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1     Introduction 

Background 

An important component of most coastal and ocean engineering projects is 
an accurate assessment of the wave climate at the project site. Typical applica- 
tions include determination of siltation rates inside entrance channels and harbor 
basins, determination of safe conditions for the loading/offloading of ships, opti- 
mization of harbor layouts for both wind-generated and long-period infragravity 
waves, design of structures such as breakwaters, and the evaluation of the impact 
of coastal structures on adjacent shorelines. Nearshore wave conditions are norm- 
ally determined from deepwater conditions because long-term wave data are 
usually unavailable for most project sites. These offshore wave characteristics 
have to be transformed to the project site taking into account the effects of wind- 
wave generation, shoaling/refraction over seabed topography, energy dissipation 
due to wave breaking and bottom friction, wave reflection/diffraction near struc- 
tures, nonlinear wave-wave interactions, and wave interaction with current fields. 

A number of mathematical models have been developed to simulate the prop- 
agation and transformation of waves in coastal regions and harbors. The different 
models are based on different assumptions, which limit the types of problems to 
which they can be applied. Examples include spectral wind-wave models for 
wave propagation in open water where the processes of wind input, shoaling, and 
refraction are dominant; parabolic mild-slope equation models for wave propaga- 
tion over large coastal areas when reflection is negligible; Helmholtz equation 
models for wave agitation and harbor resonance in water of constant depth; ellip- 
tic mild-slope models for wave agitation and harbor resonance in water of vary- 
ing depth; and Boussinesq models for nonlinear wave refraction-diffraction in 
shallow water. 

Numerical models available at the U.S. Army Corps of Engineers for pre- 
dicting wave conditions in coastal regions and harbors include the spectral wind- 
wave model STWAVE (Smith, Sherlock, and Resio 2001) and the elliptic mild- 
slope model CGWAVE (Demirbilek and Panchang 1998). STWAVE is a wind- 
wave propagation model based on the wave action conservation equation. It is a 
phase-averaged model, i.e., it assumes that phase-averaged wave properties vary 
slowly over distances of the order of a wavelength. This allows the efficient com- 
putation of wave propagation over large open coastal areas. Due to the phase- 
averaging procedure, STWAVE cannot accurately resolve rapid variations that 
occur at subwavelength scales due to wave reflection/diffraction. 
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Phase resolving models based on either the mild-slope equation or 
Boussinesq-type equations are better suited for problems involving the 
reflection/diffraction of waves such as in coastal entrances and harbors. The 
mild-slope and Boussinesq equations are vertically integrated equations for wave 
propagation in the two-dimensional horizontal plane with different assumptions 
made for the variation of fluid motion over the water depth. The mild-slope 
equation derivation assumes a hyperbolic cosine variation of the velocity poten- 
tial over depth, consistent with linear monochromatic waves in water of arbitrary 
depth, while the Boussinesq equation derivation assumes a quadratic profile, 
valid for shallow-water waves with wavelengths much longer than the water 
depth. 

This report describes BOUSS-2D, a comprehensive numerical model based 
on a time-domain solution of Boussinesq-type equations. The classical form of 
the Boussinesq equations for wave propagation over water of variable depth was 
derived by Peregrine (1967). The equations were restricted to relatively shallow- 
water depths, i.e., the water depth, h, had to be less than one-fifth of the wave- 
length, L, in order to keep errors in the phase velocity to less than 5 percent. 
Nwogu (1993) extended the range of applicability of Boussinesq-type equations 
to deeper water by recasting the equations in terms of the velocity at an arbitrary 
distance za from the still-water level, instead of the depth-averaged velocity. The 
elevation of the velocity variable za becomes a free parameter, which is chosen to 
optimize the linear dispersion characteristics of the equations. The optimized 
form of the equations has errors of less than 2 percent in the phase velocity from 
shallow-water depths up to the deepwater limit (h/L = 0.5). 

Despite the improvement in the frequency dispersion characteristics, 
Nwogu's (1993) equations are based on the assumption that the wave heights 
were much smaller than the water depth. This limits the ability of the equations 
to describe highly nonlinear waves in shallow water and led Wei et al. (1995) to 
derive a fully nonlinear form of the equations. The fully nonlinear equations are 
particularly useful for simulating highly asymmetric waves in shallow water, 
wave-induced currents, wave setup close to the shoreline, and wave-current 
interaction. 

As ocean waves approach the shoreline, they steepen and ultimately break. 
The turbulence and currents generated by breaking waves are important driving 
mechanisms for the transport of sediments and pollutants. Nwogu (1996) 
extended the fully nonlinear form of the Boussinesq equations to the surf zone, 
by coupling the mass and momentum equations with a one-equation model for 
the temporal and spatial evolution of the turbulent kinetic energy produced by 
wave breaking. The equations have also been modified to include the effects of 
bottom friction and flow through porous structures. The modified equations can 
simulate most of the hydrodynamic phenomena of interest in coastal regions and 
harbor basins including: 

a. Shoaling. 

b. Refraction. 

c. Diffraction. 
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d. Full/partial reflection and transmission. 

e. Bottom friction. 

/ Nonlinear wave-wave interactions. 

g. Wave breaking and runup. 

h. Wave-induced currents. 

i. Wave-current interaction. 

A time domain, finite-difference method is used to solve the Boussinesq 
equations. The area of interest is discretized as a rectangular grid with the water- 
surface elevation and horizontal velocities defined at the grid nodes in a stag- 
gered manner. Time-histories of the velocities and fluxes corresponding to inci- 
dent storm conditions are specified along external or internal wave generation 
boundaries. The wave conditions may be periodic or nonperiodic, unidirectional 
or multidirectional. Waves propagating out of the computational domain are 
absorbed in damping layers placed around the perimeter of the numerical basin. 
Porosity layers can be placed inside the computational domain to simulate the 
reflection and transmission characteristics of structures such as breakwaters. 

Purpose 
This report describes BOUSS-2D, a comprehensive numerical model for 

simulating the propagation and transformation of waves in coastal regions and 
harbors based on a time-domain solution of Boussinesq-type equations. An 
overview of the theoretical background behind the model is described in 
Chapter 2. The numerical scheme used to solve the equations is described in 
Chapter 3. The steps involved in setting up and running the model are described 
in Chapter 4. A number of analytical, laboratory, and field test cases have also 
been used to validate the model in Chapter 5. The different test cases were 
selected in Chapter 5 to evaluate the ability of the model to deal with individual 
wave transformation processes such as refraction, diffraction, wave breaking, 
etc., as well as the combination of processes that occur in practical engineering 
problems. Chapter 6 provides a summary and conclusions. 
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2    Theoretical Background 

Governing Equations 

B0USS-2D is based on Boussinesq-type equations derived by Nwogu (1993, 
1996). The equations are depth-integrated equations for the conservation of mass 
and momentum for nonlinear waves propagating in shallow and intermediate 
water depths. They can be considered to be a perturbation from the shallow-water 
equations, which are often used to simulate tidal flows in coastal regions. For 
short-period waves, the horizontal velocities are no longer uniform over depth 
and the pressure is nonhydrostatic. The vertical profile of the flow field is 
obtained by expanding the velocity potential, O, as a Taylor series about an 
arbitrary elevation, za, in the water column. For waves with length, L, much 
longer than the water depth, h, the series is truncated at second order resulting in 
a quadratic variation of the velocity potential over depth: 

9(x,z,t)    =    4>a+ji2(ra-z)[V(|>a.Vft] 
..2 n (1) 

+ ^-[(za + Ä)2-(z + Ä)2]v>0+0(|l4) 

where (|>0 = ®(x,za,f), V = (d/dx,d/dy), and |i. = h/L is a measure of frequency 
dispersion. The horizontal and vertical velocities are obtained from the velocity 
potential as: 

u(x,z,t)   =   VO   =   na+(za-z)[V(«a-VÄ) + (V-«a)V/2] 

+     i[(za + Ä)2-(z + Ä)2]V(V-«a) (2) 

w(x,z,t)   =   f^   =   -[«a-VA+(z + A)V-«J (3) 
dz 

where «a = VO|z is the horizontal velocity at z = z„. Given a vertical profile for 
the flow field, the continuity and Euler (momentum) equations can be integrated 
over depth, reducing the three-dimensional problem to two dimensions. For 
weakly nonlinear waves with height, H, much smaller than the water depth, h, the 
vertically integrated equations are written in terms of the water-surface elevation 
r\(x,t) and velocity ua(x,t) as (Nwogu 1993): 
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T|r + V • W/ (4) 

«a,, +gVii + («a -V)«a + za[v(«ai, • VÄ) + (V-«a/)VÄ] 

+ |[(za+Ä)2-Ä2]v(V.«a,r)   =   0 
(5) 

where g is the gravitational acceleration and «/is the volume flux density given 
by: 

uf   =   \]udz   =   (h+^ua + h(za+^\v(ua-Vh) + (V-ua)Vh] 

+    h 
2 6 

(6) 
V(V-«a) 

The depth-integrated equations are able to describe the propagation and trans- 
formation of irregular multidirectional waves over water of variable depth. The 
elevation of the velocity variable za is a free parameter and is chosen to minimize 
the differences between the linear dispersion characteristics of the model and the 
exact dispersion relation for small amplitude waves. The optimal value, 
z„ = -0.535/z, is close to middepth. 

For steep near-breaking waves in shallow water, the wave height becomes of 
the order of the water depth and the weakly nonlinear assumption made in deriv- 
ing Equations 4 and 5 is no longer valid. Wei et al. (1995) derived a fully non- 
linear form of the equations from the dynamic free surface boundary condition by 
retaining all nonlinear terms, up to the order of truncation of the dispersive terms. 
Nwogu (1996) derived a more compact form of the equations by expressing some 
of the nonlinear terms as a function of the velocity at the free surface, »„, instead 
of «a. Additional changes have also been made to the equations to allow for 
weakly rotational flows in the horizontal plane and ensure that za remains in the 
water column for steep waves near the shoreline and during the wave runup 
process. The revised form of the fully nonlinear equations can be written as: 

r\,+V-uf   =   0 (7) 

»a, + gVT1 + («vV)«tl+wT,VwT, + (za-Ti)[V(iia;,.VA) + (V.«a_,)VA] 

+ \[(*a+kf -(h+n)2]v(y-uaJ) 

+ [v(«a,/.VA) + (V-«a;/)VA + (za + A)V(V-iia)]zaj,   =    0 

(8) 
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where za is now a function of time and is given by za+h = 0A65(h+r\). The 
volume flux density «/is given by: 

"/   =  (h + y\)\ua + (za+h)- 
(A + TI)' 

[V(«a-VA) + (V-«a)VA] 

(zß+A)2   (Ä+n)2 

V(V-«J 
(9) 

The fully nonlinear equations are able to implicitly model the effects of wave- 
current interaction. Currents can either be introduced through the boundaries or 
by explicitly specifying a current field, U. 

Linear Dispersion Properties 

The linear dispersion relation of the Boussinesq model that relates the 
wavelength, L, to the wave period, T, is given by Nwogu (1993) as: 

C2=^r = 
l-(a + l/3)(khf 

\-a{khf 
(10) 

where C is the phase speed, k = ITüL is the wave number, and a = 
[(za+h)2/h2 -1]/2. Depending on the elevation of the velocity variable or the value 
of a, different dispersion relations are obtained. If the velocity at the seabed 
(z„ = -h) is used, a = -1/2. Alternatively, if the velocity at the still-water level 
(za= 0) is used, a = 0. The dispersion relation of the classical form of the 
Boussinesq equations which uses the depth-averaged velocity as the velocity 
variable corresponds to a = -1/3. Witting (1984) obtained the value a = -2/5 from 
the Pade" (2,2) approximant of tanh kh. 

The phase speeds for different values of a, normalized with respect to the 
linear theory phase speed are plotted as a function of relative depth in Figure 1. 
The relative depth is defined as the ratio of the water depth, h, to the equivalent 
deepwater wavelength L0 = g'f'/ln. The deepwater depth limit corresponds to 
h/L = 0.5. The different dispersion equations are all equivalent in relatively 
shallow water (h/L < 0.02), but gradually diverge from the exact solution with 
increasing depth. An optimal depth za = -0.535/z gives errors of less than 2 per- 
cent in the phase velocity from shallow-water depths up to the deepwater limit. 

Nonlinear Properties 

In an irregular sea state, different frequency components interact to generate 
forced waves at the sum and difference frequencies of the primary waves because 
of the nonlinear nature of the boundary condition at the free surface. Consider a 
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(1994) derived similar expressions for the weakly nonlinear form of the 
Boussinesq equations: 

&+(CO.,CO-) =  ;——  

oo±[l - a{kjif][uijc2h{klh ± &2/zcosA9) + oo2^Ä(/fc,Äcos A9 + k2h)] 
iXkJcJi 

(13) 

VfhereDq   = q\ ± ql, k±  =   \ k\± k2\, k' = k [1 - (a + 1/3) (kh)2\, and 

X = co2 [1 - a(Jt±Ä)2 ] - gJt±
2Ä[l - (a +1 / 3)(k±h)2 ] 

Figure 2 shows a comparison of the quadratic transfer function of the weakly 
nonlinear Boussinesq model with that of second-order Stokes theory for unidirec- 
tional waves where the wave group period is 10 times the average of the indi- 
vidual wave periods, i.e., GL = (coi + C02)/20. The weakly nonlinear Boussinesq 
model underestimates the magnitude of the setdown wave and second harmonic 
at the deepwater depth limit by 65 percent and 45 percent respectively. Hence, it 
cannot accurately simulate nonlinear effects in deep water. To reasonably simu- 
late nonlinear effects, the weakly nonlinear model should be restricted to the 
range 0<h/L< 0.3. 

