International Towing Tank Conference ITTC Symbols and Terminology List

Final Version 1996
May 13, 1997
\section*{Supersedes all previous versions}
Please go to next page for hypertext table of contents

Prepared by the 21st ITTC Symbols and Terminology Group Version 1996
Edited and Produced by Bruce Johnson U.S. Naval Academy
Annapolis, MD 21402-5042, USA
Phone +1 410-293-6457, Fax +1-410-293-2219 johnson@nadn.navy.mil
Based on the SaT List Version 1993 Edited and Produced by Michael Schmiechen Versuchsanstalt für Wasserbau und Schiffbau, Berlin: VWS, Mitteilungen, Heft 57 (1993)
Mueller-Breslau-Strasse (Schleuseninsel)
D-10623 Berlin, Germany

Please send or fax comments, suggestions, needed additions and clarifications to Professor Johnson

REPORT DOCUMENTATION PAGE					$\underset{0}{\text { Form Approved OMB No. }}$
1. REPORT DATE (DD-MM-YYYY)13-05-1997		2. REPORT TYPE		3. DATES COVERED (FROM - TO)$\mathrm{xx}-\mathrm{xx}-1997$ to xx -xx-1997	
4. TITLE AND SUBTITLE International Towing Tank Conference ITTC Symbols and Terminology List Unclassified				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Johnson, Bruce ;				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Naval Academy Annapolis, MD21402-5042				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORTNUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT APUBLIC RELEASE					
13. SUPPLEMENTARY NOTES Supersedes all previous versions					
14. ABSTRACT The 1996 Version of the ITTC Symbols and Terminology List is recommended to the 21st ITTC Conference in September 1996 in Norway to be adopted as a reference document. The ITTC SaT List needs continuous updating, revision, and extensions and the Hypertext Version should be updated and re-issued at least on an annual basis. Consequently Technical Committees, Specialist Groups, Member Organizations and other parties interested are encouraged to contact the SaT Group with suggestions for necessary additions to and improvements of the SaT List because its quality strongly depends upon user inputs. For that purpose the SaT Group needs to continue to implement methods for wide dissemination of the ITTC Symbols and Terminology List in various media to the Member Organizations and other interested parties such as naval and commercial shipbuilders, universities, and organizations e. g. ISO, ISSC.					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER Same as Report OF PAGES 131				19. NAME OF RESPONSIBLE PERSON Bezwada, Raji rbezwada@dtic.mil	
a. REPORT Unclassified	$\left\lvert\, \begin{array}{l}\text { b. ABSTRACT }\end{array}\right.$ $\begin{array}{l}\text { c. THIS PAGE } \\ \text { Unclassified }\end{array}$ Unclassified			19b. TELEPHONE NUMBER International Area Code Area Code Telephone Number DSN	
					Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39.18

ITTC Symbols and Terminology List, Final Version 1996
Table of Contents: Green colored fonts indicate hypertext link to symbols pages
Table of Contents2
Preface to Version 1996, 21st ITTC Symbols and Terminology List 3
1 Ships in General 4
1.1 Basic Quantities 4
1.2 Geometry and Hydrostatics 7
1.2.1 Hull Geometry 7
1.2.2 Propulsor Geometry 13
1.2.3 Appendage Geometry 17
1.2.4 Hydrostatics 20
1.3 Resistance and Propulsion 25
1.3.1 Hull Resistance 25
1.3.2 Ship Performance 29
1.3.3 Propulsor Performance 33
1.3.4 Unsteady Propeller Forces 38
1.4 Manoeuvring and Seakeeping 40
1.4.1 Manoeuvring 40
1.4.2 Seakeeping 48
2 Special Craft 50
2.1 Planing and Semi-Displacement Vessels 50
2.2 Multi-Hull Vessels 56
2.3 Hydrofoil Boats 59
2.4 ACV and SES 64
2.5 Ice Going Vessels 67
2.6 Sailing Vessels 69
3 Mechanics 72
3.1 Fundamental Concepts 72
3.1.1 Coordinates and Space Related Concepts 72
3.1.2 Time and Frequency Domain Concepts 77
3.1.3 Random Ouantities and Stochastic Processes 82
3.1.4 Balances and System Related Concepts 86
3.2 Solid Body Mechanics 89
3.2.1 Inertial and Hydrodynamic Properties 89
3.2.2 Loads, External and Sectional 91
3.2.3 Rigid Body Motions 93
3.3 Fluid Mechanics 96
3.3.1 Flow Parameters 96
3.3.2 Flow Fields 98
3.3.3 Lifting Surfaces 101
3.3.4 Boundary Layers 104
3.3.5 Cavitation 106
3.4 Environmental Mechanics 108
3.4.1 Waves 108
3.4.2 Wind 113
3.4.3 Ice Mechanics 114
4 Background and References 115
4.1 Symbols and Terminology Group 115
4.2 List of Symbols 121
4.3 Principles of Notation 123
4.4 Details of Notation 126
4.5 References 128
5 Appendices 130
5.1 Waterjet Symbols 130

Preface

The 1996 Version of the 21st ITTC Symbols and Terminology List was prepared by the 21st ITTC Symbols and Terminology(SaT) Group whose membership is as follows:

Prof. Bruce Johnson (Chairman), U.S. Naval Academy, Annapolis (USA)
Prof. Michael Schmiechen (Secretary), VWS, Technical University Berlin (D)
Prof. Michio Nakato, Hiroshima University -Fukuyama Polytechnic College (J)
Prof. Carlo Podenzana-Bonvino, University of Genova (I)
Dr. David Clarke, University of Newcastle upon Tyne (GB)
So far, Consulting Members have been:
Prof. S. S. Yuan, Shanghai (C)
Dr. Kostadin Yossifov, B.S.H.C., Varna (BG)
A first informal meeting of the SaT Group was held in San Francisco in September 1993, immediately after the closing of the 20th Conference. Four further Group meetings have been held on 24 October, 1994, at INSEAN at Rome, 30 October, 1994, at CSSRC at Wuxi, 5-8 June, 1995, at USNA at Annapolis and 4-6 January, 1996, at USNA at Annapolis.

The main activity of the SaT Group during this period was to restructure the 1993 Version of the SaT List to make it more user friendly and more consistent, avoiding unnecessary duplications and deleting cryptic notation. As shown on the title page a Hypertext Version of the SaT List has been installed on the World Wide Web.

The 1996 Version of the ITTC Symbols and Terminology List is recommended to the 21st ITTC Conference in September 1996 in Norway to be adopted as a reference document. The ITTC SaT List needs continuous updating, revision, and extensions and the Hypertext Version should be updated and re-issued at least on an annual basis.

Consequently Technical Committees, Specialist Groups, Member Organizations and other parties interested are encouraged to contact the SaT Group with suggestions for necessary additions to and improvements of the SaT List because its quality strongly depends upon user inputs. For that purpose the SaT Group needs to continue to implement methods for wide dissemination of the ITTC Symbols and Terminology List in various media to the Member Organizations and other interested parties such as naval and commercial shipbuilders, universities, and organizations e.g. ISO, ISSC.

A future task will be the proposed conversion of the ITTC Symbols and Terminology List to a terminological database. This task can be pursued once the Unicode character set becomes available in commercial databases in 1996/97.

A goal of the SaT Group is to produce a document that can replace the ISO Standard 7463 first edited on September 15, 1990 based on the obsolete 1975 Version of the SaT List.

The Symbols and Terminology Group will continue to monitor the international efforts in the field of neutral data formats, e. g. STEP developments, and to coordinate the development of neutral formats for the exchange of information between ITTC member organizations and their clients.

ITTC Symbols
Version 1996

$\begin{array}{l}\text { ITTC } \\ \text { Symbol }\end{array}$	$\begin{array}{l}\text { Computer } \\ \text { Symbol }\end{array}$
$\mathbf{1}$	Ships in General

1.1 Basic Quantities

a,

B
$\mathrm{C}, \mathrm{F}_{2}^{\mathrm{F}}$
AC, A1

A
$\mathrm{D}, \mathrm{F}_{1}^{\mathrm{F}}$
$\mathrm{FF}(1)$

Diameter
d, D
D, DI
E
f
$\mathrm{F}, \mathrm{F}^{0}$
g
g
h
H
I

L
$\mathrm{L}, \mathrm{F}_{3}^{\mathrm{F}}$
m

$\mathrm{M}, \mathrm{F}^{1}$

M

n, N
MO
FR, N
Frequency or rate of revolution
$\mathrm{P} \quad \mathrm{P}, \mathrm{PO} \quad$ Power

Linear or translatory acceleration

Drag (force)
see Remarks .1, .2, . 3
$\mathrm{dv} / \mathrm{dt} \mathrm{m} / \mathrm{s}^{2}$
m^{2}
Area in general

Breadth
Cross force
Force normal to lift and drag N
(forces)

Force opposing translatory N velocity, generally for a completely immersed body

ITTC Symbols		1 1.1	Ships in General Basic Quantities	5
Version				
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
r, R	RD	Radius		m
$\mathrm{R}, \mathrm{F}_{1}^{\mathrm{F}}$	R, RE, $\mathrm{FF}(1)$	Resistance (force)	Force opposing translatory velocity	N
s	SP	Distance along path		m
t	TI	Time		S
t	TE	Temperature		K
T	TC	Period	Duration of a cycle of a repeating or periodic, not necessarily harmonic process	s
U	U, UN	Undisturbed velocity of a fluid		m / s
$\mathrm{v}, \mathrm{V}^{1}$	V, V1	Linear or translatory velocity of a body	$\begin{aligned} & \mathrm{ds} / \mathrm{dt} \\ & \text { see Remark . } 2 \end{aligned}$	m / s
V	VO	Volume		m^{3}
w	WD	Weight density, formerly specific weight	$d W / d V=\rho g$	$\mathrm{N} / \mathrm{m}^{3}$
W	WT	Weight (force), gravity force acting on a body		N
γ	MR	Relative mass or weight, sometimes called specific gravity	Mass density of a substance divided by mass density of distilled water at $4^{\circ} \mathrm{C}$	1
η	EF, ETA	Efficiency	Ratio of powers, see Remark 3	
ρ	DN, RHO	Mass density	dm / dV	$\mathrm{kg} / \mathrm{m}^{3}$
τ	ST, TAU	Tangential stress		Pa
λ	SC	Scale ratio	Ship dimension divided by corresponding model dimension	1
σ	SN, SIGS	Normal stress		Pa
ω	FC, OMF	Circular frequency	$2 \pi \mathrm{f}$	1/s
ω, V^{0}	V0, OMN	Angular velocity	$2 \pi \mathrm{n}$	rad/s

ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

1.1.1 Remarks

. 1 Greek Symbols

For traditional reasons the computer symbols of the concepts denoted by Greek ITTC Symbols do in general not refer to the concepts, but rather to the Greek symbol. This state of affairs is more than unsatisfactory. The SaT Group feels that at the present stage it may be time for a radical change.

An example is the efficiency, the universally accepted symbol being the Greek η. The computer symbol should of course be EF, instead of ETA.

Another example is the traditional symbol ω for circular frequency and angular velocity. Clearly the computer symbols FC and V0, respectively, or similar would be much more reasonable than the traditional symbols listed.

. 2 Velocities, Forces

In the following sections more general concepts are proposed, which permit an even more rational approach. Appropriate symbols for the linear and the angular velocity would be v^{1} and v^{0}, respectively, in precisely that order! In terms of the generalized velocity v , the complete motion with six degrees of freedom, the components of the angular velocity are then uniquely denoted by $\mathrm{v}_{\mathrm{i}}^{0}=\mathrm{v}_{3+\mathrm{i}}$ with $\mathrm{i}=1,2,3$ and 'resulting' in the the computer symbols $\mathrm{V} 0(\mathrm{I})=\mathrm{V}(3+\mathrm{I})$, again with $\mathrm{I}=$ $1,2,3$; see the section on 3.1.1 Coordinates and Space Related Quantities and the section on 3.2.3 Rigid Body Motions.

Concerning the hydrodynamic forces acting on a body due to translatory motion only the rational computer symbols are given. As a matter of fact this type of notation is used more and more in various applications. The advantages need not to be elaborated upon.

. 3 Efficiencies

The concept of efficiency or factor of merit is that of a ratio of powers, preferably powers proper, but sometimes virtual powers are considered as well. The most appropriate notation for efficiencies would therefore be the following with two indices, namely the identifiers of the two powers put into proportion, i. e.

$$
\eta_{X Y}=\mathrm{P}_{X} / \mathrm{P}_{Y} .
$$

This notation together with the computer notation EF $X Y$ would of course greatly improve the data handling as it is truly operational.

ITTC Symbols			1	Ships in General Geometry and Hydrostatics	
			1.2		
Version 1996			1.2.1	Hull Geometry	7
ITTC	Computer	Name		Definition or	SI-
Symbol	Symbol			Explanation	Unit

1.2 Geometry and Hydrostatics

1.2.1 Hull Geometry

1.2.1.1 Basic Quantities

$\mathrm{A}_{\text {BL }}$	ABL	Area of bulbous bow in longitudinal plane	The area of the ram projected on the middle line plane forward of the fore perpendicular; s. Remark . 1	m^{2}
Abt	ABT	Area of transverse crosssection of a bulbous bow (full area port and starboard)	The cross sectional area at the fore perpendicular. Where the water lines are rounded so as to terminate on the forward perpendicular A_{BT} is measured by continuing the area curve forward to the perpendicular, ignoring the final rounding; s. Remark . 1	m^{2}
A_{M}	AM	Area of midship section	Midway between fore and aft perpendiculars	m^{2}
A_{T}	ATR	Area of transom (full area port and starboard)	Cross-sectional area of transom stern below the load waterline	m^{2}
A_{V}	AV	Area exposed to wind	Area of portion of ship above waterline projected normally to the direction of relative wind	m^{2}
A_{w}	AW	Area of water-plane		m^{2}
$\mathrm{A}_{\text {WA }}$	AWA	Area of water-plane aft of midship		m_{2}
$\mathrm{A}_{\text {WF }}$	AWF	Area of water-plane forward of midship		m^{2}
A_{X}	AX	Area of maximum transverse section		m^{2}
B	B	Beam or breadth, moulded, of ships hull		m
B_{M}	BM	Breadth, moulded of midship section at design water line		m

| ITTC Symbols | | Ships in General
 Geometry and Hydrostatics
 Hull Geometry | 8 |
| :--- | :--- | :--- | :--- | ---: |
| Version 1996 | | | |

ITTC S Version		$\begin{aligned} & 1 \\ & 1.2 \\ & \mathbf{1 . 2 . 1} \\ & \hline \end{aligned}$	Ships in General Geometry and Hydrostatics Hull Geometry	9
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
L_{R}	LRU	Length of run	From section of maximum area or after end of parallel middle body to waterline termination or other designated point of the stern	m
$\mathrm{L}_{\text {wL }}$	LWL	Length of waterline		m
L_{FS}	LFS	Frame spacing	used for structures	m
$\mathrm{L}_{\text {SS }}$	LSS	Station spacing		m
S	S, AWS	Area of wetted surface		m^{2}
t	TT	Taylor tangent of the area curve	The intercept of the tangent to the sectional area curve at the bow on the midship ordinate	1
T, d	T	Draft, moulded, of ship hull		m
$\mathrm{T}_{\mathrm{A}}, \mathrm{d}_{\mathrm{A}}$	TA, TAP	Draft at aft perpendicular		m
T_{AD}	TAD, TAPD	Design draft at aft perpendicular		m
$\mathrm{T}_{\mathrm{F}}, \mathrm{d}_{\mathrm{F}}$	TF, TFP	Draft at forward perpendicular		m
T_{FD}	TFD, TFPD	Design draft at forward perpendicular		m
T_{H}	THUL	Draft of the hull	Maximum draft of the hull without keel or skeg	m
$\mathrm{T}_{\mathrm{M}}, \mathrm{d}_{\mathrm{M}}$	TM, TMS	Draft at midship	$\left(\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{F}}\right) / 2$ for rigid bodies with straight keel	m
T_{MD}	TMD, TMSD	Design draft at midship	$\left(\mathrm{T}_{\mathrm{AD}}+\mathrm{T}_{\mathrm{FD}}\right) / 2$ for rigid bodies	m
T_{T}	TTR	Immersion of transom	Vertical depth of trailing edge of boat at keel below water surface level	m
∇, V	DISPVOL	Displacement volume	$\Delta /(\rho \mathrm{g})=\nabla_{\mathrm{BH}}+\nabla_{\mathrm{AP}}$	m^{3}
$\nabla_{\text {BH }}$	DISPVBH	Displacement volume of bare hull	$\Delta_{\text {BH }} /(\rho \mathrm{g})$	m^{3}
$\nabla_{\text {AP }}$	DISPVAP	Displacement volume of appendages	$\Delta_{\text {AP }} /(\rho \mathrm{g})$	m^{3}

ITTC Version	ymbols 1996	$\begin{aligned} & 1 \\ & 1.2 \\ & \mathbf{1 . 2 . 1} \end{aligned}$	Ships in General Geometry and Hydrostatics Hull Geometry	10
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
Δ	DISPF	Displacement force (buoyancy)	$\mathrm{g} \rho \nabla$	N
$\Delta_{\text {BH }}$	DISPFBH	Displacement force (buoyancy) of bare hull	$\mathrm{g} \rho \nabla_{\text {BH }}$	N
$\Delta_{\text {AP }}$	DISPFAP	Displacement force (buoyancy) of appendages	$\mathrm{g} \rho \nabla_{\mathrm{AP}}$	N
λ	SC	Linear scale of ship model	$\begin{aligned} \lambda & =\mathrm{L}_{\mathrm{S}} / \mathrm{L}_{\mathrm{M}}=\mathrm{B}_{\mathrm{S}} / \mathrm{B}_{\mathrm{M}} \\ & =\mathrm{T}_{\mathrm{S}} / \mathrm{T}_{\mathrm{M}} \end{aligned}$	1
1.2.1.2	Derived Quanti			
$\mathrm{B}^{\text {C }}$	CIRCB	R.E. Froude's breadth coefficient	B $/ \nabla^{1 / 3}$	1
$\mathrm{C}_{\text {B }}$	CB	Block coefficient	$\nabla /($ L B T)	1
$\mathrm{C}_{\text {IL }}$	CWIL	Coefficient of inertia of waterplane, longitudinal	12 L / ($\mathrm{B} \mathrm{L}^{3}$)	1
$\mathrm{C}_{\text {IT }}$	CWIT	Coefficient of inertia of waterplane, transverse	$12 \mathrm{I}_{\mathrm{T}} /\left(\mathrm{B}^{3} \mathrm{~L}\right)$	1
C_{M}	CMS	Midship section coefficient (midway between forward and aft perpendiculars)	$\mathrm{A}_{\mathrm{M}} /(\mathrm{B} \mathrm{T})$	1
C_{P}	CPL	Longitudinal prismatic coefficient	$\nabla /\left(\mathrm{A}_{\mathrm{X}} \mathrm{L}\right)$ or $\nabla /\left(\mathrm{A}_{\mathrm{M}} \mathrm{L}\right)$	1
$\mathrm{C}_{\text {PA }}$	CPA	Prismatic coefficient, afterbody	$\begin{aligned} & \nabla_{\mathrm{A}} /\left(\mathrm{A}_{\mathrm{x}} \mathrm{~L} / 2\right) \text { or } \\ & \nabla_{\mathrm{A}} /\left(\mathrm{A}_{\mathrm{M}} \mathrm{~L} / 2\right) \end{aligned}$	1
$\mathrm{C}_{\text {PE }}$	CPE	Prismatic coefficient, entrance	$\begin{aligned} & \nabla_{\mathrm{E}} /\left(\mathrm{A}_{\mathrm{X}} \mathrm{~L}_{\mathrm{E}}\right) \text { or } \\ & \nabla_{\mathrm{E}} /\left(\mathrm{A}_{\mathrm{M}} \mathrm{~L}_{\mathrm{E}}\right) \end{aligned}$	1
$\mathrm{C}_{\text {PF }}$	CPF	Prismatic coefficient forebody	$\begin{aligned} & \nabla_{\mathrm{F}} /\left(\mathrm{A}_{\mathrm{X}} \mathrm{~L} / 2\right) \text { or } \\ & \nabla_{\mathrm{F}} /\left(\mathrm{A}_{\mathrm{M}} \mathrm{~L} / 2\right) \end{aligned}$	1
$\mathrm{C}_{\text {PR }}$	CPR	Prismatic coefficient, run s. Remark . 2	$\begin{aligned} & \nabla_{\mathrm{R}} /\left(\mathrm{A}_{\mathrm{X}} \mathrm{~L}_{\mathrm{R}}\right) \text { or } \\ & \nabla_{\mathrm{R}} /\left(\mathrm{A}_{\mathrm{M}} \mathrm{~L}_{\mathrm{R}}\right) \end{aligned}$	1
$\mathrm{C}_{\text {S }}$	CS	Wetted surface coefficient	$\mathrm{S} /(\mathrm{\nabla} \mathrm{~L})^{1 / 2}$	1
C_{vP}	CVP	Prismatic coefficient vertical	$\nabla /\left(\mathrm{A}_{\mathrm{w}} \mathrm{T}\right)$	1
$\mathrm{C}_{\text {wA }}$	CWA	Water plane area coefficient, aft	$\mathrm{A}_{\mathrm{wA} /(\mathrm{BL} / 2)}$	1
$\mathrm{C}_{\text {WF }}$	CWF	Water plane area coefficient, forward	$\mathrm{A}_{\mathrm{WF}} /(\mathrm{BL} / 2)$	1

ITTC Symbols		1.2 1.2 Version $\mathbf{1 9 9 6}$		Ships in General Geometry and Hydrostatics Hull Geometry
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

1.2.1.4 Remarks

. 1 Bulbous Bows

Below the load water line the stem contour sometimes recedes aft of the fore perpendicular before projecting forward to define the outline of the ram or the fore end of the bulb. In such instances this area should be calculated using as datum the aftermost vertical tangent to the contour instead of the fore perpendicular.

. 2 Reference Quantities

The prismatic coefficient should generally be based upon maximum section area rather than on midsection area, as in the 1960 Committee Report, but it should be clearly stated which area has been used. Whatever ship length considered appropriate may be used for this end and another coefficient, but this length should be clearly indicated and stated.

ITTC Symbols		1	Ships in General	
Geometry and Hydrostatics				
Version $\mathbf{1 9 9 6}$		$\mathbf{1 . 2}$	$\mathbf{1 3}$	
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

1.2.2 Propulsor Geometry

1.2.2.1 Screw Propellers

A_{D}	AD	Developed blade area	Developed blade area of a screw propeller outside the boss or hub	m^{2}
$\mathrm{A}_{\text {E }}$	AE	Expanded blade area	Expanded blade area of a screw propeller outside the boss or hub	m^{2}
A_{0}	AO	Disc Area	$\pi \mathrm{D}^{2} / 4$	m^{2}
A_{p}	AP	Projected blade area	Projected blade area of a screw propeller outside the boss or hub	m^{2}
a_{D}	ADR	Developed blade area ratio	$\mathrm{A}_{\mathrm{D}} / \mathrm{A}_{0}$	1
a_{E}	ADE	Expanded blade area ratio	$\mathrm{A}_{\mathrm{D}} / \mathrm{A}_{0}$	1
a_{P}	ADP	Projected blade area ratio	$\mathrm{A}_{\mathrm{D}} / \mathrm{A}_{0}$	1
c	LCH	Chord length		m
c_{m}	CHME	Mean chord length	The expanded or developed area of a propeller blade divided by the span from the hub to the tip	m
$\mathrm{c}_{\text {S }}$	CS	Skew displacement	The displacement between middle of chord and the blade reference line. Positive when middle chord is at the trailing side regarding the blade reference line	m
d_{h}	DH	Boss or hub diameter	$2 \mathrm{r}_{\mathrm{h}}$	m
D	DP	Propeller diameter		m
f	FBP	Camber of blade profile		m
G_{z}	GAP	Gap between the propeller blades	$2 \pi \mathrm{r} \sin (\phi) / \mathrm{z}$	m

ITTC S Version		$\begin{aligned} & 1 \\ & 1.2 \\ & 1.2 .2 \end{aligned}$	Ships in General Geometry and Hydrostatics Propulsor Geometry	14
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
h_{O}	HO	Immersion	The depth of submergence of the propeller measured vertically from the propeller center to the free surface	m
$\mathrm{H}_{\text {TC }}$	HTC	Hull tip clearance	Distance between the propeller sweep circle and the hull	m
$\mathrm{i}_{\text {G }}$	RAKG	Rake	The displacement from the propeller plane to the generator line in the direction of the shaft axis. Aft displacement is positive rake.	m
$\mathrm{i}_{\text {S }}$	RAKS	Axial displacement, skewinduced	The axial displacement of a blade section which occurs when the propeller is skewed. Aft displacement is positive rake	m
i_{T}	RAKT	Axial displacement, total	The axial displacement of the blade reference line from the propeller plane $\mathrm{i}_{\mathrm{G}}+\mathrm{i}_{\mathrm{S}}=\mathrm{c}_{\mathrm{S}} \sin \phi$ Positive direction is aft.	m
$\mathrm{N}_{\text {PR }}$	NPR	Number of propellers		1
p	PDR	Pitch ratio	P / D	1
P	PITCH	Propeller pitch in general		m
r	RL	Blade section radius		m
r_{h}	RH	Hub radius		m
R	RDP	Propeller radius		m
t	TM	Blade section thickness		m
t_{0}	TO	Thickness on axis of propeller blade	Thickness of propeller blade as extended down to propeller axis	m
$\mathrm{x}_{\text {B }}$	XBDR	Boss to diameter ratio	$\mathrm{d}_{\mathrm{h}} / \mathrm{D}$	
X_{p}	XP	Longitudinal propeller position	Distance of propeller center forward of the after perpendicular	m

ITTC S Version		$\begin{aligned} & 1 \\ & 1.2 \\ & 1.2 .2 \end{aligned}$	Ships in General Geometry and Hydrostatics Propulsor Geometry	15
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
y_{p}	YP	Lateral propeller position	Transverse distance of wing propeller center from middle line	m
Z, z	NPB	Number of propeller blades		1
Z_{p}	ZP	Vertical propeller position	Height of propeller center above base line	m
$\theta_{\text {s }}$	TETS	Skew angle	The angular displacement about the shaft axis of the reference point of any blade section relative to the generator line measured in the plane of rotation. It is positive when opposite to the direction of ahead rotation	rad
θ	RAKA	Angle of rake		rad
$\theta_{\text {EXT }}$	TEMX	Skew angle extent	The difference between maximum and minimum local skew angle	rad
ϕ	PHIP	Pitch angle of screw propeller	$\operatorname{arctg}(\mathrm{P} /(2 \pi \mathrm{R})$)	1
$\phi_{\text {F }}$	PHIF	Pitch angle of screw propeller measured to the face line		1
ψ	PSI	Propeller axis angle	Angle between horizontal plane and propeller shaft axis	rad
$\tau_{\text {b }}$		Blade thickness ratio	t_{0} / D	1

ITTC Symbols		1.2	Ships in General Geometry and Hydrostatics Propulsor Geometry	16
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
1.2.2.2 Ducts				
$\mathrm{A}_{\text {DEN }}$	ADEN	Duct entry area		m^{2}
$\mathrm{A}_{\text {DEX }}$	ADEX	Duct exit area		m^{2}
d_{D}	CLEARD	Propeller tip clearance	Clearance between propeller tip and inner surface of duct	m
f_{D}	FD	Camber of duct profile		m
L_{D}	LD	Duct length		m
$\mathrm{L}_{\text {DEN }}$	LDEN	Duct entry part length	Axial distance between leading edge of duct and propeller plane	m
$\mathrm{L}_{\text {DEX }}$	LDEX	Duct exit length	Axial distance between leading edge of duct and propeller plane	m
t_{D}	TD	Thickness of duct profile		m
$\alpha_{\text {D }}$	AD	Duct profile-shaft axis angle	Angle between nose-tail line of duct profile and propeller shaft	rad
$\beta_{\text {D }}$	BD	Diffuser angle of duct	Angle between inner duct tail line and propeller shaft	rad

1.2.2.3 Waterjets (Future location: see Section 5.1, pp 130-131 of Version 1996)

ITTC Symbols			1	Ships in General Geometry and Hydrostatics	
			1.2		
Version 1996			1.2.3	Appendage Geometry	17
ITTC	Computer	Name		Definition or	SI-
Symbol	Symbol			Explanation	Unit

1.2.3 Appendage Geometry

Related information may be found in Section 3.3.3 on Lifting Surfaces.

1.2.3.1 Basic Quantities

A_{C}	AC	Area under cut-up		m^{2}
$\mathrm{A}_{\text {FB }}$	AFB	Area of bow fin		m^{2}
$\mathrm{A}_{\text {FR }}$	AFR	Frontal area	Projected frontal area of an appendage	m^{2}
$\mathrm{A}_{\text {RF }}$	AF	Flap area		m^{2}
A_{R}	ARU	Rudder area	Area of the rudder, including flap	m^{2}
$\mathrm{A}_{\mathrm{R} X}$	ARX	Area of the fixed part of rudder		m^{2}
$\mathrm{A}_{\text {RP }}$	ARP	Area of rudder in the propeller race		m^{2}
$\mathrm{A}_{\text {RT }}$	ART	Total rudder area	$\mathrm{A}_{\mathrm{RX}}+\mathrm{A}_{\text {RF }}$	m^{2}
$\mathrm{A}_{\text {FS }}$	AFS	Area of stern fin		m^{2}
$\mathrm{A}_{\text {SK }}$	ASK	Skeg area		m^{2}
$\mathrm{A}_{\text {WBK }}$	AWBK	Wetted surface area of bilge keels		m^{2}
c	CH	Chord length of an aerofoil or a hydrofoil		m
c_{m}	CHME	Mean chord length	$\mathrm{A}_{\text {RT }} / \mathrm{S}$	m
c_{r}	CHRT	Chord length at the root		m
c_{t}	CHTP	Chord length at the tip		m
f	FM	Camber of an aerofoil or a hydrofoil	Maximum separation of median and nose-tail line	m
L_{F}	LF	Length of flap or wedge	Measured in direction parallel to keel	m
t	TMX	Maximum thickness of an aerofoil or a hydrofoil	Measured normal to mean line	m
$\delta_{\text {FB }}$	ANFB	Bow fin angle	s. Remark . 1	rad
$\delta_{\text {FS }}$	ANFS	Stern fin angle	s. Remark . 1	rad

ITTC S Version		$\begin{aligned} & 1 \\ & 1.2 \\ & 1.2 .3 \end{aligned}$	Ships in General Geometry and Hydrostatics Appendage Geometry	18
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
$\delta_{\text {F }}$	DELFS	Flap angle (general)	Angle between the planing surface of a flap and the bottom before the leading edge	rad
$\delta_{\text {w }}$	DELWG	Wedge angle	Angle between the planing surface of a wedge and the bottom before the leading edge	rad
$\delta_{\text {FR }}$	ANFR	Flanking rudder angle	s. Remark . 1	rad
$\delta_{\text {FRin }}$	ANFRIN	Assembly angle of flanking rudders	Initial angle set up during the assembly as zero angle of flanking rudders	rad
$\delta_{\text {R }}$	ANRU	Rudder angle	s. Remark . 1	rad
$\delta_{\text {RF }}$	ANRF	Rudder-flap angle	s. Remark . 1	rad
$\lambda_{\text {R }}$	TARU	Rudder taper	$c_{\text {t }} / \mathrm{c}_{\mathrm{r}}$	1
$\lambda_{\text {FR }}$	TAFR	Flanking rudder taper		1
$\Lambda_{\text {R }}$	ASRU	Rudder aspect ratio	$S^{2} / A_{\text {RT }}$	1
$\Lambda_{\text {FR }}$	ASRF	Flanking rudder aspect ratio		1

1.2.3.2 Identifiers for Appendages

BK	Bilge keel
BS	Bossing
FB	Bow foil
FR	Flanking rudder
FS	Stern foil
KL	Keel
RU	Rudder
RF	Rudder flap
SA	Stabilizer
SH	Shafting
SK	Skeg
ST	Strut
TH	Thruster

$\left.\begin{array}{lllllr}\text { ITTC Symbols } & & \text { 1 } & \text { Ships in General } \\ \text { Geometry and Hydrostatics }\end{array}\right)$

1.2.3.3 Remarks

. 1 Sign Convention

Positive angles are defined as clockwise when viewed from the center of axes along the appropriate body axis, i. e. nose-up fin angles and port rudder angles are positive. See also Section 3.1.1 Coordinates and Space Related Quantities.

