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Abstract 

A multidisciplinary effort was undertaken to investigate the effect of 
aerodynamic loading on the structural integrity of a multiple launch rocket 
system of interest to the U.S. Army. Computational fluid dynamics (CFD) 
techniques have been used to obtain numerical solutions for the flow field of a 
rocket and launcher. Computed results have been obtained for several launch 
tubes, with the rocket at separation distances of 20, 33, and 66 in. Qualitative 
flow field features show the surface pressure on the surface of both the projectile 
and the launcher. The surface pressure data on the launcher was then extracted 
from the solution files. Software was developed to couple this data to a 
structural dynamics (SD) solver. CFD results provided the aerodynamic loading 
component used during the initial portion of the launch sequence. The SD code 
was subsequently used to calculate stress points on the launcher. These results 
represent a first step in an effort to generalize and fine tune the CFD/SD 
interface. 
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1.   Introduction 

The advancement of computational fluid dynamics (CFD) is beginning to have a 
major impact on projectile design and development [1-4]. Improved computer 
technology and state-of-the-art numerical procedures enable scientists to develop 
solutions to complex three-dimensional (3-D) problems associated with projectile 
and missile aerodynamics. The research effort has focused on the development 
and application of a versatile overset grid numerical technique to solve 
geometrically complex singlebody and multibody aerodynamic problems. This 
numerical capability has been used successfully to determine the aerodynamics 
on a number of projectile configurations [4-6] at transonic and supersonic 
speeds. Earlier applications involved axisymmetric flow computations [4, 5]. 
Recently, this technique has been used to investigate submunition dispersal from 
an Army tactical missile system [6] involving 3-D flow computations. 

This report describes the application of the advanced numerical technique to a 
multiple launch rocket system (MLRS) of interest to the U.S. Army. Figure 1 
shows a photograph of an MLRS mounted on a helicopter. The focus of this 
study is on the rocket body and the launcher pod. The computational problem 
involves 3-D flow computations of rockets being released from multiple tubes 
located in the launcher pod. The scope of this study is limited to a single rocket 
launched from a selected tube. Figure 2 shows the computational model of the 
launcher with a rocket being released from the center tube. The particular 
problem here is to determine the resulting surface pressure on the launcher when 
the rocket is released from various launch tubes, to include the center tube and 
two other asymmetric tube locations (Figure 3). The pressure data on the surface 
of the pod is extracted and used with a structural dynamics (SD) code to help 
identify the high-stress regions on the launcher. 

The complexity and uniqueness of this type of problem result from the 
aerodynamic interference of the individual components, which include 3-D 
shock-shock interactions, shock-boundary layer interactions, and highly viscous- 
dominated separated wake flow regions. The overset grid technique [7-9], 
which is ideally suited to this problem, involves generating numerical grids 
about each body component and then oversetting them onto a base grid to form 
the complete model. With this composite overset grid approach, it is possible to 
determine the 3-D interacting flow field of the system and the associated 
aerodynamic forces and moments without the need for costly regridding. The 
solution procedure of the developed technique is to compute the interference 
flow field at multiple locations until final converged solutions are obtained and 
then to integrate the pressure and viscous forces to obtain the total forces and 
moments. 



Figure 1. Photograph of an MLRS. 

Figure 2. Computational model of a rocket with launcher. 

A description of the numerical technique and the Chimera technique is provided. 
The coupling procedure between CFD and SD is described. The model geometry 
and the various computational grids vised for the numerical computations are 
described in detail. Steady-state computational results are presented for various 
launch tube locations, as well as separation distance between the rocket and 
launcher. Finally, the surface pressure data extracted from the CFD results is 
interpolated and applied to the structural analysis of the rocket launcher. 
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Figure 3. Computational model showing selected tube locations. 

