
AFRL-HE-WP-TR-2002-0007

UNITED STATES AIR FORCE
RESEARCH LABORATORY

Human Interaction with Software
Agents (HISA)

Alice M. Mulvehill

BBNT Solutions LLC
10 Moulton Street

Cambridge, MA 02138

Randall Whitaker

Logicon Technical Services, Inc.
P.O. Box 317258

Dayton, OH 45431

November 2000

Final Report for the Period February 1999 to November 2000

20020409 020

Approved for public release; distribution is unlimited.

Human Effectiveness Directorate
Deployment and Sustainment Division
Sustainment Logistics Branch
2698 G Street
Wright-Patterson AFB OH 45433-7604

NOTICES

When US Government drawings, specifications or other data are used for any purpose other than
a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the Government may have
formulated, furnished, or in any way supplied the said drawings, specifications or other data, is
not to be regarded by implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Research Laboratory. Additional
copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Federal Government agencies registered with the Defense Technical Information Center should
direct requests for copies of this report to:

Defense Technical Information Center
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir,VA 22060-6218

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-2002-0007

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the
National Technical Information Service (NTIS). At NTIS, it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

MARK M. HOFFMAN
Deputy Chief
Deployment and Sustainment Division
Air Force Research Laboratory

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 boor per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Sen/ices, Directorate for Information
Operationsand Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY tf<weM?/7# 2. REPORT DATE

November 2000

3. REPORT TYPE AND DATES COVERED

 Final - February 1999 - November 2000
4. TITLE AND SUBTITLE

Human Interaction with Software Agents (HISA)

6. AUTHORIS)

Alice M. Mulvehill, Randall Whitaker

5. FUNDING NUMBERS

C: F33615-99-D-6001
DO: 03
PE: 63106F
PR: 2745
TA: 00
WU:31

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

BBNT Solutions LLC Logicon Technical Services, Inc.
10 Moulton Street P.O. Box 317258
Cambridge, MA 02138 Dayton, OH 45431

8. PERFORMING ORGANIZATION
REPORT NUMBER

BBN Report No. 8291

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory, Human Effectiveness Directorate
Deployment and Sustainment Division
Air Force Materiel Command
Sustainment Logistics Branch
Wright-Patterson AFB OH 45433-7604

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-HE-WP-TR-2002-0007

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Agent based systems are rapidly emerging to support users as the knowledge and complexity of computer-based information
systems increases. Software agents are currently being used to monitor data sources, bringing back only the information
that is of relevance to a particular user. The primary object of the Human Interaction with Software Agents (HISA) project
was to develop a graphical user interface (GUI) that allows users to task and manage software agents. Software agents were
modeled and implemented using BBN's Distributed Operator Model Architecture (D-OMAR). D-OMAR was chosen since
the D-OMAR environment supports discrete-event simulations of agents driven by goals and procedures. In addition,
D-OMAR supports parallel activities, its agents can respond to asynchronous signals of events, and it supports semantic
level communications between agents. The focus of the effort was placed on how Channel Plans are developed at the
Tanker Airlift Control Center (TACC), specifically the early detection and communication of Maximum on the Ground
(MOG) restrictions, and messages from Notice to Airmen (NOTAM) files regarding airfield restrictions. This report covers
the development of a GUI where D-OMAR software agents monitoring NOTAMs could post notices to human planners.
The intent was to alert the planner of problems as they occur so that the Channel Planner has more time to research problems
caused by the change and to make the required mission adjustment.

14. SUBJECT TERMS

Human Interaction with Software Agents (HISA)
Distributed Operator Model Architecture (D-OMAR)

Graphical User Interface (GUI)
Software Agents

15. NUMBER OF PAGES

68
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

THIS PAGE INTENTIONALLY LEFT BLANK

11

PREFACE

This final report documents research performed under the Technology for
Readiness and Sustainment (TRS) contract, F33615-99-D-6001, Delivery Order 03, for
the Air Force Research Laboratory (AFRL), Sustainment Logistics Branch (HESS),
Wright-Patterson AFB, OH. The Air Force Program Manager was Captain Sarah
DeMers. The research covered the time period from February 1999 through November
2000. The primary objective of the Human Interaction with Software Agents (HISA)
project was to develop user interface technology that allows users to task and manage
software agents to improve the airlift mission planning process at Air Mobility
Command. The contractors were BBNT Solutions LLC, TASC Inc., Logica (formerly
known as the Carnegie Group Inc.) and Logicon.

1XX

Table of Contents

Introduction 1

Building the Concept Demonstrations 2

Development of the HCI Based on the Direct Manipulation Metaphor 3

Scenario-Driven Implementation 6

Adding Additional GUIs and Functionality 8

Development of Interface Mechanisms for Creating and Directing Intelligent Agents 13

The Development of the Application Program Interface (API) 17

A System Architecture 17

Other Issues - Some Problems 18

Other Issues - Value Added Metrics 19

Other Issues - DII-COE Level Compliance 19

References 20

List of Acronyms 21

List of Appendices

Appendix A - Knowledge Acquisition Efforts and Results 22

Appendix B - HISA User Interface API to D-OMAR 29

Appendix C - Alert Condition Taxonomy 45

Appendix D - Summary of Functional Requirements 52

IV

List of Tables

Table 1 - User Defined GUI Usefulness 3
Table 2 - Value Added Metrics 21

List of Figures

Figure 1 - Port Viewer 4
Figure 2 - Early Port Planner 4
Figure 3 - Package Planner 5
Figure 4 - Passage Planner 5
Figure 5 - Composite Mission Display 6
Figure 6 - Scenario to First Concept Demonstration 7
Figure 7 - Alert Notification 7
Figure 8 - Conflict Summary 8
Figure 9 - HISA Login/Setup 9
Figure 10- Smart LT 9
Figure 11 - User Profile 9
Figure 12 - Smart LT Icon 9
Figure 13 - Alert Queue 10
Figure 14 - Alert History 10
Figure 15 - Defer/Disregard Window 11
Figure 16 - Contact Information 11
Figure 17 - Mission Additional Information 12
Figure 18 - NOTAM Summary 12
Figure 19 - Subscribe to Alerts 13
Figure 20 - Select Alert for Missions 14
Figure 21-D-OMAR Toolbar 14
Figure 22 - Concept Editor 15
Figure 23 - Procedure Browser 15
Figure 24 - Simulation Control/Run Time Trace 16
Figure 25a - Event Timeline 16
Figure 25b - Task Timeline .- 17
Figure 26 - System Architecture 18

THIS PAGE INTENTIONALLY LEFT BLANK

VI

Human Interaction with Software Agents (HISA)

Introduction

Agent based systems are rapidly emerging to support users as the knowledge and complexity of
computer-based information systems increases. Software agents are currently being used to
monitor data sources, bringing back only the information that is of relevance to a particular user. In
this project the primary objective was to develop a graphical user interface (GUI) that allows users
to task and manage software agents.

Software agents were modeled and implemented using BBN's Distributed Operator Model
Architecture (D-OMAR). D-OMAR was chosen because its environment supports discrete-event
simulations of agents driven by goals and procedures. In addition, D-OMAR supports parallel
activities, its agents can respond to asynchronous signals of events, and it supports semantic level
communications between agents.

Our goal was to build tools that allow the user to view, control, task, and create D-OMAR agents to
do things. Our efforts should not be misconstrued as giving the end user the ability to
programmatically develop new software agents. Rather, we proposed an interface widget to enable
a user to modify or generate new agents from a class of existing agents (like building an instance)
by changing the parameters associated with an agent or agent class.

We focused on how Channel Plans are developed at the Air Mobility Command's (AMC) Tanker
Airlift Control Center (TACC). We were interested in all aspects of the channel planning position,
from building an initial plan to finally getting it to execution. Knowledge acquisition, user
modeling, human computer interface (HCI) design development, and software development were
the primary tasks employed to achieve the vision. For example, early meetings with the subject
matter experts (SMEs) indicated two areas of value to them: early detection and communication of
Maximum on the Ground (MOG) restrictions, and messages from the Notice to Airmen (NOTAM)
system regarding airfield restrictions. Through early knowledge acquisition, the BBN
Technologies and Logica data collectors learned that Channel Planners work 90-120 days out in the
future for passenger missions and 30-100 days out in the future for cargo missions. If a change
occurs a week before the execution of the mission, it might not be discovered until the aircrew is in
final flight mission planning and checking NOTAMs.

During the course of this project we developed a GUI where D-OMAR software agents monitoring
NOTAMs could notify human planners about specific NOTAM changes. The intent was to alert
the planner of problems as they occur so that the Channel Planner has more time to research
problems caused by the change and to make the required mission adjustments.

Our studies also focused on identifying any Air Force systems that our software agents might
eventually need to communicate with and we collected examples of the computer screens
associated with a limited number of AF systems, e.g., GDSS, NOTAMs. We discovered other
agent-based systems were being developed for use in the TACC. For example, the Lockheed
Martin Cooperating Agents for Specific Tasks (CAST) agents were already being tailored to access
data from Global Decision Support System (GDSS). Instead of duplicating this effort, we initiated

a Technology Integration Experiment (TIE) to build communication links between our GUI and the
CAST software agents, and to build communication links between the CAST software agents and
the D-OMAR software agents via the "Grid." The Control of Agent Based Systems (CoABS)
"Grid" is a developing Defense Advanced Research Projects Agency (DARPA) research
infrastructure that is intended to facilitate agent communication and integration. The results of the
TIE were demonstrated in the January 2000 Human Interaction with Software Agents (HISA)
demonstration (the 1st Concept Demonstration).

In order to make better use of our efforts, our knowledge engineers developed several scenarios to
serve as guides in the design and development of the HISA GUIs, D-OMAR agents, and concept
demonstrations. Appendix A describes our efforts in detail.

Building the Concept Demonstrations

For the 1 st Concept Demonstration, the goal was to focus on how a human user would use the GUI
and the software agents to support some task or set of tasks. Instead of focusing on the MOG
conflict, the system was directed to provide the user with alerts about the changes in a number of
conditions, like restrictions in parking MOG (PMOG) or working MOG (WMOG) for which an
alert notification would be useful to the Channel Planner in developing and managing his/her
channel plans. The 1 st Concept Demonstration was centered around a TIE between the Lockheed
Martin CAST agents, the HISA D-OMAR agents and GUI. From the HISA perspective, the GUI
would be used to view processing of data by multiple heterogeneous agents, e.g., D-OMAR and
CAST agents. From a Lockheed Martin perspective, the HISA GUI would replace their GUI.
From the DARPA CoABS perspective, the CoABS Grid would be demonstrated as an environment
for facilitating heterogeneous agent communication.

A month's worth of operational GDSS data was procured for this effort, and software had to be
written to connect the D-OMAR agents to the GDSS data and the CoABS Grid. The demonstration
used the MOG conflict detection engine that was developed by Lockheed Martin, while the D-
OMAR agents were used to collect data from the Lockheed Martin CAST agents and send the data
to the GUI. Problems were encountered with providing valid time, aircraft width, and mission
ownership information to the GUI and these problems facilitated discussions on the development of
better methods for displaying temporal values, specifically sunrise and sunset values per port given
the current time. Note: This particular problem was initially resolved with the use of a
sunrise/sunset Web Server. This was finally replaced with a DOS utility that the domain
operational users utilize to calculate sunrise and sunset for ports around the world.

In the 2nd Concept Demonstration, alerts are provided to the user about: WMOG conflicts, need
for Prior Permission Requests (PPR), and problems associated with ports, as indicated by changes
in the NOTAMs data. The idea was to provide alerts much like a user would get new mail. An
icon flashes and/or beeps when new alerts arrive and are pushed onto a queue of alerts. The user
can click on the alerts in the queue to view them, and click on buttons associated with the alerts to
get further information, or to take some action, e.g., contact another planner to resolve a conflict.
The user can then simply close, defer or disregard an alert. All actions taken by the user are stored
with the alert in an alert history, freeing the alert queue to be available for displaying newly arrived

alerts. One could view the Alert Queue and the Alert History windows as mailboxes in a mail
system. Linking software agents to activities like receiving mail has been investigated.

A messaging application program interface (API) (Appendix B) between the front-end GUI and the
back-end D-OMAR agents was developed and hardened to support additional functionality for the
2nd Concept Demonstration. Much of the interface from the 1st Concept Demonstration was
reused, but new GUIs were also defined and implemented. Additions to the GUI D-OMAR API
were required to support the enhanced functionality of the 2nd Concept Demonstration. In
addition, a method for reading raw data directly into D-OMAR via a pseudo database was
developed for use in the 2nd Concept Demonstration. This database allows for general structured
query language (SQL) like queries and updates to be made.

