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NANOSTRUCTURED COMPOSITES: EFFECTIVE MECHANICAL PROPERTY 

DETERMINATION OF NANOTUBE BUNDLES 

E. SAETHER,∗ R. B. PIPES
†, S.J.V. FRANKLAND

††,∗∗ 

 

Abstract. Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed 

bundles or ropes that should exhibit a transversely isotropic constitutive behavior. Although the intratube 

axial stiffness is on the order of 1 TPa due to a strong network of delocalized bonds, the intertube which 

is controlled by weak, nonbonding van der Waals interactions is orders of magnitude less. An accurate 

determination of the effective mechanical properties of nanotube bundles is important in order to assess 

potential structural applications such as reinforcement in future composite material systems. A direct 

method for calculating effective material constants is developed in the present study. The Lennard-Jones 

potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli are 

obtained and compared with existing data.   

Key Words.  carbon nanotubes, elastic constants, molecular simulation 

Subject Classification.  Materials Science 

 

    1. Introduction. Future nanostructured composite materials are expected to incorporate carbon  

nanotube reinforcement either dispersed individually or as nanofilamentary bundles or ropes yielding 

unprecedented mechanical properties. A carbon nanotube is a cylindrical molecule composed of single or 

multiple walls of graphene sheets. These sheets are, in turn, composed of hexagonal units or graphene 

rings of carbon atoms that are bonded through highly stable sp2 hybridized orbitals. A typical carbon 

nanotube is schematically depicted in Figure 1 while Figure 2 contains a cross-section of a bundle 

ensemble of individual nanotubes obtained through transmission electron microscopy (TEM)[1].  

Numerous analytical and experimental studies have been made to determine the elastic properties of 

individual nanotubes. Axial Young’s moduli on the order of 1 TPa have been measured using atomic 

force microscopy (AFM)[2] and thermal vibrations[3]. Analytical studies have utilized ab initio 

calculations[4], tight-binding methods[5], molecular dynamic simulations (MD)[6] and lattice 

____________ 
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dynamics[7,8]. These elastic properties are entirely based on the strong intratube valence forces of the 

carbon-carbon bonds.  

 

 

Nanotube ensembles, however, typically form hexagonally packed crystal configurations in which the 

intertube force interactions are due primarily to non-bonding van der Waals effects which are much 

weaker than the valence forces and are highly nonlinear. Less consideration has been given to the 

transverse mechanical properties of nanotube bundles which depend on a good description of these non-

bonded interactions. These intertube cohesive properties are of special interest for use in predicting the 

properties of carbon nanotube polymer composites[9] and fibers of woven nanotubes[10]. Selected 

moduli of nanotube ropes have been calculated with a continuum model based on the integrated average 

of the discrete Lennard-Jones potential[11], MD simulation using the Tersoff-Brenner potential[12] and 

lattice dynamic methods[13,14]. 

For the present study, a direct summation of atom-pair potentials is used to avoid any simplifications 

made to the nonlinear van der Waals interactions and to permit optimum flexibility in representing 

discontinuous or curved nanotubes. Additionally, a direct method permits irregular and disrupted 

nanotube lattices to be modeled. Because the fundamental constituents of nanotube bundles are only 

resolvable at nanometer length scales, analyses to predict macroscopic properties must necessarily merge 

concepts and techniques from continuum elasticity theory and discrete molecular simulation. The basic 

approach of subjecting a molecular ensemble to applied strain modes and recovering effective moduli 

from energy measures has been used in molecular dynamic simulations[15,16]. The methodology 

developed herein combines a unit cell continuum model with molecular static calculations to determine 

effective moduli in aligned carbon nanotube bundles.  

       FIGURE 2. Typical nanotube bundle[1]. 

10 nm 

       FIGURE 1. Single-walled nanotube. 

   
1.0Å  
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The Lennard-Jones potential is utilized to simulate the van der Waals interaction forces among carbon 

atom-pairs in aligned carbon nanotube arrays. An achiral “zig-zag” configuration is assumed for the 

carbon nanotubes and the tube radius is assumed small such that the cross-section can be considered rigid.  

The objective of this work is to formulate a molecular mechanics model to understand and predict the 

elastic properties of carbon nanotube bundles. This method utilizes a unit cell approach for determining 

selected transverse moduli of a hexagonal crystal of aligned nanotubes. The predicted moduli are shown 

to exhibit the transverse isotropy anticipated for a material possessing hexagonal symmetry. The predicted 

moduli are compared with available published data. 

