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ABSTRACT 

This report gives a detailed presentation of the implementation of a new 
fast algorithm for image segmentation. The original motivation for develop- 
ment of the algorithm was the segmentation of synthetic aperture radar (SAR) 
imagery into homogeneous regions for target detection in the Analysts' Detec- 
tion Support System. However, the algorithm is a general one based upon 
Mumford-Shah functionals, and there is no technical reason why it could not 
also be used for other imaging modalities, including multiband imagery. The 
algorithm has computational complexity on the order of the Fast Fourier Trans- 
form, the benchmark for fast algorithms. 
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Implementation of a Fast Algorithm for Segmenting SAR 
Imagery 

EXECUTIVE SUMMARY 

This report gives a detailed presentation of the implementation of a new fast algorithm 
for image segmentation. The original motivation for development of the algorithm was 
the segmentation of synthetic aperture radar (SAR) imagery into homogeneous regions 
for target detection in the Analysts' Detection Support System (ADSS). The ADSS was 
originally developed as part of Aerial Surveillance for Land Operations, Joint Project 129. 
It was designed to help reduce the manpower cost of the Broad Area Aerial Surveillance 
component of the project where the manual detection of targets in stripmap SAR is labour 
intensive. 

The ADSS is divided into a number of modules, the first of which is called prescreening. 
The purpose of prescreening is to identify all the possible targets of interest in the SAR 
imagery with a high probability of detection. One method previously suggested to improve 
the performance of prescreening is to first segment the imagery into homogeneous regions 
using texture and then apply different prescreeners to each texture class. The rational 
is that each prescreener can be tuned (using prior training or otherwise) to give optimal 
performance on its texture class. 

Segmentation is typically computationally very expensive, and segmentation for pre- 
screening would require all the imagery collected from the SAR sensor to be segmented 
— a daunting task for standard algorithms. Consequently, a very fast segmentation al- 
gorithm called the full X-schedule was developed with prescreening in mind. The basic 
principles of this algorithm have been presented elsewhere. In this report we describe an 
implementation of the algorithm. We include full details of the data structures, procedures 
and functions used. 

The performance of our initial implementations did not reflect our theoretical esti- 
mates. However, as described in this report, significant recent enhancements of the data 
structures by the third author have over come this problem.. We believe that we now have 
the fastest possible implementation of the full A-schedule algorithm. Computational com- 
plexity calculations and numerical evidence, both presented in the report, show that the 
complexity is of order 0(n log2 n) where n is the number of image pixels. This complexity 
is the benchmark for fast algorithms. 

Future work will involve testing the utility of the algorithm for target detection and 
extending the class of image models it uses. The initial steps in both these directions have 
already been taken. The algorithm has been incorporated into the ADSS software suite 
and once the coding of the entire suite has been completed and suitable data is available 
we will be able to test its target detection utility. On the second point, the algorithm 
described here only allows piecewise constant image models. This means some of the more 
subtle features of the SAR imagery cannot be exploited. However, progress has since been 
made on expanding the class of applicable image models to include piecewise polynomial 
models.   It is anticipated that implementing these models will only involve a few local 

in 
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changes to the segmentation code and that these changes will not effect the computational 
complexity of the algorithm. 
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1    Introduction 

The Analysts' Detection Support System (ADSS) is a suite of target detection algo- 
rithms designed to reduce analysts' workload in Broad Area Aerial Surveillance (BAAS) 
using synthetic aperture radar imagery (SAR) [7]. The ADSS is divided into a number 
of modules, the first of which is called prescreening. The purpose of prescreening is to 
identify all the possible targets of interest in the SAR imagery with a high probability 
of detection (PD). The performance of a number of different algorithms employed in the 
prescreening role has been reported elsewhere [9]. In this performance analysis, all regions 
of the imagery were treated uniformly, irrespective of the differing characteristics that they 
can exhibit. One method suggested in [9] to improve the performance of prescreening is 
to segment the imagery into homogeneous regions using texture prior to prescreening and 
apply different prescreeners to each texture class. The rational is that each prescreener 
can be tuned (using prior training or otherwise adjusting its parameters) to give optimal 
performance on its texture class. 

Segmentation is typically computationally very expensive, and segmentation for pre- 
screening would require all the imagery collected from the SAR sensor to be segmented 
— a daunting task for standard algorithms. Consequently, a very fast segmentation al- 
gorithm called the full X-schedule was developed with prescreening in mind. The basic 
principles of this algorithm have been presented in [8]. 

This report outlines what we believe to be the fastest possible implementation of the 
full A-schedule algorithm. Earlier implementations of the algorithm have been produced 
[11], however their performance did not reflect initial estimates presented in [8]. Significant 
recent enhancements of the data structures by the third author have been included. 

In the next section, an overview of the full A-schedule algorithm is presented based 
upon [8]. Sections 3 and 4 present a detailed overview of the data structures, and the 
major procedures and functions, respectively, used to implement the algorithm. Section 6 
presents the data and procedures required to reconstruct the segmentation at any stage. 

2    Overview of the Algorithm 

2.1    Philosophy 

In [8] it is argued that a segmentation is a compressed description of the image, and 
that an unavoidable consequence of a compressed description is the introduction of some 
error. A good segmentation is therefore one which has a very efficient description given the 
associated error. One should consequently view segmentation as a compromise between 
the shape or character of a boundary and the fitting error in the region enclosed by the 
boundary. 

The compromise between fitting error and shape can be presented in a rigorous math- 
ematical framework [5] by expressing the segmentation problem with variational methods 
using the Mumford-Shah functionals [6]. These functional were shown to provide a unify- 
ing framework for image segmentation. The variational framework addresses the dilemma 
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between shape and error by means of a parameter A which expresses the trade-off between 
fitting error in a region against the region's boundary length. Koepfler et al. [4] call A the 
"scale" parameter, but it does not parameterize the length characteristic of each region so 
instead we will call it the regularisation parameter because of the way it determines the 
balance between error of fit to a region and its boundary length. 

The simplified form of the Mumford-Shah functionals expresses the segmentation prob- 
lem as one of minimizing 

E{u,K)=f     \\u-g\\2dxdy + \t(K) (1) 
JU\K 

where Q is the domain of the image, K is a set of segmentation boundaries with total 
length £{K), g is a scalar or vector-valued function of the channels of the image on the 
domain 0,, u is a piece-wise constant approximating scalar or vector-valued function for 
the image which is constant over each region, and A is the regularisation parameter. If 
A is small, then a lot of boundaries are allowed and a "fine" segmentation results. As A 
increases, coarser and coarser segmentations result. 

The functional can be used to segment an image into its component textures by first 
extracting several different texture features from the original image. In this case, the 
channels of g are the distinct texture features and the term \\u - g\\ in (1) is defined in 
terms of a suitable vector space norm ||-||, see [4] for more details. Note however, that there 
is only one segmentation boundary and it is fitted to all image channels simultaneously. 
Of course, the functional can also be used to segment on the basis of grey-scale values 
alone. In this case, g is single channel and the term ||u - g\\ is just the absolute value of 
u — g and so \\u — d\\2 = (u — g)2. 

The first term of (1) can be interpreted as error in the segmentation, and the second 
as the length of description of the segmentation. Moreover, minimizing (1) over a range 
of A is equivalent to solving the following constrained optimization over a range of e: 

min 0.{K)    subject to     /      \\u - g\\2dxdy ^ e. (2) 
K JU\K 

In other words, for each e we find the segmentation with the shortest description that 
has an error of at most c. Thus minimizing the Mumford-Shah functional is equivalent 
to finding the segmentation with shortest description for a given error (or vice-versa if we 
rewrite (2)) and any segmentation found by these means involves implicitly or explicitly 
a choice of the appropriate trade-off (i.e. coarseness). 

2.2    Mumford-Shah Functionals 

The Mumford-Shah functionals have been shown to provide a unifying framework for 
image segmentation [5, 4]. The method does not depend on any a priori knowledge of the 
statistics of the image and has the properties of compactness of the set of approximate 
solutions (which indicates that the solution set will be small), convergence of minimizing 
sequences of solutions, and smoothness of the locally optimal solutions. Koepfler et al. 
[4] use a special case of the Mumford-Shah functionals as defined in (1). For a piece-wise 
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constant approximating function, u is simply the mean value of g in the corresponding 
segment. (The mean is taken component-wise in the case where u and g are vector valued.) 
As a result, u is uniquely defined in the piece-wise constant case given the boundary K 
and E(u, K) can be written as E(K). 

In order to use (1) for segmenting digital images it needs to be discretised. To do so, 
we now take Q to be a set of pixels indexed by a single discrete variable i = 1,..., n. The 
image g and its model u are then defined by their values g(i) and u(i) at each pixel. A 
segmentation region is a connected sub-set of ti and a segmentation K is a partition of ti 
into regions. The boundary of K is the set of pixel edges which separate the regions and 
its length £(K) is the number of edges in the set. With this notation, the functional (1) 
becomes 

n 

E(u,K) = J2\W(i)-9(i)\\2 + M(K). (3) 
i=l 

As just discussed, or fixed K, E(u, K) is minimised when u is the average of g on each 
region. Hence we can assume u is given by 

ttW = iö[E^) (4) 

where O is the region of K containing the pixel k and |0| is its area. 

