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Abstract 

With the release of the Moving and Stationary Target Acquisition and Recognition 
(MSTAR) public data set, high quality Synthetic Aperture Radar (SAR) imagery of 
military ground vehicles has been made accessible to the entire research community. 
Furthermore, standard methods for evaluating classifier results on this data set have 
been created and released. Using these tools, we reconsider a previously contracted 
application of AND Corporation's Holographic/Quantum Neural Technology (HNeT) 
classifier, performing brief analyses of the way HNeT selects features for Automatic 
Target Recognition (ATR) purposes, the methodology used in the contract and their 
results, as well as obtaining new results that comply with the MSTAR standard 
evaluation criteria. These results provide measures of performance for the HNeT 
classifier using Confusion Matrices and Receiver Operating Characteristic (ROC) 
curves, that are used to compare with the open literature performance of the MSTAR 
baseline and two other classifiers, from which we conclude that HNeT outperforms the 
other three and provides improved ATR. 

Resume 

Depuis la publication des donnees publiques du programme MSTAR (acquisition et 
reconnaissance de cibles mobiles et fixes), les milieux de la recherche ont acces ä des 
images RAS (radar ä ouverture synthetique) de grande qualite de vehicules militaires 
terrestres. En outre, des methodes devaluation uniformes des resultats des 
classificateurs relativement ä cet ensemble de donnees ont ete definies et publiees. A 
l'aide de ces outils, nous reexaminons l'application du classificateur HNeT 
(technologie neuronale holographique/quantique) de la corporation AND lors d'un 
contrat anterieur, executant de breves analyses de la selection de caracteristiques par 
HNeT pour la reconnaissance automatique de cible (RAC) ansi que de la methodologie 
utilisee et des resultats obtenus lors du contrat. De nouveaux resultats repondant aux 
criteres devaluation uniformes de MSTAR sont egalement obtenus. Ceux-ci 
fournissent, grace ä l'utilisation de matrices de confusion et de courbes de 
caracteristique de fonctionnement de recepteur (CFR), une evaluation de la 
performance du classificateur HNeT et permettent une comparaison avec la 
performance du classificateur MSTAR de base documented en litterature ouverte ainsi 
que de deux autres classificateurs. Nous concluons que HNeT est superieur aux trois 
autres classificateurs et offre une RAC amelioree. 
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Executive summary 

Automated Target Recognition (ATR) remains a highly desirable, yet largely 
unfulfilled, goal for defence research. Recently, AND Corporation has commercially 
released its novel classifier HNeT, upon which an ATR system can be built, and has 
claimed unprecedented success in HNeT's applications. The author's analysis of the 
operation of HNeT is presented, explaining how HNeT is able to achieve such a strong 
performance. In addition to test results generated by AND under DREO contract, the 
author presents his own application of HNeT that meets the standard evaluation criteria 
set by DARPA/Wright Laboratory's MSTAR program, applied to SAR images of 
military vehicles, and shows better results from HNeT than those of the baseline 
classifier published by MSTAR. 

Performance measures of HNeT are given by Confusion Matrices and Receiver 
Operating Characteristic (ROC) curves tailored for the publicly released MSTAR data 
collection and compared to classifiers from the open literature, including the MSTAR 
baseline results. These evaluations show a significant increase in performance by using 
the HNeT classifier over the others. Specifically, the ROC curves for HNeT reduce the 
region of error under the MSTAR criteria by about half, as evidenced by an 
improvement, from 89% correct classification of declared targets for the MSTAR 
baseline to 95% for HNeT, from which we conclude that HNeT is a strong candidate to 
provide the basis for an operational ATR capability. 

R.A. English (2001). Automatic Target Recognition Using HNeT. DREO TM 2001-080. 
Defence Research Establishment Ottawa. 
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Sommaire 

La reconnaissance automatique de cible demeure un objectif hautement desirable pour 
la recherche de defense, mais reste en grande partie ä realiser. Recemment, la societe 
AND a mis en marche son classificateur novateur HNeT, sur lequel un Systeme de 
reconnaissance automatique de cible (ATR) peut etre construit. AND a fait etat d'un 
succes sans precedent en ce qui concerne les applications de HNeT. L'auteurpresente 
une analyse du fonctionnement de HNeT et explique comment ce classificateur est 
capable d'une teile performance. Outre les resultats d'essai obtenus par AND ä contrat 
pour le CRDO, 1'auteur presente sa propre application de HNeT, laquelle repond aux 
criteres d'evaluation uniformes du programme MSTAR du laboratoire Wright de 
DARPA, appliques aux images RAS de vehicules militaires, et obtient de HNeT des 
resultats superieurs ä ceux du classificateur de base publies par MSTAR. 

Des mesures de la performance de HNeT sont obtenues par l'entremise de matrices de 
confusion et de courbes de caracteristique de fonctionnement de recepteur (CFR), 
convenablement modifie pour la collection de donnes MSTAR disponible 
publiquement, et comparees avec des classificateurs disponibles en litterature ouverte 
incluant les resultats MSTAR de base. Ces evaluations demontrent qu'une importante 
amelioration de la performance resulte de 1'utilisation de classificateur HNeT au lieu 
des autres classificateurs. Particulierement, les courbes CFR de HNeT reduisent 
approximativement de moitie la region d'erreur du entere MSTAR, comme demontre 
par le passage d'un taux de classification correcte de cibles avouees de 89% pour le 
critere MSTAR de base ä un taux de 95% pour HNeT, ce qui porte ä conclure que HNeT 
est un candidat serieux pour 1'implementation d'une capability RAC operationnelle. 

R.A. English (2001). [Reconnaissance automatique de cible au moyen de HNeT: etude de la 
technologie neuronale holographique/quantique]. DREO TM 2001-080. Centre de recherches 
pour la defense Ottawa. 
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1.    Introduction 

Research into Automatic Target Recognition (ATR) has received a dual boost with 
recent access to the Moving and Stationary Target Acquisition and Recognition 
(MSTAR) data set of Spotlight Synthetic Aperture Radar (SAR) vehicle images which 
the U.S. Defense Advanced Research Projects Agency (DARPA) has made public and 
with the release of AND Corporation's Holographic/Quantum Neural Technology 
(HNeT). 