ITTC Symbols		1	Ships in General Geometry and Hydrostatics	
Version $\mathbf{1 9 9 6}$		$\mathbf{1 . 2}$	$\mathbf{2 1}$	
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

Z \quad ZRA | Intersection of righting arm |
| :--- |
| with line of action of the |
| center of buoyancy |

1.2.4.2 Static Stability levers

$\overline{\mathrm{AB}}$	XAB	Longitudinal center of buoyancy from aft perpendicular	Distance of center of buoyancy from aft perpendicular
$\overline{\mathrm{AF}}$	XAF	Distance of center of flotation from after perpendicular	
$\overline{\mathrm{AG}}_{\mathrm{L}}$	XAG	Longitudinal center of gravity from aft perpendicular	Distance of center of gravity from aft perpendicular
$\overline{\mathrm{AG}}_{\mathrm{T}}$	YAG	Transverse distance from assumed center of gravity A, to actual centre of gravity G	
$\overline{\mathrm{AG}}_{\mathrm{v}}$	ZAG	Vertical distance from assumed center of gravity A, to actual center of gravity G	
$\overline{\mathrm{AZ}}$	YAZ	Righting arm based on horizontal distance from assumed center of gravity A, to Z	Generally tabulated in cross curves of stability
$\overline{\mathrm{BM}}$	ZBM	Transverse metacenter above center of buoyancy	Distance from the center of buoyancy B to the transverse metacenter M. $\overline{\mathrm{BM}}=\mathrm{I}_{\mathrm{T}} / \nabla=\overline{\mathrm{KM}}-\overline{\mathrm{KB}}$
$\overline{\mathrm{BM}}_{\mathrm{L}}$	ZBML	Longitudinal metacenter above center of buoyancy	$\overline{\mathrm{KM}}_{\mathrm{L}}-\overline{\mathrm{KB}}$
$\overline{\mathrm{FB}}$	XFB	Longitudinal center of buoyancy, L_{CB}, from forward perpendicular	Distance of center of buoyancy from forward perpendicular
$\overline{\mathrm{FF}}$	XFF	Longitudinal center of floatation, L_{CF}, from forward perpendicular	Distance of center of flotation from forward perpendicular

ITTC Sym Version 19		$\begin{aligned} & 1 \\ & 1.2 \\ & 1.2 .4 \end{aligned}$	Ships in General Geometry and Hydrostatics Hydrostatics	22
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
$\overline{\mathrm{FG}}$	XFG	Longitudinal center of gravity from forward perpendicular	Distance of center of gravity from forward perpendicular	m
$\overline{\mathrm{GG}_{\mathrm{H}}}$	GGH	Horizontal stability lever caused by a weight shift or weight addition		m
$\overline{\mathrm{GG}_{\mathrm{L}}}$	GGL	Longitudinal stability lever caused by a weight shift or weight addition		m
$\overline{\mathrm{GG}_{1}}, \overline{\mathrm{GG}_{\mathrm{V}}}$	GG1, GGV	Vertical stability lever caused by a weight shift or weight addition	$\overline{\mathrm{KG}_{1}}=\overline{\mathrm{KG}_{0}}+\overline{\mathrm{GG}_{1}}$	m
$\overline{\mathrm{GM}}$	GM	Transverse metacentric height	Distance of center of gravity to the metacenter $\overline{\mathrm{KM}}-\overline{\mathrm{KG}}$	m
$\overline{\mathrm{GM}}_{\mathrm{Eff}}$	GMEFF	Effective transverse metacentric height	$\overline{\mathrm{GM}}$ corrected for free surface and/or free communication effects	
$\overline{\mathrm{GM}}_{\mathrm{L}}$	GML	Longitudinal center of metacentric height	Distance from the center of gravity G to the longitudinal metacenter M_{L} $\overline{\mathrm{KM}}_{\mathrm{L}}-\overline{\mathrm{KG}}^{2}$	m
$\overline{\mathrm{GZ}}$	GZ	Righting arm or lever	$\begin{array}{r} =\overline{\mathrm{AZ}}-\overline{\mathrm{AG}_{\mathrm{V}}} \sin \phi \\ -\overline{\mathrm{AG}}_{\mathrm{T}} \cos \phi \end{array}$	m
$\overline{\mathrm{GZ}}_{\mathrm{MAX}}$	GZMAX	Maximum righting arm or lever		
$\overline{\mathrm{KA}}$	ZKA	Assumed center of gravity above moulded base or keel	Distance from the assumed center of gravity A to the moulded base or keel K	m
$\overline{\mathrm{KB}}$	ZKB	Center of buoyancy above moulded base or keel	Distance from the center of buoyancy B to the moulded base or keel K	m
$\overline{\mathrm{KG}}$	ZKG	Center of gravity above moulded base or keel	Distance from center of gravity G to the moulded base or keel K	m

ITTC S Version	ymbols 1996	$\begin{aligned} & 1 \\ & 1.2 \\ & \mathbf{1 . 2 . 4} \end{aligned}$	Ships in General Geometry and Hydrostatics Hydrostatics	23
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
$\overline{\mathrm{Kg}}$	ZKAG	Vertical center of gravity of added or removed weight above moulded base or keel	Distance from center of gravity, g, to the moulded base or keel K	m
$\overline{\mathrm{KM}}$	ZKM	Transverse metacenter above moulded base or keel	Distance from the transverse metacenter M to the moulded base or keel K	m
$\overline{\mathrm{KM}}_{\mathrm{L}}$	ZKML	Longitudinal metacenter above moulded base or keel	Longitudinal M_{L}	m
1	XTA	Longitudinal trimming arm	$\mathrm{X}_{\mathrm{cb}}-\mathrm{X}_{\mathrm{cg}}$	m
t	YHA	Transverse heeling arm		m
1.2.4.3 Various Quantities				
$\mathrm{C}_{\text {MTL }}$	CMTL	Longitudinal trimming coefficient	trimming moment divided by change in trim which approximately equals $\overline{\mathrm{BM}}_{\mathrm{L}} / \mathrm{L}$	1
f	FREB	Freeboard	From the freeboard markings to the freeboard deck, according to official rules	m
M	MS	Moment of ship stability in general	Other moments such as those of capsizing, heeling, etc. will be represented by M_{S} with additional subscripts as appropriate	NM
m	MA	Ship mass	W/g	kg
$\mathrm{M}_{\text {TC }}$	MTC	Moment to change trim one centimeter		$\mathrm{Nm} / \mathrm{cm}$
$\mathrm{M}_{\text {TM }}$	MTM	Moment to trim one meter	$\Delta \mathrm{C}_{\text {MTL }}$	Nm/m
t_{s}, t_{KL}	TRIM	Static trim	$\mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{F}}-\mathrm{d}_{\mathrm{KL}}$	m
W	WT	Ship weight	mg	N
$\mathrm{z}_{\text {SF }}$	ZSF	Static sinkage at FP	Caused by loading	m
$\mathrm{z}_{\text {SA }}$	ZSA	Static sinkage at AP	Caused by loading	m
z_{S}	ZS	Mean static sinkage	$\left(\mathrm{z}_{\mathrm{SF}}+\mathrm{z}_{\mathrm{SA}}\right) / 2$	m
δ	D	Finite increment in...	Prefix to other symbol	
$\delta \mathrm{t}_{\mathrm{KL}}$	DTR	Change in static trim		m

ITTC Version		$\begin{aligned} & 1 \\ & 1.2 \\ & 1.2 .4 \end{aligned}$	Ships in General Geometry and Hydrostatics Hydrostatics	24
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
Δ	DISPF	Displacement (buoyant) force	$\mathrm{g} \rho \nabla$	N
∇	DISPVOL	Displacement volume	$\Delta /(\mathrm{\rho g})$	m^{3}
$\theta_{\text {s }}$	TRIMS	Static trim angle	$\tan ^{-1}\left(\left(\mathrm{z}_{\mathrm{SF}}-\mathrm{Z}_{\mathrm{SA}}\right) / \mathrm{L}\right)$	rad
μ	PMVO	Volumetric permeability	The ratio of the volume of water entering a compartment to the volume of the compartment	1
ϕ	HEELANG	Heel angle		
ϕ_{F}	HEELANGF	Heel angle at flooding		

1.2.4.4 Remarks

. 1 Other Notation

Alternatively, the position of the center of buoyancy B may be expressed in terms of the coordinate axes with the appropriate suffix e.g. $\mathrm{X}_{\mathrm{B}}, \mathrm{Y}_{\mathrm{B}}, \mathrm{Z}_{\mathrm{B}}$ the position of other items such as the center of gravity, G , metacenter M and center of floatation F could also be treated in the same way.

ITTC Symbols
Version 1996
ITTC Computer Name Definition or SI-
Symbol Symbol

1.3 Resistance and Propulsion

1.3.1 Hull Resistance (see also Section 3.4.1 on Waves)

1.3.1.1 Basic Quantities

| m | BLCK | Blockage parameter | Maximum transverse area of
 model ship divided by tank
 cross section area |
| :--- | :--- | :--- | :--- |$\quad 1$

R_{AA}	RAA	Air or wind resistance
R_{AP}	RAP	Appendage resistance
R_{AR}	RAR	Roughness resistance
R_{C}	RC	Resistance corrected for difference in temperature between resistance and self-propulsion tests
R_{F}	RF	Frictional resistance of a body
R_{FO}	RFO	Frictional resistance of a flat plate

R_{P}	RP	Pressure resistance	Due to the normal stresses over the surface of a body	N
R_{VP}	RVP	Viscous pressure resistance	Due to normal stress related to viscosity and turbulence	N
R_{R}	RR	Residuary resistance	$\mathrm{R}_{\mathrm{T}}-\mathrm{R}_{\mathrm{F}}$ or $\mathrm{R}_{\mathrm{T}}-\mathrm{R}_{\mathrm{FO}}$	N
$\mathrm{R}_{\text {RH }}$	RRBH	Residuary resistance of the bare hull		N
$\mathrm{R}_{\text {S }}$	RS	Spray resistance	Due to generation of spray	N
R_{T}	RT	Total resistance	Total towed resistance	N
$\mathrm{R}_{\text {TBH }}$	RTBH	Total resistance of bare hull		N
R_{V}	RV	Total viscous resistance	$\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{VP}}$	N
R_{W}	RW	Wavemaking resistance	Due to formation of surface	N

ITTC Symbols
Version 1996

ITTC	Computer	Name	Definition or

Symbol Symbol

R_{WB}	RWB	Wavebreaking resistance	Associated with the break down of the bow wave	N
R_{WP}	RWP	Wave pattern resistamce		N
S	S	Wetted surface area, underway	$\mathrm{S}_{\mathrm{BH}}+\mathrm{S}_{\text {AP }}$	m^{2}
S_{0}	S0	Wetted surface area, at rest	$\mathrm{S}_{\text {BH0 }}+\mathrm{S}_{\text {AP0 }}$	m^{2}
$\mathrm{S}_{\text {AP }}$	SAP	Appendage wetted surface area, underway		m^{2}
$\mathrm{S}_{\text {AP0 }}$	SAP0	Appendage wetted surface area, at rest		m^{2}
$\mathrm{S}_{\text {BH }}$	SBH	Bare Hull wetted surface area, underway		m^{2}
$\mathrm{S}_{\text {вно }}$	SBH0	Bare Hull wetted surface area, at rest		m^{2}
$\Delta \mathrm{C}_{\mathrm{F}}$	DELCF	Roughness allowance	(obsolete, see C_{A})	1
V	V	Speed of the model or the ship		m/s
V_{KN}	VKN	Speed in knots		
V_{R}	VR	Wind velocity, relative		m / s
Z_{VF}	ZVF	Running sinkage at FP		m
z_{VA}	ZVA	Running sinkage at AP		m
Z_{VM}	ZVM	Mean running sinkage	$\left(\mathrm{z}_{\mathrm{VF}}+\mathrm{z}_{\mathrm{VA}}\right) / 2$	m
η	EW	Wave Elevation	see 3.4.1	m
$\theta_{\mathrm{v}}, \theta_{\mathrm{D}}$	TRIMV	Running (dynamic) trim angle	$\tan ^{-1}\left(\left(\mathrm{z}_{\mathrm{VF}}-\mathrm{Z}_{\mathrm{VA}}\right) / \mathrm{L}\right)$	1
τ_{w}	LSF, TAUW	Local skin friction	see 3.3.4	$\mathrm{N} / \mathrm{m}{ }^{2}$

ITTC Symbols		$\begin{aligned} & 1 \\ & 1.3 \\ & \text { 1.3.1 } \\ & \hline \end{aligned}$	Ships in General Resistance and Propulsion Hull Resistance	27
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
1.3.1.2 Derived Quantities				
CA	CA	Incremental resistance coefficient for model ship correlation	$\mathrm{R}_{\mathrm{A}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {AA }}$	CAA	Air or wind resistance coefficient	$\mathrm{R}_{\mathrm{AA}} /\left(\mathrm{A}_{\mathrm{V}} \mathrm{q}_{\mathrm{R}}\right)$	1
C_{D}	CD	Drag coefficient	$\mathrm{D} /$ (S q)	1
C_{F}	CF	Frictional resistance coefficient of a body	$\mathrm{R}_{\mathrm{F}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {FO }}$	CFO	Frictional resistance coefficient of a corresponding plate	$\mathrm{R}_{\mathrm{FO}} /(\mathrm{Sq})$	1
C_{p}	CP	Local pressure coefficient		1
$\mathrm{C}_{\text {PR }}$	CPR	Pressure resistance coefficient, including wave effect	$\mathrm{R}_{\mathrm{P}} /(\mathrm{Sq}$)	1
$\mathrm{C}_{\text {PV }}$	CPV	Viscous pressure resistance coefficient	$\mathrm{R}_{\mathrm{PV}} /(\mathrm{Sq})$	1
C_{R}	CR	Residuary resistance coefficient	$\mathrm{R}_{\mathrm{R}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {S }}$	CSR	Spray resistance coefficient	$\mathrm{R}_{\mathrm{S}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {T }}$	CT	Total resistance coefficient	$\mathrm{R}_{\mathrm{T}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {TL }}$	CTLT	Telfer's resistance coefficient	$\mathrm{gRL} /\left(\Delta \mathrm{V}^{2}\right)$	1
$\mathrm{C}_{\text {TQ }}$	CTQ	Qualified resistance coefficient	$\mathrm{C}_{\mathrm{TV}} /\left(\eta_{\mathrm{H}} \eta_{\mathrm{R}}\right)$	1
$\mathrm{C}_{\text {Tv }}$	CTVOL	Resistance displacement	$\mathrm{R}_{\mathrm{T}} /\left(\nabla^{2 / 3} \mathrm{q}\right)$	1
C_{V}	CV	Total viscous resistance coefficient	$\mathrm{R}_{\mathrm{V}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {w }}$	CW	Wavemaking resistance coefficient	$\mathrm{R}_{\mathrm{w}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {WP }}$	CWP	Wave pattern resistance coefficient, by wave analysis		1
$\mathrm{C}^{\text {C }}$	CIRCC	R.E. Froude's resistance coefficient	$1000 \mathrm{R} /\left(\Delta_{(}\left(\mathrm{K}^{\mathrm{C}}\right)^{2}\right)$	1

ITTC S Version	ymbols 1996	$\begin{aligned} & 1 \\ & \text { 1.3 } \\ & \text { 1.3.1 } \\ & \hline \end{aligned}$	Ships in General Resistance and Propulsion Hull Resistance	28
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
$\mathrm{F}^{\text {c }}$	CIRCF	R.E. Froude's frictional resistance coefficient	$1000 \mathrm{R}_{\mathrm{F}} /\left(\Delta\left(\mathrm{K}^{\mathrm{C}}\right)^{2}\right)$	1
f	FC	Friction coefficient	Ratio of tangential force to normal force between two sliding bodies	1
k	K	Three dimensional form factor on flat plate friction	$\left(\mathrm{C}_{\mathrm{V}}-\mathrm{C}_{\mathrm{FO}}\right) / \mathrm{C}_{\mathrm{FO}}$	1
$\mathrm{k}(\theta)$	WDC	Wind direction coefficient	$\mathrm{C}_{\mathrm{AA}} / \mathrm{C}_{\text {AA } 0}$	1
$\mathrm{K}^{\text {c }}$	CIRCK	R.E. Froude's speed displacement coefficient	$\begin{aligned} & (4 \pi)^{1 / 2} \mathrm{~F}_{\mathrm{nV}} \text { or } \\ & (4 \pi / \mathrm{g})^{1 / 2} \mathrm{~V}_{\mathrm{K}} / \nabla^{1 / 6} \end{aligned}$	
K_{R}	KR	Resistance coefficient corresponding to $\mathrm{K}_{\mathrm{Q}}, \mathrm{K}_{\mathrm{T}}$	$\mathrm{R} /\left(\rho \mathrm{D}^{4} \mathrm{n}^{2}\right)$	1
q	PD, EK	Dynamic pressure, density of kinetic flow energy,	$\begin{aligned} & \rho \mathrm{V}^{2} / 2 \\ & \text { see 3.3.2 } \end{aligned}$	Pa
q_{R}	PDWR, EKWR	Dynamic pressure based on apparent wind	$\begin{aligned} & \rho \mathrm{V}_{\mathrm{WR}}{ }^{2} / 2 \\ & \text { see } 3.4 .2 \end{aligned}$	Pa
$S^{\text {C }}$	CIRCS	R. E. Froude's wetted surface coefficient	$\mathrm{S} / \nabla^{2 / 3}$	1
ϵ	EPSG	Resistance-displacement ratio in general	R / Δ	1
$\epsilon_{\text {R }}$	EPSR	Residuary resistancedisplacement ratio	$\mathrm{R}_{\mathrm{R}} / \Delta$	1
1.3.1.3 Symbols for Attributes and Subscripts				
	FW	Fresh water		
	MF	Faired model data		
	MR	Raw model data		
	OW	Open water		
	SF	Faired full scale data		
	SR	Raw full scale data		
	SW	Salt water		

ITTC Symbols		$\mathbf{1}$	Ships in General	
		$\mathbf{1 . 3}$	Resistance and Propulsion	
Version	$\mathbf{1 9 9 6}$		$\mathbf{1 . 3 . 2}$	Ship Performance

1.3.2 Ship Performance

1.3.2.1 Basic Quantities

F_{D}	SFC	Skin friction correction in self propulsion test	Skin friction correction in a self propulsion test carried out at the ship selfpropulsion point	N
F_{P}	FP	Force pulling or towing a ship		N
F_{PO}	FPO	Pull during bollard test		N
n	N	Frequency, commonly rate of revolution		Hz
$\mathrm{P}_{\text {B }}$	PB	Brake power	Power delivered by prime mover	W
$\mathrm{P}_{\mathrm{D}}, \mathrm{P}_{\mathrm{P}}$	PD,PP	Delivered power, propeller power	Q ω	W
$\mathrm{P}_{\mathrm{E}}, \mathrm{P}_{\mathrm{R}}$	PE,PR	Effective power, resistance power	R V	W
P_{I}	PI	Indicated power	Determined from pressure measured by indicator	W
$\mathrm{P}_{\text {S }}$	PS	Shaft power	Power measured on the shaft	W
P_{T}	PTH	Thrust power	T V ${ }_{\text {A }}$	W
Q	Q	Torque	$\mathrm{P}_{\mathrm{D}} / \omega$	Nm
t_{v}	TV	Running trim		
V	V	Ship speed		m / s
$\mathrm{V}_{\text {A }}$	VA	Propeller advance speed	Equivalent propeller open water speed based on thrust or torque identity	m/s
Z_{V}	ZV	Running sinkage of model or ship		m
ω	V0,OMN	Angular shaft velocity	$2 \pi \mathrm{n}$	rad/s

ITTC Symbols
Version 1996

ITTC	$\begin{array}{l}\text { Computer } \\ \text { Symbol }\end{array}$
Symbol	Symber

a	RAUG	Resistance augment fraction	$\left(\mathrm{T}+\mathrm{F}_{\mathrm{p}}\right) / \mathrm{R}_{\mathrm{T}}-1$	1
$\mathrm{C}_{\text {ADM }}$	CADM	Admiralty coefficient	$\Delta^{2 / 3} V^{3} / P_{S}$	1
C_{DV}	CDVOL	Power-displacement coefficient	$\mathrm{P}_{\mathrm{D}} /\left(\rho \mathrm{V}^{3} \nabla^{2 / 3} / 2\right)$	1
C_{N}	CN	Trial correction for propeller rate of revolution at speed identity	$\mathrm{n}_{\mathrm{T}} / \mathrm{n}_{\mathrm{S}}$	1
C_{NP}	CNP	Trial correction for propeller rate of revolution at power identity	$\mathrm{P}_{\mathrm{DT}} / \mathrm{P}_{\mathrm{DS}}$	1
C_{P}	CDP	Trial correction for delivered power		1
K_{1}	C1	Ship model correlation factor for propulsive efficiency	$\eta_{\text {DS }} / \eta_{\text {DM }}$	1
K_{2}	C2	Ship model correlation factor for propeller rate revolution	$\mathrm{n}_{\mathrm{S}} / \mathrm{n}_{\mathrm{M}}$	1
$\mathrm{K}_{\text {AP }}$	KAP	Appendage correction factor	Scale effect correction factor for model appendage drag applied at the towing force in a self-propulsion test	1
S_{V}	SINKV	Sinkage, dynamic	Change of draft, fore and aft, divided by length	1
t_{v}	TRIMV	Trim, dynamic	Change of the trim due to dynamic condition, divided by length	1
t	THDF	Thrust deduction fraction	$1-\left(\mathrm{R}_{\mathrm{T}}-\mathrm{F}_{\mathrm{P}}\right) / \mathrm{T}$	1
w	WFT	Taylor wake fraction in general	$\left(\mathrm{V}-\mathrm{V}_{\mathrm{A}}\right) / \mathrm{V}$	1
w_{F}	WFF	Froude wake fraction	$\left(\mathrm{V}-\mathrm{V}_{\mathrm{A}}\right) / \mathrm{V}_{\mathrm{A}}$	1
w_{Q}	WFTQ	Taylor torque wake fraction	Propeller speed V_{A} determined from torque identity	1

ITTC Symbols
Version 1996
$\begin{array}{llll}\text { ITTC Computer Name } & \text { Definition or }\end{array}$
Symbol Symbol
w_{T}
$\Delta \mathrm{w} \quad$ DELW \quad Ship-model correlation factor for wake fraction
$\Delta \mathrm{w}_{\mathrm{C}} \quad$ DELWC \quad Ship-model correlation factor with respect to $\mathrm{w}_{\mathrm{T}, \mathrm{s}}$ method formula of ITTC 1978 method
x
$\beta \quad$ APSF
XLO
APSF
Load fraction in power prediction

Appendage scale effect factor

1.3.2.3 Efficiencies etc

$\eta_{\text {AP }}$	ETAAP	Appendage efficiency	$\mathrm{P}_{\text {EwoAP }} / \mathrm{P}_{\text {EwAP }}, \mathrm{R}_{\text {TBH }} / \mathrm{R}_{\mathrm{T}}$	1
$\eta_{\text {B }}$	ETAB, EFTP	Propeller efficiency behind ship	$\mathrm{P}_{\mathrm{T}} / \mathrm{P}_{\mathrm{D}}=\mathrm{TV}_{\mathrm{A}} /(\mathrm{Q} \omega)$	1
$\eta_{\text {D }}$	ETAD, EFRP	Propulsive efficiency or quasi-propulsive coefficient	$\mathrm{P}_{\mathrm{E}} / \mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\mathrm{R}} / \mathrm{P}_{\mathrm{P}}$	1
η_{G}	ETAG, EFGP	Gearing efficiency		1
$\eta_{\text {H }}$	ETAH, EFRT	Hull efficiency	$\begin{aligned} & \mathrm{P}_{\mathrm{E}} / \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{R}} / \mathrm{P}_{\mathrm{T}} \\ & =(1-\mathrm{t}) /(1-\mathrm{w}) \end{aligned}$	1
η_{M}	ETAM, EFSI	Mechanical efficiency	$\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{1}$ or $\mathrm{P}_{\mathrm{B}} / \mathrm{P}_{1}$	1
η_{o}	ETAO	Propeller open water efficiency		1
η_{R}	ETAR, EFRO	Relative rotative efficiency	$\eta_{\mathrm{B}} / \eta_{\mathrm{O}}$	1
$\eta_{\text {s }}$	ETAS, EFPS	Shafting efficiency	$\mathrm{P}_{\mathrm{D}} / \mathrm{P}_{\mathrm{S}}=\mathrm{P}_{\mathrm{P}} / \mathrm{P}_{S}$	1

$\left.\begin{array}{llllr}\text { ITTC Symbols } & & \text { 1 } & \text { Ships in General } \\ \text { Resistance and Propulsion }\end{array}\right)$

1.3.2.4 Remarks

. 1 Basic Quantities

Traditionally the basic concepts resistance and propeller advance speed are implicitely understood to have certain traditional operational, i. e. experimental interpretations, namely in terms of hull towing and propeller open water tests, respectively. Very clearly these are not the only possible interpretations. In many cases, where the traditional interpretations are not possible, as in the case of full scale ships under service conditions, or where they are not meaningful, as e. g. in the case of wake adapted propellers, more adequate conventional interpretations have to be agreed upon.

The traditional set of basic concepts for the ship performance analysis is incomplete. It does e. g. not allow for the separation of displacement and energy wakes, fundamental for the analysis of hull-propeller interaction.

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

1.3.3 Propulsor Performance

1.3.3.1 Basic Quantities

A_{0}	AO	Propeller disc area	$\pi \mathrm{D}^{2} / 4$	m^{2}
D	DP	Propeller diameter		m
n	FR	Propeller frequency of revolution		Hz
$\mathrm{k}_{\text {S }}$	KS	Roughness height of propeller blade surface		m
$\mathrm{q}_{\text {A }}$	QA	Dynamic pressure based on advance speed	$\begin{aligned} & \rho \mathrm{V}_{\mathrm{A}}^{2} / 2 \\ & \text { s. Remark . } 1 \end{aligned}$	Pa
q_{s}	QS	Dynamic pressure based on section advance speed	$\rho \mathrm{V}_{\mathrm{S}}{ }^{2} / 2$	Pa
Q_{S}	QSP	Spindle torque	About spindle axis of controllable pitch propeller $\mathrm{Q}_{\mathrm{S}}=\mathrm{Q}_{\mathrm{SC}}+\mathrm{Q}_{\mathrm{SH}}$ positive if it increases pitch	Nm
$\mathrm{Q}_{\text {SC }}$	QSPC	Centrifugal spindle torque		Nm
$\mathrm{Q}_{\text {SH }}$	QSPH	Hydrodynamic spindle torque		Nm
T	TH	Propeller thrust		N
T_{D}	THDU	Duct thrust		N
T_{P}	THP	Ducted propeller thrust		N
T_{T}	THT	Total thrust of a ducted propeller unit		N
$\mathrm{V}_{\text {A }}$	VA	Advance speed of propeller		m / s
V_{P}	VP	Mean axial velocity at propeller plane of ducted propeller		m / s
$\mathrm{V}_{\text {S }}$	VS	Section advance speed at 0.7 R	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{A}}^{2}+(0.7 \mathrm{R} \omega)^{2}\right)^{1 / 2} \\ & \text { s. Remark . } 2 \end{aligned}$	m/s
$\rho_{\text {P }}$	DNP	Propeller mass density		$\mathrm{kg} / \mathrm{m}^{3}$
ω	V0P	Propeller angular velocity	$2 \pi \mathrm{n}$	1/s

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

1.3.3.2 Derived Quantities

B_{P}	BP	Taylor's propeller coefficient based on delivered horse power	$n P_{D}^{1 / 2} / V_{A}^{2.5}$ with n is revs $/ \mathrm{min}$, P_{D} in horsepower, and V_{A} in knots (obsolete)	1
B_{U}	BU	Taylor's propeller coefficient based on thrust horsepower	$\mathrm{nP}_{\mathrm{T}}^{1 / 2} / \mathrm{V}_{\mathrm{A}}{ }^{2.5}$ with n is revs $/ \mathrm{min}$, P_{T} in horsepower, and V_{A} in knots (obsolete)	1
C_{P}	CPD	Power loading coefficient	$\mathrm{P}_{\mathrm{D}} /\left(\mathrm{A}_{\mathrm{P}} \mathrm{q}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}\right)$	1
$\mathrm{C}_{\mathrm{Q}^{*}}$	CQS	Torque index	$\mathrm{Q} /\left(\mathrm{A}_{\mathrm{P}} \mathrm{q}_{\mathrm{S}}\right)$	1
$\mathrm{C}_{\text {Th }}$	CTH	Thrust loading coefficient, energy loading coefficient	$\begin{aligned} & \mathrm{T} /\left(\mathrm{A}_{\mathrm{P}} \mathrm{q}_{\mathrm{A}}\right) \\ & =\left(\mathrm{T}_{\mathrm{P}} / \mathrm{A}_{\mathrm{P}}\right) / \mathrm{q}_{\mathrm{A}} \end{aligned}$	1
$\mathrm{C}_{\mathrm{T}^{*}}$	CTHS	Thrust index	$\mathrm{T} /\left(\mathrm{A}_{\mathrm{P}} \mathrm{q}_{\mathrm{s}}\right)$	1
J	JEI,	Propeller advance ratio	$\mathrm{V}_{\mathrm{A}} /(\mathrm{Dn})$	1
$\mathrm{J}_{\mathrm{A}}, \mathrm{J}_{\mathrm{H}}$	JA, JH	Apparent or hull advance ratio	$\mathrm{V} /(\mathrm{D} \mathrm{n})=\mathrm{V}_{\mathrm{H}} /(\mathrm{D} \mathrm{n})$	1
J_{P}	JP	Propeller advance ratio for ducted propeller	$\mathrm{V}_{\mathrm{P}} /(\mathrm{Dn})$	
J_{T}, J_{PT}	JT, JPT	Advance ratio of propeller determined from thrust identity		1
$\mathrm{J}_{\mathrm{Q}}, \mathrm{J}_{\mathrm{PQ}}$	JQ, JPQ	Advance ratio of propeller determined from torque identity		1
K_{P}	KP	Delivered power coefficient	$\mathrm{P}_{\mathrm{D}} /\left(\rho \mathrm{n}^{3} \mathrm{D}^{5}\right)=2 \pi \mathrm{~K}_{\mathrm{Q}}$	1
K_{Q}	KQ	Torque coefficient	$\mathrm{Q} /\left(\rho \mathrm{n}^{2} \mathrm{D}^{5}\right)$	1
$\mathrm{K}_{\text {Sc }}$	KSC	Centrifugal spindle torque coefficient	$\mathrm{Q}_{\mathrm{SC}} /\left(\rho_{\mathrm{P}} \mathrm{n}^{2} \mathrm{D}^{5}\right)$	1
$\mathrm{K}_{\text {SH }}$	KSH	Hydrodynamic spindle torque coefficient	$\mathrm{Q}_{\mathrm{SH}} /\left(\rho \mathrm{n}^{2} \mathrm{D}^{5}\right)$	1
$\mathrm{K}_{\text {T }}$	KT	Thrust coefficient	$\mathrm{T} /\left(\rho \mathrm{n}^{2} \mathrm{D}^{4}\right)$	
$\mathrm{K}_{\text {TD }}$	KTD	Duct thrust coefficient	$\mathrm{T}_{\mathrm{D}} /\left(\rho \mathrm{n}^{2} \mathrm{D}^{4}\right)$	
$\mathrm{K}_{\text {TP }}$	KTP	Ducted propeller thrust coefficient	$\mathrm{T}_{\mathrm{P}} /\left(\rho \mathrm{n}^{2} \mathrm{D}^{4}\right)$	1

ITTC Symbols
Version 1996
ITTC Computer Name
Symbol Symbol

$\mathrm{K}_{\text {TT }}$	KTT	Total thrust coefficient for a ducted propeller unit	$\mathrm{K}_{\mathrm{TP}}+\mathrm{K}_{\text {TD }}$	1
K_{Qo}	KQO	Torque coefficient of propeller converted from behind to open water condition	$\mathrm{K}_{\mathrm{Q}} \cdot \eta_{\mathrm{R}}$	1
$\mathrm{K}_{\text {QT }}$	KQ	Torque coefficient of propeller determined from thrust coefficient identity		1
P_{J}	PJ	Propeller jet power	$\eta_{\text {TJ }} \mathrm{TV}_{\mathrm{A}}$	
$\mathrm{S}_{\text {A }}$	SRA	Apparent slip ratio	$1-\mathrm{V} /(\mathrm{nP})$	1
S_{R}	SRR	Real slip ratio	$1-\mathrm{V}_{\mathrm{A}} /(\mathrm{nP})$	1
δ	ADCT	Taylor's advance coefficient	$\mathrm{n} D / \mathrm{V}_{\mathrm{A}}$ with n in revs $/ \mathrm{min}$, D in feet, V_{A} in knots (obsolete)	1
$\eta_{\text {JP }}$	EFJP	Propeller pump or hydraulic efficiency	$P_{J} / P_{D}=P_{J} / P_{P}$	1
$\eta_{\text {IP0 }}$	ZETO, EFJPO	Propeller pump efficiency at zero advance speed, alias static thrust coefficient	$\mathrm{T} /(\rho \pi / 2)^{1 / 3} /\left(\mathrm{P}_{\mathrm{D}} \mathrm{D}\right)^{2 / 3}$	1
$\eta_{\text {I }}$	EFID	Ideal propeller efficiency	Efficiency in non-viscous fluid	1
$\eta_{\text {TJ }}$	EFTJ	Propeller jet efficiency	$2 /\left(1+\left(1+\mathrm{C}_{\mathrm{Th}}\right)^{1 / 2}\right)$	1
$\eta_{\mathrm{o}}, \eta_{\text {TPO }}$	ETAO, EFTPO	Propeller efficiency in open water	$\mathrm{P}_{\mathrm{T}} / \mathrm{P}_{\mathrm{D}}=\mathrm{T}_{\mathrm{A}} /(\mathrm{Q} \omega)$ all quantities measured in open water tests	1
λ	ADR	Advance ratio of a propeller	$\mathrm{V}_{\mathrm{A}} /(\mathrm{n} \mathrm{D}) / \pi=\mathrm{J} / \pi$	1
τ	TMR	Ratio between propeller thrust and total thrust of ducted propeller	$\mathrm{T}_{\mathrm{P}} / \mathrm{T}_{\mathrm{T}}$	1

ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

1.3.3.3 Induced Velocities etc

$\mathrm{U}_{\text {A }}$	UA	Axial velocity induced by propeller		m/s
$\mathrm{U}_{\text {AD }}$	UADU	Axial velocity induced by duct of ducted propeller		m / s
U_{RP}	URP	Radial velocity induced by propeller of ducted propeller		m / s
U_{RD}	URDU	Radial velocity induced by duct of ducted propeller		m / s
$\mathrm{U}_{\text {AP }}$	UAP	Axial velocity induced by propeller of ducted propeller		m / s
U_{R}	UR	Radial velocity induced by propeller		m/s
$\mathrm{U}_{\text {TD }}$	UTDU	Tangential velocity induced by duct of ducted propeller		m/s
$\mathrm{U}_{\text {TP }}$	UTP	Tangential velocity induced by propeller of ducted propeller		m/s
U_{T}	UT	Tangential velocity induced by propeller		m/s
β	BETB	Advance angle of a propeller blade section	$\operatorname{arctg}\left(\mathrm{V}_{\mathrm{A}} /(\mathrm{R} \omega)\right)$	rad
β_{1}	BET1	Hydrodynamic flow angle of a propeller blade section	Flow angle taking into account induced velocity	rad
β^{*}	BETS	Effective advance angle	$\operatorname{arctg}\left(\mathrm{V}_{\mathrm{A}} /(0.7 \mathrm{R} \omega)\right.$)	rad

1.3.3.4 Waterjets (Future location: see Section 5.1, pp 130-131 of Version 1996)

ITTC Symbols		1	Ships in General		
			$\mathbf{1 . 3}$	Resistance and Propulsion Version 1996	

1.3.3.4 Remarks

. 1 Dynamic Pressure

It has become bad practice to write

$$
q=\rho / 2 V^{2} \text { instead of } q=\rho V^{2} / 2
$$

for the dynamic pressure. This is confusing and should be avoided.