Development of the HCI Based on the Direct Manipulation Metaphor

One of the goals of the project was to develop a HCI that is based on a direct manipulation
metaphor. Direct manipulation is a concept that makes use of a bitmapped screen to present the
user with direct visual representations of objects such as documents and printers. To print a
document, for example, the user can point (using the mouse) to the icon for the document and the
icon for the printer, while using a key on the keyboard to indicate a copy operation. Logicon
produced several conceptual interface designs to support TACC Channel mission
planning/monitoring. Table 1 lists all of the GUIs designed during the project divided into three
categories: those that were delivered in the final demonstration and require minor changes, those
that were delivered in the final demonstration and require redesign, and those that are still only in a
conceptual design state. Each GUI is delimited with the terms "must", "nice", or "desirable",
indicating the end user's disposition toward the requirement for the window.

Existing Window - Requires
Minor Changes Only

Conceptual Design Exists - Requires Detailed
Design & New Window

Requires New Design & Window

Alert Notification - MUST More Mission Info - DESIRABLE Mission Summary - NICE
Port Viewer - MUST Contact Info-NICE Airfield Restrictions-Conflict Detail - DESIRABLE
Conflict Summary - MUST Multi-Port Viewer (for "what-if s")

a. "Read Only (view, no what if) - DESIRABLE
b. "What If capable-NICE

Airfield Restrictions-Setting Detail - NICE

Alert Deferral - MUST EnRoute Viewer - NICE Rule Violations (for "what-if s") - NICE
NOTAM/DIP/PPR Info (for
port)
a. NOTAM- DESIRABLE
b. PPR-DESIRABLE
c. DIP-NICE

Package Viewer - NICE User Setup - Alerts - MUST
a. "Create a List" of my missions (copy from GDSS

and paste into this list)
b. b. "Add a Mission" (after main list created)

Smart Lt. - Icon View - MUST User Setup - User Profile - MUST
• they want to call this "User Preferences", not

"Setup"
Smart Lt. - Opening Pallet - MUST PPR Template - DESIRABLE
Alert Queue - MUST DIP Window(s)-conflict &/or setting - NICE
Alert History - MUST Weather Window(s)-conflict/setting - NICE
Query Assistant-Predefined - NICE NOTAM Window(s)-conflict/setting - MUST

a. MUST get an alert about a NOTAM conflict/issue
b. NICE to see the "setting"

Query Assistant-User-defined - NICE Agent Query Assistant - NICE
Smart Lt. - Logon - MUST
Must be able to logon and start the application.

Table 1. User Defined GUI Usefulness

Our vision of the interface evolved over the course of the project. From early on, the vision was to
link displays like the Port Viewer (Figure 1) with other function-oriented displays to orchestrate an
interface environment designed to support a particular TACC Duty Officer position, specifically
the Channel Plans area of the TACC. Figure 1 displays the final implementation of the Port
Viewer. Mission bars are displayed in the time they are at the Port, e.g., Licz-Sigonella. The width
of the mission bar is symbolic of the wide body versus narrow body aircraft requirement. The
vertical bar through the mission bars indicates the duration of the conflict.

HISA Port Viewer

26 4un 00(178)

pcI-'siGOTiuX
NOTAM

DIP PPR

W*}
)0 01 02 03 04 fce 07 08 09 10 11 12 13 14 IS IS 17 ffi IS 20 21 22 23 2? Jun00(178j

HaaaaiaMMiaaiMa""""

BHBXE-1800116

PJB03G50011S

UJB09U700116 —

jd

Figure 1. Port Viewer

Figure 2 illustrates two Early Port Planner display designs. These figures illustrate how airfield
operating hours, sunrise/sunset hours, local time, multiple flights on ground during a 24-hour
period, and resultant MOG problems might be displayed to the user. Function tabs or buttons allow
access to additional airfield information such as NOT AM, Diplomatic Clearance (DIP) and PPR
requirements.

07 88 09 10 II 12 V. 14 15 1« 17 IS 19 20 21 22 23

Figure 2. Early Port Planner

The Package Planner (Figure 3) and the Passage Planner (Figure 4) were designed to be used with
the Port Planner to form a composite view like that shown in Figure 5, the Composite Mission
Display. However, only the Port Planner was implemented during this project.

Figure 3. Package Planner

Iff ^flf■■■■lllttfW :

Figure 4. Passage Planner

MISSION
PLANNER

PACKAGE
PLANNER

PORTPLANNER
(Departure)

PASSAGE
PLANNER

PORT PLANNER
(Arrival)

NAME Ha.« /VcmTsMr MsnowN«m
7a.WJXZ.i4

MM PCRTID |

Mi^mt

[■■üüM S3 AKCKAfT CREW SOU "*"»
}

FäI ^HH
rw^ H|FM^

IHK LIIMJ

H
'<mbsm i— HM —ttfli

?V.*?i/'.>i

m "■'j™

Figure 5. Composite Mission Display

Scenario-Driven Implementation

A scenario was developed to focus the concept demonstrations. The 1st Concept Demonstration
Scenario (Figure 6) consisted of a single channel mission originating at Dover Delaware,
conducting stops at several airfields and terminating at Bahrain. The 1 st concept demonstration
flow is depicted in Figure 7, indicating where the conflict is injected and when the resulting
conflict alert is detected.

SCENARIO: CHANNEL FREQUENCY MISSION
(02F3 Outbound)

Figure 6. Scenario to First Concept Demonstration

I «Alert Notification 13
®l /j\ Issue: jMOG Conflict Defected

Setting: |NAS Rota |11 Nov99

Mission: (AJB02F3CE

Defer Close M* »ip.'' ■

Figure 7. Alert Notification

The Alert Notification pop-up window (Figure 7) is displayed when a conflict is detected. The user
is offered three paths (indicated by the three "i" buttons) of relevant drill-down options to the alert
recipient. For example, when the user clicks on the "i" button next to the Issue, the Conflict
Summary information (Figure 8) associated with the Alert is displayed. The Conflict Summary
presents the user with a listing of all published missions conflicting with his/her own. The Conflict
Summary display allows a user to review the conflict situation with respect to other planners and
their published plans. The user can also view port information via the Port Viewer (Figure 1) by
selecting the "i" next to port "Setting". From the Port Viewer, the user can obtain other data, e.g.,
NOTAMs, DIP, and PPR that may be affecting the missions at the port.

I ; Conflict Summary l-nlxl

Nov

atch

99

More Info

Conflict: |M0G

Office Mission

Setting: |NAS ROTA

JCS Priority Advised 1 Ack'd

In

Can Recut Close W.

g| |X00K [6PH0GH300 IBI S3
B2
m

I
1

OK

1 ® ®l

®l

Help |

■JETJJXOOK J6PH06400

>}• |XOGE JAJBO2F30E

1B1 |2

1B3 DJ

Cancel

Figure 8. Conflict Summary

Adding Additional GUIs and Functionality

In building the 1 st Concept Demonstration, it became apparent that some top-level control panel
was needed in addition to some mechanism for storing the application and for managing the alerts
(software agent messages) to the user. This section describes several GUIs that were designed and
implemented to support these additional system needs. All of the GUIs displayed in this section
were used in the 2nd Concept Demonstration and serve as the basis for the follow-on effort.

The HISA Login/Setup window (Figure 9) was used to start the application in the 1st Concept
Demonstration. It provided a meager amount of functionality, simply allowing the user to log-on,
create and view agents associated with a mission, and get information on when alerts were
available. This window was replaced by the Smart LT window (Figure 10), which was designed
and implemented for use in the 2nd Concept Demonstration.

H1SA Login/Setup EMx]
: Usen Jaliee

Cel: §XEast : GWest ::

OMAR Server Server Location Params

■Hosts: localhost

Disconnect J 4*ort: fsÖlO

List Mission(s)

Create OMAR Agents ^HYÄ491301.09 ■:
jfM?Höi231;0S-
JÄMYF49135114
ÄF4ati;7;ö99::

:

BMYN4äi:2ä1:ia-
BMYP4912eill:=

Select All

E§ Smart Lieutenant tat chyde

rMissiorts—" ---— -
mB

: -£i\" Show Mission. [Enter Mission ID here ,

■■£9u^$s-T?^s§^?i^^

;:|:K!y::|=S

"■i■'.;''•■'.:j Sh^l^ÄiS^^äJ;?;JJ:;/;\^E;Jji

P Showthis window on startup '<\ :['B~ S;fy;S™:

-;y?8t Profile}:

Ckssi

SMMmiUl <■

Figure 9. HISA Login/Setup Figure 10. Smart LT

The Smart LT window provides the user with access to information about missions, alerts and other
related information. Through this pallet, the user can set and modify a User Profile (Figure 11),
view mission information, view alert information, link mission to alerting agents, and perform a
variety of queries (not implemented at this time). When the user is busy using another application,
the Smart LT Icon (Figure 12) will appear and stay on the desktop to provide a visual indication of
new alerts as they are received. Clicking on the icon allows the user easy access (expansion) to the
application windows.

I User Profile E3
Items marked with

Full name:

* are mandatory

First name: |ciint

Middle initial: 1
Last name: |Hyde

Suffix: 1

RankTitle: |Mr.

User name:* |chyde

TACC office symbol:* (XOGE

Base telephone number: |703-284-4758

Fax number: |703-2B4-460u

E-mail address:)c hyde@bbn.com

ly Alert using BEEP

OK Cancel

13
alnrt

Figure 12. Smart LT Icon

Figure 11. User Profile

For the 2nd Concept Demonstration, we implemented the Alert Queue window (Figure 13) to
provide a listing of all alerts received but not previously opened. The list is sortable based on a
menu of selectable options. The user can double click on any alert to open it. Opening the alert
results in a display of the Alert Notification window (Figure 7.)

• Alert Queue EsE
User name: jrswnek

Alerts received:

As of: (09 Mat 00 (069) 14:45:05

Issue Condition Status Setting Mission Alert Received Mission Start

08 Mar 00 (070) 00.

Days Left _±_

NOTAM Update Detected LICZ-NAS Sigon.

Working MOG Conflict Detected OBBI-Bahrain AJB03F40Z 09 Mar 00 (089) 00:09 Mar 00 (069) 0; 0

Parking MOG Conflict Detected LICZ-NAS Sigon,AJB03F40Z 03 Mar 00 (069) 00:09 Mar 00 (069) 0; 0

LERT ■ NAS Rota AJB03F4OZ 09 Mar 00 (069) 14:09 Mar 00 (069) 0; 0

PPR Submission Detected LICZ • NAS Sigon,AJB03F4CE 0? Mar 00 (067) 00:10 Mar 00 (070) 0(1

Weather Below minimi Projected LERT -MAS RotaAJB03F402 08 Mar 00 (070) 00:10 Mar 00 (070) 01 1 —

Refresh List sort... View Alert Close Help

Figure 13. Alert Queue

HSHEEHI
Use! name:(rsv*ne*.

AJerts teceived:

A; of": |l4Ma00(074)10.00.06

Issue Condttktn State Serins Mißton Mission Statt Ate-rt Received Advised Acknowledged DUtegarded *

PPR Sutmiaijn Detected LICZ • MAS Sigon?AI803F4CC 10 Mer 00 (070I Or 07 Mat 00(0671 00 07 Mat 00 (067) 07 07 Mar 00 (067) 07 07 Mat 00 (067)

Working MOG Conflict Detected OBBI • Bahrain AJB03F4O2 03 Ma 00 (063| OiOS Mat 00 (069)00

Paikira MOG Conflict Detected UG - NAS Sigone AJ803F4E 09 Mar 00 [069I O'.OTMa 00106910ft 10 Mai 001070107

LERT ■ NAS Rota AJ603F4C: 09 Mar 00 (069) 0109 Mat 00 («9114

NOTAM Upda'e Delected LICZ - HAS Sigone OS Mat 00 (070) 00

Weather Below mmim

«1
. Ptoiected LERT- NAS Rota A.I603F4E 10 Ma 0010701C« 08 Ma 00 (07D| 00.03 Ma 001068107 08 Mat 001068100 08 Ma 00 IM8)T

i >r

Figure 14. Alert History.

The Alert History window (Figure 14) keeps a log of all alerts (an "audit trail"). When an action is
taken through the Defer/Disregard Alert window (Figure 15), "which allows the user to either
"defer" an action until a specified date, or "disregard" the alert altogether, the date of the action is
recorded in the related field of the Alert History. The user can also double click on alerts in the
Alert History window to review information, including any rationale or comments about an alert.
(Figure 16).

10

HjDefer/Disiegatd Alert

Enter Deferral Date, or select Disregard.