Simulation of Wave Breaking 

The turbulent and highly rotational flow field under breaking waves is 
extremely complex and difficult to model even with the Reynolds-averaged form 
of the Navier-Stokes equations (e.g., Lin and Liu 1998; Bradford 2000). In 
BOUSS-2D, we do not attempt to model details of the turbulent motion, but 
rather, simulate the effect of breaking-induced turbulence on the flow field. We 
have tried to develop a generic model that can be applied to regular or irregular 
waves, unidirectional or multidirectional waves, and simple or complex bottom 
topography without having to recalibrate the model each time. The key assump- 
tions made in developing the model are (see Nwogu 1996): 

a. The breaking process is assumed to be "spilling." 

b. Turbulence is produced in the near-surface region when the horizontal 
velocity at the free surface, u^, exceeds the phase velocity, C. 

c. The rate of production of turbulent kinetic energy is proportional to the 
vertical gradient of the horizontal velocity at the free surface, 3H/3Z|Z=T1. 

d. Breaking-induced turbulence is primarily convected in the near-surface 
region with the horizontal velocity at the free surface. 
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Figure 1     Comparison of normalized phase speeds for different values of a 

wave train consisting of two small amplitude periodic waves with amplitudes, a\ 
and a2, frequencies, C0j and ©2, wave numbers, ki and k2, and propagating in 
directions 61 and 82 respectively. The water-surface elevation can be written as: 

T)( (x,t) = a, cos(Ä[ • x - co,/) + a2 cos(k2 • x - ca,0 (11) 

where k = (AcosG, AsinG). The second-order wave will consist of a subharmonic 
at the difference frequency, co_ = 00/ - co^, and higher harmonics at the sum fre- 
quencies 2(0i, 2cp2 and (0+ = C0i + 0O2. This can be written as: 

T|(2)(x,t) = -^G+ ((£>!,co,,0,,61) (cos^ x-la^t) 

2 

+ yG+(co2,(ö2,62,02) cos(2A2-x-2(o20 

+ a1a2G±(co1,(o2,91,82) cos(2k±-x-2<o±t) 

(12) 

where k± = A^± k2, and G±((n1, (02, 6i,02) is a bidirectional quadratic transfer func- 
tion that relates the amplitude of the second-order waves to the amplitude of the 
first-order waves. Dean and Sharma (1981) derived expressions for the bidirec- 
tional quadratic transfer function based on second-order Stokes theory. Nwogu 
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Figure 2.    Comparison of quadratic transfer function for Boussinesq and Stokes 
theories 

The effect of wave energy dissipation due to breaking is simulated in the 
Boussinesq model by introducing an eddy viscosity term to the right-hand side of 
the momentum equation (Equation 5 or 8). Nwogu (1996) used a dissipative term 
of the following form: 

breaking =   -v,V(V.«J (15) 

where v, is the turbulent eddy viscosity. As pointed out by Kennedy et al. (2000), 
it is important for the dissipative term to dissipate energy but conserve momen- 
tum to accurately capture details of the mean flow field associated with breaking 
waves. A modified form of the dissipative term that ensures that momentum is 
conserved can be written as: 

h+r\ 
V{v,(A+Ti)V-«a} (16) 

The eddy viscosity is determined from the amount of turbulent kinetic energy, k, 
produced by wave breaking, and a turbulence length scale, /,, using: 

v, = slkl, (17) 
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A one-equation model is used to describe the production, advection, diffusion, 
and dissipation of the turbulent kinetic energy produced by wave breaking: 

e ■u^-Vk + o-V-V(v,Jt) + B-± 
V 

+  — 
Vdz) 

3/2 
kV2 

- CD—   (18) 
2=T! 

The waves are assumed to start breaking when the horizontal component of the 
orbital velocity at the free surface, un, exceeds the phase velocity of the waves, 
C. The parameter B is introduced to ensure that production of turbulence occurs 
after the waves break, i.e., 

B 
0        |«J<C 

(19) 

The phase velocity is determined from the linear dispersion relation (Equa- 
tion 10) using the average zero-crossing period of the incident wave train. While 
this approach leads to some waves in an irregular wave train breaking at slightly 
different locations in the model than they would in nature, it was found to be 
more stable than trying to estimate a time-dependent phase velocity using 
expressions such as C(t) = -T|,/|VT||. 

The empirical constants CD and a have been chosen as 0.02 and 0.2 respec- 
tively. The turbulent length scale, /„ remains the only free parameter in the turbu- 
lence model and is determined from comparisons of numerical model results with 
experimental data. Recommended values are the significant wave height (/, = 
Hmo) for irregular waves, and the wave height (/, = H) for regular waves. 

Bottom Friction 

The bottom boundary layer in wave fields is typically confined to a tiny 
region above the seabed, unlike river and tidal flows where it extends all the way 
up to the free surface. There is, thus, very little wave energy attenuation due to 
bottom friction over typical wave propagation distances of O (1km) used in 
Boussinesq-type models. The bottom friction factor, however, plays a more 
important role in wave transformation close to the shoreline and nearshore circu- 
lation patterns. The effect of energy dissipation due to a turbulent boundary layer 
at the seabed has been modeled by adding a bottom shear stress term to the right- 
hand side of the momentum equation (Equation 5 or 8): 

A + TJ" 
Fbfric,ion   =   —rrzf»uM <2°) 

where/, is the wave friction factor. The bottom friction term can also be written 
in terms of the Chezy coefficient, Cf, used in tidal flows by replacing/, with 

g/Cf. 
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Equation 20 has been expressed in terms of «„ instead of the velocity at the 
seabed, ub, to minimize the additional computational expense of evaluating ub. 
The values of the friction factors specified in the model would thus be slightly 
different than those based on the bottom velocity. 
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3    Numerical Solution 

Finite Difference Scheme 

The weakly and fully nonlinear Boussinesq equations (Equations 4-9) are 
solved in the time-domain using a finite-difference method. The computational 
domain is discretized as a rectangular grid with grid sizes Ax and Ay, in the x and 
y directions, respectively. The equation variables T|, ua, and va are defined at the 
grid points in a staggered manner as shown in Figure 3. The water depth and 
surface elevation are defined at grid points (/,_/'), while the velocities are defined 
half a grid point on either side of the elevation grid points. The external boun- 
daries of the computational domain correspond to velocity grid points. 
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Figure 3.    Computational grid for finite difference scheme 
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The numerical solution scheme is an implicit Crank-Nicolson scheme with a 
predictor-corrector method used to provide the initial estimate. The first step in 
the solution scheme is the predictor step in which values of the variables at an 
intermediate time-step t = (n + V£)At are determined using known values at / = 
nAt (At is the time-step size). The second step is the corrector step in which pre- 
dicted values at t = (n+ V£)At are used to provide an initial estimate of the values 
at t = (w+l)At. The last step is an iterative Crank-Nicolson scheme, which is 
repeated until convergence. 

The partial derivatives are approximated using a forward difference scheme 
for time and central difference schemes for the spatial variables. The resulting 
Crank-Nicolson formulation for the weakly nonlinear form of the mass and 
momentum equations (Equations 4-6) can be written as: 

5(TI = -5>;+]/2 -8«v; (21) 

8,(«B+/48£\+/AA)
! g5<'y^_A6<» 

/4[s£>(A) 8,6?fr*') + 8<'>(A) 8,8™(^) 

ffifiX 

1 
8, (v„ + ftf\ +/25wva) = -g8<V+1/2 -^ (C2*)  s?(<U2' K+in 

(22) 

/« [6»(A) 8,8? («T"') + 8f(A) »^'(C1"*)] (23) 

fAKul 

where the volume flux densities Uf and v/are given by: 

"fM,2J = h + T\UaM,2J   +  ^fl{^a+KV
a) 

+ hf3 25«(A)8lX + 5<1>(A)8»(v;) + 8»(A) 8»(^)] 
(24) 

V//J+1/2  =h + n  ValJ+1,2   +   A'/l(8v«« + 8»V«) 

+ A/3 ^(Ä^v.+fiWCÄ)^^") + 8»(Ä) 8«(M/)] 
(25) 

The parameters/i tof4 are given by: 

,_\za+hf    h2' 
(26a) 
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h 
(za+hf    h2 

(26b) 

/> = (*«+*) "2 

/4 =[(*,+*)-*] 

The average and difference operators in Equations 21 to 25 are given by: 

(26c) 

(26d) 

5,<H^(f+I-f) 

^+1/2  =I^   +   ^Ij 

4>X = ^(^U+^J) 
or 2(<t)'+1/2./+(t>'-1'^) 

8^=2^(^3/2-^/2) 

M> = ^r(<l>,+3/2,y -tyM,2J + <t>M/2,,) 

M = ^-Tftv+3/2 -2§i,j+V2 +<l>/J-l/2) 

(27a) 

(27b) 

(27c) 

(27d) 

(27e) 

(27f) 

(27g) 

(27h) 

(27i) 

(27j) 

(27k) 
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and $ represents the variables (rj, ua, va). The finite-difference operator defini- 
tions in Equation 27 corresponding to the x and v components of the momentum 
equation are centered at (i+V2j) and (ij+1/2), respectively. 

The finite difference formulation of the continuity equation (Equation 21) 
yields an algebraic equation that is explicitly solved for T| at all grid points. The 
formulation for the x andy momentum equations (Equations 22 and 23) have 
been decoupled by placing the vxb vyt, and v^, terms on the right-hand side of the 
x equation and the uxt, uyt, and u^ terms on the right-hand side of the y equation. 
This reduces the momentum equations to tridiagonal equations for ua and v„ 
along lines in the x and v direction, respectively. Tridiagonal matrices are much 
easier to store and solve than the large sparse matrix equation that would be 
obtained if the equations were not decoupled. The major disadvantage of this 
approach, however, is that the iterative step takes longer to converge for shorter- 
period waves propagating at large angles to the grid where the higher-order 
cross-derivative terms (u^,, v^,) become comparable in magnitude to the inline 
derivative terms (w^, v^,,). 

The numerical scheme is stable provided that the Courant number, CR, is less 
than 1, i.e., 

CR    = C2At7 
(  \        1   ^ 
 5" + 5" 
Ax2    Ay2 j 

<    1 (28) 

where C is the phase speed based on the average zero-crossing period of the 
incident waves. It is, however, recommended that the Courant number be kept 
within the range 0.5 to 0.7 since nonlinear wave-wave interactions, wave break- 
ing, and the presence of reflected waves can affect the stability criterion of the 
numerical model. 

Boundary Conditions 

To solve the governing equations, appropriate boundary conditions have to 
be imposed at the boundaries of the computational domain. This requires specifi- 
cation of waves propagating into the domain and the absorption of waves propa- 
gating out of the domain. The equations have also been modified to simulate 
wave interaction with fully/partially reflecting structures within the computa- 
tional domain. The types of boundaries considered in BOUSS-2D include: 

a. Fully reflecting or solid wall boundaries. 

b. External wave generation boundaries. 

c. Internal wave generation boundaries. 

d. Wave absorption or damping regions. 

e. Porous structures. 

Chapter 3   Numerical Solution 15 



Solid wall boundaries 

Along solid wall or fully reflecting boundaries, the horizontal velocity 
normal to the boundary must be zero over the entire water depth, i.e., 

un    =    0 -h<z<T\ (29) 

where n is the normal vector to the boundary. This condition is satisfied in the 
depth-integrated equations by specifying that both the volume flux density and 
velocity normal to the boundary are zero, i.e., 

uan   =    0 (30) 

ufn   =   0 (31) 

Since the equations are solved on a staggered grid, the boundary conditions are 
specified as either ua = u/ = 0 along wall boundaries perpendicular to the x-axis, 
or va = Vf= 0 along wall boundaries perpendicular to the y-axis. 

External wave generation boundaries 

Along external wave generation boundaries, time-histories of velocities ua or 
va, and flux densities Uf or v{ corresponding to an incident storm condition are 
specified. The time-histories may correspond to regular or irregular, unidirec- 
tional or multidirectional waves. 

Regular Waves. Regular, long-crested wave conditions are specified in 
terms of a wave height, H, wave period, T, and direction of propagation, 0. The 
water-surface elevation for small-amplitude waves (H<< h) may be written as: 

x\{x,y,i)    =   —cos(fctcos9 + £ysin9-ütf) (32) 

where co = ITZIT is the angular frequency, k is the wave number, and 9 is the 
direction of wave propagation relative to the positive x-axis. The boundary 
conditions along a wave generation line perpendicular to the x-axis may be 
obtained from the linearized form of the continuity equation (Equation 5) for 
water of constant depth as: 

ua(xg,yg,t)    =    Tu(co)cos9  r\(xg,yg,t) (33) 

«/(W,»0 (A + TÜ ;#-£K Ua(*g>yg,0 (34) 
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where (xg, yg) are the x-y coordinates of the wave generation line and r„(co) is a 
linear transfer function given by: 

w = - 
kh 1- 

(a\    O 
v 

(kh)2 

(35) 

and oc2 = (za +h)/h. Similar expressions apply to va and v/for wave generation 
lines perpendicular to the y-axis with cosG replaced by sinG in Equation 33. 

For large amplitude waves [H= 0(h)], higher harmonic components (2co, 
3(0, etc.) are generated due to the nonlinear terms in the governing equations. 
These waves are often called bound waves since they are attached to the primary 
wave and travel at its phase speed, C = co/k, instead of the phase speed of a free 
wave at the corresponding frequency. The wave shape also changes from the 
sinusoidal shape assumed in Equation 32 to an asymmetric one with peaked 
crests and broad shallow troughs. If linear wave conditions are imposed at the 
boundaries, the numerical model will generate free higher harmonic components 
with the same magnitude but 180 deg out of phase with the bound waves at the 
wavemaker to satisfy the linear boundary condition. The presence of bound and 
free higher frequency waves that travel at different speeds will lead to a spatially 
nonhomogenous wave field with the wave height and shape changing continu- 
ously over the computational domain. 

