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ABSTRACT OF DISSERTATION 

OBJECT RECOGNITION USING AN EXTENDED CONDENSATION 

FILTER 

This dissertation describes and tests a set of Condensation Filter extensions that fuse the 

pose estimates provided by recognition algorithms, while providing a pose localization mech- 

anism to fuse similarly measures from classification algorithms - the traditional Conden- 

sation Filter can only accommodate pose estimates. The extensions also fuse the ad hoc 

information provided by low-level features to serve as heuristics and focus the target pose 

search. The ad hoc information is combined using the pose of the filter particle as a common 

reference point and mapping functions derived with Bayesian Learning. 

These extensions provide a more flexible framework for better representing and com- 

bining diverse sources of information than previously possible. Pose space is also examined 

more extensively where the conditional target pose probability is higher and more particles 

are present. This feature gives the Condensation Filter a new active role in directing the 

use of classification algorithms. 

The scaled circular error probable metric (CEP) is used to study the effect on object 

recognition of combining multiple recognition, classification, and low-level feature extrac- 

tion algorithms using two different expert combination rules. To examine the relationshm 

between discrimination, accuracy, and precision, receiver operating characteristic curve 

measurements are compared to the scaled CEP measurements.   These results show httle 

correlation between discrimination and accurate and precise localization of the target. The 

tests performed for this dissertation indicate the Extended Condensation Filter can reliably 

fuse recognition, classification, and raw feature data to perform more accurate and preise 

object recognition than is possible using each of the individual contributing algorithms. 

Lance A. Forbes 
Department of Computer Science 
Colorado State University 
Fort Collins, Colorado 80523 

Fall 2001 
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Chapter 1 

Introduction 

The ability of the Kaiman Filter and its variants to provide optimal estimates of a target 

pose by combining multiple location estimates is well established, where optimal means the 

filter maximizes the accuracy and precision of the estimate [Kal60, May79, GZ86, HK92, 

JDMOO]. However, for optimal performance the Kaiman Filter requires contributing systems 

provide real-valued linear estimates and the uncertainty associated with the estimates must 

be reasonably expressed as unbiased additive Gaussian noise [Kal60, May79]. Extensions of 

the Kaiman Filter can accommodate non-linear systems. However, linearization generally 

requires a hand-crafted solution for each expert and problem domain [May79]. 

The Condensation Filter accommodates more diverse information than the Kaiman Fil- 

ter [IB98]. For example, the Condensation Filter does not require the uncertainty model 

associated with a target pose estimate be unbiased or Gaussian. Within computer vi- 

sion, the term Condensation Filter is used to describe a statistical filter with sample-based 

representation and adaptive resampling. However, the concept has appeared under dif- 

ferent names starting over 30 years ago. The ideas of randomly sampling the state of a 

process, discretely representing the state distribution, and adaptively resampling can be 

found in the Monte Carlo Filter described by Handschin and Mayne [HM69]. Rubin's 

sample-importance-resample (SIR) work provides a practical approach and justification for 

adaptive resampling [Rub87]. The first complete description of the Condensation Filter, 

called the Bootstrap Filter, is found in Gordon's, Salmond, and Smith's paper on nonlinear 

non-Gaussian state estimation [GSS93, Gor97]. Application of the Condensation Filter to 

computer vision is described by Isard and Blake [IB98], where the name Condensation Filter 

is first used. 
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Despite the Condensation Filter's less restrictive assumptions, it cannot accommodate 

a large amount of the information available from many computer vision algorithms. Many 

algorithms, such as classifiers and low-level feature extractors, do not provide an estimate 

of the target object pose. Classifiers provide a measure of similarity between two images, 

one of which is usually the target. Low-level feature extractors provide a set of features 

generally assumed to have some relationship to the target. Results in this dissertation 

show both classifiers and low-level feature extractors can provide information to improve 

the object recognition process. However, until this point, the Condensation Filter has been 

unable to use such information. 

To illustrate the distinction between these different types of information, assume the goal 

is estimating, with the greatest accuracy and precision possible, the two-dimensional pose of 

an object. If two algorithms each produce their own direct estimate of the two-dimensional 

pose, fusing information requires manipulation of uncertainty bounds, but translation from 

one representation to another is not required. In contrast, assume one of the algorithms 

provides a direct estimate of position, and another algorithm provides the temperature at 

different positions. Temperature may be a very useful indirect cue, but a mapping must be 

established between temperature and object position before the two types of information 

can be combined. 

This dissertation presents two novel extensions for the Condensation Filter to make use 

of both direct and indirect sources of visual information in the context of recognizing known 

objects in video sequences. The first contribution is an extended architecture that recognizes 

and accommodates three distinct types of information sources: recognition algorithms, 

classification algorithms, and low-level feature algorithms. Recognition algorithms provide 

a pose estimate and possibly a similarity score. Given two images to compare, classification 

algorithms provide only a similarity score and they include no pose localization mechanism. 

Low-level features, such as temperature, color, or range, provide only vague cues indicating 

where an object may be located. 

To implement this first extension, each particle within the Extended Condensation Fil- 

ter is used as a common reference point for combining the diverse information provided by 

direct and indirect sources. To accommodate recognition algorithms, each particle pose is 

compared to each recognition algorithm pose estimate. Much like a traditional Condensa- 

tion Filter, the distance between the particle pose and the estimate pose is used to estimate 



the probability the particle pose is near the target object. To accommodate classifiers, 

the particle pose is used to create a transformation matrix and render an estimate of the 

target object appearance. This estimated target appearance allows a classifier to compare 

the target to the observed image and estimate the probability the particle pose is near the 

target pose. To accommodate low-level feature extractors, the particle pose is compared 

to each extractor's set of low-level features to estimate the probability the particle pose is 

near the target pose. For each type of information, the common point of comparison is the 

particle pose and the common output is the conditional probability the particle pose is near 

the true target pose. 

The focus on the particle pose gives the Extended Condensation Filter a more active role 

than the traditional Condensation Filter. Because classification similarity measurements are 

only made at particle poses and the filter purposely moves particles in pose space, the filter 

actively directs the application of the classifiers. This represents a significant departure from 

the traditionally passive role of the Condensation Filter, where observations are received 

and used to move particles within the filter, but the position of the particles has no influence 

on the application of the contributing sources of information. 

The second contribution applies Bayesian learning to characterize and normalize the 

conditional probability models for each information source combined within the Conden- 

sation Filter. These conditional probabilities provide a common representation of the un- 

certainty associated with direct and indirect sources of information. Algorithms based on 

edge matching, color index, and stereo disparity provide very different indications of object 

position and similarity. This dissertation provides a method for comparing and combining 

this information using learned probabilities. 

When proposing a new algorithm, one naturally desires a comparison with the current 

standard. For the reasons discussed earlier, the Kaiman Filter and traditional Condensation 

Filter do not provide a comparable capability because they only accomodate a subset of 

the information accommodated by my extensions. There are systems, such as a Bayesian 

Network, which can combine direct and indirect sources of information [Pea88]. However, a 

Bayesian Network requires the specific semantics of the output of each expert be encoded by 

the user into the network architecture, while my system uses a single general architecture. 

As a result, there is no basis for comparison with the system I propose. 
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Figure 1.2:    Adding Location to Classification by Transforming Image Features to Match 

the Model 

1.1    Recognition = Classification + Localization 

Object recognition contains two sub-problems: object classification and object localization 

[TV98]. Classification measures the similarity between two images, but performs no local- 

ization. As shown in Figure 1.1, object classification requires a minimum of two sets of 

features; at least one set of features extracted from the scene and one set of features for 

each target model. The image features and target model features are compared using a 

similarity measure. For example, the target and image features may be represented as two 

vectors and the Euclidean distance between the feature vectors represents their similarity 

— the smaller the distance, the greater their similarity. Assignment of a set of features to 

a specific class is usually based on comparing the similarity measure to a threshold. 

Object localization is also required to perform object recognition. As defined by Trucco 

and Verri, object localization requires the estimation of the three rotation dimensions and 

three translation dimensions (pose) of an unknown object in pose space [TV98]. For this 

dissertation, this pose is the vector s. Other methods for finding the pose estimate, such as 

the generalized Hough transform, perform search in correspondence space [Bal81, Bev93]. 

More recent research has explored the utility of searching directly in pose space [HR92, 
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RB95, SB01]. When searching in pose space, any object classification algorithm can be 

used to estimate the pose of the target object in an arbitrary image by computing the 

similarity measure between the target model features and image features over a range of 

hypothetical poses. Features can be extracted from the image based on a hypothetical pose 

and compared to the target model features, as shown in Figure 1.2, or the target model 

features can be projected to the hypothetical image pose, as shown in Figure 1.3. With 

either method, the pose maximizing similarity is assumed to be the most likely. 

The process of projecting and comparing can be used to search the image for instances of 

the target class, but the search can be computationally demanding. Some object recognition 

algorithms have specialized heuristics that speed-up pose localization by skipping obviously 

unattractive portions of the search space [HR92, RB95], but they still must search in pose 

space using the classifier similarity measure as the objective function. The search space 

for all but the most simple images is very challenging and specialized search heuristics 

have only been developed for a small number of classification algorithms. As a result, most 

classification algorithms must exhaustively search to predictably and reliably perform object 

localization. 

1.2    Extending the Condensation Filter 

If several recognition algorithms are combined to provide a single estimate, such as the 

product of a Kaiman Filter, the combined estimate could be used to direct the search to 

the most likely pose. Unfortunately, the Kaiman Filter does not provide a general purpose 
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Figure 1.4:     The range features are shown as a bold line. The pose space eliminated by 
low-level range features is shown in gray. 

search mechanism, so a separate process would need to perform the search. Fortunately, the 

Condensation Filter contains a general purpose search mechanism similar to an Evolution 

Strategy [FogOO], and it has much less restrictive assumptions than the Kaiman Filter. The 

relationship between Evolution Strategies and the Condensation Filter will be discussed in 

more detail later. 

The Condensation Filter is a recent development claiming statistical filtering properties 

similar to the Kaiman Filter — some of these claims are questioned later in this dissertation. 

However, in contrast to the Kaiman Filter, the underlying mechanism of the Condensation 

Filter is similar to population-based search. As a result, the Condensation Filter can be 

extended to provide the statistical filter required to fuse pose estimates from object recog- 

nition algorithms while providing the pose search required to fuse the similarity measure 

provided by object classification algorithms. To accommodate classification algorithms, the 

filter particle is used as a common point of comparison to create a classification problem. 

The result is a single process capable of fusing results from any recognition algorithm that 

provides a target object pose estimate and any classification algorithm that provides a 

similarity measure. 
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In addition to fusing classification and recognition algorithm information, my Conden- 

sation Filter extensions allow fusion of low-level feature data. Low-level features do not 

provide a location estimate nor a similarity measure, but they can help prune the object 

pose search space. For example, the low-level range information provided by a stereo dis- 

parity algorithm does not provide a similarity measure nor an object pose estimate. As 

shown by the example in Figure 1.4, the low-level range data only estimates the nearest 

line-of-sight distance to objects in the scene. However, these simple features indicate that 

the target object is not in the portion of the pose space shown in gray because the nearest 

line-of-sight object detected by the stereo disparity algorithm is the bold black line. 

The discrete representation (gray = no object, black = object) in Figure 1.4 is a sim- 

plification. Stereo disparity algorithms make mistakes and, as a result, may incorrectly 

estimate range, so there is a finite probability that the object is closer or further away than 

the feature indicates. Just like fusing pose estimates in a Kaiman Filter, fusing low-level 

feature data in a Condensation Filter benefits from accurate error models. For example, a 

stereo disparity feature error model, like the one shown in Figure 1.5, estimates the prob- 

ability a pose represents an object surface based on the difference between the range to a 

pose and the stereo disparity feature. Results reported later in this dissertation indicate 

feature extractor error models can be difficult to represent parametrically and are highly 

dependent on the task, so my extensions must provide a flexible error model representation. 

My Condensation Filter extensions accommodate the diverse information and error mod- 

els provided by low-level features, classification similarity measures, and recognition pose 

estimates. 



1.3    Example 

To illustrate the practical need for a system capable of fusing the results from recognition, 

classification, and low-level features extractors, consider the following example. Your goal 

is to design a system to help the police visually locate a vehicle parked along the side of 

the road. Your system will traverse long segments of road looking for the target vehicle 

based on the available target vehicle feature data. Navigation will be performed by a 

separate system — possibly a police officer. To minimize the waste of law enforcement 

resources your system should only generate an alert when a probable match is found, by 

reliably identifying probable target vehicles — this requires good target discrimination. 

Given a variety of parking options, the target vehicle might be viewed with any ground- 

plane rotation. Ground-plane translation of the target vehicle is limited only by the field 

of view and resolution of the camera. Only small vertical translations are likely because 

the grade of a road is typically limited to relatively low inclines compared to the range of 

the camera. The police patrol vehicle may traverse roads in both directions, so multiple 

distinctly different views of every car may be available. 

Unfortunately, fleeing criminals are frequently uncooperative, so the police and your 

system can only be sure of having one or two images of the target vehicle prior to the search. 

This limited a priori data usually rules out appearance-based methods such as Eigenspace 

manifolds [Bor99]. Fortunately, several algorithms that perform object recognition with 

minimal a priori data are available. A color histogram could be used to look for objects 

of the vehicle's color, but common vehicle colors, such as white, will be a problem [SB91]. 

Edge template matching could be used, but vehicles of the correct model and the wrong- 

color will report as false matches [HR92]. Edge templates may also miss discolorations on 

the vehicle. Pixel-level statistical correlation might work, but specialized hardware will be 

required to perform the exhaustive search necessary to localize the pose of the target object 

at frame rate [SB01]. Statistical correlation may also fail in the presence of high out-of- 

plane rotation. In short, every algorithm based on a single set of features has specific and 

predictable strengths and weaknesses. 

Multiple views of each vehicle will be available as the camera travels along the road. 

Each view offers a unique opportunity to match the image to the target model because 

different lighting, background clutter, and occlusion will be present in each camera view. 
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Figure 1.6:      Top-level architecture of the canonical Condensation Filter 

However, each view will have to be registered in a common reference frame. In theory, if 

the multiple views could be processed by multiple object recognition algorithms then fused, 

the resulting object recognition estimate should be superior to any of the contributing 

estimates. If low-level feature data and object classification results could also be fused with 

the recognition estimates, object recognition should further improve. Ideally, a diverse set 

of recognition, classification, and low-level feature extraction algorithms should be used 

to process every image frame. The result should be a set of target object pose estimates 

represented in a single reference frame that are more discriminating, accurate, and precise 

than any of the contributing algorithms. 

This vehicle search problem will be the basis for the test problems used later in this dis- 

sertation because it contains the key problems of combining recognition, classification, and 

low-level feature data. It also provides real-world complications such as combining estimates 

from different spatial reference frames, limited a priori data, and noisy and heterogeneous 

features and pose estimates. 

1.4    Research Focus 

The architecture of the canonical Condensation Filter is shown in Figure 1.6 [IB98, D+99, 

MacOO]. The central data structure of the Condensation Filter is a fixed-size population of 

particles, as shown at the top of Figure 1.7, where each particle represents a hypothetical 

target object pose. The fundamental steps used to update the filter are: predict pose changes 
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Figure 1.7: Top-level architecture of the canonical Condensation Filter showing a small 
population of particles 

using the target object's motion model, weight the particles in the Condensation Filter based 

on the observations, and reproduce the particles in the Condensation Filter in proportion 

to their weight. As shown at the bottom of Figure 1.7, the predict-weight-reproduce cycle 

causes the particles in the filter to move (or condense) toward the observations. More about 

the theory and implementation of the Condensation Filter will be discussed in Chapter 2. 

Figure 1.8 illustrates the Condensation Filter extensions that are the focus of this dis- 

sertation. To make the filter extensions more obvious, Figure 1.8 shows only the operations 

required to process a single filter particle based on a single acquired image. The weighting 

operations inside the dotted line must be repeated for each particle in the filter. Each new 

image also requires the prediction operation shown in Figure 1.6, but not shown in Figure 

1.8. To clarify the relationship between Figure 1.6 and 1.8, place the operations inside the 

dotted line of Figure 1.8 within a loop that increments from particle one through the entire 

population of particles, then use the new loop to replace the weight and reproduce boxes in 

Figure 1.6. 

As shown in Figure 1.9, which highlights the basic stages of Figure 1.8, all the operations 

in Figure 1.8 can be reduced to four primary stages 

One Obtain expert estimates 

10 
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Figure 1.8: Operations performed by the Extended Condensation Filter to weight a 
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are repeated for each particle in the filter. IEX is the target object example image. It is an 
unknown image acquired at time t. s is a target pose estimate provided by a recognition 
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single particle in the filter's population of particles. MgIEx is the target image transformed 

on the basis of the pose S. w is the classification algorithm's measurement of similarity 
between the transformed target image MgIEx and the acquired image It. >y

rrue is the true 

target pose, and P(S = STrue) is the probability that S is the true target pose. 
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Two Combine independent estimates 

Three Weighted random reproduction 

Four Extracting hypotheses 

All four stages offer potentially rewarding research questions, but I have elected to focus 

on the second stage — combining data sources. The next several sections describe each of 

these stages in detail and my reasons for focusing on the process of combining independent 

estimates. A detailed pseudo-code description of this algorithm is provided in Chapter 3. 

1.4.1 Stage One - Feature Extraction 

Stage One in Figure 1.9 extracts features from the acquired image. These feature sources 

will directly affect the performance of the combined recognition algorithm — as discussed 

at the beginning of this chapter. New and different types of edge detectors, color histogram 

algorithms, classifiers, and recognition algorithms are presented at nearly every computer 

vision conference. Their strengths and weaknesses are frequently debated and each could be 

plugged into the front end of my filter and tested. However, I want to demonstrate the gen- 

erality of my Extended Condensation Filter and its ability to fuse data from diverse recog- 

nition, classification, and low-level feature extraction algorithms, rather than demonstrate 

optimal performance in some problem domain. For this reason I have emphasized diver- 

sity rather than maximum performance and selected an edge-based recognition algorithm, a 

color-based classifier, a pixel-correlation-based classifier, a stereo-disparity range feature ex- 

tractor, and a color-histogram back-projection algorithm [HR92, SB91, SB01, DH73]. The 

role of each of these algorithms will be discussed in Chapter 3. 

1.4.2 Stage Two - Combining Data Sources 

Stage Two in Figure 1.9 combines the features extracted in Stage One. The features (S, f, 

and w) extracted in Stage One provide diverse information about any hypothetical pose. 

For a population-based algorithm, this diverse information must be used to evaluate the 

fitness of every member, or particle, in the population. As a result, every feature must be 

converted to a particle-specific weight. The weight represents the likelihood that a particle 

is the correct estimate of the target position as compared to the other particles in the 

population.  This stage is the key point in the Extended Condensation Filter that allows 
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recognition, classification, and low-level features to be combined and it directly affects the 

generality and performance of the filter. Stage Two is the primary focus of this dissertation. 

1.4.3 Stage Three - Weighted Reproduction 

Stage Three in Figure 1.9 reproduces the particles in the population in proportion to the 

weight assigned in Stage Two. The weighted reproduction stage is similar to weighted 

reproduction in an Evolution Strategy [DLOO]. As a result, nearly all the research on 

weighted reproduction in population-based search algorithms would apply to the weighted 

reproduction of population-based filters. Unfortunately, I do not have the time to adequately 

address the wealth of advanced techniques that could be borrowed from the search literature 

and applied at this stage. I have elected to use the canonical filter reproduction algorithm, 

where the probability of reproducing particle Si is the ratio of the weight for particle Si 

divided by the total weight for all particles in the population 

njj ■ 

P {reproduction) = —  (1.1) 

i=i 

where P(Ri) is the probability of reproducing particle i, and Wi is the weight of particle 

i in a population of size N.   When used for an Evolution Strategy, this formulation is 

called fitness proportional reproduction [FogOO].   The details of particle reproduction will 

be discussed further in the Chapters 2 and 3. 

1.4.4 Stage Four - Extract Hypotheses 

Group Four in Figure 1.9 extracts target pose hypotheses from the state of the filter particles. 

In many applications of the Condensation Filter this is treated as a trivial operation - the 

mean pose of all the particle poses is assumed to be the hypothesis with the best support. 

This is a crude and potentially incorrect assumption. One advantage of the Condensation 

Filter is its ability to represent ill-defined multi-modal distributions. When multiple target 

objects or similar false target objects are present, multiple modes may be represented by 

the particles in the filter. For this dissertation, distribution assumption are avoided by 

using the distribution independent circular error probable (CEP) statistic to measure the 

accuracy of the filter state in total. In addition, clustering is used to test the validity of the 

single-mode assumption. These tests will be discussed further in Chapter 4. 
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In summary, there are four major areas for research regarding my Extended Condensa- 

tion Filter; feature extraction, classifier combination, weighted reproduction, and hypothesis 

extraction. For stage one, research on feature extraction is intentionally limited by selecting 

an arbitrary, but diverse, group of features that will demonstrate the Extended Conden- 

sation Filter's generality. Stage two, classifier combination, will be the primary focus of 

this dissertation. Stage three, weighted reproduction, will use the reproduction algorithm 

from the canonical Condensation Filter. Finally, for stage four, assumptions about the filter 

population are avoided by using the distribution independent CEP statistic. 

1.5    Dissertation Overview 

This dissertation is composed of six chapters. The remaining chapters are: 

Background The Condensation Filter extensions described and tested in this dissertation 

rely on previous research in several areas. Chapter 2 reviews the most relevant research 

with a focus on feature extraction, combining classifiers, localization, and Evolution 

Strategies. 

Theory Chapter 3 describes several abstract models of the Extended Condensation Filter 

and the associated theory. Chapter 3 also poses a set of research questions prompted 

by the models. 

Test Chapter 4 describes one implementation of the Extended Condensation Filter, a set 

of controlled test environments, and a set of empirically testable hypotheses derived 

from the research questions presented in the previous chapter. These tools are used 

to generate the empirical test results reported in the next chapter. 

Results Chapter 4 summarizes the results of testing the Extended Condensation Filter 

implementation described in the previous chapter. This chapter also draw some con- 

clusions regarding the hypotheses and research questions posed earlier. 

Conclusions Chapter 6 draws some general conclusions regarding the Extended Conden- 

sation Filter and outlines future research topics. 
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Chapter 2 

Background 

A statistical filter, such as the Kaiman Filter, can seem magical to the uninitiated. Adding 

an extremely bad estimate to an extremely good estimate does not degrade the good es- 

timate. Instead, given a well designed filter, the combined estimate is better than each of 

the individual contributing estimates. The result seems counter-intuitive. Putting a bad 

human navigator in a car with a good human navigator usually confuses the driver. The 

bad navigator may convince the driver to take the occasional wrong turn. But statistical 

filters assume the properties of the good and bad navigator are well understood — each 

is represented by a statistical error model. In a sense, our driver knows when the good 

navigator is right and when the bad navigator is wrong. This information is essential for a 

statistical filter's "magic." 

Parametric statistical filters have a long history. Emil Kalman's first paper on the 

Kaiman Filter was published over 40 years ago, and many extensions are well established 

[Kal60, May79]. The Kaiman Filter and its extensions are commonly used in aerospace 

navigation systems and ground tracking systems to combine diverse sources of object loca- 

tion information. However, the limiting assumptions of parametric statistical filters make 

them difficult to apply to visual object recognition. 

In general, the product of visual object recognition algorithms may not fit the equations 

required by parametric filters. Other algorithms, such as classifiers and low-level feature 

extractors, do not provide an estimate at all. Classifiers, for example, only measure similar- 

ity. Using the previous good-bad navigator example, a classifier is like a navigator who only 

"knows it when he gets there." A low-level feature extractor only looks for some specific set 
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of features. This is like a navigator who only knows the destination is painted white. Such 

information may prove useless to the driver who requires left and right turn information. 

When I started this research, my goal was a Kaiman Filter for visual object recognition. 

I wanted the filter to accommodate as many sources of object recognition information as 

possible, as well as perform object recognition in dynamic environments. I also wanted the 

"magical" property of combining well-modeled diverse sources to create recognition esti- 

mates better than each of the individual contributing sources. Unfortunately, the Kaiman 

Filter's parametric assumptions fail to support many, if not most, of the potentially useful 

sources of information for object recognition. 

To accommodate recognizers, classifiers, and low-level feature extractors with arbitrary 

uncertainty models, I have extended the Condensation Filter. The canonical Condensation 

Filter provides a very flexible non-parametric representation of the combined target pose 

estimate and associated uncertainty. However, the Condensation Filter is still too lim- 

ited, because it requires parametric representations of the uncertainty for each contributing 

source. The Condensation Filter also has no mechanism to make use of classification or low- 

level feature information. My extensions allow the filter to learn a discrete representation 

of the uncertainty for each contributing information source and compare classification and 

low-level features to pose estimates. This dissertation describes and tests these extensions. 

Computer science, statistics, and mathematics, among other fields, contribute to my 

work, but it would be impractical to cover all these contributions in detail. The practi- 

cal, but limited, goal of this chapter is providing the background necessary to discuss the 

theoretical models, research questions, and testable hypotheses in later chapters. The first 

section of this chapter describes a limited taxonomy of object recognition algorithms. This 

taxonomy will help describe the feature sets used to test the Condensation Filter extensions. 

The second and third sections briefly review classifiers and combining classifiers. Two of 

the classifier combination algorithms discussed will be tested in later chapters. The fourth 

and fifth sections review object recognition and the more popular algorithms for combining 

pose estimates. These sections focus on the strengths and weaknesses of the Kaiman Filter, 

Mixture of Gaussians Filter, and Condensation Filter. Section six reviews population-based 

search, with a focus on Evolution Strategies and their similarity to the Condensation Filter. 
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2.1    Features 

One of the primary goals of my research, established in the next chapter, is improved 

object recognition through the fusion of diverse sources of information — specifically low- 

level features, similarity measures, and pose estimates. This section argues that diverse 

algorithms provide distinctly different advantages, depending on the problem domain. The 

car search example in Chapter 1 illustrates how combining diverse information can provide 

an advantage in practical problems. 

To demonstrate that a new algorithm accommodates diverse algorithms, it should be 

demonstrated using diverse algorithms. However, proving a group of object recognition 

algorithms is diverse is difficult, if not impossible. If the algorithms could be described by a 

scalar, algorithms from each end of the scale could be selected and reasonably called diverse. 

Unfortunately, the features, similarity measures, and localization algorithms within the ex- 

tensive literature on object recognition are much too complex and numerous to describe by 

a simple scalar. In fact, no taxonomy of object recognition algorithms is well-established 

in the computer vision literature. Rather than abandon the notion of selecting diverse 

sources of information, this chapter describes a small sub-set of the more obvious and well- 

established dimensions of object recognition algorithms. Using a small sub-set of dimensions 

as the basis for selecting features and similarity measures cannot guarantee a representa- 

tion of the spectrum of object recognition algorithms, but selection on the basis of these 

dimensions will ensure my algorithms are dissimilar. 

2.1.1    Low-Level Versus High-Level Features 

The level of feature abstraction is one of the most common ways to differentiate sources 

of object recognition information. Low-level features, such as edges, color, and depth, 

are extracted from the image pixel data. Classification similarity metrics are extracted 

by comparing low-level features extracted from two images. Target pose estimates are 

typically based on comparing many classification similarity metrics. Each step in this 

process represents a shift to a higher level of abstraction requiring additional computation. 

Each level of abstraction also loses some information about the original image. 

In terms of abstraction, low-level features are close to the original pixel data and are 

not very selective about the information they encode.   From the standpoint of an object 
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recognition task, the information in low-level features is likely to be irrelevant. In contrast, 

high-level features are typically farther removed from the pixel data and contain less irrele- 

vant detail. However, in practice it is nearly impossible to design general feature extractors 

that perfectly discard the irrelevant detail and retain the relevant information. Thus, some 

relevant information is usually lost in the abstraction process. 

Features can be measured on a scale from low to high. The original image sits at the low 

extreme of this scale and object recognition sits toward the high end, while low-level features 

and classification sit somewhere in-between. For example, in the object recognition process 

shown in Figure 1.3 on page 5, the original unknown image contains all the information the 

sensor collected. Features, such as edges, extracted from the original image contain only 

the information relevant to the computation of a similarity metric. A classifier, such as 

the Hausdorff algorithm described later, may provide only a single metric measuring the 

similarity of the unknown image features to the target model features. When the similarity 

metric is used to perform object recognition, the classifier may be run repeatedly to provide 

many similarity metrics, but the recognition algorithm may provide only a single target 

object pose estimate. Each step from low-level to high-level provides less, but increasingly 

relevant, information. 

2.1.2    Object-Centered Versus Viewer-Centered 

Object recognition algorithms can be classified as object-centered or viewer-centered 

[Mar82]. Object-centered methods use feature sets that may not be obvious to the viewer. 

For example, a list of the geometric vertices of the target object is an object-centered rep- 

resentation. Viewer-centered models describe the appearance of the object from a viewer's 

point of view. One example is the eigenspace representation that combines multiple images 

of the object from the viewer's perspective. While object-centered methods use models 

to build a view of the object, viewer-centered methods use object views to build a model. 

Each method has predictable strengths and weaknesses. For example, object-centered meth- 

ods are dependent on the accurate extraction of model features, such as edges or corners. 

Viewer-centered methods are dependent on proper segmentation of the target from the 

background and lighting. 
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2.1.3 Local Versus Global Features 

Object recognition methods can also be classified as local or global. Local methods attempt 

object recognition by finding some subset of features that belong to the target object, while 

global methods search for the target object in its entirety. Pixel correlation can be used 

to implement both local and global algorithms. A local implementation of pixel correlation 

measures correlation between patches of the target object image and the sensed image. The 

local method has the advantage of detecting parts of the target object even when the target 

object is partially occluded. Unfortunately, the local method may produce a false positive 

match when a non-target object is composed of pieces similar to the target object, but 

assembled differently. A global implementation of pixel correlation measures correlation 

between the entire target image and the acquired image, but it is sensitive to occlusion and 

the properties of the background. Hybrid methods can incorporate some of the strengths 

of both methods. 

2.1.4 Radiometrie Versus Geometric Features 

Recognition algorithms can use either radiometric or geometric features. Geometric feature 

extraction infers structure. Radiometric feature extraction infers material surface proper- 

ties. 

Radiometric methods infer the surface properties of objects in the scene, such as the 

illuminant response, from the pixel intensity values. A three-dimensional red-green-blue 

(RGB) histogram is a purely radiometric feature set [SB91]. The RGB value of every pixel 

in the image is used to create a three-dimensional histogram that represents the number 

of times every distinct color in the image occurred. The histogram contains a great deal 

of information about the radiometric properties of the image, but says nothing about the 

geometric arrangement of those colors. If pairs of pixels in the original image were randomly 

swapped, the histogram would be unchanged. Because pixel values can only be used to 

infer surface properties, radiometric methods are more sensitive to lighting changes than 

geometric methods. If a white cube is placed under a blue light, it appears blue. If the 

same white cube is placed under a red light, it appears red. The RGB histogram for each of 

these two images appear completely different despite the presence of the same object. The 

RGB histogram will be used in two variations to test the Extended Condensation Filter. 
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Figure 2.1:    Original image Figure 2.2:      Geometric edge features ex- 
tracted by Canny 

Geometric methods infer structure from the pixel values and try to classify an object 

from the structure. Geometric methods, such as model-based object recognition, first ex- 

tract local geometric features, such as edges or lines. Classification or recognition compares 

these geometric features. 

Edge patterns are an example of purely geometric features. The Canny edge detector 

extracts edge features from an image based on image intensity gradients [Can86]. Depending 

on the parameter settings, Canny may extract the edge features shown in Figure 2.2 from 

the image shown in Figure 2.1. Notice that the output from Canny no longer contains 

any radiometric information. In fact, the edges could be represented as a simple list of 

points on a Cartesian plane. The output from Canny can be used to extract higher-level 

geometric primitives, such as lines or corners. The edge features can also be used directly 

for classification and recognition algorithms, as described later in this chapter. 

Radiometric and geometric methods each have different strengths and weaknesses. Com- 

pared to the radiometric methods, Canny is less sensitive to lighting changes. In the example 

with the white cube, the lighting changes may have little or no effect on the edges extracted. 

However, two cubes of entirely different color may produce nearly identical edge features, so 

two configurations of a Rubik's cube may appear identical. Performing recognition based on 

both sources of information rather than either source should provide a distinct advantage. 
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Figure 2.3:      Inferring depth information using the stereo disparity from two cameras 

2.1.5    Range Versus Radiometrie Features 

Range data and radiometric data provide very different opportunities for an object recogni- 

tion algorithm. Active range sensors, such as laser range finders, can accurately provide a 

wealth of purely geometric data about the scene [Bes89]. However, range data says nothing 

about the radiometric properties of objects, such as the illuminant response or perceived 

color. Radiometric data is influenced by both the surface properties of the objects in the 

scene and the interaction of the geometric properties of a scene with the lighting. As a re- 

sult, illumination data can be used to infer both geometric and surface material properties. 

However, due to the interaction of scene properties, range data inferred from a radiometric 

image is generally less accurate than range data from an active range instrument [Bes89]. 

Stereo disparity infers range information from two or more images acquired from different 

known viewpoints [DH73, TV98]. As shown in Figure 2.3, matching image patches are 

found in the images and the difference of the patch location in the images indicates the 

patch's distance from the camera. In the simplest implementation, two cameras are used 

to acquire two images and establish the disparity of the image patch location. In this case, 

the difference or disparity is D = X\ - X2, and the distance from the camera is 

T 
J D 

(2.1) 

where Z is the camera relative distance to the image patch, T is the distance between the 

two cameras or baseline, and / is the focal length of the cameras. 
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The fundamental problem with stereo disparity is quickly and accurately identifying 

unique image patches. Some images, such as a wall or floor with a repetitive pattern, do 

not contain unique image patches. Many parts of the wall in the right image match many 

parts of the wall in the left image. As a result, simple local stereo disparity matching may 

fail to estimate the range in these areas of the scene. Even when both images are uniquely 

patterned, it is computationally demanding to search for thousands of image patches. Pre- 

processing filters are usually used to estimate the sections of the images that are likely to 

be unique. Camera relative range limits are also used to limit the size of the image patch 

displacement search. The pre-processing filter, image matching errors, and range estimate 

limits, among other problems, limit the accuracy of stereo disparity range estimates when 

compared to active range sensors. 

The simple feature taxonomy described above provides insight into different algorithms 

and indirectly suggests where complementary strengths and weaknesses may be found. For 

example, local methods are less affected by occlusion than global methods. Geometric 

methods are less affected by changing scene illumination than radiometric methods. The 

algorithms selected for the Extended Condensation Filter should fail under different condi- 

tions and, if each algorithm's results are fused properly, the combined estimate should be 

more reliable and accurate than estimates obtained using the individual methods alone. 

2.2     Classifiers 

Classification assigns class labels to image features. These features may be pixels, regions, 

or in very simple domains, the entire image. Class labels typically represent groups of 

known things such as corners, cubes, chairs, or cars [DH73, TV98, CA99]. However, for 

this dissertation, a very particular form of classification is used, where recognizing a single 

instance of a specific object is the goal. As a result, there are only two class labels: target 

object and non-target object. This form of object recognition is also called object identifi- 

cation [HR97]. The goal is determining if the unknown image contains an instance of the 

target object. For my implementation, the target object representation is a single template 

image of the object. Therefore, the term target image means an image known to contain a 

view of the object of interest. 
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Figure 2.4: Edge features extracted 
by the Canny edge detector from an un- 
known image. 

Figure 2.5: Edge features extracted 
by the Canny edge detector from a target 
image. 

Figure 2.6: Edge feature comparison using the Hausdorff algorithm. The target edge 
features are shown on the right and the unknown edge features are shown on the left. The 
circles show the user-specified maximum distance. "M" indicates a matched edge feature 
and "U" indicates an unmatched features. 
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For example, the Canny edge detector, described in the previous section, and the Haus- 

dorff metric can be combined to create a classification algorithm [Can86, HR92]. Assume 

the Canny edge detector extracted the edge features shown in Figure 2.4 from an unknown 

image and the edge features shown in Figure 2.5 from the target image. As mentioned 

earlier, each edge feature can be described as a point on a Cartesian plane. The Hausdorff 

distance can be used to compute the similarity between the two sets of edge features. As 

shown in Figure 2.6, the Hausdorff algorithm super-imposes the target and unknown edge 

features on the same Cartesian coordinate system. Then the algorithm tests every target 

edge feature by looking within a user-specified distance around the pixel for any edge pixel 

from the unknown image. In Figure 2.6, the circles show the user-specified maximum Eu- 

clidean distance for each target edge feature. Unmatched target edge features, where no 

unknown image edge feature appears within the circle, are marked with a "U" and matched 

edge features are marked with an "M." For this piece of the example image, the Hausdorff 

similarity, matched edge features divided by the total number of edge features, is 13/18 

or 0.72 A variant of this algorithm, described later, will be used to test my Condensation 

Filter extensions. 

My dissertation focuses on the single-target two-class problem. Therefore, there are 

only two class labels — target and non-target. If the similarity between the acquired image 

features and the target model exceeds the threshold, it is labeled target. Otherwise, the 

acquired image is labeled non-target. For example, using the Canny-Hausdorff classifier, 

any unknown image with a similarity score equal to or greater than 0.9 (90% matched edge 

features) is classified (or labeled) as an instance of the target. Any images below 0.9 will 

be classified as a non-target. 

