
AFRL-IF-RS-TR-2002-10
Final Technical Report
February 2002

INTEGRATION OF NEXT-GENERATION
INTRUSION DETECTION SYSTEM/EVENT
MONITORING ENABLING RESPONSES TO
ANOMALOUS LIVE DISTURBANCES
(NIDES/EMERALD) INTRUSION DETECTION
ENGINES WITH THE INTERNATIONAL OFFICE
OF STANDARIZATION (ISO) ARCHITECTURE

SRI International

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J640/M522

20020610 045
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFODPA) and is releasable to the National Technical
Information Service (NTIS). At NTTS it will be releasable to the general public,
including foreign nations.

AFRL-DF-RS-TR-2002-10 has been reviewed and is approved for publication.

APPROVED: ^Jjt^JLy <f. ?L*JL

Stanley E. Borek
Project Engineer

FOR THE DIRECTOR:

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send,comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jofferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (070401881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

FEBRUARY 2002
3. REPORT TYPE AND DATES COVERED

Final Apr98-Oct01
4. TITLE AND SUBTITLE

^E
D^

TION °F NEXT-GENERATION INTRUSION DETECTION SYSTEM/EVENT MONITORING
ENABLING RESPONSES TO ANOMALOUS LIVE DISTURBANCES (NIDES/EMERALD)

fs™SS™N ENGINES WI™ THE mTEmAT™AL 0FFICE OF STANDARDIZATION

6. AUTHOR(S)

Ulf Lindqvist and Phillip A. Porras

6. FUNDING NUMBERS

C - F30602-98-C-OO59
PE- 62301E
PR - F821
TA- 11
WU-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International
Computer Sciences Laboratory
333 Ravenswood Avenue
Menlo Park California 94025-3493

. PERFORMING ORGANIZATION
REPORT NUMBER

P01715-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFGB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-10

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Stanley E. Borek/IFED/(315) 330-2095

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words!

This report describes the expert-system-based intrusion detection technologies developed in the EMERALD program, and the
research and experimentation performed with those components. The forward-reasoning expert-system tool P-BEST, which
has been used to build signature-analysis engines for IDES, NIDES and now EMERALD, is described in detail. We show
how data from network traffic interception, from host operating system audit trails, and from critical applications can be
analyzed by P-BEST-based applications for real-time intrusion detection. The host-based and network-based intrusion
detection monitors that we built have participated in various evaluations and experiments, confirming their detection
capabilities and general applicability. We conclude that EMERALD'S expert-system approach to misuse detection is well
suited for the complex event analysis needed for wide attack coverage and near-zero false alarm rates.

14. SUBJECT TERMS

Intrusion Detection System, Expert System, Computer Network, EMERALD, NIDES, IDS
15. NUMBER OF PAGES

112
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pre, WHS/DIOR, Oct 94

Contents

1 Introduction 1
1.1 EMERALD 1
1.2 Experience gained 4
1.3 Scope of this report 9/10

2 An Expert System for Intrusion Detection 11
2.1 Introduction 11
2.2 Monitoring misuse through expert systems 12
2.3 Integration of P-BEST into IDS components 20
2.4 eXpert rule development examples 23
2.5 Performance 33
2.6 Related work 35
2.7 Limitations 36
2.8 Conclusions 36

3 Network-based Detection 39
3.1 Introduction 39
3.2 Architecture 40
3.3 Transport protocols 40
3.4 Application protocols 49
3.5 Related work 58
3.6 Conclusions 58

4 Host-based Detection 59
4.1 Introduction 59
4.2 Audit data vs. network traffic 60
4.3 eXpert-BSM knowledge base 62
4.4 eXpert-BSM architecture and features 68
4.5 Operational characteristics 73
4.6 Related work 77/78

4.7 Conclusions 77/78

Application-based Detection 79
5.1 Introduction 79
5.2 Background 80

5.3 Application-integrated data collection 82
5.4 Design principles and implementation 84
5.5 Monitor performance 89
5.6 Related work 90

5.7 Improvements 91
5.8 Conclusions 92

Evaluation and Experimentation Summary 93
6.1 The DARPA evaluations 1998 and 1999 93
6.2 Integration experiments 93
6.3 Operational evaluation 94

Concluding Remarks 95

IX

List of Figures

1.1 The Generic EMERALD Monitor Architecture 2

2.1 Production rule structure 13
2.2 An example of a ptype declaration 15
2.3 An example of fact matching 16
2.4 An example of a rule declaration 16
2.5 Example usage of external C types 18
2.6 A heuristic rule for detecting common buffer overrun attacks. . . 27

3.1 Data flow architecture for eXpert-Net 40

4.1 Example surveillance policy 67
4.2 The P-BEST ptype for BSM events 69
4.3 The components and data flow in the eXpert-BSM process chain

(real-time mode) 70
4.4 An example alert message from eXpert-BSM 71
4.5 An example of multihost deployment of eXpert-BSM 72
4.6 Two of the views of the EMERALD Java Alert Viewer. 74

5.1 The Apache request loop 86
5.2 The architecture and data flow 86
5.3 Possible scenario for Web server request handling 90

ill

List of Tables

2.1 Rule set for detection of failed authentication attempts 25
2.2 Facts for TCP SYN flood detection 29
2.3 Rule set for detection of TCP SYN flood attacks 31
2.4 Performance of sample BSM and TCP analysis engines 34

5.1 Market shares for the top Web server products 85
5.2 Performance measurements 90

IV

Chapter 1

Introduction

The EMERALD (Event Monitoring Enabling Responses to Anomalous Live
Disturbances) environment is a distributed scalable tool suite for tracking ma-
licious activity through and across large networks [46]. EMERALD introduces
a highly distributed, building-block approach to network surveillance, attack
isolation, and automated response.

1.1 EMERALD

EMERALD targets both external and internal threat agents that attempt to
misuse system or network resources. It is an advanced highly software-en-
gineered environment that combines signature-based and probabilistic analysis
components with a higher-level aggregation and correlation units, all of which
can be used iteratively and hierarchically. Its modules are designed to be in-
dependently useful, dynamically deployable, easily configurable, reusable, and
broadly interoperable. Its design scales well to very large enterprises. The
objectives include achieving innovative analytic abilities, rapid integration into
current network environments, and much greater flexibility of surveillance when-
ever network configurations change.

EMERALD employs a building-block architectural strategy using indepen-
dently tunable distributed surveillance monitors that can detect and respond
to malicious activity on local targets, and can interoperate to form an analysis
hierarchy. The basic architectural structure is shown in Figure 1.1. The figure
shows analysis units surrounding the target-specific resource objects. It also
shows the possible integration of third-party modules, including inputs derived
from other sources, and outputs sent to other analysis platforms or adminis-
trators and emergency response centers. This architecture is explained in the
following text.

A key aspect of this approach is the introduction of EMERALD monitors.
An EMERALD monitor is dynamically deployed within an administrative do-
main to provide localized real-time analysis of infrastructure (e.g., routers or

1

Monitor API

(Correlation of External Results)

Monitor API
[Result* Dissemination)

Figure 1.1: The Generic EMERALD Monitor Architecture

gateways) and service (privileged subsystems with network interfaces). An
EMERALD monitor may interact with its environment passively (reading ac-
tivity logs or network packets) or, potentially, actively (via probing that sup-
plements normal event gathering [31]). As monitors produce analytical results,
they are able to disseminate these results asynchronously to other client moni-
tors. Client monitors may operate at the domain layer, correlating results from
service-layer monitors, or at the enterprise layer, correlating results produced
across domains.

The EMERALD framework supports the formation of a layered analysis
hierarchy for recognition of more global threats to interdomain connectivity,
including coordinated attempts to infiltrate or destroy connectivity across an
enterprise.

Equally important, EMERALD does not require the adoption of this analysis
hierarchy. Monitors themselves stand alone as self-contained analysis modules,
with a well-defined interface for sharing and receiving event data and analyt-
ical results among other third-party security services. EMERALD'S signature
analysis subsystem employs a variant of the P-BEST (Production-Based Ex-
pert System Toolset) expert system that allows administrators to instantiate a
rule set customized to detect known "problem activity" occurring on the anal-
ysis target. EMERALD also has a probabilistic analysis subsystem based on
Bayesian techniques [59].

Fundamental to EMERALD'S design is the abstraction of analysis seman-
tics from the monitor's code base. Under the EMERALD monitor architecture,

all analysis-target-specific information is contained within each resource object,
specifying items from a pluggable configuration library. The resource object
encapsulates all the analysis semantics necessary to instantiate a single service
monitor, which can then be distributed to an appropriate observation point in
the network. Resource-object elements customize the monitor for the analy-
sis target, containing data and methods, such as the event collection methods,
analytical module parameters, valid response methods, response policy, and
subscription list of external modules with which the monitor exchanges alarm
information. This enables a spectrum of configurations from lightweight dis-
tributed monitors to heavy-duty centralized analysis platforms.

In a given environment, service monitors may be independently distributed
to analyze the activity of multiple network services (e.g., FTP, SMTP, HTTP)
or network element (router, firewall). Resource objects are being developed for
each analysis target. As each EMERALD monitor is deployed to its target,
it is instantiated with an appropriate resource object (e.g., an FTP resource
object for FTP monitoring, and a BSM resource object for BSM Solaris kernel
analysis). The monitor code base itself is analysis target independent. As
EMERALD monitors are redeployed from one target to another, the only thing
that is modified is the content of the resource object.

Resource objects lend themselves to the key project objectives of reusability
and fast integration to new environments. The project is developing a library
populated with resource objects that have been built to analyze various service
and network elements. Installers of EMERALD will be given our monitor code
base, which they do not have to touch. They can then download appropriate
resource objects associated with their analysis targets, modify them as desired,
and instantiate the monitors with the downloaded resource objects.

The project is also working toward new techniques in alarm correlation and
management of analytic services. The concept of composable surveillance will
allow EMERALD to aggregate analyses from independent monitors in an ef-
fort to isolate commonalities or trends in alarm sequences that may indicate
a more global threat. Such aggregate analyses are classified under four gen-
eral categories: commonality detection, multiperspective reinforcement, alarm
interrelationships, and sequential trends.

Briefly, commonality detection involves the search for common alarm indica-
tors produced across independent event analyses. In such cases, the results from
one monitor's analyses may occur under a threshold that warrants individual
response, but in combination with results from other monitors may warrant a
global response. This approach can address low-rate distributed attacks and
cooperative attacks, as well as widespread contamination effects. Multiperspec-
tive analysis refers to efforts to independently analyze the same target from
multiple perspectives (e.g., an analysis of a Web server's audit logs in conjunc-
tion with Web network traffic). Alarm interrelationships refer to EMERALD'S
ability to have a monitor model an interrelationship (cause and effect) between
the occurrence of alarms across independent analysis targets. For example, an
alarm regarding activity observed on one host or domain may give rise to a
warning indicator for a different threat against a second host or domain. Last,

sequential trends in alarms seek to detect patterns in alarms raised within or
across domains. These patterns of aggressive activity may warrant a more global
response to counteract than can be achieved by a local service monitor.

The EMERALD project represents an effort to combine research from dis-
tributed high-volume event correlation with over a decade of intrusion detection
research and engineering experience. It represents a comprehensive attempt to
develop an architecture that inherits well-developed analytical techniques for
detecting intrusions, and casts them in a framework that is highly reusable,
interoperable, and scalable in large network infrastructures. Its inherent gener-
ality and flexibility in terms of what is being monitored and how the analytical
tools can be customized for the task suggest that EMERALD can be readily
extended for monitoring other forms of malicious and nonmalicious "problem
activities" within a variety of closed and networked environments.

1.2 Experience gained

This section summarizes our experience in the EMERALD development thus
far.

1.2.1 Earlier experience

EMERALD has drawn on our earlier experience in developing and using IDES
(Intrusion Detection Expert System [37]) and its successor NIDES (Next-Gen-
eration IDES [3]. Particularly for those people who are not aware of our earlier
work, we summarize a few conclusions.

• From IDES, we attained considerable flexibility and runtime efficiency in
the use of P-BEST [37]), which we have now adapted into EMERALD'S
pluggable analysis-engine framework as a self-sufficient component. The
P-BEST approach proved to be very useful, and rules are relatively easy
to write. P-BEST was adapted by Alan Whitehurst from its previous
incarnation in MIDAS [53]. IDES also gave us the second generation of
our statistical algorithms [27], begun in 1983 in an earlier project [28].

• From the NIDES development [3], several observations influenced the
EMERALD effort. (1) Much of the available audit data (e.g., from C2
Unix and BSM) was not naturally well suited for our analytical purposes,
and different sources of data would have been desirable. Greater abstrac-
tion would have been useful. (2) Although we did experiment with some
higher-level audit data (from database management systems in relatively
closed environments), attempting to detect misuse was less fruitful be-
cause the security policies of the DBMSs generally permitted what was
closer to acceptable behavior. (3) We recognized that the NIDES statisti-
cal detection system as then configured would not scale well to distributed
and networked environments, for two reasons. First, the measures needed

to be treated in their entirety, rather than subsetted - as would be de-
sirable for lightweight instances. Second, the results were not in a form
that could be used recursively at a higher-layer instance. (4) We recog-
nized the importance of the administrator interface, and observed that
its complexities are unavoidable if flexibility in detection and response is
required. However, we initially spent too much effort on developing our
own GUI tools, until we decided to rely on some newly developed generic
tools. In retrospect, we believe we would have progressed faster if we had
had more emphasis on software engineering and on in-house applications.

• From the NIDES Safeguard effort [4], we observed that profiling function-
ality proved to be more effective than profiling individual users. That ap-
proach resulted in far fewer profiles, each of which tended to be much more
stable. The resulting false-positive and false-negative rates were reduced
considerably. We concluded that statistical analyses could be very effec-
tive in dealing with systems and subsystems such as servers and routers.
(As a consequence, EMERALD subsequently broadened the statistics al-
gorithms to improve handling of network protocols, by having a master
profile of client usage against which a single service can be compared. For
example, anonymous FTP sessions can simultaneously be profiled against
the master profile for anonymous sessions.)

These observations have had a significant impact on the EMERALD ar-
chitecture and its implementation, particularly in moving to a distributed and
networked target environment.

1.2.2 EMERALD experience

The underlying generic analysis-engine infrastructure uniformly wraps the sig-
nature analysis, probabilistic engine, and any future engines we might wish to
integrate. The infrastructure provides the common EMERALD API, event-
queue management, error-reporting services, secondary storage management,
and internal configuration control. The infrastructure was assembled first for
the EMERALD statistics component (estat), but proved its generality when we
attempt to integrate P-BEST as the EMERALD expert system (eXpert). The
integration of P-BEST inference engines required some linkage code to bind
with the underlying EMERALD libraries, and is now automatically generated
as part of the compilation process.

After more than two years developing EMERALD, our experience thus far
is summarized as follows.

• Generality of approach. We have attempted to solve some difficult prob-
lems rather generally, and have typically avoided optimizing our approach
to any domain-specific assumptions. In particular, the decoupling of
generic and target-specific concepts simplifies reusability of components
and extensibility, and enhances integration with other data sources, anal-
ysis engines, and response capabilities. The hierarchically iterative nature

permits analyses with broader scope across networks and distributed sys-
tems. Although the advantages of such a farsighted approach may not be
evident until EMERALD is more widely used and extended to new appli-
cation areas, we firmly believe that this approach can be very instructive to
us and to other groups, from the perspective of research and development
potential - and can have major long-term advantages. (Platform-specific
optimizations are of course possible, if they are deemed necessary.)

Software engineering. We believe that our strong emphasis on good soft-
ware engineering practice in EMERALD has already had substantial pay-
offs, particularly in enabling us to rapidly incorporate different analytic
engines into the generic framework. (The modularization and integration
of the P-BEST expert system component is discussed below.) This em-
phasis clearly improves the general evolvability of the system, and also
has significant benefits with respect to interoperability - within EMER-
ALD, with independently developed analysis engines, with analysis data
from arbitrary sources, and in terms of the distribution of analysis results.
The software-engineering emphasis also helps facilitate the iterative use
of EMERALD analytic engines by making the layered instances of the
system symmetric.

Scope of applicability. We believe that our attention to software engineer-
ing simplifies the broadening of EMERALD'S domains of applicability - for
example, detecting, analyzing, and responding to potential threats to sur-
vivability, reliability, fault tolerance, and network management stability.
There is nothing intrinsic in the EMERALD architecture and implemen-
tation that would limit its applicability. The application to requirements
other than security is basically a matter of writing or modifying the rele-
vant resource objects and configuring the system appropriately, and is not
expected to require major changes to the existing analysis infrastructure.

> Relative merits of various paradigms. It should be no surprise to those in
the intrusion detection community that signature-based analysis is good
at detecting and identifying well-defined known scenarios, but very lim-
ited in detecting hitherto unknown attacks (except for those that happen
to trigger existing rules serendipitously). On the other hand, statisti-
cal profile-based analysis can be effective in detecting unknown attacks
and providing early warnings on strangely deviant behaviors; however,
the statistical approach does not naturally contribute to an automated
identification and diagnosis of the nature of an attack or other type of
deviation that it has never identified before. Although inferences can be
drawn about the nature of an anomaly, based on the statistical measures
that were triggered, further reasoning is typically necessary to identify
the nature of the anomaly - for example, is it an attack in progress, or a
serious threat to system survivability.
Precisely because it is aimed at detecting potentially unforeseen threats
rather than very specific scenarios that can be easily detected by signature-

based analyses, the statistical component can be expected to turn up false
positives. In the EMERALD framework, this is not necessarily a problem.
We believe it is much more effective for the resolver to discard statistical
anomalies that it deems nonserious rather than try to reduce the false
positives in the statistical component itself (which requires greater knowl-
edge of the potential threats - which is what can otherwise be avoided).
Furthermore, once new attacks and threats are identified, it is desirable
to add new rules to the expert-system rule base.

Overall, we believe that each type of analysis (such as the expert system,
the statistical component, the resolver, or any additional analysis engines)
will have its own areas of greatest effectiveness, but that no one paradigm
can cover all types of threat. Therefore we endorse a pluralistic approach.
Inference and reasoning engines, Bayesian analysis, and other paradigms
may also be applicable to detection, identification, and resolution of the
nature of anomalies and attacks.

Local, hierarchical, and distributed correlation. One of the most far-
reaching observations relates to the importance of being able to correlate
local results from different target platforms at the same or different layers
of abstraction, and also to correlate results relating to different aspects
of system behavior. The inherent layered iterative nature of the EMER-
ALD architecture is significant in this respect, because the same analytic
component can be used at different layers of abstraction. We are just now
beginning to conduct some experiments to demonstrate the power of this
approach. In so doing, we are extending the existing EMERALD resolver
to interpret the results of different analytic engines and to recommend re-
sponses appropriate to the specific layer of abstraction. Further analytic
engines may also be required at various layers of abstraction, such as some
reasoning tools.

Importance of further research, prototype development, and experimen-
tation. EMERALD continues to explore advanced concepts, as did IDES
and NIDES. Although most of the necessary analysis infrastructure is now
in place, R&D advances are still required for EMERALD relating to in-
ference necessary to enhance correlation in the analysis of and response
to coordinated attacks and interdependent anomalies in distributed envi-
ronments, and in generalizations of applicability beyond security. These
are ongoing efforts.

Interoperability. The Common Intrusion Detection Framework (CIDF)
and the ongoing IETF standardization effort are important. Both are ex-
pected to increase the interoperability within and among different analysis
and response systems. EMERALD is very much in line with these efforts,
and compatibility is not expected to be a problem. CIDF interface defini-
tions are based on an architectural decomposition that is aligned closely to
that of EMERALD'S monitor design. In particular, EMERALD'S target-
specific event-generation components are equivalent in function to CIDF

E-boxes; EMERALD'S statistical and signature analysis engines are equiv-
alent in function to CIDF A-boxes; EMERALD'S resolver is equivalent in
function to a CIDF R-box. In hierarchical composition, an EMERALD
service layer monitor is capable of passing alerts to a domain monitor.
The service layer monitor can operate as a CIDF E-box, and the domain
monitor can operate as a CIDF A-box. CIDF working documents are
available online (http://www.isi.edu/~brian/cidf/).

1.2.3 EMERALD'S expert system

With respect specifically to the integration of P-BEST into EMERALD [32],
our experience has strongly reinforced our conceptual framework.

• The software engineering quality of the EMERALD monitor architecture
was put to a test when a summer visitor previously unfamiliar with the
system joined us to integrate the signature analysis engine into the generic
monitor framework. The statistical anomaly detection engine had been
developed in concert with the EMERALD API, and the NIDES expert-
system-based signature engine was the first additional component to use
the API. The revision and integration procedure went very rapidly (about
a man-week), and minor problems that were discovered and solved were
due to constraints in the expert-system tool rather than in the EMERALD
API. This supports our claim that the EMERALD API is well suited
for integration of various kinds of third-party modules into the monitor
architecture. Although this is not an exciting gotcha, it was important to
the development effort.

• The data-driven nature of the EMERALD monitors makes the intermon-
itor and intramonitor message passing a central function of the API. The
programmer is provided with a set of abstract data types, including a set
of methods to handle messages and fields within messages. An example
of a powerful feature of the EMERALD message format is the possibility
of denning a message field as an array of message fields. This allows the
programmer to effectively encapsulate one EMERALD message inside an-
other. In the signature-analysis engine, this capability is used to include
the original event record(s) in every alert message sent to the resolver,
in addition to the information provided by the triggered rules. This also
allows a hierarchy of analysis units (including resolvers) to be able to pass
along any or all information produced earlier.

• The generality of the API with respect to the abstract data types is also
reflected by the ease with which we were able to write a code-generation
utility for the interface code that connects the expert system to the mon-
itor. This utility is used when redirecting the signature-analysis engine
to a completely new event stream, using the information in the resource
object to fit the engine to the analysis target. The purpose of the utility
is to relieve the creator of a resource object from the inner workings of

8

the monitor. The API design made it easy to isolate the target-dependent
code and let it be machine generated.

1.3 Scope of this report

This report covers many, but not all aspects of the EMERALD research and de-
velopment program. The project, for which this report serves as a final technical
report, was focused on development of expert-system-based intrusion detection
technology, and integration with other Information Assurance & Survivability
technologies. Other EMERALD activities, such as probabilistic detection and
correlation technologies, mission-based alert correlation, correlated attack mod-
eling, and attack response, are described in the project reports pertaining to
their specific projects, respectively.

9/10

Chapter 2

An Expert System for
Intrusion Detection

This chapter describes P-BEST [32], the expert system tool that is the basis
of all rule-based intrusion detection monitors in EMERALD. In addition to the
present project, the work on P-BEST was supported by DARPA/AFRL under
contract number F30602-96-C-0294.

2.1 Introduction

Intrusion detection components analyze system and user operations in computer
and network systems in search of activity considered undesirable from a secu-
rity perspective. Data sources for intrusion detection may include audit trails
produced by an operating system, or network traffic flowing between systems,
or application logs, or data collected from system probes (e.g., file system alter-
ation monitors). The collected data may be stored for batch-mode analysis or
immediately analyzed in real time.

For the most part, the various strategies for intrusion detection are not
unique to the field, but are rather derived from applications established by
other fields: knowledge-based expert systems, pattern recognition algorithms,
statistical profiling techniques, neural networks, Bayesian statistics, information
retrieval algorithms, state-transition models, Petri-net techniques, and so forth.
Among the more widely used strategies proposed early within the intrusion
detection community are signature-based analyses.

Intuitively, we describe a signature-based intrusion-detection component as
an algorithm with which we specify the characteristics of malicious behavior
and then monitor an event stream for activity that maps to the target behav-
ior. Various signature-based systems have been developed, ranging from simple
(but efficient) pattern-matching systems to more sophisticated algorithms that
employ more general directed reasoning systems such as rule-based expert sys-
tems. In this chapter, we describe in detail the principles and language of one

11

forward-chaining rule-based expert system construction toolset called P-BEST
(Production-Based Expert System Toolset), which has been continually applied
to intrusion detection applications for more than a decade, but never before
widely presented in this level of detail.

By using a general expert system, we can describe the behavior of our
signature-based intrusion detection component within an established theoret-
ical framework. This choice also facilitates the evolution of the component,
because new rules can be added without changing existing rules and without
creating any undesired dependency. Traditional reasons for not choosing an
expert system are related to low performance, difficult integration with other
program components, and language complexity. However, in this report we
show that P-BEST is sufficiently fast for real-time detection of currently widely
used attack methods—SYN flooding and buffer overruns—against which sys-
tems usually have no defense mechanisms. We also show that P-BEST provides
exceptional interoperability with native operating system libraries, and is easily
integrated into a larger software framework for distributed anomaly and misuse
detection. We also argue that while the production rule language is powerful,
it remains easy to use for beginners.

2.2 Monitoring misuse through expert systems

Expert systems provide strategies and mechanisms for processing facts regarding
the state of a given environment, and deriving logical inferences from these facts.
With respect to intrusion detection, a fact maps to an event that is recorded
and evaluated by the expert system. This process of fact evaluation leading
to the assertion of a new derived fact or conclusion is referred to as modus
ponens, which states that given (p => q) and p we deduce q. Systems that
iteratively apply modus ponens under a bottom-up reasoning strategy (from
evidence evaluation to conclusion) are referred to as forward-chaining systems.
Forward-chaining expert systems are well suited for reasoning about activity
within an event stream. A forward-chaining rule-based system is data driven:
each fact asserted may satisfy the conditions under which new facts or conclu-
sions are derived. Alternatively, backward-chaining systems employ the reverse
strategy; starting from a proposed hypothesis they proceed to collect support-
ive evidence. Backward-chaining systems are typically applied to problems of
diagnosis, whereas forward-chaining strategies dominate systems involving prog-
nosis, monitoring, and control applications.

