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Executive Summary 
 
This research project has successfully investigated the use of high-dimensional M-ary 
orthogonal signal sets with trellis-coded modulation (TCM) in order to achieve 
significant improvement in the performance of spread-spectrum communication systems. 
 
The advantages derived from this work can be applied directly to improve the 
performance of anti-jam (AJ) and/or low probability of intercept (LPI) communication 
systems for military applications. In addition, this work would also has potential 
advantages in commercial code-division multiple access (CDMA) networks. 
 
Trellis Coded Modulation (TCM) is a technique which combines the error correction and 
modulation functions of the communication system, to achieve significant gains in 
system performance. This is accomplished by using an m-ary signal set (termed a 
constellation of signals), which is partitioned into sub-constellations, and representing the 
transmitter as a finite state machine. The data symbols at the transmitter are mapped onto 
a sub-constellation in order to select the transmitted symbol. The sub-constellation is 
determined by the current "state" of the transmitter, and state transitions occur as each 
symbol is transmitted. While all symbols in the constellation are used with equal 
probability over time (assuming random data), only certain sequences of symbols can 
occur, due to the structure of the finite state machine model. Knowledge of these 
sequential  restrictions is used by  the receiver to choose the most likely valid sequence, 
which enables significant error correction to occur at the receiver. The improved 
performance is primarily due to the fact that decisions are made according to a Euclidean 
distance criteria, as opposed to a Hamming distance criteria. This is inherent in a system 
which combines modulation and coding, and is somewhat analogous to soft decision 
decoding. 
 
Traditionally, TCM has been used on band-limited channels, in order to achieve higher 
data rates. The classic example of this is high-rate telephone modems (56 Kbits/sec over 
a 3 KHz. channel). This is accomplished with a large constellation of symbols in a 2 
dimensional signal space (i.e. inphase and quadrature). This places the signals in the 
constellation "close" together (i.e. they are not orthogonal) and thus more power is 
required to achieve acceptable error performance. Thus, TCM is used very effectively in 
this case to improve bandwidth efficiency, at the expense of power efficiency (a good 
trade-off for the band-limited telephone modem channel). 
 
In general, there are two widely used algorithms for decoding convolutional or trellis 
codes: the well known Viterbi algorithm, and the BCJR algorithm. In a generalized sense, 
both of these algorithms are mathematically equivalent, and in fact both algorithms 
belong to a larger class of algorithms referred to as “dynamic programming” algorithms. 
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The Viterbi algorithm has enjoyed wide commercial success, as the decoder of choice for 
convolutional codes in satellite systems, digital cell phones, and telephone modems, to 
name only a few of its applications. 
 
The BCJR algorithm, after having been ignored for years, has become popular recently 
for the decoding of turbo codes (or parallel concatenated codes) which require an 
iteration between two permuted code sequences. 
 
The decoding algorithm which has been implemented for CTCM is based on the BCJR 
algorithm, with several key modifications which I will describe below. A tutorial of the 
standard BCJR algorithm, as well as detailed modifications, is included in the Appendix.  
 
I should point out that at this point, my initial implementation of the BCJR algorithm 
achieves excellent bit-error-rate performance, but is not optimized for execution speed, as 
would need to be done in a commercially viable system. Work on improving the speed of 
this implementation is underway, and I believe that some additional patentable ideas will 
result. 
 
 
The following are enhancements to the standard BCJR algorithm successfully 
implemented and tested under this contract. 
 
Dealing with an Unknown Initial State 
 
Conventional trellis decoding algorithms assume that the encoder and decoder both start 
in an agreed upon initial state. With the unknown initial state of TBCM, and the strong 
tailbiting property, this is not possible. The solution is to simply set all initial state 
probabilities as equally likely for the first iteration of the decoder, and allow the decoder 
to converge naturally on the correct initial state. 
 
Dealing with non-binary data symbols.  
 
The trellis used for TBCM is non-binary in a general sense. The current implementation 
uses a 4-ary source alphabet, but other sizes could easily be accommodated. In general, 
m-ary source alphabets are accommodated by structuring the encoder/decoder with a 
look-up table implementation which includes both the state transitions and the the 
channel symbols, and can be easily modified to accommodate any new trellis structure or 
symbol constellation. 
 
Dealing with the absence of the data stream in the encoded bit stream (i.e. nonsystematic 
constituent codes) 
 
Published descriptions of the implementation of turbo decoders refer to the permuted 
“common” or “extrinsic” information which is used in the feedback iteration process to 
improve the state estimates of the parallel decoders. In this code, the common 
information is not explicit in the data stream, and must be inferred indirectly by the 
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algorithm. This is accomplished by summing the individual transition probabilities at 
each stage of the trellis prior to the permuted/depermuted feedback stage, in order to 
obtain an estimate of the extrinsic information.  
 
Permutation of symbol sequences 
 
Rather than permuting individual symbols at the encoder, groups of symbols, of size M 
are permuted. The decoder is then structured to estimate the states between sequences of 
M symbols, rather than the states between individual symbols. This results in an 
improvement in bit-error performance, but the cost is greater computational complexity.  
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Chapter 1   INTRODUCTION 
 

 

1.1 History of Research on CTCM 
 

Trellis coding is a popular error correcting technology in modern digital 

communications. An important technique used in trellis coding is trellis termination that 

forces the encoded trellis path to satisfy the state constraint--the starting state and ending 

state should be the same [1]. In shift-register based trellis coding environment, the initial 

state of encoder is always assumed to be 0 state and zero tailing [1] [2] is used for trellis 

termination. In this method, a certain number of zeros are padded to the end of the 

terminated input data sequence to force the encoded trellis path to end at 0 state. 

However, code rate is reduced due to these padding zeros. It becomes significant when 

the input information sequence has short length.  

An alternative to trellis termination without code rate loss is tail biting, first 

introduced by Solomon and Van Tilborg [3] and generalized later by Howard H. Ma et 

al. [2]. The state constraint is satisfied by forcing every trellis path to be a circular path--a 

path having the same starting state and ending state, which can be any of the possible 

states in the trellis. Its implementation involves initializing the encoder to a certain state 

with the last certain number of information bits in the input information sequence. For a 

long time, zero tailing has been the only practically used trellis termination method 

because of the simplicity and the fact that many efficient decoding algorithms were 

invented based on that condition. 

With the recent development of turbo codes [4] and the requirement of short 

frame transmission [5] [6], trellis termination began to be addressed again [7] [8]. A 

novel circular trellis coding with a permuted state structure was invented [9] [10] [11]. A 

permuted state transition table is built to guarantee the state constraint. Any input data 
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block is uniquely mapped to a circular trellis path under this state transition table. This is 

done without code rate loss or initializing the encoder.  

Since Ungerbock introduced trellis-coded modulation (TCM) in 1982 [12], coded 

modulation has been extensively researched and has achieved remarkable commercial 

success in its applications in band-limited channels. TCM combines a state-oriented 

trellis coding scheme--usually a convolutional coding scheme--and a multi-level/phase 

modulation into one single process. Coding gain is achieved without bandwidth 

expansion. Ungerbock’s work eventually led to coded modulation schemes capable of 

operation near capacity in a band-limited channel [13]. 

Applying the concept of conventional TCM, circular trellis coded-modulation 

(CTCM) with the permuted state structure for power-limited spread spectrum channels 

has been investigated in [9] [10] [11] [14]. In these literatures, orthogonal, bi-orthogonal, 

and simplex signal constellations have been researched for very small trellises. Since 

there is no systematic procedure for signal constellation construction and symbol 

assignment, those works cannot be extended to large trellis for practical applications. 

Neither can systematic analysis be done on the distance property, which is the most 

importance parameter for an error correcting code.  

Efficient decoding algorithms were developed for TCM [15] [16] [17] [18]. The 

most used is Viterbi algorithm [15], which is the optimum decoding to minimize the code 

word error [19] [20]. The other optimum algorithm, which minimizes the symbol (bit) 

error, is BCJR algorithm [21]. These algorithms require that the starting trellis state or the 

distribution of the starting states be known a priori. The unknown starting state in CTCM 

makes these decoding algorithms not directly applicable. Maximum likelihood (ML) 

decoding can always be used, but only for input information sequences with small length. 

No efficient decoding algorithm exists in the literature for current CTCM with permuted 

state structure. A circular BCJR algorithm was developed recently for tail biting codes 

[22], which can be useful in CTCM with permuted state structure. 
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1.2 Contributions of this Research 

In this research, a systematic high dimensional CTCM with permuted state 

structure (HDCTCM) is developed. The systematic designs of a high dimensional 

simplex signal constellation and symbol assignment procedure are invented to achieve 

optimal energy efficiency for power-limited channels [23].  

Minimum distance of a code is a primary parameter in determining its error 

correcting capacity [24]. Conventional algorithms [25] [26] to calculate the minimum 

distance of a trellis code always assume that the starting state is known a prior, which is 

not true for circular trellis coding. This research develops a practical computational 

algorithm to calculate the minimum distance of circular trellis coding [27]. The minimum 

distance of HDCTCM is obtained using this algorithm. The coding gain of HDCTCM is 

evaluated after the minimum distance is obtained.  

Due to the systematic construction of the signal constellation and symbol 

assignment, upper and lower bonds are derived for HDCTCM codes [28]. Also, this 

research proves these bounds can be reached. And a method to build codes that have the 

bounds of minimum distance is developed [29], whereas in most coding scheme, the 

optimal distance codes can only be obtained through exhaustive search.  

Moreover, the circular BJCR algorithm is explored for decoding HDCTM. 

Several implementation issues are solved. Tentative hard decision, along with the 

reliability information, is used to statistically evaluate the starting state. The circular 

property is incorporated into this algorithm to select the most reliable symbol as the 

starting point in the decoding. 

 

1.3 Outline of this Dissertation 

In this dissertation, the background knowledge on trellis coding, TCM, CTCM 

with permuted state structure, Viterbi and BCJR algorithms are given in Chapter 2. In 

Chapter 3, the systematic designs of signal constellation and symbol assignment for 

HDCTCM are introduced. The proof of uniformity of this coded modulation scheme is 

presented as well. Chapter 4 derives the computational algorithm to calculate the 

minimum distance for circular trellis codes. In addition, the distance property shown by 
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HDCTCM using this algorithm is illustrated. Chapter 5 derives the upper and lower 

bounds of the minimum distance of HDCTCM and designs the procedure to build the 

codes that achieve the bounds of minimum distance. The possible distance distributions 

of optimum codes are also discussed in this chapter. Chapter 6 explores iterative circular 

BCJR for decoding HDCTCM.  Implementation issues are solved in this chapter. An 

iterative circular shift BCJR is developed for decoding HDCTCM. The properties of this 

decoding algorithm are demonstrated through simulations and comparisons with other 

decoding algorithms. The error performance of HDCTCM using this decoding algorithm 

is analyzed as well. Chapter 7 presents the conclusions and recommends some further 

research in a number of specific directions. 

 



 

  10

 

 
CHAPTER 2   BACKGROUND 
 

 

This chapter provides the background materials on trellis coding, conventional 

TCM, circular trellis coding with permuted state structure, and decoding algorithms for 

TCM.  

2.1 Error Control Coding 

This dissertation work falls into the area of error control coding. In this section, 

the related stages to this research in digital communication system are discussed, and then 

the representation of error control codes is given.  

2.1.1 Communication System Overview 

 

A digital communication system can be described by the simplified Figure 2.1. 

 

 

 

 

 

 

 

Figure 2.1  Simplified digital communication system 

 

The stages related to this research are Channel Encode/Decode, 

Modulation/Demodulation and Spread/Despread. The input to the channel encoder is 

assumed to be the output of the source encoder and is called the information sequence.  
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Channel coding transforms the information sequence to a sequence of code 

symbols called code sequence or code word. The transformation is designed to improve 

communication performance by enabling the code sequence to better withstand various 

channel impairments, such as noise, fading, and jamming. The modulator maps the code 

sequence to a sequence of channel symbols drawn from a signal constellation. Channel 

symbols are realized by analog waveforms to be transmitted over the channel. In this 

dissertation, the channel is assumed to be a discrete memoryless channel (DMC) with 

additive white Gaussian noise (AWGN). The demodulator makes a definite decision 

(hard decision) or a quantized approximation (soft decision) for each received symbol to 

one of the symbols in the signal constellation. Those symbol values are fed into the 

decoder to decide the code sequence and the corresponding information sequence. 

Spreading maps the signals into an extended time or frequency range according to a 

certain mapping function before transmission. This has advantages in many aspects, such 

as anti-jamming. Despreading extracts the signal before spreading. More detailed 

structure and functionality of each stage can be referred to in [1]. 

2.1.2 Representation of Error Control Codes 

A basic kind of channel coding is error control coding. It introduces a controlled 

redundancy to the information sequence to provide the transmitted code sequence with 

improved ability to combat error and provide a way for the receiver to detect or correct 

error during transmission over a noisy channel. Error control codes can be divided into 

two general categories: block codes and convolutional codes. 

In block coding, the information sequence is segmented into blocks of fixed 

length k. The encoder transforms each block of k information symbols to a r -tuple vector 

known as code word according to a certain rule defined by a generator matrix or 

polynomial. k / r  is defined as code rate--a measure of information bit (symbol) per code 

bit (symbol). (r − k) bits are the redundancy bits (symbols) added to perform error 

detection or correction. The encoder encodes each k  information symbols independently. 

Most decoding methods for block codes are algebraic operations such as syndrome 

decoding for linear block codes [30]. 
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Convolutional codes were first introduced by Elias in 1955 [31]. Convolutional 

codes differ from block codes in that the encoder contains memory so that the r -tuple 

encoder output at any given time depends not only on the k -tuple input at that time 

instance but also on the previous K input k -tuples. K  is defined as constraint length 

(sometimes termed as  memory order). An (k ,r , K ) convolutional code can be 

implemented with a k -input, r -output linear sequential circuit with input memory K , 

with K = max1≤ i≤ k Ki , where Ki  is the number of the delay elements in the ith  shift 

register. The rate k / r  has the same code rate significance as block codes. A binary 

(2,1,2)  encoder is shown in Figure 2.2. 

 

 

 

 

 

 

Figure 2.2  A (2,1,2) binary convolutional encoder 

 

A set of polynomials indicating the connections between the adders and the stages 

of the registers completely describes the encoder. It is called the polynomial 

representation.   The other two frequently used representations are state diagram and 

trellis diagram. Viewing the convolutional encoder as a finite state machine driven by the 

information sequence, a state diagram illustrates the state transitions related to each 

possible k -tuple input. Figure 2.3 is the state diagram for the encoder shown in Figure 

2.2. The branch is labeled by the k -tuple input string together with the output code word. 

Denote the encoder state at time ti  as Si , then the encoder is said to be Markov in the 

sense that the probability, P(Si +1 | Si ,Si −1, ...,S0 ) , of being in state Si +1, given all the 

previous states, depends only on the most recent state Si , that is, the probability is equal 

to P(Si +1 | Si). 
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By extending a state diagram along the time dimension and merging the same 

state at the same time instance, a trellis diagram can be obtained. Figure 2.4 is the trellis 

diagram for the encoder in Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2.3  State diagram for the encoder in Figure 2.2 

 

A node in a trellis denotes a state. A branch represents a state transition driven by 

a certain input information string. It is labeled by a code symbol the encoder outputs 

when that state transition occurs. The level of trellis at time t0 is 0, and it increases by one 

at each time instance. From a starting state, all the states will be reached after a certain 

trellis level and then a fixed trellis section prevails. This trellis section completely 

describes the codes. A code word corresponding to an information sequence is 

represented by a sequence of state transitions along the time dimension, which is named 

as a trellis path.  
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Figure 2.4  Trellis diagram for the encoder in Figure 2.2 

 

Any encoder described by a finite state machine can be represented by a trellis 

and is named trellis encoder. Convolutional codes are the earliest linear codes in the class 

of trellis codes.  We will investigate the circular trellis codes in this dissertation. Circular 

trellis encoder refers to a type of trellis encoder, in which each information sequence is 

mapped to a circular trellis path--a path having the same starting state and ending state. 

This state can be any of the total states in this trellis and is completely determined by the 

information sequence itself.   

All the information conveyed by state diagram and trellis diagram can be recorded 

in a table, called state transition table. It indicates the next state of the state transition 

originating from any of the total states and driven by all the possible k -tuple inputs. 

Building a trellis codes is to specify its state transition table. 

2.2 Trellis Termination  

In trellis coding, the information sequence is truncated periodically with length L  

to have a block structure. In order to provide the same error protection to the last 

information symbol, a technique called trellis termination is employed to force the 

encoded trellis path to satisfy a state constraint--the starting and ending states of a trellis 

path should be the same. Zero tailing, tail biting, and circular trellis with permuted state 
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structure are the three ways to do this. They are introduced in the following two 

subsections. 

2.2.1 Zero Tailing and Tail Biting 

For a trellis code, usually 0 state is assumed. 0 state corresponds to the situation 

that the contents of the shift register are all zeros initially. Zero tailing is used for trellis 

termination. A certain number of zeros are appended to the truncated information 

sequence to force the encoded trellis path to go back to 0 state. For ease of understanding, 

consider a binary (1,r , K ) convolutional code. In this case, K  zeros are needed to 

append. For an information sequence of length L , the resultant code is a ((L + K)r,L)  

block code of rate (1 / r )(L / (L + K)) = (1 / r )(1 − K / (L + K)) . The term K / (L + K) is 

called the rate loss due to zero tailing. To reduce the rate loss, the truncation period L  is 

generally made as long as permissible. 

An alternative that does not introduce code rate loss is tail biting. For a binary (1, 

r , K ) encoder, first initialize the encoder by inputting the last K  information bits of the 

information sequence into the encoder and ignore the output, then, input all L  

information bits and take the resultant L ⋅ r output bits as code word. The last K  

information bits will force the encoded path to go back to the initial state of the encoder. 

This state is fully determined by the input data sequence itself. It is a type of circular 

trellis coding. The resulting code is a ( L , L ⋅ r ) block code of rate 1 / r .  

For a long time, zero tailing is the dominant practical method for trellis 

termination because of its simplicity and the fact that many efficient decoding algorithms 

were developed based on this assumption.  Tail biting is only used for research to 

associate quasi-cyclic block codes with convolutional codes in order to apply 

convolutional decoding algorithm to block codes [3]. 

2.2.2 Circular Trellis Coding with Permuted State Structure 

A novel circular trellis coding with permuted state structure was invented 

recently. The state constraint is satisfied without code rate loss or initializing the encoder. 

It is done by designing a permuted state transition table for the encoder.  
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Denote a circular trellis as T(n, D) , where n  is the number of exiting branches 

from each state. D  is called trellis depth; it is the number of stages needed to reach all the 

possible states from a starting state. This starting state can be any of the total states in this 

trellis. When the encoder accepts one q -ary information symbol at one time (this is the 

case for circular trellis coding with permuted state structure), n = q , i.e., the size of the 

information symbol alphabet. When it accepts k -tuple q -ary inputs at one time, n = qk . 

In either case, the total number of states in this trellis is S = nD .  

The state transition table is built using Zech’s logarithm operation in finite field--

GF(S). Number the total S states as ∞, 1, 2, ..., S −1. 

Then in GF(S), “a nature (1,  S−1)-type permutation” is expressed as  

( ) (1 2 3 2 1)       ...  S   Sσ ∞ = ∞ − −            (2.1)  

It represents the state transition ∞ → ∞ , 1 → 2 → 3 → ... → S − 2 → S −1 →1; they are 

named as 1-cycle and (S −1)-cycle ordered state permutation, respectively.  

The left S −1“(1,  S−1)-type permutation” in GF(S) can be built by using Zech’s 

logarithm operation.  Denote them as  

Θi = (i) (z(1) + i   z(2) + i   z(3) + i   ...   z(S-3) + i    z(S-2) + i   ∞ ), i =1,2,...,S −1   (2.2) 

The state transition it represents is  

i → i , z(1) + i → z(2) + i → z(3) + i → ... → z(S − 3) + i → z(S − 2) + i → ∞ → z(1) + i . By 

properly choosing n  out of the S  “(1, S−1)-type permutation” and letting each of them 

associate with the state transitions driven by one of the n  information symbol alphabets, 

the state transition table is constructed. This state transition table guarantees that each 

information sequence of length L ≥ D+ 1 will be mapped to a circular trellis path, and the 

starting and ending state of this path is a function of the symbols in the information 

sequence. No zero padding or encoder initialization is needed in this coding scheme.  

2.3 Trellis-Coded Modulation 

The goal of channel coding is to achieve coding gain. Coding gain is defined as 

the reduction in the required Eb / N0  to achieve a specified error probability using the 

coded system versus an uncoded system. Where Eb  is the average bit energy of the input 

data, N0  is the one-sided power spectrum density of channel noise. 



 

  17

In conventional communication, coding and modulation are separate processes. 

The coding gain is achieved at the price of bandwidth expansion by transmitting r -tuple 

code word instead of k -tuple data block in the same time slot. TCM combines them into 

one process. Conventional TCM has been widely used in band-limited channels. With the 

development of spread spectrum communications, coded modulation for power-limited 

spread spectrum channels becomes the latest research interest. CTCM with permuted 

state structure was introduced. We will give a brief review on these two schemes.  

 

2.3.1 Conventional TCM 

TCM was invented to achieve coding gain without bandwidth expansion. It 

combines a multilevel/phase signal constellation with a trellis coding scheme--usually a 

convolutional code. A larger signal constellation is used to provide the needed coding 

redundancy while keeping the same channel symbol rate (bandwidth) and average power 

as those of an uncoded system. Figure 2.5 shows two multilevel/phase signal 

constellations used by TCM, illustrated along with the corresponding uncoded system. 

 

 

 

 

 

 

 

 

 

Figure 2.5  Increase of signal set size for trellis-coded modulation 

 

The expanded signal set does result in reduced distance between adjacent signal 

points for a given signal power. However, because of the redundancy introduced by the 

code, this reduced distance no longer determines the error performance. Instead, the 

minimum Euclidean distance (ED) between all pairs of code sequences {an } and {a'
n }, 
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which the encoder can produce determines the error performance. It is defined in 

Equation (2.2.1).  

dmin = min
an{ }≠ a' n{ } d2

n
∑ an, a'

n( ) 

 
 

 

 
 

1/2

           (2.3) 

where d(an ,an
' )  denotes the ED between channel signals an and a'

n . 

If soft-decision ML decoding is used, the error-event probability will 

asymptotically approach the lower bound [19] at high signal-to-noise ratio. 

Pr(e) ≥ N(dmin)Q(dmin / 2σn )                      (2.4) 

where N(dmin ) denotes the average number of error events with distance dmin  , and Q(⋅) 

is the Gaussian error probability function. σn
2  is the variance of the channel noise. 

Therefore, assigning signal points to the coded bits (or the state transitions in a 

trellis codes) in a way that maximizes the minimum ED is the key to improve system 

performance. Ungerbock [12] devised an assignment procedure called “mapping by set 

partitioning”, which can always make the maximum miminum ED larger than the 

minimum distance between signal points in an uncoded system with the same data rate 

and average power; i.e., it can always get coding gain. The coding gain can be calculated 

as [32] 

G =
(dmin

2 / Sav ) coded

(dmin
2 / Sav )uncoded

             (2.5) 

where Sav is the average signal power. 

“Mapping by set partitioning” first successively partitions a channel signal 

constellation into subsets with increasing minimum distance between symbols in the 

subsets (see Figure 2.6), and then maps the signal constellation to code bits according to 

the following rules: All channel symbols are assigned with equal frequency and 

symmetry.  

 

1. All parallel transitions in the trellis structure are assigned the maximum possible ED. 

2. All transitions diverging from or merging into a trellis state are assigned the next 

maximum possible ED separation. 
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Applying the symbol assignment rules to an 8-state trellis as shown in Figure 2.7, 

gives (dmin )coded = 2.141. Taking uncoded 4-PSK as reference, (dmin )uncoded = 1.414. Here, 

the coding gain for 2/3 rate coded 8-PSK is 3.6 dB. 

 

 

 

 

 

 

 

 

 

Figure 2.6  A partition of an 8-PSK signal constellation into subsets 

 

 

 

 

 

 

 

 

Figure 2.7  Symbol assignment for 8-PSK modulation 

 

2.3.2 CTCM with Permuted State Structure 

CTCM with permuted state structure [9] [10] [11] was investigated recently for 

power-limited spread spectrum channels. The goal is to achieve coding gain, processing 

gain [1], and power efficiency at the same time. Orthogonal and bi-orthogonal signal 

constellations were researched, but they are not optimal for power limited channels. A 
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simplex signal set achieves the same error probability as an equally likely orthogonal set 

while using the minimum energy. It is the optimum signal set to achieve power efficiency 

[1] [33]. A simplex is a set of M  signals in an N -dimensional space with N ≥ M −1, 

satisfying that for all i, j ∈{1,2,...,M}, the cross-correlation between signals si  and s j  is 

si • sj =
1, i = j
−1

M −1
, i ≠ j

 
 
 

  
,            (2.6) 

for normalized signal energy. It can be verified that these M  signals have equal distance 

from each other.  

CTCM using simplex signaling was explored for very small trellises [14]. But the 

way to build the signal constellation and the symbol assignment are not systematic yet. 

As a result, the distance property of these codes cannot be analyzed systematically. 

Efficient decoding was not investigated for these codes before. Those are the problems 

that will be solved in this dissertation research.  

2.4 Decoding of TCM 

There are several efficient decoding algorithms developed for conventional TCM, 

such as sequential decoding proposed by Wozencraft [18] in 1961, threshold decoding 

introduced by Massey [17] in 1963, Viterbi decoding proposed by Viterbi [15] in 1967 

and BCJR algorithm propose by L. R. Bahl et al. in 1974 [21]. Among them, the most 

frequently used in practice is Viterbi algorithm, which has been proved to be a dynamic 

ML decoding algorithm. It is optimal in the sense that it minimizes the probability of 

code word error. Another optimal one is BCJR algorithm, which minimize the probability 

of symbol (or bit) error. These two algorithms are discussed below.  

2.4.1 Viterbi Algorithm 

For a conventional (k ,r , K ) convolutional encoder, denote the information 

sequence containing L  k -tuple information symbols as U = (U1,U2 ,...,Ut ,...,UL) . Ui  

belongs to the finite information symbol alphabet. The corresponding code sequence is 

denoted as V = (V1,V2 ,...,Vt ,...,VL+ K ). Vi  is a code symbol the encoder can output. In 

coded modulation scheme, it is a channel symbol assigned to the state transition 

occurring at stage i . Suppose the sequence R = (R1, R2, ..., Rt , ..., RL+ K )is received. The 
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decoder produces an estimate ˆ V  based on the observation of R . To minimize the code 

word error, the decoder choose ˆ V  such that the probability of ˆ V being sent, given the 

received sequence R , is maximized among all possible V ’s, i.e., [1, see Appendix B] 

P( ˆ V | R) = max
all V

P(V | R)         (2.7) 

If all V ’s  are equally likely distributed, (2.3.1) can be replaced by 

P(R | ˆ V ) = max
all V

P(R | V)         (2.8) 

This is called maximum likelihood (ML) decoding criterion. The decoder selects ˆ V  

among all possible V ’s  such that P(R | ˆ V ) is maximized.  

P(R | ˆ V ) can be computed from channel specification. In a case of discrete memoryless 

channel, we have 

 P(R | V ) = P(Rj | Vj )
j =1

L + m

∏             (2.9) 

The likelihood function P(R | V ) is called the path metric associated with the path V . 

P(Rj | Vj) called the branch metric. For AWGN channels one-sided noise power spectrum 

density N0 , 

P(R | V ) =
1

πN0

e
− R−V 2

N0 ,                                                                                            (2.10) 

where R − V 2  is the squared ED between R  and V . 

This is equivalent to choosing one V that has the minimum ED to R .  

Viterbi algorithm reduced the number of comparisons among all the possible V ’s 

by removing those trellis paths that could not possibly be considered for the maximum 

likelihood choices at each trellis stage. Only the path with the largest metrics entering 

each state is stored at each stage. This path is called the survivor. The final survivor is the 

decoded path.   

For TCM with a (k ,r , K ) convolutional encoder, the basic steps in Viterbi 

algorithm are 

1. Beginning at trellis stage j = K , compute the metric for single path entering each state. 

Store the path and its metric for each state. 
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2. Increase j  by 1. For each state, compute the path metrics for all the paths entering a 

state by adding the branch metric entering that state to the metric of the connecting 

survivor at the preceding trellis stage. Store the path with the largest metric (the 

survivor), together with its metric, and eliminate all other paths. 

3. If j < L + K , repeat step 2. Otherwise, stop. 

2.4.2 BCJR algorithm 

The BCJR algorithm is restated here without derivation. The source is assumed to 

be a discrete-time finite-state Markov process. The S distinct states of the Markov source 

are indexed by the integer m , m = 0,1,..., S −1. The state of the source at time t  is 

denoted by St  and its output by Xt . A state transition sequence extending from time t  to 

t '  is denoted by St
t'

= St ,St +1, ...,St' , and the corresponding code sequence is 

Xt
t '

= Xt , Xt +1,..., Xt ' , where Xt  belongs to some finite discrete alphabet. In coded 

modulation scheme, it is the channel symbol assigned to state transition St −1 → St . The 

Markov source starts in the initial state S0  and produces an output sequence X1
L , ending 

in the terminal state SL . X1
L  is the input to a noisy DMC channel whose output is the 

sequence Y1
L = Y1,Y2 ,...,YL . For all 1 ≤ t ≤ L , 

P(Y1
t | X1

t) = P(Yj | X j)
j=1

t

∏              (2.11) 

where P(Yj | Xj ) is the transition probability of this DMC.  

The objective of BCJR decoder is to examine Y1
L  and estimate the a posterior 

probability (APP) of the states and state transitions of the Markov source, i.e., the 

conditional probabilities  

P(St = m | Y1
L ) = P(St = m,  Y1

L ) / P(Y1
L)       (2.12) 

and  

P(St −1 = m' , St = m | Y1
L ) = P(St −1 = m' , St = m,Y1

L) / P(Y1
L) (2.13) 

In reality, BCJR calculates the joint probabilities  

λt(m) = P(St = m,Y1
L)            (2.14) 

and  
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σ t(m' , m) = P(St −1 = m' ,St = m,Y1
L)         (2.15) 

P(Y1
L)is the probability that βt (m) = βt +1(m

' )γ t +1(m,m' )
m'
∑  is observed. For a 

given Y1
L , P(Y1

L) is a constant. Dividing Equations (2.15) and (2.14) by this constant 

which is available from the decoder will always give Equations (2.12) and (2.13). 

Alternatively, we can normalize λt(m) and σ t(m' , m)  to obtain the same result. 

Three sets of probabilities are defined as follows: 

αt(m) = P(St = m,Y1
t)    (2.16)  

βt (m) = P(Yt +1
L | St = m)                     (2.17) 

γ t(m' ,m) = P(St = m,Yt | St −1 = m' )                     (2.18) 

Then 

λt(m) = αt(m)βt(m)                       (2.19) 

σ t(m' , m) = α t −1(m
' )γ t(m' ,m)βt(m)                     (2.20) 

And αt(m) and βt (m)can be formed by forward recursion in Equation (2.21) and 

backward recursion in Equation (2.22). 

αt(m) =
m'
∑ αt −1(m' )γ t (m

' ,m) t = 1,...,L                    (2.21)  

βt (m) = βt +1(m
' )γ t +1(m,m' )

m'
∑  t = L − 1,...,0                              (2.22) 

γ t(m' ,m) can be obtained from Markov data source and channel property.  

γ t(m' ,m) = P(Yt , St −1 = m' → St = m)

= P(St = m | St −1 = m' ) ⋅ P( Xt = X | St −1 = m' ,St = m) ⋅ P(Yt | X)
X
∑      (2.23) 

From theλt or σ t  

 P(Y1
L) = λt (m)

m
∑ = σ t(m,m' )

m,m '
∑                                                                             (2.24) 

  For the recursions in Equations (2.21) and  (2.22) to apply at t = 1 and t = L − 1 

respectively, α0 (m)  must be the probability of the encoder starting in state m  before 

stage 1 and β L(m)  the probability of the encoder ending in state m  after stage L . The 

standard application of the BCJR algorithm assumes S0 = SL = 0 , so 

α0 (0) = 1 and  α0 (m) = 0, for m ≠ 0                                (2.25) 
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and  

1)0( =Lβ  and  β L(m) = 0, for m ≠ 0.                   (2.26)  

The operations of the decoder for computing λt  and σ t are outlined below: 

1.α0 (m)  and β L(m)  are initialized according to Equations (2.15) and (2.16). 

2. As soon as Yt  is received, the decoder computes γ t(m' ,m)  using Equation (2.23) and 

αt(m) using Equation (2.21) for all t  and m . 

3. After the complete sequence Y1
L  has been received, the decoder recursively computes 

βt  using Equation (2.22). Then compute λt(m) and σ t(m' , m) using Equation (2.19) 

and (2.20). 

After Equations (2.14) and (2.15) are obtained, the probability of any event that is a 

function of states or state transitions can be obtained by summing the appropriate λt(m) 

or σ t(m' , m). Then decode the event as the one having the largest probability.  

 

2.4.3 Circular BCJR Algorithm 

BCJR algorithm is much less popular than Viterbi algorithm and is almost never 

applied in practical systems. The reason for this is that it yields performance in terms of 

symbol error probability only slightly superior to the Viterbi algorithm, yet it presents a 

much higher complexity. Both Viterbi and BCJR algorithm require the starting state or 

the distribution of the starting state be known a priori. This is not the case for circular 

trellis coding.  The optimum ML decoding for circular trellis is to run the Viterbi 

algorithm the number of total states times, each for one possible starting state. This is 

obviously not desirable for large trellis. Hence, BCJR is investigated again to be used in 

this case. First, the probability of the distribution of starting state needs to be solved. 

John B. Anderson [22] extended BCJR algorithm to tail biting codes. We refer to 

it as circular BCJR algorithm. Rewrite BCJR in vector and matrix format. Define αt  as a 

row vector and βt  as a column vector. Each of them has S  elements defined in Equations 

(2.16) and (2.17), respectively. Define γ t as an S × S  matrix with each element defined in 

Equation (2.18). For tailing biting codes,  
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S0 = SL ,                                                                                                                        (2.27) 

then [22] shows that 

α0 =
α0γ 1...γ L

P(Y1
L )

                                                                                                             (2.28) 

This means α0  is the normalized left eigenvector of the matrix γ 1...γ L corresponding to 

the largest eigenvalue. Similarly, the right eigenvector of γ 1...γ L  is the proper starting 

vector for β L  in most applications. [22] employs successive normalization to control the 

precision of the calculation without changing the results. This augment depends on the 

fact that scaling of any or all of the αt ,βt  or γ t  during recursions in Equations (2.21) and  

(2.22) simply leads to scaled λt(m) and σ t(m' , m) in Equations (2.19) and (2.20), but 

Equations (2.12) and (2.13) can always be obtained by normalizing λt(m) and σ t(m' , m) 

to have unit sum. This circular BCJR is referred to as circular BCJR with eigenvectors. 

Using superscript "o" to indicate a unit-sum vector, the basic steps are  

Given Y1
L = Y1,Y2 ,...,YL   

1. Find the left eigenvector corresponding to the largest eigenvalue of γ 1...γ L . This is α0 .     

2. Calculate the normalized α’s by forward recursion  

αt = α t −1
o γ t                                   (2.29)  

αt
o = α t / αt(i)

i
∑ , t = 1,...,L .                                 (2.30) 

4. Starting from the right eigenvector of γ 1...γ L , form the normalized β's by  

βt = γ t +1βt +1
o                                                                                         (2.31) 

    βt
o = βt / βt (i)

i
∑ , t = L − 1,...,0                                                                (2.32) 

4. Calculate the normalized λt  andσ t(m' , m)by 

λt(m) = αt
0(m)βt

0 (m),                                                                                             (2.33) 

λt
0(m) = λt(m) / λt(i)

i
∑                                                                                          (2.34) 

σ t(m' , m) = α t −1
o (m' )γ t(m' ,m)βt

o(m),                                                                     (2.35) 

σ t
o = σ t(m' ,m) / σ t (m

' ,m)
m ' , m
∑   t = 1,...,L                                                          (2.36) 
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[22] also argues that if we iterate the forward recursion enough times and properly 

normalize the outcomes, then the resulting sequence of outcomes 

α1...αL ,  αL +1Kα 2L ,α 2L +1 … will converge to repetitions of  α1
o Kα L

o , where   α1
o Kα L

o  is the 

normalized α  obtained from circular BCJR with eigenvectors . The speed of 

convergence (the number of iterations required by the forward recursion) is affected by 

the choice of initial α0 . Similar argument holds for backward recursion. This gives rise 

an iterative circular BCJR as described below. 

Given Y1
L = Y1,Y2 ,...,YL   

1. Do not calculate the eigenvectors of γ 1...γ L . Set initial α0  in some way. 

2. Calculate a set of normalized  α1
o Kα L

o  by the recursion in Equation (2.29) and (2.30), 

continues this recursion to find αt
o , t = L +1,L + 2,... . Take γ t =γ l  where l = t mod L . 

When αt
o − αl

o  is sufficiently small by a suitable measure, stop. A complete set of α 

is available in the last L  round. 

3. Execute a similar procedure backward along the trellis circle, to find the set   β1
o KβL

o . 

    Set β L = α0  initially. 

4. Same as in circular BCJR with eigenvectors.  

2.5 Spread Spectrum and HDCTCM 

Spread spectrum (SS) communication system is a system satisfying two criteria 

[34]. First, the bandwidth of the transmitted signal must be much larger than the message 

bandwidth. Second, this bandwidth must be determined by some function that is 

independent of the message, known as PSEUDONOISE (PN). The two most prevalent 

types of SS are direct sequence (SS) and Frequency Hopping (FH). By using PN to shift 

the phase of message in DS or to select the carrier frequency in FH pseudo randomly, the 

effect of spreading the message spectrum over a larger frequency range is achieved. Both 

systems can be coupled with HDCTCM for transmission over a power-limited channel. 

The coding gain and processing gain can be achieved at the same time. 
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CHAPTER 3   DESIGN OF HDCTCM 
 

 

The design of a trellis-coded modulation involves the state transition table 

construction for the encoder, the design of the signal constellation, and mapping rules 

between the symbols in the signal constellation and the state transitions. HDCTCM is 

designed for power-limited spread spectrum channels. The encoder employs the circular 

trellis coding with permuted state structure. The state transition table is built as described 

in Chapter 2. This chapter develops a systematic way to design a high dimensional 

simplex signal constellation and to do the symbol assignment. In Section 3.1, we give the 

design criterion. In Section 3.2, we apply this criterion to HDCTCM and build a matrix to 

record all sets of state transitions that should be assigned simplexes. In Section 3.3, the 

simplex signal constellation and the procedure of symbol assignment are designed.  