Koepfler et al. show that minimizing the functional in (3) (to a local minimum) can 
be achieved using region growing. Let 0{ denote the region or segment i of the image, let 
U{ be the average value of g on 0{ and let d(Oi,Oj) denote the common boundary of O; 
and Oj, which is contained in K. Then the merging criterion is that 

E(K\diOitOj)) - E{K) =    '^j.|K - M2 - HWOuO,)) (5) 
\ui\ ~f~ \uj\ 

be negative, where | • | denotes the area of a region. The complete Koepfler et al. algorithm 
for segmentation is as follows. 

Algorithm 1 

1. Take the pixels of the image as the initial trivial segmentation (u0, K0) and A, = Ax 

as the initial regularisation parameter. 

2. For each region, determine which of its adjacent regions yield the maximal energy 
decrease according to (5). If such a neighbouring region exists, merge the two and 
proceed to check the next region in the list. Continue merging until no further 
decrease in the energy functional is possible. 

3. For every Aj, i = 1,... , L calculate a segmentation by iterating step 2 above. The 
algorithm stops if there is just one region left or after computing a segmentation 
using \L. 
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There are two problems we are faced with for practical application of this algorithm. 
The first is selection of the A; values. If they are too few or far apart then the result will 
be a poor segmentation. Too many will be a computational burden. The second is that 
the order in which the regions are visited in step 2 is not specified. This lack of specific 
ordering makes the algorithm fast (since no searching is done for the "best" ordering) but 
it also means that the results will vary depending on how the list of regions is organised. 
These problems are addressed in the next section. 

2.3    Full A-Schedule Segmentation 

The Koepfler et al. algorithm presented above as Algorithm 1 requires that a list of 
A, values be selected prior to running of the algorithm. This list of values is called the A 
schedule by analogy with the temperature schedule of simulated annealing. These values 
determine the quality of the final segmentation, and must normally be undertaken using 
trial and error. An improved version of the algorithm which overcomes this problem was 
presented by us in [8]. It is called the full X-schedule and does not require a priori selection 
of the A schedule. In essence our improvement is to consider every possible (significant) 
value of Aj in the A schedule so as to achieve the best possible segmentation. However, 
this is done using efficient sorting algorithms and data structures so that the resulting 
algorithm is fast and has known computation complexity. 

Prom (5), the decision to merge Oj and Oj occurs when A ^ Uj where tjj is given by 

\°mL\\ui-u<\\* 
l[d{OuOj)) 

Uj = m&rL™. (6) 

In Algorithm 1, the regions are merged by scanning arbitrarily through the list of regions 
and selecting the best possible merge from the neighbours of each region at the current 
value of A. In contrast, for the full A-schedule algorithm we consider all pairs of neigh- 
bouring regions in the image and choose the best possible pair (those having the smallest 
value of tij from (6)) to merge. The algorithm in simplified form is as follows. 

Algorithm 2 

1. Take the pixels of the image as the initial trivial segmentation. 

2. Of all the neighbouring pairs of regions, find the pair (Oj, Oj) that has the smallest 
tij from (6). 

3. Merge the regions Oj and Oj to form Ojj. 

4. Repeat the previous two steps until there is only one region, or t{j > Astop for all 
pairs of neighbouring regions (Oj, Oj). 

Clearly this algorithm removes the need to select a A-schedule a priori but what makes 
it really useful is that we can implement the strategy efficiently. The first step required 
is to compute all the possible pairs of neighbouring regions and sort them into a list with 



DSTO-TR-1242 

ascending values oft from (6). The segmentation algorithm is then a process of merging 
the two regions at the top of the list, say Oi and Oj, into a new region O^ and then 
updating the list. The first update step is to determine the neighbours Ok of O^ from the 
union of those of Oi and Oj. We must then delete from the list of t values all those that 
involve regions Oi or Oj. We then insert into the list at the appropriate points the tij,k 

values that are computed from the new region Oij paired with its neighbours Ok- The 
algorithm then repeats by merging the new top most pair of regions in the list. 

Whilst Algorithm 2 is conceptually very simple, the update process just described 
is complicated and a fast implementation requires complex use of variable length list 
structures. These details are covered in the following sections. 

2.3.1    Statement of Algorithm 

In this section we provide a complete description of our fast implementation of Algo- 
rithm 2. The implementation is summarised in the statement of Algorithm 3 below. First 
however, we need to describe the data structures it relies on. The following typographic 
conventions will be used. We will distinguish between the mathematical entities of the 
algorithm and the programming constructs used to implement them using different type 
faces. A calligraphic font is used to designate ordered sets (lists) and their elements, and 
a courier font is used exclusively for programming constructs. For instance, the set of 
all segmentation regions <S is implemented using the programming construct S. We will 
assume that the domain of the image ti is rectangular and contains m x n pixels. 

The algorithm operates on two primary lists, with a number of supporting list struc- 
tures. The first primary list, S, called the region set, keeps track of the regions and the 
second, A, called the pair set, keeps track of neighbouring pairs of regions that have a 
common boundary. We discuss the region set first. 

The region set S = {Si : i = 0,... ,Lr - 1} is an ordered list of elements Si = 
(Ii,ai,Ui,->Mi) where U denotes the label of the i-th region, a* denotes its area (so a, = 
|Oi|), Uj denotes its grey scale vector and finally ->/v. denotes a pointer x to its neighbour 
pair list, to be defined shortly. A subscript r indicates a quantity at iteration r of the 
algorithm (after r region merges have occurred) and so Lr denotes the number of regions 
in the domain Cl of the image. For the sake of programming efficiency, S implements S 
as a static array defined to have the maximum required length L0 = mn. The maximum 
length occurs at the initialisation of the algorithm when the segmentation is the trivial 
one in which each pixel in ft is a separate region. As the algorithm proceeds, more and 
more entries become redundant as regions are merged, but we are deliberately trading 
the minimal additional memory requirements against a significant gain in computational 
complexity so we are willing to accept this waste. (The principle of increasing memory 
usage to obtain greater time performance is fundamental to our development.) Because of 
the static nature of the S array, we are able to use the convention that the label Jj of the 
i-th. region is simply the index i, the offset of the region's first pixel in the (row-ordered) 
image. Consequently, we drop the U notation for the label of the i-th region and simply 

The pointer is used in the programming construct S for the region set S and it is not necessary to refer 
to it directly in the algorithm description to follow. This is because we are able to refer mathematically to 
the i-th neighbour pair list directly, but when we implement it we use a pointer in each region set element. 
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refer to it by its index i.   This detail will become clearer in the next section where we 
discuss implementation details. 

The pair set A = {At : i = 0,... ,ar - 1} is an ordered list of elements Ai = 
{p,<l,Sp,q,tp,q,bp,q) which are tuples of p and q, the indices (i.e., labels) of the two neigh- 
bouring regions that form the pair, sPi9, the weighted intensity difference between the two 
regions defined by 

\oP\\oq 
\Un tic 

|2 

°™-\op\+\oqr
p "9i 

the merge cost tp,q for the two regions defined by 

tp,q — 
S P,9 

i(d(op,oq)y 

and finally bp<q — l(d(Op,Oq)), the common boundary length between the two regions. 
Again for the sake of programming efficiency, the pair set A is implemented as a static 
array A of the maximum required length ao = 2mn - m - n that occurs in the trivial 
segmentation at initialisation. As segmentation proceeds, more and more of the elements 
of A are not utilised, as pairs are removed through their merging. It is never necessary to 
scan through the list A after initialisation occurs, so it is not necessary to record separately 
which entries do and do not contain valid information (this is also true for the construct 
for the region set S). This has the additional benefit that the index and location of Ai 
between regions p and q will not change at all during execution of the algorithm, up until 
the point at which the two regions have been merged. (And of course this is also true for 
regions in the region set construct S.) 

The next data structure we discuss is the key to the functioning of the algorithm be- 
cause it determines the order in which the regions are merged to ensure that the best merge 
occurs at each step. This structure, the merge candidate list £ = {£i : i = 0,... ,jr — 1} 
is an ordered list of elements £j = (<*, Pi) which are tuples of U, the merge cost of the pair 
of regions with pair index Pj. Here yr denotes the length of the merge candidate list at 
iteration r. Note that the elements £{ are arranged in order of increasing U. In order to 
be able to retrieve elements from £ for updating we need to deal with tied merge costs 
rigorously. We do this by using the secondary key of the associated pair index to sort 
tied merge costs. Specifically, if tt = tj then we define (U,Pi) < (tj,Pj) if Pi < Pj and 
(thPi) >(tj,Pj) if Pi >Pj. 