Using a forward-chaining rule-based system, one may establish a chain of
rules, or rule set, with which a series of asserted facts may lead the system to
deduce that a targeted multistep scenario has occurred. Within an intrusion
detection system, event records are asserted as facts and evaluated against pen-
etration rule sets. As individual rules are evaluated against facts and satisfied,
the individual event records provide a trail of reasoning that allows the user
to analyze the evidence of malicious activity in isolation from the full event
stream. In this section, we discuss the basic elements of forward-chaining rule-

12

based systems, and provide an overview of the P-BEST expert system and its
language.

2.2.1 Components of forward-chaining systems

The underlying strategy of a forward-chaining reasoning system involves the
atomic evaluation of each fact presented to the system against conditional ex-
pressions that, when satisfied by the arguments of a fact, establish new derived
facts or conclusions. In this context, a fact is a statement that is asserted into
the system and whose validity is accepted (for example, "smoke is present").
Facts are often implemented as attributes and values that represent the state of
the environment to which the expert system is applied. A rule is an inference
formula of the form <j>i,. . . ,<f>n infer ip. Inference formulae can be alternatively
expressed as production rules, such as IF ... THEN Production rules are
the basic elements through which an expert system is programmed to interpret
and discover meaning from environmental signals that it receives, as in

IF smoke is present THEN fire is near.

A production rule consists of two parts, the antecedent (or conditional part,
left-hand side) and the consequent (or right-hand side) as shown in Figure 2.1.
When the conditions (predicate expressions) in the antecedent are satisfied,
the rule is activated. The logical component through which an expert system
evaluates a fact against the production rules is referred to as the inference
engine. As an antecedent is found to be satisfied by the attributes of a fact,
the consequent of the rule is asserted to hold, and the rule is said to have fired.
Expert systems might additionally allow the inference engine to initiate action
within the consequent, for example:

IF fire is near THEN initiate sprinkler.

Abstractly, the assertion of action, such as the initiation of a response, based
on a fact derived from an inference engine is placed within the purview of a
decision engine, though in practice inference and response may be merged.

IF
conditioni
condition^ > antecedent

THEN
derived-facti
derived-fact2 > consequent

Figure 2.1: Production rule structure.

13

The collection of facts available to the system at any point in time is called
the factbase (or working memory) of the system. The collection of rules is
called the knowledge base (or production memory). Although separation of
data (facts) from knowledge (rules) is an important abstraction within rule-
based expert systems, some texts use the terms more loosely and consider the
factbase to be part of the knowledge base. Another important abstraction is
the separation of knowledge from the inference engine. In practice, an infer-
ence engine, also known as an expert system shell, provides several advantages
over a one-of-a-kind system written in a procedural language. In particular, a
knowledge-independent shell can be used to develop expert systems for many
different knowledge domains. The knowledge in the expert system can also be
incrementally extended by adding new rules, as opposed to implementing large
portions of the decision process all at once. Next, we present the principles and
language of P-BEST, a construction toolset for building customized inference
engines, and discuss its applicability to intrusion detection.

2.2.2 An overview of P-BEST

The Production-Based Expert System Toolset (P-BEST) was originally writ-
ten by Alan Whitehurst, and employed in the Multics Intrusion Detection and
Alerting System (MIDAS) [53], which performed misuse detection on the Na-
tional Computer Security Center's Internet-connected mainframe, Dockmaster.
P-BEST was later enhanced at SRI by Whitehurst, and later by Fred Gilham,
and was employed in an early version of the Intrusion Detection Expert System
(IDES) [36], and later Next-Generation IDES (NIDES) [3]. See Section 2.3 for
details on the application of P-BEST on these systems.

The P-BEST toolset consists of a rule translator, a library of runtime rou-
tines, and a set of garbage collection routines. When using P-BEST, rules and
facts are written in the P-BEST production rule specification language. The
rule translator, pbcc, is then used to translate the specification into a C language
expert-system program. This expert system can then be compiled into either of
two forms: a stand-alone self-contained executable program or a set of library
routines that implement the core P-BEST inference engine, and which can be
linked to a larger software framework. P-BEST has several features that make
it well suited for the type of application described in this report:

• The P-BEST language is small and relatively intuitive to use and extend.

• It is easily applied to a variety of problem domains. P-BEST provides
a general-purpose forward-chaining inference engine that can be targeted
to a specific application domain. P-BEST does not inherently depend on
the structure of the input data stream or the inference objectives of the
application that employs it.

• By using translation instead of interpretation of rules, P-BEST can be
used to build expert systems for performance-demanding applications.

14

A pre-compiled expert system, rather than an expert-system interpreter,
provides a significant advantage in performing real-time event analysis.

• Pre-compilation also allows P-BEST components to be integrated well
into larger program frameworks, as they are easily called from, and can
call out to, other C libraries. Arbitrary C functions can be called from
the antecedent or consequent of any P-BEST rule. Thus, it is possible
to write powerful rules without adding unnecessary complexity to the P-
BEST language.

2.2.3 The P-BEST language

P-BEST provides a production rule language from which users may specify the
inference formula for reasoning and acting upon facts asserted into its factbase
from external sources or derived from the satisfaction of other production rules.
This section provides a brief overview of the principal elements of this language,
with common examples of its usage. The language overview provides a primer
for understanding several examples of intrusion detection rules later in this
chapter.

In P-BEST, the structure of a fact is specified by the user through a tem-
plate definition referred to as a pattern type or ptype. For example, to define
a ptype named event that consists of the four fields event-type (an integer), re-
turn-code (an integer), username (a string), and hostname (a string), we define
the fact template as in Figure 2.2. Facts from such a ptype definition could
be constructed through the monitoring of audit records and asserted into the
factbase for evaluation against the available production rules.

ptype [event event_type:int,
return_code:int,
username:string,
hostname:string]

Figure 2.2: An example of a ptype declaration.

Fact evaluation is performed by the P-BEST inference engine, where the
attributes of the fact are mapped against the predicate expression(s) of each
rule antecedent. For example, we may want to determine whether the asserted
fact represents an unsuccessful login attempt, which we shall refer to as e. To
express this criterion using a mathematical notation style, we can form the
statement in Equation 2.1.

Here, S represents the set of all facts known to the P-BEST factbase, and
within which a production rule antecedent postulates the existence of a fact

(3eJ ^(e € S) A event(e) A (eevent_type = login) A {ereturn_code = bad-password)) (2.1)

15

e that satisfies specific properties. In the P-BEST language, the statement in
Equation 2.1 placed in the antecedent of a rule would be written as in Figure 2.3.

[+e:event I event_type == login,
return.code == BAD_PASSWORD]

Figure 2.3: An example of fact matching.

The term e: event allows one to assign an alias e to one fact (of possibly
several) that satisfies the antecedent for the duration of the rule. The plus (+)
sign after the opening bracket represents an existential quantifier that allows
the rule to check for any fact that satisfies the conditions of the antecedent.
Alternatively, a minus (-) sign searches for cases where no fact in the factbase
satisfies the conditions of the antecedent. For example,

[-event Iusername == "GoodGuy"]

evaluates to true if there is no event in the factbase that has been asserted on
behalf of "GoodGuy."

The plus and minus tests have corresponding assert and delete actions that
can appear in the consequent of a rule. For example, to assert a new fact of
ptype bad_login and give its fields initial values, we can write

[+bad_loginIusername = e.username, hostname = e.hostname]

To be deleted from the factbase, a fact must be matched and given an alias
in the antecedent before it can be deleted in the consequent. This is illustrated
in the example of a complete rule named Bad-Login in Figure 2.4.

1
2
3
4
5
6

rule[Bad_Login(#10;*):
[+e:event 1 event_type == login,

return.code == BAD.PASSWORD]

[+bad_login| username = e.username,
hostname = e.hostname]

7 Me]
8
9

[! Iprintf ("Bad login for user '/.s from \
host "/.s\n", e.username, e.hostname)]

10]

Figure 2.4: An example of a rule declaration.

The Bad_Login rule in Figure 2.4 also demonstrates how the evaluation of
an asserted fact can be used to derive subsequent facts that may themselves
drive new inferences. That is, in the above rule, should a login event be encoun-
tered with a return code of BAD_PASSW0RD, the rule creates a new fact of ptype
bad_login, which saves the username and hostname of the event; the rule also
destroys the event fact e from the factbase. Using a mathematical notation, we
can represent this state transition in our factbase from S to a desired new state

16

S' as in Equation 2.2 (this excludes lines 8 and 9 in Figure 2.4).

(3e) ((e e S) A event(e) A (eevent_tyPe = W*™) A (ereturrl_code = bad.password)j

\- (S' = S- {e} U {badJogin(&) | (6U = eu) A (6h = d)})
(2.2)

Within parentheses after the rule name (line 1), there is a semicolon-sepa-
rated list of options. The option #10 means that this rule is given a ranking (pri-
ority) of 10. Priorities allow one to specify well-defined orders in the sequences
for rule evaluation, and are primarily used for rules required to be evaluated first
for initialization purposes, or that must be evaluated last to perform garbage
collection. The star option (*) indicates that the rule is repeatable, that is,
the rule is allowed to fire repeatedly even if no other rule is fired in between.
Thus, a key function of the consequent is to alter the state of the factbase such
that the antecedent is not satisfied indefinitely (e.g., the consequent may mark
or remove a fact). The arrow delimiter (==>) separates the antecedent and the
consequent (line 4).

The [! I . . .] clause (line 8) within the consequent illustrates how the P-
BEST inference engine may call out to native C functions should action be
warranted when the antecedent is evaluated to true. Both inference and action
can be taken directly within the P-BEST inference engine. P-BEST recognizes
most of the standard library C functions, which may be invoked directly via
the [! I. ..] clause, and which may refer to ptype attributes directly. User-
defined C functions and auxiliary variables may also be invoked and referenced,
respectively. To do this, we must declare our intentions to reference C variables
and functions using the P-BEST external type declaration mechanism xtype. For
example, the following external declarations will allow P-BEST to recognize a
user-defined C function called native „probe () returning an integer and an integer
variable end.of.stream as follows:

xtype [native_probe: intfunc]
xtype [end_of_stream: int]

We can then employ our native C routine and variable directly in a P-BEST
production rule, as illustrated in Figure 2.5. The antecedent [?l .. .] clause
(line 3) is a query clause used to evaluate conditional requirements. This rule will
check to see whether the end_of .stream variable has been set to 1, and if not,
it will set the variable to the return code of the function native.probeO (line
5), which is invoked in the consequent. This native.probe() could, for example,
provide an interface to the host operating system that allows the expert system
to retrieve application records, which it may then assert as facts in the factbase.
The rule also gives an example (line 6) of how a field in an existing fact can
be modified; in this case, the field recent of the fact counter, aliased in the
antecedent, is incremented by 1.

To further improve the performance of the expert system, rules can be dis-
abled and enabled dynamically through actions in the consequents of rules. A
rule can even disable itself, which means that it can fire once, at most, unless

17

1
2
3

rule[get_native_record(-99;*):
[+c:counter]
[?l'end.of„stream != 1]

4
S
6
7

[! 1'end_of_stream = native.probeO]
[/clrec_cnt += 1]

]

Figure 2.5: Example usage of external C types.

enabled again by another rule. To disable a rule, we can put the following action
in a consequent:

[-#rulename]

To enable a rule, we can change the minus sign in the above statement to a
plus sign. In addition, a rule can be declared as disabled from start by adding
a single minus sign to the list of options after the rule name, for example:

rule[rulename(#10;*;-):

Using these features, we can build preconditional requirements that can en-
able or disable whole portions of the knowledge base, depending on the current
state of the environment being monitored. For example, rules pertaining to the
analysis of a service A can be dynamically added or removed from the knowledge
base by the expert system itself, depending on whether service A is currently
enabled or disabled within the analysis target. Another example is when the
analysis is extended with previously disabled rules due to an increased level of
suspicion reported by the basic rule sets.

Another powerful feature of P-BEST is the ability of rules to uniquely mark
and unmark facts, and to test for these marks. This can be used when we want
to give several groups of mutually exclusive rules the chance to examine a fact
before it is deleted from the factbase. Each rule will evaluate the fact, and if the
antecedent is satisfied, the consequent of the rule will mark the fact. This will
allow the rule to avoid re-firing, while not having to remove the fact completely
from the factbase. When all such rules have evaluated (and if necessary marked)
the fact, the fact can then be removed by a lower-priority fact-removal rule that
is run last. For example, to match an event that is not marked with CHECKED,
we can put the following test in the antecedent of our rule:

[+e: evenfCHECKED]

To mark a matched event fact e with CHECKED, we can add the following
action to the consequent:

[$le:CHECKED]

Alternatively, to unmark a fact we simply use a caret (") instead of the dollar
sign ($):

["le:CHECKED]

Finally, we can use the dollar sign to check for a marked fact, as follows:
[+e:event$CHECKED]

18

2.2.4 P-BEST language simplicity and usability tested in
student experiment

Although the P-BEST language has proven itself suitable for intrusion detec-
tion systems, it is in fact also a general language for building rule-based expert
systems in many different applications. The close integration with C makes it
unnecessary to include more than the basic operations in the P-BEST language
itself, because any needed operation can be designed as a C function and called
from the antecedent or consequent of a P-BEST rule. Thus, the P-BEST lan-
guage can be kept small and simple, resulting in a very low learning threshold
for beginners.

In addition to its use in intrusion detection system development, P-BEST has
recently for the first time been used for laboratory exercises in a university course
in applied computer security at Chalmers. In addition to the educational goals
of these exercises, we wanted to learn what amount of instruction is required for
beginners when applying P-BEST to intrusion detection analysis and thereby
see whether the experiment would support or contradict our hypothesis that
P-BEST is easy to use for beginners.

The assignment was to build a system that could be used to automatically
detect attacks against a file transfer (FTP) server. For evaluation of their re-
sulting system, the students were given a very large data file (3 megabytes of
text) containing recorded network data representing actual FTP transactions.
A small number of real and synthetic intrusions were mixed with a large number
of normal transactions, and the students were to use their system to find those
intrusions. It was supposed to be a pedagogic effect that the file was too large
to be easily examined by hand, because this is the very reason for having auto-
matic intrusion detection tools. It was also required by the students to include
in their lab reports a discussion of their experiences of using the tool.

There were 87 students who participated in the assignment, and with a few
exceptions they worked in pairs, making a total of 46 groups. The estimated
maximum working time was two lab sessions of 4 hours each, plus another 8
hours of homework to prepare the lab sessions and to complete the report.
Out of the 46 groups, 25 had built a system that gave the completely correct
answer. An additional eight groups would most likely have got the correct result
if they had not all misinterpreted a vaguely formulated part of the instructions.
Only a handful of groups failed to hand in a report before the given deadline.
Most students reported that they found the exercise interesting, and some even
took the time to give detailed suggestions of improvements to the tool. As we
had expected, being used to writing programs in a procedural style, they had
some initial difficulties in declarative programming. In summary, we claim that
the student experiment shows that P-BEST has a low learning threshold for
beginners and is thereby suitable both for building user-customizable intrusion
detection systems and for student exercises in computer security courses.

19

2.3 Integration of P-BEST into IDS components

For more than 10 years, P-BEST has been successfully integrated into several
intrusion detection systems (IDSs) that represent the state of the art for their
time. The application of P-BEST to intrusion detection began in the main-
frame world of Multics and lands in present time with the highly distributed,
scalable, and network-oriented EMERALD (Event Monitoring Enabling Re-
sponses to Anomalous Live Disturbances) environment. It is not only the IDSs
that have changed over time; P-BEST itself has been continuously improved
as the requirements and its operational environment have changed. However,
performance and language simplicity are issues that have had top priority from
the beginning, and are no less important today.

2.3.1 P-BEST in MIDAS

P-BEST was developed at SRI International and first deployed as the core of MI-
DAS, which provided real-time intrusion and misuse detection for the National
Computer Security Center's networked mainframe, Dockmaster, a Honeywell
DPS-8/70 running Multics [53]. Audit data preprocessing and command moni-
toring was performed on the Dockmaster, and the data was sent to a separate
Symbolics Lisp machine where the expert system and the user interface were
running.

MIDAS used both static and dynamic knowledge for detecting intrusive user
behavior. The static knowledge was represented in so-called immediate attack
heuristics written as P-BEST rules that would trigger on events that were con-
sidered anomalous regardless of previous system activity. In terms of dynamic
knowledge, MIDAS recorded user and system statistics in a database that would
represent normal behavior. It is interesting to note that it was in fact another set
of P-BEST rules—the user anomaly heuristics and the system state heuristics—
that used threshold values derived from the statistics database to distinguish
anomalous user and system behavior from normal activity. Thus, the P-BEST
inference engine was the sole analysis component in MIDAS.

2.3.2 P-BEST in IDES and NIDES

In 1983, SRI International began research on statistical techniques for audit-
trail reduction and analysis [17]. This research led to the development of a
prototype IDES, capable of providing real-time detection of security violations
on single-target host systems. Originally, IDES used only statistical anomaly
detection [16, 27], but later a component for misuse detection based on static
knowledge was added, using P-BEST [36]. The two components were fed the
same audit records, but performed their inferences and reporting independently.

Next, SRI began a comprehensive effort to enhance, optimize, and re-en-
gineer the earlier IDES prototype into a production-quality intrusion detec-
tion system with the name Next-Generation Intrusion Detection Expert Sys-
tem (NIDES). Just like its predecessor, NIDES has both a statistical anomaly

20

detection component and a rule-based misuse detection component [3]. Again,
P-BEST was the expert system shell of choice for the rule-based component, but
P-BEST was first extensively revised. Among other things, the revision gave P-
BEST a new syntax and a very tight coupling to the C programming language.
While the early version of P-BEST used in MIDAS and IDES compiled rules
into Lisp object code, the new version produced C source code. NIDES collects
host audit trail data from different host systems and converts it to the NIDES
audit record format. The current version of NIDES has a default rulebase of 39
rule sets (69 total production rules) but also allows the user to write his or her
own rules (that, for example, are specific to the user's environment or policy)
and has a mechanism for dynamically adding new rules at runtime.

2.3.3 P-BEST in the EMERALD eXpert

The EMERALD environment is a distributed scalable tool suite for tracking
malicious activity through and across large networks [46]. EMERALD employs a
building-block architectural strategy using independent distributed surveillance
monitors that can analyze and respond to malicious activity on local targets,
and can interoperate to form an analysis hierarchy. The generic EMERALD
monitor architecture is designed to enable the flexible introduction and deletion
of analysis engines from the monitor boundary as necessary. In its dual-analysis
configuration, an EMERALD monitor instantiation combines signature analysis
with statistical profiling to provide complementary forms of analysis over the
operation of network services and infrastructure. In general, a monitor may
include additional analysis engines that can implement other forms of event
analysis, or a monitor may consist of only a single resolver implementing a
response policy based on intrusion summaries produced by other EMERALD
monitors. Monitors also incorporate a versatile API that enhances their ability
to interoperate with the analysis target, and with other third-party intrusion
detection tools.

Underlying the deployment of an EMERALD monitor is the selection of a
target-specific event stream. The event stream may be derived from a variety
of sources, including audit data, network datagrams, SNMP traffic, application
logs, and analysis results from other intrusion detection instrumentation. The
event stream is parsed, filtered, and formatted by the target-specific event-
collection methods provided by the monitor's pluggable configuration library,
referred to as the resource object. Event records are then forwarded to the
monitor's analysis engine(s) for processing.

The EMERALD eXpert (pronounced E-expert) is a generic signature-analy-
sis engine based on the expert system shell P-BEST. The eXpert resource object
has two parts, one of which consists of the configuration files for the EMERALD
API that define the transports used for message passing (e.g., files or network
connections), the message templates, and so forth, for the particular analysis
target. The other part of the resource object is a P-BEST source file containing
the fact type (ptype) declarations and rules. In the ptype declarations, the user
must specify to what message field (if any) the ptype field corresponds.

21

Under EMERALD'S eXpert architecture, special-purpose rule sets are en-
capsulated within resource objects that are then instantiated with an EMER-
ALD monitor, and which can then be distributed to an appropriate observation
point in the computing environment. This enables a spectrum of configurations
from light-weight distributed eXpert signature engines to heavy-duty central-
ized host-layer eXpert engines, such as those constructed for use in NIDES
and MIDAS. In a given environment, P-BEST-based monitors may be inde-
pendently distributed to analyze the activity of multiple network services (e.g.,
FTP, SMTP, HTTP) or network elements (e.g., a router or firewall). As each
EMERALD eXpert is deployed to its target, it is instantiated with an appro-
priate resource object (e.g., an FTP resource object for FTP monitoring), while
the eXpert code base remains independent of the analysis target.

EMERALD also introduces a target-independent code generation utility that
allows one to automatically produce the library interfaces necessary to integrate
a P-BEST expert system into the EMERALD monitor infrastructure. This
utility effectively relieves the creator of a resource object from dealing with the
internal operation of the eXpert code base, even when redirecting the eXpert
to a completely new event stream. This automated generation utility both
enhances the rapid integration of eXpert to new analysis targets, and simplifies
the process of augmenting the rule base with new heuristics. The basic operation
of an eXpert analysis engine is as follows:

1. On startup, eXpert is initialized and its interface routine waits for mes-
sages on one or several transports, as specified in the configuration files of
the resource object.

2. When an event record is received in the form of an EMERALD message,
the message is matched against an interface data structure associated with
the ptype definition in the eXpert's P-BEST factbase.

3. The message content is transferred to the interface data structure, which
in turn is used to assert a fact into the expert system factbase.

4. The eXpert interface component hands over control to the expert system
inference engine.

5. If a rule is fired, in which the consequent specifies that an alert shall be
generated, the alert is propagated back to the analysis engine's interface
component, which in turn composes and sends the alert on to the EMER-
ALD resolver. The resolver operates as the monitor's decision engine, and
can invoke local responses based on the alert or propagate the alert on
to subscribers of the monitor's results (including administrative display
interfaces).

6. When there are no more rules that can fire, the expert system returns
control to the interface routine that again starts waiting for incoming
messages.

22

In the following section, we discuss examples of how eXpert can be used to
analyze very different types of event streams.

2.4 eXpert rule development examples

Throughout its usage, P-BEST inference engines have implemented a variety of
intrusion detection rule sets for detecting and responding to numerous forms of
malicious activity. We describe the application of P-BEST in reasoning about
attacks represented in two data streams: Solaris 2.5.+ audit trails, and TCP/IP
packet streams. The examples illustrate the declarative style of the language,
and how event streams can be represented and analyzed.

2.4.1 Examples of BSM audit trail analysis

The first example of an event stream to be analyzed is the audit trail produced by
the Solaris Basic Security Module (BSM) from Sun Microsystems [55]. The audit
records are normally saved in a file, but we have developed a BSM collection
unit that receives audit records from the OS kernel in real time, and formats and
sends each record as an EMERALD message to the target monitor for analysis.

For all the rules that analyze BSM data, there is a ptype called bsm_event
into which the relevant fields from incoming messages are mapped. There is also
a rule that has highest priority and copies the time of every incoming bsm_event
fact into a new time fact, and finally a rule with lowest priority that removes
the bsm_event fact after all the other rules have had a chance to look at it. For
the sake of brevity, these ptype definitions and administrative rules are omitted
from the examples.

Failed authentication attempts

As an example of the declarative programming paradigm that P-BEST sup-
ports, we present a set of rules that are designed to detect a number of failed
authentication attempts within a certain time window. The example illustrates
how facts are created in rule consequents to keep state information between in-
coming events, and how the rule designer can make sure that facts are removed
from the factbase when they are no longer needed.

Let us assume that we want to raise an alert if x user authentication failures
occur within y seconds for a monitored target. A user authentication failure is
defined as the case when either an invalid username or an invalid password is
given to one of the programs login, telnet, rlogin, rshd, or su. To accomplish
this, we may employ the rule set presented in Table 2.1, which is described as
follows:

• Al, A2: For every incoming event that is a user authentication failure,
save the event information in a bad.login fact and increment the counter for
current bad logins (current _bl_cntr) by 1. The reason for having two rules is
to separate the case where the username is invalid (Al) from the case where the

23

username is valid but the password is invalid (A2). In the latter case, we want
to include the username in the information we save and therefore need a rule
consequent that is different from the former case where there is no username
reported in the audit record.

• A3: When the current.bl-cntr counter has the value x, send an alert
and create a max_bl_reached fact to indicate that the authentication failure
threshold was reached.

• A4: If there exists a max-bl_reacb.ed fact, then loop through all saved
bad-login facts. For every bad-login fact, print the information contained in
the fact to a log file and delete the fact from the factbase.

• A5: If there exists a max-bl_reach.ed fact but no bad-login facts (i.e., they
were all printed and deleted by rule A4), then delete the max_bl^reached fact
from the factbase.

• A6: If there exists a bad-login fact, but no max_bl_reached fact, and the
difference between the bad-login timestamp and the current event timestamp
is more than y seconds, then delete the bad-login fact from the factbase and
decrement the current_bl_cntr by 1.

