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Executive Summary 

Information Extraction & Transport, Inc. (IET) and Oregon State University (OSU) are 

pleased to submit the final report for the Phase I Small Business Technology Transfer 

(STTR) project, Contract N00014-01-M-0220, entitled Autonomous Distributed System, to 

summarize technical progress made during the period from 1 July 2001 to 15 January, 

2002. This final report is presented in fulfillment of contract line item CLIN/SLIN 

0001AD. The objective of this STTR project is to develop new, innovative distributed data 

fusion concepts for networks of distributed autonomous sensors applying the Bayesian 

Network technology built through the last decade of collaboration between IET and OSU. 

The specific Navy application is to develop new distributed data fusion concepts for the 

Deployable Autonomous Distributed System (DADS) in order to fuse information from a 

field of autonomous sensors for surveillance purposes in littoral waters. 

The DADS program is currently in its 6.3 stage and several field tests are in progress. A 

DADS sensor node consists of an acoustic array, a magnetic sensor, and acoustic modem to 

communicate with other DADS nodes. This deployable sensor node is battery operated 

and totally autonomous. However, it has become apparent that the long fiber line 

connecting the array of acoustic elements in a DADS sensor node makes it vulnerable to 

trawling and dredging activities. In order to avoid this vulnerability, a future DADS 

concept is being formed in which each single acoustic sensor element becomes an 

autonomous sensor node to eliminate the fiber lines connecting acoustic elements. Thus the 

most basic formation of a future DADS sensor node consists of a single acoustic element, 

with a magnetic sensor, and possibly with other "future" sensors. 

This future DADS concept generates several technical challenges. The immediate challenge 

is to realize acoustic array functionality by distributed acoustic elements connected only by 

wireless communication (most likely acoustically, but possibly by other means in the 

water). The future DADS concepts also pose a unique set of challenges for distributed data 

fusion and communication, because of the increased needs for collaboration among sensor 

nodes. Furthermore, the environments that the possible future DADS would face may be 

quite different, anticipating an extremely wide variety of targets including: quiet (maybe 

smaller) submarines, surface combatants and vehicles, mines and mine deployment 
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platforms, swimmer delivery vehicles, Autonomous Underwater Vehicles (AUVs), 

Unmanned Underwater Vehicles (UUVs), high speed torpedoes, groups of small units, etc. 

This means that target classification tasks would become more than an order-of-magnitude 

more difficult, in addition to difficulties in detection and tracking such targets. 

The IET/OSU team proposes to respond to these challenges with new, innovative 

distributed data fusion concepts that apply Bayesian Network technology. A Bayesian 

Network is mathematically defined as a network of random variables connected by arcs 

that represent probabilistic causality, i.e., conditional probabilities, and is a natural 

extension of Markov chains, so that any complex probabilistic relationship can be precisely 

formulated. Any target and sensor model can be represented by a Bayesian Network, and 

once an observation or an extracted feature value is available as a realization or 

instantiation of random variables, target states, including position, velocity, target types, 

operational mode, etc., can be estimated or inferred, using any of several Bayesian Network 

inference algorithms. IET/OSU has developed one of the most effective Bayesian Network 

inference algorithms, called the Symbolic Probabilistic Inferencing (SPI) algorithm. 

Recently, two new concepts, Bayesian Network Fragments and Bandwidth Agile Situation 

Dissemination, were also developed by the IET/OSU team, to be used for communicating 

aggregated information among distributed processing nodes. 

The Phase I STTR project that this report describes is to develop distributed data fusion 

concepts for the future DADS by applying these two newly developed concepts. The Phase 

I efforts have been devoted formulating new distributed data fusion concepts, as described 

in this reports, to serve as a foundation for the proposed Phase II efforts. In the proposed 

Phase II efforts, these new concepts will be realized in terms of new algorithms, 

performance evaluation and prediction, and software development plans, to be used in the 

future DADS concept. 

11 
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1  INTRODUCTION 

A kickoff meeting for this Small Business Technology Transfer (STTR) program, as a 

collaboration of Information Extraction & Transport (IET) and Oregon State University (OSU), 

was scheduled for 26 September, 2001, with the ONR technical and management team, headed 

by Dr. David H. Johnson, at ONR, Arlington, VA. Prior to this meeting, IET and OSU had a 

meeting with the Deployable Autonomous Distributed System (DADS) Data Fusion Group, lead 

by Ms. Joan Kaina, at SPA WAR Systems Center, San Diego, in August, 2001, to be briefed on 

the subjects of the DADS data fusion programs and the future DADS concepts. Through these 

meetings, we reached a conclusion that, for our Phase I and possible Phase II STTR efforts, our 

technical focus should be Multi-Level, Distributed Data Fusion for Future DADS using Bayesian 

Network Technology. 