The Canny-Hausdorff example may lead some readers to believe my definition of classi- 

fication is simply template matching. However, my definition is much broader. In general, 

template matching requires the comparison of pixel geometries [HS96, TV98]. My defini- 

tion of classification includes a much broader class of algorithms, such as color index, which 

compares the color content of two images without any regard for pixel geometry [SB91]. In 

the case of color index, color histograms are extracted from the target image and all pixel 

geometry information is discarded. The unknown image and target image are compared us- 

ing ratios of histogram bin values. For my purposes, classification is inclusive of algorithms 

like color index and much broader than template matching. 
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Figure 2.8:    Example Gaussian distributions for a two-class classification problem where 
the classifier has relatively poor discrimination, when compared to Figure 2.7. 

2.2.1    Discrimination 

The similarity between images of the same class will vary due to a variety of factors such as 

changes in lighting and viewing angle. The two Gaussian distributions, shown in Figure 2.7, 

help illustrate this variability for the two-class problem [Swe64, Ega75]. The left Gaussian is 

the probability of measuring the similarity w, given an instance of the non-target, P(w\C / 

CTrue). The right Gaussian is the probability of measuring w, given an instance of the 

target P(w\C = CTrue). For this example, Figure 2.7 indicates images in the target class 

have greater mean similarity than images in the non-target class — a desirable result. 

Ideally, the two distributions are widely separated with only a small area where the tails 

of the distributions overlap. If the two distributions are well-separated, a threshold can 

be set which segregates the two distributions.  However, in the example shown in Figure 

26 



1.0 

FP 

0.5 

(a) 

FP 

. 
l.u - 

0.5 

V            Improved 
V         /Discrimination •■. 

0.5 

1-TP 

(b) 

1.0 

Figure 2.9:    Typical ROC Curves. Figure (a) indicates less discrimination than (b). 

2.7, the tails of the Gaussians are infinite, so there is no threshold value that completely 

segregates the two distributions — there is always a finite probability of an incorrect classi- 

fication. Gaussians are used for this example, but any distribution that accurately models 

the probability of observing the similarity metrics is valid. 

A classification algorithm with greater separation is defined as more discriminating than 

an algorithm with less separation. Figure 2.8 shows the target and non-target distributions 

for a classification algorithm with relatively poor discrimination when compared to the 

classification algorithm represented by Figure 2.7. In practice, the specific classification 

task will dictate the discrimination required, but the greater the separation between the 

two distributions, the better. 

The probability of a false positive is the area in the tail of the non-target distribution 

P(w\C ^ cTrue) above the threshold. For example, given the threshold shown in Figure 

2.7, the portion of the non-target class distribution above the threshold represents the 

probability of incorrectly classifying a non-target image as a target image. The probability 

of mis-classifying a non-target image as a target can be reduced by moving the threshold to 

a higher value. However, increasing the threshold also decreases the probability of correctly 

classifying a target image as a target. 
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The discrimination of a classifier over a range of threshold settings can be represented 

by the Receiver Operating Characteristic (ROC) curve [Swe64, Ega75]. As shown in Figure 

2.9, one axis of the ROC curve represents the probability that a true classification (target) 

exceeds the similarity threshold, also called a called a True Positive (TP) indication. The 

other axis represents the probability that a false classification (non-target) exceeds the 

similarity threshold, also called a False Positive (FP). One minus the TP probability is used 

to make the origin coincident with maximum discrimination and the dotted line coincident 

with no discrimination. As shown in Figure 2.9, the 1-TP and FP probabilities are plotted 

over a range of threshold settings, resulting in a sequence of points with one end of the 

sequence at the point (1 - TP = 1.0, FP = 0.0), the result of setting the threshold at 

infinity, and the other end at the point (1 - TP = 0.0, FP = 1.0), the result of setting the 

threshold at negative infinity. The points between the two extremes define the ROC curve. 

The area under the ROC curve (AUC) is a single number measuring the discrimination 

of the classifier over a range of threshold settings. Figure 2.9(b) shows an ROC curve where 

the classifier is more discriminating than the classifier shown in Figure 2.9(a). The worst 

possible classifier would have an ROC curve that is a straight line from (1-TP = 1.0, FP = 

0.0) to (1 - TP = 0.0, FP = 1.0). The area under the worst possible curve is 0.5 and the 

area under the best curve is 0.0. The AUC will be used throughout this dissertation to 

measure discrimination. 

2.3    Combining Classifiers 

Research has shown combining the results from multiple classification algorithms can create 

a better classification algorithm [KHDM98, JDM00]. When multiple classification systems 

are used together, each of the contributing classification algorithms is called an expert 

[McC81, GZ86, Hin99]. Intuitively, if all the experts agree on the class label assignment, we 

have greater confidence in the class label. However, if the experts disagree, or only partially 

agree, combining their results becomes more complex. As shown in Figure 2.10, classifier 

combination is a type of data fusion that combines multiple classification estimates with the 

goal of improving classification accuracy. Many methods have been proposed for classifier 

combination and, just like feature selection, a taxonomy of these methods helps explain the 

context and scope of this dissertation. 
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Figure 2.10:    Combining classification data from multiple experts 

First, classifier combination algorithms are either deterministic or probabilistic. In the 

mid-1980s, computer vision algorithms extracted features to create more expressive symbols, 

but few methods explicitly analyzed the effect of uncertainty on the feature extraction 

process [FB80, Kan81, Bar83]. One example is the simple voting algorithm shown in Figure 

2.11. Given an unknown image, each classifier computes a similarity score. One example 

of a similarity score is the Hausdorff distance described earlier. For each expert, the class 

label with the highest similarity to the unknown image receives one vote. The class label 

with the largest number of votes is assigned as the class label for the unknown image. 

Variations of the voting algorithm allow each expert to vote more than once. For example, 

each expert could give three votes to the label with the greatest similarity, two votes for the 

label with the second greatest similarity, and one vote for the label with the third greatest 

similarity. However, with either variation, the form of class label assignment is crisp and 

definitive, information about uncertainty is lost when the classification label is assigned 

[RKMI95, Bor99]. 

Recent applications of data fusion and feature extraction to computer vision have empha- 

sized propagating information about uncertainty throughout the computer vision process. 

Within the classifier combination systems that consider uncertainty, many representations 

and calculi are used. Pearl suggests an extensional versus intensional taxonomy [Pea88]. 

Extensional approaches treat uncertainty as a generalized truth value. The certainty of a 
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Figure 2.11: Combining classification data using a deterministic voting algorithm and a 

single target model 

formula is defined to be a unique function of the certainties of its sub-formulas. The ex- 

tensional approaches lead to modular rule-based systems and efficient methods for inferring 

new information from statements. Intensional uncertainty measures are assigned to sets, 

and the sets are combined by set-theory operations. For example, the probability P(AAB) 

is given by the weight assigned to the intersection of the two sets A and B. Pearl argues 

that extensional systems are simple and efficient, but suffer from the same weaknesses as 

a monotonic logic, while intensional systems are far more robust but more difficult to im- 

plement [Pea88, PeaOO]. The approach I propose here may be thought of as an efficient 

object-recognition-specific intensional system. 

According to Pearl, there are four primitive relationships any probabilistic reasoning 

system should represent: likelihood ("The target is more likely at pose X than pose Y."), 

conditioning ("If the image is red, the target is at pose X."), relevance ("Whether pose X 

contains the target depends on whether the image is red."), and causation ("The target 

being at pose X caused the image to be red.") [Pea88]. Conditioning, relevance, and 

causation can be useful for an object recognition system, but likelihood relationships are 

sufficient for my purposes; the target is more likely to be at pose X than pose Y. 

Determining whether one event is more likely than another translates directly into pro- 

cessing time. An object recognition system un-guided by likelihood wastes resources chasing 

the unlikely while neglecting the likely. Part of directing resources is also stopping the ex- 
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penditure of resources when a hypothesis has sufficient support to be considered valid. The 

first purpose only requires a relative representation of likelihood. For example, more likely 

target locations should be represented by relatively larger numbers. The second purpose 

requires a metric suitable for comparison to a threshold. 

A Single 
Population 
Member 

Expert 1 

Expert 2 

Expert 3 

Expert N 

Metric 
w, 

Metric, 
W, 

Metrio, 
w, 

Metric^ 

WK, 

Convert Metric 
toP(C=CTruelw.) 

Convert Metric 
toP(C=CTruelw,) 

Convert Metric 
toP(C=CTruelw3) 

Convert Metric 

to P(C=C Truel wN) 

Classification 
Combination 

P(C=Clruelw,,...,v<k) 

Figure 2.12:     Combining classification data using a probabilistic algorithm and a single 

target model 

If operators are only required to determine relative likelihood relationships, a diverse 

set of approaches to classifier combination may be suitable, depending on the properties of 

the unclassified data and the experts. However, the probabilistic combination of the expert 

classifications forces a dramatic change from the simple voting system in Figure 2.11. The 

revised classifier combination algorithm is shown in Figure 2.12. Rather than convert each 

expert's distance metric into votes, a probabilistic representation requires each expert's 

metric be converted to the probability of the class label given the metric. Each expert i 

provides a metric Wi that is transformed into the conditional probability P(C = CTrue\wi) 

that a specific class label estimate C is the true class label CTrue. The function to convert 

Wi to a probability estimate may be learned from examples or estimated manually. 

If the probability combination operator has specific properties, the uncertainty about 

the class label assignment is retained in the combined result P(C = C True Wi,...,WN). 

The specific properties required for classifier combination are dependent on the properties 

of the individual experts. The next two sections illustrate the issues involved with combining 

classifiers using two simple, but widely used, examples of probability combining operators — 
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the product rule and the mean sum rule [KHDM98]. The product rule provides a probability 

estimate and assumes the experts provide independent probability estimates. The mean sum 

rule provides a likelihood estimate and assumes the expert probability estimates are context 

independent. 

2.3.1    Product Rule 

The product rule is derived using Bayes' Rule and the assumption of independence among 

the experts [McC81, GZ86, KHDM98]. When combining N experts, Bayes' Rule becomes 

P<r       rTrueU„ w    , _  P(W1,...,WN\C = CT^)P(C = CT^) 
P(C = C       \Wl,...,wN)- P(Wlt...,WN)  M 

Unfortunately, some of the terms in the right side of the equation may be difficult 

to determine empirically. In practice, the two terms P(wi,... ,WN\C = CTrue) and 

P(w\,... ,WN) require an extremely large number of samples to estimate with confidence. 

To reduce the number of samples required, the independence assumption is combined with 

the law of conditional probability to approximate these terms. Conditional probability is 

defined as 

P(A,B) = P(A\B)P(B) (2.3) 

Independence is defined as 

P{A) = P{A\B) (2.4) 

Combining the independence assumption with the definition of conditional probability yields 

P(A,B) = P{A)P(B) (2.5) 

Using this definition of independent conditional probability, the first term in the numerator 

of Equation 2.2 can be re-written as 

N 

P(wu..., wN\C = CTrue) = JJ P[wi\C = CTrue) (2.6) 
i=i 

The denominator of Equation 2.2 can be re-written as 
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N 

P(wi,...,wN) = Y[P{wi,...,wN) (2.7) 
i=l 

Substituting Equation 2.6 and Equation 2.7 into Equation 2.2 yields the product rule 

N 

p(c=cTrue\wl, ...,WN)=p(c=cTrue) n 
2=1 

P[wi\C = CTrue) 
P{wl) 

(2.8) 

The independence assumption, used to simplify the estimation of the terms in Bayes' 

Rule, is the key assumption in the product rule. Independence simply means the probability 

of one event A is not influenced by the probability of another event B. This assumption is 

a key component of results provided later in this dissertation. 

2.3.2    Product Rule Example 

Table 2.1:    Table of Objects in the Simple Product Rule Example World 

Object (symbol) Color Height 

Stop Sign (S) Red Med 

Stop Sign (S) Red Med 

Fire Hydrant (F) Red Low 

Bird (B) Green Low 

Tree (T) Green High 

Although independence among probability estimates is a common assumption, it is easy 

to create an example where the independence assumption leads to errors. My example uses 

the simple world shown in Table 2.1. The world has only five objects and four class labels; 

stop sign, fire hydrant, bird, and tree. In my simple world, all of these object classifications 

have only two identifying features; color and height. All colors in the world are either red 

or green and all heights are either low, medium, or high. 

Given color or height observations, the probability of an object's class label can be 

calculated. For example, given the object is of low height (L), Bayes' Rule can be used to 

calculate the probability it is in the class fire hydrant (F) 

P{L\C = F)P(C = F) _ 1.0 * 0.2 
P{C = F\L) 

P(L) 0.4 
0.5 (2.9) 
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Table 2.2:    Testing the independence assumption in the Product Rule example. If inde- 
pendence were a valid assumption, P(A) = P(A\B). 

P(A) P(A\B) 

P{R) = 0.6 P{R\L) = 0.5 

P(L) = 0.4 P(L\R) = 0.33 

This result can be verified directly from the table, by observing that a low height object 

can only be either a fire hydrant or a bird and the P(C — F\L) = 0.5 

Given an object is red (R), the probability of it being in the class fire hydrant is 

W-m-VW-W-V-y^-O* (2.10, 

This result can also be verified by examination of the table. 

Given both color and height observations, the probability of a class label may be calcu- 

lated with greater certainty. Given the object is both low height and red, the certainty of 

my class label assignment is much higher. Using the Bayesian Product Rule, the probability 

of a low-height and red object being a fire hydrant is 

However, this result does not agree with the results from direct examination of the table. 

From the table P(C = F\L,R) = 1.0, not 0.83. The independence assumption is the 

source of the discrepancy. Looking back at the derivation of the Bayesian Product Rule, 

the denominator P(L)P(R) is a substitution for the P(L, R) based on the independence 

assumption. The product P(L)P(R) is equal to 0.4*0.6, but from inspection P(L, R) is 0.2. 

Table 2.2 indicates independence is frequently a bad assumption in my example problem 

domain. The independence assumption will become important again later during testing in 

a much more complex object recognition problem domain. 

2.3.3    Normalization 

In Equation 2.8, the conditional probability of a class label is derived from estimates of 

P[C = CTrue), P(wi\C = CTrue), and P(wi). For most applications, each of these three 

probabilities is estimated and includes some error.  The denominator of equation 2.8 also 
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includes the independence assumption, which the earlier example shows may be incorrect. 

To the degree the estimates and independence assumption are incorrect, the probability of 

all possible outcomes may not equal 1.0 and, as a result, the probability estimates require 

normalization. 

The effect of the error produced by the independence assumption can be seen in the 

previous example. As shown earlier, using the product rule, the probability that an object 

is in the class fire hydrant, given the identifying features red and low height is P(C = 

F\L, R) = 0.83. Examining the table shows the probability of any other identifying features, 

given the class fire hydrant, is 0. For example, given the observation green, the probability 

of a fire hydrant is 

nr   mo   rtc   r]nL\c = F)P(G\C = F) _     i.o*o.o 
P(C - F\L, G) - P(C - F) p{L)P{G) ~ °-2 0.4 * 0.4 " °-° 

and given the observation medium height, the probability of a fire hydrant is 

nc   r\MR)   ric    npmc = F)mic = F) - o2 °-°*h0 - oo P(C-F\M,R)-P{C-*) P{M)P{R) ~U-Z 0.4* 0.6      U'U 

Therefore, the probability of all possible class labels is 

P(C = S\L, R) + P(C = F\L, R) + P(C = B\L, R) + P(C = T\L, R) = 0.83 

However, this result cannot be correct. By definition, the probability of an object (from 

our closed world) being in one of the four classes is 1 — the object must be something. 

Therefore 

P(C = S\L, R) + P(C = F\L, R) + P(C = B\L, R) + P(C = T\L, R) = 1 (2.11) 

The incongruous results are due to the independence assumption in my simple example. In 

more complex applications, such results may also be caused by estimation error. 

Since the sum of the probability of all possible outcomes must equal 1, a constant a can 

be derived to normalize the probabilities, where 

1 
a = 

P(C = S\L, R) + P(C = F\L, R) + P(C = B\L, R) + P{C = T\L, R) 

To normalize the relative likelihood values, a is used as follows 

(2.12) 

P'{C = F\L, R) = aP{C = F\L, R) (2.13) 
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Where P' is the probability estimate after normalization. In the example, the constant 

1 
a = 

0.0 + 0.83 + 0.0 + 0.0 

The class label F given L, R has a probability 1 

P'(C = F\L,R) = ^-0.83 v '   '    '     0.83 

and the other class labels have a probability of 0. 

Normalization provides probabilities that sum to 1.0 at the expense of computing the 

probability estimate for all the class labels and normalizing the sum of the values to 1. For 

the remainder of this dissertation the notation P(...) indicates a normalized probability 

and the notation P(...) indicates a normalized probability estimate. 

2.3.4    Sum Rule 

The weighted sum of expert opinions is an intuitively appealing method for combining 

multiple classification estimates [McC81, GZ86, KHDM98, Hin99]. Given the classification 

metrics (wi,... ,WN) from N experts, the probability estimate using the Sum Rule is the 

weighted sum of the expert estimates 

N 

L(C = CTrue\wu. ..,«,„) = £ ßiP(C = CTrue\Wl) (2.14) 

where ßi is the weight given to each expert's probability estimate. To preserve a normalized 

probability estimate, the weights must sum to 1.0. 

If each expert's estimate is given equal weight, the probability estimate becomes the 

mean value of the expert estimates, called the Mean Sum Rule 

£ P{C = CTrue\Wi) 
L(C = CTrue\wu...,wN) = 1^  (2.15) 

This combination rule is intuitively appealing. If multiple experts estimate a probability 

and they make independent and unbiased random errors, in accordance with the central 

limit theorem, the mean value of their estimates should approach the true value as the 

number of experts approaches infinity. 

The idea of combining multiple experts with independent and unbiased experts in the 

attempt to eliminate the bias is also a concept supporting the bagging algorithm [Bre94]. 
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However, there is and important difference between my pre-defined experts and bagging. 

The experts contributing to the Extended Condensation Filter, such as the Hausdorff algo- 

rithm or color index, are pre-defined — the nature of their biases is unknown. In comparison, 

the bagging algorithm is careful to select training sets which should create random biases 

in the contributing experts — Breiman calls these unstable procedures [Bre94]. However, 

as results later in this dissertation show, the experts chosen for my implementation may be 

sufficiently independent and unbiased to provide the benefits of bagging. 

Kittler shows the Mean Sum Rule can be derived using Bayes' Rule [KHDM98]. To 

give each expert's estimate equal weight, context independence must be assumed. In other 

words, none of the experts has any information or expertise unavailable to the other experts. 

The context independence assumption is justified under some circumstances. To illustrate, 

if ten stock market experts are asked the probability a market index will go up tomorrow, 

it is reasonable to assume each is working within the same context. In contrast, the earlier 

fire hydrant example differs from the stock market example. In the fire hydrant example, 

the two "experts" observe different features: color and height. 

In addition to context independence, Kittler's derivation requires the conditional prob- 

abilities computed by the respective classifiers not deviate dramatically from the prior 

probabilities. Essentially, Kittler's derivation assumes the experts provide little, if any, in- 

formation. Kittler admits this is a "rather strong assumption", but argues it "may be readily 

satisfied when the available observational discriminatory information is highly ambiguous 

due to high levels of noise." Despite the simple intuitive appeal of averaging expert esti- 

mates, Kittler's derivation from Bayesian principles relies on assumptions with questionable 

general applicability. 

2.3.5     Sum Rule Example 

The Mean Sum Rule may be intuitively appealing, but it does not work well for the earlier 

fire hydrant example. From Equation 2.9, if the object is observed to be of low height, the 

probability of the class label fire hydrant is P(C = F\L) = 0.5. From Equation 2.10, if the 

object is red, the probability of the class label fire hydrant is P(C = F\R) = 0.33. Using 

the Mean Sum Rule to combine these estimates yields 

UP = F\L, R} = 
Pl-C = F'L> t P{C = FW = °^ = 0-4 
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However, as noted in the Bayesian Product Rule example, the actual probability, based 

on examination of the table, is 1.0. The Mean Sum Rule estimate is further from the true 

1.0 value in the table than the product rule estimate of 0.83. 

The context independence assumption is the source of the discrepancy because the two 

experts are looking at completely different aspects of the problem. One looks at color only. 

The other looks at height only. Each expert responds differently depending on the class 

label and observation. For an extreme example, consider the tree class label. When the 

height expert observes a high object, it estimates P(C = T\H) = 1.0, while the color expert 

observes green and estimates P(C = T\G) = 0.5. When the experts are context dependent, 

large estimation errors can be expected. The Mean Sum Rule will be tested again in a far 

more complex object recognition problem domain later in this dissertation. 

2.3.6    Non-Uniform Weights 

Context independence is frequently a bad assumption because the expert opinions may not 

be equally discriminating. If we discover that one expert is consistently more discriminating, 

we should give that expert's estimate greater weight. However, classifier discrimination may 

be a function of the conditions when the estimate was made. In other words, the weight for 

each expert needs to be a function of the state of the classification problem. For example, 

one expert may provide more discriminating estimates in close proximity to the camera, 

another expert may be more discriminating under bright lights. This condition dependence 

is expected, considering the feature taxonomy described in the first section of this chapter. 

To change the weight under specific conditions, the weight can be represented as a function 

ßi(conditions), where the term conditions is an entirely problem dependent set of conditions 

such as lighting or camera relative distance to the target estimate. 

N 

L(C = CTrue\wu. ..,wN) = Y, ßi(conditions) P{C = CTrue\Wi) (2.16) 
i=0 

Weighting functions can be used to compute each expert's weight as a function of condi- 

tions that affect the expert's reliability. The weights could simply be estimated by a human 

expert, or autonomously learned by a machine learning algorithm, such as a neural network 

or boosting. 

In addition to learning a set of non-uniform weights, boosting directs the training process 

[FS99]. Boosting algorithms, such as the AdaBoost algorithm described in [FS99], focus each 
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expert's training on the cases most often mis-classified by that expert. For my application, 

boosting would focus training on those target or non-target poses which are incorrectly 

classified. 

Rather than add the complications of a neural network or boosting algorithm, a very 

simple training process and combination rules were implemented for this dissertation. How- 

ever, nothing encountered during this research indicates the Extended Condensation Filter 

cannot take advantage of the more sophisticated algorithms, such as neural networks, bag- 

ging, or boosting. Demonstrating the compatibility of the Extended Condensation Filter 

with these more sophisticated methods remains an open research question. The training 

process and combination rules implemented for this dissertation will be discussed during 

the description of the Extended Condensation Filter implementation in 4. 

2.4    Estimating Location 

The classification process discussed in the previous section is one of the two components of 

object recognition — localization is the other [TV98]. Classification measures the similarity 

of the target image and an unknown image. Recognition assumes multiple potential targets 

may be visible in the unknown image. Rather than compute a similarity metric between the 

target image and the entire unknown image, a recognition algorithm must compare portions 

of the unknown image with the target image to localize potential targets. The complete 

pose estimate for any non-deformable object requires three translation parameters and three 

rotation parameters — the standard six-degrees-of-freedom for any non-deformable object. 

If the camera location in the world is known, these six camera-relative parameters can be 

transformed to world-relative parameters. 

Given any pose estimate, a classification algorithm can be used to measure the similarity 

between the target image and the portion of the unknown image represented by the pose. 

To make this comparison, either the target image must be transformed to the unknown 

image based on the pose estimate, as shown in Figure 1.3 on page 5; or the portion of 

the unknown image representing the pose estimate must be transformed to the coordinates 

of the target, as shown in Figure 1.2 on page 4. Throughout this dissertation I use the 

target to unknown image transformation because previous research has shown reducing the 
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Figure 2.13:    A single image that serves as the target model and an instance of the target 
in an acquired image 

resolution of the larger target image is less error prone than increasing the resolution of a 

smaller unknown image [SB01]. 

To illustrate the target to image approach, assume the image shown on the left of 

Figure 2.13 is the target model and the image shown on the right is the unknown image. To 

simplify the example, I have reduced the problem from six-dimensions to three-dimensions 

by assuming the target object can only translate and rotate on the ground plane. With this 

simplification, only the three parameters; left-to-right translation x, translation into the 

image z, and ground-plane rotation 6 remain. Note, the same three-dimensional coordinate 

system will be used later when testing the Extended Condensation Filter. 

This simplification from six to three dimensions is not a minor point. Increasing the 

dimensionality of a problem can have unforeseen consequences. However, to make the results 

of this first look at the Extended Condensation Filter more manageable in terms of training 

time, the volume of data, and interpretation of data, the simplification is appropriate. The 

three dimension assumption, or ground plane restriction, is also commonly found in object 

recognition problems. 

We want to test the similarity of the target model transformed to the pose x=0, z=4, 

0 = -45° shown in Figure 2.14, with the unknown image. Using the target to image 

approach, my question becomes, "If I put the target image at the point in the image 

corresponding to the pose 0, 4, -45°, how similar is it to what I see in the unknown image?" 

Figure 2.15 shows the affine transformation of the target image using the pose estimate 
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-2 w Figure 2.15:       Transformed target image 
based on the pose shown in Figure 2.14 

Figure 2.14: The camera relative pose 
[x, z, 6] or (ground-plane translation, depth 
translation, ground-plane rotation), where 
[x = 0,z = 4,9= -45°]. 

0, 4, —45°. Every pixel in the target image was multiplied by an affine transformation 

matrix representing the camera relative coordinates 4, 0, -45°. Only the pixels from the 

transformed target image, not the black background pixels, and the exact same pixels in 

the unknown image are used to compute the similarity metric. This transform and compare 

approach is the basis for the Render-Match-Refine algorithm developed in [SB01]. There 

arc other ways to perform object localization [Bal81, Bev93], but this approach of turning 

classifiers into recognition algorithms by searching in pose space is well suited to extending 

the Condensation Filter. 

2.4.1     Evaluating Recognition Algorithms 

Object recognition algorithms perform classification and localization. The classification 

performed by an object recognition algorithm can be evaluated like a classification algo- 

rithm using the AUC described earlier. The localization provided by an object recognition 

algorithm can be evaluated by two orthogonal metrics — precision and accuracy. Precision 

measures the dispersion of the pose estimates. Accuracy measures the proximity of pose 

estimates to the ground truth.   Figure 2.16 shows a precise, but relatively inaccurate set 
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of location estimates. Figure 2.17 show a relatively accurate, but imprecise set of location 

estimates. 

—• • 

 •  
 L •  

Figure 2.16: Relatively precise, but 
inaccurate. The estimates are tightly 
grouped but the mean estimate is far 
from the origin when compared to Fig- 
ure 2.17 

Figure   2.17: Relatively  accurate, 
but imprecise. The mean estimate er- 
ror is near zero but the estimates are not 
tightly grouped. 

If two object recognition algorithms provide Gaussian one-dimensional pose estimates, it 

is easy to compare the precision and accuracy of the two algorithms. The standard deviation 

of the error measures precision, and the mean error measures accuracy. Unfortunately, 

object recognition algorithms provide multi-dimensional, typically one to six dimensional, 

pose estimates. 

Evaluating either precision or accuracy by directly comparing multiple dimensions is 

difficult. For example, if an object recognition algorithm uses six dimensions and is 10% 

more accurate in four dimensions, but 20% less accurate in the other two dimensions, 

which algorithm is more accurate? Comparing the accuracy and precision in both rotation 

and translation also requires some form of standardization because pose estimate generally 

include translation and rotation — how should one unit of rotation error be compared to 

one unit of translation error? The circular error probable (CEP) and scaled CEP statistics, 

which are introduced in Chapter 4, measure accuracy and precision while accommodating 

these issues. 
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Recognize 

Figure 2.18:    Recognition and tracking as an iterative cycle 

2.5    Combining Location Estimates 

Algorithms that combine location estimates have been the subject of research for over 50 

years. Research on recognizing and tracking airborne targets initially drew interest with 

the development of radar and long range aircraft[Chu48]. The British were especially inter- 

ested in using multiple radars to discriminate between aircraft and atmospheric phenomena, 

localizing the aircraft, then tracking the aircraft over time. Each of the three steps was es- 

sential to determining where to send intercepting aircraft. Classification, recognition, and 

tracking continue to have this complementary relationship. 

2.5.1    Tracking 

Unless one assumes a completely static environment, object recognition is enhanced by 

performing some form of tracking. Object recognition estimates the current pose of the 

target object, while tracking estimates the next pose of the target object. When object 

recognition is successful, it accurately and precisely estimates the current pose of the target 

object. When tracking is successful, it accurately and precisely predicts the next pose of 

the target object. 

In a dynamic environment, recognition and tracking work in a complementary manner 

— recognition and tracking can be viewed as two steps in an iterative cycle. As shown 

in Figure 2.18, the recognition algorithm provides estimates of the current pose, a multi- 

dimensional vector St, to the tracking algorithm and the tracking algorithm gives estimates 
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of the pose during the next iteration St+i back to the recognition algorithm. In military 

terminology, successful object recognition is called acquisition of the target and successful 

acquisition of the target near the tracking algorithm prediction is called tracking the target.1 

Tracking can also benefit from multiple experts, just like classification. Each expert pro- 

vides an estimate of the target pose at the current iteration and, using a method dependent 

on the specific tracking algorithm, these estimates are combined to create a single best- 

estimate of the next object pose. The next three sections discuss three algorithms which 

have their roots in object tracking and the combination of multiple object pose estimates. 

Each algorithm is interesting because it offers a ready-made method for tracking objects 

and combining object pose estimates. 

2.5.2 Kaiman Filter 

The Kaiman Filter has a strong theoretical foundation and a long history of application 

[Kal60, Sor70, May79]. It is robust and accurate for systems where each sensor suffers only 

from unbiased Gaussian noise, target motion can be described as a vector of real values, and 

the next target pose is a linear function of the previous target pose and the current target 

pose[Kal60, May79]. However, the Kaiman Filter works poorly in clutter which causes the 

conditional probability estimate of the target position to be multi-modal and non-Gaussian 

[GSS93, IB98]. More recent filters use more flexible methods capable of representing multi- 

modal and non-Gaussian distributions. 

2.5.3 Mixture of Gaussians Filter 

The Mixture of Gaussians Filter makes the weaker assumption that the underlying proba- 

bility distribution is an ad hoc combination of Gaussian distributions [Pao94]. The multiple 

hypothesis approach is a more flexible way of modeling uncertainty. The conditional proba- 

bilities of a number of possible associations are evaluated. For example, a new measurement 

can be associated with a previous distribution, accepted as a new distribution, or rejected 

as clutter. Rather than hold all possible measurements as distributions in the mixture, 

a gating technique is applied to eliminate very low probability measurements.   For many 

lrThis terminology is based on 11 years of experience evaluating aircraft at the Air Force Flight Test 

Center, evaluating ballistic missiles at the United States Western Range, and reviewing United States Air 

Force doctrine. 
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applications, a large number of hypotheses may remain after gating, and it is often desir- 

able to perform further mixture reduction after the measurement update [GSS93, Pao94]. 

Mixture reduction attempts to combine some of the Gaussians in the mixture by looking 

at the similarity of their statistical properties. The Mixture of Gaussians Filter is limited 

to systems where each sensor suffers from unbiased Gaussian noise. 

Readers familiar with Expectation Maximization may recognize the Mixture of Gaus- 

sians' problem as a maximum-likelihood problem. Given a set of N observations X = 

{xi,... ,xN} and the assumption that the underlying distribution p(x\ 0) is composed of a 

set of Gaussians, 0 represents the set of means and covariances for these Gaussians. The 

goal is a set of parameters 0 that best explain the observations X [Bil97]. The goal is 

finding the values of 0 that maximize the likelihood equation 

N 

L(e\x) = l[p(xi\e) 

Expectation Maximization has been shown to find the optimal parameter set 0. How- 

ever, the Expectation Maximization algorithm requires the number of Gaussians be speci- 

fied as an input [Bil97, DLR77]. Like Expectation Maximization, the goal of the Mixture 

of Gaussians filter is determining the parameters for a set of Gaussians that best explain 

the observations. However, the Mixture of Gaussians Filter must also estimate the number 

of Gaussians in the mixture. When the Mixture of Gaussians Filter is applied to an object 

recognition problem, assuming a specific number of Gaussians would imply the exact num- 

ber of target and false target sources is known — this is usually not the case. This inability 

of the Mixture of Gaussians Filter to assume a specific number of Gaussians leads to the 

mixture reduction problem — what is the optimal number of Gaussians in the mixture? 

2.5.4    Condensation Filter 

The Condensation Filter avoids the limitations of the Kaiman Filter and Mixture of Gaus- 

sians Filter by using a more direct approach. According to Gordon and Blake, the Conden- 

sation Filter uses weighted samples (or particles) to represent the probability that a given 

pose is the true target object pose conditioned on the expert observations [GSS93, IB98]. 

Each particle is composed of a pose S and a probability estimate P(S = Slrue). Using 

particles to represent the conditional probability has many advantages. The calculations 

associated with each particle are simple and fast.  By using samples to represent the con- 
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Figure 2.19: Condensation Filter process steps: 1) a filter update begins with an equally 
weighted set of particles, 2) the predicted motion model and a model of uncertainty are 
applied to every particle, 3) measurements are acquired, 4) each particle is weighted as a 
function of the distance between the particle and the measurements, 5) the particles are 
reproduced as a function of their weight 

ditional probability of the target location, association hypotheses from previous time steps 

are not required for conditional probability evaluation[IB98]. 

Comparing the Mixture of Gaussians Filter to the Condensation Filter shows the im- 

portance of this last point. For each new measurement in a Mixture of Gaussians Filter, the 

algorithm must decide if the measurement belongs to one of the existing Gaussians, a new 

Gaussian, or is a noise measurement. The association problem can result in an exponential 

growth of Gaussians in the mixture. A mixture reduction step is required to identify and 

combine Gaussians that are probably from the same event [GSS93, Pao94]. This step is not 

required for a Condensation Filter. 

Figure 2.19 illustrates the Condensation Filter update cycle. The Condensation Filter 

particles are shown as circles at the top of the Figure and the diameter of the circle represents 

the particle's weight. The filter is typically initialized with particles distributed uniformly 

throughout the measurement space. As measurements are received, the weight for each 

particle is set proportional to the distance between the particle and the measurement — 
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the measure step in the figure. After the particle weights are set, particles are duplicated in 

the next generation with a probability proportional to their weight — the reproduce step. 

As a result, particles that were closer to a measurement are more likely to be reproduced. 

If a model is available to predict the target motion, each particle is moved to anticipate 

the target object's next position. Random particle motion, typically a Gaussian random 

variable, may also be added at the weighting or prediction steps to represent uncertainty. 

The entire process repeats when the next set of measurements become available. A more 

detailed example incorporating some of my extensions will be described in the next chapter. 

2.5.5    Applications of the Condensation Filter 

The strength of the Condensation Filter is indicated by the large number of projects suc- 

cessfully using the filter. This section will cover only a few of the better known examples 

in computer vision. 

Gordon introduced the Bootstrap Filter in 1993 [GSS93]. The Bootstrap Filter uses a 

population of weighted particles to represent the underlying conditional probability asso- 

ciated with some process — it is fast and flexible, but it is not provably optimal like the 

Kaiman Filter. 

Blake's work represents one of the first applications of the Bootstrap Filter to computer 

vision [IB96]. Using the descriptive name Condensation Filter, his application tracked 

objects using the parametric representation of occlusion boundaries [IB96]. In this problem 

domain the Condensation Filter estimates the parameters of a geometric primitive, such 

as a Bezier curve, that conform to the occlusion boundary of the target object [Bla92]. 

The occlusion boundaries are very useful for estimating the target object pose. Since the 

original work by Blake, other projects have applied the Condensation Filter in a similar 

manner [IB98, MacOO]. 

A recent application of the Condensation Filter can be found at the Smithsonian giving 

tours. The tour guide robot, named MINERVA, estimates its two-dimensional pose on the 

floor of the museum using a Condensation Filter [TFB98]. MINERVA compares images 

of the ceiling to its internal database of ceiling images. The most similar image indicates 

the robot's location. Unfortunately, many ceiling images are not unique and a single image 

may only narrow the range of possible robot locations rather than indicate a unique loca- 

tion.  Acquiring additional images eventually reduces the number of possible locations. A 
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Condensation Filter is used to maintain multiple hypotheses initially and as more ceiling 

images are acquired, a single two-dimensional pose estimate is supported. A presentation 

on MINERVA at the IEEE Computer Vision and Pattern Recognition conference was my 

first exposure to the Condensation Filter [D+99]. 

The Kaiman Filter, Condensation Filter, and hybrids such as the Mixture of Gaussians 

Filter each have their strengths and weaknesses. The Kaiman Filter has the strongest 

theoretical foundation and a long history of application in automated navigation and target 

tracking. However, the Kaiman Filter's assumptions are very restrictive. The Mixture of 

Gaussians Filter is similar to the Kaiman Filter; so it gains some of the theoretical support, 

but it also retains some of the Kaiman Filter's assumptions about the process distribution. 

The Condensation Filter has less history and a weaker theoretical foundation, but is far 

more flexible than either the Kaiman Filter or Mixture of Gaussians Filter. The theoretical 

underpinnings of the Condensation Filter will be addressed in the next chapter. 