. 2 Section Advance Speed

In the earlier versions of this list the notation for the concept of section advance speed deteriorated to the completely meaningless form

$$
\mathrm{V}_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{A}}^{2}+(0.7 \pi \mathrm{nD})^{2}\right)^{1 / 2},
$$

hiding the very simple meaning of the concept.

ITTC	Computer	Name	Definition or Explanation	SI- Symbol
Symbol		Unit		

1.3.4 Unsteady Propeller Forces

1.3.4.1 Basic Quantities

$\mathrm{C}_{\text {uv }}$	SI(U,V)	Generalized stiffness	s. Remark . 1	
$\mathrm{D}_{\text {uv }}$	DA(U,V)	Generalized damping	s. Remark . 1	
F_{u}	FG(I)	Generalized vibratory force	$\begin{aligned} & \mathrm{u}=1, \ldots, 6 \\ & \mathrm{u}=1,2,3: \text { force } \\ & \mathrm{u}=4,5,6: \text { moment } \end{aligned}$	N N Nm
$\mathrm{Fi}^{\text {i }}$	F(I)	Vibratory force	$\mathrm{i}=1,2,3$	N
K_{Fu}	KF(U)	Generalized vibratory force coefficients	According to definitions of K_{Fi} and K_{Mi}	1
Kfi	KF(I)	Vibratory force coefficients	$\mathrm{F}_{\mathrm{i}} /\left(\rho \mathrm{n}^{2} \mathrm{D}^{4}\right)$	1
Кмі	KM(I)	Vibratory moment coefficients	$M_{i} /\left(\rho \mathrm{n}^{2} \mathrm{D}^{5}\right)$	1
K_{p}	KPR	Pressure coefficient	$\mathrm{p} /\left(\rho \mathrm{n}^{2} \mathrm{D}^{2}\right)$	1
Mi	M(I)	Vibratory moment	$\mathrm{i}=1,2,3$	Nm
M_{uv}	MA(U,V)	Generalized mass	s. Remark . 1	
p	PR	Pressure		Pa
Ru	R(U)	Generalized vibratory bearing reaction	$\begin{aligned} & u=1, \ldots, 6 \\ & u=1,2,3: \text { force } \\ & u=4,5,6: \text { moment } \end{aligned}$	N N Nm
V_{i}	V (I)	Velocity field of the wake	$\mathrm{i}=1,2,3$	m / s
x y z	$\begin{aligned} & \mathrm{X} \\ & \mathrm{Y} \\ & \mathrm{Z} \end{aligned}$	Cartesian coordinates	Origin O coinciding with the centre of the propeller. The longitudinal x -axis coincides with the shaft axis, positive forward; the transverse y-axis, positive to port; the third, z -axis, positive upward	m m m

ITTC S Version			Ships in General Resistance and Propulsion Unsteady Propeller Forces	39
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
$\begin{aligned} & \mathrm{X} \\ & \mathrm{a} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \text { X } \\ & \text { ATT } \\ & \text { R } \end{aligned}$	Cylindrical coordinates	Cylindrical system with origin O and longitudinal x axis as defined before; angular a-(attitude)coordinate, zero at 12 o'clock position, positive clockwise looking forward, r distance measured from the x -axis	m 1 m
δ_{u}	DP(U)	Generalized vibratory displacement	$\begin{aligned} & \mathrm{u}=1, . .6 \\ & \mathrm{u}=1,2,3: \text { linear } \\ & \mathrm{u}=4,5,6: \text { angular } \end{aligned}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{~m} \\ \mathrm{rad} \end{array}$
$\dot{\delta}_{u}$	DPVL(U)	Generalized vibratory velocity	$\begin{aligned} & \mathrm{u}=1, . ., 6 \\ & \mathrm{u}=1,2,3: \text { linear } \\ & \mathrm{u}=4,5,6: \text { angular } \end{aligned}$	$\begin{array}{r} \mathrm{m} / \mathrm{s} \\ \mathrm{~m} / \mathrm{s} \\ \mathrm{rad} / \mathrm{s} \end{array}$
$\ddot{\delta}_{u}$	DPAC(U)	Generalized vibratory acceleration	$\begin{aligned} & \mathrm{u}=1, . ., 6 \\ & \mathrm{u}=1,2,3: \text { linear } \\ & \mathrm{u}=4,5,6: \text { angular } \end{aligned}$	$\begin{gathered} \mathrm{m} / \mathrm{s}^{2} \\ \mathrm{~m} / \mathrm{s}^{2} \\ \mathrm{rad} / \mathrm{s}^{2} \end{gathered}$

1.3.4.2 Remarks

. 1 General Quantities

The generalized Quantities have been introduced in Section 3. General Mechanics.

. 2 Equation of motion

In terms of the notation introduced the linear equation of motions may be rendered in the concise form

$$
\mathrm{M}_{\mathrm{uv}} \ddot{\delta}_{\mathrm{v}}+\mathrm{D}_{\mathrm{uv}} \dot{\delta}_{\mathrm{v}}+\mathrm{C}_{\mathrm{uv}} \delta_{\mathrm{v}}=\mathrm{F}_{\mathrm{u}} .
$$

In spectral terms it is just as simple

$$
\left(\mathrm{M}_{\mathrm{uv}}(\mathrm{i} \omega)^{2}+\mathrm{D}_{\mathrm{uv}} \mathrm{i} \omega+\mathrm{C}_{\mathrm{uv}}\right) \delta^{\mathrm{S}}{ }_{\mathrm{v}}=\mathrm{F}_{\mathrm{u}}^{\mathrm{S}} .
$$

ITTC Symbols		1	Ships in General Manoeuvring and Seakeeping	
Version $\mathbf{1 9 9 6}$		$\mathbf{1 . 4}$	$\mathbf{4 0}$	
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

1.4 Manoeuvring and Seakeeping s. Remark . 1

1.4.1 Manoeuvring

1.4.1.1 Geometrical Quantities see also Section 1.2.1 and Section 1.2.3

A_{FB}	AFBO	Area of bow fins	
A_{FS}	AFST	Area of stern fins	m^{2}
$\mathrm{~A}_{\mathrm{HL}}$	AHLT	Lateral area of the hull	The area of the profile of the underwater hull of a ship when projected normally upon the longitudinal centre plane

$\mathrm{A}_{\text {LV }}$	AHLV	Lateral area of hull above water		m^{2}
A_{R}	ARU	Total lateral area of rudder		m^{2}
$\mathrm{A}_{\text {Rmov }}$	ARMV	Movable area of rudder		m^{2}
$\mathrm{A}_{\text {RN }}$	ARNO	Nominal area of rudder	$\left(\mathrm{A}_{\mathrm{R}}+\mathrm{A}_{\text {Rmov }}\right) / 2$	m^{2}
b_{R}	SPRU	Rudder span		m
$\mathrm{b}_{\text {RM }}$	SPRUME	Mean span of rudder		m
$\mathrm{C}_{\text {AL }}$	CAHL	Coefficient of lateral area of ship	$\mathrm{A}_{\mathrm{HL}} /(\mathrm{L} \mathrm{T})$	1
h	DE	Water depth		m
h_{M}	DEME	Mean water depth		m
$\mathrm{x}_{\text {R }}$	XRU	Longitudinal position of rudder axis		m
$\lambda_{\text {R }}$	ASRU	Aspect ratio of rudder	$\mathrm{b}_{\mathrm{R}}{ }^{2} / \mathrm{A}_{\mathrm{R}}$	1

1.4.1.2 Motions and Attitudes

p	OX, P	Roll velocity, angular velocity about body x-axis
q	OY, Q	Pitch velocity, angular velocity about body y-axis
r	OZ, R	Yaw velocity, angular velocity about body z-axis
$\dot{\mathrm{p}}$	OXRT, PR	Roll acceleration, angular acceleration about body x- axis
		$1 / \mathrm{dt}$
		$1 / \mathrm{s}$
		$1 / \mathrm{s}^{2}$

ITTC S Version		$\begin{aligned} & 1 \\ & 1.4 \\ & \text { 1.4.1 } \\ & \hline \end{aligned}$	Ships in General Manoeuvring and Seakeeping Manoeuvring	41
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
$\dot{\text { q }}$	OYRT, QR	Pitch acceleration, angular acceleration about body yaxis	dq / dt	$1 / \mathrm{s}^{2}$
$\dot{\mathrm{r}}$	OZRT, RR	Yaw acceleration, angular acceleration about body zaxis	dr / dt	$1 / \mathrm{s}^{2}$
u	VX, U	Surge velocity, linear velocity along body x -axis		m / s
v	VY, V	Sway velocity, linear velocity along body y-axis		m / s
w	VZ, W	Heave velocity, linear velocity along body z -axis		m / s
ù	VXRT, UR	Surge acceleration, linear acceleration along body x axis	du / dt	$\mathrm{m} / \mathrm{s}^{2}$
$\dot{\text { v }}$	VYRT, VR	Sway acceleration, linear acceleration along body y axis	$\mathrm{dv} / \mathrm{dt}$	$\mathrm{m} / \mathrm{s}^{2}$
$\dot{\mathrm{w}}$	VZRT, WR	Heave acceleration, linear acceleration along body zaxis	$\mathrm{dw} / \mathrm{dt}$	$\mathrm{m} / \mathrm{s}^{2}$
V	V	Linear velocity of origin in body axes		m / s
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{O}}$	VA, VO	Approach speed		m / s
V_{u}	V(U)	Generalized velocity		m / s
$\dot{\mathrm{V}}_{\mathrm{u}}$	V(U)	Generalized acceleration		$\mathrm{m} / \mathrm{s}^{2}$
V_{F}	VF	Flow or current velocity		m / s
$\mathrm{V}_{\text {WR }}$	VWREL	Relative wind velocity		m / s
$\mathrm{V}_{\text {WT }}$	VWABS	True wind velocity		m / s
ψ	YA	Yaw or course angle		rad
$\mathrm{d}_{\mathrm{t}} \psi$	YART	Rate of change of course	$\mathrm{d} \psi / \mathrm{dt}$	rad/s
Ψ_{0}	YAOR	Original course		rad
θ	PI	Pitch angle		rad

ITTC S Version	Symbols 1996	$\begin{aligned} & 1 \\ & 1.4 \\ & \text { 1.4.1 } \end{aligned}$	Ships in General Manoeuvring and Seakeeping Manoeuvring	42
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
ϕ	RO	Roll angle		rad
1.4.1.3	Flow Angles etc			
α	AAPI	Pitch angle	Angle of attack in pitch on the hull	rad
β	AADR	Drift angle	Angle of attack in yaw on the hull	rad
$\beta_{\text {wR }}$	ANWIRL	Angle of attack of relative wind		1
$\delta_{\text {eff }}$	ANRUEF	Effective rudder inflow angle		rad
δ_{0}	ANRU0	Neutral rudder angle		1
$\delta_{\text {B }}$	ANFB	Bow fin angle		rad
$\delta_{\text {S }}$	ANFS	Stern fin angle		rad
$\delta_{\text {R }}$	ANRU	Rudder angle		1
$\delta_{\text {R } 0}$	ANRUOR	Rudder angle, ordered		1
$\psi_{\text {C }}$	COCU	Course of current velocity		1
$\psi_{\text {wA }}$	COWIAB	Absolute wind direction	see also section 3.4.2, Wind	rad
$\psi_{\text {WR }}$	COWIRL	Relative wind direction		rad

ITTC S Version		$\begin{aligned} & 1 \\ & 1.4 \\ & \text { 1.4.1 } \end{aligned}$	Ships in General Manoeuvring and Seakeeping Manoeuvring	43
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.4.1.4 Forces and Derivatives s. Remark . 2				
K	MX	Roll moment on body, moment about body x -axis		Nm
M	MY	Pitch moment on body, moment about body y-axis		Nm
N	MZ	Yaw moment on body, moment about body z-axis		Nm
N_{r}	NR	Derivative of yaw moment with respect to yaw velocity	$\partial \mathrm{N} / \mathrm{dr}$	Nms
N_{i}	NRRT	Derivative of yaw moment with respect to yaw acceleration	$\partial \mathrm{N} / \mathrm{\partial} \dot{\mathrm{r}}$	Nms ${ }^{2}$
N_{v}	NV	Derivative of yaw moment with respect to sway velocity	$\partial \mathrm{N} / \mathrm{dv}$	Ns
$\mathrm{N}_{\dot{\mathrm{v}}}$	NVRT	Derivative of yaw moment with respect to sway acceleration	$\partial \mathrm{N} / \partial \dot{\mathrm{v}}$	Nms ${ }^{2}$
N_{δ}	ND	Derivative of yaw moment with respect to rudder angle	$\partial \mathrm{N} / \partial \delta$	Nm
$\mathrm{Q}_{\text {FB }}$	QFB	Torque of bow fin		Nm
Q_{R}	QRU	Torque about rudder stock		Nm
$\mathrm{Q}_{\text {FS }}$	QFS	Torque of stern fin		Nm
X	FX	Surge force on body, force along body x -axis		N
X_{R}	XRU	Longitudinal rudder force		N
X_{u}	XU	Derivative of surge force with respect to surge velocity	$\partial \mathrm{X} / \mathrm{du}$	Ns/m
X_{u}	XURT	Derivative of surge force with respect to surge acceleration	$\partial \mathrm{X} / \mathrm{\partial} \dot{\mathrm{u}}$	$\mathrm{Ns}^{2} / \mathrm{m}$
Y	FY	Sway force on body, force along body y -axis		N
Y_{r}	YR	Derivative of sway force with respect to yaw velocity	$\partial \mathrm{Y} / \partial \mathrm{r}$	Ns
Y_{R}	YRU	Transverse rudder force		N

ITTC Sy Version	ymbols 1996	$\begin{aligned} & 1 \\ & 1.4 \end{aligned}$ 1.4.1	Ships in General Manoeuvring and Seakeeping Manoeuvring	44
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
Y_{i}	YRRT	Derivative of sway force with respect to yaw acceleration	$\partial \mathrm{Y} / \partial \dot{\mathrm{r}}$	Ns ${ }^{2}$
Y_{v}	YV	Derivative of sway force with respect to sway velocity	$\partial \mathrm{Y} / \partial \mathrm{v}$	Ns/m
$\mathrm{Y}_{\dot{v}}$	YVRT	Derivative of sway force with respect to sway acceleration	$\partial \mathrm{Y} / \partial \dot{\mathrm{V}}$	$\mathrm{Ns}^{2} / \mathrm{m}$
Y_{δ}	YD	Derivative of sway force with respect to rudder angle	$\partial \mathrm{Y} / \partial \delta$	N
Z	FZ	Heave force on body, force along body z-axis		N
1.4.1.5 Linear Models				
C_{r}	CRDS	Directional stability criterion	$\begin{aligned} & \mathrm{Y}_{\mathrm{v}}\left(\mathrm{~N}_{\mathrm{r}}-\operatorname{mux}_{\mathrm{G}}\right)- \\ & -\mathrm{N}_{\mathrm{v}}\left(\mathrm{Y}_{\mathrm{r}}-\mathrm{mu}\right) \end{aligned}$	$\mathrm{N}^{2} \mathrm{~s}^{2}$
L_{b}	LSB	Static stability lever	$\mathrm{N}_{\mathrm{v}} / \mathrm{Y}_{\mathrm{v}}$	m
$\mathrm{L}_{\text {d }}$	LSR	Damping stability lever	$\left(\mathrm{N}_{\mathrm{r}}-\mathrm{mux}_{\mathrm{G}}\right) /\left(\mathrm{Y}_{\mathrm{r}}-\mathrm{mu}\right)$	m
T	TIC	Time constant of the 1st order manoeuvring equation		s
T	TIC1	First time constant of manoeuvring equation		s
T	TIC2	Second time constant of manoeuvring equation		s
T3	TIC3	Third time constant of manoeuvring equation		s
K	KS	Gain factor in linear manoeuvring equation		1/s
P_{n}	PN	P-number, heading change per unit rudder angle in one ship length		1

ITTC Symbols
Version 1996

Symbol Symbol
 1.4.1.6 Turning Circles

ITTC Computer Name Definition or SI-
Explanation Unit

D_{C}	DC	Steady turning diameter		m
$\mathrm{D}_{\mathrm{C}}{ }^{\prime}$	DCNO	Non-dimensional steady turning diameter	$\mathrm{D}_{\mathrm{C}} / \mathrm{L}_{\text {PP }}$	1
D_{0}	DC0	Inherent steady turning diameter $\delta_{R}=\delta_{0}$		m
$\mathrm{D}_{0}{ }^{\prime}$	DC0N	Non-dimensional inherent steady turning diameter	$\mathrm{D}_{0} / \mathrm{L}_{\mathrm{PP}}$	1
1_{r}	LHRD	Loop height of $r-\delta$ curve for unstable ship		1/s
1_{δ}	LWRD	Loop width of r- δ curve for unstable ship		1
r_{C}	OZCI	Steady turning rate		1/s
$\mathrm{r}_{\mathrm{C}}{ }^{\prime}$	OZCINO	Non-dimensional steady turning rate	$\mathrm{r}_{\mathrm{C}} \mathrm{L}_{\mathrm{PP}} / \mathrm{U}_{\mathrm{C}}$ or $2 \mathrm{~L}_{\mathrm{PP}} / \mathrm{D}_{\mathrm{C}}$	m
R_{C}	RC	Steady turning radius		m
t_{90}	TI90	Time to reach 90 degree change of heading		s
t_{180}	TI180	Time to reach 180 degree change of heading		s
U_{C}	UC	Speed in steady turn		m / s
X_{090}	X090	Advance at 90° change of heading		m
X_{0180}	X0180	Advance at 180° change of heading		m
$\mathrm{X}_{\text {max }}$	XMX	Maximum advance		m
y_{090}	Y090	Transfer at 90° change of heading		m
Y_{0180}	Y0180	Transfer at 180° change of heading, tactical diameter		m
$\mathrm{y}_{0 \text { max }}$	Y0MX	Maximum transfer		m
$\beta_{\text {C }}$	DRCI	Drift angle at steady turning		rad

ITTC Symbols		1	Ships in General Manoeuvring and Seakeeping	
Version 1996		1.4	46	
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

1.4.1.7 Zig-Zag Manoeuvres

t_{a}	TIA	Initial turning time	s
t_{cl}	TIC1	First time to check yaw (starboard)	s
$\mathrm{t}_{\mathrm{c} 2}$	TIC2	Second time to check yaw (port)	s
t_{hc}	TCHC	Period of changes in heading	
t_{r}	TIR	Reach time	
$\mathrm{y}_{0 \text { max }}$	YOMX	Maximum transverse deviation	s
$\delta_{\text {max }}$	ANRUMX	Maximum value of rudder angle	s
Ψ_{S}	PSIS	Switching value of course angle	m
Ψ_{01}	PSI01	First overshoot angle	rad
Ψ_{02}	PSI02	Second overshoot angle	rad

1.4.1.8 Stopping Manoeuvres

s_{F}	SPF	Distance along track, track reach	m
$\mathrm{x}_{0 \mathrm{~F}}$	X0F	Head reach	m
$\mathrm{y}_{0 \mathrm{~F}}$	Y0F	Lateral deviation	m
t_{F}	TIF	Stopping time	s

1.4.1.9 Remarks

. 1 Solid Body Motions

The whole Chapter 1.4 on Manoeuvring and Seakeeping relies heavily on the Section 3 on General Mechanics, Chapter 3.2 on Solid Body Mechanics in particular. Members of the Manoeuvring Committee are strongly urged to suggest further improvements in this section.

. 2 Derivatives

The traditional notation for the "stability" derivatives is not very efficient and not in accordance with the notation outlined in Section 3 on General Mechanics. Instead of completely denoting the concepts of generalized hydrodynamic damping and inertia, respectively, by adequate symbols, the traditional symbols indicate some measuring procedures for the components.

ITTC Symbols		1	Ships in General Manoeuvring and Seakeeping	
Version $\mathbf{1 9 9 6}$		$\mathbf{1 . 4}$	48	
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

1.4.2 Seakeeping

Related information is to be found in Chapter 3 on General Mechanics in
Sections 3.1.2 on Time and Frequency Domain Quantities, 3.1.3 on Stochastic Processes, 3.2.1 on Inertial Propertiess, 3.2.2 on Loads, 3.2.3 on Rigid Body Motions, and 3.4.1 on Waves.

1.4.2.1 Basic Quantities

a_{i}	AT(I)	Attitudes of the floating system	$\mathrm{i}=1,2,3$, e. g. Euler angles of roll, pitch, and yaw, respectively	rad
f	FR	Frequency	$1 / \mathrm{T}$	Hz
$\mathrm{f}_{\text {e }}$	FE	Frequency of wave encounter	$1 / T_{\text {e }}$	Hz
f_{z}		Natural frequency of heave	$1 / \mathrm{T}_{\mathrm{z}}$	Hz
f_{θ}		Natural frequency of pitch	$1 / \mathrm{T}_{\theta}$	Hz
f_{ϕ}		Natural frequency of roll	$1 / \mathrm{T}_{\phi}$	Hz
F_{L}	FS(2)	Wave excited lateral shear force	Alias horizontal! s. Remark . 1	N
F_{N}	FS(3)	Wave excited normal shear force	Alias vertical! s. Remark . 1	N
M_{L}	$\begin{aligned} & \mathrm{MB}(3), \\ & \mathrm{FS}(6) \end{aligned}$	Wave excited lateral bending moment	Alias horizontal! s. Remark . 1	Nm
M_{N}	$\begin{aligned} & \mathrm{MB}(2), \\ & \mathrm{FS}(5) \end{aligned}$	Wave excited normal bending moment	Alias vertical! s. Remark . 1	Nm
M_{T}	$\begin{aligned} & \text { MT(1), } \\ & \text { FS(4) } \end{aligned}$	Wave excited torsional moment		Nm
$\mathrm{n}_{\text {AW }}$	NAW	Mean increase of rate of revolution in waves		1/s
$\mathrm{P}_{\text {AW }}$	PAW	Mean power increase in waves		W
$\mathrm{Q}_{\text {AW }}$	QAW	Mean torque increase in waves		Nm
$\mathrm{R}_{\text {AW }}$	RAW	Mean resistance increase in waves		N
$\begin{aligned} & S_{\eta}(f), S_{\eta \eta}(f), \\ & S_{\eta}(\omega), S_{\eta \eta}(\omega) \end{aligned}$	EWSF, EWSC	Wave elevation auto spectral density	see also section 3.4.1, Waves	$\mathrm{m}^{2} \mathrm{~s}$

ITTC S Version		$\begin{aligned} & 1 \\ & 1.4 \end{aligned}$ 1.4.2	Ships in General Manoeuvring and Seakeeping Seakeeping	49
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
X_{i}	X(I)	Absolute displacement of the ship at the reference point	$\begin{aligned} & \mathrm{i}=1,2,3 \text { :surge, sway, } \\ & \quad \text { and heave respectively } \end{aligned}$	m
x_{u}	X(U)	Generalized displacement of a ship at the reference point	$u=1 . .6$ surge, sway, heave, roll, pitch, yaw	$\begin{array}{r} \mathrm{m} \\ \mathrm{rad} \end{array}$
$\mathrm{T}_{\text {AW }}$	TAW	Mean thrust increase in waves		N
T	TC	Wave period		s
Te	TE	Wave encounter period		s
Tz	TNHE	Natural period of heave		s
T_{θ}	TNPI	Natural period of pitch		s
T_{ϕ}	TNRO	Natural period of roll		s
$\begin{aligned} & \mathrm{Y}_{\mathrm{z}}(\omega), \\ & \mathrm{A}_{2 \zeta}(\omega) \end{aligned}$		Amplitude of frequency response function for translatory motions	$\begin{aligned} & \mathrm{z}_{\mathrm{a}}(\omega) / \zeta_{\mathrm{a}}(\omega) \text { or } \\ & \mathrm{z}_{\mathrm{a}}(\omega) / \eta_{\mathrm{a}}(\omega) \end{aligned}$	1
$\begin{aligned} & \mathrm{Y}_{\theta \zeta}(\omega), \\ & \mathrm{A}_{\theta \zeta}(\omega) \end{aligned}$		Amplitude of frequency response function for rotary motions	$\begin{aligned} & \Theta_{\mathrm{a}}(\omega) / \zeta_{\mathrm{a}}(\omega) \text { or } \\ & \Theta_{\mathrm{a}}(\omega) /\left(\omega^{2} /\left(\mathrm{g} \zeta_{\mathrm{a}}(\omega)\right)\right) \end{aligned}$	1
μ		Wave encounter angle	Angle between ship positive x axis and positive direction of waves (long crested) or dominant wave direction (short crested)	rad

Remarks

. 1 Sectional Loads

Sectional loads are meaningful only referred to body fixed coordinates. The traditional terminology speaking of horizontal and vertical forces and moments, referring to space fixed coordinates, is adequate only for very special conditions of little interest for the sectional loads and should consequently be avoided as obsolete.