The Fourier approximation method of Rienecker and Fenton (1981) has been 
used to solve the weakly nonlinear form of the Boussinesq equations and develop 
nonlinear boundary conditions for the generation of large-amplitude regular 
waves in shallow water. The partial differential Equations 4 to 6 are initially 
transformed into a set of coupled nonlinear ordinary differential equations in 
terms of a moving coordinate system, £, = x-Ct. The velocity variable ua is 
expanded as a Fourier series and substituted into the governing equations, which 
are evaluated at a finite number of collocation points over half a wavelength to 
yield a system of nonlinear algebraic equations. A Newton-Raphson iterative 
procedure is used to solve the nonlinear equations for the unknown values of the 
free surface displacement at the collocation points, the Fourier coefficients, the 
wave number, and the phase speed. Details of the technique are provided in 
Appendix A. 

Irregular Unidirectional Waves. For nonperiodic waves, the incident wave 
conditions are typically expressed in the form of a wave spectrum, which 
describes the frequency distribution of wave energy. Different parametric shapes 
have been proposed for wave spectra including: 

a. The Pierson-Moskowitz (PM) spectrum for fully developed sea states in 
deep water, which is defined in terms of the wind speed. 

b. The Bretschneider (1959) spectrum, which has the same shape as the PM 
spectrum but is defined in terms of the significant wave height and peak 
period. 
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c. The JONSWAP spectrum for fetch-limited conditions in deep water. 

d. The TMA spectrum for fetch-limited conditions in shallow water. 

e. The Ochi-Hubble spectrum for bimodal sea states with double-peaked 
spectra. 

Expressions for the different wave spectra are provided in Appendix B. 

The Fourier series technique is used to generate time-histories of the velocity 
boundary conditions from the wave spectrum. The water-surface elevation, r\{t), 
is assumed to be a zero-mean, stationary, random Gaussian process. The surface- 
elevation time series at a reference point x,. = (xr,yr) in the computational domain 
can be represented as a linear superposition of TV regular wave components, i.e., 

N 

T\(xr,0 = X aJcos [kJ -xr-(Ojt + Zj ] (36) 

where a,-, co,, e;, and kj = (fc,cos8, kjsmQ) are the amplitude, angular frequency, 
phase angle, and wave number vector of the/* frequency component, respec- 
tively. The angle, 9, is the direction of wave propagation relative to the positive 
x-axis. 

The wave spectrum is divided into TV frequency bands with uniform spacing, 
Aco, so that the frequency of the fh wave component is given by co, =yAco. The 
amplitudes of the individual wave components are obtained deterministically 
from the wave spectrum, Sn((o), as: 

a, = ^/2^(co,)Ato (37) 

while the phase angles, e,, are randomly selected from a uniform distribution 
between 0 and 2n. Incident wave conditions are more typically specified in terms 
of the repeat period or duration of the record, TD, and time-step, At. The values of 
TV and Aco can be obtained from these as: 

Aco = — (38) 

N = ^- (39) 
2At 

The velocity and flux boundary conditions along a wave generation line perpen- 
dicular to the x-axis may be obtained from the surface elevation using the linear 
transfer function approach: 

N 

««(*,.') = Xr,(co,)fl,cos9cos[*y -(xf -*,)-<ö/ + e,J (49) 
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uf(xg,t) = [h + r\(xg,t)]ua(xg,t) + h3 

2    6 
(««(*,.') + vav(xg,t))        (41) 

where 

T\(xg ,0 = 2 aj cos[kj -(xg-xr)- (Ojt+e, ] 
7=1 

(42) 

((X?, 0 = "2 fl A2 COS3 e COS [*y. • (Xg - JCr ) - ©/ + 6;. ] 
7=1 

(43) 

VwcyiXgS) = -£ a/* sin2 0 cos 0 cos [*, -(x? -*,)-©/ + £;] 
7=1 

(44) 

For highly nonlinear irregular waves in shallow water1, the velocity boundary 
conditions would have to be modified to take into account the presence of lower 
and higher frequency wave components induced by nonlinear interactions 
between the primary wave components. Second-order Boussinesq theory can be 
used to generate the velocities and flux densities associated with the bound 
second-order waves along the wave generation boundary. However, this theory is 
valid over a limited range of wave steepnesses (H/L) and relative depths (h/L) 
because it only includes second-harmonic terms. Second-order Stokes theory, for 
example, cannot accurately describe the shape of cnoidal-type waves in shallow 
water when the Ursell parameter (HL2/h3) is large. 

A different approach to generating steep irregular waves in shallow water is 
the nonlinear Fourier method of Osborne (1997), in which an irregular wave train 
is represented as a superposition of nonlinear cnoidal or solitary type waves. This 
approach, however, has not yet been implemented in BOUSS-2D. 

Irregular Multidirectional Waves. Naturally occurring ocean waves exhibit 
a pattern that varies randomly not only in time but also in space. The wave 
energy is distributed over both frequency and direction and can be described in 
terms of a directional wave spectrum, ^(co,©), which is the product of the fre- 
quency spectrum, S^ra), and a directional spreading function Z)(co,0): 

^((0,0)    =    5„(co)Z)((o,e) (45) 

The directional spreading function is non-negative and should satisfy the follow- 
ing relation: 

f £>((*), 0)    =    1 
J-n 

(46) 

A useful guideline is H^JLp > 0.025 tanh kph, where Hm is the significant wave height, and Lp 

and Äp are respectively the wavelength and wave number based on the peak frequency of the 
spectrum. 
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One of the most commonly used models for the directional spreading function is 
the cosine-power function defined as: 

VrcrO+l/2) p for |e-e^ | < nil (47) 

where Qp is the principal direction of wave propagation and T is the gamma func- 
tion. The parameter s is an index describing the degree of directional spreading 
with s —» °° representing a unidirectional wave field. Figure 4 shows a plot of the 
of the cosine power spreading function for different values of the spreading 
index, s. 
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Figure 4.    Cosine-power spreading function for different values of the spreading 
index s 

A number of other models have been proposed for the directional spreading 
function including the normal, circular normal, and wrapped-normal distribution 
(Borgman 1969). A more intuitive and universal parameter to describe the degree 
of directional spreading in a multidirectional sea state is the standard deviation of 
the directional spreading function, ce, which is defined as: 

, fB„+JI/2 . 
(48) 
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Given the same standard deviation, there is very little difference between the 
shapes of different proposed forms of the directional spreading functions as 
shown in Appendix C. 

Time-histories of the velocity boundary conditions can be synthesized from 
the directional wave spectrum using an extension of the linear superposition 
technique used for irregular, unidirectional waves. The directional wave spec- 
trum is initially divided into N frequency bands with uniform spacing, Aco, and M 
direction bands with uniform spacing A0. The water-surface elevation T\(x„t) can 
be represented as a linear superposition of periodic wave components with differ- 
ent amplitudes and frequencies, propagating in different directions, i.e., 

N   M 

v\(x,t) = SEaüC0Sh- -x-<o,t + Ev] (49) 
1=1 y=l 

where ky = (&,cos0,, kßinQj). The wave amplitudes, ay, are obtained determin- 
istically from the directional wave spectrum as: 

av = ^(ro^e^AwAG (50) 

while the phase angles, £*,, are randomly selected from a uniform distribution 
between 0 and 2%. For a given time series duration, TD, and time-step, At, the 
values of JVand Aco can be obtained in the same manner as for unidirectional 
waves using Equations 38 and 39 respectively. 

For finite duration time records, the double summation model (Equation 49) 
produces a wave field that is spatially nonhomogenous. As pointed out by 
Jeffreys (1987), this is because the phase difference between wave components 
with identical frequencies but propagating in different directions is no longer 
random but locked. An extreme example of this phenomenon is the standing 
wave pattern that is produced when incident waves are fully reflected by a verti- 
cal wall. The wave field consists of two waves with the same amplitude and 
frequency propagating in opposite directions with a constant phase difference 
between them. The wave heights vary from zero at the nodes to twice the inci- 
dent wave height at the antinodes. This variability is obviously reduced by 
including more frequency and direction components. However, as pointed by 
Stansberg (1987) and others, the number of wave components required to reduce 
the spatial variability in wave energy to within acceptable levels is quite large 
[0(10,000)]. 

A different approach to producing a spatially homogenous multidirectional 
wave field is to assume that each wave component has a unique direction of 
propagation. Similar to an irregular unidirectional wave train, the water-surface 
elevation is given by Equation 36 with kj = (&7<cos6,-, kfiinQj). Miles (1989) 
discusses four different methods of assigning directions to each frequency 
component. In BOUSS-2D, the random direction method was adapted in which 
wave directions are selected at random from the cumulative distribution of the 
directional spreading function. With this technique, the frequency spectrum is 
matched exactly. However, the directional spreading function is matched only in 
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a global sense over the entire record. The method also does not guarantee a sym- 
metric directional distribution even when the target distribution is symmetric. 

The velocity and flux boundary conditions along the wave generation lines 
are obtained from the surface elevation time-histories using the linear transfer 
function approach described previously in Equations 40 to 44. 

Internal wave generation boundaries 

In applications where there is significant wave reflection from bathymetric 
features or structures within the computational domain, it is desirable to absorb 
the waves that propagate back to the wave generation boundary to prevent a 
buildup of wave energy inside the domain. This can be achieved by modifying 
the boundary conditions along the wave generation boundary to simultaneously 
generate and absorb reflected waves (e.g., Van Dongeren and Svendsen 1997). A 
different approach proposed by Larsen and Dancy (1983) is to generate the 
waves inside the computational domain and absorb reflected waves in a damping 
layer placed behind the generation boundary. This approach has been adopted in 
BOUSS-2D with the governing equations modified to allow for the generation of 
waves inside the computational domain. 

Consider the generation of waves along a horizontal line by a distribution of 
sources that extend from the seabed (z = -h) to the free surface (z = r\). The veloc- 
ity potential associated with the fluid motion satisfies the Laplace equation 
everywhere in the fluid except for generation line (x = xg) where there is a point 
source of fluid mass. The governing equation for the fluid motion can thus be 
written as: 

V2$ = q(y,z,t)8(x-xg) (51) 

where q(y,z,t) is the volume flux density. Assuming that the water depth is 
constant along the generation line, a modified form of the second-order Taylor 
series expansion of the velocity potential about an arbitrary elevation z = za in the 
water column (Equation 1) can be written as: 

<» = <l>a + \[(za+hf-(z + hf] [V\-qb(x-xg)] (52) 

The horizontal fluid velocities are obtained from the velocity potential as: 

" = V<^0 + ±[(za+hf-(z + hf] V[V24>a-95(*-*,)] (53) 

On a rectangular grid with a finite grid spacing Ax, the delta function can be 
replaced with 2/Ax. To generate waves with a given velocity profile u0(y,z,t), the 
mass and momentum equations along the grid generation line and adjacent 
velocity points can be written as: 

22 Chapter 3   Numerical Solution 



2     ftl r,, + V-£ «* = —£«. <fe (54) 
Ax 

«- + gVri + (B„.V) «„ + I[(za+Ä)2-Ä2]  [V(v.«(a-2V,/Ax)] = 0   (55) 

Some previous investigators (e.g., Larsen and Dancy 1983) introduced a point 
source for fluid flow into the continuity equation. It is, however, important to 
apply a correction to the momentum equations to account for higher-order spatial 
derivatives across the generation line. 

Damping regions 

Waves propagating out of the computational domain are absorbed in damp- 
ing regions placed around the perimeter of the computational domain. Damping 
layers can also be used to model the partial reflection from harbor structures 
inside the computational area. Artificial dissipation of wave energy in damping 
layers is achieved through the introduction of a term proportional to the surface 
elevation into the right-hand side of the mass equation: 

*"***_*    =   -\*{x)i\ (56) 

and a term proportional horizontal velocity into the right-hand side of the 
momentum equation: 

Fdanpinzju       =       "H(*) «a (57) 

where u(x) is the damping strength with units of s"1. Introduction of the damping 
terms lead to the nonconservation of mass and momentum in the damping 
regions. However, extensive tests with different combinations of the damping 
terms showed that the inclusion of damping terms in both the mass and momen- 
tum equation was more effective than just a damping term in the momentum 
equation. 

Numerical simulations to evaluate the performance of the damping layer 
showed that waves could be effectively damped out in a layer half a wavelength 
wide by employing a quadratic variation of \L(X) with a peak value of 30/T, where 
T is the wave period. The damping strength has thus been nondimensionalized by 
30/r, i.e., 

M*) = jjjVix) (58) 

where M™^*) is a nondimensional damping coefficient that is allowed to vary 
from 0 to 1. Figure 5 shows the variation of the reflection coefficient with damp- 
ing coefficient for different relative widths (w/L) of the damping layer, where w 
is the width of the damping layer and L is the wavelength. It should be pointed 
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Figure 5.    Variation of reflection coefficient with damping coefficient 

out that the results presented in Figure 5 are for normally incident waves. Differ- 
ent reflection coefficients would be obtained for obliquely incident waves. 

