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Algorithm Development for the Two-Fluid Plasma Model 

Contract Number: F49620-01-1-0128 

U. Shumlak 
Department of Aeronautics and Astronautics, Box 352250 

University of Washington, Seattle, WA 98195-2250 

Abstract 

A preliminary algorithm based on the two-fluid plasma model is developed to in- 
vestigate the possibility of simulating plasmas with a more physically accurate model 
than the MHD (magnetohydrodynamic) model. The algorithm is based on a Roe-type 
approximate Riemann solver. Beginning with the two-fluid plasma model, the govern- 
ing equations are normalized and formulated in conservation form. The eigenvalues and 
eigenvectors of the system flux Jacobians are determined and properly normalized to 
prevent catastrophic cancellation. An approximate Riemann solver is developed based 
on the derived conserved fluxes. The electromagnetic fields are solved and coupled to 
the two-fluid approximate Riemann solver. The field solver is an electrostatic potential 
solver appropriate for electric fields and solves Poisson's equation. The algorithm is 
benchmarked against analytical results and published simulations. In a parallel effort, 
numerical methods for the calculation of the flux Jacobian were be investigated. The 
primary methods are the first-order limit formulation and the second-order complex 
number formulation. 



Contents 
1 Executive Summary 1 

2 Project Description 1 
2.1 State of the Art — Kinetic, PIC, and MHD Models      1 
2.2 The Next Step: Two-Fluid Plasma Model  5 
2.3 Research Objectives  5 
2.4 Technical Description      5 

2.4.1 Two-Fluid Plasma Model  5 
2.4.2 Conservative Algorithm  8 

3 Project Implementation and Results 10 
3.1 Algorithm Details  10 

3.1.1 Maxwell's Equations with Electrostatic Potential Correction ... 10 
3.1.2 Homogeneous Fluxes  11 
3.1.3 Implicit Treatment of the Source Terms  12 

3.2 Coplanar Riemann Problem  12 
3.3 Langmuir Oscillations  14 
3.4 Debye shielding  15 
3.5 Child-Langmuir Current Saturation  17 

4 Professional Interactions 18 
4.1 Project Personnel  18 
4.2 Collaborations      18 

4.2.1 Air Force Research Laboratory  18 
4.2.2 University of Washington  18 

4.3 Publications  18 

5 Conclusions 19 



List of Figures 

1 Convergence history using the SGS method to invert the implicit op- 
erator, n is the number of physical time iterations, m is the number of 
pseudo time subiterations, and sgs is the number of iterations of the SGS 
method        3 

2 Dispersion relation for the fast and slow modes with u>dTA = 3.5. The 
dashed lines represent the ideal MHD modes        4 

3 Schematic of the arbitrary shaped three-dimensional finite volume cell to 
be used by the two-fluid algorithm      10 

4 Electron and ion number densities for a shock tube simulation. The shock 
wave, contact discontinuity, and rarefaction wave can be seen in each fluid. 13 

5 Electron and ion current densities for a shock tube simulation      13 
6 Time history of the electron velocity measured at a fixed spatial location 

demonstrating Langmuir plasma oscillations      14 
7 Spatial structure of the electron density and velocity at single time during 

a Langmuir plasma oscillation simulation      15 
8 Spatial structure of the electron and ion number densities showing the 

charged fluids response to the sheet of charge      16 
9 Spatial structure of the electric field showing the shielding effect. With- 

out the charged fluids the electric field would be uniform. The analytical 
solution for this problem is shown by the dotted line for comparison.  . .     16 

10 The variation of the Child-Langmuir space charged limited current as 
the distance between the electrodes are adjusted. The data points are 
from numerical simulations, and the solid curve is predicted by the theory 
[eqn(38)] •      17 

in 



1 Executive Summary 

The primary objective of this project is perform the preliminary work to develop a 
plasma simulation algorithm based on the two-fluid plasma model. A two-fluid plasma 
simulation algorithm would be capable of time-dependent, three-dimensional simula- 
tions of plasma phenomena in realistic geometries. The algorithm would be a valuable 
tool for the design and testing of plasma related technologies that are important to 
the Air Force and industry, such as advanced plasma thrusters for space propulsion, 
hypersonic drag reduction, portable pulsed power, high power microwave devices, nu- 
clear weapons effects simulations, radiation production for counter proliferation, and 
fusion for power generation. Implementing the algorithm on parallel supercomputers 
would allow the detailed modeling of realistic plasmas in complex three-dimensional 
geometries. 