2.6    Evolution Strategies 

The Condensation Filter is typically viewed as a statistical filter [IB96, IB98, D+99], where 

expert measurements are expressed as poses, the distance between measurements and the 

particle pose is used to determine the particle pose probabilities, and the density of particles 

per unit of pose space represents the conditional probability that a portion of the pose space 

is the true target pose. However, the Condensation Filter is also similar to an Evolution 

Strategy [DLOO]. Evolution Strategies are a class of search algorithms loosely based on the 

mechanics of natural selection. Fogel describes the Evolution Strategy as shown on the left 

side of Table 2.3 [FogOO]. The right side of Table 2.3 shows the comparable step for the 

Condensation Filter. 

In an Evolution Strategy, the search for an optimal solution is performed on many 

points in the search space simultaneously, unlike most traditional hill-climbing techniques 

that work on a single point at a time. Each population member contains a candidate 

solution and a measure of how well it fits the ideal solution. This fitness value guides the 

selection process, which favors highly fit individuals, to produce new members for the next 

population. This allows the mixing of parental information with the goal of making the 

next generation more fit. The Gaussian random variable is introduced to explore portions 
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Table 2.3:    Comparing the Evolution Strategy and the Condensation Filter 

Evolution Strategy Condensation Filter 

The problem is defined as finding the real val- 

ued n-dimensional vector x that is associated 

with the minimum or maximum of a function 

F(x). 

Object recognition is defined as finding the 

real valued n-dimensional vector S estimated 

to represent the most probable pose of the tar- 

get Object P(S = STrue)- 

An   initial   population   of   parent   vectors, 

XQ ,..., XN , is selected at random from a feasi- 

ble range in each dimension of the state space. 

The distribution of initial trials is typically 

uniform. 

An initial population of particles containing 

the pose vectors, SQ,...,SN, is selected at 

random from the entire pose space. The dis- 

tribution of initial particles poses is typically 

uniform. 

An offspring vector, x\ is created from each 

parent XQ, ■ ■ ■, icjv by adding a Gaussian ran- 

dom variable with zero mean and pre-selected 

standard deviation to each component of x. 

An offspring particle containing the pose S^ 

is created from each parent particle's pose 

So, ■ ■ •, 5V by adding a random variable rep- 

resenting the predicted target object motion 

— usually a Gaussian random variable with 

non-zero mean. 

A selection function, such as fitness propor- 

tional, is used to determine which of these vec- 

tors to maintain in the fixed-size population 

by ranking the errors F(xi) and F{x[).   The 

vectors that possess the least error become the 

new parents for the next generation. 

A selection function, such as fitness propor- 

tional, is used to determines which of the new 

particles to maintain in the fixed-size popula- 

tion by ranking the errors F(S). The typical 

Condensation Filter does not examine both 

the old F(S) and new F(S') generation for 

fitness. 

The process of generating new trials and se- 

lecting those with the least error continues un- 

til a sufficient solution is reached or the avail- 

able computation is exhausted. 

The process of generating new trials and se- 

lecting those with the least error continues un- 

til a probable target is identified or the avail- 

able computation is exhausted. 
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of the search space impossible to explore through selection alone. This allows innovation in 

the population and reduces the probability the population will be trapped in local optima. 

Similar to an Evolution Strategy, the Condensation Filter works on many points in the 

pose space simultaneously. Each particle is a member of a fixed-size population used to 

produce a new population based on a fitness function. Each particle contains a candidate 

solution — a pose. Each particle also contains a fitness value — an estimate of the prob- 

ability that the pose is the target object. The fitness values guide the particle selection 

process used to create the next filter population. The filter's stochastic motion models 

force innovation in the population and the exploration of novel portions of the search space. 

As shown in Table 2.3, there are two distinct differences between the Evolution Strat- 

egy and the Condensation Filter. First, the Evolution Strategies fitness function is not 

necessarily a conditional probability. Second, the Evolution Strategy does not select the 

fittest members from both the current generation and the next generation. Despite these 

differences, the two algorithms contain many similarities and these similarities will be used 

to explore more fully what the state of the Condensation Filter particles represents in the 

next chapter. The key point is the Condensation Filter appears to be a form of population- 

based search. DelMoral provides a more rigorous mathematical treatment of the similarities 

between these algorithms [DLOO]. 

2.7    Summary 

This chapter has quickly reviewed a large amount of material. Several observations are worth 

repeating and emphasizing because they are key to the remainder of this dissertation. 

1. Classification and recognition algorithms based on different feature sets and similarity 

metrics have diverse strengths and weaknesses — they fail and succeed under different 

conditions. 

2. The probabilistic classification estimate from multiple classifiers can be combined, but 

the properties of the experts dictate the appropriate combination operator. For exam- 

ple, the Bayesian Product Rule assumes the experts are independent, while the Mean 

Sum Rule assumes the experts represent an independent set of unbiased estimators. 
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3. Classifiers can be turned into recognition algorithms by searching in pose parameter 

space using the classifier's similarity metric as an objective function. 

4. Pose estimates from multiple recognition algorithms can be combined, but the prop- 

erties of the pose estimates dictate the appropriate estimate combination algorithm. 

5. Previous research and development shows the Condensation Filter is a flexible method 

for combining pose estimates and the filter makes few assumptions about the under- 

lying process. 

Using these observations and the other material reviewed in this chapter, the next 

chapter describes this dissertation's central research questions, hypotheses, and evaluation 

criteria. 
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Chapter 3 

Theory 

The observations at the end of the previous chapter were never intended to support a unified 

approach to object recognition and they originated from distinctly different approaches to 

a variety of problems. However, the observations can be used to define a set of goals for 

object recognition. 

1. Probabilistic information should guide fusion to reduce information loss induced by 

discrete decision boundaries. 

2. Non-parametric representations should be used to avoid overly restrictive and fre- 

quently invalid parametric assumptions. For example, the strict parametric assump- 

tions of the Kaiman Filter must be avoided, and functions defined in a piece-wise or 

look-up table form should be accommodated. 

3. Recognition cues from low-level features, similarity metrics from classification algo- 

rithms, and pose estimates from recognition algorithms should all be fused into a 

common representation. 

In short, an object recognition algorithm should fuse recognition pose estimates, classi- 

fication similarity metrics, and low-level features to improve the discrimination, precision, 

and accuracy of object recognition. This chapter describes the theoretical basis for exten- 

sions to the Condensation Filter that accomplish these goals. The extensions, with very 

minor modifications, also provide a general algorithm for supervised learning of the non- 

parametric representations of uncertainty. 

This chapter extends and combines the ideas in the previous chapter to provide three 

models of the Extended Condensation Filter — first as a statistical filter, then as an Evo- 
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lution Strategy, and finally as pseudo-code. The pseudo-code model provides step-by-step 

detail of the algorithm and assists replication of the results presented in Chapter 5. When 

viewed as a statistical filter, the Extended Condensation Filter is similar to the Condensation 

Filter, except a more diverse range of inputs are transformed into a common probabilistic 

representation and the next generation is selected only from the current generation. When 

viewed as a search algorithm, the Extended Condensation Filter is similar to an Evolution 

Strategy, except the use of probabilities to weight the particles is intended to make the 

population resemble the underlying conditional probability for the location of the target 

object. Both models provide insight about the extended filter, but neither provides the 

detail needed for replication of the experiments described in Chapter 5. To support replica- 

tion, the third section provides step-by-step pseudo-code for the training and operation of 

the filter. Finally, an example at the end of this chapter provides a very simple illustration 

of an Extended Condensation Filter implementation. 

3.1     Statistical Filter Model 

Statistical filters estimate the state of a stochastic process based on discrete measurements. 

Statistical filters can be placed into one of three categories; parametric, non-parametric, 

or hybrids. Parametric statistical filters, such as the Kaiman Filter, require parametric 

representations of the uncertainty associated with measurements and represent the state 

of the stochastic process in parametric form [Kal60]. Non-parametric filters, such as the 

Condensation Filter, do not require parametric representations and generally use discrete 

populations to represent the process state [Gor97, IB98]. Hybrid filters, such as the mix- 

ture of Gaussians Filter, use populations of parametric representations [Pao94]. The goals 

stated at the beginning of this chapter require independence from any specific parametric 

representation, so this dissertation will focus on non-parametric statistical filters. 

As discussed in the background chapter, the Condensation Filter was one of the first non- 

parametric statistical filters applied to computer vision [IB96]. To apply the Condensation 

Filter to object recognition, a population of particles is used, where each particle represents 

a target object pose S. In the general non-defermable case, S is the six-dimensional pose 

vector (x,y,z,6,<f),p) containing three translation and three rotation parameters. Fewer 

dimensions can be used for simpler problems and more dimensions can be used to represent 
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*J: #. 

Figure 3.1: The condensation of particles to a dense cluster. A dense cluster is the result 
of a sequence of precise measurements. 

the degrees-of-freedom for a deformable object. In any of these cases, each particle is 

assigned the conditional probability P(S = 5True|s) that its pose S is near the pose of the 

true target object STrue^ given the measurement s, where s is an estimate of the target 

object pose provided by some object recognition algorithm. 

When a measurement s is provided by an object recognition algorithm, each particle's 

pose S is compared to the measurement s . The uncertainty model associated with the object 

recognition algorithm that provided the measurement is used to compute P(S = STrue\s). 

Generally, the probability P(S = STrue\s) decreases as the distance between the particle 

and the measurement increases. The Gaussian function 

P(S = 5rrue|s) = (3.1) 
oV27r 

is a common way to represent this relationship, where || ... || is the vector magnitude and 

a is the standard deviation associated with the measurement source. Object recognition 

algorithms may also provide a similarity measurement w comparing the pose estimate s and 

the target model. In the Gaussian function, a may be a function of the similarity metric 

w, if tu is provided. The probability P(S = STrue\s, w) is used to weight each particle in 

the filter. As a result, the weights and positions of the particles are influenced by each 

measurement and the distribution associated with each measurement. 

During the particle reproduction step, this particle weighting causes the percentage of 

particles with lower probability of being near the target object, lower P(S = Srrue\s,w) 

values, to decrease and the percentage of particles with higher probability of being near the 

target object to increase. After several filter iterations, the particles condense in areas with 

higher probability of being near the target object. In search terminology, the particles with 

higher fitness values are reproduced more often than particles with lower fitness values. 
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Figure 3.2: Simple Gaussian commonly used to represent P(S = STrue\{\\s - S\\) and 
the derivative of the Gaussian 

One iteration is one pass through the steps shown in Figure 1.7 on page 10. Figure 3.1 

shows an example of particle condensation in the two-dimensional pose space (x, z). After 

several iterations of the filter, the density of the particles per unit of pose space begins to 

resemble the pose space probability density function [IB96, IB98]. The size of the cluster 

will be proportional to the standard deviation of the uncertainty model associated with the 

measurements. The term "proportional low-pass filter" accurately describes the response 

of these dense clusters to additional measurements. 

3.1.1     Proportional Low-Pass Filter 

To show why the Condensation Filter is accurately described as a proportional low-pass 

filter, consider the following. Assume a Condensation Filter receives a one-dimensional 

pose measurement s per iteration of the filter. Also assume the uncertainty associated 

with the measurement is modeled by the Gaussian function shown in Figure 3.2, where the 

independent axis is the distance of the particle's pose from the measurement \\s - S\\, the 

dependent axis is the probabilistic particle weight P(S = STrue \ \\s- S\\), and a is 1.0. 

Reproduction of a particle is not controlled by the absolute weights generated by this 

Gaussian, but the relative weights of the particles. The probability of selecting a single 

particle in the current generation to create a single particle in the next generation is the 
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weight of the particle divided by the total weight of all particles 

rrepro —    ry \u-^j 

£ P{Si = STrue) 
i-0 

where there are N particles in the entire filter population. Since each particle selection 

is performed with replacement, the probability of selecting a single particle in the current 

generation to create any of the N particles in the next generation is 

pN 
rreipro 

( V 
P{S = STrue) 

.   £ P(Si = ST™e) 
\i=0 I 

(3-3) 

Due to the properties of the Gaussian, the relative weighting within a group of particles near 

the measurement is very different from the relative weighting within a group of particles far 

from the measurement. 

To illustrate this point, consider the derivative of the Gaussian shown in Figure 3.2. 

The derivative of the Gaussian is zero at the measurement, increases to a maximum when 

the distance between the measurement and the particle pose is slightly less than a, then 

approaches zero again as the distance increases. 

To illustrate the effect of the derivative of the Gaussian on the filter population, consider 

two particles So and S\ in the Condensation Filter. Assume the two points remain at a 

constant distance from each other, relative to the measurement 

I!So - s1| - ||Si - all = c (3.4) 

If the mean distance of these two particles from the measurement, relative to a, is very 

small 

||5o - s\\ + ||S! - 511 ^ ,~ ,, 
 2  << a                                                   (3-5) 

then their weights and their chances of appearing in the next generation of the population 

will be very similar, since the derivative of the Gaussian near the measurement is very 

small. If the pair of particles are moved away from the measurement, to the area where 

the derivative is large, the relative weight of these two particles will be very different — 

the closer particle will have a much greater chance of appearing in the next generation of 

the population than the particle only slightly further away.  If we move the particles even 
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further away from the measurement, the relative difference in the weights will be small 

again. 

In the one-dimensional pose space, shown in Figure 3.2, there is a band, centered at a 

value slightly less than a, where the filter particle population is the most responsive. In 

some sense, Figure 3.2 is a plot of the velocity of the cluster toward a new measurement as 

a function of the mean distance between the cluster and the measurement. When a cluster 

is far away from a series of measurements, the cluster will move slowly toward the mea- 

surements, then move faster as the cluster approaches the measurements. Once the cluster 

is well within a of the measurements, it responds slowly again. The phrase proportional 

low-pass filter describes the Condensation Filter's slow response to measurements that are 

far away, rapid response to measurements that are near a, and slow response to measure- 

ments that are within the uncertainty associated with the source of the measurement. The 

same is true in higher-dimensional pose spaces where the one-dimensional band becomes a 

two-dimensional ring, a three-dimensional sphere, and so on. 

The results are the same, but only in a piece-wise fashion, if we assume multiple new 

measurements are received per iteration of the filter. The clusters of particles respond to 

each new measurement consistent with the proportional low-pass filter model. However, 

the aggregate response of a cluster to multiple measurements is less predictable due to the 

interaction of multiple proportional low-pass filters. 

My description of the Condensation Filter as a proportional low-pass filter assumes 

the Gaussian is used to represent uncertainty, but the Condensation Filter can accommo- 

date any parametric uncertainty function. Other functions are not guaranteed to have a 

derivative that generates the proportional low-pass behavior. To generate the proportional 

low-pass behavior, duplicating the derivative of the Gaussian is not necessary. The impor- 

tant feature is a derivative that is large near the measurement and grows proportionally 

smaller further from the measurement. To the degree that a function achieves this shape, 

it will generate the desirable low-pass proportional behavior. The shape of the derivative 

of the uncertainty function can be used to predict the response of the filter to individual 

measurements. 
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3.1.2    Extensions 

The Condensation Filter is a powerful and general statistical filter. However, three critical 

exceptions prevent the Condensation Filter from meeting the goals stated at the beginning 

of this chapter. 

1. The parametric representations typically used with the Condensation Filter, such as 

Equation 3.1, are not guaranteed to accommodate an arbitrary collection of object 

recognition algorithms. 

2. Classifiers measure similarity. They do not provide the pose estimates required by a 

traditional Condensation Filter. 

3. Low-level feature extractors provide diverse vectors of features. They do not provide 

the pose estimates required by a traditional Condensation Filter. 

Parametric functions, such as Equation 3.1, are usually used to represent the uncer- 

tainty associated with a particle pose, but parametric representations are not required. 

Non-parametric filters accommodate very general representations, such as functions defined 

piece-wise or using discrete look-up table. As long as the uncertainty P(S = STrue\s) can 

be estimated for any arbitrary object pose estimate S and any arbitrary measurement s, 

the representation is suitable. To eliminate these exceptions and accommodate the goals at 

the beginning of this chapter, the following extensions to the Condensation Filter will be 

described in the next three sections. 

1. A general method, based on Bayes' Theorem, will be used to estimate P(S = 

S rue\s, w), for any particle's pose S in the filter, given an object recognition al- 

gorithm's pose estimate s and associated similarity metric w. Neither the Conden- 

sation Filter nor Bayesian learning are new, but the combination applied to object 

recognition has not been reported in the literature. 

2. A general method, based on Bayes' Theorem, will be used to estimate P(S = STrue), 

for any particle pose S in the filter, given the similarity w of the unknown image and 

target model. This approach, based on the render-match algorithm [SB01], has not 

been reported in the literature. 

58 



3. A general method, based on Bayes' Theorem, will be used to estimate P(S = STrue), 

for any particle pose S in the filter, given a feature vector /. This approach has not 

been reported in the literature. 

The Extended Condensation Filter is shown in Figure 3.3. The top dotted box, labeled 

"Recognition", shows the use of object recognition pose estimates s to weight particles. The 

middle dotted box, labeled "Classification", shows the use of a classification algorithm's 

similarity metric w to weight particles. The bottom box, labeled "Low-Level Feature Ex- 

traction", shows how low-level feature vectors /are used to weight particles. The next 

three sections describe how a look-up table in each portion of the diagram is derived and 

applied. 
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Figure 3.4:    Training the Extended Condensation Filter 

3.1.3    From Pose Estimate to Probability Estimate 

For the Extended Condensation Filter, look-up tables provide flexible representations of 

conditional probability that replace traditional parametric representations. As shown in 

the top dotted box of Figure 3.3, the Extended Condensation Filter requires a function 

P(S = S^rue|s*, w) = F(S, s, w) (3.6) 

to transform the pose estimate s and similarity metric w provided by a recognition algorithm 

into probability estimates P(S = S True 
S,W). 

As established in the goals at the beginning of the chapter, parametric representation 

are too restrictive. However, a look-up table can provide a flexible discrete representation 

which meets the goals. A discrete table look-up representation can be built by applying 

Bayes' Theorem. 

P(s, w\S = ^rue)P(S = STrue). 
P(S nTrv \s,w) (3.7) 

P{s, w) 

where the values P(s, w\S = STrue), P(STrue), and P(s, w) can be estimated empirically by 

running the object recognition algorithm on a large number of examples where the ground 

truth pose <f/>ue is known. This training phase is shown in the top dotted box of Figure 

3.4. 
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The availability of many examples where the ground truth pose S rue is known can be an 

overwhelming requirement. In some applications, large numbers of training examples may 

not be available. In other cases identifying the ground truth for each example can be tedious 

or even impossible. For the implementation described in the next chapter, large numbers of 

examples with known ground truth are easily generated using a synthetic environment. In 

environments where many examples with known ground truth are not available, synthetic 

environments may provide a way to simulate the problem environment. Synthetic test and 

training environments are discussed again in the next chapter. 

3.1.3.1    Learning from Pose Estimates 

During the training phase it is not necessary to apply Bayes' Theorem to every possible 

particle pose S and measurement s. Instead, the one dimensional Euclidean distance 

dg=\\s-S\\ (3.8) 

can be used to condition the probability for the Extended Condensation Filter. If orientation 

is included, then a second distance measure in rotation space is required or rotation and 

translation must be normalized and combined in some manner — one method for comparing 

translation and rotation, called the scaled Euclidean distance, is discussed in Chapter 4. 

This formulation of the simple distance measure dg assumes the camera-relative position 

of s and S are irrelevant. This is consistent with the assumption that the probability is 

isotropic with respect to the world-relative pose. It is possible for this assumption to be 

incorrect, but recording the data necessary to model the entire space of camera-relative 

poses is overwhelming given current computer resources. Using the distance dg in place of 

s and S, Bayes' Theorem becomes 

P<S=s-«i*. „) = f(W=gy=ff*-) (3.9) 

Equation 3.9 is a revision of Equation 3.7 which includes the isotropic assumption. 

As shown in Figure 3.4, the probability function can be empirically estimated using 

a large number of images, where the target object position STrue is known. Using these 

images, the object recognition algorithm is used to estimate the target object pose s and 

associated similarity w. 
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This learning process requires nearly the same information as the operation of the Ex- 

tended Condensation Filter itself. Therefore, with only minor modifications, the same 

software implementation can serve as the learning algorithm and the filter. 

Next, as shown at the top right corner of Figure 3.4, a large number of pose vectors S 

are sampled from the entire pose space visible to the camera. These random pose vectors 

represent the range of poses the Extended Condensation Filter's particles may sample and 

they should be bounded by the intrinsic limitations of the sensors, such as field of view and 

resolution, and the parameters for the problem domain. 

For the sake of illustration, assume 1000 uniformly random poses (So, ■ ■ ■, S999) are 

generated throughout the pose space for each measurement s. Computing dg for all 1000 

random poses provides the data required to populate two two-dimensional histograms. One 

histogram counts all the samples, while the other histogram counts only the samples whose 

pose is near the target object pose S = STrue. Both histograms have the same set of discrete 

bins — one axis of the bins is dg and the other axis is w. This data can be used to estimate 

the three parameters required to derive P(S = STrue\d?,w) using Bayes' theorem. 

1. The histogram counting all the random poses can be used to estimate P(dg,w) by 

dividing the number of poses in each bin by the total number of random poses. The 

term P(ds,w) indicates an empirical estimate of P(d$,w). 

2. The histogram counting the random poses that fall near the target object S = STrue 

can be used to estimate P(ds,w\S = STrue) by dividing the number of poses in each 

bin by the total number of random poses near the target pose. 

3. The total number of random poses in the second S = §True histogram divided by the 

total number of random poses can be used to estimate P(S = STrue). 

These three empirically estimated probabilities provide everything required to estimate 

P(S = STrue\ds,w). Using Bayes' Theorem 

P0=§*->&,„) = Pt^Ms = sr-nPis = ST'«°) (310) 
P(ds, w) 

where the hat over the probability indicates an empirical estimate of the actual probability. 

Additional confidence in the estimate is provided by repeating this process using addi- 

tional random images.  Each new image and associated set of 1000 samples (So,..., S999) 
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improves the accuracy of P(S = S1™6) and P(d$,w). However, only the small frac- 

tion of points that randomly fall on the target object pose contribute to the accuracy 

of P{ds,w\S = ^True). 3 

To increase the number of samples in the histogram estimating P(dg,w\S = STrue), 

additional samples can be made where S = S ue. Since the ground truth target pose 

gTrue js knowil) the target object pose can be purposely sampled to increase the confidence 

in the estimate. For example, an additional 1000 random samples S can be added to the 
—* —*rri 

second histogram, where S is known to be near S rue. Purposely sampling the pose space 

near the target object quickly improves the accuracy of P(d$, w\S = STrue). 

Finally, the estimates of P{d?,w), P{dg,w\S = ^True), and P(S = STrue) are combined 

using Bayes' rule to build the look-up table 

p(S = gr^ldg, w) = Lookup(dg, w) (3.11) 

3.1.3.2    Using Pose Estimates 

After the look-up table is available, the Extended Condensation Filter can be run on un- 

known images without any knowledge of the ground truth — as shown in the top dotted 

box of Figure 3.3. The measurement pose s and the particle pose S are used to compute 

dg. The values dg and w are used to look up P(S = STrue\dg}w). Finally, the probability 

is used to weight the particle during the filter's reproduction step. 

This use of the Condensation Filter is typical with the exception that the conditional 

probability P(d$,w\S = STrue) is learned and represented using a look-up table, rather 

than assuming some relationship, such as a Gaussian, and representing it parametrically. 

This application of Bayes' Theorem allows the use of diverse recognition algorithms without 

any assumption about the features or metrics. However, the approach requires extensive 

training examples with known ground truth. 

3.1.4    From Classification to Probability Estimate 

As shown in the middle dotted box of Figure 3.3, the Extended Condensation Filter requires 

a function 

P(S = ^rrue|w) = F{w) (3.12) 

iP(S = STrue) is on the order of 10  3 in experiments performed later in this dissertation. 
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to transform classification similarity metrics w to probability estimates P(S = S^rrue|'u;). 

The approach used for object recognition pose estimates can be adapted to classifiers. To 

use a classifier to weight a filter particle, the pose S must be used to compare the example 

target image IEX to the unknown image It acquired at time t. Intuitively, the weight of the 

filter particle is proportional to the similarity between the target image and the unknown 

image, if the target image were located at the pose S. 

Every pose S defines a unique affine transformation matrix M§. The transformation 

matrix can be used to project the target image into pose space, as discussed in Section 2.4. 

The transformed image MgIEx provides an estimate of the target appearance, if it were 

located at the camera relative pose S. Given the transformed target image MgIEx, any 

classifier can be used to measure the similarity w between the transformed target MgIEx 

and the relevant portion of the unknown image It. 

Three-dimensional target models can be used in place of two-dimensional target images, 

and transformed using the particle's pose S. For many problems, three-dimensional models 

provide a superior estimate of the target object appearance [SB01]. Only for objects that 

are well modeled by a two-dimensional image, such as a flat plate or one side of a cube, is the 

transformed two-dimensional target image a fairly accurate estimate. For this dissertation, 

only two-dimensional models are tested. However, this is not a limitation of the Extended 

Condensation Filter, just a limitation of my implementation. The disadvantages of using 

simple two-dimensional target models to represent three dimensional objects is investigated 

later in this dissertation. 

Since the two or three-dimensional target model can be projected and compared to the 

unknown image, a similarity metric w is available. Now classifier similarity measures, just 

like recognition algorithm pose estimates, can be used to infer conditional probability. The 

conditional probability can be represented by a look-up table based on an empirical estimate 

of P{S = STrue\w). Using Bayes' Theorem 

P(W) 

where the values P{w\S = STrue), P{STrue), and P{w) can be estimated empirically by 

running the classifier on a large number of representative examples, where STrue is known. 

This training phase is shown in the middle dotted box of Figure 3.4 and explained further 

in the next section. 
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3.1.4.1    Learning from a Classifier 

Training using a classifier starts just like training using an object recognition algorithm — 

the visible pose space is sampled. Each of these pose vectors defines an affine transformation 

matrix Mg that defines an affine transformation of the target image Mglßx- 

For the purposes of illustration, assume 1000 random poses (So,..., S999) are generated 

uniformly throughout the pose space, just like the object recognition example. Computing 

w for all 1000 random poses provides data that can be used to populate two one-dimensional 

histograms. Just like the use of object recognition pose estimates, one histogram counts 

all the samples, while the other histogram counts only the samples whose pose is near the 

target object pose S = STrue. Both histograms have the same set of bins that represent 

discrete values of w. This data can be used to estimate the three parameters required to 

derive P(S = 5rrue|ti;) using Bayes' Theorem. 

1. The histogram counting all the random poses can be used to estimate each P(w) by 

dividing the number of poses in each bin by the total number of random poses. The 

term P(w) indicates an empirical estimate of P(w). 

2. The histogram counting the random poses that fall on the target object S = S1 rue 

can be used to estimate P(w\S = STrue) by dividing the number of poses in each bin 

by the total number of random poses near the target pose. 

3. The total number of random poses in the second S = STrue histogram divided by the 

total number of random poses can be used to estimate P(S = 5True). 

Once the histograms are available, Bayes' Theorem can be used to estimate the proba- 

bility an arbitrary pose S is near the ground truth STrue, given the similarity w 

j^ffv-M-fl»^ *?>**= **-> (3.14, 
P(w) 

Additional confidence can be obtained by using many images and purposely sampling 

the poses near the target object, just like the algorithm described in the last section to learn 

the conditional probability for the object recognition algorithms. 

Finally, the estimates of P(w), P(w\S = STrue), and P(S = S^™6) are combined using 

Bayes' rule to build the look-up table 

p(S = S^""» = Lookup(w) (3.15) 
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3.1.4.2    Using a Classifier 

After the look-up table is built, the Extended Condensation Filter can be run on unknown 

images without any knowledge of the ground truth - as shown in Figure 3.3. Given a particle 

from the filter population, the particle's pose S is used to create an affine transformation 

matrix Mg. The affine transformation matrix is used to transform the example target image 

I EX- The transformed example target image M^IEX is compared to the unknown image 

to create the similarity metric w. The similarity metric w is used to look up the estimated 

probability P(S = STrue\w). Finally, the probability is used to weight the particle during 

the filter's reproduction step. 

This use of the Condensation Filter represents a departure from previous work. Rather 

than evaluate a particle as a function of its distance from some estimate s, each particle's 

pose is evaluated directly using the transformation matrix and classifier. This approach is 

more typical of the way classifiers are used to localize pose estimates using a search algorithm 

[HR92, RB95, SB01]. This approach also gives the Extended Condensation Filter active 

control of where classifier similarity measurements are made — classifier measurements are 

only made at each particle pose and the filter controls the particle pose. 

3.1.5    From Low-Level Feature to Probability Estimate 

As shown in the bottom dotted box of Figure 3.3, the Extended Condensation Filter requires 

a look-up table to transform low-level features to probability estimates. Running a low- 

level feature extractor on an image may generate a large set of low-level feature vectors. 

Low-level features can be divided into two types: two-dimensional features on the image 

plane, such as edgels, and three-dimensional features in pose space, such as range features. 

This section will address three-dimensional pose space features, then extend the model to 

include two-dimensional image plane features. 

Sets of low-level feature vectors {/o,... ,/j}, where J is the total number of feature 

vectors extracted from one image, may provide useful information about the probability 

that an arbitrary pose is the target object P(S = STrue\{fo,..., fj}). For example, given 

a set of stereo disparity range features {/o,... ,/j}, what is the probability that a pose 

S is the target object? Intuitively, the target object is probably not between the camera 

and a range feature. Also, the target is probably not visible behind a range feature. This 

information is useful because it narrows the space of probable poses for the target object, 
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but the stereo disparity features do not indicate a single most probable location for the 

target object. 

The utility of a low-level feature will depend on the feature set and the problem domain. 

For example, stereo disparity features may provide little, if any, discrimination in a problem 

domain which consists of recognizing thin flat targets mounted on a wall. The choice of 

low-level features is an important design decision. Due to the learning process, a poor low- 

level feature choice should not degrade the performance of the filter. However, resources 

could be wasted extracting features which provide little information about the conditional 

target pose probability. 

Figure 3.3 shows the use of a set of feature vectors in the Condensation Filter. Given 

the pose S associated with a particle in the Condensation Filter and a set of feature vectors 

{/o,..., /j}, represented in camera-relative coordinates (x, y, z), the particle weight should 

be a function of the support indicated by the feature vector. Mathematically, the function 

is 

P(S = ^rue\{fo, • • •, fj}) = F(S, {fo,..., fj}) (3.16) 

Just like the use of object recognition and classification information, a training phase is 

used to build a look-up table representation of this function. 

3.1.5.1    Learning from Low-Level Features 

Applying Bayes' Theorem, the function for transforming a set of feature vectors to a prob- 

ability estimate becomes 

P(S = ff^K/o, ■■-,/}}) = P{{f"°''''' fj}lS = ^Ue)P{^rUe) (3.17) 
P({fo,...,fj}) 

However, estimating this relationship for every possible combination of hundreds or thou- 

sands of features is impractical and unnecessary. Instead, distance metrics can use the 

nearest feature, K nearest features, or some other statistic about the features, such as the 

centroid. Many such formulations are available in the literature and the choice of a specific 

distance metric is implementation specific. The choice of a distance measure should be 

based on both the properties of the low-level feature and the problem domain. 

For the purposes of illustration, my model uses the simple Euclidean distance to the 

nearest feature, as shown in the bottom dotted box of Figure 3.4 

j 
nil 
3=0 

rf/=W||/i-5'||) (3.18) 
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Using the minimum distance to condition the probability, Bayes' Theorem becomes 

..     ^                P(dAS = STrue)P(Srrue) 
P(S = §r»"\dr) = -^ j^~  (3.19) 

Just like the use of recognition and classification algorithms, the probability can be 

estimated using a large number of images where the target object position STrue is known. 

A set of low-level feature vectors {f0,...,//} are extracted for each image. Next, a large 

number of pose vectors S are generated throughout the entire pose space visible to the 

camera. 

For the purposes of illustration, assume 1000 random poses (So,..., S999) are generated 

uniformly throughout the pose space for each set of features {/0,..., fj} provided by the 

low-level feature extraction algorithm. Comparing all 1000 random poses to all the feature 

vectors to compute d? for each random pose, provides data that can be used to populate 

two two-dimensional histograms.   One histogram counts all the samples, while the other 
—* —*rp 

histogram counts only the samples whose pose is near the target object pose S = S rue. 

Both histograms have the same set of bins representing the discrete values of dp This data 

can be used to estimate the three parameters required to derive P(S = STrue\df) using 

Bayes' Theorem. 

1. The histogram counting all the random poses can be used to estimate P(dp) by di- 

viding the number of poses in each bin by the total number of random poses. The 

term P(d?) indicates an empirical estimate of P(dr). 

2. The histogram counting the random poses that fall on the target object S — S1 rue 

can be used to estimate P(d?\S = §True) by dividing the number of poses in each bin 

by the total number of random poses near the target pose. 

3. The total number of random poses in the second S = §True histogram divided by the 

total number of random poses can be used to estimate P(S — S rue). 

Once the histograms are available, Bayes' Theorem can be used to estimate the proba- 

bility an arbitrary pose S is near the ground truth §True, given the distance to the nearest 

feature dr. Using Bayes' Theorem 

P(dr\S = S^rue)P(S = STrue) 
P(S = SFrue\dF) = —-^ =r—  (3.20) 

1 P(df) 
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Additional confidence in the estimate can be gained by repeating this process using 

additional images. However, only the small fraction of points that randomly fall on the 

target object pose contribute to the accuracy of P(dAS = STrue). Just like the object 

recognition and classification problems, the target object pose can be purposely sampled to 

increase the confidence in the estimate. 

Next, the values of P(S = S?True|d?) are used to build the look-up table 

p(S = <Frue\dF) = Lookupimmdlfj - 5||) (3.21) 
J j=0 

3.1.5.2 Using Low-Level Features 

After the look-up table is built, the Extended Condensation Filter can be run on unknown 

images without any knowledge of the ground truth — as shown in the bottom dotted box 

of Figure 3.3. The set of feature vectors {/0,... ,/j} and each particle's pose S are used 

to compute the minimum distance dr. The closest feature vector to the particle pose is 

used to compute the distance. The value of d? is used to look-up the probability estimate 

P0 = STrue\dr). Finally, the probability is used to weight the particle during the filter's 

reproduction step. 

This use of the Condensation Filter represents a departure from previous work. Sets 

of low-level features do not provide direct estimates of the target pose. However, low-level 

features can be used to infer something about the target object pose. For example, stereo 

disparity range features only indicate undetermined objects occupy some range of poses. 

However, poses which appear to contain no object are unlikely to contain the target object. 

The degree to which they can be used to infer information about the target object depends 

entirely on the problem domain and the properties of the feature vector. Results of testing 

an implementation of the Extended Condensation Filter later in this dissertation show low- 

level features can provide a surprisingly large amount of information about the target object 

pose. 

3.1.5.3 Two and Three-Dimensional Low-Level Features 

Throughout this discussion of low-level features, pose vectors S and feature vectors / are 

treated as if they always exist in the same camera-relative coordinate system. In some 

cases, such as the three-dimensional range features provided by stereo disparity, they do. 
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However, some features are only two-dimensional and they are most-easily represented on 

the camera's image plane. Such features include the edgels provided by edge detectors and 

the color matched pixels provided by color histogram back-projection. The location of these 

features is best represented on the two-dimensional (u, v) image plane because the depth of 

the feature is unknown. 

To place the two-dimensional image plane feature vector and the possibly six- 

dimensional particle pose vector in the same coordinate system, each particle's pose is 

projected onto the image plane. This projection computes the (us,vs) point on the image 

plane where the particle would appear, if the particle were an object with the pose S. This 

is the same process frequently used in computer graphics to render images from geometric 

object models. The (us,vs) location of the particle pose on the image plane and the (uf, vj) 

location of the feature on the image plane are now in the same coordinate system. The 

distance 

Dr=\\(Us,vs)-(uf,uf)\\ (3.22) 

between the two points can be used, just like the three-dimensional features, to estimate 

if) and look-up P(S = STrue\df). 

3.1.6     Combining Probability Estimates 

Using the methods in the previous three sections, pose estimates, classification metrics, 

and low-level features can be separately transformed into a common representation, but 

the common representation requires a single reference pose S. This is not a limitation 

when using the Condensation Filter because the filter relies completely on weights applied 

to known poses represented by its population of particles. However, the Condensation 

Filter does require a single weight for each particle. If multiple recognition, classification, 

and feature extraction algorithms are used, the separate probability estimates must be 

combined. 

The right side of Figure 3.3 shows an iterative series of steps performed on the filter 

population. Within the weight step, each particle assigned pose S is weighted using infor- 

mation provided by the recognition (top dotted box), classification (middle dotted box), 

and low-level feature extraction (bottom box) algorithms. Each piece of information must 
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be combined to create a single probability or likelihood estimate used as a weight during 

particle reproduction. 

Using the transformations developed in the previous sections, all the information sources 

can be represented as estimates of the conditional probability P(S = STrue\Ao,..., AJV), 

where A is a generic symbol representing either the distance between an object recog- 

nition pose estimate s and the particle pose S, a classifier similarity metric w, or the 

distance between the nearest low-level feature / and the particle pose S. Using prob- 

abilistic representations allows the filter to capitalize on previous classifier combination 

results, such as the Bayesian product rule and the mean sum rule discussed in Section 2.3.1 

[GZ86, KHDM98, JDMOO]. 