ITTC Symbols
Version 1996

ITTC	Computer Symbol
Symbol	

2.1.1 Geometry and Hydrostatics See also Section 1.2.1, Hull Geometry

A_{P}	APB	Planing bottom area	Horizontally projected planing bottom area (at rest), excluding area of external spray strips	m^{2}
$\mathrm{B}_{\text {LCG }}$	BLCG	Beam at longitudinal position of the centre of gravity	Breadth over spray strips measured at transverse section containing centre of gravity	m
B_{PC}	BPC	Beam over chines	Beam over chines, excluding external spray strips	m
$\mathrm{B}_{\text {PA }}$	BPA	Mean breadth over chines	$\mathrm{A}_{\mathrm{P}} / \mathrm{L}_{\mathrm{P}}$	m
$\mathrm{B}_{\text {PT }}$	BPT	Transom breadth	Breadth over chines at transom, excluding external spray strips	m
B_{PX}	BPX	Maximum breadth over chines	Maximum breadth over chines, excluding external spray strips	m
$\mathrm{L}_{\text {SB }}$	LSB	Total length of shafts and bossings		m
L_{PR}	LPRC	Projected chine length	Length of chine projected in a plane parallel to keel	m
β	BETD	Deadrise angle of planing bottom	Angle between a straight line approximating body section and the intersection of the basis plane with the section plane	1
β_{M}	BETM	Deadrise angle at midship section		1
$\beta_{\text {T }}$	BETT	Deadrise angle at transom		1
$\epsilon_{\text {SH }}$	EPSSH	Shaft Angle	Angle between shaft line and reference line (positive, shaft inclined downwards)	

ITTC Symbols
Version 1996
$\begin{array}{lll}\text { ITTC } & \begin{array}{l}\text { Computer } \\ \text { Symbol }\end{array} & \text { Name } \\ \text { Symbol } & & \end{array}$

2.1.2 Geometry and Levers, Underway

2.1.2.1 Geometry, Underway

$\mathrm{d}_{\text {TR }}$	DTRA	Immersion of transom, underway	Vertical depth of trailing edge of boat at keel below water surface level	m
h_{p}	HSP	Wetted height of strut palms		m
h_{R}	HRU	Wetted height of rudders		m
L_{C}	LC	Wetted chine length, underway		m
$1_{\text {CP }}$	LCP	Lever of resultant of pressure forces, underway	Distance between center of pressure and aft end of planing surface	m
L_{K}	LK	Wetted keel length, underway		m
L_{M}	LM	Mean wetted length, underway	$\left(\mathrm{L}_{\mathrm{K}}+\mathrm{L}_{\mathrm{C}}\right) / 2$	m
$\mathrm{S}_{\text {WHP }}$	SWHP	Wetted area underway of planing hull	Principal wetted area bounded by trailing edge, chines and spray root line	m^{2}
$S_{\text {wB }}$	SWB	Wetted bottom area, underway	Area bounded by stagnation line, chines or water surface underway and transom	m^{2}
$\mathrm{S}_{\text {WHE }}$	SWHE	Wetted hull area, underway	Total wetted surface of hull underway, including spray area and wetted side area, w/o wetted transom area	m^{2}
$\mathrm{S}_{\mathrm{WHS}}$	SWSH	Area of wetted sides	Wetted area of the hull side above the chine or the design water line	m^{2}
$\mathrm{S}_{\mathrm{ws}}, \mathrm{S}_{\mathrm{s}}$	SWS	Area wetted by spray	Wetted area between design line or stagnation line and spray edge	m^{2}
$\alpha_{\text {B }}$	ALFSL	Angle of stagnation line	Angle between projected keel and stagnation line a in plane normal to centerplane and parallel to reference line	rad

ITTC Symbols
Version 1996
2 Special Craft
2.1 Planing and Semi-Displacement Vessels

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

$\alpha_{\text {BAR }}$	ALFBAR	Barrel flow angle	Angle between barrel axis and assumed flow lines	rad
ϵ_{WL}	EPSWL	Wetted length factor	$\mathrm{L}_{\mathrm{M}} / \mathrm{L}_{\mathrm{WL}}$	1
ϵ_{WS}	EPSWS	Wetted surface area factor	$\mathrm{S} / \mathrm{S}_{0}$	1
θ_{DWL}	TRIMDWL	Running trim angle based on design waterline	Angle between design waterline and running waterline (positive bow up)	rad
$\theta_{\mathrm{S}}, \theta_{0}$	TRIMS	Static trim angle	Angle between ship design waterline and actual water line at rest $($ positive bow up) $\tan ^{-1}\left(\left(\mathrm{z}_{\mathrm{SF}}-\mathrm{z}_{\mathrm{SA}}\right) / \mathrm{L}\right)$	rad

$\theta_{\mathrm{V}}, \theta_{\mathrm{D}} \quad$ TRIMV \quad| Running (dynamic) trim |
| :--- |
| angle |\quad| Angle between actual water |
| :--- |
| line at rest and running water |
| line (positive bow up) |
| $\tan ^{-1}\left(\left(\mathrm{z}_{\mathrm{VF}}-\mathrm{z}_{\mathrm{VA}}\right) / \mathrm{L}\right)$ |$\quad \mathrm{rad}$

$\lambda_{\mathrm{w}} \quad$ LAMS \quad| Mean wetted length-beam |
| :--- |
| ratio |$\quad \mathrm{L}_{\mathrm{M}} /\left(\mathrm{B}_{\mathrm{LCG}}\right)$

| $\tau_{\text {DWL }}$ | TAUDWL | Reference line angle |
| :--- | :--- | :--- | | Angle between the reference |
| :--- |
| line and the design waterline |

TAUR Angle of attack relative to the reference line
$\phi_{\mathrm{SP}} \quad$ PHISP \quad Spray angle
Angle between the reference line and the running waterline

Angle between stagnation line and keel (measured in plane of bottom)

| $\delta \lambda$ | DLAM | Dimensionless increase in
 total friction area |
| :--- | :--- | :--- | | Effective increase in friction |
| :--- |
| area length-beam ratio due to |
| spray contribution to drag |$\quad 1$| spal |
| :--- |

2.1.2.2 Levers, Underway (This section is under construction and needs further clarification)

| e_{A} | ENAPP | Lever of appendage lift force
 N_{A} | Distance between N_{A} and
 center of gravity (measured
 normally to $\left.N_{A}\right)$ |
| :--- | :--- | :--- | :--- |$\quad \mathrm{m}$

ITTC Symbols
Version 1996

2 Special Craft

2.1 Planing and Semi-Displacement Vessels
2.1.2 Geometry and Levers, Underway 53

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

$\mathrm{e}_{\text {PN }}$	ENPN	Lever of propeller normal force N_{PN}	Distance between propeller centerline and center of gravity (measured along shaft line)	m
$\mathrm{e}_{\text {PP }}$	ENPP	Lever of resultant of propeller pressure forces N_{PP}	Distance between N_{PP} and center of gravity (measured normally to N_{PP})	m
$\mathrm{e}_{\text {PS }}$	ENPS	Lever of resultant propeller suction forces N_{PS}	Distance between N_{PS} and center of gravity (measured normal to N_{PS})	m
$\mathrm{e}_{\text {RP }}$	ENRP	Lever of resultant of rudder pressure forces N_{RP}	Distance between N_{RP} and center of gravity (measured normal to N_{RP})	m
$\mathrm{f}_{\text {AA }}$	FRAA	Lever of wind force $\mathrm{R}_{\text {AA }}$	Distance between R_{AA} and center of gravity (measured normal to R_{AA})	m
$\mathrm{f}_{\text {AP }}$	FRAP	Lever of appendage drag R_{AP}	Distance between R_{AP} and center of gravity (measured normal to R_{AP})	m
f_{F}	FRF	Lever of frictional resistance R_{F}	Distance between R_{F} and center of gravity (measured normal to R_{F})	m
f_{K}	FRK	Lever of skeg or keel resistance R_{K}	Distance between R_{K} and center of gravity (measured normal to R_{K})	m
$\mathrm{f}_{\text {R }}$	FDRR	Lever of augmented rudder drag $\Delta \mathrm{R}_{\mathrm{RP}}$	Distance between $\Delta R_{R P}$ and center of gravity (measured normal to $\Delta \mathrm{R}_{\mathrm{RP}}$)	m
$\mathrm{f}_{\text {S }}$	FSL	Lever of axial propeller thrust	Distance between axial thrust and center of gravity (measured normal to shaft line)	m
f_{T}	FRT	Lever of total resistance R_{T}	Distance between R_{T} and center of gravity (measured normal to R_{T})	m

ITTC Symbols

2 Special Craft
2.1 Planing and Semi-Displacement Vessels

Version 1996
2.1.3 Resistance and Propulsion 54

ITTC	Computer	Name	Definition or Symbol

2.1.3 Resistance and Propulsion See also Sections 1.3.1 on Hull Resistance

$\mathrm{C}_{\text {Lo }}$	CL0D	Lift coefficient for zero deadrise	$\Delta /\left(\mathrm{B}_{\mathrm{CG}}{ }^{2} \mathrm{q}\right)$	1
$\mathrm{C}_{L \beta}$	CLBET	Lift coefficient for deadrise surface	$\Delta /\left(\mathrm{B}_{\mathrm{CG}}{ }^{2} \mathrm{q}\right)$	1
C_{v}	CSP	Froude number based on breadth	$\mathrm{V} /\left(\mathrm{B}_{\mathrm{CG}} \mathrm{g}\right)^{1 / 2}$	1
C_{Δ}	CDL	Load coefficient	$\Delta /\left(\mathrm{B}_{\mathrm{CG}}{ }^{3} \rho \mathrm{~g}\right)$	1
$\mathrm{L}_{\mathrm{VHD}}$	LVD	Vertical component of hydrodynamic lift		N
$\mathrm{L}_{\text {vs }}$	LVS	Hydrostatic lift	Due to buoyancy	N
$\mathrm{F}_{\text {TA }}$	FTAPP	Appendage drag force (parallel to reference line)	Drag forces arising from appendages inclined to flow, assumed to act parallel to the reference line	N

F_{TB}	FTBOT	Bottom frictional force (parallel to reference line)
	Viscous component of bottom drag forces assumed acting parallel to the reference line	

$\mathrm{F}_{\text {TK }}$	FTKL	Keel or skeg drag force (parallel to reference line)	Drag forces arising from keel or skeg, assumed to act parallel to the reference line
$\mathrm{F}_{\text {TRP }}$	FTRP	Additional rudder drag force (parallel to reference line)	Drag forces arising from influence of propeller wake on the rudder assumed to act parallel to the reference line
N_{A}	NAPP	Appendage lift force (normal to reference line)	Lift forces arising from appendages inclined to flow, assumed to act normally to reference line
N_{B}	NBOT	Bottom normal force (normal to reference line)	Resultant of pressure and buoyant forces assumed acting normally to the
reference line			

ITTC Symbols

2 Special Craft
2.1 Planing and Semi-Displacement Vessels

Version 1996	2.1.3	Resistance and Propulsion	55

| ITTC | Computer | Name | Definition or |
| :--- | :--- | :--- | :--- |\quad| SI- | |
| ---: | :--- |
| Symbol | Symbol |

$\mathrm{N}_{\text {PS }}$	NPS	Propeller suction force (normal to reference line)	Resultant of propeller suction forces acting normally to the reference line	N
$\mathrm{N}_{\text {RP }}$	NRP	Rudder pressure force (normal to reference line)	Resultant of rudder pressure forces acting normally to the reference line	
R_{K}	RKEEL	Keel drag		N
R_{π}	RPI	Induced drag	$\mathrm{g} \rho \nabla \mathrm{tg} \tau$	N
$\mathrm{R}_{\text {PAR }}$	RPAR	Parasitic drag	Drag due to inlet and outlet openings	N
R_{PS}	RSP	Pressure component of spray drag		N
$\mathrm{R}_{\text {T }}$	RT	Total resistance	Total towed resistance	N
R_{vS}	RSV	Viscous component of spray drag	$\mathrm{C}_{\mathrm{F}} \mathrm{S}_{\mathrm{ws}} \mathrm{q}_{\mathrm{s}}$	N
$\mathrm{V}_{\text {BM }}$	VBM	Mean bottom velocity	Mean velocity over bottom of the hull	m / s
$\mathrm{V}_{\text {SP }}$	VSP	Spray velocity	Relative velocity between hull and spray in direction of the spray	m/s

2.1.3. Remarks

. 1 Force orientations

As a rule, the symbol R (resistance) is used when forces are directed horizontally, parallel and opposite to boat velocity and V when forces are directed vertically, normal to the boat velocity. Further, symbols $\mathrm{N}_{\mathrm{F}}, \mathrm{F}_{\mathrm{N}}$ (normal) and F_{T} or D_{F} (tangential) are used for forces acting normally and tangentially to the reference line (keel or mean buttock line). The SaT Group prefers the use of F_{T} for the tangential forces, but the standard references (Savitsky and Hadler) use the second set of symbols.

. 2 Reference line

The reference line line must be defined for each application. It is ususally the keel line or mean buttock line.
ITTC Symbols

2 Special Craft
2.2 Multi-Hull Vessels

Version 1996

ITTC	Computer	Name	Definition or Symbol
Symbol		Explanation	SI-

2.2 Multi-Hull Vessels

2.2.1 Geometry and Hydrostatics See also Section 1.2.1, Hull Geometry

$\mathrm{A}_{\text {I }}$	AIA	Strut-hull intersection area		m^{2}
$\mathrm{B}_{\text {B }}$	BB	Box beam	Beam of main deck	m
B_{S}	BS	Hull spacing	Distance between hull center lines	m
$\mathrm{B}_{\text {TV }}$	BTUN	Tunnel width	Minimal distance of the demihulls at the waterline	m
D_{H}	DHUL	Hull diameter	Diameter of axis symmetric submerged hulls	m
Dx	DX	Hull diameter at the longitudinal position "X"		m
H_{DK}	HCLDK	Deck clearance	Minimum clearance of wet deck from water surface at rest	m
$\mathrm{H}_{\text {SS }}$	HSS	Strut submerged depth	Depth of strut from still water line to strut-hull intersection	m
$\mathrm{i}_{\text {EI }}$	ANENIN	Half angle of entrance at tunnel (inner) side	Angle of inner water line with reference to centre line of demihull	rad
$\mathrm{i}_{\text {EO }}$	ANENOU	Half angle of entrance at outer side	Angle of outer water line with reference to centre line of demihull	rad
L_{CH}	LCH	Length of center section of hull	Length of prismatic part of hull	m
$\mathrm{L}_{\text {cS }}$	LCS	Length of center section of strut	Length of prismatic part of strut	m
L_{H}	LH	Box length	Length of main deck	m
L_{NH}	LNH	Length of nose section of hull	Length of nose section of hull with variable diameter	m
L_{NS}	LNS	Length of nose section of strut	Length of nose section of strut with variable thickness	m
L_{S}	LS	Strut length	Length of strut from leading to trailing edge	m

$\left.\begin{array}{llllr}\text { ITTC Symbols } & & \begin{array}{l}\text { 2 } \\ \text { Special Craft }\end{array} \\ \text { Version } & \mathbf{1 9 9 6} & & & \mathbf{2 . 2} \\ \text { Multi-Hull Vessels } \\ \text { Geometry and Hydrostatics }\end{array}\right)$

ITTC Symbols

Version $\mathbf{1 9 9 6}$		2.2.2	Resistance and Propulsion	$\mathbf{5 8}$
ITTC	Computer	Name		Definition or
Symbol	Symbol		Explanation	SI-

2 Special Craft
2.2 Multi-Hull Vessels

2.2.2 Resistance and Propulsion

2.2.2.1 Resistance Components See also Section 1.3.1 on Hull Resistance

$\mathrm{R}_{\mathrm{FMH}}$	RFMH	Frictional resistance of multi-hull vessel	N
$\mathrm{R}_{\mathrm{FINT}}$	RFINT	Frictional resistance interference correction	$\mathrm{R}_{\mathrm{FMH}}-2 \mathrm{R}_{\mathrm{F}}$

2.2.2.2 Remarks

. 1 Single hull quantities

In general, no specific symbols are introduced for quantities referred to single hulls because the use of symbols listed in Chapter 1 (Ships in General) is suggested without adding "ad hoc" subscripts or superscripts. For planing catamarans, several quantities can be found in section 2.1, Planing and Semi-displacement vessels.

. 2 Resistance

Only the main resistance components are listed. If necessary, other symbols may be created for other resistance components, in particular for different interference effects.

ITTC Symbols
Version 1996
ITTC Computer Name
Symbol
Symbol
2.3 Hydrofoil Boats
2.3.1 Geometry and Hydostatics

See Sections 1.2.1 and Sections 1.2.4

A_{F}	AFO	Foil area (general)	Foil area in horizontal plane
$A_{\text {FT }}$	AFT	Total foil plan area	m^{2}
$\mathrm{~B}_{\mathrm{FOA}}$	BFOA	Maximum vessel breadth including foils	m^{2}
$\mathrm{~b}_{\mathrm{S}}$	BST	Span of struts	m
b_{ST}	BSTT	Transverse horizontal distance of struts	m
c_{C}	CHC	Chord length at center plane	m
c_{F}	CFL	Chord length of flap	m
c_{M}	CHM	Mean chord length	m
c_{S}	CSTR	Chord length of a strut	m
$c_{S F}$	CHSF	Chord length of strut at	m
c_{T}	CHTI	Chord length at foil tips	m
W_{F}	WTF	Weight of foil	m
α_{c}	ALFTW	Geometric angle of twist	N
$\theta_{\text {DH }}$	DIHED	Dihedral angle	1
∇_{F}	DISVF	Foil displacement volume	1

ITTC Symbols

Version 1996

2 Special Craft
2.3 Hydrofoil Boats

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

2.3.1.1 Geometry, Underway

A_{FE}	AFE	Emerged area of foil	m^{2}
$\mathrm{~A}_{\mathrm{FF}}$	ASFF	Submerged area of front foil	m^{2}
$\mathrm{~A}_{\mathrm{FR}}$	ASFR	Submerged area of rear foil	m^{2}
$\mathrm{~A}_{\mathrm{FS}}$	AFS	Submerged foil area	m^{2}
$\mathrm{~A}_{\mathrm{FST}}$	AFSTO	Submerged foil plan area at take-off speed	m^{2}
$\mathrm{~A}_{\mathrm{SS}}$	ASS	Submerged strut area	m^{2}
$\mathrm{~b}_{\mathrm{w}}$	BSPW	Foil span wetted	m
c_{PF}	CPFL	Distance of center of pressure on a foil or flap from leading edge	m

| F_{nL} | FNFD | Froude number based on foil $\mathrm{V} /\left(\mathrm{g} \mathrm{L}_{\mathrm{FR}}\right)^{1 / 2}$
 distance |
| :--- | :--- | :--- | 1

| F_{nc} | FNC | Froude number based on
 chord length | $\mathrm{V} /\left(\mathrm{g} \mathrm{c}_{\mathrm{M}}\right)^{1 / 2}$ |
| :--- | :--- | :--- | :--- | 1

$\mathrm{h}_{\mathrm{CG}} \quad \mathrm{HVCG} \quad$ Height of center of gravity \quad Distance of center of gravity m foilborne above mean water surface
$\mathrm{h}_{\mathrm{F}} \quad \mathrm{HFL}$
h_{K}
$1_{\mathrm{F}} \quad$ LEFF \quad Horizontal distance of center
Height of foil chord at m foilborne mode above position at rest

h_{K}	HKE	Keel clearance	Distance between keel and mean water surface foilborne
l_{F}	LEFF	Horizontal distance of center of pressure of front foil to center of gravity	
$\mathrm{l}_{\text {FR }}$	LEFR	Horizontal distance between centers of pressure of front and rear foils	$\mathrm{l}_{\mathrm{F}}+\mathrm{l}_{\text {R }}$
$1_{\text {R }}$	LERF	Horizontal distance of center of pressure of rear foil to center of gravity	
T_{F}	TFO	Foil immersion	Distance between foil chord and mean water surface
T_{FD}	TFD	Depth of submergence of apex of a dihedral foil	Distance between foil apex and mean water surface

ITTC S Version		$\begin{aligned} & 2 \\ & 2.3 \\ & \text { 2.3.1 } \end{aligned}$	Special Craft Hydrofoil Boats Geometry and Hydrostatics	61
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
T_{FM}	TFOM	Mean depth of foil submergence		m
$\alpha_{\text {IND }}$	ALFIND	Downwash or induced angle		1
$\alpha_{\text {M }}$	ALFM	Angle of attack of mean lift coefficient for foils with twist		1
$\alpha_{\text {s }}$	AFS	Angle of attack for which flow separation (stall) occurs		1
$\alpha_{\text {To }}$	ATO	Incidence angle at take-off speed		1

ITTC Symbols
Version 1996
ITTC Computer Name Definition or SI-

Symbol Symbol
Explanation Unit

2.3.2 Resistance and Propulsion

See also Section 1.3.1 Hull Resistance

2.3.2.1 Basic Quantities

D_{F}	DRF	Foil drag	Force in the direction of motion of an immersed foil	N
D_{FR}	DFA	Drag force on rear foil	$\mathrm{C}_{\mathrm{DF}} \mathrm{A}_{\text {FR }} \mathrm{q}$	N
D_{FF}	DFF	Drag force on front foil	$\mathrm{C}_{\text {DF }} \mathrm{A}_{\text {FF }} \mathrm{q}$	N
DI	DRIND	Induced drag	For finite span foil, the component of lift in the direction of motion	N
$\mathrm{D}_{\text {INT }}$	DRINT	Interference drag	Due to mutual interaction of the boundary layers of intersecting foil	N
$\mathrm{D}_{\mathrm{P} 0}$	DRF0	Profile drag for angle of attack equal to zero lift	Streamline drag	N
$\mathrm{D}_{\text {S }}$	DRSP	Spray drag	Due to spray generation	N
$\mathrm{D}_{\text {ST }}$	DRST	Strut drag		N
D_{w}	DRWA	Wave drag	Due to propagation of surface waves	N
D_{v}	DRVNT	Ventilation drag	Due to reduced pressure at the rear side of the strut base	N
L_{F}	LF	Lift force on foil	$\mathrm{C}_{\mathrm{L}} \mathrm{A}_{\mathrm{FT}} \mathrm{q}$	N
L_{FF}	LFF	Lift force on front foil	$\mathrm{C}_{\mathrm{L}} \mathrm{A}_{\text {FF }} \mathrm{q}$	N
L_{FR}	LFR	Lift force on rear foil	$\mathrm{C}_{\mathrm{L}} \mathrm{A}_{\mathrm{FR}} \mathrm{q}$	N
L_{0}	LF0	Profile lift force for angle of attack of zero	$\mathrm{C}_{\mathrm{L} 0} \mathrm{~A}_{\mathrm{FT}} \mathrm{q}$	N
$\mathrm{L}_{\mathrm{T} 0}$	LT0	Lift force at take off	$\mathrm{C}_{\text {LTO }} \mathrm{A}_{\text {FT }} \mathrm{q}$	N
M	MSP	Vessel pitching moment		Nm

ITTC Symbols
Version 1996

2 Special Craft
2.3 Hydrofoil Boats
2.3.2 Resistance and Propulsion63

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

2.3.2.2 Derived Quantities

$\mathrm{C}_{\text {DF }}$	CDF	Drag coefficient of foil	$\mathrm{D}_{\mathrm{F}} /\left(\mathrm{A}_{\text {FS }} \mathrm{q}\right)$	1
$\mathrm{C}_{\text {DI }}$	CDI	Induced drag coefficient	$\mathrm{D}_{\mathrm{I}} /\left(\mathrm{A}_{\text {FS }} \mathrm{q}\right)$	1
$\mathrm{C}_{\text {DINT }}$	CDINT	Interference drag coefficient	$\mathrm{D}_{\text {INT }} /\left(\mathrm{A}_{\text {FS }} \mathrm{q}\right)$	1
C_{DO}	CDO	Section drag coefficient for angle of attack equal to zero	$\mathrm{D}_{\mathrm{P}} /\left(\mathrm{A}_{\text {FS }} \mathrm{q}\right)$	1
$\mathrm{C}_{\text {DS }}$	CDSP	Spray drag coefficient	$\mathrm{D}_{\mathrm{S}} /\left(\mathrm{A}_{\text {FS }} \mathrm{q}\right)$	1
$\mathrm{C}_{\text {DVENT }}$	CDVENT	Ventilation drag coefficient	$\mathrm{D}_{\mathrm{V}} /\left(\mathrm{A}_{\text {FS }} \mathrm{q}\right)$	1
$\mathrm{C}_{\text {DW }}$	CDW	Wave drag coefficient	$\mathrm{D}_{\mathrm{W}} /\left(\mathrm{A}_{\mathrm{FS}} \mathrm{q}\right)$	1
$\mathrm{C}_{\text {LF }}$	CLF	Foil lift coefficient	$\mathrm{L}_{\mathrm{F}} /\left(\mathrm{A}_{\mathrm{FS}} \mathrm{q}\right)$	1
$\mathrm{C}_{\text {Lo }}$	CLO	Profile lift coefficient for angle of attack equal to zero	$\mathrm{L}_{0} /\left(\mathrm{A}_{\mathrm{FS}} \mathrm{q}\right)$	1
$\mathrm{C}_{\text {LTо }}$	CLTO	Lift coefficient at take-off condition	$\mathrm{L}_{\mathrm{TO}} /\left(\mathrm{A}_{\mathrm{FS}} \mathrm{q}\right)$	1
$\mathrm{C}_{\text {LX }}$	CLA	Slope of lift curve	$\mathrm{dC}_{\mathrm{L}} / \mathrm{d} \alpha$	1
C_{M}	CM	Pitching moment coefficient	$\mathrm{M} /\left(\left(\mathrm{A}_{\mathrm{FF}+} \mathrm{A}_{\mathrm{FR}}\right)\left(\mathrm{l}_{\mathrm{F}}-\mathrm{l}_{\mathrm{R}}\right) \mathrm{q}\right)$	1
M_{F}	MLF	Load factor of front foil	$\mathrm{L}_{\mathrm{FF}} / \Delta$	1
M_{R}	MLR	Load factor of rear foil	$\mathrm{L}_{\mathrm{FR}} / \Delta$	1
$\epsilon_{\text {F }}$	EPSLDF	Lift/ Drag ratio of foil	L/D	1

ITTC S Version	Symbols 1996	$\begin{aligned} & 2 \\ & 2.4 \end{aligned}$	Special Craft ACV and SES Geometry and Hydrostatics	64
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
2.4	ACV and SES			
2.4.1	Geometry and Hyd	rostatics See also	o Section 1.2.1	
A_{C}	CUA	Cushion area	Projected area of ACV or SES cushion on water surface	m^{2}
B_{C}	BCU	Cushion beam	SES cushion beam measured between the side walls	m
$\mathrm{B}_{\text {WLT }}$	BWLT	Total waterline breadth of SES	At the water line	m
$\mathrm{H}_{\text {CG }}$	HVCG	Height of center of gravity above mean water plane beneath craft		m
$\mathrm{h}_{\text {BS }}$	HBS	Bow seal height	Distance from side wall keel to lower edge of bow seal	m
$\mathrm{H}_{\text {SK }}$	HSK	Skirt depth		m
$\mathrm{h}_{\text {ss }}$	HSS	Stern seal height	Distance from side wall keel to lower edge of stern seal	m
$\mathrm{L}_{\text {B }}$	LB	Deformed bag contact length		m
L_{C}	LAC	Cushion length		m
L_{E}	LACE	Effective length of cushion	$\mathrm{A}_{\mathrm{C}} / \mathrm{B}_{\mathrm{C}}$	m
$\mathrm{S}_{\text {но }}$	SSH0	Wetted area of side hulls at rest off cushion	Total wetted area of side walls under way on cushion	m^{2}
$\mathrm{S}_{\text {SHC }}$	SSHC	Wetted area of side hulls under way on cushion	Total wetted area of side walls under way on cushion	m^{2}
$\mathrm{S}_{\text {SH }}$	SSH	Wetted area of side hulls under way off cushion	Total wetted area of side walls under way off cushion	m^{2}
$\mathrm{X}_{\mathrm{H}}, \mathrm{L}_{\mathrm{H}}$	XH, LH	Horizontal spacing between inner and outer side skirt hinges or attachment points to structure	needs clarification	m
$\mathrm{X}_{\mathrm{s}}, \mathrm{L}_{\mathrm{s}}$	XS, LS	Distance of leading skirt contact point out-board or outer hinge of attachment point to structure	needs clarification	m

ITTC Symbols		$\begin{aligned} & 2 \\ & 2.4 \end{aligned}$	Special Craft ACV and SES	
Version	1996	2.4.2	Resistance and Propulsion	66
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
2.4.2	Resistance and Propulsion		on 1.3.1 on Hull Resistance	
C_{Δ}	CLOAD	Cushion loading coefficient	$\Delta /\left(\mathrm{g} \rho_{\mathrm{A}} \mathrm{A}_{\mathrm{C}}^{3 / 2}\right)$	1
$\mathrm{C}_{\text {PR }}$	CPR	Aerodynamic profile drag	$\mathrm{R}_{0} /\left(\rho_{\mathrm{A}} \mathrm{V}_{\mathrm{R}}{ }^{2} \mathrm{~A}_{\mathrm{C}} / 2\right)$	1
$\mathrm{C}_{\text {wc }}$	CWC	Cushion wavemaking coefficient		1
$\mathrm{p}_{\text {B }}$	PBM	Mean bag pressure		Pa
$\mathrm{p}_{\text {BS }}$	PBS	Bow seal pressure	Pressure in the bow seal bag	Pa
$\mathrm{p}_{\text {CE }}$	PCE	Mean effective skirt pressure		Pa
p_{CU}	PCU	Cushion pressure	Mean pressure in the cushion	Pa
$\mathrm{p}_{\text {FT }}$	PFT	Fan total pressure		Pa
$\mathrm{p}_{\text {LR }}$	PLR	Cushion pressure to length ratio	$\mathrm{P}_{\mathrm{CU}} / \mathrm{L}_{\mathrm{C}}$	Pa / m
$\mathrm{p}_{\text {SK }}$	PSS	Skirt pressure in general		Pa
$\mathrm{p}_{\text {ss }}$	PSS	Stern seal pressure	Pressure in the stern seal bag	Pa
$\mathrm{P}_{\mathrm{FCU}}$	PFCU	Power of lift fan		kW
$\mathrm{P}_{\text {FSK }}$	PFSK	Power of skirt fan		kW
$\mathrm{Q}_{\text {BS }}$	QBS	Bow seal air flow rate	Air flow rate to the bow seal	$\mathrm{m}^{3} / \mathrm{s}$
$\mathrm{Q}_{\text {CU }}$	QCU	Cushion air flow rate	Air flow rate to cushion	$\mathrm{m}^{3} / \mathrm{s}$
$\mathrm{Q}_{\text {SS }}$	QSS	Stern seal air flow rate	Air flow rate to the stern seal	$\mathrm{m}^{3} / \mathrm{s}$
Q_{T}	QT	Total air volume flow		$\mathrm{m}^{3} / \mathrm{s}$
$\mathrm{R}_{\text {AT }}$	RAT	Total aerodynamic resistance	$\mathrm{R}_{\mathrm{M}}+\mathrm{R}_{0}$	N
R_{H}	RH	Hydrodynamic resistance	$\mathrm{R}_{\mathrm{W}}+\mathrm{R}_{\mathrm{WET}}$	N
R_{M}	RM	Intake momentum resistance in general	$\rho_{\mathrm{A}} \mathrm{Q}_{\mathrm{T}} \mathrm{V}_{\mathrm{A}}$	N
$\mathrm{R}_{\text {MCU }}$	RMCU	Intake momentum resistance of cushion	$\rho_{A} \mathrm{Q}_{\text {TCU }} \mathrm{V}_{\mathrm{A}}$	N
$\mathrm{R}_{\text {MSK }}$	RMSK	Intake momentum resistance of skirt	$\rho_{\text {A }} \mathrm{Q}_{\text {TSK }} \mathrm{V}_{\mathrm{A}}$	N
$\mathrm{R}_{\text {WET }}$	RWET	Resistance due to wetting		N
$\mathrm{T}_{\text {C }}$	TC0	Cushion thrust		N

2 Special Craft
2.5 Ice going Vessels
2.5.1 Resistance and Propulsion

Version 1996
Computer Name
Definition or SI-

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

2.5 Ice Going Vessels

2.5.1 Resistance and Propulsion (See Figure 3.4, p 225 and Figure 3.8, p 231 of Volume 1 of the Proceedings of the 21st ITTC)

C_{1}	CI	Coefficient of net ice resistance	$\mathrm{R}_{\mathrm{I}} /\left(\rho_{\mathrm{I}} \mathrm{gh} \mathrm{h}^{2} \mathrm{~B}\right)$	1
Ciw	CIW	Coefficient of water resistance in the presence of ice	$\mathrm{R}_{\text {IW }} /\left(\mathrm{S} \mathrm{q}_{\text {IW }}\right)$	1
$\mathrm{F}_{\text {IN }}$	FNIC	Normal ice force on a body	Projection of hull-ice interaction force on the external normal	N
$\mathrm{F}_{\text {IT }}$	FTIC	Tangential ice force on a body	Projection of the hull ice interaction force on the direction of motion	N
F_{nI}	FNIC	Froude number based on ice thickness	$\mathrm{V} /\left(\mathrm{gh} \mathrm{h}^{\text {}}\right)^{1 / 2}$	1
F_{XI}	FXIC	Components of the local		N
F_{YI}	FYIC	ice force		N
F_{ZI}	FZIC			N
$\mathrm{f}_{\text {ID }}$	CFRD	Coefficient of friction between surface of body and ice (dynamic)	Ratio of tangential force to normal force between two bodies (dynamic condition)	1
$\mathrm{f}_{\text {IS }}$	CFRS	Coefficient of friction between surface of body and ice (static)	The same as above (static condition)	1
$\mathrm{h}_{\text {I }}$	HTIC	Thickness of ice		m
$\mathrm{h}_{\text {SN }}$	HTSN	Thickness of snow cover		m
$\mathrm{K}_{\text {QIA }}$	KQICMS	Average coefficient of torque in ice	$\mathrm{Q}_{\mathrm{IA}} /\left(\rho_{\mathrm{W}} \mathrm{n}_{\mathrm{IA}}{ }^{2} \mathrm{D}^{5}\right)$	1
$\mathrm{K}_{\text {TIA }}$	KTICMS	Average coefficient of thrust in ice	$\mathrm{T}_{\mathrm{IA}} /\left(\rho_{\mathrm{W}} \mathrm{n}_{\mathrm{IA}}{ }^{2} \mathrm{D}^{4}\right)$	1
$\mathrm{n}_{\text {IA }}$	FRICMS	Average rate of propeller revolution in ice		Hz
P_{DI}	PDI	Delivered power at propeller in ice	$2 \pi \mathrm{Q}_{\text {IA }} \mathrm{n}_{\text {IA }}$	W

ITTC S Version		$\begin{aligned} & 2 \\ & 2.5 \end{aligned}$	Special Craft Ice going Vessels Resistance and Propulsion	68
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
$\mathrm{Q}_{\text {IA }}$	QIMS	Average torque in ice		Nm
R_{I}	RI	Net ice resistance	$\mathrm{R}_{\text {IT }}-\mathrm{R}_{\text {IW }}$	N
$\mathrm{R}_{\text {IT }}$	RIT	Total resistance in ice	Ship towing resistance in ice	N
$\mathrm{R}_{\text {IW }}$	RIW	Hydrodynamic resistance in presence of ice	Total water resistance of ship in ice	N
$\mathrm{T}_{\text {IA }}$	TIMS	Average total thrust in ice		N
$\eta_{\text {ICE }}$	ERIC	Relative propulsive efficiency in ice	$\eta_{\text {ID }} / \eta_{\text {D }}$	1
$\eta_{\text {ID }}$	EFDIC	Propulsive efficiency in ice	$\mathrm{R}_{\mathrm{IT}} \mathrm{V} /\left(2 \pi \mathrm{n}_{\text {IA }} \mathrm{Q}_{\text {IA }}\right)$	1

