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ABSTRACT 

In our changing world, there has been a significant increase in both the nature and degree of the 
threat posed by the use of biological agents. Studies for many years have focused on rapid 
detection of known biological threat agents using structural-based probes designed and directed 
toward features of the pathogenic agent. However, concerns relating to unidentifiable pathogens, 
that could result from either deliberate or natural mutation processes have prompted studies to 
find alternative approaches. Our thesis was that an exposed individual would show gene 
expression responses unique to the pathogenic agent and prior to onset of the full illness. 
Therefore this study focused on use of peripheral blood mononuclear cells (PBMC) as a readily 
accessible reservoir of historical information for development of a library of host gene 
expression responses to known biological threat agents. The gene responses seen in this 
accessible tissue would be a compilation of both primary and secondary effects on PBMC and 
would present a signature pattern of a specific biological threat agent. This study describes our 
work to establish a library of host responses to pathogenic agents for use to a) predict the course 
of impending illness especially for unidentifiable pathogens so that appropriate therapeutic 
intervention can be initiated, b) to characterize the degree of individual exposure in order to 
assist health personnel to rapidly differentiate those who will become seriously ill from "the 
worried well" individuals and c) reveal new therapeutic targets that can be initiated even in late- 
stage illness caused by biological threat agents. 

INTRODUCTION 

Identification of pathogenic agents using structural-based probes directed at specific 
pathogen properties has been the classic approach for rapid detection of biological threat agents. 
There are situations in which that system could need a supplemental approach.   The obvious 



scenario would be pathogenic agents that are unidentifiable due to deliberate or natural 
mutations. In addition to that unique situation, even for identifiable bacterial pathogens, extent 
of individual exposure would be limited by detection thresholds. This relates to the findings that 
a) some toxins are sequestered into target tissues and unavailable for identification in blood 
samples or b) bacterial pathogens require time to undergo sufficient growth to reach threshold 
levels for detection. For example, detection of bacterial products in human blood samples after 
exposure to B. anthracis have been found 2-3 days post exposure and by that time, the pathogen 
had undergone extensive proliferation, and serious illness was manifested. Similarly, for 
staphylococcal enterotoxin (SE) B, the toxin disappears from the peripheral circulation and is 
sequestered in the kidney (-70%) and other organs within 30 min post exposure. Identification 
of the actual toxin/fragments in blood or urine has not been seen unless blood samples were 
taken just following exposure. 

The approach we have pursued relies on gene expression responses to biological threat 
agents using PBMC of the exposed individual and we are accumulating a library of these 
responses to infectious and biological threat agents. Although PBMC may not be the primary 
target for particular a pathogenic agent, they can respond to a combination of primary and 
secondary effects and they reflect information, in the form of secreted products as well as gene 
responses, related to stimuli they have encountered. Gene discovery technology provided the 
opportunity to examine large numbers of genes simultaneously for the various biological threat 
agents, both in vitro and in PBMC from animal exposed to the threat agents. Certainly, 
structural-based probes to identify biological threat agents offer the ability to test 
environment/personnel externally if an exposure is obvious and if the pathogen is identifiable. In 
contrast, the gene library we are developing is designed to relate gene profiles with subsequent 
illness patterns so that natural or deliberately modified pathogenic agents could be characterized 
and appropriate countermeasures initiated to ameliorate or prevent serious illness. In addition, 
examples of mass accidental exposures throughout the world can result in chaos at medical care 
facilities, due in part to panic(l). The gene array technology offers the potential to determine the 
degree of individual exposure (and perhaps susceptibility) so that the "worried well" could be 
separated from the seriously ill. This technology is undergoing phenomenal advances relating to 
devices that automatically process blood samples for isolation of RNA in minutes, and newly 
described technology to reduce PCR-based analysis of gene arrays to 30 min. Based on the 
developing library of gene responses to biological threat and other pathogenic agents, our 
ultimate objective is to design gene chips containing relatively few genes (hundreds rather than 
thousands) that could concisely predict the likely pathogenic agent or modified version of such, 
the degree of individual exposure and the course of impending illness. This approach aims to 
provide a tool for defense against biological threats so that resultant panic, morbidity, mortality 
can be reduced and targets identified for even late-stage treatment modalities. 

METHODOLOGY EMPLOYED IN THIS STUDY 

Overview. For the past 14 years, our laboratory has been carrying out in vitro and in vivo 
studies of host responses to staphylococcal enterotoxins as biological threat agents and those 
studies centered on signal pathways (2-6), cell mediators (5-8), and evaluation of gene 
expression responses(5). For the latter studies, we have specifically used differential display 
(DD) -PCR (5) and gene array analysis technology (9)to determine cellular responses to B. 



anthracis, B. melitensis, Y. pestis, staphylococcal enterotoxins (SEs), cholera toxin (CT) and a 
number of other threat and infectious agents. 