 

2. Modified Unit Cell Formulation.  In elasticity analyses, the method of unit cells has been 

developed to determine the effective properties of  heterogeneous materials by identifying and analyzing 

convenient domains of repeating microstructure. Applied to the determination of effective continuum 

elastic moduli of bundles of aligned carbon nanotubes, a minimal repeating unit of nanotubes is defined 

and subjected to continuous field deformation modes. An assemblage of a primary unit cell of nanotubes 

with surrounding image regions that are required in applying periodic boundary conditions (pbc) is 

presented in Figure 3. In this approach the nanotubes are regarded as sources of potential energy that 

require interactions with nanotubes outside the unit cell. Under periodic boundary conditions, cells of 

nanotubes in the transverse plane and nanotube segments in the axial dimension are treated as images of 

the constituents within the cell and used in the calculation of potential energy. This permits interactions 

between atom-pairs across the boundary to avoid introducing discontinuities in the force field. In general, 

these conditions ensure conservation of mass and energy, avoid surface or boundary effects, and 

mathematically give the primary unit cell a strict periodicity such that it can be considered to represent an 

infinite ensemble of molecules.  

By combining concepts from continuum elasticity and molecular dynamics, these representative units 

will be referred to herein as ‘pbc-unit cells’. Pbc-unit cells can be constructed of arbitrary order but, with 

a proper definition of the repeat geometry, the unit energy of the primitive cell remains the same. 

Therefore the lowest order cell is used for computations. A minimum-order hexagonal pbc-unit cell is 

shown in Figure 4.   

The initial equilibrium configuration of the hexagonal unit cell is determined by minimizing the 

energy of the system as the nanotubes are moved radially outward from a fixed center. This establishes 

the equilibrium radius, Req, and the nanotube center-to-center separation distance, S, as shown in Figure 5. 

   A rigorous definition of the pbc-unit cell dimensions is required to ensure invariance of the unit 

energy with cell size. The required planar area of the pbc-unit cell is given by  



 
 
4 

(2.1)                        2
eqcell R3M

2

3
A =                          

where M is the number of nanotubes within the unit cell. The effective depth of the pbc-unit cell is 

obtained by first selecting a number of repeat units (circumferential rings of graphene), Kseg, and adding 

one additional unit to account for image segments in the axial dimension. The total area of the enclosed 

graphene units is then equated to the surface area of a perfect cylinder having the same radius as the 

nanotube which is expressed as 

(2.2)                        ( ) effntseggu dR21KAN π=+                  

where N is the number of graphene units around the nanotube circumference, Agu is the area of an 

individual graphene unit, and Rnt is the nanotube radius. The radius of an achiral nanotube can be derived 

as 

   FIGURE 5. Equilibrium radius definition   
                for a hexagonal cell. 

 FIGURE 3. Pbc-unit cell showing outside periodic image nanotubes within the (2,3)-
plane 
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(2.3)                 
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where b is the carbon-carbon bond length. With the area of a graphene unit given by 2b33A 2

gu = , 

Equation (2.2) yields the effective depth of the pbc-unit cell as 

 (2.4)              ( )1K
N

1
1

2
CosbN

3
d segeff +













 −π

π
=           

 

3. Material Constitutive Relationship. The force field within a nanotube crystal consists of a 

combination of strong linear bonding forces acting within the nanotube and weak non-bonding forces 

acting between adjacent nanotubes. This disparity between the magnitude of interatomic forces leads to a 

highly anisotropic constitutive relation. The hexagonal symmetry of the nanotube crystal dictates a 

transversely isotropic stress-strain relation given by  

                                                          33122212111111 CCC ε+ε+ε=σ  

33232222111222 CCC ε+ε+ε=σ  

(3.1)           33222223111233 CCC ε+ε+ε=σ                    

124412 C2 ε=σ  

                              134413 C2 ε=σ  

                         ( ) 23232223 CC ε−=σ  

Additional relationships between the material constants are given in Reference 17 for a hexagonal system 

as 

(3.2)                          
( )
( ) 2CCG

2CCK

232223

232223

−=
+=

                          

This material is uniquely defined by five independent quantities where the ‘1’ direction is directed along 

the tube axis. The current effort will focus on the prediction of normal and shear properties in the 

transverse plane. 
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 4. Analysis Methodology. The methodology used to determine selected nanotube crystal properties 

involves defining an appropriate pbc-unit cell, applying selected strain modes to the crystal, and 

computing the potential energy due to atom-pair interactions as a function of the deformation kinematics. 

Effective elastic constants are then determined from the variation in the system potential energy as 

 

(4.1)                      
ji

2

ij V

1
C

ε∂ε∂
Φ∂






=                               

where Cij is the material stiffness, V is the pbc-unit cell volume, Φ  is the potential energy, and εk is an 

applied strain mode.  

