf amConRguraöonBulldef .exe

J^lNfNGr amTraincr.exa

QonkwDetector.axB

Qstraco.syj

.si

"3
Figure 29 - Configuration File Selection Box

TODM.-i-x-ir-jrip

toi\CipjtaNAppldU)ala:

» A ' ■=■ I

Figure 30 - NGramConfigurationBuilder with a configuration file given

Once the user has selected a configuration file, the window size for the ngrams can be selected (see
Figure 31). The longer the window size, the more specific the recall algorithm will be. However, a
longer window size will result in more potential false alarms being generated by the recall algorithm. A
window size of three or less is suggested.

:|EjEpHipnpni
£ r> 0«W fife» \6 Ihe'Dültö .1 »«Mbig^

Wß&^'S^^^^^^ff^^^^^^^
C:\Piogjfam "to* V&i Wp 3ld\D«taSt xaga\ Notepad j

■

mm ^j. * mi

Figure 31 - Selecting the NGram Window Size

Once the window size has been selected, pressing the Build File button will build the desired
configuration file. The user can then select the Exit button to exit the application.

Page 14

It is possible, but not advisable, to extensively modify the configuration files that are provided with
Appld. Please see Appendix A for more detailed information on the configuration files and possible
components.

Page 15

AlertGuiDisplay

The AlertGuiDisplay application works in conjunction with the EventLogDestination to show the user
any anomalies that have been detected by Appld. The EventLogDestination component sends reports to
the Windows Event Log where they will be detected by the AlertGuiDisplay application. The
application can be found inside of the Appld install directory. When it is launched, it will place an icon
in the system tray (see Figure 32).

tc->Cf x mm

]
Figure 32 - Appld AlertGuiDisplay Icon in the System Tray

Selecting the AlertGuiDisplay Icon in the System tray will bring the main application window to the
front (see Figure 33). The items in the list are anomalous behavior that has been detected by Appld.
Appld writes the anomalous behavior into the system event log and the AlertGuiDisplay reads them out
and displays the information. It will also beep when it detects new additions to alert the user.

'■■MWWWM

i ■t
Pn-casliO hPlocstUJom Jifilsyt»

NOTEPAD 04/29/2002
157 NOTEPAD 04/29/2002 15-31*17
157 NOTEPAD M/29/2002 15:31:17

--■ 157 NOTEPAD 04/29/2002 15:31:17 '!*
157 NOTEPAD 04/29/2002 15:31:17 m ... 157 NOTEPAD 04/29/2002 15:31:17 ■• *-. 157 NOTEPAD 04/29/2002 15:31:17 m

V' 157 NOTEPAD 04/23/2002 15:31:17
v 157 NOTEPAD 04/29/2002 1*31:17 "-. 157 NOTEPAD 04/29/2002 15:31:17 ■J&

it 157 NOTEPAD 04/23/2002 15:31:17 ■} 157 NOTEPAD 04/29/2002 1531:17 :'•- 157 NOTEPAD 04/23/2002 15:31:17

•

l 1
r "iBztM'SftWsi iSsäSSSSsB aaSps^S^ssHSäS!'

Figure 33 - AlertGuiDisplay application main window

Page 16

Appendix A

Possible
Sources
Name NTCollector
Header SOURCE
Previous
Components

NONE

Post
Components

NToID

Arguments NONE
Table 1 - Possible Sources

Possible
Components
Name NTtoED NGramConfiguration
Header COMPONENT CONFIGURATION
Previous
Components

NTCollector NToID

Post
Components

NGramConfiguration,
ProcessSplitter,
future algorithm
configuration
components,

ReportManager

Arguments NONE Window Size of the
NGramAlgorithm

Table 2 - Possible Components

Possible
Sinks
Name ProcessSplitter ReportManager
HEADER SINK SINK
Previous
Components

NToID NGramConfiguration

Post
Components

NONE NONE

Arguments Report Destinations
(see Table 4)

Table 3 - Possible Sinks

Possible
ReportDestinations
Name LogFileDestination EventLogDestination
HEADER REPORT REPORT
Previous Any Report Any

Page 17

Components Destination ReportDestination
Post Components Any Report

Destination
Any Report
Destination

Arguments Any file, or no file
for output to
standard error

Machine name or no
argument for local
machine

Table 4 - Possible Report Destinations

Page 18

