
NASA/CR-2002-211656
ICASE Report No. 2002-16

Recent Advances in Achieving Textbook Multigrid
Efficiency for Computational Fluid Dynamics
Simulations

Achi Brandt
The Weizmann Institute of Science, Rehovot, Israel

Boris Diskin
ICASE, Hampton, Virginia

James L. Thomas
NASA Langley Research Center, Hampton, Virginia

May 2002



Report Documentation Page

Report Date 
00JUN2002

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Recent Advances in Achieving Textbook Multigrid
Efficiency for Computational Fluid Dynamics Simulations

Contract Number 

Grant Number 

Program Element Number 

Author(s) 
Achi Brandt,Boris Diskin,James L. Thomas

Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
ICASE Mail Stop 132C NASA Langley Research Center
Hampton, VA 23681-2199 

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and 
Address(es) 

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
ICASE Report No. 2002-16

Abstract 
see report

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
SAR

Number of Pages 
32



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA’s
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATIONS.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the
STI Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing
research results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page athttp://www.sti.nasa.gov

• Email your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI
Help Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at
(301) 621-0390

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320



NASA/CR-2000-
ICASE Report No.
NASA/CR-2002-211656
ICASE Report No. 2002-16

May 2002

Recent Advances in Achieving Textbook Multigrid
Efficiency for Computational Fluid Dynamics
Simulations

Achi Brandt
The Weizmann Institute of Science, Rehovot, Israel

Boris Diskin
ICASE, Hampton, Virginia

James L. Thomas
NASA Langley Research Center, Hampton, Virginia

ICASE
NASA Langley Research Center
Hampton, Virginia
Operated by Universities Space Research Association

Prepared for Langley Research Center
under Contract NAS1-97046



Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650



RECENT ADVANCES IN ACHIEVING TEXTBOOK MULTIGRID EFFICIENCY FOR

COMPUTATIONAL FLUID DYNAMICS SIMULATIONS

ACHI BRANDT�, BORIS DISKINy, AND JAMES L. THOMASz

Abstract. Recent advances in achieving textbook multigrid e�ciency for uid simulations are presented.

Textbook multigrid e�ciency is de�ned as attaining the solution to the governing system of equations in

a computational work which is a small multiple of the operation counts associated with discretizing the

system. Strategies are reviewed to attain this e�ciency by exploiting the factorizability properties inherent

to a range of uid simulations, including the compressible Navier-Stokes equations. Factorizability is used to

separate the elliptic and hyperbolic factors contributing to the target system; each of the factors can then be

treated individually and optimally. Boundary regions and discontinuities are addressed with separate (local)

treatments. New formulations and recent calculations demonstrating the attainment of textbook e�ciency

for aerodynamic simulations are shown.

Key words. textbook multigrid e�ciency, factorizable systems of di�erential equations, principal lin-

earization, factorizable discretizations, distributed relaxation

Subject classi�cation. Applied and Numerical Mathematics

1. Introduction. Considerable progress over the past thirty years has been made in the development

of large-scale computational uid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Com-

putations are used routinely to design the cruise shapes of transport aircraft through complex-geometry

simulations involving the solution of 25-100 million equations; in this arena, the number of wind-tunnel tests

for a new design has been substantially reduced. However, simulations of the entire ight envelope of the

vehicle, including maximum lift, bu�et onset, utter, and control e�ectiveness, have not been as successful

in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady ows with more

separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into

the design process are: (1) the reliability of turbulence models and (2) the time and expense of the numer-

ical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds

numbers, transition and turbulence modeling is expected to remain an issue for the near term [41]. The

focus of this paper addresses the latter problem by attempting to attain optimal e�ciencies in solving the

governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and

multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise con�gura-

tions within approximately 1000 residual evaluations. More complexity in the geometry or physics generally

requires many more residual evaluations to converge, and sometimes convergence cannot be attained. An

optimally convergent method is de�ned [5, 6, 8, 9] as having textbook multigrid e�ciency (TME), meaning

the solutions to the governing system of equations are attained in a computational work which is a small

(less than 10) multiple of the operation count in the discretized system of equations (residual evaluations).

�The Weizmann Institute of Science, Rehovot 76100, Israel (email: achi@wisdom.weizmann.ac.il).
yICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, Virginia 23681 (email: bdiskin@icase.edu). This

research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while

the author was in residence at ICASE, NASA Langley Research Center, Hampton, Virginia 23681
zComputational Modeling and Simulation Branch, Mail Stop 128, NASA Langley Research Center, Hampton, VA 23681

(email: j.l.thomas@larc.nasa.gov).
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Thus, there is a potential gain of more than two orders of magnitude in operation count reduction if TME

could be attained. For staggered-grid formulations of incompressible ow equations, robust and relatively

e�cient multigrid solvers have already been developed [30, 31, 32]; their e�ciency is still about an order of

magnitude behind TME.

Because the governing equations are a set of coupled nonlinear conservation equations with discontinuities

(shocks, slip lines, etc.) and singularities (ow- or grid-induced), the di�culties are numerous. The TME

methodology insists that each of the di�culties should be isolated, analyzed, and solved systematically

using a carefully constructed series of model problems. To be e�cient, multigrid solvers for general systems

of partial di�erential equations must adequately address three types of errors: (1) high-frequency error

components, (2) uniformly smooth error components, and (3) characteristic error components. The latter

are (usually smooth) error components that are much smoother in characteristic directions than in other

directions. Standard multigrid methods that are e�cient for elliptic problems recognize and separate the

treatment of high-frequency and smooth error components. The former are e�ciently reduced in relaxation;

the latter are well approximated on coarse grids and, hence, eliminated through the coarse-grid correction.

The e�ciency of classical multigrid methods severely degrades for nonelliptic problems because characteristic

components cannot be adequately approximated on coarse grids [4, 11, 15].

If the target discretization is h-elliptic (or semi-h-elliptic), the high frequency error components can

still be reduced by a local (or block-wise) relaxation procedure. By de�nition [4, 55], a discrete scalar

(not necessarily elliptic) operator L[u] possesses a good measure of h-ellipticity if the absolute value of its

symbol jL(��)j = je�i(
���j)L[ei(

���j)]j is well separated from zero for all high-frequency Fourier modes. Here

j = (jx; jy; jz) are the grid indexes and �� = (�x; �y; �z); 0 � j�xj; j�yj; j�zj � � are normalized Fourier

frequencies. High-frequency Fourier modes are the modes satisfying max(j�xj; j�yj; j�z j) �
�
2 . For systems,

the measure of h-ellipticity is de�ned as the absolute value of the determinant of the operator matrix.

Standard coarse-grid corrections are e�cient for uniformly smooth error components, even for nonelliptic

problems. An e�ective reduction of characteristic error components can be achieved either by designing a

proper relaxation scheme reducing not only high-frequency but smooth error components as well (e.g., by

downstream ordering of relaxation steps) or by adjusting coarse-grid operators for a better characteristic-

component approximation.

Multigrid methods e�ciently reducing all the three aforementioned types of error have been developed for

scalar nonelliptic operators [11, 12, 20, 21, 22]. TME for systems of equations can be attained by exploiting

the factorizability property of the governing equations. The factorizability of the Navier-Stokes equations is

manifested by the fact that the determinant of the matrix of the di�erential operators consists of separable

factors. Exploiting the factorizability property in discrete computations reduces the problem of relaxing a

complicated system of discretized coupled di�erential equations to relaxation of simpler factors constituting

the system determinant. This approach is quite distinct from most approaches to accelerate convergence

because for steady-state ows, the factors are treated directly rather than through pseudo-time marching

methods. Time-dependent ow solvers can be constructed within this approach as well and in principle

are simpler to develop than steady-state solvers. A list of envisioned di�culties and possible solutions in

attaining TME for CFD simulations is discussed elsewhere [9].