Uniformity is a desirable property for a coding scheme [35]. Analysis on error 

performance of this code will be greatly simplified under this condition. In Section 3.4 

we prove the uniformity of HDCTCM.   

3.1 Design Criterion 

The goal of designing a coding scheme is to obtain coding gain, i.e., to get 

reduced error probability compared with the uncoded system at a specific signal-to-noise 

ratio. For a trellis coded modulation scheme, suppose a particular code sequence (trellis 

path) is transmitted, then the decoder will select one code sequence that has the minimum 

distance to the received sequence in order to minimize the code word error. Denote the 

probability of making an incorrect decision on the code sequence as Pr(e). For AWGN 

channel with noise variance σn
2 , Pr(e) will asymptotically approach the lower bound at 

high signal to noise ratio [19] 

Pr(e) ≥ N(dmin)Q(dmin / 2σn )              (3.1) 
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where dmin  is defined as the minimum Euclidean distance (ED) between all pairs of code 

sequences, N(dmin ) denotes the number of paths having distance dmin , and Q(⋅) is the 

Gaussian error probability function.  

We can see the minimum distance of the code is of primary importance to its error 

performance. Usually, dmin  will correspond to the minimum distance produced by a path 

that splits and remerges with the transmitted path, since we would expect paths that do 

not remerge to keep accumulating distance. This path is called the error event of this 

transmitted path. And the distance from this error event to the transmitted path is called 

free distance, denoted as d free .  In order to reduce Pr(e), we want to maximize d free  . 

From Equation (3.1), we also desire that the number of code sequences having distance 

d free  be small. The symbol error probability, denoted as Pr(s) , is usually of more interest 

than the code word probabilityPr(e), and is defined as the ratio of the number of symbol 

errors over the symbols in the information sequence. In order to minimize the symbol 

error, we also want the information sequence corresponding to the decode path to have a 

small number of symbols differing from the information sequence corresponding to the 

transmitted path. This is to say, we want the unmerged stages between the error event and 

the transmitted path as small as possible. The error event having the minimum unmerged 

stage with the transmitted sequence is called the minimum error event. For a coding 

scheme with uniformity, taking any code sequence as the transmitted sequence will give 

the same arguments as above. 

3.2 Build State Transition Matrix  

In this section, by analyzing the error events in HDCTM we identify sets of state 

transitions that should be assigned simplexes. Then a multi-dimensional matrix is 

designed to record them. First, the butterfly structure of trellis codes is given to facilitate 

the discussion.  

3.2.1 Butterfly Structure in HDCTCM 

We denote HDCTCM that employs a circular trellis T(n, D)  with permuted state 

structure as HDCTCM(n, D) . n  and D  are originally defined in Section 2.2. For 

HDCTCM, n  is the size of information symbol alphabet and D  is the trellis depth. Some 
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other related system parameters are information sequence length L , the number of space 

dimensions N of the signal constellation we will build, and the total states S = nD .  

For all trellis codes, we can always identify sets of p  originating states and sets of q  next 

states that have complete intra-connectivity, but no connectivity with other state sets. 

Such structure is called a (p,q) butterfly. The set of the originating states or the next 

states in a butterfly is named the originating state set or the next state set of that butterfly. 

In a butterfly, each of the p  originating states has transitions to each of the q  next states-

-the total number of p ⋅ q  transitions in a butterfly.  In HDCTCM(n, D) , the state 

transition table built using the method described in Section 2.2 shows (n,n)  butterflies. 

Since each state can be a member of one and only one butterfly’s originating states set 

and one and only one butterfly’s next states set, there are a total number of S / n = nD −1 

butterflies representing all the nD −1 ⋅n 2 = nD +1 state transitions in the state transition table.  

 

Example 3.1  Take HDCTCM(4,3) as an example. The state transition table is shown in 

Table 3.1. The states are numbered by integer from 1 to 64. It can be found that any 

member of the set of states{1, 64, 4, 33}can transit to state 1, 2, 5, and 34.  Then the set 

of states {1, 64, 4,  33} and the set of states {1, 2,5, 34} build a butterfly; they are the 

originating states set and the next states set of this butterfly, respectively. We write this 

butterfly as butterfly {{1, 64, 4, 33},{1, 64, 4, 33}}. All 16 butterflies can be identified 

and are illustrated in Figure 3.1, where each box represents a butterfly. The originating 

state set and next state set are in the left side and right side of a butterfly, respectively. By 

this representation, we regard a butterfly as an ordered structure and refer a particular 

arrangement of the states in a butterfly as the internal order of a butterfly. The location of 

the state (or transition) in a butterfly is referred to as the internal location of the state (or 

transition).  The internal location of an originating state or a next state from top to bottom 

in a butterfly is 1, 2, 3, and 4.  Number the butterflies arbitrarily by integer from 1 to 16. 
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Table 3.1  State Transition Table for HDCTCM (4,3) 

State Input 0 Input 1   Input 2 Input 3  State Input 0 Input 1   Input 2 Input 3 

1 1 2 5 34  33 34 5 2 1 

2 3 8 15 37  34 35 18 51 40 

3 4 14 10 50  35 36 33 39 46 

4 5 34 1 2  36 37 15 8 3 

5 6 26 11 47  37 38 56 21 58 

6 7 64 17 25  38 39 46 36 33 

7 8 3 37 15  39 40 51 18 35 

8 9 28 29 20  40 41 45 59 60 

9 10 50 4 14  41 42 57 49 19 

10 11 47 6 26  42 43 30 54 16 

11 12 63 31 62  43 44 23 48 32 

12 13 27 53 55  44 45 41 60 59 

13 14 4 50 10  45 46 39 33 36 

14 15 37 3 8  46 47 11 26 6 

15 16 54 30 43  47 48 32 44 23 

16 17 25 7 64  48 49 19 42 57 

17 18 35 40 51  49 50 10 14 4 

18 19 49 57 42  50 51 40 35 18 

19 20 29 28 9  51 52 24 22 61 

20 21 58 38 56  52 53 55 13 27 

21 22 61 52 24  53 54 16 43 30 

22 23 44 32 48  54 55 53 27 13 

23 24 52 61 22  55 56 38 58 21 

24 25 17 64 7  56 57 42 19 49 

25 26 6 47 11  57 58 21 56 38 

26 27 13 55 53  58 59 60 41 45 

27 28 9 20 29  59 60 59 45 41 

28 29 20 9 28  60 61 22 24 52 

29 30 43 16 54  61 62 31 63 12 

30 31 62 12 63  62 63 12 62 31 

31 32 48 23 44  63 64 7 25 17 

32 33 36 46 39  64 2 1 34 5 
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Figure 3.1  Butterflies in HDCTCM (4,3) 

 

3.2.2 Minimum Error Events and Simplex-Transitions  

Let us consider the error events. As shown in Section 2.2, for a circular trellis 

T(n, D)  with permuted state structure, the smallest information sequence length that can 

be employed is L = D +1. The minimum error events occur in this situation. There are a 

total number of nD +1 paths in the trellis. Each starting state associates with n  paths 

diverging at the beginning and remerging at stage D +1(see Figure 3.2). Given that each 

state transition occurs equally likely and there is no better knowledge to differentiate 

these n  paths from each other, we will make these n  paths equally distant from each 

other in our design. Take one of them as the transmitted path; the minimum error events 

are the other n −1 paths. In order to make d free  as large as possible and achieve energy 

efficiency in power-limited channel, at each trellis stage the n  state transitions on these n  

paths should be assigned a simplex. We name the set of such n  state transitions as a 

simplex-transition. A simplex-transition at stage i  is denoted as simplex-transitioni, 

  i =1,2,K, D +1 (see Figure 3.2). 
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Figure 3.2  The n  paths associated with a certain starting state for HDCTCM(n, D)  with 

L = D +1  

 

For each stage i , the n  paths associated with a certain starting state define a 

simplex-transitioni; then, for all the possible starting states, there is a total number of nD  

simplex-transitioni; for each i ,  i =1,2,K, D +1. A particular state transition appears 

exactly once in a simplex-transitioni; for all i ,  i =1,2,K, D +1.  

The set of originating states or next states of the n  transitions in a simplex-

transition is called the originating state set or next state set of this simplex-transition. 

 

Example 3.2  For HDCTCM(4,3), Appendix A gives all the paths at L = D +1 = 4 .  The 

set of 4 state transitions at stage i  on the paths associated with a starting state constitute a 

simplex-transitioni; for each i , i =1,2,3, 4. There are 64 simplex-transitioni’s; for each i , 

i =1,2,3, 4.   

For instance, on the 4 paths associated with starting state 3, the set of state 

transitions at stage 2 constitute a simplex-transition2 denoted as simplex-

transition2{4 →1,  14 → 3, 10 → 6, 50 → 35}.  For a particular state transition--say 

2 → 3--it can be verified that it appears exactly once in  

one simplex-transition1{2 → 3,  2 → 8, 2 → 15, 2 → 37},  

one simplex-transition2{1 →1,  2 → 3, 5 → 6, 34 → 35},  

one simplex-transition3{26 → 13, 18 → 49, 2 → 3, 8 → 9},  and 

 stage   1        2        …       i      …         D       D+1 

simplex-transitioni  
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one simplex-transition4{2 → 3,  14 → 3, 7 → 3, 36 → 3}. 

 

3.2.3 Illustrate Simplex-Transitions in Butterfly Structure  

In HDCTCM(n, D) , all nD +1 distinct state transitions are represented in its nD −1 

butterflies. So, we can analyze how the simplex-transitions are reflected in the butterflies. 

From Figure 3.2 we can see that the n  transitions in a simplex-transition1 have a same 

originating state, so they are contained in the butterfly whose originating state set 

contains this originating state. They are the state transitions from this originating state in 

this butterfly to each of all the next states in this butterfly. The n  transitions in a simplex-

transitionD+1 have a same next state and are, therefore, contained in the butterfly whose 

next state set contains this next state. They are the state transitions from each of all the 

originating states to this next state in this butterfly. Each butterfly contains n  simplex-

transition1’s and n  simplex-transitionD+1’s.   A total number of nD −1 butterflies contain all 

the nD  simplex-transition1’s and simplex-transitionD+1’s. For the n  transitions in a 

simplex-transitioni, 2 ≤ i ≤ D , each transition has a different originating state and a 

different next state. Compared with the butterflies, it can be seen that each transition is 

contained in a different butterfly. We say there are n  butterflies associated with a 

simplex-transitioni.  

 

Example 3.3  For HDCTCM (4,3), compare all the simplex-transitioni’s from Appendix 

A with all its 16 butterflies in Figure 3.1. For instance, on the 4 paths associated with 

starting state 3, the simplex-transition1{3 → 4, 3 → 14, 3 → 10, 3 → 50}, is contained in 

butterfly 3, as shown in Figure 3.3 (a).  The simplex- 

transition4{2 → 3,  14 → 3,   7 → 3, 36 → 3} is contained in butterfly 2, as shown in 

Figure 3.3 (b). The 4 transitions in simplex-

transition2{4 →1,  14 → 3, 10 → 6, 50 → 35}are contained in butterfly 1, 2, 4, and 10, 

respectively as shown in Figure 3.3 (c). It can be verified that the other 15 transitions in 

each of the butterfly 1, 2, 4, and 10 constitute the other 15 simplex-transition2’s. 
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Figure 3.3  Illustrate simplex-transitions in butterflies for HDCTCM(4,3)  

 

In fact, for HDCTCM(n, D) , the following property is observed for a simplex-transitioni, 

2 ≤ i ≤ D . 

 

Property 3.1  Consider two simplex-transitioni’s: if the originating state (or next state) of 

a transition in one simplex-transitioni is the same as the originating state (or next state) of 

a transition in the other simplex-transitioni, then the originating state set (or next state set) 

of one simplex-transitioni will be identical to that of the other simplex-transitioni. 

From this property, we have the following statement. 

 

Statement 3.1  For a simplex-transitioni, find the n  butterflies associated with it. Then 

the other n2 −1 transitions in each of these n  butterflies constitute the other n2 −1 

simplex-transitioni’s.  

 

Proof: Number these n  butterflies associated with the first simplex-transitioni as butterfly 

m , m = 1,2,...,n . The originating states and next states in butterfly m  will be labeled 

using gmj  and rmj , j =1,2,...,n  as our proof continues.  

Each of the n  transitions in a simplex-transitioni is contained in a different butterfly. So, 

for the first simplex-transitioni, we can label the originating state and next state of the 
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transition contained in butterfly m  as gm1  and rm1, and then this first simplex-transitioni is 

{  gm1 → rm1 m = 1,K,n} (see Figure 3.4 (a)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Simplex-transitioni’s in the four associated butterflies 

 

Consider the other transitions in these n  butterflies. For a particular butterfly m' , 

m' = 1,2,...,n , there are other n −1 transitions having rm' 1  as next state. Label them as 

gm ' k → rm' 1 , k = 2,3,...,n  (see Figure 3.4 (b)). For each k , consider a new simplex-

transition containing transition gm ' k → rm' 1 . The next state of transition gm ' k → rm' 1  is rm' 1 . 

rm' 1  is also the next state of the transition gm1 → rm1  in the first simplex-transitioni. From 

Property 3.1, the next state set of this new simplex-transitioni will be identical to that of 

the first simplex-transitioni; it is the set of states  rm1 m = 1,K,n{ }. This indicates that this 

new simplex-transitioni is contained in these n  butterflies. For this new simplex-

transitioni, we can label the transition contained in butterfly m , m ≠ m ' , as gmk → rm1. 

Then this new simplex-transitioni is  {gmk → rm1 m = 1,K,n}.  
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Similarly, there are other n −1 transitions originating from gm ' 1  in butterfly m' . 

Label them as gm ' 1 → rm' k , k = 2,3,...,n  (see Figure 3.4 (c)). For each k , a new simplex-

transition containing the transition gm ' 1 → rm' k  will have the originating state set identical 

to that of the first simplex-transitioni. It is the set of states  gm1 m = 1,K,n{ }. This 

indicates that this new simplex-transitioni is also contained in these n  butterflies. For this 

new simplex-transitioni, we can label the transition contained in butterfly m , m ≠ m' , as 

gm1 → rmk . Then this new simplex-transitioni is  {gm1 → rmk m = 1,K,n}.  

 

So far, (n −1) + (n −1) = 2n − 2  more transitions in each of these n  butterflies 

have been considered and they constitute 2n − 2  new simplex-transitioni’s. All the 

originating and next states in these n  butterflies have been labeled as gmj  and rmj , 

j =1,2,...,n . 

The transitions yet to be considered in butterfly m' are gm ' s → rm ' t , where 

s, t = 2,3,...,n .  For each s  and t , consider a new simplex-transitioni containing the 

transition gm ' s → rm ' t . From Property 3.1, it will have the originating state set identical to 

that of the simplex-transitioni {  gms → rm1 m =1,K,n }. It is the set of states 

  gms m = 1,K, n{ }. Also, it will have the next state set identical to that of the simplex-

transitioni   {gm1 → rmt m = 1,K, n}. It is the set of states  rmt m =1,K,n{ }. This shows that 

the new simplex-transitioni is {  gms → rmt m = 1,K,n}. So, we have shown the remaining 

(n −1) ⋅(n −1) = n2 − 2n + 1 unconsidered transitions in each butterfly also constitute the 

other (n −1) ⋅(n −1) = n2 − 2n + 1 new simplex-transitioni’s. So far, we have shown that 

set of transitions   {gmj → rmk m = 1,K,n} is a simplex-transitioni; for   all j  and k , 

j,  k = 1,2,...,n . 

In summary, we have proved that in the n  butterflies associated with a simplex-

transitioni, all the n ⋅ (n ⋅n) transitions will constitute a number of n ⋅ n  simplex-

transitioni’s. Later in this dissertation, we may say these n  butterflies constitute simplex-

transitioni. Also, we name a set of n  butterflies constituting simplex-transitioni as a 

simplex-transitioni-butterfly-set.   
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For each i , 2 ≤ i ≤ D , there are number of nD  simplex-transitioni’s. The total 

number of nD −1 butterflies can be grouped into nD −2  sets of n  butterflies constituting 

simplex-transition, each set containing n2  simplex-transitioni’s. Any particular butterfly 

is a member of a set of n  butterflies constituting simplex-transitioni for all i , 2 ≤ i ≤ D . 

 

Example 3.4  For HDCTCM (4,3),  all the butterflies and simplex-transitions are solved 

in Examples 3.1 and 3.2. We can identify the 4 simplex-transition2-butterfly-sets. They 

are: butterfly{1, 2, 4, 10}, butterfly{3, 6, 9, 12}, butterfly{5,  8,  7,  14}, and 

butterfly{15,  11, 13,  16}; The 4 simplex-transition3-butterfly-sets are 

butterfly{1, 3, 5,  15}, butterfly{2, 6, 8, 11}, butterfly{4, 9, 7, 13}, and 

butterfly{10, 12, 14,  16}. 

Note that the butterflies and all the paths at L = D +1 are completely determined 

by the state transition table, so all sets of n  transitions constituting simplex-transitioni’s 

where i =1,2,...,D +1 and all sets of n  butterflies constituting simplex-transitioni’s 

where i = 2,3,..., D  are fixed in HDCTCM for a given n  and D .  

3.2.4 Arrange the Internal Orders of Butterflies in a Simplex-Transitioni-Butterfly-

Set   

In the next two sections, we will build a convenient structure to record all the 

simplex-transitions (butterflies). The proof of Statement 3.1 has shown that in a simplex-

transitioni-butterfly-set, by proper labeling the set of transitions  {gmj → rmk m = 1,K,n} 

constitute a simplex-transitioni for all j  and k , j, k =1,2,...,n . Since we have 

represented a butterfly as an ordered structure, if we place gm ' j  in butterflies m'  the same 

internal location as gm '' j  in butterfly m ' ' , m' ,  m' ' = 1,2,...,n , then the set of n  transitions 

constituting a simplex-transitioni will be in the same internal location of these n  

butterflies. The steps to do this are described below in Procedure 3.1.  

 

Procedure 3.1  Arrange the Internal Orders of butterflies in a simplex-transitioni-

butterfly-set, i = 2,3,..., D .  
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Number these n  butterflies as butterfly m , m = 1,2,...,n . The originating states and next 

states in butterfly m  will be labeled using gmj  and rmj , j =1,2,...,n .  

1.  Select any one of these n  butterflies, say butterfly m' . Arrange the originating states 

and next states in the left side and right side in this butterfly arbitrarily. Label them as 

gm ' j  and rm' j  arbitrarily, j =1,2,...,n .  

2. For each k , k = 1,2,...,n , identify the simplex-transitioni containing transition 

gm ' k → rm' 1 . For this simplex-transitioni, we can label the transition contained in 

butterfly m , m ≠ m' , as gmk → rm1. Place gmk  and rm1 in butterfly m  in the same 

internal location as gm' k  and rm' 1  in butterfly m' . 

3. For each k , k = 2,3,...,n , identify the simplex-transitioni containing transition 

gm ' 1 → rm' k . For this particular simplex-transitioni, we can label the transition in this 

simplex-transition contained in butterfly m , m ≠ m' , as gm1 → rmk . Place rmk  in 

butterfly m in the same internal location as rm' k  in butterfly m' .  

Following the proof of Statement 3.1, it can be verified that all the other set of n  

transitions   {gms → rmt m =1,K,n}, for all s  and t , s, t = 2,3,..., n  constitute simplex-

transitioni, and are in the same internal location of these n  butterflies.  

From this procedure, we can see one of the n  butterflies’ internal orders will fix 

all the other n −1 butterflies’ internal orders in a simplex-transitioni-butterfly-set. 

 

Example 3.5  For HDCTCM (4,3), from Example 3.4, we know butterfly{1, 2, 4, 10} is 

a simplex-transition2-butterfly-set. We will arrange the internal order of them according 

to Procedure 3.1. 

1. First choose any one of these four butterflies--say butterfly 2--and arrange the states in 

an arbitrary way (see Figure 3.5 (a)). 
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Figure 3.5  Arrange the internal orders of the butterflies in a simplex-transition2-butterfly-

set for HDCTM(4,3) 

2. For each of the transitions 7 → 3, 2 → 3, 14 → 3 and 36 → 3, identify the simplex-

transtition2 containing this transition from Appendix A; they are  

 simplex-transition2{7 → 3,  64 → 1, 25 → 6, 17 → 35},  

simplex-transition2{2 → 3,  1→ 1, 5 → 6, 34 → 35},  

simplex-transition2{14 → 3,  4 → 1, 10 → 6, 50 → 35} and  

simplex-transition2{36 → 3, 33 →1, 46 → 6, 39 → 35}.  

Then, the originating states 64, 1, 4, 33 and next state 1 should be placed in the 

same internal location in butterfly 1 as originating state 7, 2, 14, 36 and next state 3 in 

butterfly 2. Similarly, the locations of the originating states and one next state of 

butterflies 4 and 10 will be fixed (see Figure 3.5 (b)).  

3. For each of the transitions 7 →15 , 7 → 37 and 7 → 8, the simplex-transition2     

containing this transition is  

simplex-transition2{7 → 15,  64 → 5, 25 → 11, 17 → 51}, 

simplex-transition2{7 → 37,  64 → 34, 25 → 47, 17 → 40} and 

simplex-transition2{7 → 8,  64 → 2, 25 → 26, 17 → 18}. 

Then, in butterfly 1, the next state 5, 34, 2 should be placed in the same internal 

location as the next state 15, 37, 8 in butterfly 2. Similarly, the locations of the three other 

next states of butterfly 4 and 10 will be fixed (see Figure 3.5 (c)).  

 

3.2.5 Build State Transition Matrix 

We have seen that for HDCTCM(n, D) , a total number of nD −1 butterflies exist. 

Simplex-transition1 and simplex-transitionD+1 are within a butterfly. Simplex-transitioni, 

where 2 ≤ i ≤ D  are constituted by sets of n  butterflies. We will regard a butterfly as a 

unit element with ordered structure, and place all the butterflies in a D − 1 dimensional 

matrix with n  location indexes along each matrix dimension. Name this matrix as state 



 

  40

transition matrix (STM). A location in STM is referred to using 

STM  (x1,x2,K, xi ,..., xD−1 ), where xk  is the location index along the kth  dimension of 

STM, xk ∈{1, 2,...,n}, k = 1,2,..., D −1. When xk =: , it means xk  can take any possible 

value. STM  (x1,x2,K, xk −1,:, xk +1, ..., xD−1)  will represent the n  locations along the kth  

dimension. These n  locations have the same location index xj  along the jth  dimension, 

where j ≠ k .  When xk =: /m , where m ∈{1,2,...,n}, it means xk  can take any possible 

value except m . 

Since any particular butterfly is a member of a set of n  butterflies constituting 

simplex-transitioni, for all i , 2 ≤ i ≤ D . We will design a way to place all the butterflies 

into STM such that the set of n  butterflies constituting simplex-transitioni are placed in 

the n  locations along the (i −1) th  dimension of STM, i.e., STM 

(  x1,x2,K, xi− 2, :, xi ,..., xD−1 ), for all i , 2 ≤ i ≤ D . There are nD −2  possible combinations for 

xj , j ≠ i −1. A total number of nD −2  sets of n  locations along the (i −1) th  dimension are 

used for placing all the nD −2  sets of n  butterflies constituting simplex-transitioni for all i , 

2 ≤ i ≤ D . Also, the internal orders of the set of n  butterflies constituting simplex-

transitioni, where 2 ≤ i ≤ D , can be arranged according to Procedure 3.1 such that the n  

transitions constituting a simplex-transitioni are placed in the same internal location of 

these n  butterflies. Then finally, in STM, a simplex-transitioni, 2 ≤ i ≤ D , will be the n  

transitions located in the same internal locations of a set of n  butterflies along the (i −1) th  

dimension.  

Note that Procedure 3.1 only arranges the internal orders of the set of n  butterflies 

constituting simplex-transitioni. When placing these n  butterflies in 

STM  (x1,x2,K, xi− 2, :, xi ,..., xD−1 ), the order of placing these n  butterflies in these locations 

is not fixed in Procedure 3.1. We will see shortly in the procedure of building STM that 

the first set of n  butterflies constituting simplex-transitioni can be placed into 

STM  (x1,x2,K, xi− 2, :, xi ,..., xD−1 ) in an arbitrary order, but a particular choice on this order 

will fix the order of placing all the other sets of n  butterflies constituting simplex-

transitioni along the (i −1) th  dimension of STM. We will define a choice set called STM-

FREE, whose member elements indicate a particular choice made for arranging the 

internal orders or the order of placing the n  butterflies constituting simplex-transitioni 
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along the (i −1) th  dimension when building STM. The procedure of building STM is 

stated as below. 

 

Procedure 3.2  Build STM 

For HDCTCM(n, D) , number its butterflies from 1 to nD −1.  

1. First, select any butterfly, record this choice as STM-FREE (first butterfly). There are 

nD −1choices. Take n =4, D=4 as an example. For instance, butterfly 1 is chosen.   

Secondly, place this selected butterfly into any location in STM, say--

STM  (l1, l2 ,K, lD −1) . Record a particular choice in STM-FREE (first location). There 

are nD −1choices (see Figure 3.6 (a), take l1 = 2 , l2 = 3 and l3 = 1). Then place the n  

originating states in the left side of this butterfly in an arbitrary way and record a 

particular arrangement in STM-FREE (left side butterfly). There are n ! different 

arrangements (see Figure 3.6 (b)). Finally, place the n  next states in the right side of 

this butterfly in an arbitrary way and record a particular arrangement in STM-FREE 

(right side butterfly). There are n ! different arrangements (see Figure 3.6 (c)). STM-

FREE (left side butterfly, right side butterfly) completely fixes the internal order of 

this butterfly. Name this first selected butterfly as the anchor butterfly.  

2. Build the first dimension. Identify the other n −1 butterflies that constitute simplex-

transition2 with the anchor butterfly. The internal orders of these n −1 butterflies are 

fixed with respect to the anchor butterfly using Procedure 3.1. They should be placed 

into locations along the first dimension of STM and should have the location indexes 

along all the other dimensions the same as anchor butterfly, i.e., the locations 

STM  (x1, l2,K, lD−1)  where x1 =: /l1 . The order of placing them is arbitrary. There are 

(n -1)! different ways. Record a particular arrangement in STM-FREE (1st dimension). 

See Figure 3.6 (d), assuming that butterfly{1, 2, 3, 4} constitute simplex-transition2. 

3. Build the second dimension. Identify the other n −1 butterflies that constitute simplex-

transition3 with the anchor butterfly. The internal orders of these n −1 butterflies are 

fixed with respect to the anchor butterfly using Procedure 3.1. They should be placed 

into locations along the 2nd dimension of STM and have the same location indexes 

along all the other dimensions as the anchor butterfly, i.e., the locations  
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Figure 3.6  Build STM for HDCTCM(4, 4)  

 

STM  (l1, x2, l3,K,lD−1 ) where x2 =: /l2 . The order of placing them is arbitrary. There are 

(n -1)! different ways to place them. Record a particular arrangement in STM-FREE 
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(2nd dimension). See Figure 3.6 (e), assuming that butterfly{5,  1, 6, 7} constitute 

simplex-transition3. For each x2  where x2 ≠ l2 , regard the butterfly in 

STM  (l1, x2, l3,K,lD−1 ) as the anchor butterfly. Repeat step 2 and the other n −1 

butterflies constituting simplex-transition2 with this butterfly will be identified. Their 

internal order is fixed with respect to this butterfly using Procedure 3.1 and they 

should be placed in locations along the first dimension—STM  (x1,x2, l3 ,K,lD−1 ) where 

x1 =: /l1 . Denoted these n −1 butterflies as bk , k = 1,2,3. This time, the order of 

placing them is now fixed. Suppose butterfly bk  is to be placed in 

STM  ( j, x2,l3,K, lD−1)  where j ∈{1,2,...,n} and j ≠ l1; that means bk  is a member of the 

simplex-transition3-butterfly-set containing the butterfly in STM  ( j, x2,l3,K, lD−1)  

which has been placed in the previous stage. Since a particular butterfly is a member 

of one and only one simplex-transition3-butterfly-set, so by cross-checking the 

membership of butterfly bk  in the n −1 simplex-transition3-butterfly-sets containing 

butterflies in STM  (x1, l2, l3,K, lD−1 ) where x1 =: /l1 , the location index of butterfly bk  

along the first dimension is obtained (see Figure 3.6 (f)). In Figure 3.6 (f), assume that 

butterfly 8, 9, and 10 constitute simplex-transition2 with butterfly 5, and the three of 

simplex-transition3-butterfly-set containing butterfly 2, 3, 4 are butterfly 

{8, 11,  2, 14}, butterfly {10, 12, 4, 15}, and butterfly {9, 13, 3, 16}, respectively. 

Then butterfly 8, 9 and 10 should all have the same location index along the 2nd 

dimension as butterfly 5 and have the same location index along the 1st dimension as 

butterflies 2, 4, 3, respectively. Similarly, All the rest of the locations are filled with 

the proper butterflies. We see the order of placing the other n −1 butterflies in the 

simplex-transition2-butterly-set and simplex-transition3-butterfly-set containing the 

anchor butterfly fix all the butterflies’ location in this two-dimensional place where the 

anchor butterfly is located.   

4. Build the third dimension. Identify the other n −1 butterflies constituting simplex-

transition4 as the anchor butterfly; their internal order will be fixed using Procedure 

3.1. They should be placed in STM  (l1,l2 , x3,K,lD−1 ) where x3 =: /l3. The order of 

placing them is arbitrary. There are (n -1)! different ways to place them. Choose a 

particular arrangement and record it in STM-FREE (3rd dimension).  See Figure 3.6 
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(g), (h), and (i), assuming that butterfly{1, 17, 18, 19} constitute simplex-transition4. 

For each x3  where x3 ≠ l3 , regard the butterfly in STM  (l1, l2 , x3,K, lD−1 ) as the anchor 

butterfly. Repeat step 2 and 3; butterflies from certain simplex-transition2-butterfly-

sets and simplex-transition3-butterfly-sets will be identified and placed into the rest of 

locations in the two-dimensional plane containing this butterfly--

STM  (:,:,x3, l4,K, lD−1 ) and their locations are also fixed. Because for each x3  where 

x3 ≠ l3 , when repeating step 2 and 3, the order of placing the butterflies constituting 

simplex-transition2 with the butterfly in STM  (l1,l2 , x3,K,lD−1 ) along the first 

dimension into STM  (x1, l2, x3 ,l4,K,lD −1)  where x1 =: /l1  will be fixed by cross-checking 

the memberships of these butterflies in the simplex-transition4-butterfly-sets 

containing the butterflies in STM  (x1, l2, l3,l4 ,K,lD −1) where x1 =: /l1 . The order of 

placing the butterflies constituting simplex-transition3 with the butterfly in 

STM  (l1,l2 , x3,K,lD−1 ) along the second dimension into STM  (l1, x2, x3 ,l4,K, lD −1) , 

where x2 =: /l2  will be fixed by cross-checking the memberships of these butterflies in 

the simplex-transition4-butterfly-sets containing the butterflies in 

STM  (l1, x2, l3,l4 ,K,lD −1) where x2 =: /l2 .  Then, from the previous steps, this will 

consequently fix all other butterflies in this two-dimensional plane-- 

STM  (:,:,x3, l4,K, lD−1 ) (see Figure 3.6 (j)). In Figure 3.6 (j), assume that butterfly 20, 

21, and 22 constitute simplex-transition2 with butterfly 17 and also assume that 

butterfly 23, 24, and 25 constitute simplex-transition3 with butterfly 17. Then the 

locations of butterfly 20, 21, 22, 23, 24, and 25 will be fixed by cross-checking with 

simplex-transition4-butterfly-sets containing butterfly 2, 3, 4 and 5, 6, 7. Assume 

butterfly 20 is in the simplex-transition4-butterfly-set containing butterfly 2, butterfly 

23 is in the simplex-transition4-butterfly-set containing butterfly 5, then they should 

have the same location indexes along first and second dimension in STM(:,:,2) as 

butterfly 2 and 5 in STM(:,:,1), respectively. By this way, proper sets of butterflies 

will be placed in the rest locations in STM (:,:,2). Similarly, the rest locations in 

STM(:,:,3) and STM(:,:,4) will be filled (see Figure 3.6 (k) and (l)). The internal 

order of all these butterflies will be fixed using Procedure 3.1. 
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5. Continue this way, each time fill the rest of locations along a new dimension of STM, 

until completely filling the D −1 dimensional matrix. At step i , the n −1 butterflies 

constituting simplex-transitioni with the anchor butterfly will be placed into locations 

along the (i −1) th dimension, i.e., the locations STM  (l1, l2 , ...,xi−1, li ,K, lD−1)  where 

xi −1 =:/li −1. The order of placing them in these locations is arbitrary. Record a 

particular arrangement in STM-FREE ((i −1) th dimension). There are (n -1)! different 

ways. Then, for each xi −1  where xi −1 ≠ li−1 , regard the butterfly in 

STM  (l1, l2 , ...,xi−1, li ,K, lD−1)  as the anchor butterfly. Repeat step 2 until step i −1, the 

unfilled locations in STM(:,:,...,:, xi −1, li ,..., lD−1 ) will be filled by butterflies from 

certain simplex-transition2-butterfly-sets, simplex-transition3-butterfly-sets, …. , 

simplex-transitioni-1-butterfly-sets. The locations of all these butterflies used to fill are 

fixed; because when repeating step 2 until step i −1, the order of placing the 

butterflies constituting simplex-transitionk where k = 2,3,...,i − 1 with this butterfly 

into STM  (l1, l2 , ...,xk−1,lk ,K, li − 2, xi −1, li ,..., lD−1 ) where xk −1 =: /lk −1  will be fixed by 

cross-checking the memberships in the simplex-transitioni-butterfly-sets containing the 

butterflies in STM  (l1, l2 , ...,xk −1, lk,K, li − 2, li −1,li , ..., lD −1)  where xk −1 =: /lk −1 . The 

locations of those butterflies have been fixed in the previous steps. Then the locations 

of all the rest of the butterflies that should be placed in STM(:,:,...,:, xi −1, li ,..., lD−1 ) are 

fixed.   The internal orders of all butterflies are fixed using Procedure 3.1.  

 

We can see from Procedure 3.2, the D + 3 times choice defined in STM-FREE 

totally fix an STM. Changing one butterfly’s internal order or the order of placing one set 

of the n  butterflies along the ith dimension will cause corresponding change on all the 

other butterfly’s internal order or the order of placing all the other sets of the n  butterflies 

along the ith dimension, i =1,2,...,D −1. This implies that one butterfly’s internal order 

will fix the internal order of all the other butterflies, i.e., define STM (left side butterfly, 

right side butterfly). The order of placing one set of the n  butterflies along the 

ith dimension of STM will fix the order of placing all the other sets of n  butterflies along 

the ith dimension, i.e., define STM-FREE ( ith dimension). Placing the first selected 

butterfly in a location other than STM(1,1,...,1)and keeping the other members in STM-

1
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FREE the same will result in a different STM.  It can be verified that this resultant STM 

can also be built by first choosing the butterfly in the this resultant STM(1,1,...,1)as the 

first selected butterfly, then placing it in STM(1,1,...,1) and defining other members in 

STM-FREE accordingly. This shows that we can always place the first selected butterfly 

in STM(1,1,...,1) and still can get all the different STM’s by defining the other members 

in STM-FREE. This gives the total number of different STM’s for HDCTCM(n, D)  as 

nD −1 ⋅n!⋅n!⋅((n −1)!)D−1 . 

3.2.6 Example of Building STM 

Example 3.6  Build STM for HDCTCM(4,3) 

All sets of butterflies constituting simplex-transition2 and simplex-transition3 are listed in 

Example 3.4. The 2-dimensional STM will be built as follows: 

1. Select any butterfly, arrange its internal order arbitrarily, and place it into any location 

In Figure 3.7(a), butterfly 1 is chosen and placed in STM(2,3). 

2. Build the first dimension.   

Simplex-transition2-butterfly-set containing butterfly 1 is butterfly{1, 2, 4, 10}. So, 

butterfly 2, 4, and 10 are placed in locations STM(1,3), STM(3,3) and STM(4,3) in 

an arbitrary order. The internal orders of them are fixed with respect to butterfly 1 

using Procedure 3.1 (see Figure 3.7 (b)). 

3. Build the second dimension. 

Simplex-transition3-butterfly-set containing butterfly 1 is butterfly{1, 3, 5,  15}. So, 

butterfly 3, 5, and 15 are placed into locations STM(2,1) , STM(2,2) , and STM(2,4) 

in an arbitrary order. Their internal orders are fixed with respect to butterfly 1 using 

Procedure 3.1 (see Figure 3.7(c)). For butterflies 3, 5, and 15, the other 3 butterflies 

constituting simplex-transition2 with them are butterfly 6, 9, and 12, butterfly 7, 8, and 

14 and butterfly 11, 13, and 16. They will be placed into the rest locations in 

STM(:,2), STM(:,1), and STM(:,4), respectively. Their location indexes along the 

first dimension will be fixed by cross-checking the membership in three sets of 

simplex-transition3-butterfly-set containing butterflies in STM(1,3), STM(3,3), and 
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STM(4,3). They are butterfly{2, 6, 8, 11}, butterfly{10, 12, 14,  16}, and 

butterfly{4, 9, 7, 13}. So, butterfly 6, 9, and 12 should be placed into STM(:,2) and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7  Build STM for HDCTCM (4,3) 
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have the same location index along the first dimension as butterfly 2, 4, and 10 in 

STM(:,3) . And their internal orders are fixed with respect to butterfly 2, 4, and 10 

using Procedure 3.1. Similarly, STM(:,1) and STM(:,4) are filled properly (see Figure 

3.7(d)). 

 

3.3 Designs of Signal Constellation and Symbol Assignment  

In this section, the simplex signal constellation is constructed in a high 

dimensional space and the mapping rule between the signal constellation and the sate 

transitions is designed.   

