
DEPARTMENT OF DEFENCE

DEFENCE SCIENCE & TECHNOLOGY ORGANISATION DSTO

\W ^s

Implementation of a Fast
Algorithm for Segmenting SAR
Imagery

David J. Robinson,
Nicholas J. Redding and
David J. Crisp

DSTO-TR-1242

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

20020617 119

Implementation of a Fast Algorithm for
Segmenting SAR Imagery

David J. Robinson, Nicholas J. Redding and
David J. Crisp

Surveillance Systems Division
Electronics and Surveillance Research Laboratory

DSTO-TR-1242

ABSTRACT

This report gives a detailed presentation of the implementation of a new
fast algorithm for image segmentation. The original motivation for develop-
ment of the algorithm was the segmentation of synthetic aperture radar (SAR)
imagery into homogeneous regions for target detection in the Analysts' Detec-
tion Support System. However, the algorithm is a general one based upon
Mumford-Shah functionals, and there is no technical reason why it could not
also be used for other imaging modalities, including multiband imagery. The
algorithm has computational complexity on the order of the Fast Fourier Trans-
form, the benchmark for fast algorithms.

APPROVED FOR PUBLIC RELEASE

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE 1 TECIN010CY HCMISATION DSTO

AQ fO3l-0<?-/4/*

DSTO-TR-1242

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Edinburgh, South Australia, Australia 5111

Telephone: (08) 8259 5555
Facsimile: (08) 8259 6567

© Commonwealth of Australia 2002
AR No. 012-076
January, 2002

APPROVED FOR PUBLIC RELEASE

DSTO-TR-1242

Implementation of a Fast Algorithm for Segmenting SAR
Imagery

EXECUTIVE SUMMARY

This report gives a detailed presentation of the implementation of a new fast algorithm
for image segmentation. The original motivation for development of the algorithm was
the segmentation of synthetic aperture radar (SAR) imagery into homogeneous regions
for target detection in the Analysts' Detection Support System (ADSS). The ADSS was
originally developed as part of Aerial Surveillance for Land Operations, Joint Project 129.
It was designed to help reduce the manpower cost of the Broad Area Aerial Surveillance
component of the project where the manual detection of targets in stripmap SAR is labour
intensive.

The ADSS is divided into a number of modules, the first of which is called prescreening.
The purpose of prescreening is to identify all the possible targets of interest in the SAR
imagery with a high probability of detection. One method previously suggested to improve
the performance of prescreening is to first segment the imagery into homogeneous regions
using texture and then apply different prescreeners to each texture class. The rational
is that each prescreener can be tuned (using prior training or otherwise) to give optimal
performance on its texture class.

Segmentation is typically computationally very expensive, and segmentation for pre-
screening would require all the imagery collected from the SAR sensor to be segmented
— a daunting task for standard algorithms. Consequently, a very fast segmentation al-
gorithm called the full X-schedule was developed with prescreening in mind. The basic
principles of this algorithm have been presented elsewhere. In this report we describe an
implementation of the algorithm. We include full details of the data structures, procedures
and functions used.

The performance of our initial implementations did not reflect our theoretical esti-
mates. However, as described in this report, significant recent enhancements of the data
structures by the third author have over come this problem.. We believe that we now have
the fastest possible implementation of the full A-schedule algorithm. Computational com-
plexity calculations and numerical evidence, both presented in the report, show that the
complexity is of order 0(n log2 n) where n is the number of image pixels. This complexity
is the benchmark for fast algorithms.

Future work will involve testing the utility of the algorithm for target detection and
extending the class of image models it uses. The initial steps in both these directions have
already been taken. The algorithm has been incorporated into the ADSS software suite
and once the coding of the entire suite has been completed and suitable data is available
we will be able to test its target detection utility. On the second point, the algorithm
described here only allows piecewise constant image models. This means some of the more
subtle features of the SAR imagery cannot be exploited. However, progress has since been
made on expanding the class of applicable image models to include piecewise polynomial
models. It is anticipated that implementing these models will only involve a few local

in

DSTO-TR-1242

changes to the segmentation code and that these changes will not effect the computational
complexity of the algorithm.

DSTO-TR-1242

Authors

David J. Robinson
Vision Abell Pty Ltd

David Robinson received a B.Sc. in applied mathematics and
computer science and B.E. in electrical and electronic engineer-
ing all from the University of Adelaide, in 1995 and 1996, re-
spectively. He joined the Electronic Warfare Division of the
Defence Science and Technology Organisation (DSTO) in Ade-
laide as a Professional Officer in 1996 where he investigated
and modelled the tracking modes of airborne Pulsed Doppler
radars. In 1998 he was appointed as a software engineer with
Vision Abell Pty Ltd, where he programmed real time embed-
ded systems. During 1999 he was under contract to Surveillance
Systems Division of DSTO to assist in the evaluation and de-
velopment of algorithms for the Analysts' Detection Support
System (ADSS).

Nicholas J. Redding
Surveillance Systems Division

Nicholas Redding received a B.E. and Ph.D. in electrical en-
gineering all from the University of Queensland, Brisbane, in
1986 and 1991, respectively. From 1988 he received a Research
Scientist Fellowship from the Australian Defence Science and
Technology Organisation (DSTO) and then joined DSTO in
Adelaide as a Research Scientist after completing his Ph.D. in
artificial neural networks in 1991. In 1996 he was appointed as
a Senior Research Scientist in the Microwave Radar Division
(now Surveillance Systems Division) of DSTO. Since joining
DSTO he has applied image processing techniques to the au-
tomatic classification of ionospheric data, and more recently
researched target detection (both human and algorithmic) in
synthetic aperture radar imagery.

DSTO-TR-1242

David J. Crisp
Surveillance Systems Division

David Crisp graduated from the University of Adelaide in 1987
with a B.Sc. (Hons) in Mathematics and completed his Ph.D.
at the same institution in 1993. For the three years following
that he held a postdoctoral research position in Mathematics
at the Flinders University of South Australia. In 1997 he com-
menced employment as a Postdoctoral Research Fellow with the
Cooperative Research Centre for Sensor, Signal and Informa-
tion Processing (CSSIP). At CSSIP he worked in the Pattern
Recognition Group on the application of machine learning tech-
niques to real world problems. In September 1999 he joined the
Surveillance Systems Division of the Australian Defence Science
and Technology Organisation (DSTO). Since joining DSTO he
has been a Research Scientist in the Image Analysis and Ex-
ploitation Group and his research has been focused on the auto-
mated detection of targets in low resolution synthetic aperture
radar imagery.

VI

DSTO-TR-1242

Contents

1 Introduction 1

2 Overview of the Algorithm 1

2.1 Philosophy 1

2.2 Mumford-Shah Functional . 2

2.3 Pull A-Schedule Segmentation 4

2.3.1 Statement of Algorithm 5

2.3.2 Computational Complexity 8

3 Data Structures 10

3.1 Regions 11

3.2 Pairs * 12

3.3 Neighbouring Pair List 12

3.4 Region Set 13

3.5 Pair Set 14

3.6 Merge Candidate List 14

3.7 Merge List 16

3.8 Balanced Trees 17

4 Procedures and Functions 18

4.1 Identify Merger Pair 18

4.2 Merge Regions 20

4.3 Update Neighbouring Pair Lists 21

4.4 Update Merge Candidate List . 22

5 Enhancement to the Algorithm: Pruned Merge Candidate List 23

5.1 Locally best merges 23

5.2 Description of the algorithm 24

5.3 Computational complexity 26

5.4 Data structures and procedures 28

vii

DSTO-TR-1242

6 Supporting Procedures and Functions 29

6.1 Recording Segmentation Data 29

6.2 Image Recreation 31

6.2.1 Image Recreation Data Structures 31

6.2.2 Reconstruction 32

7 Conclusion 33

References 33

Figures

1 Typical computation times for Algorithm 3 on stripmap SAR images 10

2 Labelling of the (a) horizontal, and (b) vertical pairs for the trivial segmen-
tation of the example 3x4 image 12

3 Structural representation of the region set for the example 3x4 2 greyscale
layer image in table 1 after the trivial segmentation 15

4 Interaction of the data structures used in the full A-schedule algorithm for
segmentation for the merger of two regions, p and q which correspond to the
pair, P within an image 19

5 Typical computation times for Algorithm 3 and Algorithm 4 28

6 An overview of the structuring of the merge list data file 30

7 Region list entry p for the segmentation Kr. The region list entry records the
greyscale vector for the region as well as the pixels associated with the region. 33

8 First (a) and second (b) greyscale layers for region p in the segmented image
and the corresponding segmentation mask (c) for segmentation Kr for the
test 3x4 test image 33

Tables

1 Region labels for an example 3x4 image after the initial trivial segmentation
of the image 11

via

DSTO-TR-1242

1 Introduction

The Analysts' Detection Support System (ADSS) is a suite of target detection algo-
rithms designed to reduce analysts' workload in Broad Area Aerial Surveillance (BAAS)
using synthetic aperture radar imagery (SAR) [7]. The ADSS is divided into a number
of modules, the first of which is called prescreening. The purpose of prescreening is to
identify all the possible targets of interest in the SAR imagery with a high probability
of detection (PD). The performance of a number of different algorithms employed in the
prescreening role has been reported elsewhere [9]. In this performance analysis, all regions
of the imagery were treated uniformly, irrespective of the differing characteristics that they
can exhibit. One method suggested in [9] to improve the performance of prescreening is
to segment the imagery into homogeneous regions using texture prior to prescreening and
apply different prescreeners to each texture class. The rational is that each prescreener
can be tuned (using prior training or otherwise adjusting its parameters) to give optimal
performance on its texture class.

Segmentation is typically computationally very expensive, and segmentation for pre-
screening would require all the imagery collected from the SAR sensor to be segmented
— a daunting task for standard algorithms. Consequently, a very fast segmentation al-
gorithm called the full X-schedule was developed with prescreening in mind. The basic
principles of this algorithm have been presented in [8].

This report outlines what we believe to be the fastest possible implementation of the
full A-schedule algorithm. Earlier implementations of the algorithm have been produced
[11], however their performance did not reflect initial estimates presented in [8]. Significant
recent enhancements of the data structures by the third author have been included.

In the next section, an overview of the full A-schedule algorithm is presented based
upon [8]. Sections 3 and 4 present a detailed overview of the data structures, and the
major procedures and functions, respectively, used to implement the algorithm. Section 6
presents the data and procedures required to reconstruct the segmentation at any stage.

2 Overview of the Algorithm

2.1 Philosophy

In [8] it is argued that a segmentation is a compressed description of the image, and
that an unavoidable consequence of a compressed description is the introduction of some
error. A good segmentation is therefore one which has a very efficient description given the
associated error. One should consequently view segmentation as a compromise between
the shape or character of a boundary and the fitting error in the region enclosed by the
boundary.