HHE3

j 05/10/2000 Deferral Date (mm/ddAw or Julian Date)

!~ Disregard (you will not be notified again regarding this alert)

NOTE: Deferral past the date of mission execution has the same
effect as disregarding this alert (you will not be notified again)

You must enter your rationale and intent for deferring this alert:

Ü
CONTINUE TO COORDINATE WITH TACC STAFF FOR

''ADJUSTMENT OPTIONS

"Deferral" or"Disregard" constitutes your Acknowledgement of this alert

Cancel OK

Figure 15. Defer/Disregard Window

In addition to deferring or disregarding an alert, the user can use the Contact Information window
(Figure 16) to provide basic information about how to contact the "owner/scheduler" of another
mission who he is in conflict with. We envision the user being able to fax, email, or telephone
another scheduler in future versions of this window. The Mission Additional Information window
(Figure 17) provides more information necessary for re-planning considerations. It displays factors
typically taken under consideration that may provide added "weight" or influence on the decision,
as well as a "deferral rationale" entry to explain a user's "thinking" when deferring action.

^Contact Information HiMiiiiLMxi
STom KazmierzakH Close

Office: ffACC

Phone: J999-BS8-7777 Call...

Fax: (666-555-4444 Fax...

E-mail: |tkaz@bbn.com E-mail...

Figure 16. Contact Information

11

IIÜ Mission BKBXE180011B additional info ■ -IDIXI

j How long has this mission been schedule? 6

I DIP status? NO

; Is this mission commercial or organic? ORGANIC

Does this mission have to use this port? ?

Number of times this mission has been re-Alerted: 6
■-•■-•••--—•-:

^Deferral Rationale:
;not important

.„.., _ „
!

OK Cancei Help

Figure 17. Mission Additional Information

Finally, in order to enable a D-OMAR agent to obtain NOTAM data directly from the NOTAM
web as part of the D-OMAR simulation, a D-OMAR agent was set up to directly receive selected
mission identifying Q-code changes from the NOTAM system. A NOTAM Summary window
(Figure 18) displays key information pertaining to the NOTAM alert including the airport and
mission(s) involved, effective dates, and a drill-down capability to allow viewing of the full
NOTAM.

ImNÖTÄMiSummäry- V'*'^:£"' ■ "' ' ■;.'^^.::-^CJi> ■_|D|x||

Type: [Unknown Missions affected:

1CB0400QA105jt|

1CB040DGA110

2LA106100102

2LA106100109 ■
 „....„....ZJ

View Mission ;

View All NOTAMs forth

Close j
Port: jLERT-ROTANS

NOTAM date/time: jrj3 May 00 (124) 15:33:19

Effective datertime: {03 May 00 (124) 07:41:00

Expiration date/time: |rj3 May 00 (124) 08:21:00

Issue/component: (xx

Help |

s Port j |

Status/condition: ixx

Text:

Figure 18. NOTAM Summary

12

Development of Interface Mechanisms for Creating and Directing Intelligent Agents

In this project we developed three types of agents: GUI agents, database monitoring agents, and
agents that can receive messages from other agents (via the TIE in the 1st Concept Demonstration).
We also wanted to enable the user to task and monitor the agents. In order to support interaction of
the human with the underlying software agents, Logicon developed several conceptual HCI
modules: the Query Assistant, the Agent Query Assistant, and the Agent Viewer (a HCI display
element intended to provide information on agents themselves). None of these designs were
implemented under this project. However, two GUIs were developed to allow the user to tailor the
types of alerts they want an agent to monitor with respect to a particular port or mission.
Subscribe to Alerts (Figure 19), displays a tool intended for the user to set up alerts for a selected
mission(s); a similar tool is available for setting up alerts at particular ports. The Select Alert for
Missions window (Figure 20) presents a related tool that enables the user to specify how long they
want the alert to be associated to the mission or port. These tools were built in response to the
users' requests to build filters so they do not have to receive alerts for all ports. Instead, the users
could specify certain types of alerts for certain ports for certain times. These GUIs are launched
from the Smart LT window (Figure 10). These are expected to evolve in the follow-on activity.

Subscribe lo Alerts HBBI

Add... j

; Missions; Ports]

Miision ID i Als it Typ es

|ABB03R00069 |PMOG,WMO© 1 ■■:: ••
1 !;».: '■

JAJB04F502069 iPMOO 1 -

Remove -JBBBJDF4000S9 JPMOO.WMOG i

1
i

f\
VI

t 1

^iSeif ove;j|i[;':.' ;h

y\\:^:^^^ | Cancel | Help j

Figure 19. Subscribe to Alerts

13

i S elect Alert for M i

Find my missions;
Office: BMüä'si
Month: [June 2000

mm
Find

Clear

Subscribe to alerts for these missions:

Your missions: Selected missions:

Subscribe to these alerts for the selected missions'
Alert types: Selected Alerts:

Figure 20. Select Alert for Missions

D-OMAR provides the software developer (and interested user) several tools that can be used to
examine the structure and behavior of the D-OMAR agents. For example, the D-OMAR Toolbar
(Figure 21) provides links to the Concept Editor (Figure 22), the Procedure Browser (Figure 23),
the Simulation Control/Run Time Trace window (Figure 24), and the Event and Task (agent)
Timelines (Figures 25a and 25b).

Vet D-OMAR Toolbar |v3.2) HsS
File Windows

%5.KL"i^"^Ii i I Ü'Ä'lSÜ'ijoä I |M™«WWW |iiiiiii^ iiimiiiiiiiiMINI M'i r

^*'%^'iU>j£^^*^
^^äS^*;;-^'

Figure 21. D-OMAR Toolbar

14

■MMMimMB
Fits Concept Roles View Vvlncio;

m |||^$S||ä2

Figure 22. Concept Editor

Rff Procedure ßiowsei SEE

Figure 23. Procedure Browser

15

Rff Simulation Control

; File Scenario Fitters Window;
EsEl

CENARIO

Initialise p Run
^ysmx^assxiara^^ s

I 3 MOG-SCENARIO ticked.

30 TRS-MISSION-MANAGER
18 TRS-MISSION-MANAGER
18 TRS-MISSION-MANAGER
18 TRS-MISSION-MANAGER
30 TRS-MISSION-MANAGER
30 TRS-MISSION-MANAGER
30 TRS-MISSION-MANAGER
30 TRS-MISSION-MANAGER
30 TRS-MISSION-MANAGER
30 TRS-MISSION-MANAGER
30 TRS-MISSION-MANAGER
30 TRS-MISSION-MANAGER
30 KDOV. "initializing PORT:

"Send-Users received, query 1 SEND-USERS"
"Set User received for chyde in XOGE"
"Set User achieved for chyde in XOGE"

. "Send-Alerts received for chyde in XOGE"
MISSION-AGENT-IN-PPR-WINDOW (0) spawned by RUN-MISSION-MANAGER on 1BAF3
MISSION-AOENT-IN-DIP-WINDOVV(O) spawned by RUN-MISSION-MANAGER on 1BAF31
Created an agent for SOURCE port OBBl
Created an agent for DESTINATION port' LICZ
Created an agent for DESTINATION port LERT
Created an agent for DESTINATION port: KNGU
Created an agent for DESTINATION port' KDOV
PORT-AGENT-IMIT (0) run bv RUN-MISSION-MANAGER on KDOV

J
120BI12
20B112

111 lA

Figure 24. Simulation Control / Run Time Trace

Fte . Tinefine. View Windows

5«$?"'■-■■""•- ■*■■■' '■ ~ "

a i>y tioG-scEiraRio
led by KDG SCENARIO, on GR13)

0.00: HDTRM-REGISTER <0) spawned by MJG-SCEH»RIO on GR]
l'PH-iMr:*fP '*>:t^*»».->TJIMlj>i^^?T-T^.''.ffl.'f«>lr'•tJiB-V>
O.OOr MISSIOM-MraraGEH-SEMD-SLERtS (0) spawned by ICOG-S
0.00: HISSIOH-MJMiiGER-SET-USER-OFFICE (0) spawned by 1!0
0.00: raSSMH-MRMGER-SEHD-USERS (0) spawned by KOG-SCQ
0.00: mSSIOH-KMriiGER-DEFER-äLERTS (0) spawned by HOG-S
0.00: MISSIOH-HHiraGER-CREJTE-aGEHTS (0) spawned by JIOG-

■ilWitl"iBi'.'if",>iBv?tnttt«'»fael)<-Mi^*'''" ■■'■■■■'-'■

'•^Jkl^^^a^ SmfSS

Figure 25a. Event Timeline

16

E3BXB9
file Timeline View V&xlows

Figure 25b. Task Timeline

The Development of the Application Program Interface (API)

A set of data requirement tables were generated by Logicon to illustrate interrelationships among
GUI elements "on the front end", agents "in the middle", and the AMC/TACC databases "on the
back end". Two classes of such tables were produced: (a) a table organized with respect to the
storyline for the scenario being written, and (b) a table for each of the GUI themselves.

A detailed API was also developed during the course of the project. In brief, it describes the
interface between the HISA GUI process, which supports the various application windows and
other elements of the user interface, and the D-OMAR engine, which accesses remote databases,
generates and resolves alerts, stores user profiles, status, and history, and generally performs the
data processing required by HISA. Appendix B contains a more complete version of the API.

A proposal for an alert taxonomy (Appendix C) was developed by Logicon in response to team
members' questions about the type of alerts to be generated by the software agents. Over the course
of the project, data requirements for each GUI were developed. Appendix D has a summary of the
functional requirements.

A System Architecture

TASC Inc. and BBN Technologies drafted an architecture combining a JAVA GUI, D-OMAR
agents, and CAST agents. The idea was to employ a JAVA cap to support the D-OMAR/JAVA
interface. BBN also investigated engineering concerns associated with interacting with the
Lockheed Martin CAST agents, external data sources, and the CoABS Grid. Figure 26 displays the
System Architecture vision, which describes how agents could link the GUI to external data
sources like GDSS, NOTAMS, and the Consolidated Air Mobility Planning System (CAMPS) or
to other persistent storage areas such as the airfield restriction database (ShopTalk).

17

UIAML

G

U

Agent O-
GDSS access

Agent O
CAMPS access

Agent O
TBD data

Agent
ShopTalk

Figure 26. System Architecture

Other Issues - Some Problems

We encountered problems with computing and deploying temporal values in the Port Viewer. We
also encountered problems in maintaining changes made in the GUI by the user. The biggest
problems in the prototype were: (1) the delay from when you push a button to when you get a
display (a function of JAVA); (2) the accurate computation of MOG (PMOG or WMOG)
constraints, as the data we obtained was already constraint-free; and (3) the timing between
simulated data exchanges and numeric real data exchanges. These problems will need to be
addressed in the follow-on effort.

18

Other Issues - Value Added Metrics

Since the goal of the 2nd Concept Demonstration was to showcase some new functionality in a
start-to-end working scenario during which a problem is identified and ultimately "resolved", a set
of user-approved Value Added Metrics was applied to the 2nd demonstration (Table 2) to compare
current practice to future capability.

ISSUE / CONFLICT CURRENT PRACTICE FUTURE PRACTICE

1. MOG Spend 10 hrs/MO just checking;
currency perishable. Run
Station Workload Report only
once.

Automatically check
daily; data always
current.

2. PPR Spend 3 hrs/wk just tracking
Sigonella PPRs; more hours to
track other airports.

"Automatically Reminded"
PPRs.

3. NOTAM Do not check NOTAMs; blindsided
by changes.

Automatically notified if
pertinent NOTOAM issued.

4. DIP Need to know if "problem
mission" has a Diplomatic
Clearance.

Automatically notified if
DIP clearance involved.

Table 2. Value Added Metrics

Other Issues - Defense Information Infrastructure - Common Operating Environment (DII-
COE) Level Compiance

The DII-COE is a set of software specifications that form the foundation for mission applications.
It is a fundamentally new approach emphasizing both software reuse and interoperability. The DII-
COE is a foundation for building an open system. The goals of the DII-COE are to: guarantee
operation of any compliant application on any compliant platform; promote interoperability
through access to data independent of its location; and provide a reliable, scalable operating
environment that is thoroughly tested. Since the DII-COE standards were associated with
interoperability, we chose to leave the issue of DII-COE compliance until the follow-on effort
where integration with other systems will be more important. In addition, since the result of this
effort is a concept demonstration, the team did not determine it necessary to adhere to the DII-COE
interface guidelines, reserving the implementation of these guidelines to some follow-on, more
operationally oriented effort.

19

References

1. Horvitz, E., "Principles of Mixed-Initiative User Interface", pp. 159-166, of CHI99
Conference Proceedings, AMC Press, 1999.

2. Kaminsky, M., Dourish, P., Edwards, W.K., LaMarca, A., Salisbury, M., and Smith, I.,
"Sweetpea: Software Tools for Programmable Embodied Agents", pp. 144-151 of CHI99
Conference Proceedings, ACM Press, 1999.