 

3.3.1 Algebraic Representation of Simplex 

A simplex is a set of M  signals in an N -dimensional space with N ≥ M −1, 

satisfying (2.6). For HDCTCM(n, D) , a simplex is to be assigned to a set of n  state 

transitions, that is to say we need a simplex that contains M = n  signals. In circular trellis 

with permuted state structure, n  is the size of information symbol alphabet size. Non-

binary transmission are often more efficient than binary transmission [36], and when 

M > 4, the energy saving of simplex signaling over orthogonal signaling is not 

significant [33]. So, in this dissertation, M = 4  is chosen for the most practical 

HDCTCM(4, D). When M = 4 , N ≥ 3, this means that a three-dimensional space is the 

smallest signal space to build a simplex that contains four member signals.   

We introduce an algebraic representation for simplex. A simplex signal si , where 

i =1,2,3, 4, is represented as a vector (± a,±b,±c), where a,b,c ∈{1,2,...,N} and N is the 

dimension of the signal space. This representation means signal si  has negative (-) or 

positive (+) unit pulses in the ath , bth , and cth  space dimension and 0’s in all the other 

space dimensions. We name the element in this vector representation as pulse-location 

and the ith  element where i =1,2,3 as pulse-locationi. The value of pulse-locationi is a 

signed integer. In signal si , the ±a , ±b  and ±c  are the values of pulse-location1, pulse-

location2, and pulse-location3 respectively.  We call this signaling scheme the 3-out-of-N 

simplex signaling scheme. Call a , b , and c  the space dimensions occupied by a signal 
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(or a simplex, or pulse-locations). The corresponding normalized signal si  is 

1
3 (±a, ±b,±c). A simplex will be written as simplex{si | i = 1,2,3,4}. 

Two types of simplexes are designed for the signal constellation.   

1. Type A simplex--also referred to as source simplex--in which all its four member 

signals occupy the same three dimensions.  

There are only two subtypes; each has either odd or even number of negatives in all its 

member signals referred to as even or odd source simplex (see Figure 3.8).  When we 

write a simplex in the way as in this figure, we regard a simplex as an ordered structure 

and the location of a signal in the simplex is referred to as the internal location of the 

signal in this simplex. Number 1, 2, and 3 refer to the three different dimensions, not 

necessarily the first three dimensions in an N -dimensional space. 

 

 

 

Figure 3.8  Two subtypes of type A simplex 

 

2. Type B simplex, in which no  two member signals occupy the same three dimensions.  

The total number of the occupied dimensions of a type B simplex is 6 (see Figure 3.9 

(a)). Notice a "copy” rule in this representation. By “copy” we mean, in a pair of signals, 

one pulse-location has the same absolute value but opposite sign. For instance, in Figure 

3.9 (a) in the first two signals, pulse-location1 is 1, and –1 respectively. This means these 

two signals related to each other by “copy” rule for pulse-location1. In a type B simplex, a 

pair of signals related to each other by “copy” rule for pulse-locationi, where i =1,2,3, is 

called a signal pair for pulse-locationi. Their locations in this simplex are called a location 

pair for pulse-locationi.  It can be verified from Figure 3.9 (a) that any two signals can 

constitute a signal pair for a certain pulse-locationi. For each pulse-locationi, the four 

member signals in a type B simplex constitute two signal pairs.  Define the location of a 

signal in a simplex from top to bottom as 1, 2, 3, and 4. In Figure 3.9 (a), the first two 

signals and the second two signals are the two signal pairs for pulse-locatoin1.  The two 

1  2   3
1 -2  -3

-1  2  -3
-1 -2   3

 1  2 -3
 1 -2  3 
-1  2  3
-1 -2 -3 
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location pairs for pulse-location1 are locations (1,2) and locations (3, 4). All location pairs 

for all pulse-locationi’s, where i =1,2,3, are listed in a matrix called pair.  
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pair =

1 1 1
2 3 4
3 2 2
4 4 3

 

 

 
 
 
 

 

 

 
 
 
 
               (3.2) 

 

 

 

 

Figure 3.9  (a) A type B simplex    (b) 4 type B simplexes formed from 4 source simplexes 

related to the four signals in the type B simplex in (a) 

 

The two location pairs for pulse-locationi are listed in the ith  column of this 

matrix. They are locations (pair(1,i) , (2, i)) and locations (pair(3, i) , (4, i)). Each of the 

two locations in a location pair is called a pair location of the other location. From 

Equation (3.2), it can be verified that for a given signal location, its pair location for 

pulse-locationi and pulse-locationj, where i ≠ j , are different.  

Each member signal in a type B simplex is a member signal in a type A simplex 

that occupies the same three space dimensions as this signal. Call this type A simplex the 

related source simplex to this signal. For instance, a member signal (1, 3, 5) in type B 

simplex, shown in Figure 3.9 (a), is related to the source simplex {(1, 3, 5), (1, -3, -5), (-

1, 3, -5), (-1, -3, 5)}. Four member signals in a type B simplex will relate to four source 

simplexes. It can be verified that there is one and only one way to arrange these four 

source simplexes to form four type B simplexes with each member signal of a formed 

type B simplex drawn from a different source simplex. For the four source simplexes 

related to the four signals in the type B simplex shown in Figure 3.9 (a), the only 

arrangement to form four type B simplexes is shown in Figure 3.9 (b). The set of four 

signals in each row come from a same source simplex, and the four signals in each 

column form a type B simplex.  

1  3  5  
-1  4  6
 2 -3 -6
-2 -4 -5

 1 -3 -5  
-1 -4 -6
  2  3  6
-2  4  5

-1 -3  5  
 1 -4  6 
-2  3 -6 
 2  4 -5 

-1  3 -5  
 1  4 -6
-2 -3  6
 2 -4  5

 1  3  5  
-1  4  6 
 2 -3 -6 
-2 -4 -5 

(1) (4) (3) (2) 

(b) (a) 
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3.3.2 The Idea of Symbol Assignment  

For HDCTCM(4, D), our goal is to build a signal constellation with total 

S ⋅ n = 4D+1  symbols and assign them to the 4D +1  state transitions in STM such that all 

sets of 4  transitions constituting simplex-transitioni’s,  i =1,2,K, D +1 are assigned 

simplexes. In STM, a simplex-transition1 is in a butterfly; the four transitions in it have a 

same originating state. A simplex-transitionD+1 is in a butterfly with each of its transitions 

originating from a different originating state in this butterfly. A simplex-transitioni, 

  i = 2,3,K, D , is the set of 4  transitions in the same internal location of the four 

butterflies along the (i −1) th  dimension of STM with each of its transition originating 

from one of the four originating states in the same internal location of these four 

butterflies.  

The idea is to relate each of the member signals s j , j =1,2,3, 4 of a type B 

simplex to each of the originating state in a butterfly in STM or to each of the four 

originating states, which are in the same internal location of the set of four butterflies 

along the (i −1) th  dimension of STM,  i = 2,3,K, D . Denote the originating state to which 

the signal s j  is related as gk . In our symbol assignment, the four state transitions 

originating from state gk  (a simplex-tarnstinon1, denoted as the simplex-transition1 

originating from state gk ) will be assigned the member signals from the related source 

simplex to signal s j , denoted as ϖ j . In this way, a simplex-tarnstinon1 is assigned a 

source simplex. We call this source simplex, ϖ j , the related source simplex to this 

originating state gk  or the related source simplex to the simplex-transition1 originating 

from state gk . Then the 4 simplex-transtion1’s originating from gk , for all k , k = 1,2,3,4  

will be assigned using the four related source simplexes ϖ j , j =1,2,3, 4.  

As known from the illustration of simplex-transitions in butterflies, when the four 

originating state gk , for all k , k = 1,2,3,4 , are in a butterfly in STM, the four simplex-

transition1’s originating states gk , also constitute four simplex-transitionD+1’s, with each 

transition in a simplex-transitionD+1 drawn from a different simplex-transition1.  When the 

four originating states gk  are in the same internal location of four butterflies along the 

(i −1) th  dimension in STM, the four simplex-transition1’s originating states gk  will 
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constitute four simplex-transitioni’s with each transition in a simplex-transitioni drawn 

from a different simplex-transition1. Shown in Figure 3.10 (a) are the transitions in a 

butterfly—butterfly 1 in STM built for HDCTCM(4,3) in Example 3.6. Figure 3.10 (b) 

shows the transitions originating from the four originating states in one set of four 

butterflies along the second dimension in that STM. The set of four transitions, each 

having a different line style, is a simplex-transition1. The set of four transitions having the 

same line style is a simplex-transition4 in Figure 3.10 (a) and a simplex-transition3 in 

Figure 3.10 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10  Symbols assignment for the transitions originating from four originating states 

which are (a) in a butterfly in STM and (b) in the same internal location of a simplex-

transtitioni-butterfly-set in STM 

 

Each of these four simplex-transitionD+1’s or simplex-transitioni’s ,   i = 2,3,K, D , 

should also be assigned a simplex.  We have shown that there is one and only one way to 

arrange these four related source simplex ϖ j , i =1,2,3, 4, to form four type B simplexes, 

denoted as ξl , l =1,2,3, 4, with each member signal of ξl  drawn from a different source 

simplex ϖ j . This says we can arrange the order of assigning the signals in source simplex 

ϖ j  to the transitions originating from state gk  such that these four simplex-transitionD+1’s 

1 
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5 
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(-2,-4,-5), (-2,4,5), (2,-4,5), (2,4,-5) 
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or simplex-transitioni’s be assigned the four type B simplexes ξl .  Let us see how to do 

this in the following example. 

 

Example 3.7  Symbols assignment for the transitions originating from four originating 

state in a butterfly in STM or four originating states in the same internal location of the 

set of four butterflies along the (i −1) th dimension in STM  

In Figure 3.10 (a), we relate the four signals from top to bottom in the type B 

simplex shown in Figure 3.9 (a) to the four originating state 1, 64, 4, and 33 respectively. 

Then the source simplex in each row from row 1 to row 4 in Figure 3.9 (b) will be 

assigned to the simplex-transition1’s from originating state 1, 64, 4, and 33 respectively.  

The only combination of arranging these four source simplexes to form four type B 

simplexes is in Figure 3.9 (b). First, we can choose any simplex-transition1 and assign the 

related source simplex to it arbitrarily. Say we can assign the simplex-transition1 from 

originating state 1 from top to bottom in this butterfly the signals (1, 3, 5), (1, -3, -5), (-1, 

3, -5), and (-1, -3, 5), respectively. Then the symbols assigned to the other simplex-

transition1’s will be fixed. The reason is as follows. We have known the symbols assigned 

to the simplex-transition1 from one of the originating states. That is to say, for each 

simplex-transition4, we have known the symbol assigned to one transition in this simplex-

transition4. This symbol is a member signal of one of the four type B simplexes; say, ξm , 

m = 1,2,3,4  in Figure 3.9 (b). Then in order to make this simplex-transition4  to be 

assigned a type B simplex, the other three transitions in this simplex-transition4 should be 

assigned the other three member signals in this type B simplex ξm . In this example, 

knowing transition 1 → 1 is assigned signal (1, 3, 5), which is a member signal of type B 

simplex 1 in Figure 3.9 (b), the other three transitions in the simplex-transition4 having 

the next state 1, 64 →16, 4 → 1and 33 → 1should be assigned the rest of the signals in 

type B simplex 1 in Figure 3.9 (b), i.e., (-1, 4, 6), (2, -3, -6) and (-2, -4, -5). In this way, 

all the transitions from originating state 64, 4, and 33 are assigned proper symbols from 

the related source simplexes. In Figure 3.10 (a), the signals assigned to the four 

transitions from an originating state from top to bottom in this butterfly are listed beside 

that originating state from left to right. The four simplex-transition4’s having the next 
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state 1, 2, 5, and 34 are assigned type B simplex 1, 2, 3, and 4, as shown in Figure 3.9 (b), 

respectively. 

Similarly, we related the signals in the type B simplex in Figure 3.9 (a) from top 

to bottom to the four originating states 63, 13, 64 and 32 in Figure 3.10 (b). Arbitrarily 

assign one simplex-transition1 from an originating state using the related source. For 

example, assign the four transitions originating from state 63 from top to bottom the 

signals (1, -3, -5), (-1, 3, -5), (1, 3, 5), (-1, -3, 5), respectively. Then similarly as in Figure 

3.10 (a), all the transitions from originating state 13, 64, and 32 will be assigned proper 

symbols from the related source simplexes. The four simplex-transition4’s from top to 

bottom are assigned type B simplex 2, 3, 1, and 4, as showed in Figure 3.9 (b).  

This example shows that after knowing the signals related to the four originating 

states, the symbols assigned to the simplex-transition1’s from any one originating state 

will fix the symbols assigned to the other simplex-transition1’s from the other originating 

states.  

In summary, we want to build a total number of S  type B simplex signals and 

relate each of the originating state gk  in a butterfly in STM, k = 1,2,3,4 , to a signal s j  in 

a type B simplex, j =1,2,3, 4. In the mean time, we want the signals related to the four 

originating states, which are in the same internal locations of the set of four butterflies 

along the (i −1) th  dimension, are also member signals from a type B simplex for 

  i = 2,3,K, D . Then by assigning the related source simplex to s j  to the four transitions 

originating from gk  in a proper way, each of all the simplex-transition1’s in STM will be 

assigned a source simplex; and each of the simplex-transitioni’s,  i = 2,3,K, D +1, will be 

assigned a type B simplex. This gives the idea of building these S  signals.  

We will regard a type B simplex as a unit element with an ordered structure and 

replace a butterfly in STM with a type B simplex.  Name the new matrix as initial input 

simplex (IIS). Similarly, a location in IIS is referred to using IIS  (x1,x2,K, xi ,..., xD−1 ). If 

we can make the signals in the same internal location of the four type B simplexes along 

the (i −1) th  dimension of IIS also a type B simplex, then we can build a one-to-one 

mapping between the originating state in STM and signals in IIS, such that a set of four 

signals in the same internal locations of the four type B simplexes along the 
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(i −1) th dimension of IIS--IIS  (x1,x2,K, xi− 2, :, xi ,..., xD−1 ) is related to the set of four states 

in the same internal locations of the set of four butterflies along the (i −1) th of STM--

STM  (x1,x2,K, xi− 2, :, xi ,..., xD−1 ). Also, make the four originating states in a butterfly in 

STM related to a type B simplex in IIS. Then, by assigning the simplex-transition1 

originating from a state the related source simplex properly, all the simplex-transitioni, 

  i =1,2,K, D +1, will be assigned simplex. In this way, the signal constellation for 

HDCTCM(4, D) consists of all the source simplexes related to all the signals in IIS.  

 

3.3.3 Build Initial Input Signal  

The section will build IIS. First, we will describe how to build a type B simplex in 

Procedure 3.3. 

 

Procedure 3.3  Build a type B simplex  

A type B simplex occupies six distinct space dimensions. Number them from 1 to 6. 

1. Select any three of these six dimensions and give them any sign to build a signal. And 

place it in location 1 of this simplex (see Figure 3.11 (a)). From Equation (3.2), 

location 1 is the first location in the first location pair for all pulse-locationi, 

i =1, 2, 3.  

 

 

 

 

 

 

 

Figure 3.11  Build a type B simplex 

 

 

 

1 3 5  1 3 5  1 3 5

  -1   -1 4 6

  -3   2 -3 -6

  -5  -2 -4 -5

 (a)     (b)     (c)  
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2. For each pulse-locationi, i =1, 2, 3, from Equation (3.2), find the other location in the 

first location pair; it is location pair(2, i).  “Copy” the exiting value to that location 

(see Figure 3.11 (b)). For pulse-locationi, i =1, 2, 3, its value is copied to location 2, 

3, and 4, respectively, in this simplex. 

3. For each pulse-locationi, “fill” the first location in the second location pair, i.e., 

location pair(3,i), using a new dimension and “copy” to its pair location pair(4, i). The 

sign of pulse-locationi used to “fill” is the same as the sign of pulse-locationi  in the 

first location of the first location pair (see Figure 3.11 (c)). For pulse-location1, the 

second location pair is location (3, 4), “fill” location 3 using a new space dimension 2; 

“copy” it to location 4 as –2.   

This procedure will be extended to build the IIS. It starts from a type B simplex 

placed in the first location in IIS, and then applies “copy” and “fill” operations along each 

matrix dimension of IIS. The location 1, 2, 3, and 4 in matrix pair will be the location 

index along the i dimension,   i =1,2,K, D −1. 

 

Procedure 3.4  Build IIS 

1. Put the first type B simplex in IIS(1, 1, ..., 1). Take HDCTCM(4, 4) trellis as an 

example (see Figure 3.12 (a)). 

2. Regard this type B simplex as a unit. Extend along the first matrix dimension of IIS. 

First, for each pulse-locationi, i =1, 2, 3, “copy” the existing values to the other location 

of the first location pair, i.e., IIS(pair(2, i), 1, ..., 1)  (see Figure 3.12 (b)). Then  
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  IIS(:,1,1)    IIS(:,1,1)    IIS(:,1,1)       IIS(:,:,1)     

1 3 5  1 3 5  1 3 5  1 3 5 -1 -3    -5

-1 4 6  -1 4 6  -1 4 6  -1 4 6 1 -4    -6

2 -3 -6  2 -3 -6  2 -3 -6  2 -3 -6 -2 3    6

-2 -4 -5  -2 -4 -5  -2 -4 -5  -2 -4 -5 2 4    5

    -1    -1 9 11  -1 9 11 1 -9    -11

    1    1 10 12  1 10 12 -1 -10    -12

    -2    -2 -9 -12  -2 -9 -12 2 9    12

    2    2 -10 -11  2 -10 -11 -2 10    11

     -3   7 -3 -11  7 -3 -11 -7 3    11

     -4   -7 -4 -12  -7 -4 -12 7 4    12

     3   8 3 12  8 3 12 -8 -3    -12

     4   -8 4 11  -8 4 11 8 -4    -11

      -5  -7 -9 -5  -7 -9 -5 7 9    5

      -6  7 -10 -6  7 -10 -6 -7 10    6

      6  -8 9 6  -8 9 6 8 -9    -6

      5  8 10 5  8 10 5 -8 -10    -5

 (a)    (b)    (c)        (d)      

     IIS(:,:,1)           IIS(:,:,2)     

1 3 5 -1 17 21 13 -3 -21 -13 -17 -5 -1 1 -13   13  

-1 4 6 1 18 22 -13 -4 -22 13 -18 -6 1 -1 13   -13  

2 -3 -6 -2 -17 -22 14 3 22 -14 17 6 -2 2 -14   14  

-2 -4 -5 2 -18 -21 -14 4 21 14 18 5 2 -2 14   -14  

-1 9 11 1 19 23 -13 -9 -23 13 -19 -11 1 -1 13   -13  

1 10 12 -1 20 24 13 -10 -24 -13 -20 -12 -1 1 -13   13  

-2 -9 -12 2 -19 -24 -14 9 24 14 19 12 2 -2 14   -14  

2 -10 -11 -2 -20 -23 14 10 23 -14 20 11 -2 2 -14   14  

7 -3 -11 -7 -17 -23 15 3 23 -15 17 11 -7 7 -15   15  

-7 -4 -12 7 -18 -24 -15 4 24 15 18 12 7 -7 15   -15  

8 3 12 -8 17 24 16 -3 -24 -16 -17 -12 -8 8 -16   16  

-8 4 11 8 18 23 -16 -4 -23 16 -18 -11 8 -8 16   -16  

-7 -9 -5 7 -19 -21 -15 9 21 15 19 5 7 -7 15   -15  

7 -10 -6 -7 -20 -22 15 10 22 -15 20 6 -7 7 -15   15  

-8 9 6 8 19 22 -16 -9 -22 16 -19 -6 8 -8 16   -16  

8 10 5 -8 20 21 16 -10 -21 -16 -20 -5 -8 8 -16   16  

     (e)            (f)      
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Figure 3.12  Build IIS for HDCTCM(4, 4)  

 

Figure 3.12 (cont.) 

     IIS(:,:,3)           IIS(:,:,4)     

 -3   -17   3 17 -5 -21  21   5

 -4   -18   4 18 -6 -22  22   6

 3   17   -3 -17 6 22  -22   -6

 4   18   -4 -18 5 21  -21   -5

 -9   -19   9 19 -11 -23  23   11

 -10   -20   10 20 -12 -24  24   12

 9   19   -9 -19 12 24  -24   -12

 10   20   -10 -20 11 23  -23   -11

 3   17   -3 -17 11 23  -23   -11

 4   18   -4 -18 12 24  -24   -12

 -3   -17   3 17 -12 -24  24   12

 -4   -18   4 18 -11 -23  23   11

 9   19   -9 -19 5 21  -21   -5

 10   20   -10 -20 6 22  -22   -6

 -9   -19   9 19 -6 -22  22   6

 -10   -20   10 20 -5 -21  21   5

      (g)             (h)      

     IIS(:,:,2)           IIS(:,:,3)     

-1 33 41 1 37 45 -13 -33 -45 13 -37 -41 25 -3 -41 -25 -17 -45 29 3 45 -29 17 41

1 34 42 -1 38 46 13 -34 -46 -13 -38 -42 -25 -4 -42 25 -18 -46 -29 4 46 29 18 42

-2 -33 -42 2 -37 -46 -14 33 46 14 37 42 26 3 42 -26 17 46 30 -3 -46 -30 -17 -42

2 -34 -41 -2 -38 -45 14 34 45 -14 38 41 -26 4 41 26 18 45 -30 -4 -45 30 -18 -41

1 35 43 -1 39 47 13 -35 -47 -13 -39 -43 -25 -9 -43 25 -19 -47 -29 9 47 29 19 43

-1 36 44 1 40 48 -13 -36 -48 13 -40 -44 25 -10 -44 -25 -20 -48 29 10 48 -29 20 44

2 -35 -44 -2 -39 -48 14 35 48 -14 39 44 -26 9 44 26 19 48 -30 -9 -48 30 -19 -44

-2 -36 -43 2 -40 -47 -14 36 47 14 40 43 26 10 43 -26 20 47 30 -10 -47 -30 -20 -43

-7 -33 -43 7 -37 -47 -15 33 47 15 37 43 27 3 43 -27 17 47 31 -3 -47 -31 -17 -43

7 -34 -44 -7 -38 -48 15 34 48 -15 38 44 -27 4 44 27 18 48 -31 -4 -48 31 -18 -44

-8 33 44 8 37 48 -16 -33 -48 16 -37 -44 28 -3 -44 -28 -17 -48 32 3 48 -32 17 44

8 34 43 -8 38 47 16 -34 -47 -16 -38 -43 -28 -4 -43 28 -18 -47 -32 4 47 32 18 43

7 -35 -41 -7 -39 -45 15 35 45 -15 39 41 -27 9 41 27 19 45 -31 -9 -45 31 -19 -41

-7 -36 -42 7 -40 -46 -15 36 46 15 40 42 27 10 42 -27 20 46 31 -10 -46 -31 -20 -42

8 35 42 -8 39 46 16 -35 -46 -16 -39 -42 -28 -9 -42 28 -19 -46 -32 9 46 32 19 42

-8 36 41 8 40 45 -16 -36 -45 16 -40 -41 28 -10 -41 -28 -20 -45 32 10 45 -32 20 41

     (i)            (j)      
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Figure 3.12(cont.) 

 

 

    for each pulse-locationi, for the locations in the second location pair, “fill” the first 

location, IIS(pair(3,i),  1,  ..., 1), using two new dimensions and “copy” to its pair 

location, IIS(pair (4,i),  1,  ..., 1) . The values used to “fill” comply with “copy” rule 

and have the same sign pattern as pulse-locationi in the first location of the first 

location pair (see Figure 3.12 (c)). 

3. Extend along the second matrix dimension. We can take all the four type B simplexes 

along the first dimension as a whole from now on. When filling a pulse-locationi, four 

new dimensions are needed, and “copy” rule and sign pattern for that pulse-locationi 

are the same as pulse-locationi in IIS(:, 1, ..., 1) .  First, for each pulse-locationi, 

i =1, 2, 3 “copy” the existing values to the second location in the first location pair, 

IIS(:, pair(2, i),  1,  ...,  1)(see Figure 3.12 (d)). Then for each pulse-locationi, “fill” the 

     IIS(:,:,4)     

-25 -33 -5 25 -37 -21 -29 33 21 29 37 5

25 -34 -6 -25 -38 -22 29 34 22 -29 38 6

-26 33 6 26 37 22 -30 -33 -22 30 -37 -6

26 34 5 -26 38 21 30 -34 -21 -30 -38 -5

25 -35 -11 -25 -39 -23 29 35 23 -29 39 11

-25 -36 -12 25 -40 -24 -29 36 24 29 40 12

26 35 12 -26 39 24 30 -35 -24 -30 -39 -12

-26 36 11 26 40 23 -30 -36 -23 30 -40 -11

-27 33 11 27 37 23 -31 -33 -23 31 -37 -11

27 34 12 -27 38 24 31 -34 -24 -31 -38 -12

-28 -33 -12 28 -37 -24 -32 33 24 32 37 12

28 -34 -11 -28 -38 -23 32 34 23 -32 38 11

27 35 5 -27 39 21 31 -35 -21 -31 -39 -5

-27 36 6 27 40 22 -31 -36 -22 31 -40 -6

28 -35 -6 -28 -39 -22 32 35 22 -32 39 6

-28 -36 -5 28 -40 -21 -32 36 21 32 40 5

     (k)      
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first location in the second location pair, IIS(:, pair(3,i), 1, ..., 1), and “copy” to its 

pair location, IIS(:, pair(4, i),  1, ..., 1)(see Figure 3. 12 (e)). 

4. Extend along the third matrix dimension. First, for each pulse-locationi, “copy” all the 

existing values to its pair location; it is IIS(:,:, pair(2,i), 1, ..., 1)(see Figure 3.12 (f), 

(g), and (h)). Then, for each pulse-locationi, “fill” the first location in the second 

location pair, IIS(:,:, pair(3, i), 1, ..., 1) and “copy” to its pair location, 

IIS(:,:, pair(4, i),  1,  ...,  1). This time, the “fill” is on a two-dimensional plane with no 

existing pulse-locationi’s on it, so the first location from both location pairs needs to be 

filled, then “copy” them to their pair location (see Figure 3.12 (i), (j), and (k)).  

5. Continue this way until extending IIS to the (D −1)th matrix dimension. Each time, 

extend IIS to one more dimension, in step j , “copy” the existing values to its pair 

location along the ( j −1)th  dimension, i.e., IIS { {
2

(:,:,..., (2, ),1,...,1)
j D j

pair i
− −

. Then, for each 

pulse-locationi, for the locations in the second location pair along the ( j −1)th  

dimension, “fill” the first location, IIS { {
2

(:,:,..., (3, ),1,...,1)
j D j

pair i
− −

 and “copy” to its pair 

location IIS { {
2

(:,:,..., (4, ),1,...,1)
j D j

pair i
− −

. The “fill” is on a j − 2 -dimensional matrix with 

no existing pulse-locationi’s on it, so, it contains “fill” the first locations in both the 

location pairs along the ( j − 2) th  dimension, IIS { {
3

(:,:,..., (1, ), (3, ),1,...,1)
j D j

pair i pair i
− −

 and 

IIS { {
3

(:,:,..., (3, ), (3, ),1,...,1)
j D j

pair i pair i
− −

 and “copy” to their pair location, 

IIS { {
3

(:,:,..., (2, ), (3, ),1,...,1)
j D j

pair i pair i
− −

 and IIS { {
3

(:,:,..., (1, ), (3, ),1,...,1)
j D j

pair i pair i
− −

. 

Recursively, that will contain “fill” and “copy” along the ( j − 3)th  dimension, until the 

“fill” and “copy” along the second dimension of IIS in step 3.  

In this way, for HDCTCM(4, D) trellis, the total distinct signal dimensions 

needed to build IIS is N = 6 ⋅ 2D−1 . The signal dimension can be frequency or time slot 

when the signal is actually transmitted.  
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3.3.4 The Procedure of Symbol Assignment 

After IIS is built, the mapping between the originating states in STM and signals 

in IIS has been stated in the previous section, which serves as the guide for building the 

IIS. As seen in Example 3.7, the symbol assigned to a particular transition will change if 

we change the order of mapping the four signals s j  in a type B simplex to the four 

originating states in a butterfly or the four originating states in the same internal locations 

of the set of four butterflies along the (i −1) th  dimension of STM. The same symbol 

assignment can be obtained by keeping a fixed mapping order and changing the order of 

the four originating states in a butterfly (defined by STM-FREE (left side butterfly)) or 

the order of the four butterflies along the (i −1) th  dimension (defined by STM-FREE 

((i −1) th dimension). That is to say, we can get the same symbol assignment if we fix the 

mapping order and use different STM built by changing the STM-FREE (left side 

butterfly) and STM-FREE ((i −1) th dimension). In our symbols assignment, we will fix 

the mapping order and leave the different symbol assignments to employing different 

STM-FREEs. The originating state having an internal location in the butterfly located at 

STM  (l1, l2 ,K, lD −1)  will be mapped to the signal that has the same internal location in the 

type B simplex located at IIS  (l1, l2 ,K,lD −1) . Then the four transitions from each 

originating state in STM will be assigned using the related source simplex and, as shown 

in Example 3.7, the order of assigning the four signals in this related source simplex to 

these four transitions can be arranged properly such that each of all the simplex-

transitioni’s,   i =1,2,K, D +1, is assigned a simplex. We will work out an example to see 

how to make the symbol assignment after the mapping order between the originating 

states in STM and signals in IIS is fixed.  

 

Example 3.8  Symbol assignment for HDCTCM(4,3) 

The IIS is built as in Figure 3.12(e). Use the STM built in Example 3.6.  

1. Start the symbol assignment from the first originating state in the first butterfly in 

STM, i.e., butterfly located at STM(1,1). The originating state 26 is related to signal 

(1, 3, 5). Then the four transitions originating from the state 26 (simplex-transition1 

having state 26 as originating state) should be assigned the related source simplex {(1, 
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3, 5), (1, -3, -5), (-1, 3, -5), (-1, -3, 5)}.  The order of assigning these four signals to 

these four transitions is flexible. But if a particular one is chosen, as we will see, it will 

fix the order of assigning all the simplex-transition1’s from all the other originating 

states in STM using the related source simplexes. We assign the four transitions 

originating from state 26 from top to bottom in this butterfly, i.e., 26 →13 , 26 → 27 , 

26 → 53 and 26 → 55  the signals (1, 3, 5), (1, -3, -5), (-1, 3, -5), and  (-1, -3, 5), 

respectively. This order can be identified from the locations of negative signs in these 

four signals.  

2. Then consider the other three originating states 12, 54 and 52 in this butterfly. They 

relate to signal (-1, 4, 6), (2, -3, -6), and (-2, -4, -5), respectively. The related source 

simplex to each of these signals will be assigned to the four transitions originating 

from state 12, 54, and 52, respectively. From Example 3.7, the symbols assigned to the 

simplex-transition1’s originating from state 26 will fix the symbols assigned to the 

other simplex-transition1’s from the other originating states in this butterfly.  Then, all 

the transitions in the butterfly located at STM(1,1) are assigned proper symbols.  

3. Then we will consider transitions in the other n −1 butterflies constituting simplex-

transition2 with the first butterfly. They are located along the first dimension of STM, 

i.e., at locations STM(x1,1) , where x1 =: /1. For each of the four internal locations that 

an originating state can have, consider the four originating states in that internal 

location of the four butterflies located at STM(:,1).  From the previous step, we know 

the symbols assigned to the simplex-transition1 originating from the originating state 

in the butterfly located at STM(1,1). Then from Example 3.7, the symbols assigned to 

all the transitions originating from the originating state in butterflies located at 

STM(2,1)  and STM(3,1) and STM(4,1) will be fixed. For instance, the four 

originating states 12, 63, 31, and 62 along the first dimension, knowing the symbols 

assigned to the simplex-transition1 from originating state 12 will fix the symbols 

assigned to the simplex-transition1’s from originating state 63, 31, and 62.  In this way, 

all the other transitions in butterflies located in STM(2,1) , STM(3,1), and STM(4,1) 

are assigned proper symbols.  

3. After knowing the symbols assigned to the transitions in butterflies located in 

STM(:,1), we can assign symbols to transitions in the set of four butterflies along the 
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second dimension of STM. Consider the four originating state in the same internal 

location of these four butterflies. From the previous step, we have known the symbols 

assigned to the simplex-transition1 from the originating state in STM(:,1). Then from 

Example 3.7, the symbols assigned to all the transitions originating from the 

originating states in STM(:,2) STM(:,3)  and STM(:,4)will be fixed. So far, all the 

state transitions have been assigned proper symbols.  

For HDCTCM(4, D)with D ≥ 3, continue the above symbols assignment 

procedure. At each step, extend the symbol assignment procedure to a new dimension of 

STM. Consider the set of four originating states in the same internal location of the four 

butterflies along that dimension. There is one originating state located in the butterfly at 

the first location index along that dimension. From the previous step, the symbols 

assigned to the simplex-transition1 from this originating state are known; then from 

Example 3.7, the simplex-transition1’s from the other three originating states will be 

fixed. In this way, all the transitions in the set of butterflies along that dimension will be 

assigned proper symbols at that step.  

For a particular state transition, different symbol assignments will be obtained if 

we start the symbol assignment procedure from a different butterfly or a different 

originating state in the first butterfly in STM, or if we change the order of assigning the 

related source simplex to the simplex-transition1 from the first originating state. Those 

resultant symbol assignments can also be obtained by using the symbol assignment 

procedure described above but employing different STMs built by choosing different 

STM-FFREE (first butterfly) (or STM-FREE (first location)) and different STM-FREE 

(left side butterfly), respectively. In our symbol assignment, we will always take the way 

we did in this example and leave the different symbol assignments to employing different 

STM-FREEs. 

In summary, for a HDCTCM(4, D) system, the IIS is built using Procedure 3.4. 

The signal constellation consists of all the source simplexes related to all the signals in 

IIS. Different symbol assignments (different codes) for HDCTCM(4, D) result from 

applying the symbol assignment procedure described above to different STMs built by 

choosing different STM-FREEs.  
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We have seen that there is one to one mapping between each originating state in 

STM and the symbols in IIS. We also see from the symbol assignment procedure that for 

a state transition in STM, knowing its location in STM (the location of the butterfly 

containing this transition and the internal location of this transition in this butterfly), the 

symbol assigned to this transition will be known. That is to say, there is also a one to one 

mapping between each state transition and each symbol in the signal constellation. 

3.4 Uniformity of HDCTCM 

This section proves that HDCTCM using 3-out-of-N simplex signaling scheme is 

uniform.  

3.4.1 Uniformity in coding  

In coding scheme, the set of pair-wise squared Euclidean Distance SED dij
2{ } 

between code word Ci  and Cj , where  i, j =1,2,K,W and W  is the total number of legal 

code words, can be arranged into a W × W  matrix E  

  

E =

d11
2 d12

2 L d1M
2

d21
2 d22

2 L d2M
2

M M O M

dM 1
2 dM2

2 L M

 

 

 
 
 
 
 

 

 

 
 
 
 
 

             (3.3) 

Because of the commutativity of SED, dij
2 = dji

2 . The matrix is a symmetric matrix with 

all diagonal elements being zero. If the matrix E  has such a symmetry that the sum of all 

the elements in any row (column) of E  does not depend on the row (column) index, then 

the distance distribution calculation can be greatly simplified. Such symmetry 

corresponds to having all the code words on an equal footing and allows the 

consideration of a single reference code word rather than all the pairs of code words for 

computation of error probabilities and distance distribution. Such symmetry is called 

uniformity [35].  

3.4.2 Algebraic Definition of Uniformity 

Denote I  as a W ×1 column vector whose elements are all ones.  For a 

W × W square matrix O , if I  is an eigenvector of its transpose OT , then ITO = φIT  holds, 
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where φ  is the eigenvalue with respect to the eigenvector I . Then, the sum of the 

elements in a column of O  does not depend on the column index. O  is called column-

uniform [35]. Similarly, if I  is an eigenvector of the square matrix z , then zI = Iχ  holds, 

where χ  is the corresponding eigenvalue. Then, the sum of the elements in a row of z  

does not depend on the row index. z  is called row-uniform. It is easy to prove that the 

product or the sum of two column- (row-) uniform matrices is itself column- (row-) 

uniform [35]. Also, for a W × W matrix, O , that is either row- or column- uniform, we 

have ITOI = Wφ , where κ  is a constant. 

3.4.3 Conditions for Uniformity 

Assume code word Ci  can be expressed as a vector of L  symbol elements as 

Ci = [Ci1, ...,Cik ,...,CiL ]. The SED between Ci  and Cj  is equal to the sum of the SED 

between the corresponding symbols,  

d2 (Ci ,Cj ) = dij
2 = d2 (Cik ,Cjk)

k =1

L

∑ = dijk
2

k=1

L

∑             (3.4) 

Let Ek = dijk
2{ }   i, j =1,2,K,W ,   k = 1,2,K,L , then E = Ek

k =1

L

∑ . 

Since E  and Ek are symmetric, row- (column-) uniform implies column- (row-) uniform. 

We do not differentiate them later. If we can show Ek  is uniform for all k , then E  is 

uniform. 

Define a code word matrix (CM) containing all the code words as 

  

CM =

C11 C12 L C1L

C21 C22 L C2 L

M M O M

CW1 CW 2 L CWL

 

 

 
 
 
 
 

 

 

 
 
 
 
 

             (3.5) 

Denote the total number of symbols in the signal constellation as TOT-SYM. If a symbol 

assignment method guarantees that each symbol in the signal constellation is used equally 

often, which is the case for most coding/modulation scheme such as HDCTCM, then in 

each column of CM , each symbol will occur W / TOT − SYM  times. dijk
2  is the SED 

between the ith  and jth   symbols in column k  of CM , then in each row (column) of Ek  , 
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there are W / TOT − SYM  duplicate terms of dijk
2   because of the duplicate appearance of 

each symbol.  The sum of each row (column) of Ek  is equal to W / TOT − SYM times the 

sum of the single appearance of the duplicate terms dijk
2 in that row (column).  

If we cross out the duplicate dijk
2  in Ek  along rows and columns and keep the first 

appearance of the duplicate terms of dijk
2 , then a new matrix Gk  is formed.  It is a 

TOT − SYM × TOT − SYM  pair-wise SED between TOT-SYM distinct symbols. 

Obviously, Gk  is also symmetric.  Because the sum of each row (column) of Ek  is equal 

to W / TOT − SYM  times that of Gk , if the sum of each row (column) in Gk  is 

independent of row (column) index--i.e., Gk  is uniform--then Ek  is uniform. So, the 

proof of the uniformity of Ek  is transferred to the proof of the uniformity of Gk . 

3.4.4 Uniformity of HDCTCM 

For all k , the sum of a particular row (column) in Gk  is the sum of SED from a 

particular symbol to all the other symbols in the signal constellation. What we need to 

prove is that sum does not depend on that particular symbol.  