Using the product rule from Equation 2.8 on page 33, the combined probability estimate 

P(S = STrue\A0,..., AN), becomes 

P(S = 5^rue) n P(Ai\S = S^ue) 
P(S = STrue\A0,...,AN) = ^  (3.23) 

n P(&i) 

where Ao,..., Aj\r represents a combination of N pose estimates, similarity measures, and 

low-level features. Using this same notation, the mean sum rule from Equation 2.15 on 

page 36 becomes 

£ P{S = 5^r"e|Ai) 

L{S = Srrue\AQ,...,AN) = ^  (3.24) 

These two rules, when combined with the transformations described in the previous 

sections, provide two ways to combine diverse information to create a single probability 

or likelihood estimate (or weight) for each Extended Condensation Filter particle based 

on the properties of the pose that particle represents. However, each rule represents a set 

of assumptions about the sources of information. For example, the Bayesian product rule 

assumes the sources are independent, while the mean sum rule assumes the sources are 

unbiased estimates. The validity of these assumptions is problem dependent and tested in 

Chapter 5. 

3.1.7    Combining Dynamic Pose Estimates 

Up to now, a single unknown image It has been assumed. The more general object recog- 

nition problem includes environmental motion observed in a time sequence of images — 
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a movie. The image It becomes just one image in this image sequence. Fortunately, 

the Condensation Filter is designed to accommodate image sequences with moving ob- 

jects [IB96, IB98]. The single image It in Figure 3.3 is replaced by a sequence of images 

(IO,...,IT), where each image It is acquired at time t, and motion models are used in a 

prediction step. 

As shown in Figure 3.3, motion models are used to predict the effect of moving objects 

on the particle population. A simple motion model for non-deformable objects is 

X Xo vxt 

y yo Vyt 

z   zo + 
Vzt 

<f> h v<t,t 

e do v0t 

p _ . p0 . Vpt 

(3.25) 

where x0 is the objects position along the x-axis at time t = 0 and vx is the x component 

of the object's velocity. More general motion models may include high-order terms and 

stochastic variables. For example, the velocity terms vx, vy, vz, v^, vtheta and vrho can be 

defined as Gaussian random variables. 

To illustrate the use of a motion model in the Condensation Filter, consider the moving 

camera and stationary target object shown in Figure 3.5. Assume the camera starts at 

time t = 0 at the point (0, 0, -10) and moves along the z-axis with a velocity defined by a 

Gaussian random variable. The motion model becomes 

0 

0 

v2(l,l)t 

0 

0 

0 

where, vz is a Gaussian random variable with mean ßVx = 1 and standard deviation aVx = 1. 

The camera acquires one new image It per second. If the world-relative ground truth object 

pose is (0, 0, 20, 0, 0, 0) at time t=0, the camera-relative ground truth pose 5rrue is (0, 0, 

30, 0, 0, 0). 

X 0 

y 0 

z 
= 

-10 

0 
+ 

e 0 

p _ 0 

(3.26) 
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Figure 3.5:    Motion Model Example 

Since the camera acquires one new image per unit of time and the camera moves forward 

with a mean velocity of one x-unit per unit of time, the expected value of STrue in the next 

frame is (0, 0, 29, 0, 0, 0). The goal is to incorporate this information into the cluster of 

particles representing the Condensation Filter's current estimate. Ideally, the particles in 

the Condensation Filter are in a cluster near the point where P(S — STrue^ is maximum. 

Based on the motion model in the example, the maximum point is expected to move one 

unit closer to the camera. Therefore, each filter population particle is moved by adding a 

Gaussian random number generated using the motion model distribution transformed to 

camera-relative coordinates 

0 

0 

St+i — St + 
-vz(l,l)t 

0 

0 

0 

(3.27) 
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Figure 1.7 on page 10 shows the predict step where the particles are moved using this 

probabilistic camera-relative motion model. If two motion models are used, one for the 

target object and one for the camera, both stochastic vectors must be added to each particle. 

The motion model in my example is extremely simple. To illustrate the simplicity of my 

one-dimensional model, consider a basic 18 dimension Kaiman Filter used by aircraft navi- 

gation systems. A typical implementation includes six degrees of freedom, three translation 

and three rotation, and estimates of the position, velocity, and acceleration in each dimen- 

sion. Such a model usually includes the relationship between all of the components of the 

model. In other words, the Gaussian estimating the next state for each of the 18 dimensions 

is a function of all 18 dimensions [WG73]. Nothing indicates either the Condensation Filter 

or Extended Condensation Filter are incapable of accommodating more complex models. 

However, to keep my initial implementation simple, I use the one-dimensional motion model 

shown above. 

Using the statistical filter model described to this point, recognition, classification, and 

low-level feature extraction algorithms can be used to estimate the combined probability, or 

weight, for each of the particles in the Condensation Filter. The particles are re-weighted 

after each new image is acquired, allowing the filter to incorporate the predictive information 

provided by target object and camera motion models. One final step is required to make 

the Extended Condensation Filter useful — extracting the object pose estimate based on 

the aggregate state of the filter particles. 

3.1.8    Extracting an Estimate 

As shown at the bottom right of Figure 3.3, the Condensation Filter's population of particles 

is intended to provide a discrete representation of the conditional probability for the object 

pose space. To extract a single most-probable estimate of the current target location requires 

an analysis of the filter population. 

During an early experiment preparing for this dissertation, I identified a disadvantage 

of Condensation Filters that is seldom addressed in the literature. Despite praising the 

Condensation Filter's ability to represent multi-modal non-Gaussian distributions, most 

applications assume the filter particles represent a single Gaussian distribution. Using 

the single Gaussian assumption, the filter's pose estimate is well represented by the filter 

population's mean particle pose and standard deviation. 
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In the Extended Condensation Filter implemented for these early experiments, the un- 

certainty associated with each of the object recognition algorithms was represented by a 

Gaussian. As a result, conflicting measurements led to a distribution composed of a mixture 

of Gaussians. There were time intervals when the filter population was clearly multi-modal. 

Taking the mean value of the filter population in this state provides a mis-leading pose es- 

timate. The multi-modal population creates a classification problem — which distribution 

does the random sample represent? If the modes could be separated, then the mean for 

each mode would be a representative statistic. 

In the preliminary study, the problem was solved using a bottom-up hierarchical clus- 

tering algorithm [Mur85, DH73]. Unfortunately, hierarchical clustering with hundreds or 

thousands of particles is computationally demanding. Other clustering algorithms might 

offer more efficient methods, such as single-pass non-hierarchical clustering or Expectation 

Maximization trials assuming different numbers of Gaussian distributions, that could be 

used to assign particles to distributions. 

3.2    Evolution Strategy Model 

As shown in Table 2.3 on page 49, the Condensation Filter is similar to an Evolution 

Strategy. Both the Condensation Filter and an Evolution Strategy use weighted random 

reproduction of a population of potential solutions to focus search on portions of the state 

space that produce consistently high fitness values. The Condensation Filter and Evolution 

Strategy also purposely create potentially less fit population members to explore novel 

portions of the search space. 

An Evolution Strategy and Condensation Filter also have a significant difference. The 

probabilistic functions used by a Condensation Filter cause the aggregate population to 

model the underlying conditional probability [Gor97]. As a result, statistics about the 

aggregate population are used to estimate the most probable pose. Typical applications 

of an Evolution Strategy place less emphasis on modeling the underlying process in favor 

of an evolutionary mechanism that most rapidly converges to highly fit solutions [BHS91, 

Whi94, Won98]. As a result, the most fit population members are used to estimate the 

optimal states. The reproduction and mutation mechanisms of an Evolution Strategy can 

be made to resemble the Condensation Filter.  In this case, an Evolution Strategy would 
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behave much like a Condensation Filter and the population of particles should, according 

to Gordon and Blake [Gor97, IB98], represent the conditional probability. 

The similarities of the Evolution Strategy and Condensation Filter provide an interesting 

way to examine the effects of combining recognition, classification, and low-level feature 

extraction algorithms. 

3.2.1     Searching in Pose Space 

The Extended Condensation Filter moves particles toward the poses S that consistently 

returns the maximum probability estimate P(S = Srrue\A0, ■■■, AN) — a search problem. 

In the search literature, it is well established that the shape of the fitness function 

dictates the difficulty of the search problem [MW95]. The Condensation Filter performs 

search, but the literature rarely discusses the effect the shape of the conditional probability 

function has on the performance of the filter. Instead, the Condensation Filter literature 

assumes a very large population of particles — this lightly dismisses the search problem. In 

practice, Condensation Filters may have relatively small populations of particles, compared 

to the size of a real-valued pose space, and the conditional probability function may contain 

large numbers of local minima. Therefore, the shape of the conditional probability function 

dictates the difficulty of finding the optimal ground truth pose STrue. The example in 

this section shows how a combination of recognition, classification, and low-level feature 

information can combine to make the pose space easier to search. The issue of effective 

search may also be associated with current research on the effective number of particles 

represented by a given Condensation Filter implementation [MacOO]. However, work in this 

area is on-going. 

To illustrate this point, consider the object recognition problem shown in Figures 3.6. 

The problem is locating the target object, shown on the left of Figure 3.6, in the unknown 

image, shown on the right of Figure 3.6. To simplify the example, only the horizontal 

translation parameter x is unknown. In other words, for this example S = x. 

Three algorithms are run using the images shown in Figure 3.6 to provide information 

for the search; a Hausdorff-Huttenlocher recognition algorithm with a canonical Gaussian 

uncertainty model, a pixel correlation classifier with a look-up table representation of un- 

certainty, and a color-based low-level feature extraction algorithm with a Gaussian repre- 

77 



lill f||jj| alfiii 
■ lip lilPli ■PHI 

i;«B 

i «B .M 

11 slip 1 
sl:si:i:::^M? *, 
S'fif'lfpl 111 
i-'- 9 1 
i i, 
k *x^li||| 

.1 
Figure 3.6:    Object recognition problem used to illustrate search model 

sentation of uncertainty based on the closest feature. These algorithms are described in 

greater detail later in this dissertation, but the specifics are not required for this example. 

Figure 3.7 shows a typical measurement and representation of uncertainty for an object 

recognition algorithm as a function of a;. Figure 3.7 indicates the recognition algorithm has 

identified the most probable target pose as x = -0.25. From a search point of view, finding 

the maximum value of the function shown in Figure 3.7 is trivial. However, the Gaussian 

does not represent the real similarity between the target image and the unknown image as 

a function of x. 

The object recognition algorithm's use of a Gaussian to represent uncertainty artificially 

over-simplifies the search problem. A classification algorithm provides a more realistic view 

of the search problem. If the target object is translated to each position x and compared, 

as shown in 3.8, the result is not as smooth as shown in Figure 3.7. The similarity of the 

target and unknown images as a function of the pose space variable x contains many local 

maxima. As a result, the global maximum is harder to find using search. 

Low-level feature extraction algorithms are not looking for the target. They only pro- 

vide a vector of features that may be coincident with the target object, such as pixels with 

the right color or range features. Low-level feature extraction algorithms only indirectly 

discriminate between target and non-target objects. As shown in Figure 3.9, using the 

distance to the nearest feature, as described earlier, may create large plateaus with equal 

probability, so far as the feature extraction algorithm is concerned. From a search perspec- 
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Figure 3.7: Object recognition (Hausdorff-Huttenlocher) uncertainty model, where the 
uncertainty P(S = S^7""6^, w) is modeled by a Gaussian. For this example s is simply the 
horizontal translation x. 
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Figure 3.8: Classifier (render-match) uncertainty model, where the uncertainty P(S = 
STrue\Wn), as a function of z, is derived directly from the similarity metric computed at 
each location x. 

79 



S      0.04 

Figure 3.9: Low-level (back-projection color histogram) feature uncertainty model, where 
the uncertainty P(S = Hyrrue\Wn), as a function of x, is modeled by a Gaussian using the 
closest feature. 

tive, low-level features narrow the search, but fail to indicate a pose with the maximum 

probability of being the target object. 

Combining the data shown in Figures 3.7, 3.8, and 3.9 using the Bayesian product rule 

described earlier creates the plot shown in Figure 3.10. The contribution of the recogni- 

tion, classification, and low-level feature data is clearly visible in the combined plot. The 

recognition and low-level feature data have created an overall gradient in the probability 

estimate as a function of x, while the classifier has contributed the real similarity measure. 

Due to the gradients added by the recognition and low-level feature extraction algorithms, 

the combined probability function is easier to search than the conditional probability using 

only the classification algorithm. 

Note the difference in the target pose indicated by the classifier and the recognition 

algorithm. The recognition algorithm pose estimate is approximately x = -0.25, while the 

classifier indicates the greatest similarity is approximately x = 0. The difference could be 

an error from the recognition algorithm, the classifier, or both. If the three algorithms 

continue to provide these estimate, the disagreement between the recognition estimate and 

the classifier similarity scores is likely to be resolved within a few generations because 

particles in the vicinity of x = 0 will have a very high probability of reproduction. As 

a result, the pose space near x = 0 will be sampled far more heavily.   If the difference 
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Figure 3.10: Combined product rule estimate of P(S = STrue\Wn) using the data from 

Figures 3.7, 3.8, and 3.9. 

persists, the particles will be more dispersed. The dispersion of particles is controlled by 

the uncertainty resulting from the difference in the pose estimates. 

3.3 Extended Condensation Filter Algorithm 

The previous sections provide descriptive models of the Extended Condensation Filter. 

The next chapter tests a specific implementation of the algorithm in two synthetic problem 

domains. The following step-by-step algorithmic description bridges the gap between the 

descriptive models and the implementation. The step-by-step algorithmic description also 

provides the information needed to replicate the experiments in this dissertation. 

The first algorithm in this section describes the filter's learning phase, shown in Figure 

3.4 on page 61, where the data required to build the look-up tables is collected. The second 

section provides a step-by-step algorithm for the filter's object recognition phase, shown 

in Figure 3.3 on page 60, where the learned look-up tables are used to perform object 

recognition using the product rule. For brevity, a step-by-step model using the mean sum 

rule has not been provided. However, the mean sum rule can be directly substituted where 

the Bayesian product rule is used in the following examples. 
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3.3.1    Building the Probability Estimate Look-Up Table 

1. Acquire target model, including the example target image I EX, the target parameters 

(range to target), and the sensor parameters (field of view, resolution). 

2. Repeat the following steps to initialize learning for each object recognition algorithm. 

2.1. Create a histogram for estimating the distribution of all particle poses. Each bin 

is assigned a range for values near the distance dg and similarity w. Set each 

bin's count to zero. 

2.2. Create a histogram for estimating the distribution of particles whose pose is near 

the ground truth S = S rue. Each bin is assigned a range for values near the 

distance dg and similarity w. Set each bin's count to zero. 

3. Repeat the following steps to initialize learning for each classification algorithm. 

3.1. Create a histogram for estimating the distribution of all particle poses. Each bin 

is assigned a range for the similarity metric w. Set each bin's count to zero. 

3.2. Create a histogram for estimating the distribution of particles whose pose is 

near the ground truth S = Srrue. Each bin is assigned a range for the similarity 

metric near w. Set each bin's count to zero. 

4. Repeat the following steps to initialize learning for each feature extraction algorithm. 

4.1. Create a histogram for estimating the distribution of all particle poses. Each bin 

is assigned a range for the minimum distance metric dr. Set each bin's count to 

zero. 

4.2. Create a histogram for estimating the distribution of particles whose pose is 
—* —*rp 

near the ground truth S = S rue. Each bin is assigned a range for the minimum 

distance metric near dr. Set each bin's count to zero. 

5. Repeat the following steps for each acquired image It, where It is a member of a set 

of randomly selected representative images of the target object (7o, ■ ■ ■, IT)- 

5.1. Compute the camera relative pose of the target object 5 using the current 

camera position and world-relative target object pose. This is the ground truth 

used for training. 
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5.2. Run each object recognition algorithm to create an estimate or estimates of the 

target pose s and associated similarity metric w using target image IEx and 

unknown image /(. 

5.3. Run each low-level feature extraction algorithm to create a set of feature vectors 

{fo, ■ ■ ■, fj} using the unknown image It. 

5.4. Generate a random collection of pose vectors (S0, ■■■, SN) distributed uniformly 

throughout the pose space defined by the camera's intrinsic parameters. 

5.5. Repeat the following steps for each randomly generated pose vectors S a member 

of (So,... ,SN)- 

5.5.1. Repeat the following steps for each object recognition algorithm. 

5.5.1.1. Compute the Euclidean distance ds = \\S - s\\ between the particle pose 

S and the object recognition pose estimate s. 

5.5.1.2. Add one to the bin matching the values of d$ and w in the histogram 

counting all the pose estimates. 

5.5.1.3. If the pose estimate S is near the ground truth pose STrue, add one to 

the bin matching the values of ds and w in the histogram counting all 

the pose estimates where S = STrue. 

5.5.2. Repeat the following steps for each classification algorithm. 

5.5.2.1. Create the affine transformation matrix Mg that corresponds to the pose 

S. 

5.5.2.2. Use the affine transformation matrix Mg to project the target image 

IEX to the point S. 

5.5.2.3. Compare the projected target image Mglßx to the relevant portion of 

the image It using the classification algorithm to compute the similarity 

w. 

5.5.2.4. Add one to the bin matching the value of w in the histogram counting 

all the pose estimates. 

5.5.2.5. If the pose estimate S is near the ground truth pose STrue, add one to 

the bin matching the value of w in the histogram counting all the pose 

estimates where S = STrue. 

5.5.3. Repeat the following steps for each low-level feature extraction algorithm. 
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5.5.3.1. Compute the Euclidean distance between the particle's pose S and each 

feature vector / to find the feature vector closest to the particle's pose. 

J 
dr=Tam{\\fj-S\\) 

J        j=0 

5.5.3.2. Add one to the bin matching the minimum value d? in the histogram 

counting all the pose estimates. 

5.5.3.3. If the pose estimate S is near the ground truth pose STrue, add one to 

the bin matching the minimum value of d v in the histogram counting all 
-* —*rp 

the pose estimates where S — S rue. 

6. Estimate P(S = STrue) by dividing the total number of random pose samples S by 
—* —*rp 

the total number of random pose samples near the ground truth S = S rue. 

7. For each object recognition algorithm 

7.1. Estimate P(d,w), using the histogram counting all the poses S. 

7.2. Estimate P(d,w\S = «S^™6), using the histogram counting all poses near the 
—* ~*rp 

ground truth poses S = S rue. 

7.3. Build the recognition-algorithm-specific look-up table of P(S = STrue\d, w) using 

Bayes' Theorem 

v '      ' P(S = STrue) 

8. For each classification algorithm 

8.1. For each bin in the histogram counting all the poses S, use the counts to estimate 

each P(w). 

8.2. For each bin in the histogram counting all poses near the ground truth pose 

S = STrue, use the counts to estimate each P(w\S = STrue). 

8.3. Build the classification-algorithm-specific look-up table of P(S = STrue\w) using 

Bayes' Theorem 

P{S = STrue) 

9. For each low-level feature algorithm 
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9.1. For each bin in the histogram counting all the poses S, use the counts to estimate 

each P(dmin). 

9.2. For each bin in the histogram counting all poses near the ground truth pose 

S = S^™6, use the counts to estimate each P(dmin\S = STrue). 

9.3. Build the classification-algorithm-specific look-up table of P(S = t>True\dmin) 

using Bayes' Theorem 

r(b - a       \amin) - £ g = ^ 

3.3.2    Object Recognition using the Extended Condensation Filter 

Note: this step-by-step description uses the product rule 

P(S = STrue) n P(wi\S = STrue) 
P(S = STrue\w0, ...,wN) = ^  

n p(wi) 

to combine the recognition, classification, and low-level feature information sources. 

1. Acquire target model, including the example target image I EX, the target parameters 

(range to target), and the sensor parameters (field of view, resolution). 

2. Initialize the particle pose vectors  {S0,...,SN}  by distributing them randomly 

throughout the pose space defined by the camera's intrinsic parameters. 

3. Repeat the following steps for each acquired image It, where It is a member of the 

sequence of images {/o, ■ ■ •: IT}- 

3.1. Run each object recognition algorithm to create an estimate or estimates of the 

target pose s and associated similarity metric w using target image IEX and 

unknown image It- 

3.2. Run each low-level feature extraction algorithm to create a set of feature vectors 

{/OJ • • ■) fj} using the unknown image It. 

3.3. Repeat the following steps for each particle in the Condensation Filter population 

{So,.. ■, Spj}, where a single particle pose is S. 

3.3.1. Set the particle's weight wg to the value P(S = STrue) estimated during the 

learning phase. 
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3.3.2. Repeat the following steps for each object recognition algorithm. 

3.3.2.1. Compute the Euclidean distance d$ = \\S — s\\ between the particle pose 

S and the object recognition pose estimate s. 

3.3.2.2. Retrieve the probability estimates P(d, w\S = STrue) and P(d,w) from 

this recognition algorithm's look-up table using dg and w as indices to 

the look-up table. 

3.3.2.3. Implement the product rule form of Bayes' Theorem by multiplying the 

particle's weight by the ratio 

P(ds,w\S = STrue) 

3.3.3. Repeat the following steps for each classification algorithm. 

3.3.3.1. Convert the particle's pose estimate S to an affine transformation matrix 

Ms- 

3.3.3.2. Project the target image IEX to the pose S using the transformation 

matrix Mg to create the new image M^IEX- 

3.3.3.3. Use the classification algorithm to compute the similarity w between the 

transformed image Mglßx and the unknown image It. 

3.3.3.4. Retrieve the probability estimates P(w\S = STrue) and P(w) from this 

recognition algorithm's look-up table using w as an index to the look-up 

table. 

3.3.3.5. Multiply the particle's weight by the ratio 

P(w\S = STrue) 

P(w) 

3.3.4. Repeat the following steps for each low-level feature extraction algorithm. 

3.3.4.1. Compute the Euclidean distance between the particle pose S and each 

feature vector / to find the closest feature vector to particle's pose. 

3.3.4.2. Retrieve the probability estimates P(dAS = STrue) and P(d) from this 

recognition algorithm's look-up table using d? and w as indices to the 

look-up table. 

3.3.4.3. Multiply the particle's weight by the Bayesian ratio 

P(d\S = STrue) 

Hd) 
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3.4. Create a new filter population by randomly selecting particles from the current 

filter population. Weight the random selection using the ratio of each particle's 

weight to the sum of all particle weights 

P(S = STrue) 
P (reproduction) = —  

j=0 

3.5. Replace the current filter population with the new filter population. 

3.6. Compute the camera-relative stochastic motion vectors Mcm and Mtm, using the 

stochastic world-relative camera and target motion models. 

3.7. Add the camera-relative stochastic motion vectors Mcm and Mtm to each particle 

in the filter population. 

St = Sz + Mcm + Mtrn 

3.8. Test the single Gaussian assumption to extract a target pose estimate 

3.8.1. Use bottom-up hierarchical clustering to combine the entire filter population. 

Compute the maximum value of the ratio 

tl^M (3.28) 
0\ + cr2 

during the last two levels of the clustering process. The maximum ratio 

indicates the statistical distance between the clusters contained in the fil- 

ter population — the greater the distance the less likely a single cluster 

accurately represents the entire population. 

3.8.2. If the tests indicate a single Gaussian mode, use the mean pose fig as the 

target pose estimate and the standard deviation ag as an estimate of the 

confidence associated with the target object pose estimate. 

3.4    Condensation Filter Example 

Two simple examples are provided in this section to help bridge the gap between the theo- 

retical models and pseudo-code in this chapter and the complex filter implementation in the 

next chapter. The full implementation of the Extended Condensation Filter, described in 

the next chapter, uses multiple recognition, classification, and low-level feature extraction 
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algorithms, resulting in a complex system. The complexity is sufficient to defy closed-form 

analysis and require empirical testing. 

This section provides two examples simple enough to explain step-by-step. The first ex- 

ample demonstrates the operation of the filter using a single object recognition algorithm as 

input. The second example adds a second object recognition algorithms that provides dis- 

tinctly different pose estimates. The examples illustrate the steps of learning the conditional 

probability, weighting particles, and reproducing particles. 

In addition to providing a simple illustration of the filter's operation, the examples 

highlight a contradiction. The statistical filter model indicates the filter population should 

represent the conditional target pose probability. However, the second example indicates 

the population converges to a single statistically similar cluster of points, even when two 

equally good estimates are present. The precise definition of statistically similar is provided 

in Section 4.2.5. This apparent contradiction leads to further discussion in the final section 

of this chapter. 

3.4.1    Single Expert 

This first example implements a very simple one-dimensional Condensation Filter where 

one object recognition algorithm provides one target pose estimate St per filter iteration, t 

is the time or iteration index, and the first iteration is 1. The filter contains 10 particles 

and each particle i contains the pose Si and a weight which is the probability estimate 

P(Si = STrue | \\st — S{\\). The term \\st — 5;|| represents the distance between the current 

object recognition algorithm estimate st and the particle's pose 5j. For convenience, The 

symbol di represents the distance ||st — Si\\. Note, the vector notation is dropped in this 

example to indicate this problem is purely one-dimensional. 

3.4.1.1    Learning 

Before processing an estimate from the object recognition algorithm, the filter must learn the 

conditional probability estimate. This relationship estimates the probability an arbitrary 

particle pose Si is near the true pose STrue, given the distance rfj. Near the true target 

pose must be used, rather than the actual pose, because the probability of exactly hitting 

the real valued true target pose is 0. For this example, Si = STrue is implemented as 

IIS; — STrue\\ < 0.05, but the shorter notation S{ = STrue is used for convenience. 
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Figure 3.11:    Conditional probability histograms after sampling the entire pose space. 
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Figure 3.12:      Conditional probability histograms after sampling just the ground truth 
portion of the pose space. 
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To learn a model of the conditional probability P(S = STrue\d), iterations of random 

sampling are used to populate two histograms. Once populated, the first histogram will be 

used to estimate P(d) and the second histogram will be used to estimate P(d\S = STrue). 

For each iteration of the learning algorithm, the following steps are performed 

1. The target object is randomly placed at the pose STrue. 

2. The object recognition algorithm generates one target pose estimate st in response to 

the scene containing the target object. 

3. Ten random pose estimates {Si,..., Sio} are generated uniformly in the pose space 

4. The distance di is computed for each random pose estimate Si, where d{ = \\Si — st\\. 

5. Every di is placed into the first histogram, shown on the left side of Figure 3.11, used 

to estimate P{d). 

6. Every distance di, where the pose estimate Si is within the bounds of the true pose 

estimate Si = STrue, is placed into the second histogram, shown on the right side of 

Figure 3.11, used to estimates P(d\S = STrue). 

As shown in Figure 3.11, after 1,000 iterations of these steps, the first histogram will 

contain 10,000 samples. However, the pose space includes the real values from -1 to +1 and 

the true target pose is defined over an interval 0.1 units wide. Therefore, P(S = STrue) 

is 0.05 and the second histogram is only expected to contain about 500 of the 10,000 total 

samples. 

To increase the number of samples populating the second histogram, learning is run 

again, except the 10 pose estimates Si, generated in the third step, are randomly generated 

within the bounds of the true target pose, STrue - 0.05 to STrue + 0.05. After the second 

phase of learning, the first histogram contains only the original 10,000 distance values and 

the second histogram is expected to contain about 10,500 values. Figure 3.12 shows the 

histograms after adding 10,000 additional random pose estimates. 

3.4.1.2     Filtering 

Now that the model of the conditional probability P(S = STrue\d) is available, the filter 

is ready to operate.   Before the first step of the first iteration, the filter is initialized by 

90 



\ PP PP 1 PP FH 1—PH—I—I—I—I—I—^ 

Figure 3.13:    Initialized filter prior to iteration one. 
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Figure 3.14: Step One - Measurements. Computing the weight P(S = STrue\d) for one 
particle using the distance between the particle and the estimate S\ is shown. 

randomly distributing the population of ten particles (Si,..., Sw) uniformly throughout 

the pose space, as shown in Figure 3.13. 

The first step of the first iteration is running the object recognition algorithm to generate 

an object pose estimate si. The estimate si is shown in Figure 3.14. 

Next, the distance d{ between the pose estimate si and each particle (Si,..., Sw) is com- 

puted and used to look-up the corresponding probability estimate from the tables created 

in the previous section. Using Bayes' rule, the weight for a single particle is 

P(Sl = STrue\di) = P(S = sT^)P{d^SpJd^
rUe) (3.29) 

For example, the weight for the particle compared to the estimate in Figure 3.14 is 

The distance and corresponding probability estimate for all the particles are computed in 

oo O O 
H 1 1 1 1 1 1 1 1 1 P^f- 

Figure 3.15:    Step Two - Weighted Particles. Each particle's diameter is proportional to 
the log of its weight. 
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Figure 3.16:    Step Two - Reproduction 

a similar manner. Figure 3.15 shows the relative weights of the particles after the weighting 

step. 

In the third step, the next generation of filter particles are created using weighted 

random reproduction of the current generation, where the probability of reproduction for 

each particle is the particle's weight divided by the total weight of the population. 

When the next generation is produced, an uncertainty model is also applied to slightly 

disperse the particles. This uncertainty may be included in a model of object or camera 

motion, but for this static example a simple Gaussian is used to disperse the particles away 

from their positions in the previous population. Using statistical filter terminology, this ran- 

dom dispersion of particles represents uncertainty. Using Evolution Strategy terminology, 

this dispersion of particles is mutation. The second generation is shown in Figure 3.16. As 

you can see, the particles have begun to condense toward the object recognition algorithm 

estimate. However, due to the Gaussian uncertainty function, none of the particles occupies 

the exact same position in the second generation that it did in the first generation. 

For each subsequent iteration, the process of obtaining a target pose estimate from 

the object recognition algorithm, measuring the distance between the estimate and each 

particle's pose, weighting each particle using the learned conditional probability, random 

reproduction of a new generation of particles, and adding the uncertainty is repeated. Given 

additional iterations and accurate pose estimates, the particles will condense toward the true 

target pose. 

3.4.2    Two Experts 

To extend the first example and illustrate an interesting issue, assume a second recognition 

algorithm is added to the system. For the example, assume the second expert is sensitive to 

a very different property of the image. For example, the first expert might use edge features 

and detect an object of similar shape on the right side of the image. The second expert 

might use color features and detect an object of similar color on the left side of the image. 
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Figure 3.17:    Step One - Two Measurements 

For simplicity, assume the conditional probability models for both experts are identical to 

the model used in the first example. 

Before the first iteration, the population of ten particles must be randomly distributed 

in the pose space. For simplicity, this example starts with the same random initialization 

of particles shown in Figure 3.13. 

The first step of the first iteration obtains the estimates s\ and s\ from the two experts 

— the estimates are shown in Figure 3.17. 

Next, each particle must be compared to both estimates s\ and s\. When two estimates 

are available, each particle is weighted using an estimate of the probability conditioned on 

both estimates P{Si = STrue\dl,d2). The two conditions are combined using the Bayesian 

product rule 

P(S = ST^\d\cP) = P(S = ^e)P(dlp(^fr"e)P(d2|p(^fr"e) (3"3°) 

For example, the weight for the particle compared to the two estimates in Figure 3.17 is 

T        i 9 *      ,       w 1,500/10,500,,  1/10,500  ,     0 c _,     A 

Once each particle is assigned a weight, the next generation is produced. Given two esti- 

mates with identical conditional probability models, the population will initially condense 

toward the two equally good estimates. After a large number of iterations, the population 

should resemble the underlying conditional probability. However, running this process de- 

scribed in this section many times consistently leads to a single cluster of points centered on 

one of the two expert estimates. The probability of converging to the left or right estimate 

appears to be about equal. 
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Figure 3.18:    Filter state after 50 iterations. The population has converged to represent 
a single pose estimate. 

3.5    What Does the Filter Population Represent? 

Both Gordon and Blake indicate the Condensation Filter population represents the under- 

lying conditional probability for the state space. According to Gordon 

The bootstrap filter is an approach where random samples are used to represent 

the target posterior probabilities [Gor97]. 

According to Blake 

The Condensation algorithm uses "factored sampling", previously applied to the 

interpretation of static images, in which the probability of possible interpreta- 

tions is represented by a randomly generated set [IB98]. 

Applying these descriptions to the example in the previous section using two ex- 

perts, the filter population should represent the conditional probability defined by P(S = 

STrue\dl,d2). The key term represents, as defined by [IB98] and [MacOO], means the 

weighted density of particles per unit of pose space is approximately the same as the con- 

ditional probability function P(S = STrue\d1,d2). However, this does not appear to be the 

case in the previous section's simple example. Two regions of the pose space, one around 

each observation, are equally probable. Therefore, one expects a roughly equal number of 

particles around each. This is not what is observed. Instead, after several iterations, one 

region contains no particles, while the other contains all the particles. 

The literature provides two proofs that the Condensation Filter should represent the con- 

ditional probability. First, Blake provides an inductive proof. However, the proof requires 

the population of particles be independent and identically distributed for each iteration 

[Bla92]. As noted by MacCormick, the population of particles is not independent and iden- 

tically distributed throughout the pose space after the first iteration, therefore the inductive 

proof is incorrect [MacOO]. In addition to showing a weakness in Blake's proof, MacCormick 
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provides a proof using lemmas from DelMoral's work [DLOO]. MacCormick's proof deserves 

further study. 

MacCormick provides an inductive proof that the population of a Condensation Filter 

represents the conditional probability based on describing the Condensation Filter as three 

operations: multiplication by a function, applying dynamics, and resampling. These three 

steps correspond to weighting, prediction, and reproduction using the terminology in my 

dissertation. In MacCormick's dissertation, the validity of each operation is proven as a 

theorem. However, MacCormick's inductive proof requires these three operations be applied 

repetitively. When applied repetitively, one of these three operations (resampling) does not 

appear to produce the desired result. Briefly examining the first two theorems, then carefully 

examining the Resampling Theorem, illustrates the potential problem with the proof. 

Multiplication Theorem Let {S} represent P(x), where {S}' is obtained by multiplica- 

tion by h(x), where h(x) is continuous, non-negative, and h(x)P(x) ^ 0, then {S}' 

represents h(x)P(x). 

This theorem relies on the concept of approximate representations of continuous func- 

tions using weighted discrete representations. The continuous uniform distribution P(x) 

shown in Figure 3.19(a) can be represented in different ways. As shown in Figure 3.19(b), 

a set of N equally weighted particles {S} can be placed 1/N units apart over the interval 

from one to 10, and this provides a discrete representation of the uniform distribution. 

Alternatively, as shown in Figure 3.19(c), N particles can be placed with equal probability 

anywhere on the interval — this also represents a uniform distribution. As shown in 3.19(d), 

particles can also be weighted, and fewer particles with larger weights can be used in place of 

smaller particles with lower weights. Each of these representations, using weighted discrete 

integration, will approximate the continuous uniform distribution shown in the first plot. 

Intuitively, the Multiplication Theorem is simply applying a weighting to a collection 

of particles and showing the weighted particles, if weighted integration is performed, will 

approximate the original distribution P{x) times the function h(x). MacCormick's proof of 

this theorem relies on a lemma provided by DelMoral [MacOO, DLOO]. 

Dynamics Theorem If {S} represents P{xt-\) and {S}' is obtained by applying the 

Markov dynamic model P(xt\xt-i), then {S}' represents P(xt). 
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Figure 3.19: Three ways to represent the continuous uniform distribution P(x) shown 
at the top. (b) using a deterministic uniform distribution of points, (c) using a random 
uniform distribution of points, (d) using a deterministic weighted uniform distribution of 
points. Using weighted discrete integration, all three of the particle sets approximate the 
continuous distribution. 
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The Dynamics Theorem provides a method of shifting the current particle population 

{S}, which currently represent the distribution P(xt-i), in accordance with a Markov 

prediction of the next state P(xt\xt-i), to achieve a population of particles which predict 

the distribution P(xt) at the next state. This creates a population of particles that predict 

the next probability distribution according to the current distribution of particles and the 

motion model. 

The third, and suspect theorem, is the Resampling Theorem. 

Resampling Theorem If {S}' is a weighted random sampling of {S}, and {S} represents 

P{x), then {S}' represents P{x). 

Intuitively, the Resampling Theorem states that drawing N uniform random samples, 

with replacement, from a set of N samples representing a distribution P(x) will create a new 

set which also represents the distribution P(x). For one iteration, given a large population 

of samples, this is true. For example, given the three discrete sets of particles shown in 

Figure 3.19, 10 uniform random draws with replacement from the population is expected 

to produce a population approximating the uniform random distribution. 

A problem with the Resampling Theorem appears when it is repetitively applied, as 

required for an inductive proof. The repetitive nature of an inductive proof requires the 

theorem hold even when applied many times, and an example shows at least one case where 

repeated application of the theorem does not produce the same distribution. 

Consider the uniform random population of particles shown in Figure 3.19(c). For each 

draw from this population, the probability a particle will not be selected is 

Piost = ^ (3.31) 

where N is the population size. Since each draw from the previous generation is per- 

formed with replacement, they are independent events. Therefore, for the reproduction of 

the entire next generation, the probability of not being selected is 

N 

Applying this equation to any of the discrete representations in Figure 3.19, all of which 

have 16 particles, the probability of not reproducing any single particle from the current 

generation into the next generation is 

,yv   ,.,      ^        W\ 
16 

PZt(N = 16) = {-)     =0.356 
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Figure 3.20: The expected number of unique population members in each generation 
given a population of 10,000 unique population members and a uniform distribution. Only 
the resampling operation is applied for each next generation. 