This paper is organized as follows. The foundations of the methodology for attaining TME in CFD

simulations are discussed in Section 2, including the concept of principal linearization and illustrations of

the factorizability of various uid dynamic equations. Two strategies for exploiting the factorizability are

presented in the next two sections. Reformulation of the di�erential equations is discussed in Section 3. An
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alternative, more general, distributed relaxation approach is discussed in Section 4. E�cient methods for

relaxing scalar factors are presented in Section 5. Section 6 compares and evaluates the available analytical

tools. Section 7 summarizes recent advances in formulation and demonstration TME. Concluding remarks

are given in the �nal Section 8.

2. Foundations for Textbook Multigrid E�ciency. The basic framework for TME solvers is full

multigrid (FMG) algorithms [5, 6, 17, 46, 55, 56]. In FMG algorithms, the solution process is started on

a very coarse grid where the computational cost of solution is negligible. The coarse-grid solution is then

interpolated to the next �ne grid to form an initial approximation. Few multigrid full approximation scheme

(FAS) cycles, or possibly just one, are performed next to obtain an improved �ne-grid solution approximation.

Then, the process proceeds to �ner grids until the solution on the target �nest grid is achieved.

In the solution of highly nonlinear problems, a good initial guess is important. A general way to obtain

such an initial guess is by continuation, in which the solution to the target problem is approached through

the solutions of a sequence of parameterized problems. Usually the problem starting the continuation process

is easy to solve, and the di�culty gradually increases as the control parameter approaches the target value;

this continuation process can often be integrated into an FMG solver. For example, with viscosity as the

control parameter, at the coarse grids more arti�cial viscosity can be used, then gradually be taken out as

the algorithm proceeds to �ner levels. Such FMG continuation is often natural because larger numerical

viscosity is introduced on coarse grids, even without aiming at continuation.

A version named �-FMG algorithm provides the device needed for optimal adaptive local re�nement.

E�cient multigrid solvers based on this approach have been demonstrated [2].

The objective of FMG algorithms (and TME methods in particular) is fast convergence to the solution

of the di�erential equations, not necessarily fast asymptotic residual convergence. The natural solution

tolerance is the discretization error de�ned as the di�erence between the exact solutions of discrete and

di�erential problems. Thus, the quality of a solution approximation on a given grid can be measured by the

relative magnitude of algebraic errors in comparison with the discretization error level. The algebraic error

is de�ned as the di�erence between the exact and approximate solutions of the discrete problem. On any

grid in an FMG algorithm, we expect the algebraic errors after few multigrid cycles to be always less than

the discretization error.

On the other hand, a fast residual convergence is considered as an important monitoring tool. In many

practical cases, it is possible to develop a solver exhibiting fast residual convergence rates without compro-

mising TME. Note however that sometimes the quality of the target-grid solution can be much improved

by double discretization methods. A double discretization method applies for relaxation a discretization

scheme that is di�erent from the scheme used for calculating residuals transferred to the coarse grid. Zero

target-grid residuals might not be the aim in this case.

The goal of this paper is to review solution strategies leading to TME solution of uid mechanics

equations. The most general system we consider here is the time-dependent compressible Navier-Stokes

equations written as

@tQ+R(Q) = 0;(2.1)

where the conserved variables are Q � (�u; �v; �w; �; �E)T , representing the momentum vector, density, and

total energy per unit volume, and

R(Q) � @xF(Q) + @yG(Q) + @zH(Q);(2.2)
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F(Q) =

0
BBBBBB@

�u2 + p� 2�@xu� �(5 � u)

�uv � �(@xv + @yu)

�uw � �(@xw + @zu)

�u

�uE + up� �u(5 � u)� ��1 � �@x�

1
CCCCCCA
;

G(Q) =

0
BBBBBB@

�uv � �(@xv + @yu)

�v2 + p� 2�@yv � �(5 � u)

�vw � �(@yw + @zv)

�v

�vE + vp� �v(5 � u)� ��2 � �@y�

1
CCCCCCA
;

H(Q) =

0
BBBBBB@

�uw � �(@xw + @zu)

�vw � �(@yw + @zv)

�w2 + p� 2�@zw � �(5 � u)

�w

�wE + wp� �w(5 � u)� ��3 � �@z�

1
CCCCCCA
;

where

�1 = 2u@xu+ v(@xv + @yu) + w(@xw + @zu);

�2 = 2v@yv + u(@xv + @yu) + w(@yw + @zv);

�3 = 2w@zw + u(@xw + @zu) + v(@yw + @zv);

� and � are viscosity coe�cients, and � is the coe�cient of heat conductivity.

A basic step in developing an e�cient multigrid algorithm is to design an e�cient relaxation procedure.

For nonlinear problems, the relaxation updates to a current solution approximation are usually computed

through Newton iterations. The full Newton linearization of the Navier-Stokes equations (2.1) is a very

complicated operator, and its solution (inversion) is too costly for practical applications. To reduce the com-

putational cost without compromising e�ciency, one can opt for relaxation of a principal linearization. The

principal linearization of a scalar equation contains the linearization terms that make a major contribution

to the residual per unit change in the unknown variable. The principal terms thus generally depend on the

scale, or mesh size, of interest. For example, the discretized highest derivative terms are principal on grids

with small enough mesh size. For a discretized system of di�erential equations, the principal terms are terms

that contribute to the principal terms of the system determinant.

To illustrate the idea of principal linearization, consider a nonlinear discrete thin-layer approximation

of the convection-di�usion operator, in which the ow is parallel to the boundary (x-direction) and only the

viscous terms associated with variations in the y-coordinate normal to the boundary are retained

N(u) � u@hxu� �@hyyu;(2.3)

where @hx and @hyy are discrete approximations to the �rst x-directional derivative and to the second y-

directional derivative, respectively. A full Newton linearization (assuming constant viscosity) for a correction

�u has three terms

@N

@u
�u � u@hx�u+ (@hxu)�u� �@hyy�u:(2.4)
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To evaluate principality of the terms, one can start from an exact discrete solution; for example, the function

�u � 0 is the exact solution of the homogeneous equation @N
@u
�u = 0. A unit change in the unknown variable,

�u, is de�ned as a perturbation of the solution value at one grid point. Introducing this perturbation, the

residual function becomes nonzero in the vicinity of the perturbed point. One can directly check which of the

terms of the full linearization operator make major residual contributions. Three situations are encountered:

� High cell Reynolds number (
uh2y
�hx

� 1). If the velocity function u is smooth and non-degenerate,

i.e., the magnitude of velocity deviations in neighboring grid points is less than the local velocity

magnitude, then the major contribution to the residual function is O(u=hx) and comes from the

term u@hx�u; the second term contribution is O(@hxu); and the viscous term contributes O(�=h2y)

which is much less than O(u=hx). Thus, only the �rst term u@hx�u is principal. However, if the

velocity �eld is not smooth, either because of a coarse mesh or proximity to a discontinuity, or if the

absolute velocity value is small (stagnation ows), then the second term becomes principal as well.

� Low cell Reynolds number (
uh2y
�hx

� 1). The major residual contribution comes from the viscous term

which is the only principal term.

� Medium cell Reynolds number (
uh2y
�hx

= O(1)). This situation corresponds to the usual boundary

layer assumption when convection balances di�usion. For smooth non-degenerate ows, the only

subprincipal term is the second; the �rst and the third terms are principal. For nonsmooth or

degenerate ows, all three terms are principal.

As an example of a system of nonlinear ow equations, we consider a discrete operator corresponding to

a one-dimensional steady-state compressible inviscid ow:

N(q) �

0
B@

u@hxu+
(�1)�

p
@hxp

p@hxu+ u@hxp

( � 1)�@hxu+ u@hx�

1
CA ;(2.5)

where q = (u; p; �)T represents velocity, pressure, and internal energy and  is the ratio of speci�c heats.