3. Mayhew, D., "The Usability Engineering Lifecycle", Morgan Kaufmann Publishers, Inc.,
San Francisco CA, 1999.

4. Shneiderman, B., "Designing the User Interface: Strategies for Effective Human Computer
Interaction", Addison Wesley, Reading MA, 1998.

5. Winograd, T., "Bringing Design to Software", Addison Wesley, Reading MA, 1996.

20

List of Acronyms

AFRL Air Force Research Laboratory
AMC Air Mobility Command
API Application Program Interface
CAMPS Consolidated Air Mobility Planning System
CAST Cooperating Agents for Specific Tasks
CoABS Control of Agent Based Systems
DARPA Defense Advanced Research Projects Agency
DII-COE Defense Information Infrastructure-Common Operating Environment
DIP Diplomatic Clearance
D-OMAR Distributed Operator Model Architecture
GDSS Global Decision Support System
GUI Graphical User Interface
HCI Human Computer Interface
HISA Human Interaction with Software Agents
MOG Maximum on the Ground
NOT AM Notice to Airmen
PMOG Parking Maximum on the Ground
PPR Prior.Permission Request
SME Subject Matter Expert
SQL Structured Query Language
TACC Tanker Airlift Control Center
TIE Technical Integration Experiment
WMOG Working Maximum on the Ground

21

Appendix A

Knowledge Acquisition Efforts and Results

Collection of Task Analytic and Business Rules

Knowledge acquisition and task analysis methods were employed to collect process
models for eliciting domain knowledge from domain experts. Use cases and storyboards
were developed to focus development as a way to define the concept demonstration
scenarios.

Process flow and rules were collected early in the project. Previous process model work
from 1992 to 1993 with the TACC was explored. Scenarios replaced the process flows.
Less structured data sheets and documents replaced previously hard rules. It became
clear that the channel mission data had to be linked to geographical data, and more
specifically, to airfield restriction data and to the NOTAM data. An early approach
involved the transformation of the formatted airfield restriction data that we received
from the users into Oracle database records. A web-based browser was created for
airfield restriction data and mechanisms were built to link the airfield restrictions to
NOTAM via the Ports' name. In doing this work, it became obvious that methods
needed to be developed to parse the NOTAM data so that the user could be informed of
specific data, e.g., airfield closure information, changes to airfield capabilities and
services, etc. related to their missions.

Problem Area Defined

The initial problem defined was to focus on Special Assignment Airlift Missions
(SAAMs). However, in meetings with the Air Force Research Laboratory (AFRL) and
the TACC, the focus shifted to an agent effort that concentrated on tracking aircraft
scheduled into Air Mobility Command (AMC) operating locations to ensure that
channel, SAAM, Joint Chiefs of Staff (JCS) exercise, and contingency schedulers,
planning independently, did not exceed the MOG capacity of any particular airfield. The
users indicated that they would like to see an agent monitor the NOTAM system and
warn planners when one of their missions was impacted by a change to operating hours
or procedures. Currently, once a mission is scheduled, personnel must monitor flights in
the system using a long, tedious pen/paper method. Frequently, no one is able to monitor
the NOTAM system for such changes until the aircrew checks them at base operations
just prior to filing a flight plan. By then it's too late to efficiently reschedule the affected
mission.

With this area identified, knowledge acquisition efforts focused on obtaining expanded
descriptions of the TACC XOG Global Channel Operations domain and several use cases
were developed. Three use cases were developed during the project and each was
coordinated with the XOG (Channel Planning) staff before being used by the FIISA team.

22

The three use cases include:

Schedule Organic Mixed and Cargo Channel (Figure 1)
Establish New Channel (Figure 2)
Schedule Commercial Passenger Channel (Figure 3)

Screen snapshots of an actual Master Template File (MTF) and Route Set Template
(RST) were obtained from the domain specialists and provided to the HIS A team for use
in developing the GUIs. A Channel Operations Domain slide with accompanying
descriptive text was also developed and provided to XOG for critical review. Finally, an
initial concept for a Storyboard was developed to support HCI and agent design as well
as for developing the concept demonstrations.

Schedule "This Month's" Organic Mixed and Cargo Channel Missions

0MC1

XOGE/W
scheduler
consults Master
Template fie

[CAMPS/
ADANS]

OMC3 Determine
forecast
deviations
to normal
airfield ops
conditions

Transfer template
to "this month's"
schedule folder

A
Yes 1 OMC2A

Update route
set template

0MC7

OMCG

Make schedule
adjustments for
"this month's"
airfield ops
deviations

0MC8

When satisfied
with "this month's"
mixed mission
schedule, publish
toGDSSapprox.
9D days prior

Update GDSS
with new msn
details

J I

Re-coordinate
revised msns
with barrels
and bookies
and re-submit dips

t
Revise msn
itineraries to
solve problem

OMC10

Coordinate
proposed
schedule
with other
barrels
& bookies

OMC9

Submit dip
clearance
requests to
TAcaxocz

When satisfied
with "this month's"
cargo mission
schedule, publish
to GDSS approx.
30 days prior

15 days prior,
link Aerial
Refueling
Event tanker
and channel
receiver
missions

10 days prior,
pull GDSS
Station Workload
Reports and check
for MOG problems

Pogelfl 7/1 em

Figure 1. Schedule Organic Mixed and Cargo Missions

23

Establish New Channel

NC1

CINC or Service
requests new
channel be
established

[e-mail or
DSN
message] MC?

USTCMCC
validates
requirement

NC3

[e-mail]

XOGD
receives
requirement

[ADANS/CAMPS]

{consul! Barrel master} NCO

NC5A

Yes

{Consult AFRES
and ANG}

Create
military lift
route set
template

{consult AMC/DOY}

[ADANS/CAMPS]

Note: For high threat areas into which civil carriers will not operate, skip NCWB through NC7

Pagem BBOm

Figure 2. Establish New Channel

Schedule "This Month's'' Commercial Passenger Channel Missions
CP4

CP1

XOGE/W
scheduler
consults Master
Template file

CPC

Coordinate
proposed
schedule
with other
bookies

CP3

Transfer template
to "this month's"
schedule folder

CP2A

Determine
forecast
deviations
to normal
airfield ops
conditions

{consult FLIP planning,
MOTAMS, DSN and
e-mail messages from
airfield ops, Brd Air
Strike Hazard Report.
AMC Airfield Suitability
Report}

CPB
CP7

Submit dip
clearance
requests to
TACaXOCZ

[Hard copy]

When satisfied
with "this month's"
PAX mission
schedule, publish
to GDSS approx
90 days prior

CP5

Make schedule
adjustments for
"this month's"
airfield ops
deviations

[CAMPS/
ADANS]

Update GDSS
with newmsn
details

Re-coordinate
revised msns
with barrels
and bookies
and re-submit dips
if required
 j.

10 days prior,
pull GDSS
Station Workload
Reports and check
for MOG problems

Figure 3. Schedule Commercial Passenger Channel Missions

24

An initial draft Storyboard depicted tasks the Channel Operations staff perform and
suggested HCI capabilities and software agents' interaction. The scenario was repeatedly
updated and coordinated for accuracy with the TACC planners. A table that links the
A task-HCI-system-data element thread was also developed (Table 1).

AR - Air Refueling mission
CAMPS - Database (Consolidated Air Mobility Planning System)
GDSS - Database (Global Decision Support System)
JCS-Joint Chiefs of Staff
MOG - Maximum # of aircraft allowed on ground (Maximum on the Ground)
NAS Rota - Naval Air Station Rota, Spain
SWR - Station Workload Report
XOG - Channel Planners
XOGE - East Cell Channel Planners
XOOK - Current Operations Air Refueling Division
XOPE - Global Readiness

TASK/EVENT INTERACTION DATA & SOURCE NOTES
1. XOGE publishes
channel mission to
GDSS.

CAMPS to GDSS. 1B3 msn; XOG Route
Set Template.

5 weeks ago.

2. XOOK publishes AR
msn to GDSS in
support of contingency
ops.

CMARP-CAMPS to
GDSS.

1B1 msn; XOOK. (Today) 3 days
before channel
executes.

3. Identify MOG
conflict.

NAS Rota notifies
XOGE.

Verbal notification;
Rota noticed conflict
in GDSS.

Telephonic.

4. Validate report of
MOG conflict.

XOGE runs Station
Workload Report
(SWR) for Rota.

SWR results from
GDSS.

Confirms that
new MOG
conflict exists.

5. Initiate conflict
coordination with
XOPC.

XOGE walks over to
XOPC to talk.

Verbal, based on
GDSS report;
USEUCOM late
decision for msn
requirement.

Unable to
change
contingency
msn.

6. Consider options;
XOGE reviews "what
if.

XOGE Mentally,
determines 10-hour
delay and
implications.

Channel msn in
GDSS; ripple effect
on other ports.

Aware that a
change will
affect other
ports.

7. Determine impact on
Bahrain. Determine

XOGE views
Atlantic Theater

Airfield Restriction
DB for station ops

Daylight hours
only.

25

MOG at Bahrain. Airfield Restrictions
db. Pulls SWR in
GDSS for Bahrain.

hours at Bahrain.
Identifies in GDSS
more missions (2B1
Exercise c/o 2 C-141s
and 1 comm PAX
flight).

Working MOG
is 1, with one-
hour separation
between a/c.
Determines
option will
disrupt exercise
msns.

8. Review JCS
priorities for conflicting
missions.

XOGE reviews
which msn "out-
prioritizes" who.

JSC priority in GDSS
per mission.

Channel (1B3)
out-prioritizes
exercise (2B1).

9. Initiate conflict
coordination with
XOPE (exercise
planner).

XOGE walks over to
XOPE to talk.

Verbal, based on data
in GDSS; tells XOPE
they will have to
change ex msn.

Dismay; angst.
Will affect 10-
day exercise
flow. Too late to
change
commercial
carrier, or Large
$ penalty.

10. Determine impact
on Sigonella, Italy.

XOGE Bookie calls
aerial port.

Verbal; Port will not
support 10 hour
delayed arrival, due to
> cost for overtime
local labor to offload
a/c.

Italian national
port workers.

11. Continued
coordination with
XOPE and
USCENTCOM.

XOPE calls
USCENTCOM.
XOPE tells XOGE
results.

Verbal; Centcom will
not accept disruption
to flow, threatens
General Officer
pressure.

More angst.
Need more
options.

12. Consider briefing
TACC command on the
problem.

Mentally, determines
2 days of time
preparing and
briefing.

Mentally dismisses
this route, knowing
that Sigonella won't
agree to a delay
anyway.

Need another
option.

13. Check Rota for
more information.

XOGE calls Rota
base ops.

Verbal. Rota Ops
officer offers one
narrow body (NB)
parking spot during
the scheduled channel
RON time.

A C5 won't fit in
a narrow body
slot. Need more
information/opti
ons.

14. Check with Barrel
master for a different
type a/c.

XOGE walks over to
Barrel; asks for help.
Discuss option.

Barrel has a SAAM
msn cancellation; a
C17 w/crew is
available for the
channel msn. With a

C17 carries less
pallets (18) than
a C5 (36). Need
port's agreement
to < lift capacity.

26

"wing walker" can fit
aC17intoNBslot.

15. Check for High
Priority cargo at the
ports, and it's "age" to
see if < lift capacity is
OK.

Channel planner and
his Bookie need to
know if hi-pri cargo
is waiting.

Check Global
Channel Ops Briefing
Summary (reports
amount and age of
cargo waiting at
ports).

The Summary
shows that < lift
would be
feasible to use.

16. Check with the
ports to confirm what
the Summary is
reporting.

Bookie calls
Norfolk, Rota,
Sigonella and
Bahrain.

Verbally, confirms
amount of cargo
awaiting lift.

A Cl7 would
adequately
support this
channel msn.
Are there any
other
considerations?

17. Check for any
special designations for
this mission.

XOGE checks in
GDSS.

A "Z" code in 9th

character of the
mission ID indicates,
"fenced channel" (not
to be cancelled).

What impact
would swapping
type a/c have on
this "fenced"
msn?

18. Check with Barrel
for impact of swapping
type a/c for fenced msn.

XOGE walks over to
Barrel.

Verbal. May be a
reason cannot swap
type (crew training,
maintenance
planning, customer
reqm't).

Swap is OK.
Mission can go
via C17.

Table 1. Task-System-Data Source Threads

Acquisition of Domain Data

As part of our program, we used a CD of actual GDSS database elements from the April
1999 timeframe for demonstrations, as was airfield restriction data for both the Atlantic
Region and the Southern Region. Additional missions were developed to introduce
conflict with in support of the scenario.

