Metal Foams as Compact High Performance Heat Exchangers

K. Boomsma, D. Poulikakos, F. Zwick*

Laboratory of Thermodynamics in Emerging Technologies Institute of Energy Technology Swiss Federal Institute of Technology, Zurich

*ABB Corporate Research, Ltd., Baden-Dätwil, Switzerland

REFORT DOCUMENTATION FAGE

Form Approved OMB No. 0704-0188

				0701 0100	
Public reporting burder for this collection of information is estibated to average and reviewing this collection of information. Send comments regarding this bur	1 hour per response, including the time for re den estimate or any other aspect of this colle-	eviewing instructions, sea ction of information, incl	arching existing data sources, uding suggestions for reducing	gathering and maintaining the data needed, and completing g this burder to Department of Defense, Washington	
Headquarters Services, Directorate for Information Operations and Reports (070 law, no person shall be subject to any penalty for failing to comply with a colle-	04-0188), 1215 Jefferson Davis Highway, Su ction of information if it does not display a cu	ite 1204, Arlington, VA 2 urrently valid OMB contr	22202-4302. Respondents sho ol number. PLEASE DO NOT	uld be aware that notwithstanding any other provision of Γ RETURN YOUR FORM TO THE ABOVE ADDRESS.	
1. REPORT DATE (DD-MM-YYYY)	EPORT DATE (DD-MM-YYYY) 2. REPORT TYPE		3. DATES	COVERED (FROM - TO)	
30-05-2001	Workshop Presentations	rkshop Presentations		30-05-2001 to 01-06-2001	
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER		
Metal Foams as Compact High Performance Heat Exchangers Unclassified			5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER		
Boomsma, K.;			5e. TASK NUMBER		
Poulikakos, D. ;			5f WORK LINIT NUMBER		
Zwick, F. ;			51. WORK UNIT NOWIDER		
7. PERFORMING ORGANIZATION NAME AND ADDRESS			8. PERFORMING ORGANIZATION REPORT		
ABB Corporate Research, Ltd.			NUMBER		
Baden-Datwil, Switzerlandxxxxx					
9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS			10. SPONSOR/MONITOR'S ACRONYM(S)		
Office of Naval Research International Field Office			11. SPONSOR/MONITOR'S REPORT		
Office of Naval Research			NUMBER(S)		
Washington, DCxxxxx					
12. DISTRIBUTION/AVAILABILITY STATE	EMENT				
APUBLIC RELEASE					
,					
13. SUPPLEMENTARY NOTES					
See Also ADM001348, Thermal Materials Wor	kshop 2001, held in Cambr	ridge, UK on M	lay 30-June 1, 200	1. Additional papers can be	
downloaded from: http://www-mech.eng.cam.ac	c.uk/onr/				
14. ABSTRACT	1				
? Thermal management of IGBT?s? Metal foan	n heat exchanger configura	tion ? Experime	ents & Results ? N	Numerical Simulations ? Structure	
improvement ? Conclusions					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:	17. LIMITATION	18.	19. NAME OF R	ESPONSIBLE PERSON	
	OF ABSTRACT	NUMBER	Fenster, Lynn		
	Public Release	OF PAGES	ifenster@dtic.mil		
		21			
a. REPORT b. ABSTRACT c. THIS PA	AGE .		19b. TELEPHONE NUMBER		
Unclassified Unclassified Unclassifie	d	In		International Area Code	
			703767-9007		
			DSN		
			427-9007		

Contents

- Thermal management of IGBT's
- Metal foam heat exchanger configuration
- Experiments & Results
- Numerical Simulations
- Structure improvement
- Conclusions

Enhanced Heat Dissipation

- Thermal management of IGBT modules
 - Heat dissipation +100 W/cm²
 - Low, uniform operating temperatures increase chip life
- Current configuration
 - Simple flat plate
 - High coolant velocity
 - Significant temperature gradients on the chip
- Possible improvements
 - Implement a highly conductive solid
 - Increase heat convection area
 - Better flow mixing structures

Aluminum Foam Properties

- High surface area to volume ratio
 - ~3000 m²/m³ uncompressed (natural form)
 - $\sim 10,000 \text{ m}^2/\text{m}^3 \text{ compressed}$
- Highly conductive solid (~218 W/m•K)
- Tortuous flow path
- Easily machined to final size

10 cm Aluminum foam in as-manufactured, unaltered state (92% porous)

Aluminum foam (73% porous) compressed by a factor of four

Typical Heat Exchanger Configurations

- High flow velocity
- Mixing depends on upstream channel configuration

- Relatively simple
- Minimal increase in surface area
- Improved mixing through turbulence enhancers

Metal Foam Heat Exchanger Configurations

- Similar to turbulence enhancement array
- Lower flow resistance
- Less foam required
- Lower clogging likelihood