Gene discovery technology. There are numerous reports describing the use of global gene 
analysis to identify critical changes in expression of a few selected genes indicative of specific 
illnesses. For example, identification of the gene coding for Fetuin was reduced by 45% in liver 
cirrhosis (10) In some cases specific genes disappeared, such as i) Annexin VI expression in 
melanoma progression (11) or ii) MIF (macrophage migration inhibitory factor) in metastatic 
prostate cancer patients (12). These are just a few examples of the utility of gene array analysis 
to identify surrogate markers for a disease state and provide avenues for therapeutic intervention. 

Gene microarrays. In the studies we describe in this article, we have utilized gene 
arrays/microarrays to define gene expression patterns for diagnosis as well as to identify 
potential new approaches for targeting therapy. Our first approach was to use large commercial 
screening arrays so that we could design inexpensive custom microarrays to define pathogens in 
terms of kinetics and dose responses. For in vitro studies, blood was drawn from healthy 
volunteers and PBMC were obtained by elutriation (13). PBMC were exposed to each 
biological threat agent (or control) for the designated time period, RNA extracted and purified, 
RT carried out and the resulting product hybridized onto the gene arrays according to standard 
procedures (9). The differences in gene expression between control and test for each gene was 
determined by specialized computer programs. The data were subjected to various software 
packages for statistical and cluster analysis (for genes within a time period and threat agent) 
aimed for these huge data sets (14, 15). Self-organizing maps and other analytical tools were 
applied to determine patterns of gene expression similarities and differences for each biological 
threat agent and these analyses also correlated information according to exposure time periods. 
For in vivo studies, blood was drawn, as described previously (16, 17), from exposed or control 
monkeys (other of our studies have used piglet models of SE-induced lethal shock) at the 
designated time periods. In these studies, PBMC were isolated and purified and the same 
procedure followed as for the in vitro experiments. This approach has provided information in an 
efficient manner and will facilitate development of a library of genes involved in pathogenesis 
for each agent examined. 

Pathogens. PBMC exposure to each of the pathogens was carried out in the laboratory of the 
person who is the expert for each biological threat agent. The following is a list of the expert 
associated with each pathogen. George Ludwig (B. anthracis), David Hoover (B. meletensis), 
Luther Lindler (Y. pestis), Neill/Jett (SEs), and Yang (cholera toxin). The cell exposures were 
carried out using exposure concentrations/doses and other conditions that had been established in 
their laboratory. For in vitro exposures, the useful time frame ranged from 2-12 hours. In vivo, 
the time periods reflected the time course of the progression of illness, but blood samples were 
drawn prior to onset of illness, since gene patterns would be expected to precede the display of 
illness. 

RESULTS AND DISCUSSION 

Our laboratories have been carrying out gene expression profiling of the host response to 
numerous infectious and biological threat agents, however this manuscript will be limited to 



discussions of studies with anthrax, SEs, LPS, plague, Bruceila and cholera toxin. The initial 
screening used commercial gene arrays studying the host immune response in vitro using 
elutriated human peripheral blood mononuclear cells (PBMC). We have also carried out 
experiments to compare in vitro and in vivo results by utilizing PBMC obtained from non-human 
primates challenged with the specific biological threat agent. 

Our initial work with global gene analysis studies was directed to determine the extent of 
the similarities and differences in PBMC responses in vitro to two classical shock-inducing 
toxins, staphylococcal enterotoxin B vs lipopolysaccharide (LPS), the smallest active unit of 
endotoxin (5, 9, 18). For these two toxins, the progression of illness is quite similar but we 
know from the volumes of studies on each toxin that there are some specific differences in 
production of mediators throughout the course of the illness. Indeed we found certain common 
patterns in gene expression profiles, especially for sets of genes relating to production of 
subgroups of inflammatory mediators and their accessory molecules, but the confluence of 
responses showed high correlation between the two toxins for genes relating to the common 
eventual lesions, such as pulmonary distress and loss of regulation of vascular tone. Figure 1 
shows an example of SEB or LPS-induced changes (relative to controls) in expression of a gene 
that codes for a protein regulator of vascular tone. It is an example of genes showing similar 
responses to both toxins and this expression pattern also was observed in monkeys challenged 
with SEB. It is essential to carry out these experiments observing gene alterations at increasing 
exposure time periods since many genes show time-dependent expression patterns. The kinetic 
changes in gene expression are especially critical in vivo. An example is that genes coding for 
cytokines usually display up-regulation at early time periods and the expression levels frequently 
disappear as time progresses. That is not an unexpected finding, since cytokine production can 
be seen for brief periods of time following exposure to toxins (5, 9, 16-19). 