Therefore, in expectation, 0.356 * 16 or 5.7 of the particles will not be used to create the 

next generation. For much larger populations, the percentage of particles not represented 

in the next generation is approximately the same. For example, for N = 10,000 particles, 

the percentage of particles not used for the next generation is 

/ q qqq \ 10,000 
i&t"-10,000) = ($£) =0.368 

This shows, in expectation, each succeeding generation will fail to represent about 35% of 

the population in the previous generation. This means the population very rapidly contains 

N identical particles. Figure 3.20 shows an example which starts with a population of 

10,000 unique population members. The population is expected to contain 10,000 identical 

particles in approximately 10 generations. 

The exact use of the resampling theorem in an inductive proof is critical to the correct- 

ness of the proof. Unfortunately, MacCormick fails to address this problem in the following 

brief statement provided as the inductive proof. 

Proof This is a trivial induction using theorems [Multiplication], [Dynamics], 

and [Resampling]. The necessity for a Condensation diagram to be well formed 

is because of the assumption made in Theorem [Predict]. 
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As a result, some questions remain about the claim that the Condensation Filter repre- 

sents the conditional probability. 

3.6    Research Questions 

As explained by Cohen, formal empirical hypotheses focus on extremely narrow questions 

with yes or no answers [Coh95]. An empirical hypothesis is formulated, statistics are com- 

piled for a representative data set, and the statistics either support or refute the hypothesis 

with some specified level of confidence. Empirical hypotheses are like a guessing game 

where only yes or no questions are allowed. The open-ended nature of research questions 

expand the possible responses but lead to greater ambiguity and need for interpretation. 

The Extended Condensation Filter described in this chapter suggests many research ques- 

tions, but resource limitations only allow a few to be investigated. The following research 

questions appear to be the most interesting and provide the focus for the remainder of this 

dissertation. 

1. How does the discrimination of the combined probability estimate compare to the 

discrimination of the probability estimate from each of the contributing experts? 

2. How does the accuracy and precision of the Extended Condensation Filter's com- 

bined pose estimate compare to the accuracy of the pose estimate from each of the 

contributing experts? 

3. Does the Extended Condensation Filter's learning algorithm generalize sufficiently to 

support operation in new portions of the problem domain? 

4. Is the weight for each particle required to be a probability estimate or, as Pearl 

indicates [Pea88], is relative likelihood sufficient? 

5. What are the convergence properties of the filter population? Specifically, how com- 

mon is a multi-mode distribution of filter particles? 

In the next chapter, a specific implementation of the Extended Condensation Filter, a 

set of test environments, and a set of formal empirically testable hypotheses will be designed 

to address these research questions. 
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3.7    Summary 

This chapter has described the Extended Condensation Filter using two models, pseudo- 

code, and two simple examples. Each model and the examples provide a different view of 

the Extended Condensation Filter. The statistical filter model illustrates the proportional 

low-pass proportional filter and predicts the population will converge to the conditional 

target pose probability. The search model illustrates the filter's ability to combine the 

diverse information provided by recognition, classification, and low-level feature data and 

predicts the population will converge to the maximum probability. The examples illustrate 

the filter implementation and a difference between theory and implementation. 

The models in this chapter indicate the Extended Condensation Filter achieves the goals 

stated at the beginning of this chapter. 

1. The Extended Condensation Filter does not rely on specific parametric representa- 

tions. A simple look-up table of arbitrary resolution is used to model uncertainty. 

2. The fusion of visual information is guided by estimates of P(S = STrue) to reduce the 

loss of information that occurs with discrete decision boundaries. 

3. Visual information at different levels of abstraction is accommodated. Recognition 

pose estimates, classification metrics and low-level features are combined using the 

population of particle poses as a common reference. 

The models in this chapter prompted research questions regarding the discrimination, 

accuracy, precision, generalization, sufficiency of likelihood, and convergence of the filter. 

Each of the models can be used to support answer to the research questions, but none of 

these models can be empirically tested. The next chapter describes the tools necessary to 

perform empirical testing, including a set of testable hypotheses, a set of test environments, 

and an implementation of the Extended Condensation Filter. 
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Chapter 4 

Test 

This chapter describes a specific implementation of the Extended Condensation Filter, a 

set of problem environments, and a set of hypotheses that prepare for the empirical testing 

reported in the next chapter. The implementation, problems, and hypotheses are highly 

interrelated, so I have elected to describe the problem environments first to provide a 

context for the other discussions. The three problem environments are Block World One, 

Block World Two, and Toy World. These environments provide synthetic, but realistic, 

examples of a broad class of search problems common to law enforcement, rescue, and 

military operations. The second section of this chapter describes a set of empirically testable 

hypotheses for each of the research questions posed at the end of the previous chapter. 

The yes or no answers for the testable hypotheses, provided in the next chapter, support 

answers to the more general research questions proposed in the previous chapter. The 

implementation is discussed third because the problem environments and hypotheses drive 

its design. The last section describes a second set of implementation specific research 

questions that complement the research questions. 

4.1    Problem Environments 

In the introduction to this dissertation I used a search problem to illustrate the benefits of 

fusing recognition, classification, and low-level feature extraction. The example involved a 

police car searching for a suspect vehicle. Searching for and tracking a target object while 

traversing a predefined path is a common problem in search and rescue, law enforcement, 

and military operations.  Even some mail delivery systems, such as the one the Pentagon 
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employs, could use such a system to find and navigate to the next mail drop. The common 

problem of identifying and tracking a target object while traversing a predefined path is the 

basis for all the synthetic problem environments used in this dissertation. 

4.1.1    Simulation 

All of the test imagery for this dissertation is produced using the photo-realistic Persistence 

of Vision Ray-tracer (POVRay). 4 Details about the configuration and control of POVRay 

are provided in Appendix B. Testing vision systems with synthetic imagery leaves open the 

question of how applicable the results are to physical problems. However, using synthetic 

imagery for the initial testing of a vision system has several significant advantages. 

First, synthetic imagery provides a degree of insight simply not available at even the most 

capable physical test facility. Major test facilities, such as the Air Force Automatic Target 

Recognition Lab, the Air Force Flight Test Center, or the Western Range offer accurate 

sources of ground truth, such as differential GPS and cinetheodelite. They also provide high- 

bandwidth remote monitoring. However, even these multi-billion dollar national facilities 

cannot compare with the degree of scrutiny provided by a desktop computer using synthetic 

imagery. Using synthetic imagery, I know the location of every target and camera to 64- 

bits of double-precision and I can record any parameter at any resolution. No physical test 

facility can match this level of scrutiny. 

Second, greater control is provided by synthetic imagery. To provide the controlled and 

repeatable test conditions required for empirical testing, laboratories must take extreme 

measures. Indoor laboratories require the precise calibration and positioning of cameras, 

target objects, backgrounds, and lighting. In outdoor test environments, replicating test 

conditions is nearly impossible due to factors such as natural lighting and weather. For 

synthetic imagery, repeatable test conditions are a given — the inherently deterministic 

nature of a digital computer ensures the same model produces the same image. When using 

synthetic imagery, I can repeat test conditions precisely or change one, and only one, test 

condition. No physical test facility can match this degree of control. 

Third, physical cameras looking at physical objects do not guarantee a good simulation. 

A lab test using a camera and a ray-tracer using a mathematical model are both simulations, 

4The Persistence of Vision Ray-tracer (POVRay) is available at www.povray.org. Version 3.1g was used 

for this dissertation. 
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unless the lab is the intended environment for the vision system. If, for example, a vision 

system is tested in a lab with painted surfaces and fluorescent lights, and the system will 

operate in a jungle, the bench test may provide more misleading results than a well-designed 

synthetic environment. The synthetic environment can easily include the broken light pro- 

vided by a jungle canopy and the geometry and textures of jungle foliage. Identifying the 

relevant properties of the intended environment and including those in the test improves 

the fidelity of the simulation, whether the simulation is performed in a ray-tracer or on a 

lab bench. Unless the lab happens to be similar to the target environment, including these 

properties is usually easier in a synthetic environment. 

To illustrate this point, consider one of the 1999 AAAI Competition entries that served 

hors d'oeuvres [M+99]. The robot relied on a color histogram algorithm to detect the 

presence of a human hand and count the number of hors d'oeuvres served. When the 

number of times a hand was detected equaled the initial number of hors d'oeuvres, the 

robot returned to its base to refill its tray. The robot worked well in lab tests and in 

the North Dakota Museum of Art, but failed during the AAAI competition. The walls 

of the room for the AAAI Competition resembled the color of human skin. The robot 

constantly detected the presence of a hand, immediately assumed all its hors d'oeuvres had 

been served, and returned to base without serving anything. The robot was thoroughly 

tested in two physical environments, but from the point of view of the AAAI competition, 

these environments were poor simulations. Texture mapping the competition walls into a 

rendered environment may have provided a superior simulation, at least so far as the color 

histogram algorithm was concerned. 

During the 2001 Game Developers Conference, Marvin Minsky made the following com- 

ment in his presentation titled "Programs, Emotions and Common Sense." 

In the real world, how do you know your simulation contains all the important 

things? The answer is, tell me an important thing you've discovered and I'll 

make sure it gets into the simulation, and nobody every tells me one. Yes, the 

gears can have backlash and I'll bet that your best CAD program can allow 

for that. Yes, the floor might be slippery and I'll bet there are seven kinds of 

friction. But then you can have the robot go over these 100 times varying a 

few parameters and understand the problem.   But what happens in physical 
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Figure 4.1:    Block-World One Object Placement and Camera Motion 

robotics, is you never get to do the same thing twice, there's no science. There's 

no replicable experiment... So, I think simulations are immensely important. 

Synthetic testing is the proper first step when the goal is carefully controlled empirical 

study. The final step is testing on actual data from physical sensors in the system's target 

environment. However, as already suggested, controlled experiments using physical sensors, 

moving platforms, and physical targets is highly involved and beyond the scope of this 

dissertation. If this is not immediately obvious, again consider the billions of dollars the 

Federal Government spends establishing such testing facilities for processes of comparable 

complexity to that described in this dissertation. 

104 



Figure 4.2:    Typical images from the Block World One problem environment 

4.1.2    General Description of the Problem Environments 

The Block-World One, Block-World Two, and Toy World problem environments are inspired 

by the problem of searching for an object using a predefined search path. This problem is 

common in search and rescue, law enforcement, and military operations. Figure 4.1 shows 

the predefined path used in all three problem environments. The camera always starts at 

the location (x=0, y=0.5, z=-10) and moves forward 3.2 units in the +z direction. The 

camera is always looking at the point (:r=0, y=0.5, z=0). Three unoccluded target objects, 

a background image, and the floor are always visible. Typical images from the camera's 

point of view are shown in Figure 4.2. 

Two cameras are simulated to support the stereo disparity algorithm that is part of 

the Extended Condensation Filter implementation. The cameras are mounted on a fixture 

so they are always at the same relative position. The left camera is always on the z-axis, 

while the right camera is always plus 0.25 units along the x-axis. For example, if the left 

camera is located at (x=0, y=0.5, z=-10), then the right camera is located at (x=0.25, 

j/=0.5, z=-10). 

A small amount of ambient light and two directional area light sources are used in all 

the problem environments. One area light source is centered at (-10, 10, -10) and the other 

is centered at (10, 10, -10). Both light sources are pointed at the origin. To improve realism, 

each area light source is modeled as a 5x5 array of adaptively sampled point light sources 

with spherical power drop-off. In practice, area light sources create soft complex shadows 

and cause the apparent color of an object to change as it moves around the environment. 
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For example, targets further from the light sources appear darker and objects may create 

shadows on other objects. 

For each problem environment, 60 movies of 33 frames each were rendered. There are 

actually 66 images in each movie because two cameras are modeled in each frame. Each 

of the movies provide three tracking problems because each movie contains three objects 

that can act as either the true target or a false target. For example, in the Block World 

environments, the "A" block can be tracked in movie one, then the "C" block can be 

tracked in movie one, then the "T" block can be tracked in movie one. Using each movie to 

create three tracking problems provides 180 tracking problems in each of the three problem 

environments. Fifty of the movies, or 150 tracking problems, in each environment are used 

for training and some limited testing, while ten of the movies in each problem environment 

are withheld and used only for testing. 

Table 4.1: The limits for Block World One randomly generated object poses. The angle 
ip is the world-relative rotation of the target object, where zero is parallel to the negative 
z-axis. The * indicates the z coordinates of the "A" and "T" blocks must be the same as 
the "C" block. The randomly generated pose for each of these targets becomes the ground 
truth target object pose S     e. 

Target Object Pose Parameter Min Max 

"C" Block X -1.5 -1.5 

"C" Block Z 0 3 

"C" Block i> -60 60 

"A" Block X 0 0 

"A" Block z * * 

"A" Block r/> -60 60 

"T" Block X 1.5 1.5 

"T" Block z * * 

"T" Block V- -60 60 

4.1.3    Block World One Description 

Block World One contains the three alphabet blocks "A", "C", and "T" shown in Figure 

4.2.   To support random placement of the target objects while preventing occlusion, the 
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Figure 4.3: Backgrounds used for Block World Two. Only the first background (upper 
left) was used for Block World One. 

left block "C" is always at x=-1.5, the middle block "A" is always at x=0, and the right 

block "T" is always at .T=1.5. For each movie, all three blocks are placed at the same 

randomly generated z position between z=0 and z=3. In addition to translation, each of 

the blocks is randomly and independently rotated by plus or minus 60 degrees. These pose 

constraints prevent target object occlusion and ensure the target objects are always visible 

as the camera travels its predefined path. The randomly generated pose for each of these 

targets is the ground truth target object pose STrue. The range of world-relative target 

object poses in Block World One is shown in Table 4.1. 

4.1.4    Block World Two Description 

After running experiments in Block World One, I grew concerned that the filter might learn 

the background appearance or some property of the target object's location rather than 

learning to recognize the target. Block World Two is designed to provide greater variability 

in the background and relative locations of the target objects. 

Three changes were made to Block World One to create Block World Two. First, each 

target object is assigned an independently generated z location rather than assigning all the 
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Occlusion 

Figure 4.4: Testing for Occlusion. If camera-relative viewing angles for any of the objects 
overlap, as indicated with the middle "T" and right object "C", the set of target object 
poses is discarded. 

target objects the same randomly generated z location. Second, each block in Block World 

Two is assigned a random x value rather than a constant x value. As a result, each target 

block may appear on the left, middle, or right side of the image. Third, the background is 

randomly selected from the five backgrounds shown in Figure 4.3. 

To prevent the occlusion problems created by the additional variability of Block World 

Two, the camera-relative view angle for the extreme left and right edge of each object are 

compared, as shown in Figure 4.4. If, for example, the viewing angle to the extreme right 

side of the middle target object is greater than the viewing angle to the extreme left side 

of the right target object, either the left or middle object must be occluded. This random 

combination is discarded and another is generated. Only random combinations with no 

occlusion are used to render movies. The range of Block World Two target object poses is 

shown in Table 4.2. Typical images from Block World Two movies are shown in Figure 4.5. 

4.1.5    Toy World 

Toy World is very similar to Block World Two with one exception — the highly rectilinear 

alphabet blocks are replaced with curved objects — a stuffed cat, a pig riding on a cart, 

and Rubik's cube. These objects are shown in Figure 4.6. 
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Figure 4.5:    Typical images from the Block World Two problem environment. 

•^SMttji 

Figure 4.6:    Toy World target templates (pig, Rubik's cube, cat) 
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Table 4.2:     The limits for Block World Two and Toy World randomly generated object 
poses. Note, z is generated independently for each object. All coordinates are world-relative. 

Target Object Pose Parameter Min Max 

"C" Block X -2.5 2.5 

"C" Block Z 0 3 

"C" Block V> -60 60 

"A" Block X -2.5 2.5 

"A" Block z 0 3 

"A" Block $ -60 60 

"T" Block X -2.5 2.5 

"T" Block z 0 3 

"T" Block V -60 60 

As described later, in the implementation section, the Extended Condensation Filter 

implementation uses a simple two-dimensional target object model. There is nothing in 

the representational requirements of the Extended Condensation Filter that precludes the 

use of three-dimensional target objects models. Others have used standard Condensation 

Filters for tracking three-dimensional objects. It may be argued that tracking given a 

fully three-dimensional object model is easier than the problem considered in this thesis 

— a three-dimensional model provides more complete information about the target object. 

However, this hypothesis is not tested here. 

The Toy World problem environment is designed to investigate the problems created by 

the implementation's use of a single two-dimensional polygon to model three-dimensional 

objects projected into a six-dimensional world. Intuitively, the pig and the cat should 

be more challenging for the two-dimensional target projection used by the classification 

algorithms. Projecting the pig or cat images onto a single polygon, then rotating the 

polygon is not an accurate representation of the appearance of the three-dimensional object 

when rotated. The Rubik's cube target used in Toy World could be accurately represented 

by a two-dimensional polygon. However, as shown in Figure 4.6, the target template for the 

Rubik's cube has been made from an edge-on view, which is not a flat surface well modeled 

by a single polygon. 
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To provide a controlled experiment, the other aspects of Toy World, such as lighting, 

camera motion, and the range of object poses, are identical to Block World Two. Table 

4.2 shows the range of object pose parameters for both Block World Two and Toy World. 

Changing only one property of the problem domain permits the attribution of statistically 

different results to the change — a basic tenant of the controlled experiment. If more 

than one property were changed and different results were observed, additional experiments 

would be required to determine which change or combination of changes was the cause. 

4.2    Empirically Testable Hypotheses 

The research questions in Chapter 3 are too general to test directly. However, answers can 

be inferred from testable hypotheses based on the research questions. Each of the following 

sections restates one of the research questions, describes my expectations regarding the 

question, states a testable hypothesis based on these expectations, and describes the data 

and analysis required to test the hypothesis. 

4.2.1     Research Question: Discrimination 

Research Question How does the discrimination of the combined probability estimate 

compare to the discrimination of the probability estimate from each of the contributing 

experts? 

To perform target recognition, the experts must provide the extended condensation 

filter with probability estimates that discriminate between instances of the target pose 

S = <3Frue and non-target pose S / SFrue. This probability estimate is used by the filter to 

weight each particle, but it is independent of the filter's predict-weight-reproduce cycle. In 

other words, discrimination can be evaluated independently of the filter's weight-predict- 

reproduce cycle. Shortly, I will show the discrimination must be evaluated independently 

of the filter's operation. 

The probability estimates used to weight the particles represent a simple two-class clas- 

sification problem. The area under the ROC curve (AUC), described in Chapter 3, is a 

well established statistic for evaluating the discrimination of a system for two-class prob- 

lems [Swe64]. To claim improved classification, the discrimination provided by the particle 
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weights using all the experts should be greater than the discrimination using each contribut- 

ing expert individually. 

Hypothesis The AUC of the combined probability estimate is less than the AUC for the 

probability estimate using each contributing expert independently. 

Each expert provides an estimate of P(S = S^™6^), where Wi is one of the expert 

similarity measures described in the next section on implementation. For example, the 

render-match algorithm provides the correlation WRM between the projected target image 

MI EX and the unknown image It, where M is an affine transformation projecting the 

target model image to the particle pose S. The value WRM is used to look up the value 

P(S = §True\wRM)- This probability estimate is a discriminator, where higher values 

should indicate greater similarity between the target and unknown image. The discriminator 

P[S = SfTrue|-u;i) is evaluated using the AUC statistic. 

4.2.2    Research Question: Accuracy and Precision 

Research Question How does the accuracy and precision of the Extended Condensation 

Filter's combined pose estimate compare to the accuracy of the pose estimate from 

each of the contributing experts? 

In my Extended Condensation Filter implementation, a pose estimate is three- 

dimensional — two translation dimensions x and z, and one rotation dimension 0. The first 

part of this section describes the circular error probable (CEP) statistic commonly used 

to evaluate the accuracy and precision of pose estimates. Unfortunately, the basic CEP 

statistic can provide misleading results when the error in different dimensions is grossly 

different. The basic CEP statistic can also provide misleading results when the dimensions 

of estimates are dissimilar, such as rotation and translation. The second part of this section 

describes the scaled CEP statistic, which statistically normalizes the different dimensions 

of the estimate error. The scaled CEP statistic will be used in the next chapter to present 

accuracy and precision test results. 

4.2.2.1     Circular Error Probable (CEP) 

If the filter population consistently resembled a Gaussian, the mean and standard deviation 

of the error could be used to represent the accuracy and precision of the filter's estimate. 
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Unfortunately, as shown in Figure 4.8, the filter population may contain multiple well- 

separated clusters of points. Where a well-separated cluster is defined later in Section 4.2.5. 

When multiple clusters are present, the mean value may represent a pose that the filter 

does not support. 

The CEP statistic has several useful properties. First, CEP provides a single number 

that measures the error contained in multi-dimensional estimates. Second, CEP provides a 

single number that decreases in proportion to increasing accuracy and increasing precision. 

Third, it requires no assumption about the distribution of the estimate error. Each of these 

properties are addressed in this section. 

Even for multi-dimensional estimates, a single distance measure is used to compute the 

CEP. For example, the Euclidean distance 

y/(ST™ - Sxf + (Sjrue _ Sz)2 (zQ) 

can be used, where Sx
rue and Sjrue are the x and z components of the ground truth pose 

STrue, and sx and sz are the x and z components of a particle's pose estimate s. Additional 

dimensions, such as the vertical translation y, can easily be incorporated. 

Figure 4.7 illustrates the use of the CEP statistic. The diamonds in the figure show the 

pose estimate error for each particle. The radius of the large circle is the CEP and the circle 

is centered on the ground truth pose S. If more dimensions are used, the CEP becomes 

the radius of a sphere or hyper-sphere. Regardless of the number of dimensions, the CEP 

provides a single statistic where half the estimates fall inside the radius. 

CEP also provides a single number measuring both the accuracy and precision of the 

pose estimates. To illustrate how both accuracy and precision affect the CEP, consider the 

following examples. Figure 4.7 shows a case where poor accuracy creates the majority of 

the error. The cross in the upper-right portion of the figure shows the mean error lies near 

the CEP. If the variance of the estimates is decreased, the mean error would still lie near 

the circle and the CEP would not change significantly. Figure 4.8 shows a case where poor 

precision creates the majority of the error. In this case, the mean error is near the origin. 

Decreasing the variance of the entire population would significantly decrease the CEP. 

The ability of the CEP statistic to represent the combined effect of accuracy and pre- 

cision also obfuscates the role of each source of error. Other error statistics, such as the 

CEP about the median error can measure precision independently from accuracy. The me- 

dian error in each dimension can measure accuracy and precision independently in each 
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Figure 4.7:      CEP due primarily to poor accuracy.   The pose estimates are shown as 
diamonds. The cross represents the mean pose estimate error. 
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X (cross-range) Error 

Figure 4.8:      CEP due primarily to poor precision.   The pose estimates are shown as 
diamonds. The median pose error is shown as a cross. 
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dimension. However, using multiple statistics creates an interpretation problem when they 

disagree. Rather than create a comparison problem, I have elected to provide a single 

simple statistic measuring both accuracy and precision in all dimensions that requires no 

distribution assumption. Intuitively, the CEP simply represents a circle, sphere, or hyper- 

sphere which contains half of the estimates. The distribution of points is ignored with 

the assumption that moving the population of estimates closer to the estimate is always 

desirable. 

4.2.2.2     Scaled Circular Error Probable 

When a system provides estimates where the precision in one dimension is grossly different 

than the precision in another dimension, simple Euclidean distance can be misleading. 

For example, radars frequently provide less precise down-range estimates than cross-range 

estimates. As a result, the CEP for their estimates is dictated almost exclusively by down- 

range error and the basic CEP statistic fails to give credit to radars with lower cross-range 

error. 

The basic CEP statistic has a second problem. Estimates with dissimilar dimensions, 

such as rotation and translation cannot be computed using simple Euclidean distance. 

To combine rotation and translation dimensions of the estimate, the arbitrary units of 

measure, such as degrees, radians, or gradians, should not determine the importance of 

either dimension. If, for example, degrees are used to measure rotation, one degree of 

rotation would increase CEP in the same manner as one unit of translation. However, 

if radians are used, approximately 57 degrees (one radian) of rotation would be required 

to increase CEP in the same manner as one unit of translation. In addition, synthetic 

environments can be used to construct the same tracking problem at any scale, making the 

relationship between rotation and translation measurements arbitrary. 

Euclidean distance for dissimilar dimensions can be computed using the variance of 

the measurement in each dimension — commonly called the scaled Euclidean distance. A 

variation of this technique, which scales and rotates the measurement space, is called the 

Mahalanobis distance [DH73]. For this application, the three-dimensional scaled Euclidean 

distance is 

'(sz™ - sx)
2 + (5Tae - ^)2 + (sJrue -sjruer (42) 

°"z °z ae 
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where the values a2, a2, and o2
0 are variances in each dimension of the estimate error. The 

variance in each dimension is computed using all the pose estimates in all the experiments. 

Using a single set of variances derived from all the problems allows the results from different 

sub-sets of problems to be compared. When the CEP is computed using the scaled Euclidean 

distance in place of the Euclidean distance, I call the resulting statistic the scaled CEP. 

The scaled CEP, as compared to the CEP, introduces variance as the common unit 

of measure. In other words, distance is no longer measured in inches or degrees, like the 

original CEP statistic, but dimension-specific units of variance. Measuring error in units 

of variance addresses the problems of combining dimensions with grossly different levels of 

precision and combining dimensions with dissimilar units of measure. For example, given the 

two radars in the earlier example, consistently imprecise down-range estimates will create a 

large scaling factor and consistently precise cross-range estimates will create a small scaling 

factor. As a result, the scaled CEP is no longer dictated exclusively by down-range error 

and improved cross-range performance will be measurable. 

To claim improved accuracy and precision, the scaled CEP using a combination of ex- 

perts should be less than the scaled CEP using each of the contributing experts individually. 

Therefore, using the scaled CEP statistic, a relevant hypothesis for the research question is 

Hypothesis The scaled CEP for the Extended Condensation Filter's combined pose esti- 

mate is less than the scaled CEP using each contributing expert independently. 

The render-match algorithm provides an example of the data and analysis required to 

test this hypothesis. To compute the scaled CEP for the Extended Condensation Filter, 

using only the render-match expert, the filter is run using only the similarity score WRM and 

the corresponding probability estimate P(S = STrue\wRM) provided by the render-match 

algorithm. After the last frame of a movie, the pose estimates for all the particles in the 

filter are used to compute the scaled CEP. When the training problems are used, the scaled 

CEP is computed for each of the 150 trained tracking problem — 50 movies with three 

targets each. The resulting 150 scaled CEP values are used to compute the mean scaled 

CEP value for the entire problem set. This process is repeated for each of the remaining 

experts individually. Then the process is repeated for all experts combined. The hypothesis 

is supported if the mean scaled CEP for all experts combined is less than the mean scaled 

CEP for each individual expert. 
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4.2.3    Research Question: Generalization 

Research Question Does the Extended Condensation Filter's learning algorithm gener- 

alize sufficiently to support operation in new portions of the problem domain? 

The issue of generalization is commonly raised for systems that learn responses based 

on a set of training examples. Can the system perform as well on new (untrained) instances 

from the problem environment as it did on instances used during training — can the sys- 

tem generalize rather than memorize? As described earlier, only 150 of the 180 tracking 

problems in problem environment are used to train the filter. Assuming these problems 

are representative of the problem environment, the look-up tables the filter learned during 

training should be representative of the probabilities associated with a randomly generated 

set of movies not seen during training. 

Hypothesis When tested on untrained tracking problems, the scaled CEP for the Ex- 

tended Condensation Filter's combined pose estimate is less than the scaled CEP 

using each contributing expert independently. 

The same scaled CEP statistic used to evaluate the accuracy and precision of the filter when 

tested on the training problems is used to test the accuracy and precision of the filter when 

tested on the untrained problems. 

Because discrimination requires independent and identically distributed samples, the 

samples must be collected without running the Extended Condensation Filter — running 

the filter ensures samples are not independent and identically distributed. Building an 

accurate ROC curve requires a large number of estimates that hit the ground truth pose 

S = §True and a large number of estimates that miss the ground truth pose S ^ §True. As 

described in Chapter 4, this data is required to estimate the probability of a false positive 

and true positive given the similarity metric. The training algorithm is forced to provide a 

large number of each. However, when the filter operates, it quickly forms dense clusters of 

estimates. These clusters may be near the ground truth pose or far away from it. Therefore, 

when the filter operates, it may not provide the number of hit or miss estimates required 

to build an accurate ROC curve. For this reason, discrimination must be tested using the 

training algorithm, even though the results are not used to train the filter. 
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4.2.4 Research Question: Is Likelihood Sufficient? 

Research Question Is the weight for each particle required to be a probability estimate 

or, as Pearl indicates [Pea88], is relative likelihood sufficient? 

If likelihood is sufficient, the Extended Condensation Filter should still produce a result 

better than each of the individual contributing experts when the mean sum rule is used 

to combine expert estimates in place of the product rule. Using the mean sum rule, the 

discrimination, accuracy and precision using a combination of experts should still be better 

than the accuracy, discrimination, and precision using each expert independently. 

The conditioning, relevance, and causation provided by the formalism of the product 

rule can be useful for an object recognition system, but likelihood relationships may be 

sufficient for the Extended Condensation Filter. In other words, the simple statement, 

"pose §rrue is more likely to be at the pose S than any other pose", may be sufficient. This 

is true for search algorithms and, as discussed in Chapter 3, the Extended Condensation 

Filter is a search algorithm. If likelihood is sufficient, a large number of algorithms, in 

addition to the Bayesian product and mean sum rule, might support operation of the filter. 

Hypothesis Using the mean sum rule, the AUC of the combined probability estimate is 

less than the AUC of the probability estimate using each contributing expert inde- 

pendently. 

Hypothesis Using the mean sum rule, the scaled CEP for the Extended Condensation 

Filter combined pose estimate is less than the scaled CEP using each contributing 

expert independently. 

The data collection and analysis using the mean sum rule is identical to the evaluation 

of the discrimination, accuracy, and precision using the product rule, except the mean sum 

rule estimate of likelihood L(S\A0,..., AN) is used to compute the AUC. 

4.2.5 Research Question: Convergence 

Research Question What are the convergence properties of the filter population? Specif- 

ically, how common is a multi-mode distribution of filter particles? 

I have elected to test filter populations for the presence of a single cluster of particles 

for two reasons. First, the assumption is commonly used when extracting an estimate from 
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the filter. Second, if a single mode is commonly present in the filter, the extraction of an 

estimate is greatly simplified. 

If a single cluster of particles is present in the filter, a clustering algorithm should be 

able to reduce the population to a single cluster. However, a clustering algorithm requires a 

threshold to measure the similarity of two groups of points. The mean-deviation ratio test 

is a well-established statistic designed for this purpose [Mur85]. 

MLZM (4.3) 

where ß\ and \i2 are the mean values for two clusters and o\ and 02 are the standard 

deviations for two clusters. 

Hypothesis The entire population of the Extended Condensation Filter is reduceable to a 

single statistically similar cluster using a bottom-up hierarchical clustering algorithm. 

I use the bottom-up hierarchical clustering algorithm and the mean-deviation ratio test 

described above to count the number of clusters in the filter [DH73]. Once no clusters should 

be combined, based on the mean-deviation ratio test, hierarchical clustering stops and the 

number of clusters are counted. If the count is greater than one, statistically different 

clusters are present within the filter population. This test will be discussed again when the 

test results are presented in Chapter 5. 

4.3    Extended Condensation Filter Implementation 

An implementation of the theoretical models presented in Chapter 3 is required to sup- 

port empirical testing. Unfortunately, implementations are inherently myopic. Models, in 

theory, may accommodate an unlimited set of algorithms and parameter settings, but an 

implementation must select a finite set. In the case of the Extended Condensation Filter, 

only a finite set of recognition, classification, and feature extraction algorithms can be se- 

lected to provide expert estimates — by necessity, a far larger set of algorithms must be 

ignored. Each expert must also be operated using a single set of parameters. For example, 

an instance of the Canny edge extractor must operate with a single set of Tiow, T^igh, and a 

parameters and an instance of a color index algorithm must operate with a single histogram 

resolution. As a result, implementation of any complex theoretical model only provides 

information about one tiny portion of a model's potential. 
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Where possible, the implementation is designed to test the hypotheses, answer the re- 

search questions, and accommodate the problem environments. For example, rather than 

focusing on the absolute performance of the filter, which the next chapter shows is dramati- 

cally different depending on the experts selected, the research questions focus on maximizing 

the benefit of combining multiple sources. As a result, the implementation sets the param- 

eters of the various algorithms to commonly used values, then treats the performance of 

the recognition, classification, and feature extraction algorithms as a given. This allows me 

to focus on the improvement of the filter's fused estimate at the expensive of building the 

best object recognition system. 

The selection of the estimate combination operator is critical to my research questions. 

The product rule and mean sum rule discussed earlier, and alternatives, such as the maxi- 

mum rule or more sophisticated learning algorithms, such as the neural network or boosting, 

could each be used to combine the expert's probability estimates. The product, mean sum, 

and maximum rules are relatively simple and straight-forward to implement. However, as 

the numerous books and conference proceedings indicate, using a neural network or boost- 

ing creates yet another large set of implementation issues. Due to resource constraints and 

the desire to avoid even further implementation complexity, 1 have elected to implement 

two common and simple combination methods — the Bayesian product rule and mean sum 

rule. 

4.3.1    Experts: Contributing Sources 

Figure 4.9 illustrates the Extended Condensation Filter implementation used in the remain- 

der of this dissertation. As shown, the implementation uses five separate sources of object 

recognition information to weight each filter particle — one recognition algorithm, two fea- 

ture extraction algorithms, and two classifiers. These five experts represent the three basic 

structural types defined in Chapter 2. In addition, high-level and low-level, object-centered 

and viewer-centered, global and local, radiometric and geometric methods are represented. 

The next five sections describe each of these experts in detail. 

4.3.1.1     Recognition - Hausdorff-Huttenlocher 

As shown at the top of Figure 4.9, the first source of object recognition information is the 

Hausdorff-Huttenlocher geometric object recognition algorithm [HR92].   The Hausdorff- 
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Figure 4.9:    Implementation of the Extended Condensation Filter 
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Huttenlocher algorithm performs object recognition independently of the Extended Con- 

densation Filter. As a result, it provides its own independent pose estimate sHH. The 

Hausdorff-Huttenlocher algorithm uses the Hausdorff similarity measure to perform a pose 

space search for instances of the target object. The algorithm also uses Hausdorff specific 

heuristics to skip portions of the pose space. 

I use the Hausdorff-Huttenlocher algorithm for my implementation for three reasons. 

First, it provides a contrast with the other algorithms because it relies purely on the ge- 

ometric features of the problem environment. Second, it is fast. For my implementation, 

it only requires a few seconds to compute a pose estimate. Third, the algorithm performs 

object recognition, while the other algorithms perform only classification or feature extrac- 

tion. 

The edge features used by the Hausdorff-Huttenlocher algorithm are extracted from the 

target image and unknown images using the Canny edge detector with settings a = 3.0, 

TLOW = 0.6, Tuigh = 0.9 [Can86]. The target and input edge features are compared over 

the user specified range of scale and translation parameters to find the pose that maximizes 

the number of target and unknown image edge features within the user specified Hausdorff 

distance. Figure 4.10 illustrates how a range of scale and translation parameters correspond 

to a camera-relative wedge of pose space starting 1.6 units in front of the camera and 

extending 10 units from the camera. Searching only in scale and translation space makes 

this object recognition algorithm very sensitive to out-of-plane rotation. 

As described earlier, the Hausdorff distance is defined for each target image IEX edge 

feature as the distance to the nearest unknown image It edge feature. For my implementa- 

tion the computationally simple city-block distance is used to measure the distance between 

edge features. If the percentage of matched edge features is above the user specified mini- 

mum threshold, the translation and scale values with the maximum percentage of matching 

edge features are transformed to pose space to compute the target pose SHH- For this 

implementation I used a minimum threshold of 90% matching features. 

As implemented, the Hausdorff-Huttenlocher algorithm does not consider rotation of 

the object 6 on the ground-plane. Therefore, the minimum Hausdorff distance search takes 

place in (u, u, scale) space and the result is transformed into the (x, z) pose space. Ground 

rotation 9 is assumed to be zero for all Hausdorff-Huttenlocher estimates. In other words, 

every Hausdorff-Huttenlocher estimate is assumed to be facing directly toward the camera. 
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Figure 4.10: The Hausdorff scale and translation parameters correspond to a wedge of 
camera-relative pose space. The range of scale parameters define the wedge depth. The 
range of translation parameters define the wedge angle. 

The pose is compared to each particle pose in the filter and used to look-up the probabil- 

ity P(S = STrue\ \\S — SHH\\)- The probability is used to weight each Extended Condensation 

Filter particle. If no hypothesis with at least 90% matching edge features is identified for an 

unknown image It, the Hausdorff-Huttenlocher algorithm has no effect on the filter update 

cycle at time t. 