The public MSTAR data set provides approximately 20,000 SAR images of 10 vehicle 
types from the former Soviet Union. The vehicles have been imaged over the full 
360°azimuthal circle at 1° increments while at several depression angles: 15, 17, 30 
and 45 degrees. Three collections have occurred — Fall '95 (Huntsville), Fall '96 
(Eglin AFB) and Spring '97 (Eglin AFB) — each providing up to three scenes of 
different vehicle placements. Two of the vehicle types, the BMP-2 and T-72, have 
multiple variants/versions in the same scene. Thus, a wide variety of Extended 
Operating Conditions (EOCs) exist upon which to investigate the performance of any 
given ATR method. 

Furthermore, standard SAR ATR evaluation experiments for use with the MSTAR 
public data have been published [1] by the Wright Laboratory (WL) at 
Wright-Patterson AFB, allowing comparison with their baseline results. This heralds 
the beginning of efforts to address a serious deficiency in ATR research, namely the 
lack of a self-consistent theory for ATR or the broader technologies of pattern 
recognition or machine vision. Section 2 will examine the current state of the art. 

The HNeT classification software has been developed commercially by AND 
Corporation as a replacement for Neural Network technology. Exploiting the 
mathematics of coherence, used successfully in holography, quantum mechanics and 
SAR imagery processing, HNeT is able to efficiently learn, process and store 
information. Running on a Pentium m 450 MHz, HNeT can process several hundred 
64x64 pixel images per second during both the training and classifying processing. 
Rather than limiting the classifier to using pre-selected features, HNeT manipulates a 
large potential-feature space using coherence to reinforce features that are 
common-valued across the in-class training data while random-valued features average 
to zero. These resulting invariant features form the test criteria used to classify new 
data. Section 3 describes this methodology in more detail. 

In mid-1999, AND Corporation was contracted (W7714-8-0200) to create an interface 
for preprocessing SAR images so as to allow ATR using their HNeT software. The 
resulting ANDSAR package was then used to import MSTAR images, and several 
experiments run to identify optimal HNeT and ANDSAR settings for SAR ATR. In 
particular, logarithmic scaling of the pixel intensities and rotation to common azimuthal 
orientation are recommended. Section 4 describes and interprets the results generated 
by the contracted work. 
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To verify that the HNeT was indeed performing according to the claims of the 
company, these experiments were repeated with fully sanitized headers, as well as 
complete isolation of the training and testing sets. One parameter was, in fact, set to 
minimize error according to the results of the test set. Fortunately, when this was 
switched to optimize using the training set results, no noticeable change in performance 
was observed. 

The publication of the MSTAR standard evaluation has allowed direct comparison with 
the baseline ATR results, given as Receiver Operating Characteristic (ROC) curves and 
Confusion Matrices. In the DARPA/WL three vehicle type experiment using multiple 
BMP-2, BTR-70 and T-72 vehicles, all BMP-2 and T-72 images are available in the 
public release. The training set consists of images of one vehicle from each type at 17° 
depression angle and over the full azimuthal set. The test set images include all 
vehicles of the three types at 15° depression angle. Confusion matrices are evaluated 
with the Percent Declaration (Pd) set to 0.9, which forces 10% of the target images to 
be declared as not one of the target types (i.e., classified as Other). Following the 
process used by AND in their experiments, HNeT has been evaluated based on the 
DARPA/ML standards, with comparative results shown in section 5. 

2.    The ATR Capability 

The implementation an ATR system requires three fundamental technologies to 
perform harmoniously: one or more sensors to collect a signal, the 
processing/calibration to place the signal into a standard frame of reference, and pattern 
recognition to locate, extract and identify pieces of the signal. 

For this study, the sensor is a single imaging radar operating in X-band with a spotlight 
mode. The signal processing involves standard SAR techniques to produce 1 ft. 
resolution imagery. This leaves the pattern recognition technology to be the focus of 
attention for the current investigation. 

There are two fundamental types of recognition problems: open and closed. So far, 
much of the success in pattern recognition has been achieved in the latter, where there 
are a fixed finite number of known classes to which everything belongs, with noise 
being the primary source of ambiguity within the data classes. The open problem is far 
more difficult, since it requires the creation of an "Other" class to describe everything 
not in one of the pre-defined classes. By its very nature, the "Other" class is not and 
cannot be completely defined. Automatic Target Recognition (ATR) presents an open 
problem, where even the simplest case of a single target class cannot provide a clear 
delineation between in-class images and everything else. 
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2.1 Development of ATR Theory 

It is very important to understand that classical theories attempt to describe pattern 
recognition within the structures provided by statistical and probability theories [2, 3]. 
Most of the successes of these theories are limited to closed problems and do not 
readily apply to open ones. In particular, it is becoming recognized that the lack of a 
tractable theory of pattern recognition is a major impediment to the development of 
many operational recognition systems including for ATR [4, 5, 6, 7]. A theory of ATR 
would provide a mathematical foundation with which the performance of a given ATR 
could be rigorously extrapolated to Operating Conditions beyond the scope of a given 
experiment. Until such a theory is developed, all evidence of success in ATR is entirely 
anecdotal: the only way to know how well an ATR system will work under new 
conditions is to try it. 

The lack of a mathematical foundation means that there is no ability for prediction. 
Any promises of operational performance must be treated with a healthy dose of 
scepticism, because the scientific tools needed to validate those promises do not yet 
exist. In terms of providing an operational ATR, this means that an autonomous system 
cannot be employed, because we cannot predict how well it will work. However, this 
deficiency does not prevent the use of ATR algorithms and techniques for assisted 
target recognition, where the image analyst (IA) is able to learn the limitations of the 
ATR tools through trial and error. 

As such, Target Recognition continues to be operationally an Art rather than a Science, 
relying on the qualitative experiences of the human analysts to determine what and 
where the limitations of their ATR tools are. In this capacity, namely Assisted Target 
Recognition as opposed to Automatic Target Recognition, research on ATR systems 
can continue to improve and provide better tools for Signal and Image Analysts to 
better perform their arts. 

Although individual authors identified the lack of a suitable theory for pattern 
recognition as far back as 1986, it has been only since the mid-1990s that the research 
community has begun to collectively recognize and address the inadequacy [8]. Despite 
this, many researchers choose to ignore the problem of evaluation and so overstate their 
successes, and will continue to do so until a tractable theory exists. Research into 
development of a theory specific to SAR ATR is currently being spear-headed under 
DARPA's MSTAR Performance Estimation Theory (PET) program [9], which was 
begun in 1998. 