In contrast to the similarities in gene expression just described, clear differences were 
seen in response to SEB vs LPS for expression levels of genes coding for numerous cytokines 
and their accessory molecules, many of the signaling cascade molecules and a variety of other 
surface adhesion molecules, etc. This probably represents the differences in initial cellular 
receptors and their linked signal transmission cascades. This study pointed out to us that gene 
expression changes could show differences in patterns for each agent, but also show similarities 
relating to common eventual lesions, such as loss of regulation of vascular tone, the hallmark of 
lethal shock. The unique and common patterns of gene expression were confirmed in SEB- 
challenged monkeys. Of course, these studies obviously identify new therapeutic intervention 
sites and, furthermore, predict the time period during which that approach could be usefully 
targeted. This information provided the foundation for the current study of multiple biological 
threat agents, since identification of course of impending illness (such as loss of regulation of 
vascular tone, vascular leakage, pulmonary or renal distress, etc) could provide key information 
should there be exposures to unidentifiable agents. Gene expression responses occur prior to 
production of their corresponding proteins, and there is frequently a time lag for the concerted 
action of the' causative proteins to result in the demonstration of the lesion. Therefore, gene 
expression studies offer an early glimpse into the course of the impending illness and shows in a 
time-dependent manner when a specific therapy regimen might be effective. 



Creation of a library of gene expression responses to biological threat agents. The studies 
with SEB vs LPS showed that unique gene patterns resulted from exposure to each toxin, but 
common genes, very few of which had previously been described for these toxins, showed 
associations predictive of the eventual lesions known to be induced by both toxins. Therefore, 
we carried out experiments, first in vitro in human PBMC, to determine the pattern of gene 
expression in response to exposures to B. anthracis, Y. pestis, B. meletensis, SEB and cholera 
toxin (CT). The latter toxin was chosen essentially to aid in interpretation of the data and for 
comparisons with the other biological threat agents, since a wealth of information exists about 
biochemical pathways and their relationship to lesions for CT. For the studies with these 5 
pathogens listed above, we accumulated the gene expression response patterns and began to mine 
from the data the examples of pathogen-specific changes in host immune response gene profiles 
and identified unique genes that could potentially be used as diagnostic markers and also serve as 
therapeutic targets. The data amassed in this study are voluminous. Figure 2 is a condensation 
of results that shows patterns of gene alterations common to more than one agent and other 
changes that are unique to a particular agent. In this table, red/pink indicates up-regulated genes 
while green/blue identifies down-regulated genes. This is but a small set of gene expression 
changes and they are sorted according to the listed functional activities. In this table, there are 
numerous examples of specific genes that respond to one of these toxic agents, while there are 
other examples of genes that are altered in response to most or all of the pathogens (see 
interleukins). As a group, genes coding for cytokines/chemokines were altered by multiple 
biological threat agents, although specific mediator receptors frequently showed individual 
responses. In Figure 2, time dependency is shown for all of the pathogenic agents except cholera 
toxin). The kinetics of gene expression responses is especially important, as pointed out 
previously, since it reveals potential therapeutic targets that may provide effective intervention at 
specific time periods during late stages of illness. 

NHP-challenge: B. anthracis. We have verified numerous changes in gene expression in non- 
human primates exposed to B. anthracis at T=0, 24, 48, 72 h post-exposure. We again found, in 
general, that cytokines appeared primarily at T=24 h while genes involved in apoptosis and cell 
death were up-regulated at 48-72 h. Many unanticipated changes in gene response have 
provided potential therapeutic targets for late treatment. 

SUMMARY 

We found a series of gene alterations in PBMC from monkeys challenged with SEB that 
confirm the gene pattern observed in vitro. In cells from the challenged monkeys, we have 
defined a series of genes, the expression of which was altered in the pattern typical of SEB, not 
LPS or other shock-inducing toxin by 30 min post exposure. Since onset of illness begins at 
approximately 3 h post exposure for SEB, early detection of the gene pattern could permit 
initiation of appropriate countermeasures prior to, or at least in the early stages of illness. In the 
case of B. anthracis, by 48-72 h, gene patterns from challenged monkeys show resemblances of 
the "lethal shock" profile that was seen at early time periods with SEB. Indeed, anthrax infection 
eventually proceeds to lethal shock. One of the purposes of relating gene alterations with a 
course of illness is that exposure to unknown or genetically altered agents could be "categorized" 
as to expected lesions and can provide the opportunity to initiate preventive therapy prior to 
onset of severe illness. 
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FIGURE LEGENDS 

Figure 1. Changes in Gene Expression in Response to Two Shock-Inducing Toxins. Gene 
coding for a protein involved in regulating vascular tone shows the example of 
similarities that result from exposure of PBMC to SEB or LPS in vitro. Expression of 
this gene was also down-regulated in monkeys challenged with SEB. Although for this 
particular gene, the kinetics of gene expression was similar over the 24 h time period, that 
is frequently not the case. Therefore, study of gene responses in a time-dependent 
manner is essential, especially for in vivo studies, in order to understand the useful time 
frame for intervention aimed at potential therapeutic targets. 

Figure 2. Gene Array Analysis of PBMC Treated with Biological Threat Agents. Each agent 
was studied at different time periods, usually 2,4,8 hr and for SEB, an additional time 
period of 18 h. CT was studied at 16 h. Red/pink indicates up-regulated genes while 
green/blue shows down-regulated genes relative to control samples. The kinetics of gene 
responses for each different agent provide important information for possible late-stage 
therapeutic targets. Some gene classes show responses with most of these pathogenic 
agents (interleukins) while a host of other genes show patterns that could distinguish one 
pathogenic agent from another. 
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