An enhancement to the algorithm, which we will discuss later, means that it is not 
necessary to include every pair in the merge candidate list because a simple local test 
can show that most pairs do not satisfy a necessary condition for them to be the current 
optimal merger. For this reason, 7r the length of £ at iteration r will be less than ar, 
the number of pairs. In fact, 7r ^ \Lr, the number of regions. This enhancement makes 
understanding the algorithm considerably more difficult, so we postpone it until we have 
presented the algorithm's fundamentals and in the mean time we assume -yr = ar- 

The final type of data structure, one for each region, is an ordered list used to speed 
access to the relevant elements of the region and pair sets. These lists, called the neigh- 
bouring pair (NP) lists, contain an ordered list of the indices of a region's neighbouring 
regions and the pairs they form. Let Mi = {Ntj : j = 0,... ,ßi<r - 1} denote the NP list 
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for region i, where ß^r denotes the number of neighbouring regions of region i at iteration 
r. Then the element A/y = (j, Pj) is a tuple of the region index j of a neighbour and the 
pair index Pj of the pair they form. The elements are arranged in ascending order of the 
region indices. 

All the information necessary to compute the full A-schedule (in particular (6)) is 
then stored in the above lists and it is not necessary to refer to the pixels in the image 
after the initialization phase (except when the segmentation is complete). Implementing 
Algorithm 2 then is a process of maintaining the two principal list structures in the most 
efficient manner possible. As part of this process, when two regions, say Op and Oq, are 
merged, we assign the smaller region label, say p, to the new region Opq and allow the 
label q to become redundant. In terms of our data structures, this means we replace the 
data in Sp for region Op with the data for the new region Opq and the data in Sq becomes 
redundant. Following such a merge, the remaining entries in the region set S and the 
corresponding entries in pair set A which are effected by the merge and this relabelling 
must then be updated accordingly. We have summarized the mechanical steps required to 
do this in Algorithm 3 below. 

Against each step of the algorithm we have also recorded its computational complexity 
(unless it is 0(1)). Note that the dynamic lists £,Ni are implemented as binary trees, 
which have computational complexity ö(log2Z) to search, insert, and delete elements, 
where / is their length. Also, while the true lengths, 7,., ö{ßp,r), etc. of these lists 
will vary as step r + 1 of the algorithm is being executed we simplify the computational 
complexity calculations by taking them to be fixed at their maximum values for the step. 
We will discuss the computational complexity of the algorithm as a whole in the next 
section. 

Algorithm 3 

1. Initialization.   The algorithm begins with the trivial segmentation KQ in which 
each pixel is a separate region. The data structures are initialised as follows: 

(a) Set r = 0. 

(b) Initialise S and A. ö(mn) 

(c) Initialise £, which includes sorting £ so that the merge costs t are in ascending 
order (the length of £ is 70 ^ a0 = 2mn -m-n). 0(mn log2 mn) 

(d) For each region i, i = 0,... ,mn - 1, initialise A/i, its NP list. Initially, each 
region will have at most four neighbours. ö(mn) 

2. Region Merging. Form the segmentation Kr by merging the pair corresponding 
to the first entry, £0 = (t0,P0) in the merge candidate list £ as follows: 

(a) Set r = r + 1. 

(b) Determine £0 = (t0,PQ) from £. 0(log27r) 

(c) Determine the two region indices p and q from Ap0. 

(d) Determine ap, up and ag,uq from Sp and Sq, respectively. 
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(e) Set apq = ap + aq, and upq = {apup + aq\ipq)/apq and store these new values in 
ap,up of Sp (the new region Opq is replacing the old region Op). 

(f) Remove Mp,q = (q, Pq) from region p's NP list. C(log2 /?p>r) 

(g) Remove Afq<p = {p,Pp) from region q's NP list. 0(log2ßq,r) 

(h) For each neighbour entry A/p,n = (n, Pn), n — 0,... , /3p,r - 2, in region p's NP 
list A/p, do: 0(ßp,r) x ... 

i. Set £p,„ equal to the merge cost t specified in the pair set element Apn. 

ii. Use the merge cost tp,n and the pair index Pn as search keys to find the 
pair (tp,n, Pn) in the merge candidate list £ and remove it. 0(log27r) 

iii. Set the weighted intensity difference spn of the pair set element Apn equal 
tosPn = ££t\\upq-unf. 

J-pq +a„HuP9 

(i) For each neighbour entry Afq<n = (n, Pn), n = 0,... ,ßq,r - 2, in region g's NP 
list Mq, do ' 0(ßq,r) x ... 

i. Set tq^n equal to the merge cost t specified in the pair set element Apn. 

ii. Use the merge cost tq<n and the pair index Pn as search keys to find the 
pair (tqin, Pn) in the merge candidate list £ and remove it. 0(\og2 7r) 

iii. Check whether or not the region with index n already exists in region p's 
NPlistA/p C>(log2/3p,r) 
If not then 

A. Insert a new entry Mp>n — (n, Pn) into Afp. ö(log2 ßp,r) 
B. Change whichever of the two region indices ppn and qpn from Apn = 

{pPniQPn^PnitPn'bpn) that is equal to q to be equal to p instead. If 
necessary, swap the labels ppn and qpn in Apn to ensure that ppn < qpn. 

C. Set the weighted intensity difference spn of the pair set element Apn 

equal to SPn = ^_||Upg - u„||2. 

D. Remove the old entry J\fn>q from J\fn and insert the new entry Afn,p — 
(p,Pn). ' ö(log2^n,r) 

else 

A. Increment bpn from Apn by bpq from Apq. 

B. Remove the old entry Afn<q from Afn. ö(log2 ßn,r) 

(j) For each entry A/p,„ = (n, Pn) of Mp do                                        ö(ßPtr+i) x ... 

i. Set iPn = ^ in^Pn. 

ii. Insert the element £j = (ipn, Pn) into £ at the appropriate point. (9(log2 7r) 

3. Loop. Repeat step 2 until only one region is left or to > Astop, where £o = {to,Po) 
is the first entry in £. ö(mn) x ... 

2.3.2    Computational Complexity 

In determining the computational complexity of the above algorithm, the first detail 
to note is that for an image ofmxn pixels, there are LQ = mn regions in the initial trivial 
segmentation, corresponding to ao = Imn — m-n pairs of neighbouring regions. Secondly, 
because each step of the algorithm reduces the number of regions by one, the algorithm 
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will run for a maximum of mn — 1 steps. Consequently the computational complexity of 
the algorithm is going to be either the initialisation cost of ö(mnlog2mn), or mn — 1 
times the cost of the most complex operations in Step 2. 

The deepest loops in step 2 have a computational cost of ö(log27r), ö(log2ßp,r), 
and 0(log2ßn,r), and these steps are repeated either ßp,r or ßq,r times. Thus adding all 
contributions of all sub-steps (and ignoring repeated terms) we have a complexity of 

0(log2 7r + log2 ßptV + log2 ßq>r + ßp,r log2 7r + /V(log2 7r + log2 ßp,r + log2 ßq,r) + ßp,r+\) 

for Step 2. Obviously we can simplify this by using an upper bound on the number of 
neighbours a region can have. Let us denote the maximum number of neighbouring regions 
by ßmax so that ßitr < ßmax for all regions i. We can now re-write the computational 
complexity as 

0(ßmax log2 Jr + ßmax log2 ßmax). (7) 

An upper bound on /3max is ßmax ^ Lr < mn since Lr is the number of regions at 
iteration r. However, it seems possible that we can do better. Our algorithm produces 
a 2-normal segmentation at every step (the segmentation at each step is a minimum of 
(1) for the current A value). Consequently each segmentation obeys the isoperimetric and 
inverse isoperimetric inequalities [4]. It follows that there may be an upper bound which 
is independent of the size of image and the algorithm step number. Unfortunately, we 
have not been able to find such an upper bound. 

Using the upper bound /3max < Lr, it follows from (7) that the complexity of Step 2 is 
no worse than 

0(Lr log2 7r + Lr log2 Lr). 

The complexity of the Step 3 is simply the addition of contributions from Step 2 and so 
the complexity of Step 2 and Step 3 combined is no worse than 

mn-l 

]P 0(Lr log2 7r + Lr log2 Lr) - 0{{mnf log2 mn) (8) 
r=l 

where we have used the facts that jr < 2mn — m-n — r (since at least one pair of regions 
is removed at each step of the algorithm) and Lr = mn — r to derive the last equality. 
Clearly, this last estimate is an upper bound on the complexity of the algorithm as a whole 
since the initialisation step has complexity C(mnlog2mn). 

If on the other hand /?max is independent of the size of the image, it can be treated 
as a constant and (7) simplifies to (9(log27r) which means the complexity of Step 2 and 
Step 3 combined becomes 

77171 — 1 

J2 °(loS2 7r) = 0{mnlog2 mn). (9) 
r=l 

Again, this is the total complexity of the algorithm since the initialisation is no worse. 