Buffer overrun attacks

Buffer overrun attacks are a common way for attackers to gain super-user priv-
ileges after first breaking into an unprivileged user account. Typically, a priv-
ileged (setuid to root) program is called with an extremely long and carefully
crafted argument that overflows memory buffers and alters the program exe-
cution [8]. In principle, it would require a fair amount of programming skills
and patience to exploit a buffer overrun vulnerability, but ready-to-use exploit
programs that can be downloaded from Internet sites give immediate super-
user access when executed. Here, we present an example of a simple heuristic
P-BEST rule that detects the behavior of most of the exploit programs. For
example, it has been tested against buffer overrun exploits that are based on
subverting Solaris 2.5 eject, fdformat, ffbconfig, and ufsrestore.1

The heuristic rule is based on the following observations of the audit trail
characteristics of common buffer overrun exploits:

• We can detect the attack by analyzing a single exec system call audit
record, as suggested in [6].

• To determine that the exec call concerns a setuid program (otherwise, it
would not be a target for attack), we simply match only the audit records
for which the effective user id and real user id fields are different.

• The argument passed to the exec call is relatively long (because it must
overflow a buffer and contain executable code), making the length of the
entire audit record significantly exceed the length of almost all normal
setuid exec calls.

1 Numerous additional buffer overrun attacks employ an attack strategy identical to that
of the four attacks discussed here. All should be subject to detection by this rule.

24

Table 2.1: Rule set for detection of failed authentication attempts.

l

2

3

4

5
6
7
8

9
10

11

12
13
14
15
16
17

18

19
20

21
22

23
24

rule[Al(*):
[+e:bsm_event"A12]

[?le.header_event_type == 'AUE.login I I

e.header_event_type == 'AUE.telnet I I

e.header_event_type == 'AUE_rlogin II
e.header_event_type == 'AUE_rshd II

e.header.event.type == 'AUE_su]

[?|e.return_return_value == 'INVALID_USER]
[+cc: current_bl_cntr]
[-max_bl_reached]

[+bad_login I
timestamp = e.header.time,
audit_seq_no = e.msequenceNumber,

username
command
etype
hostname

portID
processID
textList =

[/ccI value += 1]
[$|e:A12]

= "invalid username",
= e.header.command,
= e.header_event_type,
= e.subject_hostname,
= e.subject_port_id,
= e.subject _pid,
= e.textList]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

rule[A2(*):
[+e:bsm_event"A12]
[?Ie.header_event_type

e.header_event_type
e.header_event_type
e.header_event_type
e.header_event_type

[?Ie.retura_return_value
[+cc: current_bl_cntr]
[-max_bl_reached]

[+bad_login I
timestamp
audit_seq_no

username
command
etype
hostname
portID
processID
textList

[/ccI value
[$le:A12]

]

'AUE_login I
'AUE_telnet I
'AUE_rlogin I
'AUE_rshd I
'AUElsu]
'INVALID.PWD]

e.header„time,
e.msequenceNumber,

» e.subj ect_runame,
= e.header.command,
= e.header_event_type,
= e.subj ect.hostname,
= e.subject_port_id,
= e.subject_pid,
= e.textList]

1]

continues on next page

25

continued from previous page

25
26
27
28
29
30
31
32
33
34
35
36
37

25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

38
39
40
41
42
43
44
45
46
47
48

rule[A3(*):
[-max_bl_reached]
[+cc:current_bl_cntr I value == 'x]
[+ts:time"A3]

==>
[! |printf("ALERT: Max Bad Logins \n")]
[+max_bl_reached I value = 1]
[$lts:A3]
[!IEXpertReport('eXpertHessagePointerString,

1042, "description", 'pTypeString,

"MAX LOGIN ALERT",
"ruleName", 'pTypeString, "A3", "")]

]

rule[A4(*):
[+max_bl_reached]
[+bc:bad_login]
[+cc:current_bl_cntr]

[! Iprintf ("C/,s): '/.s from V.s on V.s port "/.d,
PID = y.d, time = */.d, seq no = V.d \n",
bc.textlist, be.command, bc.username,
be.hostname, bc.portID, bc.processID,
bc.timestamp, bc.audit_seq_no)]

[/ccI value -= 1]
[-Ibc]

]

rule[A5(*):
[+mx:max_bl_reached]
[-bad.login]

[-Imx]
]

rule[A6(*):
[+ts:time"A6]
[-max_bl_reached]
[+bc:bad_login]
[+cc:current_bl_cntr]
[?l(ts.sec - bc.timestamp) > 'y]

[/cclvalue -=1]
[-Ibc]
[$lts:A6]

]

26

• By necessity of the applicable hardware (Sun and Intel), the exec argu-
ment contains binary opcodes in the range of ascii control characters.
While such a property may not necessarily hold on all possible hardware
platforms, this heuristic works exceptionally well for our purposes.

The P-BEST rule that uses the observations above to detect buffer overrun
attacks is shown in Figure 2.6. This simple heuristic rule is not a foolproof
way to detect all possible buffer overrun attacks, but it is remarkably efficient
in terms of coverage and correctness; it detects most common attacks and has
not produced any false positives when tested on a collection of more than 35
million audit records in which the location of buffer overflow attacks was known
a priori.

1 rule[BSM_LONG_SUID_EXEC(*):
2 [+e:bsm.event]
3 [?|e.header_event_type == >AUE_EXEC II
4 e.header_event_type == >AUE_EXECVE]
5 [?|e.subject_euid != e.subject_ruid]
6 [?I contains (e.exec_args, ""\\") == 1]
7 [?|e.header_size > 'NORMAL.LENGTH]
8 ==>
9 [!Iprintf("ALERT: Buffer overrun attack \
10 on command '/.s\n", e.header_command)]

11]

Figure 2.6: A heuristic rule for detecting common buffer overrun attacks.

To determine a suitable value for the NORMAL.LENGTH threshold parameter,
we have analyzed in the order of 4 million audit records representing normal
system usage (of which more than 29 thousand were exec events) in addition to
audit records representing common buffer overrun attacks. This analysis gave
the following results:

• All the attacks we tested produce an exec audit record with a record length
of at least 500 bytes.

• Only 0.15 percent of the normal exec audit records were longer than 400
bytes.

Consequently, by setting the threshold to 400 and adding the conditions
for setuid and control characters, false positives are effectively eliminated while
exploits of the described type are detected.

2.4.2 Network-based traffic analysis

In addition to its extensive application to the area of audit trail analysis, P-
BEST is now being applied to the analysis of network traffic streams. This work
includes the analysis of TCP/IP packet streams for low-level TCP- and IP-layer
attacks (i.e., attacks that target vulnerabilities at the transport layer and below)
as well as higher-layer attacks involving vulnerabilities of application-layer (or
network service-layer) protocols, such as FTP, SMTP, and HTTP.

27

Attack description: SYN flood attack

The SYN flood attack is a denial-of-service attack that prevents the target
machine from accepting new connections to a given IP port [52]. Briefly, the
attack exploits a resource exhaustion vulnerability in the way operating systems
handle TCP/IP connections. A TCP/IP connection is established through a
three-step handshake, in which the client sends a SYN packet, followed by the
server responding with a SYN-ACK packet, which is then acknowledged by the
client with an ACK packet. Of course, by no means is there an expectation that
all TCP/IP handshakes run to completion. When the SYN packet is received,
the server allocates an entry in a finite queue of pending connections. We refer
to this stage as a half-open connection. The queue entry will either be released
when the final ACK is received by the server, or the server will proceed to
timeout the incomplete handshake and release the entry.

An attacker can exploit the TCP/IP connection logic by initiating a series of
SYN packet connection requests to a server, but not completing the handshakes
with an ACK packet. Internally, the server's queue of pending connections
for the port will eventually be exhausted and will not be released until the
timeout periods for the unfinished connections expire. As a result, subsequent
connection requests to the server that occur while the connection queue is full
will be dropped, effectively denying access to the server by other legitimate
clients.

Event stream format

The requirements for detecting the occurrence of a SYN flooding attack against
a host are rather minimal. From the perspective of TCP/IP traffic monitoring,
the analysis engine need only monitor SYN-ACK and ACK packet exchanges to
identify incomplete TCP/IP handshakes. In this example, the traffic monitor is
placed on a segment of the network capable of observing traffic to and from the
analysis target (the host being monitored). All SYN-ACK packets sent from—
and ACK packets sent to—the analysis target are recorded, and the following
event record is derived:

Connection Event Format:
<Event.Type> <Timestamp> <Seq.ID> <Client.ID>

The Event-Type field is simply a binary flag, which indicates whether the
packet has its SYN and ACK flags enabled (which we can denote with 0), or only
the ACK flag enabled (denoted by 1). The timestamp is a numeric encoding of
the time at which the packet is observed from the monitor. The sequence ID
represents the TCP Sequence ID field, which is used to associate client requests
with server replies. Last, the Client JD can be used to identify the client that
initiated the connection. The Client JD is not critical for detection, and in
all likelihood will not be reliable (i.e., attackers will manufacture IP packets
with bogus IP source addresses). Nevertheless, we may choose to capture such
information as the IP address and port number of the client packet for reporting
purposes only.

28

Table 2.2: Facts for TCP SYN flood detection.

1 ptype[conn_event ptype[open_conn ptype [bad_conn
2 e_type:integer, expired:integer, count:integer]
3 sec:integer, sec:integer,

4 seq_id:integer, seq_id:integer,

5 client-ID:string] client_ID:string]

P-BEST fact type definitions

Table 2.2 illustrates the ptype definitions of three example facts that are spec-
ified for use in performing the TCP SYN flooding analysis. The first ptype,
conn-event, is used to assert the connection event described in the connection
event record format discussed above. As connection events are captured by the
network monitor, their fields can be mapped (one to one) to the fields of the
conn.event ptype, and the conn.event ptype is then asserted into the fact-
base of the SYN flood eXpert. The open_conn ptype is used to construct facts
regarding half-open connections that are pending completion of the TCP/IP
handshake. Note that although we use the shorthand name open-conn, the fact
actually represents the assertion that a TCP half-opened connection has been
observed. The fields of the open_conn contain the TCP sequence ID of the
pending connection, a client-ID string (as discussed above), the timestamp as
copied from the connection event, and an expired flag used for garbage collection
by the production rules. Last, the bad connection fact, bad-conn, maintains a
running count of the number of bad connection requests detected through the
observations of SYN-ACK and ACK packages between the analysis target and
external clients.

Example P-BEST rules for SYN flood detection

The following illustrates one inference strategy that P-BEST can employ for
deducing a TCP SYN flooding attack, using the fact definitions defined above.
In addition, a few constants are referenced from the rule set, and are defined as
follows:

• max_bad-conns: Number of bad connections tolerated before SYN flood
alert.

• expire-time: Amount of time to wait on ACK before a connection is
declared a bad connection.

• bad_conn_lif e: Number of seconds that a bad connection fact will live
before being released.

Abstractly, the rules attempt to identify half-open TCP connections that
expire beyond a user-defined waiting period. As we assert half-open connection
facts into our factbase, we must include logic to recognize both when the connec-
tions are successfully completed and when half-open connection expire beyond

29

the user-defined waiting period, from which we deduce the occurrence of a bad
connection. SYN flood attacks will result in excessive bursts of bad connections,
which we monitor with rules that maintain a running count of bad connections
over a sliding window of time. When the number of bad connections exceeds
our maximum tolerance for bad connections within our sliding time window, we
raise an alert to denote the burst of noncompleted connection requests. The
following is a brief summary of the rule set shown in Table 2.3.

• create.open.conn: determines whether the event connection represents a
SYN-ACK packet (from the monitor target). If so, the rule asserts a new fact
into the factbase called open.conn, which records the TCP sequence number, the
timestamp at which this half-opened connection was first observed, an expired
flag to indicate when the half-open connection exceeds a time threshold, and
the client_ID.

• destroy.open.conn: removes an open connection fact when the corre-
sponding ACK packet is received from the client.

• ignore.spurious.acks: removes events involving ACK packets that are
not associated with a specific SYN-ACK pending connection. In practice, such
packets are normal.

• f irst-bad_conn: This and the following rule manage a running count of
the set of bad connections observed by the inference engine. They are driven
by time facts (line 24) that are used to monitor whether there exists a half-
open connection that has exceeded the expire_time limit. This rule is applied
once, to the first open.conn fact encountered that is older than expire_time.
Its consequent creates the bad.conn fact, which initializes the bad connection
counter upon the first encountered expired connection. Note that the antecedent
line 25 evaluates to false once the bad.conn fact has been initialized. In addition,
the rule marks the open.conn fact as expired (line 30), which is consulted by
f ree.bad.open.cons when performing garbage collection.

• add.to-bad_cons: is applied while the total number of bad-conn facts is
less than the maximum tolerated. If an open.conn fact timestamp exceeds the
expiration time and the fact has not been counted earlier, then the bad_conn
count is incremented, and the expired flag for the open.conn fact is set.

• max.open.cons: is applied when the maximum number of bad.conn facts
is encountered during a burst of bad.conn_lif e time units. If a bad_conn count
reaches the maximum tolerated bad-conn facts, the consequent initiates a SYN
flood alert, and resets the bad connection count.

• free_bad.open.cons: limits the amount of time that a bad open con-
nection is counted against the system. The bad_conn_lif e variable provides a
user-defined length of time with which a bad connection is considered relevant
to the bad connection count. This variable effectively represents the burst du-
ration for accumulating bad connections. Once an open connection exceeds the
bad.conn.lif e, then it is removed and the bad connection count is reduced.

• del.alerted.cons: deletes the half-open connections that have caused an
alert.

30

Table 2.3: Rule set for detection of TCP SYN flood attacks.

1 rule[create_open_corai(*):
2 [+ev:conn_event|e_type == 0]
3 ==>
4 [+open_conn lseq_id = ev.seq_id,
5 sec = ev.sec,
6 expired = 0,
7 client_ID = ev.client_ID]
8 [-lev]
9]

10 rule[destroy_open_conn(*):
11 [+ev:conn_eventle_type == 1]
12 [+oc:open_conn|seq_id == (ev.seq_id - 1).
13 expired == 0]
14 ==>
15 Hoc] [-lev]
16]

17 rule[ignore_spurious_acks(*):
18 [+ev:conn_event|e_type == 1]
19 [-open_connlseq_id == (ev.seq_id - 1)]
20 ==>
21 [-lev]
22]

23 rule[first_bad_conn(*):
24 [+ts:time]
25 [-bad_conn]
26 [+oc:open_connlexpired == 0]
27 [?|(ts.sec - oc.sec) > 'expire_time]
28 ==>
29 [+bad_connlcount = 1]
30 [/oc1 expired = 1]
31]

continues on next page

31

continued from previous page

1 rule[add_to_bad_cons(*):
2 [+ts:time]
3 [+oc:open_connlexpired == 0]
4 [?|(ts.sec - oc.sec) > 'expire.time]
5 [+bc:bad_connlcount < 'max_bad_conns]
6 ==>
7 [/be I count += 1]
8 [/ocI expired = 1]
9]

10 rule[max_open_cons(*):
11 [+ts:time]
12 [+oc:open_connlexpired == 0]
13 [?l(ts.sec - oc.sec) > 'expire_time]
14 [+bc:bad_conn1 count == 'max_bad_conns]
15 ==>
16 [! lsyn_alert("SYN Attack: Last Host V.s.\
17 SeqID = %d. Time = ,/.d",
18 oc.client.ID, oc.seq_id, oc.sec)]
19 [/be 1 count " 0]
20 [/oc1 expired = 1]
21]
22

23 rule[free_bad_open_cons(*):
24 [+ts:time]
25 [+bc:bad_conn]
26 [+oc:open.conn1 expired == 1]
27 [?l(ts.sec - oc.sec) > 'bad_conn_life]
28 ==>
29 [-loc]
30 [/be 1 count -= 1]
31]

32 rule[del_alerted_cons
33 [+oc:open_conn1 expired == 1]
34 [+bad_connlcount == 0]
35 ==>
36 [-loc]
37]

32

2.5 Performance

A variety of factors influence the amount of time required to process records
through a P-BEST-based signature analysis engine. In this section, we briefly
discuss some of these factors and summarize several performance measurements
in analyzing both Solaris audit records and TCP packets through an EMERALD
eXpert P-BEST engine. These measurements are intended to reflect the pure
processing time required by the eXpert in receiving events, translating and
asserting the events into the eXpert factbase, processing the events through the
inference engine, and handling alert reporting.

The measurements exclude the processing time added to the system for event
generation; that is, they exclude the impact to system resources in audit record
generation or the capturing and filtering of TCP packets. It is difficult to esti-
mate the daily expected volumes of audit and network traffic across a computing
environment, in that such statistics are directly dependent on the structure of
the computing environment, network topology, and behavior and size of the user
community. Furthermore, the EMERALD architectural model lends itself well
to the separation of the event generation and collection components from the
analytical engines, which could in fact operate in parallel on separate hosts.

The performance measurements were collected on a FreeBSD 2.2.6 host com-
puter system using a Pentium II 333 MHz processor with 128 MB RAM. In
addition to the processing capabilities of the host platform, several factors sig-
nificantly influence the overall performance of the analysis engine. For example,
the average record size and total event stream size dictate the amount of I/O
overhead required. As each event is asserted by the rule base, the antecedent
evaluation also impacts performance: the sheer number of rules to evaluate,
as well as the complexity of each antecedent evaluation, significantly influence
event processing throughput. Consequent activation is also a consideration, as
is the management of derived facts that are asserted during the analysis.

Table 2.4 presents a summary of three analyses performed on 1- and 5-day
collections of Solaris 2.5.1 audit records and TCP packet streams. The audit
and TCP data sets were collected by MIT Lincoln Laboratories, and made
available for the DARPA Intrusion Detection Evaluation Program. The BSM
audit logs analyzed here represent the simulated usage of a server with 43 users
over one 24-hour period and 44 users over a 5-day workweek, with minimal
filtering. While it is difficult to generalize what such loads imply for other
computing environments, the data set is representative of the volume and type
of audit activity observed during a prolonged study of several Air Force local
area networks.

The first row in Table 2.4 summarizes the performance of an EMERALD
eXpert implementing the buffer overflow rule presented in Section 2.4.1, which
is roughly able to apply this rule to 24 hours of audit data (over 1 million
audit records) in 4 minutes, and 120 hours of audit data (4.2 million audit
records) in under 16 minutes. In the second row, we present an eXpert with a
more extensive collection of 28 rules. These rules implement 16 sets of Solaris
BSM intrusion detection heuristics, including threshold analyses, immediate at-

33

Table 2.4: Performance of sample BSM and TCP analysis engines.

24 hrs BSM
43 users

365 MB total
1.1 million recs

120 hrs BSM
44 users

1.41 GB total
4.2 million recs

24 hrs IP
496 connects
331 MB total

83,002 recs

120 hrs IP
1,343 connects
1.3 GB total
352,445 recs

1 rule set
2 rules
buffer

overrun

4:10 min:sec 15:41 min:sec

16 rule sets
28 rules
various

intrusions

8:09 min.sec 30:53 min:sec

1 rule set
12 rules

TCP SYN
flood

 1:33 min:sec 3:02 min:sec

tack recognition, process subversion detection, and illegal file access recognition.
While the knowledge base of this second eXpert represents an increase of four-
teenfold over the 2-rule eXpert system in the first row, it introduces only a
twofold increase in the overall processing time of the 1- and 5-day data sets.
In this computing environment, the 16 rule sets can process the full 5-day data
set in just over 30 minutes; this represents a small fraction of the overall audit
generation time.

The third and fourth columns of Table 2.4 present an analysis of TCP/IP
traffic through a gateway that provides service between an internal domain of
4 servers and 20 workstations, and an external untrusted network. The third
row of Table 2.4 summarizes the performance of the TCP SYN flood detection
rules presented in Section 2.4.2 (with a few additional administrative rules).
Here, a server was selected for analysis, and all TCP packets sent to and from it
were monitored for 24 and 120 hours, during which 496 and 1,343 connections
were observed over 24 and 120 hours, respectively. The SYN Flood eXpert
monitored only those TCP packets targeted for the host of interest in which
the SYN or ACK flags were enabled. The filtering out of unnecessary packets
is critical to managing the performance of a real-time signature analysis engine,
and in the SYN flooding case, the criteria for analysis excludes all packets that
are not directly involved in the TCP handshake. In our simulated analysis, the
SYN Flood eXpert is capable of performing the 24-hour packet analysis in 1.5
minutes, and the 120-hour analysis in 3 minutes.

34

2.6 Related work

P-BEST has evolved over a substantial lineage of intrusion detection projects,
which include MIDAS, IDES, NIDES, and now the EMERALD eXpert. It rep-
resents a very early example of the application of a forward-chaining rule-based
expert system to the problem of misuse detection in computer system activity
logs. However, P-BEST is by no means the only system to have applied rule-
based expert system techniques to detecting misuse in computing environments.

Several other systems have been developed that also center around the use
of forward-chaining inference logic, and have applied a variety of techniques for
representing the underlying heuristics used to represent misuse. The ASAX
(Advanced Security and Audit Trail Analysis on UniX) project [21], produced
a highly specialized rule-based programming language called RÜSSEL (Rule
Based Sequence Evaluation Language), which provides a combination of proce-
dural and rule-based programming constructs to reason about activity in Unix
audit trails.

The University of California at Santa Barbara proposed the use of state
transition diagrams to model the sequence of operations and state changes that
occur during the execution of a penetration [45]. This technique was prototyped
for SunOS 4.1.3+ and Solaris audit trails in a tool called the Unix State Tran-
sition Analysis Tool (USTAT) [24]. While it did not represent its knowledge
base using production rules, USTAT was architected as a classic expert system,
with an inference engine, knowledge base, factbase, and separate decision en-
gine. Another system, called IDIOT (Intrusion Detection In Our Time), took
a similar graphical approach to the analysis of signature operations, but used
Colored Petri-nets to model its analysis of the patterns of execution represented
in an event stream [30].

Wisdom and Sense (W&S) [58] and NADIR [26], both from Los Alamos
National Laboratory, are further examples of intrusion detection systems that
employed rule-based analyses to identify known malicious activity. In the case
of W&S, the anomaly detection component was also implemented as a rule base.
The signature analysis component was combined into the same rule base to rep-
resent site-specific policies, expert penetration rules, and other administrative
data. NADIR's expert rule base consists of penetration rules that are developed
by interviewing and working with security personnel.

Last, it is important to recognize a continuing growth in the number of com-
mercial products that provide forms of signature analysis for various computing
environments. Given the proprietary nature of these systems, it is difficult to
understand which have chosen hard-coded narrow solutions to their problem
sets, and which have chosen more broad techniques that may be portable be-
yond their current customers' needs.

35

2.7 Limitations

In Section 2.2 we attempted to summarize how and why forward reasoning sys-
tems provide a good foundation for modeling known abusive activity represented
in an event stream. There are, of course, limitations that are fair to point out
with respect to this general method. In our own system, antecedent evaluation
is absolute, and less capable in environments where uncertainty, incompleteness,
or inaccuracies exist within the event stream content. Other reasoning systems
can provide some options for handling belief and uncertainty within the anal-
ysis framework [20]. In the presence of incomplete data, backward reasoning
systems can operate in a diagnosis mode to seek out collaborative evidence
of problems, and furthermore provide quantitative probabilities based on "evi-
dence to date" that a certain problem is the culprit responsible for the presence
of given symptoms. Such reasoning capabilities could be valuable if applied well
to the intrusion detection domain.

In addition to event stream inadequacies, heuristics presuppose the existence
of detailed insight into that which constitutes abusive system activity. The
problem of recognizing and responding to unknown malicious phenomena is
extremely difficult, and not directly addressed under signature analysis. Only
in the cases where it is possible to look for certain results—rather than explicit
action sequences leading to those results—does signature analysis have a chance
to detect new attack methods. For example, if an anonymous user causes the
deletion of a file from our FTP server, we can detect this result without knowing
exactly how the attack was carried out.

Other techniques that attempt to understand normal system operation and
to provide quick recognition of anomalous activity have been proposed; statisti-
cal profiling [16], neural networks [15], and sequence analysis [19]. The intent of
these systems is to maximize the points at which anomalous activity corresponds
to malicious activity, which as a general property does not always hold. In ad-
dition, attempting to maximize such systems' sensitivity to malicious activity
also tends to increase their sensitivity to inane anomalies.

2.8 Conclusions

We have presented the operation of a production-based expert-system toolset,
and its application to the problem of computer and network signature-based
intrusion detection. P-BEST has had considerable exposure to the intrusion
detection problem domain over the past decade, under the MIDAS, IDES, and
NIDES projects, and now within the EMERALD eXpert. P-BEST has been
employed on a Symbolics processor for handling Multics audit records, SunOS
4.1.+, Solaris 2.5.+, FreeBSD, and Linux for real-time audit trail analysis, ac-
counting log analysis, and TCP/IP packet analysis.

We presented details of the P-BEST production rule specification language,
and illustrated its use with example rule sets for detecting misuse in Solaris 2.5.+
audit trails and TCP/IP packet streams. We also discussed the performance of

36

P-BEST inference engines in analyzing millions of events, which illustrates that
P-BEST has been—and continues to be—useful in live monitoring of computer
and network operations.

P-BEST is currently being used for laboratory exercises in one university
course on applied computer security, where students are guided through its usage
and assigned rule development tasks for analyzing given intrusions. We have
demonstrated that the P-BEST language is not too complex for beginners to
employ, and is efficient for supporting the iterative development of increasingly
complex inference logic for automated reasoning about misuse in computer and
network operations.