ITTC Symbols			2	Special Craft	
			2.6	Sailing Vessels	
Version 1996			2.6.1	Geometry and Hydrostatics	69
ITTC	Computer	Name		Definition or	SI-
Symbol	Symbol			Explanation	Unit

2.6 Sailing Vessels

2.6.1 Geometry and Hydrostatics See also Section 1.2.1 on Hull Geometry

A_{j}	ASJ	Area of jib or genoa		m^{2}
$\mathrm{A}_{\text {LK }}$	ALK	Lateral area of keel		m^{2}
$\mathrm{A}_{\text {LT }}$	ALT	Total lateral area of yacht		m^{2}
A_{m}	ASM	Area of mainsail		m^{2}
A_{N}	ASN	Normalized sail area		m^{2}
$\mathrm{A}_{\text {sp }}$	ASSP	Area of spinnaker		m^{2}
$\mathrm{A}_{\mathrm{S}}, \mathrm{S}_{\text {A }}$	AS	Sail area in general	$(\mathrm{PE}+\mathrm{IJ}) / 2$	m^{2}
B_{OA}	BOA	Beam, overall		m
E	EM	Mainsail base		m
I	I	Fore triangle height		m
J	J	Fore triangle base		m
P	P	Mainsail height		m
L_{E}	LEFF	Effective length for Reynolds Number		m
S_{C}	SC	Wetted surface area of canoe body		m^{2}
S_{K}	SK	Wetted surface area of keel		m^{2}
S_{R}	SR	Wetted surface area of rudder		
T ${ }_{\text {c }}$	TCAN	Draft of canoe body		m
T_{E}	TEFF	Effective draft	$\mathrm{F}_{\mathrm{H}} /\left(\rho \pi \mathrm{V}_{\mathrm{B}}{ }^{2} \mathrm{R}\right)^{5}$	m
$\mathrm{Z}_{\text {CE }}$	ZCE	Height of centre of effort of sails above waterline in vertical centerplane		m
$\nabla_{\text {C }}$	DVCAN	Displaced volume of canoe body		m^{3}
∇_{K}	DVK	Displaced volume of keel		m^{3}
$\nabla_{\text {R }}$	DVR	Displaced volume of rudder		m^{3}
$\Delta_{\text {C }}$	DFCAN	Displacement force (weight) of canoe body		N

ITTC Symbols
Version 1996
ITTC Computer Name
Symbol Symbol
2 Special Craft
2.6 Sailing Vessels
2.6.2 Resistance and Propulsion
$\begin{array}{lll}\Delta_{\mathrm{K}} & \text { DFK } & \begin{array}{l}\text { Displacement force (weight) } \\ \text { of keel }\end{array}\end{array}$

Definition or SI-
Explanation Unit

Δ_{R} DFR	Displacement force (weight) of rudder	N

2.6.2 Resistance and Propulsion

C_{FU}	CFU	Frictional resistance coefficient (upright)	$\mathrm{R}_{\mathrm{FU}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {RU }}$	CRU	Residuary resistance coefficient (upright)	$\mathrm{R}_{\mathrm{RU}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {TU }}$	CTU	Total resistance coefficient (upright)	$\mathrm{R}_{\mathrm{TU}} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {wu }}$	CWU	Wave resistance coefficient (upright)		1
$\mathrm{C}_{\text {T } \phi}$	CTPHI	Total resistance coefficient with heel and leeway	$\mathrm{R}_{T \phi} /(\mathrm{Sq})$	1
$\mathrm{C}_{\text {I }}$		Induced resistance coefficient		1
$\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{y}}, \mathrm{C}_{\mathrm{z}}$		Force coefficients		1
F_{H}		Heeling force of sails		N
F_{R}		Driving force of sails		N
F_{V}		Vertical force of sails		N
H		Side force		N
L_{HY}		Hydrodynamic lift force		N
$\mathrm{R}_{\text {aw }}$		Added Resistance in waves		N
R_{FU}		Friction resistance (upright)		N
R_{RU}		Residuary resistance (upright)		N
R_{I}		Resistance increase due to side (induced resistance)		N
$\mathrm{R}_{\text {TU }}$	RTU	Total resistance (upright)		N
$\mathrm{R}_{\text {T } \phi}$	RTUH	Total resistance when heeled	$\mathrm{R}_{\mathrm{TU}}+\mathrm{R}_{\phi}$	N
$\mathrm{R}_{\phi}, \mathrm{R}_{\mathrm{H}}$	RTUHA	Resistance increase due to heel (with zero side force)		N

ITTC Symbols		$\begin{aligned} & 2 \\ & 2.6 \end{aligned}$	Special Craft Sailing Vessels	
Version 1996		2.6.2	Resistance and Propulsion	71
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
X,Y,Z		Components of resultant force along designated axis		N
U	V	Boat velocity		m / s
$\mathrm{U}_{\text {aw }}$	VWREL	Apparent wind velocity		m / s
$\mathrm{V}_{\text {tw }}$	VWABS	True wind velocity		m / s
V_{mc}	VMC	Velocity made good on course		m / s
V_{mg}	VMG	Velocity made good to windward (contrary to wind direction)		m / s
$\beta_{\text {L }}$	BETAL	leaway angle		rad
$\beta_{\text {aw }}$	BETWA	apparent wind angle (relative to boat course)		rad
$\beta_{\text {tw }}$	BETWT	true wind angle (relative to boat course)		rad

2.6.3 Remarks

This is only a partical list of symbols used in this specialized area. For a more complete list of sailing yacht symbols and how they are used, see Peter van Oossanen, "Predicting the Speed of Sailing Yachts" Proceedings of Annual Meeting of SNAME, 1993

3 Mechanics in General
 3.1 Fundamental Concepts
 3.1.1 Coordinates and Space related Quantities 72

Version 1996

ITTC	Computer	Name	Definition or Symbol	Symbol

3 Mechanics in General
3.1 Fundamental Concepts
3.1.1 Coordinates and Space Related Quantities

3.1.1.1 Coordinate systems

Orientation of coordinates

A problem of general interest, the orientation of the axes of coordinate systems, has been treated extensively in the Report of the 17th ITTC Information Committee. The present SaT Group recommends that the orientations of the coordinate systems chosen for convenience should be stated explicitly in any case. The coordinate system orientation should not be inferred from the symbols and/or names of the concepts or from national or professional traditions. All sign conventions of related Quantities should be consistent with the orientation chosen.

For ready reference the recommendation of the 17th ITTC Information Committee is quoted in the following.
"In order to adapt ITTC nomenclature to common practice a proposal for a standard coordinate system was published in the newsletter No 7, March 1983, to generate discussion. The response was quite diverse. On the one hand it was suggested that instead of the two orthogonal right handed systems with the positive x -axis forward and the positive z -axis either up- or downward as proposed only one system should be selected, in particular the one with the positive z-axis upwards. On the other hand the attention of the Information Committee was drawn to the fact that in ship flow calculations neither of the two systems proposed is customary. Normally the x -axis is directed in the main flow direction, i.e. backwards, the y axis is taken positive to starboard and the z-axis is positive upwards. The origin of the coordinates in this case is usually in the undisturbed free surface half way between fore and aft perpendicular.

In view of this state of affairs the Information Committee (now SaT Group) may offer the following recommendation, if any:

Axes, coordinates

Preferably, orthogonal right handed systems of Cartesian co-ordinates should be used, orientation and origin in any particular case should be chosen for convenience.

Body axes (x,y,z)
Coordinate systems fixed in bodies or ships.
For the definition of hull forms, for structural deflections, and exciting forces usually the x -axis positive forward and parallel to the reference or base line used to describe the body's shape, the y -axis positive to port, and the z -axis positive upwards.

ITTC Symbols			$\begin{aligned} & \mathbf{3} \\ & \mathbf{3 . 1} \end{aligned}$	Mechanics in General Fundamental Concepts	
Version 1996			3.1.1	Coordinates and Sp	ies 73
ITTC	Computer	Name		Definition or	SI-
Symbol	Symbol			Explanation	Unit

For seakeeping and manoeuvring problems usually the x -axis as before the y -axis positive to starboard, and the z -axis positive downwards, the origin customarily at the centre of mass of the vehicle or at a geometrically defined position.

For ship flow calculations usually the x-axis positive in the main flow direction, i.e. backwards, the y-axis positive to starboard, and the z-axis positive upwards, the origin customarily at the intersection of the plane of the undisturbed free-surface, the centre plane, and the midship section.

Fixed or space axes ($\mathbf{x}_{0}, \mathbf{y}_{0}, \mathrm{z}_{0}$)

Coordinate systems fixed in relation to the earth or the water. For further references see ISO Standard 1151/1 ...6: Terms and symbols for flight dynamics.

The Information Committee is aware that there may be other coordinate systems in use and sees no possibility for the adoption of a single system for all purposes. Any problem requires an adequate coordinate system and transformations between systems are simple, provided that orientations and origins are completely and correctly documented for any particular case."

. 2 Origins of coordinates

In seakeeping and manoeuvring problems customarily the centre of mass of the vehicle is chosen as the origin of the coordinates. This is in most cases not necessarily advantageous, as all the hydrodynamic properties entering the problems are related rather to the geometries of the bodies under investigation. So any geometrically defined point may be more adequate for the purposes at hand.

ITTC Symbols
Version 1996

3 Mechanics in General
3.1 Fundamental Concepts
3.1.1 Coordinates and Space related Quantities 74

ITTC	Computer	Name	Definition or Symbol	Symbol

3.1.1.2 Basic Quantities

s	S	Any scalar quantity distributed, maybe singularly, in space	$\int \mathrm{d} s$
$S^{\text {ij }}$	SM0(I,J)	Zeroth order moment of a scalar quantity	$\int \delta_{\mathrm{ij}} \mathrm{d} s=\delta_{\mathrm{ij}} S$
$S^{1}{ }_{\text {ij }}$	SM1 (I,J)	First order moment of a scalar quantity, formerly static moments of a scalar distribution	$\int \epsilon_{\text {ikj }} \mathrm{x}_{\mathrm{k}} \mathrm{d} s$
$S^{\text {ij }}$	SM2(I,J)	Second moment of a scalar quantity, formerly moments of inertia of a scalar distribution	$\int \epsilon_{\mathrm{ki}} \mathrm{x}_{1} \epsilon_{\mathrm{jkm}} \mathrm{x}_{\mathrm{m}} \mathrm{d} s$
$S_{\text {uv }}$	$S(\mathrm{U}, \mathrm{V})$	Generalized moment of a scalar quantity distributed in space	s. Remark . 3 $S_{\mathrm{ij}}=S_{\mathrm{ij}}^{0}$
			$S_{\mathrm{i}, 3+\mathrm{j}}=S^{1} \mathrm{ij}^{\mathrm{T}}$
			$S_{3+\mathrm{i}, \mathrm{j}}=S^{1}{ }_{\mathrm{ij}}$
			$S_{3+\mathrm{i}, 3+\mathrm{j}}=S^{2} \mathrm{ij}^{2}$
$T_{\text {ij }}$	$T(\mathrm{I}, \mathrm{J})$	Tensor in space referred to an orthogonal system of Cartesian coordinates fixed in the body	$T_{\mathrm{ij}}{ }^{\text {a }}+T_{\mathrm{ij}}{ }^{\text {a }}$
$T_{\text {ij }}{ }^{\text {A }}$	TAS(I,J)	Anti-symmetric part of a tensor	$\left(T_{\mathrm{ij}}-T_{\mathrm{jij}}\right) / 2$
$T_{\text {ij }}{ }^{\text {S }}$	TSY(I,J)	Symmetric part of a tensor	$\left(T_{\mathrm{ij}}+T_{\mathrm{ji}}\right) / 2$
$T_{\mathrm{ij}}{ }^{\text {T }}$	TTR(I,J)	Transposed tensor	$T_{\text {ji }}$
$T_{\mathrm{ij}} v_{\mathrm{j}}$		Tensor product	$\sum T_{\mathrm{ij}} v_{\mathrm{j}}$
$u_{\mathrm{i}}, v_{\mathrm{i}}$	$U(\mathrm{I}), V(\mathrm{I})$	Any vector quantities	
$u_{\mathrm{i}} v_{\mathrm{i}}$	UVPS	Scalar product	$u_{i} v_{i}$
$u_{\mathrm{i}} v_{\mathrm{j}}$	UVPD(I,J)	Diadic product	$u_{i} v_{j}$
$u \times v$	$U V \mathrm{PV}(\mathrm{I})$	Vector product	$\epsilon_{\mathrm{ijk}} u_{\mathrm{j}} v_{\mathrm{k}}$

ITTC Symbols
Version 1996
3 Mechanics in General
3.1 Fundamental Concepts

ITTC	Computer	Name	Definition or Symbol	Symbol

$V_{\mathrm{i}}^{0}, V_{\mathrm{i}}$	$V 0(\mathrm{I}), V(\mathrm{I})$	Zeroth order moments of a vector quantity distributed in space, referred to an orthogonal system of Cartesian coordinates fixed in the body	$\int d v_{i}$
$V^{1}{ }_{i}$	V1(I)	First order moments of a vector distribution	$\int \epsilon_{\mathrm{ijk}} \mathrm{X}_{\mathrm{j}} \mathrm{d} v_{\mathrm{k}}$
V_{u}	$V(\mathrm{U})$	Generalized vector	$\begin{aligned} & V_{\mathrm{i}}=V_{\mathrm{i}}^{0} \\ & V_{3+\mathrm{i}}=V_{\mathrm{i}}^{1} \end{aligned}$
$\begin{aligned} & \mathrm{x}, \mathrm{x}_{1} \\ & \mathrm{y}, \mathrm{x}_{2} \\ & \mathrm{z}, \mathrm{x}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{X}, \mathrm{X}(1) \\ & \mathrm{Y}, \mathrm{X}(2) \\ & \mathrm{Z}, \mathrm{X}(3) \end{aligned}$	Body axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in the body, s. Remark . 2
$\begin{aligned} & \mathrm{x}_{0}, \mathrm{x}_{01} \\ & \mathrm{y}_{0}, \mathrm{x}_{02} \\ & \mathrm{z}_{0}, \mathrm{x}_{03} \end{aligned}$	$\begin{aligned} & \mathrm{X} 0, \mathrm{X} 0(1) \\ & \mathrm{Y} 0, \mathrm{X} 0(2) \\ & \mathrm{Z} 0, \mathrm{X} 0(3) \end{aligned}$	Space axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the space, s. Remark . 2
$\begin{aligned} & \mathrm{x}_{\mathrm{F}}, \mathrm{x}_{\mathrm{F} 1} \\ & \mathrm{y}_{\mathrm{F}}, \mathrm{x}_{\mathrm{F}} \\ & \mathrm{z}_{\mathrm{F}}, \mathrm{x}_{\mathrm{F}} \end{aligned}$	XF, XF(1) YF, XF(2) ZF, XF(3)	Flow axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the flow, s . Remark . 2
$\epsilon_{\text {ijk }}$	EPS(I,J,K)	Epsilon operator	$\begin{aligned} & +1: \mathrm{ijk}=123,231,312 \\ & -1: \mathrm{ijk}=321,213,132 \\ & 0: \text { if otherwise } \end{aligned}$
$\delta_{i j}$	DEL(I,J)	Delta operator	$\begin{gathered} +1: \mathrm{ij}=11,22,33 \\ 0: \text { if otherwise } \end{gathered}$

ITTC Symbols		3	Mechanics in General Fundamental Concepts	
Version 1996		3.1	Fund Coordinates and Space related Quantities 76	
ITTC	Computer	Name		Definition or

3.1.1.3 Remarks

. 1 Notation

The symbols s, S, T, u, v, V denote variables to be replaced by the symbols of the specific quantities under consideration in any particular application.

The range of the operational indices $\mathrm{i}, \mathrm{j}, \mathrm{k}$ is from 1 to 3 , while for the generalized concepts the operational indices $\mathrm{u}, \mathrm{v}, \mathrm{w}$ range from 1 to 6 .

. 2 Generalized vector or 6-D notation

Most mechanical problems related to bodies moving in three dimensional space are six dimensional due to the six degrees of freedom involved. Consequently it is extremely convenient to have an appropriate notation available. Historically a symbolic 'motor' notation has been proposed and successfully used by Richard von Mises (1924). Much later the operational notation ready for computer applications adopted here has been independently developed (Schmiechen, 1962) and used for the efficient solution of complex problems, including the motions of robots in flows (Schmiechen, 1989) .

The basic idea is to combine the two vectorial balances for the translational momentum and the rotational momentum, respectively, into only one 6-D balance of the generalized momentum, and consequently to deal with generalized forces, i. e. loads, generalized velocities, i. e. motions, generalized masses, i. e. inertia, etc. The generalized vectors, i. e. von Mises' motors, and the generalized tensors are simple matrices of vectors and tensors, respectively. As ordinary vectors and tensors their generalized counterparts obey certain transformation rules related to changes in the orientations and the origins of the coordinate systems.

The introduction of this notation at this very early stage is of course in line with the object oriented approach adopted and permitting an extremely efficient notation not only for the motions of bodies in general but the seakeeping and manouvring of ships, the notation for which was so far in a quite unacceptable state.

ITTC Symbols		3	Mechanics in General	
		3.1	Fundamental Concepts	
Version 1996		3.1.2	Time and Frequency Domain Quantities	77
ITTC	Computer	Name		Definition or

3.1.2 Time and Frequency Domain Quantities

3.1.2.1 Basic Quantities

a	ADMP	Damping	s^{r}, in Laplace variable	1/s
f	FR	Frequency		Hz
f_{C}	FC	Basic frequency in repeating functions	$1 / T_{C}$	Hz
$\mathrm{f}_{\text {S }}$	FS	Frequency of sampling	$1 / \mathrm{T}_{\mathrm{S}}$ period in repeating spectra	Hz
i	I	Imaginary unit	sqrt(-1)	1
I	IM	Imaginary variable		i
j	J	Integer values	${ }_{-\infty} \ldots+\infty$	1
R	R	Complex variable	$\exp \left(\mathrm{S}_{\mathrm{S}}\right)$ Laurent transform	
S	S	Complex variable	$a+2 \pi \mathrm{if}$ Laplace transform	1/s
t	TI	Time	$-\infty \ldots+\infty$	s
t_{j}	TI(J)	Sample time instances	j $\mathrm{T}_{\text {S }}$	
T_{C}	TC	Period of cycle	$\begin{aligned} & 1 / \mathrm{f}_{\mathrm{C}} \\ & \text { duration of cycles in } \\ & \text { periodic, repeating processes } \end{aligned}$	s
T_{S}	TS	Period of sampling	Duration between samples	s
x	x	Values of real quantities	$x(\mathrm{t})$	
X		Real "valued" function		
$x_{\text {j }}$	$X(\mathrm{~J})$	Variables for samples values of real quantities	$x\left(\mathrm{t}_{\mathrm{j}}\right)=\int x(\mathrm{t}) \delta\left(\mathrm{t}-\mathrm{t}_{\mathrm{j}}\right) \mathrm{dt}$	
z	Z	Complex variable		

ITTC Symbols
Version 1996
ITTC Computer Name Definition or SI-
Symbol Symbol

3.1.2.2 Complex Transforms

$x^{\text {A }}$	$X \mathrm{~A}$	Analytic function	$X^{\mathrm{A}}(\mathrm{t})=X(\mathrm{t})+\mathrm{i} X^{\mathrm{H}}(\mathrm{t})$
$x^{\text {DF }}$	XDF	Fourier transform of sampled function	$X^{\mathrm{DF}}(\mathrm{f})=\sum x_{\mathrm{j}} \exp \left(-\mathrm{i} 2 \pi \mathrm{fj} \mathrm{~T}_{\mathrm{S}}\right)$ i.e. periodically repeating
			$=X(0) / 2+\mathrm{f}_{\mathrm{s}} \sum X^{\mp}\left(\mathrm{f}+\mathrm{j}_{\mathrm{s}}\right)$ sample theorem: aliasing!
$x^{\text {DL }}$	XDL	Laurent transform Sampled function	$X^{\mathrm{DL}}(\mathrm{s})=\sum x_{\mathrm{j}} \exp \left(-\mathrm{sjT} \mathrm{S}_{\mathrm{S}}\right)$
x^{F}	XFT	Fourier transform	$X^{\mp}(\mathrm{f})=\int X(\mathrm{t}) \exp (-\mathrm{i} 2 \pi \mathrm{ft}) \mathrm{dt}$ inverse form: $=\int X^{\mp}(\mathrm{f}) \exp (-\mathrm{i} 2 \pi \mathrm{ft}) \mathrm{dt}$ if $X(\mathrm{t})=0$ and $\mathrm{a}=0$ then $X^{\mp}(\mathrm{f})=X^{\mathrm{L}}(\mathrm{f})$
$x^{\mathrm{F}}{ }_{\mathrm{j}}$	XFT(J)	Fourier transform of periodic function	$\begin{aligned} & 1 / \mathrm{T}_{\mathrm{C}} \int X(\mathrm{t}) \exp \left(-\mathrm{i} 2 \pi \mathrm{j} \mathrm{t} / \mathrm{T}_{\mathrm{C}}\right) \mathrm{dt} \\ & \mathrm{t}=0 \ldots \mathrm{~T}_{\mathrm{C}} \\ & X^{\mathrm{F}}=\sum \mathrm{x}_{\mathrm{j}}^{\mathrm{F}} \delta\left(\mathrm{f}-\mathrm{j} / \mathrm{T}_{\mathrm{C}}\right) \\ & \text { inverse form: } \\ & X(\mathrm{t})=\sum x^{\mathrm{F}} \mathrm{j} \text { exp }\left(-\mathrm{i} 2 \pi \mathrm{fj} \mathrm{~T}_{\mathrm{C}}\right) \end{aligned}$
x^{H}	$X \mathrm{HT}$	Hilbert transform	$X^{\mathrm{H}}(\mathrm{t})=1 / \pi \int X(\tau) /(\mathrm{t}-\tau) \mathrm{d} \tau$
$x^{\text {HF }}$	XHF	Fourier transform of Hilbert transform	$\begin{aligned} & X^{\mathrm{HF}}(\mathrm{f})=X^{\mathrm{F}}(\mathrm{f})(-\mathrm{i} \operatorname{sgn} \mathrm{f}) \\ & (1 / t)^{\mathrm{F}}=-\mathrm{i} \operatorname{sgn} \mathrm{f} \end{aligned}$
$x^{\text {L }}$	XLT	Laplace transform	$\begin{aligned} & X^{\mathrm{L}}(\mathrm{~s})=\int X(\mathrm{t}) \exp (-\mathrm{st}) \mathrm{dt} \\ & \text { if } X(\mathrm{t}<0)=0 \text { then } \\ & =(X(\mathrm{t}) \exp (-\mathrm{at}))^{\mathrm{F}} \end{aligned}$
$x^{\text {R }}$	XRT	Laurent transform	$X^{\mathrm{R}}(\mathrm{r})=\sum x_{\mathrm{j}} \mathrm{r}^{-\mathrm{j}}=X^{\mathrm{DL}}$
$x^{\text {S }}$	XS	Single-sided complex spectra	$\begin{aligned} & X^{\mathrm{S}}(\mathrm{f})=X^{\mp}(\mathrm{f})(1+\operatorname{sgn} \mathrm{f}) \\ & =X^{\mathrm{AF}} \\ & \text { i.e. }=0 \text { for } \mathrm{f}<0 \end{aligned}$
$x^{\text {S }}$	XS(J)	Single-sided complex Fourier series	$X^{\mp}{ }_{\mathrm{j}}(1+\operatorname{sgn} \mathrm{j})$ line spectra

3 Mechanics in General

3.1 Fundamental Concepts
3.1.2 Time and Frequency Domain Quantities

Version 1996
$\begin{array}{llll}\text { ITTC } & \text { Computer Name } & \text { Definition or }\end{array}$
Symbol Symbol
Explanation
Unit

3.1.2.3 Complex Quantities

z^{a}	ZAM
z^{c}	ZRE
z^{i}	ZIM
z^{j}	ZCJ
z^{1}	ZLG
z^{p}	ZPH
z^{r}	ZRE
z^{s}	ZIM

3.1.2.4 Remarks

. 1 Fourier transforms and spectra

The notation proposed has proved to be adequate for "real" problems at hand, these notes giving some useful background information in the most concise form.
The complex "values" may be quantities of any "complexity", e.g. tensors, matrices, and tensors of matrices as e.g. encountered in 6-D parameter identification.
The uniform use of the "natural" frequency instead of artifical circular frequency has the advantage that no factors are occuring in the Fourier transform pair.

. 2 Group properties

The Fourier and Hilbert transforms are the unit elements of cyclic groups with the following properties:

$$
\begin{aligned}
& X(\mathrm{t})^{\mathrm{F}}=X^{\mathrm{F}}(\mathrm{f}), \quad X^{\mathrm{F}}(\mathrm{f})^{\mathrm{F}}=X(-\mathrm{t}), \quad X(-\mathrm{t})^{\mathrm{F}}=X^{\mathrm{F}}(-\mathrm{f}), \quad X^{\mathrm{F}}(-\mathrm{f})^{\mathrm{F}}=X(\mathrm{t}) \\
& X(\mathrm{t})^{\mathrm{H}}=X^{\mathrm{H}}(\mathrm{t}), \quad X^{\mathrm{H}}(\mathrm{t})^{\mathrm{H}}=-X(\mathrm{t}), \quad-X(\mathrm{t})^{\mathrm{H}}=-X^{\mathrm{H}}(\mathrm{t}), \quad-X^{\mathrm{H}}(\mathrm{t})^{\mathrm{H}}=X(\mathrm{t}) .
\end{aligned}
$$

Consequently among others the following fundamental relations hold:

$$
\mathrm{F}^{4}=\mathrm{H}^{4}=1
$$

. 3 Fourier series

Due to the fact that in most cases only real functions and single-sided spectra are used the usual format of the Fourier series is

$$
X(\mathrm{t})=\operatorname{real}\left(\sum \mathrm{x}_{\mathrm{j}}^{\mathrm{S}} \exp \left(\mathrm{i} 2 \pi \mathrm{j} \mathrm{t} / \mathrm{T}_{\mathrm{C}}\right)=\sum \mathrm{x}^{\mathrm{Sc}}{ }_{\mathrm{j}} \cos \left(2 \pi \mathrm{j} \mathrm{t} / \mathrm{T}_{\mathrm{C}}\right)+\sum \mathrm{x}^{\mathrm{Ss}}{ }_{\mathrm{j}} \sin \left(2 \pi \mathrm{j} \mathrm{t} / \mathrm{T}_{\mathrm{C}}\right)\right.
$$

ITTC Symbols

3 Mechanics in General
3.1 Fundamental Concepts

Version 1996
3.1.2 Time and Frequency Domain Quantities

ITTC Computer Name Definition or \quad SI-
Symbol
Symbol
Explanation Unit
The reason for this step is that the spectra are in fact Fourier transforms not of the real function being studied but of the corresponding analytic function.

For ready reference the following formulae are given

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{j}}^{\mathrm{S}}=\mathrm{x}_{\mathrm{j}}^{\mathrm{F}}(1+\mathrm{sgn} \mathrm{j}) \\
& \mathrm{x}^{\mathrm{Fc}}=1 / \mathrm{T}_{\mathrm{C}} \int X(\mathrm{t}) \cos \left(2 \pi \mathrm{j} / \mathrm{T}_{\mathrm{C}}\right) \mathrm{dt} \\
& \mathrm{x}^{\mathrm{Fs}}=1 / \mathrm{T}_{\mathrm{C}} \int X(\mathrm{t}) \sin \left(2 \pi \mathrm{j} \mathrm{t} / \mathrm{T}_{\mathrm{C}}\right) \mathrm{dt}
\end{aligned}
$$

where the integration has to be extended over the cycle T_{C}.

.4 Causal functions

Causal functions, defined by

$$
X(\mathrm{t}<0)=0,
$$

are conveniently expressed as

$$
X(\mathrm{t})=X^{\mathrm{e}}(\mathrm{t})(1+\operatorname{sgn} \mathrm{t})
$$

with the even function

$$
X^{\mathrm{e}}(\mathrm{t})=(X(\mathrm{t})+X(-\mathrm{T})) / 2
$$

Noting the property

$$
X^{\mathrm{FF}}=X^{\mathrm{Fr}}
$$

the Fourier transform

$$
X^{\mathrm{F}}=X^{\mathrm{eF}}-\mathrm{i} X^{\mathrm{eFH}}
$$

leads to the relations

$$
X^{\mathrm{Fi}}=-X^{\mathrm{FrH}} \text {, i.e. } X^{\mathrm{FiF}}(\mathrm{t})=-X^{\mathrm{FrF}}(\mathrm{t})(-\mathrm{i} \operatorname{sgn} \mathrm{t})
$$

and, taking advantage of the group properties,

$$
X^{\mathrm{Fr}}=+X^{\mathrm{FiH}}, \text { i.e. } X^{\mathrm{FrF}}(\mathrm{t})=+X^{\mathrm{FiF}}(\mathrm{t})(-\mathrm{i} \operatorname{sgn} \mathrm{t}) .
$$

These relationships are known under various names and guises, the derivations sometimes obscured by irrelevant or misleading arguments., the worst being hydrodynamic.

3 Mechanics in General

3.1 Fundamental Concepts

Version 1996
3.1.2 Time and Frequency Domain Quantities

| ITTC Computer Name | Definition or | SI- |
| :--- | :--- | :--- | :--- |

Symbol Symbol Explanation Unit

.5 Minimal phase functions

From the format

$$
X^{\mathrm{F}}=X^{\mp \mathrm{a}} \exp \left(\mathrm{i} X^{\mp p}\right)
$$

the logarithm

$$
\ln \left(X^{\mp}\right)=\ln \left(X^{\text {Fa }}\right)+\mathrm{i} X^{\mp p}
$$

is derived and it can be proved that the relations

$$
X^{\mathrm{Fp}}=-\left(\ln \left(X^{\mathrm{Fa}}\right)\right)^{\mathrm{H}}, \text { i.e. } X^{\mathrm{Fp}} \mathrm{~F}(\mathrm{t})=-\left(\ln \left(X^{\mathrm{Fa}}\right)\right) \mathrm{F}(\mathrm{t})(-\mathrm{i} \text { sgn } \mathrm{t})
$$

and

$$
\ln \left(X^{\mathrm{Fa}}\right)=+X^{\mathrm{FpH}}, \text { i.e. }\left(\ln \left(X^{\mathrm{Fa}}\right)\right) \mathrm{F}(\mathrm{t})=+X^{\mathrm{FPF}}(\mathrm{t})(-\mathrm{i} \text { sgn } \mathrm{t})
$$

hold for phase minimal functions; s.e.g. Papoulis, A.: The Fourier Integral and Its Applications. New York: McGraw-Hill, 1964.

. 6 Spectral estimates

While for periodic functions the estimation of Fourier transforms, spectra, etc. can be efficiently performed by fast Fourier algorithms (FFA) the same is not true in general. Due to neccessary truncation FFT will in general produce results with systematic errors. These are a consequence of the implied periodic repetition, which in most cases is simply inadequate.

In these cases only autoregressive model techniques lead to unbiased estimates of the transforms. The reason is that these models provide proper harmonic descriptions of the truncated record; s.e.g. Childers, D.G.: Modern spectrum analysis. New York: IEEE Press, 1978.

In any case the algorithm used has to be clearly identified, possibly by reference to a full description or, ideally and unambiguously, a subroutine. At this stage it appears premature to try and introduce standard symbols for various standard procedures.

So far standard procedures not been agreed upon by the ITTC community, but in the near future it will be necessary to do so in order to arrive at comparable results. Agreement should not be reached by "vote", as has been tried by Ocean Engineeering Committee. The standard adopted by the hydrographic institutes for the estimation of power spectra is in general quite disputable as well.