The compromise between fitting error and shape can be presented in a rigorous math-
ematical framework [5] by expressing the segmentation problem with variational methods
using the Mumford-Shah functionals [6]. These functional were shown to provide a unify-
ing framework for image segmentation. The variational framework addresses the dilemma

DSTO-TR 1242

between shape and error by means of a parameter A which expresses the trade-off between
fitting error in a region against the region's boundary length. Koepfler et al. [4] call A the
"scale" parameter, but it does not parameterize the length characteristic of each region so
instead we will call it the regularisation parameter because of the way it determines the
balance between error of fit to a region and its boundary length.

The simplified form of the Mumford-Shah functionals expresses the segmentation prob-
lem as one of minimizing

E{u,K)=f \\u-g\\2dxdy + \t(K) (1)
JU\K

where Q is the domain of the image, K is a set of segmentation boundaries with total
length £{K), g is a scalar or vector-valued function of the channels of the image on the
domain 0,, u is a piece-wise constant approximating scalar or vector-valued function for
the image which is constant over each region, and A is the regularisation parameter. If
A is small, then a lot of boundaries are allowed and a "fine" segmentation results. As A
increases, coarser and coarser segmentations result.

The functional can be used to segment an image into its component textures by first
extracting several different texture features from the original image. In this case, the
channels of g are the distinct texture features and the term \\u - g\\ in (1) is defined in
terms of a suitable vector space norm ||-||, see [4] for more details. Note however, that there
is only one segmentation boundary and it is fitted to all image channels simultaneously.
Of course, the functional can also be used to segment on the basis of grey-scale values
alone. In this case, g is single channel and the term ||u - g\\ is just the absolute value of
u — g and so \\u — d\\2 = (u — g)2.

The first term of (1) can be interpreted as error in the segmentation, and the second
as the length of description of the segmentation. Moreover, minimizing (1) over a range
of A is equivalent to solving the following constrained optimization over a range of e:

min 0.{K) subject to / \\u - g\\2dxdy ^ e. (2)
K JU\K

In other words, for each e we find the segmentation with the shortest description that
has an error of at most c. Thus minimizing the Mumford-Shah functional is equivalent
to finding the segmentation with shortest description for a given error (or vice-versa if we
rewrite (2)) and any segmentation found by these means involves implicitly or explicitly
a choice of the appropriate trade-off (i.e. coarseness).

2.2 Mumford-Shah Functionals

The Mumford-Shah functionals have been shown to provide a unifying framework for
image segmentation [5, 4]. The method does not depend on any a priori knowledge of the
statistics of the image and has the properties of compactness of the set of approximate
solutions (which indicates that the solution set will be small), convergence of minimizing
sequences of solutions, and smoothness of the locally optimal solutions. Koepfler et al.
[4] use a special case of the Mumford-Shah functionals as defined in (1). For a piece-wise

DSTO-TR-1242

constant approximating function, u is simply the mean value of g in the corresponding
segment. (The mean is taken component-wise in the case where u and g are vector valued.)
As a result, u is uniquely defined in the piece-wise constant case given the boundary K
and E(u, K) can be written as E(K).

In order to use (1) for segmenting digital images it needs to be discretised. To do so,
we now take Q to be a set of pixels indexed by a single discrete variable i = 1,..., n. The
image g and its model u are then defined by their values g(i) and u(i) at each pixel. A
segmentation region is a connected sub-set of ti and a segmentation K is a partition of ti
into regions. The boundary of K is the set of pixel edges which separate the regions and
its length £(K) is the number of edges in the set. With this notation, the functional (1)
becomes

n

E(u,K) = J2\W(i)-9(i)\\2 + M(K). (3)
i=l

As just discussed, or fixed K, E(u, K) is minimised when u is the average of g on each
region. Hence we can assume u is given by

ttW = iö[E^) (4)

where O is the region of K containing the pixel k and |0| is its area.

Koepfler et al. show that minimizing the functional in (3) (to a local minimum) can
be achieved using region growing. Let 0{ denote the region or segment i of the image, let
U{ be the average value of g on 0{ and let d(Oi,Oj) denote the common boundary of O;
and Oj, which is contained in K. Then the merging criterion is that

E(K\diOitOj)) - E{K) = '^j.|K - M2 - HWOuO,)) (5)
\ui\ ~f~ \uj\

be negative, where | • | denotes the area of a region. The complete Koepfler et al. algorithm
for segmentation is as follows.

Algorithm 1

1. Take the pixels of the image as the initial trivial segmentation (u0, K0) and A, = Ax

as the initial regularisation parameter.

2. For each region, determine which of its adjacent regions yield the maximal energy
decrease according to (5). If such a neighbouring region exists, merge the two and
proceed to check the next region in the list. Continue merging until no further
decrease in the energy functional is possible.

3. For every Aj, i = 1,... , L calculate a segmentation by iterating step 2 above. The
algorithm stops if there is just one region left or after computing a segmentation
using \L.

DSTO-TR-1242

There are two problems we are faced with for practical application of this algorithm.
The first is selection of the A; values. If they are too few or far apart then the result will
be a poor segmentation. Too many will be a computational burden. The second is that
the order in which the regions are visited in step 2 is not specified. This lack of specific
ordering makes the algorithm fast (since no searching is done for the "best" ordering) but
it also means that the results will vary depending on how the list of regions is organised.
These problems are addressed in the next section.

2.3 Full A-Schedule Segmentation

The Koepfler et al. algorithm presented above as Algorithm 1 requires that a list of
A, values be selected prior to running of the algorithm. This list of values is called the A
schedule by analogy with the temperature schedule of simulated annealing. These values
determine the quality of the final segmentation, and must normally be undertaken using
trial and error. An improved version of the algorithm which overcomes this problem was
presented by us in [8]. It is called the full X-schedule and does not require a priori selection
of the A schedule. In essence our improvement is to consider every possible (significant)
value of Aj in the A schedule so as to achieve the best possible segmentation. However,
this is done using efficient sorting algorithms and data structures so that the resulting
algorithm is fast and has known computation complexity.

Prom (5), the decision to merge Oj and Oj occurs when A ^ Uj where tjj is given by

\°mL\\ui-u<*
l[d{OuOj))

Uj = m&rL™. (6)

In Algorithm 1, the regions are merged by scanning arbitrarily through the list of regions
and selecting the best possible merge from the neighbours of each region at the current
value of A. In contrast, for the full A-schedule algorithm we consider all pairs of neigh-
bouring regions in the image and choose the best possible pair (those having the smallest
value of tij from (6)) to merge. The algorithm in simplified form is as follows.

Algorithm 2

1. Take the pixels of the image as the initial trivial segmentation.

2. Of all the neighbouring pairs of regions, find the pair (Oj, Oj) that has the smallest
tij from (6).

3. Merge the regions Oj and Oj to form Ojj.

4. Repeat the previous two steps until there is only one region, or t{j > Astop for all
pairs of neighbouring regions (Oj, Oj).

Clearly this algorithm removes the need to select a A-schedule a priori but what makes
it really useful is that we can implement the strategy efficiently. The first step required
is to compute all the possible pairs of neighbouring regions and sort them into a list with

DSTO-TR-1242

ascending values oft from (6). The segmentation algorithm is then a process of merging
the two regions at the top of the list, say Oi and Oj, into a new region O^ and then
updating the list. The first update step is to determine the neighbours Ok of O^ from the
union of those of Oi and Oj. We must then delete from the list of t values all those that
involve regions Oi or Oj. We then insert into the list at the appropriate points the tij,k

values that are computed from the new region Oij paired with its neighbours Ok- The
algorithm then repeats by merging the new top most pair of regions in the list.

Whilst Algorithm 2 is conceptually very simple, the update process just described
is complicated and a fast implementation requires complex use of variable length list
structures. These details are covered in the following sections.

2.3.1 Statement of Algorithm

In this section we provide a complete description of our fast implementation of Algo-
rithm 2. The implementation is summarised in the statement of Algorithm 3 below. First
however, we need to describe the data structures it relies on. The following typographic
conventions will be used. We will distinguish between the mathematical entities of the
algorithm and the programming constructs used to implement them using different type
faces. A calligraphic font is used to designate ordered sets (lists) and their elements, and
a courier font is used exclusively for programming constructs. For instance, the set of
all segmentation regions <S is implemented using the programming construct S. We will
assume that the domain of the image ti is rectangular and contains m x n pixels.

The algorithm operates on two primary lists, with a number of supporting list struc-
tures. The first primary list, S, called the region set, keeps track of the regions and the
second, A, called the pair set, keeps track of neighbouring pairs of regions that have a
common boundary. We discuss the region set first.

The region set S = {Si : i = 0,... ,Lr - 1} is an ordered list of elements Si =
(Ii,ai,Ui,->Mi) where U denotes the label of the i-th region, a* denotes its area (so a, =
|Oi|), Uj denotes its grey scale vector and finally ->/v. denotes a pointer x to its neighbour
pair list, to be defined shortly. A subscript r indicates a quantity at iteration r of the
algorithm (after r region merges have occurred) and so Lr denotes the number of regions
in the domain Cl of the image. For the sake of programming efficiency, S implements S
as a static array defined to have the maximum required length L0 = mn. The maximum
length occurs at the initialisation of the algorithm when the segmentation is the trivial
one in which each pixel in ft is a separate region. As the algorithm proceeds, more and
more entries become redundant as regions are merged, but we are deliberately trading
the minimal additional memory requirements against a significant gain in computational
complexity so we are willing to accept this waste. (The principle of increasing memory
usage to obtain greater time performance is fundamental to our development.) Because of
the static nature of the S array, we are able to use the convention that the label Jj of the
i-th. region is simply the index i, the offset of the region's first pixel in the (row-ordered)
image. Consequently, we drop the U notation for the label of the i-th region and simply

The pointer is used in the programming construct S for the region set S and it is not necessary to refer
to it directly in the algorithm description to follow. This is because we are able to refer mathematically to
the i-th neighbour pair list directly, but when we implement it we use a pointer in each region set element.

DSTO-TR-1242

refer to it by its index i. This detail will become clearer in the next section where we
discuss implementation details.