Current plasma simulation codes capable of complex geometries are based on the 
MHD (magnetohydrodynamic) model. The derivation of the MHD model involves sev- 
eral assumptions that severely limit its applicability. The two-fluid model only assumes 
local thermodynamic equilibrium. A two-fluid algorithm is more physically accurate 
and capable than MHD models. The two-fluid model is normalized and formulated in 
conservation form. The algorithm uses an approximate Riemann solver that we devel- 
oped for the two-fluid plasma model. The algorithm is benchmarked against known 
analytical results and published simulations. 

Several professional collaborations exist between the Department of Aeronautics and 
Astronautics at the University of Washington and the Air Force Research Laboratory 
both at Kirtland AFB and Edwards AFB, Los Alamos National Laboratory, Lawrence 
Livermore National Laboratory, the University of Michigan, Stanford University, and 
other departments at the University of Washington. The work from this project has 
been presented at international conferences. 

2 Project Description 

Plasmas are essential to many technologies that are important to the Air Force, some 
of which have dual-use potential. These applications include portable pulsed power sys- 
tems, high power microwave devices, drag reduction for hypersonic vehicles, advanced 
plasma thrusters for space propulsion, nuclear weapons effects simulations, radiation 
production for counter proliferation, and fusion for power generation. In general, plas- 
mas fall into a density regime where they exhibit both collective (fluid) behavior and 
individual (particle) behavior. The intermediate regime complicates the modeling of 
plasmas. 

2.1    State of the Art — Kinetic, PIC, and MHD Models 

Plasmas may be most accurately modeled using kinetic theory. The plasma is described 
by distribution functions in physical space, velocity space, and time, /(x,v,t). The 
evolution of the plasma is then modeled by the Boltzmann equation. 

df* +v   d^ + 9« (v4.v * m dfa - dfa 
(i) 

collisions 



for each plasma species a = ions, electrons. The Boltzmann equation coupled with 
Maxwell's equations for electromagnetic fields completely describe the plasma dynamics. 
[1-3] 

However, the Boltzmann equation is seven dimensional. As a consequence of the 
large dimensionality plasma simulations using the Boltzmann equation are only used in 
very limited applications with narrow distributions, small spatial extent, and short time 
durations. [4,5] The seven dimensional space is further exacerbated by the high velocity 
space that is unused except for tail of the distribution or energetic beams. Boundary 
conditions are difficult to implement in kinetic simulations. 

Particle in cell (PIC) plasma model apply the Boltzmann equation to representative 
superparticles which are far fewer (107) than the number of particles in the actual 
plasma (1020). [6] PIC simulations have similar limitations as simulations using kinetic 
theory due to statistical errors caused by the fewer superparticles. Boundary conditions 
are also difficult to implement in PIC simulations. 

The other end of the spectrum in plasma model involves taking moments of the 
Boltzmann equation and averaging over velocity space for each species which implicitly 
assumes local thermodynamic equilibrium. The resulting equations comprise the two- 
fluid plasma model. The two-fluid equations are then combined to form the MHD 
(magnetohydrodynamic) model. [7] However, in the process several approximations are 
made which limit the applicability of the MHD model to low frequency and ignores the 
electron mass and finite Larmor radius effects. 

The MHD model treats the plasma like a conducting fluid and assigning macro- 
scopic parameters to describe its particle-like interactions. Plasma simulation codes 
based on the MHD model have been very successful in modeling plasma dynamics and 
other phenomena. Codes such as MACH2 are based on arbitrary Lagrangian/Eulerian 
formulations. [8] ALE codes are well suited for simulating plasma phenomena involving 
moving interfaces. [9] However, ALE codes cannot be formulated as conservation laws 
and lack many of the inherent conservative properties. 

We have successfully implemented the MHD model in conservative form to simulate 
realistic 3-D geometries. [10-12] 

-£— + V • Tft = QNon-ideal (2) 

where Q is the vector of conserved variables, Th is the tensor of hyperbolic fluxes, and 
QNon-ideal contains the non-ideal (mostly parabolic) terms. (For algorithm details we 
refer the reader to our published articles, Ph. D. dissertations, and previous AFOSR 
technical reports. [10-16]) We formulated the algorithm implicitly and demonstrated 
the superior accuracy and convergence over an explicit mode. Figure 1 shows the 
convergence history using the implicit algorithm. The algorithm uses a finite volume 
implementation with a block-structured domain that accommodates arbitrary shapes. 