37/38

Chapter 3

Network-based Detection

This chapter describes the development of EMERALD intrusion detection mon-
itors that analyze intercepted network traffic.

3.1 Introduction

In the commercial arena, Intrusion Detection Systems (IDSs) that take their
input data from network traffic are so dominating that many people equate in-
trusion detection with network traffic analysis. Although we argue that data
for intrusion detection should be collected simultaneously from several differ-
ent abstraction layers and sources, network traffic is indeed an important data
source for intrusion detection and, consequently, we have expended significant
efforts on developing EMERALD monitors for network data.

In contrast to what is commercially available today, EMERALD network
monitors are mainly focused on detecting events that manifest themselves in
multiple packets, and in transactions and user sessions. The EMERALD net-
work sensors also perform varying degrees of alert aggregation to prevent flood-
ing of the operator console with, for example, alerts about scans and probes
that can occur with high frequency at many Internet sites.

The eXpert-Net knowledge base represents a comprehensive collection of
intrusion detection heuristics for network traffic analysis. Where possible, rules
are implemented to provide the most general coverage for misuse detection and
security policy violations to cover the widest range of attack classes possible
from network-based analysis. These rules have been extensively tested for their
ability to recognize the intrusive activity described below, and also to avoid false
positives.

For every detection rule, the user-configurable parameters that control the
behavior of the rule are listed and described, with the following notation:

• RULE.NAME: Description

► PARAMETER_NAME: Description

39

J eXpert-TCP ►

T

//
eXpert-UDP ►

/ /
data network tap // jf eXpert-ICMP ►

/ y etcpgen - eXpert-FTP ^
r *
/

raw network data \\^^ eXpert-HTTP ►

protocol- \ \
eXpert-SMTP specific \

event \
messages * eXpert-SESSION 1

alerts

Figure 3.1: Data flow architecture for eXpert-Net

3.2 Architecture
The data flow architecture of the eXpert-Net package is somewhat similar to
that of eXpert-BSM (described in Chapter 4) in that it has a preprocessing
component that interprets the raw event data and produces EMERALD mes-
sages for the analysis engines, but it is different in that it contains multiple
expert-system-based analysis engines. The dataflow architecture is outlined in
Figure 3.1.

The preprocessing etcpgen component plays an important role in our net-
work traffic analysis. It uses libpcap [38] for low-level network event capture,
and then interprets a number of protocols and performs reconstruction of trans-
actions and sessions. For example, for HTTP it combines each client request
and corresponding server reply into a single message that describes the HTTP
transaction. For protocols such as FTP, telnet and other that have longer user-
oriented sessions, etcpgen keeps track of session-related data and makes sure
that each message contains the relevant session data fields.

3.3 Transport protocols
The eXpert-Net package performs analysis of the transport-level protocols TCP,
UDP, and ICMP. What is common for this analysis is that each network packet
(after IP-level fragmentation reassembly) will result in a message sent to the
corresponding analysis engine. However, this does not restrict the analysis to
single-packet inference, as each analysis engine has sets of rules that perform
stateful multimessage analysis.

40

3.3.1 eXpert-TCP rulesets

• TCPJLAND: The Land attack uses a TCP SYN packet whose source IP
address is equal to its destination IP address and its source port number
is equal to its destination port number. This attack can cause denial of
service.

• TCP_TEAR.DR.OP: This rule detects overlapping TCP fragments, which
are a characteristic of the Teardrop attack. The Teardrop attack can cause
denial of service.

• TCPJ3USPICI0US_PACKET: This rule looks for TCP packets that have
both SYN and FIN flags set and have a source port number equal 0 or
65535. It is likely that these packets belong to a probe or an ill-intentioned
program.

• TCP_CHARGEN_TCLECHO: This rule detects a denial-of-service attack
that involves the CHARGEN and the ECHO services. In this attack,
packets are sent between the CHARGEN port of a machine to the ECHO
port of another machine. Because these services always send back a reply
when they receive a request, an infinite loop of network traffic is formed.

► TCP-PORT JLOOP-TIMEOUT defines the amount of time (in seconds)
this rule starts monitoring two machines for a loop of network traffic again
after the previous one has ended.

• TCP_ECHO_TO.ECHO: Similar to TCP-CHARGEN_TO_ECHO, except
that this rule looks for TCP traffic between the ECHO port of a machine
and the ECHO port of another machine.

► TCP.PORTJ.OOP-TIMEOUT defines the amount of time (in seconds)
this rule starts monitoring two machines for a loop of network traffic again
after the previous one has ended.

• TCP_FINGER_REDIR: This rule fires when a request whose argument
contains "@@@" is sent to the FINGER port of an internal machine. This
attack can cause denial of service.

• TCP_FINGERJR.ESERVED.NAME: This rule detects probes to reserved
accounts (e.g., root) using the FINGER service.

• TCPJFINGERD.OVERFLOW: This rule fires when a long FINGER re-
quest containing many control characters is observed. These requests may
indicate a buffer overflow attack.

► TCP-FINGERD.OVERFLOW-LEN is the maximum allowable length
of a client-supplied argument without triggering this rule.

► TCP.DATAJVIAX_CONTROL_CNT specifies the maximum allowable
number of control characters in a client-supplied argument without trig-
gering this rule.

41

•

•

TCP-NAMED: This rule detects buffer overflow attacks against NAMED
servers. It compares a list of suspicious patterns against DNS queries that
are sent to the DNS port of an internal machine.

► TCP-NAMED-OVERFLOW .PATTERN contains a list of patterns that
appear in DNS queries of NAMED buffer overflow attacks.

TCPJMAPD-BO: This rule fires when a long IMAP request containing
many control characters and containing "LOGIN" or "AUTHENTICATE"
is observed. This request may indicate a buffer overflow attack on an
IMAP server.

► TCP JMAPD.OVERFLOW-LEN defines the maximum allowable length
of an IMAP request without triggering this rule.

► TCP-DATAJVIAX-CONTROL-CNT specifies the maximum allowable
number of control characters in an IMAP request without triggering this
rule.

TCP-PORT-SWEEP: When the number of distinct ports scanned within
a certain time window exceeds a certain threshold, this rule will fire.

► TCP-PORT-SWEEP-THRESHOLD specifies the maximum number of
ports scanned before this rule is triggered.

TCP-FIN-ACK-SCAN: This rule fires when the number of distinct ports
scanned using TCP FIN packets exceeds a certain threshold. FIN scans
are considered as stealthy.

► TCP-PORT-SWEEP-THRESHOLD specifies the maximum number of
ports scanned before this rule is triggered.

TCP-FIN-ADDR-SCAN: This rule fires when the number of distinct IP
addressed scanned using TCP FIN packets exceeds a certain threshold.

► TCP-ADDR-SWEEP-THRESHOLD defines the maximum number of
hosts scanned before this rule is triggered.

TCP-ADDRJ3WEEP: This rule fires when the number of distinct IP ad-
dresses scanned from a single source within a certain time window exceeds
a certain threshold.

► TCP-ADDR-SWEEP_THRESHOLD defines the maximum number of
hosts scanned before this rule is triggered.

TCP-TELNET .FLOOD: This rule fires if the number of requests to the
TELNET port within a certain time window exceeds a certain threshold.

► TCP-TELNET-FLOOD-THRESHOLD defines the maximum number
of times to which the TELNET port is connected before this rule is trig-
gered.

42

• TCP-DNS-ZONE-TRANSFER: This rule fires when a zone transfer from
an external host to an internal DNS server is observed. A DNS zone trans-
fer may indicate an intelligence-gathering operation to gain information
about the hosts in an organization.

► TCPJVIAXJDNS-CHATXIFE defines the size of the time window (in
seconds) during which DNS transactions are monitored by this rule.

► TCP-MAX-DNS-ACK-CNT defines the number of TCP ACK packets
observed for a DNS session before this rule is triggered.

• TCP-BRKILL: This rule detects the following sequence of TCP events:
(1) a TCP packet that has the PUSH and ACK flags set and its sequence
number equals zero; (2) many TCP packets with the RESET flag set
sending to the same host as that in (1). This attack can cause denial of
service.

► TCP.MAX-BRKILL-FACT-LIFE defines the size of the time window
(in seconds) during which a TCP connection is monitored by this rule.

► TCP_MAX_BRKILL-RESETS defines the maximum allowable number
of TCP RESET packets before this rule will fire.

• TCP-PORT-FLOOD: This rules fires when the number of packets sent to
a port within a certain time window exceeds a certain threshold. Certain
ports that usually have a lot of traffic can be excluded from this analysis.

► TCP-SINGLE-PORTJFLOOD-THRESHOLD is the maximum number
of times to which a single port is connected before this rule will fire.

► TCP-HIGH-TRAFFIC-PORTS defines a list of ports that normally are
exposed to a large number of connections, and therefore should be ignored
by this rule.

• TCP-POP-DICT: This rule detects password guessing attempts against
a POP server. This rule fires when the number of failed login attempts
from a host to a POP server exceeds a certain threshold.

► TCP-POP-DICT.THRESHOLD defines the maximum allowable num-
ber of failed POP login attempts before this rule will fire.

• TCP-MSCAN: This rule fires when an attacker uses a scanning tool called
MSCAN to probe a host.

► TCP-MSCAN-RESET_FACT_LIFE defines the amount of time (in sec-
onds) a detected MSCAN attack from a host to another is "forgotten";
after which the expert starts looking for another MSCAN instance involv-
ing the same source IP address and the same destination IP address.

► TCP-MAXJVISCAN_FACT_LIFE defines the size of the time window
(in seconds) during which a potential MSCAN attack is monitored.

• TCP_NTINFOSCAN: The NTInfoScan is a NetBIOS-based port scanning
tool against Windows NT machines.

43

► TCP-MAX-NTINFOSCAN-FACT.LIFE defines the size of the time
window (in seconds) during which a potential NT InfoScan is monitored.

► TCP-FTP JNFO-SCAN JPATTERN contains a list of patterns that ap-
pear in the FTP requests used by InfoScan.

► TCP-HTTPJNFO-SCAN-PATTERN contains a list of patterns that
appear in the HTTP requests used by InfoScan.

• TCP-WINNUKE: This rule fires when a TCP packet whose destination
port equals a certain number (e.g., 139) and has its URGENT POINTER
flag set is sent to a Windows machine. This attack can potentially halt a
Windows machine.

• TCP-REMOTE-RLOGIN: This rule detects remote login attempts from
an external machine.

• TCPJLONG-POP-USERNAME: This rule fires when a very long POP3
user name is observed.

► TCP-MAX-POP-USERNAME defines the maximum allowable length
of a POP3 user name without triggering this rule.

• TCP-LONG-POP-PASSWORD: This rule fires when a very long password
is sent to the POP3 port of a machine.

► TCP-MAX-POP-PASSWORD defines the maximum allowable length
of a POP3 password without triggering this rule.

• TCP-BACK-ORIFICE: This rule looks for TCP traffic from a nonprivi-
leged port to the default port of Back Orifice on a Windows machine.
Back Orifice provides a backdoor through which an attacker can access
machines.

• TCP-NETBUS JNSTALLED: This rule monitors TCP traffic from certain
ports (which are known to be associated with the NetBus tool) of an
internal Windows machine. It fires when a "NETBUS" string in the TCP
data is detected.

• TCP-NETBUS-PROBE: This rule looks for TCP traffic from a nonprivi-
leged port to a port that is known to be associated with the NetBus tool
on a Windows machine.

• TCP-SUSPICIOUS-PORTJPROBE: This is a general rule for detecting
port scanning activities.

• TCP-SYNFLOOD: This rule detects the TCP SYN flood attack. The
SYN flood attack can cause denial of service by preventing other machines
from establishing TCP connections to the target machine.

44

• TCP-UNACCEPTABLE JPORT.FLAG-SYN: Alert on seeing a packet with
the SYN flag set (but not the ACK flag), going to a listed port.

► TCP-UNACCEPTABLEJSYN-PORTS is the list of destination ports
for which to raise alerts about SYN packets.

• TCP_UNACCEPTABLE-PORT_FLAG-SYNJ^.CK: Alert on seeing a packet
with both the SYN and ACK flags set, coming from a listed port.

► TCPJJNACCEPTABLEJSYN-ACKJPORTS is the list of source ports
for which to raise alerts about SYN-ACK packets.

• TCP-UNACCEPTABLE_PORT-FLAG_A.CK: Alert on seeing a packet
with the ACK flag set (but not the SYN flag), going to a listed port.

► TCP_UNACCEPTABLE_ACK_PORTS is the list of destination ports
for which to raise alerts about ACK packets.

• TCP_UNACCEPTABLE-PORT.PATTERN: Alert on seeing a packet go-
ing to a listed port, and which also contains a listed pattern in its data
portion.

► TCP-UNACCEPTABLE-PORTS is the list of destination ports for
which to raise alerts about packets with a listed data content.

► TCP-UNACCEPTABLE PATTERNS is the list of data patterns (sub-
strings) to look for in the TCP data portion of the packet.

3.3.2 eXpert-UDP rulesets

• UDP-TEARDROP: This rule detects overlapping UDP datagram frag-
ments, which are a characteristic of the Teardrop attack. The Teardrop
attack can cause denial of service.

► UDP-TEARDROP-WINDOW defines the size of the time window (in
seconds) within which Teardrop attacks are aggregated.

•

•

•

UDPJLAND: This rule detects UDP datagrams whose source IP address
is equal to its destination IP address and its source port number is equal
to its destination port number. This attack can cause denial of service.

UDP_DNS-Poison: This rule fires when there is a mismatch between a
domain name queried by an internal host and the domain name for which
an external name server provides DNS data. This is a form of DNS cache-
poisoning attacks. If successful, it can cause authentication to fail or denial
of service.

► UDP-DNS-EXPIRE defines the size of the time window (in seconds)
during which this rule keeps track of outstanding UDP DNS queries.

UDP_DNS_Hinfo: This rule fires when an external host sends an HINFO
(host information) query. This may indicate intelligence gathering activ-
ity.

45

•

•

•

UDP.DNS-Hostname-Overflow: This rule detects DNS replies containing
very long host names sent from an external host to an internal name server.
This may indicate a buffer overflow attack on the name server.

► UDPJVIAX_DNS-QUES-LEN defines the maximum allowable length of
a host name in a DNS reply.

UDP-DNS-A_Length.Overflow: This rule fires when an external host sends
a DNS reply that contains a length field larger than 4. An attacker may
obtain root privileges using this attack.

UDP-NFS-FileJHandle.Guess: This rules detects excessive NFS errors, a
symptom of NFS file handle guessing attack. If successful, an attacker
may access and modify sensitive files.

► UDP-NFS-ERRORJEXPIRE defines the size of the time window (in
seconds) during which this rule keeps track of previous NFS errors.

► UDPJvtAX-NFS-GUESSES defines the number of NFS errors required
to trigger this rule.

UDP-NFS-Device.Creation: This rule fires when a user tries to create a
device on an NFS server.

UDP-Echo-Amplifier: This rule detects heavy traffic involving the ECHO
service. This may be due to a denial-of-service attack that involves the
CHARGEN and the ECHO services.

► UDP_AMPLIFIER-ALERT-TIMEOUT defines the size of the time win-
dow (in seconds) during which this rule remembers datagrams involving
the UDP ECHO service.

UDP.SNMP-Guess: This rule fires when the number of SNMP password
guessing attempts from an external host to an internal host within a cer-
tain time period exceeds a certain threshold.

► UDP-MAX.SNMP-GUESSES defines the threshold on the number of
failed SNMP guesses for firing this rule.

► UDP-SNMP-GUESS-ALERT.TIMEOUT defines the size of the time
window (in seconds) within which SNMP activities between two machines
are aggregated.

UDPJSNMP-Get: This rule detects attempts to use a public SNMP pass-
word by an external host to gain access to an internal host.

► UDP_SNMP-GET_ALERT.TIMEOUT defines the size of the time win-
dow (in seconds) within which this rule aggregates multiple SNMP GET
alerts.

UDP-Syslog: This rule looks for an external host accessing port 514 of
an internal host. When Solaris syslogd (a Unix system logging daemon)
receives an external message, it attempts to perform a DNS query on the

46

source IP. If this IP does not match a valid DNS record, the syslogd may
crash.

► UDP.SYSLOG.WINDOW defines the size of the time window (in sec-
onds) during which this rule aggregates syslogd denial-of-service attacks
involving the same source and the same destination hosts.

• UDPJortJSweep: This rule fires when the number of distinct ports of
a host that are probed within a certain time period exceeds a certain
threshold.

► UDP_UPORT_SWEEP_THRESHOLD defines the number of distinct
ports belonging to the same host that are hit in order to trigger this rule.

► UDP_PORTSWEEP-WINDOW defines the size of the time window (in
seconds) within which port sweeps targeting a certain host are aggregated.

• UDP_Adress_Sweep: This rule fires when the number of distinct IP ad-
dresses scanned by a single host within a certain time period exceeds a
certain threshold.

► UDP.UADDR-SWEEP.THRESHOLD defines the number of distinct
addresses scanned by a single source before this rule will fire.

• UDP_Port_Flood: This rule fires when the number of datagrams sent to
a single port of a host within a certain time period exceeds a certain
threshold. This may indicate a denial-of-service attack. Certain ports
that usually have a lot of traffic can be excluded from this analysis.

► UDPJ3INGLEJJPORTJLOOD_THRESHOLD defines the number of
times a single port is hit within a certain time period before a port flood
is declared.

► UDP_HIGH-TRAFFIC-PORTS lists ports that are known to have a lot
of UDP traffic, and therefore should be ignored by this rule.

3.3.3 eXpert-ICMP rulesets

• ICMP.POD_RECONSTRUCTION_ATTACK: This rule detects the ping-
of-death attack by looking for ICMP ECHO packets that are longer than
65535 bytes. A ping-of-death attack can cause the target machine to crash.

► ICMP_POD JIEPORT.TIMEOUT defines the amount of time (in sec-
onds) after the last ping-of-death attack from a host to another before the
expert reports the aggregated number of ping-of-death attack instances
between these two machines.

• ICMPJ3ROADCAST_ECHO: When an ICMP ECHO packet sending from
an external IP address to a broadcast IP address is observed, this rule will
fire. This broadcast ECHO attack can cause many packets to be sent to
a victim machine to achieve denial of service.

47

• ICMP-RECONSTRUCTION-ERROR: This rule fires when abnormal
ICMP packets (e.g., very large packets) or malformed ICMP packets (e.g.,
having fragments that overlap) are observed. The following types of ICMP
packets are excluded from this rule: ECHO, ECHO REPLY, and DESTI-
NATION UNREACHABLE.

• ICMP-EXCESSIVE_ECHOS-SINGLE-CLIENT: This rule fires when the
number of ICMP ECHO packets sent by a single host within a certain
time period exceeds a certain threshold.

► ICMP.MAX.ECHOS-SINGLE_CLIENT defines the number of ICMP
ECHO packets having the same source IP address within a certain time
period needed to trigger this rule.

• ICMP-SMURF: This rule fires when the number of unsolicited ICMP
ECHO REPLY packets (i.e., ECHO REPLY packets that do not have
a matching ECHO packet sent by the target host) within a certain time
period exceeds a certain threshold. This SMURF attack can cause network
congestion.

► ICMP-SMURF.COUNT.THRESHOLD defines the total number of un-
solicited ECHO REPLY packets observed within a certain time period to
trigger this rule.

• ICMP.EXCESSIVE-ECHOS-ALL-CLIENTS: When the number of ICMP
ECHO packets observed within a certain time period exceeds a certain
threshold, this rule will fire.

► .ICMPJVIAX-ECHOS-ALL.CLIENT defines the number of ECHO pack-
ets in a certain time period needed to trigger this rule.

• ICMPJUNREACHABLE_STORM: This rule fires when the number of
DESTINATION UNREACHABLE packets observed within a certain time
period exceeds a certain threshold.

► ICMP-DEST.UNREACHABLE-THRESHOLD defines the total num-
ber of DESTINATION UNREACHABLE packets in a certain time period
needed to trigger this rule.

• ICMPJ30URCE-QUENCH: This rule fires when the number of SOURCE
QUENCH packets going to an internal host within a certain time period
exceeds a certain threshold. When a host receives an ICMP SOURCE
QUENCH packets, it will slow down sending packets. Although depre-
cated (c.f. RFC 1812), ICMP SOURCE QUENCH packets are still being
used. Thus legitimate SOURCE QUENCH packets may be observed. On
the other hand, ICMP SOURCE QUENCH packets can potentially be
used to perform denial/degradation of service.

► ICMPJV1AXJ3RC-QUENCH defines the number of SOURCE QUENCH
packets needed to trigger ICMPJ30URCE.QUENCH.

48

• ICMP.REDIRECT: This rule fires when the number of ICMP REDIRECT
packets going to an internal host within a certain time period exceeds a
certain threshold. ICMP REDIRECT packets are used to notify a host
that it is using a nonoptimal route to send a packet. There is a legitimate
use for ICMP REDIRECT packets, but this should happen infrequently.
Using ICMP REDIRECT packets, an attacker could subvert a host by
masquerading as a trusted host, or cause denial of service to a host by
tricking it to use a wrong route.

► ICMPJVIAX_REDIRECT defines the number of ICMP REDIRECT
packets needed to trigger ICMP .REDIRECT.

• ICMP.TIME-EXCEEDED: This rule fires when the number of ICMP
TIME EXCEEDED packets going to an internal host within a certain
time period exceeds a certain threshold. Excessive TIME EXCEEDED
packets may indicate ongoing network reconnaissance activities (e.g., us-
ing traceroute).

► ICMP_MAX.TIME_EXCEEDED defines the number of ICMP TIME
EXCEEDED packets needed to trigger ICMP.TIME_EXCEEDED.

• ICMP_MISC_FLOOD: This rule fires when the number of uncommon
ICMP packets (i.e., ICMP packets that are not of the following types:
ECHO, ECHO REPLY, DESTINATION UNREACHABLE, SOURCE
QUENCH, TIME EXCEEDED, and REDIRECT) observed in a certain
time period exceeds a certain threshold.

► ICMP.MAX.OTHERJCMP defines the number of uncommon ICMP
packets needed to trigger ICMPJvIISC-FLOOD.

3.4 Application protocols

For the application protocols FTP, HTTP, SMTP, and "SESSION" (rlogin and
telnet), etcpgen performs extensive reconstruction and bookkeeping to be able
to provide the analysis engines with messages that are on a higher abstraction
level than the underlying transport protocols represent. This has enabled us to
develop intelligent rulesets that can detect forms of misuse that it is simply not
possible to determine from single packets outside the session context.

3.4.1 eXpert-FTP rulesets

• FTP_DESTRUCTIVE_CMD-ATTEMPT: When an anonymous user at-
tempts to issue a "destructive" FTP command unsuccessfully, this rule
will generate an incident report. Destructive FTP commands refer to the
ones that can modify the file system of an FTP server (e.g., STOR).

► FTP.DESTRUCTIVE.CMD specifies a list of FTP commands that can
modify the file system of an FTP server.

49

• FTP-DESTRUCTIVE.CMD-SUCCESS: This rule detects incidents in
which an anonymous user issues a destructive FTP command successfully.

► FTP-DESTRUCTIVE.CMD specifies a list of FTP commands that can
modify the file system of an FTP server.

• FTP-RESERVED-NAME: This rule fires when an attempt to start an
FTP session using a "reserved" account is detected. These reserved ac-
counts are not normally used by an ordinary user, and they are usually
well-known system accounts (e.g., bin).

► FTP-RESERVED .ACCOUNT is a list of FTP account names that are
not normally used by an ordinary FTP user.

• FTP-SENSITIVEJILE-RETR: If a retrieve command (RETR) with an
argument that corresponds to a sensitive file is detected, this rule will fire.
Retrieving these files may indicate an attempt to steal security-related
information.

► FTP-SENSITIVE-FILE is a list of names corresponding to sensitive
system or user files.

• FTP-SITE-EXEC: This rule fires when an anonymous user issues a SITE
command with EXEC as an argument. A successful SITE EXEC attack
can lead to root compromise on the FTP server.

• FTP-CWD-PROBES: This rule fires when an anonymous user uses the
CWD command to access files in sensitive directories (e.g., /usr). Access-
ing these directories by an anonymous user may violate a access control
security policy.

► FTP-SENSITIVE-DIR contains a list of directories that may contain
sensitive files and thus should not be accessed by anonymous users.

• FTP-NLST-DENIAL: This rule fires when an NLST command is issued
with "../*/../*/../*" as an argument. This attack may cause denial of
service to the FTP server.

• FTPJ3AD_LOGIN: This rule generates an incident report when a certain
number of failed FTP login events are detected within a certain period
of time. Repeated failed login events may indicate a password guessing
attack.

► FTP-MAX-BU-LIFE defines the size of the time window (in seconds)
during which a failed login event is considered by this rule.

► FTP_MAX_FAILED.THRESHOLD defines the number of failed login
events required to trigger this rule.

• FTP-CORE-ATTACK: A successful FTP core dump attack can enable
a legitimate user to obtain the contents of a Unix shadow password file.
This attack involves several steps: (1) logon via FTP with your regular

50

•

•

username and password; (2) cd /tmp; (3) user root <incorrect password>;
(4) quote pasv; (5) get the core file, which contains the passwords, from
/tmp.

► FTP_MAX_BU_LIFE defines the size of the time window (in seconds)
during which a failed login event is considered by this rule.