We also collected information about the office code development (it is derived from the
AMC mission number) and the "Channel Bulletin Part C", which provides detailed
information on the AMC Mission Identifier Program Encode/Decode tables. The
Channel bulletin information was converted into a set of rules that could be implemented
in the D-OMAR simulation.

In dealing with NOTAM information, we used the Air Force Joint Manual 11-208, DoD
NOTAM System.

27

Functional Requirements Documents

Detailed user feedback was obtained in follow-on knowledge acquisition sessions with
the domain specialists after the 1 st Concept Demonstration. The results were compiled
into a detailed set of functional requirements. Gaps in the functional requirements drove
further research into the repository of data previously acquired with questions to TACC
domain specialists regarding the specifics of MOG calculations, JCS priority, and
Airfield Restrictions to name a few.

Development of the Interface between the Demonstration system and
Actual AF Systems

The original project was interested in building agents that could communicate with AF
database systems, e.g., GDSS and CAMPS. We prepared the 1st Concept Demonstration
to communicate with the GDSS database, but through the Lockheed Martin CAST
software agents. The 2nd Concept Demonstration included D-OMAR software agents
capable of listening to a limited number of NOTAM changes. More work needs to be
done in this area for an operational system.

28

Appendix B

HISA User Interface Application Program Interface (API) to Distributed Operator
Model Architecture (D-OMAR)

1. Purpose of this Document

This document describes the interface between the HISA GUI process, which supports
the various application windows and other elements of the user interface, and the D-
OMAR engine, which accesses remote databases, generates and resolves alerts, stores
user profiles, status, and history, and generally performs the data
processing required by HISA.

2. Overview of Communications between the GUI and D-OMAR

In this section we provide a general overview of the communication mechanism between
the GUI and D-OMAR.

2.1 Events

Communication between the HISA GUI and D-OMAR occurs via the mechanism of D-
OMAR's Java Cap. The Java Cap consists of classes that enable Java programs (such as
the HISA GUI) to communicate with the LISP-based D-OMAR process, by sending or
receiving events to or from D-OMAR.

In the Java Cap, an event is essentially an asynchronous one-way message to or from
D-OMAR. D-OMAR will from time to time spontaneously generate an event to the GUI
(e.g., because it has detected a conflict to which the user asked to be alerted); therefore
the GUI implements a handler for these asynchronous events. Likewise the GUI will
from time to time generate an event to D-OMAR due to user input; D-OMAR listens for
these events.

HISA adopts a simplified format of D-OMAR events, in which the contents of every
event are a data structure equivalent to a list of strings. The length of the list depends on
the event. Numeric data is converted to a string format by the sender and parsed by the
recipient.

2.2 Event Syntax

The first element of each event is the type of the event. (In the case of events sent by the
GUI to D-OMAR, the Java Cap requires that the type of this element be of a special Java
class representing a LISP symbol. This is the only element in the HISA events that is not

29

actually of type String. Only the equivalent string value of the symbol is of interest to us,
however, so throughout the rest of this document we will refer to this symbol by its string
value, just as we refer to the other elements of events.)

Following the type are zero or more parameters. Each parameter consists of an identifier,
followed by a value. The purpose of the identifier is to specify the semantics of the
parameter. If we think of the event as a structure with several named fields, the identifiers
are the names of the fields.

In order to avoid confusing identifiers with values, each identifier begins with a dash (-).
When it is necessary to pass as a data value a string that begins with a dash, the sender
shall prefix the string with the sequence dash-blank ("-") and the recipient shall
Strip this sequence from the start of the string. That is, in order to send the string "--
none--", for example, the event shall contain the string "- -none-".

2.3 Query-Response Events

In addition to asynchronous one-way events, the HISA interface needs to support various
user queries that require a query-response or remote procedure call semantics. In order to
support this, a pair of events is employed:

* A query event from the GUI to D-OMAR.

* A response event from D-OMAR to the GUI.

The query event always includes an integer "-querylD" value, and D-OMAR's response to
that query will always echo the same "-querylD" value that the GUI sent in the query
event. Because the response includes this matching "-querylD" value, the GUI can
always identify the query that the response answers, and so can complete the
"procedure call" even if other events have occurred between the generation of the query
and the response.

3. Types of Events

In this section we describe the details of the interface between the GUI and D-OMAR,
consisting of the various types of events that may pass between them, and the semantics
of each event type including the interpretation of its fields.

30

3.1 Syntax

As described in the previous section, an event consists of an event type (a string or string
equivalent) followed by zero or more additional strings. Any additional strings consist of
alternating field names and values. The fields that occur in the event will depend
upon the event type, as described in this section.

To describe the detailed syntax of events, we use the following notation:

Quoted text represents the literal text of a string, e.g., "xyz" represents a three-character
string consisting of the lower case letter x followed by y and z.

A numeral represents the literal value of an integer, converted into a string (the decimal
representation of the integer).

Text in angle brackets represents an element or elements that are to be assigned a value at
run time (the entire text including the enclosing angle brackets will be replaced by some
value). The text inside the brackets consists of descriptive text, followed by a colon,
followed by the type of the value.

The syntax [x|y], where x and y may be literal or run-time values, indicates that either x
or y (but not both) may appear in the indicated place in any single instance of the event.

Italicized text is a placeholder for some syntactical group within an event, for example a
list of several name-value pairs. Whenever such a placeholder appears in an event syntax,
the syntax of the represented group will be provided later in the description of the
event.

3.2 Types of Values

We distinguish three types of values in events.

* string. The most generic value type is string. Any string value
may be contained in this field.

integer. The value of this field is an integer (that is, the
recipient should parse this string as a decimal integer in order to
recover the integer value of the field).

31

* time. The value of this field is an integer representing a date
and time of day. The integer value is a Unix-style time value, that
is, the number of seconds that will have elapsed from January 1, 1970
to the date and time in question.

3.3 Categories of Interactions

The events passed between the GUI and D-OMAR support interactions between the GUI
and D-OMAR that fall into three categories:

* One-way D-OMAR to GUI. D-OMAR passes a single asynchronous event to the
GUI.

* One-way GUI to D-OMAR. The GUI passes a single asynchronous event
to D-OMAR.

* Query-response. The GUI sends a query event to D-OMAR, after which
D-OMAR sends a matching response event to the GUI.

At this time, query-response interactions are never initiated by D-OMAR.

In the detailed list of event types, one-way interactions (in either of the first two
categories) are described individually. If the recipient's handling of the event triggers any
processing that generates additional events, those events are described separately.

For a query-response interaction, we first describe the syntax of the query event, followed
by the syntax of the matching response event.

3.4 Detailed List of Event Types

The following list describes the interactions between the GUI and D-OMAR, and the
event types that support these interactions.

Interaction: REPORT ALERT (one way D-OMAR to GUI)

When a conflict or other alertable condition is detected, D-OMAR passes an event to the
GUI:

"Alert-notification" header detail-list

32

The header consists of the following fields in any order:

"-alertType" <alert type:string>
"-issue" <issue:string>
"-eventID" <unique ID generated by D-OMAR:integer>
"-status" <status:string>
"-alertLevel" <degree of severity of the alert, where

l=low severity, 2=medium, S^high severity: integer>
"-notification" <number of times this detection has been raised:integer>
"-datasource" <describe source of data:string>
"-timestamp" <instant at which D-OMAR (re)raised the alert:time>

The "-alertType" and "-issue" values depend on what caused the alert. If the alert is for a
Working MOG conflict, these are:

"-alertType" "conflict"
"-issue" "WMOG"

For a Parking MOG conflict:

"-alertType" "conflict"
"-issue" "PMOG"

For a change in NOTAMs:

"-alertType" "change"
"-issue" "NOTAM"

For the beginning of the window for submitting a PPR request:

"-alertType" "window entry"
"-issue" "PPR"

When an alert is initially raised, the "Alert-notification" event is sent with the value "-
status" "detected". The only other possible values at this time occur during the "Alert
History Replay" protocol. (See the note on this below.)

The detail-list consists of the following fields in any order:

"-location" <ICAO code of airfield where MOG exceeded:string>
"-portName" <full English name of airfield:string>
"-beginDate" <instant at which condition is predicted to begin:time>
"-endDate" <instant at which condition is predicted to end:time>
"-mission" <mission number:string>

33

For the anticipated future, all fields in detail-list will occur exactly once, except that the "-
mission" field does not occur at all in a NOTAM alert.

The "-eventID" value can be used as an identifier to help make queries about this alert (as
opposed to any other alert).

The "-notification" value is 1 the first time an alert is detected. Each time the alert is
deferred and raised again by D-OMAR, the "-notification" value increases by 1.

The "-timestamp" value is the time when D-OMAR first sent the "Alert-notification"
event to the GUI, unless the alert was deferred and the deferral period has run out (see
below). Note that after either the first report or after a deferral period expires and the
alert is reported again, it is possible for D-OMAR to generate additional reports generated
(see "Alert History Replay", below), but D-OMAR will continue to use the same
timestamp value.

When an alert has been deferred, D-OMAR continues to track the alert. If the deferral
period expires and the condition has not been resolved, then D-OMAR will resend the
"Alert-notification" event using the same "-eventID" value as in the first time that alert
was reported, but with a new timestamp.

Alert History Replay

In the current implementation, when the user logs out and logs back in again, the GUI
reloads the Alert History from D-OMAR. To do this:

First, the GUI sends the "Alert-request" event (see RESEND ALERTS, below).

Second, D-OMAR proceeds to send an "Alert-notification" event for every alert in the
alert history (i.e., for everything that happened since the user's very first login). These
messages are similar to the "Alert-notification" messages that are sent when alerts are
first detected, with the following exceptions:

1. The "-status" value depends on the current status of the alert.
If the alert has been deferred by the user, then this field is

"-status" "deferred"

If the user has disregarded the alert, then this field is

"-status" "disregarded"

If the alert has been resolved, then this field is

34

"-status" "resolved"

Otherwise the field is

"-status" "detected"

just as it was in the original Alert-notification. Only alert with "-status" "detected"
belong in the Alert Queue.

2. The following optional fields may appear in the details section
of the message:

If the user has been advised of the alert:

"-advised" <date when user was advised:time>

If the user has acknowledged the alert:

"-acknowledged" <date when alert was acknowledged:time>

If the user has deferred the alert:

"-deferred" <date when alert was deferred (to?):time>
"-deferText" <reason for deferral :string>

If the user has disregarded the alert:

"-disregard" "Y"

Interaction: RESEND ALERTS (one way GUI to D-OMAR)

In order to replay the history of alerts, the GUI sends the following to D-OMAR:

"Alert-request" "-userlD" <ID of the user:string>

Following this, D-OMAR will proceed to send "Alert-notification" events for every alert
in the alert history. The GUI should handle these as described under "Alert-notification",
above.

This event is useful when a user logs in. It will cause D-OMAR to resend the alerts that
the user received during the previous login, plus any alerts that occurred while the user
was logged out, so that the GUI can reconstruct up-to-date copies of the alert queue and
the

35

alert history. If the GUI has performed GET ALERT QUEUE TIMESTAMP, it can now
set the "New alerts" indicator in the opening palette as needed (cf. the discussion of the
timestamp under REPORT ALERT).

Interaction: GET CONFLICT SUMMARY (query-response)

In order to get details of the conflicting missions in a MOG conflict, the GUI sends the
following to D-OMAR:

"Alert-query" "-eventID" <unique ID from Alert-notification event:integer>
"-querylD" <ID generated by GUI: integer>
"-detail" "conflict"

D-OMAR responds:

"Alert-reply" "-querylD" <queryID from Alert-query event:integer>
"-alertType" "conflict"
"-issue" "MOG"
"-detail" "conflict"
"-location" <ICAO code of airfield where MOG exceeded:string>
"-portName" <full English name of airfield:string>
"-date" <when conflict occurs:time>
"-numMissions" <number of missions:integer> mission-list

where the mission-list consists of number-of-missions repetitions of

"-mission" <mission number:string> mission-details

where mission-details consists of the following fields in any order:

"-own" ["Y'T'N"]
"-office" <office name:string>
"-priority" <JCS priority of mission: string>
"-advised" ["Y"|"N"|"?"]
"-acknowledged" ["Y"|"N"|"?"]
"-canRedo" ["Y"|"N"|"?"]
"-closeWatch" ["Y"|"N"|"?"]
"-disregard" ["Y'T'N"]

"-own" indicates whether the office making the query schedules that particular mission.
(For missions scheduled by other offices, the value here is "N".)