Empirical evidence of the computational complexity of Algorithm 3 is shown in Fig- 
ure 1. These results are indicative only since computation times will vary depending on 
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Figure 1: Typical computation times for Algorithm 3 on stripmap SAR images. 

the nature of the imagery being segmented. The particular imagery used to produce the 
figure was provided by the Surveillance Systems Division (SSD) of DSTO. It was formed 
by a synthetic aperture radar (SAR) operating in stripmap mode and the area being im- 
aged was farmland near Saddleworth, South Australia. The figure also shows a plot of 
ö{mn\og2mn). We added this plot in order to get some insight into which of the com- 
plexity bounds, (8) or (9), is applicable. Note that, the figures axes are logarithmic and 
the plot of 0(mn log2 mn) is effectively a straight line of slope 1. We would likewise expect 
a plot of 0({mn)2\og2mn) to be effectively a straight line but with slope 2. Clearly the 
experimental data for Algorithm 3 lies along a straight line. While the slope of this line 
is larger than 1, it is still much closer to 1 than to 2. It follows (in this case at least) that 
complexity of Algorithm 3 is closer to (8) than (9). 

3    Data Structures 

Achieving a fast implementation of the full A-schedule algorithm requires efficient data 
structures. We now present in detail the programming constructs for these data structures 
that are as efficient as we think is likely to be possible. The data structures and proce- 
dures reported here represent the culmination of analysing and rewriting three previous 
implementations [8, 11, 10], so we do not make our claim lightly. 

10 
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3.1    Regions 

A region is 4-connected group of pixels designated as a single entity because it has a 
homogeneous characteristic. As the segmentation algorithm progresses, the regions will 
decrease in number and increase in size, i.e. the algorithm merges regions with the same 
character as it goes along. The algorithm is initiated on the trivial segmentation where 
every pixel is considered a separate region. Each region is identified by a unique region 
identifier, or label. Initially in the trivial segmentation of the image, this label corresponds 
to the pixel's offset within the original image when the image pixels are stored in row 
order. For example, a trivial segmentation of a 3 x 4 image would be labelled as shown in 
table 1. 

column 
0    12      3 

0 0    12      3 
row 1 4    5     6      7 

2 8    9    10    11 

Table 1: Region labels for an example 3x4 image after the initial trivial segmentation of 
the image. 

The single most important reason why the full A-schedule algorithm can be made 
computationally efficient is that during the merging process it is not necessary to refer to 
the actual pixels that make up the region, just some summary statistics of each region. For 
each region, only its area (number of pixels), (array of) average value(s), and the labels 
of its neighbouring regions, are required. Note that an array of average values may be 
employed, rather than a single value to accommodate multi-band images or texture feature 
values at every pixel location. The neighbouring regions are recorded in a neighbouring 
pair (NP) list (section 3.3). The data structure used to implement a region within the full 
A-schedule algorithm is expressed below in the C programming language. 

typedef struct _tRegion 

{ 
double *gval; 

np_rbTree npList; 

int        label; 
int        area; 

} tRegion; 

/* array greyscale values for the layers in 
the region */ 

/* neighbouring pair list - a list of 
labels to regions which have a common boundary 
with the current region and the index of the 
pairs made between the current region and these 
neighbours */ 

/* unique region identifier */ 
/* area covered by region (in pixels)  */ 

11 



DSTO-TR-1242 

o-- 
3~4- 

7—8- 

9 
I 

10 
I 

11 
I 

12 
l 

1 

I 

1 

I 

1 

I 

1 

I 
1 

13 
1 

14 
1 

15 
1 

16 

(a) Horizontal (b) Vertical 

Figure 2: Labelling of the (a) horizontal, and (b) vertical pairs for the trivial segmentation 
of the example 3x4 image. 

3.2    Pairs 

A pair is defined to be two neighbouring regions with a common boundary of vertical 
or horizontal components, i.e. the 4-connected boundary. Each pair is uniquely identified 
within the algorithm by the labels of its two instigating regions. Three parameters are 
also stored with each region pair: the common boundary length, the merge cost t (6), and 
the weighted intensity difference (the numerator of (6)). The common boundary length is 
the Hotelling distance along the boundary between the two regions in units of pixel width. 
The weighted intensity difference is stored in addition to the first two parameters even 
though it is simply the product of the two to save on computation, because all three are 
required. The structure used to represent a pair within the code is shown below. 

typedef struct _tPair 

{ 
double t; 
double s: 

int      r[2]; 

int      boundary_length; 

} tPair; 

/* merging cost  (t_ij)  of the pair */ 
/* value of weighted intensity difference which 

remains constant under changes in the common 
boundary length between the regions */ 

/* the indices to the paired regions in 
the region set */ 

/* length of boundary between the paired 
regions */ 

The pairs are indexed during initialisation of the trivial segmentation; the horizontal 
pairs are indexed first, then the vertical pairs. The indices are incremented in the same 
left to right raster scan process used to label the regions. Using the example 3x4 test 
image in table 1, the resulting pair indices in the trivial segmentation for both horizontal 
and vertical pairings is shown in figure 2. 

3.3    Neighbouring Pair List 

When a pair of regions are merged to form a single region, the pair set values for any 
other pair which included either of the two merged regions will change. The neighbouring 

12 
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pair (NP) list provides a fast and efficient mechanism to identify which pairs are effected 
by the changes. 

Each region has an associated NP list. These lists contain the labels of all the regions 
that are contiguous with a particular region, and the index of the pair formed between 
them. Hence, stored within each node of an NP list is the label of the neighbouring region 
rind, and the pair index plnd, as shown below. 

typedef struct _np_rbNode 

{ 
int rind; /* neighbouring region label */ 
int plnd; /* index of pair formed between the current 

and neighbouring region */ 
struct _np_rbNode *left; /* pointer to left node (less than) */ 
struct _np_rbNode »right; /* pointer to right node (greater than) */ 
struct _np_rbNode *up; /* pointer to parent node (up) */ 
unsigned char    red; /* current node colour */ 

} np.rbNode; 

The other parameters in the structure are used to implement the list efficiently as a red- 
black tree (Section 3.8). 

After two regions are merged, the NP lists of the two parent regions are used to 
efficiently update pairs formed with neighbouring regions that are effected by the change. 
The NP lists of the two merged regions must also be merged to form the NP list of the 
newly formed region. Multiple entries due to a region being a common neighbour to both 
parent regions must be eliminated from the NP list of the new region. The elements of 
the NP lists are maintained in order of neighbouring region label to assist in eliminating 
duplicates. 

As an example, consider the 3x4 image from section 3.1, table 1. Assuming the 
contents of each node in the NP list can be written in the form 

region Jabel (pair index) 

the NP list for region 6 would be 

NPJist6 = 2(11) -»• 5(4) -»■ 7(5) -»• 10(15). 

3.4    Region Set 

The region set is an array of region records. The length of the array is not updated 
dynamically, but remains the same throughout the execution of the program. Its length 
is determined by the number of regions in the trivial segmentation of the image. Because 
each pixel is defined as a region in the trivial segmentation, the number of regions and 
hence the length of the region set will be m x n for an image of m rows and n columns. As 
regions are merged, entries within the region set become invalid because the larger region 

13 
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label out of any pair of merged regions no longer refers to an extant region. Consequently, 
the data recorded in the invalid entry will not be further accessed by the algorithm. 

For example, assume that regions p and q merge to form region pq. All the relative 
data associated with region pq is updated and recorded in region p's entry within the 
region set. The new region pq will be know as region p within the algorithm from this 
point. However, region q's entry will no longer be referenced during the algorithm, and 
the entry will not be used. Hence as the algorithm progresses, more entries within the 
region set will become invalid. This method of processing was chosen because the cost of 
updating dynamic data structures is very high computationally for little significant benefit 
in terms of memory usage. 

For the initial trivial segmentation of an image, each entry in the region set represents 
an individual pixel within the image. The entries each have a label which corresponds to 
the offset of the pixel within the image when stored in row order, an area of 1 (pixel), 
and a greyscale array corresponding to the pixel's value in each layer of the image being 
processed. The NP list is computed for each region during the initialisation of the region 
set. 

Expanding on our example 3x4 image in table 1, we shall assume the image has 
two greyscale layers. The resultant region set after the initialisation using the trivial 
segmentation of the two layer image can be represented diagramatically in figure 3, where 
the greyscale values for each layers are also shown. 

3.5    Pair Set 

As with the region set (section 3.4), the pair set is a static length array of pair records, 
where the initial length of the array is determined by the number of pairs in the initial 
trivial segmentation of the image in question. For an image of m rows and n columns, the 
initial number of pairs, and hence the length of the pair set, is 2mn — m-n. This assumes 
that regions can only be paired through horizontal and vertical boundaries as stated in 
section 3.2. As the maximum number of pairs is known, a static implementation can be 
used without the risk of data overflows. 

Each pair existing in the current segmentation Kr, is identified by a unique pair index, 
which is used to retrieve the relevant pair details from the pair set. For example, if the 
NP list of region p contains a node with the region label nR and pair index nP, then entry 
nP in the pair set array will contain the pair data for this pair. 

The pair set array is static because as pairs are merged, the contents of the pair entry 
are not removed. Instead, as seen with the region set, they are ignored for the remainder 
of the algorithm, because the pair no longer exists in current and succeeding states of the 
segmentation. 