FTP_BUFF_OVERFLOW: This rule detects very long FTP command ar-
guments that contain certain suspicious patterns. They may indicate a
buffer overflow attack.

► FTP_MAXJFTPSTRJLEN defines the maximum allowable length of
FTP command arguments.

► FTP-BO-PATTERN contains patterns in FTP command arguments (in
addition to a list of patterns included in the expert) that correspond to
buffer overflow attacks.

FTP-BOUNCE: This rule detects an FTP server being used as a third-
party bounce point to attack other sites by means of the PORT com-
mand. The FTP bounce attack enables an attacker to probe other ma-
chines (while hiding the origin of the attack) and to circumvent network
access control (e.g., bypassing packet filters and violating export control).

3.4.2 eXpert-HTTP rulesets

The heuristics marked with (*) fire only when a request contains any of the argu-
ments in HTTP-NASTY-FILE-ARGS JDETECT but not any of the arguments
in HTTP-NASTY-FILEJVRGSJEXCEPT. The heuristics marked with (+) fire
only when a request refers to a CGI directory in HTTP-CGI_LOCATION.DE-
TECT but not in HTTP-CGIXOCATION-EXCEPT.

• HTTP.TOO-LARGE-REJECT: A server reply with status code 413 (Re-
quest Entity Too Large) or 414 (Request-URI Too Large) is observed. It
could indicate attempts to run buffer overflow attacks against the server,
but could also be caused by misconfigured scripts or clients.

• HTTP .SUSPICIOUS-ENCODING: This rule fires when suspicious encod-
ing is found in the URI, such as if ordinary 7-bit ASCII letters or digits are
hex-encoded (e.g., %70 for 'p'), nonstandard spaces are used, or encoded
NULL characters are included. The only reason for such encoding would
be to try to hide something (e.g., to elude a string-matching IDS).

• HTTP-SECRET-ACCESS: The URI contains one of the paths specified
in the HTTPJ3ECRET-DIRS list.

► HTTP-SECRET-DIRS contains a list of directories that should not be
accessed through HTTP.

51

• HTTP-APACHE2: The Apache2 attack is a denial-of-service attack
against an Apache Web server where a client sends a request with many
HTTP headers. If the server receives many of these requests it will slow
down, and may eventually crash.

► HTTP.APACHE2.THRESHOLD is the number of headers in a request
that will trigger this ruleset.

► HTTP-APACHE2JR.EPORT.TIMEOUT is the time window (in sec-
onds) within which APACHE2 alerts will be aggregated.

• HTTP-PHF: This rule detects HTTP data that refer to a file whose name
includes "phf" that resides in a CGI script directory. The PHF attack
could enable arbitrary commands to be executed with the privileges of
the Web server. (*,+)

• HTTP-NPH: This rule detects HTTP data referring to a file whose name
includes "nph-" that resides in a CGI script directory. An attacker may
use the NPH attack to read files that are stored in the Web server. (*,+)

• HTTP-CAMPAS: This rule detects HTTP data referring to a file whose
name includes "campas?" that resides in a CGI script directory. A suc-
cessful CAMPAS attack enables the attacker to execute arbitrary com-
mands with the Web server's privileges. (*,+)

• HTTP .GLIMPSE: This rule detects HTTP data referring to a file whose
name includes "glimpse" that resides in a CGI script directory. A success-
ful GLIMPSE attack enables the attacker to execute arbitrary commands
with the Web server's privileges. (*,+)

• HTTP-NEWDSN: This rule looks for HTTP data containing the strings
"newdsn.exe" and "driver=". This vulnerability of Microsoft IIS enables
an attacker to create a Microsoft Access Database file with any file exten-
sion.

• HTTP .BACK: This rule fires if HTTP data containing 25 consecutive
slash characters ("/") is observed. Performing this attack multiple times
may cause denial of service to the HTTP server.

• HTTP.CRASHJIS: This rule detects HTTP data containing the strings
"GET" and "../..". This attack could crash Microsoft IIS.

• HTTP-NOVELL-CONVERT: This rule detects HTTP data containing
the string "convert.bas?../". This attack, if successful, enables an attacker
to browse the file system with the Web server's privileges.

• HTTP.WEBGAIS: This rule detects HTTP data containing the strings
"webgais" and "query=\"'. This WebGais vulnerability could provide
remote execution capability to an attacker. (+)

52

• HTTP.CGI-NASTY-PROBE: This is a general rule for CGI-bin programs
that are potentially vulnerable. To fire this rule, the name of a vulnerable
CGI program and an argument in HTTP-NASTY .FILE _ARGS_DETECT
must be observed in HTTP data. (+)

► HTTP-CGI-PROGS-W-NASTY_DETECT is a list of CGI program
names that, when found with a suspicious argument, may indicate a probe
or an attack exploiting vulnerable CGI programs.

• HTTP.CGI.ALONE.PROBE: This is a general rule for CGI-bin programs
that are potentially vulnerable. (+)

► HTTP.CGIJPROGS-ALONEJDETECT is a list of CGI program names
that, when found in HTTP data, may indicate a probe or an attack ex-
ploiting vulnerable CGI programs. (+)

• HTTP_NASTY.DIR.ARGS: This rule looks for an HTTP "GET" request
for a file residing in a directory that is normally not accessed through
HTTP.

► HTTP_NASTY_DIR_ARGS_DETECT contains a list of patterns that
correspond to directory paths not normally accessed through HTTP.

► HTTP_NASTY_DIR_ARGS_EXCEPT contains a list of patterns that
correspond to directory paths. Moreover, it is safe for HTTP requests to
access these directories.

• HTTP.NASTY-FILE-ARGS: This is a general rule that detects HTTP
requests carrying a suspicious file argument. (*)

• HTTP_NASTY.PROGRAM.ARGS: This is a general rule that detects
HTTP requests carrying a suspicious program argument.

► HTTP JSTASTY.PROGRAM.ARGS.DETECT is a list of filename pat-
terns that, when found in HTTP data, could indicate attempts to run
programs chosen by an adversary on the HTTP server.

► HTTP JSTASTY _PROGRAM_ARGS_EXCEPT contains a list of filename
patterns that represent an exception to this rule.

• HTTP_URIJ3UFFER_OVERFLOW: Raise an alert when a URI longer
than a specified length is observed, as this could indicate a buffer overflow
attack. This rule is disabled by default, because of the risk of false positives.

► HTTP.URI-OVERFLOW-LEN is the threshold URI length for overflow
alerts.

• HTTP .HEADERS J3UFFER_OVERFLOW: Raise an alert when the com-
bined length of all the HTTP headers of a request exceeds a threshold
value, as this could indicate a buffer overflow attack. This rule is disabled
by default, because of the risk of false positives.

► HTTP_HEADERS_OVERFLOW_LEN is the threshold header length
for overflow alerts.

53

3.4.3 eXpert-SMTP rulesets

• SMTP.SUSPICIOUS.CMD-NAME: This rule detects SMTP commands
that are not supported. Attacks that use SMTP debugging commands
such as DEBUG and SHOWQ, the WIZ command (which corresponds to
a vulnerability in old versions of sendmail), or insecure SMTP commands
(e.g., TURN) can be detected by this rule.

► SMTP_EXTENDED.CMDJSfAME contains a list of SMTP commands
that correspond to SMTP extensions supported by the monitored site.

• SMTPXONG-CLIENT.CMD-LINE: This rule detects SMTP command
lines that are longer than a certain threshold and correspond to a sup-
ported SMTP command. Many buffer overflow attacks have the charac-
teristic that long command lines are used.

► SMTP_MAX_CLIENT_CMD-LINE_LEN is the maximum length of a
command line without triggering this rule.

► SMTPJEXTENDED.CMD.NAME lists the extended SMTP commands
for which this rule will perform the length check. This rule will check the
length of command lines that have a standard SMTP command name.

• SMTP-BADJPATH: This rule detects MAIL/RCPT command arguments
that contain characters/patterns not normally used. For example, some
SMTP exploits use mail paths that contain "I" (i.e., the pipe character).

► SMTP_SUSPICIOUS-PATH-PATTERN contains a list of suspicious
patterns to look for in MAIL/RCPT command arguments.

• SMTP-ALIAS-ATTACK: This rule detects attacks that use certain sus-
picious mail aliases as RCPT command arguments. For example, attacks
that use the "uudecode" mail alias can be detected.

► SMTP_SUSPICIOUS JtCPT-MAIL-ALIAS contains a list of mail aliases
that appear as RCPT command arguments of SMTP attacks.

• SMTP-MAIL_RELAY: This rule checks for multiple "@" characters and
the "%" character in a RCPT command line. Their presence may indicate
that an attacker attempts to use an SMTP server as a relay to conduct
mail spamming. Disable this rule if your server supports third party mail
relaying.

• SMTP.EXT_SRC-EXT.DEST: This rule detects mail transmission involv-
ing an external sender (based on the sender's IP address) and an external
recipient (based on the recipient's domain name). This activity may in-
dicate mail spamming. Disable this rule if your server(s) supports third-
party mail relaying, or if the monitored mail server(s) is allowed to serve
clients with an address not in the user-configurable local network address
list. Disable this rule when analyzing data collected from another site,
or reconfigure SMTP-INTERNAL-DOMAIN-LIST and the local network
address list appropriately.

54

► SMTP JNTERNAL JDOMAIN_LIST is a list of domain names used to
determine whether an e-mail address should be treated as internal. Be-
cause this list is sitespecific, it has no default value. Thus this list must
be configured properly before enabling this rule.

• SMTP_EXPN_PROBE: This rule detects EXPN commands that involve
suspicious mail aliases, especially those that may potentially expand to
many e-mail addresses (e.g., "all"), and those that test the presence of
attack-related aliases (e.g., "decode"). This probing activity may indicate
an attempt to gather intelligence before an attack is launched.

► SMTP-SUSPICIOUS-EXPNJVtAIL-ALIAS is a list of mail aliases that
correspond to EXPN command arguments of SMTP probing attacks.

• SMTP_WORM: This rule looks for certain suspicious patterns in mail mes-
sages. The presence of these patterns may indicate an e-mail worm/virus.

► SMTP.WORM.PATTERN contains patterns found in the mail body of
an e-mail worm/virus.

• SMTP.LONGJMIME.FILENAME: This rule detects long file names used
for a file attachment in a MIME (Multipurpose Internet Mail Extensions)
message. Having very long file names for MIME attachments may indicate
a buffer overflow attack.

► SMTP_MAX_MIME.FILENAME .LEN denotes the maximum allowable
length for the name of a MIME attachment without triggering the rule.

• SMTP.SENDMAIL.BO: This rule examines the length and the content
of SMTP commands to detect a sendmail buffer overflow attack.

► SMTP-SENDMAILJBO-PATTERN contains additional patterns in the
mail message body that may indicate sendmail buffer overflow attacks.

• SMTPJVIAILBOMB: When there are too many mails sent by an SMTP
client to an SMTP server, this rule will declare a mail bomb attack. A
mail bomb can overflow a mail queue and can potentially cause system
failure.

► SMTPJVIAXJVIAILBOMB.THRESHOLD denotes the maximum allow-
able number of mail transmissions sent from a certain client to a certain
server without triggering this rule.

► SMTPJVIAX.TRANSFACTJLIFE denotes the amount of time (in sec-
onds) a single mail transmission will be remembered by this rule.

► SMTP_MAX.TRANSCOUNT.LIFE denotes the amount of time (in
seconds) no more activity is observed between an SMTP client and an
SMTP server before this rule "forgets" (i.e., restarts the aggregation pro-
cess of) the mail transmissions sent between them.

• SMTPJ3ENDER.EVENT.AGGREGATION: This rule aggregates SMTP
events that correspond to a client, and it must be enabled if one or more

55

of the following rules are enabled:
SMTP.MANY_FAILED.VRFY, SMTP_MANY_FAILED_EXPN,
SMTP.MANY.ETRN, and SMTP-MANYJRCPT.

► SMTP.MAX_SENDER-AGGREGATES_LIFE specifies the amount of
time (in seconds) no more activity is observed from an SMTP client before
this rules "forgets" the client's prior activities.

• SMTP-MANY-FAILED.VRFY: This rule fires when the number of failed
VRFY commands in a mail transmission session exceeds a certain thresh-
old. Failed VRFY commands may indicate intelligence gathering.

► SMTPJVIAX JAILED.VRFY denotes the maximum allowable number
of failed VRFY in a mail transmission session without triggering the rule.

• SMTP.MANY.FAILED_EXPN: This rule fires when the number of failed
EXPN commands in a mail transmission session exceeds a certain thresh-
old. Failed EXPN commands may indicate intelligence gathering.

► SMTP.MAX JAILED .EXPN denotes the maximum allowable number
of failed EXPN in a mail transmission session without triggering the rule.

• SMTP-MANY.ETRN: This rule is triggered when the number of ETRN
commands in a mail transmission session exceeds a certain threshold. In
some SMTP implementations (e.g., sendmail 8.9.1), an SMTP server forks
and sleeps for seconds when an ETRN command is received. Enough
ETRN requests may exhaust the resources of an SMTP server to cause
denial-of-service or server reboot.

► SMTP_MAX JETRN denotes the maximum allowable number of ETRN
in a mail transmission session without triggering the rule.

• SMTP-MANY.RCPT: This rule is triggered when the number of recipients
specified in a mail transmission session exceeds a certain threshold. A large
number of recipients may indicate mail spamming or a denial of service
attack.

► SMTP-MAX_RCPT denotes the maximum allowable number of recipi-
ents in a mail transmission session without triggering the rule.

3.4.4 eXpert-SESSION rulesets

• SESSION_Extemal_Rlogin-Request: This rule detects the use of r* com-
mands (e.g., rlogin, rsh, and rexec) from an external host. Because these
services use an insecure user authentication mechanism, accessing them
from an external host should be disallowed.

• SESSION-XtermJBO: This rule detects attempts to exploit a known xterm
buffer overflow attack.

56

•

•

•

SESSION_Unexpected_Root_Transition: This rule fires when a user be-
comes root without using the su command. This suspicious event may be
a symptom of a successful attack.

SESSION-SU-ByJSTonAdmin: If a user attempts to obtain root privileges
using the Unix su command, and that user is not authorized to do so, this
rule will fire.

► ADMINISTRATIVE-USER-LIST contains the list of users that are au-
thorized to obtain root privileges.

SESSION_PW-OverWrite: This rule detects attempts to overwrite pass-
word files (i.e., passwd and shadow files in Unix systems) or to append new
entries to them. This attack may enable an attacker to add new accounts
that have known or no passwords, or cause denial of service to existing
users.

SESSION-RH.OverWrite: This rule detects attempts to overwrite or to
append to .rhosts files, which specify trust relationships between a user
account and other hosts or accounts. If successful, an attacker may log on
to the victim's account without knowing the password.

SESSION.BIN-Overwrite: This rule detects attempts to tamper with the
system files in the bin directories of a Unix system, (e.g., system binaries
may be replaced or removed).

SESSION.LOG.OverWrite: This rule detects attempts to tamper with
the system log files in the /var/log directory of a Unix system. This kind
of activity may indicate that an attacker tries to destroy the evidence of
an attack.

• SESSION_Suspicious_Link: This rule fires when symbolic links are created
in the /tmp directory.

• SESSION-Suspicious-Argument: This rule looks for certain suspicious
keywords in data traffic.

•

•

• SESSION-Suspicious-Setuid: This rule fires when a dot file (i.e., the name
of a file that starts with ".") is made setuid or when a setuid file is created
by an ordinary user.

• SESSION_NTSunKill: This rule looks for four or more consecutive control-
D characters in session traffic, which may be used by an attacker to cause
denial of service.

• SESSION_Remote_Privileged_Login: This rule detects a login event that
involves a reserved account from an external host.

► RESTRICTED-ACCOUNTS-LIST contains a list of account names
that should not be used by a remote login.

57

• SESSION_MAX.Failed_Logins: This rule fires when the number of failed
login events within a certain time period exceeds a certain threshold. This
may indicate a password guessing attempt.

► MAXJAILED .LOGINS defines the number of failed login events needed
to trigger this rule.

► FAILED-LOGIN-WINDOW defines the size of the time window during
which we aggregate failed login events for this rule.

• SESSION_Dictionary .Attack: This rule fires when the number of failed
login events within a certain time period exceeds a certain threshold. This
may indicate a more elaborate password guessing attempt.

► DICTIONARY.COUNT defines the number of failed login events ob-
served before this rule declares a dictionary attack.

► FAILED.LOGIN.WINDOW defines the size of the time window during
which we aggregate failed login events for this rule.

3.5 Related work

The first network-based IDS, using data intercepted or "sniffed" from a broad-
cast Ethernet network, was NSM from UC Davis [22]. Because of the popu-
larity of Ethernet and the ability to monitor many hosts with a single sensor,
network-based IDSs became very popular, in the research community [40], the
commercial market [25], and the open-source community with Snort [50] and
others.

Snort [50] is an example of a simple single-packet analysis mechanism, al-
though there are some add-on extensions to Snort that perform more complex
analysis. An example of a tool that performs analysis on the advanced multi-
event level of EMERALD eXpert-Net is NetSTAT from UCSB [60].

3.6 Conclusions

We have presented a software package for network-based intrusion detection,
both on a transport-protocol level and on the application-protocol level. By per-
forming reconstruction of transactions and sessions, it can detect many security
problems that would otherwise not be possible to detect solely from network
surveillance.

58

Chapter 4

Host-based Detection

This chapter investigates the possibilities and limitations of host-located audit-
based data analysis for intrusion detection and response. In particular, we
describe EMERALD eXpert-BSM [33], a real-time intrusion detection solution
for the Sun Solaris Operating System Environment.

4.1 Introduction

When research on intrusion detection was initiated in the early 1980s, the prob-
lem was often referred to as automated audit-trail analysis. In theory, auditing
is an important security service that both establishes accountability for users
and aids in damage assessment once an abuse is discovered. Unfortunately, in
practice the volumes of data that tend to be produced by audit services are such
that any security violation recorded within the audit trail is often secure from
discovery as well. The increasing speed and complexity of modern computing
environments has increased the volumes of audit data that can be produced.

The Solaris Basic Security Module (BSM) [56] is one example of an audit-
ing facility that can provide detailed records about system events. However,
for system operators lacking intelligent analysis tools, there are two dominant
strategies that emerge in using the audit facility:

1. Turn on auditing for all or most event types, and have a careful scheme
in place for copying the large amounts of audit data to secondary storage
for its potential use later in forensic analysis.

2. Do not perform auditing at all.

Neither approach utilizes the full potential of auditing facilities as an important
contributor to a system's operational security.

The EMERALD (Event Monitoring Enabling Responses to Anomalous Live
Disturbances) environment is a distributed scalable tool suite for tracking ma-
licious activity through and across large networks [46]. EMERALD introduces
a highly distributed, building-block approach to network surveillance, attack

59

isolation, and automated response. A central concept of EMERALD is its dis-
tributed, lightweight monitors, diverse with respect both to the monitored event
streams and to analysis techniques. eXpert-BSM represents one example of an
EMERALD monitor that can stand alone as an important host protection ser-
vice, and can also be easily configured to fit into a distributed framework of
surveillance, correlation, and response.

eXpert-BSM is a security service for isolating misuse and other security-
relevant warning indicators from the Sun Solaris audit facility. Initial devel-
opment of eXpert-BSM began in 1998 and has continued to the present. This
chapter describes the design and features of eXpert-BSM and how it fills a vital
function in security coverage not provided by network intrusion detection ser-
vices. Section 4.2 discusses the complementary nature of host audit trail analysis
and network traffic monitoring. Section 4.3 summarizes the eXpert-BSM attack
coverage. Section 4.4 presents the eXpert-BSM capabilities and unique features
while Section 4.5 discusses deployment experiences and performance charac-
teristics. Section 4.6 discusses related work in the area of host-based security
analysis.

4.2 Audit data vs. network traffic

An intrusion detection system (IDS) analyzes an event stream in an attempt to
categorize the events as normal or intrusive. The first IDSs proposed and devel-
oped in the early 1980s were host based, analyzing the audit trails of mainframe
computers in search of anomalies and signs of malicious activity. When later
applied to networked environments, the dominant architecture was centralized
collection and analysis of raw audit data from multiple hosts. The first network-
based IDS, using data "sniffed" from a broadcast Ethernet network, was NSM
from UC Davis [22]. The network-based trend that followed has been so strong
in commercial and free IDSs that many people equate intrusion detection with
network traffic analysis.

In this chapter, we somewhat narrowly use the term host-based to refer to a
monitor that analyzes audit data from the operating system kernel. In referring
to host-based intrusion detection, others have included any form of analysis that
is focused on the protection of a single host. For example, some IDS developers
have proposed placing a network event collector and analyzer locally on every
host, observing traffic involving only that host. That would not fit into the
definition of host-based analysis as used in this chapter. Accordingly, network-
based analyses are defined here to involve the analysis of network traffic data,
wherever the monitor is located.

Major functional separation between host- versus network-based analyses
arises from the content of the data streams being analyzed. Audit-based anal-
yses provide an exceptional degree of insight into the internal operations of
processes executing within the host. From the audit-trail vantage point, one
can examine all access control decisions occurring between the kernel and user
processes, profile normality in process activity, and compare user actions against

60

their expected roles within the system.
Surveillance through network traffic analysis allows a system to view the

network communications across multiple hosts. In broadcast networks, a single
sensor can provide analysis coverage over an entire local area network (LAN).
Both host- and network-based surveillance are important and complementary.
Each has its place in the arsenal of INFOSEC devices being made available
to supplement the need for computer and network security. However, each
approach has its respective weaknesses.

4.2.1 Network-based IDS limitations

A fundamental limitation to network analysis is that not all forms of misuse
will necessarily generate network traffic. Further, not all misuse activity that
results in network traffic will provide sufficient information to isolate the misuse.
Examples of such information include the true full local pathname of a file
retrieved through HTTP, or the user ID under which a particular service daemon
executes. This is also a problem with buffer overflows and other well-known
malicious attacks that are performed from the console or over an encrypted
channel.

Application-layer encryption of network traffic is becoming more common
and user transparent thanks to technology such as SSL-enabled Web browsers
and Secure Shell (ssh). The same is true for lower-layer encryption through vir-
tual private networks, some of which are based on the IPSEC standard. While
this is a positive step forward in communications integrity and the prevention
of data theft, it makes network-based intrusion detection more difficult as po-
tentially malicious instructions are also encrypted.

Another problem with network intrusion detection involves the evolution
of common network topologies, specifically, the growing popularity of non-
broadcast networks. Inserting a network sniffer in the path of all LAN traffic is
becoming more challenging. For example, switching technology allows improved
network performance by effectively turning a broadcast Ethernet network into
a unicast network, hampering sniffing opportunities. Also, if there are multiple
possible routes between two communicating hosts, some packets could be routed
around the sniffer location.

When intercepting and analyzing the communication between two hosts, it
is of paramount importance for correct analysis that the traffic is interpreted
equally by the IDS and the receiver. If not, the IDS could be tricked into in-
terpreting traffic as benign while the receiver, making a different interpretation,
becomes the victim of an attack. With respect to IP stacks, there are many
subtle differences among operating systems that could be used by an attacker
to send instructions that appear benign to the IDS, but have malign effects on
the victim host [48]. The same holds for application-level interpretation. For
instance, Web servers for the Windows platform tend to accept the backslash
character as a valid path separator in addition to the forward slash, while servers
on Unix platforms do not.

61

Network traffic analysis is also challenged with the need to provide transac-
tion and session reconstruction, requiring great efficiency in managing state. In
many cases, a single packet is not sufficient to correctly identify intrusive behav-
ior. For advanced analysis, the IDS must reconstruct transactions and sessions
based on the observed data and therefore keep potentially large amounts of state
information for arbitrarily long periods of time. Merely combining the requests
and replies across many parallel sessions into transactions can be a complex task
for the IDS.

Finally, there is the issue of scalability of a network IDS to large traffic
volumes. For line speeds where relatively simple routing decisions have to be
made in firmware to be sufficiently fast, the more complicated analysis required
by an IDS implemented in software has little chance to keep up.

4.2.2 Host-based IDS limitations

Host-based intrusion detection can avoid most, if not all, of the problems listed
above. Thus, it is an important complement to the threat coverage of network-
based monitoring. However, host-based monitors also have a set of general
problems associated with them.

As with network traffic analysis, host-based analysis is limited by the avail-
able content in the event stream. For example, a host-based monitor can fail
to observe network-related activity. This illustrates the complementary nature
that host analysis shares with network traffic analysis tools. Unfortunately, the
use of network-based vulnerability scanners has become a prominent practice
in security evaluation procedures, and an evaluator pointing a network scanner
against a host equipped with a host-based IDS is often disappointed when the
IDS does not react to all elements of the scan. Very severe host attacks read-
ily detectable with host-based analysis are similarly often not recognizable by
network IDSs.

Another potential issue with a host-based IDS is its vulnerability to attack
once a system has been compromised. When an attacker has taken over the
omnipotent super-user account (root, administrator), then, in the absence of
automated response, the IDS is itself subject to attack. If the IDS transmits
alarm information over the network to another entity, it may be able to report
super-user subversion to others before the attacker can stop the IDS.

If a denial-of-service attack brings down the host, the IDS will go down with
it. The IDS may be able to raise an alarm about a resource-exhaustion attack
in progress, while there could be other attacks that crash the host with only a
minimal number of network packets, before the IDS can send out an alarm. The
additional load put on the host by the IDS monitor could also be of concern.