2.   CFD Solution Technique 

2.1   ZNSFLOW Solver 

The ZNSFLOW solver is a product of a common high-performance computing 
software support initiative (CHSSI) project [10]. It is a descendant of F3D [11], a 
code used successfully for many years on Cray vector processors such as the C90. 
Under CHSSI, it was rewritten to provide scalable performance on a number of 
computer architectures. Programming enhancements include the use of dynamic 
memory allocation and highly optimized cache management. ZNSFLOW is 
highly portable and features a graphical user interface to facilitate problem 
setup. It has been used extensively in the computation of flow field calculations 
for projectile and missile programs of interest to the U.S. Army [1^4]. The flow 
solver includes the Chimera [7-9] overset discretization technique for CFD 
modeling of complex configurations. By using the Chimera technique, one can 
greatly simplify the grid topology and grid generation for very complex systems. 
One of the drawbacks in using the Chimera technique has been the increased 
complexity and corresponding confusion in applying a turbulence model. A 
Chimera model can be composed of multiple zones, with each zone possibly 
having a unique grid topology. Most turbulence models have specific direction-, 
orientation-, or distance-related requirements for correct application. For a 
complex Chimera model, applying a turbulence model can be a very complex 
process, especially an algebraic model such as the Baldwin-Lomax [12] model. 



This problem has been addressed in ZNSFLOW by installing pointwise one- and 
two-equation turbulence models [13] that are not orientation specific. This 
greatly simplifies the setup of the turbulence model. Wall location information is 
supplied when the wall boundary conditions are set by the user. 

2.2   Chimera Composite Grid Scheme 

The Chimera overset grid scheme [7-9] is a domain decomposition approach 
where a configuration is meshed using a collection of overset grids. It allows 
each component of the configuration to be gridded separately and overset into a 
main grid. Overset grids are not required to be joined in any special way. 
Usually, there is a major grid that either covers the entire domain or is generated 
about a dominant body. Minor grids are then generated about the remainder of 
the bodies. Because each component grid is generated independently, portions 
of one grid may be found to lie within the solid surface boundary contained 
within another grid. Such points lie outside the computational domain and are 
excluded from the solution process. 

In the rocket launcher study, there is a background grid that serves as the major 
grid. The grids around the rocket and launcher are considered minor grids. The 
minor grids are completely overlapped by the major grid; thus, each boundary 
can obtain information by interpolation from the major grid. Similar data 
transfer or communication is needed from the minor grids to the major grid. 
However, a natural outer boundary that overlaps these grids does not exist. The 
Chimera technique creates an artificial boundary (also known as a hole 
boundary) between grids to provide the required path for information transfer 
from the rocket and launcher grids to the background grid. The resulting hole 
region is excluded from the flow field solution in the rocket body grid. The set of 
grid points that form the border between the hole points and the normal field 
points are called intergrid boundary points. These points are updated by 
interpolating the solution from the overset grid that created the hole. 

A major part of the Chimera overset grid approach is the information transfer 
from one grid to another by means of the intergrid boundary points. Again, 
these points consist of a set of points that define the hole boundaries and outer 
boundaries of the minor grids. These points depend on the solutions in the 
overlapping regions. In the present work, the PEGSUS code [14] has been used 
to establish the linkages between the various grids that are required by the flow 
solver or aerodynamics code described earlier. These include determining the 
interpolation coefficients and the setting up of Chimera logic for bodies making 
holes in overlapping grids. 



2.3   Boundary Conditions 

For simplicity, most of the boundary conditions have been explicitly imposed. 
For the background grid, free stream boundary conditions are used at the inflow 
boundary as well as at the outer boundary. The no-slip boundary condition is 
used on both the rocket and launcher surfaces; it has been modified, however, to 
include a jet flow from the rear of the rocket. The pressure at the wall is 
calculated by solving a combined momentum equation. A combination of 
symmetry and extrapolation boundary conditions is used at the centerline (axis) 
for all grids. For the two-dimensional (2-D) cases, a symmetry boundary 
condition is imposed at the circumferential edges of all grids. For the 3-D case, 
ZNSFLOW requires that circumferential boundary conditions be set; this is 
accomplished by adding an overlapping plane and copying the dependent 
variables from one plane to another. Boundary conditions are not applied at the 
outer boundaries of the rocket and launcher grids; instead, they are updated 
through the Chimera interpolation procedure. 