3.6    Merge Candidate List 

Before a merge can occur, the pair with the smallest merge cost t must be identified. 
These values are stored within the pair records of the pair set, but the pair set is not 

14 
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Figure 3: Structural representation of the region set for the example 3x4 2 greyscale layer 
image in table 1 after the trivial segmentation. 
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sorted in any order. Consequently, to identify the pair to merge in simple terms, we must 
search the entire pair set to 

1. Identify pairs which still exist in segmentation Kr, and 

2. Prom these existing pairs, identify the pair with the lowest tij value. 

As the pair set is not dynamic, it make little sense to sort the values stored within the 
array, especially when we only require the merging suitability parameter, tij, to be sorted. 
Consequently we create a list of indices into the pair set that are ordered by Uj value called 
the merge candidate list to implement the two steps above. 

Sorting the pairs is performed using the t values for each region pair as the primary 
key, with identical values then being sorted using the pair index as the secondary key. 
Each node in the merge candidate list is of the form shown below, where t and index are 
the programming constructs for t value and pair index respectively. Note that the other 
elements in the node are used to implement the red-black tree data structure (Section 3.8). 

typedef struct rbNode 

{ 
double t; 
int index; 

struct rbNode_ »left; 

struct rbNode_ ♦right; 
struct rbNode_ *up; 

unsigned char red; 

e_rbNode; 

/* merge cost of pair */ 
/* index pair entry within pair set */ 
/* pointer to the left node  (less than)  */ 
/* pointer to the right node  (greater than)  */ 
/* pointer to the parent node  (up)  */ 
/* colour of link to the current node */ 

The merge candidate list updates its contents dynamically during the course of the 
algorithm. As a pair is merged, that pair is removed from the merge candidate list. 
Similarly, pairs formed from neighbours of the merged regions are also removed. A new 
entry is created for the merged region to ensure the data in the list is in its correct order. 

3.7    Merge List 

The merge list records the indices of the merged regions and their associated merge cost 
t, and the greyscale values of each level of the newly formed region. This record gives the 
ability to recreate the image at any segmentation Kr without having to re-run the entire 
segmentation algorithm. A large proportion of the processing time of the segmentation 
algorithm is required to maintain the merge candidate list and the neighbouring pair lists 
of the remaining regions. By eliminating the maintenance on these data structures, the 
resultant image can be quickly recreated. The list is called the merge list. The data 
structure used in the code body to record these values is shown below. 

typedef struct _tMergeNode 

{ 
double lambda; /* minimum merging cost for current iteration */ 
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double *gval;        /* array greyscale values for the image layers 
in the newly formed region */ 

int plabel;    /* label of first region in the merged pair */ 
•    int qlabel;    /* label of second region in the merged pair */ 
} tMergeNode; 

The merging process is performed from the trivial segmentation ofmxn regions to 
the final segmentation of at least one remaining region. Hence (2mn - m - n) merges are 
performed at most over the duration of the program. As the total length of the list is 
known prior to the execution of the algorithm, we can simply implement the merge list as 
an array of merge nodes defined in the listing above. 

3.8    Balanced Trees 

The complexity of searching, inserting and deleting elements in a binary tree is O(h), 
where h is the effective height of the binary tree in question. For binary trees built through 
random data sets, the height of the resultant tree is 0(log2 AT), where N is the number 
of entries within the tree. (With random data, entries are evenly divided or balanced 
on either side of any branching point. A balanced tree is defined to be one in which 
the height of left subtree at every node never differs by more than ±1 from the height 
of its right subtree [3], p. 459.) Hence the computational complexity of operations on a 
binary tree is 0(log2 N). However, if the data is not random, the worst case complexity 
of O(N) can occur, and the tree structure is termed unbalanced. Careful performance 
testing revealed that this was indeed occurring in a previous (suboptimal) implementation 
of the full A-schedule segmentation algorithm [11]. Consequently unbalanced trees were 
one important reason why this previous implementation did not achieve the theoretical 
performance expected. 

Red-black trees are a form of binary search tree that constrain the way the tree is 
constructed so that the tree is approximately balanced [3, 2]. There are many other 
alternatives, but red-black trees seem to be one of the more common choices, with com- 
prehensive descriptions available [2]. An in-depth study into their efficiency for sorting, 
insertion and deletion indicated that they performed satisfactorily for our purposes. Con- 
sequently, in an attempt to achieve the 0(mnlog2mn) complexity of sorting the list of 
pairs, the binary tree structures used in the previous implementation were replaced by 
red-black trees. 

A red-black tree employs an extra bit of storage per node called its colour, which is 
either red or black. During insertion and deletion, constraints are placed on the way in 
which the nodes can be coloured on any path from the root to a leaf, to ensure that no path 
is more than twice as long as any other. Consequently, the resulting tree is approximately 
balanced. 

A red-black tree has the following properties [2]: 

• Every node is either red or black. 

• Every leaf (end node) is black. 
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• If a node is red, then both its children are black. 

• Every simple path from a node to a descendant leaf contain the same number of 
black nodes. 

Due to the tree's approximate balanced nature, the complexity of the search, mini- 
mum, addition and remove operations are 0(log2 N). This complexity meets the desired 
computation goal for the sorting process required by the full A-schedule algorithm. 

4    Procedures and Functions 

Using the data structures described in the previous section, the steps involved in each 
merge of the full A-schedule algorithm fall into the following four stages. 

1. Identify the pair with minimum t to merge during the current iteration. 

2. Update the merged region's parameters. 

3. Update the neighbouring pair lists for the new region and its neighbours. 

4. Update the merge candidate list. 

This four stage process is guided by the manner in which the data structures interact in 
the algorithm (figure 4) and follows the concise description in Algorithm 3. Let us now 
consider these steps in more explanatory detail to show how the steps of Algorithm 3 
relate to the programming constructs of the previous section. In the following sections, 
the implementation of the four steps outlined above shall be examined. 

4.1    Identify Merger Pair 

The first step in each successive merge of the full A-schedule algorithm is to identifying 
the pair to be merged, i.e. the pair with the minimum t. When there is more than one 
of these, we take the pair with the minimum pair index. This is performed using the pair 
set and merge candidate list. The implementation only allows one merge candidate list 
to exist, with the implementation details hidden from the user. Only the ability to create 
and destroy the structure in memory, and add, remove and search for entries within the 
set are available to the user. The declaration file, e_rbTree.h, lists the external function 
available to the user. In comparison, the Pair Set is available globally in the segmentation 
code body, and represented through the data structure A, which is declared in the code 
body as 

tPair *A;    /* pair set */ 

All future references to A refer to this programming construct for the Pair Set. 

As mentioned, the algorithm starts out to form the segmentation at iteration r, denoted 
Kr, by locating the pair with the minimum t. The pair index of this pair is determined 
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Figure 4: Interaction of the data structures used in the full \-schedule algorithm for seg- 
mentation for the merger of two regions, p and q which correspond to the pair, P within 
an image. 
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by the merge candidate list search routine e_minRbNode O. Let the pair's pair index be 
denoted by P. The parameter denoting the pair's suitability for merging, t is also obtained. 
Using this index we can obtain the pair's full details within the Pair Set, A, by indexing 
into element P within the array. Hence the first step proceeds as follows: 

• Identify the pair index of the pair with the minimum t using the merge candidate 
list. 

• Obtain the pair by indexing into the pair set using A [P]. 

4.2    Merge Regions 

In the previous step we identified the pair to be merged whose index was P, and its 
associated entry in the pair set, A[P]. The next step involves merging the regions and 
updating the associated region data but does not include updating the NP lists. Within 
the code body, the region set is identified by the simple array, S. This data structure is 
globally available to the segmentation algorithm, and is declared as: 

tRegion *S;    /* region set */ 

The first step of the region merging process is to identify the regions which create 
the pair, A[P]. In section 3.2, it was noted that the labels of the region creating the pair 
were recorded in the two dimensional array r [], where the first entry will be referred to 
as region p, and the second entry referred to as region q. Hence, the labels of region p 
and q are A[P] .r [0], and A[P] .r[l] respectively. The region labels are equivalent to the 
region's entry within the region set array, making the data structures for regions p and 
q equivalent to S[A[P] .r[0]] and S[A[P] .r[l]], respectively. By convention, region p 
will always have the smaller label of the two regions being merged. This fact is enforced 
in the algorithm so that S[A[P] .r[0]] .label < S[A[P] .r[l]] .label is always correct. 

With regions p and q identified, the new region, pq, formed from merging these two 
regions, can now be constructed. The data associated with region pq replaces region p 
within the region set. The area and the greyscale values for each layer within the image 
are calculated using 

aPq = ap + aq, (10) 

u[n]pq = ^^"H, (11) 
O'pq 

respectively, where a represent the region area, and u[n] represents the n-th layer greyscale 
value for the region. The results are written to the region data structure which formerly 
stored the information for region p. 

To assist the process of updating the NP list of the merged pair, the reference to regions 
q and p are removed from the NP lists of regions p and q respectively. As these regions 
have been merged, they no longer technically exist, and this also removes the requirement 
to test each neighbour region to see if it one of the pair being merged. 