2.2 Feature Extraction 

A prerequisite to classifying a pattern is feature extraction, where aspects of the pattern 
are chosen to compare against the definitions of the classes. Ideally, the feature set will 
contain the fewest features needed to maximize the separation between classes. While 
this is within the realm of possibilities for closed problems, the lack of a complete 
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definition of the "Other" class in open problems means that the amount of separation for 
any feature set is uncertain and will be less than optimal. Which features will separate 
classes, even which ones are independent, is a function of the problem being considered 
and there are several approaches to extracting features for recognition purposes. 

In the capacity of assisting IAs to perform recognition, it is often useful to select 
features that match those that the IA will be using to define various classes. In this way, 
it is straightforward for the human operator to verify the results. Size, shape, relative 
pixel magnitudes, frequency and velocity are all direct human interpretable features. 
They are, however, also the features most prominently selected for alteration by 
countermeasures attempting to obscure a target's identity. The signal may also be 
transformed to yield characteristics that operators can be trained to identify within the 
transformation space, and recognition algorithms can operate on features within this 
transform space. For example, Fourier/Wavelet coefficients [10], Geometric/Zernike 
moments [11], Object/Image invariants [12] and polarimetric elemental structures [13] 
can yield characteristic features for pattern recognition. 

None of the above groups of processes is likely to provide optimal class separation, 
however, which usually means a reduced classifier performance should be expected. 
Several approaches have been adopted and developed to address the problem from the 
point of view of maximizing the separation and thereby optimizing the classifier 
performance. 

Principal Component Analysis is a classical statistical method used to generate a 
hierarchy of orthogonal components (features) exhibiting the maximal variation within 
the current data space [14]. In contrast, the more recent Independent Component 
Analysis (ICA) seeks to generate components that are independent but with the same 
goal of maximizing variation of data along these components [15, 16]. HNeT has a 
similar goal, but seeks to achieve it by determining coherent feature invariants. A large 
space of potential features is calculated for the training set and combined coherently. 
Features common to a class will be reinforced, while those that take on random values 
will average to zero. 

2.3   Classifier Training 

Once the feature extraction for a given recognition problem has been decided, there are 
three main learning methods by which the selected features can be presented to the 
classifier for training. 

Model-based training offers the ability to train a classifier without active collection of 
sensor data for every class to be recognized [17]. Development of appropriate models 
may, however, be just as or even more labour intensive as data collection, but can be 
accomplished without the knowledge or irritation of the potential target. By not using 
sensor-based training, there is a significant potential for introducing model artifacts or 
failure to include important features that are beyond human recognition. 

DREOTM 2001 -080 



Library-based training offers a collection of real sensor-based data against which an 
unknown can be compared. Since the data is unadulterated, all features will be 
available, human recognizable or not. Furthermore, the best match can be easily 
displayed to an IA for verification. The library method of training is resource intensive 
and slow, however, ideally requiring the data to include all conditions that will be 
encountered in the operational environment. 

The template method of training tries to strike a balance between the two, by 
intelligently combining groups of a data collection to form a template or model 
representation. Since this is done using real data, templates are less susceptible to 
artifacts, will contain features beyond human recognition and yet allow interpolation of 
the data. 

2.4   Classification Methods 

The most important aspect to recognition is, of course, the classifier or predictor. 
Strictly speaking, a classifier provides a single best guess as to the target class, while a 
predictor provides a probability or weighting of the target belonging to each class 
available. Generically, the term classifier is used to encompass both types of processes, 
since selecting the highest result only from a predictor will yield a classifier. 

Classifiers can also be distinguished by the way they handle a change in the classes 
denned. Adding a new class may be modular; the classifier need only be trained on the 
new class in order to operate. Other classifiers require complete retraining, which may 
be time and resource intensive. By doing so, however, the latter group is potentially 
able to improve performance on the previous classes by using information from the new 
one. The addition of a new class to a modular classifier can only ever decrease the 
performance on the pre-existing classes, even though the overall performance may go 
up. 

The simplest classifier to implement is the use of If-Then Rules, which is the natural 
decision method for most programming languages. This algorithm is the direct 
implementation of the methods used by human analysts. Unlike IAs, the rules are 
applied sequentially whereas a human can process the rules as a collection, i.e. in 
parallel. This means the Rules-based classifier can provide improved speed and 
consistency, but can never outperform an IA. 

In order to analyze information in parallel, models of the human thought process have 
been developed: Neural Networks (NN). To be implemented as a classifier, Neural Nets 
need to be trained to a stable, converged state [18, 19] that is supposed to be attained by 
using a method such as classical back-propagation, essentially using a feedback loop to 
iterate to the desired state. Specific techniques to address this problem, such as 
Adaptive Resonance Theory (ART) have been introduced. However, there is no 
guarantee that a given system, especially for an open problem, even has a stable, 
converged state [20]. If not, the NN can still potentially outperform human recognition 
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when training brings it near an optimized, though unstable, state. Support Vector 
Machines (SVM) apply statistical analysis to the features for a pair of classes in the 
system [21], maximizing the separation between the classes in a non-linear fashion. 
Since the SVM operate as binary classifiers, they are better suited to systems with a 
small number of classes, but this is merely an issue of resources. 

Instead of using pre-defined rules, Decision Trees [14] generate their own, which may 
include what would be considered collections for If-Then Rule implementation. As 
such, Decision Trees are capable of mimicking parallel classification, even though rules 
are applied sequentially. 

HNeT performs classification by feature invariant matching, which involves 
determining and assigning a relative weighting to features that recur in the in-class 
training data and not in the outclass data. The features of incoming data are then 
matched against the various class invariants. 

3.    HNeT and Neurocomputing 

HNeT provides a major advance in the technology of machine pattern recognition. 
Operating to the complex domain, HNeT takes advantage of coherent addition to 
extend the capabilities of current neural technologies. 

HNeT uses an input format consisting of one or more real-valued (or real-imaginary 
pairs) stimulus fields followed by one or more real-valued response fields. The 
response fields are required for training, but only provide the ground truthing for 
comparison and error calculation for the test/validation data. 

HNeT is best suited for use with larger, complicated problems because HNeT relies on 
properties that converge only in the infinite limit. Thus, greater numbers of stimulus 
fields, memory elements and accurate training data will yield more stable results. 

3.1    Coherence in Feature Space 

In order for HNeT to operate effectively, the training set must be pre-processed as a 
whole. Either a feature space is pre-selected or is generated by filters/transforms in 
HNeT (Stimulus Conversion entries) from the stimulus fields. The distribution of this 
feature data will be renormalized to have zero mean and unit standard deviation. 