3.   SD Coupling 

Coupling CFD solutions with SD calculations is needed for many Army design 
and evaluation applications. In the early 1980s, codes like EPIC, PIECES, and 
DYSMAS-ELC [15] made headway in coupling CFD Navier-Stokes calculations 
with SD calculations. However, many of the coupled calculations were related to 
shock loading and damage from UNDEX munitions and ignored the longer time 
dynamic response of the structure. Other efforts focused on closed-form laminar 
flow calculations coupled with axisymmetric structures using modal- 
superposition solutions while ignoring the shock loading [16]. Both methods 
had some value but with severe limitations. On the other hand, the method 
described here takes a step toward developing coupling constraints between 
CFD codes and SD codes in a general application. 

The calculations presented here serve as a first step in creating a tool for Army 
applications where both CFD and SD results are required prior to design. In 
particular, the airflow loads from a departing 2.75-in rocket plume are calculated 
using the ZNSFLOW solver discussed previously. The calculated pressures are 
applied to the structural model and the response is observed. The end goal of 
this approach is to conduct independent CFD and structural calculations that are 
coupled in a time stepping scheme. In other words, the results from one of the 
codes would be the input to the other and vice versa. The resulting computation 
would be quite robust, but very tedious. Additionally, the code writing for the 
coupling of the codes would take a multi-year multi-man effort well beyond the 
scope of the current project.    Hence, a step-by-step process in building this 



capability is presented. In order to better understand the logic of this process, a 
brief overview of the approach is given. 

Listed below are several of the major barriers that need to be solved in order to 
couple these two different numerical approaches: 

• approximations in geometry, 

• differences in gridding density, 

• transfer of loading, 

• time step differences, 

• asymmetric and 3-D calculations, and 

• cross talk between the codes. 

3.1    Approximation Technique 

Approximations in geometry are done by the analyst based on past experience 
and knowledge of the effects on the overall accuracy of the model. Sometimes 
this is accomplished in steps by gradually increasing the complexity of the model 
while examining the change in results to see the importance of including or 
excluding modeling details. For this project, geometry approximations were 
accomplished through discussions between the CFD and SD modelers. 
Attributes such as the protruding rockets (see Figure 1) or the lip on the front 
rocket pod needed to be agreed upon prior to building the CFD and finite 
element method (FEM) models. Additionally, determining which rocket tubes 
had rockets in them and which were empty was equally important. The first and 
most basic approach (see Figure 2) shows an axisymmetric configuration with 
the center rocket being fired. The follow-on to this first calculation included 
rockets from asymmetric positions (see Figure 3). For these calculations a simple 
cylinder was used with only the rocket being expelled having its tube open. 
Remember, this was a proof of principle calculation rather than an actual 
simulation of the firing order of the 2.75-in rocket pod. Equally important was 
the fact that the contribution to pod flexure caused by an open rocket tube was 
unknown. Increased complexity in the model was added only after the initial 
calculation was successfully performed. From a structural stand point, the rocket 
tubes and the rocket pod ribs add structural support and need to be included in 
the model. However, they hold no importance to the CFD calculation. Hence, 
only the surface used in the CFD calculations and SD calculations need to be in 
common. This presents some interesting problems in the automation of the 
process of coupling the two approaches.* 

Without automation, the load transfer process becomes time consuming and expensive. 
Additionally, the automation process must be well understood prior to models being built, or the 
resulting models will require numerous time intensive manual adjustments. 



3.2   Grid Density 

Differences in gridding density represent one of the more interesting problems 
faced by a researcher trying to couple these solution techniques. A robust 
algorithm is ultimately needed to take the loading from the CFD calculation and 
apply the loads to the surface of the model (Figure 4). 
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Figure 4. Differences in gridding locations and density between CFD and FEM grids. 

The algorithm must take into account the differences in gridding and gaps 
caused by subtle differences in the models' geometry. Furthermore, the 
algorithm must interpolate or average the pressure profile along the surface of 
the FEM model. This becomes more complicated for 3-D problems. The 
algorithm must also know which surfaces to pressurize on the FEM model. This 
is no small task, as the thickness of a shell element may be of the same order as 
the gaps between the CFD and FEM grids. Therefore, care must be taken in 
assembling the FEM models outward pointing normal vectors. 