In HDCTCM (4, D)using 3-out-of-N simplex signaling scheme, there are 4D  

symbols in IIS; any two of them occupy at least two different space dimensions. All the 

source simplexes related to all the symbols in IIS constitute the signal constellation. So, 

there are 4D  source simplexes in the signal constellation. Any two source simplexes 

occupy at least two different space dimensions. Each symbol in the signal constellation is 

a member of a source simplex. 

Pick any symbol in this signal constellation as the reference symbol. Suppose this 

reference symbol is a member of source simplex I . All the other symbols can be 

categorized to the following types: 

1. Symbols in the source simplex I . They are the other three member signals in source 

simplex I .  It can be verified that in an even or odd source simplex, the SED profile 

from any member signal to the other three member signals is 8/8/8. 

2. Symbols in the source simplexes other than source simplex I . Those simplexes occupy 

at least two different dimensions from source simplex I . According to the different 
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dimensions occupied by those simplexes from that occupied by source simplex I , 

these source simplexes can be divided into two sub-categories here.  

2a. The number of different dimensions is two. Suppose source simplex I  occupies 

dimensions 1, 2, and 3. Source simplex J  occupies dimensions 1, 4, and 5.  

Simplex I  can be an even or odd source simplex, as does simplex J . There are 

four combinations of the source simplex types for I  and J . They are ( I  even, J  

even), ( I even, J  odd), ( I odd, J even), and ( I  odd, J odd). Take ( I  even, J  odd) 

as an example, then simplex I  is 

1 2 3
1 −2 −3

−1 2 −3
−1 −2 3

 

 

 
 
 
 

 

 

 
 
 
 

, simplex J  is 

1 4 −5
1 −4 5
−1 4 5
−1 −4 −5

 

 

 
 
 
 

 

 

 
 
 
 

.  

The SED from any symbol in simplex I  to the four symbols in simplex J  is 

4/4/8/8. It can be verified that for any of these four combinations, the SED profile 

from any symbol in simplex I  to the four symbols in simplex J  is 4/4/8/8, as is 

the SED profile from any symbol in simplex J  to the four symbols in simplex I .  

2b. The number of different dimensions is three. Suppose source simplex I  occupies 

dimensions 1, 2, and 3. Simplex J occupies dimension 4, 5, and 6. In each of the 

four source simplex type combinations, the SED profile from any symbol in 

simplex I  to the four symbols in simplex J  is 6/6/6/6, as is the SED profile from 

any symbol in simplex J  to the four symbols in simplex I . 

From the reference symbol to all the other symbols in the signal constellation, the 

distance profile is a certain number of the distance profiles in these difference categories. 

There is always one and only one distance profile of category 1. Suppose the number of 

source simplexes in category 2a and 2b are n1  and n2  respectively, then 1 + n2 + n2 = 4D . 

If from any symbol, looking at all the other symbols in the signal constellation, there are 

same amount of n1  and n2 , then the SED profile from any symbols is the same, but this is 

not necessary because all we want is the sum of the SED profile from the reference 

symbol. Note that the sum of the distance profile in each category is the same, i.e., 

8 + 8 + 8 = 4 + 4 + 8 + 8 = 6 + 6 + 6 + 6 = 24           (3.6) 
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Therefore, the sum of the SED profile from the reference symbol is 

1 ⋅ (8 +8 +8) + n1 ⋅(4 + 4 + 8 + 8) + n2 ⋅(6 + 6 + 6 + 6) = 24 ⋅ (1 + n1 + n2 ) = 24 ⋅ 4D            

(3.7) 

This sum does not depend on which symbol being chosen as the reference 

symbol.  We have proved that the sum of SED from any symbol in the signal 

constellation to all the other symbols is the same; i.e., the sum of a row (column) of Gk  is 

the same regardless the row (column) index. That is, Gk  is uniform for all k , and then, 

Ek  is uniform for all k . This will give that E  is uniform.  

In conclusion, HDCTCM(4, D) using 3-out-of-N simplex signaling scheme is 

uniform.  
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CHAPTER 4  Computational Algorithm to Calculate the 
Minimum Distance 
 

 

For an error control coding scheme, the minimum distance among all the code 

words plays an important role in determining the error correcting capacity of the code. 

This was discussed in Section 3.1. Computational algorithms [25] [26] [37] were 

developed to obtain the minimum distance for convolutional codes. The assumption made 

in these algorithms is the known starting state for a code word. This assumption is 

changed in the circular trellis situation. This chapter will develop a new algorithm to 

calculate the minimum distance for circular trellis coding. Section 4.1 gives the general 

description of this algorithm. Sections 4.2 and 4.3 give the derivation of the algorithm in 

detail. Section 4.4 analyzes the computational complexity of this algorithm. Section 4.5 

shows the minimum distance structure of HDCTM obtained using this algorithm.  

4.1 General Description of the Algorithm  

Consider a circular trellis code T(n, D) , as defined in Section 2.2. The encoder 

can be implemented using tail biting or circular trellis coding with permuted state 

structure. The total number of states in this trellis is S = nD . For information sequence 

with length L (having L k -tuple information symbols when the encoder accept k -tuple 

inputs at one time), the corresponding code sequence is a trellis path with Lstages. There 

are total nL  legal paths representing all the code words, n (L −D ) paths for each possible 

starting state. A T(2,2)  trellis is shown in Figure 4.1 with the paths starting from a 

certain state; the information sequence length is L = 5. 
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Figure 4.1  A circular trellis T(2,2)  with L = 5  

 

For a coded modulation scheme, a branch in the trellis is labeled with a channel 

symbol assigned to the state transition represented by this branch. In this algorithm, 

distance is calculated as squared Euclidean distance (ED). Consider the uniform circular 

trellis codes. This kind of code allows consideration of a single reference path rather than 

all the pairs of paths for computation of distance.  

From one path in a circular trellis, look at all the other paths; they can be divided 

into two categories: 

 

1. The paths having the same starting state as the starting state of this path.  

2. The paths having different starting state from the starting state of this path.  

We are going to develop an algorithm with two parts to calculate the minimum 

distance related to these two kinds of paths. Part I (see Section 4.2) calculates the 

minimum distance among the paths that have a same starting state and identifies the pair 

of paths having this minimum distance between them. Part II (see Section 4.3) calculates 

the minimum distance between a path and all the other paths that have different starting 

state. Then the algorithm to calculate the minimum distance among all the legal paths has 

the following steps: 

Algorithm:  calculate the minimum distance of circular trellis T(n, D) .   

 input  1 
 input  0 

S0 
 
S1 
 
S2 
 
S3 

stage        1           2           3           4           5 
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1. Select an arbitrary state from all S  states. Using Algorithm Part I, calculate the 

minimum distance among the paths having this state as starting state and identify a 

pair of paths having this minimum distance between them. 

2. Select either path from the identified pair of paths in step 1.  Using Algorithm Part II, 

calculate the minimum distance between this selected path and all the other paths that 

have different starting states from the starting state of this selected path.   

3. From the selected path in step 2, the minimum distance to the paths in the first 

category (defined above) has been obtained from step 1, the minimum distance to the 

paths in the second category has been obtained from step 2.  Therefore the smaller 

one of these two is the minimum distance from the selected path to all the other legal 

paths in this trellis. For trellis codes with uniformity, it is the minimum distance 

among all the legal paths.  

4.2 Algorithm--Part I:  Calculate the Minimum Distance Among the Paths Having a 

Same Starting State 

 

This algorithm is inspired by the application of Bellman’s principle of optimality 

[24] in Viterbi algorithm and in the computational algorithm for calculating the free 

distance for convolutional codes [25] [37]. Bellman’s principle of optimality is 

introduced in this section, followed by the derivation of the algorithm.  

4.2.1 The Principle of Optimality 

Denote this starting state as start_state. Name the summation of the distance of a 

trellis path at each stage up to stage i  as the partial distance at stages i , where 1 ≤ i ≤ L . 

Bellman’s principle of optimality pertains to a sequential decision problem whose 

global objective function is an additive function of costs of transitions between 

intermediate stages. The basic idea is that the global optimal path must be an extension of 

an optimal path to some state at an intermediate stage i , and this must hold for all stage 

indexes i . Here our globally optimal objective is a pair of paths having minimum 

distance between them among all the paths having start_state as their starting state. By 

applying Bellman’s principle of optimality to a pair of paths, we claim that they must be 

the pair of paths that have minimum partial distance between them at stage i , among all 
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pairs of paths starting from start_state and reaching the same states as those reached by 

the globally optimal pair of paths at stage i . This holds for all i . The proof is by 

contradiction. Suppose the globally optimal pair of paths reach states p  and q  at stage j ; 

if there is a second pair of paths reaching states p  and q  having less partial distance 

between them at this stage, then by replacing the segment of the global optimal pair of 

paths by the segments on the second pair of paths up to this stage, a new pair of paths is 

built which have less distance between them than that of the i globally optimal pair of 

paths. This contradicts with the definition of the globally optimal paths.  

Denote the minimum partial distance between all pairs of paths starting from 

start_state and reaching states p  and q  at stage i  as δ p,q
i , p , q  can be any of the total 

states. The history of the pair of paths having distance δ p,q
i  between them is stored in 

λ p,q
i . It is a string consisting of sequences of information symbols causing the state 

transitions on this pair of paths until stage i . 

The argument above says, at each stage, for each pair of states p  and q , all but 

one pair of paths having distance δ p,q
i  can be pruned away. Until the last stage L , the pair 

of paths kept for state pair p , q  with p = q = start _ state  is the globally optimum pair of 

paths we seek. 

4.2.2 Derivation of Algorithm--Part I 

Let us show how to update those δ  and λ . In general, there are n states from 

which a one-stage transition to state p  is possible; call these states the predecessors of p  

denoted as pl ,   l =1,K,n .  In the case of parallel transitions, pl → p , for all l denotes all 

the n transitions that are caused by the n  possible k -tuple information symbols. So in 

general, there are a total of n2  pairs of paths reaching states p  and q  at stage i  and they 

pass through the state pair ( pl , pm ),   l,m =1,K,n   at stage  i −1. Then the minimum 

partial distance between all pairs of these paths is  

δp,q
i = min{δ pl , qm

i −1 + d2 (pl → p,qm → q)},    l,m =1,K,n .                (4.1) 

The distances δ i −1  come from previous stage, d2 ( pl → p,qm → q)is the squared 

Euclidean distance between the two channel symbols associated with the transitions 
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pl → pand qm → q . Suppose the minimum value is δpg ,qh

i −1 + d2 ( pg → p,qh → p) in 

Equation (4.1) (whenever there is a tie, arbitrary choice applies); thenλ p,q
i is updated by 

appending the k -tuple information symbols causing the state transitions denoted as 

u(pg → p)and u(qh → q), to λ pg, qh

i −1 ; i.e.,  

λ p,q
i ={λpg ,qh

i −1 ,u(pg → p),u(qh → q)}           (4.2) 

Due to the pair-wise symmetry for distance, we only need to consider state pair (p,q) 

with q ≥ p . 

 

δ  is initialized as  

δp,q
0 =

0, q = p = start _ state
∞, p ≠ start _ state,q ≥ p

 
 
 

            (4.3) 

When δp,q
i = ∞ , there is no pair of paths reaching states p  and q  at stage i . All λ p,q

0  are 

set as null sequence.  

From start_state, D  stages state transitions are needed to reach all the nD  states. 

For the first D -1 stages, at each stage the states that can be reached from start_state is a 

subset of the total states in this trellis. We only need to update δ p,q
i  and λ p,q

i  where p and 

q  belong to those reached states. There is no pair of paths that can reach states p  and q , 

where p  and q  belong to those states that cannot be reached at these stages; i.e.,  δ p,q
i is 

always ∞  and λ p,q
i  is always a null sequence for those p  and q  .  At stage D  or later, all 

the states can be reached, so δ p,q
i  and λ p,q

i  , where p  and q  belong to all the states, need 

to be updated .   

Unfortunately, this will not select the pair of paths we want.  Let us see what we 

will get going through the trellis. Initially, δstart _ state, start _ state
0 = 0. At stage 1, for any state 

p  that can be reached at this stage, the term 

δstart _ state, start _ state
0 + d2 (start _ start → p,start _ start → p) = 0 + 0 = 0in Equation (4.1) will 

give δp, p
1 = 0 . This means the pair of paths having minimum partial distance between 

them--among all the pair of paths starting from start_state and reaching state p --have the 

same route till this stage.  At stage 2, for any state p  that can be reached, the term 
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δpl , pl

0 + d2( pl → p, pl → p) in Equation (4.1) is equal to 0 + 0 = 0, where pl  is one of the 

reached states in stage 1. This leads to δp, p
2 = 0 . Continuingly in this way, we will get 

δp, p
i = 0  for any state p  that can be reached at stage i  from start_state. When i ≥ D , all 

the total states can be reached; i.e., for any state p  of the total states, δp, p
i = 0 . Finally, 

δs _state ,s _ state
L = 0 ; i.e., the minimum distance among all the paths starting from start_state 

is 0 . The pair of paths having this minimum distance between them have the same route. 

It is one path that is regarded as a pair of paths. This happens, because when we derive 

Equation (4.1), we assume that a pair of paths contains two different paths. For the pair of 

states p  and q  with p ≠ q , the two paths reaching different states are always two 

different paths. However, for p =q  there is no restriction regarding one path as a pair of 

paths reaching state p  and q  with p =q  at each stage in Equation (4.1), and that leads to 

the result aforementioned. We must put some conditions on updating δ p,q
i with p =q  to 

eliminate this problem.  

Consider how all the nL − D  paths are built in this trellis. (See Figure 4.1.) From 

start_state, it branches out n branches at stage 1, forming n different paths.  Then each of 

the reached states at stage 1 branches out n branches at stage 2, forming n2  different 

paths. In this way, each of the reached states at each stage will branch out n branches at 

the next stage, forming n times more different paths. So, at stage L − D −1, 

nL − D−1 different paths will be formed, and each of the reached state at this stage will 

branch out n branches at stage L − D , forming the entire nL − D  different paths.  From 

stage L − D  until L , at each stage the reached state will not branch out to form new 

different paths but will have only one state transition to the next stage. Consequently, at 

each stage i , among all the pairs of paths both reaching state p , where 

1 ≤ i ≤ L − D −1and p  is any of the reached states in stage i , there is always a pair of 

paths having the same route till this stage. We know they are different paths, because all 

reached states will always branch out at the next stage; then, two paths having the same 

route till this stage will always have different route paths later. This pair of paths is 

represented by the term δpl , pl

i −1 + d2( pl → p, pl → p), where δpl , pl

i −1 = 0, in Equation (4.1).  

But at each stage i , where L − D ≤ i ≤ L , among all the pairs of paths both reaching state 
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p  where p  is any of the reached states in stage i , there is no pair of paths having the 

same route till this stage. Since each reached state at this stage will have only one state 

transition to the next stage, if they have the same route till stage i , they will have the 

same route afterwards, and they will just be the same path. So, all pairs of paths both 

reaching p  at stage i  must have different partial paths until this stage. They must either 

pass through different states at stage i −1 or, if they pass through the same state at stage 

i −1, the distance between them should be nonzero at that stage. This means the term 

δpl , pl

i −1 + d2( pl → p, pl → p) in Equation (4.1), where δpl , pl

i −1 = 0, does not correspond to a 

pair of different paths, and it should be eliminated. The correct updating equation for 

δ p,q
i , where p =q , will be  

δp,q
i = min δ pl ,qm

i −1 + d2 (pl → p, qm → q), pl ≠ qm or if pl = qm , δ pl , qm

i −1 ≠ 0{ }    (4.4) 

Using this equation at stage L − D  will give δp, p
L− D ≠ 0  for all states p  that can be 

reached at this stage, and will giveδp, p
L− D = ∞  for those p  that cannot be reached. Then at 

stage L − D + 1, when updating δp, p
L− D +1  there will be no such term as 

δpl , pl

L− D + d2( pl → p, pl → p) with δpl , pl

L− D = 0 need to be eliminated. As a result, Equation 

(4.3) becomes Equation (4.1). So do later stages until stage L .  In summary, the updating 

equation for δ p,q
i  with p =q , is Equation (4.1), when i ≠ L − D , and Equation (4.4), when 

i = L − D .  

 

4.2.3   Basic Steps for Algorithm--Part I 

Now, we can give the basic steps for Algorithm--Part I:  

1. Initialize δ0  using Equation (4.1). All λ0 are initialized as null sequences. 

2. For each stage i  , where 1 ≤ i ≤ L , for any pair of states p  and q  with q ≥ p , p  and 

q  both belong to the states that can be reached from start_state at this stage  

If p ≠ q , update δ p,q
i  using Equation (4.1), 

else, if i ≠ L − D , update δ p,q
i using Equation (4.1), if i = L − D , using Equation (4.4). 

In either case, update λ p,q
i  accordingly using Equation (4.2).   
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3. δstart _ state, start _ state
L  is the minimum distance among all the paths having start_state as 

starting state and ending states and λstart _state ,start _ state
L  stores the pair of paths having 

this minimum distance between them.    

4.3 Algorithm--Part II:  Calculate the Minimum Distance Between a Path and All 

the Paths Having Different Starting State from the Starting State of This Path  

Denote this particular path as base_path, and its starting state as base_state. 

As shown in Section 2.4, Viterbi algorithm finds the path having the minimum 

distance to the received sequence. The Viterbi algorithm works for a trellis in which all 

the paths have the same stating state and ending state known a priori. Using Viterbi 

algorithm in circular trellis codes T(n, D)  is to run Viterbi algorithm a total of nD  times--

one run for each possible starting state. Regarding the base_path as the received 

sequence, each Viterbi run will yield the path having the minimum distance to the 

base_path, among all the paths having a certain starting state and the same ending state. 

The Viterbi run for base_state will always find the base_path with distance zero because 

the base_path is, in fact, a legal path among all the paths having base_state as starting and 

ending state. For our purpose, we do not need that since we already solved the problem of 

finding the minimum distance among all the paths having a same starting state in 

Algorithm--Part I.  The other nD −1 Viterbi runs give the minimum distance between the 

base_path and the paths having different starting state from base_state. That is what we 

want.  

So, we have the following steps for Algorithm--Part II:  

1. Regard the base_path as the received sequence. For each of the states other than 

base_state, denoted as ε j , where 1 ≤ j ≤ nD −1, run Viterbi algorithm on the trellis 

having ε j  as starting state and ending state. We will get the minimum distance 

between the base_path and the paths having ε j  as starting state and ending state 

denoted as dj .  

2. min
j

(dj) , j =1,...,nD −1, is the minimum distance between the base_path and all the 

paths having different starting and ending state from base_state. 
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The Viterbi algorithm for ε j  is stated here. Denote the minimum partial distance 

between the base_path and all the paths entering state p  at stage i  as Λ p
i , p  is any of the 

states that can be reached from ε j  at this stage. We do not need to store the path history 

for our purpose. In general, there are n paths entering p  at stage i , they pass through pl  

at stage i −1, where pl is one of the predecessors of state p . The updating equation for 

Λ p
i  is  

Λ p
i = min{Λ p

i −1 + d2 (pl → p, state transion on base_path ),l = 1,..., n}                      (4.5) 

where d2 ( pl → p,state transion on base_path )  is the squared Euclidean distance 

between the two channel symbols associated with the state transition pl → p  and the 

state transition on the base_path  from stage i −1 to stage i  . 

The Viterbi run for state ε j  has the following steps: 

1. Set Λ p
0 =

0,          p = ε j

∞,      otherwise
 
 
 

.            (4.6) 

2. At each stage i , where 1 ≤ i ≤ L , for each of the state p  that can be reached at this 

stage, update Λ p
i using Equation (4.5).  

3. Λε j

L is the minimum distance between the base_path  and all the paths having ε j as 

starting  and ending state. 

 4.4 Computation Complexity of the Algorithm  

This section analyzes the computation complexity of the algorithm. Ways to 

reduce the computation load are also given. 

4.4.1 Analyze the Computation Complexity of the Algorithm  

In Algorithm--Part I, for a pair of states p  and q  each updating using Equations 

(4.1) and (4.4) involves the add-compare-select operations. Regard these operations as a 

basic operation. At each stage, at most (S2 + S) / 2 state pairs need to be updated, when 

p  and q  can be any of the total states and q ≥ p . Therefore, the total number of 

operations needed is upper bounded by (S2 + S) / 2 ⋅ L . It is linear on the second order of 

total state number S  and the information sequence length L .  In Algorithm--Part II, for a 
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state p , regard the add-compare-select operations in each updating using Equation (4.5) 

as a basic operation; the total number of operations needed is upper bounded by S ⋅ L . It 

is linear on the first order of total number of states S . For the entire algorithm, the total 

number of operations is upper bounded by (S2 + 3S) / 2 ⋅ L , although different 

computation loads may be involved in the basic operations for part I and part II.  In 

practical implementation, the terms d2 ( pl → p,qm → q)in Equations (4.1) and (4.4) can 

be calculated only once and stored in a table, for all p , q , and pl ,qm . So can the terms 

d2 ( pl → p,state transion on ref_path )  in Equation (4.5). Later, for each stage the d2  

terms can be retrieved through quick table lookups. Then if we only consider the 

additions as the computation load in each basic operator, the total number of computation 

is upper bounded by (S2 + S) / 2 ⋅ L ⋅n2 + S ⋅ L ⋅ n . The path memory needed for this 

algorithm is (S2 + S) / 2 ⋅2 log2 n ⋅ Lbits.  

4.4.2 Computation Reduction 

Still some computation reduction can be done. For Algorithm--Part I, our goal is 

to get δstart _ state, start _ state
L  at stage L . From Equation (4.1), only δpl ,qm

L−1 from the previous 

stage are needed, where pl and qm  belong to the predecessors of state start_state. In order 

to get these δ L−1 , only the δ L− 2  of pair of states p  and q  are needed, where p  and q  

both belong to the predecessors of pl and qm . p  and q  are the second level predecessors 

of start_state, i.e., the states from which a two-stage state transition to start_state is 

possible. The ith  level predecessors of start_state are all the states from which an i -stage 

state transition to start_state is possible. In general there are ni  states.  The Dth level 

predecessors are the total S  states in this trellis. At stage i , only δ i of pair of states both 

belonging to the (L − i)th  predecessors of start_state needs to be calculated 

(0 th predecessor is start_state itself) to get δstart _ state, start _ state
L . When L − i < D ; i.e., 

i > L − D , the (L − i)th  predecessors are a subset of the set of total states, so, for each 

stage i  where L − D +1 ≤ i ≤ L  , only δ i of a reduced number of pairs of states needs to be 

updated. The same is true for updatingλi . Also, we have seen for stage i<L-D, there is 

always a pair of paths both reaching states p and having the same route until this stage. 
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That is to say, δp, p
i = 0 , for any state p  that can be reached at this stage. Equation (4.1) 

will always give 0 if one actually calculates it. The updating of λ p,p
i for these p  is in 

Equation (4.3), where pg = qmand pg  is any one of the predecessors of p  and was 

reached at stage i −1.  

The revised version of Algorithm--Part I to reflect these reductions is:  

1. Initialize as before. 

2. For each stage i , where 1 ≤ i ≤ L , get the set of states that will be considered.  

If  i ≥ L − D + 1, the set of states considered is the (L − i)th  predecessors of start_state, 

else if i < D , it is the set of all the states that can be reached by a i -stage state 

transition from start_state.  

else it is the set of the total S  states 

Then for each pair of states p  and q  with q ≥ p , p  and q  both belong to the set of 

states considered, 

If p ≠ q , update δ p,q
i  using Equation (4.1), 

else { 

 if i < L − D , setδp,q
i = 0,  

 else if i = L − D , update δ p,q
i using Equation (4.4) , 

 else update δ p,q
i using Equation (4.1)  

} 

In each of these cases, update λ p,q
i  accordingly using Equation (4.2).   

3. Same as before. 

The reduction of the computation for the last D  stages is also applied for 

Algorithm--Part II. Then for each stage i , where L − D +1 ≤ i ≤ L , only Λ p
i , where p  

belongs to the (L − i)th  predecessors of base_state, needs to be updated. The revision of it 

is obvious.  

4.5 Minimum Distance of HDCTCM 

Apply this algorithm to HDCTCM (4, D). Denote the minimum distance obtained 

from step 1 in Algorithm (Section 4.1) as min_dis1, the one obtained from step 2 as 
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min_dis2 , the minimum distance of this code is min{min_ dis1, min_dis2}. For each D , 

D = 2,3,4,5, for all different codes (different STM-FREE), min_dis1 and min_dis2  are 

calculated at different information length L . In Figure 4.2 to 4.5, the min_dis1(min_dis2 ) 

versus L  is plotted for some for some different codes for each D , D = 2,3,4,5. Distance 

is calculated as squared ED, signal has unit plus in each of the three dimensions it 

occupies, out of the total dimensions of the signal space.  

 

5 10 15 20 25

12

14

16

18

20

22

24

26

L(Symbols Per Information Sequence)

S
qu

ar
ed

 E
uc

lid
ea

n 
D

is
ta

nc
e

min-dis
1

min-dis
2

5 10 15 20 25

12

14

16

18

20

22

24

26

L(Symbols Per Information Sequence)

S
qu

ar
ed

 E
uc

lid
ea

n 
D

is
ta

nc
e

min-dis
1

min-dis
2

 

Figure 4.2  Minimum distance of HDCTCM(4,2)  
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Figure 4.3  Minimum distance of HDCTCM(4,3) 
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Figure 4.4  Minimum distance of HDCTCM(4,4) 
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Figure 4.5  Minimum distance of HDCTCM(4,5) 

 

For all the cases calculated, the following trend is observed. For min_dis1, when 

L = D +1, it is 8 ⋅ (D +1). This verifies the correctness of this algorithm. At L = D +1, 

the state transitions on the n paths related to a certain starting state at each stage are 

assigned symbols that construct simplex; this is how we build the codes. The distance 

between simplex signals is 8, so the distance between these paths is 8 ⋅ (D +1). At 

L = D + 2 , min_dis1 is another value that can be different from 8 ⋅ (D +1). For 

L > D + 2, it keeps the same value as the value at L = D + 2 .  

For min_dis2 , it increases when L  increases from the smallest value D+1 and 

eventually reaches the value same as min_dis1 at L = D + 2 . This happens when 

L ≈ 2D + (0 ~ 2), where 0 ~ 2denotes an integer between 0 and 2. For larger L , 

min_dis2  remains at this value. 

In practical implementation, L > 2D + (0 ~ 2). Therefore, for HDCTCM(4, D) 

with a given D  and L > 2D + (0 ~ 2), the minimum distance for a code is equal to 

min_dis1at L = D + 2 . From these figures, different codes (corresponding to different 

STM-FREE) of HDCTCM(4, D)for a given Dcan give different values for min_dis1 at 

L = D + 2 . But a tight upper and lower bounds on this value--the minimum distance of 

n=4,D=5, code n=4,D=5, code 
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HDCTCM(4, D)--exist. The validity of this claim will be proved in the following 

chapter.  
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CHAPTER 5   BOUNDS ON THE MINIMUM DISTANCE OF 

HDCTCM AND OPTIMUM DISTANCE CODE 
 

 

One central problem of coding theory has been the seeking of codes with large (or 

largest) minimum distance for a given code parameters [24]. For most coding schemes, 

the optimum distance codes are found only by exhaustive search of all the possible cases. 

For a code with a given code parameter, if there are a large number of codes, exhaustive 

search is forbidden and an upper and lower bounds on the minimum distance is desired to 

evaluate the error correcting capacity of this code. In this chapter, an upper and lower 

bounds on the minimum distance of practical HDCTCM (4, D) codes are derived in 

Section 5.1. Section 5.2 proves that the bounds can be reached. Moreover, Section 5.3 

designs a procedure other than the exhaustive search method to obtain the optimum 

distance code for HDCTCM(4, D).   

 

5.1 Bounds on the Minimum Distance of HDCTCM  

The last chapter shows that for a given trellis depth D , the minimum distance of a 

HDCTCM(4, D) code with information sequence length L, where L > 2D + (0 ~ 2)and 

0 ~ 2 denotes an integer between 0 and 2, is equal to the minimum distance among the 

paths associated to a certain starting state at L = D + 2 .  For a given D , the signal 

constellation for HDCTM(4, D) codes is fixed; different codes correspond to mapping 

the signal constellation to different STMs built by taking different STM-FREEs. From 

Figures 4.2 to 4.5, different codes will give different minimum distances.  Bounds on the 

minimum distance of practical HDCTCM (4, D) codes for a given D  are derived in this 

section.  
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5.1.1 Distance Structure of Signal Constellation  

In this chapter, all distances refer to the squared Euclidean distances (SED). From 

building IIS in Chapter 3, we can see that for two symbols in IIS, if they are related by 

“copy” rule, they will occupy the same space dimension for one pulse-location and 

occupy different space dimensions for the other two pulse-locations. If they are not 

related by “copy” rule, they will occupy different space dimensions for all three pulse-

locations. All source simplexes related to all the symbols in IIS constitute the signal 

constellation. It can be verified that the distance between any two member signals in a 

source simplex or a type B simplex is 8. So, any two symbols in the signal constellation 

can be members of a source simplex, and then the distance between them is 8.  Or they 

can come from two different source simplexes; then they will occupy at least two 

different dimensions for two pulse-locations. For the other pulse-location, they can be the 

same absolute value with opposite sign, the same absolute value with same sign, or 

different absolute value. For the first case, these two symbol are members of a type B 

simplex, then the distance between them is 8; for the second case, such as signal (1, 3, 5) 

and signal (1, -2, -4), the distance between them is 4; for the third case, such as signal (1, 

3, 5) and signal (2, 4, 6), the distance between them is 6.  

Each of all the states in HDCTCM(4, D) is related to a unique symbol in IIS. The 

source simplex related to this symbol is assigned to the state transitions originating from 

this state. So, the symbols assigned to state transitions originating from different states 

are drawn from different source simplexes. Therefore, these symbols occupy at least two 

different dimensions for two pulse-locations. A simplex-transition1 is assigned a source 

simplex. A simplex-transitioni, 2 ≤ i ≤ D +1, is assigned a type B simplex.  

 

5.1.2 Path Groups  

For HDCTCM (4, D) with L = D + 2 , there are 42 =16  paths related to each 

possible starting state. (See Figure 5.1.) These paths can be divided into four groups and 

each group has four paths, which have a same state transition at stage 1. Denote each of 

these groups as an initial-group. These paths can be divided into four other groups at the 

same time, and each group has four paths which have the same state transition at stage 

D + 2 . Denote each of these groups as a terminal-group.  From stage 2 till stage D , each 
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path reaches different states. At stage D + 1, the four paths in a terminal-group will reach 

one of the four states that can transit to the ending state, which is the same as the starting 

state at stage D + 2 . Each of the four paths in a terminal-group belongs to a different 

initial-group and vice visa. Number these paths using integers from 1 to 16 according to 

the following principle: each initial-group is given the four consecutive numbers 

{4 ⋅ m +1,  ....,  4 ⋅(m +1)} , m = 0, 1, 2, 3, and each terminal-group is given an arithmetic 

progression sequence with an increment of 4, {l, l + 4, l + 4 ⋅2, l + 4 ⋅3},  l =  1, 2, 3, 4. 

(See Figure 5.1.)  By this numbering, each path in an initial-group belongs to a different 

terminal-group and vice visa. The path number will identify the state transition on this 

path at each stage as well as the butterfly containing this state transition. Therefore, we 

will simply express “the state transition on a path at a certain stage” as  “a path at a 

certain stage”. Similarly, express “the state transitions on the four paths in a group at a 

certain stage” as  “the state transitions in a group at a certain stage” or just as “a group at 

a certain stage”.  

 

 

 

 

 

 

 

Figure 5.1  The 16 paths related to a certain starting state for HDCTCM(4, D)  at 

L = D + 2  

 

Comparing the 4 transitions in a group at each stage with the sets of 4 transitions 

constituting simplex-transitions, the following pattern is observed: 

For the 4 transitions in an initial-group: At stage 1, they are the same from definition. At 

stage 2, they have a same originating state; i.e., they constitute a simplex-transition1. At 

stage i , where 3 ≤ i ≤ D +1, they are one set of 4 transitions constituting simplex-

transitioni-1. At stage D + 2 , they have a same next state; i.e., they constitute a simplex-

transitionD+1. 
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For the 4 transitions in a terminal-group: At stage 1, they have a same originating state; 

i.e., they constitute a simplex-transition1. At stage i , where 2 ≤ i ≤ D , they are one set of 

4 transitions constituting simplex-transitioni. At stage D +1, they have a same next state; 

i.e., they constitute a simplex-transitionD+1.  At stage D + 2 , they are the same from 

definition. 

5.1.3 Distance Property of the Paths  

The distance of a path always refers to the distance between this path and a 

reference path. The distance of a path at a certain stage is the distance between the 

symbols assigned to the state transitions at this stage on this path and the reference path. 

The distance of a path is the summations of its distances at all stages. 

Recall that all the state transitions are recorded in STM, a D −1dimensional 

matrix. The unit element in STM is a butterfly with an internal order. A simplex-

transition1 or a simplex-transitionD+1 is within a butterfly.  A simplex-transitioni, where 

2 ≤ i ≤ D , is the set of the 4 transitions in the same internal locations of the 4 butterflies 

along the (i −1) th  dimension of STM. Each of the originating states g  in STM is related 

to a symbol s  in IIS that has the same location as the location of state g  in STM. The 

source simplex related to symbol s  is assigned to the transitions orientating from state g . 

Knowing the state transition’s location in STM, the symbol from the signal constellation 

assigned to this transition will be uniquely known. So, these 16 paths can be depicted in 

STM stage by stage, and the symbols assigned to these paths at each stage will be known. 

Then the distances of these paths at each stage can be analyzed.  

Pick any of these 16 paths as the reference path, denoted as reference-path. Then 

the initial-group and terminal-group containing the reference path are known, denoted as 

reference-initial-group and reference-terminal-group, respectively. Denote the symbol 

assigned to the reference-path at a certain stage as reference-symbol. Among the 15 paths 

other than the reference-path, there are 3 paths in the reference-initial-group, denoted as 

Γi , i =1, 2, 3, and there are 3 paths in the reference-terminal-group, denoted as Π i , 

i =1, 2, 3. For the remaining 9 paths, neither in the reference-initial-group nor in the 

reference-terminal-group, there are 3 paths in each of the initial-groups (terminal-groups) 

other than the reference-initial-group (reference-terminal-group), denoted as Ρi , 

i =1, 2, ... ,  9 .   
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Stage 1: These 16 paths originate from a same state and reach 4 different states. They are 

within a butterfly. (See Figure 5.2(a).) A box represents a butterfly. The 4 transitions in 

an initial-group are the same while those in a terminal-group constitute a simplex-

transition1. The originating state of these 16 paths is related to a unique symbol in IIS, the 

related source simplex to that symbol is assigned to the simplex-transition1 at this stage. 

Denote the symbols assigned to the four transitions from top-to-bottom in STM at this 

stage as s1 , s2 , s3  and s4 . Then {si | i = 1,2,3,4} is a source simplex.  

 

 

 

 

 

Figure 5.2  The 16 paths in STM and corresponding symbol matrix at stage 1 for 

HDCTCM(4, D)  with L = D + 2  

 

To illustrate the distances of these 16 paths, we place the symbols assigned to 

these paths at each stage into a 4 × 4  matrix. A symbol is a unit element in this matrix. 

Place the symbols assigned to an initial-group into a row and place the symbols assigned 

to a terminal-group into a column in this matrix. The symbols assigned to the four initial-

groups (terminal-groups) located in STM from top-to-bottom or from left-to-right are 

placed into the first to fourth row (column). This matrix is called the symbol matrix.  We 

see that there is one to one correspondence between the locations of these 16 paths in 

STM and the locations of the symbols assigned to these paths in the symbol matrix. 

Later, we will say a path is at a certain location in the symbol matrix, as well. That means 

the symbol assigned to this path is at that location in the symbol matrix. The distance 

from a symbol to the reference-symbol in the symbol matrix will give the distance from 

the corresponding path to the reference-path. 

The symbol matrix at this stage is shown in Figure 5.2(b). The distance between 

s j  and sk , j,  k =1,  2,  3,  4  is 0 when j = k , and 8 when j ≠ k . Pair-wise distances 
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between symbols are all known. So, we do not need to know the actual values in the 

symbol s j . The location of the reference-symbol in the symbol matrix will fix the 

distance from each of the other 15 symbols to the reference-symbol. (See Figure 5.2(b).) 

Later, the distance between a symbol and the reference symbol will be referred to as the 

distance of a symbol. Denote the row and column containing the reference symbol as the 

reference-row and reference-column. In Figure 5.2(b), the crossed out row and column 

are the reference-row and reference-column, respectively. The intersection is the 

reference-symbol. The distance of a symbol is written in the bracket besides the symbol. 

The matrix resulting by replacing a symbol in a symbol matrix with its distance is called 

a distance matrix. No matter where the reference-symbol is located at--among the 15 

symbols other than the reference-symbol--the distance is 0 for all the three symbols in the 

reference-row. For all three symbols in the reference-column, the distance is 8. For the 

other 9 symbols, the distance is 8.  

Therefore, the distances of the 15 paths other than the reference-path have the 

following property: the distances of the 3 paths in the reference-initial-group are all 0; the 

distances of the 3 paths in the reference-terminal-group are all 8; and the distances of all 

the other 9 paths are all 8.  

 

Stage 2: These 16 paths relate to 4 originating states; an initial-group constitutes a 

simplex-transition1. They are in a butterfly. A terminal-group constitutes a simplex-

transition2; they are located in the same internal locations of a set of 4 butterflies along 

the first dimension of STM. (See Figure 5.3(a).) The set of 4 paths having the same line 

style is a terminal-group.  
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Figure 5.3  The 16 paths in STM and corresponding symbol matrix at stage 2 for 

HDCTCM(4, D)with L = D + 2  

 

As shown in Chapter 3, the set of the four signals si , i =1, 2,  3, 4, related to 

these four originating states gk , k = 1, 2, 3, 4 , is a type B simplex θ . The symbol 

assignment is made such that four transitions in the simplex-transition1 originating from 

state gk  are assigned member signals from the related source simplex to signal si , 

denoted as ϖi . Also, each of these four simplex-transition2’s is assigned a type B simplex 

ξl , l =1,2,3, 4 formed by the four source simplexes ϖi . So in the symbol matrix for this 

stage, each row will be a source simplex ϖi  and each column a type B simplex ξl . The 

“prototype” symbol matrix is shown in Figure 5.3 (b). Numbers 1 to 6 are used to 

indicate different space dimensions.  By “prototype” we mean, an actual symbol matrix 

can be any row or (and) column exchanged. That variation results from different absolute 

locations of these 16 paths located in different STMs.  Correspondingly, signals in 

different type B simplex θ  (identified by the negative sign locations in its member 

signals) will be related to the four originating states gk , that will give different ϖi  and ξl .  