The value of each feature needs to be mapped to a complex number, which has a polar 
angle, 0„, so the range of values for each feature may need to be rescaled to the interval 
(-71, TC]. Note that if operational data lies out of this range, then the training data has not 
provided a sufficiently representative set. When such an overlaps exist, ambiguities 
arise and the performance will suffer, perhaps significantly. 

Coherent combination is applied over the entire training set, thereby reinforcing 
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In-class training 

Out-class training 

v 0„ = Feature Value 

Feature Invariant Random Value 

Figure 1: (Left) Common valued in-class features reinforce. (Right) Random valued features average to zero. 

in-class invariant feature values, while random valued features average to zero, as 
illustrated in Figure 1. The length of the vector may be used to provide the confidence 
or weight of the image (not each feature), which may be controlled by varying the value 
of the response field. Multiple response fields may be used, operating in parallel, with 
each field defining a separate target class. For a given field k, each image is defined as 
out-class whenever the response R{n, k) =0 and in-class otherwise. However, training 
is optimized for only one field, which can be selected by the user, so as to have an equal 
number of in-class and out-class vectors which allows the cancelation of invariants 

common to both. 

Since vectors can vary in length, it is necessary to pair in-class and out-class vectors so 
as to approximately balance the contributions from each. It may happen that a feature 
may exhibit a random value for in-class vectors, but be invariant for the out-class. This 
may be acceptable for a closed problem, but for an open problem, where data not 
belonging to any of the pre-defined classes is allowed, this means that the out-class 
training set is not sufficiently representative. 

How the coherent combination is implemented, when renormalization occurs, etc., is 
effectively controllable by the user. The number of epochs per training run, the learning 
rate, the amount of memory decay and mode are all parameters in HNeT (General 
settings), which may be tuned to the particulars of the given problem. 

3.2    Feature Invariants 

Once combined coherently, the vector lengths measure the reliability of the feature as 
an invariant for the class. A subset of the feature space template containing the best 
(longest) vectors are stored, one per memory element, providing the criteria to test new 
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Figure 2: Obtaining feature invariants through coherence (red). Best invariants form test criteria for new data (blue). 

data (Figure 2). The number of memory elements is user defined at the outset (Cortical 
Memory Elements settings). The amount of memory required is entirely dependent on 
the complexity of the classification problem being considered. 

There will be some random-valued features that would average to zero in the infinite 
limit but, since only a finite number of samples are used for the training, exhibit a large 
degree of coherence. This is similar to speckle artifacts that appear in SAR imagery. 

The effects of this feature space speckle can be reduced using HNeTs neural plasticity, 
whereby a user-defined percentage (Neural Plasticity settings) of the vectors in memory 
are examined for independence and pruned each pass in an attempt to improve the 
classification performance. A measure of classification is obtained by projecting the 
feature vectors of the test image onto the invariant feature vectors stored in memory. 

Thus, since HNeT does not depend on pre-defined features, which may or may not 
separate the target classes for a given problem, but instead generates best features 
through coherence in the training data, this type of classifier is able to outperform most 
of the current pattern recognition products. Furthermore, since the methodology is an 
application offering the same kind of advantage as SAR does over Real Aperture Radar 
(RAR), many potential strengths and weaknesses of the technology should be 
understandable through analogy. 

4.    AND Contract Results 

The AND Corporation was engaged by contract, SAR Automatic Target Recognition 
via a Holographic/Quantum Neural Net [22], to demonstrate the capability of their 
HNeT product for use as an ATR tool. The contract tasks included using unclassified 30 
cm resolution X-band spotlight SAR images provided by DREO, i.e., the public 
MSTAR data set, for which pre-processing techniques would be developed to allow the 
data to be used by HNeT. Investigation on the effects of various parameters were to 
include minimum required resolution, target size, rotation, line-of-sight, speed of 
computation, signal to noise, contrast, partial obscuration and clutter. 
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Using the pixel magnitudes of the SAR imagery, it was determined that best results 
were obtained by logarithmically scaling the magnitudes and presenting the values in 
rectangular coordinates (rather than polar) to be transformed via a real-to-complex 
Fourier Transform. Centering on the target and rotating the images to a common target 
orientation were found to be critical to the processing. 

Pixel averaging allowed the resolution to be reduced to 50 cm. This allowed the target 
areas to be extracted from the image in 64 x 64 chips so that a Fast Fourier Transform 
(FFT) could be implemented to reduce computation time. Furthermore, reducing the 
number of Fourier coefficients to 256, as well as eliminating the use of a windowing 
function (e.g., the Gabor transform) contributed to better processing speed. 

Additionally, optimal HNeT performance was found to require approximately 1000 
cortical memory elements with second order terms. An investigation of HNeT's neural 
plasticity over 100 optimization/regrowth cycles indicated 95% convergence of the 
parameters after 10 cycles. As well, higher performance was achieved using a binary 
predictor for each vehicle (each defining vehicle/not-vehicle classes) and selecting the 
vehicle class by vote. 

Initially, the intention was to evaluate the ATR performance using two experiments 
applied to the MSTAR data [10]. The first was to separate the images at a single 
depression angle into training and testing sets that were separated by azimuthal angles 
of varying degrees. The second was to train on a single rotation cycle (azimuthal 
0°-360°) for each vehicle and test on the remainder. 

The second experiment was replaced so as to take advantage of DARPA's division of 
the MSTAR data set, which identifies the 17° depression angle images as a training set 
and 15° as the corresponding test set. A third experiment was added, whereby the 
training set consisted of targets oriented within a 10° arc centered at 45°, 90° and 180° 
orientation from the line-of-site. Testing sets cover 10° arcs of varying separation from 
the training arc. 

In all cases, the performance criteria to be used was the Percent of Correct 
Classification, Pcc, thereby giving a single-valued result under a single operating 
condition. Since no confuser vehicles were included, all images were declared targets, 
i.e., no Other class existed, so Pa = 1.0 and the figure of merit is, in fact, the Percent of 
Correct Classification of Declared targets, Pcc\d. To clarify, the Pcc measure considers 
the rejection of a target image into the Other class as an error, while Fcc|rf removes all 
images declared as Other from the calculation. 