By the future DADS, we mean the next-generation DADS concept, commonly referred to as mini 

DADS or micro DADS, envisioned to be developed in a span ending in 2020 to 2030. Figure 1 

contrasts the current and the future DADS sensor node concepts. One objective of the future 

DADS is to prepare for the 2020-2030 littoral threats, including quieter and smaller submarines, 

surface combatants and vehicles, mines and mine deployment platforms, swimmer delivery 

vehicles, Autonomous Underwater Vehicles (AUVs), Unmanned Underwater Vehicles (UUVs), 

and high speed torpedoes. Unlike the present threats, the future threats are in general groups of 

small units. 

In order to counter these threats by generating finer and more sensitive fields of autonomous 

sensors, the future DADS concept uses a single sensor element for each sensor node ([8]), as 

shown in Figure lb, as opposed to a current DADS sensor node that is equipped with a linear 

array of acoustic and magnetic sensor elements ([1] - [7]), as illustrated in Figure la. One of the 

reasons for the new DADS concept is to eliminate the vulnerability caused by each sensor node 

having a long line connecting sensor elements (vulnerability to dredging, trawling finishing, 

etc.). 
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This single-element sensor node concept generates a host of technical challenges, mainly 

because of limitation on communication that limits coherent processing capability, resulting in 

loss of observability dimensions. On the other hand, this new concept opens up possibility of a 

wide variety of new technology to be applied. Although a wide range of different sensors, 

including optical, seismic, chemical sensors, etc., is being considered for the future DADS 

concept [8], the ONR's direction is for us to concentrate on sensor elements that we understand 

reasonably well, i.e., acoustic and magnetic sensors. 

Wireless Acoustic (Telesonor) 
Communication 

To Another Sensor Node 

Acoustic Sensor 
Elements 

(a) Current DADS Sensor Node Concept 

High-Speed 
Acoustic Conwn. 

Wireless Acoustic (Telesonor) 
Communication 

To Another 
Sensor Node 

Magnetic Sensor 
Elements Acoustic Sensor 

Elements 

(b) Future DADS (mini-DADS or micro-DADS) Sensor Node Concept 
Figure 1: DADS Sensor Node Concept 

Figure 2 illustrates the concept of the multiple-level distributed data fusion.   Three levels of 

distributed data fusion are: 
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(1) Intra-Sensor-Node Level: This is the data fusion inside each sensor element 

consisting of an acoustic and a magnetic sensor elements. Data fusion is between two 

sensor elements and for time-series of accumulated data. 

(2) Inter-Sensor-Node, Intra-Cluster Level: A small number (up to 12) of sensor nodes 

will form a sensor cluster. High speed communication among sensor nodes within a 

cluster may make it possible to perform coherent acoustic processing from which an 

instantaneous target localization may be possible. Two or more magnetic sensor 

elements within a cluster may provide short-range but good instantaneous three- 

dimensional target localization. 

(3) Inter-Cluster, System-Wide Level: Sensor nodes will be connected through wireless 

acoustic communication to each other, and through relays, finally to a surface 

gateway. At this level, cooperation among clusters is coordinated and the best picture 

will be provided to the external higher-level nodes, afloat and shore, through an RF 

gateway. 
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Figure 2: Future DADS Concept: Multiple-Level Distributed Data Fusion 

We should not confuse these distributed data fusion levels with the JDL (Joint Directorate of 

Laboratories) defined Data Fusion Levels ([28]). As far as these JDL levels are concerned, we 

are directed by the ONR to concentrate on Level 1, i.e., target detection, target localization and 

tracking, and target classification. We are also directed not to put our focus on data association 

aspects at least for the time being. 

Table 1 shows the technical discussions for various future DADS distributed data fusion levels. 

In this table, the section for each topic in this report is shown by its section number. As seen in 

this table, this report does not address all of the topics reflecting the topics that are yet to be 

covered in the proposed Phase II efforts. 

The approach taken by the IET/OSU team is to apply the Bayesian Network technology to these 

various levels of data fusion. The Bayesian Network techniques are probabilistic inference and 

estimation methods using a network, i.e., a directed graph, of random variables and vectors, as 

shown in the short overview in Appendix A.   Using graphic structures, Bayesian Networks 
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provide us with powerful yet rather intuitive methods for modeling complex probabilistic 

systems, and particularly, enable us to express causal relationships explicitly. IET and Oregon 

State University have developed a unique and powerful set of algorithms, called the Symbolic 

Probabilistic Inferencing (SPI) algorithms that effectively solves inference and estimation 

problems formulated using Bayesian Networks. 