The labels of regions p and q and the resultant greyscale layers are recorded within the 
merge list entry r to allow the image of segmentation Kr to be recreated. 
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4.3    Update Neighbouring Pair Lists 

The t values for the pairs made between region p or q and their neighbouring regions 
must be updated to correspond to the new region, pq. This is a two step process. First the 
pairing must be identified and its old t value removed, and secondly, the new t calculated 
for the new pairing and this value then recorded and sorted. The NP list is designed to 
facilitate this process. 

Each region record within the region set S, has an associated NP list, denoted by the 
variable npList. The pairs created by the regions p or q and their associated neighbours 
recorded in their respective NP lists will be effected when the new region pq is created. 
The union of these two lists (without duplicates) contains all the region pairs effected by 
merging p and q. As region pq replaces region p in the region set, the union of the two 
lists is simply achieved by merging the NP list of region q (S[A[P] .r[l]] .npList) with 
that of region p (S[A[P] .r[0]] .npList). This is undertaken by the following steps. 

Updating the neighbour's region pairs is performed on a record by record basis by 
traversing the NP list of the particular region. Let nP and nR denote the pair index 
and region label, respectively, of the current node in the NP list corresponding to the 
neighbouring region r. Then looping through the values of r, the update process proceeds 
as follows. 

• Remove the pair (p, r) entry from the merge candidate list, using the old t value 
(A[nP] .t) and pair index (nP) as the search keys. 

• Obtain the neighbour data from the region set entry S [nR] and determine the new 
Spq,r value for the pair {pq, r) given by 

°pq,r r^EHfU-*)2 (i2) 
r^ 1=1 

where n is the number of layers.   Note that this is independent of the common 
boundary length of the pair (pq, r). 

• Update the sPq,r value for the pair (pq,r) in the pair set. 

Entries for the neighbours of region q must be merged into the existing list of neighbours 
for the region pq. The process involved in merging region q's neighbours into pq's NP list 
can be summarised as follows. Note that the label p is reused to refer to the merged region 
pq. 

• Remove the pair (q, r) entry from the merge candidate list using the old tq,r value 
(A[nP] .t) and pair index (nP) as the search keys. 

• Obtain the neighbour data from the region set entry S [nR] and attempt to merge 
this entry into pq's NP list. 

SUCCESS: the neighbouring region is a new entry in region pq's NP list. 
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- Update the region labels for the pair {pq,r), changing the reference to q to 
be that for the combined region (which by convention is the new region p). 
Also, swap the region indices p and r in the pair if necessary to ensure that the 
constraint S[A[nP] .r[0]] .label < S[A[nP] .r[l]] .label is always satisfied. 

- Recalculate the component of t independent of the common boundary length 
for the pair using (12). 

- Remove the entry referencing region q as a neighbour from the neighbouring 
region's NP list. Reinsert a new entry within this list referencing region p 
as a neighbour. Nodes are removed using the NP list manipulation routine 
np_removeRbNode (), and added using np_addRbNode (). 

• FAILURE: the neighbour region already exists within pg's NP list. Hence it was a 
neighbour to both original regions p and q. 

- Update the common boundary length between the neighbouring region and 
region pq to include the common boundary length contribution from the merged 

region q. 

- Remove references to region q from the neighbours NP list, as this region no 
longer exists. 

Due to the difference in functionality dependent on which NP list is being processed, 
two separate functions are used, each clearly identified to which list is operates on, p or q. 

4.4    Update Merge Candidate List 

The last step in each merge operation is to update the t values in each entry of pq's NP 
list and also update their values in the merge candidate list E. Each node within pg's NP 
list is visited, and using the contents of the node the following operations are performed. 

• Calculate and update the value t for the pair using the calculated values of the 
pair common boundary length and the component of t independent of the common 
boundary length using 

+     — gP.<? (13) 
**'     l(S(Op,Og)) 

K 

where /() refers to the length of a component, and 6{Op,Oq) denotes the common 
boundary between the regions Ov and Oq. 

• Update the pair's value of t in the merge candidate list. 

Each entry added to the merge candidate list is performed using the node addition 
routine e_addRbNode() which inserts and sorts the new entry. Once the traversal has 
completed, the two regions have successfully been merged, and if the exit criterion has 
not yet been reached, the process starts once again by selecting the next pair with the 
minimum t and pair index. 
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5    Enhancement to the Algorithm: Pruned 
Merge Candidate List 

One of the more expensive computational steps of the full A-schedule algorithm is 
sorting the merge candidate list £ according to merge costs. The list can be very long (for 
a rectangular image ofmxn pixels it is initially contains a0 = 2mn -m-n elements) 
and it needs resorting each time a merge is performed. Moreover, the merges costs of all 
pairs which involve the merging regions are likely to change and so, in general, more than 
one entry will be out of place. In this section we report on an enhancement to the full 
A-schedule algorithm which helps overcome this computational burden. The enhancement 
utilises the concept of locally best merges (to be defined in the next section) and involves 
pruning £ so that it only contains the locally best merges. The effect of this change is 
to significantly reduce the size of £ and its implementation has resulted in an order of 
magnitude decrease in the algorithm computation time. 

5.1    Locally best merges 

The idea underlying the enhancement is that, since a region merge operation only 
affects the merge costs in a local area of the segmentation, it makes sense to sort the 
affected merge costs first and then only enter the best (cheapest) ones into the merge 
candidate list. While this idea is natural it requires some care in defining what is meant 
by a locally best merge. We need to ensure that the set of locally best merges is easily 
updated and that the globally best merge is included. To do this, we first need to be more 
precise about what is meant by best and globally best. 

Given a set of potential region merges in a segmentation, we define the best merge to be 
the one with the smallest merge cost. This then allows us to define the globally best merge 
for a segmentation to be the best merge in the set of all possible merges. However, in 
order to avoid unnecessary complications in our algorithm, we need resolve the ambiguity 
in the case of tied merge costs. We do so by choosing the best merge in the case of tied 
costs to be the one with the smallest index in the pair set A. While this means of resolving 
tied merge costs is somewhat arbitrary and there are other alternatives, we believe that in 
practice the choice of definition will not affect the resulting segmentations. Our reasoning 
is that the order of merging for tied merge costs will only be significant if the costs are 
also globally the best and in that case, the merge boundaries represent the least significant 
image structures. 

We can now give our main definition. We say that a pair of neighbouring regions 
(Oi,Oj) represents a locally best merge if it is the best merge in the set of all merges 
which involve either Oj or Oj (or both). As stated above, our enhancement to the full 
A-schedule algorithm is to prune the merge candidate list £ so that it only contains the 
locally best merges. It should be evident from the definitions that globally best merge is 
also a locally best merge and so our pruning of the list will never remove the first element 
£o = (to,Po)- It follows that, exactly the same segmentations will be produced by the 
enhanced algorithm. 

As an indication of the savings that pruning the merge candidate list leads to, observe 

23 



DSTO-TR-1242 

that at any stage in the segmentation process the number of locally best merges is at 
most half the number of regions (since each locally best merge accounts for two regions), 
where as, the total number of possible merges is greater than the number of regions less 
one (since each merge reduces the number of regions by one and merging can continue 
until only one region is left). Thus by using locally best merges only, we are guaranteed 
of halving the size of the E list. Experiments have shown that in general the savings are 
much greater. 

It only remains to show that all locally best merges can be easily found. Returning 
to the definition, it is evident that if (0;,0j) is a locally best merge then Oj is the 
best neighbour for 0; to merge with and visa-versa. It follows that we can find all the 
locally best merges by first scanning the list of regions and for each one determining its 
best merging neighbour. By reviewing a list of best merging neighbours and looking for 
instances where the best merging neighbour of a region says likewise that the original 
region is its best merge, we can find all the locally best merges. Note that, while this 
provides the thinking behind our implementation, we make the search much more efficient 
by using our linked data structures, as described in the next section. 

5.2    Description of the algorithm 

In this section we show how the scheme just described for finding all locally best merges 
can be implemented efficiently and then go on to describe full details of the enhanced 
algorithm. 

Our implementation requires extending the previous data structures by adding an extra 
variable to each entry of the region list S and two new flags to each entry of the pair list 
A. Thus the typical entries of these lists now have the form 

Si = (Ii, o,, Uj, ->^, bestp{i)) (14) 

and 

A{ = {p,q,sp,q,tp,q,bp,q,bflag{p,q),eflag(p,q)). (15) 

The new item, bestp(i), in (14) records the index in the pair list A of the best merge for 
the region 0,. The value of this index is determined by using the NP list Mi to search the 
merge cost information in in the relevant entries of A for Oj's best merging neighbour. 
Note that, since each entry .4 also records the indexes of both the regions involved, we 
can obtain the region set index of 0,-'s best merge from its bestp variable at any time we 
want. 

The item eflag(p,q) in (15) records whether or not the corresponding region pair is 
a locally best merge and hence is used to maintain the pruned merge candidate list £. 
As mentioned, our method of setting this flag is to check whether or not both regions 
concerned say the other is its best merging neighbour. To help perform this check, we use 
the other new flag bflag(p,q). This second flag is set when at least one of the associated 
pair of regions says the other is its best merge and is cleared otherwise. Note that if the 
elfag is set then the bflag must be too but the converse need not be true; the bflag can be 
set while the eflag is cleared. In this later case, only one region is saying the other is its 
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best merge. Note also that in this latter case we do not know which region is saying the 
other is its best merge, that information is only available indirectly via the bestp variables. 