4.1    Variable Azimuthal Angle 

Although the experiment was first conducted using 10 vehicles at 15° depression angle, 
not all parameters had yet been optimized. Despite this, all results showed P^ > 88% 
for up to a 30° azimuthal separation. When applied to the 4 vehicles available at 30° 
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Table 1: Error Count for 30° depression angle with varying azimuthal separation. 

Separation T-72 ZSU-23-4 2S1 BTR-60 Errors Images Pcc\d 

1° 0 1 0 0 1 704 99.9 % 

2° 0 0 0 0 0 766 100% 

3° 2 0 0 1 3 741 99.6 % 

4° 0 0 0 0 0 775 100% 

5° 0 0 0 0 0 760 100% 

6° 0 0 0 0 0 752 100% 

7° 0 0 0 0 0 764 100% 

8° 1 0 0 0 1 750 99.9 % 

9° 0 0 0 0 0 747 100% 

10° 0 0 0 0 0 772 100% 

11° 0 0 0 0 0 781 100% 

12° 0 0 0 0 0 794 100% 

13° 0 0 0 0 0 772 100% 

14° 0 0 0 0 0 756 100% 

15° 2 0 0 0 2 757 99.7 % 

20° 0 0 0 0 0 789 100% 

25° 3 0 0 0 3 761 99.6 % 

30° 0 1 0 0 1 709 99.6 % 

and 45° depression angle, respectively, the results were in excess of 95%, as shown in 
Tables 1 and 2. However, no clear functional dependence on separation angle is evident. 

Although these results provide high values ofPcc\d, the format of this experiment leaves 
many aspects ambiguous, such as the relative number of images used for each vehicle in 
the train and test sets. In other words, does the larger number of errors at low separation 
angles in the 45° results for the ZSU-23-4 indicate a problem with that class, or simply 
that more ZSU-23-4 images were used than the others? In fact, approximately twice as 
many ZSU-23-4 images are in the test set as compared to the other classes. 

In order to compare the performance of classifiers, it is important to choose an 
experiment for which Pcc\d varies significantly over the domain of the varying 
parameters, and somewhat smoothly with respect to the step size of variation. Clearly, 
this is not the case for this experiment. 

4.2   Variable Depression Angle 

The MSTAR data is disseminated with the 17° depression angle images identified as 
training files and the 15° depression angle as a test set, which is consistent with the 
recommendations of the MSTAR evaluation [1]. Based on this, a second experiment 
was designed to train 10 binary classifiers on the 17° data and test at 15°. All available 
data in each set was used and the images pre-processed according to four methods: the 

10 DREOTM 2001-080 



Table 2: Error Count for 45° depression angle with varying azimuthal separation. 

Separation T-72 ZSU-23-4 2S1 BTR-60 Errors Images ^cc|d 

1° 0 1 0 0 1 709 99.9 % 

2° 1 3 5 4 13 796 98.4 % 

3° 1 10 3 5 19 760 97.5 % 

4° 3 9 2 5 19 791 97.6 % 

5° 1 10 3 6 20 773 97.4 % 

6° 2 4 3 6 15 792 98.1 % 

7° 1 4 5 3 13 769 98.3 % 

8° 5 8 6 4 23 785 97.1 % 

9° 4 7 2 5 18 770 97.7 % 

10° 5 10 5 4 24 797 97.0 % 
11° 2 6 4 3 15 751 98.0 % 

12° 3 3 5 4 15 772 98.1 % 

13° 6 2 8 6 22 775 97.2 % 
14° 4 2 14 3 23 778 97.0 % 

15° 6 11 6 5 28 797 96.5 % 

20° 2 9 5 8 24 797 97.0 % 

25° 5 10 12 14 41 779 94.7 % 
30° 5 3 11 15 34 772 95.6 % 

raw pixel magnitudes of the 64 x 64 target segments, logarithmic scaling of the pixel 
magnitudes, rotation of the chips to a common alignment and a combined alignment 
plus logarithmic scaling. Orientation of the vehicle heading is extracted from the 
ground truthing for images in both the training and testing sets. The error count of false 
negatives for each binary classifier is reported in Table 3. 

Although a degradation from the raw image results occurs when logarithmic scaling to 
the BMP-2 and BTR-70 images is applied, an improvement is obtained when the 
logarithmic scaling is combined with alignment. Because the entire imagery was used 
in a single implementation of each preprocessing method, rather than developing a 
confidence interval over several runs on subsets, it is difficult to identify the reason for 
the anomaly. Again, although the overall trend is more apparent here, the range of 
results does not vary sufficiently to allow for good comparison of classifier ability. 

4.3    Line-of-Sight Orientation 

Although not a standard evaluation experiment, the third experiment does provide 
sufficient variation for a more meaningful analysis of the classifier performance, even 
though the orientation variable is usually addressed during preprocessing before 
classification occurs. For training, all images at both 15° and 17° and within a 10° arc, 
centered at orientations of 45°, 90° or 180° from the radar Line-of-Sight (LOS), are 
selected. Test images are selected based on azimuthal separation from the training set, 
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Table 3: Error count for HNeT classifier for MSTAR images at ?5° depression angle, under several preprocessing 

methods. Training data used 17° depression angle. 

Raw Log Aligned Aligned + Log 

T-72 11 1 6 0 

BTR-70 13 21 9 1 

BMP-2 20 43 13 6 

ZSU-23-4 2 0 5 0 

Zil-131 14 3 10 0 

T-62 5 1 3 0 

D-7 1 0 1 0 

BRDM-2 2 1 2 0 

2S1 45 18 11 0 

BTR-60 6 3 4 2 

Total Errors 119 91 64 9 

Total Records 5392 5392 5392 5392 

Pcc\d 97.79 % 98.31 % 98.81 % 99.83 % 

as shown in Table 4 

As before, however, the reporting method does not provide any insight into the actual 
number of images used for each class. In fact, both training and testing sets are heavily 
weighted with T-72 images, which skews the results with a bias toward the T-72 
solution. Typically, 1/2 the images are T-72, 1/4 are BMP-2 and the remaining 1/4 are 
from the 8 other classes. Thus, the high Pcc\d at large separation angles may appear to 
indicate successful classification when, in fact, only the T-72 classifier is performing 
well. In particular, the BMP-2 results which show more than 18 errors indicate that this 
classifier is performing worse than a random classifier. Clearly, the training/testing 
design is in need of modification for this experiment. 