36

Interaction: GET ALERT SETTING (query-response)

In order to get details of the setting of a MOG conflict, the GUI can send to D-OMAR the
following:

"Alert-query" "-eventID" <unique ID from Alert-notification event:integer>
"-querylD" <ID generated by GUI:integer>
"-detail" "setting"

D-OMAR responds:

"Alert-reply" "-querylD" <queryID from Alert-query event:integer>
"-alertType" "conflict"
"-issue" ["WMOG'T'PMOG"]
"-detail" "setting"
"-location" <ICAO code of airfield where MOG exceeded:string>
"-portName" <Full common name of airfield:string>
"-sunrise" <time of sunrise:time>
"-sunset" <time of sunset:time>
"-opsBegin" <time airfield ops begin:integer>
"-opsEnd" <time ops end:integer>
"-conflictBegin" <date and time conflict begins:time>
"-conflictEnd" <date and time conflict ends:time>
"-mog" <MOG limit value that was exceeded:integer>
"-numAC" <number of aircraft in the conflict:integer>
"-numMissions" <number of missions:integer> mission-list

where the mission-list consists of number-of-missions repetitions of

"-mission" <mission number:string> mission-details

where mission-details consists of the following fields in any order:

"-own" ["Y'T'N"]
"-office" <office name:string>
"-priority" <JCS priority of mission:string>
"-actype" <type of aircraft:string>
"-width" <1 for narrow body, 2 for wide:integer>
"-land" <date and time when mission lands :time>
"-takeoff <date and time when mission takes off again:time>

"-own" indicates whether the office making the query schedules that particular mission.
(For missions scheduled by other offices, the value here is "N".)

37

Interaction: DEFER ALERT (one way GUI to D-OMAR)

In order to inform D-OMAR that the user has deferred an alert (e.g., via the Defer
Rationale window), the GUI sends the following to D-OMAR:

"Alert-deferral" header-fields

The header-fields consist of the following fields in any order:

"-eventID" <unique ID generated by D-OMAR:integer>
"-reason" Explanatory text supplied by user:string>
"-wakeup" <when the alert should be raised again:time>
"-disregard" ["Y"|"N"]
"-userlD" <user ID:string>

The "-wakeup" field always contains an absolute date/time value. If "-disregard" "N" is
given, D-OMAR will raise the alert again at the time specified by "-wakeup", if it has not
already been resolved. If the user requested to defer the event for a relative time, e.g.
"until 3 days from now," the GUI should read the current system time and
compute the absolute future time at which the user's deferral period would expire.

If "-disregard" "Y" is given, then a wakeup time should still be specified, but D-OMAR
will ignore the wakeup time, and will never raise this alert again.

D-OMAR then defers the alert, i.e. removes it from its saved copy of the user's alert
queue and adds a deferral event to the audit trail in the user's alert history.

Interaction: SET ALERT QUEUE TIMESTAMP (one way GUI to D-OMAR)

In order to record the latest alert that the user has been informed of, the GUI sends the
following to D-OMAR:

Syntax:
"Set-value" "-userlD" <user ID:string> <latest timestamp in Alert Queue:time>

This helps the GUI save and recover the status of the Alert Queue and Smart LT via D-
OMAR, to support the "New alerts since queue last viewed" feature. The "-userlD" field
identifies the user whose latest timestamp this is, since other users typically will have
different timestamp values.

The exact use of this message depends on the precise interpretation of when the user last
"viewed" the Alert Queue. But, for example, if the viewer opens the Alert Queue, then it
seems safe to conclude that the user has viewed the alerts there, and the GUI might SET

38

ALERT QUEUE TIMESTAMP using the latest timestamp that is then in the queue.
Then, if the user logs out and in again, the GUI can GET ALERT QUEUE TIMESTAMP
to find out what the latest timestamp was that the user saw, and indicate "new alerts" only
if there are alerts newer than that timestamp.

Interaction: GET ALERT QUEUE TIMESTAMP (query-response)

When the user logs in, the GUI sends the following to D-OMAR:

"Value-query" "-querylD" arbitrarily assigned by the GUI:integer>
"-userlD" <ID of the user:string>
"-variable" "alertQueueTimestamp"

D-OMAR responds:

"Value-reply" "-querylD" <queryID from the Value-query event:integer>
"-variable" "alertQueueTimestamp" "-value" <time now:time>

In this way the GUI can determine when the user last looked at the Alert Queue, even
though it was during the last login session.

The purpose of the Set-value and Value-query interactions to save and restore the
alertQueueTimestamp variable is to display the correct state of the "New alerts" indicator
on the Smart LT when a user has logged in after an absence. If there are alerts in the alert
queue that are newer than the saved timestamp, then the "New alerts since
last look at queue" indicator should be ON.

Interaction: SAVE CONFLICT DATA (one way GUI to D-OMAR)

The GUI uses the event type described here to inform D-OMAR of actions the user has
taken regarding a MOG conflict alert. When the user changes the "advised",
"acknowledged", or "can redo" status of a mission in the conflict, the GUI sends to D-
OMAR:

"Alert-save-data" header-fields conflict-data

where the header-fields consist of the following fields in any order:

"-eventID" <unique ID from Alert-notification event:integer>
"-userlD" <user ID:string>
"-timestamp" <time at which the user made this request:time>

and where conflict-data is:

39

"-mission" <mission number:string> mission-data

where mission-data consists of one of the following fields:

"-advised" ["Y"|"N"]
"-acknowledged" ["Y"|"N"]
"-canRedo" ["Y"|"N"]

The mission-data field indicates to D-OMAR that the corresponding field of the mission
in question (whose mission ID was given in the preceding "-mission" field) is set to the
indicated "Y" or "N" value. D-OMAR will set its stored value to match this value. D-
OMAR will not alter the stored values of any options that were not specified
explicitly in the "Alert-save-data" message.

The purpose of this message is so that the next time the conflict window is displayed (e.g.
with the help of "Alert-reply" ... "-detail" "conflict") the settings shown will match those
that were shown the last time the user clicked the OK button. The GUI should send data
for all Y/N options that the user changed, it may send data for options that had Y/N
values but were not changed by the user, and it must not send data for any options that
still have the "?" value. If the user has taken multiple actions regarding the conflict, that
is, has generated new values for two or more of the mission-data fields, the GUI must
send multiple messages, one for each field that is to be updated.

Interaction: GET MISSION CONTACT (query-response)

In order to get the mission contact data when the user pushes the contact button in the
Conflict Summary window, the GUI sends:

"Mission-contact-query" "-missionID" <mission ID:string>

D-OMAR responds:

"Mission-contact-reply" contact-data

where contact-data is the following in any order:

"-office" <office name:string>
"-phone" <phone number:string>
"-fax" <FAX number:string>
"-email" <email address:string>

40

Since there is space for only one telephone number in the Contact Data window, D-
OMAR should send just one telephone number, etc.

Interaction: GET NOTAM DETAILS (query-response)

When the user clicks the info button next to "issue" in the Alert Notification window for a
NOTAM change alert, the GUI sends D-OMAR the following:

"Alert-query" "-eventID" <unique ID from Alert-notification event:integer>
"-querylD" <arbitrary value generated by the GUI:integer>
"-detail" "NOTAM"

D-OMAR responds:

"Alert-reply" "-querylD" <queryID from Alert-query event:integer>
detail-fields mission-list

where detail-fields consists of the following in any order:

"-NOTAMType"["New"|"Replacement"rCancellation"]
"-NOTAMIssuedDate" <when the NOTAM was entered into the NOTAM system:time>
"-qcode" <Q code from the NOTAM:string>
"-component" <component:string>
"-status" <status:string>
"-text" <NOTAM text:string>

and where mission-list is zero or more repetitions of

"-mission" <mission ID:string>

Interaction: GET REPORT (query-response)

When the user clicks on the NOTAMs, DIP, and PPR buttons in a Port Viewer, when no
mission is selected, the following query-reply pair retrieves the relevant data for this port:

The GUI sends the query:

"Report-request" "-querylD" <unique GUI-selected ID:integer>
"-report" ["DIP'T'PPR'T'NOTAM"]
"-location" <ICAO code of airfield:string>
"-date" <relevant date:time>

41

The "-querylD" is whatever the GUI needs to route the reply event back to the correct
object when a reply is received.

D-OMAR sends an event to the GUI:

"Report-reply" "-querylD" <the querylD from the Report-request:intcger>
"-report" ["DIP"|"PPR"|"NOTAM"]
"-location" <ICAO code:string>
"-text" <text of the report:string>

This assumes that for now, each of these reports will be gotten from an agent that simply
returns a (possibly long) text describing the DIP requirements, PPR requirements, or
NOTAMs applicable to this airfield.

Interaction: GET USER LIST (query-response)

This interaction enables the GUI to retrieve a list of all user Ids known to D-OMAR.

The GUI sends an event to D-OMAR:

"Send-users" "-querylD" <unique GUI-selected ID:integer>

The "-querylD" is whatever the GUI needs to route the reply event back to the correct
object when a reply is received.

D-OMAR responds:

"UsersList" "-querylD" <the querylD from the Get-users request:integer>
user-list

where user-list is zero or repetitions of

"-userlD" <user ID of a user:string> user-profile

one repetition for each user known to D-OMAR, giving that user's ID, where user-profile
is the following in any order:

"-name" <user's name:string>
"-office" <user's office:string>
"-branch" <user's branch:string>
"-phone" <user's phone number:string>
"-fax" <user's fax number:string>
"-email" <user's email address:string>

42

Interaction: GET USER PROFILE (query-response)

This interaction lets the GUI retrieve the profile of a single user if it knows the user ID.
To get information on multiple users, call the query several times.

The GUI sends to D-OMAR:

"User-profile-request" "-querylD" <unique GUI-selected ID:integer>
"-userlD" <user ID:string>

D-OMAR responds:

"User-profile-reply" "-querylD" <the querylD from User-profile-request:integer>
"-userlD" <user ID:string>
user-profile

where the user-profile consists of the following fields in any order:

"-name" <user's name:string>
"-office" <user's office:string>
"-branch" <user's branch:string>
"-phone" <user's phone number:string>
"-fax" <user's fax number: string>
"-email" <user's email address:string>

Interaction: SET USER PROFILE (one way GUI to D-OMAR)

The GUI can use this to enter a new user in the database, and to update information for an
existing user.

The GUI sends to D-OMAR:

"Set-user-profile"
"-userlD" <user ID:string>
user-profile

where user-profile has the same format as in GET USER PROFILE.

If the user ID already exists in the database, D-OMAR should treat this as an update and
replace the old profile ofthat user with the new data.

Interaction: CLEAR ALL (one way D-OMAR to GUI)

43

D-OMAR sends:

"Clear-all"

This tells the GUI to reset/reinitialize all data. This is currently used only for purposes of
resetting a (simulated) Smart Lt session to the beginning.

44

Appendix C

Alert Condition Taxonomy

Randall Whitaker/Logicon Technical Services, Inc.

This document is an initial sketch for a taxonomic breakdown of alert conditions and alert
notification parameters in the AMC/TACC HIS A product(s).

The intention behind the design sketches done to date has been that there would be an
ordered set of alert conditions and alert notification types, which could progressively be
instantiated as the work continued.

This document is intended to address the following issues:

- provide a draft sketch / specification for alert conditions / parameters
- provide some clarification of the alert condition / notification presumptions embedded

in the HCI design to date.
- provide some basis for discussing emergent issues (e.g., 'alert severity' assessment)
- provide some basis for sorting out issues involving HISA-defined data elements (e.g.,

'Alert Type'), which are already evidencing problematical levels of ambiguity.

The thrust of this document is to try and shed some light on how we might define those
Alert Types upon which the severity metric(s) would be applied, not the severity metric(s)
per se. Phrased another way, this document doesn't affect the advisability or feasibility of
Alert Severity - it only attempts to map out the building blocks for implementing it.

I. Nomenclature

I.A. Nomenclature for Alertable Conditions

This section presents a tentative set of labels to be used for the conditions, which
motivate alerts to the planner(s). The conditions relate to the plans and missions, which
are the foci of the planners' work activities. They are therefore general/high-level
categories for "states of the plan/mission which the planner needs to know about."

Availability

Availability denotes one of the only 'positive' alertable conditions - something (e.g.,
Aircraft) is now known to be available for usage. This might prove useful eventually if

45

we provide planners with the ability to post requests for assets, and then let agents notify
them of new options.

Cancellation

Cancellation denotes that a given plan or mission has been cancelled (prior to execution).
This is distinct from termination, which denotes an end to a mission under way. NOTE:
A case might be made for having 'cancellation' refer to missions alone, and having a
distinct label (e.g., 'withdrawn') refer to plans.

Clash

Clash refers exclusively to disagreements/discords involving one or more missions under
way. A clash is presumably of more immediate concern than a conflict because it relates
to actual transport services 'in the air.' Clash therefore refers to discord among plans
and/or missions, where at least one of the discordant items is a mission under way.