It only remains to describe how the enhanced algorithm initialises the quantities bestp, 
bflag and elfag and then updates them after each merge operation. Of course, this ini- 
tialisation and the updates are in addition to those of the full A-schedule as described in 
Algorithm 3. Fortunately, the new steps are essentially independent of the old ones and 
form two separate new steps of the algorithm which we present below as Step (la.) and 
Step (2a.). Again, as well as describing each step, we have recorded its computational 
complexity (unless it is 0(1)) and as before, the variables jr, ßp<r, etc. are fixed at their 
maximum values for the current step. We will discuss the complexity of the algorithm as a 
whole in the next section. Note that as with the full lambda schedule algorithm we make 
good use of the linking in our data structures to obtain speed and efficiency. Also a final 
word on notation. Recall that in Algorithm 3 we used the notation 

tPi = tp,q 

where the indices satisfy (15) above. We will likewise use the notation 

bflag Pi = bflag (p,q)        and        eflagPi = eflag(p,q) 

in the following. 

Algorithm 4 

la. Initialise the merge candidate list. (Assume Step (1) of Algorithm 3 has just 
completed but with Step (l.(c)) deleted.) 

Initialise the quantities bestp, bflag and elfag and adjust the merge candidate list 8 
accordingly as follows: 

(a) For each region O* in the region list <S do: 0{mn) x ... 

i. Search the costs tPj of merging Oi with its neighbours A/ij = (j, Pj) for its 
best merge and fix Pj to be the corresponding index. 0(1) 

ii. Set bestp(i) = Pj. 

iii. If bflagpj = 0 then set bflagp. = 1 
Else set eflagp. = 1 and insert (tPj,Pj) into £. £>(log27o) 

2a. Update the merge candidate list. (Assume Step (2) of Algorithm 3 has just 
completed but with Step (2.(h)ii), Step (2.(i)ii) and Step (2.(j)ii) deleted and assume 
that p and q are as described in Step (2.(c)).) 

Update the quantities bestp, bflag and elfag and adjust the merge candidate list S 
accordingly as follows: 

(a) Use Mp to loop through the neighbours On of Op and update bestp, bflag and 
elfag for each On as follows: 0{ßp,r) x ... 

i. Obtain the pair set index Pn for the pair (On,Op) from Np,n = (n, Pn). 
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ii. Use <Sn to locate bestp(n) and set Pi = bestp(n). 

iii. Use Ap{ to obtain the region index, say k, of 0„'s previous best merge 

iv. If A; = p or k — q then 
(On's previous best merging neighbour was either Op or Oq so completely 
recalculate its best merge) 

A. Set bflagPi = 0. 

B. Search the costs tpj of merging On with its neighbours Mn,j = (j,Pj) 
for its best merge and fix Pj to be the corresponding index.     ö(ßn,r) 

C. Set bestp(n) = Pj. 

D. If bflagp. = 0 then set bflagp = 1 
Else set eflagpj = 1 and insert (tp^Pj) into £. ö{\og2

r)r) 

Else 
(On's previous best merging neighbour was neither Op nor Oq) 

If tPn < tPi or tPn = tPi and Pn < Pi then 
(Merging Op with On is better than On's previous best merge) 

A. If eflagp{ = 1 then set eflagpi = 0 and delete (tp^Pj) from £. 

<3(log27r) 
Else set bflagpi = 0. 

B. Set bestp(n) = Pn and bflagpn = 1. 

(b) Update bestp, bflag and elfag for region p as follows: 

i. Search the costs tpm of merging Op with its neighbours Mp,m — (m,Pm) 
for its best merge and fix Pm to be the corresponding index. 0(ßp,r) 

ii. Set bestp (p) = Pm. 

iii. If bflagPm = 0 then set bflagPm — 1 
Else set eflagPm = 1 and insert {tPrn,Pm) into 5. 0(log27r) 

5.3    Computational complexity 

In this section we update the computational complexity calculations of Section 2.3.2 
to take account of the changes introduced in Algorithm 4. We begin with the initialisation 
step. By combining the complexities of the sub-steps as listed in Algorithm 4 it is clear 
that the complexity of Step la is O{mnlog2^o). Using 70 < L0 = mn this simplifies to 
0(mn log2 mn). To get the complexity of the complete initialisation step we need to add 
the complexity of Step 1. However, the complexity of Step 1 in Algorithm 4 is no worse 
than that of Step 1 in Algorithm 3 and we know that was ö{mn log2 mn). It follows that 
the complexity of the complete initialisation step is <9(mnlog2mra). 

Next we consider the iterative part of the algorithm. By combining the contributions 
of the sub-steps as listed in Algorithm 4 it is not hard to show that the computational 
complexity of Step 2a is 

fßp-r \ (ß,,r \ 

O I £(A,,r + log2 7r) + ßp,r + log2 lr      = 0\ £(Ä,,P) + ßp,r log2 7r      • (16) 
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Using ßmax, as defined in Section 2.3.2, we can simplify this to 

£,(/3maX + /Wlog27r)- (17) 

However, the only bound on ßmax we are sure of is ßmax < Lr which leads to the estimate 
0(L%+Lr log2 7r) and unfortunately the term Ö(L%) means this estimate is worse than the 
equivalent one for Step 2 in Algorithm 3. We need to be more careful in our calculation. 

Our poor estimate arose from bounding the term ö(Y^=ißn,r) in (16) too crudely. 
We can do better by analysing the corresponding steps of the algorithm in more detail. 
In other words, we want to derive a better estimate of the complexity of Step 2a. (a) when 
only the sub-step, Step 2a.(a)iv.B, is taken into account. The steps of algorithm involved 
are: visiting each of the neighbours On of Op; and while at each On, obtaining the merge 
costs tpj of merging On with each of its neighbours. During this process, each merge cost 
tpj can only be visited at most twice since a merge cost only involves two regions. It 
follows that the complexity of this process can be estimated as 0(2ar), where ar is the 
current number of region pairs. Inserting this estimate into (16) shows that complexity of 
Step 2a is ö(aT + ßp<r log2 7r). We further simplify this by using ßv<r ^ Lr to get 

0{ar + Lrlog27r) 

which is a much better estimate than 0(Lj + Lr log2 7r). 

To complete our calculation of the complexity of the iterative part of the algorithm we 
first sum our estimates of the complexity of Step 2a as the algorithm runs to completion. 
This gives 

mn-l 

Y2 0(ar + Lr log2 7r) = 0((mn)2 log2 mn) (18) 
r=l 

where we have used the facts that ar < 2mn -m-n-r (since at least one pair of regions 
is removed at each step of the algorithm), Lr = mn - r and -yr < Lr = mn - r. It only 
remains to take account of Step 2. However, the complexity of Step 2 in Algorithm 4 
must be less than that of Step 2 in Algorithm 3 and we know that was no worse than 
0((mn)2log2mn). It follows that (18) is the complexity of the total iterative part of 
Algorithm 4. Since the initialisation step is less complex, (18) is in fact the complexity of 
the complete algorithm and we are done. 

If on the other hand /?max is independent of the size of the image, it can be treated 
as a constant and (17) simplifies to 0(log27r). In this case the complexity of Step 2 and 
Step 3 combined becomes 

mn—1 

]T C>(log2 7r) = 0(mn log2 mn). (19) 
r=l 

Again, it is not hard to see that this is in fact the complexity of the complete algorithm 
since no other part has greater complexity. 

In Figure 5, we compare the computation times of Algorithm 3 and Algorithm 4. The 
calculations were produced using the same imagery as for Figure 1. Again we comment 
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Figure 5: Typical computation times for Algorithm 3 and Algorithm 4- 

that these results are indicative only since computation times will vary depending on the 
nature of the imagery being segmented. It can be seen from the figure that Algorithm 4 is 
roughly an order of magnitude faster than Algorithm 3. This is despite the fact that our 
estimates of their complexities are the same. The explanation is that Algorithm 4 has a 
much better constant of proportionality in its complexity than Algorithm 3. This is not 
surprising given the better bound we have on 7r for Algorithm 4. 

As before, we have also added a plot of ö(mn\og2mn) in order to get some insight 
into which of the complexity bounds, (18) or (19), is applicable. It can be seen from the 
figure that the data for Algorithm 4 lies on a straight line which is parallel to the plot of 
ö{mnlog2 mn). Consequently, the empirical evidence is that Algorithm 4 has complexity 
0{mnlog2 mn). This is not true for Algorithm 3 since the data appear lie on a line with 
slope greater than 1. Thus Algorithm 4 also appears to have better scaling properties 
than Algorithm 3. We conclude with comment that the best that could be expected of 
a segmentation algorithm is complexity 0(mn). Since the effect of the term log2 mn) is 
only minor, it follows that Algorithm 4 is doing about as well as we could expect. 