5.    Standard Evaluation of HNeT 

Analysis of the results produced from the contract have shown several limitations to the 
information thereby generated. As such, it was determined that the performance of the 
HNeT system needed to be evaluated according to standard techniques found in the 
literature [23, 7, 24]. Furthermore, a careful examination of the design of the 
preprocessing techniques needed to be carried out. 

'The AND Corporation report gives 5 errors for the BMP-2 at LOS + 45° and 45° separation, but the full data 
indicates 37 errors, as shown here. 
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Table 4: Error count for HNeT binary classifiers of each MSTAR class according to azimuthal separation from the 

training set. Training set taken over a 1(f arc, centered at 45°', 90° and 18(f orientation from the radar LOS. 

LOS T-72      BMP-2       Zil-131 D-7 2S1 
+ 45° BTR-70    ZSU-23-4 T-62 BRDM-2 BTR-60 Errors Images Pcc\d 

5° 0     0     0       0      0 0 0 0 0 0 0 275 100% 

10° 0     2      0       0      0 0 0 0 1 0 3 270 98.9 % 
15° 0     0     2       0      0 0 0 0 3 0 5 255 98.0 % 
20° 0     12       0      1 0 0 0 1 0 5 210 97.7 % 

25° 116       0      0 0 0 0 1 0 9 279 96.8 % 
30° 0     1     19      0      0 1 0 0 4 1 26 278 90.6 % 
35° 2     0    21      2      1 1 0 0 5 2 34 248 86.3 % 
40° 0    0    28      1      0 1 0 0 2 2 34 173 80.3 % 
45° 0    2     37      3      5 4 3 0 9 5 68 221 69.2 % 

LOS T-72      BMP-2 Zil-131 D-7 2S1 
+ 90° BTR-70    ZSU-23-4 T-62 BRDM-2 BTR-60 Errors Images Pcc\d 

5° 0     0      0 0      0 0 0 0 0 0 0 242 100% 
10° 0     0      1 0      0 0 0 0 0 0 1 273 99.6 % 
15° 1     0     5 0      0 2 1 0 2 0 11 266 95.9 % 
20° 0     0      9 4      0 1 1 0 1 0 16 236 93.2 % 
25° 0    0     11 2      4 0 0 0 2 0 19 231 91.8% 
30° 1     2     18 3      2 8 2 0 4 0 40 263 84.8 % 
35° 1     4    20 3      2 5 4 0 7 0 46 276 83.3 % 
40° 5     3     22 4      2 2 3 0 4 4 49 263 81.4% 

45° 3     2     31 6      3 3 2 0 5 1 56 277 79.8 % 

LOS T-72      BMP-2       Zil-131 D-7 2S1 
+ 180° BTR-70    ZSU-23-4 T-62 BRDM-2 BTR-60 Errors Images Pcc\d 

5° 0     0      0       0      0 0 1 0 0 0 1 252 99.6 % 
10° 0     3      0       0      0 0 0 0 0 0 3 266 98.9 % 
15° 0     110      1 0 0 1 0 0 4 231 98.3 % 
20° 0     17       10 0 0 0 1 0 10 223 95.5 % 
25° 12     9       0      3 3 0 0 1 0 19 240 92.1 % 
30° 0    3     16      0      3 5 0 1 4 0 32 281 88.6 % 
35° 0    6     13      0      2 3 0 1 5 0 30 278 89.2 % 

40° 0    2     19      0      7 5 0 1 4 0 38 277 86.3 % 
45° 0    7     15      2      6 7 0 1 6 0 44 274 83.9 % 
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Table5: Confusion matrix of MSTAR 75° imagery for HNeT 1O-vehicle classifier trained on 17° data. Correctly 

classified images contribute to the diagonal elements while misclassifications appear off-diagonal. 

2S1  BMP-2 BRDM-2 BTR-60 BTR-70 D7 T-62 T-72 Zil-131 ZSU-23-4 

2S1 274      0 0 0 0 0 0 0 0 0 100.00% 

BMP-2 0      581 0 0 0 0 0 5 1 0 98.98% 

BRDM-2 0        0 274 0 0 0 0 0 0 0 100.00% 

BTR-60 0         1 0 193 0 0 0 1 0 0 98.97% 

BTR-70 1         0 0 0 195 0 0 0 0 0 99.49% 

D7 0        0 0 0 0 274 0 0 0 0 100.00% 

1-62 0        0 0 0 0 0 273 0 0 0 100.00% 

T-72 0        0 0 0 0 0 0 2771 0 0 100.00% 

Zil-131 0        0 0 0 0 0 0 0 274 0 100.00% 

ZSU-23-4 0        0 0 0 0 0 0 0 0 274 100.00% 
99.83% 

5.1    Meeting Standards 

First, a complete separation of the training and testing phases was necessary. During 
this investigation, it was determined that the HNeT neural plasticity, i.e., the 
optimization of the selection of invariants, had been made relative to the performance 
of classification for the test set, meaning that the classifier predictions were being 
influenced by knowledge of the actual target class of the test imagery. The HNeT 
settings were, therefore, adjusted to run the optimization against the training set and the 
test data was not even selected until after training was complete. Despite this, there 
were no significant changes to the HNeT results for the AND experiments when those 
trials were redone with these now independent settings. 

Validation with data independent of the training process and fully sanitized of ground 
truth resulted in near-identical results. Because the neural plasticity optimization is not 
a deterministic process, identical results could not be obtained and should not be 
expected. The non-repeatability of this process does, however, emphasize the need to 
produce confidence intervals rather than single-point results, and that training trials 
need to be repeated as well as those for testing. 

Returning to the AND data used to generate Table 3, the information can be presented 
in a more meaningful way by used of the standard confusion matrix [24]. Each row 
corresponds to the set of imagery for the indicated class. Cell entries give the number 
of images from the row set that have been classified as the vehicle type indicated by the 
column header. 

Thus, the matrix form provides a greater indicator of what mistakes the classifier is 
making as well as the relative number of images in each class. In addition, the results 
are summarized by effectiveness on each class of imagery, with an overall metric, Pcc\d 

indicating the classifier success rate. 

Table 5 gives the confusion matrix of MSTAR imagery for the HNeT classifier with 
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Table 6: Confusion matrix for CIS MMSE classifier [25] on MSTAR 15° imagery, with training at 17°. 