For a given type B simplex θ , there is one and only one arrangement for ϖi  to form four 

ξl . It can be verified that for all different type B simplexesθ , the symbol matrixes are the 

“prototype” symbol matrix with some row or (and) column exchanged. 

In order to obtain the distances of the symbols in the symbol matrix, we need to 

know the actual symbol matrix and the reference-symbol’s location. For the “prototype” 

symbol matrix, no matter where the reference-symbol is located--among the other 15 

 1  3  5(4)     1 -3 –5(8)   -1  3 –5(4)  -1 -3  5(8)  
-1  4  6(4)   -1 -4 –6(8)    1  4 –6(8)    1 -4  6(4) 
 2 -3 –6(8)   2   3  6         -2 -3  6(8)   -2  3 –6(8) 
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symbols other than the reference symbol--all three symbols in the reference-row or the 

reference-column have distance 8, because the symbol assigned to each of these paths is a 

member signal of the source simplex or the type B simplex containing the reference-

symbol. Cross out the reference-row and reference-column; for the symbols in the left 

3 × 3matrix, their distances are either 4 or 8. There is one and only one distance 8 in each 

row (column), and the column (row) index of distance 8 in each row (column) is 

different. (See Figure 5.3(b).) Denote each of these three locations where the symbol 

located at these locations have distance 8 as a special-8-location. For a given row and 

column indexes of the reference-symbol in a symbol matrix, exchange some rows or 

(and) columns in this “prototype” symbol matrix; the resultant distance matrix will be the 

distance matrix obtained from the “prototype” symbol matrix with those rows or (and) 

columns exchanged. We can see the distance property described above will not change 

for these resultant distance matrixes. That is to say, any actual symbol matrix has the 

distance property described above. 

Therefore, at this stage, the following property of the 15 paths other than the 

reference-path holds: the distances of the 3 paths in the reference-initial-group and the 3 

paths in the reference-terminal-group are all 8. Among the other 9 paths Ρi , 

i =1, 2, ... ,  9 , each initial-group (terminal-group) contains one path having distance 8 

and two paths having distance 4.  Each of the three paths having distance 8--denoted as a 

special-8-path--belongs to a different terminal-group (initial-group). We name the 

distance property at this stage as Distance Rule 1.  

 

Stage 3 to D : At stage i , where 3 ≤ i ≤ D , these 16 paths originate from 16 different 

originating states and reach 16 different next states. An initial-group constitutes a 

simplex-transitioni-1; they are located in the same internal locations of the set of 4 

butterflies along the (i − 2) th dimension in STM and have the same location indexes along 

all the other dimensions. Four initial-groups are in 4 sets of 4 butterflies along the 

(i − 2) th dimension. A terminal-group constitutes a simplex-transitioni.  They are located 

in the same internal locations of the set of 4 butterflies along the (i −1) th  dimension in 

STM and have the same location indexes along all the other dimensions. Four terminal-

groups are in 4 sets of 4 butterflies along (i −1) th  dimension. Each of the 4 paths from an 
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initial-group belongs to a different terminal-group and vice visa. So, these 16 paths are in 

16 different butterflies. These butterflies are located in a two-dimensional plane along the  

(i −1) th and (i − 2) th dimension of STM. (See Figure 5.4(a).) 

 

 

 

 

 

 

 

 

 

Figure 5.4  The 16 paths in STM and corresponding symbol matrix at stage i , where 

3 ≤ i ≤ D , for HDCTCM(4, D)with L = D + 2  

 

A simplex-transitioni, where 2 ≤ i ≤ D , is assigned a type B simplex. State 

transitions originating from different states will be assigned symbols occupying at least 

two different dimensions for two pulse-locations. So the symbol matrix at this stage 

should have the following property: the set of symbols in each row and each column is a 

type B simplex. And all the symbols occupy at least two different dimensions for two 

pulse-locations.  Call this property “the property of symbol matrix”.  

Denote the symbol in row j  and column k , j, k =1, 2, 3, 4  as s jk . (See Figure 

5.4(b).) Then for each j , {sjk | k = 1, 2, 3, 4} is a type B simplex and for each k , 

{sjk | j = 1, 2, 3, 4}  is a type B simplex. The “copy” rule should be satisfied in any type B 

simplex. We will see that we do not need to know the actual values in symbol s jk ; 

knowing the location of the reference-symbol in this symbol matrix will give all the 

symbols’ distances.  
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Denote the row index or the column index of the symbol matrix as rl  or cl , where 

l =1, 2, 3, 4  and rl ,  cl ∈{1,  2, 3, 4} . Suppose the reference-symbol is in (r1,c1). The 

distances of the other three symbols in row r1  and column c1 will all be 8, because each 

of these symbols is a member signal of a type B simplex containing the reference-

symbol. These symbols are related to the reference-symbol by “copy” rule for pulse-

locationm, m = 1, 2, 3 along the reference-row or the reference-column.  

Cross out the reference-row and the reference-column.  In the left 3 × 3 matrix, 

for each pulse-locationm in the reference-symbol, apply “copy” rule twice--once along the 

row and once along the column.  A symbol can be identified to have distance 4. That is 

because twice “copy” will make pulse-locationm in this identified symbol have the same 

absolute value and the same sign as pulse-locationm in the reference-symbol. Each of the 

other two pulse-locationp, p ≠ m , occupies different dimensions in this identified symbol 

and the reference symbol. So the distance of the identified symbol is 4.    

Let us see how to identify those three symbols. Recall that the “copy” rule is 

defined in matrix pair in Equation (3.2). For a given signal location, its pair locations for 

pulse-locationm, m = 1, 2, 3 and pulse-locationp, where p ≠ m , are different. First, in 

column c1, for each pulse-locationm in the reference-symbol, find the pair location of the 

row index r1 , denoted as rm+1 ; then rm+1 ≠ r1  and r2 ≠ r3 ≠ r4 .  Secondly, in each row rm+1 , 

find the pair location of the column index c1 for pulse-locationm, denoted as cm +1 ; then 

cm +1 ≠ r1, and c2 ≠ c3 ≠ c4 . The distance of the symbol in (rm+1,cm +1) is 4. That is to say, in 

each of the three rows, rm+1 , there is one symbol having distance 4 and the column 

indexes of these three symbols, cm +1 , are different. Denote each (rm ,cm ) as a special-4-

location. For the remaining 6 symbols in the 3 × 3 matrix, they are not related to the 

reference-symbol by “copy” rule either once (in the reference-row or reference-column) 

or twice; they occupy three different dimensions from the reference-symbol. Their 

distances will all be 6. (See Figure 5.4 (b).) 

In summary, at this stage the distances of the 15 paths other than the reference-

path have the following property: the 3 paths in the reference-initial-group and the 3 

paths in the reference-terminal-group all have distance 8. For the other 9 paths Ρi , 

i =1, 2, ... ,  9 , each initial-group (terminal-group) contains one path having distance 4 
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and two paths having distance 6.  Each of the three paths having distance 4--denoted as a 

special-4-path--belongs to a different terminal-group (initial-group). We name the 

distance property at this stage as Distance Rule 2.  

 

Stage D +1: These 16 paths originate from 16 different states and reach 4 different next 

states. An initial-group constitutes a simplex-transitionD. They are located in the same 

internal locations of the set of 4 butterflies along the (D −1)th  dimension of STM. A 

terminal-group constitutes a simplex-transitionD. They are in a butterfly. (See Figure 5.5 

(a).) 

 

 

 

 

 

 
 

Figure 5.5  The 16 paths in STM and corresponding symbol matrix at stage D +1  for 

HDCTCM(4, D)with L = D + 2  

 

A simplex-transitionD or a simplex-transitionD+1 is assigned a type B simplex. So 

in the symbol matrix at this stage, the set of the 4 symbols in each row or in each column 

is a type B simplex, and all the symbols occupy at least two different dimensions for two 

pulse-locations. Therefore, the symbol matrix at this stage satisfies “the property of 

symbol matrix”. The symbol matrix can be denoted as the same as the symbol matrix at 

stage 3 to D . (See Figure 5.5 (b).)  Then the distance property of the 15 paths other than 

the reference-path will be the same as the distance property derived for stage 3 to D .  

That is to say, Distance Rule 2 is also satisfied at this stage.  

 

Stage D + 2 : These 16 paths originate from 4 different states and reach a same next state. 

They are in a butterfly. An initial-group constitutes a simplex-transitionD+1 and the 4 

transitions in a terminal-group are the same. (See Figure 5.6 (a).)  
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Figure 5.6  The 16 paths in STM and corresponding symbol matrix at stage D + 2  for 

HDCTCM(4, D)with L = D + 2  

 

A simplex-transitionD+1 is assigned a type B simplex. Denote the symbols 

assigned to the 4 transitions in the simplex-transitionD+1 at this stage from top-to-bottom 

as s1 , s2 , s3 , and s4 . Then {si | i = 1, 2, 3, 4} is a type B simplex and the distance 

between s j  and sk , j,  k =1,  2, 3, 4  is  0 when j = k , and 8 when j ≠ k . The symbol 

matrix is shown in Figure 5.6 (b). No matter where the reference-symbol is located, 

among the 15 symbols other than the reference-symbol, the three symbols in the 

reference-row all have distance 8 and the three symbols in the reference-column all have 

distance 0. The distance for the other 9 symbols is 8.  

Therefore, the distances of the 15 paths other than the reference-path have the 

following property: the distances of the 3 paths in the reference-initial-group are all 8, the 

distance of the 3 paths in the reference-terminal-group are all 0, and the distances of all 

the other 9 paths are all 8.  

 

5.1.4 Upper and Lower Bounds on the Minimum Distance 

From the analysis of the distances of the 15 paths other than the reference-path, 

we can see:  

1. Each of the 3 paths in the reference-initial-group and the 3 paths in the reference-

terminal-group has distance 8 at D +1 stages and distance 0 at one stage. So the 

distance of each of these paths is 8 ⋅ (D +1).  
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2. For each of the other 9 paths Ρi , i =1, 2, ... , 9 , at stage 1 and stage D + 2  the distance 

is 8. At stage 2, the distance is either 8 or 4. At stage i , 3 ≤ i ≤ D , the distance is either 

4 or 6.  The distance of path Ρi  can be written as 8 + 8 + Hi =16 + Hi , where 

Hi = dij
j =2

D+1

∑ , dij is the distance of path Ρi  at stage j . Since the smallest value dij  can 

take is 4, the minimum Hi  among all i  is lower bounded by 4D  and denoted as Hmin . 

The lower bound on the minimum distance of these 15 paths is  

    min{8 ⋅(D +1), 16 + Hmin}=
8 ⋅ (D + 1) , D < 3
16 + 4 ⋅ D , D ≥ 3

 
 
 

          

(5.1) 

    It also can be seen from the Distance Rule 1 and Rule 2, 

Hi = 3 *[(8 + 4 + 4) + (6 + 6 + 4) * (D +1− 3 +1)]
i=1

9
∑ = 48 ⋅ D        (5.2) 

    So, the minimum Hi  among all i  is also upper bounded by a particular value. This 

happens when all the Hi ’s take values as large as possible, but all larger than that 

particular value. If there is no other restriction, this happens when all the Hi ’s are 

equal. But since the distance can only be an even integer, that particular value is 
48D

9
 
  

 
  even

=
16D

3
 
  

 
  

even
. Denote it as Hmax.  

Then the upper bound of the minimum distance of these entire 15 paths is 

min{8 ⋅(D +1), 16 + Hmax} =
  8 ⋅ (D +1)         , D < 3

16 +
16D

3
 
  

 
  even

 , D ≥ 3
 
 
 

  
        (5.3) 

The state transition pattern of the 16 paths shown above does not depend on the 

starting state, so the distance property will be the same for the 16 paths associated with 

any possible starting state. Also, the distance property derived above does not depend on 

which path among these 16 paths one chooses as the reference-path.  Therefore, the upper 

and lower bounds derived are the bounds on the minimum distance among the 16 paths 

associated with any starting state for HDCTCM(4, D) at L = D + 2 . That is to say, the 

bounds are the bounds on the minimum distance of HDCTCM(4, D) codes with 

L > 2D + (0 ~ 2).  
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5.1.5 Coding Gain 

From the bounds of the minimum distance of HDCTM(4, D), we can evaluate the 

coding gain of HDCTM(4, D)codes. Take uncoded 4-PSK as a reference system. Coding 

gain is defined in Equation (2.5). For HDCTM(4, D), if using 3-out-of-N signaling 

scheme with unit pulse in each occupied dimension, Sav = 3. For uncoded 4-PSK, 

dmin
2 = 2  when Sav =1. When HDCTM(4, D) codes have the upper and lower bounds on 

the minimum distance, the maximum and minimum coding gain can be calculated. Table 

5.1 shows the results for D = 1, 2, 3, 4, 5 . These coding gains will be achieved at high 

signal-to-noise ratio.  

 

 

Table 5.1  Minimum and Maximum Coding Gains of HCTCM(4, D)  Codes 

Trellis depth D Minimum coding gain Maximum coding gain 

1 4.26 4.26 

2 6.02 6.02 

3 6.69 7.27 

4 7.27 7.78 

5 7.78 8.45 

 

 

5.2 Tightness of the Bounds on the Minimum Distance 

This section proves that the upper and lower bounds on the minimum distance 

derived in Section 5.1.4 can be reached. First, we show that to prove that the bounds can 

be reached is to find a valid distance that can lead to the bounds. Then we prove a 

theorem on the conditions for a distance distribution to be valid. Following that, valid 

distance distributions that can reach the bounds are built.  
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5.2.1 Conditions for the Bounds to be Reached 

For a given D , for HDCTCM(4, D) codes at L = D + 2 , there are 16 paths related 

to a certain starting state. The derivation of the distance property among these 16 paths at 

each stage does not depend on a particular STM. Regardless of different STMs (different 

codes), among those 15 paths other than the reference-path, the 3 paths in the reference-

initial-group always have a same fixed distance at each stage from stage 1 to D + 2 , as do 

the 3 paths in the reference-terminal-group. The other 9 paths Ρi , i =1, 2, ... ,  9 , always 

have a same fixed distance at stage 1 and D + 2  and comply with Distance Rule 1 at 

stage 2 and Distance Rule 2 at each stage from stage 3 to D +1. Distance Rule 1 and 

Rule 2 do not give a fixed value for all these 9 paths at each stage from stage 2 to D +1. 

A particular path Ρi  can have distance either 8 or 4 at stage 2 and can have distance either 

4 or 6 at each stage from stage 3 to D +1. This depends on the location of the symbol 

assigned to Ρi  at that stage; i.e., it depends on the path’s location in STM. For different 

STMs, the absolute locations of these 16 paths in STM will be different. So the distance 

of a particular path Ρi  at stages from 2 to D +1 can be different in different STMs. Name 

the distances of some paths as the distance distribution of these paths; this means 

different STMs can give different distance distribution of the 9 paths Ρi , i =1, 2, ... , 9 . 

From the derivation of bounds, the minimum distance of the 9 paths, Ρi , determines the 

minimum distance among these 16 paths. If there is a STM that gives a distance 

distribution of the 9 paths Ρi , i =1, 2, ... , 9  from stage 2 to stage D + 1, which satisfies  

Hi ≥ Hmax(Hmin) , for all i , i =1, 2, ... , 9           (5.4) 

and there is at least one path Ρi  satisfying  

Hi = Hmax(Hmin )                                                          (5.5)   

Then the minimum distance of the 9 paths Ρi  is 16 + Hmax(Hmin) , and the 

minimum distance among these 16 paths is the upper (lower) bound derived in Section 

5.1.4. 

Define a valid distance distribution as a distance distribution that can be obtained 

by at least one STM (one code). If we can build a valid distance distribution of these 16 

paths that can lead to the bounds, then we can claim that the bounds can be reached. 
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In a valid distance distribution, among the 15 paths other than the reference-path, 

the distance of each of the paths in the reference-initial-group or in the reference-

terminal-group must have the fixed value shown in the distance property at each stage 

from stage 1 to D + 2 .  The distance of each of the 9 paths Ρi , must have the fixed value 

shown in the distance property at stage 1 and D + 2 . That is to say, to build a valid 

distance distribution, we only need to specify the distances of the 9 paths Ρi , at each stage 

from stage 2 to D + 1. This is the distance distribution we will talk about later. We can 

see a valid distance distribution must comply with Distance Rule 1 at stage 2 and 

Distance Rule 2 at each stage from stage 3 to D + 1. Later, when we say a distance 

distribution complies with Distance Rule 1 and Rule 2, we mean it complies with 

Distance Rule 1 at stage 2 and Distance Rule 2 at each stage from stage 3 to D + 1. 

Before we investigate the other conditions that constrain a distance distribution to be a 

valid distance distribution, we discuss how to find a STM (a code) in order to obtain a 

distance distribution built under Distance Rule 1 and Rule 2 and prove two lemmas. 

 

5.2.2 Find an STM to Obtain a Distance Distribution Built under Distance Rule 1 

and Rule 2 

 

A distance distribution built under Distance Rule 1 at stage 2 specifies that among 

the 9 paths, Ρi , i =1, 2, ... ,  9 , each of the initial-groups (terminal-groups) other than the 

reference-initial-group (reference-terminal-group) contains one special-8-path. Each of 

the three special-8-paths belongs to a different terminal-group (initial-group) other than 

the reference-terminal-group. All the other 6 paths have distance 4. 

A distance distribution built under Distance Rule 2 at any stage from stage 3 to 

D +1 specifies that among the 9 paths, Ρi , i =1, 2, ... , 9 , each of the initial-groups 

(terminal-groups) other than the reference-initial-group (reference-terminal-group) 

contains one special-4-path. Each of the three special-4-paths belongs to a different 

terminal-group (initial-group) other than the reference-terminal-group. All the other 6 

paths have distance 6. 

At each stage from stage 2 to D +1, these 16 paths can be depicted in STM, as in 

Figures 5.3 to 5.5, along with the corresponding symbol matrix. Note the symbols in the 
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symbol matrix and the path in STM at this stage have one to one correspondence. After 

we obtained the actual symbols matrix (necessary only at stage 2) and know the location 

of the reference-symbol in the symbol matrix, the distances of other symbols in the 

symbol matrix can be obtained. They comply with Distance Rule 1 at stage 2 and 

Distance Rule 2 at each stage from stage 3 to D + 1. This is satisfied by all different 

codes (different STMs). To get the wanted distance distribution satisfying Distance Rule 

1 and Rule 2, we can place these 16 paths into the symbol matrix such that the path 

having distance d  is placed into a location where the symbol at that location has distance 

d . We claim the following statement: 

 

Statement 5.1  If we place an initial-group in a row and a terminal-group in a column in 

the symbol matrix, then, to obtain the wanted distance distribution satisfying Distance 

Rule 1 and Rule 2, we only need to guarantee that among the 9 paths, Ρi , i =1, 2, ... , 9 , 

the special-8-paths are placed in those special-8-locations at stage 2 and the special-4-

paths are placed in those special-4-locations at each stage from stage 3 to D +1.  

 

Proof: For each stage from stage 2 to D +1 in the symbol matrix, the symbols in 

the reference-row and the reference-column all have distance 8. If we place an initial-

group in a row and a terminal-group in a column in the symbol matrix, these will be the 

locations where the paths in the reference-initial-group and the reference-terminal-group 

should be placed. In the symbol matrix, cross out the reference-row and the reference-

column; in the left 3 × 3 matrix, the symbols in the locations other than the three special-

8-locations or special-4-locations all have distance 4 at stage 2 and distance 6 at each 

stage from stage 3 to stage D +1.  These will be the locations of the other 6 paths other 

than the special-8-paths or the special-4-paths among the 9 paths Ρi , i =1, 2, ... , 9 , 

should be placed into. In the wanted distance distribution, the distances of the paths other 

than the special-8-paths or the special-4-paths have these values, respectively, because 

that is what the distance distribution built under Distance Rule 1 and Rule 2 means. We 

only need to guarantee that among the 9 paths, Ρi , i =1, 2, ... , 9 , the special-8-paths are 

placed in those special-8-locations at stage 2 and the special-4-paths are placed in those 
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special-4-locations at each stage from stage 3 to D +1. All the other paths will have the 

wanted distances in the distance distribution built under Distance Rule 1 and Rule 2.  

Placing these 16 paths in the symbol matrix at each stage is equivalent to placing 

these 16 paths in a corresponding order in STM at this stage; i.e., define some properties 

of STM, which are indicated by some elements in STM-FREE. If by placing these 16 

paths in the symbol matrix to get one distance distribution built under Distance Rule 1 

and Rule 2 can define all the elements in STM-FREE, then it shows that there is at least 

one STM that can give this distance distribution. In other words, this distance distribution 

is valid.  

 

5.2.3 Proofs of Two Lemmas 

Lemma 5.1  In HDCTCM(n, D) , given a specific butterfly's location in STM--say 

STM  (l1, l2 ,K, lD −1) --then all sets of n  butterflies that will be in set of n  locations having 

xk = lk,    k = 1, 2, K,  D −1 will be known. 

Proof: We have already shown that for HDCTCM(n, D) , all sets of n  butterflies 

constitute simplex-transitioni where 2 ≤ i ≤ D  are known. Then given a butterfly in 

STM  (l1, l2 ,K, lD −1) , the simplex-transition2-butterfly-set containing it will occupy 

STM  (:,l2 ,K, lD −1) .  Then the simplex-transition3-butterfly-sets containing the butterflies 

in STM  (:,l2 ,K,lD −1)  will occupy STM(:,:,l3 ,l4, ..., lD −1); the simplex-transition4-butterfly-

sets containing the butterflies in STM(:,:,l3 , l4, ...,lD −1) will occupy (:,:,:,l4, l5, ..., lD −1) ; The 

simplex-transitionm-butterfly-sets containing the butterflies in STM(:,:,...,:, lm −1, lm , ...,lD −1) 

will occupy STM(:,:,...,:,lm , lm +1, ...,lD −1); Until the end, the sets of butterflies occupy 

(:,:,..., :, lD−1)  will be recognized.  

We have recognized the sets of butterflies should be located in 

STM(:,:,...,:, lk , lk +1,..., lD−1 ) for any k  , where 1 ≤ k ≤ D −1. The simplex-transitionk+2-

butterfly-sets containing the butterflies in STM(:,:,...,:, lk , lk +1,..., lD−1 ) will occupy 

STM(:,:,..., :,lk ,:,lk +2 , lk + 3,...,lD−1 ). The simplex-transitionk+3-butterfly-sets containing the 

butterflies in STM(:,:,..., :,lk ,:,lk +2 , lk + 3,...,lD−1 ) will occupy (:,:,..., :,lk ,:,:,lk +3 ,lk +4 , ...,lD −1 ). 

Eventually, the simplex-transitionD-butterfly-sets containing the butterflies in 

STM(:,:,..., :, lk ,:,..., :,lD−1 ), which are recognized in the pervious stage, will occupy 
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STM(:,:,..., :, lk ,:,..., :), i.e., all the sets of butterflies that occupy a set of n locations 

having xk = lk,    k = 1, 2, K,  D −1 are recognized. 

 

Lemma 5.2  In a symbol matrix having “the property of symbol matrix”, suppose we 

know the row index that one initial-group should be placed in and the column indexes of 

the four paths in this initial-group, i.e., the column indexes of the four terminal-groups. 

Call this initial-group the recognized initial-group in the proof. Then for any wanted 

distance distribution built under Distance Rule 2, there is one and only one way to place 

the other three initial-groups in the other three rows in the symbol matrix to get to obtain 

this distance distribution. 

 

Proof: In the symbol matrix, denote the row index that this recognized initial-group 

should be placed in as r1 . The column indexes of the four terminal-groups are known. 

Denote the column index of the reference-terminal-group as c1. Then, there are two 

situations: 

 

Case 1: This recognized initial-group is the reference-initial-group, i.e., the reference-

symbol is in (r1,c1). In Section 5.1.3, in the derivation of Distance Rule 2, we have shown 

that in the symbol matrix having “ the property of symbol matrix”, knowing the location 

of the reference-symbol in the symbol matrix, the three special-4-locations will be 

determined by applying the  “copy” rule along the row and column. Denoted these three 

special-4-locations as (ri ,ci), i = 2, 3, 4 . We have shown there that ri ≠ r1 , r2 ≠ r3 ≠ r4 , 

ci ≠ c1, and c2 ≠ c3 ≠ c4 . For each column ci , i = 2, 3, 4 , we know which terminal-group 

should be placed in this column. Then in the wanted distance distribution built under 

Distance Rule 2, the initial-group having a special-4-path that belongs to this terminal-

group should be placed in row ri .   

 

Case 2: This recognized initial-group is not the reference-initial-group. Then in the 

wanted distance distribution, this initial-group must contain a special-4-path, which 

belongs to a known terminal-group other than the reference-terminal-group. The column 
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indexes of all the terminal-groups are known, so we know the column index that this 

special-4-path should be place in, and denote it as c2 ; certainly c2 ≠ c1 . So, this special-4-

path is placed in (r1,c2 )  in the symbol matrix. We know that the special-4-locations are 

the locations in the symbol matrix that relate to the reference-symbol by applying "copy" 

rule twice--once along the row and once column.  Therefore, knowing (r1,c2 ) is such a 

special-4-path, we can find the location of the reference-symbol backwards. Then the 

other two special-4-locations can be determined afterwards.  

We know the reference-terminal-group should be placed in column c1, so the 

reference-symbol must also be placed in column c1. We need to find out the row index of 

the reference-symbol first. From Equation (3.2), we can find out the pulse-location that 

has a location pair (c1,c2 ). Suppose it is pulse-locationl, l ∈{1, 2, 3}.  Then for pulse-

locationl, in column c1 find the pair location of row r1  and denote it as r2 , r2 ≠ r1; i.e., the 

reference-symbol should be placed in row r2 . Its location is (r2,c1) . The reference-initial-

group should be place in row r2 .  

Then the other two special-4-locations are determined as follows. In the 

reference-symbol, for each of the other two pulse-locationm, l ≠ m , first in column c1 find 

the pair location of the row index of the reference-symbol, r2 , and denote it as ri , where 

i = 3,  4 and r2 ≠ r3 ≠ r4 . Then, in each row ri , find the pair location of the column index 

of the reference-symbol, c1, dented as ci , where i = 3, 4 and c1 ≠ c3 ≠ c4 . Then the other 

two special-4-locations are (ri ,ci), i = 3, 4. In the wanted distance distribution, there are 

two other initial-groups other than the recognized group and the reference-initial-group. 

They each have a special-4-path which belongs to the terminal-groups other than the 

reference-terminal-group and the terminal-group in column c2 .  For each of the column 

ci , i = 3,  4, we know which terminal-group should be place in this column, and then the 

initial-group having a special-4-path which belongs to this terminal-group will be placed 

in row ri .  

 

In either case, to obtain a wanted distance distribution built under Distance Rule 

2, the other three initial-groups will be uniquely placed into the other three rows of the 
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symbol matrix, and the column indexes of the four terminal-groups will fix the order of 

placing the four paths of each initial-group in its row.  

 

5.2.4 Other Conditions for a Distance Distribution to be Valid 

The only other possible constraint for a distance distribution to be valid will be 

the relationship of the distance distributions between consecutive stages from stage 2 to 

stage D + 1. This will be answered by Theorem 5.1. 

 

Theorem 5.1  When building a distance distribution from stage 2 to stage D +1 under 

Distance Rule 1 and Rule 2, there is no relationship of the distance distributions between 

consecutive stages. Any distance distribution built under Distance Rule 1 and Rule 2 is a 

valid distance distribution. 

 

This theorem says, to build a valid distance distribution, among the 9 paths, Ρi , 

i =1, 2, ... ,  9 , one can let any three paths to be the three special-8-paths at stage 2 or the 

three special-4-paths at any stage from stage 3 to D +1 as long as the whole distance 

distribution at that stage satisfies Distance Rule 1 at stage 2 or Distance Rule 2 at any 

stage from stage 3 to D + 1. There is no relationship between consecutive stages on 

which three paths one chooses to be the special-8-paths or special-4-paths. Any distance 

distribution built under Distance Rule 1 and Rule 2 is a valid distance; i.e., there is at 

least one STM that can lead to this distance distribution.  

The reason is that a STM is fully determined by its STM-FREE. From Figures 5.3 

to 5.5, the locations of these 16 paths in STM at each stage from stage 3 to D + 1 are only 

related to two elements in STM-FREE.  Applying the method described in Section 5.2.2, 

we will see that obtaining the wanted distance distribution under Distance Rule 2 in the 

previous stage only fixes one of the two elements of STM-FREE; the other is to be 

defined by this stage's distance distribution. Among the freedom one can choose for this 

element in STM-FREE, one can get any distance distribution built under Distance Rule 2 

for this stage. Stage 2 is the first stage to build a distance distribution. (See Figure 5.2.) 

The locations of these 16 paths in STM are related to the rest of elements in STM-FREE. 
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Among the freedom one can choose for those elements, one can also obtain any distance 

distribution built under Distance Rule 1. We will prove this stage-by-stage. 

 

Proof:  

Stage 2:  At this stage, consider any wanted distance distribution built under Distance 

Rule 1. 

These 16 paths in STM and corresponding "prototype" symbol matrix are shown in 

Figure 5.2. The special-8-locations depend on the actual symbol matrix. So we must first 

place the four butterflies containing these 16 paths into some particular locations in STM 

to obtain the actual symbol matrix. We have not defined any part of STM yet; there are 

many ways to place these four butterflies in STM and place these 16 paths into particular 

locations in these four butterflies to obtain the wanted distance distribution. But when a 

particular way is selected, some elements in STM-FREE will be defined.   

First, choose the butterfly whose originating state set contains the originating state 

of the reference-initial-group, g , as the anchor butterfly. This defines STM-FREE (first 

butterfly). Place the anchor butterfly in an arbitrary location in STM—say, 

STM  (l1, l2 ,K, lD −1) . This defines STM-FREE (first location). Then place the originating 

state g  in any internal location, denoted as k , in the left side of the anchor butterfly. 

k ∈{1, 2,  3, 4}. This defines part of STM-FREE (left side butterfly). Then the other three 

butterflies containing the other three initial-groups will be placed in STM  (x1,l2,K,lD−1) , 

where x1 =: /l1 . The order of placing these three butterflies has not been determined yet. 

And the other three originating states of the other three initial-groups should be placed in 

the same internal locations in their butterflies as the originating state g  in its butterfly—

the anchor butterfly.  

So far, we have known the four butterflies' locations in STM and the 16 state 

transitions' internal locations in these butterflies. From Chapter 3, the symbols assigned 

to these 16 paths at this stage will be identified from the signal constellation. The symbol 

matrix is uniquely determined. From the mapping between STM and the symbol matrix, 

the reference-initial-group should be placed in row r1 = d1  in the symbol matrix. But the 

order of placing them in this row has not been decided yet. We can place the four paths in 

the reference-initial-group in row d1  in an arbitrary order. Map back to STM, the next 
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states of these four paths located in column 1 to column 4 in the symbol matrix will be 

placed in the right side of the anchor butterfly from top-to-bottom. This defines STM-

FREE (right side butterfly). Since each path in an initial-group belongs to a different 

terminal-group, the order of placing the four paths in the reference-initial-group in row d1  

of the symbol matrix will tell which terminal-group should be place in which column. 

Thus, we know the column indexes of the four terminal-groups. Denote the column index 

of the reference-terminal-group as c1. Then, we know the reference-symbol is in (r1,c1) . 

The distance of all the other symbols can be determined. They comply with Distance 

Rule 1. Denote the special-8-locations as (ri ,ci), where i = 2, 3, 4 , r1 ≠ r2 ≠ r3 ≠ r4  and 

c1 ≠ c2 ≠ c3 ≠ c4 . 

 In the wanted distance distribution, the three-special-8-paths should be placed 

into these three special-8-locations. For each column ci , i = 2, 3,  4 , we know the 

terminal-group that should be placed in this column. Then in the wanted distance 

distribution, the initial-group having a special-8-path which belongs to this terminal-

group should be placed in row ri  and the order of placing them in this row is already 

fixed by the known column indexes of the four terminal-groups. Mapping this initial-

group in the symbol matrix back to STM means that the butterflies containing this initial-

group should be place into STM  (x1,l2,K,lD−1) , where x1 = ri . The order of the set of the 

four butterflies in STM  (:,l2 ,K, lD −1)  defines STM-FREE (1st dimension).   

In summary, at this stage one can obtain any distance distribution built under 

Distance Rule 1 by defining STM-FREE (first butterfly, first location, part of left side 

butterfly, right side butterfly, 1st dimension).  

 

Stage 3: At this stage, consider any wanted distance distribution built under Distance 

Rule 2. 

These 16 paths in STM are in Figure 5.3 (a). An initial-group is located along the 1st 

dimension and a terminal-group is located along the 2nd dimension. The corresponding 

symbol matrix is shown in Figure 5.3 (b). Regardless of different codes, the symbol 

matrix always has “ the property of symbol matrix”. From the derivation of Distance 

Rule 2, for this kind of symbol matrix we do not need know the actual symbols in the 
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symbol matrix; only the reference-symbol’s location will give the distances of all the 

other symbols in this symbol matrix.  

From Lemma 5.1, all sets of four butterflies whose location indexes satisfying 

x2 = d2  are known. From Figure 5.3 (a), there is one and only one set of 4 butterflies 

containing an initial-group that should be placed in STM with x2 = d2 . So comparing the 

4 sets of 4 butterflies containing these four initial-groups with all sets of four butterflies 

having location index x2 = d2 , one initial-group will be recognized that should be placed 

in STM along the 1st dimension and have location index x2 = d2 . Also, STM-FREE (1st 

dimension) is defined in the previous stage, so the order of placing the set of four 

butterflies containing the recognized initial-group along the 1st dimension in STM is 

fixed. Each path in an initial-group belongs to a different terminal-group, so the location 

indexes of the four terminal-groups along the 1st dimension in Figure 5.3 (a) are known.  

Map the paths in STM to the symbol matrix; this recognized initial-group should 

be placed in row d2  in the symbol matrix. The column indexes of the four terminal-

groups are known from STM-FREE (1st dimension).  From Lemma 5.2, in order to get 

any wanted distance distribution, all the other three initial-groups will be uniquely placed 

in the other three rows of the symbol matrix. Map to STM; the butterflies containing 

these initial-groups will be placed uniquely. Then one set of the 4 butterflies along the 2nd 

dimension of STM will define STM-FREE (2nd dimension). So we can obtain any wanted 

distance distribution built under Distance Rule 2 at this stage by defining STM-FREE 

(2nd dimension). 

 

Stage 4 to D :  At each stage, these 16 paths in STM and the corresponding symbol 

matrix are similar to those at stage 3. Is it true that for each such stage, one can obtain 

any wanted distance distribution built under Distance Rule 2 by defining one more 

element in STM-FREE? It is solved in Lemma 5.3. 

 

Lemma 5.3  For any stage i , 3 ≤ i ≤ D , one can obtain any wanted distance distribution 

built under Distance Rule 2. By obtaining that, STM-FREE ((i −1) th  dimension) will be 

defined. 
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Proof by induction on i . 

(1) For stage i = 3, it is proved above.  

(2) Suppose it is true for stage i = k , 3 ≤ k ≤ D −1. Then for stage i = k +1, these 16 

paths in STM are shown in Figure 5.4 (a). An initial-group is located along the (k −1)th  

dimension and a terminal-group is located along the kth  dimension. The corresponding 

symbol matrix in Figure 5.4 (b) has “the property of symbol matrix”. There is one and 

only one set of 4 butterflies containing an initial-group that should be placed in STM with 

location index xk = lk . From Lemma 5.1, all sets of four butterflies whose location 

indexes satisfying xk = lk  are known. So comparing the 4 sets of 4 butterflies containing 

these four initial-groups with all sets of 4 butterflies having location index xk = lk , one 

initial-group will be recognized that should be placed in STM along the (k −1)th  

dimension and have location index xk = lk . Also, STM-FREE ((k −1)th  dimension) is 

defined in the previous stage, so the order of placing the set of four butterflies containing 

the recognized initial-group along the (k −1)th  dimension in STM is fixed. That is to say, 

the location indexes of the four terminal-groups along the (k −1)th  dimension in Figure 

5.4 (a) are known.  

Map to the symbol matrix; this recognized initial-group will be place into row lk  

and the column indexes of the four terminal-groups are known. From Lemma 5.2, for any 

wanted distance distribution, the other three initial-groups will be uniquely placed in the 

other three rows of the symbol matrix. Map back to STM; the butterflies containing these 

initial-groups will be placed uniquely. Then one set of the 4 butterflies along the kth  

dimension in STM will define STM-FREE (kth  dimension). Lemma 5.3 is proved.  

 

Stage D +1: these 16 paths in STM are shown in Figure 5.5 (a). An initial-group is 

located along the (D −1)th  dimension. A terminal-group constitutes a simplex-

transitionD+1.  It is in a butterfly. The corresponding symbol matrix has “the property of 

symbol matrix”. The row indexes and the column indexes in the symbol matrix 

correspond to the four internal locations in the left side of a butterfly and the four location 

indexes along the (D −1)th  dimension of STM.  
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From building STM in Chapter 3, we know that the internal order of one butterfly 

will fix the internal order of all the other butterflies. We have placed the originating state 

g  of the reference-initial-group at stage 2 in the internal location k , where 

k ∈{1, 2,  3, 4}, in the left side of the anchor butterfly. Then all the states that should be 

placed in the internal location k  in the left side of all the other butterflies are known.  

From Figure 5.5 (a), the originating states of one and only one initial-group 

should be placed in the internal location k  of the four butterflies along the 

(D −1)th dimension of STM. Compare the originating state sets of the four initial-groups 

with all the states that should be placed in the internal location k  in the left side of all the 

butterflies. One initial-group will be recognized whose originating states should be placed 

in the internal location k  in the left side of the four butterflies. Since the previous stage 

has defined STM-FREE ((D −1)th dimension), the order of placing these four butterflies 

along the (D −1)th dimension is fixed; i.e., the location indexes of the four terminal-

groups along the (D −1)th dimension are known. Map the paths in STM to the symbol 

matrix; this recognized initial-group will be placed in row k , and the column indexes of 

the four terminal-groups are known. From Lemma 5.2, there is one and only one way to 

place the other three initial-groups in the other three rows in the symbol matrix. Map 

back to STM; the originating states of these three initial-groups other than the recognized 

initial-group are placed uniquely in the left three internal locations in the left side of the 

four butterflies containing these 16 paths. This will fix the order of placing the other three 

originating state other than the state g  in the left side of the anchor butterfly; i.e., the rest 

part of STM-FREE (left side butterfly) that has not been defined at stage 2 will be 

defined at this stage.  