Exhaustively searching for the translation and scale parameters that provide the max- 

imum percentage of matching edge features is very time consuming. Huttenlocher's mod- 

ifications dramatically accelerate the search by estimating the effect of a portion of the 

translation-scale space on the match score [HR92]. For example, if 20% of the edge features 

for a given pose have a Hausdorff distance 10 pixels above the threshold, and 90% matching 

edge features are required to accept a pose, then any translation of the image less than 10 

pixels will fail to generate a target estimate. The search and associated measurement of 

the Hausdorff distance for pose space translations where \/(xnew — x)2 + (ynew — y)2 < 10 

can be skipped, where x and y are translation parameters and scale remains constant. 

Additional short-cuts are used to skip portions of the pose space and accelerate the search. 

The Hausdorff-Huttenlocher algorithm performs recognition, so it provides a pose es- 

timate SHH and similarity measure WJJH- For my implementation, only pose estimates 

where WHH > 0.9 (90% matching edge features) are used. The distance djjH between the 

particle pose S and the Hausdorff-Huttenlocher estimate SJJH has two components, the 

124 



distance in translation space y/(Sx - sHHx)2 + (Sz - sHHz)
2 and the distance in rotation 

space \\SO-SHHO\\- Both components of the distance dHH are used to lookup the probability 

P(S = STrue\dfiH) in a two-dimensional histogram, where the translation dimensions is di- 

vided into five discrete bins and the rotation dimension is divided into 20 discrete bins. The 

probability P(S = &rrue\dHH) is used to weight the particle during the filter population 

reproduction step. 

4.3.1.2     Classification - Render-Match 

Both the render-match and color index algorithms shown in the middle of Figure 4.9 are 

classification algorithms that have been incorporated into the Extended Condensation Filter 

using the render-match technique [SB01]. They both estimate the appearance of the target 

object by performing an affine transformation of the target image based on the particle pose 

S. In the Figure 4.9, the affine transformation matrix is labeled My and the transformed 

target image is labeled MTIEX- Using either algorithm, the similarity of the relevant 

portions of the transformed target image and the unknown image are compared. However, 

render-match and color index use different similarity metrics. 

The first classification algorithm, called render-match, compares the images using statis- 

tical pixel correlation — the Pearson correlation coefficient. I choose this similarity metric 

for two reasons. First, pixel correlation is a common and simple way to compare two images. 

Second, pixel correlation provides a contrast with the second classification algorithm, color 

index, because it relies on both geometric and radiometric image properties, while color 

index relies purely on radiometric properties. 

As described in the previous chapter, the render-match algorithm measures the similarity 

between the transformed target image and the unknown image. As shown in Figure 4.11, 

the target image IEX is mapped onto a polygon and the polygon is transformed based 

on the particle pose estimate S. For my implementation, OpenGL is given the estimated 

target object pose S and OpenGL renders the polygon containing the target image at that 

pose.5 Then pixel-level correlation is performed to compare the relevant RGB values in the 

transformed target image MIEX 
and the unknown image It and produce the render-match 

similarity measure. 

5Brian Paul's Mesa OpenGL 3.0 is used for my implementation. 
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Target Image (I T) Transformed 
Image (M IT) 

iin i 
■ ■-       HTI 

Unknown Image 

Figure 4.11: Implementation of the render-match algorithm using OpenGL. Note, the 
same process is used to implement the color index algorithm, except "Pixel Correlation" is 
replaced with "Color Index." 

To accommodate target objects that do not fit neatly on a rectangular polygon, a binary 

image identifying the relevant target pixels is used as a mask, as shown in Figure 4.11. The 

target image mask pixels are set to true, if the corresponding pixel in the target image 

should be included in the correlation computation. As shown in Figure 4.11, the binary 

mask is transformed using OpenGL and the same particle pose S used to transform the 

target image. Only the pixels in the unknown image and transformed target image that 

correspond to the white (true) pixels in the mask are compared. 

Despite the use of OpenGL, rendering the target image at each point in pose space 

is time consuming in my implementation. The mean run times shown later in Figure 

5.19 on page 184 show the classifiers consume over 90% of the wall-clock time per filter 

iteration. However, rendering the target image is only performed once regardless of the 

number of classification algorithms used in an implementation. Also, commodity video 

hardware is available to dramatically accelerate OpenGL library calls, but is not used for 

my implementation. 

The result of the render-match classification algorithm is the correlation value WRM 

for each particle pose S. The correlation value is used to look-up the probability P(S = 

STrue\wRM) in a one-dimensional histogram composed of 20 discrete bins. The probability 

is used to weight the filter particles for reproduction. 
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4.3.1.3     Classification - Color Index 

The color index similarity metric was originally designed by Swain to compare the color 

content of two images and support visual database queries [SB91]. Intuitively, color index 

answers the question, "Are the unknown image's colors similar to the target image's colors?" 

My application of the Color Index algorithm compares the color content of the transformed 

target MI EX and unknown images using a process similar to that shown in Figure 4.11 

— the only difference is the similarity metric. In fact, to speed-up the weighting of each 

particle, the transformed target and mask images created for the render-match classifier are 

used for the color index classifier. 

I use color index as a classifier for two reasons. First, color index provides a second 

classifier that can be compared to the pixel-correlation used by render-match. Second, color 

index provides a contrast to the render-match classifier because it is entirely dependent on 

the color content of the problem environment. 

Using the transformed target image and mask created for the render-match classifier, 

the color index is computed for the portions of the target and unknown images identified 

by the transformed target mask 

n.r, Efe(o,i6) EG=(o,i6) EB=(Q,16) rnin{HT{[R}[G}[B]),HR{[R]{G][B})) 

PixelGountR 

where HR is the RGB histogram for the applicable region of the unknown image, HT is the 

RGB histogram for the applicable region of the transformed target, and PixelCountR is 

the total number of true pixels in the target image mask after transformation. Each of the 

histograms is a three-dimensional 16x16x16 discrete histogram of RGB values. Note, the 

two histograms are created dynamically using just the pixels indicated by the binary mask. 

Therefore, both histograms have the same number of total entries. Using my implementa- 

tion's 16x16x16 histogram quantization (4096 bins), a pixel with the RGB values 123, 200, 

75 adds one count to the histogram bin [7] [12] [4] — 123 mod 16 is 7, 200 mod 16 is 12, and 

75 mod 16 is 4. 

The result of the color index classification algorithm is the normalized color index score 

wci, where 1.0 is a perfect match in color space. The color index is used to look-up the 

probability P(S = STrue\wci) in a one-dimensional histogram composed of 20 discrete bins. 

The probability is used to weight the filter particles for reproduction. 
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4.3.1.4    Low-Level Feature - Stereo Disparity 

Stereo disparity does not perform object recognition or classification — it merely identifies 

range features. In fact, Figure 4.9 shows the stereo disparity algorithm knows nothing about 

the target object. I use stereo disparity in my implementation for two reasons. First, it does 

not require a new sensor model, such as radar or sonar would, to simulate range feature 

extraction. Stereo disparity only requires a second camera model. Second, range features 

provide an entirely different type of feature than any of the other algorithms. 

One of the recurring problems for stereo disparity is quickly and accurately identifying 

good candidate features for measuring the disparity between two images — what Duda and 

Hart call the correspondence problem [DH73, TV98]. My implementation uses a three step 

process to identify candidate features and measure stereo disparity. 

First, a 3x3 horizontal derivative kernel is run over the left and right images. Pixel groups 

with a total derivative less than the threshold are eliminated from further consideration. 

This step is good at eliminating large uniform areas of the image that make poor candidate 

features. Unfortunately, it can also eliminate very small uniform areas that make good 

candidate features. 

Second, each remaining candidate feature in the right image is compared to each remain- 

ing candidate feature in the left image, but only within the horopter. The line from the left 

sensor to the matching feature on the left image plane defines the left epipolar line. The 

line from the right sensor to the matching feature on the right image plane defines the right 

epipolar line. The point where these two lines intersect is the epipole — the estimated pose 

of the feature in three-dimensional space. The horopter defines the maximum disparity, or 

distance in pixels, between the point where the left epipolar line intersects the left image 

plane and right epipolar line intersects the right image plane. 

The horopter defines a maximum and minimum displacement horizontally and vertically 

in the left image relative to a pixel in the right image. For example, using a horopter of 

width 10 and height 4, a feature in the right image centered at (u = 20, i> = 30) creates 

a horopter in the left image with upper left corner at (u — 10, v = 32) and lower right 

corner at (u = 20, v = 28). Note the horopter is always to the left of the candidate feature's 

position because the matching feature in the left image must be to the left of the feature 

in the right image. You can test this assumption by closing your left eye, then lining up a 

128 



close and distant object.   Quickly closing your right eye and opening your left eye causes 

the distant object to jump to the left relative to the close object. 

The size of the horopter limits the maximum and minimum displacement the stereo 

disparity filter can measure — the left epipolar line cannot lie outside the horopter. As a 

direct consequence, the horopter also limits the maximum and minimum depth the imple- 

mentation can measure. The maximum and minimum can be increased, but the resolution 

and size of the image impose practical limitations. Features that are too far away are not 

clearly distinguishable and features that are too close have disparity values exceeding the 

width of the image. Larger horopters also require more search. 

You can play with different horopters using the previous eye closing and opening tech- 

nique. Close your left eye and line up the same close and distant objects. Put your hands 

up to create a frame for the objects. When you close your right eye and open your left, the 

distant object may jump outside of the frame. If it does, your "algorithm" uses too small a 

horopter to measure this disparity. You can increase or decrease the distance between your 

hands to experiment with different horopters. 

The horopter also constrains the location of target objects in the problem environment. 

If objects are too close or too far, they fall outside the horopter and stereo disparity fails. 

If an object is present in the right image but jumps outside the left image, stereo disparity 

fails. The target pose constraints listed in Table 4.1 on page 106 and Table 4.2 on page 110 

are designed to minimize this problem. 

Finally, pairs of features with correlation above a minimum threshold are used to com- 

pute the range estimates, as described in Chapter 2. Only one-to-one correspondences are 

allowed between features. These features are stored in a two-dimensional (x, z) array. Each 

particle S in the filter is compared to every stereo disparity feature in the array to find 

the minimum distance to a disparity feature for each particle. The particle's minimum 

distance is used to look-up the probability P(S = ^""^SD) in a one-dimensional his- 

togram composed of 16 discrete bins. The probability is used to weight the filter particles 

for reproduction. 

4.3.1.5     Low-Level Feature - Color Histogram Back-Projection 

My color histogram back-projection implementation, or back-projection for short, is based 

on Swain's color index [SB91] and suggestions from Bruce Draper. Back-projection is dif- 
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Figure 4.12: Target image IEX used 
for the Color Histogram Back-Projection 
example. 

Figure 4.13: Unknown image It used 
for the Color Histogram Back-Projection 
example. 

ferent from the color index algorithm because it compares each unknown image pixel to 

the entire target image rather than comparing image to image — back-projection classifies 

pixels, while color index classifies images. Intuitively, color histogram back-projection an- 

swers the question, "Is this unknown pixel's RGB value present in the target image?" If the 

answer is yes, a new back-projection feature vector fsp is created at the pixel's location. 

I use back-projection in my implementation for two reasons. First, it provides a low-level 

feature that is very different from stereo disparity. Back-projection features are dependent 

on the target image, while stereo disparity features are not. Back-projection features are 

represented on the (u,v) image plane, while stereo disparity features are represented in 

(x,z) pose space. Second, back-projection runs very quickly, requiring only one or two 

tenths of a second per filter update for my implementation. 

The back-projection algorithm computes a three-dimensional color histogram for the 

target image and each unknown image. The RGB content of the image forms each of the 

dimensions of a three-dimensional 16x16x16 histogram. A ratio histogram is computed from 

a target image histogram and each unknown image histogram using 

H f\m\n\m) - mivu H
EX([R][G\[B}) HR([R][G][B}) - m.n(l,   Ht{[R][G][B]) (4.5) 

where HEX 
1S a target image histogram that always contains 320x240 entries and Ht is 

the input image histogram that always contains 320x240 entries — 320x240 is the standard 

image size throughout the implementation. An example target and unknown image are 

shown in Figures 4.12 and 4.13. If the ratio is greater than one, the ratio histogram is set 
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Figure 4.14: Typical features (white 
pixels) identified by Color Histogram 
Back-Projection. Note the large number 
of extraneous features above the blocks. 

Figure 4.15: Typical Color Histogram 
Back-Projection results after 5x5 median 
filter is applied. Note the the region of 
extraneous features remaining above the 
middle block. 

to one. After computing the ratio histogram, the unknown image pixel values are used as 

indices into the ratio histogram and every pixel value is replaced with its corresponding ratio 

histogram value. If the ratio histogram value is one, the pixel is set to true — the unknown 

image pixel is assumed to be part of the target image. If the value is less than one, the pixel 

is set to false — not part of the image. The result is a binary image identifying matching 

pixels as shown in Figure 4.14. A median filter is run over the binary image to eliminate 

isolated pixels, as shown in Figure 4.15. Each true pixel becomes a back-projection feature 

vector fBp. Reducing the entire target image to an array of 4096 integers combined with a 

single pass through the unknown image makes the back-projection algorithm the least time 

consuming source of information. 

Once the back-projection features are identified, each particle's pose S is projected 

onto the camera view plane and compared to every back-projection feature to find the 

minimum distance dpp to a back-projection feature. This process is shown in Figure 4.9. 

The particle's minimum distance is used to look-up the probability P(S = 5rrue|c?Bp) in a 

one-dimensional histogram composed of 16 discrete bins. The probability is used to weight 

the filter particles for reproduction. 

4.3.2     Combining Expert Estimates 

Once each source of object recognition information, or expert, has provided the similarity 

measure Wi, the corresponding learned probability data is retrieved from the look-up tables 
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and combined to weight each particle. As shown in Figure 4.9, obtaining each expert's 

probability estimate is part of the larger Extended Condensation Filter update cycle — the 

large vertical loop on the right side of the figure. 

The probabilities from each expert are used differently depending on the combination 

rule employed. If the product rule is used, each weight A,, obtained from the five sources, 

is used to look up the probabilities P(Ai\S = S) and P(Aj). The probabilities are used to 

compute the ratio 

P(&i\S = STrue) 

and the combined probability is multiplied by each expert's ratio in turn 

(4.6) 

P(S = STrue\A0, ...,AN) = P(S = STrue) ß P(Atl^~fr"e) (4-7) 
i=i P\Ai) 

where each of the (Ao,..., Ajv) estimates correspond to the color histogram back-projection, 

color index, Hausdorff-Huttenlocher, render-match, and stereo disparity algorithm. 

If the mean sum rule is used, these same probabilities are used to compute the probability 

estimate 

then the individual estimates are averaged 

£ P{S = STrue\Ai) 
L(S = STrue\&o, ...,AN) = ^  (4.9) 

It is possible for the Extended Condensation Filter to encounter conditions different from 

any condition observed during training. In these conditions, it is possible for an expert to 

generate a similarity measure Aj that was not observed during training. If this happens, the 

probabilities associated with the new measures are unknown and the look-up table value 

for P(Ai) is zero. In this case, the ratio 

P(At]S = S^n 

is undefined. In this case, the expert is eliminated from the combined product or mean sum 

rule estimate because the expert's lack of information prevents an informed estimate. 
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4.3.3    Particle Reproduction 

Once each of the 200 particles contained in the Extended Condensation Filter implementa- 

tion is assigned a single combined estimate of the probability P(S = S rue\A0,..., AN) or 

L(S = S?True|Ao, ■ • •, AJV), weighted random reproduction is performed. 

During the particle weighting step, the total weight of all the particles in the population 

is computed. This total weight is used to generate a uniform random number between 0 and 

the total weight. This random number is used to perform a binary search in the population 

for a specific member of the filter population. This is similar to a lottery selection where a 

population member with a larger number of tickets has a greater chance of selection. In the 

case of my implementation, particles with larger weights occupy more of the total range of 

random numbers, so they have a greater chance of selection. Binary search is an efficient 

match with this data structure, finding the randomly selected population particle in the 

typical 0(log2(-/V)) time associated with binary search. 

4.3.4     Prediction 

The next step in the filter update cycle, prediction, moves the particles according to the 

motion model. In all of the problem environments the camera motion is known. One might 

mistakenly assume adding uncertainty to particle positions is not required. However, motion 

uncertainty acts like mutation in an evolution strategy. If no uncertainty is added to the 

model, the population converges to a single minima, as defined by the mean-deviation ratio 

earlier, and never explores other portions of the pose space. 

For my implementation, I apply the following camera motion model to predict the next 

location of each particle 

Gaussian(0,1) 

vz + Gaussian(0,1) (4-11) 

Gaussian(0,1) 

where p is the camera ground-plane rotation about the y-axis, or "yaw" in aircraft termi- 

nology. This motion model simply represents the camera moving forward into the scene 

along the z-axis with no rotation. 

r                   -| 

Xi + l X{ 

Zi+l = Zi + 

. pl+l . _ Pi  _ 
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Figure 4.16:    Implementation of the learning algorithm. The portion of the implementa- 
tion shown in gray is identical to the filter. 
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4.3.5    Learning the Probability Estimates 

Implementation of the software required to build the look-up tables is very similar to the 

Extended Condensation Filter implementation. Figure 4.16 shows only two changes are 

required to turn my implementation of the Extended Condensation Filter into an imple- 

mentation of the learning algorithm. The filter's prediction step is replaced with a uniform 

random initialization step and the reproduction step is replaced with the collection of the 

particle weights into two histograms. The simplicity of these modifications is a real advan- 

tage, in terms of implementation, for the Extended Condensation Filter. 

As described in Chapter 3, two training phases are required to efficiently collect the data 

to build accurate probability look-up tables. The fundamental steps shown in Figure 4.16 

are the same for both phases of the learning implementation, only the random initialization 

phase changes. Either the entire pose space is sampled or the pose space near the ground 

truth where S = STrue is sampled. As discussed in Chapter 3, the two phase sampling pro- 

cess dramatically improves the probability estimate while reducing the number of samples 

required. In either phase, the steps are uniform random initialization, particle weighting, 

hit or miss evaluation (only required when sampling the entire pose space), and tallying the 

instances of the particle weights in the appropriate histogram. 

4.4    Implementation Questions 

The research questions posed at the end of Chapter 3 address general properties of the 

Extended Condensation Filter. My implementation of the Extended Condensation Filter 

suggests additional questions. Unfortunately, only a few of the most interesting questions 

can be adequately investigated due to resource constraints. This section describes two im- 

plementation specific questions and a corresponding set of empirically testable hypotheses. 

4.4.1     Implementation Question: Two-Dimensional Target Model 

Implementation Question Does the Extended Condensation Filter implementation de- 

grade gracefully in the presence of objects with geometry poorly modeled by a single 

polygon? 

To accommodate classification algorithms, the general Extended Condensation Filter 

requires the projection of a target model into pose space. My implementation of this process 
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using a single polygon is illustrated in Figure 4.11. However, any model compatible with 

projection into pose space could be used. For example, a high-resolution three-dimensional 

geometric model accompanied by multi-spectral surface textures would provide a compatible 

and powerful model for the Extended Condensation Filter. 

Due to limited resources, I use a single polygon to represent my target objects. My 

model is composed of a target image mapped onto a single polygon, a mask image mapped 

onto a single polygon, and the associated camera parameters. This simple model creates 

increasing error as a function of out-of-plane rotation, especially for objects with geometry 

that is not well represented by a single polygon. 

The nearly two-dimensional target views used in Block World One and Block World 

Two are ideally suited to a model using only a single polygon. However, the pig, Rubik's 

cube, and cat targets used in Toy World are poorly suited to a single polygon model. The 

pig's curved geometry and self-occlusion create modeling error. The edge-on view of the 

Rubik's cube creates modeling error due to the two cube faces receding into the image. The 

cat's curved geometry and self-occlusion create modeling error. 

Modeling error created by the application of the single polygon model in Toy World 

should not cause the Extended Condensation Filter to fail. The use of other experts that 

do not rely on the polygonal model and the process of learning the inaccuracies associated 

with the modeling process should allow the filter to degrade gracefully. In other words, the 

filter's combined estimate should still be more discriminating, accurate, and precise than 

any of the contributing expert estimates despite the errors created by the single polygon 

target model. 

Hypothesis Within Toy World, the AUC for the Extended Condensation Filter's combined 

probability estimate is less than the AUC for the probability estimate using each 

contributing expert independently. 

Hypothesis Within Toy World, the scaled CEP for the Extended Condensation Filter 

combined pose estimate is less than the scaled CEP using each contributing expert 

independently. 

Using probability and pose estimate data from Toy World, the discrimination, accuracy, 

and precision are evaluated using the same AUC and scaled CEP statistics described earlier. 
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4.4.2    Implementation Question: Importance of Color 

Implementation Question Does color provide the best source of discrimination in the 

synthetic problem environments? 

Block World One, Block World Two, and Toy World are very colorful. Given these 

problem environments, color may provide the best way to discriminate between the target 

object and non-target objects. The algorithms which are highly dependent on color, such 

as color index and color histogram back-projection, should have a clear advantage, if color 

provides the best discrimination. Algorithms which take less advantage of color, such as 

Hausdorff-Huttenlocher and stereo-disparity should be at a disadvantage. If color provides 

the best form of discrimination, the evaluation statistics should indicate better performance 

by the algorithms that rely on color. 

Hypothesis The AUC for the color histogram and back-projection algorithms is less than 

the AUC for the Hausdorff-Huttenlocher and stereo disparity algorithms. 

Hypothesis The scaled CEP for the color histogram and back-projection algorithms is less 

than the scaled CEP for the Hausdorff-Huttenlocher and stereo disparity algorithms. 

The data required to test these hypotheses is identical to the previous evaluations of 

discrimination, accuracy, and precision. However, the analysis will compare the AUC and 

scaled CEP statistics of individual experts. 

4.5    Summary 

In the process of building a bridge between theory and empirical testing, this chapter has 

assembled a set of tools. Block World One, Block World Two, and Toy World provide eas- 

ily controlled and examined test environments, the hypotheses provide focused statements 

and data collection goals designed to support answers to the research questions, and the 

Extended Condensation Filter implementation provides a functional test article for exper- 

imentation. The next chapter shows the results of employing the filter implementation in 

the problem environments with the goal of testing the hypotheses and, as a result, shedding 

light on the research and implementation questions. 
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Chapter 5 

Results 

This chapter puts the Extended Condensation Filter to the test. Specifically, the implemen- 

tation described in Chapter 4 is tested using 540 random problems from the three problem 

environments described in Chapter 4. The analysis of the test results indicates, with only 

a few limited and predictable exceptions, that the Extended Condensation Filter, using the 

Bayesian product rule, provides greater accuracy and precision than any of the contributing 

experts. The results also indicate the mean sum rule generally provides better discrimina- 

tion than the Bayesian product rule, while it fails to consistently provide better accuracy 

and precision. 

This chapter is organized around the research questions and hypotheses in the previous 

chapter. However, some of the research questions and hypotheses use the same data and 

require similar analysis. To reduce repetition, I have grouped the results and analysis into 

six sections: product rule discrimination, product rule accuracy on the training problems, 

mean sum rule accuracy on the untrained problems, mean sum rule discrimination, mean 

sum rule accuracy on the untrained problems, and convergence. 

Table 5.1 makes the relationship between the sections in the previous chapter and this 

chapter explicit. Each row represents a section from this chapter and each column represent 

a section from Chapter 4. From left to right, the columns are: discrimination and accuracy 

and precision, generalization from training, the sufficiency of likelihood, convergence, two- 

dimensional model, and sufficiency of color. In the rows, "trained" indicates the 450 training 

problems are used, "untrained" indicates the 90 problems withheld from training are used, 

I! indicates the Bayesian product rule is used, E indicates the mean sum rule is used, 

and "Cluster Test" indicates the bottom-up hierarchical clustering test is used.   An "X" 
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Table 5.1:     Relationship between the results in this chapter (rows) and the questions in 
Chapter 4 (columns). The column and row headings are described in the text. 

Chapter 4: Questions 

Discrim. Accuracy Gen. Like. Converg. 2D Color 

Section 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.4.1 4.4.2 

Discrim., 5.1.1 X X X X 

untrained, 5.1.2 X X X 

IT rule 5.1.4 X X 

Accuracy, 5.2.1 X X X 

trained, 5.2.2 X 

en 

3 
to 
0) 

IT rule X X 

Accuracy, 5.2.3 X X X X 

rt untrained, 

0) 
IT rule 

Discrim., 5.3.1 X X X X X 
J3 
U untrained, 

S rule 

X 

X 

Accuracy, 5.3.2 X X X X X 

untrained, 

S rule 

Cluster 5.4.1 X 

Test 5.4.3 X 

indicates the data in the section from this chapter is relevant to the corresponding section 

in Chapter 4. 

The 540 tracking problems containing 17,820 distinct movie frames are used to gener- 

ate 33,264,000 pose estimates, excluding pose estimates generated during training. This 

large set of data can be partitioned in many ways and each partitioning provides different 

insight to the filter's performance. For example, probability estimates for all the frames of 

each tracking problem can be used to create 540 ROC curves and 540 corresponding AUC 

estimates. This tracking problem partitioning tests discrimination in response to different 

target objects in different environments. Results reported later show the filter responds 

very differently to different problem environments and targets. Alternatively, probability 

estimates from each of the 33 frames across all 540 tracking problems can be used to create 
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33 ROC curves and 33 corresponding AUC estimates. This frame partitioning compares 

discrimination when the camera is at different locations relative to the target objects. 

Different data partitions also test slightly different versions of the hypotheses presented 

in the previous chapter. For example, the following hypothesis was originally posed in 

Chapter 4: 

Hypothesis The AUC of the combined probability estimate is less than the AUC for the 

probability estimate using each contributing expert independently. 

This hypothesis can be tested using different partitionings of the data. For example, using 

the hypothesis: 

Variation One For all the tracking problems in the three problem domains, the AUC of 

the combined probability estimate is on average less than the AUC using each expert 

independently. 

This variant tests the original hypothesis using all the frames in each of the tracking prob- 

lems. The original hypothesis can also be tested using all the estimates from a single frame 

using this hypothesis: 

Variation Two For all the camera positions, the AUC of the combined probability esti- 

mate is less than the AUC using each expert independently. 

These variants of the hypotheses can be illuminating, but an exhaustive report on all 

possible variants would be just that: exhausting. During my examination of the differ- 

ent data partitions, I used combinations of six different parameters: experts used, training 

problems versus untrained problems, environment, movie, target, and frame. To provide a 

general understanding of all the results, while avoiding pages and pages of tables, I provide 

a single representative partitioning of the data for each topic, then highlight especially illus- 

trative results or any anomalous results discovered in the remaining partitions. Where an 

anomaly occurs, I present more detailed results to explore possible reasons for the anomaly. 

For example, in the first section I show improved discrimination using a tracking problem 

partitioning. Then an anomaly in a different partitioning of the results is identified and 

explored in detail. 

A primary issue in machine learning is the ability of a system to generalize to new 

instances of a problem, rather than memorize a set of responses [Mit97, SB98].   For this 
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reason, this chapter focuses on the untrained problems. This chapter also focuses on the 

untrained problems because testing all 450 of the less interesting training problems requires 

far more computer resources than testing only the 90 untrained problems. For these reasons, 

the accuracy of only one combination of experts is tested using the training problems while 

31 combinations are tested using the untrained problems. In addition, the accuracy of the 

mean sum rule is only tested using the untrained problems. 

5.1    Discrimination 

This section looks at the discrimination provided by the Extended Condensation Filter 

using the Bayesian product rule. Discrimination is not a property of the Extended Con- 

densation Filter, but a property of the information provided by the experts, learning the 

conditional target pose probability estimate P(S = STrue\A), and the expert combination 

rule. Therefore, it is not necessary to run the Extended Condensation Filter to measure the 

AUC and evaluate discrimination. In fact, normal operation of the filter prevents collection 

of the data need to compute the AUC. 

Discrimination cannot be tested using particle data from normal filter operation. Build- 

ing an accurate ROC curve requires a large number of estimates that hit the ground truth 

pose S = STrue and a large number of estimates that miss the ground truth pose S / STrue_ 

As described in Chapter 4, both the hit and miss data are required to estimate the proba- 

bility of a false positive and true positive given the similarity metric. To populate the two 

histograms, a large number of each type of sample must be recorded. However, when the 

filter operates, the filter quickly forms dense clusters of estimates. These clusters may be 

near the ground truth pose or far away from it. Therefore, when the filter operates, it may 

not provide the number of hit or miss estimates required to build an accurate ROC curve. 

For this reason all the discrimination results are always derived by running the filter in the 

training mode described in Chapter 3. Although the training algorithm is run on the 90 

untrained tracking problems to collect the data needed to test discrimination, the data is 

not used to build the look-up tables — this prevents testing on the training data. 

There are 31 possible combinations of experts tested in this chapter. There are 31 

combinations because each expert can either be used or not used — providing a power set 

of 25 possible combinations. However, the combination of no experts is not reported because 
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it provides no discrimination — an AUC of 0.5. Both no experts and a perfect expert were 

used to verify the data collection and analysis process. Each of the 31 comparisons uses the 

AUC obtained when the conditional probability estimate P(S = 5rrue|A0 ... AN) is used 

to discriminate between target poses S = S1*™6 and non-target poses S / 5frrMe
) where 

A0 ... Ayv represents one combination of information sources from the 31 combinations of 

experts. Each mean AUC reported in this section is derived by taking the mean value of 

the 90 untrained tracking problem AUC values. 

The results in this section support the following hypothesis originally posed in Section 

4.2.1: 

Hypothesis The AUC for the combined estimate is less than the AUC for the estimate 

using each expert independently. 

Only one exception is noted. The exception occurs when the independence assumption used 

to derive the Bayesian product rule is violated. 

5.1.1    Discrimination by Tracking Problem 

Table 5.2 compares the discrimination of the individual experts to all possible combinations 

of experts using the 90 untrained problems. The first two rows list each of the five individual 

experts and the discrimination (AUC) they provide. The first two columns list all 31 possible 

combinations of experts and the discrimination they provide. The middle of the table tests 

the statistical significance of the difference between the row and the column. 

The first five rows of results, before the double line, compare the discrimination of 

individual experts. Note, the first five rows of the table are symmetric along the diagonal. 

As described in Chapter 4, the AUC measures the discrimination on a scale from 0 to 0.5, 

where 0 is perfect discrimination and 0.5 is no discrimination. Table 5.2 uses a tracking 

problem partitioning, where each mean AUC value represents the average discrimination 

across all 90 untrained problems. Each expert is run on each of the 90 untrained problems. 

As described in Chapter 4, all the particle weights collected in all 33 frames of each tracking 

problem are used to build a non-target and target distribution. These two distributions are 

used to compute an AUC value. These 90 AUC values are used to compute the mean AUC 

shown in the second row and second column of the table. As a result, the mean AUC values 

in Table 5.2 are a very broad representation of discrimination that includes all the untrained 

problems in all the problem domains. 
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The rest of the table compares a combination of two or more experts to each of the 

contributing experts. To estimate the AUC for a combination of two or more experts, the 

probability estimate is computed using the Bayesian product rule, then the AUC is com- 

puted using the new combined conditional probability estimate. For example, to estimate 

the probability P(S = §rrue) conditioned on both back-projection (BP) and color index 

(CI), the Bayesian product rule yields 

PiS = *->„,«„,) = ^^»^-f^W-^)    (M) 
P{WBP)P{wci) 

This combined probability estimate is used, just like the individual experts, to build an 

ROC curve and estimate the AUC. For example, the eighth row in Table 5.2 shows the 

discrimination using color histogram back-projection and color index combined (BP, CI) is 

0.2018. The column for color histogram back-projection (BP) alone shows a discrimination 

of 0.2872 and color index (CI) alone shows a discrimination of 0.2365. The combined 

discrimination is better than each contributing expert. 

The middle section of the table indicates the statistical significance of the difference 

between the mean AUC value in the row and the mean AUC value in the column. A * 

indicates none of the non-parametric paired sample trials, as described in Appendix C, 

provided a negative mean difference. Since the non-parametric test uses 1,000 trials, a * 

means the individual confidence level is greater than 99.9% that the two values do not 

represent a distribution with the same mean value. The paired sample test and Bonferoni 

adjustment are described in Appendix C. When the column-row intersection is blank, the 

comparison is irrelevant. 

The results in Table 5.2 support several observations. First, only in the case of color in- 

dex (CI) and Hausdorff-Huttenlocher (HH), where the individual confidence level is 77.9%, 

is the difference between two combinations statistically ambiguous. Second, the results indi- 

cate stereo disparity is far more discriminating than any other expert — a surprising result 

considering stereo disparity knows nothing about the target object. Hausdorff-Huttenlocher 

appears to be the least discriminating. However, frame partitioning of the results in the 

next section shows the Hausdorff-Huttenlocher expert is far more discriminating when the 

camera moves closer to the target object. Third, every combination of experts appears to 

be more discriminating than each of the contributing experts. 

Figure 5.1 provides a different view of the results shown in Table 5.2. Rather than 

comparing the performance of each combination of experts to the individual experts, Fig- 
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ure 5.1 highlights the relative performance of various combinations of experts. The figure 

supports two observations. First, the stereo disparity expert dominates all the combina- 

tions of experts. Every combination that includes stereo disparity is always several times 

better than any combination that does not include stereo disparity. Second, simply adding 

another expert to a combination does not necessarily improve performance. This point will 

be discussed again later in this section. Figure 5.1 will be used again later when comparing 

the discrimination provided by the Bayesian product rule to the discrimination provided by 

the mean sum rule. 

5.1.2    Discrimination by Frame 

The previous section examined discrimination using a tracking problem partitioning. This 

section examines discrimination using a frame partitioning. Rather than compute an AUC 

using all the estimates associated with a tracking problem, this section computes an AUC 

using all the estimates for only one of the 33 frames — each AUC is composed of estimates 

across multiple tracking problems. In general, the results confirm the increased discrimi- 

nation observed in the previous section and, more importantly, illustrate one way experts 

interact to improve discrimination. 
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Table 5.2: Discrimination provided by all the expert combinations. The experts are 
back-projection (BP), color index (CI), Hausdorff-Huttenlocher (HH), render-match (RM), 
and stereo disparity (SD). 

Expert(s) BP CI HH RM SD 

Mean AUC 0.2872 0.2365 0.2911 0.2752 0.06855 

BP 0.2872 n/a * 77.9% * * 

CI 0.2365 n/a * * * 

HH 0.2911 n/a * * 

RM 0.2752 n/a * 

SD 0.06855 n/a 

BP, CI 0.2018 * 99.8% 

BP HH 0.1589 * * 

BP, RM 0.2208 * * 

BP, SD 0.05345 * * 

CI, HH 0.1581 * * 

CI, RM 0.2144 * * 

CI, SD 0.05511 * * 

HH, RM 0.1791 * * 

HH, SD 0.05450 * * 

RM, SD 0.05579 * * 

BP, CI, HH 0.1312 * * * 

BP, CI, RM 0.1863 * * * 

BP, CI, SD 0.04894 * * * 

BP, HH, RM 0.1381 * * * 

BP, HH, SD 0.04193 * * * 

BP, RM, SD 0.04879 * * * 

CI, HH, RM 0.1508 * * * 

CI, HH, SD 0.04504 * * * 

CI, RM, SD 0.05604 * * * 

HH, RM, SD 0.04525 * * * 

BP, CI, HH, RM 0.1280 * * * * 

BP, CI, HH, SD 0.03920 * * * * 

BP, CI, RM, SD 0.04982 * * * * 

BP, HH, RM, SD 0.03894 * * * * 

CI, HH, RM, SD 0.04672 * * * * 

BP, CI, HH, RM, SD 0.04111 * * * * * 
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Figure 5.2 shows the discrimination using each individual expert and all experts com- 

bined as the camera moves toward the target objects. Frame 0 is furthest from the target 

objects and frame 32 is closest. Each mean AUC value represents a single frame average 

across 50 tracking problems. Only the A block is tracked in these 50 problems from Block 

World Two, but the behavior is representative of all the frame-by-frame results. 

Figure 5.2 supports three interesting observations. First, in every frame the combined 

estimate, using all five experts, is more discriminating than each of the individual experts. 

The statistical significance of the difference is tested using the same paired sample test and 

Bonferoni adjusted threshold used earlier. Only for frames 19 through 23 and 28 is the 

improved discrimination statistically ambiguous. Second, the figure shows stereo disparity 

is once again the most discriminating expert. Third, the discrimination of the Hausdorff- 

Huttcnlocher expert appears to improve significantly on a frame-by-frame basis. This last 

observation deserves further investigation. 

Figure 5.3 shows another set of mean AUC values partitioned by frame. For this fig- 

ure, the mean AUC is shown for the color histogram back-projection (BP) and Hausdorff- 

Huttenlocher (HH) experts individually and combined. The target object is the C block 

in 10 Block World One tracking problems. Once again, the Hausdorff-Huttenlocher expert 

improves significantly as the frame index increases. 

Considering the edge extraction process, the improvement of Hausdorff-Huttenlocher 

makes intuitive sense. The Hausdorff-Huttenlocher expert relies on the Canny edge detector 

to extract edge features. When the camera is far away from the target object, very few 

pixels represent the target object. When a target is represented with only a few pixels, 

the gradients used to indicate edge features are blurred and reduced, making edge features 

difficult to find [Can86]. For an extreme example, consider a target object represented by 

a single pixel — no gradients and no edges can be detected. As the camera moves closer 

to the target object, more pixels represent the target object, the edge gradients are more 

obvious, and the edge features are easier to find. 