The full Newton linearization of this operator is given by

@N

@q
�q �

0
B@

(@hxu) + u@hx ( � 1)�( 1
p
@hx �

(@hxp)
p2

) ( � 1)
(@hxp)
p

p@hx + (@hxp) (@hxu) + u@hx 0

( � 1)�@hx + (@hx�) 0 ( � 1)(@hxu) + u@hx

1
CA
0
B@

�u

�p

��

1
CA ;(2.6)

Assuming a smooth non-degenerate solution q, the �rst simpli�cation step is to eliminate lower derivative

terms from each entry of the matrix (2.6). This simpli�cation leads to an approximate linearization as

0
B@

u@hx ( � 1) �
p
@hx ( � 1)

(@hxp)
p

p@hx u@hx 0

( � 1)�@hx 0 u@hx

1
CA
0
B@

�u

�p

��

1
CA ;(2.7)

The determinant of the matrix (2.7) is

u@hx(u
2@hx@

h
x � c2@hx@

h
x � ( � 1)2

�

p
(@hxp)@

h
x );

where the sound speed c relates to the internal energy � as c2 = ( � 1)�. Because p is non-degenerate, the

last term in the parentheses is subprincipal in comparison to the other two terms. The third element in the

�rst row of the matrix (2.7) does not contribute to the principal part of the determinant operator; therefore

the principal linearization is de�ned as
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0
B@

u@hx ( � 1) �
p
@hx 0

p@hx u@hx 0

( � 1)�@hx 0 u@hx

1
CA
0
B@

�u

�p

��

1
CA ;(2.8)

The notion of principal linearization is essentially based on the discrete formulation. The principal part

of a di�erential operator may be de�ned as the limit of the principal part of the corresponding discrete

operator as the mesh size h tends to zero. So for smooth non-degenerate ows, the principal terms of the

di�erential equations are the highest derivatives.

TME for solution of the Navier-Stokes system of di�erential equations can be achieved by exploiting the

system factorizability. To illustrate the factorizability property, examples are given below for various uid

mechanics regimes. In all cases, we assume a smooth non-degenerate solution as de�ned previously.

Incompressible Navier-Stokes Equations. The steady-state incompressible Navier-Stokes equations can

be written as

Q�u+5p = 0;

5 � u = 0;
(2.9)

where u = (u; v; w)T is the velocity vector and Q� = u � 5 � �� is a convection-di�usion operator. The

principal linearization operator is given by

L

0
BBBB@

�u

�v

�w

�p

1
CCCCA =

2
66664

Q� 0 0 @x

0 Q� 0 @y

0 0 Q� @z

@x @y @z 0

3
77775

0
BBBB@

�u

�v

�w

�p

1
CCCCA ;(2.10)

where velocity u is �xed in the linearized convection-di�usion operator Q� .

detL = �Q2
� �:(2.11)

Compressible Euler Equations. A nonconservative form of the Euler equations is given by

Qu+ 1
�
5 p = 0;

�c2 5 �u+Qp = 0;
c2


5 �u+Q� = 0;

where Q � Q0 denotes the particular case of Q� with zero (� = 0) physical di�usion, and density, �, pressure,

p, sound speed, c, and internal energy, �, are related as

p = ( � 1)��;(2.12)

c2 = p=�:(2.13)

The principal linearization is given by

L

0
BBBBBB@

�u

�v

�w

�p

��

1
CCCCCCA

=

2
6666664

Q 0 0 1
�
@x 0

0 Q 0 1
�
@y 0

0 0 Q 1
�
@z 0

�c2@x �c2@y �c2@z Q 0
c2


@x

c2


@y

c2


@z 0 Q

3
7777775

0
BBBBBB@

�u

�v

�w

�p

��

1
CCCCCCA
:(2.14)
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The determinant of the matrix operator L is

detL = Q3
�
Q2 � c2�

�
;(2.15)

where � is the Laplace operator, and Q2 � c2� represents the full-potential operator.

Compressible Navier-Stokes Equations. The nonconservative formulation corresponding to the steady-

state version of (2.1) is given by

�
(u � 5)� �

�
�� �̂

�
@xx

�
u� �̂

�
(@xyv + @xzw) +

1
�
@xp = 0;�

(u � 5)� �
�
�� �̂

�
@yy

�
v � �̂

�
(@xyu+ @yzw) +

1
�
@yp = 0;�

(u � 5)� �
�
�� �̂

�
@zz

�
w � �̂

�
(@xzu+ @yzv) +

1
�
@zp = 0;

�c2(5 � u) + (u � 5)p+ ( � 1)(����+�) = 0;
c2


(5 � u) + (u � 5)p� �

�
��+ �� = 0;

where

� � �
�
2(@xu)

2 + 2(@yv)
2 + 2(@zw)

2 + (@xv + @yu)
2 + (@xw + @zu)

2 + (@yw + @zv)
2
�
+ �(@xu+ @yv + @zw)

2:

Assuming constant viscosity and heat conduction coe�cients, the principal linearization operator L,

keeping the terms principal on both the viscous and inviscid scales, is given by

L =

2
66666664

Q�
�
�

�̂
�
@xx �

�̂
�
@xy �

�̂
�
@xz

1

�
@x 0

�
�̂
�
@xy Q�

�
�

�̂
�
@yy �

�̂
�
@yz

1

�
@y 0

�
�̂
�
@xz �

�̂
�
@yz Q�

�
�

�̂
�
@zz

1

�
@z 0

�c2@x �c2@y �c2@z Q (1� )��
c2


@x

c2


@y

c2


@z 0 Q�

�

3
77777775
;(2.16)

detL = Q2
�
�

h�c2
�

�2 +Q(�c2�+
�(�̂+ �)

�2
�2)�Q2�+ �̂+ �

�
�+Q3

i
;(2.17)

where, nondimensionalizing by density and sound speed and applying Stokes hypothesis for the bulk viscosity

term, the coe�cients become �=� = M1=(� Re); � =M1=(Re Pr), and �̂ = � + � = �=3; M1 is the free

stream Mach number, and Re and Pr are Reynolds and Prandtl numbers respectively.

The approaches exploiting the factorizability property for e�cient solution of the Navier-Stokes equa-

tions may be divided into two categories: (1) reformulating the target di�erential equations so that the

principal linearization of the new formulation becomes uncoupled (usually triangular with the factors of the

determinant on the main diagonal) and (2) modifying the equations for computing relaxation updates while

keeping the original formulation for computing residuals.

For the subsonic compressible Euler equations, the �rst TME solvers exploiting factorizability of the

system have been developed by Ta'asan [48, 49, 50]. These solvers represent examples of the reformulation

approach. New canonical variables have been introduced, and in these variables, the Euler system of equa-

tions becomes block upper triangular with the main diagonal blocks consisting of the basic components of

the system. Another reformulation approach toward achieving TME for solution of the Euler and incom-

pressible Navier-Stokes equations is based on the pressure-equation formulation which e�ectively separates

elliptic and hyperbolic factors of the system [36, 43, 45].
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The approaches from the second category are more general, allowing considerable freedom in relaxation

scheme design because di�erent schemes may be applied to di�erent ow regions. However, the design itself

is relatively simple only if the target discretization scheme is also factorizable, i.e., the determinant of the

discrete principal linearization can be represented as a product of discrete factors, each of them approximating

a corresponding factor of the determinant of the di�erential equations. A stumbling block that has prevented

fast progress in developing TME solvers was the lack of factorizable discretizations for many important

application areas in uid mechanics. Among the widely known discretization schemes, only staggered-

grid formulations for incompressible and subsonic compressible ow regimes are conveniently factorizable.

Some centrally-di�erenced collocated-grid formulations are factorizable as well, but the factors obtained

in the corresponding discrete determinant are not often easily treated. The search for new factorizable

discretization schemes (see Summary of Recent Progress below) is chiey motivated by the need to derive

discrete schemes with the resulting discretizations of scalar factors satisfying some desired properties (e.g.,

stability, correct alignment with the physical anisotropies, compactness, availability of an e�cient relaxation

scheme, etc.) Development of suitable factorizable discrete schemes for the Navier-Stokes equation is a

challenging task. Much of the recent progress in achieving TME for CFD simulations is because new families

of general factorizable collocated-grid discretization schemes are emerging [26, 35, 38, 42, 44]. The next two

sections present some details of methods from the two categories.