The pair set A = {At : i = 0,... ,ar - 1} is an ordered list of elements Ai =
{p,<l,Sp,q,tp,q,bp,q) which are tuples of p and q, the indices (i.e., labels) of the two neigh-
bouring regions that form the pair, sPi9, the weighted intensity difference between the two
regions defined by

\oP\\oq
\Un tic

|2

°™-\op\+\oqr
p "9i

the merge cost tp,q for the two regions defined by

tp,q —
S P,9

i(d(op,oq)y

and finally bp<q — l(d(Op,Oq)), the common boundary length between the two regions.
Again for the sake of programming efficiency, the pair set A is implemented as a static
array A of the maximum required length ao = 2mn - m - n that occurs in the trivial
segmentation at initialisation. As segmentation proceeds, more and more of the elements
of A are not utilised, as pairs are removed through their merging. It is never necessary to
scan through the list A after initialisation occurs, so it is not necessary to record separately
which entries do and do not contain valid information (this is also true for the construct
for the region set S). This has the additional benefit that the index and location of Ai
between regions p and q will not change at all during execution of the algorithm, up until
the point at which the two regions have been merged. (And of course this is also true for
regions in the region set construct S.)

The next data structure we discuss is the key to the functioning of the algorithm be-
cause it determines the order in which the regions are merged to ensure that the best merge
occurs at each step. This structure, the merge candidate list £ = {£i : i = 0,... ,jr — 1}
is an ordered list of elements £j = (<*, Pi) which are tuples of U, the merge cost of the pair
of regions with pair index Pj. Here yr denotes the length of the merge candidate list at
iteration r. Note that the elements £{ are arranged in order of increasing U. In order to
be able to retrieve elements from £ for updating we need to deal with tied merge costs
rigorously. We do this by using the secondary key of the associated pair index to sort
tied merge costs. Specifically, if tt = tj then we define (U,Pi) < (tj,Pj) if Pi < Pj and
(thPi) >(tj,Pj) if Pi >Pj.

An enhancement to the algorithm, which we will discuss later, means that it is not
necessary to include every pair in the merge candidate list because a simple local test
can show that most pairs do not satisfy a necessary condition for them to be the current
optimal merger. For this reason, 7r the length of £ at iteration r will be less than ar,
the number of pairs. In fact, 7r ^ \Lr, the number of regions. This enhancement makes
understanding the algorithm considerably more difficult, so we postpone it until we have
presented the algorithm's fundamentals and in the mean time we assume -yr = ar-

The final type of data structure, one for each region, is an ordered list used to speed
access to the relevant elements of the region and pair sets. These lists, called the neigh-
bouring pair (NP) lists, contain an ordered list of the indices of a region's neighbouring
regions and the pairs they form. Let Mi = {Ntj : j = 0,... ,ßi<r - 1} denote the NP list

DSTO-TR-1242

for region i, where ß^r denotes the number of neighbouring regions of region i at iteration
r. Then the element A/y = (j, Pj) is a tuple of the region index j of a neighbour and the
pair index Pj of the pair they form. The elements are arranged in ascending order of the
region indices.

All the information necessary to compute the full A-schedule (in particular (6)) is
then stored in the above lists and it is not necessary to refer to the pixels in the image
after the initialization phase (except when the segmentation is complete). Implementing
Algorithm 2 then is a process of maintaining the two principal list structures in the most
efficient manner possible. As part of this process, when two regions, say Op and Oq, are
merged, we assign the smaller region label, say p, to the new region Opq and allow the
label q to become redundant. In terms of our data structures, this means we replace the
data in Sp for region Op with the data for the new region Opq and the data in Sq becomes
redundant. Following such a merge, the remaining entries in the region set S and the
corresponding entries in pair set A which are effected by the merge and this relabelling
must then be updated accordingly. We have summarized the mechanical steps required to
do this in Algorithm 3 below.

Against each step of the algorithm we have also recorded its computational complexity
(unless it is 0(1)). Note that the dynamic lists £,Ni are implemented as binary trees,
which have computational complexity ö(log2Z) to search, insert, and delete elements,
where / is their length. Also, while the true lengths, 7,., ö{ßp,r), etc. of these lists
will vary as step r + 1 of the algorithm is being executed we simplify the computational
complexity calculations by taking them to be fixed at their maximum values for the step.
We will discuss the computational complexity of the algorithm as a whole in the next
section.

Algorithm 3

1. Initialization. The algorithm begins with the trivial segmentation KQ in which
each pixel is a separate region. The data structures are initialised as follows:

(a) Set r = 0.

(b) Initialise S and A. ö(mn)

(c) Initialise £, which includes sorting £ so that the merge costs t are in ascending
order (the length of £ is 70 ^ a0 = 2mn -m-n). 0(mn log2 mn)

(d) For each region i, i = 0,... ,mn - 1, initialise A/i, its NP list. Initially, each
region will have at most four neighbours. ö(mn)

2. Region Merging. Form the segmentation Kr by merging the pair corresponding
to the first entry, £0 = (t0,P0) in the merge candidate list £ as follows:

(a) Set r = r + 1.

(b) Determine £0 = (t0,PQ) from £. 0(log27r)

(c) Determine the two region indices p and q from Ap0.

(d) Determine ap, up and ag,uq from Sp and Sq, respectively.

DSTO-TR-1242

(e) Set apq = ap + aq, and upq = {apup + aq\ipq)/apq and store these new values in
ap,up of Sp (the new region Opq is replacing the old region Op).

(f) Remove Mp,q = (q, Pq) from region p's NP list. C(log2 /?p>r)

(g) Remove Afq<p = {p,Pp) from region q's NP list. 0(log2ßq,r)

(h) For each neighbour entry A/p,n = (n, Pn), n — 0,... , /3p,r - 2, in region p's NP
list A/p, do: 0(ßp,r) x ...

i. Set £p,„ equal to the merge cost t specified in the pair set element Apn.

ii. Use the merge cost tp,n and the pair index Pn as search keys to find the
pair (tp,n, Pn) in the merge candidate list £ and remove it. 0(log27r)

iii. Set the weighted intensity difference spn of the pair set element Apn equal
tosPn = ££t\\upq-unf.

J-pq +a„HuP9

(i) For each neighbour entry Afq<n = (n, Pn), n = 0,... ,ßq,r - 2, in region g's NP
list Mq, do ' 0(ßq,r) x ...

i. Set tq^n equal to the merge cost t specified in the pair set element Apn.

ii. Use the merge cost tq<n and the pair index Pn as search keys to find the
pair (tqin, Pn) in the merge candidate list £ and remove it. 0(\og2 7r)

iii. Check whether or not the region with index n already exists in region p's
NPlistA/p C>(log2/3p,r)
If not then

A. Insert a new entry Mp>n — (n, Pn) into Afp. ö(log2 ßp,r)
B. Change whichever of the two region indices ppn and qpn from Apn =

{pPniQPn^PnitPn'bpn) that is equal to q to be equal to p instead. If
necessary, swap the labels ppn and qpn in Apn to ensure that ppn < qpn.

C. Set the weighted intensity difference spn of the pair set element Apn

equal to SPn = ^_||Upg - u„||2.

D. Remove the old entry J\fn>q from J\fn and insert the new entry Afn,p —
(p,Pn). ' ö(log2^n,r)

else

A. Increment bpn from Apn by bpq from Apq.

B. Remove the old entry Afn<q from Afn. ö(log2 ßn,r)

(j) For each entry A/p,„ = (n, Pn) of Mp do ö(ßPtr+i) x ...

i. Set iPn = ^ in^Pn.

ii. Insert the element £j = (ipn, Pn) into £ at the appropriate point. (9(log2 7r)

3. Loop. Repeat step 2 until only one region is left or to > Astop, where £o = {to,Po)
is the first entry in £. ö(mn) x ...

2.3.2 Computational Complexity

In determining the computational complexity of the above algorithm, the first detail
to note is that for an image ofmxn pixels, there are LQ = mn regions in the initial trivial
segmentation, corresponding to ao = Imn — m-n pairs of neighbouring regions. Secondly,
because each step of the algorithm reduces the number of regions by one, the algorithm

DSTO-TR-1242

will run for a maximum of mn — 1 steps. Consequently the computational complexity of
the algorithm is going to be either the initialisation cost of ö(mnlog2mn), or mn — 1
times the cost of the most complex operations in Step 2.

The deepest loops in step 2 have a computational cost of ö(log27r), ö(log2ßp,r),
and 0(log2ßn,r), and these steps are repeated either ßp,r or ßq,r times. Thus adding all
contributions of all sub-steps (and ignoring repeated terms) we have a complexity of

0(log2 7r + log2 ßptV + log2 ßq>r + ßp,r log2 7r + /V(log2 7r + log2 ßp,r + log2 ßq,r) + ßp,r+\)

for Step 2. Obviously we can simplify this by using an upper bound on the number of
neighbours a region can have. Let us denote the maximum number of neighbouring regions
by ßmax so that ßitr < ßmax for all regions i. We can now re-write the computational
complexity as

0(ßmax log2 Jr + ßmax log2 ßmax). (7)

An upper bound on /3max is ßmax ^ Lr < mn since Lr is the number of regions at
iteration r. However, it seems possible that we can do better. Our algorithm produces
a 2-normal segmentation at every step (the segmentation at each step is a minimum of
(1) for the current A value). Consequently each segmentation obeys the isoperimetric and
inverse isoperimetric inequalities [4]. It follows that there may be an upper bound which
is independent of the size of image and the algorithm step number. Unfortunately, we
have not been able to find such an upper bound.

Using the upper bound /3max < Lr, it follows from (7) that the complexity of Step 2 is
no worse than

0(Lr log2 7r + Lr log2 Lr).

The complexity of the Step 3 is simply the addition of contributions from Step 2 and so
the complexity of Step 2 and Step 3 combined is no worse than

mn-l

]P 0(Lr log2 7r + Lr log2 Lr) - 0{{mnf log2 mn) (8)
r=l

where we have used the facts that jr < 2mn — m-n — r (since at least one pair of regions
is removed at each step of the algorithm) and Lr = mn — r to derive the last equality.
Clearly, this last estimate is an upper bound on the complexity of the algorithm as a whole
since the initialisation step has complexity C(mnlog2mn).

If on the other hand /?max is independent of the size of the image, it can be treated
as a constant and (7) simplifies to (9(log27r) which means the complexity of Step 2 and
Step 3 combined becomes

77171 — 1

J2 °(loS2 7r) = 0{mnlog2 mn). (9)
r=l

Again, this is the total complexity of the algorithm since the initialisation is no worse.