3.3   Load Transfer 

The transfer of loading was accomplished by having the CFD modelers provide 
pressure time histories with an xyz coordinate system from their computational 
results. This data was read into an algorithm that identified the external 
elements in the FEM model and then interpolated the CFD pressure field as an 
equivalent normal pressure. A stair-stepping pressure profile was used in this 
technique. In order to transfer the pressure load, a computer program was 
written using the Visual Basic programming language. The program calculated 
the outward normal of each element's face and then looked for the elements on 
the surface (Figure 5). These elements formed a basis for a comparison with the 
CFD calculations. 

The CFD calculations provided a higher level of resolution than was necessary 
for the structural calculations. The loads were therefore averaged over the 
surface of the element, and an equivalent pressure was applied to the surface 
(Figure 6).  The pressure profile was then applied over the surface of the rocket 
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Figure 5. Outward surface normal needed from each element in the model. 
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Figure 6. Pressure approximation used in current algorithm. 

pod, and a steady-state structural analysis was performed. Although the CFD 
calculations were 3-D, this initial coupling effort used a 2-D pressure profile that 
was applied symmetrically over the FEM model used in the SD analysis. Time 
step differences, asymmetric and 3-D calculations, and cross talk between the 
codes were not addressed in the current effort. 

4.   Model Geometry and Computational Grid 

4.1    CFD Model and Grid 

The computational model consists of a 2.75-in rocket with launcher. The rocket 
is an ogive cylinder with a length of 66 in. The launcher is a cylinder of similar 
length containing 19 launch tubes, although only 3 are modeled in this case 



(see Figure 3). The diameter of the launcher is 15.5 in. Additionally, the rocket is 
modeled at three different separation distances (S) from the launcher. Figure 7 
shows these configurations for the center tube. 

S = 20 

S = 33 

S = 66 

Figure 7. Computational model showing various separation distances. 

The computational mesh for each of these configurations is quite complex. The 
entire grid system contains ~3.9-million grid points and consists of six sections. 
One large grid provides the background mesh for the entire flow field. A single 
smaller grid provides the mesh around the rocket. The computational mesh for 
the launcher, however, is more complex. Four grids are used to model the 
launcher: the launch pod itself, the launch tube (inside the pod), and a grid at 
each end of the tube. Each grid section was obtained separately and then overset 
to provide the full grid. The grid dimensions for the background grid are 290 
x 62 x 70, in the longitudinal, circumferential, and radial directions, respectively, 
155 x 92 x 64 for the rocket, 196 x 92 x 64 for the launcher, 102 x 92 x 64 for the 
tube, and 25 x 92 x 40 for the grid at each end of the tube. The final 
computational meshes were created using the various tools found in the 
OVERGRID grid generation software package [17]. Figure 8 shows a cross- 
sectional view of the longitudinal grid system for this complex configuration. 

As stated earlier, the Chimera technique allows individual grids to be generated 
with any grid topology, thus making the grid generation process easier. For this 
study, the rocket was initially positioned along the longitudinal line of 
symmetry, simulating a launch from the center tube. A geometric translation 
was used to place it at separation distances of 20,33, and 66 in (S = 20, S = 33, and 
S = 66, respectively) in front of the launcher (see Figure 7). Likewise, there was 
no need to regrid in order to generate the tube grids—a geometric translation 
was used to place the original (center tube) grid in the desired position. As part 
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Figure 8. Longitudinal view of the computational mesh. 

of the Chimera blanking procedure, the tube grid cuts a hole in the surface of the 
launcher pod grid. This same process was also used to reposition the rocket 
grids and recut the holes in the background grid. All grid points in the 
background grid that lie within the holes are blanked out and are excluded from 
the flow field solution process. Also, all points on the hole boundary in the 
background grid are updated through interpolation of the solution for the grids 
around the rocket and launcher. Figure 9 is an expanded view of the grid on the 
forward surface of the launcher, showing the results of the Chimera overlap and 
hole cutting process for the center tube. This hole-cutting procedure was done 
for all of the other cases as well. 

4.2    FEM Model 

The model of the rocket pod was constructed using the HYPERMESH pre- and 
postprocessor for the ANSYS solver. The model consists of four noded shell 
elements. Each rocket tube was represented with an individual tube. 
Additionally, both end plates were included and the two center ribs were also 
modeled. The skin around the attachment points was also made thicker to reflect 
the changes in thickness at that location. Initially, the attachment points were 
assumed semi-rigid (Figure 10). 