5.4    Data structures and procedures 

In this section we outline the implementation of Algorithm 4. We begin with the data 
structures. It is easily seen by checking the variables used in Algorithm 4 that the only 
new quantities needed are bestp, bflag and eflag. Further, the best way of incorporating 
them into our existing data structures is indicated in equations (14) and (15).  Thus we 

28 



DSTO-TR-1242 

implement bestp by adding 

int        bestp;      /* pair set index of the best merge neighbour */ 

to the declaration of the type _tRegion and we implement bflag and eflag by adding 

int        bflag;      /* this flag is set if and only if at least one region 
of the pair is saying the other is its best merge */ 

int        eflag;      /* this flag is set if and only if both regions 
of the pair are saying the other is its best merge */ 

to the declaration of the type _tPair. 

The implementation of Algorithm 4 also requires some new procedures. First, we have 
implemented all of Step (la.) in a procedure which we call init_EList (). This procedure 
is a direct mirror of the sub-steps in Step (la.) and needs no further explanation. Next, 
we have implemented all of Step (2a.) in a procedure which we call updateEListO. 
Again, the code in updateEListO essentially mirrors the description of Step (2a.) and 
we do not need to go into the details with one exception. The exception is that we avoid 
duplication of code for the searches at Step (2a.(a)ivB) and Step (2a.(b)i) by introducing a 
second procedure, called updateBestP(). This second procedure is very simple. It merely 
compares the merge cost of the current merging neighbour with the best so far and updates 
the pair set index of the best merge if necessary. 

6    Supporting Procedures and Functions 

6.1    Recording Segmentation Data 

As it is currently implemented, the full A-schedule algorithm terminates when all the 
pixels have finally been merged into a single region. This is not a particularly useful 
result. However, as previously mentioned, data has been recorded about each merge 
operation that allows the segmentation at any (useful) step to be recreated. In this section 
we examine the three data structures recorded: a merge list, a segmentation mask, and 
segmented image layers. 

The merge list on its own contains all the information required to construct the seg- 
mentation at any stage of the algorithm. However, for large images the full merge list 
can be very large and so we usually truncate the list to only allow the construction of 
segmentations during the later stages of processing because they are the ones of principal 
interest. For example, the merge list for a single layer 2,048 x 2,048 image would occupy 
a file of approximately 134MB in size. If we are only interested in the segmentations 
corresponding to the last 40,000 merges, the merge list data required could be stored in a 
1.28MB merge file. Truncating the merge list in this fashion requires that a segmentation 
mask and segmented image layers also be recorded for the starting point of the truncated 
merge list. 
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Merge List Header 

Merge List entries 
N entries of type tMergeNode 

Greyscale vectors, each vector 
entry representing the image layers 

Figure 6: An overview of the structuring of the merge list data file. 

Segmentation Mask 

The segmentation mask codes the regions of a segmentation Kr at iteration r using a 
single distinct colour for each. The mask is stored as a portable pixmap (PPM) image, 
allowing just over 16 million (224) different regions to be represented. (Consequently, this 
imposes a limit of 4,096 x 4,096 to the size of a square image that can be correctly re- 
constructed in the current implementation.) This is achieved using the 24 least significant 
bits associated with the region label, allocating 8 bits to each of the red, green and blue 
components of the label. 

Greyscale Layer Images 

Each region of a segmentation Kr has an associated greyscale vector, one element for 
each layer of the image. The greyscale values represent the mean value of their respective 
layers across a particular region. In the greyscale layer images each pixel is assigned the 
corresponding region's value for each layer, storing them as portable grey map (PGM) 
image files. 

Merge Files 

The merge list records all the region merges performed in the execution of the segmen- 
tation algorithm after a designated starting point. The structure of the data within the 
merge list file is as follows (figure 6). 

The merge file header specifies the starting segmentation from which the list was 
recorded as well as the number of merges recorded and the number of layers. The sec- 
ond block of the file contains the merge entries, corresponding to the data structure 
tMergeNode. The third block of the file contains the greyscale vectors associated with 
each merge entry. The greyscale vectors are recorded separately to simplify reading and 
writing the data because their length is not known at compile time. 
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6.2    Image Recreation 

In the previous section, we presented the data structures that must be saved to allow 
the recreation of an arbitrary segmentation. In this section we present how to recreate a 
segmentation from this data. 

6.2.1    Image Recreation Data Structures 

The pixel list and region list are the two principal data structures used to reconstruct 
the image. 

Pixel List 

The pixel list is a linked list data structure, where each node contains the (row order) 
index of a pixel: 

typedef struct _tPixelNode 
{ 

struct _tPixelNode *next;  /* next element in the list */ 
int index; /* pixel index within image */ 

} tPixelNode; 

Each list is anchored through a structure which records the first (head) and final (tail) 
nodes as shown below. 

typedef struct _tPixelList 
{ 
tPixelNode »head; /* head node of the list */ 
tPixelNode *tail; /* tail node of the list */ 

} tPixelList; 

Region List 

The region list performs much the same task as the region set in the segmentation 
algorithm, in that it records the data associated with each region in segmentation Kr. It 
has two components: a greyscale vector and a pixel list for each region: 

typedef struct _tRegionNode 
{ 
double    *gval;     /* greyscale array of all pixels in region */ 
tPixelList pixelList; /* list of pixels in current region */ 

} tRegionNode; 

As with the region set, this structure is static in length, and its length is determined by the 
number of pixels in the image being segmented. As the algorithm progresses, the length 
of the list remains constant, but the number of entries that are valid reduces by one each 
time a merge indicated by the merge list is performed. 
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6.2.2    Reconstruction 

Recreating the segmentation mask and segmented image for a particular segmentation 
Kr is a two step process. Firstly, the region list must be initialized to the segmentation 
at the start of the recorded merge list. Secondly, the merges indicated in the merge list 
are carried out in order until the desired segmentation is reached. 

Initializing the region list starts with the recorded segmentation mask and greyscale 
image layers and processes each pixel as follows. 

• Identify the region O to which the current pixel belongs. 

• If O's pixel list is empty, copy the current pixel's greyscale vector into region O's 
greyscale vector. 

• Add the current pixel to O's pixel list. 

When this process has considered every pixel, the region list will be initialised to the 
segmentation at the start of the merge list, allowing any of the segmentations past this to 
be recreated using the merge list. 

The process of reconstructing the desired segmentation proceeds by looping over the 
following steps. 

• Does the current segmentation meet the exit conditions, specified by either iteration 
number or a t that must be exceeded? 

• Merge the region pair (p, q) specified in the current element of the merge list. Append 
the pixel list of region q onto that of p's pixel list. Reset g's pixel list to a null set. 

• Update the greyscale array of region p with the value recorded in the corresponding 
element of the merge list. 

Hence when the exit criterion has been reached, a number of regions in the region list will 
have empty pixel lists (null sets), and these denote regions which no longer exists in the 
image for segmentation Kr. Regions with valid (non null) pixel lists are a component of 
the image for the segmentation desired. 

As an example, assume the image for segmentation Kr for our example 3x4, two layer 
image with pixels indexes as shown in table 1, has a region, p. This region has a greyscale 
vector [225,17] and covers the pixels of indexes 1, 4, 5, 9 and 10. The entry for region p 
in the region list can structurally be represented as shown in figure 7. The generated two 
layer greyscale image would have the first layer pixels of index 1, 4, 5, 9 and 10 assigned 
to the value 225, while the same pixels in the second layer were assigned to the value of 
17. The mask is created in a similar manner, but the greyscale value written to the image 
is set to the current region label, in this case p. The resultant greyscale image layers and 
segmentation mask can be seen in figure 8. 
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p 

[225,17] 
10 

Figure 7: Region list entry p for the segmentation Kr.   The region list entry records the 
greyscale vector for the region as well as the pixels associated with the region. 

(a) Layer 1 (b) Layer 2 (c) Mask 

Figure 8: First (a) and second (b) greyscale layers for region p in the segmented image 
and the corresponding segmentation mask (c) for segmentation Kr for the test 3x4 test 
image. 

7    Conclusion 

We have presented the details of a novel fast implementation of the full A-schedule 
algorithm for segmentation. The algorithm trades increased memory usage to gain a low 
computational complexity of the merging process, and the result is an algorithm with 
speed on the order of that of the Fast Fourier Transform algorithm, the benchmark for 
fast algorithms. This algorithm will form the basis of a segmenting detection algorithm in 
the Analysts' Detection Support System. 

Future work will involve testing the utility of the algorithm for target detection and 
extending the class of image models it uses. The initial steps in both these directions have 
already been taken. The algorithm has been incorporated into the ADSS software suite 
and once the coding of the entire suite has been completed and suitable data is available 
we will be able to test its target detection utility. On the second point, the algorithm 
described here only allows piecewise constant image models. This means some of the more 
subtle features of the SAR imagery cannot be exploited. However, progress has since been 
made on expanding the class of applicable image models to include piecewise polynomial 
models. It is anticipated that implementing these models will only involve a few local 
changes to the segmentation code and that these changes will not effect the computational 
complexity of the algorithm. 
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