2S1 BMP-2 BRDM-2 BTR-60 BTR-70 D7 T-62 T-72 Zil-131 ZSU-23-4 
2S1 262 0 0 0 0 0      4       8         0 0 95.62% 
BMP-2 0 581 0 0 0 0      0       6         0 0 98.98% 
BRDM-2 5 3 227 1 0 14     3       5         4 1 85.31% 
BTR-60 1 0 0 193 0 0      0       0         0 1 98.97% 
BTR-70 4 5 0 0 184 0      0       3         0 0 93.88% 
D7 2 0 0 0 0 271     1       0         0 0 98.91% 
T-62 1 0 0 0 0 0    259    11         2 0 94.87% 
T-72 0 0 0 0 0 0      0     582       0 0 100.00% 
Zil-131 0 0 0 0 0 0      2       0       272 0 99.27% 
ZSU-23-4 0 0 0 0 0 0      0       1         0 271 98.91% 

97.18% 

preprocessing by logarithmic scaling of pixel values and common target orientation. 
Here, it can easily be seen that the BMP-2 error is again biased to the T-72, a problem 
originally traceable only in the Line-of-Sight experiment when using the AND method 
of reporting. 

Table 6 provides a similar confusion matrix published by O'Sullivan et al. [25] from 
the Center for Imaging Science (CIS) using a minimum mean-squared error (MMSE) 
estimator, a single-rule based classifier, against conditionally Gaussian signal models of 
the vehicle classes. It is clear this method also yields a significant bias towards T-72 
classification, but other secondary errors are being made that HNeT avoids. 

5.2    Evaluating Classifier Performance 

Standard methods for evaluating the performance of a classifier include the use of 
Confusion Matrices and the generation of Receiver Operating Characteristic curves 
[26, 7, 25]. Specifically, the standard evaluation suggested by DARPA/WL applied to 
the MSTAR data set [1] provides a baseline with which to compare. Using three vehicle 
classes for which multiple vehicles are present in the MSTAR data set, the classifier is 
trained on imagery at 17° depression angle for a single vehicle from each class and then 
tested on imagery at 15° depression for all the vehicles. 

DARPA/WL used 3 BMP-2 (serial numbers c21, 9563 and 9566) infantry fighting 
vehicles, 4 BTR-70 (s/n c72, c70, c73 and c71) armored personnel carriers and 3 T-72 
(s/n 132, 812 and s7) main battle tanks (see Figure 3). All the BMP-2 and T-72 images 
were included in the released set but, unfortunately, the public release data included 
only one BTR-70, s/n c71. This means that although the ROC curves for BTR-70s 
cannot be directly compared, the other classes can. Furthermore, the training BTR-70 
used by DARPA/WL is not the one included in the public release. Despite this, 
recalculating the DARPA/WL results without the extra BTR-70s still does allow for the 
comparison of Confusion Matrices, so long as the potential differences due to the 
surrogate vehicle are recognized. In particular, the removal of the 3 extra BTR-70 
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Figure 3: Photo (top) and SAR (bottom) images of vehicles used for MSTAR evaluation criteria: (left) BMP-2, 

(centre) BTR-70 and (right) T-72. 

vehicles shifts the operating point of the confusion matrix from Pj = 0.90 to 
P,l = 0.923. 

5.3    HNeT vs. MSTAR Classifier Comparison 

Subject to the use of BTR-70 s/n c71 instead of c72 as the imagery source for that 
vehicle class, the HNeT classifier was trained as indicated by the MSTAR standard. At 
17° depression angle, the training set was composed of 233 images of BMP-2 s/n c21, 
233 images of BTR-70 s/n c71 and 232 images of T-72 s/n 312, along with 298 images 
of "slicy," a non-vehicle target (Figure 4) included so as to improve the definition of the 
out-class. As with the previous HNeT experiments, the image chips were aligned 
according to the ground truth heading and the magnitudes of the central 64 x 64 pixel 
block extracted. The resulting data set was used to train three binary classifiers, one 
corresponding to each vehicle class. 

Figure 4: Photo (left) and SAR (right) images of the "slicy" non-vehicle target. 
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Table 7: Confusion matrices for standard MSTAR evaluation with training vehicles indicated by asterisks. (Left) 

MSTAR baseline classifier [1] modified for public release data. (Right) HNeT classifier. 

MSTAR baseline Confusion Matrix (P d = 0-92) 
BMP-2 BTR-70 T-72 Other 

BMP-2 (9563) 
BMP-2 (9566) 
BMP-2 (c21)* 

161 
150 
175 

18         0 
31         0 
8          0 

16 
15 
13 

BTR-70 (c72)* 0 270        0 3 

T-72 (132)* 
T-72 (812) 
T-72 (s7) 

1 
13 
8 

2       188 
35       112 
28       131 

5 
35 
24 

Pec d= 0.8918 

HNeT Confusion Matrix (Pd = 0.92) 
BMP-2 BTR-70 1-72 Other 

BMP-2 (9563) 
BMP-2 (9566) 
BMP-2 (c21)* 

185 
167 
191 

0 
2 
1 

4 
12 
0 

6 
15 
4 

BTR-70 (c71)* 0 195 0 1 

T-72 (132)* 
T-72 (812) 

T-72 (s7) 

0 
30 
9 

0 
2 
8 

194 
122 
138 

2 
41 
36 

Pec rf= 0.9460 

HNeT was configured to perform a 2D FFT on the stimulus fields (as a 64 x 64 array) 
and with 2000 memory elements. Training occurred for 50 cycles for 4 epochs with a 
neural plasticity at 50% optimization and based on minimizing the mean absolute error 
between HNeT's recall and the desired response. 

Once the classifiers were trained, the 15° depression angle imagery was pre-processed 
in a manner identical to what was done for the training data, this time including all 
vehicle imagery within each class. This test data was input to the HNeT classifiers as a 
validation set and the response recall calculated and exported. These results were 
compared, using a winner takes all (WTA) strategy, i.e., each image is classified 
according to the classifier with the highest HNeT response value. 

At this point, a threshold value was introduced, whereby any image having all three 
responses below the threshold was rejected and moved to the "Other" class. The value 
of the threshold was adjusted to 0.5275 in order to yield a rejection ratio of 0.077, 
corresponding to Pd = 0.923, the operating point for the modified MSTAR baseline. 