Strain modes are applied to the nanotubes in the crystal by the imposition of specific deformation 

fields. The G23 shear modulus for a hexagonally packed nanotube array is calculated using a pbc-unit cell 

subjected to a pure shear strain mode as shown in Figure 6. The magnitude of the shear strain is given by 

twice the shear angle or θ=γ 223 . During a progressive deformation with increasing θ, the potential 

energy is computed by summing all atom-pair interactions between adjacent nanotubes. The G23 shear 

modulus is then obtained from the elastic strain energy, Φ , using a finite difference approximation as   

(4.2)         ( )2

231effcell

2

2
23

2

23
dAVol

1
G

γ∆
Φ∆

=
γ∂
Φ∂

=                   

where Acell is the planar area of the pbc-unit cell, deff is the effective length of the nanotubes, ∆1 and ∆2 are 

first and second order central difference operators, respectively .  

 

 

             FIGURE 6. Imposed shear deformation on hexagonally packed nanotube array. 
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The bulk modulus is computed by applying a dilatational strain as shown in Figure 7. Because the 

strain in the axial dimension, ε11, is assumed to be zero, the dilation is defined as 3322e ε+ε= with 

ε=ε=ε 3322 . The bulk modulus is obtained by applying Equation (7) using a strain given by 2ε. The 

calculation of the E22 Young’s modulus and the Poisson’s ratio 23υ  is performed by applying ε22 strain 

increments in the 2-direction and repositioning the tubes in the 3-direction to minimize the energy. The 

transverse repositioning of the tubes perpendicular to the load axis directly gives a measure of the ε23 

strain from which the Poisson ratio is determined as 222323 εε−=υ . This is depicted in Figure 8. 

 The C22 stiffness coefficient is obtained by applying the same deformation mode defined in Figure 8, 

but no energy minimization is performed to induce a transverse Poisson deformation. 

    

o3o33

o2o22

xxx

xxx

ε+=
ε+=

 

              FIGURE 7. Imposed dilatational strain on hexagonally packed nanotube array. 
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       FIGURE 8. Calculation of Poisson’s ratio. 
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5. Potential Energy Calculations. The intertube forces are typically modeled by the Lennard-Jones 

potential to represent van der Waals interactions. The Lennard-Jones or ‘6-12’ potential energy function 

is given by  

 (5.1)                      




















 α−








 ας=Φ
6

ij

12

ij rr
4                        

where ς  is the depth of the energy well, α is the van der Waals radius, and rij is the separation distance 

between the ith and jth atoms in a pair.  (Traditionally,  the parameters α and ζ  are referred to as σ and ε, 

which are used in this work for stress and strain respectively.)  The 6
ijr − term represents the attractive 

contribution to the van der Waals forces between neutral molecules.  It implicitly includes, via 

parametrization, permanent dipole-dipole interactions, the induction effect of permanent dipoles, and 

instantaneous dipole induced dipole interactions which are sometimes referred to as the London 

dispersion forces. The other component of the van der Waals interactions mimics the repulsion between 

overlapping electron clouds and is modeled by the12

ijr − term which is short ranged[18,19]. 

 

6. Results and Discussion. In the present study, a crystal of single-walled nanotubes is analyzed. 

Each nanotube has a diameter of 0.94 nm and an achiral zig-zag conformation with 12 graphene units 

around the circumference. The carbon-carbon bond length is prescribed as 1.42Å .  Nanotubes of this size 

may be considered rigid in the transverse direction[12,13].  Therefore, the only degree of freedom 

included in the deformation kinematics is the relative motion of the nanotube center, and the only 

contribution to the potential energy changes with imposed motion is computed using the Lennard-Jones 

potential. The parameters used in the Lennard-Jones potential are )K(0.34=ς and nm3406.0=α [13,20]. 

A comparison between predicted elastic moduli using the current direct method and results obtained using 

alternate approaches is presented in Table 1. References 13 and 14 utilize a lattice dynamics approach 

while Reference 12 is based on a molecular dynamic simulation. From the limited published results it is 

clear that there is a wide variation in predicted elastic moduli for nanotube bundles.  

Elastic Constant Direct Method  Reference 13  Reference 14**  Reference 12 

Bulk Modulus K23 (GPa) 45.8 42.0 18.0 33.6 
Shear Modulus G23 (GPa) 22.5  5.3* -- -- 
Young’s Modulus E22 (GPa) 60.3 17.0 -- -- 
Normal Stiffness C22 (GPa) 68.3 42.0 78.0 -- 

Poisson Ratio 23υ  0.34 0.75 -- -- 

 
                          *  Value derived using relationship in Equation (6).  
                                      ** Results generated using (7,7) helical nanotubes with diameter = 0.94 nm.  