ITTC Symbols		3	Mechanics in General	
			3.1	Fundamental Concepts Version 1996
		$\mathbf{3 . 1 . 3}$	Stochastic Processes	
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

3.1.3 Random Quantities and Stochastic Processes see Remark . 1 and . 2

3.1.3.1 Random Quantities

$g^{\mathrm{E}}, g^{\mathrm{M}}, g^{\mathrm{MR}}$	GMR	Expected value of a function of a random quantity	$\mathrm{E}(g)=\underset{x=-\infty \ldots \infty}{\int_{x} g(x) \mathrm{f}_{x}(x) \mathrm{d} x}$
x, y	X, Y	Random quantities	$x(\zeta), y(\zeta)$
$x_{\mathrm{i}}, y_{\mathrm{i}}$	$X(\mathrm{I}), Y(\mathrm{I})$	Samples of random quantities	$\begin{aligned} \mathrm{i}= & 1 \ldots \mathrm{n} \\ & \mathrm{n}: \text { sample size } \end{aligned}$
x^{mE}	XmMR	m -th moment of a random quantity	x^{mE}
$x^{\mathrm{D}}, x^{\text {DR }}, \sigma_{x}$	XDR	Standard deviation of a random quantity	$x^{\mathrm{VR} 1 / 2}$
$x^{\text {DS }}, \mathrm{s}_{x}$	XDS	Sample deviation of a random quantity	$x^{\mathrm{VS} 1 / 2}$, unbiased random estimate of the standard deviation
$x x^{\mathrm{R}},{ }^{\text {c }}{ }^{\mathrm{MR}}, \mathrm{R}_{x x}$	$X X \mathrm{MR}$	Auto-correlation of a random quantity	$x x^{\mathrm{E}}$
$x y^{\mathrm{R}}, x y^{\mathrm{MR}}, \mathrm{R}_{x y}$	$X Y \mathrm{MR}$	Cross-correlation of two random quantities	$x y^{\text {E }}$
$x^{\mathrm{E}}, x^{\mathrm{M}}, x^{\mathrm{MR}}, \mu_{x}$	XMR	Expectation or population mean of a random quantity	$\mathrm{E}(x)$
$x^{\mathrm{A}}, x^{\mathrm{Ms}}, \mathrm{m}_{x}$	XMS	Average or sample mean of a random quantity	$1 / \mathrm{n} \sum x_{\mathrm{i}}, \mathrm{i}=1 \ldots \mathrm{n}$ unbiased random estimate of the expectation with $\begin{aligned} & x^{\mathrm{AE}}=x^{\mathrm{E}} \\ & x^{\mathrm{VSE}}=x^{\mathrm{V}} / \mathrm{n} \end{aligned}$
$x^{\mathrm{PD}}, \mathrm{f}_{x}$	XPD	Probability density of a random quantity	d $\mathrm{F}_{x} / \mathrm{d} x$
$x y^{\mathrm{PD}}, \mathrm{f}_{x y}$	XYPD	Joint probability density of two random quantities	$\partial^{2} \mathrm{~F}_{x y} /(\partial x \partial y)$
$x^{\text {PF }}, \mathrm{F}_{x}$	XPF	Probability function (distribution) of a random quantity	
$x y^{\text {PF }}, \mathrm{F}_{x y}$	XYPF	Joint probability function (distribution) function of two random quantities	

ITTC Symbols
Version 1996
ITTC Computer Name Definition or SI-

Symbol

Symbol

$x^{\mathrm{V}}, x^{\mathrm{VR}}, x x^{\mathrm{VR}}$	$X \mathrm{VR}, X X \mathrm{VR}$	Variance of a random quantity	$x^{2 \mathrm{E}}-x^{\mathrm{E} 2}$
$x^{\mathrm{VS}}, x x^{\mathrm{VS}}$	$X \mathrm{VS}, X X \mathrm{VSS}$	Sample variance of a random $1 /(\mathrm{n}-1) \sum\left(x_{\mathrm{i}}-x^{\mathrm{A}}\right)^{2}$ quantity i= $1 \ldots \mathrm{n}$ unbiased random estimate of the variance $x^{\mathrm{VSE}}=x^{\mathrm{V}}$	
$x y^{\mathrm{V}}, x y^{\mathrm{VR}}$	$X Y \mathrm{VR}$	Variance of two random quantities	$x y^{\mathrm{E}}-x^{\mathrm{E}} y^{\mathrm{E}}$

3.1.3.2 Stochastic Processes

$g^{\text {MR }}$	GMR	Mean of a function of a random quantity	$\begin{gathered} \mathrm{M}(g(\mathrm{t}))=\lim \left(1 / \mathrm{T} \int g(\mathrm{t}) \mathrm{dt}\right) \\ \mathrm{t}=-\mathrm{T} / 2 \ldots+\mathrm{T} / 2 \\ \mathrm{~T}=-\infty \ldots+\infty \end{gathered}$
$g^{\text {MS }}$	GMS	Average or sample mean of a function of a random quantity	$\begin{aligned} & \mathrm{A}(g(\mathrm{t}))=1 / \mathrm{T} \int g(\mathrm{t}) \mathrm{dt} \\ & \mathrm{t}=0 \ldots+\mathrm{T} \end{aligned}$
x, y	X, Y	Stationary stochastic process	$x(\zeta, \mathrm{t}), y(\zeta, \mathrm{t})$
$x x^{\mathrm{C}}, x x^{\text {CR }}, \mathrm{C}_{x}$	$X X \mathrm{CR}$	Auto-covariance of a stationary stochastic process	$\left(x(\mathrm{t})-x^{\mathrm{E}}\right)\left(x(\mathrm{t}+\tau)-x^{\mathrm{E}}\right)^{\mathrm{E}}$
$x y^{\mathrm{C}}, x y^{\mathrm{CR}}, \mathrm{C}_{x y}$	$X Y \mathrm{CR}$	Cross-covariance of two stationary stochastic processes	$\left(x(\mathrm{t})-x^{\mathrm{E}}\right)\left(y(\mathrm{t}+\tau)-y^{\mathrm{E}}\right)^{\mathrm{E}}$
$x x^{\mathrm{R}}, x x^{\mathrm{RR}}, \mathrm{R}_{x x}$	XXRR	Auto-correlation of a stationary stochastic process	$x(\mathrm{t}) x(\mathrm{t}+\tau)^{\mathrm{E}}=\mathrm{R}_{x x}(\tau)$
			$\mathrm{R}_{x x}(\tau)=\mathrm{R}_{x x}(-\tau)$
			$\begin{array}{ll} \text { if } x \text { is ergodic: } & \mathrm{R}_{x x}(\tau) \\ =x(\mathrm{t}) x(\mathrm{t}+\tau)^{\mathrm{MR}} \end{array}$
			$\begin{gathered} \mathrm{R}_{x x}(\tau)=\int \mathrm{S}_{x x}(\omega) \cos (\omega \tau) \mathrm{d} \tau \\ \tau=0 \ldots \infty \end{gathered}$
$x y^{\mathrm{R}}, \mathrm{R}_{x y}$	XYRR	Cross-correlation of two stationary stochastic	$\begin{aligned} & x(\mathrm{t}) y(\mathrm{t}+\tau)^{\mathrm{E}}=\mathrm{R}_{x y}(\tau) \\ & \mathbf{R}_{y x}(\tau)=\mathrm{R}_{x y}(-\tau) \end{aligned}$

3 Mechanics in General
3.1 Fundamental Concepts
3.1.3 Stochastic Processes
if x, y are ergodic:
$\mathrm{R}_{x y}(\tau)=x(\mathrm{t}) y(\mathrm{t}+\tau)^{\mathrm{MR}}$

ITTC Symbols		3	Mechanics in General Fundamental Concepts	
Version 1996		$\mathbf{3 . 1 . 3}$	Stochastic Processes	

ITTC Symbols		3	Mechanics in General	
			3.1	Fundamental Concepts
Version 1996		$\mathbf{3 . 1 . 3}$	Stochastic Processes	
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

3.1.3.4 Remarks

. 1 Quantities

An adequate introduction into the conceptual world of "Probability, Random Variables (Quantities!), and Stochastic Processes" is provided by A. Papoulis in his book with that same title.

. 2 Estimates

Apart of the fundamental theory of probability with its concepts outlined here, in practice the theory of statistics is necessary, providing for the estimation of probabilities and or their parameters, e.g. expected values. In any case these estimates are at best free of bias, but they are random variables themselves and as such clearly distinct from the quantities for which they are estimates.

In the solution of real problems it is absolutely mandatory to account for this distinction. As the most important quantities of this type the sample mean and the sample variance have been introduced. It is important to note that as a matter of fact the terminology is still not standardized. The foregoing symbols and terminology are proposed in an attempt to provide tools for the tasks at hand in systems identification and in quality assurance.

. 3 Sample Variance

It should be noted that in contrast to the practice elsewhere the sample variance is not defined as average of the squared sample deviations from the sample average. This provides for an unbiased estimate of the variance and the standard deviation right away. In some text books and some software packages the definition of the sample variance is different from the one proposed here. So care is necessary if unbiased estimates for small samples are being determined.

3.1.4.1 Remarks

. 1 Balances

Traditionally balances of various extensive or socalled "conservative" qualities or properties are described by ad hoc symbols, disguising the similarities and essentials. For any quality Q enclosed in a control volume the balance may be written in the format

$$
Q^{\mathrm{S}}=Q^{\mathrm{F}}+Q^{\mathrm{P}},
$$

implying, that the net storage of the quality in a given boundary equals the net flux of the quality across the boundary into the control volume and the net production of sources within the boundary.

The symbol Q is the variable for the symbol of the particular extensive qualitiy under investigation, e. g. mass, momentum, and energy. $Q^{\mathrm{S}}, Q^{\mathrm{F}}$, and Q^{P} are variables for values of the storage, flux, and production, respectively.

ITTC Symbols

3 Mechanics in General
 3.1 Fundamental Concepts

Version 1996
3.1.4 Balances and System Related Concepts

ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

The net storage is nothing else but the net rate of change of the quantity q of the quality Q stored in the control volume:

$$
Q^{\mathrm{S}}=\mathrm{dq} / \mathrm{dt}
$$

q is the variable for values of the quantity of the quality Q stored in the control volume.
Concerning the flux there are two types to be clearly distinguished according to their mechanisms, the convective and the diffusive fluxes, i. e.

$$
Q^{\mathrm{F}}=Q^{\mathrm{C}}+Q^{\mathrm{D}} .
$$

The diffusive flux itself may be due to two types of diffusion, the molecular diffusion and the turbulent diffusion, i. e.

$$
Q^{\mathrm{D}}=Q^{\mathrm{T}}+Q^{\mathrm{M}}
$$

Traditionally the time rate of change is denoted by a dot, i. e.

$$
\mathrm{dq} / \mathrm{dt}=\dot{q}
$$

According to some standards, e. g. the German DIN, fluxes and the productions may be denoted by symbols with a dot as well, apparently due to the fact, that they have the same dimension as time rates of change. This usage is misleading and confusing and therefore totally unacceptable.

The concepts of flux and source are fundamental concepts and essentially different, due to the totally different nature of the mechanisms, from the concept of rate of change of the quantity they cause to change, although they may each, in the absence of the other, be equal in value and balancing the rate of change.

Much more reasonable is to denote rate of change by an operator symbol as well, e. g. by R, as will be done in this version of the symbols, and write any balance in the format

$$
\mathrm{q}^{\mathrm{R}}=Q^{\mathrm{S}}=Q^{\mathrm{C}}+Q^{\mathrm{T}}+Q^{\mathrm{M}}+Q^{\mathrm{P}},
$$

clearly indicating the four totally different physical mechanisms taking part in the change of any quantities of extensive qualities.

If instead of the object oriented notation the function oriented notation is being used the balance would e. g. look like

$$
\mathrm{q}^{\mathrm{R}}=\mathrm{S}_{Q}=\mathrm{C}_{Q}+\mathrm{T}_{Q}+\mathrm{M}_{Q}+\mathrm{P}_{Q} .
$$

ITTC Symbols		3	Mechanics in General 	
Version $\mathbf{1 9 9 6}$		3.1	Fundamental Concepts Balances and System Related Concepts	$\mathbf{8 8}$
ITTC	Computer	Name		Definition or

This is not very practical if the quality under consideration is of tensorial character or of even more complex matrix nature.
Q^{U} is the variable for the SI unit of the quality Q under consideration.
It will become evident from this very elementary exposition that precisely the most fundamental concepts are mostly used extremely carelessly. The concepts "variable", "quantity", and "quality" are rarely clearly distinguished as they ought to be.
E. g.: momentum is a quality and a body may have stored a certain quantity of it at a given time. M and MO are variables for vectors of numerical values of the quantity measured in Ns. t and TI are variables for values of the quantity of the quality time measured in s.

ITTC S Version	ymbols 1996	$\begin{aligned} & 3 \\ & 3.2 \\ & \mathbf{3 . 2 . 1} \\ & \hline \end{aligned}$	Mechanics in General Solid Body Mechanics Inertial and Hydro Properties	89
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
$\begin{aligned} & \hline \text { 3.2 } \\ & \text { 3.2.1 } \end{aligned}$	Solid Body Mecha Inertial and Hydr	ics dynamic Properties		
3.2.1.1	Basic Quantities		see Remarks	
A_{ij}	AM(I,J)	Added mass coefficient in ith mode due to jth motion		
B_{ij}	DA(I,J)	Damping coefficient in ith mode due to jth motion		
C_{ij}	RF(I,J)	Restoring force coefficient in ith mode due to jth motion		
$\mathrm{D}_{\text {uv }}^{\mathrm{h}}$	DH(U,V)	Generalized hydrodynamic damping	$\partial \mathrm{F}_{\mathrm{u}}^{\mathrm{h}} / \partial \mathrm{V}_{\mathrm{v}}$	
$\mathrm{F}_{\mathrm{u}}^{\mathrm{h}}$	FH(U)	Generalized hydrodynamic force		
$\mathrm{I}_{\text {uv }}^{\mathrm{h}}$	$\mathrm{IH}(\mathrm{U}, \mathrm{V})$	Generalized hydrodynamic inertia	$\partial \mathrm{F}_{\mathrm{u}}^{\mathrm{h}} / \partial \dot{\mathrm{V}}_{\mathrm{v}}$	
I_{L}	IL	Longitudinal second moment of water-plane area	About transverse axis through center of floatation	m^{4}
$\mathrm{I}_{\text {T }}$	IT	Transverse second moment of water-plane area	About longitudinal axis through center of floatation	m^{4}
$\begin{aligned} & \mathrm{I}_{\mathrm{y}}, \mathrm{I}_{\mathrm{yy}} \\ & \mathrm{~m}_{22}^{2} \\ & \mathrm{~m}_{55} \end{aligned}$		Pitch moment of inertia around the principal axis y		$\mathrm{kg} \mathrm{m}{ }^{2}$
$\begin{aligned} & \mathrm{I}_{\mathrm{z}}, \mathrm{I}_{\mathrm{zz}} \\ & \mathrm{~m}_{33}^{2} \\ & \mathrm{~m}_{66} \end{aligned}$	IZ, IZZ, M2 $(3,3)$, MA(6,6)	Yaw moment of inertia around the principal axis z		$\mathrm{kg} \mathrm{m}{ }^{2}$
$\begin{aligned} & \mathrm{I}_{\mathrm{xy}}, \mathrm{I}_{12} \\ & \mathrm{I}_{\mathrm{yz}}, \mathrm{I}_{23} \\ & \mathrm{I}_{\mathrm{zx}}, \mathrm{I}_{31} \end{aligned}$	$\begin{aligned} & \text { IXY, I2(1,2) } \\ & \text { IYZ, I2(2,3) } \\ & \text { IZX, I2(3,1) } \end{aligned}$	Real products of inertia in case of non-principal axes		$\mathrm{kg} \mathrm{m}{ }^{2}$
$\begin{aligned} & \mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{xx}} \\ & \mathrm{k} \end{aligned}$	RDGX	Roll radius of gyration around the principal axis x	$\left(\mathrm{I}_{x \mathrm{x}} / \mathrm{m}\right)^{1 / 2}$	m
$\mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{yy}}$	RDGY	Pitch radius of gyration around the principal axis y	$\left(\mathrm{I}_{\mathrm{y}} / \mathrm{m}\right)^{1 / 2}$	m
$\mathrm{k}_{\mathrm{z}}, \mathrm{k}_{\mathrm{zz}}$	RDGZ	Yaw radius of gyration around the principal axis z	$\left(\mathrm{I}_{z z} / \mathrm{m}\right)^{1 / 2}$	m

ITTC Computer Name Definition or \quad SI-
Symbol Symbol Explanation Unit

m	MA	mass		kg
$\begin{aligned} & \mathrm{m}_{\mathrm{ij}}^{0} \\ & \mathrm{~m}_{\mathrm{ij}} \end{aligned}$	$\begin{aligned} & \text { M0(I,J), } \\ & \text { MA(I,J) } \end{aligned}$	Zeroth moments of mass, i.e. inertia distribution, mass tensor	$\mathrm{m}_{\mathrm{ij}}=\mathrm{m} \delta_{\mathrm{ij}}$	kg
$\mathrm{m}_{\text {ij }}{ }^{\text {d }}$	M1(I,J)	First moments of mass, i.e. inertia distribution	Alias static moments of mass	kg m

| $\mathrm{m}_{\mathrm{ij}}^{2}$, | M2(I,J), | Second moments of mass,
 I_{ij} | $\mathrm{IN}(\mathrm{I}, \mathrm{J})$ | i.e. inertia distribution |
| :--- | :--- | :--- | :--- | :--- | | Alias mass moments of |
| :--- |
| inertia |$\quad \mathrm{kg} \mathrm{m}^{2}$

M_{uv}	MA(U,V)	Generalized mass, i. e. generalized inertia tensor of a (rigid) body referred to a body fixed coordinate system	$\begin{aligned} & M_{i j}=M_{i j}^{0}{ }_{i j}{ }^{M_{i, 3+j}}=M_{i,}^{1 T} \\ & M_{3+i, j}=M_{i j}^{1} \\ & M_{3+i, 3+j}=M_{i j}^{2} \end{aligned}$

3.2.1.2 Remarks

. 1 Notation

The operational indices $\mathrm{i}, \mathrm{j}, \mathrm{k}$ range from 1 to 3 , the indices u, v, w of the generalized tensors from 1 to 6.
Refer to 3.1.1 Coordinates and Space Related Quantities for definition of generalized concepts.

. 2 Reference Points

In any particular case the orientation and the origin of the coordinate system have to be specified and indicated, if necessary. If the coordinate system coincides with the principal axes system the generalized tensor has only components in the main diagonal, the first order moments as well as the real moments of inertia are vanishing.

While this aspect may be of interest in cases, where the translational and rotational motions may be considered as uncoupled, as in the case of gravitational forces acting alone on a solid body, or for qualitative considerations, where this condition holds at least approximately, it is not at all important for computational purposes. Quite to the contrary it requires the extra, in general unnecessary operation of transformation to the principal axes of the inertia tensor. Due to the hydrodynamic forces the translational and the rotational motions can in general not be considered decoupled from each other in the ordinary way just by construction of a special reference point.

ITTC Symbols
3 Mechanics in General
3.2 Solid Body Mechanics

Version 3996
3.2.2 Loads

ITTC	Computer	Name	Definition or Symbol	Symbol

3.2.2

Loads
s. Remark . 1
3.2.2.1 External Loads s. Remark . 2

F_{u}	F(U)	Force, generalized, load, in body coordinates	$\begin{aligned} & \mathrm{M}_{\mathrm{u}}^{\mathrm{F}}=\mathrm{M}^{\mathrm{M}}{ }_{\mathrm{u}} \\ & \mathrm{~F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}^{0} \\ & \mathrm{~F}_{3+\mathrm{i}}=\mathrm{F}_{\mathrm{i}}^{1} \end{aligned}$	n
g_{u}	G(U)	Gravity field strength, generalized, in body coordinates	$\begin{aligned} & \mathrm{g}_{\mathrm{i}}=\mathrm{g}_{\mathrm{i}}^{1} \\ & \mathrm{~g}_{3+\mathrm{i}}=0 \end{aligned}$	$\mathrm{m} / \mathrm{s}^{2}$
g_{i}	G1(I)	Gravity field strength, in body coordinates!		$\mathrm{m} / \mathrm{s}^{2}$
$\begin{aligned} & \mathrm{K}, \mathrm{M}_{\mathrm{x}}, \\ & \mathrm{~F}_{1}^{1}, \mathrm{~F}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{K}, \mathrm{M}(1), \\ & \mathrm{F} 1(1), \mathrm{F}(4) \end{aligned}$	Moment around body axis x		Nm
$\begin{aligned} & \mathrm{M}, \mathrm{M}_{\mathrm{y}}, \\ & \mathrm{~F}_{2}^{1}, \mathrm{~F}_{5} \end{aligned}$	$\begin{aligned} & \mathrm{M}, \mathrm{M}(2), \\ & \mathrm{F} 1(2), \mathrm{F}(5) \end{aligned}$	Moment around body axis y		Nm
$\begin{aligned} & \mathrm{N}, \mathrm{M}_{\mathrm{z}}, \\ & \mathrm{~F}_{3}^{1}, \mathrm{~F}_{6} \end{aligned}$	$\begin{aligned} & \mathrm{N}, \mathrm{M}(3), \\ & \mathrm{F} 1(3), \mathrm{F}(6) \end{aligned}$	Moment around body axis z		Nm
$\begin{aligned} & \mathrm{X}, \mathrm{~F}_{\mathrm{x}}, \\ & \mathrm{~F}_{1}^{0}, \mathrm{~F}_{1} \end{aligned}$	$\begin{aligned} & \text { X, FX, } \\ & \text { F0(1), F(1) } \end{aligned}$	Force in direction of body axis x		Nm
$\begin{aligned} & \mathrm{Y}, \mathrm{~F}_{\mathrm{y}}, \\ & \mathrm{~F}_{2}^{0}, \mathrm{~F}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Y}, \mathrm{FY}, \\ & \mathrm{~F} 0(2), \mathrm{F}(2) \end{aligned}$	Force in direction of body axis y		Nm
$\begin{aligned} & \mathrm{Z}, \mathrm{~F}_{2} \\ & \mathrm{~F}_{3}^{0}, \mathrm{~F}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{Z}, \mathrm{FZ}, \\ & \mathrm{~F} 0(3), \mathrm{F}(3) \end{aligned}$	Force in direction of body axis z		Nm
G_{u}	G(U)	Gravity or weight force, generalized, in body coordinates!	$\mathrm{G}_{\mathrm{u}}=\mathrm{m}_{\mathrm{uv}} \mathrm{g}_{\mathrm{v}}$	
$\mathrm{G}^{0} \mathrm{i}, \mathrm{G}_{\mathrm{i}}$	G0(I)	Gravity or weight force in body coordinates!	$\begin{aligned} \mathrm{G}_{\mathrm{i}}=\mathrm{G}_{\mathrm{i}}^{0}= & \mathrm{m}_{\mathrm{ij}}^{0} \mathrm{~g}_{\mathrm{j}} \\ & =\mathrm{mg}_{\mathrm{i}} \end{aligned}$	N
$\mathrm{G}_{\mathrm{i}}^{1}$	G1(I)	Gravity or weight moment in body coordinates!	$\begin{aligned} \mathrm{G}_{3+\mathrm{i}}=\mathrm{G}_{\mathrm{i}}^{1}= & \epsilon_{\mathrm{ikj}} \mathrm{x}_{\mathrm{k}} \mathrm{G}^{0}{ }_{j} \\ & =\mathrm{m}_{\mathrm{ij}}^{1} \mathrm{~g}_{\mathrm{j}} \end{aligned}$	Nm
q	UNQ	Load per unit length		N / m
w	WPUL	Weight per unit length	$\mathrm{dW} / \mathrm{dx}_{1}$	N / m

ITTC S Version	ymbols 3996	$\begin{aligned} & 3 \\ & 3.2 \end{aligned}$ 3.2.2	Mechanics in General Solid Body Mechanics Loads	92
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
3.2.2.2	Sectional Loads	s. Remark . 3		
$\mathrm{F}_{\mathrm{u}}^{\mathrm{S}}$	FS(U)	Force or load acting at a given planar cross-section of the body, generalized, in section coordinates!	$\begin{aligned} & \mathrm{F}_{\mathrm{i}_{\mathrm{i}}^{\mathrm{S}}}=\mathrm{F}_{\mathrm{i}}^{\mathrm{SO}} \\ & \mathrm{~F}_{3+\mathrm{i}}=\mathrm{F}^{\mathrm{S}{ }_{i}}=\mathrm{M}_{\mathrm{i}}^{\mathrm{B}} \end{aligned}$	$\begin{array}{r} \mathrm{N} \\ \mathrm{Nm} \end{array}$
$\mathrm{F}_{\mathrm{i}}^{\mathrm{S}}$	FS(I)	Shearing force	$\mathrm{F}^{\mathrm{S0}}{ }_{2}, \mathrm{~F}^{\mathrm{So}}{ }_{3}$	N
$\mathrm{F}^{\text {T }}$	$\begin{aligned} & \text { FT, } \\ & \text { FS(1) } \end{aligned}$	Tensioning or normal force	$\mathrm{F}^{\mathrm{So}}{ }_{1}$	N
$\mathrm{M}^{\mathrm{B}}{ }_{\text {i }}$	MB(I)	Bending moment	$\mathrm{F}^{\mathrm{S}}{ }_{2}, \mathrm{~F}^{\mathrm{Sl}}{ }_{3}$	Nm
$\mathrm{M}^{\text {T }}$	MT, MB(1)	Twisting or torsional moment	$\mathrm{F}^{\mathrm{S} 1}{ }_{1}$	Nm

3.2.2.3 Remarks

. 1 Operational Indices

The operational vector and tensor indices $\mathrm{i}, \mathrm{j}, \mathrm{k}$ range from 1 to 3 , the corresponding indices u, v, w for their generalized counterparts range from 1 to 6 .

. 2 Momentum Balance

For the fundamental balance of quantities of extensive qualities see Section 3.1.4 on Balances. For definition of the generalized concepts see Section 3.1.1 on Coordinates and Space Related Quantities.
According to the fundamental balance of extensive quantities applied to momentum two different types of 'external' forces have to be distinguished, namely the momentum flux across the boundaries, in the case of solid bodies by molocular diffusion only, i. e. stresses, the socalled surface forces, and the momentum sources in the volumes of the bodies, the socalled volume forces. In the usual applications the weight is the only momentum source, while all other forces acting on a body, distributed over the surface or concentrated, may be considered as surface forces.

. 3 Sectional Loads

Sectional loads are surface loads, i. e. moments of stresses due to molecular momentum fluxes across the section. Sectional loads are only meaningful relative to the coordinates of the section, on which they act. If the components are referred to body coordinates as usual, this implies sections normal to the longitudinal axis. The former terminology referring to horizontal and vertical shear forces and bending moments is to be considered obsolete even in this context. Lateral and normal are the appropriate names in the context of body coordinates.

ITTC Symbols
Version 1996

ITTC	Computer	Name	Definition or Symbol	Symbol

3.2.3 Rigid Body Motions

3.2.3.1 Motions

$\mathrm{p}, \omega_{\mathrm{x}}$,	P, OMX,	Angular (rotary) velocity	$\mathrm{rad} / \mathrm{s}$
$\mathrm{v}_{1}^{0}, \mathrm{v}_{4}$	$\mathrm{~V} 0(1), \mathrm{V}(4)$	around body axis x	

$\mathrm{q}, \omega_{\mathrm{y}}, \quad \mathrm{Q}$, OMY, \quad Angular (rotary) velocity $\mathrm{rad} / \mathrm{s}$
$\mathrm{v}^{\mathrm{o}}, \mathrm{v}_{5} \quad \mathrm{~V} 0(2), \mathrm{V}(5) \quad$ around body axis y

$\mathrm{r}, \omega_{\mathrm{z}}$,	R, OMZ,	Angular velocity around	$\mathrm{rad} / \mathrm{s}$
$\mathrm{v}_{3}^{0}, \mathrm{v}_{6}$	$\mathrm{~V} 0(3), \mathrm{V}(6)$	body axis z	

$\mathrm{u}, \mathrm{v}_{\mathrm{x}}$,	U, VX,	Translatory velocity in the $\mathrm{v}_{1}^{1}, \mathrm{v}_{1}$
$\mathrm{~V} 1(1), \mathrm{V}(1)$	direction of body axis x	

$\mathrm{v}, \mathrm{v}_{\mathrm{y}}$,	V, VY,	Translatory velocity in the $\mathrm{v}_{2}^{1}, \mathrm{v}_{2}$	$\mathrm{~V} 1(2), \mathrm{V}(2)$
direction of body axis y			

v_{u}	V(U)	Components of generalized velocity or motion relative to body axes	$\begin{aligned} & v_{i}=v_{i}^{1} \\ & v_{3+i}=v_{i}^{0} \end{aligned}$ s.Remark . 2	m/s
				rad/s
$\dot{\mathrm{p}}$	PR	Rates of change of	s.Remark . 3	$\mathrm{rad} / \mathrm{s}^{2}$
$\dot{\text { q }}$	QR	components of angular		
,	RR	velocity relative to body axes		
ù	UR	Rates of change of	s. Remark . 3	$\mathrm{m} / \mathrm{s}^{2}$
vi	VR	components of linear		
$\dot{\mathrm{w}}$	WR	velocity relative to body axes		
α	AA	Angular acceleration	$\mathrm{d} \omega / \mathrm{dt}$	$\mathrm{rad} / \mathrm{s}^{2}$

ITTC Symbols
Version 1996

ITTC Symbol	Computer Symbol	Name
3.2.3.2	Attitudes	s.Remark .4

3.2.3.2 Attitudes s.Remark. 4
α
$\beta \quad$ DR
BET
γ
θ
ψ

AT
ALFA

Angle of attack

3 Mechanics in General
3.2 Solid Body Mechanics
3.2.3 Rigid Body Motions

ITTC	Computer	Name	Definition or

α	AT ALFA	Angle of attack	The angle of the longitudinal body axis from the projection into the principal plane of symmetry of the velocity of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the y axis	rad
β	$\begin{aligned} & \text { DR } \\ & \text { BET } \end{aligned}$	Angle of drift or side-slip	The angle to the principal plane of symmetry from the velocity vector of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the z -axis	rad
γ	RO GAMR	Projected angle of roll or heel	The angular displacement about the x_{o} axis of the principal plane of symmetry from the vertical, positive in the positive sense of rotation about the x_{o} axis	rad
ϕ	$\mathrm{X}(4), \mathrm{RO},$ PHIR	Angle of roll, heel or list	Positive in the positive sense of rotation about the x -axis	rad
θ	$\mathrm{X}(5), \mathrm{TR},$ TETP	Angle of pitch or trim	Positive in the positive sense of rotation about the y-axis	rad
ψ	$\mathrm{X}(6), \mathrm{YA},$ PSIY	Angle of yaw, heading or course	Positive in the positive sense of rotation about the z-axis	rad

ITTC Symbols		3	Mechanics in General	
			3.2	Solid Body Mechanics Version 1996
		$\mathbf{3 . 2 . 3}$		
Rigid Body Motions	95			
ITTC	Computer	Name		Definition or

3.2.3.3 Remarks

. 1 Operational Indices

The operational vector and tensor indices $\mathrm{i}, \mathrm{j}, \mathrm{k}$ range from 1 to 3 , the corresponding indices u, v, w for their generalized counterparts range from 1 to 6 .

. 2 Angular Velocities

The operational ("exponential") notation for the linear and angular velocities reflects the fact that the angular velocity of a rigid body is independent of the reference point, while the linear velocity changes with the change of reference point.

. 3 Time Rates of Change

The computer symbols for the time derivatives have been either DXDT or XDOT, both being very unsatisfactory. The notation proposed is XRT etc for " x rate", in full " x time rate of change". See 3.1.4 on Balances.

. 4 Angles

The proposed computer symbols for the various angles are an attempt to get away from the old cryptic notation. The Euler angles roll, pitch, and yaw are evidently to be considered as the natural extension of the position vector to the generalized position vector. It has of course to noted that contrary to the translatory motion the rotational motion can not directly integrated to obtain the attitudes in question.

Further, if extreme motions are to be considered the Euler angles may be not adequate for computational purposes, e. g. in numerical simulations, as the corresponding matrix of the directions cosines can become singular. This problem can be avoided if Euler parameters (quaternions) are employed.