Flow through porous structures 

The Boussinesq equations have also been modified to simulate partial wave 
reflection and transmission through surface-piercing porous structures such as 
breakwaters. The modified equations for the porous region can be written in 
terms of either the velocity in the pores or the volume-averaged (discharge) 
velocity. In order to easily match velocities and fluxes across the water/porous 
structure interface, the equations for the porous region are written in terms of the 
discharge velocity. Ignoring inertial effects, the modified form of the equations 
for the porous region are obtained by replacing u with u/n, where n is the poros- 
ity, and including a term to account for energy dissipation inside the structure: 

Ti, + V- 
Vn J 

=    0 (59) 
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i y" ) (60) 
+ T[(^+Ä)2-Ä2]v(v-«a>,)   + «/;«„+«/,«„ |«a| =  o 

where/ and/ are laminar and turbulent friction factors respectively. Engelund 
(1953) recommended the following empirical relationships for the laminar and 
turbulent friction factors: 

(1-H)
3
 v 

//=«0
i-rL^ (61) 

q-w) 1 
w3    d »fc^ («) 

where v is the kinematic viscosity of water, d is the characteristic stone size, and 
oc0 and ß0 are empirical constants that range from 780 to 1,500, and 1.8 to 3.6 
respectively. 

Simulation of Wave Runup 

The runup of waves on shorelines provides an important boundary condition 
for predicting wave-induced currents and sediment transport in the surf zone. The 
runup limit is also important for determining the minimum crest elevation of 
coastal structures to prevent overtopping and/or flooding. A simple runup scheme 
has been implemented in BOUSS-2D. Dry computational cells (land points) are 
assumed to be porous regions where the phreatic surface elevation and volume- 
averaged velocities are calculated simultaneously with the fluid motion in the wet 
cells. When the phreatic surface elevation exceeds the elevation of the land point 
by a specified threshold, the porous cell is considered flooded and treated as a 
wet cell during the next time-step. Alternatively, when the free surface elevation 
drops below a specified threshold above the bottom elevation of a wet cell, the 
wet cell is assumed to be dry and treated as a porous cell during the next 
time-step. 

Subgrid Turbulence 

BOUSS-2D optionally provides a mechanism to simulate the turbulence and 
mixing that occurs in regions with large gradients in the horizontal velocities 
such as around the tips of breakwaters. The dissipation term is identical to that 
used for wave breaking, i.e., Equation 16. The eddy viscosity is given by 
Smagorinsky's (1963) formulation with the turbulent length scale proportional to 
the grid size. It can be written as: 
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v, = C'AxAy ("a.,)'    +   {Va,y)     +   -(«a,, + V* ) (63) 

where Cs is an empirical constant. 
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4    Setting Up and Running 
B0USS-2D 

B0USS-2D is a high-resolution wave model designed for investigating com- 
plex wave transformation problems over small regions (1-5 km). It is ideally 
suited for applications where reflection, diffraction, and/or nonlinear interactions 
are significant such as near coastal inlets and harbors. For wave propagation over 
large open areas where the processes of wind-wave generation, shoaling and 
refraction are dominant, phase-averaged models such as STWAVE (Smith, 
Sherlock, and Resio 2001) should be used. For periodic harbor oscillations, 
frequency-domain models such as the elliptic mild-slope model CGWAVE 
(Demirbilek and Panchang 1998) should be used since time-domain models take 
longer than frequency-domain models to attain steady-state conditions. 

Overview of Model Setup 

The basic steps involved in setting up and running BOUSS-2D are: 

a. Collect ancillary data such as bathymetric data and wave climate 
information. 

b. Select portion of the ocean to be covered by the numerical model and 
prepare 2-D rectangular grids containing information on the: 

(1) Seabed elevations over the computational area. 

(2) Damping values for the absorption of outgoing waves at model 
boundaries (optional). 

(3) Porosity values if porous structures such as breakwaters are inside 
the computational domain (optional). 

(4) Tidal current distribution over the computational area (optional). 

c. Create a simulation parameter file that contains all the information 
required to run the model. This can be done using the DOS-based 
interactive program Pre-BOUSS2D or other Windows-based programs. 

d. Run the BOUSS-2D model. 

e. Analyze the model output and plot the results. 
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Collection of Bathymetric and Wave Climate Data 

The first step in the modeling process is the collection of information on the 
seabed elevations over the computational area. This can be obtained from hydro- 
graphic surveys of the area, digitizing nautical charts, or from digital topographic 
databases such as those maintained by the National Oceanic and Atmospheric 
Administration (NOAA). 

Wave climate information close to the project site can be obtained from: 

a. Long-term wave measurements at the project location. 

b. Long-term wave measurements in deeper water with buoys such as those 
operated by NOAA. 

c. Hindcast from long-term wind observations using models such as Wave 
Model (WAM), Wave Information Steady Wave Model (WISWAVE), or 
Steady-State Wave Model (STWAVE). 

Depending on the source of the wave climate data, simpler wave propagation 
models such as STWAVE (Smith, Sherlock, and Resio 2001) or Refraction/ 
Diffraction Model for Spectral Wave Conditioning (REFDIF-S) (Kirby and 
Ozkan 1994) might have to be run to transfer the wave climate data to the 
boundary of the computational grid. Statistical techniques (e.g., Borgman 1972) 
can then be used to reduce the wave climate data to design wave conditions with 
associated return periods. 

Information on tidal water levels and currents near the project site can be 
obtained using prediction techniques based on long-term tidal observations (e.g., 
NOAA) or by running more sophisticated circulation models such as Advanced 
Circulation (ADCIRC) Model for Oceanic, Coastal and Estuarine Waters. If the 
current speeds exceed 10 percent of the phase velocity of the waves, the currents 
could significantly modify the wave field and a 2-D circulation model would 
have to be run to provide the spatial distribution of current speeds over the 
computational area. 

Preparation of Bathymetric Grid File 

BOUSS-2D simulates wave propagation over a 2-D Cartesian grid as shown 
in Figure 6. The computational domain is defined as a rectangular region from 
(^origin, origin) to (x.» jw) with uniform grid spacings Ax and Ay in the x and y 
directions, respectively. The bathymetric grid represents the seabed elevation at 
each node of the grid with land points defined as positive while water points are 
defined as negative. To prepare the grid, the spatial extent and spacing of the 
computational grid have to be selected. Factors to consider in the selection of the 
grid boundaries and spacing include: 
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Figure 6.    Definition sketch for computational grid 

a. The grid axes should be aligned as much as possible with the 
predominant wave direction. 

b. Points of interest in the computational domain should be kept at least one 
wavelength away from the boundaries to minimize the effect of 
diffraction into the damping layers. 

c. The water depth should be uniform along the wave generation boundary. 

d. The grid spacing should be chosen to resolve the shortest wave period of 
interest (Tmin) in the shallowest part of the domain (h,^). This typically 
corresponds to having at least eight grid points per wavelength in the 
shallow regions and 20 to 30 points per wavelength at the peak wave 
period (Tp) in the deep regions (/w)- 

e. The maximum water depth has to be less than half the shortest wave- 
length of interest (A,^ < L^^/2). In regions with relatively deep water 
along the offshore boundary, an artificial maximum depth can be 
imposed in the numerical model to ensure that the shortest waves of 
interest are resolved. For example, if we are interested in modeling a sea 
state with Tp =10 s and T^ = 6s over an area where the water depth 
ranges from 5 m to 100 m, a maximum depth of 28 m can be imposed 
corresponding to Z(7,

min)/2. 

/    The maximum size of the computational area should be based on the 
amount of available computational resources. For typical PC's or work- 
stations with 100 to 200 MB of virtual memory, the grid size should not 
exceed 500 x 500 grid points. Larger grids can be used at the cost of 
much longer computational times. 
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Once the grid spacing and extent have been chosen, different algorithms 
(linear, inverse distance, kriging, etc.) can be used to interpolate the seabed 
elevation data (x,y,z) onto a uniform rectangular grid. Land regions and 
impermeable harbor structures are then mapped onto the grid as positive 
elevations. The grid data should then be saved as an ASCII file in the grid file 
format described in Appendix D. 

Preparation of Damping Grid File 

The external boundaries of the computational grid are considered to be fully 
reflecting wall boundaries unless it is specified as a wave generation boundary. 
Damping regions have to be placed inside the domain to absorb outgoing waves. 
The damping regions should be of the order of half a wavelength wide with a 
quadratic variation of the nondimensional damping coefficient, \ij(x,y), from 0 
to 1 at the wall boundary. 

A utility program GENDAMP (Appendix E) has been provided to generate 
the damping file given the location of the damping layers (North, South, East, or 
West grid boundaries), the width of the damping layer, and the nondimensional 
damping strength at the end wall. The damping file is stored as an ASCII file in 
the grid file format described in Appendix D. 

Preparation of Porosity Grid File 

Porosity layers are used to simulate partial reflection and transmission 
through porous structures such as breakwaters. The porosity grid file contains 
information on the porosity distribution n(x,y) over the computational grid with a 
value of 1.0 for water points. A porosity value of 0.4 is typically used for break- 
waters. Regions with small porosity values (« < 0.1) such as breakwater core 
layers should be treated as impermeable regions and mapped as land points in the 
bathymetry file. 

A utility program MAPPOROSITY (Appendix E) has been provided to 
create a porosity file given the breakwater boundaries as a set of discrete (x,y) 
points. The porosity file should be saved as an ASCII file in the grid file format 
described in Appendix D. 

Creation of Simulation Parameter File 

All the input parameters required to run BOUSS-2D is stored in an ASCII 
text file, referred to as a simulation parameter file (.par). The file is a free format 
file with names of the simulation parameters and associated values not con- 
strained to any particular rows or columns. The full colon (:) character is used at 
the beginning of lines containing parameter names and values, and the pound (#) 
character is used to delineate sections of a line with comments. Due to the 
multitude of options available for the input file, it is recommended that the inter- 
active program Pre_BOUSS2D be used to create it. Pre_BOUSS2D can be run 
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from an MS-DOS prompt window by typing the program name including the 
filepath, e.g., 

C:\BOUSS2D\BIN\pre_bouss2d 

The user then interactively types in answers on the keyboard in response to 
questions posed by the program. Default answers shown in square brackets [...] 
can be selected by hitting the enter key. 

Step 1. Simulation Parameter File 
• Enter the name of the output simulation parameter file (.par) 

Step 2. Bathymetric Information 
• Enter the name of the bathymetry file (.grd) 
• Enter storm surge/tidal water level offset in meters 

Step 3. Damping Information 
• Enter name of damping file (.grd) if there are damping regions in the 

computational domain 

Step 4. Porous Structure Information 
Enter the following information if there is a porous structure in the computational 
domain 
• Name of porosity file (.grd) 
• Characteristic stone size in porous layer (m) 

Step 5. Wave Generation Boundaries 
Waves may be generated along one or two boundaries. The boundaries may be 
external (along boundary of computational grid) or internal (within the 
computational grid). Internal wave generation boundaries have to be parallel to 
one of the grid boundaries. 

For each wave generation boundary, enter the following information: 
• Type of Wave Generation Boundary (External/Internal) 
For External Wave Generation Boundary 
• Select grid boundary (North, East, South, or West) 
• If generation line exists over part of the boundary, enter the coordinates 

of the start and end points. 
For Internal Wave Generation Boundary 
• Enter orientation of wave generation line (East-West or North-South) 
• Enter the x ory coordinate of wave generation line 
• If generation line exists over part of boundary, enter the coordinates of 

the start and end points. 

Step 6. Incident Wave Information 
Along wave generation boundaries, BOUSS-2D requires the horizontal velocities 
«a(0 and flux densities u/t) normal to the boundary at each time-step. The time- 
histories may correspond to regular or irregular, unidirectional or multidirectional 
waves. The velocity and flux time series can either be synthesized from para- 
metric information (wave height, period, etc.) or derived from an input 
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surface-elevation time series. The information required to generate the incident 
wave boundary conditions is described as follows: 

• Wave Synthesis Options 
Synthesize velocity and flux time-histories from parametric information 
Read in measured surface-elevation time series. The input file has to be 
in the time series file format described in Appendix D. 

• Incident Wave Type 
Regular Waves 
Irregular Unidirectional Waves 
Irregular Multidirectional Waves 

Regular Waves 
• Wave Height (m) - vertical distance between the wave crest and trough. 

The incident wave height should not exceed 75 percent of the breaking 
limit given by the Miche criterion as HhreJL = 0.14 tanh kh. When the 
wave height exceeds 25 percent of the breaking limit, nonlinear effects 
become important and the time-histories are synthesized using the 
Boussinesq-Fourier theory discussed in Appendix A. 

• Wave Period (s) - time interval between successive wave crests. The 
incident wave period has to be greater than the limit imposed by the 
dispersive properties of the Boussinesq equations, i.e., the wavelength 
calculated from the linear dispersion relation (Equation 10) using the 
wave period and maximum water depth has to be greater than twice the 
water depth (L > 2Amax). 

• Wave Direction (deg) - This is the direction the waves propagate into 
the computational domain from, and is defined in a clockwise manner 
from the northern boundary of the grid as shown in Figure 6. For 
example, waves propagating into the domain normal to the western 
boundary would have a direction of 270 deg. The incident wave 
direction also has to be within ± 85 deg of the normal to the wave 
generation boundary. 

• Number of Wave Cycles - This determines the time period over which 
output parameters such as the significant wave height and mean veloci- 
ties are calculated after steady-state conditions have been established in 
the computational domain. The recommended range is from 10 to 50. 

Irregular Waves 
• Type of Wave Spectrum 

• JONSWAP 
• Bretschneider 
• Pierson-Moskowitz 
• TMA 
• Ochi-Hubble 
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Different spectral parameters will be input depending on the selected wave 
spectrum. The most commonly used parameters are described in the follow- 
ing paragraphs. Detailed information on the different wave spectra and then- 
associated parameters are provided in Appendix B. 