4.3 eXpert-BSM knowledge base

Among the first steps toward developing an effective and maintainable misuse
detection service is to select a reasoning strategy and knowledge representa-

62

tion structure that is well suited and efficient for this problem domain. In [32],
we argue why forward-chaining rule-based systems are highly useful for com-
puter and network intrusion detection. The core of eXpert-BSM consists of
an inference engine and knowledge base built with the Production-Based Ex-
pert System Toolset (P-BEST), a highly optimized forward-chaining rule-based
system builder for real-time event analysis.

In the field of expert system analysis, forward-chaining strategies dominate
applications that provide prognosis, monitoring, and system control. Generally,
forward-reasoning systems excel in expressing logical inferences across multiple
events in search of specific event sequences or activity that crosses predefined
thresholds of normalcy. eXpert-BSMs P-BEST models can comprehend intru-
sive behavior that may involve complex/multiple event orderings with elaborate
pre- or post-conditions. This allows for a concise rule base, while still being able
to recognize wide variation in intrusive activity.

In contrast, a variety of signature-based intrusion detection techniques em-
ploy stateless reasoning to isolate single-step malicious activity, such as rudimen-
tary pattern matching. For very high-volume event analysis, stateless predicate
reasoning can be quite effective for simple single-packet exploit detection. How-
ever, limited expressibility in misuse definitions can lead to inflated rule bases
to cover all variations of a known phenomena. Rudimentary pattern matching
also fails to cover multievent scenarios.

From 1996 to the present, P-BEST has been employed in the development of
nine independent intrusion-detection engines under the EMERALD framework
of distributed sensors managed under a correlation hierarchy. P-BEST has
shown itself to be an effective real-time transaction processing system, with a
pre-compilation library that allows its inference engines and knowledge bases
to be easily integrated into large program frameworks. Its language is small
and easily extendible, as calls to arbitrary C functions are possible anywhere in
the rule structure. Since its inception on Unix, P-BEST has undergone many
optimizations (Section 4.5.3).

The P-BEST toolset consists of a rule translator and a library of runtime
routines. When using P-BEST, rules and facts are written in the P-BEST
production rule specification language. The misuse detection P-BEST compiler,
pbcc, is then used to translate the P-BEST knowledge specification into a callable
expert system library. A full discussion of the P-BEST language definition with
examples is provided in [32].

4.3.1 eXpert-BSM attack coverage

The eXpert-BSM knowledge base consists of 123 P-BEST rules, which allow
eXpert-BSM to recognize 46 general forms of misuse or warning indicators of
abuse. Initial development of this rule base began in 1998 and has continued
to the present. Based on experimental evaluations (see Section 4.5.2) and other
input, eXpert-BSAfs knowledge base has been refined and extended into an
effective suite of intrusion models for identifying, where possible, the broadest
forms of activity that indicate abusive or intrusive activity on Unix hosts.

63

eXpert-BSM excels at detecting when an adversary attempts to violate se-
curity on the host, regardless of whether it is an external agent or an insider
operating from the console. While attack space coverage is not claimed to
be complete, significant effort and experience has been invested in this knowl-
edge base over several years. The majority of the intrusion models attempt to
recognize the most general form of misuse by detecting state transitions that
represent the underlying compromise of intrusions and other known misuse ac-
tivity. With respect to attack coverage, these intrusion models are categorized
under the following broad areas of host misuse:

Data Theft — involves attempts by non-administrative users to perform read
operations on files or devices in a manner considered inconsistent with the
system security policy. This includes attempts to access files stored in
nonpublic directories that are owned by other users, or to reference files
in violation of eXpert-BSMs surveillance policy (Section 4.3.2). The cat-
egory includes attempts to access root core file contents, a well-known
method to gain access to encrypted or even cleartext password content.
The category also includes opening network interface devices in promiscu-
ous mode, indicating attempts by non-administrative users to sniff traffic
from the network.

System/User Data Manipulation — attempts by non-administrative users
to modify system or user data, where modify broadly means attempts to al-
ter, create, overwrite, append, remove, or change content or the attributes
of file system objects. Coverage in this category includes attempts to mod-
ify system files within which security-relevant configuration parameters are
stored. This configurable list of files typically includes files in /etc. The
category also includes attempts by anonymous FTP users to modify file
system content outside a predefined upload directory, should one exist.
Intrusion models that detect attempts to modify user environment files
(e.g., .csrhc, .login, or .rhosts) or modify files in violation of eXpert-BSMs
surveillance policy (Section 4.3.2) are also included in this category. Last,
the category provides comprehensive coverage over attempts to modify
system executable binaries and scripts stored in publicly shared binary
directories.

Privilege Subversion — provides broad and effective coverage of illegal at-
tempts to subvert root or other administrator authority, either through
the illegal changing of one's operating authority, subverting the function
of a privileged (setuid) application, or by causing a setuid process to ex-
ecute an application that is not owned by the setuid program owner or
the system. Intrusion models in this category are capable of detecting the
three variations of buffer overflow attacks [43, 8] that continue to plague
Unix setuid applications and inetd services: exec argument buffer over-
flows, environment variable overflows, and data-segment overflows. The
generality of eXpert-BSMs buffer overflow model was demonstrated when

64

a new such exploit was published for Solaris 8 [14]. Without being up-
dated with specific knowledge about the new attack, eXpert-BSM detected
and correctly identified this event as privilege subversion through a buffer
overflow. Overall, the BSM audit trail provides far superior event content
than network traffic from which to identify process subversion on hosts.
Inetd service subversion (such as the well-known sadmind(l) attack on
Solaris [9]) is an example of a data segment buffer overflow, while exec
argument and environment variable overflows have been exploited in per-
haps more than a dozen setuid applications on Solaris alone (e.g., eject,
fdformat, ffbconfig, passwd, ping, rdist, rlogin, ufsrestore, and xlock).

Account Probing and Guessing — identifies repeated attempts to enter a
system via authentication services such as rlogin or FTP, or attempts to
gain root authority by non-administrative users or from external clients.

Suspicious Network Activity — recognizes various attempts to probe or
scan the host, or misuse the host's FTP services to distribute content to
other external sites (i.e., FTP warez hosting). While BSM audit trails
provide minimal insight into raw network traffic activity, they do allow
the monitor to recognize successful connections to TCP-based services
and, more important, provide detailed insight into the internal operations
of the network server process as it is being used (or potentially misused).
eXpert-BSM also provides a TCP port scan detection capability on TCP
ports that have enabled services on the host.

Asset Distress — identifies operational activity that indicates a current or
impending failure or significant degradation of a system asset. The ma-
jority of these problems are very difficult, if not impossible, to diagnose
via network traffic analysis. This category includes filesystem or pro-
cess table exhaustion, and also core-dump events by root-owned services.
In addition, this category includes detection of malicious service denials,
both through remote agents attempting to exhaust process tables via in-
etd services, and by a Solaris-specific self echo flooding attack by local
host processes.

User-specifiable Surveillance — allows the eXpert-BSM operator to create
site-specific policies on activity that should trigger an immediate alarm.
This category includes the ability to recognize operator-defined command
arguments considered suspicious for that site and worthy of administrative
review. In addition, the operator can specify network ports that should
not be accessed by external clients. Examples may include TCP ports 53
(DNS zone transfer), 143 (imapd), or 514 (syslogd). This category also
includes the addition of a powerful feature for specifying a site surveillance
policy to monitor user accesses to data and executable files (discussed in
Section 4.3.2).

Other Security-relevant Events — provides other general security-relevant
activity reports worthy of review by security administrators. This includes

65

significant backward movement of the system clock beyond what is nor-
mally performed by clock synchronization protocols. This backward time
movement is a possible indicator of an attacker attempting to manipulate
file or log state to reduce the risk of detection. This category recognizes
setuid enabling by non-administrative users, and suspicious symbolic link
creation in publicly writable directories. Process execution by reserved
accounts that are not intended to run applications (e.g., bin, sys) are
also recognized. Finally, this category recognizes attempts to alter the
underlying audit configuration, potentially in an effort to flood or starve

eXpert-BSM.

4.3.2 File surveillance policy specification

eXpert-BSM provides a facility for specifying a surveillance policy over file reads,
writes, and executions. Under this policy, the eXpert-BSM operator may specify
groups of users, files, and directories, and then use these groups to specify
surveillance policies regarding file accesses. This allows the operator to easily
establish rules for generating immediate notification when users step outside
their designated roles in the system.

For example, consider a consultant who is granted access to parts of a file
server that also contains company sensitive data to which the consultant should
not have access. The operator would, as a first line of defense, set access controls
on files and directories to prevent the consultant's access to these sensitive file
system areas. However, over time users who work in these areas may fail to con-
tinually manage the proper settings on these files and directories, or may create
new sensitive files that by default allow the consultant access. The surveillance
policy allows the operator to easily detect whenever the consultant accesses,
or even attempts to access, files or directories in the sensitive areas of the file

system.
There are three distinct components to be specified within an eXpert-BSM

access policy specification. The first component, the UserGroups section, allows
the operator to specify groups of users, which are then referenced in the access
policy. The names specified under the user groups should be present as valid
login names defined within the password file, and user names can appear in

multiple lists.
The second section, FileGroups, allows the operator to specify a set of files

and directories that may be referenced together as a group while enumerating
the access policy. Files specified in the file groups should be fully qualified
pathnames. The operator can also specify directories, as shown in the example
surveillance policy specification in Figure 4.1. Files and directories can appear

in multiple lists.
The third section is Policy, within which the operator can specify illegal

read, write, and execute accesses between users and files. The policy section
essentially defines access mode relations among user groups and file groups. For
each user group entered in the policy, three possible relations can be specified:
nread, nwrite, and nexec. The nread mode indicates that users in the associated

66

list are not allowed to read files matching the file lists specified in the bracket
clause. Illegal file writes and executions are specified similarly. Figure 4.1
presents an example of an eXpert-BSM access policy specification.

UserGroups { RegStaff (userl user2)

Management (admin)

Accounting (acct)

>
FileGroups { Programs (/bin /usr/bin /usr/local/bin /usr/local/ftp/bin)

Admtools (/etc/bin /etc/sbin /usr/sbin /sbin)
CompanySecrets (/secret)
Payroll (/accounting/DBMS/payroll.db)

}
Policy { RegStaff (

nread[CompanySecrets Payroll]
nwrite [CompanySecrets Programs Payroll Admtools]
nexec[Admtools])

Management(
nread []
nwrite[Programs Admtools]
nexec [])

Accounting (
nwrite[Programs Admtools]
nread[CompanySecrets]

nexec[Admtools])

Figure 4.1: Example surveillance policy.

In Figure 4.1, there exists a small group of regular staff defined as userl
and user2. There is a management staff, with one manager admin and an
accounting group consisting of user acct. Four file groups are defined. The first
file group is the programs group, where programs are defined as being located in
/bin, /usr/bin, /usr/local/bin, and /usr/local/ftp/bin. An administrative tools
group consists of files in /etc/bin, /etc/sbin, /usr/sbin, and /sbin. A directory
containing company secrets is named /secret A payroll file group consists of a
file called /accounting/DBMS/payroll.db.

In Figure 4.1, regular staff members are not allowed to read company secrets
or payroll data, as specified by the associated nread function. Regular staff may
not write to files in the company secrets, programs, payroll, or admin tools, and
regular staff may not execute admin tools. If eXpert-BSM observes user activity
that contradicts this policy, an alert is raised. Members of the management staff
are not allowed to modify files in the program or admin tools file groups, but
have unrestricted read and execute access over the entire system. Members of
the accounting staff are not allowed to modify files in the program or admin file
groups, read company secret files, or execute admin tools.

67

4.4 eXpert-BSM architecture and features

The preceding section discusses the threat coverage provided by the eXpert-
BSM knowledge base. This section provides an overview of the features and
capabilities of the eXpert-BSM distribution package, and its management when
deployed on multiple hosts in a network.

4.4.1 Preprocessing the Solaris BSM event stream

eXpert-BSM runs on Solaris 2.6, 7, and 8, in 32-bit and 64-bit operating modes.
These versions of Solaris have an auditing mechanism known as SunSHIELD
Basic Security Module [56], or BSM for short. BSM has its roots in the C2
compatibility package for SunOS 4.x, developed to comply with the TCSEC [57]
(Orange Book) requirements.

Before analyzing audit records, eXpert-BSMs event preprocessing service,
ebsmgen, first transforms the content of each audit record into an internal mes-
sage structure. These messages include two important synthetic fields, called
synthetic-parentCmd and synthetic-parentlP. Although audit records provide
detailed information regarding each system call, they do not identify the com-
mand (process image name) under which the system call was invoked. The syn-
thetic-parentCmd field tracks this important attribute by observing exec calls.
Second, although Solaris audit records are structured to include information
regarding source IP information for transactions not performed from the con-
sole, this information is unreliable across audit event types and OS versions. By
tracking the source IP information and always reporting it in synthetic-parentlP,
ebsmgen provides consistently correct IP information for all audit records.

Each message is passed on from the preprocessor to the event handling in-
terface of the expert system, where it is asserted as a fact according to a fact
type definition known as a ptype in P-BEST [32]. Figure 4.2 shows the ptype
definition for audit records, as used in eXpert-BSM. Each field in the ptype cor-
responds to audit token data fields, except for the two synthetic tokens explained
above.

Developing tools for analysis of BSM data is not without difficulty. The
only tool provided with Solaris for audit data interpretation is praudit, which
prints audit data in a simple text form. Although Solaris has some library
routines for producing binary audit records, there are no routines available for
consumers of BSM data. There is no formal grammar specified for BSM to help
developers of consumer tools, and an effort to specify such a grammar for the
BSM of Solaris 2.6 encountered some difficulties [18]. In Solaris 7 and 8, several
new and initially undocumented audit token types were introduced. These are
related to the support of 64-bit mode and other new features such as IPv6.

The syntax of audit records and audit tokens is relatively well specified in
the documentation, but the semantics of the content is not. This is especially
true for audit records generated by applications outside the kernel, such as
the login program. For developers of BSM audit trail analysis tools, such as
the system described in this report, this necessitates empirical studies of large

68

ptype[bsm_event
human_time: string

header_event_type: int,

header_time: int,

header_command: string

header_size: int,

msequenceNumber: int,

path_List: string

subject_auid: int,

subject_euid: int,

subject_ruid: int,

subject_pid: int,
subject_sid: int,
subject _machiiie_ID: string

in_addr_address: string

in_addr.hostname: string

attr.uidList: int,

val.List: int,

return_return_value: int,

return_error_number: int,

textList: string

exec_args: string

exec_env_txt: string

sockl_sock_type: int,
sockl_remote_port: dnt,
sockl_remote_iaddr: string

sockl_local_port: int,

sockl_local_iaddr: string

sock2_sock_type: int,

sock2_remote_port: int,
synthetic_parentCmd: string
synthet ic_parentIP: string

'Header timestamp as a string.

'Header event numerical ID
'Header time as a numeric value.
'Header event ID as a string (event name)

'Header byte count

'Sequence token number
'Paths from one or several path tokens

'Subject audit ID
'Subject effective user ID

'Subject real user ID
'Subject process ID
'Subject audit session ID
'Subject machine ID

'In_addr Internet address

'In_addr Internet hostname
'Attribute owner UID

'Argument value
'Return process value

'Return process error
'Text strings from one or several text tokens

'Exec arguments

'Exec environment

'Socket type
'Socket remote port
'Socket remote IP address

'Socket local port
'Socket local IP address
'Socket type for second socket token
'Socket remote port for second socket token

'Synthetic parent command
'Synthetic parent IP address

Figure 4.2: The P-BEST ptype for BSM events.

amounts of audit data to understand the semantics of the BSM data stream.
Undocumented changes between different versions of Solaris contribute to the
difficulty of this task.

4.4.2 Modes of operation

eXpert-BSM requires no reactive probing of the system state, resulting in an IDS
that produces identical results in batch and real-time modes. Batch-mode pro-
cessing allows eXpert-BSM operators to process previously archived audit files,
typically created by auditd. In real-time mode, eXpert-BSM is able to analyze
audit records as they are produced by the kernel. The eXpert-BSM inference
engine is packaged together with three additional modules that cooperate to
relay BSM records directly from the kernel to the eXpert-BSM inference engine
via interprocess communication, as illustrated in Figure 4.3. In its real-time
operating mode, the eXpert-BSM package employs the following modules:

69

ebsmsetpolicy

 ►

^ >''
os A ~* ebsmprobe ebsmgen eXpert-BSM ^-

kernel /

raw audit data preprocessed messages alerts

Figure 4.3: The components and data flow in the eXpert-BSM process chain
(real-time mode).

ebsmsetpolicy — (real-time mode) is a small setuid to root application that
configures the desired audit policy for the kernel, and then terminates
immediately.

ebsmprobe — (real-time mode) establishes process-to-process communication
between the Solaris kernel and ebsmgen. ebsmprobe runs setuid to root in
order to read the audit records from the kernel.

ebsmgen — (batch and real-time modes) accepts and translates Solaris BSM
audit records into EMERALD event messages as discussed in Section 4.4.1.
An intermediate process is also used to manage buffers efficiently.

eXpert-BSM— (batch and real-time modes) is the EMERALD P-BEST-based
forward-chaining expert system knowledge base and inference engine. It
accepts event messages from ebsmgen and produces intrusion detection
reports.

4.4.3 Alert message format

Within the EMERALD project, a format for alert messages has been developed,
with both producer and consumer processes in mind. Producers include moni-
tors targeting diverse event streams, using different analysis techniques, such as
the expert system used in eXpert-BSM or the probabilistic model of eBay es [59].
Typical consumers are alert management and presentation applications, corre-
lation engines, and components handling automated attack countermeasures.

In Figure 4.4, an example alert from eXpert-BSM is shown. It reports
that user bob successfully changed file permissions on a system executable file.
Messages are encoded in a host-independent binary form suited for network
transportation, but printed here in text form. Response recommendations are
provided here both in a verbose format targeted for presentation to human
operators and in a format aimed at automated response components.

4.4.4 Multihost deployment

The host-based IDS concept is tightly coupled to the surveillance needs of indi-
vidual host computing assets distributed throughout a network. This concept

70

Message ID 601 2001-02-03 01:23:19.761289 ÜTC:

alert_report_ID = 3
alert_thread_ID = 3
alert_count = 1
alert_gen_time = 2001-02-03 01:23:19.000000 UTC
alert.start = 2001-02-03 01:23:19.000000 UTC

alert.model.confidence = AL.CONFIDENCE_HIGH

incident.class = CLASS_INTEGRITY_VIOLATION

incident.signature = BAD_SYSTEM_BIN_MOD

incident_description =
Alteration to system executable
observer.type = DB_TYPE_SIGNATURE

observer_id = 102
observer_stream = 0B_STREAM_BSH
observer.name = eXpert-BSM
observer.version =1.2
observer_location = 192.168.2.20

observer_src_file = realtime

source.IParray = 192.168.1.100
source_username = bob
source_ruid = 0

source_euid = 0

source_auid = 2138
source_pid = 6597

target_IParray = 192.168.2.20
outcome_generic = SUCCESS

outcome_system_code = 0 (0x0)
command = chmod(2)
command_parent = /usr/bin/chmod
resource_targetname = /usr/bin/gunzip
resource_owner = root
resource_owner_uid = 0
recommendation =

"Kill process 6597, Session ID 6542.
Isolate and examine file [/usr/bin/gunzip].

Lock out user account bob until you have
determined who is responsible for this

activity. Check the configuration parameter

BSH_SYSTEM.BIN_LOCATIONS. "

recommendation_directives =
"kill -pid 6542 -da 192.168.2.20
lockout -uname bob -da 192.168.2.20
fixperms -fn /usr/bin/gunzip -da 192.168.2.20

-newattr 000
checkcfg -da 192.168.2.20
-name BSM_SYSTEM_BIN_L0CATIONS"

Figure 4.4: An example alert message from eXpert-BSM.

of distributed, lightweight sensors plays a central role in the EMERALD archi-
tecture and, consequently, the EMERALD infrastructure provides mechanisms
for component configuration, message transmission, alert subscription, and dis-
tributed alert consolidation [42].

71

Correlator -*

DB

rf

*

eXpert-BSM

£Z&

Alerts
and
status
messages

eXpert-BSM

Figure 4.5: An example of multihost deployment of eXpert-BSM.

Currently, multihost deployments of eXpert-BSM are supported through an
alert collection application called efunnel, which multiplexes alert and status
messages from several EMERALD monitors into a single message stream. Each
eXpert-BSM is configurable to store its produced alarms locally on its host
if desired, and can simultaneously forward these alerts to other subscribing
security services located on remote systems distributed throughout the network.
For example, efunnel, or its counterpart eDBMS for alarm storage into an SQL
database, can be deployed and configured to subscribe to alert communications
from a large suite of EMERALD monitors, including multiple eXpert-BSMs.

An example of multihost deployment is illustrated in Figure 4.5. In this
figure, EMERALD monitors are deployed across various key assets on a network.
In addition to alarms, all EMERALD monitors (including eXpert-BSM) are
capable of forwarding health and status messages to their subscribers. Health
and status messages can then be used to recognize unexpected shutdown or
destruction of deployed EMERALD monitors, thus making it difficult to kill a
monitor without detection by other INFOSEC services. In Figure 4.5, a suite
of eXpert-BSM monitors forward alerts to a host running efunnel operating
on the same LAN. In addition, a subset of the eXpert-BSM monitors has a
separate subscriber operating from a location external to the local network.
The remote subscriber is managing an SQL database, and using eDBMS to
store alert information from its selected sensors. On this remote data center,
one may operate a correlation engine to examine the database of alert reports
produced by selected monitors across this and other LANs.

72

4.4.5 EMERALD Java AlertViewer

The eXpert-BSM distribution provides a simple Java-based graphical user inter-
face to manage alerts produced from its suite of distributed sensors (the alert
message format is described in Section 4.4.3). The AlertViewer allows the oper-
ator to review individual alerts, manage incident handling reports, print reports,
email reports, and monitor the health and status of the distributed sensors. A
session history is maintained, recording actions taken on alerts by the operator.
The AlertViewer consists of four windows:

Main View — displays details of alert reports produced by the EMERALD
sensors, and allows operators to store administrative notes regarding each
alert. This view is shown in Figure 4.6a.

Table View — displays alerts in a tabular form, where alerts can be sorted
on primary and secondary attributes and quickly reviewed for alerts of
greatest concern.

Status View — identifies the current suite of distributed monitors to which
this AlertViewer is subscribing. Graphic indicators can identify sensors
that have shut down or are late with health and status communications.
As new monitors are activated, they are dynamically added to this view.
This view is shown in Figure 4.6b.

Configuration View — allows the AlertViewer operator to customize various
elements of the Table view, including default sorting parameters.

4.5 Operational characteristics

eXpert-BSM has been packaged and distributed over the last 4 years to sponsors
through private arrangement, and later as an evaluation release on the Internet
to all who register. Throughout its development, eXpert-BSM has been subject
to multiple third-party evaluations, batch testing, and red-team exercises as
part of its participation in the DARPA Information Assurance Program. Expe-
riences in operational deployments of eXpert-BSM have also greatly enhanced its
capabilities, and has promoted attention to issues of optimization for real-world
requirements. This section briefly summarizes activities that have enhanced the
operational characteristics of eXpert-BSM.

4.5.1 Test battery

The eXpert-BSM distribution includes a test battery, containing a data collec-
tion that can be used in batch mode to trigger every intrusion model in the
knowledge base. The user documentation contains both a description of the
test data and a description of the expected output in terms of eXpert-BSM re-
ports. In addition to being a basis for regression testing during development,
this data set is useful to eXpert-BSM operators in several ways. Typically, an

73

♦ IIM4ALD

Ö
EMHALD Da**1apM«nt m)KI

Observer Namei »Kp^t-ts«
Observer Location: awl

Observer Source; raaittw«
local HMt Time: la/it/t» tsafcis wi

S>**HM wlf » Laafatory
AHtrtlivt
<favtawed kfcru II
uf*w>ai«s1art* II
DMt»tl«ti l
Q|ltD*KM*M«M-tt

üffifiS3l-#

i9H6¥.9!if ®:

i/» in* O
i/>. t«a'p

t>» ix* p

>

Attack $Nautuny »»vw#tTvt «*#*•(iiie.weeTiii*««»
Out* ii/wott5**a»«T

CMM ft»ww:«i'VW«le* CAM« 1 UpAttUt fl

learc* tHt*****»tt.»rl*ta< UMfMMt «* «viwi

Otiw* babills

T*t«,tT;«tfrfc21

iMcemawndkttoii

: it *stJ>w»- fi !•* dit'tuB Mud lUflMtw 'ft »jar» ctf fit« [

A^MinlBttaterHettit

ftetftMtfctf9*t»*M« CAW tro, So

til» yl*w Iaiti «Ivaao*

a. Main view

EMERALD Mo«*to* San»

IW.Ww LKMlan IP Ram

 pnxtotfno»l*Bitwwutfi Hilt>4w»*«l.«mfeoaMf «it* ma«*!* «* tt i»M»f »* »tar? m^rtiM«-»«^

© iimi -TCT *a-aa<n»w»W.«u*«i i *«i aedw *ft9jawawnj^Haim^ «i it/3Mi»i«t aas m ^

TB*dtidM«i*fcrt*MKÄ**hm^rflW»«^:tMtW!*^^ ;

...MuianihMti*«' " "' J"" "" ' """ —

t»»au MaWwrtWw «wt*< u
t n/*J/WI*»13MWT M«VI» i«fta* trr

£aXa-1-HIl* aa»M*aMtfJjrioiWi J*i« »arta* ^ t ii/«WW*MJfc*t ni_lf/*WMIM»1 Kt

raft man«« k *'«wit«röntoft »«WaiWt* £<w»Äaart.tia(!»ö>**!»4mM(»<i<l * wp»W^ -
K^fo» &* WVWilt «* chMaaPOirtfeirtl*: «tlf-mtHftH on»*» w*»*«v*f mafflt»ft%M» (yd» ;
rt tb»W fM,Ml»i

WWilt
W 0t«H>'*4*V<H<tl

t«ft%aKM tlwiwot*»»«« n«i/wt«ja«"*i
Tiw*aj*^te**ii*rBiatNOIitt^ ^ ;
a***f HUM »ws uywttv Ibfc AtAWt trptl«*»%* *hl* ma«**. <•* t># «stfafct* fcvtf * «wtota*«*? .<r* :
to ih«M taa total napbif W aMvt* •*« TO

r*U$Hjtmr» 1414a start«! i i*/»rto i«am m »/a/*» t*i3«i m
" TMir*«Wta.«o*firmr^i1W0»n»^ „ I
prM^Mt **rti W#*S* *»i ^tMAOtt .OpilO»**R <M* «*«* «i. t* *i>dila B tvajT *MMJ»<,»no> wit» =

.? ;itlSs«U^*^^e^ji^^^'^^^^ ^»ilfeWI

b. Status view

Figure 4.6: Two of the views of the EMERALD Java Alert Viewer.

operator would like to be assured that the monitor works correctly after instal-
lation. When started in test mode, eXpert-BSM loads the configuration settings
that are specific for the test battery, and starts a batch mode run that will ex-
ercise the analysis and presentation components of eXpert-BSM. This will show
the operator all the possible types of reports that the monitor can produce. In
addition, if the operator wants to run live attacks to make an end-to-end test
in real time, the test battery documentation provides helpful instructions.