Empirical evidence of the computational complexity of Algorithm 3 is shown in Fig-
ure 1. These results are indicative only since computation times will vary depending on

DSTOTR-1242

10°

?104

o
ü
CD

® E —2
10 -

C
CO
CO
©
P 10

10"
10'

-

1 ■ ■■■■■[1—1 1 1 11 ll[1—1 1 1 11 m 1—1 1 1 11II)

0(mn log2(mn)) -

- Algorithm 3 J*^*^^ -

-

^^^ ***'

-

— ^

x^ ^*-

—

-
X-

1 1 1 11111 11 1 1 1 1 11 III 1—1 1 1 11 III

10J 10* 10°
Number of image pixels (mn)

10

Figure 1: Typical computation times for Algorithm 3 on stripmap SAR images.

the nature of the imagery being segmented. The particular imagery used to produce the
figure was provided by the Surveillance Systems Division (SSD) of DSTO. It was formed
by a synthetic aperture radar (SAR) operating in stripmap mode and the area being im-
aged was farmland near Saddleworth, South Australia. The figure also shows a plot of
ö{mn\og2mn). We added this plot in order to get some insight into which of the com-
plexity bounds, (8) or (9), is applicable. Note that, the figures axes are logarithmic and
the plot of 0(mn log2 mn) is effectively a straight line of slope 1. We would likewise expect
a plot of 0({mn)2\og2mn) to be effectively a straight line but with slope 2. Clearly the
experimental data for Algorithm 3 lies along a straight line. While the slope of this line
is larger than 1, it is still much closer to 1 than to 2. It follows (in this case at least) that
complexity of Algorithm 3 is closer to (8) than (9).

3 Data Structures

Achieving a fast implementation of the full A-schedule algorithm requires efficient data
structures. We now present in detail the programming constructs for these data structures
that are as efficient as we think is likely to be possible. The data structures and proce-
dures reported here represent the culmination of analysing and rewriting three previous
implementations [8, 11, 10], so we do not make our claim lightly.

10

DSTO-TR-1242

3.1 Regions

A region is 4-connected group of pixels designated as a single entity because it has a
homogeneous characteristic. As the segmentation algorithm progresses, the regions will
decrease in number and increase in size, i.e. the algorithm merges regions with the same
character as it goes along. The algorithm is initiated on the trivial segmentation where
every pixel is considered a separate region. Each region is identified by a unique region
identifier, or label. Initially in the trivial segmentation of the image, this label corresponds
to the pixel's offset within the original image when the image pixels are stored in row
order. For example, a trivial segmentation of a 3 x 4 image would be labelled as shown in
table 1.

column
0 12 3

0 0 12 3
row 1 4 5 6 7

2 8 9 10 11

Table 1: Region labels for an example 3x4 image after the initial trivial segmentation of
the image.

The single most important reason why the full A-schedule algorithm can be made
computationally efficient is that during the merging process it is not necessary to refer to
the actual pixels that make up the region, just some summary statistics of each region. For
each region, only its area (number of pixels), (array of) average value(s), and the labels
of its neighbouring regions, are required. Note that an array of average values may be
employed, rather than a single value to accommodate multi-band images or texture feature
values at every pixel location. The neighbouring regions are recorded in a neighbouring
pair (NP) list (section 3.3). The data structure used to implement a region within the full
A-schedule algorithm is expressed below in the C programming language.

typedef struct _tRegion

{
double *gval;

np_rbTree npList;

int label;
int area;

} tRegion;

/* array greyscale values for the layers in
the region */

/* neighbouring pair list - a list of
labels to regions which have a common boundary
with the current region and the index of the
pairs made between the current region and these
neighbours */

/* unique region identifier */
/* area covered by region (in pixels) */

11

DSTO-TR-1242

o--
3~4-

7—8-

9
I

10
I

11
I

12
l

1

I

1

I

1

I

1

I
1

13
1

14
1

15
1

16

(a) Horizontal (b) Vertical

Figure 2: Labelling of the (a) horizontal, and (b) vertical pairs for the trivial segmentation
of the example 3x4 image.

3.2 Pairs

A pair is defined to be two neighbouring regions with a common boundary of vertical
or horizontal components, i.e. the 4-connected boundary. Each pair is uniquely identified
within the algorithm by the labels of its two instigating regions. Three parameters are
also stored with each region pair: the common boundary length, the merge cost t (6), and
the weighted intensity difference (the numerator of (6)). The common boundary length is
the Hotelling distance along the boundary between the two regions in units of pixel width.
The weighted intensity difference is stored in addition to the first two parameters even
though it is simply the product of the two to save on computation, because all three are
required. The structure used to represent a pair within the code is shown below.

typedef struct _tPair

{
double t;
double s:

int r[2];

int boundary_length;

} tPair;

/* merging cost (t_ij) of the pair */
/* value of weighted intensity difference which

remains constant under changes in the common
boundary length between the regions */

/* the indices to the paired regions in
the region set */

/* length of boundary between the paired
regions */

The pairs are indexed during initialisation of the trivial segmentation; the horizontal
pairs are indexed first, then the vertical pairs. The indices are incremented in the same
left to right raster scan process used to label the regions. Using the example 3x4 test
image in table 1, the resulting pair indices in the trivial segmentation for both horizontal
and vertical pairings is shown in figure 2.

3.3 Neighbouring Pair List

When a pair of regions are merged to form a single region, the pair set values for any
other pair which included either of the two merged regions will change. The neighbouring

12

DSTO-TR-1242

pair (NP) list provides a fast and efficient mechanism to identify which pairs are effected
by the changes.

Each region has an associated NP list. These lists contain the labels of all the regions
that are contiguous with a particular region, and the index of the pair formed between
them. Hence, stored within each node of an NP list is the label of the neighbouring region
rind, and the pair index plnd, as shown below.

typedef struct _np_rbNode

{
int rind; /* neighbouring region label */
int plnd; /* index of pair formed between the current

and neighbouring region */
struct _np_rbNode *left; /* pointer to left node (less than) */
struct _np_rbNode »right; /* pointer to right node (greater than) */
struct _np_rbNode *up; /* pointer to parent node (up) */
unsigned char red; /* current node colour */

} np.rbNode;

The other parameters in the structure are used to implement the list efficiently as a red-
black tree (Section 3.8).

After two regions are merged, the NP lists of the two parent regions are used to
efficiently update pairs formed with neighbouring regions that are effected by the change.
The NP lists of the two merged regions must also be merged to form the NP list of the
newly formed region. Multiple entries due to a region being a common neighbour to both
parent regions must be eliminated from the NP list of the new region. The elements of
the NP lists are maintained in order of neighbouring region label to assist in eliminating
duplicates.

As an example, consider the 3x4 image from section 3.1, table 1. Assuming the
contents of each node in the NP list can be written in the form

region Jabel (pair index)

the NP list for region 6 would be

NPJist6 = 2(11) -»• 5(4) -»■ 7(5) -»• 10(15).

3.4 Region Set

The region set is an array of region records. The length of the array is not updated
dynamically, but remains the same throughout the execution of the program. Its length
is determined by the number of regions in the trivial segmentation of the image. Because
each pixel is defined as a region in the trivial segmentation, the number of regions and
hence the length of the region set will be m x n for an image of m rows and n columns. As
regions are merged, entries within the region set become invalid because the larger region

13

DSTO-TR-1242

label out of any pair of merged regions no longer refers to an extant region. Consequently,
the data recorded in the invalid entry will not be further accessed by the algorithm.

For example, assume that regions p and q merge to form region pq. All the relative
data associated with region pq is updated and recorded in region p's entry within the
region set. The new region pq will be know as region p within the algorithm from this
point. However, region q's entry will no longer be referenced during the algorithm, and
the entry will not be used. Hence as the algorithm progresses, more entries within the
region set will become invalid. This method of processing was chosen because the cost of
updating dynamic data structures is very high computationally for little significant benefit
in terms of memory usage.

For the initial trivial segmentation of an image, each entry in the region set represents
an individual pixel within the image. The entries each have a label which corresponds to
the offset of the pixel within the image when stored in row order, an area of 1 (pixel),
and a greyscale array corresponding to the pixel's value in each layer of the image being
processed. The NP list is computed for each region during the initialisation of the region
set.

Expanding on our example 3x4 image in table 1, we shall assume the image has
two greyscale layers. The resultant region set after the initialisation using the trivial
segmentation of the two layer image can be represented diagramatically in figure 3, where
the greyscale values for each layers are also shown.

3.5 Pair Set

As with the region set (section 3.4), the pair set is a static length array of pair records,
where the initial length of the array is determined by the number of pairs in the initial
trivial segmentation of the image in question. For an image of m rows and n columns, the
initial number of pairs, and hence the length of the pair set, is 2mn — m-n. This assumes
that regions can only be paired through horizontal and vertical boundaries as stated in
section 3.2. As the maximum number of pairs is known, a static implementation can be
used without the risk of data overflows.

Each pair existing in the current segmentation Kr, is identified by a unique pair index,
which is used to retrieve the relevant pair details from the pair set. For example, if the
NP list of region p contains a node with the region label nR and pair index nP, then entry
nP in the pair set array will contain the pair data for this pair.

The pair set array is static because as pairs are merged, the contents of the pair entry
are not removed. Instead, as seen with the region set, they are ignored for the remainder
of the algorithm, because the pair no longer exists in current and succeeding states of the
segmentation.

3.6 Merge Candidate List

Before a merge can occur, the pair with the smallest merge cost t must be identified.
These values are stored within the pair records of the pair set, but the pair set is not

14

DSTO-TR-1242

label
area ^_
Igval,...]

-region(pair) -

Image level 1

4 8 23 54

7 34 6 8

34 111 12 14

Image level 2

240 12 97 76

37 39 92 21

111 146 9 57

0
1
[4.2401

1
1
18.121

2
1
23,971

3
1
154.761

4
1
[7.371

5
1
134,391

6
1
16.92)

7
1
18.211

1
134.1111

9
1 a

1111.1461

12.91

II
1
114,571

1(0)—»- 4(9)

-0(0) —»-2(1) —»-5(10)

-1(1) —»►3(2) —»-6(11)

►2(2) -»-7(12)

-0(9) —»-5(3) —»-8(13)

-1(10)—»-4(3) —»»6(4) —»-9(14)

►2(11)—»-5(4) —»-7(5) —»-10(15)

-3(12)—»-6(5)—»-11(16)

4(13)—»-«(9)

-5(14)—»-8(6) —»-10(7)

-6(15)—»-9(7)—»-11(8)

-7(16)—»-10(8)

Figure 3: Structural representation of the region set for the example 3x4 2 greyscale layer
image in table 1 after the trivial segmentation.

15

DSTO-TR-1242

sorted in any order. Consequently, to identify the pair to merge in simple terms, we must
search the entire pair set to

1. Identify pairs which still exist in segmentation Kr, and

2. Prom these existing pairs, identify the pair with the lowest tij value.

As the pair set is not dynamic, it make little sense to sort the values stored within the
array, especially when we only require the merging suitability parameter, tij, to be sorted.
Consequently we create a list of indices into the pair set that are ordered by Uj value called
the merge candidate list to implement the two steps above.