The lack of a divergence-free magnetic field is one of the most severe difficulties in 
algorithms which use the MHD model. The divergence of the magnetic field must be 
identically zero according to Maxwell's equation, V ■ B = 0. A common remedy is to 
perform a Hodge projection to "clean" the divergence component of the field. We have 
added a divergence cleaner to our MHD algorithm. However, this adds a nonphysical 
step which still does not completely eliminate the divergence. 

An even more severe limitation of the MHD model is the treatment the Hall effect 
and diamagnetic terms.   These terms represent the separate motions of the ions and 
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Figure 1: Convergence history using the SGS method to invert the implicit operator, n is 
the number of physical time iterations, m is the number of pseudo time subiterations, and 
sgs is the number of iterations of the SGS method. 



Figure 2: Dispersion relation for the fast and slow modes with OJ^TA = 3.5.  The dashed 

lines represent the ideal MHD modes. 

electrons that still preserve the plasma approximation of quasineutrality. The Hall effect 
and diamagnetic terms also account for ion current and the finite Larmor radius of the 
plasma constituents. These effects are important in many applications such as electric 
space propulsion thrusters: Hall thrusters, magnetoplasmadynamic (MPD) thrusters, 
Lorentz force thrusters. The Hall term is also believed to be important to electrode 
effects such as anode and cathode fall which greatly affect many directly coupled plasma 
applications. 

In general the Hall terms are difficult to stabilize because they lead to the whistler 
wave branch of the dispersion relation. The phase and group velocities of the whistler 
wave increase with frequency. See Figure 2 for the dispersion with a modest value of 

the Hall parameter (wCiTA)-1- 
We have treated the Hall term using a semi-implicit technique. [17,18] After the 

hyperbolic terms of eqn(2) are advanced, the Hall terms are treated independently. 
The conserved variables are then corrected. The procedure can be computationally 
intensive. The operator stencil uses 5 points in the sweep direction and 3 points in 
the orthogonal direction. The complete operator stencil is 45 points. We have found 
that the semi-implicit method works adequately for small Hall parameters, but becomes 
unstable or slow to converge for large Hall parameters often seen in applications. 

We have added multi-temperature capabilities to our MHD code. [16] The algorithm 
is based on an approximate Riemann solver to advance the conserved variables. The 
various energy loss and transfer mechanisms are then used to account for the change 
in temperature in each of the constituent species of the plasma and neutral gas. The 
multiple temperatures are then used to modify the ionization and recombination rate 
parameters. However, the (primary) hyperbolic algorithm is still a single fluid, single 
temperature. 



2.2 The Next Step: Two-Fluid Plasma Model 

The logical next step to extend the realistic geometry capabilities of the MHD model to 
the more physically accurate two-fluid model. The complexity of the two-fluid model is 
greater the MHD model but significantly less than the kinetic model. 

The two-fluid model is derived by taking moments of the Boltzmann equation for 
each species. The process of taking moments eliminates the velocity space and yields a 
representative fluid velocity for each species. The model has the same dimensionality 
as the MHD model except there are two fluids. (The details of the model are described 
in Section 2.4.1.) 

The physical accuracy of the two-fluid model is much better than the MHD model. 
The only approximation made is local thermodynamic equilibrium of each fluid but not 
with each other fluid. 

The two-fluid plasma equations are normalized and formulated in conservative form. 
A high resolution approximate Riemann solver is derived that accurately calculates 
the transport of the conserved quantities. The algorithm is implemented using finite 
volumes to allow for extending the algorithm to three-dimensions and to model realistic 
general geometries with body fitted computational grids. 

2.3 Research Objectives 

The objectives of the proposed project are to: 

• Derive an approximate Riemann solver for the two-fluid plasma model. 

• Investigate possible methods for numerical evaluation of the flux Jacobian. 

• Determine an appropriate flux limiter for the approximate Riemann solver to 
achieve a higher order accuracy algorithm. 

• Formulate an electromagnetics algorithm and couple the algorithm to the approx- 
imate Riemann solver. 

• Implement the algorithm with finite volume block-structured grids. 

• Validate the code with analytical results. 