In summary, we have proved that when building a distance distribution under 

Distance Rule 1 and Rule 2, there is no relationship on the distance distributions between 

consecutive stages. At each stage from stage 2 to stage D +1, any distance distribution 

built under Distance Rule 1 and Distance Rule 2 is a valid distance distribution. We 

further showed that in order to obtain the wanted distance distribution, each stage will 

define some elements in STM-FREE. At stage 2, STM-FREE (first butterfly, first 

location, part of left side butterfly, right side butterfly, 1st dimension) will be defined, at 



 

  111

stage i , 3 ≤ i ≤ D , STM-FREE ((i −1) th  dimension) will be defined, and at stage D +1, 

the rest of STM-FREE (left side butterfly) that has not be defined at stage 2 will be 

defined.  

 

5.2.5 Build Valid Distance Distributions That Can Reach Bounds 

This section will build valid distance distributions that can give the bonds of the 

minimum distance of HDTCM(4, D). We will build a distance distribution from stage 2 

to D + 1 under Distance Rule 1 and Rule 2 specifying the distances for the 9 paths Ρi , 

i =1, 2, ... ,  9 , such that Equations (5.4) and (5.5) are satisfied.   

 

Build a Valid Distance Distribution to Reach the Upper Bound on the Minimum 

Distance 

 

We have obtained 
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D  can be written as 3m , 3m +1or 3m + 2 , where m  is an integer and m ≥ 0 ; then Hmax 

can be rewritten as  

Hmax =
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                                   (5.7)  

In any case, m = D / 3  . 

For m ≥1, a valid distance distribution is built using Procedure 5.1. For m = 0, it is 

trivial, we will deal with it after describing Procedure 5.1. 

 

Procedure 5.1 Build a valid distance distribution to reach the upper bound on the 

minimum distance 

1. Build one path--say path Ρ1--such that H1 = Hmax .  First, place distance 4 in each stage 

from stage 2 to D +1; this will contribute 4D  to H1 . Then add distance 4 to stage 2, 
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and add distance 2 (if D = 3m + 2 ) in any one stage between stage 3 and stage D +1. 

The largest distance for a path at stage 2 is 8, at the other stages is 6. So stage 2 is now 

completed. There left D − 1 or D − 2 (if D = 3m + 2 ) stages having distance 4; these 

stages can only be added distance 2 in each stage. In order to obtain H1 = Hmax , the left 

distance to be distributed is 4D + 4m − 4D − 4 for D = 3m  or D = 3m +1 and is 

4D + 4m + 2 − 4D − 4 − 2  for D = 3m + 2 . In both cases, it is 2(2(m −1)) ≥ 0 when 

m ≥1. They need to be distributed to 2(m − 1) different stages with distance 2 at each 

stage. For any D , it can be verified that 2(m −1) ≤ D − 2 ; i.e., there are enough stages 

having distance 4 so far that can be added distance 2 at each of those stage. So, 

secondly, we add distance 2 to any 2(m −1) stages among the stages having distance 4 

so far. Path Ρ1 is now completed and has H1 = Hmax . (See Figures 5.7 (a) and (b).) 

 

 

 

 

 

 

 

 

Figure 5.7  Build the distance distribution to reach the upper bound on the minimum 

distance for HDCTCM(4, D)  (a) the first path for D = 3mor D = 3m +1   (b) the first path 

for D = 3m + 2  

 

2. Under Distance Rule 1 and Rule 2, build two other paths--say path Ρ2  and Ρ3 --that in 

the same initial-group as path Ρ1. At stage 2, path Ρ1 has distance 8; the distance 

should be 4 in both paths Ρ2  and Ρ3 . For the stages that Ρ1 has 4, both Ρ2  and Ρ3  

should have distance 6. For the stages at which path Ρ1 has distance 6, one of the path 

among Ρ2  and Ρ3  should have distance 4 and the other one should have distance 6. For 

any D , there are at least 2(m −1) such stages; let each of the paths Ρ2  and Ρ3  has 

distance 4 at m −1stages and distance 6 at the other m −1stages. For D = 3m + 2 , 

4  4  4  …  4  4  …  4 
4  4  2  …  2 
         2(m-1) 
8  6  6  …  6  4  …  4 
    
       2(m-1)    D-2-2(m-1) 
 

stage   2  3       …         
D+1 4  4  …  4  4  …  4 

4  2  …  2 
    2(m-1) 
8  6  …  6  4  …  4 
    
    2(m-1)  D-1-2(m-1) 
 

stage   2  3       …         
D+1  

 mDH 44max += , mD 3= or 13 += mD  

(a) (b) 

 244max ++= mDH , 23 += mD   
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there is one more stage at which path Ρ1 has distance 6. For this stage, let any one of 

paths Ρ2  and Ρ3  have distance 4 and the other one have distance 6. These three paths 

are shown in Figures 5.8 (a) and (b).  

 

 

 

 

 

 

 

 

Figure 5.8  Build the distance distribution to reach the upper bound on the minimum 

distance for HDCTCM(4, D)  (a) the three paths in an initial-group for D = 3mor 

D = 3m +1   (b) the three paths in an initial-group for D = 3m + 2  

 

 

 

For D = 3mor D = 3m +1, 

H2 = H3 = 4 +10(m −1) + 6(D −1 − 2(m −1)) = 4D + 4m + 2D − 6m =
Hmax, D = 3m

Hmax + 2, D = 3m +1
 
 
 

     

               (5.8) 

For D = 3m + 2 ,  
H2 = 4 + 4 + 10(m −1) + 6(D − 2 − 2(m −1)) = 4D + 4m + 2 = Hmax                            

(5.9) 

H3 = 4 + 6 +10(m −1) + 6(D − 2 − 2(m − 1)) = 4D + 4m + 2 = Hmax + 2 .                 

(5.10) 

 

3. Build the other two sets of three paths; each set belongs to one of the other two initial-

groups. Interchange the distance distribution of the three paths Ρ1,Ρ2 , and Ρ3  and 

assign them to the three paths in the other two initial-groups. The interchange is done 

(b) (a) 
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           2(m-1)          D-1-2(m-1) 
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      m-1       m-1     D-1-2(m-1) 
 
4  6  …  6  4  …  4  6  …  6          
       m-1        m-1    D-1-2(m-1)  

P1 

P2 

P3 

stage   2  3              …               D+1   
8  6  6         …         6  4  …  4          
              2(m-1)          D-1-2(m-1) 
 
4  4  4  …  4  6  …  6  6  …  6          
            m-1       m-1     D-1-2(m-1) 
 
4  6  6  …  6  4  …  4  6  …  6          
           m-1        m-1    D-1-2(m-1)  

P1 

P2 

P3 

 mDH 44max += , mD 3= or 13 += mD   244max ++= mDH , 23 += mD   
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in such a way that each initial-group (terminal-group) has distance distributions of 

Ρ1,Ρ2 , and Ρ3 , and the path that has distance distribution of Ρi , i =1, 2,  3 in each 

initial-group (terminal-group) belongs to a different terminal-group (initial-group).  

Suppose the other initial-groups are {Ρ4 ,Ρ5  and Ρ6 } and {Ρ7 ,Ρ8  and Ρ9 }. {Ρ1,Ρ4 ,Ρ7 }, 

{Ρ2 ,Ρ5 ,Ρ8 } and {Ρ3 ,Ρ6 ,Ρ9 } are the three terminal-groups. Then let Ρ4 ,Ρ5 , and Ρ6  have 

the same distance distributions as that of Ρ2 ,Ρ3 , and Ρ1, respectively and let Ρ7 ,Ρ8 , and 

Ρ9  have the same distance distributions as that of Ρ3 ,Ρ1, and Ρ2 , respectively. Then it 

can be verified that each initial-group (terminal-group) has one special-8-path at stage 

2 or one special-4-path at each stage from stage 3 to D +1, and the special-8-path or 

the special-4-path from each initial-group (terminal-group) belongs to a different 

terminal-group (initial-group), i.e., Distance Rule 1 and Rule 2 are satisfied. Also, for 

the 9 paths, Ρi , i =1, 2, ... ,  9 , Equations (5.4) and (5.5) are satisfied.  

 

When m = 0, D = 1 or D = 2. For D = 1, Hmax = 4D+ 4m = 4. There is only one stage--

stage 2--which needs to build distance distribution. The first three paths Ρ1, Ρ2  and Ρ3 , 

can have distance 4, 8 and 4 at this stage, respectively.  

For D = 2, Hmax = 4D+ 4m + 2 =10 . There are two stages--stage 2 and 3--which 

needs to build distance distribution. The distance distributions can be built as follows. At 

stage 2 and 3, Ρ1 has distance 4 and 6, Ρ2  has distance 8 and 4, and Ρ3  has distance 4 and 

6. 

Following step 3 in Procedure 5.1, the distance distribution of all the other paths 

can be obtained.   

It can be verified that Distance Rule 1 and Rule 2 are satisfied. Also, for the 9 

paths, Ρi , i =1, 2, ... ,  9 , Equation (5.4) and (5.5) are satisfied.  

So, for all D , we have built a valid distance distribution that can achieve the 

upper bound on the minimum distance of HDCTCM(4, D).  
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Build a Valid Distance Distribution to Reach the Lower Bound on the Minimum 

Distance 

For lower bound, Hmin = 4D. First build a path Ρ1 that satisfies H1 = Hmin . This 

path has distance 4 at each stage from stage 2 to D +1. Then the other two paths in the 

same initial-group as path Ρ1 is easy to built under Distance Rule 1 and Rule 2. The three 

paths are shown in Figure 5.9. Following the step 3 in Procedure 5.1, the distance 

distributions of all the other paths can be obtained. It can be verified that Distance Rule 1, 

Rule 2, and Equations (5.4) and (5.5) are satisfied.   

 

 

 

 

Figure 5.9  Build the distance distribution for the three paths in an initial-group to reach 

the lower bound on the minimum distance for HDCTCM (4, D)  

 

So far, valid distance distributions have been built that can reach the bounds. In 

other words, we have proved that the bounds on the minimum distance can be reached. 

 

5.3 Optimum Distance Codes  

When a code achieves upper bound of the MD of its kind, this code is called an 

optimum distance code. This section will give the method to built an optimum distance 

code and show the possible distance distributions for an optimum distance code. 

  

5.3.1 Build Optimum Distance Codes 

In the proof of Theorem 5.1, we actually describe the procedure to obtain a STM 

that will give any wanted distance distribution built under Distance Rule 1 and Rule 2. 

Then the way to build an optimum code or a code that has the lower bound on the 

minimum distance is described as follows.   

 

4  4       …          4 
8  6       …          6 
4  6       …          6 

stage   2  3       …         D+1 
P1 
P2 
P3 

 DH 4min =  
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Procedure 5.2  Build an optimum distance code or a code that has the lower bound of the 

minimum distance 

1. Using the method in described in Section 5.2.5, build a valid distance distribution that 

can give the upper or lower bounds on the minimum distance.  

2. Following the proof of Theorem 5.1, obtain the distance distribution built in step 1 

from stage 2 to stage D +1 by defining some elements in STM-FREE at each stage. 

This STM-FREE will fix a STM. Then map the signal constellation to this STM; the 

symbol assignment can be obtained. The code using this symbol assignment will reach 

the bounds on the minimum distance.   

 

5.3.2 Possible Distance Distributions for Optimum Distance Codes 

The method described in Section 5.2.5 is not the only way to build a valid 

distance distribution that can reach the bounds. But all the valid distance distribution that 

can reach the bounds must satisfy Equations (5.4) and (5.5). So there are limited numbers 

of distance distribution patterns which exist for the optimum distance codes. 

Among the 9 paths, Ρi , i =1, 2, ... , 9 , Suppose Ρj , j =1, 2, 3 are the three paths 

in any one initial-group or any one terminal-group. From Distance Rule 1 and Rule 2, it 

can be verified that, H j
j =1

3

∑ = 16D , for any D . 

There are three cases for D .    

(1) For D = 3m ,  

Hmax = 4D+ 4m = 4 ⋅3m + 4m = 16m            (5.11) 

H j
j =1

3

∑ = 16D = 3 ⋅16m = 3 ⋅ Hmax            (5.12) 

So in order to satisfy Equations (5.4) and (5.5), the set of distances Hj  of the three paths 

Ρj  should be {Hmax, Hmax, Hmax} . Then the distances Hi  of the 9 paths, Ρi , i =1, 2, ... , 9 , 

are shown in Figure 5.10. 

 

 

 

Hmax  Hmax  Hmax  

Hmax  Hmax  Hmax  

Hmax  Hmax  Hmax  
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Figure 5.10  The distances Hi  of the 9 paths, Ρi , i =1, 2, ... , 9 , for optimum 

HCTCM(4, D)  codes with D = 3m  

 

In Figure 5.10, each row represents the distances Hi  of the three paths in an 

initial-group and each column represents the distances Hi  of the three paths in a terminal-

group.  It can be seen that in the optimum distance codes, for the 9 paths Ρi , 

i =1, 2, ... ,  9 , their distances are all equal to 16 + Hmax .  

 

(2) For D = 3m +1 

Hmax = 4D+ 4m = 4 ⋅3m + 4 + 4m =16m + 4                                                               (5.13) 

H j
j =1

3

∑ = 16D = 16 ⋅ (3m +1) = 3 ⋅ Hmax + 4          (5.14) 

So in order to satisfy Equations (5.4) and (5.5), the set of distances Hj , of the three paths 

Ρj  should be {Hmax, Hmax + 2,Hmax + 2} or {Hmax, Hmax, Hmax + 4}. Then the possible 

distances Hi  of the 9 paths, Ρi , i =1, 2, ... , 9 , are shown in Figure 5.11. 

 
Hmax  Hmax + 2  Hmax + 2  

Hmax + 2  Hmax  Hmax + 2  

Hmax + 2  Hmax + 2  Hmax  

 

 

 

 

 

Figure 5.11  The distances Hi  of the 9 paths, Ρi , i =1, 2, ... , 9 , for optimum 

HCTCM(4, D)  codes with D = 3m +1  

 

In the optimum distance codes, for the 9 paths Ρi , i =1, 2, ... ,  9 , in Figure 5.11 

(a), there are 6 paths having distance 16 + Hmax + 2  and 3 paths having distance 

Hmax  Hmax  Hmax + 4 

Hmax  Hmax + 4 Hmax  

Hmax + 4 Hmax  Hmax  

Hmax  Hmax + 4 Hmax  

Hmax + 2  Hmax  Hmax + 2  

Hmax + 2  Hmax  Hmax + 2  

(a) (b) 

(c) 



 

  118

16 + Hmax . In Figure 5.11 (b), there are 3 paths having distance 16 + Hmax + 4  and 3 paths 

having distance 16 + Hmax . In Figure 5.11 (c), there are 4 paths having distance 

16 + Hmax + 2 , one path having distance 16 + Hmax + 4 , and 4 paths having distance 

16 + Hmax .  

The distance distribution built in Section 5.2.5 gives the distance distribution in 

Figure 5.11 (a).  

 

(3) For D = 3m + 2 ,  

Hmax = 4D+ 4m + 2 = 4 ⋅ (3m + 2) + 4m + 2 = 16m +10        (5.15) 

H j
j =1

3

∑ = 16D = 16 ⋅ (3m + 2) = 3 ⋅ Hmax + 2          (5.16) 

So in order to satisfy Equations (5.4) and (5.5), the set of distances Hj  of the three paths 

Ρj  should be {Hmax, Hmax, Hmax + 2}. Then the distances Hi  of the 9 paths, Ρi , 

i =1, 2, ... ,  9 , are shown in Figure 5.12. 

 

 

 

 

 

Figure 5.12  The distances Hi of the 9 paths, Ρi , i =1, 2, ... , 9 , for optimum 

HCTCM(4, D)  codes with D = 3m + 2  

 

It can be seen that in the optimum distance codes, for the 9 paths Ρi , 

i =1, 2, ... ,  9 , there are 3 paths having distance 16 + Hmax + 2  and 6 paths having 

distance 16 + Hmax . 

 

Hmax  Hmax  Hmax + 2  

Hmax  Hmax + 2  Hmax  

Hmax + 2  Hmax  Hmax  
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CHAPTER 6   DECODING AND ERROR PERFORMANCE 
OF HDCTCM 

 

 

This chapter will address the decoding algorithms for HDCTCM. Circular BCJR 

algorithms are investigated for decoding HDCTCM. In Section 6.1, the problems in 

practical implementation of circular BCJR and solutions to them are discussed; then in 

section 6.2, an iterative circular shift BCJR is developed for decoding HDCTCM. In 

Section 6.3, the properties of this decoding algorithm are demonstrated through 

simulations and compared with other decoding algorithms. Finally, the error performance 

of HDCTCM using this decoding algorithm is presented in Section 6.4.  

6.1 Problems in Practical Implementation of Circular BCJR 

BCJR and circular BCJR are introduced in Section 2.4; we will employ all the 

denotations and terms introduced there. Derivation of circular BCJR for tail biting codes 

is based on Equation (2.27). All circular trellis codes satisfy this, as does HDCTCM. In 

this section, we will explore the circular BCJR for decoding of HDCTCM. First, 

implementation problems need to be solved to actually implement these algorithms. In 

HDCTCM(n, D) , the total number of states is S = nD  and the information sequence 

length is denoted as L . In circular BCJR with eigenvectors, eigenvectors of the 

multiplication of a sequence of matrixes γ 1...γ L  need to be calculated, where γ t  is an 

S × S  matrix, t = 1,...,L.  Each element in γ t is a probability.  The elements in γ 1...γ L  can 

be extremely small for a reasonably large L , and due to this, the eigenvectors of this 

matrix will not converge. When the values of elements in γ 1...γ L  become so small that 

the computer does not have enough precision to represent them, they will simply be 

treated as zero. This will cause γ 1...γ L  to be a matrix with all zeros and the eigenvectors 

obtained will not be correct.  

Our solution to this problem is as follows: when calculating γ 1...γ L , scale γ 1...γ t  

whenever it is getting too small and multiply this scaled value with γ t +1 to get γ 1...γ t +1. 
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Because what we want is the normalized eigenvectors of γ 1...γ L , scaled γ 1...γ L  will have 

scaled eigenvectors, and normalizing the scaled eigenvectors will give the same results as 

normalizing the unscaled ones. With this solution, the normalized eigenvectors of 

γ 1...γ L can be calculated for any large L  and S . 

Large delay in decoding will be incurred by the normalization of αt andβt  at each 

trellis stage and for each iteration (in iterative circular BCJR) in circular BCJR, when L  

is reasonably large. The normalization is introduced previously to control the calculation 

precision. But in order to control computation precision, the normalization of αt  and βt  

is only necessary at stages when they are getting too small. We call this “selective 

normalization”. In iterative circular BCJR, the iterations stop when the difference on α  

between consecutive rth  and (r −1)th iterations, αrL +t
o − α(r −1)L +t

o , is sufficiently small, by 

a suitable measure, for all t , t = 1,...,L. The superscript "o"indicates the normalized 

vectors. This requires α  to be normalized at each trellis stage t  in every iteration. When 

“selective normalization” is employed, α  is only normalized at stages when it is getting 

too small; this stop condition should be modified accordingly. Since the speed for 

αL + t
o ,α2L + t

o ,…,αrL+ t
o  to converge to αt

o  is the same for all t , t = 1,...,L , we can choose 

one stage from the total L  stages, normalize α  at this stage no matter it is too small or 

not, and compare the difference of α o  at this stage between consecutive iterations to 

decide if more iterations are needed. Without loss of generality, stage L  is chosen. 

Define ∆ = max(abs(α rL
0 − α(r−1)L

0 )) , where "abs"means the absolute value; then when ∆  

is sufficiently small, stop the iteration and the set of α  vectors is obtained at the rth  

iteration. A similar argument holds for iterations on β .  

Although the eigenvectors of γ 1...γ L  can be obtained for any large L  and S . The 

computation load to obtain it is much larger than that involved in iterative circular BCJR 

with several iterations--especially for large L  and S . The circular BCJR with 

eigenvectors is served more as a theoretical basis to derive the iterative circular BCJR 

than to be implemented practically. For practical decoding of HDCTCM, iterative 

circular BCJR will be investigated.  
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6.2 Iterative Circular Shift BCJR for HDCTCM 

The initial α0 and β L  needs to be set in order to run the iterative circular BCJR. 

Some choices will lead to faster convergence than others will.  In this section, we 

introduce a scheme based on the statistical estimate of the starting state on the 

observation of the received sequence. In this scheme, the reliability of the estimation is 

defined and used to select the most reliable symbol in the received sequence. Also, the 

circular property of HDCTCM will be incorporated to make this most reliable symbol as 

the starting point in the decoding.  

6.2.1 Statistic Estimation of Starting State in HDCTCM 

First let the receiver tentatively hard decode each symbol in the received sequence 

Y1
L = Y1,Y2 ,...,YL . On the observation of Yt , the decoder hard decodes it to ˆ X t , where ˆ X t  

belongs to the channel signal constellation.  For the situation that all channel symbols are 

equally likely, which is true for HDCTCM, we have shown in Section 2.4 that in order to 

minimize the probability of making an erroneous decision, the receiver should choose ˆ X t  

such that  

P(Yt | ˆ X t ) = max
over all X

P(Yt | X )              (6.1) 

In an N dimensional space, where N  is the space dimension of signal 

constellation for HDCTCM(n, D) , channel symbol X  and Yt are represented as 

X = (x1, x2 , ...,xN ) and Yt = (yt1, yt 2, ..., ytN ) , then for a discrete memoryless AWGN 

channel with one-sided noise spectrum density N0 , 

P(Yt | X) =
1
πN0

e
−

Yt − X 2

N0 =
1
πN0

e
− ( ytk −x k )2

N0

k =1

N

∏          (6.2) 

Yt − X
2
is the squared Euclidean distance between Yt  and X .  

The larger P(Yt | ˆ X t )is, the smaller is the likelihood of making an error when 

decoding Yt  to ˆ X t , i.e., the more reliable is this decision. We define P(Yt | ˆ X t ) as the 

reliability of decoding Yt  to ˆ X t or simply the reliability of symbol Yt .  In this way, the 

receiver decodes Y1
L  to ˆ X 1

L = ˆ X 1, ˆ X 2 , ..., ˆ X L  with reliability information P(Yt | ˆ X t ) for each 
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t . Compare P(Yt | ˆ X t ) for all t , find the largest one—say, P(Yi | ˆ X i) --then Yi  is the most 

reliable symbol. Denote the state transition to be assigned ˆ X i  is m' ' → m' ' ' , m' ' and m' ' ' are 

two trellis states. If we circular shift Y1
L to let Yi be the first symbol in the shifted 

sequence, denoted as Y1
L SHIFT ( i)

= Yi ,Yi +1, ...,YL ,Y1,Y2, ...,Yi −1 , then when running iterative 

circular BCJR on Y1
L SHIFT ( i)

, initial α0  can be set as 

α0 (m) =
1,       m = m' '

  0,         otherwise
 
 
 

                      (6.3)  

β L is set as same as α0  initially.  

6.2.2 Circular Property of HDCTCM and Iterative Circular Shift BCJR 

The circular property of trellis path in HDCTCM will be used to select the most 

reliable symbol in Y1
L  as the starting point for decoding. Denote the information sequence 

as U = (U1,U2 ,...,Ut ,...,UL) , where Ui  belongs to the finite information symbol alphabet. 

The corresponding starting state is S0, and the state transition sequence is 

S0 → S1 → S2 → ... → St −1 → St → ...SL −1 → S0 . The corresponding code sequence is 

denoted as V = (V1,V2 ,...,Vt ,...,VL) where Vi  belongs to the channel signal constellation. 

The permuted state transition table employed by HDCTCM guarantees that a circular 

shift version of U , denoted as USHIFT ( t ) = (Ut ,Ut +1, ...,UL ,U1,U2 ,...,Ut −1 ), will have a state 

transition sequence and a code sequence which are the circular shift versions of those for 

U .  The state transition sequence will be 

St −1 → St → ... → SL −1 → S0 → S1 → ... → St − 2 → St −1 , and the code sequence will be 

V SHIFT ( t) = (Vt ,Vt +1, ...,VL ,V1,V2, ...,Vt −1) .  

Therefore, if we can decode the circular shift version of receive sequence, 

Y1
L SHIFT ( i)

, and get information sequence ˆ U , then decoding of Y1
L  will give a circular shift-

back version of ˆ U , i.e., ˆ U SHIFT ( L− i) . As discussed in the previous section, the initialization 

problem for decoding Y1
L SHIFT ( i)

using iterative circular BCJR is solved. We name this 

scheme of running iterative circular BCJR on the circular shift version of received 

sequence and the corresponding way to set initial α0  and β Las iterative circular shift 

BCJR algorithm for decoding HDCTCM.  
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For decoding HDCTCM(n, D) , the symbols in information sequence are directly 

related to state transitions other than related to the states in shift register based trellis 

coding. Therefore, we only need to calculate σ ’s in the iterative circular shift BCJR. Let 

C ( j )  be the set of transitions St −1 = m' → St = m  caused by input symbol j , where j  

belongs to the information symbol alphabet. Then after σ t(m' , m) is obtained, the 

probability of the input symbol at stage t  is 

P(Ut = j | Y1
L) =

1
P(Y1

L)
σ t (m

' ,m)
(m ' , m)∈C(j)

∑ =
1

σ t(m' , m)
all (m' ,m)

∑ σ t(m
' ,m)

(m' ,m)∈C (j)
∑      (6.4)  

We decode Ut = j '  such that  

P(Ut = j ' | Y1
L) = max

all j
P(Ut = j | Y1

L)               (6.5) 

Some other parameters in iterative circular shift BCJR for decoding HDCTCM(n, D)  are 

specified as follows. 

For the calculation of γ t  in (2.23), we have  

P(St = m | St = m' ) =
1 / n ,      if transition m' → m is allowed at stage t
0,           otherwise

 
 
 

      (6.6) 

Denote the channel symbol assigned to transition m' → m  as X (m' , m) , we have  

P(Xt = X,St = m | St−1 = m' ) =
  1,       X = X (m' , m)

0,         otherwise

 
 
 

  
        (6.7) 

In implementation, γ t(m' ,m) is stored as a sparse matrix only for m' and m where 

transitionm' → m is allowed in order to reduce the computation load and memory usage.  

 

6.2.3 Basic Steps of Iterative Circular Shift BCJR Decoding 

Now, we can summarize the basic steps for the decoding of HDCTCM using 

iterative circular shift BCJR. “Selective normalization ” and modified stop condition for 

iterations are included here as well.   

Given Y1
L = Y1,Y2 ,...,YL :  
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1. Hard decode Y1
L to ˆ X 1

L = ˆ X 1, ˆ X 2 , ..., ˆ X L  and find the most reliable symbol Yi . Denote 

the state transition to which ˆ X i  is assigned as m' ' → m' ' ' . Circular shift Y1
L to 

Y1
L SHIFT ( i)

= Yi ,Yi +1, ...,YL ,Y1,Y2, ...,Yi −1 . Decode Y1
L SHIFT ( i)

 in the following steps.  

2. Set initial α0  as in Equation (6.3). 

3. Set iteration count r = 1. Calculate a set of  αrL+1,K,α(r +1)L  by  

     αrL+ t = α rL+ t −1γ rL+ t , t = 1,...,L          (6.8) 

      using γ rL+ t = γ t .             (6.9) 

      Normalize αrL+ t  only when it is too small or t = L  using  

 αrL+ t = α rL+ t / αrL +t(i)
i

∑           (6.10) 

Calculate ∆ = max(abs(α rL
0 − α(r−1)L

0 )) , when ∆   is sufficiently small, stop and the set 

of α  vectors is obtained as αt = α rL+ t , t = 1,...,L , Otherwise, r = r +1, repeat the 

iteration.  

4. Execute a similar procedure backward along the trellis circle to find the set   β1
o KβL

o . 

      Set β L = α0  initially. 

5. Calculate σ t(m' , m)using Equation (2.20) 

6. Decode the information sequence using Equations (6.4) and (6.5), denoted as ˆ U , then 

the original information sequence corresponding to Y1
L  is ˆ U SHIFT ( L− i) .  

6.2.4 Calculate Bit Error Probability for HDCTCM(n, D)  

For simulations of decoding using iterative circular shift BCJR on 

HDCTCM(n, D)  codes, bit error probability needs to be calculated. This can be done in 

two ways.  

In the first method, decode the symbol in information sequence at each stage, and 

rewrite each symbol as log2 n  bits.  

The second method is to decode each of the log2 n  bits in each symbol at each 

stage. This can be done by establishing the relationship between the bits in the symbol 

and the state transitions at that stage. For example, for HDCTCM(4, D), the information 

symbol alphabet is {0,1,2,3}. Symbols 0 and 1 have bit 0 at the first place and symbol 0 
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and 2 have bit 0 at the second place. Rewrite each symbol in the information sequence Ui  

as two bits Ui
(1)Ui

(2) .  Similar to Equation (6.4), we have 

P(Ut
(1) = 0 | Y1

L ) =
1

σ t(m' , m)
all (m' ,m)

∑ σ t (m
' ,m)

(m' ,m)∈(C(0) ∪C(1) )
∑                                           (6.11) 

P(Ut
(2) = 0 | Y1

L) =
1

σ t (m
' ,m)

all (m' ,m)
∑ σ t(m' , m)

(m' ,m)∈(C(0) ∪C(2) )
∑                                           (6.12) 

We decode Ut
(k ) = 0 , k=1,2, if P(Ut

(k ) = 0 | Y1
L) ≥ 0.5, otherwise Ut

(k ) =1. 

The bit error probability in simulation is the number of different bits between the 

decoded information sequence and the information sequence inputted to the encoder over 

total number of bits in the information sequence. Since these two methods both relate 

their decoding events to the APP of state transitions at each stage, there should be no 

significant difference between the resultant bit error probabilities. Figure 6.1 shows the 

bit error probability for decoding a HDCTCM(4,2) code with information length L=16 

using iterative circular shift BCJR. Eb/N0 is the average bit energy per noise power 

spectrum density. The “decode by symbol” and “decode by bit” refer to the first and 

second method, respectively.  
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Figure 6.1 Bit error probability of decoding a HDCTCM (4,2) code with L=16 using 

iterative circular shift BCJR, for two different error bit probability calculation methods 

6.3 Properties of Iterative Circular Shift BCJR Decoding 

In this section, simulation results are given to explore the properties of iterative 

circular BCJR decoding algorithm. Also, comparisons with other decoding algorithms are 

presented.  

6.3.1 Comparison with Circular BCJR with Eigenvectors 

We have argued that the computation load for circular BCJR with eigenvectors is 

much larger than the iterative circular BCJR for large trellis. Tables 6.1 and 6.2 show the 

execution time spent by CPU for decoding HDCTCM(4, D)codes with L =16  at 

Eb

N0

= −1 dB and 
Eb

N0

= −2 dBusing these two algorithms. The stop condition used by 

iterative circular shift BCJR is ∆ <10(−3) . Execution time is accumulated over 100 

information sequences. Time unit is seconds. Simulations are written in Matlab running 

on a DEC-alpha-600MHz workstation. It can be seen that the difference between the 

execution times is getting larger when trellis depth D is increased. 

 

Table 6.1  Execution Time of Decoding HDCTCM(4, D)Codes Using Different Circular BCJR 

Algorithms at Eb/N0=-1 dB 

 

 

 

Trellis depth D Circular BCJR with 

eigenvectors 

Iterative circular shift  

BCJR (∆ <10(−3) ) 

2 2.48 2.87 

3 18.51 11.97 

4 763.60 164.10 

5 148294.00 

 

4711.00 
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Table 6.2  Execution Time of Decoding HDCTCM(4, D)  Codes Using Different Circular BCJR 

Algorithms at Eb/N0=2 dB 

 

 

 

Figures 6.2 and 6.3 show the bit error probability of decoding a HDCTCM(4,2) code and 

a HDCTCM(4,3) code using these two schemes. These figures show that at stop 

condition ∆ <10(−3) , the set of α ’s and β ’s in iterative circular shift BCJR converge 

close enough to those obtained by circular BCJR with eigenvectors to make almost the 

same decode decision.  

 

 

 

 

 

 

 

Trellis depth D Circular BCJR with 

eigenvectors 

Iterative circular shift  

BCJR (∆ <10(−3) ) 

2 2.34 2.5100 

3 18.14 9.8600 

4 735.49 111.4900 

5 147336.00 3615.00 
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Figure 6.2  Bit error probability of decoding a HDCTCM (4,2) code with L=16 for different 

decoding schemes 

 

Figure 6.3  Bit error probability of decoding a HDCTCM (4,3) code with L=16 for different 

decoding schemes 
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6.3.2 Convergence Property of Iterative Circular Shift BCJR Algorithm 

The speed of convergence for iterative circular BCJR is affected by the 

initialization of α0  and β L  and the stop condition for the iterations. The convergence 

property of iterative circular shift BCJR is investigated here. For comparison, an iterative 

circular BCJR using a different initialization is chosen as a reference decoding scheme. In 

this reference scheme, since a legal path can start and end at one of all the possible states 

with equal possibility in HDCTCM(n, D) , in the absence of better knowledge, simply set 

initial α0  and β L  as follows:  

α0 (m) = βL(m) =
1
nD   , for all state m          (6.13) 

Then decode the received sequence (not shift version) using the iterative circular BCJR. 

The number of iterations required for these two schemes is compared.  

Simulations are done on a HDCTCM(4,3) code with L=16. Figures 6.4 and 6.5 

show the number of iterations required by α  and β in these two decoding schemes both 

at stop condition ∆ <10(−3) . “Equally likely initialization” refers to the reference scheme. 

The number of iterations is averaged over 10,000 information sequences. For low 

Eb / N0 , the estimation of starting state in iterative circular shift BCJR is no better than 

the simple initialization in the reference scheme, but for medium and high Eb / N0 , the 

estimation of starting state leads to faster convergence than the reference scheme. For 
Eb

N0

≥ 2 dB, no more than two iterations are needed to converge at ∆ <10(−3)  for both 

schemes.  
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Figure 6.4  Number of iterations required by α  for decoding a HDCTCM(4,3)code using 

different decoding schemes at ∆ <10(−3)  
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Figure 6.5  Number of iterations required by β  for decoding a HDCTCM(4,3)code using 

different decoding schemes at ∆ <10(−3)  

 

 

Figure 6.6 shows the bit error probability of decoding this code using these two 

decoding schemes. All these figures show iterative circular BCJR forgets an erroneous 
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starting α0  and β L  very rapidly and converge to the objective steady value after just 

several iterations. 

 

Figure 6.6  Bit error probability of decoding a HDCTCM (4,3) code with L=16 for different 

decoding schemes at ∆ <10(−3)  

 

Also, for iterative circular shift BCJR decoding, the number of iterations needed 

at two different stop conditions, ∆ <10(−10)  and ∆ <10(−3) , are compared. Decoding is on 

the same HDCTCM (4,3) code with L=16. Figures 6.7 and 6.8 show the number of 

iterations required by α  and β averaged over 10,000 information sequences. They show 

that at very low Eb / N0 , under stop condition∆ <10(−10) , α  and β  need about twice as 

many iterations as under stop condition∆ <10(−3) . The difference becomes smaller as 

Eb / N0  increases. Figure 6.9 is the bit error probability of decoding this code under these 

two stop conditions. It shows that α  and β obtained at ∆ <10(−3) lead to almost the same 

decode decision as those obtained at ∆ <10(−10) . ∆ <10(−3)  is small enough to control the 

convergence. 
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Figure 6.7  Number of iterations required by α of decoding a HDCTCM (4,3) with L=16 

using iterative circular shift BCJR for two stop conditions ∆ <10(−3) and ∆ <10(−10)  
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Figure 6.8  Number of iterations required by β of decoding a HDCTCM (4,3) with L=16 

using iterative circular shift BCJR for two stop conditions ∆ <10(−3) and ∆ <10(−10)  
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Figure 6.9  Bit error probability of decoding a HDCTCM (4,3) with L=16 using iterative 

circular shift BCJR for two stop conditions ∆ <10(−3) and ∆ <10(−10)  

 

6.3.3 Comparison with Viterbi Decoding 

Error performance of iterative circular shift BCJR is compared with Viterbi 

decoding. Here Viterbi decoding means that for decoding HDCTCM n, D( ) , run Viterbi 

algorithm a total number of S  times--one time for each possible starting state. Figures 

6.10 and 6.11 show the error performance of decoding a HDCTCM(4,2) code and a 

HDCTCM(4,3) code, both with L=16 using these two decoding algorithms. These 

figures show iterative circular shift BCJR decoding achieves at least as good a bit error 

probability as ML decoding—Viterbi decoding. But in simulation, the execution time of 

iterative circular shift BCJR is less than the Viterbi decoding and the difference gets 

bigger when the trellis becomes larger. This can be explained from the analysis of the 

computation complexity of these two decoding schemes as follows.  

For decoding HDCTCM(n, D)  with information sequence length L, in iterative 

circular shift BCJR decoding, at each trellis stage t , the calculation of the set of αt  or βt  

requires S ⋅ n  multiplications and S additions of n  numbers each, and the calculation of 

σ t  requires S ⋅ n multiplications of three numbers each. The computation of γ t  at each 
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stage is quite simple and implemented as table lookup. Therefore, if R  is the number of 

iterations needed, then roughly the total computation load is 

R ⋅ L ⋅(3S ⋅ n(⊗) + S ⋅ (n −1)(⊕)) . ⊗  and ⊕  denote a multiplication and addition operation 

on two numbers.  Due to the good convergence property of this algorithm, R is always in 

the range of integer from 1 to 4. In Viterbi decoding--referring to Equation (4.5), at each 

stage t --it requires a calculation quantity essentially similar to γ t  and the  

 

Figure 6.10  Error performance of Viterbi and iterative circular shift BCJR decoding 

algorithms on a HDCTCM (4,2) code with L=16 
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Figure 6.11  Error performance of Viterbi and iterative circular shift BCJR decoding 

algorithms on a HDCTCM (4,3) code with L=16 

 

add-compare-select operation on all the states. The add-compare-select operations require 

S ⋅ n  additions and S  comparisons of S ⋅ n  numbers each. For S  Viterbi runs, the 

computation load is about S ⋅ L ⋅ (S ⋅ n(⊕) + S(comparision on (S ⋅ n) numbers)).  We can 

see the computation load is linear to the second order of total number of states S , 

whereas in iterative circular shift BCJR, it is linear to the first order of S  with a small 

slope R --a small fraction of S . This explains the difference of the execution times and 

why the difference becomes bigger for larger S . 