In comparison to Hausdorff-Huttenlocher, color histogram back-projection degrades only 

slightly with increasing frame index. The degradation is mostly due to the increasing size 

of the target objects. As the target objects get closer, the frame is filled with more and 

more of the target object color. As a result, back-projection identifies more and more of 

the pose space as containing the target object.  In the limit, where the target object fills 
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Figure 5.2: Comparing the discrimination using each expert individually (BP, CI, HH, 
RM, SD) to all the experts combined (All). Ten tracking problems in Block World Two are 
used to make the comparison, where the A block is the target object. 

the camera's entire view, the entire pose space is identified as a probable match and no 

discrimination is provided. I have designed my problem environments so this limit is never 

reached: in the worst case closest frame the target object occupies only 23.2 percent of the 

image. 

Walking through Figure 5.3 frame-by-frame illustrates several interesting points about 

the interaction of these two experts. First, near frame 0, when the Hausdorff-Huttenlocher 

expert provides very little discrimination, the combined estimate is very similar to back- 

projection alone. As Hausdorff-Huttenlocher becomes more discriminating, the discrimi- 

nation of the combined estimate improves beyond the discrimination of stereo disparity 

alone. Eventually, the discrimination of the Hausdorff-Huttenlocher expert is better than 

the discrimination of back-projection alone. When back-projection is significantly less dis- 

criminating than Hausdorff-Huttenlocher, the discrimination of the combined expert begins 

to resemble Hausdorff-Huttenlocher alone. These results illustrate one way the Extended 

Condensation Filter combines estimates from experts as diverse as Hausdorff-Huttenlocher 

and color histogram back-projection. 
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Figure 5.3: Comparing back-projection (BP) and Hausdorff-Huttenlocher (HH) discrimi- 
nation. Ten tracking problems in Block World One are used to make the comparison, where 

the C block is the target object. 

The results presented in Table 5.2, Figure 5.2, and Figure 5.3 indicate the Extended 

Condensation Filter combines expert probability estimates to improve discrimination. In 

general, all other partitionings of the results also support this conclusion. However, there 

are a few partitionings which provide statistically ambiguous results. There is also one 

specific case where this conclusion is not supported. The next two sections explore these 

exceptions to the generally favorable results. 

5.1.3    Discrimination Ambiguity 

Some of the data partitions provide ambiguous results for one of two reasons. First, some 

of the smallest partitions do not contain enough estimates to build an accurate ROC curve. 

For example, using only the estimates from a single frame of a single tracking problem in a 

single environment to build an ROC curve provides only 300 estimates. This small number 

of estimates creates an ROC curve where some points on the curve are estimated with 

very few samples. The resulting AUC estimates are very poor. When the AUC values are 
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estimated using a small number of samples, the paired sample test indicates the difference 

between the individual experts and the combinations of experts is ambiguous. 

Second, if two experts are combined and one expert provides a high level of discrimi- 

nation, while the second expert provides a very low level of discrimination, the difference 

between the best expert and the combination may be very small. The first few frames of 

Figure 5.3 provide an example where Hausdorff-Huttenlocher provides very little discrim- 

ination, while color histogram back-projection provides much greater discrimination. The 

combined result is nearly the same as the discrimination provided by back-projection alone. 

In the first few frames, the combined discrimination is statistically indistinguishable from 

the discrimination provided by back-projection alone. 

In the first case, the statistical testing is yielding ambiguous results as a consequence 

of limited resources. In other words, some partitions simply provide insufficient data. In 

the second case, the problem is more fundamental, but not troubling. In the limit, where a 

very good discriminator is combined with a relatively poor discriminator, the result should 

behave comparably to the good discriminator. Thus, the fact that no statistically significant 

improvement is observed for pairs of experts where one is relatively weak is entirely expected. 

5.1.4    A Discrimination Anomaly 

Among the large number of favorable results and a few ambiguous results, there is one set 

of conditions where the Extended Condensation Filter appears to fail to improve discrim- 

ination. As shown in Table 5.3, when only color index and render-match are combined 

for the tracking problems in either Block World One or Block World Two, the combined 

discrimination is worse than color index alone. Table 5.3 shows the AUC using only color 

index tracking the A block in Block World One is 0.1388. The discrimination using only 

render-match is 0.2408. The combined discrimination is 0.1503 — worse discrimination 

than color index alone. This anomaly is not present in the Toy World results. 

Looking at a frame-by-frame partitioning of the color index and render-match results 

indicates a possible cause of the anomaly. Figure 5.4 shows the two experts respond in 

a very similar manner on a frame-by-frame basis. The similar performance of color index 

and render-match in Figure 5.4 is a stark contrast with the dissimilar responses of back- 

projection and Hausdorff-Huttenlocher in Figure 5.3. The frame-by-frame response of the 

two experts are clearly correlated. 
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Table 5.3: Discrimination using color index (CI) and render-match (RM) experts. Each 
mean AUC is the mean for 10 tracking problems AUC values. The last column indicates 
the combined mean AUC (CI,RM) is an improvement over both contributing experts (Yes), 
not an improvement (No), or statistically ambiguous. 

Environment Target 

1 

CI 

Vlean AU 

RM 

C 

CI, RM Improvement 

BW1 

A 0.1388 0.2408 0.1503 No 

C 0.1816 0.2744 0.1943 No 

T 0.1856 0.2787 0.1950 No 

BW2 

A 0.2084 0.2776 0.2190 No 

C 0.2061 0.2988 0.2194 No 

T 0.2185 0.3520 0.2357 No 

TW 

Cat 0.3073 0.2670 0.2487 Yes 

Pig 0.3614 0.2704 0.2684 Ambiguous 

Rubik 0.3209 0.2167 0.1984 Ambiguous 

To compare the correlation between color index and render-match to the correlation 

between other pairs of experts, the color index probability estimate P(S = 5True|w;c7/) and 

the render-match probability estimate P(S = STrue\wRM) are used to compute the Pearson 

correlation coefficient 

Y,PCIPRM-T<PO,T<PRM 

r = 
/V P2 (EfC/)awv p2       _  (T.PRM)2 

(5.2) 

where Pci and PRM are shorthand for the conditional probability estimates, and N is the 

total number of pose estimates. The Pearson correlation coefficient is a commonly used 

measure of correlation. It measures the degree to which the pairs of conditional probability 

estimates fit a line — like simple linear regression [Hei96]. Tables 5.4, and 5.5 list the 

Pearson coefficient for each pair of experts using Block World One and Block World Two 

results. The tables indicate color index and render-match are consistently more correlated 

than any other pair of experts. 

The high levels of correlation between color index and render-match could, in theory, 

cause the poor discrimination performance. The derivation of the Bayesian product rule in 
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Figure 5.4: Comparing the discrimination using color index (CI), render-match (RM), 
and color-index and render-match combined (CIRM) on a frame-by-frame basis. Note the 
similar discrimination exhibited by the color index (CI) and render-match (RM) experts. 

Chapter 3 assumes the experts are independent. The high correlation between color index 

and render-match indicates this key assumption is violated. 

As shown in Table 5.3, the correlation of color index and back-projection is lower in 

Toy World than in either block world. In fact, the correlation is slightly lower than back- 

projection and render-match when they were successfully combined in Block World One. If 

high correlation is the source of the poor discrimination, the lower correlation between color 

index and back-projection in Toy World should improve the filter's performance. Table 5.3 

shows the discrimination for color index and render-match in Toy World for each target 

object. When the pig or Rubik's cube are the target object, the filter appears to provide 

improvement, but the difference is statistically ambiguous. When the cat is the target 

object, the filter appears to provide an improved level of discrimination over either individual 

expert. The results in Toy World appear to match the prediction made from the correlation 

result. 

The relationship between the anomaly and high-correlation is predicted by the deriva- 

tion of the Bayesian product rule — providing a potential explanation for the anomaly. 
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Table 5.4:       Pearson correlation (WRM) between experts using only Block World One 

tracking problems. 

Expert BP CI HH RM SD 

BP 1.00 0.672 0.154 0.701 0.472 

CI 1.00 0.162 0.806 0.532 

HH 1.00 0.139 0.497 

RM 1.00 0.437 

SD 1.00 

Table 5.5:      Pearson correlation (WRM) between experts using only Block World Two 

tracking problems. 

Expert BP CI HH RM SD 

BP 1.00 0.584 0.158 0.547 0.503 

CI 1.00 0.1714 0.764 0.499 

HH 1.00 0.0950 0.342 

RM 1.00 0.366 

SD 1.00 

If, as the results indicate and Bayesian theory predicts, correlation can prevent improved 

discrimination, experts must be selected with some care. Alternatively, other expert combi- 

nation rules may not react in the same manner to correlation between the experts. Results 

using the mean sum rule will be presented later in this chapter. 

The way different experts interact with the combination rule may also explain why 

adding another expert to a combination may create worse results. As discussed earlier 

and shown in Figure 5.1, adding an additional expert to a combination of experts may 

increase or decrease the original discrimination provided by the combination. When two 

independent (uncorrelated) experts are combined using the Bayesian product rule, their 

combined discrimination is better than either contributing expert. If a third expert is 

added, which is highly correlated with one of the original two, this violation of the product 

rule assumption may degrade the result. I have not performed the tests necessary to support 
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Table 5.6: 
problems. 

Pearson correlation (wRM) between experts using only Toy World tracking 

Expert BP CI HH RM SD 

BP 1.00 0.550 0.0597 0.610 0.354 

CI 1.00 0.0454 0.696 0.295 

HH 1.00 0.102 0.252 

RM 1.00 0.381 

SD 1.00 

this theory, but this is one possible explanation for the unpredictable results shown in Table 

5.2 and Figure 5.1 when adding additional experts. 

5.2    Accuracy and Precision 

Intuitively, improved discrimination should lead to improved accuracy and precision. If an 

expert is better at discriminating between target and obfuscation, it seems it should be 

better at locating the target among the obfuscation. However, the scaled CEP results in 

this section indicate this may not be true. 

As described in Section 4.2.2.1, the scaled CEP statistic provides a statistically nor- 

malized single measure of both the accuracy and precision in all dimensions of the pose 

space. In other words, statistically accurate and precise particle pose estimates, relative 

to the ground truth, must be present in all dimensions to create a low scaled CEP value. 

Therefore, I discuss scaled CEP as a measure of both accuracy and precision. To provide 

consistent results and the maximum time for convergence of the population, the state of 

the filter after the last frame of each tracking problem is always used to compute the scaled 

CEP values. 

The results in this section support the following hypothesis originally posed in Section 

4.2.2: 

Hypothesis The CEP for the Extended Condensation Filter pose estimate using all the 

experts is less than the CEP using each individual expert. 
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Table 5.7: Comparing the scaled CEP using each expert individually and the experts 
combined. Each value is the mean scaled CEP using x and z only. All 450 training problems 
are used to create these results. 

Expert(s) BP CI HH RM SD 

Mean CEP 1.912 2.506 2.157 3.093 0.9133 

BP 1.912 * * * * 

CI 2.506 * * * 

HH 2.157 * * 

RM 3.093 * 

SD 0.9133 

BP, CI, HH, RM, SD 0.5662 * * * * * 

Only two exceptions are noted. First, highly correlated experts prevent an improved 

result. Second, the results in this section are unable to support or refute the ability of 

the filter to improve the orientation portion of the pose estimate because all of the experts 

failed to provide useful orientation information. 

5.2.1    Training Problem Accuracy and Precision 

Table 5.7 compares the accuracy and precision of the x and z portion of the individual 

expert pose estimates using the scaled CEP statistic. The second row shows the mean 

scaled CEP for each individual expert. The second column shows the mean scaled CEP for 

different combinations of experts. Due to the resources required to run 31 combinations of 

experts on 450 tracking problems and greater interest in the untrained problems, only one 

combination of experts is tested using the training problems. In the next section, all 31 

combinations of experts are tested using the untrained problems. 

Table 5.7 supports two interesting observations. First, the mean scaled CEP values 

indicate the combined estimate is more accurate and precise than each of the individual 

contributing experts. Second, comparing the scaled CEP values in Table 5.7 with the dis- 

crimination results in Table 5.2 indicates relative discrimination does not predict relative 

accuracy. Table 5.8 shows the discrimination rank and accuracy rank of each expert side-by- 

side. The number in parentheses is the AUC or CEP value. Ranking the individual measures 
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Table 5.8:    Comparing discrimination to accuracy and precision for each expert. All the 
training problems are used to create these results. 

Rank Discrimination (AUC) Accuracy (CEP) 

1 SD (0.06855) SD (0.9133) 

2 CI (0.2365) BP (1.912) 

3 RM (0.2752) HH (2.157) 

4 BP (0.2872) CI (2.506) 

5 HH (0.2911) RM (2.157) 

by relative discrimination and accuracy shows these two properties correlate poorly. How- 

ever, there are two patterns. First, stereo disparity provides the best discrimination and the 

best accuracy. Second, back-projection and Hausdorff-Huttenlocher together move ahead 

of color index and render-match. 

The accuracy and precision results reported in Table 5.7 consider only the x and z 

portion of the target pose estimate. The next set of results consider only the orientation 

of the target object 0. These results are the only disappointing aspect of this research. In 

every case, the filter is unable to accurately determine the orientation of the target object. 

However, the failure is not due to a flaw in the filter, but my failure to implement a set of 

experts that provide useful orientation information. 

5.2.2    Orientation Accuracy and Precision 

Table 5.9 shows the orientation estimate error for each individual expert and all the experts 

combined. The orientation accuracy is measured using the mean median 0 error. In other 

words, the median 9 error is computed using all the estimates for one tracking problem, 

then these median 0 errors are used to compute a mean error for all the tracking problems. 

In every case, as shown in Table 5.9, the mean median error is between 42 and 45 degrees. 

Considering the range of possible poses is only -90 to +90 degrees, an error of 45 degrees is 

extremely bad. In fact, the errors are about as good as guessing. 

If a target object is oriented directly toward the camera, the ground truth orientation 6 

is 0 degrees. If a completely indiscriminant expert makes uniform random guesses at values 

between -90 and +90, the average error of the guesses will approach 45 degrees. In fact, the 
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Table 5.9: Comparing the accuracy and precision of orientation estimates using each 
expert individually and the experts combined. Each value is the mean scaled CEP using 6 
only. All the training problems are used to create these results. In every case the difference 

between experts is not statistically significant. 

Expert (s) BP CI HH RM SD 

9 Err (deg) 42.35 44.41 43.18 42.96 42.83 

BP 42.35 94.8% 75.6% 67.4% 63.4% 

CI 44.41 86.5% 87.2% 88.5% 

HH 43.18 58.1% 61.7% 

RM 42.96 54.0% 

SD 42.83 

BP, CI, HH, RM, SD 44.43 91.1% 50.1% 80.3% 83.7% 82.5% 

error for random guesses will always approach 45 degrees, regardless of the ground truth 

target orientation. The large orientation errors shown in Table 5.9 indicate the experts are 

about as good as guessing. They are able to discern little, if any, information about the 

orientation of the target object. 

Four of the experts; back-projection, color index, Hausdorff-Huttenlocher, and stereo 

disparity, are not expected to provide much useful orientation information. Color histogram 

back-projection uses a color histogram to represent the target object, and rotation causes 

little change in the apparent color. Color index compares different instances of the rotated 

target, but it is dependent on color just like back-projection. Color is relatively rotation 

invariant. My implementation of Hausdorff-Huttenlocher only searches in translation and 

scale space, so a rotated object is largely unrecognizable. Stereo disparity only provides 

depth information and knows nothing about the target object. 

In contrast, render-match was expected to provide useful orientation information. 

Render-match should be the most discriminating and accurate source of object rotation 

information. However, additional data indicates the x and z estimates may not be accurate 

enough to allow render-match, as I implemented it, to accurately determine orientation. 

For the render-match algorithm, orientation estimates are very dependent on good x and 

z pose estimates. Figure 5.6 (a) plots the relationship between the render-match similarity 

metric (WRM) and orientation error when the x portion of the pose estimate is perfect. The 
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Figure 5.5:    Unknown image used for the render-match correlation examples. The ground 
truth pose of the T block is (x = -1.1, z = 7.0,0 = 11.3) 

unknown image used to create this plot is shown in Figure 5.5 and the T block is the target 

object. From the camera point of view, the ground truth pose is (x=-l.l, 2=7.0, 0=-11.3). 

The plot indicates there are two maximum correlation values. The left maximum is very 

near the ground truth orientation of 11.3 degrees. Using this data narrows the filter's search 

to two orientation values, providing useful information for the filter's search for the target 

orientation. However, a small amount of x pose estimate error dramatically changes this 

relationship. 

Figure 5.6 (b) shows the relationship between WRM when the x pose estimate is moved 

-0.1 units along the x axis from the ground truth. The ground truth orientation is no 

longer the maximum. Figure 5.6 (c) shows the relationship between WRM when the x pose 

estimate is moved -0.2 units along the x axis from the ground truth. In this case, the global 

maxima are at the extreme orientations. In fact, the correlation when 6 is less than -75 

degrees is greater than the ground truth correlation. These figures indicate the relationship 

between 6 error and correlation error inverts as x error increases — the global maxima 

are far away from the ground truth. This inversion may explain why render-match fails to 

provide accurate orientation estimates. 

My implementation of render-match compares image patches to image patches. Only 

the small portion of the unknown image estimated to contain the target object is compared 

to the rendering of the target object template projected to the estimate S.   Chapter 3 
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describes this process in detail. Stevens predicted, and my results verify, the sensitivity of 

correlation when comparing image patches to image patches [SB01]. As an image patch 

is rotated, the number of pixels compared grows smaller. Smaller images tend to provide 

higher correlation, even if the image patches themselves are dissimilar. Instead of using 

image patches, Stevens compared images to images — ensuring the comparisons are always 

made using images of the same size. 

Figure 5.7 shows the result of using an image to image version of the render-match 

algorithm on Figure 5.5. The single figure shows the correlation when the x pose estimate 

error is 0.0, 0.1, and 0.2. Searching the space represented by Figure 5.7 should provide 

superior results to searching the space represented by Figure 5.6 because the maximum 

correlation is in the neighborhood of the ground truth pose, even when large orientation 

errors and x and z pose errors are combined. 

Unfortunately, comparing images requires significantly more computer time than com- 

paring image patches because the entire image is always compared rather than a small part 

of the image. To reduce run-time, I elected to implement an image patch to image patch 

comparison. I hoped the interaction of the other experts would bring the pose estimates 

close enough to the ground truth to eliminate the problems caused by image patch to im- 

age patch comparison and allow my system to effectively employ far faster comparisons. 

Unfortunately, even with the contributions of the other experts, render-match still suffers 

from the image patch to image patch problem. As a result, my filter accurately estimates 

the x and z portions of the target pose, but fails to accurately estimate target orientation 

because no expert provides any useful information regarding orientation. 

Despite the disappointing orientation results, this section indicates the Extended Con- 

densation Filter, when tested on the training images, provides discrimination and pose 

estimates superior to any of the contributing experts, so long as the Bayesian independence 

assumption is met. However, the training data results in this section only measure the 

filter's ability to memorize responses to previously observed problems. The next results 

focus on the filter's ability to generalize to new problems. 

5.2.3    Untrained Problem Accuracy and Precision 

In this section, two tables and a figure illustrate the accuracy and precision of pose estimates 

for the problems withheld from training the filter — the untrained problems.  Table 5.10 
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compares the individual experts to all possible combinations of experts. Figure 5.8 shows 

a second graphical view of the accuracy and precision results. Table 5.11 compares the 

performance of the filter on the training problems to the performance of the filter on the 

untrained problems. 

Table 5.10 shows the accuracy and precision measured for all possible combinations of 

experts. The results are obtained with the same procedure used for the training problems. 

However, every combination of experts is tested. The CEP for each individual expert is 

shown across the tops of the columns. The rows contain each of the 31 possible combinations 

of experts. A "(+)" in the first column indicates the combined mean scaled CEP is an 

improvement over all of the contributing experts. A "(-)" in the first column indicates the 

combined mean AUC is worse than at least one of the contributing experts. Each value is 

the mean scaled CEP for the x and z portion of the pose estimate. Only the 90 untrained 

tracking problems are used to create these results. 

Table 5.10 supports three interesting observations. First, stereo disparity provides the 

best accuracy and precision, despite the fact that it knows nothing about the target. Sec- 

ond, in nearly every case, the result of combining two experts improves the accuracy of 

the estimate provided by the individual experts. Only two combinations did not create 

a improved result — these combinations are marked with a "(-)". Third, the correlation 

between color index and render-match reported in an earlier section appears to affect the 

performance of the filter. Both combinations where accuracy is not improved include the 

color index and render-match operators. 
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Figure 5.6:    Example of image patch to image patch correlation (WRM) as a function of 
orientation (6) when the x pose estimate error is (a) zero, (b) 0.1, and (c) 0.2. 
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Table 5.10: Comparing the accuracy and precision of pose estimates using different 
combinations of experts. The first five rows compare individual experts and the remaining 
rows compare combinations of two or more to the individual experts. All 90 untrained 
problems are used to create these results. Orientation 0 is not included in these results. 

Expert (s) BP CI HH RM SD 

Mean CEP 2.093 2.601 2.267 3.256 0.9512 

BP 2.093 * 98.0% * * 

CI 2.601 * * * 

HH 2.267 * * 

RM 3.256 * 

SD 0.9512 

BP, CI (+) 2.012 * * 

BP, HH (+) 1.981 * * 

BP, RM (+) 1.808 * * 

BP, SD (+) 0.8841 * * 

CI, HH (+) 2.208 * * 

CI, RM (-) 2.936 * * 

CI, SD (+) 0.9043 * * 

HH, RM (+) 2.177 * * 

HH, SD (+) 0.8889 * * 

RM, SD 0.9310 * 97.3% 

BP, CI, HH (+) 2.016 * * * 

BP, CI, RM (+) 1.964 * * * 

BP, CI, SD (+) 0.7037 * * * 

BP, HH, RM (+) 2.001 * * * 

BP, HH, SD (+) 0.7658 * * * 

BP, RM, SD (+) 0.6778 * * * 

CI, HH, RM (-) 2.661 94.2% * * 

CI, HH, SD (+) 0.7046 * * * 

CI, RM, SD (+) 0.7463 * * * 

HH, RM, SD (+) 0.8697 * * * 

BP, CI, HH, RM (+) 2.0813 * * * * 

BP, CI, HH, SD (+) 0.7322 * * * * 

BP, CI, RM, SD (+) 0.6616 * * * * 

BP, HH, RM, SD (+) 0.7615 * * * * 

CI, HH, RM, SD (+) 0.8088 * * * * 

BP, CI, HH, RM, SD (+) 0.5968 * * * * * 
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Table 5.11: Comparing the accuracy and precision of pose estimates using each expert 
individually. All 90 untrained problems are used to create these results. Orientation 6 is 

not included in these results. 

Expert (s) Training Problems CEP Untrained Problems CEP 

BP 1.912 2.093 

CI 2.506 2.601 

HH 2.157 2.267 

RM 3.093 3.256 

SD 0.9133 0.9512 

BP, CI, HH, RM, SD 0.5662 0.5968 

Figure 5.8 provides a different view of the untrained problem results. Each of the com- 

binations of experts is shown on the independent axis and sorted from most accurate and 

precise to least accurate and precise. The dependent axis shows the CEP for the combina- 

tion. Once again, this figure shows stereo disparity usually dominates all the combinations 

of experts. However, there are two exceptions. The combination of back-projection, color 

index, Hausdorff-Huttenlocher, and render-match performs better than many of the com- 

binations that include stereo disparity. The combination of back-projection, color-index, 

Hausdorff-Huttenlocher, and stereo disparity performs worse than many combinations that 

do not include stereo disparity. The discrimination results do not predict these two excep- 

tions. Figure 5.8 will be used again later for a comparison to the filter's performance using 

the mean sum rule. 

Table 5.11 compares the accuracy and precision of the filter on the training problems and 

untrained problems. As described earlier, only the individual experts and all the experts 

combined are tested using the training problems. Therefore, only those combinations can be 

compared. Two observations are supported by this table. First, the results obtained using 

the untrained problems are very similar to the results using the training problems. Second, 

despite similar relative performance of the experts, each expert's accuracy and precision is 

slightly worse when tested on the untrained problems as compared to the training problems. 

In general, the experts do generalize from their training examples, but generalization, as 

expected, is more difficult than memorization. 
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Table 5.12: Comparing the accuracy and precision of orientation estimates. Each error 
value is the mean median 8 error. Using a 95% individual confidence threshold none of the 
mean values is statistically different. All 90 untrained problems are used to create these 
results. 

Expert BP CI HH RM SD 

Mean 6 err (deg) 41.2 39.0 38.5 43.0 40.7 

BP 41.2 77.2% 82.8% 73.7% 59.5% 

CI 39.0 55.4% 90.5% 70.6% 

HH 38.5 91.8% 74.0% 

RM 43.0 80.0% 

SD 40.7 

5.2.4    Untrained Problems Orientation Accuracy and Precision 

Table 5.12 shows the orientation estimates for each expert. The results are similar to the 

orientation error using the training problems. In every case, the estimate error is very large 

and statistically indistinguishable from the other experts. Once again, it appears none of 

the experts provide any information about the orientation of the target object. 

5.3    Likelihood - the Mean Sum Rule 

To this point all the testing has used the Bayesian product rule to combine expert probability 

estimates. This section tests discrimination and accuracy and precision using the mean sum 

rule. Except for the substitution of the mean sum rule, the results in this section use the 

same analysis and presentation as the Bayesian product rule. 

The mean sum rule computes the mean value of the expert probability estimates 

N 
cTr 

L{S = S nTruei 
ZP{S = Sirue\A. 

,AJV) = 
2 = 0 

TV 
(5.3) 

where A is one of the individual expert similarity measures and N is the number of experts. 

As discussed in Section 2.3.4, the mean sum rule does not have the strong theoretical support 

of the Bayesian product rule. However, the simple rule provides an interesting contrast to 

the Bayesian product rule and, in general, the results in this chapter indicate the mean sum 

rule provides better discrimination than the Bayesian product rule, but arguably worse 
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accuracy and precision. The discrimination results also indicate the rule is not sensitive to 

high expert correlation. 

The results in this section support the following hypothesis originally posed in Section 

4.2.3: 

Hypothesis Using the mean sum rule, the AUC for the combined estimate is less than the 

AUC for the estimate using each expert independently. 

However, the results in this section frequently fail to support the following hypothesis 

originally posed in Section 4.2.3: 

Hypothesis Using the mean sum rule, the CEP for the Extended Condensation Filter 

pose estimate using all the experts is less than the CEP using each individual expert. 

The strong support for the first hypothesis and lack of support for the second hypothesis 

indicate, once again, that there is more to an accurate and precise estimate than good 

discrimination. 

5.3.1     Discrimination using the Mean Sum Rule 

Table 5.13 shows the discrimination for every combination of experts using the mean sum 

rule. The tables are created by partitioning the 90 untrained problem results by tracking 

problem and measuring the AUC for each problem. The mean for the 90 problems is shown. 

With the exception of only a few ambiguous results, as described in a Section 5.1.3, similar 

results are obtained using the other partitions. 

A table comparing individual expert discrimination is not shown because the results are 

statistically indistinguishable from Table 5.2. The combination rule has no effect on the 

discrimination provided by a single expert. 
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Table 5.13:    Comparing the discrimination provided by combining experts using the mean 
sum rule. 

Expert (s) BP CI HH RM SD 

Mean AUC 0.2872 0.2365 0.2911 0.2752 0.06855 

BP, CI (+) 0.2005 * * 

BP HH (+) 0.1583 * * 

BP, RM (+) 0.2194 * * 

BP, SD (+) 0.05597 * * 

CI, HH (+) 0.1532 * * 

CI, RM (+) 0.2131 * * 

CI, SD (+) 0.05219 * * 

HH, RM (+) 0.1583 * * 

HH, SD (+) 0.05227 * * 

RM, SD (+) 0.05230 * * 

BP, CI, HH (+) 0.1243 * * * 

BP, CI, RM (+) 0.1838 * * * 

BP, CI, SD (+) 0.04690 * * * 

BP, HH, RM (+) 0.1318 * * * 

BP, HH, SD (+) 0.03998 * * * 

BP, RM, SD (+) 0.04757 * * * 

CI, HH, RM (+) 0.1469 * * * 

CI, HH, SD (+) 0.03998 * * * 

CI, RM, SD (+) 0.05126 * * * 

HH, RM, SD (+) 0.04019 * * * 

BP, CI, HH, RM (+) 0.1231 * * * * 

BP, CI, HH, SD (+) 0.03483 * * * * 

BP, CI, RM, SD (+) 0.04647 * * * * 

BP, HH, RM, SD (+) 0.03507 * * * * 

CI, HH, RM, SD (+) 0.03894 * * * * 

BP, CI, HH, RM, SD (+) 0.03456 * * * * * 
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Table 5.14:     Comparing the discrimination provided by the Bayesian product and mean 
sum rules. A "(+)" marks the better discrimination. 

Product Rule Mean Sum Rule Confidence 

Experts Mean AUC Mean AUC Level 

BP, CI 0.2018 0.2005 (+) * 

BP HH 0.1589 0.1583 (+) * 

BP, RM 0.2208 0.2190 (+) * 

BP, SD 0.05345 (+) 0.05597 * 

CI, HH 0.1581 0.1532 (+) * 

CI, RM 0.2144 0.2131 (+) * 

CI, SD 0.05511 0.05219 (+) * 

HH, RM 0.1791 0.1583 (+) * 

HH, SD 0.05490 0.05227 (+) * 

RM, SD 0.05579 0.05230 (+) * 

BP, CI, HH 0.1312 0.1243 (+) * 

BP, CI, RM 0.1863 0.1838 (+) * 

BP, CI, SD 0.04894 0.04690 (+) * 

BP, HH, RM 0.1381 0.1318 (+) * 

BP, HH, SD 0.04193 0.03998 (+) * 

BP, RM, SD 0.04879 0.04757 (+) * 

CI, HH, RM 0.1508 0.1469 (+) * 

CI, HH, SD 0.04504 0.03998 (+) * 

CI, RM, SD 0.05604 0.05126 (+) * 

HH, RM, SD 0.04525 0.04019 (+) * 

BP, CI, HH, RM 0.1280 0.1231 (+) * 

BP, CI, HH, SD 0.03920 0.03483 (+) * 

BP, CI, RM, SD 0.04982 0.04647 (+) * 

BP, HH, RM, SD 0.03894 0.03507 (+) * 

CI, HH, RM, SD 0.04672 0.03894 (+) * 

BP, CI, HH, RM, SD 0.04111 0.03456 (+) * 
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The results in Table 5.13 are similar to the results obtained using the Bayesian product 

rule. They indicate the combined discrimination using the mean sum rule is better than 

all of the contributing experts. In addition, the discrimination provided by the mean sum 

rule appears to be better than the Bayesian product rule, except when the experts color 

histogram back-projection and stereo disparity are combined (BP, SD). Table 5.14 tests 

the statistical significance of the improvement using the mean sum rule. In every case, the 

improvement provided by the mean sum rule is statistically significant. 

Given the view of the mean sum rule as bagging, the superior discrimination provided 

by the mean sum rule indicates the experts are independent and unbiased. This is not too 

surprising considering the experts use entirely different methods — such as geometric versus 

radiometric or recognition versus classification. 

Given Kittler's derivation of the mean sum rule, the superior discrimination is surprising. 

The context free assumption, that all experts are equally good under all conditions is 

obviously not true. For example, stereo disparity is far more discriminating than the other 

experts and, as Figure 5.3 shows, Hausdorff-Huttenlocher is clearly more discriminating 

when the camera is close to the target objects. As described in Section 2.3.4, Kittler's 

derivation of the mean sum rule also requires the conditional probabilities not deviate 

dramatically from the prior probabilities. Perhaps the experts in my implementation are 

"highly ambiguous due to high levels of noise" as Kittler's derivation requires [KHDM98]. 

The exception to the generally better discrimination provided by the mean sum rule is 

the combination of color histogram back-projection and stereo disparity. No explanation 

for this exception is apparent. So far as the Bayesian product rule is concerned, this pair of 

experts are not less correlated than all other pairs of experts, as shown in Tables 5.4, 5.5, 

and 5.6. However, it is possible back-projection and stereo disparity may, in some manner, 

violate the assumption of the mean sum rule more than any other combination of experts. 

With only one exception, the mean sum rule provides superior discrimination. However, 

consistent with previous results, the superior discrimination provided by the mean sum rule 

does not necessarily create superior accuracy and precision. 
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5.3.2    Accuracy and Precision using the Mean Sum Rule 

Table 5.15 show the results of testing the accuracy and precision provided by the mean sum 

rule on the 90 untrained problems. The format of the results is the same used earlier for 

the presentation of results using the Bayesian product rule. 

The tables support several observations. First, accuracy and precision of the pose esti- 

mate are seldom improved. For six of 31 combinations of experts, the combined estimate 

does not not appear to provide an improvement. For 14 of the 31 combinations, the improve- 

ment is ambiguous. For only six of the 31 estimates is the combination an improvement over 

all the contributing experts. Second, as shown in Table 5.16, in some cases the accuracy 

and precision using the mean sum rule is better than the accuracy and precision using the 

Bayesian product rule. This last observation prompts a direct statistical comparison of the 

performance of the Bayesian product rule and the mean sum rule. 
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Table 5.15:     Comparing the accuracy and precision of pose estimates provided by com- 
bining experts using the mean sum rule. Orientation 9 is not included in these results. 

Expert (s) BP CI HH RM SD 

Mean CEP 2.093 2.601 2.267 3.256 0.9512 

BP, CI 2.116 88.8% * 

BP, HH 2.058 78.6% * 

BP, RM 2.135 93.2% * 

BP, SD 1.000 * 59.2% 

CI, SD (+) 0.8527 * * 

CI, HH (-) 2.610 93.3% * 

CI, RM (-) 3.002 * * 

HH, RM (-) 3.186 * 94.2% 

HH, SD 0.9676 * * 91.3% 

RM, SD 1.053 * 78.0% 

BP, CI, HH 2.093 80.0% * 95.8% 

BP, CI, RM 2.529 * 62.5% * 

BP, CI, SD (+) 0.7567 * * * 

BP, HH, RM 2.098 86.8% 68.0% * 

BP, HH, SD 0.9156 * * 97.5% 

BP, RM, SD (+) 0.8777 * * * 

CI, HH, RM (-) 2.910 * * * 

CI, HH, SD 0.8866 * * 94.9% 

CI, RM, SD (-) 2.067 * * * 

HH, RM, SD 0.9879 * * 62.7% 

BP, CI, HH, RM (-) 2.557 * 79.8% * * 

BP, CI, HH, SD (+) 0.7176 * * * * 

BP, CI, RM, SD (+) 0.8417 * * * * 

BP, HH, RM, SD (+) 0.8555 * * * * 

CI, HH, RM, SD 2.132 * 76.2% * * 

BP, CI, HH, RM, SD 0.8890 * * * * 95.9% 
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Table 5.16: Comparing the accuracy and precision provided by the Bayesian product 
and mean sum rules. A "(+)" marks the better result. Each value is the mean scaled CEP 
using x and z only. 

Experts Mean Scaled CEP Confidence 

Product Rule Mean Sum Rule Level 

BP, CI 2.012 2.116 84.3% 

BPHH 1.981 2.058 76.6% 

BP, RM 1.808 2.135 65.6% 

BP, SD 0.8841 1.000 92.3% 

CI, HH 2.208 2.610 50.7% 

CI, RM 2.936 3.002 65.5% 

CI, SD 0.9043 0.8527 (+) * 

HH, RM 2.177 3.186 80.2% 

HH, SD 0.8889 0.9676 73.9% 

RM, SD 0.9310 (+) 1.053 * 

BP, CI, HH 2.016 2.093 91.0% 

BP, CI, RM 1.964 (+) 2.529 * 

BP, CI, SD 0.7037 0.7567 78.6% 

BP, HH, RM 2.001 2.098 78.1% 

BP, HH, SD 0.7658 0.9156 77.7% 

BP, RM, SD 0.6778 (+) 0.8777 * 

CI, HH, RM 2.661 2.910 60.6% 

CI, HH, SD 0.7046 (+) 0.8866 * 

CI, RM, SD 0.7463 (+) 2.067 * 

HH, RM, SD 0.8697 (+) 0.9879 * 

BP, CI, HH, SD 2.081 2.557 91.0% 

BP, CI, HH, RM 0.7322 0.7176 (+) * 

BP, CI, RM, SD 0.6616 (+) 0.8417 * 

BP, HH, RM, SD 0.7615 0.8555 92.7% 

CI, HH, RM, SD 0.8088 (+) 2.132 * 

BP, CI, HH, RM, SD 0.5968 (+) 0.8890 * 
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Figure 5.11: Example of multiple clusters in the x and z portion of pose space. This is 
the state of the filter after frame 32 for movie 1, target block A, Block World One training 
data. 

Table 5.16 and Figure 5.10 compare the accuracy and precision using the mean sum rule 

to the accuracy and precision using the Bayesian product rule. The mean sum rule provides 

superior performance for two combinations, inferior performance for nine combinations, and 

ambiguous results for the other 15 combinations. These results are consistent with other 

partitionings of the data. In general, the Bayesian product rule provides better performance 

more often than the mean sum rule. This is a surprising result considering the mean sum 

rule provides better discrimination. 