3. Equation Reformulation Strategies. As mentioned previously, the �rst TME solvers exploiting

factorizability of the system have been developed in [48, 49, 50]. The original equations were reformulated

in terms of canonical forms, in which the subsystems governed by hyperbolic operators are distinguished

and treated separately, both in discretization and relaxation, from those governed by elliptic operators. The

canonical variables for two dimensions are velocity (u; v), entropy s, and total enthalpy H . The elliptic

operators are discretized with h�elliptic centered di�erences and solved with point relaxation and coarse

grid corrections; the hyperbolic operators are discretized with upwind schemes and solved by marching

techniques. Ta'asan [49] was able to demonstrate solutions for the subsonic compressible Euler equations

which converged with the same rates as the solution of the scalar full potential equation. An additional

advantage shown for this formulation was that the total arti�cial viscosity error was smaller than with other

schemes because the upwinding was only used for the hyperbolic subsystems. The main disadvantage of

this formulation is that it is not easily generalized to viscous and unsteady problems, especially in three

dimensions.

An alternative pressure-equation formulation [45] for the incompressible Navier-Stokes equations (2.9)

e�ectively separates the elliptic and hyperbolic factors of the system. The continuity equation is replaced

with an equation for the pressure, as

5(Q�u+5p)�Q�(5 � u) = 0:(3.1)

Assuming a smooth non-degenerate ow, the principal linearization taken in the limit as mesh size h tends

to zero is an upper triangular matrix with the main diagonal composed of the linearized convection-di�usion

and Laplace operators,
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L �

2
66664

Q� 0 0 @x

0 Q� 0 @y

0 0 Q� @z

0 0 0 �

3
77775 :(3.2)

The relaxation scheme is de�ned as

L�q = �R(q);(3.3)

where R(q) is the new nonlinear formulation of the incompressible Navier-Stokes equations.

The determinant of the reformulated system is Q3
�� as compared to Q2

�� of the original system. Thus

additional boundary conditions which enforce zero-divergence need to be applied. The equations are uncou-

pled everywhere except at the boundaries and some local relaxation is needed to relax the equations in this

region. Some two-dimensional results are shown subsequently demonstrating the e�ciency of this approach.

Although unexploited as yet, the approach applies equally well to time-dependent ows. This approach has

met di�culties in generalizing to viscous compressible ows.

4. Distributed Relaxation Strategies. The most general procedure exploiting factorizability of the

target Navier-Stokes equations is distributed relaxation. The general framework, �rst introduced in [54] can

be outlined as follows.

In general, the simplest form of the di�erential Navier-Stokes equations corresponds to nonconservative

equations expressed in primitive variables, e.g., taken as the set composed of velocity, pressure, and internal

energy, q = (u; v; w; p; �)T . For a perfect gas, the primitive and conservative variables are connected through

(2.12), (2.13), and

� = E �
1

2

�
u2 + v2 + w2

�
:(4.1)

The time-dependent nonconservative equations are found readily by transforming the time-dependent con-

servative equations.

@q
@Q

[@tQ+R] = 0;

@tq+
@q
@Q
R = 0;

where @q
@Q

is the Jacobian matrix of the transformation. For steady-state equations, the time derivative is

dropped. In an iterative procedure, the correction �q � qn+1 � qn, where n is an iteration counter, can be

computed from the equation

L �q = �
@q

@Q
R;(4.2)

where the right side of (4.2) is a linear combination of the conservative residuals, and L is the principal

linearization of the nonconservative operator at the scale h.

While signi�cantly simpli�ed by retaining only principal terms, the system (4.2) is still a set of coupled

equations containing elliptic and hyperbolic components. Therefore, collective Gauss-Seidel relaxation of L
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is not often e�ective. The distributed relaxation method replaces �q in (4.2) by M�w.

LM �w = �
@q

@Q
R:(4.3)

The resulting matrix LM becomes lower triangular. The diagonal elements of LM are composed ideally of

the separable factors of the matrix L determinant. These factors are scalar di�erential operators of �rst or

second order, so their e�cient relaxation is a much simpler task than relaxing the entire system associated

with L. In relaxing scalar factors, the changes introduced in the \ghost" variables �w (the variables �w

are \ghost" because they need not be explicitly used in computations) during relaxation are distributed,

with the pattern of the distribution matrix M, to the primitive variables. To obtain the optimal (textbook)

e�ciency, relaxation of each factor should incorporate the essential part of an e�cient multigrid solver for

its corresponding operator: sometimes this essential part is just the relaxation part of that solver, sometimes

this may even be an entire separate multigrid solver applied over subdomains.

4.1. Distribution Matrices. For incompressible Navier-Stokes equations, an appropriate distribution

matrix corresponding to the operator L of (3.2) is

M =

2
66664

1 0 0 �@x

0 1 0 �@y

0 0 1 �@z

0 0 0 Q�

3
77775(4.4)

yielding the lower triangular operator

LM =

2
66664

Q� 0 0 0

0 Q� 0 0

0 0 Q� 0

@x @y @z ��

3
77775 :(4.5)

A possible distribution matrix for the compressible Euler equations with the principal linearization

operator L (2.14) is given by

M =

2
6666664

1 0 0 � 1
�
@x 0

0 1 0 � 1
�
@y 0

0 0 1 � 1
�
@z 0

0 0 0 Q 0

0 0 0 0 1

3
7777775

(4.6)

with

LM =

2
6666664

Q 0 0 0 0

0 Q 0 0 0

0 0 Q 0 0

�c2@x �c2@y �c2@z Q2 � c2� 0
c2


@x

c2


@y

c2


@z � c2

�
� Q

3
7777775
:(4.7)

For compressible Navier-Stokes equations, one of the factors of the principal-linearization determinant

(2.17) is very complicated. Instead of devising a suitable relaxation method for this scalar factor, one can
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opt to a distributed relaxation partially decoupling the linear system associated with operator L (2.16). In

particular, the distribution matrix

M =

2
66666664

1 0 0 � 1
�
@x 0

0 1 0 � 1
�
@y 0

0 0 1 � 1
�
@z 0

�̂@x �̂@y �̂@z Q �̂+�
�

0

0 0 0 0 1

3
77777775

(4.8)

results in

LM =

2
666666664

Q�
�

0 0 0 0

0 Q�
�

0 0 0

0 0 Q�
�

0 0

P@x P@y P@z QQ �̂+�
�

�c2� (1� )��

c2


@x

c2


@y

c2


@z �

c2

�
� Q�

�

3
777777775
;(4.9)

where P � �c2 + �̂Q. The last two equations remain coupled, requiring a block 2-by-2 matrix solution in

relaxation. This distributed relaxation scheme is still much less expensive than direct relaxation of matrix

L requiring solution for a block 5-by-5 matrix.

4.2. Traditional Factorizable Schemes. As mentioned previously, factorizability of a target discrete

scheme signi�cantly simpli�es the distributed relaxation design. The main obstacle in this case to e�cient

solution is that the discretizations obtained for the scalar factors in the discrete determinant are not always

convenient.

v v

v v

v v

ε, p

ε, pε, p

ε, pu

u

u

u

u

u

Fig. 4.1. Staggered arrangement of primitive variables for Navier-Stokes discretization.

4.2.1. Staggered-Grid Discretization for Navier-Stokes Equations. The staggered-grid dis-

cretization dating back to the mid 60's [27, 33, 34] is one of the �rst factorizable discretizations for in-

compressible ow equations. Compressible ow discretizations with a staggered arrangement of variables
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have also been studied [29, 6, 52]. A usual placement of primitive variables in two dimensions is depicted

in Figure 4.1. With this staggering, (a) the o�-diagonal �rst derivatives in (3.2), (2.14), and (2.16) can be

approximated as short central di�erences; (b) the second derivatives in (2.16) can be compositions of cor-

responding central �rst derivatives; (c) the convection-di�usion operators, Q� , can be approximated by any

proper discretizations Qh
� . For discrete factorizability, it is important to have the same discretization for each

of the Q�-operators in the momentum equations; the convection-di�usion operators in other equations can

be di�erent. The convection terms in the momentum and energy equations are usually upwind or upwind-

biased; for simplicity, below we assume that all these terms are the same. With such di�erencing, the discrete

schemes mimic the factorizability property of the di�erential equations, and the discrete system determi-

nants can be factored as detLh = (Qh
� )

2�h (incompressible Navier-Stokes) or detLh = (Qh)3(Qh �Qh�c2�h)

(compressible Euler), where �h in three dimensions is the seven-point h-Laplacian, Qh is an upwind or up-

wind biased discretization of the convection operators in the momentum and energy equations, �Qh is a

convection-operator discretization for the pressure term in the fourth equation of (2.14), hence Qh �Qh�c2�h

is a discrete approximation to the full-potential operator. The discrete determinant computed for the com-

pressible Navier-Stokes equations is similar to the di�erential determinant (2.17).