The test battery is designed to be a concentrated collection of attack data,

74

with as little normal data as possible, to minimize the size of the data file and
the time it takes to run through it. The purpose of the test is to validate the
proper operation of all the intrusion models in eXpert-BSM, and to demonstrate
the contents of the resulting reports. Although producing such data is time-
consuming and sometimes difficult, we believe that this type of test battery is
appreciated by IDS operators. Results from a questionnaire sent to registered
eXpert-BSM operators strongly support this view.

Another form of testing is to run through large amounts of normal data
to make sure that there are no false alarms. We continuously perform such
testing of eXpert-BSM in our development and production environments. The
DARPA IDS evaluation data from 1998 and 1999 is of this character [34], with
several weeks of large data sets containing a small suite of attacks inserted for
every day. The attacks selected are intended to exploit a strategically broad
range of vulnerabilities that are representative of the major threats being used
to infiltrate systems today.

4.5.2 Experimentation, deployment, and evaluation

Over the years of its development, versions of eXpert-BSM have been deployed
in third-party laboratories, such as groups within the Air Force Research Lab-
oratory and National Security Agency, for operational evaluations and experi-
ments. In addition, these components have participated in multiple yearly live
red-team exercises, mainly within the DARPA Information Assurance & Sur-
vivability suite of research programs. These activities have provided valuable
input to the continuing development of the knowledge base and other features
of eXpert-BSM.

In April 2000, the first release of eXpert-BSM was made available for down-
load on the Internet. Those who registered their contact information were
granted a time-limited evaluation license. More than 200 organizations have
registered.

We are currently aware of at least one military operational center and one
commercial data center where the evaluation version has been fielded opera-
tionally to monitor critical servers. At both centers eXpert-BSM has been in
continuous use for more than a year.

4.5.3 Optimization and performance

In general, expert systems built with P-BEST are much faster than systems
using the traditional interpreting model, because P-BEST code is translated to
C, which is then compiled just like any C program [32]. In addition, P-BEST has
undergone several modifications to further enhance its performance in terms of
speed and integration with other programs. The modifications include language
extensions that allow most C native types to be used in P-BEST, translator
directives to pass some constructs directly to the C code, and an improved
execution model for the inference engine. We have also developed C libraries
that optimize the evaluation of complex antecedent expressions.

75

For any IDS analyzing a high-bandwidth event stream, it is important to
be able to discard as much irrelevant data as possible as early in the process
as possible. The eXpert-BSM knowledge base uses only 58 of the more than
250 possible types of BSM audit records (auditable event types) in its intrusion
models. In real-time mode, the Solaris audit kernel module is configured to
produce only those 58 types of records. For batch mode, our preprocessing
component ebsmgen performs the same selection. Our experiments show that
for large sets of typical audit data (> 1 GB), this preselection reduces the
amount of data that needs to be produced and processed to on average about
10% of the total amount that would be produced if full auditing were enabled.

The original auditd is designed to write audit records only to files. The
eXpert-BSM package includes a component called ebsmprobe that replaces au-
ditd, reads audit records directly from the kernel, and uses interprocess commu-
nication to pass the records to the preprocessing and analysis components for
direct consumption. Thus, eXpert-BSM avoids expensive disk I/O operations
for audit records and eliminates the need to reserve large amounts of disk space
for audit files.

We recommend installing eXpert-BSM on local disk space rather than on
network-mounted volumes, for better security and to avoid unpredictable file
access delays. Internally, any kind of over-the-network access such as NIS or
DNS lookup is avoided, except during the short initialization phase. Because
many sites use NIS for user account information, eXpert-BSM uses its own
local file for mapping numerical user IDs to usernames, which comprises the
information in /etc/passwd and NIS.

If the monitored host is running an extremely active process producing very
large volumes of audit records, such as a heavily loaded DBMS, auditing can be
turned off for that process to let the IDS be more responsive in its monitoring
of the other processes on the host. We propose that a separate account be
created for the sole purpose of running the heavy process, and that the account
be excepted from auditing by an entry in /etc/security/audit-user.

To obtain performance measurements, we have deployed eXpert-BSM on a
Sun Enterprise 450, which is used as a file server and compute server for about 15
users. The machine is equipped with two UltraSparcII 400 Mhz processors, and
1 GB RAM. The additional load imposed by eXpert-BSM was studied in an ex-
periment where we measured the completion time for building a relatively large
software package, both in the presence and in the absence of the eXpert-BSM
monitor. We ran make for a clean distribution of openssl-0.9.6 and measured
the completion time as reported by /usr/bin/time. A total of 10 runs were
performed for each of the two situations, and each run was followed by other
operations to eliminate the effects of file-system caches and so forth. When
eXpert-BSM was not running, the 10 builds took on average 428 seconds each
to complete, with a standard deviation of 0.8. With eXpert-BSM running in its
"out-of-the-box" configuration, each build produced 94,684 audit event records,
and took on average 454 seconds to complete, with a standard deviation of 1.1.
We can conclude that the presence of the eXpert-BSM monitor caused a 6%
increase in completion time for the task.

76

4.6 Related work

Operating system audit logs offer an interesting vantage point to the security-
relevant operations of host systems. In [44], a design of effective auditing for
security-critical systems is explored. Some standardization efforts for handling
audit content have been examined [7], as have issues of what additional network-
related activity is worthy of representation in host audit trails [11]. A more
recent work on applying formality to audit log structures is [18], which includes
a discussion on some of the difficulties in automated BSM audit trail parsing.

Various related research efforts explore what one can do with audit data to
automatically detect threats to the host. An important work is MIDAS [53], as it
was one of the original applications of expert systems—in fact using P-BEST—
to the problem of monitoring user activity logs for misuse and anomalous user ac-
tivity. CMDS, by SAIC, demonstrated another application of a forward-chaining
expert-system, CLIPS, to a variety of operating system logs [47]. USTAT [23]
offered another formulation of intrusion heuristics using state transition dia-
grams [45], but by design remained a classic forward-chaining expert system
inference engine. ASAX [21] introduced the Rule-based Sequence Evaluation
Language (RÜSSEL) [39], which is tuned specifically for the analysis of host
audit trails.

4.7 Conclusions

Host-based intrusion detection offers the ability to detect a wide variety of
computer misuse through the direct analysis of process activity inside the host.
Host-based analysis offers an important complement to network traffic analysis,
providing threat detection coverage that is simply not easily available through
the analysis of raw network traffic.

eXpert-BSM is a powerful and mature service for isolating security misuse
and important security-relevant warning indicators. It analyzes the rich content
of the Solaris BSM audit stream in real time, providing operators with distilled
alert information and response recommendations. eXpert-BSM has been under
development since 1998, and continues to progress in its effectiveness and us-
ability through extensive testing, experimentation, and deployment experience.

eXpert-BSM is available for download at:

http://www.sdl.sri.com/emerald

77/78

Chapter 5

Application-based
Detection

This chapter describes how data collected inside critical applications can be
used for intrusion detection. In addition to the present project, the work on
the Web server module [2] was supported by DARPA/AFRL under contract
number F30602-99-C-1049.

5.1 Introduction

Intrusion detection systems (IDSs) can be categorized with respect to several
different dimensions, of which the commonly used (but somewhat oversimplified)
dichotomy between misuse detection and anomaly detection is one example.
Another dimension for categorization is the type of event data analyzed by
the IDS. An IDS that monitors traffic flowing in a network is usually called
network based, while an IDS that analyzes data produced locally at a host is
often referred to as host based.

We subdivide the host-based category further, depending on the abstraction
level at which data is collected. Most existing host-based systems gather audit
data at the operating system (OS) system-call level, but an IDS could get its
data from higher as well as lower abstraction levels. Below the OS level, we
could, for example, look at the executed processor instructions. Above the OS
level, we could collect data from service applications such as database manage-
ment systems, Web servers or e-mail daemons, or from end-user applications.
As different types of security violations manifest themselves on different levels
in a system, one could argue that it is important for the IDS to collect data at
the most meaningful abstraction level(s) for the event in question. It should be
kept in mind that independent of the type of data collected, it can be sent to
any type of analysis engine (e.g., signature based, model based, probabilistic).

In this chapter, we focus on collection of data produced by applications
(above the OS level) and refer to an IDS analyzing such data as application

79

based. Although the concept of application-based IDS is not new, there is a
striking absence of commercial IDSs for applications other than firewalls [25].
The approach presented in this chapter shows how the data collection for an
application-based IDS can be integrated with the monitored application.

The remainder of this chapter is organized as follows. Section 5.2 discusses
limitations of network-based and host-based IDSs, respectively. In Section 5.3,
we present our application-integrated approach, and discuss its advantages and
how it complements the other methods. Section 5.4 describes an implementation
for a Web server to validate our reasoning. In Section 5.5, we examine the
performance characteristics of the implementation. Section 5.6 describes related
work, while ideas for future work are outlined in Section 5.7. Our conclusions
are summarized in Section 5.8.

5.2 Background

Many researchers have recognized that there is no single "silver bullet" approach
to automatic detection of security violations. By combining and integrating
complementary approaches, better attack space coverage and accuracy can be
achieved. In this section, we look at some specific problems with the network-
based and host-based approaches, respectively.

5.2.1 Network-based data collection

The popularity of Ethernet technology paved the way for network-based IDSs.
When traditional broadcast Ethernet is used, a whole cluster of computers can
be monitored from a dedicated machine that listens to all the traffic. As no
changes in the infrastructure are required, and there is no performance penalty,
most free and commercial IDSs use this approach. The system can be completely
hidden by having a network card that listens to the network but never transmits
any traffic itself. However, by decoupling the system from the actual hosts it
supervises, we lose valuable information.

First, probably the most serious problem with the network-based approach
is encrypted traffic, which in effect makes the network monitor blind to many
attacks. Today, encryption is typically used to protect the most sensitive data,
and there are indications that encryption will become more ubiquitous in the
near future, making today's network-based monitors ineffective.*

Second, the IDS can be deceived in several ways. Most Internet standards
in the form of RFCs carefully define valid protocol syntax, but do not describe
in detail how the application should behave with deviant data. To be accu-
rate, the IDS needs to model how the application interprets the operations, but

1 There axe some ways a network-based IDS could read encrypted traffic. For example, it
could act as a proxy with the encrypted channel being only to the IDS (or a similar proxy), thus
introducing unnecessary overhead in the form of extra programs that need to be supervised
and also exposure of data before it reaches its final destination. The network monitor can
also be given the private key of the server, increasing the exposure of the key and forcing the
network monitor to be able to keep track of user sessions and their associated keys.

80

this is almost an impossible task without receiving feedback from the applica-
tion. Minor differences in operations play a major role in how they are inter-
preted. For example, consider a user requesting a certain Web page, by sending
http://www. someHost.com/dirl\filel (note the backslash character). If the
receiving Web server is Microsoft-IIS/5.0 under Microsoft Windows, the server
looks for the file f ilel in the directory dirl. However, if the server is Apache
version 1.3.6 under Unix, the server looks for a file named dirl\f ilel in the
root directory. Even if an IDS could model the different popular servers, it
cannot account for every implementation difference in every version of these.
This problem is not limited to application-level protocols, but as Ptacek and
Newsham [48] describe, the same goes for lower-level protocols.

Third, efforts to increase bandwidth in networks pose serious problems for
network-based IDSs. Higher line speed is in itself a difficulty, and switching
(unicast) technology ruins the possibility to monitor multiple hosts from a sin-
gle listening point. Some IDS developers try to address this problem by placing
a network data collection unit on every host. That solves this problem while
introducing others, which are similar to the problems faced by host-based anal-
ysis.

5.2.2 Host-based data collection

The host-based approach addresses some of the problems described above, with
the primary advantage being access to other types of information. As it is
installed on a host, it can monitor system resources as well as look at operating
system audit trails or application logs. It is also independent of the network
speed as it monitors only a single host. However, the system administrator now
needs to install a number of monitors instead of just one, thus incurring more
administrative overhead. Also, the user could experience a performance penalty
as the monitor is on the same host as the application.

Furthermore, most monitors on the OS level cannot detect attacks directed
at the lower network protocol levels because network information typically does
not become available in the audit event stream until it has reached the higher
protocol levels. See [11,12] for an approach to include network data in OS audit
data.

An application-based monitor in the traditional sense (such as the one de-
scribed in [1]) reads data from log files or other similar sources. By the time the
information is written to the log, the application has completed the operation
in question and thus this monitor cannot be preemptive. The information avail-
able is often also limited to a summary of the last transaction. For example, a
Web request in the Common Logfile Format (CLF) is

10.0.1.2 - - [02/Jun/1999:13:41:37 -0700] "GET /a.html HTTP/1.0" 404 194

Without going into the meaning of the different fields, the following recounts
the scenario: The host with address 10.0.1.2 asked for the document a.html,

81

which at that time did not exist. The server sent back a response containing
194 bytes.

The log entry does not contain all the information an IDS needs for its
analysis. Were the headers too long or otherwise malformed? How long did it
take to process the request? How did the server parse the request? What local
file did the request get translated into?

In some applications, logging can be customized and contain much more
information. Nevertheless, we have not yet seen a system where all internal
information needed to understand the interpretation of an operation is available
for logging. Furthermore, by turning on all log facilities, we increase the risk of
running out of storage space for the logs and incurring performance degradation.

5.3 Application-integrated data collection

As we have shown in the previous section, there are problems associated with
both network-based and host-based approaches. Some of these can be solved
by collecting data directly from the single critical application that we want to
monitor. In this section, we present the general principles of this approach, while
Section 5.4 describes a prototype implementation for monitoring Web servers.

5.3.1 Rationale

Today's network structure within organizations makes a few applications criti-
cal. These need to be available around the clock from the outside of the organi-
zation; they are sensitive to attacks but seldom sufficiently protected. Examples
include Web servers, e-mail servers, FTP servers, and database systems.

To minimize security concerns, most such critical applications run on dedi-
cated machines and are protected by firewalls. Typically, no other application
is running on these machines. If remote login is allowed, it is very restricted
(such as only ssh). Thus, the malicious user must go through the channels of
the critical application to subvert the host. By having the IDS monitor the
inner workings of the application, analyzing the data at the same time as the
application interprets it, we have a chance of detecting malicious operations
and perhaps even stopping them before their execution. However, for us to
successfully integrate a monitor into the application, the application must pro-
vide an interface. Some applications provide an API and, as the advantage
with an application-integrated monitor becomes clear, we hope that more ven-
dors will provide such interfaces. Other venues for integration are found in the
open-source movement.

5.3.2 Advantages

Access to unencrypted information

In almost all cases, data must be accessible inside the application in unencrypted
form for meaningful processing, even if it is encrypted in lower layers. Conse-

82

quently, the unencrypted data is also accessible to an application-integrated
data collection module. This is a major advantage compared to a network-
based IDS. Moreover, it should be noted that because encryption is used for
the most sensitive data, the functions handling that data are probably among
the most interesting from an attacker's point of view and therefore important
to monitor.

Network speed is not an issue

The module is part of the application, and takes part in the normal processing
cycle when analyzing operations. Thus, the limiting factor is the application
speed rather than the network speed. For example, if the original application
can accept a certain number of connections per second, the application equipped
with the module must be able to perform equally well. Care must be taken so
that the module does not become a bottleneck and does not consume too many
of the host's resources. We discuss our solution to this problem in detail in the
next section.

More information available

Being part of the application, the module can access local information that
is never written to a log file, including intermediate results when interpreting
operations. It can monitor how long it takes to execute a specific operation,
to detect possible denial-of-service attacks. Furthermore, we expect an appli-
cation-integrated monitor to generate fewer false alarms, as it does not have to
guess the interpretation and outcomes of malicious operations. For example, a
module in a Web server can see the entire HTTP request, including headers. It
knows which file within the local file system the request was mapped to, and
even without parsing the configuration file of the Web server, it can determine
if this file will be handled as a CGI program (not otherwise visible in either
network traffic or log files).

True session reconstruction

Information of interest to an IDS often concerns transactions (request-response)
and user sessions. To extract that information, a network-based monitor must
perform expensive reconstruction of transactions and sessions from single net-
work packets, and it is still not guaranteed to correctly mimic the end-point
reconstruction. In contrast, the application-integrated module is handed com-
plete transaction and session records directly from the application, and there is
consequently no discrepancy between the interpretations.

The IDS could be preemptive

IDSs are at times criticized for being of limited use as they can only report
intrusions, usually too late to stop any damage. By being part of the application,
the module could supervise all steps of the processing cycle and could react at

83

any time. For example, it could deny a single operation that appears malicious
without otherwise compromising server performance.

5.3.3 Disadvantages

The disadvantages of the application-integrated monitor coincide with some of
the disadvantages of the host-based monitors in general, as described in Sec-
tion 5.2.

Any monitoring process running on the same host as the monitored service
risks impacting the performance of the server. It is therefore important that a
goal in the monitor design and implementation is to minimize this performance
impact.

Given that one needs to have a distinct application-integrated monitor for
every single type of application one wants to monitor, the development efforts
could be significant. However, in today's situation where a handful of products
dominate the field of network server applications, the efforts and costs required
for satisfactory coverage could be lower than they might first appear. This is
particularly true for applications that are open source and/or provide an API
for modules.

The application-integrated monitor can only be a complement to other types
of IDSs. As it is part of the application, it sees only the data reaching the appli-
cation. By targeting a protocol below the application layer, an attacker could
evade detection by our module, but would be within the scope of a network-
based IDS or possibly another host-based sensor specialized in lower-level pro-
tocols.

5.4 Design principles and implementation

As discussed in the previous section, current network infrastructure makes a
few applications critical. Of these, the Web server stands out as being both
ubiquitous and vulnerable. First, most organizations need a Web server, and
it is the service most users associate with the Internet. Second, even though
the server software might be as stable (or unstable) as other types of software,
many sites have customized programs connected to the server allowing access
to legacy database systems. Because these programs are easy to write, they
are often developed by junior programmers who do not properly consider the
security aspects of letting any user in the world supply any input to programs
run locally. As a result, new vulnerabilities in CGI programs are discovered
daily. Furthermore, the Web server is among the first to be probed during a
reconnaissance. The vulnerabilities are easy to comprehend (e.g., add a semi-
colon after the request in your browser), and the gratification is instant (change
the Web pages and all your friends can admire your deed).

For these reasons, we chose to focus our prototype on a Web server. The
major Web server brands also have an API that provides the capabilities we

84

Table 5.1: Market shares for the top Web server products [41]

Product Developer Market Share

Apache Apache 60.0%
Microsoft-IIS Microsoft 19.6%
Netscape-Enterprise iPlanet 6.2%

desire for application-integrated event data collection. The remaining question
is which server product to target.

Netcraft continuously conducts a survey of Web servers on the Internet [41].
Some results from the February 2001 survey are shown in Table 5.1. It shows
that there are three main players in the market covering more than 85%. We
decided to build our first application-integrated data collection module for the
Apache Web server, as it is the most popular one.

The market penetration for SSL is very different. Unfortunately, the data
is considered commercially valuable and is available as a commodity only for
a prohibitively high price. Furthermore, the Netcraft survey counts each site
equally. This reflects neither the popularity of the site nor the risk and associ-
ated cost of attacks. We are not aware of any other survey of this kind, and even
if the numbers above are subject to discussion, there is no doubt that Apache
has a large share of the market.

5.4.1 Implementation

As it turns out, it is quite easy to extend the Apache server with our data
collection module, primarily due to the following reasons.

• There is a well-defined API for modules, and the data concerning each
request is clearly distinguishable in distinctive data structures.

• Each request is processed in several stages, and there are so-called hooks
or callbacks in each of these stages that a module can use (see Figure 5.1).

• After each stage, the module can give feedback to the server as to whether
it should continue executing the request.

• There is support for extensive logging capabilities through the reliable
piped logs interface (explained below).

We built the module within the framework of EMERALD [46], which among
other components include the eXpert-HTTP analysis engine and the eFunnel
communications process described below. The layout of our system is depicted
in Figure 5.2. For each request, the following happens:

85

post-read-request

^
URI translation

/
>

,' Header parsing

'' \ /
access control

s * 1
* authentication

J
,__--- authorization

y
-- MIME type checking

-y

■ RESPONSE I"

L^^,—J document

Figure 5.1: The Apache request loop [54]. The solid lines show the main trans-
action path, while the dashed lines show the paths that are followed when an
error is returned

Web server

Data
collection
module ■

EMERALD
libraries

Transaction records

Auxiliary
communication

process
eFunnel

Host

eXpert-HTTP

Figure 5.2: The architecture and data flow in the implementation

86

1. The Web server passes control to our module in the logging stage of the
request cycle.

2. The module takes relevant data of the request and packs it into a format
the analysis engine eXpert-HTTP can understand.

3. Through the reliable piped logs interface of Apache, we pass the infor-
mation to an auxiliary program, which just hands the information to a
second program, eFunnel, through a socket.

4. eFunnel, in turn, communicates with an eXpert-HTTP on an external
host.

5. The eXpert-HTTP performs the analysis.

Below we discuss each of these steps in detail. The design reflects mainly
three concerns. Most important, we do not want to introduce vulnerabilities
into the server software. For this reason, we decided to keep as little code as
possible within the server. The second issue is performance. If the module
makes the server slow, it will not be used. By limiting the analysis on the server
host, we gain speed but we lose interactivity between the module and the server.
Third, we wanted to reuse as much code as possible, both in the server and from
the EMERALD system.

As our major concern was the risk of introducing vulnerabilities into the
server, we decided against letting the analysis engine be part of the server. This
would have added a lot of extra code, thus increasing the complexity and mak-
ing the server more vulnerable to bugs [10, Theorem 1]. Although the analysis
engine could have been placed on the same host, we wanted to demonstrate
that larger sites can use this approach and satisfy critical performance require-
ments. However, removing the analysis engine from the server in turn means
we limit the preemptive capabilities we described in Section 5.3, as the distance
introduces latency between the receiving of a request and the final analysis. In
Section 5.7, we propose a two-tier architecture that offers an acceptable trade-
off between the ability to react in real time while still minimizing performance
penalties. Note that the setup with the server existing on a separate host is more
complicated than having the analysis engine on the same host. On sites where
performance is not of critical importance, we recommend the simpler approach.

The introduced latency described in the previous paragraph restricts the
reactive capabilities of the module. For this reason, we decided to let our module
be called only in the last step of the request cycle—the logging step. By this
time, the server has interpreted the request and sent the data to the client, and
all information about the request is available for logging, which makes it easy
for our module to extract it. Even though this seems to be marginally better
than a system reading log files, we would like to point out two advantages with
our proposed application-integrated module.

First, we have access to more information. For example, consider the request
http://www.w3c.org/phf. The application-integrated monitor can determine if

87

the server will handle the request as a CGI script (possibly bad), or if it ac-
cesses an HTML file (that, for example, describes the phf attack). Second, the
information is immediately available with the application-integrated approach.
A monitor watching a log file must wait for the application to write the infor-
mation to the file, the caching within the operating system, and possibly the
next monitor polling time.

The last steps of our design are explained by considering code reuse. Within
the EMERALD framework, we have a component called eFunnel. This program
accepts incoming connections where EMERALD messages can be transmitted,
and passes the information to outgoing connections. It can duplicate incoming
information (e.g., having two different analysis engines for the same applica-
tion) or multiplex several incoming flows into one outgoing connection (e.g.,
comparing the results of a network-based monitor with an application-integrat-
ed monitor for discrepancies). This program takes into account problems that
might appear in interprocess communication, such as lost connections or nec-
essary buffering. Thus, eFunnel exactly matches our needs to send information
from the module to other components.