2.4 Technical Description 

This section describes the details of the two-fluid plasma model beginning from the two- 
fluid equations derived from moments of the Boltzmann equation. Further details about 
the derivation of the model can be found in most advanced plasma physics texts. See for 
example Ref. [19]. The proposed conservative formulation and algorithm are presented. 
The formulation has many properties which simplify the nature of the algorithm. These 
properties are discussed. 

2.4.1    Two-Fluid Plasma Model 

The two-fluid plasma model is derived by taking moments of the Boltzmann equation 
[eqn(l)] for each species. The process of taking moments averages over velocity space 
to yield a characteristic fluid velocity for the distribution of each species. The averaging 



process implicitly assumes local thermodynamic equilibrium of each fluid. The moments 

are taken as: 

J \   Ot     collisions/ 

where X = l,mava,ma (vQ - (v)Q)2 for each plasma species a = ions, electrons. The 
fundamental equations for the two-fluid model are generated by taking moments of the 
Boltzmann equation, and the fundamental variables are generated by taking moments 

of the distribution function. 
Maxwell's equations describe the evolution of the electromagnetic fields. The fields 

couple to the ion and electron fluid variables and complete the model. 

V • E = e(ni - ne)/e0 

VB = 0 

^ = _VxE W 
dt 

e0-£T = VxB///0-j 
ot 

The evolution of the particle density of the ions and electrons is expressed by continu- 
ity equations with the source term equal to the difference of electron and ion ionizations 
and recombination. This is also the zeroth moment of the Boltzmann equation. 

drii     _   .       x      r. 
— + V ■ (riiVi) = Si,e (5) 

= nnni(av)i-ion + nnne(av)e-i0n - nine(crv)TeComb 

^+V(neve) = Siie (6) 
ot 

where n», ne, nn are the ion, electron, neutral number densities, vi; ve, are the ion 
and electron fluid velocities, and (av) are the interaction rate parameters for ion and 
electron impact ionization and recombination. Partial current densities can be defined 

as 

ji = eniVi, and   je = eneve. (7) 

where e is the electronic charge. The derivation presented here assumes singly ionized 
species, q = e. (For multiple charged ions, ne -»■ Zne where Z is the charge state.) 
Using the partial current densities, the particle continuity equations are then written 

as 

^■ + -V-ii = S^ (8) 
OT       e 

and 

ot      e 



The first moment of the Boltzmann equation yields momentum equations for each 
species. 

niirii t + ™ 
- Vpi + n.e (E + VJXB) + Re; - nimiWiVin    (10) 

nerne ^ + (v«.VK 

- Vpe - nee (E + ve x B) - Rei - nemeveven    (11) 

where E and B are the electric and magnetic fields, pi and pe are the ion and electron 
partial pressures, Ref is the electron to ion momentum transfer vector, and vin and ven 

are the ion-neutral and electron-neutral collision frequencies. 
Substituting the definitions of partial current densities and using eqns(8) and (9), 

the momentum equations are rewritten in conservative form for the partial current 
densities. 

at \erii      mi 

—E + -J.XB + —Re 
rrii rrii mi 

(12) 

die 

dt 
-V 

JeJe    ,      e 
 V  Pel 
ene      me 

 -E Je X B +  Rei + je Uen + — 
me me me \ ne J 

(13) 

The second moment of the Boltzmann equation yields energy equations for each 
species. 

2ni 

3 
-2ne 

m 
dt 

dTe 

dt 

+ (v< ■ V)T< 

+ (ve • V)Te 

= -PiV • Vi - V • qi + Pe: 

= -peV ■ Ve - V ■ qe + Pexte - Prad 

(14) 

(15) 

where Tit Te are the ion and electron temperatures, q*, qe are the ion and electron heat 
fluxes, PElti, Pextc are external input powers, Pcx is the charge exchange power, and 
Prad is the radiated power. The temperatures are related to the partial pressures by 

Pa = naTa (16) 

for a = {i, e}. The energy equations can be combined with the corresponding momen- 
tum equations to yield energy equations expressed in conservative form for the total 
energy. 

dt 
(£; + Pi) — 

erii 
3i-    E + 

Re mi3i ,   Sj^t.e (17) 
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dt 
(ee + Pe) — E + - 

RE mejl       , eeSit, 

where the total energy is defined by 

3    m      1 2      3 1 , 
Ei = -UiTi + -niTTliVi = -Pi + -TliTOi^ 

and 

(18) 