6.4 Bit Error Performance of HDCTCM 

In this section, simulation results are given to obtain an overall bit error 

performance of HDCTCM(4, D). The decoding uses iterative circular shift BCJR 

algorithm.  

We have discussed the importance of the minimum distance of a code in 

determining its error performance. From Figures 4.2 to 4.5, we see the minimum distance 

of HDCTCM(4, D) is increased with big steps when the information length L  is 

increased starting from D +1, and then will reach a steady value at some point. 
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Accordingly, the bit error probability will decrease with big steps when L  is increased 

starting from D + 1 and then will not decrease as much after L  reaches some value. This 

trend is shown in Figures 6.12 and 6.13. In these figures, we plot the bit error probability 

versus the information length for decoding a HDCTCM(4,2) code and a HDCTCM(4,3) 

code. 

 

Figure 6.12  Bit error probability of a HDCTCM (4,2) code with different information 

sequence length L decoded using iterative circular shift BCJR 
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Figure 6.13  Bit error probability of a HDCTCM (4,3) code with different information 

sequence length L decoded using iterative circular shift BCJR 

 

For any HDCTCM(4, D) code with L > 2D + (0 ~ 2), optimal distance codes are 

built in Chapter 5. Figure 6.14 shows the bit error probability of the optimal distance 

codes for HDCTCM(4, D), D = 2,3,4,5. Uncoded 4-PSK is regarded as a reference 

system. Its bit error probability is also plotted here. S  is the total states in trellis. DISmin  

is the minimum distance of  this code. It can be seen that, at bit error probability 10(−5) , 

the coding gain for 16, 64, 256, and 1024 states trellis are approximately 5.0 dB, 6.0 dB, 

6.6 dB, and 7.2 dB, respectively.  
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Figure 6.14  Error performance of optimal distance HDCTCM (4,D) codes with L=16 for 

D=2,3,4,5, compared with uncoded 4-PSK signaling 

 

 



 

 139

 

 
CHAPTER 7   CONCLUSIONS 
 

7.1 Summary  

Prior to this dissertation, a circular trellis coding with permuted state structure 

was invented to satisfy the state constraint without code rate loss or initialization of the 

shift register. Trellis coded modulation has achieved successful applications in band-

limited channels.  

This dissertation develops a systematic high dimensional circular trellis-coded 

modulation with permuted state structure (HDCTCM) for power-limited spread spectrum 

channels. High dimensional simplex signal constellation is systematically developed to 

achieve the optimal energy efficiency and maximize the minimum distance among error 

events for any size trellis. This is done by analyzing the error events and identifying sets 

of state transitions that should be assigned simplex to achieve maximum coding gain. 

Butterfly structure of trellis coding is successfully related to those state transitions and 

perfectly aligned into a multidimensional matrix--State Transition Matrix (STM). This 

matrix is designed in such a way that sets of state transitions that should be assigned 

simplex are located in the same internal location of the butterflies along a particular 

matrix dimension. An algebraic representation of a simplex in a high dimensional space 

is built. And a similar multidimensional matrix--Initial Input Simplex (IIS)--having 

simplex as unit element is built in such a way that the signals in the same internal 

location of the simplexes along a particular matrix dimension is also a simplex. A one to 

one correspondence is built between the states in STM and signals in IIS, and between 

the state transitions in STM and signals in the signal constellation. The construction of 

STM, IIS, and the symbol assignment are applicable to any size trellis.  

Minimum distance of a code is a primary parameter in determining its error 

correcting capacity. In circular trellis coding, the starting state of a legal path can be any 

of the total states in this trellis; conventional algorithm for calculating the minimum 

distance of a trellis code always assumes that the starting state is 0 state. This dissertation 
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develops a practical computational algorithm to calculate minimum distance of circular 

trellis coding. The minimum distance of HDCTCM is obtained using this algorithm. The 

coding gain of HDCTCM is evaluated after the minimum distance is obtained.  

Due to the systematic construction of the signal constellation and symbol 

assignment, upper and lower bonds on the minimum distance of HDCTCM codes are 

derived. Also, this dissertation proves that these bounds can be reached. Furthermore, a 

method to build codes that have the bounds of the minimum distance is developed. 

Currently, in most coding schemes, the optimal distance codes can only be obtained 

through exhaustive search.  

With an unknown starting state, the maximum likelihood decoder (Viterbi 

decoder) is not suitable for HDCTCM. This dissertation explores the circular BCJR 

algorithm for decoding HDCTCM. Iterative circular shift BCJR is developed. In this 

decoding scheme, the starting state is statistically estimated using tentative hard decision 

with reliability information, and the circular character of HDCTCM is incorporated to 

make the most reliable symbol in the received sequence as the starting point for 

decoding. Simulations show very good convergence property of iterative circular shift 

BCJR by comparison with other circular BCJR algorithms and for different stop 

conditions. Error performance of this decoding algorithm is compared with Viterbi 

decoding. Finally, satisfactory bit error performance achieved by HDCTCM using 

iterative circular shift BCJR decoding is given and compared with corresponding 

uncoded system.  

7.2 Further Research 

Further research may explore the concatenated HDCTCM codes. Two types of 

systems are possible: 

1. Concatenate with other kind of error correcting codes. Using HDCTCM as the inner 

code and other error correcting codes, such as BCH codes [30], parity check codes 

etc. as the outer code.  

2.  Parallel concatenation of two or more HDCTCM codes separated by an interleaver. 

This structure is similar to turbo codes.  
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Concatenated codes are showed to have increased error-correcting capacity 

compared to their constituent codes. The decoder for concatenated codes should comprise 

decoders for each individual constituent code. Soft-output information (reliability of a 

hard decision) other than hard decision itself should be generated and exchanged between 

the constituent decoders [38] [39] [40].  

Because of the good error correcting capacity of HDCTCM, we expect the 

concatenated HDCTCM to have better performance--possibly as good as turbo codes. 

Since the iterative circular shift BCJR already calculates the soft-output information and 

has iterative nature, it is very possible to be extended for decoding the concatenated 

HDCTCM codes.  

Further research can also explore the possibility to increase the speed of iterative 

circular shift BCJR algorithm. By incorporating more characteristics of HDCTCM, 

knowledge on partial path can determine the whole path, and it is possible to reduce the 

computation in current algorithm in this direction.  
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Appendix A  List of all paths for HDCTCM (4,3) with 
information sequence length L=D+1 
 

 

 

1 1 1 1 1 

1 2 3 4 1 

1 5 6 64 1 

1 34 35 33 1 

2 3 4 1 2 

2 8 9 4 2 

2 15 16 64 2 

2 37 38 33 2 

3 4 1 2 3 

3 14 3 14 3 

3 10 6 7 3 

3 50 35 36 3 

4 5 26 13 4 

4 34 18 49 4 

4 1 2 3 4 

4 2 8 9 4 

5 6 64 1 5 

5 26 13 4 5 

5 11 63 64 5 

5 47 32 33 5 

6 7 3 10 6 

6 64 1 5 6 

6 17 35 46 6 

6 25 6 25 6 

7 8 29 16 7 

7 3 10 6 7 

7 37 21 24 7 

7 15 30 63 7 

8 9 4 2 8 

8 28 9 14 8 

8 29 16 7 8 

8 20 38 36 8 

9 10 26 27 9 

9 50 18 19 9 

9 4 2 8 9 

9 14 8 28 9 

10 11 12 13 10 

10 47 48 49 10 

10 6 7 3 10 

10 26 27 9 10 

11 12 13 10 11 

11 63 64 5 11 

11 31 32 46 11 

11 62 63 25 11 
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12 13 10 11 12 

12 27 29 30 12 

12 53 30 62 12 

12 55 21 61 12 

13 14 15 54 13 

13 4 5 26 13 

13 50 51 52 13 

13 10 11 12 13 

14 15 54 13 14 

14 37 56 49 14 

14 3 14 3 14 

14 8 28 9 14 

15 16 64 2 15 

15 54 13 14 15 

15 30 63 7 15 

15 43 32 36 15 

16 17 18 42 16 

16 25 26 53 16 

16 7 8 29 16 

16 64 2 15 16 

17 18 42 16 17 

17 35 46 6 17 

17 40 60 24 17 

17 51 61 63 17 

18 19 9 50 18 

18 49 4 34 18 

18 57 38 39 18 

18 42 16 17 18 

19 20 58 41 19 

19 29 43 48 19 

19 28 20 56 19 

19 9 50 18 19 

20 21 52 27 20 

20 58 41 19 20 

20 38 36 8 20 

20 56 19 28 20 

21 22 48 57 21 

21 61 12 55 21 

21 52 27 20 21 

21 24 7 37 21 

22 23 22 23 22 

22 44 59 60 22 

22 32 39 51 22 

22 48 57 21 22 

23 24 25 47 23 

23 52 53 43 23 

23 61 62 31 23 

23 22 23 22 23 

24 25 47 23 24 

24 17 40 60 24 

24 64 34 51 24 

24 7 37 21 24 

25 26 53 16 25 

25 6 25 6 25 

25 47 23 24 25 

25 11 62 63 25 

26 27 9 10 26 

26 13 4 5 26 

26 55 38 46 26 

26 53 16 25 26 
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27 28 29 54 27 

27 9 10 26 27 

27 20 21 52 27 

27 29 30 12 27 

28 29 54 27 28 

28 20 56 19 28 

28 9 14 8 28 

28 28 28 28 28 

29 30 12 27 29 

29 43 48 19 29 

29 16 7 8 29 

29 54 27 28 29 

30 31 48 42 30 

30 62 12 53 30 

30 12 27 29 30 

30 63 7 15 30 

31 32 46 11 31 

31 48 42 30 31 

31 23 61 62 31 

31 44 60 61 31 

32 33 5 47 32 

32 36 15 43 32 

32 46 11 31 32 

32 39 51 22 32 

33 34 40 45 33 

33 5 47 32 33 

33 2 37 38 33 

33 1 34 35 33 

34 35 33 1 34 

34 18 49 4 34 

34 51 24 64 34 

34 40 45 33 34 

35 36 3 50 35 

35 33 1 34 35 

35 39 35 39 35 

35 46 6 17 35 

36 37 58 45 36 

36 15 43 32 36 

36 8 20 38 36 

36 3 50 35 36 

37 38 33 2 37 

37 56 49 14 37 

37 21 24 7 37 

37 58 45 36 37 

38 39 18 57 38 

38 46 26 55 38 

38 36 8 20 38 

38 33 2 37 38 

39 40 59 45 39 

39 51 22 32 39 

39 18 57 38 39 

39 35 39 35 39 

40 41 49 50 40 

40 45 33 34 40 

40 59 45 39 40 

40 60 24 17 40 

41 42 43 44 41 

41 57 58 59 41 

41 49 50 40 41 

41 19 20 58 41 
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42 43 44 41 42 

42 30 31 48 42 

42 54 55 56 42 

42 16 17 18 42 

43 44 41 42 43 

43 23 52 53 43 

43 48 19 29 43 

43 32 36 15 43 

44 45 46 47 44 

44 41 42 43 44 

44 60 61 31 44 

44 59 60 22 44 

45 46 47 44 45 

45 39 40 59 45 

45 33 34 40 45 

45 36 37 58 45 

46 47 44 45 46 

46 11 31 32 46 

46 26 55 38 46 

46 6 17 35 46 

47 48 49 10 47 

47 32 33 5 47 

47 44 45 46 47 

47 23 24 25 47 

48 49 10 47 48 

48 19 29 43 48 

48 42 30 31 48 

48 57 21 22 48 

49 50 40 41 49 

49 10 47 48 49 

49 14 37 56 49 

49 4 34 18 49 

50 51 52 13 50 

50 40 41 49 50 

50 35 36 3 50 

50 18 19 9 50 

51 52 13 50 51 

51 24 64 34 51 

51 22 32 39 51 

51 61 63 17 51 

52 53 43 23 52 

52 55 58 60 52 

52 13 50 51 52 

52 27 20 21 52 

53 54 53 54 53 

53 16 25 26 53 

53 43 23 52 53 

53 30 62 12 53 

54 55 56 42 54 

54 53 54 53 54 

54 27 28 29 54 

54 13 14 15 54 

55 56 42 54 55 

55 38 46 26 55 

55 58 60 52 55 

55 21 61 12 55 

56 57 56 57 56 

56 42 54 55 56 

56 19 28 20 56 

56 49 14 37 56 
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57 58 59 41 57 

57 21 22 48 57 

57 56 57 56 57 

57 38 39 18 57 

58 59 41 57 58 

58 60 52 55 58 

58 41 19 20 58 

58 45 36 37 58 

59 60 22 44 59 

59 59 59 59 59 

59 45 39 40 59 

59 41 57 58 59 

60 61 31 44 60 

60 22 44 59 60 

60 24 17 40 60 

60 52 55 58 60 

61 62 31 23 61 

61 31 44 60 61 

61 63 17 51 61 

61 12 55 21 61 

62 63 25 11 62 

62 12 53 30 62 

62 62 62 62 62 

62 31 23 61 62 

63 64 5 11 63 

63 7 15 30 63 

63 25 11 62 63 

63 17 51 61 63 

64 2 15 16 64 

64 1 5 6 64 

64 34 51 24 64 

64 5 11 63 64 
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APPENDIX B  SYMBOL ASSIGNMENT CODE 
 

 

function sym_tab=sym_asgn(n,D,DIM,start_st,permu,siv_free) 

 

% Purpose: This function is the main function to assign channel symbols to state 

transitions in the state transtion table. 

%Functions to generate State Transition Matrix (STM)--siv_gen.m and to generate the 

Initial Input Simplex(IIS)-inp_gen.m are called by this function. 

 
%Input Parameters 

%n: n-ary information symbol 

%D: Trellis Depth 

%DIM: Dimensions of the signal constellation 

%Permu: Record the order of assign the four signals in the related source simplex to start_st to the four 

transitions generating from start_st. 

%siv_free: a vector containing D+1 elements. They are the D+1 element in STM_FREE to build STM. 

start_st equavalent to STM_FREE(first %location), permu is equivalent to STM_FREE(right side butterfly), 

the D+1 elements in siv_free are the other D+1 elements in STM_FREE.  

 
%In Function 

%TOT_ST: Total number of states in this trellis. 

%ST_TAB: State transition table for this trellis, a TOT_ST x n matrix. ST_TAB(i,:) are the next states of the 

transitions generating from state i; ST_TAB(i,j),i=1,2,...,TOT_ST, j=1,2,...,n, is the next state of transition 

generating from state i when the input is j-1. 

%INV_TAB: Inverse state transition table for this trellis, a TOT_ST x n matrix. INV_TAB(i,j) is the state that 

can transit to state i when the input is j-1. 

%ALL_PATHS: All the legal paths in this trellis when information sequence length is equal to D+1.   

%SYM_INP: Symbols in the IIS. 

%ALL_SYMS: All the symbols in the signal constellation.  

%SIV: the left side of butterflies in STM 

%INDX_TAB: A TOT_ST x TOT_ST matrix. INDX_TAB(i,j), i,j=1,2,...,TOT_ST is the symbol index assigned 

to the transition i->j. When i->j is not allowed, INDX_TAB(i,j)=0. 

 

%Output Parameters 
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%sym_tab: Channel symbols assigned to each state transition in ST_TAB. It is a TOT_ST x (3 x n) matrix. 

sym_tab(i,[(j-1)*3+1:j*3]), j=1,2,...,n, is the channel symbol assigned to state transition i->ST_TAB(i,j-1).  

 

%Date: Mar 31, April 6, May 25, 1999 

%Author: Xiangyu Song 

 

 

global TOT_ST ALL_PATHS ARY SIV RESHP_SYM_INP SYM_INP INV_STAB INDX_TAB ALL_SYMS 

L_USE; 

 

ARY=n; 

TOT_ST=n^D; 

ST_TAB=st_gen(n,D);%Generate state transition table 

INV_STAB=inv_tab(n,D);%Generate inverse state transition table 

ALL_PATHS=all_paths(n,D);% Generate all legal path  

 

SYM_INP=inp_gen(n,D);%Generate the IIS 

if D<=2  

RESHP_SYM_INP=SYM_INP; 

else 

RESHP_SYM_INP=[]; 

unit=n^2*(n*3); 

for j=0:TOT_ST/n^3-1 

 sel_sym_inp=SYM_INP(j*unit+1:(j+1)*unit); 

 sel_sym_inp=reshape(sel_sym_inp,n^2,n*3); 

 for i=0:n-1 

  RESHP_SYM_INP=[RESHP_SYM_INP;sel_sym_inp(:,i*3+1:(i+1)*3)]; 

 end 

end 

end 

 

SIV=siv_gen(n,D,siv_free);%Generate the left part of STM 

 

ALL_SYMS=get_all_syms; 

INDX_TAB=zeros(TOT_ST); 

L_USE=zeros(TOT_ST,n);%THis is a loop variable.L_USE(i,:) is to recorde that among the four symbols 

belonging to the source simplex related to state i ,which one has been used(1 if already been used, 0 

otherwise). The purpose is to reduce the searching effort.  

 

%==============assign the first simplex-transition1============= 

stg=1; 

if start_st==0 start_st=SIV(1);end   %==start from siv(1)=== 
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ini_fr=start_st; 

ini_to=ST_TAB(start_st,:)'; 

ft_trans=[ones(n,1)*ini_fr ini_to(:)]; 

ft_siv_loc=find(SIV(:)==start_st); 

old_trans=ft_trans; 

old_siv_loc=ft_siv_loc; 

 

%=======define permu=================================== 

permutation=[1 2 3 4; 

     1 3 2 4; 

     3 4 1 2; 

     2 3 1 4; 

     3 1 2 4; 

     1 2 4 3; 

     4 3 2 1; 

     4 1 2 3; 

     3 4 2 1; 

     2 4 3 1; 

     3 2 4 1; 

     3 1 4 2; 

     2 3 4 1; 

     3 2 1 4; 

     2 1 4 3; 

     1 4 3 2; 

     1 3 4 2; 

     4 1 3 2; 

     1 4 2 3; 

     4 3 1 2; 

     2 4 1 3; 

     4 2 1 3; 

     2 1 3 4; 

     4 2 3 1]; 

INDX_TAB(ini_fr,ini_to)=n*(start_st-1)+permutation(permu,:); 

 

 

%=====================assingn simplex-transition2 till simplex-transitionD===== 

while stg<D 

 stg=stg+1; 

 new_trans=get_new_trans(stg,old_trans); 

 new_siv_loc=get_new_siv_loc(stg,old_siv_loc); 

 mid_simp=get_mid_simp(new_siv_loc); 

 assign(old_trans,new_trans,mid_simp); 
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 old_trans=new_trans; 

 old_siv_loc=new_siv_loc; 

  

end 

 

%=====================assign simplex-transitionD+1 ================= 

if D==1 new_trans=old_trans; end 

final_simp=get_final_simp; 

final_assign(new_trans,final_simp); 

 

%==========reform INDX_TAB into sym_tab========================= 

sym_tab=[]; 

pos=(ST_TAB-1)*TOT_ST; 

add=repmat([1:TOT_ST]',1,n); 

loc=pos+add; 

indx=INDX_TAB(loc(:)); 

sym=ALL_SYMS(indx(:),:); 

for i=0:n-1 

 sym_tab=[sym_tab sym(i*TOT_ST+1:(i+1)*TOT_ST,:)]; 

end 

%=========end of function============================== 

%======SUBFUNCTIONS============================== 

 

%========================================================= 

%obtain simplex-transitioni+1's (new_trans), each containing a simplex-transitioni in old_trans 

%========================================================== 

function new_trans=get_new_trans(stg,old_trans) 

global TOT_ST ALL_PATHS ARY ; 

n=ARY; 

new_trans=[]; 

for i=1:size(old_trans,1) 

   r=find(ALL_PATHS(:,stg)==old_trans(i,1)); 

   rr=find(ALL_PATHS(r,stg+1)==old_trans(i,2)); 

   int=floor((r(rr)-0.5)/n); 

   temp=[ALL_PATHS([int*n+1:(int+1)*n],stg) ALL_PATHS([int*n+1:(int+1)*n],stg+1)]; 

   new_trans=[new_trans;temp];    

end 

 

 

%========================================================= 

%obtain the locations of new_trans in SIV 

%========================================================= 
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function new_siv_loc=get_new_siv_loc(stg,old_siv_loc) 

global ARY; 

n=ARY; 

aa=floor((old_siv_loc-0.5)/n^(stg-1)); 

bb=mod(aa,n); 

pos=bb(1); 

 

exp_old_siv_loc=repmat(old_siv_loc(:),1,n); 

%add=[0:n^(stg-1):(n-1)*n^(stg-1)]; 

add=[[-pos:0][1:n-1-pos]].*n^(stg-1); 

exp_add=repmat(add,size(old_siv_loc(:),1),1); 

new_siv_loc=exp_old_siv_loc+exp_add; 

 

%========================================================= 

%obtain type B simplexes by mapping the locations of simplex-transtions in SIV to symobls in IIS 

%========================================================= 

function mid_simp=get_mid_simp(siv_loc) 

global ARY TOT_ST SYM_INP SIV RESHP_SYM_INP; 

n=ARY; 

mid_simp=[]; 

for i=1:size(siv_loc,1) 

   base=RESHP_SYM_INP(siv_loc(i,:),:); 

   mid=simplex1(base); 

   mid_simp=[mid_simp;mid]; 

end 

 

%========================================================= 

%assing symbols to simplex-transtion2 till simplex-transtionD 

%========================================================= 

function assign(old_trans, new_trans, simp); 

global ARY ALL_SYMS INDX_TAB L_USE; 

n=ARY; 

j_use=zeros(1,size(simp,1)); 

for i=1:size(old_trans,1) 

   sel_new_trans=new_trans((i-1)*n+1:i*n,:); 

   %r1=find(sel_new_trans(:,2)==old_trans(i,2)); 

   r2=find(sel_new_trans(:,2)~=old_trans(i,2)); 

   sym_indx=INDX_TAB(old_trans(i,1), old_trans(i,2)); 

   sym_comp=ALL_SYMS(sym_indx,:); 

   j_no_use=find(j_use==0); 

   sel_simp=simp(j_no_use,:);  

   j_flag=0; 
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   for j=1:size(sel_simp,1) 

       

       if sel_simp(j,:)==sym_comp 

     j_flag=1; 

     loc=floor((j-0.5)/n)*n+1:(floor((j-0.5)/n)+1)*n; 

       j_use(j_no_use(loc))=1; 

     loc_simp=sel_simp(loc,:); 

            m_use=zeros(1,n); 

     m_use(j-floor((j-0.5)/n)*n)=1; 

 

   for k=1:size(r2,1) 

            fr=sel_new_trans(r2(k),1); 

     l_no_use=find(L_USE(fr,:)==0); 

     for l=1:size(l_no_use,2)   

  m_flag=0; 

                m_no_use=find(m_use==0); 

  left_simp=loc_simp(m_no_use,:); 

    

  for m=1:size(left_simp,1) 

    if ALL_SYMS((fr-1)*n+l_no_use(l),:)==left_simp(m,:) 

                     INDX_TAB(fr,sel_new_trans(r2(k),2))=(fr-1)*n+l_no_use(l); 

       m_flag=1; 

       m_use(m_no_use(m))=1;  

       L_USE(fr,l_no_use(l))=1; 

                  end 

    if m_flag==1 break;end 

                end %==end of m======= 

               if m_flag==1 break;end 

     end     %==end of l=======   

          end       %==end of k======= 

       end          %==end of if simp(j,:)== 

       if j_flag==1 break;end 

   end              %==end of j======== 

end                 %==end of i=========== 

 

%========================================================= 

%Generate the signal constellation 

%========================================================= 

function all_syms=get_all_syms(); 

global TOT_ST SIV RESHP_SYM_INP ARY; 

n=ARY; 

%RESHP_SYM_INP=reshape(SYM_INP,TOT_ST, 3); 
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for i=1:TOT_ST 

   sr_simp=simplex2(RESHP_SYM_INP(i,:));%simplex2.m generate a source simplex realted to the input 

symbol 

   all_syms((SIV(i)-1)*n+1:SIV(i)*n,:)=sr_simp; 

end 

 

%========================================================= 

%assign symbols to simplex-transtionD+1 

%========================================================= 

function final_assign(st_trans,final_simp) 

global TOT_ST ARY INV_STAB INDX_TAB ALL_SYMS L_USE; 

n=ARY; 

j_use=zeros(1,size(final_simp,1)); 

for i=1:TOT_ST 

 sym_indx=INDX_TAB(st_trans(i,1), st_trans(i,2)); 

 sym_comp=ALL_SYMS(sym_indx,:); 

 r=find(INV_STAB(st_trans(i,2),:)~=st_trans(i,1)); 

 j_no_use=find(j_use==0); 

 sel_simp=final_simp(j_no_use,:); 

 j_flag=0; 

 for j=1:size(sel_simp,1) 

  if sym_comp==sel_simp(j,:)  

   j_flag=1; 

   loc=floor((j-0.5)/n)*n+1:(floor((j-0.5)/n)+1)*n; 

   j_use(j_no_use(loc))=1; 

   loc_simp=sel_simp(loc,:); 

   m_use=zeros(1,n); 

   m_use(j-floor((j-0.5)/n)*n)=1; 

   for k=1:size(r,2) 

    fr=INV_STAB(st_trans(i,2),r(k)); 

           l_no_use=find(L_USE(fr,:)==0); 

    for l=1:size(l_no_use,2) 

     m_flag=0; 

     m_no_use=find(m_use==0); 

     left_simp=loc_simp(m_no_use,:); 

     for m=1:size(left_simp,1) 

        

       if ALL_SYMS((fr-1)*n+l_no_use(l),:)==left_simp(m,:); 

       INDX_TAB(fr,st_trans(i,2))=(fr-1)*n+l_no_use(l); 

       m_flag=1; 

       m_use(m_no_use(m))=1; 

       L_USE(fr,l_no_use(l))=1; 
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       end 

       if m_flag==1 break;end 

     end %==end of m 

     if m_flag==1 break;end 

    end     %==end of l 

   end      %==end of k  

  end       %==end of if sym_comp  

  if j_flag==1 break; end 

 end        %==end of j 

end         %==end of i 

       

   

  

%========================================================= 

%Obtain all the type B simplexes that should be assinged to all the simplex-transitionD+1's 

%========================================================= 

function final_simp=get_final_simp 

global TOT_ST RESHP_SYM_INP  ARY; 

n=ARY; 

final_simp=[]; 

for i=1:TOT_ST/n 

 temp=simplex1(RESHP_SYM_INP((i-1)*n+1:i*n,:));%simplex1.m generate four type B simplexes 

formed by the four source simpelxes related to the four symbols of a type B simplex 

 final_simp=[final_simp;temp]; 

end 

%================================================== 
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APPENDIX C  STATE TRANSITION MATRIX 
GENERATING CODE  
 

 

function siv=siv_gen(n,D,siv_free) 

 

%Purpose: Generate State Transition Matrix(STM). This function only generate the left 

side (originating states) of butterflies in STM, the right side of butterflies in STM is 

considered when doing the symbol assignment--sym_asgn.m.  
  

%Input Parameters 

%n: n-ary information symbol 

%D: Trellis Depth 

%siv_free: a vector containing D+1 elements. They are STM_FREE(first butterly, left side butterfly, 1st  

dimension, 2nd  dimenstion, ...., (D −1)th dimenstion). 

 

%In Function 

%FLY: All butterflies in this trellis. FLY is a FLY_NO*4 x 2 matrix. 

%L_FLY: Left side of all the butterflies. 

%R_FLY: Right side of all the butterflies. 

%MID_SIMP: The originating state sets of simplex-transtion3 to simplex-transtionD+1.It is a n 

x(FLY_NO*(D-2)) matrix. Columns MID_SIMP(:,(i-1)*FLY_NO+1:i*FLY_NO), i=1,2,...D-1, are the originating 

state sets of all the simplex-transitioni+2's. The originating state sets of simplex-transition2's are the right 

sides of all the butterflies, recorded in R_FLY. 

%L_USE, R_USE, MID_USE: Loop variables used to record which L_FLY, R_FLY, MID_SIMP has been 

placed into SIV already. The purpose is to reduce searching efforts. 

%FREE: The particular ways to place the butterflies along each of the D-1 dimensions of SIV. FREE(i,:), 

i=1,2,...,D-1, defines STM_FREE( ith  dimension).  

%FREE_FT_L_FLY: Defines STM_FREE(left side butterfly). 

%free_ft_sel_l_fly:Defines STM_FREE(first butterfly). 

 

%Output Parameters 

%siv: a D-1 dimensional matrix, unit element is the left side of a butterfly. 
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%Date: May 13,24,1999 

%Author: Xiangyu Song 

 

 

global L_USE R_USE;  

global MID_USE; 

global FREE; 

global FREE_FT_L_FLY; 

global L_FLY R_FLY; 

global ARY; 

global MID_SIM; 

global FLY_NO;%=MID_NO 

 

ARY=n; 

%=====define freedom for first R-FLY and MID_SIMP===== 

free_mat=[2 3 4; 

2 4 3; 

3 2 4; 

3 4 2; 

4 2 3; 

4 3 2]; 

free_ft_l_fly_mat=[1 2 3 4; 

     1 2 4 3; 

     1 3 2 4; 

     1 3 4 2; 

     1 4 2 3; 

     1 4 3 2; 

     2 1 3 4; 

     2 1 4 3; 

     2 3 1 4; 

     2 3 4 1; 

     2 4 1 3; 

     2 4 3 1; 

     3 1 2 4; 

     3 1 4 2; 

     3 2 1 4; 

     3 2 4 1; 

     3 4 1 2; 

     3 4 2 1; 

     4 1 2 3; 

     4 1 3 2; 

     4 2 1 3; 
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     4 2 3 1; 

     4 3 1 2; 

     4 3 2 1;]; 

if (isempty(siv_free)==1) 

  FREE=repmat([2 3 4],D-1 ,1); 

 free_ft_sel_l_fly=1; 

 FREE_FT_L_FLY=free_ft_l_fly_mat(1,:); 

else 

 FREE=free_mat(siv_free(3:size(siv_free,2)),:); 

 free_ft_sel_l_fly=siv_free(1); 

 FREE_FT_L_FLY=free_ft_l_fly_mat(siv_free(2),:); 

end 

 

TOT_ST=n^D; 

FLY_NO=TOT_ST/n;%Total number of butterflies 

L_USE=zeros(1,FLY_NO); 

R_USE=zeros(1,FLY_NO); 

FLY=butterfly(n,D);%Generate all butterflies.  

FLY=reshape(FLY,n,FLY_NO*2);%First FLY_NO columns are the left side of all butterflies, second FLY_NO 

columns are the right side of all the butterflies.  

L_FLY=FLY(:,1:FLY_NO); 

R_FLY=FLY(:,FLY_NO+1:2*FLY_NO); 

MID_SIM=mid_simp(n,D);Generate MID_SIM. 

MID_USE=zeros(D-2,FLY_NO); 

 

 

anchor_ini=L_FLY(1,free_ft_sel_l_fly);%==This MayNOt be the siv(1),since the First L_FLY has 

FREE_FT_L_FLY can put it to any place among siv(1:4). 

 

%=================D=1 4 STATES======================= 

if D==1 

 tab(FREE_FT_L_FLY)=L_FLY(:,free_ft_sel_l_fly); 

 siv=tab';break; 

end 

 

%===============D=2 16 STATES======================== 

tab=build_ft_dim(anchor_ini,0,[]); 

if D==2 siv=tab;break;end 

 

 

anchor=tab(1); 
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%===============D=3 64 STATES========================= 

tot_ck_mat=build_tot_ck_mat(tab,2); 

tab(:,1)=tab; 

index=find(tot_ck_mat(1,:)~=anchor); 

tab(1,FREE(2,:))=tot_ck_mat(1,index);%DIM 2 using FREE(2,:) 

 

for sd_dim=2:ARY 

 tab(:,sd_dim)=build_ft_dim(tab(1,sd_dim),1,tot_ck_mat); 

end 

if D==3  siv=tab;break;end 

 

 

%================D=4 256 STATES======================= 

tot_ck_mat=build_tot_ck_mat(tab,3); 

tab(:,:,1)=tab; 

index=find(tot_ck_mat(1,1,:)~=anchor); 

tab(1,1,FREE(3,:))=tot_ck_mat(1,1,index); %===FREE(3,:)===== 

for td_dim=2:ARY 

 for sd_dim=1:ARY 

  ck_mat=tot_ck_mat(:,sd_dim,:); 

  ck_mat=squeeze(ck_mat); 

  tab(:,sd_dim,td_dim)=build_ft_dim(tab(1,sd_dim,td_dim),1,ck_mat); 

  if sd_dim==1 

         ext_ck_mat=tot_ck_mat(1,[2:ARY],:); 

         ext_ck_mat=squeeze(ext_ck_mat); 

   tab(1,[2:ARY],td_dim)=extend(tab(1,1,td_dim),2,ext_ck_mat);%===[2 3 4] is not flexible 

  end 

 end 

end 

if D==4 siv=tab;break;end 

 

%================D=5 1024 STATES======================= 

tot_ck_mat=build_tot_ck_mat(tab,4); 

tab(:,:,:,1)=tab; 

index=find(tot_ck_mat(1,1,1,:)~=anchor); 

tab(1,1,1,FREE(4,:))=tot_ck_mat(1,1,1,index);%===FREE(4,:)======= 

for four_dim=2:ARY 

 for td_dim=1:ARY 

  for sd_dim=1:ARY 

   ck_mat=tot_ck_mat(:,sd_dim,td_dim,:); 

   ck_mat=squeeze(ck_mat); 

   tab(:,sd_dim,td_dim,four_dim)=build_ft_dim(tab(1,sd_dim,td_dim,four_dim),1,ck_mat); 
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   if sd_dim==1 

    ext_ck_mat=tot_ck_mat(1,[2:ARY],td_dim,:); 

    ext_ck_mat=squeeze(ext_ck_mat);% TO (3,4) 

    tab(1,[2:ARY],td_dim,four_dim)=extend(tab(1,1,td_dim,four_dim),2,ext_ck_mat);%===[2 3 

4] is not flexible 

   end 

  end 

  if td_dim==1 

   ext_ck_mat=tot_ck_mat(1,1,[2:ARY],:);  

   ext_ck_mat=squeeze(ext_ck_mat); 

   tab(1,1,[2:ARY],four_dim)=extend(tab(1,1,1,four_dim),3,ext_ck_mat); 

  end 

 end 

end 

if D==5 siv=tab;break;end 

 

 

%================D=6 4096 STATES====================== 

tot_ck_mat=build_tot_ck_mat(tab,5); 

tab(:,:,:,:,1)=tab; 

index=find(tot_ck_mat(1,1,1,1,:)~=anchor); 

tab(1,1,1,1,FREE(5,:))=tot_ck_mat(1,1,1,1,index);%==FREE(5,:)====== 

for five_dim=2:ARY 

 for four_dim=1:ARY 

  for td_dim=1:ARY 

   for sd_dim=1:ARY 

    ck_mat=tot_ck_mat(:,sd_dim,td_dim,four_dim,:); 

    ck_mat=squeeze(ck_mat); 

   

 tab(:,sd_dim,td_dim,four_dim,five_dim)=build_ft_dim(tab(1,sd_dim,td_dim,four_dim,five_dim),1,ck_mat)

; 

    if sd_dim==1 

     ext_ck_mat=tot_ck_mat(1,[2:ARY],td_dim,four_dim,:); 

     ext_ck_mat=squeeze(ext_ck_mat); 

    

 tab(1,[2:ARY],td_dim,four_dim,five_dim)=extend(tab(1,1,td_dim,four_dim,five_dim),2,ext_ck_mat);%==

=[2 3 4] is not flexible 

    end 

   end  

   if td_dim==1   

    ext_ck_mat=tot_ck_mat(1,1,[2:ARY],four_dim,:); 

    ext_ck_mat=squeeze(ext_ck_mat);  
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    tab(1,1,[2:ARY],four_dim,five_dim)=extend(tab(1,1,1,four_dim,five_dim),3,ext_ck_mat); 

    

   end  

  end 

  if four_dim==1 

   ext_ck_mat=tot_ck_mat(1,1,1,[2:ARY],:); 

   ext_ck_mat=squeeze(ext_ck_mat);  

   tab(1,1,1,[2:ARY],five_dim)=extend(tab(1,1,1,1,five_dim),4,ext_ck_mat); 

  end 

 end 

end 

if D==6 siv=tab;break;end 

 

%========================================================== 

 

 

%=================SUBFUNCTIONS============================= 

%========================================================== 

%Place the proper left side of butterfies along the first dimension 

%========================================================== 

function temp=build_ft_dim(start,ck_flag,ck_mat) 

%ck_mat is in a 16X4 matrix 

 

global ARY; 

global L_USE R_USE ; 

global FREE; 

global L_FLY R_FLY; 

global FREE_FT_L_FLY; 

temp=zeros(ARY*ARY,1); 

 

%===================PUT THE FIRST L_FLY== 

no_use=find(L_USE==0); 

no_use_l_fly=L_FLY(:,no_use); 

[row col]=find(no_use_l_fly==start); 

sel_l_fly=no_use_l_fly(:,col); 

L_USE(no_use(col))=1; 

index=find(sel_l_fly~=start); 

if ck_flag==0%===The very First L_FLY in the whole siv temp(FREE_FT_L_FLY)=sel_l_fly; 

else 

 temp(1)=start; 

 sel_ck_mat=ck_mat(2:ARY,:); 

 for i=1:size(index,1) 
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  [row col]=find(sel_ck_mat==sel_l_fly(index(i))); 

  temp(row+1)=sel_l_fly(index(i)); 

 end 

end 

%==================PUT THE FIRST R_FLY======== 

no_use=find(R_USE==0); 

no_use_r_fly=R_FLY(:,no_use); 

[row col]=find(no_use_r_fly==temp(1)); 

sel_r_fly=no_use_r_fly(:,col); 

R_USE(no_use(col))=1; 

index=find(sel_r_fly~=temp(1)); 

if ck_flag==0 

 temp((FREE(1,:)-1)*ARY+1)=sel_r_fly(index);%===R_FLY using FREE(1,:)== 

else 

 sel_ck_mat=ck_mat([1:ARY-1]*ARY+1,:); 

 for i=1:size(index,1) 

  [row col]=find(sel_ck_mat==sel_r_fly(index(i))); 

  temp(row*ARY+1)=sel_r_fly(index(i)); 

 end 

end 

%===================PUT THE OTHER THREE L_FLY== 

if ck_flag==0 %===USING R_FLY CHECK======== 

r_fly_ck=[]; 

for i=2:ARY 

 no_use=find(R_USE==0); 

 no_use_r_fly=R_FLY(:,no_use); 

 [row col]=find(no_use_r_fly==temp(i)); 

 R_USE(no_use(col))=1; 

 r_fly_ck=[r_fly_ck no_use_r_fly(:,col)]; 

end 

for l_num=1:ARY-1 

 no_use=find(L_USE==0); 

 no_use_l_fly=L_FLY(:,no_use); 

 [row col]=find(no_use_l_fly==temp(l_num*ARY+1)); 

 sel_l_fly=no_use_l_fly(:,col); 

 L_USE(no_use(col))=1; 

 index=find(sel_l_fly~=temp(l_num*ARY+1)); 

 for ele_no=1:size(index,1) 

  [row col]=find(r_fly_ck==sel_l_fly(index(ele_no))); 

  temp(l_num*ARY+1+col)=sel_l_fly(index(ele_no)); 

 end 

end 



 
 

 166

 

else %===============USING CK_MAT========================== 

for l_num=1:ARY-1 

 no_use=find(L_USE==0); 

 no_use_l_fly=L_FLY(:,no_use); 

 [row col]=find(no_use_l_fly==temp(l_num*ARY+1)); 

 sel_l_fly=no_use_l_fly(:,col); 

 L_USE(no_use(col))=1; 

 index=find(sel_l_fly~=temp(l_num*ARY+1)); 

 sel_ck_mat=ck_mat(l_num*ARY+[2:ARY],:); 

 for ele_no=1:size(index,1) 

  [row col]=find(sel_ck_mat==sel_l_fly(index(ele_no))); 

  temp(l_num*ARY+1+row)=sel_l_fly(index(ele_no)); 

 end 

end 

end %===========END of IF ELSE============================= 

 

 

%========================================================== 

%Place the first three originating states in the three butterflies along dim dimension of SIV 

%========================================================== 

function temp=extend(from, dim,ext_ck_mat)%ext_ck_mat in (3,4) 

global ARY; 

global MID_SIM; 

global MID_USE; 

global FLY_NO; 

 

 sel_mid_sim=MID_SIM(:,(dim-2)*FLY_NO+1:(dim-1)*FLY_NO); 

 temp=zeros(1,ARY-1); 

 no_use=find(MID_USE(dim-1,:)==0); 

 no_use_mid=sel_mid_sim(:,no_use); 

 [row col]=find(no_use_mid==from); 

 ext_mid=no_use_mid(:,col); 

 MID_USE(dim-1,no_use(col))=1; 

 index=find(no_use_mid(:,col)~=from); 

 for ele_no=1:size(index,1) 

  [row col]=find(ext_ck_mat==ext_mid(index(ele_no))); 

  temp(row)=ext_mid(index(ele_no)); 

 end 

 

  

%========================================================== 
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%Find all the simplex-transitions containg transitions in tab_asgned along the dim dimension of SIV.  