Sorting the pairs is performed using the t values for each region pair as the primary
key, with identical values then being sorted using the pair index as the secondary key.
Each node in the merge candidate list is of the form shown below, where t and index are
the programming constructs for t value and pair index respectively. Note that the other
elements in the node are used to implement the red-black tree data structure (Section 3.8).

typedef struct rbNode

{
double t;
int index;

struct rbNode_ »left;

struct rbNode_ ♦right;
struct rbNode_ *up;

unsigned char red;

e_rbNode;

/* merge cost of pair */
/* index pair entry within pair set */
/* pointer to the left node (less than) */
/* pointer to the right node (greater than) */
/* pointer to the parent node (up) */
/* colour of link to the current node */

The merge candidate list updates its contents dynamically during the course of the
algorithm. As a pair is merged, that pair is removed from the merge candidate list.
Similarly, pairs formed from neighbours of the merged regions are also removed. A new
entry is created for the merged region to ensure the data in the list is in its correct order.

3.7 Merge List

The merge list records the indices of the merged regions and their associated merge cost
t, and the greyscale values of each level of the newly formed region. This record gives the
ability to recreate the image at any segmentation Kr without having to re-run the entire
segmentation algorithm. A large proportion of the processing time of the segmentation
algorithm is required to maintain the merge candidate list and the neighbouring pair lists
of the remaining regions. By eliminating the maintenance on these data structures, the
resultant image can be quickly recreated. The list is called the merge list. The data
structure used in the code body to record these values is shown below.

typedef struct _tMergeNode

{
double lambda; /* minimum merging cost for current iteration */

16

DSTO-TR-1242

double *gval; /* array greyscale values for the image layers
in the newly formed region */

int plabel; /* label of first region in the merged pair */
• int qlabel; /* label of second region in the merged pair */
} tMergeNode;

The merging process is performed from the trivial segmentation ofmxn regions to
the final segmentation of at least one remaining region. Hence (2mn - m - n) merges are
performed at most over the duration of the program. As the total length of the list is
known prior to the execution of the algorithm, we can simply implement the merge list as
an array of merge nodes defined in the listing above.

3.8 Balanced Trees

The complexity of searching, inserting and deleting elements in a binary tree is O(h),
where h is the effective height of the binary tree in question. For binary trees built through
random data sets, the height of the resultant tree is 0(log2 AT), where N is the number
of entries within the tree. (With random data, entries are evenly divided or balanced
on either side of any branching point. A balanced tree is defined to be one in which
the height of left subtree at every node never differs by more than ±1 from the height
of its right subtree [3], p. 459.) Hence the computational complexity of operations on a
binary tree is 0(log2 N). However, if the data is not random, the worst case complexity
of O(N) can occur, and the tree structure is termed unbalanced. Careful performance
testing revealed that this was indeed occurring in a previous (suboptimal) implementation
of the full A-schedule segmentation algorithm [11]. Consequently unbalanced trees were
one important reason why this previous implementation did not achieve the theoretical
performance expected.

Red-black trees are a form of binary search tree that constrain the way the tree is
constructed so that the tree is approximately balanced [3, 2]. There are many other
alternatives, but red-black trees seem to be one of the more common choices, with com-
prehensive descriptions available [2]. An in-depth study into their efficiency for sorting,
insertion and deletion indicated that they performed satisfactorily for our purposes. Con-
sequently, in an attempt to achieve the 0(mnlog2mn) complexity of sorting the list of
pairs, the binary tree structures used in the previous implementation were replaced by
red-black trees.

A red-black tree employs an extra bit of storage per node called its colour, which is
either red or black. During insertion and deletion, constraints are placed on the way in
which the nodes can be coloured on any path from the root to a leaf, to ensure that no path
is more than twice as long as any other. Consequently, the resulting tree is approximately
balanced.

A red-black tree has the following properties [2]:

• Every node is either red or black.

• Every leaf (end node) is black.

17

DSTO-TR-1242

• If a node is red, then both its children are black.

• Every simple path from a node to a descendant leaf contain the same number of
black nodes.

Due to the tree's approximate balanced nature, the complexity of the search, mini-
mum, addition and remove operations are 0(log2 N). This complexity meets the desired
computation goal for the sorting process required by the full A-schedule algorithm.

4 Procedures and Functions

Using the data structures described in the previous section, the steps involved in each
merge of the full A-schedule algorithm fall into the following four stages.

1. Identify the pair with minimum t to merge during the current iteration.

2. Update the merged region's parameters.

3. Update the neighbouring pair lists for the new region and its neighbours.

4. Update the merge candidate list.

This four stage process is guided by the manner in which the data structures interact in
the algorithm (figure 4) and follows the concise description in Algorithm 3. Let us now
consider these steps in more explanatory detail to show how the steps of Algorithm 3
relate to the programming constructs of the previous section. In the following sections,
the implementation of the four steps outlined above shall be examined.

4.1 Identify Merger Pair

The first step in each successive merge of the full A-schedule algorithm is to identifying
the pair to be merged, i.e. the pair with the minimum t. When there is more than one
of these, we take the pair with the minimum pair index. This is performed using the pair
set and merge candidate list. The implementation only allows one merge candidate list
to exist, with the implementation details hidden from the user. Only the ability to create
and destroy the structure in memory, and add, remove and search for entries within the
set are available to the user. The declaration file, e_rbTree.h, lists the external function
available to the user. In comparison, the Pair Set is available globally in the segmentation
code body, and represented through the data structure A, which is declared in the code
body as

tPair *A; /* pair set */

All future references to A refer to this programming construct for the Pair Set.

As mentioned, the algorithm starts out to form the segmentation at iteration r, denoted
Kr, by locating the pair with the minimum t. The pair index of this pair is determined

18

DSTO-TR-1242

Region
Set (S)

Pair
Set

Existing
Pair Set

Neighbour
Region/Pair
Lists (npList)

r-Xraayi^
(nR,nP)

increasing t..

Figure 4: Interaction of the data structures used in the full \-schedule algorithm for seg-
mentation for the merger of two regions, p and q which correspond to the pair, P within
an image.

19

DSTO-TR-1242

by the merge candidate list search routine e_minRbNode O. Let the pair's pair index be
denoted by P. The parameter denoting the pair's suitability for merging, t is also obtained.
Using this index we can obtain the pair's full details within the Pair Set, A, by indexing
into element P within the array. Hence the first step proceeds as follows:

• Identify the pair index of the pair with the minimum t using the merge candidate
list.

• Obtain the pair by indexing into the pair set using A [P].

4.2 Merge Regions

In the previous step we identified the pair to be merged whose index was P, and its
associated entry in the pair set, A[P]. The next step involves merging the regions and
updating the associated region data but does not include updating the NP lists. Within
the code body, the region set is identified by the simple array, S. This data structure is
globally available to the segmentation algorithm, and is declared as:

tRegion *S; /* region set */

The first step of the region merging process is to identify the regions which create
the pair, A[P]. In section 3.2, it was noted that the labels of the region creating the pair
were recorded in the two dimensional array r [], where the first entry will be referred to
as region p, and the second entry referred to as region q. Hence, the labels of region p
and q are A[P] .r [0], and A[P] .r[l] respectively. The region labels are equivalent to the
region's entry within the region set array, making the data structures for regions p and
q equivalent to S[A[P] .r[0]] and S[A[P] .r[l]], respectively. By convention, region p
will always have the smaller label of the two regions being merged. This fact is enforced
in the algorithm so that S[A[P] .r[0]] .label < S[A[P] .r[l]] .label is always correct.

With regions p and q identified, the new region, pq, formed from merging these two
regions, can now be constructed. The data associated with region pq replaces region p
within the region set. The area and the greyscale values for each layer within the image
are calculated using

aPq = ap + aq, (10)

u[n]pq = ^^"H, (11)
O'pq

respectively, where a represent the region area, and u[n] represents the n-th layer greyscale
value for the region. The results are written to the region data structure which formerly
stored the information for region p.

To assist the process of updating the NP list of the merged pair, the reference to regions
q and p are removed from the NP lists of regions p and q respectively. As these regions
have been merged, they no longer technically exist, and this also removes the requirement
to test each neighbour region to see if it one of the pair being merged.

The labels of regions p and q and the resultant greyscale layers are recorded within the
merge list entry r to allow the image of segmentation Kr to be recreated.

20

DSTO-TR-1242

4.3 Update Neighbouring Pair Lists

The t values for the pairs made between region p or q and their neighbouring regions
must be updated to correspond to the new region, pq. This is a two step process. First the
pairing must be identified and its old t value removed, and secondly, the new t calculated
for the new pairing and this value then recorded and sorted. The NP list is designed to
facilitate this process.

Each region record within the region set S, has an associated NP list, denoted by the
variable npList. The pairs created by the regions p or q and their associated neighbours
recorded in their respective NP lists will be effected when the new region pq is created.
The union of these two lists (without duplicates) contains all the region pairs effected by
merging p and q. As region pq replaces region p in the region set, the union of the two
lists is simply achieved by merging the NP list of region q (S[A[P] .r[l]] .npList) with
that of region p (S[A[P] .r[0]] .npList). This is undertaken by the following steps.

Updating the neighbour's region pairs is performed on a record by record basis by
traversing the NP list of the particular region. Let nP and nR denote the pair index
and region label, respectively, of the current node in the NP list corresponding to the
neighbouring region r. Then looping through the values of r, the update process proceeds
as follows.

• Remove the pair (p, r) entry from the merge candidate list, using the old t value
(A[nP] .t) and pair index (nP) as the search keys.

• Obtain the neighbour data from the region set entry S [nR] and determine the new
Spq,r value for the pair {pq, r) given by

°pq,r r^EHfU-*)2 (i2)
r^ 1=1

where n is the number of layers. Note that this is independent of the common
boundary length of the pair (pq, r).

• Update the sPq,r value for the pair (pq,r) in the pair set.

Entries for the neighbours of region q must be merged into the existing list of neighbours
for the region pq. The process involved in merging region q's neighbours into pq's NP list
can be summarised as follows. Note that the label p is reused to refer to the merged region
pq.

• Remove the pair (q, r) entry from the merge candidate list using the old tq,r value
(A[nP] .t) and pair index (nP) as the search keys.

• Obtain the neighbour data from the region set entry S [nR] and attempt to merge
this entry into pq's NP list.

SUCCESS: the neighbouring region is a new entry in region pq's NP list.

21

DSTO-TR-1242

- Update the region labels for the pair {pq,r), changing the reference to q to
be that for the combined region (which by convention is the new region p).
Also, swap the region indices p and r in the pair if necessary to ensure that the
constraint S[A[nP] .r[0]] .label < S[A[nP] .r[l]] .label is always satisfied.