The discrete distribution matrices follow directly from the continuous matrices (4.4), (4.6), and (4.8).

The short central di�erences are used for the approximation of all the o�-diagonal �rst derivatives; the

convection parts in the Q-operators are the same as those in the momentum equations. The resulting

products LhMh are similar to those for the continuous problems with the main diagonals composed of the

factors of the discrete determinants.

Distributed-relaxation solvers have been successfully applied to the staggered-grid discretization schemes

for subsonic compressible [52] and incompressible [15, 53] ow problems.

In computing the Euler system of equations, the main disadvantages of the staggered-grid scheme relate

to the discrete stencil of the full-potential operator. For subsonic ow problems, the downwind di�erencing

applied for the �Qh term results in a full-potential-operator stencil that is somewhat wide (because of the

Qh �Qh term) and poorly aligns with the physical (cross-stream) anisotropies in approaching the transonic

regime. For supersonic ow, where the problem is purely hyperbolic, the stencil is not fully upwind (even if

the �Qh term is upwind di�erenced) implying more involved marching schemes.

Recently, a new approach to building discretization schemes that allows any desired di�erencing for the

full-potential factor of the system determinant without compromising the scheme factorizability has been

discovered. This approach is discussed subsequently in application to central collocated-grid discretizations

(see also [26]), but it applies to staggered grids as well.

4.2.2. Collocated-Grid Discretizations for the Euler Equations. Another example of a factor-

izable scheme is a collocated-grid scheme with the second-order central di�erencing for the o�-diagonal �rst

derivatives in (3.2), (2.14), and (2.16). The convection operators in the momentum and energy equations are

again upwind or upwind biased; the di�erencing of the convection term applied to the pressure may alternate

from downwind (downwind-biased) in subsonic mode to upwind (upwind-biased) in supersonic mode.

A typical di�culty associated with this type of schemes is a poor measure of h-ellipticity in the discrete

approximation for the full-potential factor of the system determinant. To be more speci�c, let us de�ne the
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collocated-grid discretization Lh of the matrix operator (2.14) as

Lh =

2
6666664

Qh 0 0 1
�
@hx 0

0 Qh 0 1
�
@hy 0

0 0 Qh 1
�
@hz 0

�c2@hx �c2@hy �c2@hz �Qh 0
c2


@hx

c2


@hy

c2


@hz 0 Qh

3
7777775
;(4.10)

where the discrete derivatives, @hx ; @
h
y ; @

h
z , in all o�-diagonal terms are the wide (with mesh spacing 2h) second-

order-accurate central-di�erencing approximations. All the diagonal terms, Qh, except �Qh in the fourth

equation, are discretized with the same second-order-accurate upwind (or upwind-biased) discretization

scheme. In the subsonic regime (juj2 = �u2 + �v2 + �w2 < c2), the �Qh-term is discretized with a second-order-

accurate downwind (or downwind-biased) discretization. The determinant of the matrix operator Lh is given

by

�
Qh
�3 �

Qh �Qh � c242h
�
;(4.11)

where 42h is a wide discretization of the Laplace operator. The full-potential-operator approximation

appearing in the brackets has two major drawbacks: (1) For subsonic velocities (juj < c), the discrete

operator is not h-elliptic, and e�ciency of any local relaxation severely degrades. (2) For near-sonic regimes

(the Mach number M = juj=c � 1), the discrete operator stencil does not reect the physical anisotropies of

the di�erential full-potential operator; the discrete operator exhibits a very strong coupling in the streamwise

direction, while the di�erential operator has strong coupling only in the cross-stream directions.

Several approaches to cure the lack of h-ellipticity (mainly in applications to incompressible-ow equa-

tions) have been proposed in the literature (e.g., [1, 13]). Some of the approaches are associated with the

introduction of additional terms increasing the measure of h-ellipticity in the system of equations, others

propose averaging (�ltering) spurious oscillations. The problem of wrong anisotropies in the full-potential-

operator has not been su�ciently investigated. In two dimensions, it is possible to construct a discretization

that satis�es the following properties: (1) At low Mach numbers, the discretization is dominated by the

standard (with mesh spacing h) h-elliptic Laplacian. (2) For the transonic Mach numbers, the discretization

tends to the optimal discretization [10, 11, 21] for the sonic-ow full-potential operator. (3) For supersonic

Mach numbers, the discretization becomes upwind (upwind-biased) and can be solved by marching. The

problem of constructing a good high-order discretization for the transonic full-potential operator in three

dimensions is still open.

4.3. Non-Factorizable schemes. The majority of discrete schemes in current use, especially for com-

pressible ow but also more recently for incompressible ow, are based upon a ux-splitting approach. The

basis of this approach is the solution of the Riemann problem (i.e., the time evolution of two regions of

ow initially separated by a diaphragm) applied on a dimension by dimension basis. This methodology has

enabled the robust treatment of ows with strong shocks and complex geometries. However, the derived

schemes are not discretely factorizable, except in one dimension.

These discrete equations have always been solved using collective relaxation (or pseudo-time-stepping)

in multidimensional multigrid algorithms. A better e�ciency should be realizable with a relaxation scheme

that e�ciently reduces both the high-frequency and characteristic error components. Such a scheme should

combine two di�erent relaxation methods: (1) A relaxation scheme treating directly the conservation equa-

tions and reducing the high-frequency error components. (2) A defect-correction (or predictor-corrector)
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method with a factorizable driver (predictor) reducing characteristic error components. This approach has

not been tried as yet.

4.4. Boundary Treatment. Boundaries and discontinuities introduce some additional complexity in

distributed relaxation. The determinant of LM is usually higher order than the determinant of L. Thus, as

a set of new variables, �w would generally need additional boundary conditions. In relaxation, because the

ghost variables can be added in the external part of the domain, it is usually possible to determine suitable

boundary conditions for �w that satisfy the original boundary conditions for the primitive variables.

Distributed relaxation is applied throughout the entire computational domain having the full e�ect away

from boundaries (considering discontinuities as a special boundary case) in the regular (smoothly varying)

ow �eld. The discrete equations near the boundaries are usually di�erent from the interior equations; the

relaxation equations are coupled near the boundaries, not decoupled as they are in the interior of the domain.

Thus, some local procedures should supplement the distributed relaxation pass. The coupled near-boundary

equations can be separated from other equations and solved (relaxed) with an appropriate method, such

as direct solution or block-Newton-Kacmarcz relaxation. The additional work will not seriously a�ect the

overall complexity because the number of boundary and/or discontinuity points is usually very small in

comparison with the number of interior points.

Solution (or extensive relaxation) of the coupled near-boundary equations serves for two purposes. The

�rst is to provide convenient and reliable boundary conditions for the distributed-relaxation equations in

the interior. The second purpose arises because in the outer multigrid cycle, e�cient �ne-to-coarse grid

restriction of residuals near the boundaries is di�cult to design; it depends on many factors such as the

shape of the boundary, the type of the boundary conditions, etc., and di�ers from the residual restriction in

the interior. A general way to avoid e�ciency degradation is to reduce residuals near the boundaries before

restriction to a level that is signi�cantly below the residual level characterizing the interior �eld. Having

small residuals near the boundaries makes the precise form of the restriction operator less important.

5. Relaxation of Scalar Factors. E�ciency of the multigrid solvers exploiting factorizability of the

Navier-Stokes system of equations is determined by the e�ciency of the relaxation (solution) schemes applied

for scalar factors appearing in the system determinant. For uniformly elliptic operators such as a Laplacian,

a di�usion-dominated convection-di�usion operator, and a subsonic full-potential operator many e�cient re-

laxation techniques are available (see textbooks [6, 17, 55, 56]). For such operators, an important relaxation

requirement is e�cient reduction of high-frequency errors. All the smooth components are well approximated

on coarse grids built by standard (full) coarsening; therefore, the coarse-grid correction is e�cient in reduc-

tion of smooth errors. For nonelliptic and weakly elliptic factors, e.g., convection, convection-dominated

convection-di�usion, transonic and supersonic full-potential operators, (smooth) characteristic components

cannot be approximated with standard multigrid methods [4, 10, 11, 15, 22].