(19) 

ee = 2?e + 2neTneVe (20) 

2.4.2     Conservative Algorithm 

The two-fluid plasma model is now expressed in conservative form. 

dQ 
at 

+ V-Th = Qfo (21) 

where Q is the vector of conserved variables, TH is the tensor of hyperbolic fluxes, and 
Qforce is the forcing function. The vector of conserved variables is 

Q = 

rii 

ne 

3iy 

3i, 
3ex 

3ev 

3ez 

Si 

£B 

(22) 

The hyperbolic flux tensor in the x direction is 

F = 

iix- 
env + ±Pi 

erti 

Jex3ev 

en e 
■7ex Je 

(et + ?• 
-(ee+pe) 

lix. 
erii 

en- 

(23) 

The characteristic velocities will then be calculated to construct the approximate Rie- 
mann fluxes. 



In 1-D with an assumed ratio of specific heats 7 = 5/3, the flux Jacobian for the 
two-fluid equations is 

dF 
dQ 

3 en? 

em  ^2>nT 6  e2n? ) 

hx. /'Si. 
ene   ^ 2 n, 

0 1 

e 
0 Ü 
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The eigenvalues of the flux Jacobian give the characteristic velocities. 

(25) 

Acoustic speeds are defined as 

5Ti_ 
3 mi 

3 me 

5   Pi 
ZmiUi 
5    Pe 

(26) 

3 mene 

The presence of a complete set of eigenvalues proves that the system is hyperbolic. An 
approximate Riemann solver is appropriate. The eigenvalues for the two-fluid plasma 
model represent the combination of the drift speeds and thermal speeds for the electrons 
and ions. The speeds for the electrons are expected to be quite large, but much less than 
the speed of light. The large span of the eigenvalues makes the system stiff and more 
difficult to solve, particularly with an implicit method. The stiffness of the equations, 
particularly the source terms, is solved by treating the source terms implicitly. The 
details are described in Sec. 3.1.3. 

The hyperbolic fluxes of eqn(21) are discretized using a Roe-type approximate Rie- 
mann solver. [20] In this method the overall solution is built upon the solutions to 
the Riemann problem defined by the discontinuous jump in the solution between each 
pair of cells. The numerical flux for a first-order accurate (in space) Roe-type solver is 
written in symmetric form as 

Fi+1/2 = \ (Fi+i + Fi) - \Y.lk (Qi+i-Qi) lA*lr* (27) 

where rk is the kth right eigenvector, Afc is the absolute value of the kth eigenvalue, 
and lk is the kth left eigenvector. The values at the cell interface (i + 1/2) are obtained 

9 



Figure 3: Schematic of the arbitrary shaped three-dimensional finite volume cell to be used 
by the two-fluid algorithm. 

either by a simple average or by forming a more accurate Roe-average of the neighboring 
cells. The flux calculated as above is normal to the cell interface which is the desired 
orientation for applying the divergence theorem in a finite volume method. A typical 
three-dimensional, finite-volume grid cell is shown in Figure 3. 

The solution of Maxwell's equations [eqn(4)] is required at each time. For the prelim- 
inary, one-dimensional algorithm developed in this stage of the project, a magnetostatic 
model for the electromagnetic fields is assumed. The electric field is determined by solv- 
ing Poisson's equation with the charge density and the introduction of the electrostatic 
potential, 4>. Maxwell's equations then become 

V ■ E = -V4> = e(m - ne)/e0. (28) 

The applied magnetic field is constant. An assumption of quasineutrality (n, = ne) is 
not necessary. 

3    Project Implementation and Results 

3.1    Algorithm Details 

The two-fluid algorithm has been successfully implemented in one-dimension with an 
electrostatic field model. Ampere's law was modified by including an electrostatic po- 
tential which improves the quality of the solution for larger XD (XD « L) simulations 
by generating electric fields that simultaneously satisfy Ampere's law and Poisson's 
equation. The stiffness of the two-fluid equations was relaxed by implicitly treating 
the non-homogeneous source terms. The homogeneous fluxes were calculated using an 
approximate Riemann solver for each fluid. The non-homogeneous sources terms were 
then solved implicitly to complete the two-fluid solutions. 