%========================================================== 

function temp=build_tot_ck_mat(tab_asgned , dim) 

global MID_SIM; 

global MID_USE; 

global FLY_NO; 

global ARY; 

sel_mid_sim=MID_SIM(:,(dim-2)*FLY_NO+1:(dim-1)*FLY_NO); 

 

temp=[]; 

for i=1:ARY^dim 

 no_use=find(MID_USE(dim-1,:)==0); 

 no_use_mid=sel_mid_sim(:,no_use); 

 [row col]=find(no_use_mid==tab_asgned(i)); 

 temp=[temp ;no_use_mid(:,col)']; 

 MID_USE(dim-1,no_use(col))=1; 

end 

shape=[size(tab_asgned) ARY]; 

temp=reshape(temp,shape); 

temp=squeeze(temp); 

%========================================================== 
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APPENDIX D  INITIAL INPUT SIMPLEX GENERATING 
CODE 
 

 

function inp_sym=inp_gen(n,D); 

 

%Purpose: This function generate the Initial Input Simplex(IIS).Using 6*2^(D-1) 

dimensions. 

 
%Input Parameters 

%n: n-ary information symbol 

%D: Trellis Depth 

 

%In Function 

%pair: “Copy” rule complied by a type B simplex 

%fil_pat: “fill” pattern (new dimension needed) for the first simplexes built along the first dimension 

%fil: “fill” pattern for later simplexes built along the first dimension. 

 

%Output Parameters 

inp_sym: Regard a 3-out-of-N symbol as a unit element. inp_sym is a TOT_STX(4 symbls) matrix. 

 

%When D increase one, just create a new dimension, copy the previous program and add one more loop. 

%n=4. 

 

 

ini(:,1)=[1 -1 2 -2]'; 

ini(:,2)=[3 4  -3 -4]'; 

ini(:,3)=[5 6  -6 -5]'; 

dim=6; 

tab=ini; 

pair(:,1)=[1 2 3 4]'; 

pair(:,2)=[1 3 2 4]'; 

pair(:,3)=[1 4 2 3]'; 

 

%=======D=1 4 STATES======================================= 

if D==1 inp_sym=tab;break;end 
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%=======D=2 16 STATES====================================== 

%=======fill patern====================== 

fil_pat(:,1)=[1 1 2 2]'; 

fil_pat(:,2)=[1 2 1 2]'; 

fil_pat(:,3)=[1 2 2 1]'; 

%======match to pair(2,i)================== 

for i=1:3 

 tab((pair(2,i)-1)*n+1:pair(2,i)*n,i)=(-1).*ini(:,i); 

end; 

%==========fill pair(3,i) and match to pair(4,i)======= 

for i=1:3 

tab((pair(3,i)-1)*n+1:pair(3,i)*n,i)=(fil_pat(:,i)+dim).*sign(ini(:,i)); 

 

tab((pair(4,i)-1)*n+1:pair(4,i)*n,i)=(-1).*tab((pair(3,i)-1)*n+1:pair(3,i)*n,i); 

dim=dim+2; 

end; 

 

if D==2 inp_sym=tab;break;end 

 

%====later fill one clolum by one colum============================= 

fil_sign=sign(tab); 

fil(:,1)=[1 1 2 2 1 1 2 2 3 3 4 4 3 3 4 4]'; 

fil(:,2)=[1 2 1 2 3 4 3 4 1 2 1 2 3 4 3 4]'; 

fil(:,3)=[1 2 2 1 3 4 4 3 3 4 4 3 1 2 2 1]'; 

step=3; 

 

%===========D=3 64 state===================================== 

%======match to pair(2,i)=================== 

for i=1:3 

  tab(:,(pair(2,i)-1)*step+i)=(-1).*tab(:,i); 

end; 

%==========fill pair(3,i) and match to pair(4,i)==== 

for i=1:3 

tab(:,(pair(3,i)-1)*step+i)=(fil(:,i)+dim).*fil_sign(:,i); 

tab(:,(pair(4,i)-1)*step+i)=(-1).*tab(:,(pair(3,i)-1)*step+i); 

dim=dim+4; 

end;  

 

if D==3 inp_sym=tab;break;end 
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%=======D=4 256 STATES===================================== 

%==========match to pair(2,i)==================== 

for i=1:3 

tab(:,[0:step:(n-1)*step]+i,pair(2,i))=(-1).*tab(:,[0:step:(n-1)*step]+i); 

end 

 

%=======fill pair(3,i) and match to pair(4,i)============ 

for i=1:3 % 3 col 

%===COMPLETELY FILL A TWO-DIM PLANE OF COL I THIRD DIM=pair(3,i) 

for j=1:2:3 

tab(:,(pair(j,i)-1)*step+i,pair(3,i))=(fil(:,i)+dim).*fil_sign(:,i); 

tab(:,(pair(j+1,i)-1)*step+i,pair(3,i))=(-1).*tab(:,(pair(j,i)-1)*step+i,pair(3,i)); 

dim=dim+4; 

end ; 

%======match to third dim=pair(4,i)============= 

tab(:,[0:step:(n-1)*step]+i,pair(4,i))=(-1).*tab(:,[0:step:(n-1)*step]+i,pair(3,i)); 

end 

if D==4 inp_sym=tab;break;end 

 

 

 

%================D=5 1024=============================== 

%============MATCH TO A NEW DIM(FOURTH)=PAIR(2,I) 

tab(:,:,:,1)=tab; 

for i=1:3 

tab(:,[0:step:(n-1)*step]+i,:,pair(2,i))=(-1).*tab(:,[0:step:(n-1)*step]+i,:,1); 

end 

%========fill and match============= 

for i=1:3 %COL OF I IN 3-OUT-OF-DIM======== 

 

%==COMPLETE FILL THE ITH COL IN FOURTH DIM=PAIR(3,I),IT IS  A THREE-DIM CUBE,ALL 

OPERATION DONE IN THE SAME FOURTH DIM=PAIR(3,I)========= 

 for td_dim=1:2:3 

 

%==COMPLETE FILL THE ITH COL IN THIRD DIM=PAIR(TD_DIM,I),IT IS A TWO-DIM PLANE OF THE 

FORMAT OF THE INPUT FOR 64 STATES========================== 

  for sd_dim=1:2:3 

   tab(:,(pair(sd_dim,i)-1)*step+i,pair(td_dim,i),pair(3,i))=(fil(:,i)+dim).*fil_sign(:,i); 

   tab(:,(pair(sd_dim+1,i)-1)*step+i,pair(td_dim,i),pair(3,i))=(-1).*tab(:,(pair(sd_dim,i)-

1)*step+i,pair(td_dim,i),pair(3,i)); 

dim=dim+4; 

         end 
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%==MATCH IN THE THIRD DIM=============== 

  tab(:,[0:step:(n-1)*step]+i,pair(td_dim+1,i),pair(3,i))=(-1).*tab(:,[0:step:(n-

1)*step]+i,pair(td_dim,i),pair(3,i)); 

 end 

%===match to fouth dim=pair(3,i)================= 

 tab(:,[0:step:(n-1)*step]+i,:,pair(4,i))=(-1).*tab(:,[0:step:(n-1)*step]+i,:,pair(3,i));  

end  

if D==5 inp_sym=tab;break;end 

 

 

 

%============D=6 4096 STATES=============================== 

%===========MATCH TO A NEW DIM(FIFTH)========= 

tab(:,:,:,:,1)=tab; 

for i=1:3 

tab(:,[0:step:(n-1)*step]+i,:,:,pair(2,i))=(-1).*tab(:,[0:step:(n-1)*step]+i,:,:,1); 

end  

%===FILL & MATCH IN FIFTH DIM=PAIR(3,I)== 

for i=1:3 

 for four_dim=1:2:3 

  for td_dim=1:2:3 

   for sd_dim=1:2:3 

    tab(:,(pair(sd_dim,i)-

1)*step+i,pair(td_dim,i),pair(four_dim,i),pair(3,i))=(fil(:,i)+dim).*fil_sign(:,i); 

    tab(:,(pair(sd_dim+1,i)-1)*step+i,pair(td_dim,i),pair(four_dim,i),pair(3,i))=(-

1).*tab(:,(pair(sd_dim,i)-1)*step+i,pair(td_dim,i),pair(four_dim,i),pair(3,i)); 

dim=dim+4; 

          end  

   tab(:,[0:step:(n-1)*step]+i,pair(td_dim+1,i),pair(four_dim,i),pair(3,i))=(-1).*tab(:,[0:step:(n-

1)*step]+i,pair(td_dim,i),pair(four_dim,i),pair(3,i)); 

     end 

  tab(:,[0:step:(n-1)*step]+i,:,pair(four_dim+1,i),pair(3,i))=(-1).*tab(:,[0:step:(n-

1)*step]+i,:,pair(four_dim,i),pair(3,i)); 

 end 

%===MATCH TO FIFTH DIM=PAIR(4,I)======== 

 tab(:,[0:step:(n-1)*step]+i,:,:,pair(4,i))=(-1).*tab(:,[0:step:(n-1)*step]+i,:,:,pair(3,i)); 

end 

if D==6 inp_sym=tab;break;end 
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APPENDIX E  MINIMUM DISTANCE CALCULATION 
CODE (1) 
 

 

function [min_dis, min_path]=min_dis_samest(n,D,DIM,B,start_st) 

 

%Purpose: This function seek the minimum distance among paths with the same start_st.  
 

%Input Parameters 

%n: n-ary information symbol 

%D: Trellis Depth 

%DIM: Dimensions of the signal constellation 

%start_st: Starting states for all the paths 

%B: Information sequence length 

%stab: State transition table for this trellis 

%sym_tab: symbol assignment table, generated by sym_asgn.m 

 

%In Function 

%TOT_ST: Total number of states in this trellis. 

%full_txs: Turn sym_tab in TOT_ST x (n*3) matrix into (S*n) x DIM matrix.The TOT_ST rows--full_txs((i-

1)*TOT_ST+1:i*TOT_ST, :) are the symbols assinged to the TOT_ST transissons when input is i-1. 

i=1,2,...,n. Symbols are represented as 0 or (+)(-)1 in all the DIM dimensions. 

%dis_old(new): TOT_ST x TOT_ST matrix. dis_old(new)(i,j) is the minimum distance among all the paths 

reaching state i and j at previous(current) stage. i,j=1,2,...TOT_ST. 

%path_old(new):TOT_ST x TOT_ST x (2*B) matrix. path_old(new)(i,j) is the path history of the pair of paths 

reaching state i and j and having dis_old(new)(i,j). 

 

%Output Parameters 

%min_dis: The minimum distance among paths with the same start_st.  

%min_path: Paths history of the pair of paths having distance min_dis between them. 

 

%Date: May 16, 1999   Xiangyu Song 

 

 

global TOT_ST ARY full_txs INV_ST_TAB TXS; 

ARY=n; 

TOT_ST=n^D; 
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ST_TAB=stab; 

TXS=sym_tab; 

INV_STAB=inv_tab(n,D);%Generate inverse state transition table 

full_txs=fu_sym(n,D,DIM);%Generate full_txs 

 

%==============Initialization======================================= 

dis_old=ones(TOT_ST)*inf; 

dis_old(start_st,start_st)=0; 

 

path_old=(-1)*ones(TOT_ST, TOT_ST, 2*(B+1)); 

path_new=path_old; 

 

reach=start_st; 

inv_reach=zeros(D-1,n^(D-1)); 

fr_reach=zeros(D-1, n^(D-1)); 

 

temp=start_st; 

for i=1:D-1 

 temp=INV_ST_TAB(temp(:),:); 

 temp=temp(:)'; 

 inv_reach(i,[1:size(temp,2)])=temp; 

end 

 

temp=start_st; 

for i=1:D-1 

 temp=ST_TAB(temp(:), :); 

 temp=temp(:)'; 

 fr_reach(i,[1:size(temp,2)])=temp; 

end 

%====get the common part for updating all state pair with p~q;========== 

st_p_all=[1:TOT_ST];st_q_all=[1:TOT_ST]; 

[pair_p_all_dif,pair_q_all_dif,reach_p_all_dif,reach_q_all_dif]=pair_st_dif(st_p_all,st_q_all); 

add_dis_all_dif=get_add_dis(reach_p_all_dif,reach_q_all_dif,16); 

[pair_p_all_same,pair_q_all_same,reach_p_all_same,reach_q_all_same]=pair_st_same(st_p_all,st_q_all); 

add_dis_all_same=get_add_dis(reach_p_all_same,reach_q_all_same,16); 

end 

 

%==========travel along the trellis============================= 

for stg=1:B-D 

%deal with pair-p-q with p~=q;================= 

 if stg>=B-D+1 

  st_p=inv_reach(B-stg,[1:n^(B-stg)]); 



 
 

 174

  st_q=inv_reach(B-stg,[1:n^(B-stg)]); 

  [pair_p,pair_q,reach_p,reach_q]=pair_st_dif(st_p,st_q); 

  add_dis=get_add_dis(reach_p,reach_q,16); 

   

 elseif stg<D %consider reach states, others are INF======== 

  reach=ST_TAB(reach,:); 

  st_p=reach(:)';st_q=reach(:)'; 

  %==not_reach states INF , used by later stage===== 

  all_st=[1:TOT_ST]; 

  all_st(reach)=0; 

  [not_reach_pos]=find(all_st~=0); 

  dis_new(not_reach_pos,not_reach_pos)=inf;%======== 

  dis_new(reach,not_reach_pos)=inf; 

  dis_new(not_reach_pos,reach)=inf; 

  %====state pair with p~=q 

  [pair_p,pair_q,reach_p,reach_q]=pair_st_dif(st_p,st_q); 

  add_dis=get_add_dis(reach_p,reach_q,16); 

   

 else %consider all states================ 

  st_p=[1:TOT_ST];st_q=[1:TOT_ST]; 

  add_dis=add_dis_all_dif; 

  pair_p=pair_p_all_dif;pair_q=pair_q_all_dif; 

  reach_p=reach_p_all_dif;reach_q=reach_q_all_dif; 

 end 

 dis_mat=dis_old(reach_p+(reach_q-1)*TOT_ST)'+add_dis; 

 dis_mat=reshape(dis_mat,n*n,size(reach_p,2)/(n*n)); 

 [min_pair_dis, min_pos]=min(dis_mat,[],1); 

 dis_new(pair_p+(pair_q-1)*TOT_ST)=min_pair_dis; 

 dis_new(pair_q+(pair_p-1)*TOT_ST)=dis_new(pair_p+(pair_q-1)*TOT_ST);%symmetry 

 %========Update symbols in the paths reaching state p and q 

 path_update1(stg,pair_p, pair_q, reach_p, reach_q, min_pos,16); 

  

     %deal with pair-p-q with p=q;============= 

 if stg<B-D 

   dis_new(st_p+(st_q-1)*TOT_ST)=0; 

  %=======Update paths reaching state p and q 

   path_update2(stg,st_p, st_q,fr_reach, start_st); 

   

 else %B-D, min(12) 

   if stg>=B-D+1 

   [pair_p,pair_q,reach_p,reach_q]=pair_st_same(st_p,st_q); 

  elseif stg<D 
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   [pair_p,pair_q,reach_p,reach_q]=pair_st_same(st_p,st_q);   

   %add_dis=add_dis(reach_p,reach_q,12); 

  else %all state pair with p==q 

   pair_p=pair_p_all_same;pair_q=pair_q_all_same; 

   reach_p=reach_p_all_same;reach_q=reach_q_all_same; 

   

  end 

  [non_same_pos]=find((reach_p-reach_q)~=0); 

  reach_p=reach_p(non_same_pos);  

  reach_q=reach_q(non_same_pos); 

  add_dis=get_add_dis(reach_p,reach_q,12); %12=== 

  dis_mat=dis_old(reach_p+(reach_q-1)*TOT_ST)'+add_dis; 

  dis_mat=reshape(dis_mat,n*(n-1),size(reach_p,2)/(n*(n-1)));%12= 

  [min_pair_dis,min_pos]=min(dis_mat,[],1); 

  dis_new(pair_p+(pair_q-1)*TOT_ST)=min_pair_dis; 

  dis_new(pair_q+(pair_p-1)*TOT_ST)=dis_new(pair_p+(pair_q-1)*TOT_ST);%symmetry 

  %========Update symbols in the paths reaching state p and q  

  path_update1(stg,pair_p, pair_q, reach_p, reach_q, min_pos,12); 

 

 end 

 dis_old=dis_new; 

 path_old=path_new; 

end; 

 

for stg=B-D+1:B 

 if stg<B 

  st_p=inv_reach(B-stg,[1:n^(B-stg)]); 

  st_q=inv_reach(B-stg,[1:n^(B-stg)]); 

 else     

  st_p=start_st; 

  st_q=start_st; 

 end 

 %====p~=q================== 

 if stg~=B %===stg==B,only p==q===== 

 [pair_p,pair_q,reach_p,reach_q]=pair_st_dif(st_p,st_q); 

 add_dis=get_add_dis(reach_p,reach_q,16); 

 dis_mat=dis_old(reach_p+(reach_q-1)*TOT_ST)'+add_dis; 

 dis_mat=reshape(dis_mat,n*n,size(reach_p,2)/(n*n));%===16 

 [min_pair_dis,min_pos]=min(dis_mat,[],1); 

 dis_new(pair_p+(pair_q-1)*TOT_ST)=min_pair_dis; 

 dis_new(pair_q+(pair_p-1)*TOT_ST)=dis_new(pair_p+(pair_q-1)*TOT_ST);%symetrity 

 path_update1(stg,pair_p, pair_q, reach_p, reach_q, min_pos,16); 
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 end 

  %=====p==q================== 

 [pair_p,pair_q,reach_p,reach_q]=pair_st_same(st_p,st_q); 

 add_dis=get_add_dis(reach_p,reach_q,16); 

 dis_mat=dis_old(reach_p+(reach_q-1)*TOT_ST)'+add_dis; 

 dis_mat=reshape(dis_mat,n*n,size(reach_p,2)/(n*n));%===16 

 [min_pair_dis,min_pos]=min(dis_mat,[],1); 

 dis_new(pair_p+(pair_q-1)*TOT_ST)=min_pair_dis; 

 dis_new(pair_q+(pair_p-1)*TOT_ST)=dis_new(pair_p+(pair_q-1)*TOT_ST);%symetrity 

 path_update1(stg,pair_p, pair_q, reach_p, reach_q, min_pos,16); 

 dis_old=dis_new; 

 path_old=path_new; 

end 

 

min_dis=dis_old(start_st,start_st); 

sel_path=squeeze(path_old(start_st, start_st,:))'; 

min_path=[sel_path(1:2:2*B-1);sel_path(2:2:2*B)]; 

 

 

%======SUBFUNCTIONS================================== 

%====================================================== 

%Update path history  

%======================================================  

function path_update1(stg,pair_p, pair_q, reach_p, reach_q, min_pos,item_no) 

global ARY ST_TAB path_old path_new; 

n=ARY;  

for i=1:size(pair_p,2) 

 pre_p=reach_p(item_no*(i-1)+min_pos(i)); 

 pre_q=reach_q(item_no*(i-1)+min_pos(i)); 

 pos_p=find(ST_TAB(pre_p,:)==pair_p(i)); 

 sym_p=pos_p-1; 

 pos_q=find(ST_TAB(pre_q,:)==pair_q(i)); 

 sym_q=pos_q-1; 

 if stg==1 

  a=[ sym_p sym_q]; 

 else 

  a=[squeeze(path_old(pre_p, pre_q,[1:(stg-1)*2]))' sym_p  sym_q]; 

 end 

 path_new(pair_p(i), pair_q(i), [1:2*stg])=a; 

end;     
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%====================================================== 

%Update path history for stg<B-D and p==q 

%====================================================== 

function path_update2(stg,st_p, st_q,fr_reach, start_st) 

global ARY TOT_ST Depth INV_ST_TAB ST_TAB path_old path_new; 

n=ARY; 

D=Depth; 

 

if stg==1 

 pre_p=start_st; 

elseif stg>D 

 pre_p=[1:TOT_ST]; 

else  

 pre_p=fr_reach(stg-1, [1:n^(stg-1)]); 

end 

 

for i=1:size(st_p,2) 

 from=intersect(pre_p,INV_ST_TAB(st_p(i),:));  

 pos=find(ST_TAB(from(1),:)==st_p(i)); 

 sym_p=pos-1; 

 if stg==1 

   a=[sym_p sym_p]; 

 else  

  a=[squeeze_old(path(from(1),from(1),[1:2*(stg-1)]))' sym_p sym_p]; 

 end 

 path_new(st_p(i),st_q(i),[1:2*stg])=a; 

end 

 

%====================================================== 

%Obtain the path metric of  from previous stage to current stage,for the paths reaching state pair(p,q) 

%====================================================== 

function add_dis=get_add_dis(reach_p,reach_q,itm_no) 

global TOT_ST ARY full_txs; 

n=ARY; 

 

add_dis=[]; 

adder=[0:TOT_ST:TOT_ST*(n-1)]; 

adder_p=repmat(adder,itm_no/n,1); 

adder_p=repmat(adder_p(:)',1,size(reach_p,2)/(itm_no)); 

pos_p=adder_p+reach_p; 

 

adder_q=repmat(adder,1,n); 
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if itm_no==12 

lost_pos=[1:n]+[0:n:(n-1)*n]; 

adder_q(lost_pos)=-1; 

keep_pos=find(adder_q~=-1); 

adder_q=adder_q(keep_pos); 

end 

adder_q=repmat(adder_q,1,size(reach_q,2)/(itm_no)); 

pos_q=adder_q+reach_q; 

 

%==== This is deal with "out of Memory " when 256 states==== 

size_64=64*63/2*itm_no; 

no_64=floor(size(pos_p,2)/size_64); 

for count=1:no_64 

reach_p_sym=full_txs(pos_p((count-1)*size_64+1:count*size_64),:); 

reach_q_sym=full_txs(pos_q((count-1)*size_64+1:count*size_64),:); 

 

add_dis_part=sum((reach_p_sym-reach_q_sym).^2,2); 

add_dis=[add_dis; add_dis_part]; 

end; 

 

reach_p_sym=full_txs(pos_p(no_64*size_64+1:size(pos_p,2)),:); 

reach_q_sym=full_txs(pos_q(no_64*size_64+1:size(pos_q,2)),:); 

add_dis_part=sum((reach_p_sym-reach_q_sym).^2,2); 

add_dis=[add_dis; add_dis_part]; 

 

 

%======================================================= 

%Generate state pair(p,q) and their precessors with p~=q, p blongs to st_p, q belongs to st_q 

%======================================================= 

function [pair_p, pair_q ,reach_p, reach_q]=pair_st_dif(st_p,st_q) 

  global ARY INV_ST_TAB; 

  n=ARY; 

 

  pair_p=[];pair_q=[];reach_p=[];reach_q=[]; 

  for i=1:size(st_p,2)-1 

   pair_p=[pair_p st_p(i)*ones(1,size(st_q,2)-i)]; 

   pair_q=[pair_q st_q((i+1):size(st_q,2))]; 

  end 

  reach_p=INV_ST_TAB(pair_p,:); 

  reach_p=reach_p'; 

  reach_p=repmat(reach_p(:),1,n);%n=4 

  reach_p=reach_p'; 
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  reach_p=reach_p(:)';%row vector 

  reach_q=INV_ST_TAB(pair_q,:); 

  reach_q=repmat(reach_q,1,n); 

  reach_q=reach_q'; 

  reach_q=reach_q(:)';%row vector,16*size(pair_q,2)  

 

%======================================================= 

%Generate state pair(p,q) and their precessors with p==q, p blongs to st_p, q belongs to st_q 

%======================================================= 

function [pair_p, pair_q ,reach_p, reach_q]=pair_st_same(st_p,st_q) 

  global ARY INV_ST_TAB; 

  n=ARY; 

  pair_p=st_p;pair_q=st_q;reach_p=[];reach_q=[]; 

  reach_p=INV_ST_TAB(pair_p,:); 

  reach_p=reach_p'; 

  reach_p=repmat(reach_p(:),1,n);%n=4 

  reach_p=reach_p'; 

  reach_p=reach_p(:)';%row vector 

  reach_q=INV_ST_TAB(pair_q,:); 

  reach_q=repmat(reach_q,1,n); 

  reach_q=reach_q'; 

  reach_q=reach_q(:)';%row vector,16*size(pair_q,2) 

%========================================================= 
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APPENDIX F  MINIMUM DISTANCE CALCULATION CODE 
(2) 
 

 

function [min_dis, ml_sym]=vit(n,D,DIM,B_Size,ref_path,stab,sym_tab); 

 

%Purpose: This function seek the minimum distance from a reference path to all the 

paths that have different starting states as the starting state of the reference path.The 

method is to run viterbi algorithm on the trellis having different starting states as the 

starting state of the reference path.  

  
%n: n-ary information symbol 

%D: Trellis Depth 

%DIM: Dimensions of the signal constellation 

%ref_path: The reference path 

%B_Size: Information sequence length 

%stab: State transition table for this trellis 

%sym_tab: Symbol assignment table, generated by sym_asgn.m 

 

%In Function 

%TOT_ST: Total number of states in this trellis. 

%st_metric: A vector containing TOT_ST element, st_metric(i) is the path metric of state i. At a certain 

stage, it is the minmum distance between the paths reaching state i and the reference path. 

%st_sym: Path history. A B_SizeXTOT_ST matrix. st_sym(:,i), i=1,2,...,TOT_ST,is the input symbles on the 

path reaching state i and having distance st_metric(i) from the reference path. 

  

%Output Parameters 

%min_dis: The minimum distance from a reference path to all the paths that have different starting states as 

the starting state of the reference path. 

%ml_sym: The path having distance min_dis from the reference path. 

  

%Date: April 14,1999 Xiangyu Song 

 

 

global TOT_ST ST_TAB TXS ; 
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TOT_ST=n^D; 

TOT_ST=n^D; 

ST_TAB=stab; 

TXS=sym_tab; 

INV_STAB=inv_tab(n,D);%Generate inverse state transition table 

TRS_INV_ST_TAB=INV_ST_TAB'; 

full_txs=fu_sym(n,D,DIM);%Generate full_txs 

 

 

st_metric=zeros(TOT_ST,1); 

adder=[0:TOT_ST:(n-1)*TOT_ST]'; 

adder=repmat(adder,1,TOT_ST); 

pos_merge_st=TRS_INV_ST_TAB+adder; 

B=B_Size; 

full_sym=repmat(full_txs,[1 1 B]); 

   

[in_sym, ref_out, st_seq]=enco_fr_deco(ref_path,n,D,DIM,B,1);%Get the state transition sequence and 

channel symbol sequence for ref_path 

ref_st=st_seq(1); 

ref_out=full(ref_out); 

     

rev_mat=repmat(ref_out,[TOT_ST*n 1]); 

rev_mat=reshape(rev_mat,n*TOT_ST,DIM,B); 

  

dif=((full_sym-rev_mat).^2); 

dif=-sum(dif,2); 

dif=squeeze(dif); 

 

sel_metric=[];sel_sym=[]; 

for STAR_ST=[[1:ref_st-1][ref_st+1:TOT_ST]] %===run for each state 

 

%========Get path metrics and survivors for states at each stage======= 

 st_sym=[]; 

 METRIC_MAT=reshape(dif,TOT_ST,n,B); 

 %==travel trellis for stg_no=2:D===== 

 metric=METRIC_MAT(STAR_ST,:,1); 

 reach=ST_TAB(STAR_ST,:); 

 sym=[0:n-1];  

 

 for stg_no=2:D 

  add_metric=METRIC_MAT(reach(:),:,stg_no); 

  exp_metric=repmat(metric(:),1, 4); 
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  metric=exp_metric+add_metric; 

  reach=ST_TAB(reach(:),:); 

 

  add_sym=repmat([0:n-1],n^(stg_no-1),1); 

  exp_sym=repmat(sym,1,n); 

  sym=[exp_sym; add_sym(:)']; 

 end %end of stg_no=2:D 

 

 st_metric(reach(:))=metric; 

 st_sym(:,reach(:))=sym; 

     

    

 %========travel trellis for stage_no=D+1:B=== 

 for stage_no=D+1:B 

       

  add_metric=dif(pos_merge_st(:),stage_no); 

  merg_metric=st_metric(TRS_INV_ST_TAB(:))+add_metric; 

  merg_metric=reshape(merg_metric,n,TOT_ST); 

  [max_merg_metric max_pos]=max(merg_metric,[],1); 

  st_metric=max_merg_metric'; 

 

  fr_st_pos=max_pos+n*[0:TOT_ST-1]; 

  fr_st=TRS_INV_ST_TAB(fr_st_pos(:)); 

  st_sym=[st_sym(:,fr_st(:)); max_pos-1];%update 

      

 end; 

 

 sel_metric=[sel_metric st_metric(STAR_ST)]; 

 sel_sym=[sel_sym st_sym(:,STAR_ST)];     

 

end;%====end loop for each starting state=========================== 

    

[ml_metric ml_pos]=max(sel_metric); 

ml_sym=sel_sym(:,ml_pos)'; 

min_dis=-ml_metric; 
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APPENDIX G  ITERATIVE CIRCULAR SHIFT BCJR 
DECODING ALGORITHM CODE 
 

 

function err_pb=bcjr(n,D,DIM,B_Size,B_Num,ns,stab,sym_tab) 

 

%Purpose: Iterative Circular Shift BCJR using the Most Reliable State Transition as the 

starting point for decoding.  

 
%Input Parameters 

%n: n-ary information symbol 

%D: Trellis Depth 

%DIM: Dimensions of the signal constellation 

%B_Size: Information sequence length. Can be a vector 

%B_Num: Number of information sequences tested 

%ns:Eb/N0(in dB) 

%stab: State transition table for this trellis 

%sym_tab: symbol assignment table, generated by sym_asgn.m 

 

%In Function 

%TOT_ST: Total number of states in this trellis. 

%full_txs: Turn sym_tab in TOT_STx (n*3) matrix into (S*n) x DIM matrix. The TOT_ST rows--full_txs((i-

1)*TOT_ST+1:i*TOT_ST, :) are the symbols assigned to the TOT_ST transmissions when input is i-1. 

i=1,2,...,n. Symbols are represented as 0 or (+)(-)1 in all the DIM dimensions. 

 

%Output Parameters 

%err_pb: Is the bit error probability averaged over total number of B_Num information sequences.  

 

%Date:Jan 24, 1999  Xiangyu Song 

 

 

global  TOT_ST ST_TAB  TXS ; 

 

TOT_ST=n^D; 

ST_TAB=stab; 

TXS=sym_tab; 
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EB=3/2; 

full_txs=fu_sym(n,D,DIM); 

 

err_pb=[]; 

for b_size=1:size(B_Size,2) %***************** 

B=B_Size(b_size); 

full_sym=repmat(full_txs,[1 1 B]); 

 

pb_bk=[]; 

[in_bit,in_sym,out]=enco(n,D,DIM,B,B_Num);%==Encoding==  

for ns_no=1:size(ns,2)%***** 

 N0=EB/(10^(ns(ns_no)/10));%==N0== 

 var=sqrt(N0/2); 

 noise=randn(1,DIM*B*B_Num)*var; 

 rev=out+noise; 

 

 err=0; 

 for b_no=1:B_Num %** 

 

  rev_mat=repmat(rev((b_no-1)*B*DIM+[1:B*DIM]),[TOT_ST*n 1]); 

  rev_mat=reshape(rev_mat,n*TOT_ST,DIM,B); 

 

  dif=((full_sym-rev_mat).^2)/N0; 

  dif=-sum(dif,2); 

  dif=squeeze(dif); 

        prob=exp(dif); 

   

  %=====Use Most Reliable state transition as starting point====== 

  %===Circular shift the received sequence=================== 

  %===Initilize Alpha & Beta as the Most Reliable State========= 

  [maxr, row]=max(prob,[],1); 

  [maxc,col]=max(maxr); 

  m_row=row(col); 

  st_fr=m_row-floor((m_row-0.5)/TOT_ST)*TOT_ST; 

  st_to=ST_TAB(m_row); 

  shift=col-1; 

  alpha=zeros(B,TOT_ST);beta=zeros(TOT_ST,B); 

  alpha(1,st_fr)=1; 

  beta(st_fr,B)=1; 

  prob_shift=[prob(:,[shift+1:B]) prob(:,[1:shift])];%shift=0.o.k 

  prob=prob_shift; 
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  %====Calculate gama================================ 

 

       row=repmat([1:TOT_ST],1,n); 

   

  gama=zeros(TOT_ST,TOT_ST,B);%saving time than gama=[].   

        gama_seq=eye(TOT_ST,TOT_ST); 

        for i=1:B 

          s=sparse(row,ST_TAB,prob(:,i),TOT_ST,TOT_ST); 

   s_full=full(s); 

   gama(:,:,i)=s_full; 

          

  end; 

         

  delta=10; 

  %=====Forward and Backward recursion============= 

  while delta>10^(-3)%===Stop Condition============== 

        for t=2:B 

           alpha(t,:)=alpha(t-1,:)*gama(:,:,t-1); 

           if alpha(t,1)<10^(-250)  

    alpha(t,:)=alpha(t,:)/sum(alpha(t,:)); 

   end; 

             

           beta(:,B-t+1)=gama(:,:,B-t+2)*beta(:,B-t+2); 

   if beta(1,B-t+1)<10^(-250)  

    beta(:,B-t+1)=beta(:,B-t+1)/sum(beta(:,B-t+1)); 

   end; 

        end; 

  alphabp1=alpha(B,:)*gama(:,:,B); 

  alphabp1=alphabp1/sum(alphabp1); 

   

  betazr= gama(:,:,1)*beta(:,1); 

  betazr=betazr/sum(betazr); 

   

  delta=max(abs(alpha(1,:)-alphabp1));   

   

  if delta>10^(-3)  

   alpha(1,:)=alphabp1; 

   beta(:,B)=betazr; 

  end; 

   

  end;%===End of while 
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  %====Calculate sigama============================ 

  mat=0:TOT_ST:(B-1)*TOT_ST; 

  addmat=repmat(mat,TOT_ST*n,1); 

  pos=repmat(ST_TAB(:),1,B)+addmat; 

  exp_alpha=repmat(alpha,1,n); 

  exp_alpha=exp_alpha'; 

 

  siga=exp_alpha(:).*prob(:).*beta(pos(:)); 

  siga_mat=reshape(siga,TOT_ST,n,B); 

  sum_mat=sum(siga_mat); 

  [i,j]=max(sum_mat); 

 

  %====Decode and shift back=========================== 

  deco_sym_shift=squeeze(j)'-1; 

  deco_sym=[deco_sym_shift(B-shift+1:B) deco_sym_shift(1:B-shift)]; 

  

   

  ft_bt=bitshift(deco_sym,-1); 

  sd_bt=deco_sym-ft_bt*2; 

     

  err_b=size(find((ft_bt-in_bit((b_no-1)*2*B+[1:2:2*B-1]))~=0),2)+size(find((sd_bt-in_bit((b_no-

1)*2*B+[2:2:2*B]))~=0),2); 

   

  err=err+err_b; 

 end;%** 

 

 pb_ns=err/(log2(n)*B*B_Num); 

 pb_bk=[pb_bk,pb_ns]; 

end;%***** 

err_pb=[err_pb;pb_bk]; 

 

end;%********************** 