On the server side, Apache provides a reliable pipe log interface. This inter-
face sends the log information directly to a program. The term reliable signifies
that Apache does some checking on the opened channel, such as making sure
the connection is still accepting data. If that is not the case, it restarts the
program [54, p. 563]. We also hope to capitalize on future advances within the
implementation of this interface.

As noted, we would like to use both eFunnel and Apache's "reliable log
format" but we run into a practical problem. In our tests, Apache started the
receiving program twice [54, p. 59], but eFunnel binds to certain predefined
sockets locally, and can thus be started only once. Our solution involves the
auxiliary program described in Step 3 above, which provides a clear interface
between the Web server and the IDS. Apache can restart this program as often
as necessary, without the IDS being affected.

5.4.2 Analysis engine

Within EMERALD, we are developing a package of network-based IDS com-
ponents, one of them being eXpert-HTTP, an analysis component for HTTP
traffic. It was developed to receive event messages from the network data col-
lection component etcpgen, but can equally well receive the messages from the
application-integrated module. Actually, we can use exactly the same knowledge
base independent of the source of the data and no additional development cost
is necessary for the analysis engine. After we had completed the data collection
module, we could directly test it by having it send the data to eXpert-HTTP. It
is not surprising that as more information is available through the module than
through network sniffing, we have the possibility of constructing new rules to
detect more attacks as well as refining existing rules to produce more accurate
results.

To summarize, our module extracts all transaction information from the Web

server and packs it into a format that the analysis engine can understand. The
module then ships off the information (through multiple steps due to the afore-
mentioned implementation issues) to the analysis engine located at a separate
host. No changes to the analysis engine were necessary even for detection of
attacks using the encrypted SSL channel, so the module and the network-based
event data collector could be used interchangeably with the same knowledge
base. If we want to capitalize on the extra information we gain by using the
module, we obviously need to develop new detection rules.

5.5 Monitor performance

From a performance standpoint, the application-integrated module does not
do anything computationally intensive. It simply accesses a few variables and
formats the information before it is sent on. This should not decrease the server
performance. However, we would like to have a more substantial claim that
our approach is viable. One way would be to let the module include a call
to a timing function (in C) to show how much execution time is spent inside
the module. We decided against this measure, as we are more interested in
measuring the user experience when an entire monitor is running. This means
that we configured the module to send the data to the eXpert-HTTP analysis
engine on another host, as depicted in Figure 5.2.

WebLoad from RadView Software is an advanced Web application testing
and analysis package [49]. Among its many features and options, it allows us to
specify a single URL that will be continuously fetched during a specified time
interval. WebLoad measures the round-trip time for each transaction, giving a
fair measure of the user experience with the network and the server. We used
the free evaluation version of WebLoad, which has some restrictions compared
to the full-blown commercial version. However, those restrictions (no support
for SSL and a maximum of 12 virtual clients) did not significantly limit our
ability to evaluate the performance of our module.

We set up four runs, each lasting 60 minutes and using 10 virtual clients
on a single physical client host. We used two different types of URLs, the first
returning a Web page consisting of about 50 KB of text and a 12 KB JPEG
image, while the second caused the execution of a CGI program. A summary of
the results is in Table 5.2. The absolute values may seem somewhat high, but
are due to the relatively low-end server hardware configuration. The relative
difference between running the monitor or not is so small that it is probably
only caused by the CPU load imposed by the auxiliary communications process
and eFunnel running in parallel with the Web server. In fact, we believe that
the results confirm that a future application-integrated module can have zero
performance impact (with respect to response time) on the Apache application,
as explained below.

In Figure 5.1, we show the request cycle for the server. The module performs
logging after the request has been sent back to the client. For this reason, we
expect that it is possible to postpone the penalty of the module until the next

89

Table 5.2: Performance measurements

Round-trip
time
(seconds)

Page
without
monitor

Page
with
monitor Impact

CGI
without
monitor

CGI
with
monitor Impact

median
average
std. deviation

1.486
1.499
0.057

1.517
1.521
0.059

2.1%
1.5%

1.192
1.195
0.034

1.229
1.238
0.048

3.1%
3.6%

request response

Figure 5.3: Details of a possible scenario for Web server request handling. The
numbers denote parallel processes ready to serve a new request

request. In Figure 5.3, we show details of a possible scenario of what could
happen in the server. The server spawns several child processes to handle new
requests. As long as there are enough children, the penalty of the module does
not need to be noticeable, as a child can finish logging before it receives the
next request to handle. Under heavy load, where a request would have to wait
for logging of the previous request, this would of course be different.

Apache/1.3.6 behaves in a different way from what is depicted in Figure 5.3.
Depending on the content sent back to the client, we observed a different behav-
ior. We suspect that this depends on different implementations of the so-called
Content-Handlers [54].

We did not stress test the Web server in the measurements described above,
for two reasons. First, we have measured the whole system and we cannot
attribute the difference in time to any specific reason. A stress test also affects
the server and the operating system, neither of which is under investigation in
this report. Second, we believe that many commercial server parks are built for
peak needs and are therefore normally underutilized.

5.6 Related work

The concept of application-based IDSs is not new, and there are indications that
this would be the next big field to explore for commercial IDS vendors. There

90

are some IDSs that are capable of monitoring firewalls [25]. In contrast, we
are currently aware of only a single example of a commercial Web server IDS,
AppShield from Sanctum, Inc. [51]. It is a proxy that overlooks the HTML
pages sent out. For example, it scans HTML forms sent from the server, and
makes sure that the information returned is valid (e.g., allows the use of hidden
fields). Even though it actively monitors the Web server, it is not integrated
into a greater IDS framework.

The closest to our approach is the work done by Burak Dayioglu [13]. His
module simply matches the current request with a list of known vulnerable CGI
programs. As the analysis is performed in line with the data collection, there is
a greater risk of reduced server performance, especially if the list grows large.

5.7 Improvements

The module prototype described in this chapter is the first step in the explo-
ration of the possibilities of application-integrated data collection for IDS. By
extending the knowledge base of the IDS to fully utilize the information available
through the module, we hope to improve detection rates and reduce false-alarm
rates. A natural step is also to develop similar data collection modules for other
server applications, such as FTP, e-mail, databases, and Web servers other than
Apache. We already have a working prototype for the iPlanet Web server.

It could also be interesting to have an analysis engine compare the trans-
action data from the application-integrated module with data from network
sniffing. The subset of data items that is available to both collectors should
normally be identical, except when someone actively tries to fool one of the
collectors. This could potentially enable detection of advanced attacks that try
to circumvent the IDS.

In Section 5.4, we described the trade-off between preemptive capabilities
(application-integrated analysis) and low performance impact (application-inte-
grated data collection but external analysis). We could have a two-tier archi-
tecture where the application-integrated module performs a quick and simple
analysis before the request is granted by the application and then passes the
data on to an external advanced analysis engine. If the first analysis detects
an attack attempt, it could cause the request to be denied. The second anal-
ysis could also pass feedback to the first, such as the name of a host that has
launched an attack and should not be serviced again. Instead of outright deny-
ing the request, the application-integrated module could suspend a request it
finds suspicious until the external analysis engine has reached a conclusion. By
tuning the first filter, we could restrict the performance penalty to a small subset
of all requests, but still be able to thwart attacks.

91

5.8 Conclusions

We have presented an application-integrated approach to data collection for
intrusion detection. By being very specialized, the module is closely tailored to
be part of the application and have access to more information than external
monitors, thus being able to discover more attacks but also to reduce the number
of false alarms. Because each module is specific to one application product,
coverage of many products could lead to an increased development cost, but we
showed several reasons why that is not a severe limitation of this approach.

If this approach becomes popular, we expect vendors to provide an API
for similar products in the future to stay competitive. This means very little
extra effort is needed to include this type of monitor in a component-based IDS,
such as EMERALD. We also showed the advantages with our prototype for the
Apache Web server. It gave us access to information internal to the server,
which helped the IDS understand how the server actually parsed the request.
The module had access to the decrypted request, even if it was transported
through SSL over the wire. As we clearly separated the data collection from the
analysis engine, the performance penalty was negligible. The knowledge base
could be used with no change, thus leveraging previous investments.

92

Chapter 6

Evaluation and
Experimentation Summary

This chapter briefly summarizes our participation with EMERALD monitors in
various evaluations and experiments, as part of the DARPA program.

6.1 The DARPA evaluations 1998 and 1999

As part of the DARPA Information Assurance and Survivability program, MIT
Lincoln Laboratories was given the task to evaluate IDS efforts within the
program. This resulted in the so-called off-line evaulations of 1998 [35] and
1999 [34]. The EMERALD program participated successfully in both those
evaluations. In the 1998 evaluation, an emphasis was placed on SRFs early pro-
totype involving statistical anomaly detection (eStat). The main lesson learned
from the 1998 evaluation was that significantly increased attack coverage was
needed and, as a result, we moved toward a more extensive development of
our eXpert-based technology. That led to our success in the 1999 evaluation,
where the EMERALD monitors outperformed the other participants in most
categories.

The large data sets produced for these two evaluations has been most useful
as reference material in the continuous development of the EMERALD monitors.

6.2 Integration experiments

The EMERALD monitors have participated successfully in several experiments
at the Technology Integration Center (TIC) where our monitors have been inte-
grated in network defense structures that were exposed to red teams [29]. These
exercises have provided useful insight not only to the development of detection
capabilities, but also to the design of user interfaces and other operation-related
features.

93

6.3 Operational evaluation
In May 2000, the eXpert-NET and eXpert-BSM monitors participated in an
operational evaluation at a large military installation in the Pacific [5]. eXpert-
Net performed well compared to other research and commercial systems, while
eXpert-BSM performed exceptionally well with a detection rate of 100% and
zero false positives in the experiment. In fact, the operators decided to keep
eXpert-BSM in operation at their site. This experiment shows that eXpert-BSM
is ready for operation deployment and that it covers a previously dark space in
intrusion detection, namely real-time audit-based analysis.

94

Chapter 7

Concluding Remarks

We have shown how the EMERALD monitors are able to detect various forms
of misuse by analysis of a diverse set of data streams on different abstraction
levels, and to communicate their findings in a common alarm management in-
frastructure.

Overall, the progress to date in developing and using EMERALD has been
very promising. The development and integration of intrusion detection engines
for a variety of event streams has laid the groundwork for interesting research
on new fields related to alert correlation, attack scenario recognition, intrusion
tolerance, and automated response. In particular, we note the following:

• The software engineering practice used in EMERALD'S modular design
and the attention devoted to well-defined interfaces and information hiding
in the sense of David Parnas have proven very valuable in EMERALD'S
development thus far, and will be even more valuable to the ability to
interoperate with components developed elsewhere, to its long-term evolv-
ability, and to subsequent generalizations of EMERALD beyond security
applications to address human safety, enterprise survivability, reliability,
real-time performance, and other critical attributes.

Hierarchical and distributed correlation is necessary in analyzing highly
distributed environments, because of the inability to recognize global pat-
terns from isolated local events. However, additional analysis techniques
are likely to be required.

The iterative nature of EMERALD instantiations will enable lightweight
detection components to specialize in particular areas of concern, for dif-
ferent event spaces and at different layers of abstraction.

A few general conclusions are also noted in an attempt to put the EMERALD
experience in perspective.

• Commercial intrusion detection systems have concentrated mostly on string
matching and other forms of simple signature identification to detect

95

•

•

classes of outsider attacks, often with very high false-alarm rates. To
date, primarily the easy parts of the problem have been addressed by the
commercial community.

Detecting, identifying, and responding to hitherto unknown attacks and
anomalies remain as very challenging problems, including highly coordi-
nated attacks, subtle forms of misuse by insiders, and anomalous network
behavior resulting from malfunctions and outages. Providing global rather
than local analysis is still a very important research area that is relatively
uncharted. Generalizations beyond known security attacks are also chal-
lenging.

96

Bibliography

[1] M. Almgren, H. Debar, and M. Dacier. A lightweight tool for detecting web
server attacks. In Proceedings of the 2000 ISOC Symposium on Network
and Distributed Systems Security, pages 157-170, San Diego, California,
Feb. 2-4, 2000.

[2] M. Almgren and U. Lindqvist. Application-integrated data collection for
security monitoring. In W. Lee, L. Me, and A. Wespi, editors, Recent
Advances in Intrusion Detection (RAID 2001), volume 2212 oiLNCS, pages
22-36, Davis, California, Oct. 10-12, 2001. Springer-Verlag.

[3] D. Anderson, T. Frivold, and A. Valdes. Next-generation intrusion-
detection expert system (NIDES). Technical Report SRI-CSL-95-07, Com-
puter Science Laboratory, SRI International, Menlo Park, California, May
1995.

[4] D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Safeguard
final report: Detecting unusual program behavior using the NIDES sta-
tistical component. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, California, Dec. 2, 1993.

[5] S. Arnold. Advanced intrusion detection experiment final report. Technical
Report D658-10944-1, Boeing Defense & Space Group, PO Box 3999, M/S
88-12, Seattle, WA 98124-2499, Sept. 13, 2000.

[6] S. Axelsson, U. Lindqvist, U. Gustafson, and E. Jonsson. An approach to
UNIX security logging. In Proceedings of the 21st National Information
Systems Security Conference, pages 62-75, Arlington, Virginia, Oct. 5-8,
1998. National Institute of Standards and Technology/National Computer
Security Center.

[7] M. Bishop. A standard audit trail format. In Proceedings of the 18th Na-
tional Information Systems Security Conference, pages 136-145. National
Institute of Standards and Technology/National Computer Security Cen-
ter, Oct. 10-13, 1995.

[8] D. Bruschi, E. Rosti, and R. Banfi. A tool for pro-active defense against
the buffer overrun attack. In J.-J. Quisquater et al., editors, Computer

97

Security - Proceedings of ESORICS 98, volume 1485 of LNCS, pages 17-
31, Louvain-la-Neuve, Belgium, Sept. 16-18, 1998. Springer-Verlag.

[9] CERT Coordination Center, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA 15213-3890, USA. Buffer Overflow in Sun
Solstice AdminSuite Daemon sadmind, Dec. 14, 1999. CERT Advisory
C A-1999-16, http://www. cert, org/advisories/CA -1999-16. html.

[10] W. R. Cheswick and S. M. Bellovin. Firewalls and Internet Security: Re-
pelling the Wily Hacker. Addison-Wesley, 1994.

[11] T. E. Daniels and E. H. SpafFord. Identification of host audit data to
detect attacks on low-level IP vulnerabilities. Journal of Computer Security,
7(l):3-35, 1999.

[12] T. E. Daniels and E. H. Spafford. A network audit system for host-based
intrusion detection (NASHID) in Linux. In Proceedings of the 16th An-
nual Computer Security Applications Conference, New Orleans, Louisiana,
Dec. 11-15, 2000.

[13] B. Dayioglu, Mar. 2001. http://yunus.hacettepe.edu.tr/~burak/modJd/.

[14] J. de Haas. Vulnerability in Solaris ufsrestore. Bugtraq, June 14, 2000.
http://archives.neohapsis.com/archives/bugtraq/2000-06/0114.html.

[15] H. Debar, M. Becker, and D. Siboni. A neural network component for an
intrusion detection system. In Proceedings of the 1992 IEEE Symposium on
Security and Privacy, pages 240-250, Oakland, California, May 4-6, 1992.

[16] D. E. Denning. An intrusion-detection model. IEEE Transactions on Soft-
ware Engineering, SE-13(2):222-232, Feb. 1987.

[17] D. E. Denning and P. G. Neumann. Requirements and model for IDES—a
real-time intrusion detection expert system. Technical report, Computer
Science Laboratory, SRI International, Menlo Park, CA 94025-3493, USA,
1985.

[18] C. Flack and M. J. Atallah. Better logging through formality: Applying
formal specification techniques to improve audit logs and log consumers. In
H. Debar, L. Me, and S. F. Wu, editors, Recent Advances in Intrusion De-
tection (RAID 2000), volume 1907 of LNCS, pages 1-16, Toulouse, France,
Oct. 2-4, 2000. Springer-Verlag.

[19] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of
self for Unix processes. In Proceedings of the 1996 IEEE Symposium on
Security and Privacy, pages 120-128, Oakland, California, May.6-8, 1996.

[20] T. D. Garvey and T. F. Lunt. Model-based intrusion detection. In Pro-
ceedings of the 14th National Computer Security Conference, pages 372-
385, Washington, D.C., Oct. 1-4, 1991. National Institute of Standards
and Technology/National Computer Security Center.

98

[21] J. Habra, B. Le Charlier, A. Mounji, and I. Mathieu. ASAX: Software
architecture and rule-based language for universal audit trail analysis.
In Y. Deswarte et al, editors, Computer Security - Proceedings of ES-
ORICS 92, volume 648 of LNCS, pages 435-450, Toulouse, France, Nov. 23-
25, 1992. Springer-Verlag.

[22] L. T. Heberlein et al. A network security monitor. In Proceedings of the
1990 IEEE Symposium on Security and Privacy, pages 296-304, Oakland,
California, May 7-9, 1990.

[23] K. Ilgun. USTAT: A real-time intrusion detection system for UNIX. In
Proceedings of the 1993 IEEE Symposium on Security and Privacy, pages
16-28, Oakland, California, May 24-26, 1993.

[24] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State transition analysis: A
rule-based intrusion detection approach. IEEE Transactions on Software
Engineering, 21 (3): 181-199, Mar. 1995.

[25] K. A. Jackson. Intrusion detection system (IDS) product survey. Technical
Report LA-UR-99-3883, Los Alamos National Laboratory, Los Alamos,
New Mexico, June 25, 1999. Version 2.1.

[26] K. A. Jackson, D. H. DuBois, and C. A. Stallings. An expert system
application for network intrusion detection. In Proceedings of the 14th
National Computer Security Conference, pages 215-225, Washington, D.C.,
Oct. 1-4, 1991. National Institute of Standards and Technology/National
Computer Security Center.

[27] H. S. Javitz and A. Valdes. The SRI IDES statistical anomaly detector. In
Proceedings of the 1991 IEEE Symposium on Security and Privacy, pages
316-326, Oakland, California, May 20-22, 1991.

[28] H. S. Javitz, A. Valdes, D. E. Denning, and P. G. Neumann. Analytical
techniques development for a statistical intrusion-detection system (SIDS)
based on accounting records. Technical report, SRI International, Menlo
Park, California, July 1986.

[29] D. L. Kewley and J. F. Bouchard. DARPA information assurance pro-
gram dynamic defense experiment summary. In Proceedings of the IEEE
Systems, Man, and Cybernetics Information Assurance and Security Work-
shop, West Point, New York, June 6-7 2000. To appear.

[30] S. Kumar. Classification and Detection of Computer Intrusions. PhD
thesis, Purdue University, West Lafayette, Indiana, Aug. 1995.

[31] U. Lindqvist. The inquisitive sensor: A tactical tool for system surviv-
ability. In Supplement of the 2001 International Conference on Dependable
Systems and Networks, pages C-14-C-16, Göteborg, Sweden, July 1-4,
2001.

99

[32] U. Lindqvist and P. A. Porras. Detecting computer and network misuse
through the production-based expert system toolset (P-BEST). In Proceed-
ings of the 1999 IEEE Symposium on Security and Privacy, pages 146-161,
Oakland, California, May 9-12, 1999.

[33] U. Lindqvist and P. A. Porras. eXpert-BSM: A host-based intrusion detec-
tion solution for Sun Solaris. In Proceedings of the 17th Annual Computer
Security Applications Conference (ACSAC 2001), New Orleans, Louisiana,
Dec. 10-14, 2001. To appear.

[34] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das. Analysis
and results of the 1999 DARPA off-line intrusion detection evaluation. In
H. Debar, L. Me, and S. F. Wu, editors, Recent Advances in Intrusion
Detection (RAID 2000), volume 1907 of LNCS, pages 162-182, Toulouse,
France, Oct. 2-4, 2000. Springer-Verlag.

[35] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. Mc-
Clung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, and
M. A. Zissman. Evaluating intrusion detection systems: The 1998 DARPA
off-line intrusion detection evaluation. In DARPA Information Survivabil-
ity Conference and Exposition (DISCEX), volume 2, pages 12-26, Hilton
Head, South Carolina, Jan. 25-27 2000.

[36] T. F. Lunt, R. Jagannathan, R. Lee, A. Whitehurst, and S. Listgarten.
Knowledge-based intrusion detection. In Proceedings of the Annual AI Sys-
tems in Government Conference, pages 102-107, Washington, D.C., Mar.
27-31, 1989.

[37] T. F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, P. G. Neu-
mann, H. S. Javitz, and A. Valdes. A real-time intrusion-detection expert
system (IDES). Technical Report SRI-CSL-92-05, Computer Science Lab-
oratory, SRI International, Menlo Park, CA 94025-3493, USA, Apr. 1992.

[38] S. McCanne, C. Leres, and V. Jacobson. libpcap. Network Research Group,
Lawrence Berkeley National Laboratory, Berkeley, California, 1994. Avail-
able via anonymous ftp from ftp.ee.lbl.gov.

[39] A. Mounji. Languages and Tools for Rule-Based Distributed Intrusion De-
tection. PhD thesis, Institut d'Informatique, University of Namur, Belgium,
Sept. 1997.

[40] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detec-
tion. IEEE Network, 8(3):26-41, May/June 1994.

[41] The Netcraft Web server survey, Feb. 2001. http://www.netcraft.com/
survey/

[42] P. G. Neumann and P. A. Porras. Experience with EMERALD to date.
In Proceedings of the Workshop on Intrusion Detection and Network Mon-
itoring, Santa Clara, California, Apr. 9-12, 1999.

100

[43] A. One. Smashing the stack for fun and profit. Phrack Magazine, 7(49),
Nov. 8, 1996. http://www.fc.net/phrack/files/p49/p49-14.

[44] J. Picciotto. The design of an effective auditing subsystem. In Proceed-
ings of the 1987 IEEE Symposium on Security and Privacy, pages 13-22,
Oakland, California, Apr. 27-29, 1987.

[45] P. A. Porras and R. A. Kemmerer. Penetration state transition analysis:
A rule-based intrusion detection approach. In Proceedings of the Eighth
Annual Computer Security Applications Conference, pages 220-229, San
Antonio, Texas, Nov. 30-Dec. 4, 1992.

[46] P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling
responses to anomalous live disturbances. In Proceedings of the 20th Na-
tional Information Systems Security Conference, pages 353-365, Baltimore,
Maryland, Oct. 7-10, 1997. National Institute of Standards and Technol-
ogy/National Computer Security Center.

[47] P. Proctor. Audit reduction and misuse detection in heterogeneous envi-
ronments: Framework and application. In Proceedings of the Tenth An-
nual Computer Security Applications Conference, pages 117-125, Orlando,
Florida, Dec. 5-9, 1994.

[48] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service:
Eluding network intrusion detection. Technical report, Secure Networks,
Inc., Calgary, Alberta, Canada, Jan. 1998. http://www.clark.net/~roesch/
idspaper.html.

[49] RadView Software, Inc., Mar. 2001. http://www.radview.com/

[50] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proceed-
ings of LISA '99: 13th Systems Administration Conference, pages 229-238,
Seattle, Washington, Nov. 7-12, 1999.

[51] Sanctum, Inc., Mar. 2001. http://www.sanctuminc.com/

[52] C. L. Schuba, I. V. Krsul, M. G.Kuhn, E. H. Spafford, A. Sundaram, and
D. Zamboni. Analysis of a denial of service attack on TCP. In Proceedings
of the 1997 IEEE Symposium on Security and Privacy, pages 208-223,
Oakland, California, May 4-7, 1997.

[53] M. M. Sebring, E. Shellhouse, M. E. Hanna, and R. A. Whitehurst. Expert
systems in intrusion detection: A case study. In Proceedings of the 11th Na-
tional Computer Security Conference, pages 74-81, Baltimore, Maryland,
Oct. 17-20, 1988. National Institute of Standards and Technology/National
Computer Security Center.

[54] L. Stein and D. MacEachern. Writing Apache Modules with Perl and C.
O'Reilly & Associates, 1999.

101

[55] Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, CA 94043,
USA. SunSHIELD Basic Security Module Guide, Nov. 1995.

[56] Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303, USA.
SunSHIELD Basic Security Module Guide, Solaris 7, Oct. 1998. Part No.
805-2635-10.

[57] U.S. Department of Defense. Trusted Computer System Evaluation Crite-
ria, Dec. 1985. DoD 5200.28-STD.

[58] H. S. Vaccaro and G. E. Liepins. Detection of anomalous computer session
activity. In Proceedings of the 1989 IEEE Symposium on Security and
Privacy, pages 280-289, Oakland, California, May 1-3, 1989.

[59] A. Valdes and K. Skinner. Adaptive, model-based monitoring for cyber at-
tack detection. In H. Debar, L. Me, and S. F. Wu, editors, Recent Advances
in Intrusion Detection (RAID 2000), volume 1907 of LNCS, pages 80-92,
Toulouse, France, Oct. 2-4, 2000. Springer-Verlag.

[60] G. Vigna and R. A. Kemmerer. NetSTAT: A network-based intrusion de-
tection system. Journal of Computer Security, 7(1):37-71, 1999.

«J.S. GOVERNMENT PRINTING OFFICE: 2002-710-038-10249

102

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