5.4    Convergence 

The results presented so far purposely avoid assumptions about the distribution of particles 

within the filter. This section indicates there is good reason to avoid distribution assump- 

tions. Figure 5.11 shows one example where using the mean value of all the particle poses 

to estimate the best pose is misleading — the mean pose is not well-supported by any of the 

particles. The problem is caused by the presence of multiple dense well-separated clusters 

in the filter. When multiple clusters are present, hypothesis extraction is more complex 

because each cluster must, in some manner, be identified. 
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The first test in this section conservatively counts the number of times multiple dense 

well-separated clusters are present in the filter. The clusters are counted after the last 

update using a hierarchical bottom-up clustering analysis, as described in the previous 

chapter. For the test, dense and well-separated is defined by the ratio of the mean difference 

to the sum of the standard deviations for two clusters 

IIMI -M2II /54N 

where Hi and ^2 are the mean values for two clusters and o\ and a2 are the standard 

deviations for two clusters. 

The results in this section do not support the following hypothesis originally posed in 

Section 4.2.5: 

Hypothesis The entire population of the Extended Condensation Filter is reduceable to a 

single statistically similar cluster using a bottom-up hierarchical clustering algorithm. 

In addition to the presence of multiple clusters, the results indicate a second compelling 

reason for analyzing the behavior of clusters in the filter. As noted in Chapter 3, authors 

frequently claim the configuration of the Condensation Filter particles represents the condi- 

tional probability of the state space [D+99, GSS93, Gor97, IB96, IB98], although a question 

about the validity of the associated proofs was raised. In other words, for my application, 

the particles should provide an estimate of the conditional probability P(S = Srrue). If so, 

when the filter is presented with two equally good hypotheses, the filter should maintain 

two clusters of points representing two hypotheses. 

A second set of test in the next section indicate, given enough updates, the population 

eventually converges to a single cluster, even when two equally good target pose hypotheses 

are present. Therefore, the configuration of particles in the filter do not, at least in my test 

problems, appear to represent the underlying conditional probability. 

5.4.1    Convergence in the Tracking Problems 

Tables 5.17 and 5.18 present histograms counting the number of dense well-separated clus- 

ters in the filter after frame 32 of a tracking problem. Table 5.17 counts the number of 

clusters after the last frame of the 450 training problems. Table 5.18 counts the number of 

clusters after the last frame of the 90 untrained tracking problems. For all the cluster tests, 
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Table 5.17: Histograms counting the number of times 1, 2, 3, or 4 clusters are present 
after the last frame of all 450 training problems. The counts are obtained using hierarchical 
bottom-up clustering. 

Cluster Count 

Environment Target 1 2 3 4 

A 37 12 1 

C 39 9 2 
BW1 

T 42 7 1 

All 118 28 4 

A 32 13 5 

C 37 8 5 
BW2 

T 36 10 2 2 

All 105 31 12 2 

C 39 7 4 1 

P 34 9 6 
TW 

R 37 6 7 

All 110 22 17 1 

All Training 333 81 33 3 

the filter is run with all of the expert probability estimates combined using the Bayesian 

product rule. 

The first two columns of each table show the problem environment and object tracked, 

the third column shows the number of times one dense well-separated cluster is present in 

the filter, the fourth column shows the number of times two clusters are present, and so 

on. An intermediate total for each problem environment and a final total for all trained or 

untrained problems is also provided. 

The methods used to derive the tables are designed to conservatively under-count the 

number of dense well-separated clusters present in the filter. Multi-dimensional clustering 

is a notoriously difficult problem [Mur85]. Even humans looking at the same arrangement 

of data points may disagree on the number of clusters present. To avoid these problems 

and provide a conservative estimate of the number of clusters present, I perform clustering 
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Table 5.18:    Histograms counting the number of clusters present after the last frame of all 
90 untrained problems. The counts are obtained using hierarchical bottom-up clustering. 

Cluster Count 

Environment Target 1 2 3 4 5 6 

A 6 3 1 

C 10 
BW1 

T 9 1 

All 25 4 1 

A 6 4 

C 4 3 2 1 
BW2 

T 8 1 1 

All 18 8 3 1 

C 6 1 3 

P 8 1 1 
TW 

R 6 3 1 

All 20 5 5 

All Untrained 63 17 9 1 

in only one of the three dimensions at a time — the x dimension is shown in the tables. As 

a result, clusters that may be dense and well separated in two dimensions are sometimes 

projected and flattened into a single cluster. 

To provide conservative cluster counts, I also apply equation 5.4 with a very conservative 

maximum threshold of 3.0. As a result, my clustering algorithm may occasionally combine 

clusters that visually appear dense and well-separated. For example, two Gaussian clusters, 

one with (m = -3, o\ = 1) and the other with (/xi = 3, a\ = 1) sit right at the 3.0 threshold, 

but visually they appear dense and well-separated. Move the means slightly further apart 

and they are counted as two clusters. Move the means slightly closer together and they are 

counted as one cluster. 

The conservative counts in Tables 5.17 and 5.18 support two observations. First, after 

32 frames of a tracking problem, the filter usually contains a single cluster. Second, multiple 

clusters are not uncommon. Based on the number of times multiple dense well-separated 
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clusters are present in the filter and the conservatism of these counts, simply computing the 

mean particle pose may mis-represent the state of the filter. 

5.4.2 Cluster Dynamics 

Tables 5.17 and 5.18 show the number of clusters in the filter after frame 32, but a different 

view helps illustrate the dynamic behavior of the clusters. Figure 5.12 shows the typical 

evolution of particle clusters on a frame-by-frame basis. For the figure, only the z dimension 

of each particle is shown. Negative z values are possible because the coordinate system is 

world relative rather than camera relative. At frame 0, the particles are initialized in a 

uniformly random distribution between z = 1 and z — 20. As the frames are used to 

update the filter, the particles condense to two well supported areas of the pose space. The 

results are from movie one in Block World One, where the C block is the target object and 

only the render-match expert is used. 

On average, Figure 5.12 appears to contain fewer and fewer clusters after each frame. 

Even at the very end of the problem, a small cluster of points at approximately z = -7 

merges with a larger cluster. This result is typical of the behavior in other dimensions and 

other tracking problems. This led to the question, does the population always condense to 

a single cluster? For example, given enough updates, will the two clusters shown in Figure 

5.12 eventually combine into a single cluster? 

Given infinite computer resources, I would run all 540 tracking problems until either a 

single cluster is present or the population appeared static. In the absence of these resources, 

I elected to perform a limited test using a worst case problem. 

5.4.3 Always a Single Cluster — Eventually 

If the Extended Condensation Filter represents the conditional probability P(S = S1 rwe) 

and two equally good pose estimates, 5i and 52 are present, where 

P(§i = STrue) = P{S2 = S1™") (5.5) 

The filter should maintain two dense well-separated clusters. This theory suggests a test 

where the filter is provided with a movie containing two equally good hypotheses and run 

to convergence. The results in this section indicate, even in the presence of two identical 

instances of the target, two dense well separated clusters are not maintained. 
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Figure 5.12:    Dynamic behavior of clusters. Each point is the world-relative z coordinate 
of a particle's pose estimate after a frame is processed. 

Figure 5.13 shows the only unknown image It used for this set of tests. The test image 

is constructed by repeating the same 160x240 target image twice to create one 320x240 

target image — the left and right sides of the image contain identical pixels. As a result, 

the experts all respond identically to the two halves of the unknown test image. Therefore, 

the underlying conditional probability is identical at the left and right target pose and 

identical in the vicinity of the left and right pose. Due to the complications involved with 

making perfectly equal target poses in both left and right stereo disparity images, the 

stereo disparity expert is not used. Only the color histogram back-projection, color index, 

Hausdorff-Huttenlocher, and render-match experts are used. 

To test the ability of the filter to model the two identical conditional probability densities 

created by my test image, I ran the filter until it converged on 30 different tests. For each 

test, the filter is randomly initialized in exactly the same manner as the block world and Toy 

World problem environments — the same number of particles and initial pose space. The 

Block World Two training data is used. The only two differences between the block world 

tests and this special test are the input image It, shown in Figure 5.13, and the movement 
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Figure 5.13:    Image used to test worst case convergence. 

r         i r          -| 

Xi+l X{ 

Zi+1 = Zi + 

. pi+l . Pi _ 

of the camera. The motion model is changed to include only the Gaussian random variable. 

Gaussian(0,1) 

Gaussian(0,1) (5.6) 

Gaussian(0,1) 

where p is the camera ground-plane rotation about the y-axis, or "yaw" in aircraft termi- 

nology. This model represents a motionless camera. 

To test for convergence, I used the same bottom-up hierarchical clustering test described 

at the beginning of this section, but I changed the convergence threshold from 3.0 to 1.0 

for these tests because, in contrast to the previous clustering test, I want to err by failing 

to combine clusters that should be combined. I do not want to mistakenly signal there is a 

single cluster in the filter, when multiple clusters are still present. 

For the 30 tests, the mean number of frames required to converge to a single cluster 

is approximately 130.2 with standard deviation of approximately 108.0. In the shortest 

case, the filter converged almost immediately at seven frames. In the longest case, the filter 

required 370 frames to converge to a single cluster. The probability of converging to the 

left target pose is approximately 0.43 and the probability of converging to the right target 

pose is approximately 0.57. These results indicate the filter always converges to a single 

hypothesis, even when the underlying conditional probability contains two equally good 

hypotheses. 
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A technique frequently required for statistical filter implementations may dramatically 

affect these results. My implementation of the Extended Condensation Filter equates frame 

rate with iteration rate. In other words, the update steps are only performed once per 

new unknown image. This is not necessary. The update steps could easily be performed 

multiple times for each new unknown image. In my experience, multiple update cycles per 

measurement are commonly used for Kaiman Filter implementations. This may be required 

when experts provide asynchronous estimates— different experts provide information at 

different frequencies. Intuitively, given multiple iterations of the filter per new image, it 

seems the Condensation Filter population should converge to a unimodal population faster. 

However, this intuition is not tested in this dissertation. 

It is possible the extensions accelerate the convergence of the filter population. When 

the extensions are used with the Condensation Filter, more particles near one of the two 

instances of the target causes more thorough searching near that pose. More thorough 

searching increases the probability of finding the optimal pose. Finding the optimal pose 

will create higher particle weights. Therefore, as more particles move near one instance of 

the particle pose, the weights associated with that cluster of particles will probably increase 

just because search is more thorough. This possibility is a consequence of the more active 

role played by the filter given the new extensions. 

Population convergence is not considering the theory of random selection. As shown 

in Chapter 3, a fixed-size population of points with a static probability of selection, the 

population will eventually converge to a single member. As explained in Chapter 3, every 

time the population is reproduced there is a finite probability a member will not be selected. 

If the member is not selected, it is eliminated from the population. Adding noise to the 

motion model, which acts like a mutation operator, complicates the convergence issue. 

However, one would expect the population to converge to the neighborhood defined by the 

mutation function — this more complicated deserves additional study in future research. 

5.5    Run Time 

When developing a meta-system, such as the Extended Condensation Filter, which relies 

on input from other algorithms, the relative time allotted to algorithms and their relative 

contribution is often interesting.  For example, is the most discriminating expert also the 
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Table 5.19: Wall clock run time required for each expert per movie frame. The 2,880 
iterations of the filter for the Block World One, Block World Two, and Toy World untrained 
problems were used to create these statistics. 

Expert ß (mSec) a (mSec) 

Canny Edge Feature Extractor 

Hausdorff-Huttenlocher 

203.5 

1,277.6 

16.8 

231.8 

Color Index 

Render-Match 

Color Index and Render-Match 

25,305.7 

25,242.9 

26,719.3 

727.9 

702.3 

1,065.4 

Color Histogram Back-Projection 

Stereo Disparity 

36.3 

1,027.3 

3.1 

160.1 

most time consuming expert? In this chapter I have dedicated extensive resources to mea- 

suring the contribution, in terms of discrimination and accuracy and precision, of the five 

experts. However, little has been said about the time required for each expert. 

Table 5.19 shows the approximate mean wall clock run time and standard deviation for 

each expert per movie frame using a 600MHz Intel Pentium III. The table should not be 

misconstrued as an attempt to compare the efficiency of various algorithms — my imple- 

mentation of these algorithms is by no means a standard. The results merely represent the 

mean wall clock times I observed during my experiments. 

Several observations are supported by the table. First, the most discriminating expert 

is not the most time consuming. Stereo disparity demonstrated the best discrimination, but 

requires less run time than all but the color histogram back-projection algorithm. Second, 

color index and render-match are shown separately and together to illustrate the time 

consumed by the process of rendering the target image at the pose S and the time required 

by the classifiers. The rendering step is time consuming, but it is only required once for all 

the classifiers. As a result, one classifier requires the time consuming process of rendering 

the target image, but additional classifiers require little additional time. This is illustrated 

by the fact that color index and render-match running together require little more time 

than running either algorithm alone. 
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5.6    Summary 

The results in this section indicate the Extended Condensation Filter is capable of combining 

the diverse information provided by recognition, classification, and low-level features to 

discriminate and localize better than each of the individual contributing experts. The filter 

combines and propagates probabilistic representations of this information, so crisp decisions 

and the resulting loss of information are avoided. The results also question the indicate the 

Condensation Filter does not represent the conditional probability, instead it has much in 

common with search algorithms, such as Evolution Strategies. 

5.6.1    Research Questions 

In addition to the general observations above, the results in this chapter also support more 

specific observations regarding the research and implementation questions posed in Chapter 

4. In this section, each of these questions is repeated and answered in light of the results 

in this chapter. 

Research Question How does the discrimination of the combined probability estimate 

compare to the discrimination of the probability estimate from each of the experts? 

The results in sections 5.1.1 and 5.1.2 indicate, with only one exception, the Extended 

Condensation Filter's combined probability estimate is more discriminating than the esti- 

mate from each of the individual contributing experts. This is true whether the Bayesian 

product rule or the mean sum rule is used. The only exception occurs when two highly 

correlated experts are combined using the Bayesian product rule. 

Research Question How do the accuracy and precision of the Extended Condensation 

Filter's combined estimate compare to the accuracy of the estimate from each of the 

experts? 

The results in section 5.2.1 indicate, with only one exception, the Extended Condensa- 

tion Filter's combined estimate, when using the Bayesian product rule, appears to be more 

accurate and precise than estimates from the individual contributing experts. Once again, 

the exception occurs when two highly-correlated experts are combined. 

Research Question Does the Extended Condensation Filter's learning algorithm gener- 

alize sufficiently to support operation in new portions of the problem domain? 
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The results in sections 5.2.3 and 5.3.2 indicate the Extended Condensation Filter gen- 

eralizes well from the training examples. The untrained problems only caused a small 

degradation relative to the performance of the filter using the training problems. The filter 

also continues to provide more discriminating, accurate, and precise estimates than any of 

the contributing experts when the untrained problems are used. 

Research Question Is the weight for each particle required to be a probability estimate or, 

as Pearl indicates, is relative likelihood sufficient to weight the Extended Condensation 

Filter's particles? 

If discrimination and localization are viewed as equally important, neither the mean sum 

rule nor the Bayesian product rule appear to have a clear advantage. The results in Figure 

5.9 indicate the mean sum rule may provide superior discrimination, when compared to the 

Bayesian product rule. In all but one case, the mean sum rule provides better discrimi- 

nation. In one case, where correlation between experts prevents improved discrimination 

using the Bayesian product rule, the mean sum rule still provides improved discrimination. 

The results in Figure 5.10 indicate the Bayesian product rule may provide slightly better 

accuracy and precision. The Bayesian product rule provided a more accurate and precise 

estimate more often than the mean sum rule. However, the results are somewhat ambiguous. 

The results point to another conclusion — discrimination alone does not necessarily re- 

sult in improved accuracy and precision. The observations that the mean sum rule provides 

slightly better discrimination, while the Bayesian product rule provides slightly better ac- 

curacy and precision provides additional insight to Pearl's observations discussed in Section 

2.3. Pearl indicates likelihood is required to decide where to expend resources. For the 

Extended Condensation Filter, likelihood is required to decide where to place more sam- 

ples and intensify the target pose search. However, the filter's particles can only represent 

likelihood for a small number of poses, relative to the entire pose space. They cannot, as I 

believe Pearl assumes, represent the likelihood for all possible outcomes — the likelihood of 

all possible poses in my case. Therefore, like any search algorithm, the filter can get stuck 

in local maxima — the most likely pose currently visible within the neighborhood of all the 

particles. 

Therefore, for the Extended Condensation Filter, likelihood may not be sufficient. Be- 

cause the search algorithm embedded within the Extended Condensation Filter relies on 

186 



gradient information, the derivative of the likelihood function is just as important as the in- 

dividual likelihood values themselves. In other words, if increased discrimination is achieved 

at the cost of increasing the number of local minima, the increased discrimination may indi- 

rectly make the localization problem more difficult and decrease the accuracy and precision 

of the filter's estimate. 

Research Question What are the convergence properties of the filter population? Specif- 

ically, how common is a multi-mode distribution of filter particles? 

The results in section 5.4.1 indicate a user of the Condensation Filter should not assume 

the filter contains a single hypotheses and, for example, use the mean value to extract a 

hypothesis. However, it appears, given enough updates, the filter will eventually converge 

to a single hypothesis. A user needs, in some manner, to test for this condition. 

The results in section 5.4.3 indicate the filter inevitably convergences to a single hypoth- 

esis. This result does not agree with the common assumption that a Condensation Filter 

represents the conditional probability associated with the state space. The results show the 

Condensation Filter will eventually converge to a single dense cluster of particles, even if 

the conditional probability associated with the state space contains two equally probable 

pose hypotheses. 

5.6.2    Implementation Questions 

In addition to suggesting answers to the research questions, the results provided in this 

chapter suggest some answers for the implementation questions posed in Chapter 4. In 

this section, each of these questions is repeated and answered in light of the results in this 

chapter. 

Implementation Question Does the Extended Condensation Filter implementation de- 

grade gracefully in the presence of objects with geometry poorly modeled by a single 

polygon? 

Toy World is identical to Block World Two, except for the substitution of less-rectilinear 

target objects. In comparison to Block World Two's rectilinear alphabet blocks, Toy World 

uses the Rubik's cube, fuzzy cat, and pig, which are poorly modeled by a single polygon. 

The Rubik's cube template views the cube edge on.  The cat is round, self-occluding and 

187 



covered with fur. The pig is partly made of round surfaces and self-occluding. These objects 

are poorly modeled by a single two-dimensional template. 

The color index and render-match experts rely heavily on the projection of the two- 

dimensional model into pose space. Despite the difference between Block World Two and 

Toy World, the performance of color index and render-match in Block World Two and Toy 

World is not dramatically different. Table 5.3 shows both experts provide similar levels of 

discrimination in both Block World Two and Toy World. The filter failed to determine 

the orientation of the target objects, but the failure occurred in both block worlds and 

Toy World. Nothing indicates either expert failed to accurately and precisely determine 

the target object x and z pose due to the two-dimensional representation of the Toy World 

targets. 

Investigation of the discrimination anomaly indicates the filter performs better in Toy 

World than either block world. Correlation between two experts appears to prevent im- 

proved discrimination using the Bayesian product rule in the block worlds, but an undeter- 

mined property of Toy World reduced the correlation between the two experts. 

Implementation Question Does color provide the best source of discrimination in the 

synthetic problem environments? 

Discrimination results throughout this chapter indicate stereo disparity consistently pro- 

vides the best discrimination for all the problems. In some cases the discrimination is four to 

five times better than any other expert. Based on the relative performance of stereo dispar- 

ity, range information, rather than color, is the most discriminating source of information 

in the three problem environments. 

The Hausdorff-Huttenlocher expert is completely unaware of the color content of any 

image. The results in section 5.1.2 show the Hausdorff-Huttenlocher expert provides almost 

no discrimination early in the tracking problems, when the camera is far away from the 

target objects. Later in the tracking problems, when the camera is closer to the target 

objects, it appears to perform better than color-based experts like color histogram back- 

projection. In the later frames of the tracking problems, geometry, rather than color appears 

to provide better discrimination. 

In general, the Condensation Filter extensions proposed earlier in this dissertation have 

proven their value on a large set of randomly generated tracking problems.   The filter 
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has demonstrated the ability to combine extremely diverse sources of visual information 

to improve the discrimination and accuracy and precision of object recognition. However, 

the performance was not flawless. Specifically, the render-match algorithm should be re- 

implemented to compare images to images rather than patches to patches so the filter's 

ability to improve orientation estimates can be tested. Several questions remain open as 

well. For example, the results in this chapter are based entirely on synthetic imagery. Are 

the results representative of the filter's performance using physical sensors? This and other 

areas for future research are discussed in the next chapter. 
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Chapter 6 

Conclusion 

The results in the previous chapter indicate the Extended Condensation Filter achieves the 

goals stated at the beginning of Chapter 3. First, to guarantee generality, the Extended 

Condensation Filter performs information fusion without relying on specific parametric rep- 

resentations. Look-up tables are used to model conditional probabilities for each expert and 

a population of particles is used to represent the combination of multiple expert estimates. 

Second, the state of the Extended Condensation Filter population is guided entirely by 

probabilistic representations. Pose estimates, similarity measures, and low-level features 

are converted to estimates of the conditional probability of a target pose. At every stage 

of the filter's operation, probabilistic representations of the information from the previous 

stage are carried forward, minimizing the loss of information that typically occurs with crisp 

decisions. 

Third, pose estimates, similarity measures and low-level features are accommodated by 

the Extended Condensation Filter by converting them all to estimates of the conditional 

target pose probability. Object recognition algorithm pose estimates are accommodated in 

the manner used by the canonical Condensation Filter, except that the probability of the 

true target pose, conditioned on the distance to a recognition algorithm pose estimate, is 

learned. Similarity metrics provided by classification algorithms are accommodated using 

the pose estimate associated with each particle to provide a point of comparison. Low- 

level features provided by feature extraction algorithms are used to modify the conditional 

probabilities and narrow the space of probable target pose estimates. 

In addition to satisfying the original goals, the test results also provide some surprises. 

First, despite the claims of previous authors, the population of the Condensation Filter does 
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not in some cases represent the underlying conditional probability. There are also some ques- 

tions about the proofs that the Condensation Filter represents the conditional probability. 

In some cases the Condensation Filter appears to find a maxima, like a population-based 

search. 

If the Condensation Filter does behave similarly to population-based search, specifically 

an Evolution Strategy, this could be considered good news. A wealth of Evolution Strategy 

literature offers many potential improvements for the Condensation Filter. For example, 

the canonical Condensation Filter tends to converge to a single cluster of particles. In 

applications where multiple targets are known to exist in the pose space this behavior 

may be undesirable. Several papers propose kin competition or the niche operator to force 

diversity into the population [Gol89, FogOO]. Adding such an operator to the Condensation 

Filter could force the population to maintain multiple clusters and represent multiple pose 

estimates. 

Evolution Strategy research has also focused on learning and estimating the optimal 

exploration strategy, such as estimating the covariance of the underlying fitness function 

in the attempt to tune mutation [FogOO]. If adapted to the Condensation Filter, on-line 

estimation of the uncertainty functions might eliminate the need for some a priori uncer- 

tainty models. The uncertainty might even be modified as the filter operates to improve 

performance as the recognition problem changes or in different parts of the pose space. The 

similarity between Evolution Strategies and the Condensation Filter provides many other 

opportunities to exploit Evolution Strategy research to benefit the Condensation Filter. 

Classifier combination research is another area with the potential to improve the Con- 

densation Filter. The Bayesian product rule and mean sum rule are only two of many 

combination rules. Others include the weighted sum rule, max rule, min rule, and median 

rule [KHDM98]. In addition to these simple rules, many adaptive techniques might be ap- 

plied, such as graph models, reinforcement learning, and variations of the neural network 

[Hin99]. Each of these methods for combining expert estimates contains specific assump- 

tions about the contributing experts. These assumptions affect the combined result, just as 

my results indicate the independence assumption affects the product rule and the context 

independence assumption affects the mean sum rule. Other combination rules may provide 

improved results depending on the information sources and problem domain. 
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Another surprising result is the orthogonality of discrimination and localization. The 

discrimination measured in Chapter 5 using the AUC statistic has little correlation with 

the accuracy and precision measured using the CEP statistic. Intuitively, it would seem 

the ability to discriminate between the target object and obfuscation would lead to more 

accurate localization of the target object. However, the data indicates this is not the case 

and recent results in cognitive science indicate our own visual system may have the same 

property. 

The search model of the Condensation Filter may provide a practical explanation of why 

discrimination and localization are orthogonal properties within the Condensation Filter. 

As described in the AUC description in Chapter 3, greater discrimination means greater sep- 

aration between the target and non-target distributions. Therefore, greater discrimination 

equates to greater difference, on average, between target and non-target probability esti- 

mates. However, many other properties of the fitness function make search easy or difficult. 

Factors such as the number of local minima and gradient information affect the performance 

of a search algorithm [MW95]. Discrimination does not measure these properties and, as a 

result, cannot estimate the search problem difficulty or the localization problem difficulty. 

Therefore, discrimination cannot predict the difficulty of the search problem or the accuracy 

and precision provided by a discrimination algorithm's similarity metric. 

This dissertation indicates the Extended Condensation Filter can improve object recog- 

nition. However, the results also create as many questions as they answer. For example, 

the results are based entirely on synthetic imagery. Are the results representative of the 

filter's performance using physical sensors? This question is the obvious and appropriate 

next step for this research. In addition, the exploitation of Evolution Strategy research, 

the exploration of new combination rules, and the investigation of the relationship between 

discrimination, accuracy, and precision are just a few of the other more obvious areas for 

future work. 
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Appendix A 

Mathematical Symbols 

This appendix includes a list of the mathematical symbols used throughout this dissertation. 

BP = subscript indicating the Color Histogram Back-Projection low-level feature extrac- 

tion algorithm 

CI = subscript indicating the Color Index classification algorithm 

dg = distance between object recognition pose estimate s and particle's pose S 

A = a generic symbol representing object recognition related information. This infor- 

mation could be a target pose estimate (s,Wi), a similarity metric Wi, or a low-level 

feature /. 

(Ao,. • •, A AT) = indicates a collection of sources of information, potentially including target 

pose estimates, similarity metrics, or a low-level features. See A above. 

Hft RGB histogram for the input image 

HT RGB histogram for the target image 

EE = subscript indicating the Hausdorff-Huttenlocher object recognition algorithm 

% = filter particle index 

I = an image 

IEX = image of the ground truth target object 

Io = first unknown image acquired 
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It = an unknown image acquired at time t 

IT = last unknown image acquired 

j = feature vector index 

J = total number of feature vectors extracted for a single image 

L(A\B, C) = mean value of the probabilities P{A\B) and P(A\C) 

Mg = matrix used to project an image to the point S in pose space 

Mcm — vector representing the camera's own motion in camera-relative coordinates 

Mtm = vector representing the target motion in camera-relative coordinates 

n = index of information sources 

N = total number of particles in the Condensation Filter 

P(A\B) = the probability of event A, given event B has occurred 

P(A\B) = an estimate of the probability of of event A, given event B has occurred 

phi = vertical rotation axis around the camera-relative z-axis 

RM = subscript indicating the Render-Match classification algorithm 

acrn = the uncertainty (standard deviation) used in the camera motion model 

S = a vector in pose space coordinates, usually the pose associated with a particle in the 

Condensation Filter population 

gTrue _ tjie groun(i truth pose of the target object, a vector in pose space coordinates 

gTrue _ horizontal translation x component of the ground truth pose of the target object 

gTrue _ gigpth translation z component of the ground truth pose of the target object 

gTrue _ rotation 6 component of the ground truth pose of the target object 

SD = subscript indicating the Stereo Disparity low-level feature extraction algorithm 

T = total number of unknown images acquired 

194 



theta = horizontal rotation axis around the camera-relative y-axis 

rho = vertical in-plane rotation axis around the camera-relative £-axis 

u = down to up axis on the image plane 

v = left to right axis on the image plane 

Vx,vy,vz,v<i„v9,Vp = velocities 

vx(a,n),Vy(a,ti),vz(cr,/J,),V<I,((J,fi),vg(a,(i),Vp((T,p) = velocities defined as random vari- 

ables 

ßvx, AS, ßvz, AS) AS, AS = mean velocities 

vx,vy,vz,v^vo,Vp = velocities 

w = a classifier similarity score for a specific algorithm, such as the pixel correlation WRM 

used for the render-match algorithm. 

x = left to right axis in camera-relative pose space (left-hand coordinate system) 

y = down to up axis in camera-relative pose space (left-hand coordinate system) 

z = rear to forward axis in camera-relative pose space (left-hand coordinate system) 
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Appendix B 

POVRay Synthetic Test 

Environment 

Figure B.l illustrates the use of a Python program and the Persistence of Vision Ray-tracer 

(POVRay) to render more than 11,880 photo-realistic images used to test the extended con- 

densation filter. POVRay version 3.1g is an open source photo-realistic rendering system 

available from www.povray.org. POVRay combines most of the features found in the best 

commercial ray-tracing systems with a text-based modeling language, rather than a graph- 

ical user interface. The text-based programming language allows me to write model files 

and initiate rendering from a controlling Python program. Python version 1.5.2 is an open 

source interpreted language available from www.python.org. Python was used to write the 

model and ground truth files, control rendering, and store the results in a movie database. 

Each of the three problem domains, such as Toy World, are represented by 60 movies. 

As shown in Figure B.l, three sets of files are needed to render each movie — the camera 

motion model, the world model, and the object models. The camera motion model is a 

small set of user-defined parameters including the camera's initial starting point and six- 

dimensional velocity. For my dissertation all the velocity components are zero except for a 

positive velocity along the z-axis. The world model is randomly generated by the Python 

program as described in Chapter 4. The object models, such as the alphabet blocks, pig, 

or cat, include the geometry and textures for each target object. 

The Python script uses the randomly generated camera motion model, world model, 

and object models to build an image specific pair of scene models. One scene model is used 

for the left stereo camera and one scene model is used for the right stereo camera. The scene 
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Figure B.l:    Creation of movies (sequential images) and target object ground truth. 
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models and object models are passed to POVRay for rendering. Each scene model represent 

one of the 33 unique camera positions rendered for each movie. With each increment of 

time, the new position of the camera is computed, a new set of scene models are written 

and rendered, then the images are stored in the movie database and the ground truth file 

is updated. When the movie is complete, the ground truth file contains the camera motion 

at each time increment and the world-relative position of every target object. This ground 

truth information defines the value of §True used during training and testing. 

POVRay has the ability to produce image sequences — movies. However, to precisely 

control the target positions, render two images per camera position, and simplify file storage, 

I manually control POVRay using Python. Manually controlling POVRay also allows me 

to distribute rendering across multiple computers by giving different computers on the 

department's network a sub-set of the 66 images required to make a single movie. 

All of my test imagery is rendered using the same rendering configuration. POVRay's 

quality control parameter is set to the highest non-experimental level — level nine. Level 

nine computes diffuse, reflected, refracted and transmitted rays. Level nine also also com- 

putes shadows. However, level nine does not include the radiosity algorithms which are 

considered experimental in the 3.1g version of POVRay. In addition to the maximum non- 

experimental quality level, recursive adaptive anti-aliasing with a 30% error threshold is 

used. The POVRay anti-aliasing process is recursive and adaptive because the rays are 

sub-divided until the pixel color estimated by the sub-set of rays is consistent to within 

30%. As few as four rays or as many as 289 rays may be used to estimate each pixel's color 

— the anti-alias maximum number of recursive divisions is set to four. 

POVRay offers additional features that could increase the realism of the imagery, such 

as radiosity, more sophisticated lens models, and atmospheric effects. However, additional 

realism incurs the risk of using experimental software and costs significantly more computer 

time. Considering over 11,880 images were rendered, the process described represents a good 

trade-off between realism and the computer resources required. 
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Appendix C 

Non-Parametric Paired Sample 

Test 

C.l    Basic Non-Parametric Paired Sample Test 

The paired sample randomization test, as described in [Coh95], provides a distribution 

independent method for comparing the performance of two systems tested under identical 

circumstances. Using identical tests for two systems allows the variance of test conditions to 

be eliminated. Using the non-parametric randomization process also requires no distribution 

assumption. 

For my evaluation, different combinations of experts are tested using either 150 trained 

tracking problems or 30 untrained tracking problems. One combination of experts is eval- 

uated on a set of tracking problems and the circular error probable (CEP) is computed 

for each problem. A second combination of experts is evaluated on the exact same set 

of problems and the CEP statistics are computed. The goal is determining the statistical 

significance of the difference in the CEP values recorded for each combination of experts. 

Table C.l, provides a small hypothetical example using two combinations of experts and 

six tracking problems. Each combination of experts is tested on the six tracking problems. 

The six tracking problems are created from two movies with three objects each. The 

difference between the CEP values for each combination of experts is shown in the last 

column. The mean difference between the combinations of experts is xg. In my example x$ 

happens to equal 0.67. 
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Table C.l:    Example non-parametric paired sample t-test data 

Tracking Problem 

Combo. 1 

CEP 

Combo. 2 

CEP 

6 

Movie 1, Target A 

Movie 1, Target C 

Movie 1, Target T 

2 

7 

5 

2 

8 

4 

0 

1 

1 

Movie 1, Target A 

Movie 1, Target C 

Movie 1, Target T 

4 

4 

5 

3 

4 

4 

1 

0 

1 

xs 0.67 

To test the statistical significance of this difference, the null hypothesis HQ : x$ = 0 is 

used. In other words, I will test the hypothesis that the mean difference between the two 

combinations of experts is 0. A traditional paired sample t-test could be used at this point. 

However, a distribution of CEP values is not Gaussian. The minimum CEP value is 0 and 

the distribution is asymmetric among other potential problems. Therefore, I use the non- 

parametric paired sample test which makes no assumption about the sample distribution. 

The null hypothesis HQ : xs = 0 asserts the sample CEP values are from the same 

distribution. If the two populations of samples are from the same distribution, randomly 

swapping half of the CEP scores obtained from one combination of experts with CEP scores 

obtained from the other combination of experts should produce a sample of random mean 

difference values where half the values are above the observed mean difference and half the 

values are below. To the extent this does not happen, the null hypothesis is refuted. This is 

similar to a traditional t-test, in that the randomly produced mean differences create a test 

distribution serving the same role as the t-distribution. The further out on the tail of this 

test distribution the observed mean difference lies, the greater the statistical significance of 

the observed mean difference. 

Table C.2 shows the example CEP data again, but the values are randomly swapped 

with probability 0.5. In this trial, the first, second, and fifth values values happen to be 

swapped and, as a result, x$ = 0.33. In this trial, the new value is less than the observed 
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Table C.2:    One random swapping trial 

Tracking Problem 

Combo. 1 

CEP 

Combo. 2 

CEP 

5 

Movie 1, Target A 

Movie 1, Target C 

Movie 1, Target T 

2 

7 

5 

2 

8 

4 

0 (swap) 

-1 (swap) 

1 

Movie 1, Target A 

Movie 1, Target C 

Movie 1, Target T 

4 

4 

5 

3 

4 

4 

1 

0 (swap) 

1 

xs 0.33 

mean difference. Many such trials need to be performed to estimate the distribution of 

random trials and test the null hypothesis. 

For my small example, the distribution can be determined exactly by exhaustively trying 

every one of the 26, or 64 possible combination. Of the 64 possible combinations only 4 

produce a mean difference greater than 0.33. Therefore, the null hypothesis can only be 

rejected with confidence 0.9375. In other words, 6.25% of the randomly generated trials are 

greater than the observed mean difference. Intuitively, if a 95% confidence is desired, the 

CEP values for these two combinations of experts may represent the same distribution. 

When the number of test is much larger, such as the 30 or 150 reported in this dis- 

sertation, random sampling is used to estimate the distribution of random trials because 

exhaustively testing all 230 or 2150 possible combinations is too computationally demand- 

ing. For this dissertation I use 1000 random trials to test the significance of the difference 

between CEP values measured for various combinations of experts. 

C.2    Bonferoni Adjustment 

If the same set of results are used for multiple paired sample tests, the simultaneous con- 

fidence level will be less than the confidence level for each individual test [Dev87j. For 

example, assume data set 1 (m) is compared to data sets 2 (fi2) and data set 3 (/j,3). Also 

assume the difference between the means, /ii - /i2 and m - /x3, using the paired sample 
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test, is significant in each case with a 0.950 confidence level. The simultaneous confidence 

level that fj,i is statistically different from \i2 and /1/3 is the product of the confidence levels 

0.9502 or 0.902. This fails to meet the desired 0.950 confidence level. 

The Bonferoni adjustment is used to increase the confidence of each individual test so 

the simultaneous confidence level, or product of the confidence levels, meets the desired 

0.950 threshold. Using the previous example, if each individual test confidence level is 

increased to 0.975, the simultaneous confidence level is 0.9752 or 0.950. 

For many of my tests, I compare the extended condensation filter's combined estimate 

with two to five contributing experts. In the case where five contributing experts are used, 

the individual confidence level 0.990 is used so the simultaneous confidence level is 0.9905 

or 0.951. Table C.3 shows the individual thresholds used as a function of the number of 

contributing experts. 

Table C.3: Individual confidence levels required to obtain a simultaneous confidence level 
of 0.950 using N experts. 

Number of Single Test 

Experts (N) Threshold 

1 0.950 

2 0.975 

3 0.983 

4 0.987 

5 0.990 
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