•    Significant Wave Height, Hmo (m) - Defined as four times the square 
root of the zeroth moment of the spectrum, i.e., Hmo= 4 ^rnü, where m0 = 

Jo 
S (f)df . Hmo is equivalent to the average height of the highest one- 

• 

• 

third of the waves (Hm) for moderate sea states in deep water with a 
Rayleigh wave height distribution. The input significant wave height 
should not exceed 50 percent of the breaking limit given by the Miche 
criterion based on the peak frequency of the spectrum, i.e., H^^JLp = 
0.07 tanh kph. 

Peak Wave Period, Tp (s) - Inverse of the cyclic frequency at which the 
wave spectrum is a maximum (Tp = \lfp) 

Minimum Wave Period, T^ (s) - The incident wave spectrum is set to 
zero at all frequencies greater than l/T^ with the truncated wave spec- 
trum optionally rescaled to match the target significant wave height. The 
minimum wave period has to be greater than the limit imposed by the 
dispersive properties of the Boussinesq equations, i.e., the wavelength 
based on 7^ and h^^ has to be greater than twice the maximum water 
depth [L (7U) > 2/w]. 

Maximum Wave Period, T^ (s) - The incident wave spectrum is set to 
zero at all frequencies less than 1/Tmax. The maximum wave period is 
used to separate infragravity waves from wind-generated waves and has 
a default value of 25 s (prototype). 

Wave Direction (deg) - This is the direction the waves propagate into the 
computational domain from, and is defined in a clockwise manner from 
the northern boundary of the grid as shown in Figure 6. For example, 
waves propagating into the domain normal to the western boundary 
would have a direction of 270 deg. The incident wave direction also has 
to be within ±85 deg of the normal to the wave generation boundary. 

Synthesized Time Series Duration - This is the recycling period of the 
Fourier series used to synthesize the time-histories and corresponds to 
the time period over which output parameters such as the significant 
wave height and mean velocities are calculated after steadyrstate condi- 
tions have been established in the computational domain. The recom- 
mended range is from 50 to 100 wave periods. 

Random Number Seed - The seed of the random number generator used 
to select phase angles for the different Fourier components. Different 
seeds can be used to obtain different time records from the same wave 
spectrum. 

Chapter 4  Setting Up and Running BOUSS-2D 33 

• 

• 



Multidirectional Waves 

In addition to specifying spectral parameters, the user has to select additional 
parameters to describe the directional distribution of wave energy. The 
different directional distributions are discussed in Appendix C. 

• Type of Directional Spreading Function 
Wrapped-Normal 
Cosine-Power 

• Standard Deviation, <re (deg) - The standard deviation of the Wrapped- 
Normal directional spreading function. The allowable range is from 
5 deg to 50 deg with 10 deg representing narrow-band swell-type condi- 
tions and 30 deg representing broader, local wind-generated seas. 

• Spreading Index, s - Describes the degree of directional spreading for the 
Cosine-power directional distribution. The allowable range of the 
spreading index is from 0 to 65 with 5 = 2 representing broad, local 
wind-generated seas and 5 = 15 representing narrow-band swell-type 
conditions. 

• Principal Wave Direction, Qp (deg) - This is the direction corresponding 
to peak of the directional spreading function. The wave direction is 
defined in a clockwise manner from the northern boundary of the grid as 
shown in Figure 6. The principal direction has to be within + 30 deg of 
the normal to the wave generation boundary. 

• Maximum Propagation Direction, Gmax (deg) - This is the maximum 
wave propagation direction relative to the normal to the wave generation 
boundary as shown in Figure 7. The directional distribution is truncated 
at ±0max and renormalized. As pointed out by Sand and Mynett (1987), 
Gmax also defines the limited area in the computational domain over 
which homogenous conditions exist, i.e., all wave directions are 
included. Diffraction effects will further reduce the size of the spatially 
homogenous region. The recommended value is two to three times the 
standard deviation of the directional distribution. 

It should also be noted that when using more than one wave generation boundary, 
different spectral/directional parameters might be specified for the individual 
boundaries. However, the duration of the synthesized or input time record must 
be the same for both boundaries. 

Step 7. Current Field 
If tidal currents are significant over the computational area, the spatial 
distribution of the currents U(xj>) should be stored as an ASCII file in the grid 
file format (.grd) described in Appendix D. The user should then enter the name 
of the file containing the velocity data. 
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Wave Generation Boundary 

Figure 7.    Sketch showing spatially homogenous region for multidirectional 
waves 

Step 8. Simulation Parameters 
• Duration of Numerical Simulation (s) - This is equal to time required for the 

storm waves to propagate from the wave generation boundary to the farthest 
points of interest in the model area and establish steady-state conditions, i.e., 
warm-up period plus the duration of the synthesized or input time record 
specified in Step 6. 

• Simulation Time-Step (s) - The time-step should be selected based on the 
stability considerations, i.e., the Courant number Cr has to be less than 1.0: 

C = C2AV 
1 1 

• + ■ 
\ 

Ax2    Ay2 <1.0 

where C is the phase velocity calculated using the maximum water depth 
(Anax) and the average zero-crossing period of the incident waves. It is 
recommended that the Courant number be kept within the range 0.5 to 0.7, 
which typically corresponds to 30 to 50 points per wave period. For plunging 
waves on steep slopes, it may be necessary to use up to 100 points per wave 
period to simulate the rapid changes in wave shape irrespective of the 
Courant number. 

• Chezy Coefficient - Bottom friction factor with a default value of 30. Should 
be kept between 20 and 1,000. 

• Model Equations Option (Weakly Nonlinear/Fully Nonlinear) - Select either 
weakly nonlinear model of Nwogu (1993) or the fully nonlinear model of 
Nwogu (1996). The fully nonlinear model is computationally more intensive 
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• 

than the weakly nonlinear model and should only be used to investigate 
highly asymmetric waves in shallow water, wave-induced currents, and 
wave-current interaction. 

Wave Breaking Option (Y/N) - Wave breaking should be enabled if the 
significant wave height is going to be greater than half the water depth in the 
shallowest regions of the computational area (Hmo > hmJ2). 

Turbulent Length Scale, /, (m) - Controls the rate of wave energy dissipation 
for breaking waves. Should be set equal to the significant wave height (/, = 
Hmo) for irregular waves or the wave height (/, = H) for regular waves. 

Smagorinsky Constant C,- Eddy viscosity coefficient for subgrid turbulence. 
To avoid excessive dissipation of the waves, Cs should be kept between 0 and 
0.5. The default value is 0.0. 

Wave Runup Option (Y/N) - The runup scheme used in the numerical model 
is designed to simulate subcritical flow conditions on mild slopes. It cannot 
resolve details of supercritical flow on steep slopes. The runup option should 
only be used with the fully nonlinear model equation option. 

Minimum Flooding Depth - Parameter used control the stability of runup 
computations. Its value should be of the order of one-hundredth of the 
incident wave height {HI'100). 

Step 9. Output Data 
BOUSS-2D calculates the time-dependent evolution of the water-surface eleva- 
tion and horizontal velocities over a rectangular grid. For most simulations, it 
would require an excessive amount of disk space to store the surface elevation 
and velocity data at every grid point for all the simulation time-steps. To mini- 
mize disk storage requirements, the program outputs the time-averaged values of 
the variables over the entire grid or time-histories of the variables at specified 
grid points in the computational domain. All output files start with a prefix (xxx) 
specified by the user. The different output file options are given in the following 
paragraphs: 

2-D Spatial Output 
•    Mean water level ff(x,y) distribution over the computational grid 

(xxxmwl.grd) - The free surface fluctuations are averaged over the duration 
of the synthesized or input time record, tm specified in Step 6, i.e., 

= IF2>(*»: V(x,y)   =   —2J]{x,y,t) 
N£tw 

where N= tJAt and t„ is the duration of the numerical simulation specified in 
Step 8. The user should make sure that the duration of the numerical simula- 
tion is long enough to establish steady-state conditions in the numerical wave 
basin. 
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Significant wave height distribution Hmo(x,y) over the entire computational 
grid (xxxHs.grd) - The significant wave height is calculated as four times 
standard deviation of the water-surface elevation over the duration of the 
synthesized or input time record, i.e., 

Hmo(*,y) = \ N- 
(x,y,t) - T|20,v) 

For regular waves, the wave height can be obtained from the significant wave 
height as Hmo/\l2 . It should noted that there could be differences between the 
significant wave height estimated from the standard deviation of the time 
record and those obtained using zero-crossing analysis especially for highly 
asymmetric waves in shallow water. 

•    The time-averaged or mean current ua (x,y) over the entire computational 
domain (xxxuv.grd). 

1    ts 

ua(x,y) = —yUa{x,y,t) NtTt 

The time-averaging procedure is also carried out over the duration of the 
synthesized or input time record. 

Time Series Output 

• Time series of the water-surface elevation 77(f) and two components of the 
horizontal velocity w„(t), v„(t) at specified (x,y) locations in the grid. The 
time series files are named xxx_eta.tsl, xxx_u.tsl, and xxxv.tsl. 

Animation Output 

• Time-dependent output of the water surface elevation r](x,y,t) and horizontal 
velocities ua(x,y,t) over a specified area and time period. The user specifies 
the coordinates of the lower left-hand corner (*i,yi), upper right-hand corner 
(•^2^2), and grid skip interval for the output grid area, and the start time, end 
time, and time-step for the output time period. The files are named xxx.eta 
and xxx.uv for the surface elevation and velocities, respectively. The anima- 
tion files could be large and should be used judiciously. The size of the sur- 
face elevation output file in bytes can be calculated as 4 x (number of grid 
points) x (number of time-steps). The velocity file is twice the size of the 
surface elevation file. 

Step 10. 

After entering all the information, Pre-BOUSS2D creates a simulation parameter 
file. The simulation parameter file is an ASCII file that can be edited using 
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Standard text editors (WordPad, etc.). Changes can be made to the wave simula- 
tion parameters (e.g., wave height, period, direction, time-step, etc.) and the file 
saved under a new name. A sample output of the simulation parameter file is 
shown as follows: 

############################################################### 

# BOUSS2D Simulation Parameter File:   barbers_irr_tl2.wsp 

# Written By: John. E. Hacker 

# Creation Date: Fri, Sep 15, 2000 

# Creation Time: 04:16 PM 

############################################################### 

# 

# Bathymetric Grid Parameters 

:BATHY_FILE bathy_barbers.grd 

:TIDAL_OFFSET 0 # metres 

# 

# Damping Parameters 

:DAMPING_FILE damp_barbers.grd 

# 

# WaveMaker #1 Parameters 

START WAVEMAKER 

600 

0 

600 

2500 

Irreg_uni 

WM_P0S_X1 

WM_P0S_Y1 

WM_POS_X2 

WM_POS_Y2 

WAVE_TYPE 

TIME_SERIES_OPTION   synthesize 

WAVE_DIRECTION        270 

TIME_SERIES_DURATION  1800 

RANDOM_NUMBER_SEED    25136827 

SPECTRAL_TYPE 

JONSWAP_OPTION 

WAVE_HEIGHT_SIG 

WAVE_PERIOD_PEAK 

WAVE_PERIOD_MIN 

WAVE_PERIOD_MAX 

GAMMA 

PHILLIPS 

RESCALE_SPECTRUM 

END WAVEMAKER 

# metres 

# metres 

# metres 

# metres 

# Regular, Irreg_uni, or Irreg_multi 

# file or synthesize 

# degrees 

# seconds 

JONSWAP # JONSWAP, BRET, PM, TMA or OCHI 

Hs # Hs, Sigma, or Gamma 

3 # metres 

12 # seconds 

8 # seconds 

24 # seconds 

3.3 

0.0081 

NO # YES or NO 
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# 

# Simulation Parameters 

# 

DURATION 

TIME_STEP 

RAMP_DURATION 

CHEZY_COEFF 

NONLINEAR_OPTION 

WAVE_RUNUP_OPTION 

WAVE_BREAKING_OPTION 

TURB_LEN6TH_S CALE 

# 

# Output Parameters 

FILE_NAME_PREFIX 

HS_FILE 

MEAN_UV_FILE 

# 

2800 # seconds 

0.2 # seconds 

12 # seconds 

30 

STRONG # WEAK or STRONG 

NO # YES or NO 

YES # YES or NO 

3 # metres 

irr_h3tl2 

irr_h3tl2_Hs.r2s  # Hs output file 

irr_h3tl2_mean_UV.r2v # Mean UV output file 

# Surface Elevation (ETA) File Parameters 

SAVE ETA 

ETA_FILE irr_h3tl2 .wse 

START_TIME 0 # seconds 

END_TIME 1800 # seconds 

SAVE_TIME_STEP 1 # seconds 

SAVE_FULL_GRID YES # YES or NO 

GRID_STEP 1 

END_SAVE_ETA 

SAVE_TIMESERIES 

TS_X 1220 # metres 

TS_Y 890 # metres 

END TIMESERIES 

Running BOUSS-2D 

After creation of the simulation input file, BOUSS-2D can be run from an 
MS-DOS command prompt window by typing: 

C:\BOUSS2D\BIN\bouss2d  input_file_name 
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After carrying out computations for 10 time-steps, the program displays an 
estimate of the run time. The run time could vary, however, depending on other 
processes running on the computer at the same time. 

Time Series Data Analysis 

BOUSS-2D outputs the significant wave height and mean current distribution 
over the entire computational grid. For some applications, it might be necessary 
to analyze the time series data at specific grid points to obtain frequency or direc- 
tional wave spectra, wave height statistics, reflection coefficients, etc. Hughes 
(1993) extensively discusses time and frequency domain analysis techniques for 
time series data in a laboratory setting. Similar techniques can be applied to time 
series output from the numerical model. 