Several approaches aimed at curing the characteristic-component problem have been studied in the

literature. These approaches fall into two categories: (1) development of a suitable relaxation scheme (single-

grid method) to eliminate not only high-frequency error components but the characteristic error components

as well; (2) devising an adjusted coarse-grid operator to approximate well the �ne-grid characteristic error

components.

5.1. Single-Grid Methods.

5.1.1. Downstream marching. For hyperbolic problems, the simplest �rst-category method is down-

stream marching. If the corresponding discretization is a stable upwind discretization and the characteristic
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�eld does not recirculate, then downstream marching is a very e�cient solver that yields an accurate so-

lution to a nonlinear hyperbolic equation in just a few sweeps (a single downstream sweep provides the

exact solution to a linearized problem). The downstream marching technique was successfully applied in

solving many CFD problems associated with non-recirculating ows (see, e.g., [15, 37, 45, 52, 53]). However,

if a discretization operator is not fully upwind (e.g., is only upwind biased), straightforward downstream

marching is unstable. For the schemes that cannot be directly marched, there are two possible alternatives

(also of marching type): defect-correction and predictor-corrector methods.

5.1.2. Defect Correction. Let us consider a defect correction method for a discretized hyperbolic

equation

Lhui1;i2 = fi1;i2 ;(5.1)

with speci�ed inow boundary conditions u0;i2 .

Let ~ui1;i2 be the current solution approximation. Then the improved approximation �ui1;i2 is calculated

by defect-correction scheme in the following two steps:

1. The correction vi1;i2 is calculated by solving operator Lhd with a right-hand side represented by the

residual of (5.1) computed for the current approximation ~ui1;i2 . The inow boundary conditions for

v are initialized with the zero values.

Lhdvi1;i2 = fi1;i2 � Lh~ui1;i2 :(5.2)

2. The current approximation is corrected as

�ui1;i2 = ~ui1;i2 + vi1;i2 :(5.3)

The operator Lhd is called the driver operator. It is chosen to be easily solvable and usually less accurate

than the target operator Lh; the latter can be very general. If the iteration converges, steps (5.2) and (5.3)

can be repeated until the desired accuracy is reached. Usually the e�ciency of defect-correction methods

is quite satisfactory [3, 19, 31, 52, 53], even though in principle the convergence rate of a defect-correction

method for nonelliptic operator is normally mesh-size dependent [7, 23], as explained below.

In several papers (e.g., [19, 51]), authors studying the defect-correction method for nonelliptic problems

observed a slow convergence or even a divergence in some common error norms for the initial iterations

and good asymptotic convergence rates afterward. This behavior is di�erent from that observed in solving

elliptic problems by the defect-correction method, where the asymptotic convergence rate is the slowest one.

This nonelliptic feature is explained by some properties associated with the cross-characteristic interaction

(e.g., dissipation and/or dispersion) in the operators involved in the defect-correction iterations. Speci�cally,

this cross-characteristic interaction de�nes the penetration distance (also termed \survival distance" [15])

of a characteristic component. The penetration distance is the distance from the inow boundary within

which the discrete solution of the homogeneous problem reasonably approximates the continuous one (i.e.,

the discretization error is substantially smaller than the solution).

The penetration distance of a characteristic component is roughly proportional to !�1(!h)�
p
q , where q is

the highest order of di�erentiation in the hyperbolic operator under considerations, p is the discrete-operator

approximation order, ! is the cross-characteristic frequency of the characteristic component, and h is the

mesh size. The ratio of penetration distances of the operators Lh and Lhd is an important factor for determin-

ing the number of defect-correction sweeps required to reduce the algebraic error to the discretization-error

level or to reach the asymptotic convergence regime.
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When the operators Lh and Lhd have the same approximation order (p = r), e�ciency of the defect-

correction method is optimal and mesh-size h-independent If however the operators Lh and Lhd have di�erent

approximation orders (p and r, respectively, p > r), then e�ciency of the defect-correction method is h-

dependent; i.e., the maximal number of sweeps which might be required to reduce the algebraic error to

the discretization-error level (or to reach the asymptotic convergence rates) is larger on �ne grids than on

coarse grids. This is because one has to iterate Lhd as many times as needed to attain accuracy up to the

Lh penetration distance. The worst (largest) ratio of penetration distances is obtained for characteristic

components for which the penetration distance in the target p-order accurate discretization approaches the

depth R of the computational domain in the characteristic direction. It follows that the required number of

iterations is proportional to

�
R
h

� p�r
p+q

.

5.1.3. Predictor-Corrector. One potentially e�cient but yet unexploited method to overcome grid-

dependent convergence experienced in defect-correction iterations is the predictor-corrector technique. A

detailed look into the defect-correction iteration reveals that the computational work distribution is un-

balanced: (1) Driver operator iterations at locations beyond the penetration distance do not improve the

solution approximation. (2) In successive iterations, the solution approximation near the inow boundary

becomes much more accurate than in the interior; the computational e�orts spent in this regions could be

more pro�tably invested at the accuracy frontier.

The predictor-corrector method has been extensively used for ordinary and time-dependent di�erential

equations [18, 28]; however, applications for steady-state nonelliptic problems have been very limited. In

predictor-corrector schemes, the �nal update of the solution at a particular point is computed from the local

solution of the target operator. The solution values at downstream points included in the target-operator

stencil are predicted from the solution of the driver (predictor) operator. In order to de�ne a family of

predictor-corrector schemes, one can divide the computational domain into several time-like layers; the �rst

layer contains all the grid points adjacent to the inow boundary. Each next layer is composed of the grid

points that contribute to the stencils of target operators de�ned at the points of the previous layer and do

not belong to any of the previous layers.

Now, a family of predictor-corrector schemes for solving the correction equation

Lhvi1;i2 = Rh
i1;i2

� fi1;i2 � Lh~ui1;i2 ;(5.4)

where Lh is the target operator, ~ui1;i2 is the current solution approximation with residual Rh
i1;i2

, and vi1;i2

is the desired correction function, can be de�ned as

PC0: The solution of (5.4) is approximated by solving

Lhdvi1;i2 = Rh
i1;i2

:(5.5)

This scheme is identical with the defect-correction scheme.

PCk: Recursive de�nition of the derived predictor-corrector schemes (recursion with respect to k) can be

done as follows: Assume the (j�1)-th layer have already been �nally updated in the current sweep.

Then, to calculate new values at the next j-th layer one has to perform the following three steps:

1. To predict values at the j-th layer with PCk�1 scheme.

2. To predict values at the (j + 1)-th layer with PCk�1 scheme.

3. To update values at the j-th layer by directly relaxing (5.4).

The schemes for k = 0; 1; 2 have been tested for a linearized supersonic full-potential operator [21].
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5.2. Multigrid methods.

5.2.1. Recirculation. Downstream marching methods are not viable for problems with closed charac-

teristics. Alternative discretization and solution techniques should be considered. The discretization issue

becomes especially important for ows with streamlines that do not start and end at boundaries, but con-

stitute closed curves. In such cases, even a very small viscosity plays an important role in determining the

ow throughout the domain. The solution in the limit of vanishing viscosity depends very strongly on how

the viscosity coe�cients tend to zero. The propagation of information from the boundary into the domain is

governed by the viscous terms no matter how small they may be. It has been shown [14] for both the scalar

convection-di�usion problem and the incompressible Navier-Stokes equations that varying cross-stream nu-

merical viscosity (caused usually by varying angles between the stream and the grid lines; e.g., in standard

upwind and upwind biased schemes) may prevent convergence to a physically realizable solution. In the

most general case, it can be shown that even isotropic viscosity is not su�cient for convergence to a physical

solution, and one must actually specify a uniform viscosity. However, for the homogeneous problems there

are several indications [14, 59] (though no proof) that isotropy su�ces.