ITTC Symbols
Version 1996

ITTC	Computer
Symbol	Symbol
3.3	Fluid Mechanics
3.3.1	Flow Parameters

3.3.1.1 Fluid Properties

c	CS	Velocity of sound	$(\mathrm{E} / \rho)^{1 / 2}$	$\mathrm{~m} / \mathrm{s}$
E	EL	Modulus of elasticity		Pa
w	WD	Weight Density	$\rho \mathrm{g}($ See 1.1.1)	
κ	CK	Kinematic capillarity	σ / ρ	$\mathrm{m}^{3} / \mathrm{s}^{2}$
μ	VI	Viscosity		$\mathrm{kg} / \mathrm{ms}$
ν	VK	Kinematic viscosity	μ / ρ	m / s
ρ	DN, RHO	Density		$\mathrm{kg} / \mathrm{m}^{3}$
σ	CA	Capillarity	Surface tension per unit length	$\mathrm{kg} / \mathrm{s}^{2}$

3.3.1.2 Flow parameters s. Remark. 1

B_{n}	BN	Boussinesq number	$\mathrm{V} /\left(\mathrm{g} \mathrm{R}_{\mathrm{H}}\right)^{1 / 2}$	1
C_{n}	CN	Cauchy number	$\mathrm{V} /(\mathrm{E} / \rho)^{1 / 2}$	1
$\mathrm{~F}_{\mathrm{n}}$	FN	Froude number	$\mathrm{V} /(\mathrm{g} \mathrm{L})^{1 / 2}$	1
$\mathrm{~F}_{\mathrm{nh}}$	FH	Froude depth number	$\mathrm{V} /(\mathrm{g} \mathrm{h})^{1 / 2}$	1
$\mathrm{~F}_{\mathrm{n}}$	FV	Froude displacement number $\mathrm{V} /\left(\mathrm{g} \nabla^{1 / 3}\right)^{1 / 2}$	1	
M_{n}	MN	Mach number	V / c	1
R_{n}	RN	Reynolds number	VL / v	1
$\mathrm{~S}_{\mathrm{n}}$	SN	Strouhal number	fL / V	1
$\mathrm{~T}_{\mathrm{n}}$	TN	Thoma number		1
$\mathrm{~W}_{\mathrm{n}}$	WN	Weber number	$\mathrm{V} 2 \mathrm{~L} / \mathrm{K}$	1

ITTC Symbols			$\begin{aligned} & 3 \\ & 3.3 \\ & 3.31 \end{aligned}$	Mechanics in General Fluid Mechanics Flow Parameters	97
ITTC	Computer	Name		Definition or	SI-
Symbol	Symbol			Explanation	Unit
3.3.1.3 Boundary conditions					
k	HK	Roughness height or magnitude		Roughness height, usually in terms of some average	m
$\mathrm{k}_{\text {s }}$	SK	Sand roughness		Mean diameter of the equivalent sand grains covering a surface, s. Remark . 2	
R_{H}	RH	Hydraulic radius		Area of section divided by wetted perimeter	m

3.3.1.4 Remarks

. 1 Flow parameters

The ITTC notation for the flow parameters is not in accordance with that of Physics in general and somewhat redundant, but the SaT Group feels that the usage is so established now that there is no chance for a change.

The flow parameters are the normalized fluid properties, although mostly not written in that way. E. g. the inverse of the Reynolds number is the normalized viscosity

$$
\mu^{\mathrm{n}}=\mu /(\rho \mathrm{UL})=1 / \mathrm{R}_{\mathrm{n}},
$$

with the reference quantities ρ, U and L for steady motion problems. For other problems other reference quantities may be more appropriate.

The Cauchy number is not identical with the Mach number. The modulus of elasticity entering is not that of the fluid but that of an elastic structure in the flow.

The search for "characteristic" reference quantities is a matter of physical argument or the evaluation of experiments, i. e. is a matter either of previous knowledge or a cura posterior. Dimensional analysis does not provide any apriory arguments!

The usage of scale factor in model testing relates full scale and model scale. A scale factor in absolute physical terms would be the normalized length

$$
\mathrm{L}^{\mathrm{n}}=\left(\mathrm{R}_{\mathrm{n}} / \mathrm{F}_{\mathrm{n}}\right)^{2 / 3}=\mathrm{Lg}^{1 / 3} / v^{2 / 3} .
$$

. 2 Sand roughness

Although still widely used to characterize the roughness of a surface it is now well understood that sand roughness and the resulting roughness resistance are not typical for technical surfaces, ships' surfaces in particular.

So far no sound correlation between the surface description and the additional resistance has been established.

ITTC Symbols
Version 1996
3.3.2.1 Velocities etc. s. Remark . 1

e	ED	Density of total flow energy	$\rho V^{2} / 2+p+\rho g h$	Pa
f_{i}	FS(I)	Mass specific force	Strength of force fields, usually only gravity field g_{i}	$\mathrm{m} / \mathrm{s}^{2}$
h	HS	Static pressure head	$\begin{aligned} & \Delta \mathrm{z}_{0}, \\ & \mathrm{z}_{0} \text {-axis positive vertical up! } \end{aligned}$	m
H	HT	Total head	$e / w=h+p / w+q / w$	m
p	PR, ES	Pressure, density of static flow energy		Pa
p_{0}	P0	Ambient pressure in undisturbed flow		Pa
q	PD, EK	Dynamic pressure, density of kinetic flow energy,	$\rho \mathrm{V}^{2} / 2$	Pa
Q	QF, QFLOW	Rate of flow	Volume passing across a control surface in time unit	$\mathrm{m}^{3} / \mathrm{s}$
S_{H}	THL	Total head loss		m
$\mathrm{s}^{\mathrm{R}} \mathrm{ij}^{\text {d }}$	SR(I,J)	Turbulent or Reynolds stress	$\rho v_{i} \mathrm{v}_{\mathrm{j}}{ }^{\text {cR }}$	Pa
S_{ij}	ST(I,J)	Total stress tensor	Density of total diffusive momentum flux due to molecular and turbulent exchange	Pa
$\mathrm{s}^{\mathrm{V}}{ }_{\text {ij }}$	SV(I,J)	Viscous stress		Pa
$\begin{aligned} & \mathrm{u}, \mathrm{v}_{\mathrm{x}}, \mathrm{v}_{1} \\ & \mathrm{v}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{2} \\ & \mathrm{w}, \mathrm{v}_{\mathrm{z}}, \mathrm{v}_{3} \end{aligned}$	VX, V1 VY, V2 VZ, V3	Velocity component in direction of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes		m/s
v_{i}	V(I)	Velocity		m / s
V	VA	Velocity	$\mathrm{V}=\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}^{1 / 2}$	m / s
V_{0}	V0	Velocity of undisturbed flow		m/s
$\tau_{\text {w }}$	TAUW	Wall shear stress	$\mu(\partial \mathrm{U} / \partial \mathrm{y})_{\mathrm{y}=0}$	Pa

ITTC S Version			$\begin{aligned} & 3 \\ & \text { 3.3 } \\ & \text { 3.3.2 } \\ & \hline \end{aligned}$	Mechanics in General Fluid Mechanics Flow Fields	99
ITTC Symbol	Computer Symbol	Name		Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
3.3.2.2 Circulation etc					
$\Gamma^{\text {n }}$	CN	Nomalized circulation		$\Gamma /(\pi \mathrm{D}$ V) π is frequently omitted	1
I	ID	Induction factor		Ratio between velocities induced by helicoidal and by straight line vortices	1
γ	VD	Vortex density		Strength per length or per area of vortex distribution	m / s
Γ	CC	Circulation		$\begin{aligned} & \oint \mathrm{V} \text { ds } \\ & \text { along a closed line } \end{aligned}$	$\mathrm{m}^{2} / \mathrm{s}$
ϕ	PO	Potential function			$\mathrm{m}^{2} / \mathrm{s}$
ψ	SF	Stream function		$\psi=\text { const }$ is the equation of a stream surface	$\mathrm{m}^{3} / \mathrm{s}$

3.3.2.3 Remarks

. 1 Equation of Motion

The universal equation of motion for any continuum in space is the balance of mass specific momentum v_{i}, the Cauchy equation, in Cartesian coordinates,

$$
\rho d_{t} v_{i}=\rho\left(\partial_{\mathrm{t}}+\mathrm{v}_{\mathrm{j}} \partial_{\mathrm{j}}\right) \mathrm{v}_{\mathrm{i}}=\rho\left(\partial_{\mathrm{t}} \mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{j}} \partial_{\mathrm{j}} \mathrm{v}_{\mathrm{i}}\right)=\partial_{\mathrm{j}} \mathrm{~s}_{\mathrm{ji}}+\rho \mathrm{f}_{\mathrm{i}},
$$

which can be derived if the balance of mass density ρ, the equation of continuity is taken into account.

$$
d_{t} \rho=\left(\partial_{t}+v_{j} \partial_{j}\right) \rho=\partial_{t} \rho+v_{j} \partial_{j} \rho=-\rho \partial_{j} v_{j}
$$

The notation used for differentiation is evidently

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{t}}=\mathrm{d} / \mathrm{dt}, \\
& \partial_{\mathrm{t}}=\partial / \partial \mathrm{t}, \\
& \partial_{\mathrm{i}}=\partial / \partial \mathrm{x}_{\mathrm{i}} .
\end{aligned}
$$

Further Einstein's summing convention is conveniently implied:

$$
x_{\mathrm{i}} y_{\mathrm{i}}=\Sigma_{\mathrm{i}} x_{\mathrm{i}} y_{\mathrm{i}}, \quad \mathrm{i}=1,2,3 .
$$

ITTC	Computer	Damefinition or	SI-

Symbol Symbol Explanation Unit

In hydrodynamics incompressibility is a further adequate idealization and consequently the universal equations reduce to the two equations

$$
\begin{aligned}
& \rho d_{t} v_{i}=\rho\left(\partial_{t} v_{i}+v_{j} \partial_{j} v_{i}\right)=\partial_{j} s_{j i}+\rho f_{i}, \\
& \partial_{j} v_{j}=0 .
\end{aligned}
$$

In addition the balance of moments requires that the stress tensor is symmetric

$$
\mathrm{s}_{\mathrm{ji}}=\mathrm{s}_{\mathrm{ij}},
$$

(Boltzmann's axiom). The stress consists of three constituents: the pressure term, the stress proper, and the Reynolds stress:

$$
\mathrm{s}_{\mathrm{ji}}=-\mathrm{p} \delta_{\mathrm{ji}}+\mathrm{s}_{\mathrm{ij}}^{\mathrm{v}}+\rho \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{i}}^{\mathrm{CR}} .
$$

The first two terms represent the molecular diffusion of momentum, the last term the turbulent diffusion.

. 2 Constitutive Laws

Only at this stage the individual properties of fluids have to be introduced through constitutive laws, I. e. the laws for the stress tensor s. Newtonian fluids, I. e. incompressible linear viscous fluids, are defined by the law

$$
\mathrm{s}_{\mathrm{ij}} \mathrm{v}=\mu \partial_{\mathrm{I}} \mathrm{v}_{\mathrm{j}}^{\mathrm{S}}=\mu\left(\partial_{\mathrm{I}} \mathrm{v}_{\mathrm{j}}+\partial_{\mathrm{j}} \mathrm{v}_{\mathrm{i}}\right) / 2
$$

Introducing the stress terms with the constitutive law into the universal Cauchy's equation results in the "Reynolds averaged" Navier-Stokes equation (RANSE) in its kinematic form

$$
d_{t} v_{i}=\partial_{\mathrm{t}} \mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{j}} \partial_{\mathrm{j}} \mathrm{v}_{\mathrm{i}}=-\partial_{\mathrm{I}} \mathrm{p} / \rho+v \partial_{\mathrm{j}} \partial_{\mathrm{j}} \mathrm{v}_{\mathrm{i}}+\partial_{\mathrm{j}} \mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{i}}^{\mathrm{CR}}+\mathrm{g}_{\mathrm{i}} .
$$

Apart of the equation of continuity the closure of the problem requires further "constitutive" equations for the turbulent Reynolds stresses, the so-called turbulence models and, even worse, boundary conditions including details of the surface structure, I. e. roughness.

A very popular turbulence model is the $\mathrm{k}-\epsilon$ model, with two balances for the density of the turbulent energy k and its dissipation ϵ, respectively. There are fundamental investigations under way to construct more advanced models in accordance with the rational theory of constitutive laws.

ITTC Symbols		3	Mechanics in General	
			3.3	Fluid Mechanics
Version $\mathbf{1 9 9 6}$		$\mathbf{3 . 3 . 3}$	Lifting Surfaces	
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

3.3.3 Lifting Surfaces

3.3.3.1 Geometry

A	AP	Planform area	bc_{m}	m^{2}
b	SP	Wing or foil span		m
b_{F}	BSPF	Flap span		m
c_{m}	CHME	Mean chord length	A / b	m
c_{t}	CHTP	Tip chord length		m
c_{r}	CHRT	Root chord length		m
$\mathrm{f}_{\text {L }}$	FML	Camber of lower side (general)		m
f_{U}	FMU	Camber of upper side		m
$\delta_{\text {f }}$	ANFL	Flap deflection angle		rad
$\delta_{\text {s }}$	ANSL	Slat deflection angle		rad
δ	DELTT	Thickness ratio of section (general)	t/C	1
$\delta_{\text {B }}$	DELTB	Thickness ratio of trailing edge of struts	$\mathrm{t}_{\mathrm{B}} / \mathrm{C}_{\text {S }}$	1
$\delta_{\text {F }}$	DELTF	Camber ratio of mean line (general)	f/C	1
$\delta_{\text {FL }}$	DLTFL	Angle of flap deflection		1
$\delta_{\text {L }}$	DELTL	Camber ratio of lower side of foil	$\mathrm{f}_{\mathrm{L}} / \mathrm{C}$	1
$\delta_{\text {S }}$	DELTS	Thickness ratio of strut	$\mathrm{t}_{\mathrm{s}} / \mathrm{C}_{\text {s }}$	1
$\delta_{\text {STH }}$	DELTT	Theoretical thickness ratio of section	$\mathrm{t}_{\mathrm{s}} / \mathrm{C}_{\text {STH }}$	1
δ_{U}	DELTU	Camber ratio of upper side	$\mathrm{f}_{\mathrm{u}} / \mathrm{C}$	1
γ	ANSW	Sweep angle		rad
λ	TA	Taper ratio	c_{t} / c_{r}	1
Λ	AS	Aspect ratio	$\mathrm{b}^{2} / \mathrm{A}$	1

ITTC Symbols		$\begin{aligned} & 3 \\ & 3.3 \\ & \text { 3.3.3 } \\ & \hline \end{aligned}$	Mechanics in General Fluid Mechanics Lifting Surfaces	102
Version	1996			
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
3.3.3.2 Flow angles etc				
$\mathrm{V}_{\text {I }}$	VI	Induced velocity		m / s
$\mathrm{V}_{\text {T }}$	VT	Resultant velocity of flow approaching a hydrofoil	Taking vortex induced velocities into account	m / s
α	AA, ALFA	Angle of attack or inci-dence	Angle between the direction of undisturbed relative flow and the chord line	rad
α_{E}	AAEF, ALFE	Effective angle of attack or incidence	The angle of attack relative to the chord line including the effect of induced velocities	rad
$\alpha_{\text {G }}$	AAGE, ALFG	Geometric angle of attack or incidence	The angle of attack relative to the chord line neglecting the effect of induced velocities	rad
$\alpha_{\text {H }}$	AAHY, ALFI	Hydrodynamic angle of attack	In relation to the position at zero lift	rad
α_{1}	AAID, ALFS	Ideal angle of attack	For thin airfoil or hydrofoil, angle of attack for which the streamlines are tangent to the mean line at the leading edge. This condition is usually referred to as "shockfree" entry or "smooth"	rad
α_{0}	$\begin{aligned} & \text { AAZL } \\ & \text { ALF0 } \end{aligned}$	Angle of zero lift	Angle of attack or incidence at zero lift	rad

ITTC Symbols		3	Mechanics in General	
			3.3	Fluid Mechanics Version $\mathbf{1 9 9 6}$
		$\mathbf{3 . 3 . 3}$	Lifting Surfaces	
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

3.3.3.3 Forces

D_{F}	DRF	Foil drag	Force in the direction of motion of an immersed foil
D_{I}	DRIND	Induced drag	For finite span foil, the component of lift in the direction of motion
$\mathrm{D}_{\mathrm{INT}}$	DRINT	Interference drag	Due to mutual interaction of the boundary layers of intersecting foil

D_{P}	DRSE	Section or profile drag at zero lift	Streamline drag	N
L_{F}	LF	Lift force on foil	$C_{L} A_{F T} q$	N
L_{0}	LF0	Lift force for angle of attack of zero	$C_{L 0} A_{F T} q$	N

3.3.3.4 Sectional coefficients

C_{D}	CDSE	Section drag coefficient	
$C_{D I}$	CDSI	Section induced drag coefficient	1
C_{L}	CLSE	Section lift coefficient	
C_{M}	CMSE	Section moment coefficient	1
ϵ	EPSLD	Lift-Drag ratio	L/D

ITTC Symbols		3	Mechanics in General		
			3.3	Fluid Mechanics Version 1996	

3.3.4.1 Two-dimensional Boundary Layers

C_{f}	CFL	Skin friction coefficient	$\tau /\left(\rho \mathrm{U}_{\mathrm{e}}{ }^{2} / 2\right)$	1
F	CQF	Entrainment factor	$1 /\left(\mathrm{U}_{\mathrm{e}} \mathrm{dQ} / \mathrm{dx}\right)$	1
H	HBL	Boundary layer shape parameter	δ^{*} / Θ	1
H_{E}	HQF	Entrainment shape parameter $\left(\delta-\delta^{*}\right) / \Theta$	1	
p	PR	Static pressure	Pa	
P	PT	Total pressure	Pa	
Q	QF	Entrainment		$\mathrm{m}^{2} / \mathrm{s}$
			b	

$\mathrm{R}_{\text {d }^{*}}$	RDELS	Reynolds number based on displacement thickness	$\mathrm{U}_{\infty} \delta^{*} / v$ or $\mathrm{U}_{\mathrm{e}} \delta^{*} / v$	1
R_{θ}	RTHETA	Reynolds number based on momentum thickness	$\mathrm{U}_{\infty} \Theta / v$ or $\mathrm{U}_{\mathrm{e}} \Theta / v$	1
u	UFL	Velocity fluctuations in boundary layer		m/s
$u^{\text {s }}$	UFLS	Root mean square value of velocity fluctuations		m / s
u^{+}	UPLUS		$\mathrm{U} / \mathrm{u}_{\tau}$	1
u_{τ}	UTAU	Shear (friction) velocity	$(\tau / \rho)^{1 / 2}$	m / s
U_{m}	UMR	Time mean of velocity in boundary layer		m / s
U_{i}	UIN	Instantaneous velocity		m / s
U_{∞}	UFS	Free-stream velocity far from the model		m / s

U_{e} UE Velocity at the edge of the $\quad \mathrm{m} / \mathrm{s}$
$\Delta \mathrm{U} \quad$ UDEF \quad Velocity defect in boundary $\left(\mathrm{U}_{\mathrm{e}-} \mathrm{U}\right) / \mathrm{u}_{\tau} \quad 1$
$\begin{array}{llll}\mathrm{y}^{+} & \text {YPLUS } & \text { Non-dimensional distance } & \mathrm{y} \mathrm{u}_{\tau} / v\end{array}$
$\beta \quad$ BETE \quad Equilibrium parameter $\quad \delta^{*} /\left(\tau_{\mathrm{w}} \mathrm{dp} / \mathrm{dx}\right) \quad 1$

ITTC S Version		$\begin{aligned} & 3 \\ & 3.3 \end{aligned}$ 3.3.4	Mechanics in General Fluid Mechanics Boundary Layers	105
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
δ_{995}	DEL	Thickness of a boundary layer at $\mathrm{U}=0.995 \mathrm{U}_{\mathrm{e}}$		m
δ^{*}, δ_{1}	DELS	Displacement thickness of boundary layer	$\int\left(\mathrm{U}_{\mathrm{e}}-\mathrm{U}\right) / \mathrm{U}_{\mathrm{e}} \mathrm{dy}$	m
K	K	von Karman constant	0.41	1
Λ	PRGR	Pressure gradient parameter	$\delta_{995} /\left(v \mathrm{dU}_{\mathrm{e}} / \mathrm{dx}\right)$	1
$\theta^{*}, \delta^{* *}$	ENTH	Energy thickness	$\int(\mathrm{U} / \mathrm{Ue})\left(1-\mathrm{U}^{2} / \mathrm{U}^{2}{ }^{2}\right) \mathrm{dy}$	m
Θ	THETA	Momentum thickness	$\int\left(\mathrm{U} / \mathrm{U}_{\mathrm{e}}\right)\left(1-\mathrm{U} / \mathrm{U}_{\mathrm{e}}\right) \mathrm{dy}$	m
τ_{w}	TAUW	Local skin friction	$\mu(\partial \mathrm{U} / \partial \mathrm{y})_{\mathrm{y}=0}$	Pa

3.3.4.2 Remarks

. 1 Future work

In future the section should have an additional subsection on three dimensional boundary layers. And both subsections should be structured as follows:

Basic Quantities, Differential Formulation, Integral Formulation.

The Restistance and Flow Committee is strongly urged to provide a complete revision of the whole chapter along this line and accordance with the general concepts put forward.

ITTC Symbols			$\begin{aligned} & 3 \\ & 3.3 \end{aligned}$	Mechanics in General Fluid Mechanics	
Version 1996				Cavitation	106
ITTC	Computer	Name		Definition or	SI-
Symbol	Symbol			Explanation	Unit

3.3.5 Cavitation

3.3.5.1 Flow parameters

a_{s}	GR	Gas content ratio	$\alpha / \alpha_{\mathrm{S}}$	1
α	GC	Gas content	Actual amount of solved and undissolved gas in a liquid	ppm
α_{S}	GS	Gas content of saturated liquid	Maximum amount of gas solved in a liquid at a given temperature	ppm
σ	CNPC	Cavitation number	$\left(\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{C}}\right) / \mathrm{q}$	1
σ_{V}	CNPV	Vapor cavitation number	$\left(\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{V}}\right) / \mathrm{q}$	1

3.3.5.2 Flow fields

D_{C}	DC	Cavity drag	N	
l_{C}	LC	Cavity length	Streamwise dimension of a fully-developed cavitating region	m
p_{A}	PA	Ambient pressure	Pa	
p_{AC}	PACO	Collapse pressure	Absolute ambient pressure at which cavities collapse	Pa
p_{AI}	PAIC	Critical pressure	Absolute ambient pressure at which cavitation inception takes place	Pa
p_{C}	PC	Cavity pressure	Pressure within a steady or quasi-steady cavity	Pa
p_{CI}	PCIN	Initial cavity pressure	Pressure, maybe negative, i. e. tensile strength, necessary to create a cavity	Pa
p_{V}	PV	Vapor pressure of water	At a given temperature!	Pa
U_{I}	UNIN	Critical velocity	Free stream velocity at which cavitation inception takes place	m / s

ITTC Symbols			3	Mechanics in General Environmental Mechanics	
			3.4		
Version 1996			3.4.1	Waves	108
ITTC	Computer	Name		Definition or	SI-
Symbol	Symbol			Explanation	Unit

3.4 Environmental Mechanics

3.4.1 Waves

see Remark . 1
This section is related to Sections 3.1.2 Time and Frequency Domain Quantities and 3.1.3 Random Quantities and Stochastic Processes.

3.4.1.1 Periodic waves

c_{w}	VP	Wave phase velocity or celerity	$\mathrm{L}_{\mathrm{w}} / \mathrm{T}_{\mathrm{w}}$	m / s
c_{Wi}	VP(I)	Wave phase velocity of harmonic components of a periodic wave	const $=\mathrm{c}_{\mathrm{w}}$ for periodic waves	m/s
$\mathrm{c}_{\text {G }}$	VG	Wave group velocity or celerity		m / s
f_{w}	FW	Basic wave frequency	$1 / \mathrm{T}_{\mathrm{w}}$	Hz
f_{wi}	FW(I)	Frequencies of harmonic components of a periodic wave	if $\mathrm{f}_{\text {w }}$	Hz
$\mathrm{H}_{\text {w }}$	HW	Wave height	$\eta_{\mathrm{C}}-\eta_{\mathrm{T}}$	m
k, к	WN	Wave number	$2 \pi / L_{\text {w }}$	1/m
$\mathrm{L}_{\mathrm{w}}, \lambda_{\text {w }}$	LW	Wave length	Measured in the direction of wave propagation	m
T_{w}	TW	Basic wave period	$1 / \mathrm{f}_{\mathrm{w}}$	s
α	WD	Wave direction		rad
η	EW	Instantaneous wave elevation at a given location	z-axis positive vertical up, zero at mean water level; s. Remark . 3	m
$\eta_{i}^{\text {a }}$	EWAM(I)	Amplitudes of harmonic components of a periodic wave	$\eta^{\text {FSa }}$	m
$\eta_{i}^{p}{ }_{\text {i }}, \epsilon_{i}$	EWPH(I)	Phases of harmonic components of a periodic wave	$\eta^{\text {FS }}$	rad
η_{C}	EC	Wave crest elevation		m
$\eta_{\text {T }}$	ET	Wave trough depression	Negative values!	m

ITTC S Version	ymbols 1996	$\begin{aligned} & 3 \\ & 3.4 \end{aligned}$ 3.4.1	Mechanics in General Environmental Mechanics Waves	109
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
$\lambda_{\text {w }}, \mathrm{L}_{\mathrm{W}}$	LW	Wave length	Measured in the direction of wave propagation	m
ζ	DW	Instantaneous wave depression	z -axis positive vertical down, zero at mean water level	m
ω_{w}, σ	FC	Circular wave frequency	$2 \pi f_{w}=2 \pi / T_{w}$	rad
3.4.1.2	Irregular waves		see Remark . 3	
$\mathrm{H}_{\text {d }}$	HD	Wave height by zero downcrossing		m
H_{u}	HU	Wave height by zero upcrossing		m
T ${ }_{\text {d }}$	TD	Wave periods by zero downcrossing		S
Tu	TU	Wave periods by zero upcrossing		S
$\eta_{\text {c }}$	EC	Maximum of elevations of wave crests in a record		m
$\eta_{\text {T }}$	ET	Elevations of wave troughs in a record	Negative values!	m
$\lambda_{\text {d }}$	LD	Wave length by zero downcrossing		m
λ_{u}	LU	Wave length by zero upcrossing		m

ITTC S Version	ymbols 1996	$\begin{aligned} & 3 \\ & 3.4 \end{aligned}$ 3.4.1	Mechanics in General Environmental Mechanics Waves	110
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
3.4.1.3 Time Domain Analysis				
H_{V}	HV	Wave height estimated from visual observation		m
$\mathrm{H}_{1 / 3 \mathrm{~d}}$	H13D	Zero downcrossing significant wave height	Average of the highest one third zero downcrossing wave heights	m
$\mathrm{H}_{1 / 3 \mathrm{u}}$	H13U	Zero upcrossing significant wave height	Average of the highest one third zero upcrossing wave heights	m
$\mathrm{H}_{\text {o }}$	HWDS	Estimate of significant wave height from sample deviation of wave elevation record		m
T_{rt}	TRT	Return period	The average interval in years between times that a given design wave is exceeded	
T_{R}	TR	Duration of record	$1 / \mathrm{f}_{\mathrm{R}}$	s
T	TS	Sample interval	$1 / \mathrm{f}_{\mathrm{s}}$ time between two successive samples	S
T_{V}	TV	Wave period estimated from visual observation		s
3.4.1.4 Frequency Domain Analysis				
b	B	Bandwidth of spectral resolution	Sampling frequency divided by the number of transform points	Hz
Cr	CRA	Average reflection coefficient		1
$\mathrm{C}_{\mathrm{r}}(\mathrm{f})$	CRF	Reflection coefficient amplitude function		1
f_{p}	FRPK	Spectral peak in frequency	Frequency at which the spectrum has its maximum	Hz
$\mathrm{f}_{\text {R }}$	FRRC	Frequency resolution	$1 / \mathrm{T}_{\mathrm{R}}$	Hz
$\mathrm{f}_{\text {S }}$	FRSA	Sample frequency	$1 / \mathrm{T}_{\mathrm{S}}$	Hz

ITTC S Version		$\begin{aligned} & 3 \\ & 3.4 \\ & \text { 3.4.1 } \\ & \hline \end{aligned}$	Mechanics in General Environmental Mechanics Waves	111
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
$\mathrm{H}_{\text {mo }}$	HMO	Significant wave height based on zeroth moment for narrow banded spectrum	$4\left(\mathrm{~m}_{0}\right)^{1 / 2}$	m
$\mathrm{H}_{\text {o }}$	HWDS	Estimate of significant wave height from sample deviation of wave elevation record		m
m_{n}	MN	n -th moment of wave power spectral density	$\int \mathrm{f}^{n} \mathrm{~S}(\mathrm{f}) \mathrm{df}$	$\mathrm{m}^{2} / \mathrm{s}^{n}$
$\begin{aligned} & \mathrm{S}_{\mathrm{i}}(\mathrm{f}), \\ & \mathrm{S}_{\mathrm{i}}(\omega) \end{aligned}$	$\begin{aligned} & \text { EISF, } \\ & \text { EISC } \end{aligned}$	Incident wave power spectral density		$\mathrm{m}^{2} / \mathrm{Hz}$
$\begin{aligned} & \mathrm{S}_{\mathrm{r}}(\mathrm{f}), \\ & \mathrm{S}_{\mathrm{r}}(\omega) \end{aligned}$	ERSF, ERSC	Reflected wave power spectral density		$\mathrm{m}^{2} / \mathrm{Hz}$
$\begin{aligned} & S_{\eta}(f), \\ & S_{\eta}(\omega) \end{aligned}$	EWSF, EWSC	Wave power spectral density		$\mathrm{m}^{2} / \mathrm{Hz}$
T_{P}	TP	Period with maximum energy	$2 \pi \mathrm{f}_{\mathrm{P}}$	
T_{01}	T1	Average period from zeroth and first moment	$\mathrm{m}_{0} / \mathrm{m}_{1}$	s
T_{02}	T2	Average period from zeroth and second moment	$\left(\mathrm{m}_{0} / \mathrm{m}_{2}\right)^{1 / 2}$	s

3.4.1.5 Directional Waves

$\mathrm{D}(\mathrm{f}, \theta)$, $\mathrm{D}(\omega, \mu)$	DIRSF	Directional spreading function
		$\mathrm{S}(\mathrm{f}, \theta)=\mathrm{S}(\mathrm{f}) \mathrm{D}(\mathrm{f}, \theta)$
		2π
		0

f	FR	Frequency	Hz
$\mathrm{S} \zeta(\omega, \mu)$	S2ZET	Two dimensional spectral	1
$\mathrm{~S} \theta(\omega, \mu)$	S2TET	density	
etc.	etc.		$\mathrm{m}^{2} / \mathrm{Hz} /$
$\mathrm{S}_{\rho}(\mathrm{f}, \theta)$	STHETA	Directional spectral density	rad
$\mathrm{S}_{\zeta}(\omega, \mu)$			rad
α	CWD	Component wave direction	rad

ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

3.4.1.6 Remarks

. 1 General

This section is of course in many ways related to the Sections 3.1.2 Time and Frequency Domain Quantities and 3.1.3 Random Quantities and Stochastic Processes. In terms of the object oriented paradigms only the time function, the wave elevation at a given location, denoted by η and EW, respectively, has to be introduced and the operations defined earlier along with the corresponding notation may be applied without modification and repetition.

. 2 Periodic waves

The basic concepts on waves are derived from the model of periodic, not necessarily harmonic waves, but which may be considered as composed of harmonic components. Even periodic waves may be considered as samples of stochastic processes. In this case the wave parameters are random quantities with given joint probability functions. In practice only samples of such processes will be available and consequently only random sample estimates of the parameters can be obtained.

. 3 Irregular waves

In the section on non-periodic waves only random quantities have been introduced as e. g. the crest height, to which all the probability concepts and parameters can be applied as defined earlier in Section 3.1.3., e. g. the population mean and variance of the crest height.
If waves are not periodic any individual infinite record may be considered as a random sample of stationary stochastic process, which is usually assumed to be ergodic, thus permitting to replace population means by appropriate time means. In future ergodicity may be required to be checked at least for research and quality assurance purposes.

. 4 Finite records

In practice only records of finite duration are available of the hypothetical stochastic processes for the estimation of the population parameters. This should be reflected in the symbols and terminology, e. g. in the case of the wave crest only the random sample mean $\eta_{C}{ }^{A}(E C M S)$ may be determined. And as long as in most cases no agreement has been reached on the optimum estimators to be used the symbols and terminology should even indicate the special estimators used in order to avoid confusion.

. 5 Sampled values

Usually not even finite records are available for the estimation of spectra etc, but only finite sets of sampled values, namely η_{i} or EW(I).