Standard statistical analysis techniques can be applied to the surface eleva- 
tion or velocity time records to obtain the mean, standard deviation, skewness, 
and kurtosis of the time records. The skewness of the surface elevation, 77, and its 
time derivative, 77,, can be used to quantify the degree of wave asymmetry or 
nonlinearity in shallow water. Zero-crossing analysis techniques can be used to 
define the heights and periods of individual wave cycles within an irregular wave 
record. These can be analyzed to obtain parameters such as the root-mean-square 
wave height, H^, average height of the highest one-third of the waves, H\n, or 
the average wave period, Tav. 

Standard spectral analysis techniques can be used to obtain the surface eleva- 
tion or velocity spectra. These can be analyzed to obtain parameters such as the 
significant wave height, Hmo, and spectral peak period, Tp. Different techniques 
have been proposed for the estimation of directional wave spectra using either an 
array of wave gauges (e.g., Nwogu 1989) or collocated measurements of the 
surface elevation and horizontal velocities (e.g., Nwogu et al. 1987). Collocated 
time series of the surface elevation and horizontal velocities can also be used to 
estimate the reflection coefficients using the technique described in Hughes 
(1993). 
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5    Model Validation 

Wave Propagation through a Breakwater Gap 

We initially evaluated the ability of BOUSS-2D to simulate the propagation 
of waves through a gap into a rectangular harbor basin. The basin is 1,200 m 
wide, 600 m long, and 10m deep. The width of the opening at the harbor 
entrance is 120 m. 

The first case considered is a regular wave with period T= 7 s propagating in 
a direction normal to the breakwaters. The corresponding ratio of the gap width, 
B, to wavelength, L, is 2. Boussinesq model simulations were carried out using 
grid spacings Ax = Ay = 3 m and time-step size At = 0.15 s. A 60-m-wide damp- 
ing layer was placed around the perimeter of the basin to absorb outgoing waves. 
Figure 8 shows a snapshot of the instantaneous water-surface elevation produced 
by the BOUSS-2D model. 

The normalized wave height distribution predicted by BOUSS-2D is com- 
pared with the numerical solution of Isaacson and Qu (1990) in Figure 9. 
Isaacson and Qu (1990) used a boundary integral technique to solve the 2-D 
Helmholtz equation, which is a reduced form of the mild-slope equation for 
water of constant depth. Good agreement is generally observed between the wave 
height predictions from the numerical models. Small oscillations can be seen in 
the Boussinesq model predictions, especially for the smaller wave height con- 
tours. This is due to partial wave reflection from the radiation boundaries. Reflec- 
tion coefficients of the order of 5 to 10 percent at the boundaries have been 
observed to cause such oscillations in wave height contour lines (Isaacson and 
Qu 1990) 

We next investigated the propagation of irregular multidirectional waves 
through the gap. The sea state is characterized by a JONSWAP wave spectrum 
with peak period Tp = 7 s and peak enhancement factor y = 3.3. A wrapped- 
normal distribution with a standard deviation of 20 deg was used for the direc- 
tional distribution of wave energy. The double-summation method was used to 
synthesize time-histories of velocity fluxes along the incident wave boundary for 
the BOUSS-2D simulations. 

Figure 10 shows a snapshot of the instantaneous water-surface elevation 
produced by the BOUSS-2D model. The normalized wave height distribution 
predicted by BOUSS-2D is compared with the numerical solution of Isaacson 
and Qu (1990) in Figure 11. Good agreement is observed. As expected, the 
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Figure 8.   3-D view of instantaneous water-surface elevation for regular waves 
propagating through a breakwater gap (7 = 7 s, h = 10 m, B/L = 2) 

Figure 9.    Relative wave height contours for regular waves propagating through 
a breakwater gap (T = 7 s, h = 10 m, B/L = 2) 
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Figure 10. 3-D view of instantaneous water-surface elevation for multidirectional 
waves propagating through a breakwater gap (Tp = 7 s, oe = 20°, h = 
10 m, B/Lp=2) 

•JHelmholtz 

Figure 11. Relative wave height contours for multidirectional waves propagating 
through a breakwater gap (Tp = 7 s, oe = 20°, h = 10 m, B/Lp= 2) 
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directional spreading of wave energy leads to larger wave heights in the sheltered 
area behind the breakwaters and smaller wave heights along the principal direc- 
tion of the waves. 

Multidirectional Wave Propagation over a Shoal 

Laboratory experiments on the transformation of irregular multidirectional 
waves over an elliptical shoal were carried out by Vincent and Briggs (1989). 
The experimental layout is shown in Figure 12, and consists of an elliptical shoal 
placed in a 0.4572-m-deep basin. The boundary of the shoal is an ellipse defined 
by: 

f \2 
Y — Y      1 

3.96 
+ 

3.05 
= 1 (64) 

where (xc, yc) are the coordinates of the center of the shoal and are given by xc 

13.72 m mdyc = 6.10 m. The water depth over the shoal is given by: 

h(x,y) = 0.9144 - 0.7620 \l 
x-xc 

4.95 

V y-yc 

3.81 

V 
,0.5 

(65) 

The minimum water depth over the shoal is 0.1524 m. Tests were carried out 
for various regular and irregular, unidirectional and multidirectional waves. For 
irregular waves, the TMA spectrum was used to describe the frequency distribu- 
tion of wave energy, while the wrapped-normal distribution was used for the 
directional spreading function. Water-surface elevation data were collected at 
five transects located at distances of 3.05 m, 6.10 m, 9.14 m, 12.19 m, and 
15.24 m from the wavemaker as shown in Figure 12. 

The numerical basin for the BOUSS-2D model simulations is 31.5 m wide, 
27 m long, with a uniform grid spacing of 0.1 m. Two-meter-wide damping 
layers were placed around the perimeter of the basin to absorb outgoing waves. 
Two representative test cases were selected for the model-data comparisons. Test 
case Nl is characterized by a TMA spectrum with significant wave height Hmo = 
0.0775 m, peak period Tp=\3 s, peak enhancement factor y = 2, and a narrow 
directional distribution with standard deviation ce 

= 10 deg. Test case Bl is 
characterized by a TMA spectrum with significant wave height Hmo = 0.0775 m, 
peak period Tp= 1.3 s, peak enhancement factor y = 2, and a broad directional 
distribution with standard deviation a& = 30 deg. Time-histories of the velocity 
boundary conditions along the wavemaker were synthesized for a duration of 
130 s, corresponding to 100 wave periods. Simulations were carried out using a 
time-step size At = 0.025 s. 
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Figure 12. Plan view of bathymetry and layout for Vincent-Briggs shoal 
experiments 

Figure 13 shows a snapshot of the instantaneous water-surface elevation over 
the shoal predicted by the BOUSS-2D model for test case Nl. The focusing of 
wave energy behind the shoal can clearly be seen. The corresponding 2-D map of 
the normalized wave height distribution over the computational grid is shown in 
Figure 14. The predicted wave height variation along transects 3 and 4 are com- 
pared to the experimental results in Figures 15 and 16, respectively. BOUSS-2D 
significantly overpredicted the wave height amplification along transect 3 with 
differences of the order of 20 to 30 percent. A better match was obtained along 
transect 4 where the wave height amplification was lower. The reason for such 
large discrepancies along transect 3 is still unclear. Similar discrepancies were 
obtained with the CG WAVE model (Demirbilek and Panchang 1998) as shown 
in Figures 15 and 16. For the broader directional distribution test case Bl, rea- 
sonable agreement was obtained between the model and the lab data as shown in 
Figures 17 and 18 with differences of the order of 10 percent. 

Wave Breaking in Bimodal Sea States 

Bimodal sea states consisting of swell and local wind-generated components 
occur frequently along most U.S. coastlines (Thompson 1980). Smith and 
Vincent (1992) investigated the shoaling and breaking of dual-wave systems on a 
constant slope beach. They found that the higher frequency component decayed 
much faster in the presence of the low-frequency waves, while the lower fre- 
quency component appeared to be unaffected by the presence of high-frequency 
waves. Smith and Vincent (1992) investigated the applicability of spectral energy 
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Figure 13. 3-D view of multidirectional wave propagation over a shoal for test 
case N1 (Hmo = 0.0775 m, 7P= 1.3 s, ae = 10 deg) 
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Figure 14. Normalized wave height distribution for multidirectional wave 
propagation over a shoal for test case N1 

46 Chapter 5   Model Validation 



1.5 

0.5 

BOUSS-2D 
CGWAVE 
Lab Data 

i i i i i   _l I I I I I I I I I I I I I I I L 

10   11    12   13   14   15   16   17 
x (m) 

Figure 15. Normalized wave height distribution along transect 3 for test case N1 
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Figure 16. Normalized wave height distribution along transect 4 for test case N1 
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Figure 17. Normalized wave height distribution along transect 3 for test case B1 
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Figure 18. Normalized wave height distribution along transect 4 for test case B1 
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conservation models with a depth-limited breaking criterion and simpler tech- 
niques such as shoaling the component wave systems independently of each 
other and superimposing the results. None of these techniques could reproduce 
the observed changes to the wave spectrum. 

Boussinesq model simulations were carried out for test case 7 in the Smith 
and Vincent experiments. The sea state is composed of two irregular wave 
components described by TMA spectra with Hmo>i = 7.6 cm, TPti = 2.5 s, i7m0j2 = 
13.2 cm, TPti = 1.75 s, and y= 20. The numerical wave flume is 41 m long and 
consists of a 20-m-long constant-depth region and a 1:30 planar beach. The water 
depth in the constant depth section of the flume was 0.61 m. The measured time 
series at the offshore gauge was used to generate velocity boundary conditions 
for the numerical model. A grid spacing of 0.125 m and time-step size of 0.04 s 
was used for the numerical simulations. 

Figures 19 to 22 show comparisons of the measured and predicted wave 
spectra at gauges located in water depths of 61 cm, 18.3 cm, 9.1 cm, and 6.1 cm. 
Although the higher frequency component dominates the incident wave spectrum 
with 67 percent of the wave energy at h = 61 cm, its energy is preferentially dis- 
sipated with the lower frequency component becoming dominant at the shallow 
depth of 6.1 cm. The Boussinesq model is able to reproduce the observed trends 
in the experimental data. The primary reason for the preferential reduction in 
energy of the high-frequency component is due to the nonlinear cross-spectral 
transfer of energy during the shoaling process. 
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0.008 -  Predicted 
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Figure 19. Measured and predicted wave spectra at Gauge 1 for bimodal sea 
state shoaling on a constant slope beach 
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Figure 20. Measured and predicted wave spectra at Gauge 4 for bimodal sea 
state shoaling on a constant slope beach 
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Figure 21. Measured and predicted wave spectra at Gauge 7 for bimodal sea 
state shoaling on a constant slope beach 
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Figure 22. Measured and predicted wave spectra at Gauge 9 for bimodal sea 
state shoaling on a constant slope beach 

Rip Currents on Barred Beaches 

Rip currents are narrow, jet-like currents that flow out from the surf zone 
towards the open ocean. Rip currents are typically generated when there are 
alongshore variations in the wave breaking location. Alongshore variations could 
be associated with bathymetric effects (e.g., gaps in sandbars), the presence of 
structures (piers, jetties, etc.) or edge waves, generated by the trapping of 
reflected waves near the shoreline. One characteristic feature of rip currents is 
their unsteady nature. The currents tend to occur episodically as well as oscillate 
in the horizontal plane (Smith and Largier 1995). 

Haller, Dalrymple, and Svendsen (1997) carried out laboratory experiments 
to investigate the generation of rip currents on a barred beach with rip channels. 
The bathymetry consists of a 1:30 constant slope beach with a superimposed 
longshore bar. The bar has two 1.8-m-wide gaps as shown in Figure 23. The 
water depth is 40 cm at the seaward boundary and 5 cm at the top of the bar. The 
Boussinesq model was applied to a regular wave test case with height 
H— 4.5 cm, and period T= 1 s. Numerical simulations were carried out using 
grid spacings Ax = Ay = 0.06 m and time-step size At =0.015 s. 

Figure 24 shows a snapshot of the instantaneous water-surface elevation 70 s 
into the simulation. Waves propagating over the bar break on the bar while those 
propagating through the gap break closer to the shoreline. This sets up a spatial 
variation of the mean water level and drives a time-varying circulation pattern. 
Figure 25 shows a 2-D map of the mean currents averaged over 50 wave cycles 
(from / = 150 s to t = 200 s). As observed in the laboratory experiments, there are 
two pairs of counterrotating circulation cells. The primary circulation consists of 
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Figure 23. Plan view of bathymetry for rip current experiments 

Figure 24. 3-D view of wave propagation over a barred beach with a rip channel 
(H = 5cm, T=1s) 
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Figure 25. Time-averaged rip current pattern at t = 200 s 

opposing longshore currents that converge and flow seawards through the gap in 
the sandbar. The secondary circulation cell occurs closer to the shoreline. 