- Recalculate the component of t independent of the common boundary length
for the pair using (12).

- Remove the entry referencing region q as a neighbour from the neighbouring
region's NP list. Reinsert a new entry within this list referencing region p
as a neighbour. Nodes are removed using the NP list manipulation routine
np_removeRbNode (), and added using np_addRbNode ().

• FAILURE: the neighbour region already exists within pg's NP list. Hence it was a
neighbour to both original regions p and q.

- Update the common boundary length between the neighbouring region and
region pq to include the common boundary length contribution from the merged

region q.

- Remove references to region q from the neighbours NP list, as this region no
longer exists.

Due to the difference in functionality dependent on which NP list is being processed,
two separate functions are used, each clearly identified to which list is operates on, p or q.

4.4 Update Merge Candidate List

The last step in each merge operation is to update the t values in each entry of pq's NP
list and also update their values in the merge candidate list E. Each node within pg's NP
list is visited, and using the contents of the node the following operations are performed.

• Calculate and update the value t for the pair using the calculated values of the
pair common boundary length and the component of t independent of the common
boundary length using

+ — gP.<? (13)
**' l(S(Op,Og))

K

where /() refers to the length of a component, and 6{Op,Oq) denotes the common
boundary between the regions Ov and Oq.

• Update the pair's value of t in the merge candidate list.

Each entry added to the merge candidate list is performed using the node addition
routine e_addRbNode() which inserts and sorts the new entry. Once the traversal has
completed, the two regions have successfully been merged, and if the exit criterion has
not yet been reached, the process starts once again by selecting the next pair with the
minimum t and pair index.

22

DSTO-TR-1242

5 Enhancement to the Algorithm: Pruned
Merge Candidate List

One of the more expensive computational steps of the full A-schedule algorithm is
sorting the merge candidate list £ according to merge costs. The list can be very long (for
a rectangular image ofmxn pixels it is initially contains a0 = 2mn -m-n elements)
and it needs resorting each time a merge is performed. Moreover, the merges costs of all
pairs which involve the merging regions are likely to change and so, in general, more than
one entry will be out of place. In this section we report on an enhancement to the full
A-schedule algorithm which helps overcome this computational burden. The enhancement
utilises the concept of locally best merges (to be defined in the next section) and involves
pruning £ so that it only contains the locally best merges. The effect of this change is
to significantly reduce the size of £ and its implementation has resulted in an order of
magnitude decrease in the algorithm computation time.

5.1 Locally best merges

The idea underlying the enhancement is that, since a region merge operation only
affects the merge costs in a local area of the segmentation, it makes sense to sort the
affected merge costs first and then only enter the best (cheapest) ones into the merge
candidate list. While this idea is natural it requires some care in defining what is meant
by a locally best merge. We need to ensure that the set of locally best merges is easily
updated and that the globally best merge is included. To do this, we first need to be more
precise about what is meant by best and globally best.

Given a set of potential region merges in a segmentation, we define the best merge to be
the one with the smallest merge cost. This then allows us to define the globally best merge
for a segmentation to be the best merge in the set of all possible merges. However, in
order to avoid unnecessary complications in our algorithm, we need resolve the ambiguity
in the case of tied merge costs. We do so by choosing the best merge in the case of tied
costs to be the one with the smallest index in the pair set A. While this means of resolving
tied merge costs is somewhat arbitrary and there are other alternatives, we believe that in
practice the choice of definition will not affect the resulting segmentations. Our reasoning
is that the order of merging for tied merge costs will only be significant if the costs are
also globally the best and in that case, the merge boundaries represent the least significant
image structures.

We can now give our main definition. We say that a pair of neighbouring regions
(Oi,Oj) represents a locally best merge if it is the best merge in the set of all merges
which involve either Oj or Oj (or both). As stated above, our enhancement to the full
A-schedule algorithm is to prune the merge candidate list £ so that it only contains the
locally best merges. It should be evident from the definitions that globally best merge is
also a locally best merge and so our pruning of the list will never remove the first element
£o = (to,Po)- It follows that, exactly the same segmentations will be produced by the
enhanced algorithm.

As an indication of the savings that pruning the merge candidate list leads to, observe

23

DSTO-TR-1242

that at any stage in the segmentation process the number of locally best merges is at
most half the number of regions (since each locally best merge accounts for two regions),
where as, the total number of possible merges is greater than the number of regions less
one (since each merge reduces the number of regions by one and merging can continue
until only one region is left). Thus by using locally best merges only, we are guaranteed
of halving the size of the E list. Experiments have shown that in general the savings are
much greater.

It only remains to show that all locally best merges can be easily found. Returning
to the definition, it is evident that if (0;,0j) is a locally best merge then Oj is the
best neighbour for 0; to merge with and visa-versa. It follows that we can find all the
locally best merges by first scanning the list of regions and for each one determining its
best merging neighbour. By reviewing a list of best merging neighbours and looking for
instances where the best merging neighbour of a region says likewise that the original
region is its best merge, we can find all the locally best merges. Note that, while this
provides the thinking behind our implementation, we make the search much more efficient
by using our linked data structures, as described in the next section.

5.2 Description of the algorithm

In this section we show how the scheme just described for finding all locally best merges
can be implemented efficiently and then go on to describe full details of the enhanced
algorithm.

Our implementation requires extending the previous data structures by adding an extra
variable to each entry of the region list S and two new flags to each entry of the pair list
A. Thus the typical entries of these lists now have the form

Si = (Ii, o,, Uj, ->^, bestp{i)) (14)

and

A{ = {p,q,sp,q,tp,q,bp,q,bflag{p,q),eflag(p,q)). (15)

The new item, bestp(i), in (14) records the index in the pair list A of the best merge for
the region 0,. The value of this index is determined by using the NP list Mi to search the
merge cost information in in the relevant entries of A for Oj's best merging neighbour.
Note that, since each entry .4 also records the indexes of both the regions involved, we
can obtain the region set index of 0,-'s best merge from its bestp variable at any time we
want.

The item eflag(p,q) in (15) records whether or not the corresponding region pair is
a locally best merge and hence is used to maintain the pruned merge candidate list £.
As mentioned, our method of setting this flag is to check whether or not both regions
concerned say the other is its best merging neighbour. To help perform this check, we use
the other new flag bflag(p,q). This second flag is set when at least one of the associated
pair of regions says the other is its best merge and is cleared otherwise. Note that if the
elfag is set then the bflag must be too but the converse need not be true; the bflag can be
set while the eflag is cleared. In this later case, only one region is saying the other is its

24

DSTOTR-1242

best merge. Note also that in this latter case we do not know which region is saying the
other is its best merge, that information is only available indirectly via the bestp variables.

It only remains to describe how the enhanced algorithm initialises the quantities bestp,
bflag and elfag and then updates them after each merge operation. Of course, this ini-
tialisation and the updates are in addition to those of the full A-schedule as described in
Algorithm 3. Fortunately, the new steps are essentially independent of the old ones and
form two separate new steps of the algorithm which we present below as Step (la.) and
Step (2a.). Again, as well as describing each step, we have recorded its computational
complexity (unless it is 0(1)) and as before, the variables jr, ßp<r, etc. are fixed at their
maximum values for the current step. We will discuss the complexity of the algorithm as a
whole in the next section. Note that as with the full lambda schedule algorithm we make
good use of the linking in our data structures to obtain speed and efficiency. Also a final
word on notation. Recall that in Algorithm 3 we used the notation

tPi = tp,q

where the indices satisfy (15) above. We will likewise use the notation

bflag Pi = bflag (p,q) and eflagPi = eflag(p,q)

in the following.

Algorithm 4

la. Initialise the merge candidate list. (Assume Step (1) of Algorithm 3 has just
completed but with Step (l.(c)) deleted.)

Initialise the quantities bestp, bflag and elfag and adjust the merge candidate list 8
accordingly as follows:

(a) For each region O* in the region list <S do: 0{mn) x ...

i. Search the costs tPj of merging Oi with its neighbours A/ij = (j, Pj) for its
best merge and fix Pj to be the corresponding index. 0(1)

ii. Set bestp(i) = Pj.

iii. If bflagpj = 0 then set bflagp. = 1
Else set eflagp. = 1 and insert (tPj,Pj) into £. £>(log27o)

2a. Update the merge candidate list. (Assume Step (2) of Algorithm 3 has just
completed but with Step (2.(h)ii), Step (2.(i)ii) and Step (2.(j)ii) deleted and assume
that p and q are as described in Step (2.(c)).)

Update the quantities bestp, bflag and elfag and adjust the merge candidate list S
accordingly as follows:

(a) Use Mp to loop through the neighbours On of Op and update bestp, bflag and
elfag for each On as follows: 0{ßp,r) x ...

i. Obtain the pair set index Pn for the pair (On,Op) from Np,n = (n, Pn).

25

DSTO-TR-1242

ii. Use <Sn to locate bestp(n) and set Pi = bestp(n).

iii. Use Ap{ to obtain the region index, say k, of 0„'s previous best merge

iv. If A; = p or k — q then
(On's previous best merging neighbour was either Op or Oq so completely
recalculate its best merge)

A. Set bflagPi = 0.

B. Search the costs tpj of merging On with its neighbours Mn,j = (j,Pj)
for its best merge and fix Pj to be the corresponding index. ö(ßn,r)

C. Set bestp(n) = Pj.

D. If bflagp. = 0 then set bflagp = 1
Else set eflagpj = 1 and insert (tp^Pj) into £. ö{\og2

r)r)

Else
(On's previous best merging neighbour was neither Op nor Oq)

If tPn < tPi or tPn = tPi and Pn < Pi then
(Merging Op with On is better than On's previous best merge)

A. If eflagp{ = 1 then set eflagpi = 0 and delete (tp^Pj) from £.

<3(log27r)
Else set bflagpi = 0.

B. Set bestp(n) = Pn and bflagpn = 1.

(b) Update bestp, bflag and elfag for region p as follows:

i. Search the costs tpm of merging Op with its neighbours Mp,m — (m,Pm)
for its best merge and fix Pm to be the corresponding index. 0(ßp,r)

ii. Set bestp (p) = Pm.

iii. If bflagPm = 0 then set bflagPm — 1
Else set eflagPm = 1 and insert {tPrn,Pm) into 5. 0(log27r)

5.3 Computational complexity

In this section we update the computational complexity calculations of Section 2.3.2
to take account of the changes introduced in Algorithm 4. We begin with the initialisation
step. By combining the complexities of the sub-steps as listed in Algorithm 4 it is clear
that the complexity of Step la is O{mnlog2^o). Using 70 < L0 = mn this simplifies to
0(mn log2 mn). To get the complexity of the complete initialisation step we need to add
the complexity of Step 1. However, the complexity of Step 1 in Algorithm 4 is no worse
than that of Step 1 in Algorithm 3 and we know that was ö{mn log2 mn). It follows that
the complexity of the complete initialisation step is <9(mnlog2mra).