3.1.1    Maxwell's Equations with Electrostatic Potential Correction 

Maxwell's equations couple the electron fluid with the ion fluid through the non- 
dimensional field equations. Ampere's law describes the time evolution of the electric 

10 



field in the presence of currents and magnetic fields. 

e0-Qj; = V x B/no - (29) 

However, the discretized equations do not guarantee the calcualted electric field satisfies 
Poisson's equation [eqn(28)] which describes the electrostatic electric field generated 
by a collection of charges. This problem is similar to the numerical generation of 
magnetic fields that are not divergence-free. Using the technique of Munz [21], Maxwell's 
equations were re-written to include an electrostatic potential, <j>, which propagated the 
error in eqn(28) out of the domain at the speed T. The modified equations became 

and 

^-rJV-E = rse(ni-n,)/eo 

(30) 

(31) 

3.1.2    Homogeneous Fluxes 

The two fluid system just described consists of two hyperbolic systems, electron fluid and 
ion fluid, which are coupled through Maxwell's equations source terms. It is important 
to note that the homogeneous part of the electron system depends only on the electron 
fluid variables, and the homogeneous part of the ion system depends only on the ion 
variables. As a result, separate Riemann solvers are used to solve the homogeneous parts 
of the electron fluid and the ion fluid. Each of the homogeneous hyperbolic systems is 
written in the form 

%+*■ 
ffc = 0 (32) 

where Q is the vector of piece-wise-constant, conserved variables and Th is the tensor 
of hyperbolic fluxes, as defined in eqns(22) and (23). 

The approximate Riemann solver solves the one-dimensional Riemann problems 
across each cell interface. Consequently, it is only necessary to include the flux per- 
pendicular to a face in our discretization. The discretized homogeneous hyperbolic 
equations are solved as presented in Sec. 2.4.2. 

The modified Maxwell's equations are solved with an approximate Riemann solver 
where the conserved vector is 

Q 

and the flux vector is 

Bx 

Ex 

> 

0 

T2EX 

(33) 

(34) 

For each system a matrix A is calculated such that AF = AAQ. For Maxwell's 
equations, A is simply the flux Jacobian matrix §§. For the fluid systems, A is the Roe 
matrix based on the flux Jacobian. [22] The eigenvalues, eigenvectors and characteristic 
waves are calculated from the A matrix. 

11 



3.1.3    Implicit Treatment of the Source Terms 

The stiffness of the two-fluid algorithm was generated by the large value of the right 
hand side of eqn(21). Therefore, the source terms are updated implicitly at which point 
the three separate systems (electron fluid, ion fluid, and electromagnetic fields) are 
treated as one large system. The full discretized equation with implicit source terms is 

At V 
(Fr+r/2-K-x/2)+r+1 (35) 

where ipn+1 is the source term evaluated at the n + 1 time step. The source term is 
expanded in a Taylor series to first order and the resulting Newton iteration is written 
as 

where AQ = Qn+1 — Qk and k is the iteration variable. 
After the numerical fluxes are calculated explicitly as described in the previous 

section, the source terms are solved implicitly. Within each iteration the linear system, 
eqn(36), is solved using a symmetric Gauss-Seidel method. The flux Jacobian in eqn(36) 
is recalculated and Q is updated after each iteration until the 2-norm of AQ has dropped 
by several orders of magnitude, after approximately three iterations. It is important 
to note that f^p- is local, and if) does not depend on the value of Q in adjacent cells. 
This means that the computational work required to solve eqn(36) increases linearly 
with the number of cells in our domain, even when the algorithm is extended to three 
dimensions. 

In many cases the different solvers can be updated using different time steps. For 
example, for MHD like problems the ion equations can be ignored for several time steps 
so a simplified system consisting only of Maxwell's equations and the electron equations 
is used. After several time steps the full system is used and the ion fluid is updated. 
The choice of time step depends on the respective stiffness of the source terms for each 
solver as well as the hyperbolic wave speeds. 

3.2    Coplanar Riemann Problem 

The preliminary algorithm was tested for its ability to capture shock and its ability to 
capture plasma phenomena such as Langmuir oscillations. 