Wave-Current Interaction 

The presence of currents can significantly modify the wave field inside 
entrance channels and harbors. This is particularly true for adverse currents 
where the interaction shortens and steepens the waves, leading to potentially 
hazardous navigation conditions. Smith et al. (1998) carried out laboratory 
experiments to investigate wave-current interaction in an idealized inlet. The 
bathymetry and layout used for the numerical simulations is shown in Figure 26. 
The wave basin is 24 m wide and 18.25 m long. The water depth variation adja- 
cent to the inlet is given by the equilibrium beach profile: 

h = 0.036/67 + 0.022 (66) 

The equilibrium profile extends to a water depth of 0.205 m beyond which it is 
linearly transitioned at a slope of 1:7 to the constant depth region of 0.325 m. The 
entrance channel is lined by two parallel jetties that extend a distance of 3.8 m 
from the shoreline (y = 0) with an entrance width of 4 m. 
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Figure 26. Bathymetry of idealized inlet for wave-current interaction study 

A 2-D hydrodynamic model was run to provide the current field for use in 
the wave model simulations. Figure 27 shows a map of the current field 
generated by the model. Boussinesq model simulations were carried out using 
grid spacings Ax = Ay = 0.075 m and time-step size At = 0.015 s. The incident 
wave conditions were characterized by a TMA spectrum with Hm0 = 0.055 m, 
Tp= 1.4 s, and y= 3.3. The predicted wave height distributions for current speeds 
U= 0 m/s and U = 0.24 m/s are shown in Figures 28 and 29, respectively. The 
Boussinesq model predicted an increase of 15 to 20 percent in the significant 
wave height near the entrance channel. The laboratory measurements, however, 
showed a slight decrease in wave height through the channel due to the effect of 
wave breaking. A more detailed investigation of the wave-breaking criterion and 
energy dissipation rates in the presence of currents will be carried out to improve 
simulations of wave-current interaction in the Boussinesq model. 

Wave Transformation Near Ponce de Leon Inlet, 
Florida 

Ponce de Leon Inlet, an inlet leading into the Halifax and Indian Rivers in 
Florida has a complex bathymetry featuring a large ebb shoal, a navigation 
channel, and a jetty. A 1:100 laboratory model study of a 4.2-km by 1.4-km 
region near the inlet was carried out at the U.S. Army Engineer Research and 
Development Center (ERDC) Coastal and Hydraulics Laboratory (CHL). Tests 
were conducted for sea states with different wave heights, peak periods, spectral 
widths, and directional spread. The TMA spectrum was used to describe the 
frequency distribution of wave energy, while the wrapped-normal distribution 
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Figure 27. Predicted current field for U = 0.24 m/s 
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Figure 28. Predicted wave height distribution near inlet for test case without 
currents (Hmo = 0.055 m, Tp = 1.4 s, U = 0 m/s) 
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Figure 29. Predicted wave height distribution near inlet for test case with 
currents (Hmo = 0.055m, Tp = 1.4 s, U = 0.24 m/s) 

was used for the directional spreading function. Water-surface elevation data 
were recorded at 30 locations. 

BOUSS-2D was run for one of the multidirectional test cases characterized 
by Hmo = 0.95 m, Tp = 10 s, y= 5, and directional spread 0"e = 20 deg (Test 
No. 11). The bathymetry used for the numerical simulations is shown in Fig- 
ure 30. Boussinesq model simulations were carried out using Ax = Ay = 5 m and 
At = 0.15 s. Time-histories of the velocity boundary conditions along the wave- 
maker were synthesized using the double-summation method for a duration of 
500 s, corresponding to 50 wave periods. 

A snapshot of the instantaneous water-surface elevation produced by the 
BOUSS-2D model is shown in Figure 31. The corresponding significant wave 
height distribution is shown in Figure 32. Two distinct wave-focusing regions 
can be observed on the shoal. The predicted wave height variations along the 
offshore and nearshore gauge arrays are compared to the experimental results in 
Figures 33 and 34, respectively. BOUSS-2D reasonably reproduced the wave 
height variation along the offshore array, although differences of the order of 
20 percent exist at a couple of gauge locations. For the nearshore array, excellent 
agreement is obtained between BOUSS-2D model predictions and the experi- 
mental data. 
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Figure 30. Ponce de Leon Inlet model bathymetry 

Figure 31. 3-D view of multidirectional wave propagation near Ponce de Leon 
Inlet {Hmo = 0.95 m, Tp = 10 s, ae = 20 deg) 
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Figure 32. 2-D map of wave height distribution predicted by Boussinesq model 
(Hmo = 0.95 m, Tp = 10 s, ere = 20 deg) 
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Figure 33. Measured and predicted wave height distribution along the offshore 
gauge array (Hmo = 0.95 m, Tp = 10 s, ae = 20 deg) 
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Figure 34. Measured and predicted wave height distribution along the nearshore 
gauge array (/-/mo = 0.95 m, Tp = 10 s, <re = 20 deg) 

Wave Disturbance in Barbers Point Harbor, Hawaii 

Barbers Point Harbor is a small harbor in Hawaii that has experienced 
occasional long-period harbor oscillation problems. The main harbor basin is 
11.6 m deep, and is connected to the Pacific Ocean through a 12.8-m-deep, 
1.3-km-long entrance channel. The water depths are shallow (2 to 10 m) in the 
vicinity of the entrance channel, leading to the nonlinear generation of free and 
forced long-period waves near the harbor entrance. Free long waves could be 
resonantly amplified inside the harbor basin if the long-wave periods are close to 
any of the natural modes of oscillation of the basin. 

BOUSS-2D was used to investigate to the resonant harbor oscillation periods 
and the wave height amplification factors. A three-dimensional view of the 
bathymetry and harbor layout used for the simulations is shown in Figure 35. The 
offshore boundary was truncated at a water depth of 50 m. Numerical simulations 
were carried for regular waves with periods ranging from 50 s to 200 s. Wave 
height information was output at two gauges outside the harbor and four gauges 
inside the harbor as shown in Figure 36. 
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Figure 35. 3-D view of Barbers Point Harbor model bathymetry 
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Figure 36. 2-D map of Barbers Point Harbor bathymetry showing wave gauge 
locations 
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The predicted wave heights at two gauge locations inside the basin, normal- 
ized by the incident wave height, are compared with predictions from the elliptic 
mild-slope model CGWAVE (Demirbilek and Panchang 1998) in Figures 37 and 
38. The harbor exhibits a number of distinct periods of oscillation (60 s, 83 s, 
110 s, 130 s, 143 s, and 190 s). The Helmholtz or pumping mode of the basin 
occurs at a period of around 900 s. Good agreement is generally observed 
between wave height amplification factors predicted by both models. It should be 
pointed out that it takes longer to attain steady-state conditions in time-domain 
models, especially for resonant oscillations. Figure 39 shows a plot of the time 
history at Gauge 5 for one of the resonance periods (T= 60 s). Steady-state 
conditions are attained approximately 30 wave periods after the waves initially 
arrived at the gauge location. 

Although linear, frequency-domain models are computationally more effi- 
cient at predicting harbor resonance periods and amplification factors, they 
cannot predict the magnitude of the long-period wave energy inside a harbor 
from a given offshore wind-wave spectrum. To overcome this deficiency, 
Okihiro, Guza, and Seymour (1993) used an ad-hoc coupling of a nonlinear 
model for the generation of bound long waves outside a harbor with a linear 
model for the amplification of long waves inside the harbor. The complex nature 
of bathymetry outside Barbers Point Harbor makes it difficult to quantify the 
relative amount of long-wave energy outside the harbor that is freely propagating 
into the harbor. The entrance channel is much deeper than the surrounding areas. 
Free long waves would be generated along the steep side slopes of the entrance 
channel as well as reflected from shoreline. The long waves would thus be propa- 
gating over a wide range of directions. 

We investigated the ability of the Boussinesq model to simultaneously model 
the nonlinear generation of long waves by storm waves propagating from deep to 
shallow water, the diffraction of both short and long period waves into the harbor 
basin, and the resonant amplification of long waves inside a harbor. We initially 
considered a bichromatic wave train with component periods T\ = 12 s, T2 = 
13.46 s, and heights H1=H2=1.5m. The group period of 110 s corresponds to 
one of the natural periods of oscillation of the basin. Numerical simulations were 
carried out with Ax = Ay = 10 m and At = 0.2 s. The simulated surface elevation 
time-histories at the offshore Gauge 1, harbor entrance Gauge 2, and harbor basin 
Gauges 3 and 5 are shown in Figure 40. The long-period component, obtained by 
applying a low-pass filter (r> 25 s), is also shown in the figures. It can be seen 
that nonlinear interactions during the shoaling process lead to an amplification of 
the long-period wave component between the offshore Gauge 1 which is in 50 m 
of water, and the harbor entrance Gauge 2 which is 7 m of water. Inside the 
harbor basin, the long waves are further amplified and dominate the harbor 
response at Gauge 5. 

Although bichromatic waves are useful for demonstrating the importance of 
nonlinear wave-wave interactions in harbor response, natural sea states are 
irregular with wave energy distributed over a large number of frequency com- 
ponents. We simulated the response of the harbor to an irregular wave train. 
Numerical simulations were carried out for an incident sea state characterized by 
a JONSWAP spectrum with Hmo = 3 m, Tp = 12 s and y = 3.3. Figure 41 shows a 
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Figure 37. CGWAVE and BOUSS-2D model predictions of the wave height 
amplification factor at Gauge 5 
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Figure 38. CGWAVE and BOUSS-2D model predictions of the wave height 
amplification factor at Gauge 6 
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Figure 39. Boussinesq model prediction of the time-history of the water-surface 
elevation at Gauge 5 for a natural harbor period (7= 60 s) 
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Figure 40. Time-histories of total and long-period (T > 25 s) component of water- 
surface elevation at Gauges 1, 2, 3, and 5 for bichromatic wave train 
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Figure 41. 3-D view of irregular wave propagation into Barbers Point Harbor 

snapshot of waves propagating into the harbor. The predicted wave spectra at 
Gauges 1 and 2 are shown in Figure 42. It can be seen that nonlinear interactions 
significantly modified the wave spectrum at Gauge 2(h = 7 m), with the cross- 
spectral transfer of energy to both lower and higher harmonics. The wave spectra 
for the four gauges located inside the harbor basin are plotted in Figure 43. The 
short-period wave energy is much smaller inside the harbor basin because the 
bathymetry acts to refract waves away from the harbor entrance. 

The wave spectra were divided into short-period {T< 25 s) and long-period 
components (T> 25 s) and wave heights were calculated for each component. 
The short-period wave heights at the inside gauges varied from 0.42 to 0.57 m, 
compared to 3.1 m at outside Gauge 2. The long-wave energy inside the harbor 
is, however, comparable to that at the outside gauge with heights ranging from 
0.38 to 0.46 m for the inside gauges, compared to 0.49 m at an outside Gauge 2. 
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Figure 42. Predicted wave spectra at the outside Gauges 1 and 2 for an irregular 
sea state (Hmo = 3 m, Tp = 12 s) 
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Figure 43. Predicted wave spectra at gauges inside harbor basin (Gauges 3-6) 
for an irregular sea state (Hmo = 3 m, Tp = 12 s) 
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Appendix A 
Fourier Series Solutions of 
Boussinesq Equations 

As the height of surface waves in intermediate and shallow-water depths 
increases, the wave profile changes from a sinusoidal shape to an asymmetric one 
with peaked crests and broad shallow troughs. The Boussinesq equations are 
nonlinear and are able to describe the change in wave shape, provided the wave 
height and period are within nonlinear and dispersive limits of the equations. 
However, it is important that the velocity and flux time-histories imposed along 
the wave generation boundaries of the numerical model be consistent with the 
equations that are solved within the computational domain. In BOUSS-2D, the 
Fourier approximation method of Rienecker and Fenton (1981)1 has been used to 
derive nonlinear boundary conditions for periodic waves in water of constant 
depth. The one-dimensional form of the weakly nonlinear form of the Boussinesq 
equations (Equations 4 to 6) for water of constant depth can be written as: 

ri,+ [(A + TUMa]x + 
(   n a+- fc3*W   =   0 (Al) 

"a,,+^4(M«l+aÄ2M«.~<=0 ^ 

For periodic waves, the partial differential equations can be transformed into a 
set of coupled nonlinear ordinary differential equations in terms of coordinate 
system, § = x — Ct, moving at the phase speed of the waves, C, and integrated 
once to yield: 

(A + T1X + 0C + - 

v     3y 
hXx+Q   =   0 (A3) 

&viblh*2«a&-*=0 (A4) 

1   References cited in Appendices A-E are listed in the References at the end of the main text. 
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where Q is the volume flux and R is the Bernoulli constant. The velocity ua can be 
expanded as a Fourier series: 

N 

ua=B0+£jkBj co$(M) (A5) 

where N is the number of Fourier components, Bj are the Fourier coefficients, and 
k is the wave number. To solve the problem numerically, the free surface eleva- 
tion is discretized into N+l equally spaced points over half a wavelength, i.e., 

T)m=«]&m),m=0,l,..,N (A6) 

where h,m = mLIlN and L is the wavelength. Equations A3 to A4 are then evalu- 
ated at points over half a wavelength to yield a system of nonlinear algebraic 
equations: 

(A+n»)«,+ 
(      1 "\ 

v      h 
h3u„„+Q   =   0 (A7) 

&\m+\«l+ah\,m-R = 0 (A8) 

The above 2N+2 equations involve 2JV+ 5 unknowns Ty(j = 0, ..., N), Bj (j = 
0, ...,N),k,Q, R, so three additional equations are needed. These can be obtained 
from the wave height, H, wave period, T, the mean water level as: 

Tlo-Tto-//   =   0 (A9) 

kCT-2%    =   0 (A10) 

Tlo+^ + 2£ri.    =  0 (All) 
>=i 

noting that C = -B0 for a zero-mean Eulerian velocity. A Newton-Raphson pro- 
cedure (see Rienecker and Fenton 1981) is used to solve the system of equations 
(A7 to Al 1) for the unknown values of the free surface displacement at the 
collocation points, the Fourier coefficients, the wave number, the phase speed, 
and the constants Q and R. 
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Appendix B 
Description of Ocean Wave 
Spectra 

A number of parametric shapes have been proposed to describe the frequency 
distribution of wave energy. The spectral shapes were derived from long-term 
field wave measurements and depend on factors such as wind duration, the 
distance or fetch over which the wind blows, and water depth. 