- Distributes heat throughout the coolant stream
- Provides a better basis for comparison of metal foam performance data

Compressed Foam Experimentation

- Utilize compressed foam—specific surface area ~10,000 m²/m³
- Porosities between 48 89%
- Coolant (water) flow velocities up to 2 m/s
- Convection coefficient (measured at plate) +150 kW/m²•K

Experimental Apparatus

- Pressure drop measurement
- Coolant temperature at various locations
- USB data acquisition device
 - Temperatures
 - Pressure
- 1200 W delivered by cartridge heaters
- Power input
 - Oscilloscope measurement
 - Temperature change in coolant

Pressure Drop and Heat Convection Coefficients

 Forchheimer-extended Darcy equation

$$\frac{\Delta p}{L} = \frac{\mathbf{n}}{K} v + \frac{c_F}{\sqrt{K}} \mathbf{r} v^2$$

- *c_F* Forchheimer coefficient
- K permeability
- L foam length
- v flow velocity
- **Dp** pressure difference
- m dynamic viscosity
- r fluid density

• Convection coefficient measured at plate

$$h'' = \frac{\dot{m}c(T_{w,outlet} - T_{w,inlet})}{(T_{plate} - T_{w,inlet}) \bullet A_{foam-plate}}$$

A area

T

- c specific heat
- *h*" convection coefficient
- *m* mass flux
 - temperature

Flow Characterization Experimental Results

- Porosity decrease = pressure drop decrease
- Significant pressure drop compared to flat plate

- Monotonic increase of K with porosity
- Increase in sensitivity of K with increase in porosity

Heat Transfer Experimental Results

- Higher solid fraction provides a higher heat convection coefficient
- Results are independent of heater attachment

- Control of temperature gradient
- Poor performance by plate
- Note: Limited range for full power for the bare plate

Power-Thermal Resistance Comparison

- Basis for real-world performance comparison
- Favorable power—thermal resistance curve
- Poor performance by bare plate

Locate optimum configuration

Scaled Performance Comparison

Heat Exchanger with Turbulence

0.2 mm Narrow Gap (clear)

- Scaled to predict behavior with 50% ethylene glycol-water solution
- Assumptions/Considerations
 - Identical K and c_F
 - Similar operating temperature
 - Increase in flow rate compensates lower heat capacitance

Numerical Approaches

- Experimentally measure flow characteristics
 - Requires a wide variety of foam samples
 - Large time expenditure
 - Limited applicability
 - Foam configuration
 - Coolant type & flow rate range
- Pore-based analysis
 - Idealized three-dimensional solid matrix structure
 - Determine periodic flow behavior
 - Calculate interstitial convection coefficient

Foam Structure Idealization

- 14-sided tetrakaidecahedron
- Tetrahedral angle (~109°)
- Adjustments of shape

5 mm Close-up of a single open cell

Model of the tetrakaidecahedron

Periodic Cell Boundary Conditions

- Periodic Length L
 - Velocity

 $\vec{V}(x, y, z) = \vec{V}(x + L, y, z) = \vec{V}(x + 2L, y, z) = \dots$

- Pressure

$$p_x(x, y, z) = -Bx + P(x, y, z)$$

where

$$B = \frac{p_x(x, y, z) - p_x(x + L, y, z)}{L}$$

then

$$p_{y,z}(x, y, z) = p_{y,z}(x + L, y, z) = p_{y,z}(x + 2L, y, z) = ...$$

Pressure at (x,y_i,z_i)

Cell Number

Visualization of the Flow Field

- Colored pressure gradient
- Red particle traces
- Non-turbulent flow
 - $Re_{\kappa} < 100$ where - $Re_{\kappa} = \rho V K^{\frac{1}{2}} \mu^{-1}$
- Vortex development in wake
 - Describe lack of "transitional range" in porous media
 - Insight into dispersion effects

Periodic Configuration

- Tetrakaidecahedron base
 unit
- Not numerically optimized to minimize surface energy
- Possible tunneling effects
- Inconsistent porosity
- Improvement needed

Improvement in Periodic Cell Representation

Wetted Form

- Wetted Weaire-Phelan form
- Numerically optimized surface energy
- 0.3% lower surface energy
- Composition
 - 8 equal volume cells
 - 2 dodecahedra
 - 6 fourteen sided figures
 - 2 hexagonal faces
 - 12 pentagonal faces

Conclusions

- Aluminum foam heat exchanger experiment:
 - Significantly higher heat convection coefficient
 - More uniform chip operating temperature
 - Favorable power input to thermal resistance curve
- Approach of pore-based numerical analysis
 - Analyze "transitional" region in porous media
 - Possibly directly calculate dispersion effects
 - Reduce extensive experimentation