Table 7 compares the MSTAR baseline and HNeT Confusion Matrices for the 3-class 
multi-vehicle evaluation. Correct classification is indicated in bold, resulting in a 
Pcc\d of 89% for the MSTAR baseline and 95% for HNeT. Note that for both classifiers, 
all BTR-70 images are either correctly classified or designated as Other and since the 
MSTAR baseline has more images, the Pcc\(l comparison will be biased in MSTAR's 
favour. It is also apparent that the two types of classifiers are making very different 
errors when they happen. The MSTAR method has both BMP-2 and T-72 images being 
misclassified as BTR-70s, while the HNeT results show them being confused with each 
other, and not the BTR-70. While the different vehicle used may have some 
contribution, the major effect is expected to be the difference in features used. 

To produce ROC curves, the MSTAR experiment used two confuser vehicles to 
generate false alarms, an M-109 self-propelled howitzer and an M-110 self-propelled 
howitzer, neither of which are part of the public release. Instead, for HNeT the imagery 
of the six remaining public release vehicles was used, namely the 2S1 self-propelled 
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howitzer, the D7 bulldozer, the T-62 main battle tank, the BTR-60 armored personnel 
carrier, the Zil-131 truck and the ZSU-23-4 self propelled anti-aircraft gun. 

Since the confusers for the MSTAR baseline are both of similar design, i.e. a large gun 
on a tracked chassis, it can be expected that most of the confusion will be biased to one 
class, with the others less affected. The confusers used for the HNeT experiment offer 
vehicles similar to each of the three classes. Furthermore, the MSTAR confusers are 
American design, while all the targets are former USSR equipment. The HNeT 
confusers are, like the targets, all of Soviet origin. 

These factors suggest that the same classifier should render more false alarms for the 
HNeT experiment than the MSTAR. Nevertheless, as seen in Figure 5, the HNeT 
classifier outperforms the MSTAR baseline since all three HNeT curves are closer to 

the ideal operating point at (0,1). 

For each binary HNeT classifier, the ROC curve was generated by setting the threshold 
at a value larger than the maximum HNeT response for all test images, both targets and 
confusers. Here, all images fall below the threshold and are classified as Other, thus 
Pel = 0 and Pfa = 0. As the threshold is stepped downward, a parametric curve is 
produced as target images above the threshold increase P(i and high values for confuser 
images increase P/a. Once the threshold is below the minimum HNeT response, all 
images are classified, i.e., {Pd,Pfa) = (L !)• 

If there had existed one or more values of the threshold where all the target images fall 
above the threshold and all the confusers below, then (Pd,Pfa) = (1)0) and the classifier 
would have had an ideal operating point for this set of images. Since this is not the case, 
proximity to (1,0) is a measure of performance, as is the total area under the ROC 

curve. 

The diagonal line in Figure 5 represents a random classifier, where the output class is 
completely independent of the type of image given as input. Thus, the chances for an 
image being classified as the target class are the same whether that image is in-class or 
out-class, i.e. Pd = P/a. The actual probability ofthat classification, Pr^m, 
parameterizes the line the same way as the threshold does the ROC curves, so we have 

the straight line, (Pd,Pfa) = (^rdm^rdm)- 

In addition to the MSTAR baseline, the author became aware during the writing of this 
report that in a more recent publication from the Computational NeuroEngineering 
Laboratory (CNEL) at the University of Florida, Zhao et al. evaluated their SVM 
classifier using the MSTAR standard and were also limited to using only the public 
release imagery. Essentially, the same decisions, arrived at independently, of how to 
adapt the evaluation method were made as described herein, except that CNEL made no 
effort to generate a confusion matrix at Pd = 0.92. 

Figure 5 compares the ROC curves generated by the MSTAR baseline, CNEL's SVM 
and the HNeT classifiers. Again, the HNeT and CNEL curves for the BTR-70 must be 
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Figure 5: ROC curves for the MSTAR standard evaluation of (top left) the MSTAR baseline classifier[1], (top right) 

the CNEL SVM classifier [21], and (bottom) the HNeT classifier. The HNeT and CNEL BTR-70 classifiers are tested 

on the same vehicle as training. The diagonal corresponds to a random classifier. 
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interpreted differently compared to either the other results because these classifiers 
have not been applied to test vehicles other than the ones they were trained upon and so 
the curves are biased with a higher Pd expectation than the others. If applied to the 
withheld imagery, it should be expected that the BTR-70 curves in question would be 
shifted to the same region as their corresponding BMP-2 and T-72 curves. In any case, 
with either measure, the HNeT results clearly show a better performance than either the 
MSTAR baseline or CNEL SVM classifier. 

The CNEL publication also generated Pfa - Pcc\d ROC curves for each of the vehicle 
variants, whereby the classifier success is measured not only according to the rate of 
declaring target images, but of both declaring and correctly classifying them. In such 
plots, a random classifier follows a straight line from (0,0) to (1,1 /N') where N is the 
number of target classes. Figure 6 compares the CNEL SVM and HNeT classifiers 
using these ROC curves. Again, a significant improvement in performance is seen for 
HNeT. 

6.    Conclusion 

Significant insight has been gained into the methodology behind AND Corporation's 
HNeT software. The company's claims and demonstrations of superior performance 
compared to most current classifier technology are now understood and verified. 
Sufficient understanding of their method of extracting feature invariants via coherence, 
especially through analogy with the capabilities of SAR over RAR, generates 
confidence in proceeding to use HNeT as an engine for an ATR system. Furthermore, 
this understanding has identified limitations in HNeT which could be overcome with 
future research efforts. 

The experiments performed by AND Corporation under contract with DRDC 
demonstrate both the success and limitations of their classifier, as well as determining 
optimal configuration of HNeT for these experiments. Unfortunately, the design of the 
experiments is not ideal, allowing bias to skew some results, such as the influence of 
the number of available images. 

By using the standard evaluation methods published by DARPA/WL for the MSTAR 
data collection, a more reliable measure of the HNeT classifier performance has been 
obtained. Confusion matrices and ROC curves tailored for the publicly released 
MSTAR data collection have been generated and compared to an MMSE classifier from 
CIS, the MSTAR baseline results and an SVM classifier from CNEL. These all show a 
significant increase in performance by using the HNeT classifier over the others, 
specifically with the ROC curves for HNeT reducing the region of error from MSTAR 
by about half, as evidenced by the Pct — 0.92 Confusion Matrix yielding an 
improvement from Pcc\d = 0.89 for the MSTAR baseline to Pcc\d = 0.95 for HNeT. 
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Figure 6; Pccu versus P/a ROC curve break-out for (top) BMP-2 variants, (middle) BTR-70 and (bottom) T-72 

variants, comparing (left) the CNEL SVM classifier [21] and (right) the HNeTclassifier. 
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