. 6 Research Parameters

Currently discussed research parameters may be found in the IAHR/PIANC List of Sea State Parameters, Supplement to Bulletin No 52, January 1986.

ITTC S Version	ymbols 1996	$\begin{aligned} & 3 \\ & 3.4 \\ & \text { 3.4.2 } \\ & \hline \end{aligned}$	Mechanics in General Environmental Mechanics Wind	113
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \\ \hline \end{array}$
3.4.2	Wind			
3.4.2.1	Basic Quantities			
T_{rt}	TRT	Return period	The average interval in years between times that a given wind speed is exceeded	
V_{WR}	VWREL	Apparent wind velocity	see section 1.4.1	m / s
V_{wt}	VWABS	True wind velocity	see section 1.4.1	m / s
$\beta_{\text {aw }}$	BETWA	Apparent wind angle (relative to vessel course)	see section 2.6	
$\beta_{\text {tw }}$	BETWT	True wind angle (relative to vessel course)	see section 2.6	
$\theta_{\text {w }}$	TETWI	Wind direction		

ITTC Symbols		3	Mechanics in General	
		3.4		
Environmental Mechanics				
Version 1996		$\mathbf{3 . 4 . 3}$	Ice Mechanics	$\mathbf{1 1 4}$
ITTC	Computer	Name		Definition or
Symbol	Symbol			Explanation

3.4.3 Ice Mechanics

3.4.3.1 Basic Quantities

E	MEI	Modulus of elasticity of ice		$\mathrm{n} / \mathrm{m}^{2}$
Si	SAIC	Salinity of ice	Weight of salt per unit weight of ice	1
S_{w}	SAWA	Salinity of water	Weight of dissolved salt per unit weight of saline water	1
$\mathrm{t}^{\circ}{ }_{\text {A }}$	TEAI	Temperature of air		${ }^{\circ} \mathrm{C}$
$\mathrm{t}^{\circ}{ }_{\text {I }}$	TEIC	Local temperature of ice		${ }^{\circ} \mathrm{C}$
$\mathrm{t}^{\circ}{ }_{\text {w }}$	TEWA	Temperature of water		${ }^{\circ} \mathrm{C}$
$\delta_{\text {I }}$	ELIC	Deflection of ice sheet	Vertical elevation of ice surface	m
$\epsilon_{\text {I }}$	STIC	Ice strain	Elongation per unit length	1
$\dot{\epsilon}_{\text {I }}$	STRTIC	Ice strain rate	$\partial \epsilon / \partial \tau$	1/s
$\mu_{\text {I }}$	POIIC	Poisson's ratio of ice		1
$\nu_{\text {A }}$	POAI	Relative volume of air	Volume of gas pores per unit volume of ice	1
ν_{B}	POBR	Relative volume of brine	Volume of liquid phase per unit volume of ice	1
ν_{0}	POIC	Total porosity of ice	$v_{\mathrm{O}}=v_{\mathrm{A}}+v_{\mathrm{B}}$	1
$\rho_{\text {I }}$	DNIC	Mass density of ice	Mass of ice per unit volume	$\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{\text {SN }}$	DNSN	Mass density of snow	Mass of snow per unit volume	$\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{\text {w }}$	DNWA	Mass density of water		$\mathrm{kg} / \mathrm{m}^{3}$
ρ_{Δ}	DNWI	Density difference	$\rho_{\Delta}=\rho_{\mathrm{W}}-\rho_{\mathrm{I}}$	$\mathrm{kg} / \mathrm{m}^{3}$
$\sigma_{\text {CI }}$	SCIC	Compressive strength of ice		Pa
$\sigma_{\text {FI }}$	SFIC	Flexural strength of ice		Pa
$\sigma_{\text {TI }}$	SNIC	Tensile strength of ice		Pa
$\tau_{\text {SI }}$	STIC	Shear strength of ice		Pa

4 Background and References

4.1 Symbols and Terminology Group

4.1.1 Terms of Reference

In May 1985 the Executive Committee of the 18th International Towing Tank Conference (ITTC) reorganized the former Information Committee (earlier Presentation Committee) to form a Symbols and Terminology (SaT) Group in the newly established ITTC Secretariat.

The task of the SaT Group for the 18th ITTC was to carry out Recommendations 1 through 5, related to the ITTC Standard Symbols, of the Information Committee of the 17th ITTC, which were:

1. The Information Committee should continue to monitor and co-ordinate the development of new symbols by the Technical Committees.
2. The Conference should adopt the new symbols for hydrostatics included in Appendix 4 and the Information Committee should then include these in the ITTC Standard Symbols.
3. The Information Committee should restructure the ITTC Standard Symbols according to the outline Proposal in Appendix 6 and include new symbols agreed by the Technical Committees.
4. The Information Committee should continue to revise the Dictionary of Ship Hydrodynamics as required.
5. The Information Committee should continue cooperation with other organizations to achieve a common agreement on symbols and terminology.

The 18th ITTC at Kobe adopted the following Recommendations to the Conference and for the future work of the SaT Group, respectively, related to Symbols:

Recommendations to the Conference:

1. The Conference should adopt the structure of the ITTC standard Symbols and Terminology List outlined by the Symbols and Terminology Group and used as the basis for the 1987 Draft List distributed at the 18th ITTC in Kobe.
2. The Conference should urge the Technical Committees and individuals to contribute to the completion of the List of Standard Symbols and should encourage the use of the symbols and their further development in cooperation with the Symbols and Terminology Group.
3. The Conference should decide to delay the review and update of the ITTC Dictionary of Ship Hydrodynamics and the official translations of this into principal languages until the final Symbols and Terminology List is published in 1990.

Recommendations for the future work of the Group:

1. The Symbols and Terminology Group should continue cooperation with other organizations to achieve a common agreement on symbols and terminology.
2. The Symbols and Terminology Group should continue to monitor and coordinate the development of new symbols and terminology by the Technical Committees of the ITTC.
3. The Symbols and Terminology Group should complete the ITTC Standard Symbols and Terminology List based on the 1987 Draft distributed at the 18th ITTC and distribute the final version with Volume 1 at the Proceedings of the 19th ITTC.

The 19th ITTC at Madrid adopted the following recommendations related to symbols:

Recommendations to the Conferences:

The 1990 version of the List of Standard symbols should be used as a working document without the formal approval of the Conference.

Recommendations for the future work of the Group:

The SaT Group to put the computer compatible symbols on a more rational basis in order to make them useful for data exchange purposes.

The 20th ITTC at San Francisco adopted the following recommendations related to the SaT Group

Recommendation to the Conference

The Conference should approve, as a reference document, the 1993 Version of the ITTC Symbols and Terminology List.

Recommendations for Future Work of the SaT Group

Symbols.
The Symbols and Terminology Group will make appropriate corrections and additions to the 1993 Version of the ITTC Symbols and Terminology List and additions to the document which may include specialized topics and illustrative sketches as well as sections on measurement uncertainty, wave cut analysis and other suggestions from the Technical Committees. The Symbols and Terminology Group will pursue the conversion of the 1993 Version of the ITTC Symbols and Terminology List from a word-processor format to an object-oriented database format. This will enable users to prepare subsets of the ITTC Symbols and Terminology List more readily.

Formats.

The Symbols and Terminology Group to continue will monitor the international efforts in this field and to coordinate the development of neutral formats for the exchange of information between ITTC member organizations and their clients.

4.1.2 Activities of the SaT Group

The SaT Group took up its work immediately after it was established having its first meeting at Wageningen in October 1985, and coming up with the plan to produce the present draft of a restructured and enlarged list of the ITTC Standard Symbols 1987. The first raw draft was discussed at Berkeley in July 1986, the Draft 1987 published at the 18th ITTC in October 1987 at Kobe by the Society of Naval Architects of Japan, having been finalized at Trondheim in June 1987.

Work on various chapters has been continued by the 18th ITTC SaT Group and the results have been distributed to the Technical Committees at the Kobe Conference together with the printed Draft 1987.

The SaT Group of the 19th ITTC continued work on the Standard Symbols during meetings at Genova in March 1988, at the Hague and Berlin in September 1988 and in August 1989 at Trondheim, the 1990 version being completed at Genova in March 1990.

During this work, new and more rigorous requirements resulting from the proposed use of the symbols in validation work and in data bases caused a reconsideration of the fundamental aspects. Duplication of computer symbols had to be carefully traced and avoided, in order to permit automatic handling of symbols in data bases.

In order to facilitate the handling of the List of Symbols the earlier version was retyped as a series of WordPerfect files, which were available much too late for updating and were printed without even having been proof read! Consequently, the goal of finalizing the symbols list before the 19th ITTC at Madrid could not be reached. From the document itself it is evident that was less than a draft.

The SaT Group of the 20th ITTC met at Madrid in September 1990, at Berlin in June 1991, at Newcastle in May 1992 and at Genova in January 1993. The primary task after many years of frustrations with the computerized list of symbols was to finally establish a computer implementation permitting direct expert corrections on a PC.

After the previous transcription into the WordPerfect files using the tabulator function the solution was achieved by transformation to the table format. With the appropriate tools being available after all the next task tackled was to correct all the misprints and to implement all the improvements suggested by colleagues of member organizations and members of the SaT Group. The List of Symbols as printed is now available on floppy disks using the format of a WordPerfect 6.1

The main concern after this still rather traditional approach was to achieve the goal set out in the Recommendations for the future work of the SaT Group, to put the computer symbols on a more rational basis. And it soon became evident that the accomplishment of this task could only be achieved by rigorously following the object oriented paradigms applied earlier in restructuring the List of Symbols.

Two problems had to be solved: to maintain the traditional, in many ways inconsistent "Standard" Symbols as an accepted interim and suggest new consistent symbols as alternatives. Some of these
are already used in computer work and SaT Group feels that due to their efficiency they will sooner or later completely replace the traditional symbols as has the system of SI-Units the traditional systems.

In view of the increasing demands concerning quality assurance systems the SaT Group felt that the ITTC Symbols should no longer be called Standard Symbols as this name implies legal obligations, which are not existent. The International Standard Organization and corresponding national organizations may at a later stage take measures to adopt the ITTC Symbols as a Standard as was already intended with the earlier version; s. 4.5.3.

During the work to rationalize the computer compatible symbols for use in databases etc the SaT Group became aware of a number of related efforts on an even more general level, which need to be taken into account in the further development of the ITTC Symbols. As documented in the Group Report to the 20th ITTC the development and application of terminological databases is dramatically increasing and has lead to a number of specialized workshops and symposia.

In the broadest sense terminological databases are basic for computer aided knowledge and science engineering, which are developing at a breath taking pace. In order to meet the forthcoming requirements the ITTC Symbols will have to be further rigorously rationalized. Compared to this formidable task, which has only been started with the new object oriented structure of the Symbols List, the transformation from the present table format into one of the rapidly developing terminological database formats awaits further software developments.

The software systems presently available do still not meet very basic requirements, as did the word processors up to now, absorbing too much of the energy of the SaT Group which should have been devoted to the symbols proper. While the problem of producing customized lists of symbols can be solved rather easily, the much more interesting problem of deriving consistent submodels from the general models of the complete list needs still much more development work.

At this stage, it is appropriate to acknowledge with thanks the tremendous work done by the former Presentation and Information Committees and the Technical Committees in their respective fields. It is only on the basis of their work that the task of the SaT Group could have been undertaken and can be carried on. Last but not least a word of thanks is due to the great number of typists who have at all stages contributed to the actual production of the document.

All the ITTC Community, the Technical Committees in particular are invited to contribute to the continuing task of updating and further improvement.

4.1.3 Membership

The membership of the SaT Group as appointed by the 18th ITTC Executive Committee in May 1985, re-appointed by the 19th ITTC Executive Committee in October 1987 and by the 20th ITTC Executive Committee in September 1993 is as follows:

Prof. Bruce Johnson (Chairman, 1985-1996)
Naval Architecture, Ocean and Marine Engineering Department
590 Holloway Road, U.S. Naval Academy
Annapolis, MD 21402, USA

Phone	+14102936457
Fax	+14102932219
E-mail:	johnson@nadn.navy.mil

Prof. Carlo Podenzana-Bonvino (Secretary, 1985-1993)
Dipartimento di Ingegneria Navale e Tecnologie
Marine (DINAV), Universita di Genova
Via Montallegro 1
16145 Genova, Italy
Phone +39 10353 2426/2430
Fax +39 103532127
E-mail:
podenzana@dinav.unige.it
Prof. Michael Schmiechen (Secretary, 1993-1996)
Versuchsanstalt für Wasserbau und Schiffbau
Mü ller-Breslau-Strasse (Schleuseninsel)
10623 Berlin, Germany
Phone +493031184270
Fax +493031184200
E-mail schm@vws.tu-berlin.de

Dr. David Clarke
Department of Marine Technology
University of Newcastle upon Tyne
Newcastle upon Tyne, NE1 7RU, United Kingdom
Phone
+44 1912226721
Fax +44 1912611182
E-mail
David.Clarke@ncl.ac.uk
Dr. Norihiro Matsumoto (Member, 1985-1990)
Electronics Research Center
Nippon Kokan K.K.
1-1 Minamiwatarida-cho, Kawasaki-ku
Kawasaki 210, Japan
Phone +81443226276
Fax: +81443226523

ITTC Symbols
4 Background and References
4.1 Symbols and Terminology Group

Version 1996 120
Most of the members were re-appointed again by the Executive Committee in September 1990, Dr. Matsumoto being followed by:

Prof. Michio Nakato (Member, 1990-1996)
6-3-5 Hachihanmatsu-Minami
Higashi-Hiroshima 739-01 Japan

Phone	+81824288865
Fax	+81824288867

and as a new member was appointed:
Dr. Kostadin Yossifov (Member 1990-1993, Consulting member 1993-)
Bulgarian Ship Hydrodynamics Centre
9003 Varna, Bulgaria

Phone	$+35952776390 / 600293$
Fax	+35952600294

at the 21st ITTC in Norway, Professor Nakato was replaced by:
Prof. Kazuhiko Hasegawa
Department of Naval Architecture \& Ocean Engineering
Osaka University
2-1 Yamada-oka Suita
Osaka 565, Japan
E-mail hase@naoe.eng.osaka-u.ac.jp
Phone +8168797588
Fax +8168785364

4.2 List of Symbols

4.2.1 Classification

The prime concern in setting up a revised and enlarged list of ITTC Standard Symbols was to design an adequate system for the classification of concepts. As soon as the work started it became clear that the outline proposed by the Information Committee of the 17th ITTC (Proc. 17th ITTC (1984) Vol.1, p.56) had to be reconsidered in view of the problems encountered.

Subsequently the following design requirements and goals have been established:

1. produce a coherent document, meeting the present and possibly the future requirements of the ITTC community in general and particular user groups
2. establish an open ended matrix structure that can be easily expanded as requirements arise, without the need of restructuring and repetition or too many explicit crossreferences
3. minimize departures from the well established and widely accepted previous list of symbols

After a series of attempts to meet these requirements the structure as listed in the table of contents evolved very much in line with the past development of the symbols, for instance by the High Speed Craft Committee and others. The essential features are the subject areas of rather limited scope, organized in an hierarchical order. Ideally each subject area represents a complete and coherent model of that area under consideration, for example rigid body motion, hull geometry, propulsion performance.

4.2.2 Structure

The concepts related to a given subject area or model are designated by the ITTC Symbol and called by their Name. Their meaning can in principle only be concluded from the context of the model, that is by coherent, so called 'implicit' definitions, to be derived from an explicit statement of the model, ideally an axiomatic system or any equivalent, for example a drawing.

The problem is that traditionally in lists of symbols as in dictionaries these explicit models are missing for various reasons. One reason is that many subject areas under discussion are far from being developed and understood to the extent necessary. A consequence of this situation is that the symbols proposed are not always as coherent as is necessary for advanced and systematic work, where the explicit models and adequate notations area are a prerequisite.

The problem under discussion is of course the same in national and international standards. In order to avoid the dilemma indicated, the ITTC Symbols should not only perpetuate past practice and jargon but try to take the lead and step forward. This is particularly important in view of the development trends in marine technology. In a rapidly changing world adequate tools are prerequisite for efficient problem solving.

As expert system and knowledge engineering technologies evolve the importance of adequate symbols and terminology is more widely acknowledged. The training of scientists working in the terminology field is being offered by the standards organizations. Some of these activities have been monitored but are felt to be lacking in clear-cut rules which may be readily understood and applied in practice.

The original idea to add indices of symbols and names to the document had to be delayed as long as adequate tools were missing. Now such an undertaking is felt to be still premature at the present stage, as it requires the resolution of a number of additional problems, such as standardization of names.

4.2.3 Organization

As has been emphasized the development of symbols is a continuing process and as the subject develops, further amendments and additions, as approved by the Conference, will be included in future editions of the list.

In order to avoid any extra problems the symbols are arranged in alphabetical order in each subject area as in previous lists. Continuous page numbering was discarded in earlier versions. The idea was to establish a loose leaf organization as the most appropriate, in view of new drafts to be incorporated.

In view of the extremely powerful modern word processing systems the whole idea was discarded and advantage was taken of the indexing capabilities etc. permitting efficient production of real updates including in future additional explanations and sketches or drawings related to particular sections where necessary, and as found in national and international standards.

But in view of the tremendous effort which explicit mathematical models, explanations, and sketches take for their preparation, the present SaT Group has only started to consider guidelines for these additions and has added only few examples of explanations to the present list. The Technical Committees and other interested parties are urged to provide further material for review by the SaT Group and future inclusion into the list.

It has been noted by the SaT Group that some users dislike the disruption of the list of symbols by lengthy explanations. But the Group feels that the complexity of the subject and the sensible use of the symbols require such explanations, the more so as the fundamentals of the theory of science and terminology are not taught to students of naval architecture and marine engineering.

4.3 Principles of Notation

4.3.1 Objects: Quantities

Standard notations have to be adequate for the problems to be dealt with and preferably have to be operational.

In general there is a body b, e. g. ship S or model M , in space s , referred to coordinates c with origin o , and time t of which the values q of quantities of certain physical qualities Q are of interest, i. e.

$$
\mathrm{q}=\mathrm{Q}(\mathrm{~b}, \mathrm{~s}, \mathrm{c}, \mathrm{o}, \mathrm{t}),
$$

q is a variable for numerical values of quantities, while Q is a variable for functions constants, quantities of qualities, e. g. of inertia, momentum, or energy.

In many cases the quantities in question are components of vectorial or tensorial quantities; and should be denoted accordingly, s. 4.3.2.

Further, quite often various aspects of the same quantity are of interest, for example their spectra or aspects of those, in simpler cases just their expectation or estimates of these, e. g. time averages, all of them to be carefully distinguished; s. 4.3.3.

It should be evident, that the requirements concerning an adequate, operational notation are quite demanding. At the same time it should be understood that it is worthwhile to create such a notation, as waste of effort due to confusion of concepts may be reduced drastically.

The question is of course how far one wants to depart from current practice in order to cope with this situation. The example of the standard notation used in chemistry may serve as a guideline.

In the present context, the typical objects or "elements" referred to are the values of quantities in time or "signals". Consequently the symbols for the signals should be the primary symbol and components and transforms should be denoted by sub- and superscripts, respectively.

4.3.2 Components: Subscripts

In view of vector and tensor components, it is felt that it is appropriate to introduce a simple tensor notation at least for orthogonal coordinates. This helps to limit the number of symbols as it requires only one symbol for the particular set of components in question. For example the various, say at least two times thirty six "stability derivatives", i. e. generalized mass and damping, need not and cannot be introduced individually.

If vector or tensor components, in general matrix components are conveniently denoted by subscripts, the above situation thus becomes in more general terms

$$
\mathrm{q}_{\mathrm{ij}}=\mathrm{Q}_{\mathrm{ij}}(\mathrm{~b}, \mathrm{~s}, \mathrm{c}, \mathrm{o}, \mathrm{t}) .
$$

Numerical subscripts are truly operational in most algorithmic languages, which can handle matrices, usually called one-, two-, or three-dimensional arrays.

4.3.3 Operators: Superscripts

Superscripts are traditionally used for exponentiation but can be generally used to denote operators; the most satisfactory approach being the inverse Polish notation.

The advantage of this notation is that no brackets are required and operators are listed exactly in the sequence in which they are applied to the signal. As has been done with the matrix notation earlier this notation may in future be readily rendered operational in advanced software environments, object oriented languages in particular.

For convenience the computer symbols and symbols used in data bases should exactly reflect this notation in order to avoid any extra problems of translation. Consequently the earlier proposed prefixes in the computer symbols have been changed to suffixes. As an example the real part of the heave spectrum may be denoted as follows:

```
standard computer data base
XSR3
XSR(3) or X_SR(3) or XxSpRe(3)
XSR3 or X_SR3 or XxSpRe3
```

The main problem in any case is to define symbols for operations and not for the results of the operations. In order to have the most compact notation agreement should be reached concerning a one character notation, and a corresponding two character notation for the computer symbols, for well defined operations.

Due to the fact that it has not been possible to define symbols for concepts, qualifiers, operators etc uniformly in terms of two characters the above example show the presently used techniques to introduce separators. X and Xx denote symbol variables, to be replaced by symbols proper in any particular application.

If necessary the meaning of a operator symbol may depend on the context, i.e. its position with respect to others and the object it operates upon. This generic use of symbols is of course very efficient, but needs special care not to confuse concepts.

It is most important to note that in any case definitions of concepts or operations should not be confused with operational definitions, i.e. methods for determination or measurement of values. Separate identifiers have to be introduced in order to avoid confusion. A whole hierarchy of such operators and qualifiers is necessary.

Some 'operator' symbols are proposed in the following chapter on fundamental concepts. They concern:

1. identifiers of the object being tested, e. g. ship S or model M , or the various bodies in a multi-body problem,
2. identifiers of coordinate systems and of the reference points, not only forward and aft perpendicular,
3. the various aspects of complex quantities,
4. the various aspects of spectra and
5. the various aspects of random quantities and stochastic processes.

So far no particular identifiers have been introduced for various estimators. As an example the power spectra of stationary random processes may be estimated using Fourier techniques, as agreed upon by the oceanographic institutes world wide, or by autoregressive model techniques, avoiding systematic i. e. bias errors inherent in the first technique. Another example is the interpretation of the conceptual frame-work of hull-propeller interaction based on propulsion, hull resistance, and propeller open water tests or from the results of propulsion tests alone.

4.4 Details of Notation

4.4.1 Standard Symbols

The symbols in the first column of the tables are primarily intended for use in technical writing and mathematical expressions. The following notes are relevant:

1. All symbols, their subscripts, and superscripts should be written as shown.
2. In a number of instances alternative symbols are given.
3. In many cases the symbols, their sub- and superscripts denote variables to be replaced by symbols for any object, component and qualifier or operator, respectively.
4. Where for one reason or another departures from the standard symbols are made, these departures should be clearly indicated and stated.

4.4.2 Computer Symbols

Wherever possible the symbols in the second column of the tables have been chosen so that their meaning is readily apparent. They have been constructed from the CCITT International Telegraph Alphabet, restricted character set. They are therefore suitable for use in a wide range of situations e. g.: Telex messages, letters, computer printouts etc.

To ensure that the symbols can be used in a wide range of programming languages they currently have been kept to less than six characters long. The symbols should be used as defined, and, in accordance with modern programming practice, should have their type explicitly declared before use. The following rules were applied in the derivation of the symbols:

1. Only upper case letter $\mathrm{A}-\mathrm{Z}$ and digits $0-9$ have been used.
2. Formerly Greek letters have been spelled out, if necessary in abbreviated form or with changed spelling. This practice is considered obsolete.
3. The Froude 'circular' symbols are defined by the prefix CIRC.
4. All symbols start with a letter.
5. Qualifiers and operators, preferably two characters, are currently suffixed to the main symbol line, without spacing.
6. No one computer compatible symbol should be used for different concepts in a given context. This goal has not been completely achieved for the whole list. Ad hoc solutions have been attempted but discarded as unsatisfactory.

> 7. Since the computer compatible symbols have been proposed as the basis of attribute names for data exchanges, the above rules will probably be further developed in the near future.

A final remark on the Computer Symbols: in the computer, the letter O and figure 0 (zero) have fundamentally different meanings, but owing to their resemblance they can be easily confused. Thus it is necessary to distinguish rigorously between them. As a matter of fact there are contradictory conventions being widely used.

4.4.3 Names, Definitions, SI-Units

The third column in the tables contains the names of the concepts denoted by the symbols in the first and the second columns, while the fourth column usually contains a definition, or a short explanation where necessary. The last column gives the SI-Units for the concepts.

The dimensions of dimensionless quantities as well as their units are 1. They are measured in counts or "absolute units", which sometimes are given names, e.g. rad, rev, but this practice, usual in natural languages, is found to be not very useful in formal systems.

A number of concepts and their symbols are customarily defined and/or standardized differently in different fields of application. The SaT Group cannot resolve all of these discrepancies, but urges that in such cases the definitions and the units used are stated. Only a few examples having been discussed may be mentioned.

While the SI-Units of angle and velocity are rad and meter/second, respectively, the traditional units degree and knot are still widely used and clearly this situation will not change in the near future. In the spectral description of real deterministic or stochastic processes spectra and power spectra, respectively may be defined as double- or single-sided as functions of frequency or circular frequency. Any of these definitions has its particular advantages, but has to be clearly distinguished from the others.

A major step towards an unambiguous definition of the phase angle has been taken by explicitly distinguishing phase lead and lag of complex quantities. Despite the fact that both have opposite signs they are confused even in mathematically oriented standard textbooks!

4.5 References

4.5.1 ITTC Documents

> 1. International Towing Tank Conference, Standard Symbols 1971. BSRA Technical Memorandum No.400, August 1971.
2. International Towing Tank Conference, Standard Symbols 1976. BSRA T.M. No.500, 1976.
3. ITTC Dictionary of Ship Hydrodynamics. RINA Maritime Technology Monograph No.6, 1978.
4. Translation of Overall Index of Titles of Dictionary of Ship Hydrodynamics.

Vol. 1: CETENA, Genova, 1984,
Vol. 2: University of Tokyo, 1984.
5. Bibliography and Proposed Symbols on Hydrodynamic Technology
as Related Model Tests of High Speed Marine Vehicles.
Prep. by 17th ITTC High-Speed Marine Vehicle Committee. SPPA Maritime Research and Consulting. Rep. No.101, 1984.

4.5.2 Translations

A number of translations of the List of ITTC Standard Symbols into languages other than English has been made including French, German, Italian, Japanese, Russian, Spanish and Chinese. For obvious reasons these translations are no longer up-to-date as the present accepted list in English.

1. French Translation of ITTC Standard Symbols 1971.

Association Francaise de Normalisation (AFNOR).
2. International vereinbarte Buchstabensymbole und Bezeichnungen
auf dem Gebiet der Schiffshydrodynamik. Collatz, G.
Schiff und Hafen 27 (1975) No. 10.
3. Italian Translation of ITTC Standard Symbols 1971. Luise E.

Appendix II, Report of Presentation Committee.
Proceedings 14th ITTC, Vol. 4, Ottawa 1975.
4. Japanese Translation of ITTC Standard Symbols.

Transactions of the Society of Naval Architects of Japan, No.538, April 1974.
5. Russian Translation of ITTC Standard Symbols 1971.

Brodarski Institute Publication No.28, Zagreb 1974.
6. Simbolos Internacionales en Arquitectura Naval.

Asociacion de Investigacion de la Construccion Naval, Publication 7/75, Juli 1975, Madrid.
7. Report of Information Committee, Proc. 17th ITTC, Göteborg 1984.
8. Chinese Translation of ITTC Standard Symbols. China Ship Scientific Research Centre, Wuxi.

4.5.3 Other References

Apart form the organizations represented on the ITTC these symbols have been recommended for use in technical writing on naval architecture by a number of organizations concerned with marine matters including The Royal Institution of Naval Architects, the American Society of Naval Architects and Marine Engineers and the American, British, Canadian, Australian, and Italian Navies. Where possible, the symbols for Section 3.4.1, Waves are consistent with the IAHR/PIANC List of Sea State Parameters, Supplement to Bulletin No 52, January 1986.

In 1985 the Draft International Standard ISO/DIS 7463 Shipbuilding - Symbols for Computer Applications - has been published. The symbols are based on the list approved by the ITTC in Ottawa 1975 and a related list produced by the ISSC in 1974, inconsistencies having been removed. The ISO/TC8/SC15 has been notified that major changes of the ITTC Symbols are under discussion. Subsequently processing of ISO/DIS 7463 has not been postponed, but the standard has been published as ISO 7463 in 1990.

ITTC	Computer	Name	Definition or
Symbol	Symbol		Explanation

APPENDIX 5.1 PROPOSED LIST OF ITTC SYMBOLS FOR WATERJETS

(To be relocated to Section 1.3.3.4 in Version 1997)
See Figure A1. Definition of Station Numbers and Normalised Energy Flux,
Volume 1 Proceedings of 21 st ITTC

A_{j}	AJ	Cross sectional area at Station j		m^{2}
b_{1}	B1	Maximum width of cross sectional area at Station 1		m
C_{p}	CP	Local pressure coefficient	$\left(\mathrm{p}-\mathrm{p}_{0}\right) /\left(\rho \mathrm{V}^{2} / 2\right)$	1
E_{j}	EJ	Energy flux at Station j	$\mathrm{E}_{\mathrm{j}}=(\rho / 2) \int \mathrm{V}_{\mathrm{Ej}_{\mathrm{j}}^{2}}^{2} \mathrm{dQ}_{\mathrm{j}}$	W
h_{1}	H1	Maximum height of cross sectional area at Station 1		m
h_{J}	HJ	Height of jet centerline above undisturbed water surface		m
H_{1}	HT1	Local total head at Station 1		m
H_{35}	H35	Mean increase of total head across pump and stator or several pump stages		m
IVR	IVR	Intake velocity ratio	$\mathrm{V}_{2} / \mathrm{V}$	1
JVR	JVR	Jet velocity ratio	$\mathrm{V}_{7} / \mathrm{V}$	1
M ${ }_{1}$	MF1	Momentum flux at Station 1	$\begin{gathered} \mathrm{M}_{1}=\rho \int_{\mathrm{Q}_{\mathrm{J}}} \mathrm{~V}_{1} \mathrm{dQ}_{\mathrm{j}} \end{gathered}$	N
M_{7}	MF7	Momentum flux at Station 7	$\mathrm{M}_{7}=\rho \int_{\int\left(\mathrm{p}_{7}-\mathrm{p}_{0}\right) \mathrm{u}_{7} \mathrm{dA}_{7}} \mathrm{dQ}_{\mathrm{j}}+$	N
$\Delta \mathrm{M}$	DMF	Change of momentum flux		N
p_{j}	PRJ	Local static pressure at Station j		$\mathrm{N} / \mathrm{m}^{2}$
p_{0}	PR0	Ambient pressure in undisturbed flow		$\mathrm{N} / \mathrm{m}^{2}$
$\mathrm{P}_{\text {JSE }}$	PJSE	Effective jet system power		W
$\mathrm{P}_{\text {PE }}$	PPE	Effective pump power		W
Q_{bl}		Volume flow rate inside boundary layer		$\mathrm{m}^{3} / \mathrm{s}$
Q_{J}	QJ	Volume flow rate of jet		$\mathrm{m}^{3} / \mathrm{s}$
u_{j}	UJ	Local total velocity at Station j		m / s
$\mathrm{u}_{\mathrm{j} \times}$	UJX	Local axial velocity at Station j		m/s
$\mathrm{u}_{7 \phi}$	UJFI	Local tangential velocity at Station 7		m/s

ITTC	Computer	Name	Definition or Explanation	SI- Symbol
Symbol		Unit		

V_{j}	VJ	Mean velocity at Station j		m / s
V_{Ej}	VEJ	Local energy velocity at Station j	$\left\{\mathrm{u}_{\mathrm{j}}^{2}+(2 / \rho)\left(\mathrm{p}_{\mathrm{j}}-\mathrm{p}_{0}\right)\right\}^{0.5}$	m / s
α	ALFA	Angle between centerline of jet and horizontal plane		1
$\eta_{\text {inst }}$	ETAIN	Pump installation efficiency		1
$\eta_{\text {P }}$	ETAP	Pump efficiency		1
$\eta_{\text {wJ }}$	ETAWJ	Effective jet system efficiency		
ζ_{13}	ZETA13	Inlet and diffusor loss coefficient Station 1-3, based on E0		1
ζ_{57}	ZETA57	Duct and nozzle loss coefficient Station 5-7, based on E7		1