Next we consider the iterative part of the algorithm. By combining the contributions
of the sub-steps as listed in Algorithm 4 it is not hard to show that the computational
complexity of Step 2a is

fßp-r \ (ß,,r \

O I £(A,,r + log2 7r) + ßp,r + log2 lr = 0\ £(Ä,,P) + ßp,r log2 7r • (16)

26

DSTO-TR-1242

Using ßmax, as defined in Section 2.3.2, we can simplify this to

£,(/3maX + /Wlog27r)- (17)

However, the only bound on ßmax we are sure of is ßmax < Lr which leads to the estimate
0(L%+Lr log2 7r) and unfortunately the term Ö(L%) means this estimate is worse than the
equivalent one for Step 2 in Algorithm 3. We need to be more careful in our calculation.

Our poor estimate arose from bounding the term ö(Y^=ißn,r) in (16) too crudely.
We can do better by analysing the corresponding steps of the algorithm in more detail.
In other words, we want to derive a better estimate of the complexity of Step 2a. (a) when
only the sub-step, Step 2a.(a)iv.B, is taken into account. The steps of algorithm involved
are: visiting each of the neighbours On of Op; and while at each On, obtaining the merge
costs tpj of merging On with each of its neighbours. During this process, each merge cost
tpj can only be visited at most twice since a merge cost only involves two regions. It
follows that the complexity of this process can be estimated as 0(2ar), where ar is the
current number of region pairs. Inserting this estimate into (16) shows that complexity of
Step 2a is ö(aT + ßp<r log2 7r). We further simplify this by using ßv<r ^ Lr to get

0{ar + Lrlog27r)

which is a much better estimate than 0(Lj + Lr log2 7r).

To complete our calculation of the complexity of the iterative part of the algorithm we
first sum our estimates of the complexity of Step 2a as the algorithm runs to completion.
This gives

mn-l

Y2 0(ar + Lr log2 7r) = 0((mn)2 log2 mn) (18)
r=l

where we have used the facts that ar < 2mn -m-n-r (since at least one pair of regions
is removed at each step of the algorithm), Lr = mn - r and -yr < Lr = mn - r. It only
remains to take account of Step 2. However, the complexity of Step 2 in Algorithm 4
must be less than that of Step 2 in Algorithm 3 and we know that was no worse than
0((mn)2log2mn). It follows that (18) is the complexity of the total iterative part of
Algorithm 4. Since the initialisation step is less complex, (18) is in fact the complexity of
the complete algorithm and we are done.

If on the other hand /?max is independent of the size of the image, it can be treated
as a constant and (17) simplifies to 0(log27r). In this case the complexity of Step 2 and
Step 3 combined becomes

mn—1

]T C>(log2 7r) = 0(mn log2 mn). (19)
r=l

Again, it is not hard to see that this is in fact the complexity of the complete algorithm
since no other part has greater complexity.

In Figure 5, we compare the computation times of Algorithm 3 and Algorithm 4. The
calculations were produced using the same imagery as for Figure 1. Again we comment

27

DSTO-TR-1242

10°

E104

o u

1102 |-

c
'tO
CO
©
g 10

Q_

10"

 r ' "1 1 1 1 1 11 1 1—1 I 1 I ■ 11 1 1—1 1 1 1 ll| 1 1—1 1 1 1 1 ■ |

0(mn log2(mn))

i—r—

- Algorithm 3 ~^*^"^ -

- Algorithm 4 *e>^***'*^ * * -

—
—

" vr^"^ x- "* . • • x '
„x" " ,. • • *'

~^* . >x
-

x- *;«•

 L.

X' '

1 1 1 1 llll 1 ill 1 i—i ..in ill ml

10' 10 10 10
Number of image pixels (mn)

10

Figure 5: Typical computation times for Algorithm 3 and Algorithm 4-

that these results are indicative only since computation times will vary depending on the
nature of the imagery being segmented. It can be seen from the figure that Algorithm 4 is
roughly an order of magnitude faster than Algorithm 3. This is despite the fact that our
estimates of their complexities are the same. The explanation is that Algorithm 4 has a
much better constant of proportionality in its complexity than Algorithm 3. This is not
surprising given the better bound we have on 7r for Algorithm 4.

As before, we have also added a plot of ö(mn\og2mn) in order to get some insight
into which of the complexity bounds, (18) or (19), is applicable. It can be seen from the
figure that the data for Algorithm 4 lies on a straight line which is parallel to the plot of
ö{mnlog2 mn). Consequently, the empirical evidence is that Algorithm 4 has complexity
0{mnlog2 mn). This is not true for Algorithm 3 since the data appear lie on a line with
slope greater than 1. Thus Algorithm 4 also appears to have better scaling properties
than Algorithm 3. We conclude with comment that the best that could be expected of
a segmentation algorithm is complexity 0(mn). Since the effect of the term log2 mn) is
only minor, it follows that Algorithm 4 is doing about as well as we could expect.

5.4 Data structures and procedures

In this section we outline the implementation of Algorithm 4. We begin with the data
structures. It is easily seen by checking the variables used in Algorithm 4 that the only
new quantities needed are bestp, bflag and eflag. Further, the best way of incorporating
them into our existing data structures is indicated in equations (14) and (15). Thus we

28

DSTO-TR-1242

implement bestp by adding

int bestp; /* pair set index of the best merge neighbour */

to the declaration of the type _tRegion and we implement bflag and eflag by adding

int bflag; /* this flag is set if and only if at least one region
of the pair is saying the other is its best merge */

int eflag; /* this flag is set if and only if both regions
of the pair are saying the other is its best merge */

to the declaration of the type _tPair.

The implementation of Algorithm 4 also requires some new procedures. First, we have
implemented all of Step (la.) in a procedure which we call init_EList (). This procedure
is a direct mirror of the sub-steps in Step (la.) and needs no further explanation. Next,
we have implemented all of Step (2a.) in a procedure which we call updateEListO.
Again, the code in updateEListO essentially mirrors the description of Step (2a.) and
we do not need to go into the details with one exception. The exception is that we avoid
duplication of code for the searches at Step (2a.(a)ivB) and Step (2a.(b)i) by introducing a
second procedure, called updateBestP(). This second procedure is very simple. It merely
compares the merge cost of the current merging neighbour with the best so far and updates
the pair set index of the best merge if necessary.

6 Supporting Procedures and Functions

6.1 Recording Segmentation Data

As it is currently implemented, the full A-schedule algorithm terminates when all the
pixels have finally been merged into a single region. This is not a particularly useful
result. However, as previously mentioned, data has been recorded about each merge
operation that allows the segmentation at any (useful) step to be recreated. In this section
we examine the three data structures recorded: a merge list, a segmentation mask, and
segmented image layers.

The merge list on its own contains all the information required to construct the seg-
mentation at any stage of the algorithm. However, for large images the full merge list
can be very large and so we usually truncate the list to only allow the construction of
segmentations during the later stages of processing because they are the ones of principal
interest. For example, the merge list for a single layer 2,048 x 2,048 image would occupy
a file of approximately 134MB in size. If we are only interested in the segmentations
corresponding to the last 40,000 merges, the merge list data required could be stored in a
1.28MB merge file. Truncating the merge list in this fashion requires that a segmentation
mask and segmented image layers also be recorded for the starting point of the truncated
merge list.

29

DSTO-TR-1242

Merge List Header

Merge List entries
N entries of type tMergeNode

Greyscale vectors, each vector
entry representing the image layers

Figure 6: An overview of the structuring of the merge list data file.

Segmentation Mask

The segmentation mask codes the regions of a segmentation Kr at iteration r using a
single distinct colour for each. The mask is stored as a portable pixmap (PPM) image,
allowing just over 16 million (224) different regions to be represented. (Consequently, this
imposes a limit of 4,096 x 4,096 to the size of a square image that can be correctly re-
constructed in the current implementation.) This is achieved using the 24 least significant
bits associated with the region label, allocating 8 bits to each of the red, green and blue
components of the label.

Greyscale Layer Images

Each region of a segmentation Kr has an associated greyscale vector, one element for
each layer of the image. The greyscale values represent the mean value of their respective
layers across a particular region. In the greyscale layer images each pixel is assigned the
corresponding region's value for each layer, storing them as portable grey map (PGM)
image files.

Merge Files

The merge list records all the region merges performed in the execution of the segmen-
tation algorithm after a designated starting point. The structure of the data within the
merge list file is as follows (figure 6).

The merge file header specifies the starting segmentation from which the list was
recorded as well as the number of merges recorded and the number of layers. The sec-
ond block of the file contains the merge entries, corresponding to the data structure
tMergeNode. The third block of the file contains the greyscale vectors associated with
each merge entry. The greyscale vectors are recorded separately to simplify reading and
writing the data because their length is not known at compile time.

30

DSTO-TR-1242

6.2 Image Recreation

In the previous section, we presented the data structures that must be saved to allow
the recreation of an arbitrary segmentation. In this section we present how to recreate a
segmentation from this data.

6.2.1 Image Recreation Data Structures

The pixel list and region list are the two principal data structures used to reconstruct
the image.

Pixel List

The pixel list is a linked list data structure, where each node contains the (row order)
index of a pixel:

typedef struct _tPixelNode
{

struct _tPixelNode *next; /* next element in the list */
int index; /* pixel index within image */

} tPixelNode;

Each list is anchored through a structure which records the first (head) and final (tail)
nodes as shown below.

typedef struct _tPixelList
{
tPixelNode »head; /* head node of the list */
tPixelNode *tail; /* tail node of the list */

} tPixelList;

Region List

The region list performs much the same task as the region set in the segmentation
algorithm, in that it records the data associated with each region in segmentation Kr. It
has two components: a greyscale vector and a pixel list for each region:

typedef struct _tRegionNode
{
double *gval; /* greyscale array of all pixels in region */
tPixelList pixelList; /* list of pixels in current region */

} tRegionNode;

As with the region set, this structure is static in length, and its length is determined by the
number of pixels in the image being segmented. As the algorithm progresses, the length
of the list remains constant, but the number of entries that are valid reduces by one each
time a merge indicated by the merge list is performed.

31

DSTO-TR-1242

6.2.2 Reconstruction

Recreating the segmentation mask and segmented image for a particular segmentation
Kr is a two step process. Firstly, the region list must be initialized to the segmentation
at the start of the recorded merge list. Secondly, the merges indicated in the merge list
are carried out in order until the desired segmentation is reached.