Closure

Closure would denote the specific condition of a port being closed and hence unavailable
for usage. The necessity of this condition is questionable, because a closed port could
just as well be treated as constituting a 'deficiency'.

Conflict

Conflict refers to any discord or disagreement among plans not involving missions under
way. In effect, conflict pertains to future/predicted conditions inferred from abstract
plans.

It is important to note that 'conflict' (as the term is used herein) is something that occurs
among plans, and not within a plan or its subject matter. The condition of MOG is not a
conflict, whereas the problem arising when multiple plans would induce excess MOG at
Port X constitutes a conflict among those plans. This is consistent with our illustrations
of the HCI concept.

Constraint

Constraint would denote the specific condition of a plan being such that its execution
violates one or more procedural limitations or proscriptions (e.g., an itinerary violating
regulations on crew rest periods). The necessity of this condition type is subject to
debate, because such a condition could be subsumed under a liberal interpretation of
(e.g.) 'deficiency' (vis a vis a rested crew) or 'inconsistency'.

46

Deficiency

Deficiency denotes that some particular element or requirement is lacking in a plan or
mission. This could be minor (e.g., DIP clearances not applied for) or major (e.g., a
mission's aircraft has broken down and is unavailable for the remaining mission legs).

It's important to note that 'deficiency' means one or more particular elements of a plan or
mission are lacking, whereas 'inconsistency' means all elements are accounted for, but
'don't add up.'

Delay

Delay denotes the specific condition of a mission under way being delayed relative to its
scheduled itinerary.

Divert (Diversion)

Divert denotes the specific condition of a mission under way being diverted from a
scheduled port of arrival. Such a diversion would presumably set off a number of
alertable conditions.

Inconsistency

Inconsistency denotes a system-inferred discord among elements of a plan. For example,
a published plan, which (initially or subsequently) puts the mission's aircraft at Port X,
while some component of the cargo is supposed to be at Port Y, would be 'inconsistent'.

It is important to note that this alertable condition has to do with (e.g.) intra- (and not)
inter-plan/inter-mission factors. It is also important to note that 'inconsistency' means,
"all the pieces are there but don't add up," whereas 'deficiency' means, "one or more
pieces are not in place."

Suspension

Suspension denotes that a plan or mission has been 'set aside' but remains pending. This
is distinct from both cancellation and termination - both of which denote an actual end to
the plan/mission involved.

Termination

Termination denotes that a given mission has been ended once under way (e.g., stopped
after X of Y legs are accomplished). This is distinct from cancellation, which denotes
ending or dropping a mission (or plan) prior to execution. Note that 'termination' (as
defined here) refers exclusively to missions, and not plans.

47

LB. Nomenclature for Alert Condition Qualifications / Characterizations

This section addresses not the alert conditions themselves, but the manner in which those
conditions are addressed in the contexts of (a) identification/recognition (e.g., by the
HISA agents) and (b) reporting (e.g., to the owner of the mission(s) affected).

Detected

Detected denotes that a given alert condition has been identified for either a plan or a
mission. It only means that the system has inferred the existence/potential of the given
alert condition. In our HCI presentations, we have illustrated the alert "Conflict
Detected."

Confirmed

Confirmed denotes that a given alert condition has been 'upgraded' from a detectable
prospect to a probable/definite problem. It means that the system has inferred the
existence/potential of the given alert condition has reached a threshold 'level' or
'certainty.' This would be utilized in characterizing levels of alert 'certainty' or 'severity'
(at least with regard to 'actionability'), as well as for re-notifying a planner that some
previously 'suggested' or 'hypothesized' alertable condition is now something he/she
must deal with.

Critical

Critical denotes that a pending alert condition is of such a nature that it demands the
planner's immediate attention (e.g., when a MOG conflict 'deferred' repeatedly simply
must be resolved).

Note that this is not an indicator of 'alert severity' (in terms of a quantification of
problematicity in general), but rather an indicator of 'immediacy of actionability'. If
'blown off too long, even a condition of relatively low 'alert severity' may become
'critical' (in terms of immediate action required.)

De-Escalated

De-Escalated denotes that spending issue has (a) become less acute (e.g., an excess
MOG of 4 has now become 3) and/or (b) decreased in a quantifiable degree of
problematicity (e.g., the 'alert severity' value of a conflict has gone down.)

NOTE: This is a finer-grained thing than simply issuing an 'Updated' alert (see entry for
'Updated'), and specifically pertains to issues already pending resolution.

48

Escalated

Escalated denotes that spending issue has (a) become more acute (e.g., an excess MOG
of 5 has now become 6) and/or (b) increased in level of problematicity (e.g., the 'alert
severity' value of a conflict has gone up.)

NOTE: This is a finer-grained thing than simply issuing an 'Updated' alert (see entry for
'Updated'), and specifically pertains to issues already pending resolution.

Resolved

Resolved denotes that a pending alert condition has ceased to be an alertable issue or
problem.

Updated

Updated denotes that a given alert condition previously identified for either a plan or a
mission persists, but that the details have changed. It means the system has inferred that
the given alert condition is still operant, but that there's new info on that condition.

II. Alert Type(s)

The issue of 'Alert Type' frequently emerged in the design specifications/discussions. In
particular, this has become a recurrent point of reference with respect to the Alert
Notification module and, by implication, the process of alert notification.

The point is that' Alert_Type' is the classificational 'anchor' for inferring, for example,

- Alert severity
- The setting/context relevant to a particular Issue (e.g., MOG) which is motivating the

condition (and, hence, the alert)
- The drill-down options offered with Alert Notification

We therefore defined 'Alert Type' to provide a set or class of referents at a suitable level
of granularity such the above-cited inferences can be done.

Having outlined the condition/characterization elements above, the following is a
definition of 'AlertType.'

Alert_Type (as a data element) is comprised of (or mappable to) the set {Condition,
Characterization, Issue} where:

49

Condition is a data element corresponding to one of the condition labels
defined above (Section I.A.)
Characterization is a data element corresponding to one of the
qualification/characterization labels defined above (Section LB.)

- Issue is a data element corresponding to the mission state or problem
motivating the alert.

In our illustrations to date, the Alert Notification window would be an example of
AlertJType = {Conflict, Detected, MOG}.

In our canonical MOG example:

Condition (Conflict) mandates that inter-plan review be a drill-down option
(conflict being a discordance among plans)

- Condition (Conflict) mandates that 'own plan' review be a drill-down option
(though I suspect this is the 'universal drill-down option').

- Issue (MOG) mandates that an appropriate Port Viewer be a drill-down
option (MOG being something manifest only at a given port on a given date.)

Now, to illustrate how this modularity makes a difference, consider a situation in which
(e.g.) a XOOK staff publishes a Plan involving a TailNum (AC) already supposedly
allocated to a previously published XOGE Plan. Assuming the XOOK proceeds after
notification of the issue, the XOGE would get an Alert Notification window of
Alert_Type {Conflict, Detected, AC_Availability). This situation would be the same as
outlined above, except that in this case the Issue (ACAvailability) would mandate that a
Package (not a Port...) Viewer be a drill-down option (AC being a component of the
'Package' as defined to date).

Furthermore, if the business rules permitted the XOOK above to simply 'take' the
Tail_Num (no discussion to the matter), our poor XOGE might well receive an Alert
Notification of Alert_Type {Deficiency, Detected, AC_Availability}, where the
combination of Condition (Deficiency) and Issue (AC_Availability) would mandate
different / additional drill-down options to allow going off and searching for another AC.

III. What About 'Alert Severity'?

The proposed taxonomic/data-architectural points in this document do not in any way rule
out or constrain the notion of our having a scalar 'Alert_Severity' metric. The notion of a
severity metric is something that must be applied with respect to different Alert_Types.
As mentioned earlier, this document is intended to try to shed some light on how we
might define those Alert_Types upon which the severity metric(s) would be applied, not
the severity metric(s) per se. Phrased another way, this document doesn't affect the

50

advisability or feasibility of Alert_Severity - it only attempts to map out the building
blocks for implementing it.

SUMMARY

This document was not a final specification - it was only a 'serving suggestion' of terms
and ideas. Many of the ideas were incorporated in the final designs. However, we
wanted to show the reader what types of issues we were addressing when deciding upon
the final design for demonstration. This document is intended only to (a) clarify some of
the broad background presumptions underlying our narrow illustrations to date; and (b)
offer a proposed organization for this area.

51

Appendix D

Summary of Functional Requirements

TASC Inc.

This project is developing a prototype GUI for the AMC TACC Global Channel Operations
Directorate (XOG). The GUI prototype will provide channel mission schedulers the ability to
task and manage software agents that will assist them in their duties. The scheduler must have
visibility on planning factors that change and new information that will or may affect his/her
scheduled channel mission. Visibility of both physical object attributes (ports/airfields, aircraft,
weather) and information (mission details and relevant changes to planning factors) and their
relationship in a dynamic environment is required. The scheduler must be quickly alerted when
conflicts to missions have developed and be provided planning information to coordinate and
resolve the conflict or issue.

The XOG channel mission consists of a scheduled aircraft to fly between two or more ports (the
Port) to transport specified cargo and/or passengers (the Package) at a predetermined date and
time. Missions are planned in the CAMPS and executed in the GDSS. The GUI will access the
GDSS system for required information on scheduled missions, the DoD NOTAM system for real
time information for notices to airmen, and locally developed reference tables for XOG quick-
lookup port planning information. Additional data sources will be utilized when appropriate and
as they become available.

The primary functional problems or "issues" this prototype will address are: identifying MOG
parking conflicts, NOTAM changes with emphasis on airfield closure, and changes to selected
planning factors at ports the AMC channel flights are scheduled to transit through. The
underlying principle is to provide the channel planner the most timely and advance notification
about the problems as is possible. Additionally, the prototype will aid in coordinating the
resolution to the problem by extending timely conflict awareness to other TACC staff.

The prototype will allow the channel scheduler to graphically view key information pertaining to
his mission: the port or series of ports to readily see the parking conflict, key port details, the
mission details, and the software agent notifications or alerts pertaining to the problems. The
prototype will provide additional aids to the planner including a PPR template useful to create
the PPR request document, and a "submission notifier" when a request is within the time window
for submission. A detailed description of the functional requirements is provided in the following
table.

52

Detailed Functional Requirements

Functional Requirement
1 Missions-' •"','* v - ,-_ -'" :-" *
1.1 Summary
1.1.1 The system shall provide a summary information about a mission or mission

leg:
a. Mission ID
b. Operator
c. Load
d. Owner
e. Launch date
f. JCS priority
g. Publication date (to GDSS)
h. Aircraft type
i. Start port
j. End port
k. Can recut (yes or no)
1. Close watch (yes or no, but not editable here!)

1.2 Port
1.2.1 Single port
1.2.1.1 The system shall display the following port information for a given period of

time:
a. Begin date
b. End date
c. Port name
d. Port ICAO code
e. Operating hours (both Z and L)1

f. Sunrise time (both Z and L)
g. Sunset time (both Z and L)
h. NOT AM for the port
i. DIP clearance requirements for the port
j. PPR request requirements for the port
k. List of all missions at the port during the time period sorted by JCS

priority

1 Z and L indicates that time must be displayed Zulu and local time zones.

53

Functional Requirement
1.2.1.2 The system shall display the following information for each mission at a

port:
a. Arrival time
b. Departure time
c. Mission identifier
d. Aircraft type
e. Aircraft category (Narrow / Wide body)
f. Time on ground
g. Previous port
h. Next port
i. Type of mission
j. Mission scheduler
k. DIP clearance information for each mission
1. PPR information for each mission
m. Scheduler's telephone number
n. Scheduler's fax number
o. Scheduler's e-mail address
p. Office symbol of Scheduler
q. JCS DoD priority
r. Mission Scheduler advised
s. Mission Scheduler acknowledged
t. Can recut mission [Y/N]
u. Designated Close watch [Y/N]
v. Duration mission scheduled in GDSS
w. Operator (Organic or Commercial)
x. Port required
y. Number of mission re-plans

1.2.1.3 The system shall display following issues at a port:
a. MOG conflict
b. Airfield closure conflict2

1.2.2 Multi-Port
1.2.2.1 The system shall display all legs of a mission.
1.2.2.2 The system shall display the interrelationship of time between legs in the

sequence the legs are flown.
1.2.2.3 The system shall allow the user to analyze mission options by modifying

takeoff and departure times.
1.2.2.4 The system shall utilize planning "rules" to explore options to include:

a. Minimum ground time for type aircraft3

b. Minimum on-ground time for crew rest4

1.2.2.5 The system shall notify the user when adjustments violate planning rules.
1.2.2.6 The system shall allow the user to "over ride" a rule violation.
1.3 En Route3

1.4 Package6

Airfield closure is the most significant form of limitation to the airfield status
3 Refer to Standard Ground Times table in Attachment A (use Normal Peacetime planning times)

Refer to Standard Ground Times table in Attachment A.
No requirements have been defined for this functionality yet. We concentrated on the functionality that we knew

was important to XOG. Requirements in this section will be based on the design work of our team. Future
knowledge acquisition will be necessary to gather these requirements.