Subsequent models included a crude mounting unit, as shown in Figure 11. The 
boundary constraints were formulated based on observations from an actual 
rocket pod. The rack was then supported rigidly at its attachment points. 

10 



Figure 9. Computational mesh blanking for the (center tube) launcher. 

Attachment Points 
Rocket Pod Skin Not Shown 

Figure 10. Initial rocket pod analysis with constraints set on the surface of the pod. 
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Figure 11. Mounting unit with the mounting bracket attached. 

5.   Results 

5.1    CFD Results 

Numerous CFD computations were performed using several different launch 
tube positions, with the rocket at various separation distances. The Mach 
numbers used were 0.15, 0.17, and 0.20, based on the distance between the rocket 
and the launcher. The computations were performed at 0° angle of attack, for 
atmospheric flight conditions. The CFD code ZNSFLOW [10] was used to 
perform the computations. All computations were performed on the SGI suite of 
supercomputers at the U.S. Army Research Laboratory (ARL) Major Shared 
Resource Center (MSRC). Resources required for the 2-D computations were 
minimal. For the 3-D calculations, each case required 6.5-million words of 
memory and, on average, 80 hr of computer time. The number of processors 
used ranged from 8 to 16, based on machine availability. 

Two-dimensional axisymmetric steady-state calculations were first completed 
with the rocket positioned 20 in from the launcher at a Mach number of 0.15 and 
0° angle of attack. For this case, the tube in the launcher was not modeled. Both 
stationary and moving boundary conditions along the launcher were considered. 
Figure 12 shows Mach contours for these two cases to be quite different. 
Computed pressures along the front surface of the launcher show that the 
highest pressure is found in the center of the launcher pod. The maximum 
pressure is slightly higher for the moving boundary conditions. 

12 



(a) (b) 

Figure 12. Mach contours without tube, (a) pod moving and (b) stationary. 

The next step in the process was to model the center tube and perform 
computations with the rocket at S = 20, S = 33, and S = 66 (see Figure 7). Again, 
2-D axisymmetric calculations were carried out. Mach numbers used were 0.15, 
0.17, and 0.20 for S = 20, S = 33, and S = 66, respectively, while the angle of attack 
was 0° for all cases. For comparison purposes, the calculations were performed 
with and without modeling the launch tube. The computed surface pressures on 
the front of the launcher are shown in Figures 13 and 14, respectively. Positions 
1, 2, and 3 correspond to S =20, S = 33, and S = 66. For both models, the pressure 
near the center of the launcher decreases as distance between the rocket and 
launcher increases. The difference in maximum pressure also decreases as the 
separation distance increases (Figure 13). The surface pressures inside the tube 
show this same trend (Figure 14). Figure 15 shows qualitative pressure contours 
for the computations for the case where the launch tube was modeled. 

Finally, the 3-D steady-state computations were undertaken. The center tube 
location at S = 20 was computed first and compared with the previous 2-D 
axisymmetric results. Figure 16 shows that the flow fields are quite similar. The 
surface pressure comparison shown in Figure 17 confirms this similarity. Data 
presented by Costello [18] supplied pitch and yaw for the rocket as it exited the 
center tube of the launcher. Consequently, calculations were performed for the 
center tube launch at S = 20, S = 33, and S = 66 with pitch and yaw. Figure 18 
shows the difference in pressure inside the center tube for S = 20, based on the 
difference in pitch and yaw. Qualitative analysis of the surface pressure, as 
depicted in Figures 19, 20, and 21, show that high-pressure covers more of the 
forward surface of the launcher as the separation distance increases. Although 
the flow is symmetric at S = 20, it becomes slightly asymmetric as the separation 
distance increases, again due to the change in pitch and yaw. 

13 



8.0   r— 

7.0 

6.0    - 
  Position 1 
 Position 2 
 Position 3 

100.0 150.0 200.0 

PRESSURE (psi) 
250.0 

Figure 13. Pressure on launcher, model without tube. 
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Figure 14. Pressure on launcher, model with tube. 
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Figure 15. Pressure contours at various separation distances, model with tube. 
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Figure 16. Comparison of 2-D and 3-D calculations. 
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Figure 17. Surface pressure comparison, center tube, at S = 20. 
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Figure 19. Surface pressure on launcher, center tube, at S = 20. 
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Figure 20. Surface pressure contours, center tube, at S = 33. 