Initializing the region list starts with the recorded segmentation mask and greyscale
image layers and processes each pixel as follows.

• Identify the region O to which the current pixel belongs.

• If O's pixel list is empty, copy the current pixel's greyscale vector into region O's
greyscale vector.

• Add the current pixel to O's pixel list.

When this process has considered every pixel, the region list will be initialised to the
segmentation at the start of the merge list, allowing any of the segmentations past this to
be recreated using the merge list.

The process of reconstructing the desired segmentation proceeds by looping over the
following steps.

• Does the current segmentation meet the exit conditions, specified by either iteration
number or a t that must be exceeded?

• Merge the region pair (p, q) specified in the current element of the merge list. Append
the pixel list of region q onto that of p's pixel list. Reset g's pixel list to a null set.

• Update the greyscale array of region p with the value recorded in the corresponding
element of the merge list.

Hence when the exit criterion has been reached, a number of regions in the region list will
have empty pixel lists (null sets), and these denote regions which no longer exists in the
image for segmentation Kr. Regions with valid (non null) pixel lists are a component of
the image for the segmentation desired.

As an example, assume the image for segmentation Kr for our example 3x4, two layer
image with pixels indexes as shown in table 1, has a region, p. This region has a greyscale
vector [225,17] and covers the pixels of indexes 1, 4, 5, 9 and 10. The entry for region p
in the region list can structurally be represented as shown in figure 7. The generated two
layer greyscale image would have the first layer pixels of index 1, 4, 5, 9 and 10 assigned
to the value 225, while the same pixels in the second layer were assigned to the value of
17. The mask is created in a similar manner, but the greyscale value written to the image
is set to the current region label, in this case p. The resultant greyscale image layers and
segmentation mask can be seen in figure 8.

32

DSTO-TR-1242

p

[225,17]
10

Figure 7: Region list entry p for the segmentation Kr. The region list entry records the
greyscale vector for the region as well as the pixels associated with the region.

(a) Layer 1 (b) Layer 2 (c) Mask

Figure 8: First (a) and second (b) greyscale layers for region p in the segmented image
and the corresponding segmentation mask (c) for segmentation Kr for the test 3x4 test
image.

7 Conclusion

We have presented the details of a novel fast implementation of the full A-schedule
algorithm for segmentation. The algorithm trades increased memory usage to gain a low
computational complexity of the merging process, and the result is an algorithm with
speed on the order of that of the Fast Fourier Transform algorithm, the benchmark for
fast algorithms. This algorithm will form the basis of a segmenting detection algorithm in
the Analysts' Detection Support System.

Future work will involve testing the utility of the algorithm for target detection and
extending the class of image models it uses. The initial steps in both these directions have
already been taken. The algorithm has been incorporated into the ADSS software suite
and once the coding of the entire suite has been completed and suitable data is available
we will be able to test its target detection utility. On the second point, the algorithm
described here only allows piecewise constant image models. This means some of the more
subtle features of the SAR imagery cannot be exploited. However, progress has since been
made on expanding the class of applicable image models to include piecewise polynomial
models. It is anticipated that implementing these models will only involve a few local
changes to the segmentation code and that these changes will not effect the computational
complexity of the algorithm.

References

1. Abramowitz M., Stegun I. A., Handbook of Mathematical Functions, Dover, New
York, 1968.

33

DSTO-TR-1242

2. Cormen T. H., Leiserson C. E., Rivest R. L., Introduction to Algorithms, MIT Press,
Cambridge, MA, 1992.

3. Knuth D. E., The Art of Computer Programming, Volume 3 Sorting and Searching,
second edition, Addison Wesley Longman, 1998.

4. Koepfler G., Lopez C, Morel J. M., "A multiscale algorithm for image segmentation by
variational methods", SIAM Journal of Numerical Analysis, 31(1), 1994, pp. 282-299.

5. Morel J-. M., Solimini S., "Variational Methods in Image Segmentation" Birkhäuser,
Boston, 1995.

6. Mumford D., Shah J., "Boundary detection by minimizing functionals", Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, I, 1985, pp.

22-26.

7. Redding N. J., "Design for the Analysts' Detection Support System for Broad Area
Aerial Surveillance", Defence Science and Technology Organisation, Australia, Tech-
nical Report DSTO-TR-0746, 1998.

8. Redding N. J., Crisp D. J., Tang D., Newsam G. N., "An efficient algorithm for
Mumford-Shah segmentation and its application to SAR imagery", Digital Image
Computing: Techniques and Applications, 1999.

9. Redding N. J., Robinson D. J., "Prescreening Algorithm Performance in the Analysts'
Detection Support System", Defence Science and Technology Organisation, Australia,
Technical Report DSTO-TR-0878, 1999.

10. Robinson D. J., "Unpublished notes on full A-schedule segmentation algorithm per-
formance", 1999.

11. Tang D., Redding N. J., Crisp D., Schroeder J., "Implementation of the Full A Schedule
Algorithm for Segmentation", Cooperative Research Centre for Sensor Signal and
Information Processing, CSSIP Client Report 10/99, 1999.

34

DISTRIBUTION LIST

Implementation of a Fast Algorithm for Segmenting SAR Imagery

David J. Robinson, Nicholas J. Redding and David J. Crisp

Number of Copies

DEFENCE ORGANISATION

Task Sponsor

DD JP129, DG Aerospace Division

S&T Program

Chief Defence Scientist

FAS Science Policy

AS Science Corporate Management

Director General Science Policy Development

Counsellor Defence Science, London

Counsellor Defence Science, Washington

Scientific Adviser to MRDC Thailand

Scientific Adviser Joint

Navy Scientific Adviser

Scientific Adviser - Army

Air Force Scientific Adviser

Director Trials

Aeronautical and Maritime Research Laboratory

Director, Aeronautical and Maritime Research Laboratory

Electronics and Surveillance Research Laboratory

Director, Electronics and Surveillance Research Laboratory

Chief, Surveillance Systems Division

Research Leader, Imagery Systems

Head, Image Analysis & Exploitation

Dr Alan Rye

David J. Robinson

Dr Nicholas J. Redding

Dr David J. Crisp

David I. Kettler

Dr Tim Payne

Dr Nick J. S. Stacy

Rodney Smith

DSTO Library and Archives

Library Fishermans Bend

Doc Data Sht

Doc Data Sht

Doc Data Sht

1

Doc Data Sht

Doc Data Sht

1

1

Doc Data Sht

1

1

1

1

1

4

4

1

1

1

1

Doc Data Sht

Library Maribyrnong

Library Edinburgh

Australian Archives

Library, MOD, Pyrmont

US Defense Technical Information Center

UK Defence Research Information Centre

Canada Defence Scientific Information Service

NZ Defence Information Centre

National Library of Australia

Capability Systems Staff

Director General Maritime Development

Director General Land Development

Director General Aerospace Development

Knowledge Staff

Director General Command, Control, Communications and Com-
puters (DGC4)

Army

Stuart Schnaars, ABCA Standardisation Officer, Tobruk Bar-
racks, Puckapunyal, 3662

SO (Science), Deployable Joint Force Headquarters (DJFHQ)
(L), MILPO Gallipoli Barracks, Enoggera QLD 4052

Intelligence Program

DGSTA Defence Intelligence Organisation

Manager, Information Centre, Defence Intelligence Organisa-
tion

Corporater Support Program

Library Manager, DLS-Canberra

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy, Library

Australian Defence Force Academy, Head of Aerospace and Me-
chanical Engineering

Serials Section (M list), Deakin University Library, Geelong,
3217
Hargrave Library, Monash University

Librarian, Flinders University

OTHER ORGANISATIONS

NASA (Canberra)

Doc Data Sht

1

1

Doc Data Sht

2

2

1

1

1

Doc Data Sht

1

Doc Data Sht

Doc Data Sht

Doc Data Sht

Doc Data Sht

1

AusInfo 1

State Library of South Australia 1

OUTSIDE AUSTRALIA

Abstracting and Information Organisations

Library, Chemical Abstracts Reference Service 1

Engineering Societies Library, US 1

Materials Information, Cambridge Scientific Abstracts, US 1

Documents Librarian, The Center for Research Libraries, US 1

Information Exchange Agreement Partners

Acquisitions Unit, Science Reference and Information Service, 1
UK
Library - Exchange Desk, National Institute of Standards and 1
Technology, US

SPARES

DSTO Salisbury Research Library 5

Total number of copies: 58

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

2. TITLE

Implementation of a Fast Algorithm for Segment-
ing SAR Imagery

4. AUTHORS

David J. Robinson, Nicholas J. Redding and
David J. Crisp

6a. DSTO NUMBER

DSTO-TR-1242
8. FILE NUMBER

B 9505-21-184

6b. AR NUMBER

012-076
9. TASK NUMBER

ARM 97/261

1. CAVEAT/PRIVACY MARKING

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)
5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory
PO Box 1500
Edinburgh, South Australia, Australia 5111
6c. TYPE OF REPORT

Technical Report
10. SPONSOR

DGAD
13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/corporate/
 reports/DSTO-TR-1242.pdf

7. DOCUMENT DATE

January, 2002
11. No OF PAGES

34
12. No OF REFS

11
14. RELEASE AUTHORITY

Chief, Surveillance Systems Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved For Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations
17. CITATION IN OTHER DOCUMENTS

No Limitations
18. DEFTEST DESCRIPTORS

synthetic aperture radar
image analysis
segmentation
19. ABSTRACT

This report gives a detailed presentation of the implementation of a new fast algorithm for image
segmentation. The original motivation for development of the algorithm was the segmentation of syn-
thetic aperture radar (SAR) imagery into homogeneous regions for target detection in the Analysts'
Detection Support System. However, the algorithm is a general one based upon Mumford-Shah func-
tionals, and there is no technical reason why it could not also be used for other imaging modalities,
including multiband imagery. The algorithm has computational complexity on the order of the Fast
Fourier Transform, the benchmark for fast algorithms.

Page classification: UNCLASSIFIED

m
O

>
r-
30
m
"0 o
30

O
</>
H
O
-4
30
I

IO

>
30
6
10
6
0)

>
30
-<
10 o o
IO

f DEPARTMENT OF D E F E N C E~| llQTfl

DEFENCE SCIENCE t TECHNOLOGY ORGANISATION I Utf I V

ELECTRONICS AND SURVEILLANCE RESEARCH LABORATORY
PO BOX 1500 EDINBURGH SOUTH AUSTRALIA, 5111
AUSTRALIA, TELEPHONE (08) 8259 5555