To obtain a discretization scheme that exhibits the appropriate physical-like behavior for vanishing vis-

cosity, one must either add su�cient explicit isotropic viscosity that will dominate the anisotropic numerical

viscosity of the convection operator, or else derive a discrete convection operator with numerical viscosity

satisfying the condition of isotropy. An upwind isotropic-viscosity discretization has been derived [59].

One general approach to the algebraic solution of nonelliptic equations with closed characteristics is

to apply a multigrid method with an overweighted upwind-biased residual restriction. E�cient multigrid

solvers for recirculating convection equation have already been demonstrated [16, 59]. This approach is

well combined with the distributed relaxation method for the Navier-Stokes equations, because within a

distributed relaxation sweep a multigrid solver with optimal overweighting can be applied to a separate

scalar nonelliptic equation with closed characteristics.

Another solution approach is to apply some general techniques to approximate indirectly smooth char-

acteristic components. Among helpful techniques are recombination of iterants, cycles with high indexes,

and implicit alternative-direction relaxation. Recombination of iterants (solution approximations on di�erent

stages of a multigrid algorithm) at each grid level eliminates several (number of iterants minus one) error com-

ponents, those, more speci�cally, that are most prominent in the residual function. Making increasingly many

coarse-grid iterations per each �ne-grid iteration, cycles with high indexes solve the characteristic-component

problem on coarser grids. Implicit alternative-direction relaxation simulates downstream marching in the re-

gions with open characteristics and e�ciently transfers information in the regions with characteristics closely

aligned with the grid. Theoretically, each of these methods cannot completely resolve the problem of poor

coarse-grid correction to the �ne-grid smooth characteristic error components. The problem already mani-

fests itself in two-level algorithms with any type of local relaxation. On �ne grids the number of problematic

error components may increase, and many cycles may be needed to collect the necessary number of the �ne-

grid iterants to exclude all the troubling error components. However, it has been shown experimentally [32]

that a combination of implicit alternative-direction defect-correction type relaxation, recombination of iter-

ants on all the levels, and W-cycles can result in a relatively e�cient multigrid solver for recirculating ow

problems on practical grids.

5.2.2. Full-Potential Operator. The full-potential operator is a variable type operator, and its so-

lution requires di�erent procedures in subsonic, transonic, and supersonic regions. In deep subsonic regions,

the full-potential operator is uniformly elliptic and therefore standard multigrid methods yield optimal
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e�ciency. When the Mach number approaches unity, the operator becomes increasingly anisotropic and, be-

cause smooth characteristic error components cannot be approximated adequately on coarse grids, classical

multigrid methods severely degrade. In the deep supersonic regions, the full-potential operator is uniformly

hyperbolic with the stream direction serving as the time-like direction. In this region, an e�cient solver can

be obtained with a downstream marching method. However, downstream marching becomes problematic

for the Mach number dropping towards unity, because the Courant number associated with this method

becomes large. Thus, a special procedure is required to provide an e�cient solution for transonic regions.

A possible local procedure [10, 11, 20, 21] is based on piecewise semicoarsening and some rules for adding

dissipation at the coarse-grid levels.

A similar technique can be used to construct an e�cient marching-free multigrid solver for convection-

dominated equations. This method [22] employs a colored relaxation scheme and is very attractive for

massive parallel computing. A highly parallel multigrid solver for the supersonic full-potential operator may

be obtained by methods similar to the wave/ray multigrid [12].

6. Analysis. As mentioned previously, it is important in attaining optimal e�ciency to understand all

the di�culties that present themselves in application. Analysis methods are quite helpful in this regard, and

the main tools are discussed below. In iterative methods solving elliptic problems, the main mechanism of

convergence is damping of error components. In solution of hyperbolic scalar equations, there is another

very important convergence mechanism: the downstream evolution of the error components. In the presence

of this additional mechanism, the accuracy �rst achieved near the inow boundary and is then propagated

into the interior of the domain.

The recognition of this additional convergence mechanism urges modi�cations in the standard analysis

developed for elliptic problems. Basically, one can distinguish four types of analysis applied to nonelliptic

problems: (1) standard linear-algebraic matrix analysis, (2) modi�ed zero-mode-exclusion full-space Fourier

mode analysis, (3) half-space analysis of the �rst di�erential approximations (FDA) [4, 57, 58], and (4)

discrete half-space analysis. Briey, the �rst di�erential approximation (also called modi�ed equation) to a

di�erence operator on a grid with mesh size h is the Taylor expansion of this di�erence operator in terms of

h truncated to the �rst terms including the least nonzero power of h. The quality of an analysis applied to

nonelliptic problems is determined by how well the analysis handles the characteristic components.

6.1. Matrix analysis. The most general and precise analysis methods are the linear-algebra matrix

analysis methods applied to the corresponding linearized problem. This analysis considers the di�erence

operators without assumptions about the solution and boundary conditions. It can be applied to variable-

coe�cient problems as well. This analysis was found very useful for analyzing one-dimensional problems.

However, the enormous computational complexity of this analysis makes it not viable for multidimensional

problems. Although, the analysis complexity can be reduced considerably by assuming Fourier modes in two

of the three spatial directions.

6.2. Modi�ed full-space Fourier mode analysis. The modi�ed full-space Fourier mode analysis is

a modi�cation of the standard full-space Fourier mode analysis excluding from the consideration all the zero

modes (the modes with vanishing symbols) [56]. It is the simplest and most popular type of analysis (e.g.,

see applications in [19, 31]). This analysis estimates only the ampli�cation (damping) factor. Its inherent

disadvantage is the inability to take the inuence of the inow boundary into account. This explains its

failure in describing the downstream error evolution. However, the modi�ed full-space analysis can also be

useful for analyzing the e�ect of forcing terms.
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6.3. FDA half-space analysis. The FDA half-space analysis is a relatively simple and e�cient tool

for analyzing the e�ect of the inow boundary. Examples of applications of this analysis are available [4, 15,

57, 58]. The �rst di�erential approximations are considered on a half-space including an inow boundary.

The boundary conditions are represented by one Fourier mode at a time. The FDA analysis provides

a good qualitative description of the downstream error evolution. This analysis focuses on characteristic

components and, therefore, considers homogeneous problems. Note that a combination of the FDA analysis

with the modi�ed full-space analysis can provide a good insight for nonhomogeneous problems as well. The

disadvantages of this analysis are the inability to provide quantitative estimates, to analyze the e�ect of

di�erent boundary condition discretizations, and to address the asymptotic convergence rate.

6.4. Discrete half-space analysis. The discrete half-space analysis [10, 23] considers the discretiza-

tions in their exact form rather than their di�erential approximation, while the boundary data are rep-

resented by a Fourier component. This analysis translates the original multidimensional problem into a

one-dimensional discrete problem, where the frequencies of the boundary Fourier components are considered

as parameters. To regularize the half-space problem, the solution is not allowed to grow faster than a poly-

nomial function. This tool is very accurate; it can be used to explain in detail many phenomena observed

in solving nonelliptic equations and provides a close prediction of the actual solution behavior.

The one-dimensional solution obtained in the discrete half-space analysis has two di�erent representation

forms: (1) away from the boundary, the solution is de�ned as a linear combination of a �nite number of

analytical components; this region is called the analytical representation region; (2) in the region adjacent to

the inow boundary, the solution is de�ned pointwise; this zone is referred to as the pointwise representation

region. With each further iteration described by the analysis, the pointwise representation region penetrates

by a �nite number of mesh sizes into the interior. By using these representations, the computational com-

plexity of the analysis becomes much less than that associated with the one-dimensional matrix analysis. In

the asymptotic regime, when the pointwise representation zone covers all the domain, this analysis becomes

a discrete one-dimensional matrix analysis of the multidimensional problem.

The discrete half-space analysis provides a quantitative description of the approximate solution; it pre-

dicts the convergence rate for each iteration and the asymptotic convergence rate. It can be easily adjusted

to analyze the global e�ect of any local discretization of the inow boundary conditions. This adjustment

can be done just by widening the initial pointwise representation region at the inow boundary. If neces-

sary, the analysis can take into account the inuence of the discretized outow boundary conditions as well.