TABLE 1. Comparison of predicted elastic constants. 
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  All the results listed in Table 1 for the present analysis were computed independently,  i.e. none were 

derived from a subset of other values.  For a 3-D solid exhibiting hexagonal symmetry, the expression for 

the transverse Young’s modulus, E22, is given by[13] 

(6.1)            
( ) ( )[ ]

( )2
131133

2

311132333233
22 CCC

C2CCCCC
E

−
−+−

=  

Because the axial modulus of the nanotubes in the crystal is generally two orders of magnitude greater 

than the transverse moduli, we may take 31323311 C,C,CC >> . Using the relationship 222323 CC υ=  and 

equating Poisson ratios under transverse plane isotropy as 3223 υ=υ , Equation (6.1) reduces to a simple 

relationship between C22, E22 and 23υ . Substituting the calculated values for the Young’s modulus E22 and 

Poisson’s ratio 23υ  into the resulting expression, the transverse normal stiffness is obtained as  

(6.2)                 GPa2.68
34.01

3.60

1

E
C

22
23

22
22 =

−
=

υ−
=           

which closely agrees with the independently calculated value of C22. Next, computing C23 as 2223 Cυ  = 

23.2 GPa and applying the relations given by Equations (3.2), it is found that the transverse plane 

stiffnesses are recoverable from the computed shear and bulk moduli as 

(6.3)      C22 = K23 + G23 = 45.8 + 22.5 = 68.3 GPa 

               C23 = K23 – G23 = 45.8 – 22.5 = 23.3 GPa 

Thus, the computed elastic constants are completely self-consistent for a transversely isotropic material as 

required. The values reported in Reference 13 (Table 1) are also self-consistent for transverse isotropy 

and compare favorably with the present analysis for the prediction of the bulk modulus, K23. The results 

from a molecular dynamics simulation presented in Reference 12 (Table 1) is slightly lower. The 

calculation of the normal stiffness, C22, which is obtained from applying a similar deformation as that 

used to compute the bulk modulus (applying only ε22 instead of both ε22 and ε33 with ε22 = ε33), is 

intermediate between the lattice dynamics studies presented in Reference 13 and Reference 14 (Table 1). 

In Reference 14 nanotubes of the same radius were used but with different helicity. However, the effect of 

helicity is discussed in Reference 13 in which it is shown for several cases that the configuration of 

graphene units on the nanotube surface has a negligible effect for small radius tubes ( R < 16Å ).  

The C23 value derived here using G23 and K23 in Equation (13) or E22 and 23υ in Equation (12) are self-

consistent and yield a value of 23 GPa. The only other available comparison for C23 is in Reference 13 

which presents a value of 32 GPa. Another value not reported in the literature is the transverse shear 

modulus G23 for which the present analysis yields 22.5 GPa.  This value varies from 20.2-24.7 GPa with 

10 % variation in the Lennard-Jones α and ζ parameters.   If one applies the first of the relations given in 

Equations (3.2) to the data in Reference 13, one obtains a value for G23 of 5.3 GPa. This shear modulus is 
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comparable to the shear modulus associated with parallel planes in graphite which is experimentally 

measured as 4.0 GPa[21,22].  

In the direct summation and lattice dynamic methods, the physics of cohesion are identically 

represented by the same parameterization of the Lennard-Jones potential. Possible differences in 

predictions using lattice dynamics may be due to the inherent integral averaging of force constants used in 

the lattice dynamical matrix and the a priori selection of interacting nearest-neighbor atoms used in 

defining the primitive lattice cell, both of which are avoided in the direct method. 

A potential source of inaccuracy affecting all methods is the form of the Lennard-Jones potential 

function itself.  The Lennard-Jones potential was originally developed for noble gases and is known to 

produce poor results in other applications including graphite.  It gives good results for the C33 modulus 

(interplanar separation), but the C44 parallel plane shear modulus is under predicted by an order of 

magnitude[22].  Alternative potentials have been proposed[23] that yield accurate predictions for both the 

transverse normal and shear moduli in graphite. Additional study is warranted to assess the spatial 

interactions of delocalized bonds in carbon nanotubes that may be underestimated using a spherical atom 

Lennard-Jones model. 

 

7. Conclusions. A consistent method has been formulated for and applied to computing effective 

transverse mechanical properties of nanotube crystals. The method is based on specifying a unit cell 

configuration with periodic boundary conditions, applying a deformation field associated with a particular 

strain mode, and utilizing a direct summation procedure to compute changes in potential energy from 

which an effective elastic modulus may be obtained. The disparity between reported predictions of 

mechanical properties that depend exclusively on van der Waals cohesion and the paucity of available 

experimental data suggest that much additional investigation is warranted in this area. The development 

of a more realistic representation of van der Waals interactions between nanotube surfaces may be 

required to correlate analytical predictions with future experimental measurements of nanotube crystal 

properties.   
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