Requirements in this section are based on the design work of the team. No user has specifically stated any of these
requirements. Data fields (the details) are meant to represent what could be there. Future knowledge acquisition will
be necessary to gather these requirements.

54

Functional Requirement
1.4.1 The system shall provide summary information about the package of a

mission or mission leg:
a. Mission ID
b. Operator
c. Aircraft type
d. Tail number
e. Load description (pax, cargo, mixed)
f. Crew ID

1.4.2 The system shall provide details about the aircraft's status:
a. Aircraft type
b. Tail number
c. Aircraft status
d. Last maintenance

1.4.3 Load
1.4.3.1 The system shall provide details about the load:

a. Load type
b. Load number

1.4.3.2 The system shall provided details about the status of the load:
a. Load type
b. Load number
c. Load status

1.4.4 Crew
1.4.4.1 The system shall provide details about the crew roster:

a. Crew ID
b. Crew details

1.4.4.2 The system shall provide details about the status of the crew:
a. Crew ID
b. Number of hours flown in current mission
c. Number of hours rest in current mission
d. Number of hours since last rest

1.4.5 The system shall provide details about the fuel and its status:
a. Fuel requirement
b. Fuel loaded
c. Air refueling required

1.4.6 The system shall provide a list of documents required for this mission or
mission leg, including:
a. Air refueling plan
b. Communication Specifications
c. Contract
d. DIP clearance designator
e. PPR designator
f. Flight plan
g. Manifest

2 Alerts
2.1 The system shall allow each user to determine the types of alerts presented:

a. Parking MOG conflict detected
b. Airfield closure conflict detected
c. PPR request window open
d. DIP clearance request window open
e. Weather below minimum detected

55

1 # Functional Requirement
2.2 The system shall allow each user to determine how frequently he is alerted

about an alert type, limited to the following choices:
■ Daily
■ Every two days
■ Once per week
■ Once per month

2.3 The system shall notify the user when a new alert is received.
2.3.1 This immediate alert notification shall be unobtrusive.
2.3.2.1 This immediate alert notification shall be viewable by the user while other

non-HISA windows are open.
2.3.2.2 This immediate alert notification shall not be obscured while other non-

HISA windows are open.
2.3.3 This immediate alert notification shall present a visual and an audio cue

when a new alert is received.
2.3.4 Alert notification should identify or describe the originating data source (?

How does this help the users solve a problem?)
2.4 The system shall notify users of issues pertaining to published missions.

Published missions are those that have been "pushed to GDSS."
2.4.1 The system shall allow users to request alerts by:

a. Mission type
b. Alert type
c. Mission number
d. Port

2.4.2 The system shall present the following information to the user about each
issue:
a. Issue identification (common name)
b. Issue setting (location or port name)
c. Mission identifier

2.4.3 Parking MOG Conflict Detected
2.4.3.1 The system shall notify users when a mission is involved in a Parking MOG

conflict.
2.4.3.2.1 The system shall display the Parking MOG value exceeded in the conflict.
2.4.3.2.2 The system shall display the number of aircraft involved in the conflict.

2.4.3.3 The system shall display the name of the port at which the Parking MOG
conflict occurs.

2.4.3.4 The system shall display the date on which the Parking MOG conflict
occurs. 1

56

Functional Requirement
2.4.3.5 The system shall display the following details about each mission involved

in the Parking MOG conflict:
a. Mission scheduler
b. Scheduler's telephone number
c. Scheduler's fax number
d. Scheduler's e-mail address
e. Office symbol of scheduler
f. Mission identifier
g. JCS priority
h. Mission scheduler advised
i. Mission scheduler acknowledged
j. Alert disregarded
k. Can recut mission
1. Designated close watch
m. Duration mission scheduled in GDSS
n. DIP clearance status
o. Operator (Organic or Commercial)
p. Port required
q. Number of mission re-plans
r. Previous port
s. Next port

2.4.4 Airfield Restriction Detected
2.4.4.1 The system shall notify users when a mission is scheduled to arrive or depart

from a port while the port is restricted.
2.4.4.2 The system shall display the following details about the mission involved in

the airfield restriction conflict:
a. Issue name (Airfield restriction detected)
b. Port ICAO
c. Port name
d. Date and time conflict begins
e. Q-code7

f. Issue/component of conflict8

g. Status/condition of conflict9

2.4.4.3 The system shall notify users when a mission is scheduled to arrive or depart
from a port while the port is closed.

2.4.5 PPR Request
2.4.5.1 The system shall notify users when a Prior Permission Required (PPR)

request may be submitted for a mission.

Documented in Air Force Joint Manual 11-208
8 Examples are: Aerodrome, Aerodrome Control Tower, Runway (specify runway), Fuel availability, All landing
area lighting facilities, Air Display, All radio navigation facilities.
9 Examples are: Not available, Prior permission required, Closed, Changed, Deactivated, Closed to all night
operations, Closed to IFR operations, Closed to VFR operations, Unmonitored, Limited to, Prohibited to, Usable
length...and width of...., Operations cancelled.

57

1 # Functional Requirement
2.4.5.2 The system shall ignore weekend days when determining PPR notification

date and time. For example, if a mission starts on Monday or Tuesday and
the PPR window is 48-hours prior to mission start, then they would like to
know about the PPR on Thursday or Friday, rather than Saturday or Sunday.

2.4.5.3 The system shall display the following details about the PPR request:
a. Squadron
b. US aircraft
c. Military aircraft
d. Weapons on aircraft?
e. Reason for stop
f. Type of cargo
g. Number of aircraft
h. Aircraft type
i. Mission number
j. Tail number
k. Routing from
1. Routing to
m. Estimated time of arrival
n. Date of arrival
o. Estimated time of departure
p. Date of departure
q. Call sign
r. Dip clearance designator
s. Any DVs on board?
t. If yes, what code?
u. Total personnel on board
v. Point of contact
w. POC phone number
x. Special information or questions

2.4.5.4 The system shall allow users to enter the following details about a PPR
request:
a. Reason for stop
b. Type of cargo
c. Any DVs on board?
d. If yes, what code?
e. Total personnel on board
f. Point of contact
g. POC phone number
h. Special information or questions

2.4.5.5 The system shall allow users to print PPR request details.
2.4.5.6 The system shall allow users to export PPR request details to a word

processing document.
2.4.6 DIP Clearance Request
2.4.6.1 The system shall notify users when a diplomatic clearance request may be

submitted for a mission.

These fields can be found in GDSS.

58

Functional Requirement
2.4.6.2 The system shall display the following details about the dip clearance

a. Mission ID
b. Port name
c. Port ICAO
d. Date mission will be at the port
e. Dip clearance requirements for port
f. Port contact name
g. Port contact phone number
h. Port contact fax number
i. Port contact e-mail address

2.4.6.3 The system shall notify users when a mission has a conflict and a DIP
clearance is associated with it.

2.4.7 Weather Below Minimums
2.4.7.1 The system shall notify users when weather conditions are forecast to be

below the minimum thresholds for landing the type of aircraft used for a
mission.

2.4.7.2 The system shall display the following details about the weather required:
a. Mission ID
b. Forecast area
c. Date and time of forecast
d. Planned date and time mission will be in forecast area
e. Published IFR approach minimum ceiling
f. Published IFR approach minimum visibility

2.4.7.3 The system shall display the following details about the forecast weather at
estimated flight arrival:
a. Mission ID
b. Port name
c. Port ICAO
d. Date and time of forecast
e. Date and time of arrival
f. Ceiling
g. Visibility
h. Below VFR(y/n)

2.4.7.4 The system shall display forecast severe weather at a port to include
hurricane and typhoon.

2.5 The system shall notify users of issues pertaining to ports.
2.5.1 NOTAM Change
2.5.1.1 The system shall notify users when there is a new NOTAM for a port or a

NOTAM for a port has changed.
2.5.1.2 The system shall display the following details about the NOTAM:

a. Port name
b. Port ICAO
c. Date of NOTAM
d. NOTAM text

2.6 The system shall allow users to defer taking action on an alert.
2.6.1 The system shall allow the user options to set the length of time the alert will

be deferred in hours, days, and weeks.
2.6.2 The system shall re-alert the user after the designated defer period has

expired.
2.7 Alert Queue
2.7.1 The system shall display all alerts the user has not taken action on.

59

2.7.2
Functional Requirement

The system shall display the following alert information:
a. Object
b. Condition
c. Event
d. Setting
e. Mission
f. Date of departure

Number of days to mission start (calculated)
h. Issue date

Issue time
2.8 Alert History

The system shall display a history of all alerts received. 2.8.1
2.8.2 The system shall display the following alert history information:

a. Object (example: MOG, NOTAM)
Condition (example: Conflict, Deficiency)
Event (example Detected, Projected, Updated)
Setting
Mission
Date of departure
Number of days to mission start (calculated)
Issue date
Issue time
Advised date
Advised time
Acknowledged date

m. Acknowledged time
n. Alert identification number

2.9 The system shall allow a user to ignore a specific alert for a specific mission.
Queries i

3.1 Pre-defined Queries
3.1.1 The system shall present a series of pre-defined queries to the user to include

the following:
a. MOG at a specified Port
b. Runway closure at a specified port
c. Airfield closure at a specified port
d. Air shows at a specified port

.1.2 The system shall allow the user to stipulate the lifetime of the query and the
number of repetitions (query multiple times, or quit after one alert).

3.2 User-defined Queries
3.2.1 The system shall allow the user to create a new query

The system shall allow the user to save a new query as a pre-defined query. 3.2.2
The system shall allow the user to stipulate the lifetime of the query and the
number of repetitions (query multiple times, or quit after one alert).

3.2.3

lAgenis-
4.1 Agent management
4.2 Agent viewer
4.3 Agent editor?

Security
5.1 The system shall provide secure access to the application via user name and

password.

60

Functional Requirement
5.2 The system shall maintain a detailed profile about each user that includes the

user's:
a. Full name
b. User ID
c. TACC Department office symbol
d. Cell or Branch
e. Base telephone number
f. E-mail address
g. Fax number

5.2.1 The system shall allow initial user setup
5.2.2 The system shall allow changes to user profile.
6 Mother '*--.-"; . " ,' " - Wlh

6.1 Date and time
6.1.1 The system shall present all dates in the following format: "dd mmm yy

(jjj)", where "jjj" is the 3-digit Julian day. For example, 11 Nov 99 (315).
6.1.2 All dates shall be Zulu dates.
6.1.3 All times shall be Zulu times, except where otherwise noted.
6.3 The system shall save user ID and timestamp for all user entry items.
6.3.1 User cannot "acknowledge" an alert until user has been "advised."
6.3.2 User cannot modify "recut" or "ignored" until user has "acknowledged."
6.3.3 User cannot modify another user's "advised", "acknowledged, or "recut"

status.

61

Attachment A: Standard Ground Times forAMC Operations

Aircraft
Type

Ground Times, Pax and Cargo Operations
(hours + minutes)

Minimum
Crew Rest
Times

(Normal peacetime planning times on first line by aircraft type)
(Wartime planning times on second line by aircraft type)
Onload Refuel only Offload Expedited (1)

C-130 2+15 2+15 2+15 15+15
1+30 1+30 1+30 0+45 15+15

C-141 3+15 2+15 3+15 16+00
2+15 2+15 2+15 1 + 15 16+00

C-17 3+15 2+15 3+15 16+30
2+15 2+15 2+15 1+45 16+00

C-5A/B 4+15 3+15 4+15 17+00
4+15 3+15 4+15 2+00 17+00

KC-10 4+15 3+15 4+15 18+15
4+15 3+15 4+15 3+15 17+00

KC-135 4+15 3+15 4+15 17+00
3+30 2+30 3+30 2+30 17+00

B-747

(2) 3+30/5+00 1+30 2+00/3+00

B-757
2+00 1+30 2+00

B-767
2+00 1+30 2+00 -

DC-8

(2) 2+30/3+30 1+30 2+00/1 + 15

DC-10

(2) 2+30/5+00 1+30 3+00

L-1011

(2) 2+30/5+00 1+30 2+00/3+00

MD-11

(2) 3+30/5+00 1+30 3+00

Note (1): Expedited means no refueling or reconfiguration accomplished. The aircraft just lands, loads and/or
offloads and departs.
Note (2): Times for passengers/times for cargo for commercial aircraft.
Note (3): Vast majority of channel missions will use Normal Peacetime planning times.

62