Generally, this discrete half-space analysis treats completely both mechanisms of convergence, damping and

downstream evolution of errors, associated with nonelliptic problem solvers.

7. Summary of Recent Progress.

7.1. Pressure-Equation Discretization. The original pressure-equation formulation [45] has been

extended to general coordinates and implemented for lifting airfoils in inviscid ow [36, 37, 39] and viscous

ow [47]. The results for viscous ow over a lifting airfoil at low Reynolds number are shown in Figure 7.1.

An alternating line-implicit Gauss-Seidel relaxation is used to treat the mesh anisotropy that generally

occurs in resolving viscous boundary layers on stretched grids. The computed pressure distributions are

nearly indistinguishable from each other on the �ner grids. The convergence rate actually becomes better

as grids are re�ned and more levels in the FAS cycle are used; the 16x8 grid is always the coarsest grid in

the multigrid computations. The convergence rates are comparable to the rates obtained for fully elliptic

problems.
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Fig. 7.1. Computational results for the incompressible viscous ow over a lifting K�arm�an-Tre�tz airfoil at Re = 200 and

� = 2�.

7.2. Staggered-Grid Factorizable Discretization. The �rst TME solver applying the distributed

relaxation approach for solution to an entering ow problem for the incompressible Navier-Stokes equations

was developed using a staggered-grid formulation [15]. This formulation was extended to the compressible

NS equations and fast convergence rates were demonstrated [52] for several viscous model problems. This

latter work was the �rst experience with distributed relaxation in the computation of compressible viscous

ows in which a 2�2 block was relaxed simultaneously in line-implicit Gauss-Seidel relaxation. The coupling

of boundary and interior relaxation was not optimally treated at the time. A more complete study on TME

for the incompressible equations at high-Reynolds-number conditions has been recently performed [53]. In

all calculations, a staggered arrangement of variables on Cartesian grids has been used. With distributed

relaxation, the system of equations has been decomposed (i.e., factored) everywhere, except near boundaries

where the equations remained coupled. The results of the calculation are shown in Figure 7.2 for the viscous

ow over a �nite at plate. The convergence of residuals and the algebraic-to-discretization errors in drag
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193x97 for the incompressible viscous ow over a at plate at Re = 10; 000.

are shown versus multigrid cycles. The residual convergence rate is about the same as for the underlying

Laplacian factor. The FMG solver with just one FAS multigrid cycle per grid level and a total computational

work equivalent to about 10 target-grid residual evaluations converged the drag to the discretization accuracy.

7.3. New Factorizable Collocated-Grid Discretizations. Recently, a new multidimensional fac-

torizable scheme for the Euler equations has been developed [42] for Cartesian coordinates and extended

through generalized coordinates to external lifting ows around airfoils with both subcritical and supercriti-

cal freestream Mach numbers [38, 35]. The starting point for the scheme is the �rst-order discretization of the

ux-di�erence splitting scheme [40]. Correction terms are added in the form of mixed derivatives to make the

scheme both second-order accurate and discretely factorizable. The resulting scheme is second-order accurate

and compact in comparison to other scheme; it is the �rst ux-di�erence-splitting scheme that is discretely

factorizable in multiple dimensions. Discrete factorizability is achieved by using some non-standard wide

approximations for spatial derivatives to ensure that the identities
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are satis�ed on the discrete level. The determinant of the resulting scheme is composed of an upwind

di�erenced convection factor and an h-elliptic approximation for the full-potential factor. The distributed

relaxation is possible by using a left and right distribution matrix, although this has not been applied as yet.

In numerical tests performed for this scheme, the multigrid solver employed symmetric point collec-

tive Gauss-Seidel relaxation. Computations for subsonic and transonic channel ows with essentially grid-

independent convergence rates have been presented [38]. Grid-independent convergence rates have also been

attained for a ow with stagnation points [35]. The convergence rates observed in experimenting with

subsonic ow over a lifting airfoil were quite fast (about 0:3 per multigrid V-cycle) and only slightly grid

dependent. The rates somewhat deteriorate in transonic/supersonic computations, emphasizing the need
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for distributed relaxation. The scheme applies at low Mach numbers although it has yet to be extended

to viscous ows. Multigrid results for the transonic ow over a lifting K�arm�an-Tre�tz airfoil with a shock

are shown in Figure 7.3. The pressure distribution shows the weak shock that is captured by the scheme.

The residual convergence indicates some deterioration of the rate on the �ner grids but the lift and drag

coe�cients are converged to below discretization error levels in only a few cycles.

Another approach to building factorizable schemes with suitable discretizations for scalar factors has

been explored in papers of the second and third authors [24, 26, 25]. The approach is based on a collocated-

grid scheme with a mechanism that allows one to improve the h-ellipticity measure by obtaining any desired

discretizations for the full-potential factor of the system determinant without compromising the discrete

factorizability. Also, the distribution matrices follow directly from the discrete forms forM presented earlier.

The same approach can be applied for incompressible-ow problems and to staggered-grid discretizations as

well.

The starting point is the discretization (4.10). The way proposed to improve the discrete full-potential

operator is to change the discretization of �Qh to �Qh + Ah. Then the discrete full-potential operator is

changed to

QhAh +Qh �Qh � c242h;(7.1)

where Ah =
�
Qh
�
�1

Dh, Dh = Fh � (Qh �Qh � c242h), and Fh is a desired approximation for the full-

potential factor. In smooth regions, Ah is second-order small (proportional to h2), hence the overall second-

order discretization accuracy is not compromised. The operator
�
Qh
�
�1

is a nonlocal operator and its

introduction can be e�ected through a new auxiliary variable  h and a new discrete equation Qh h = Dhph.

Thus, the corrected discrete approximation to (2.14) is de�ned as

Lh =

2
6666666664

Qh 0 0 0 1
�
@hx 0

0 Qh 0 0 1
�
@hy 0

0 0 Qh 0 1
�
@hz 0

0 0 0 Qh �Dh 0

�c2@hx �c2@hy �c2@hz 1 �Qh 0
c2


@hx

c2


@hy

c2


@hz 0 0 Qh

3
7777777775
:(7.2)

The corresponding distribution matrix, Mh, for distributed relaxation is de�ned as

Mh =

2
6666666664

1 0 0 0 � 1
�
@hx 0

0 1 0 0 � 1
�
@hy 0

0 0 1 0 � 1
�
@hz 0

0 0 0 1 Dh 0

0 0 0 0 Qh 0

0 0 0 0 0 1

3
7777777775
;(7.3)

so that the resulting matrix LhMh becomes lower triangular as

L
h
M

h =

2
6666666664

Qh 0 0 0 0 0

0 Qh 0 0 0 0

0 0 Qh 0 0 0

0 0 0 Qh 0 0

�c2@hx �c2@hy �c2@hz 1 F
h 0

c2


@hx

c2


@hy

c2


@hz 0 �

c2

�
�2h Qh

3
7777777775

:(7.4)
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The scheme as de�ned above is valid for nonconservative ows. A version to be used for distributed

relaxation of conservative equations has also been designed [24].

Numerical tests have only been performed as yet for a quasi-one-dimensional subsonic ow in a con-

vergent/divergent channel. The accuracy was comparable to other schemes. With proper treatment of the

distributed-relaxation equations in the regions adjacent to the boundaries, the convergence of the multigrid

solver with a V-cycle and two relaxation sweeps per level is identical with the convergence of a similar

multigrid solver for the discrete full-potential operator.

8. Concluding Remarks. Fundamentals and recent advances towards the development of TME solvers

for uid simulations have been presented. Accurate discrete approximations to the solution of the di�erential

equations are obtained with FMG methods through fast reduction of algebraic errors below the discretization

error level on each mesh. Strategies to attain TME for general uid systems by exploiting factorizability

of the governing di�erential equations are reviewed. These strategies include a reformulation of the target

di�erential equations and a distributed relaxation approach applied to the original equations. New discretiza-

tions and computations demonstrating this methodology for inviscid and viscous ow simulations have been

presented.
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