The coplanar Riemann (or shock tube) problem is used to test the fundamental be- 
havior of the approximate Riemann solver. As expected from an approximate Riemann 
solver, wave structures are well captured. The behavior is best seen when the effect of 
the electromagnetic fields is eliminated by artifically setting the electron and ion charge 
to zero and reducing the effect of the large mass difference by setting the electron mass 
to 20% of the ion mass, me = 0.2mj. The electron and ion fluids then decouple and 
behave as independent fluids. Results are shown in Figs. 4 and 5. The coplanar Rie- 
mann problem is initiated with normalized electron and ion number densities of 4.0 on 
the right hand side of the domain and 1.0 on the left hand side of the domain. The 
normalized electron and ion temperatures are initialized at a uniform value of 10. The 
domain is discretized into 256 volumes. Fig. 4 shows the evolution of the electron and 
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Figure 4: Electron and ion number densities for a shock tube simulation. The shock wave, 
contact discontinuity, and rarefaction wave can be seen in each fluid. 
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Figure 5: Electron and ion current densities for a shock tube simulation. 
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Figure 6: Time history of the electron velocity measured at a fixed spatial location demon- 
strating Langmuir plasma oscillations. 

ion number densities after 150 time steps. The characteristic shock wave, contact dis- 
continuity, and rarefaction wave are clearly evident in both the electron and ion fluid. 
The more massive ion fluid has slower characteristic wave speeds. The sound speed 
varies like the squareroot of the mass. Fig. 5 shows the evolution of the electron and 
ion current densities in the longitudinal direction after 150 time steps. When the ef- 
fect of the electromagnetic fields is included, the faster electron fluid is slowed by the 
slower, massive ion fluid. The number density jumps are altered as the flow is limited 
by ambipolar motion. 

3.3    Langmuir Oscillations 

The ability to capture' gas dynamic waves as shown in the coplanar Riemann problem 
is expected from an approximate Riemann solver. The approximate Riemann solver 
for two fluid plasma model must also capture plasma wave behavior. This ability is 
demonstrated by simulating Langmuir plasma oscillations. Langmuir plasma oscilla- 
tions are the plasmas response to charge concentrations created by perturbations in the 
plasma. In one dimension, the equation of motion for electrons reduces to a second 
order differential equation for the particle position. 

dt2 mee0 

nee* 
(37) 

where wpe is the electron plasma frequency. If the plasma pressure is negligible and the 
fluid velocity is sufficiently small, the two fluid plasma model can produce Langmuir 
plasma oscillations. A sinusoidal perturbation is initialized to the electron fluid. 
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Figure 7:   Spatial structure of the electron density and velocity at single time during a 
Langmuir plasma oscillation simulation. 

The results are shown in Figs. 6 and 7. The theoretical plasma frequency as deter- 
mined from the previous equation is u>pe = 0.1466 for the normalized plasma parameters 
used in the simulation. The numerically generated frequency of upe = 0.1462 agrees 
with the theoretical value with an error of 0.27%. 

Though the results presented are from a simplified version of the proposed algorithm, 
the success and accuracy of the simulations demonstrate the ultimate potential for a 
new algorithm based on the two-fluid plasma model. 

3.4    Debye shielding 
In this problem sheet of charge is introduced near the center of the domain to an 
otherwise neutral plasma. The electrons and ions respond to shield out the electric field. 
The modified Maxwell's equations are used in this simulation because charge separation 
is the primary effect for this problem which has \D/L = 0.1, so it is important to 
maintain the correct divergence of the electric field. Furthermore, when the divergence 
correction is not used, the electric field at the center of the domain decays and the 
information about the static charge distribution is lost. This is a dynamic simulation 
which is stopped when the numerical dissipation brings the solution to a steady state. 

For the simulation results presented in Figs. 8 and 9, 1000 grid points are used. 
Without the sheet of charge the number densities would be uniform. Without the 
charged fluids the electric field would be uniform. The analytical solution is plotted in 
Fig. 9 for comparison. 

The analytical solution assumes constant temperature with Tj = Te. The number 
densities are assumed to be perturbed such that 7ij = 7iio(l—S) and ne = neo(l+5) where 
nio = ne0. Thermal conductivity is neglected from the calculated two-fluid solution, so 
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Figure 8: Spatial structure of the electron and ion number densities showing the charged 
fluids response to the sheet of charge. 
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Figure 9: Spatial structure of the electric field showing the shielding effect. Without the 
charged fluids the electric field would be uniform. The analytical solution for this problem 
is shown by the dotted line for comparison. 
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Figure 10: The variation of the Child-Langmuir space charged limited current as the dis- 
tance between the electrodes are adjusted. The data points are from numerical simulations, 

and the solid curve is predicted by the theory [eqn(38)]. 

the steady state solution is not in perfect thermal equilibrium which may explain the 
discrepancy with the exact solution in Fig. 9. 