Pierson-Moskowitz Spectrum 

For fully-developed sea states in deep water where there is a local balance 
between momentum transfer from the wind and wave breaking/nonlinear cross- 
spectral energy transfer processes, Pierson-Moskowitz (1964)1 proposed the 
following wave spectrum: 

S(f)=   ag
4  sexp 

(2TI)
4
/

5 "ß / 
Jp j 

(Bl) 

where a = 0.0081 is Phillips' constant, g is the gravitational acceleration, ß = 
0.74, fp = g/2nU i9.5, and U 19.5 is the wind speed at .19.5 m above the mean sea 
level. 

Bretschneider Spectrum 

The Bretschneider spectrum (Bretschneider 1959) has the same shape as the 
Pierson-Moskowitz spectrum but is defined in terms of the significant wave 
height, Hs, and spectral peak frequency,^,, instead of the wind speed. It can be 
written as: 

References cited in this appendix are listed in the References at the end of the main text. 
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S(f) = 
5Ht 1 

16  if/fj 
5exp 

f      Y4 

/ 

fP 

(B2) 

JONSWAP Spectrum 

Based on an extensive analysis of data from the Joint North Sea Wave 
Observation Project (JONSWAP), Hasselmann et al. (1973) proposed the 
following modified form of the Pierson-Moskowitz spectrum to account for fetch- 
limited conditions: 

S(f) = «r 
4   z-5 

(2«)V- 
exp 

yffj 
r (B3) 

where 

a = 0.076 
fTTi \°22 

/P=3.5 

Vs     / 

a = exp[-(/-/p)
2/2a2/;] 

oa=0.07 for /</„ 

o6=0.09 for /</, 

(B4) 

(B5) 

(B6) 

(B7) 

F is the fetch distance, y is a spectral peak enhancement factor, and f/i0 is the 
wind speed at 10 m above the mean sea level. Figure Bl shows a comparison of a 
JONSWAP spectrum with y= 3.3 with a Bretschneider spectrum for a sea state. 
The JONSWAP spectrum reduces to the Bretschneider spectrum when y is equal 
to 1.0. 

TMA Spectrum 

The TMA spectrum is a modified version of the JONSWAP spectrum for 
water of finite depth. It was proposed by Bouws, Günther, and Vincent (1985) 
based on Kitaigorodskii, Krasitskii, and Zaslavskii (1975) frequency-dependent 
factor for the equilibrium range of the wave spectrum in shallow-water and 
validated with data from three field studies (Texel, MARSEN, and ARSLOE). It 
can be written as: 
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Figure B1. Comparison of Bretschneider and JONSWAP (y= 3.3) spectra for a 
sea state with Hmo = 1 m, Tp = 10 s 

S(f)=   ag
i  s exp 

(27t)4/5 
'f? 
f f-Kf,h) (B8) 

where Mf,h) is a function that expresses the effect of finite water depth and is 
given by: 

X(f,h) = [R((oh)Y 1 + - 
2<o^(co„) 

;inh[2co^(coA)][2co^(coA)] 
(B9) 

The frequency factor <üh = 2nf yj{hl g) and R(coh) is obtained from the iterative 

solution of the linear dispersion relation: 

i?(a)A)tanh[co^((oA)] = 1 (BIO) 
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Ochi-Hubble Spectrum 

The Ochi-Hubble spectrum (Ochi and Hubble 1976) is a six-parameter 
spectrum proposed for bimodal sea states consisting of swell and local wind- 
generated components. It can be written as: 

s(f) = - 
_n [(4y1+l)(27t/pl)

4/4]7 

x4y,+i 
-tf'exp 4y,+i 

+ n [(4Y2+D(2^2)
4/4f 

- —A—f*— Ht&m 
2      IT*) (2*)***       " 

V* 

4y2+l 

Jp2 

(Bll) 

where r is the gamma function. Hs,fp, and /denote the significant wave height, 
spectral peak frequency, and spectral shape factor respectively for the two sea 
state components. When y is equal to 1, the Ochi-Hubble spectrum reduces to the 
Bretschneider spectrum. 
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Appendix C 
Directional Wave Spreading 
Functions 

The directional spreading function, D(Q), describes the directional distribution 
of wave energy in irregular multidirectional sea states. It can be quantified in 
terms of the principal direction of wave propagation 6^,, and the directional spread 
or standard deviation of the spreading function, ae, which is defined as: 

. f8_+ic/2 T 

°2  = If-,/2
Z)(e)(e-0

P
)üre <C1> 

A number of parametric shapes have been proposed to describe the directional 
spreading function including the cosine-power, the circular normal, and wrapped- 
normal distributions. These are described in the following paragraphs. 

Cosine-Power Spreading Function 

The cosine-power function is an extended version of the cosine-squared direc- 
tional distribution initially proposed by St. Denis and Pierson (1953)1 and can be 
written as: 

D(Q)= r^*+1>   cos^e-e,)      for |e-ep|< %n      (C2) 
VrcIXs + l/2) p 

where T is the gamma function. The parameter s is an index describing the degree 
of directional spreading with s -> °° representing a unidirectional wave field. 

Circular-Normal Spreading Function 

The circular normal distribution was proposed by Borgman (1969) and can be 
written as: 

1   References cited in this appendix are listed in the References at the end of the main text. 
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1 
D(e) = ^77Texp[acos(e"M 2nl0(a) 

(C3) 

where I0 is the modified Bessel function of the first kind and a is a parameter 
describing the degree of directional spreading with a —> <» representing a 
unidirectional wave field. 

Wrapped-Normal Spreading Function 

The wrapped-normal distribution was suggested by Mardia (1972) and is 
given by/ 

D(G) = ^- + -i>p ->.)' cos[y(6-e,)] (C4) 

Figure Cl shows a plot of the distributions for the three different spreading func- 
tion formulations corresponding to a standard deviation C7e of 25.5 deg. The 
associated spreading indices are s = 2 for the cosine-power function and a = 5.55 
for the circular-normal distribution. Thirty components (N = 30) were used for the 
wrapped-normal distribution. The cosine-normal and wrapped-normal distribu- 
tions are slightly narrower than the cosine-power function although the differences 
can be considered to be minimal. 
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Figure C1. Comparison of the cosine-power, circular-normal and wrapped-normal 
distributions with a standard deviation of 25.5 deg 
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Appendix D 
B0USS-2D File Formats 

BOUSS-2D currently supports two file formats. The grid format (.grd) is used 
to define the spatial variation of scalar or vector quantities over a rectangular grid. 
The time series format (.tsl) is used for one-dimensional time-histories of scalar 
quantities. The files consist of a header section and a data section. The header 
section includes both mandatory parameters required to define the data structure 
and optional parameters that provide additional information on the data. Comment 
lines in the header section begin with the pound (#) sign, and lines with parameter 
names and values begin with the colon (:) sign. 

Grid File Format (.grd) 

The grid file format is used to store multiple 2-D arrays h](x,y), h2{x,y), etc. 
The variables are defined over a rectangular grid with the origin located at (x0ngin, 
^origin) and uniform grid spacings Ax and Ay in the x and y directions respectively. 
The number of grid points are Nx and Ny in the x and y directions respectively. 
The 2-D array h(ij) represents the value of h{xy) at JC = x0n^ + (i-l)Ax andy = 
^origin + (/-1)4>>. The mandatory header parameters are: 

NGridX = number of grid points in the x direction (Nx) 
NGridY = number of grid points in the y direction (Ny) 
DeltaX = grid spacing in the x direction (Ax) 
DeltaY = grid spacing in the y direction (Ay) 
XOrigin = x-coordinate of grid origin 
YOrigin =j-coordinate of grid origin 
NArrays = number of data arrays (1 for scalar quantities, 2 for vector 
quantities) 

The header section must terminate with the EndHeader keyword. Two- 
dimensional data are then written out after the header section as continuous data 
streams in row first order, i.e., ((h(ij), i=l, Nx),j -l,Ny) for scalar quantities or 
((u(ij), i = 1, Nx),j = 1, Ny) and ((v(v), i = 1, Nx),j =l,Ny) for vector quantities. 
A sample grid file is provided as follows: 
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# B0USS2D Grid 
:FileName 
:WrittenBy 
:CreationDate 
# 
N_Arrays      1 
DataDescription(1) 
DataUnits(l) 

File 
bathy.grd 
Bouss2D Version 1.0 
Moil  Sep   18   12:40:25   2000 

Seabed 
meters 

Elevation 

# 
NGrid_X 
NGrid_Y 
Delta_X 
Delta_Y 
X_0rigin 
Y Origin 

4 
4 
10.0 
10.0 
0.0 
0.0 

# 
:EndHeader 

15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8 

Time Series File Format (.ts1) 

The time series file format is used to store time-histories of scalar quantities 
u(t) at discrete time intervals t, = t\ + (z'-l)A/, where /] is the start time and At is 
the time-step. The number of data points in the time record is TV,. Multiple time- 
histories (e.g., data output at different grid locations) can be stored in the same 
file. The mandatory header parameters are: 

• NTimeSteps = number of time-steps (Nt) 
• TimeStep = time-step (At) 
• StartTime = start time of record (s) 
• NDatasets = number of time series records 

The header section terminates with the EndHeader keyword. Data are then 
written out after the header section as a single column vector for one time record 
or multiple columns for multiple time records. A sample time series file is 
provided as follows: 

# BOUSS2D Time Series File 
:FileName test .tsl 
:WrittenBy Bous s2D Version 1.0 
:CreationDate 
# 
:NDataSets 

Mon Sep 18 12 40:25 2000 

4 
:DataDescription (1) Surface Elevation 
:DataUnits(1) meters 
:DataDescription (2) Surface Elevation 
:DataUnits(2) meters 
:DataDescription (3) Surface Elevation 
:DataUnits(3) meters 
:DataDescription (4) Surface Elevation 
:DataUnits(4) 
# 
:StartTime 

meters 

0.0000 
:TimeStep 0.1500 
:NTimeSteps 
# 

5334 

D2 Appendix D  BOUSS-2D File Formats 



x_grid(l) 270.0000 
y_grid(l) 1030.0000 
x_grid(2) 500.0000 
y_grid(2) 1030.0000 
x_grid(3) 820.0000 
y_grid(3) 1030.0000 
x grid(4) 1000.0000 
y_grid(4) 1030.0000 

EndHeader 
O.OOOOOOE+00 -1 772061E-15 -1 234493E- -14 -4 485098E- -14 

-1.195287E- ■13 -2 679531E-13 -5 388106E- -13 -1 005685E- -12 
-1.777521E- -12 -3 012488E-12 -4 936255E- -12 -7 866251E- -12 
-1.224317E- •11 -1 867146E-11 -2 797059E- -11 -4 124122E- -11 
-5.994772E- -11 -8 602132E-11 -1 219879E- -10 -1 711262E- -10 
-2.376610E- -10 -3 269985E-10 -4 460105E- -10 -6 033756E- -10 
-8.099900E- -10 -1 079451E-09 -1 428627E- -09 -1 878338E- -09 
-2.454132E- -09 -3 187200E-09 -4 115422E- -09 -5 284574E- -09 
-6.749691E- -09 -8 576622E-09 -1 084376E- -08 -1 364400E- -08 
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Appendix E 
Utility Programs 

GENJDAMP 

GENDAMP generates a damping file given the location of the damping 
layers (north, south, east, or west boundaries of the grid), the width of the 
damping layer, and the nondimensional damping strength at the end of the 
damping layer, jiv The damping values are initially set to zero over the entire 
grid. The program then calculates the spatial variation of the damping values over 
the width of the damping layers using a quadratic function, e.g., 

Kd(x,y)   = 
X-u,      -*-n 

2 

K 

where x0 and xw are the coordinates of the beginning and end of the damping 
layer. The program is run interactively from an MS-DOS command prompt 
window. An example is as follows: 

C:\bouss2d\bin\gen_damp 
bathy # name of  input bathymetry file   (.grd) 
damp # name of output damping file   (.grd) 
0 # width of damping layer  -  North   (m)    [0.0] 
0 # non-dimensional damping strength   (0-1)    [0.0] 
100 # width of damping layer  -  East   (m)    [0.0] 
1 # non-dimensional  damping strength   (0-1)    [0.0] 
0 # width of damping layer  -  South   (m)    [0.0] 
0 # non-dimensional  damping strength   (0-1)    [0.0] 
0 # width of  damping layer  -  West   (m)    [0.0] 
0 # non-dimensional damping strength   (0-1)    [0.0] 

To effectively damp out waves at open boundaries, a damping layer half a wave- 
length wide with a damping strength of 1.0 should be used. The damping file is 
written out as an ASCII file in the grid file format described in Appendix D. 

MAP_POROSITY 

MAPPOROSITY creates a porosity grid file given the boundaries of porous 
regions within the computational domain as a set of discrete (x,yj points. The 
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porosity values are initially set to 1.0 over the entire grid. The program then uses 
the "Winding-Number" algorithm of Gordkin and Pulli (1984)1 to set the porosity 
values within the porous region boundaries to values specified by the user. The 
(x,y) coordinates of the porous region boundaries are stored as two columns of 
data in an ASCII file. The program is run interactively from an MS-DOS 
command prompt window. An example is as follows: 

C:\bouss2d\bin\map_porosity 
bathy # name of  input bathymetry file   (.grd) 
porosity # name of  output porosity file   (.grd) 
2 # number of porous  regions   [1] 
bwl.xy # name of  boundary file  for porous  region #1   [.xy] 
0.4 # porosity   (0-1)    [0.4] 
bw2.xy # name of boundary file  for porous  region #2   [.xy] 
0.4 # porosity   (0-1)    [0.4] 

The porosity file is written out as an ASCII file in the grid file format described in 
Appendix D. 

References cited in this appendix are listed in the References at the end of the main text. 
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