Computed results obtained for the asymmetric (or offset) launch tube locations 
are presented next. For these calculations, pitch and yaw are zero. Figure 22 
shows surface pressure contours on the forward pod surface, for all three launch 
tube locations, at S = 20. This same view is presented in Figure 23 for S = 33. A 
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Figure 21. Surface pressure contours, center tube, at S = 66. 

TUBE1 TUBE 2 TUBE 4 
Figure 22. Pressure contours on forward pod surface, at S = 20. 

longitudinal view of the pressure contours on the launch pod for each of the 
three tube positions is shown in Figure 24. As seen in these figures, the flow field 
on the front and side surfaces changes dramatically when the rocket is launched 
from the different tubes. When the rocket is launched from the center tube, the 
pressure contours are symmetric at S = 20. While there is a slight asymmetry on 
the forward surface at S = 33, the flow on the side of the launcher is unchanged. 
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TUBE1 TUBE 2 TUBE 4 
Figure 23. Pressure contours on forward pod surface, at S = 33. 
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Figure 24. Pressure contours on side of pod, at (a) S = 20 and at (b) S = 33. 

As expected, this is not so for the asymmetric tube locations, for all separation 
distances considered. The flow on both the forward and side surfaces of the 
launcher are affected. The asymmetrical aerodynamic loading for the offset tube 
cases can have a significant effect on the structural integrity of the rocket 
launcher. Coupling of the CFD results to SD analysis of the launcher is 
presented in the next section. 
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5.2    SD Results 

As described earlier, CFD results provided the loading used in the SD 
calculations. Simulations were run for both FEM models, using the center tube 
as the launch tube. The pressures applied to the surface were done at three 
different rocket distances and are shown in Figures 25-27. Stresses for each case 
were compared and showed that the peak stress condition in the static 
calculation occurred just after the rocket exited the rocket pod. Calculations 
were performed with the center hole open and with it closed off by a thin 
membrane for comparison. 
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Figure 25. Von-Mises stress contours, center tube, at S = 20. 

In Figures 26 and 27, Von-Mises stresses are used for comparison. The figures 
show exaggerated displacements and stresses. Static displacements and stresses 
would undoubtedly be smaller than those found in a dynamic calculation. The 
dynamic calculation or the coupling of the time dependent pressures will be the 
next phase in this study. The original constraints proved to be unrealistic. In 
laboratory tests, it was observed that the rocket pod exhibited considerable 
lateral movement, particularly with rocket pods fired off the centerline axis. 
However, the calculations for the first set of constraints showed pitching motion 
due mainly to pod flexure as the primary source of movement. By including a 
crude approximation for the mounting bracket and simulating rockets being 
launched from off axis tubes, the left right motion increased. To fine tune the 
boundary constraints, several controlled laboratory experiments of the pod in 
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Figure 26. Von-Mises stress contours, center tube, at S = 33. 
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comparison to simulations would be needed. This was beyond the scope and 
time constraints of the demonstration. By working with CFD modelers, the 
problems and potential solutions to coupling CFD calculations were identified. 
A piecemeal approach to developing the interface was taken and calculation 
were successfully made. 

6.   Conclusion 

A computational study was undertaken to investigate the aerodynamics of an 
MLRS consisting of an ogive-cylinder rocket and a cylindrical launch pod. Flow 
field computations have been performed at Mach numbers 0.15,0.17 and 0.20, for 
0° angle of attack, using a steady, zonal F3D Navier-Stokes code and the Chimera 
composite grid discretization technique. The computed CFD results for various 
rocket and tube positions produced surface pressure data that was used as input 
to finite element codes and to assist in the structural analysis of the system, 
particularly the location of high stress points. Several calculations were 
completed. These efforts have identified the need for additional generalization 
and fine tuning of the CFD/SD interface. This effort represents a first step 
towards achieving a multidisciplinary coupled CFD/SD method for applications 
of interest to the U.S. Army. Further work is needed to develop a strongly 
coupled CFD/SD method wherein SD provides feedback (a new shape) to CFD 
as well. 
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