3.5    Child-Langmuir Current Saturation 

The most significant accomplishment during this grant period has been the development 
of the approximate Riemann solver for the two-fluid plasma model. This section briefly 
describes the progression of the development. 

A fundamental limitation of MHD algorithms is the inability to capture inherently 
two fluid behavior, such as space charge effects. Space charge effects can occur when 
finite electric potentials are applied to the plasma or when the plasma comes in contact 
with insulating or conducting walls. Space charge effects can be investigated by consid- 
ering an applied electric potential across a vacuum with a plasma fluid at the boundary. 
The electron plasma fluid (for example) is extracted from the boundary and accelerated 
through the potential until it leaves the opposite boundary of the domain. Since the 
plasma is extracted from the boundary with negligible velocity before it is accelerated, 
the electron fluid density increases and a space charge, virtual cathode tends to form 
at the boundary. The virtual cathode retards the extraction of additional plasma from 
the boundary. The space charge effect limits the extracted current according to the 
Child-Langmuir law. 

(38) 
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which determines the saturation current obtained for an electrode spacing of L and an 
applied potential of <j>. 

Child-Langmuir current saturation is simulated with the two fluid algorithm. The 
results are presented in Fig. 10. The data presented illustrate the variation of the 
saturation current as the spacing between the electrodes is adjusted. The data points 
are generated from the numerical simulations, and the solid curve is the plot of eqn(38). 
The error in the fit at the extreme values of the potential are the result of numerical 
dissipation of the first-order flux calculation. It is expected that the fit would improve 
with a higher-order method. 

4    Professional Interactions 

4.1 Project Personnel 

The personnel who have been directly involved in this project are listed below. 
Name Position  

Uri Shumlak Assistant Professor 
D. Scott Eberhardt    Associate Professor 
Thomas R. Jarboe      Professor 
Chris Aberle Graduate Student 
John Loverich Graduate Student 

4.2 Collaborations 

4.2.1 Air Force Research Laboratory 

Dr. Robert Peterkin, Jr. of the Electromagnetic Sources Division of the Air Force 
Research Laboratory at Kirtland AFB on three-dimensional multigrid algorithms for 
MACH3 an development of a parallel PIC (particle in cell) code for microwave simu- 
lations. Knowledge developed in the area of relaxation schemes was implemented into 
the ICEPIC code to make a 3-D Poisson solver. The solver was needed to determine 
electric field concentration on a high power microwave source. 

4.2.2 University of Washington 

Prof. Scott Eberhardt of the Aeronautics and Astronautics Department and Prof. Randy 
LeVeque of the Applied Math Department on approximate Riemann solvers and their 
applications to multidimensional problems, in particular, the correction to transverse 
fluxes. 

Prof. Tom Jarboe of the Aeronautics and Astronautics Department on the MHD 
stability simulations of spheromaks in realistic three-dimensional geometries and the 
beta pressure limit of driven spheromak plasmas. This is an ongoing collaboration that 
resulted in several publications and an experimental project for Prof. Jarboe. 

4.3 Publications 
Two papers describing this project and related research were presented at the AIAA 
Computational Fluid Dynamics conference. One paper titled "An Approximate Rie- 
mann Solver for MHD Computations on Parallel Architectures" provided an overview 
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of the project. The other paper titled "Application of Analytical Methods to Com- 
puting Numerical Flux Jacobians" described the work on the analytical flux Jacobian 
calculation. 

5    Conclusions 

The research accomplishments of this research effort represent significant advances in 
the field of plasma dynamic simulations. This advancement is important because plasma 
researchers are increasingly finding that the assumptions made in the single-fluid MHD 
model are too restrictive to model selected plasma dynamic phenomena, and currently 
two-fluid plasma simulation codes have been limited to linearized models with only two 
spatial dimensions. The accomplishments indicate that the proposed research goals are 
being met. 

The successful development of a one-dimensional algorithm based on the two-fluid 
plasma model demonstrates the potential of the project, and it indicates that this 
project is reaching its objectives. The research related to this project has been presented 
at international conferences. Valuable collaborations have been formed with the Air 
Force Research Laboratory. 

The continuing development of this project will include making the algorithm more 
robust to handle electromagnetic fields, develop an electromagnetic solver for arbitrary, 
cell-centered grids, and extending the algorithm to three-dimensions. 
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