  Table 1: Distributed Data Fusion Levels for Future DADS 
Future DADS 

Distributed Data 
Fusion Level 

my?** 

mm 

Acoustic Sensor 

Detection Range 
(Range/Source SP) 
(4.1.1.) 
Doppler Frequency 
Tracking (Temporal 
Integration) (4.2.2) 
Target Classification 
Based on Acoustic 
Signature (4.3)  
Multiple-Sensor 
Acoustic Detection 
(4.1.2) 
TDOA measurements 
by Coherent Processing 
(4.2.1) 
Multiple TDOA 
Localization (4.2.1) 
Multi-Sensor Doppler 
Tracking (4.2.2) 
Multi-Sensor Target 
Classification Fusion 
(4.3) 

Magnetic Sensor 

Detection Range 
(4.1.3) 
Estimation on Manifold 
in Source Magnet / 
Target Location Space 
Temporal Integration 

Multiple-Sensor 
Magnetic Detection 
(4.1.4) 
Multiple-Sensor 
Magnetic Localization 
(4.2.3) 
Magnetic Target 
Classification (4.3) 

Acoustic-Magnetic 
Fusion 

Acoustic/Magnetic 
Detection Fusion 
(4.1.5) 
Acoustic/Magnetic 
Temporal Integration 

Multiple-Sensor 
Detection Fusion 
(4.1.5) 
Acoustic/Magnetic 
Localization Fusion 
Acoustic/Magnetic 
Classification Fusion 

Multiple-Sensor Distributed Tracking and Classification (4.2.4) 
Information Relay to Surface RF Gateway 
Data Fusion in Transit: Alarming, Warning, and Hand-Over 
System-Wide Resource Management: Power Consumption Management and 
Control, Threshold Control 

The solution techniques developed through the Phase I efforts are described in Sections 2 to 4, as 

outlined in Table 1. The last section, Section 5, will describe conclusions and recommendations 

towards the further development of the Bayesian Network based data fusion concepts for the 

future DADS. 



Unclassified 

2 TARGET AND SENSOR MODELS 

In this section, we will discuss target and sensor models. The level of the details for these 

models is intentionally kept very simple but with enough mathematical essence for the purpose 

of the solution concept development for our Phase I efforts. We will also briefly discuss our 

basic approach to the distributed data fusion problems, i.e., the distributed Bayesian Network 

inference method. Its details will be described subsequently section 4.3 using a hierarchical 

target classification as an example. 

2.1 Target Model 

A target is modeled by its state. Let x(t) = {VEh{t),POS{t), ACS(f),MAG(?),TYPE) be the state 

of a target, at time t. VEh(t) is the three-dimensional velocity vector and POS(f) is the three- 

dimensional position of the target at time t, so that (VEL(f),POS(?)) is the target's six- 

dimensional geolocational state. ACS(t) is the acoustic state and MAG(f) is the magnetic state. 

In a simplest model, the ACS(t) is the source-level sound pressure and the base frequency. In 

reality, the target's acoustic state ACS(t) contains a potentially rich source of information such 

as various kinds of acoustic signatures, on which a variety of target classification algorithms may 

be performed to inference on the target type, TYPE, which is time-invariant. Detailed 

discussions on that aspect will be found in Section 4.3. The MAG(f) is the three dimensional 

magnetic moments (as approximated by a point source). MAG(f) may be considered time 

invariant. 

The a priori causal relationship among those state components can be depicted by a Bayesian 

network representation (see Appendix A for a very brief introduction to Bayesian Networks) in 

Figure 3a. 
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(a) 

\ 

•   •   • 

(b) (c) 
Figure 3: Target States and Observations (Evidence) 

In Figure 3a, measurements from a magnetic sensor are represented by a random vector Yx that is 

called an evidence node in this Bayesian network (See Appendix A). 

Figure 3b shows a probabilistic model that explains magnetic sensor measurements Yx obtained 

at time tx and acoustic measurements Y2 obtained at time t2, simultaneously. Assuming that a 

track is initiated by a magnetic measurement vector and then continued only by acoustic 

measurements, Figure 3c illustrates a sequence of measurements and their relationship to the 

target states at different times. 

The arcs connecting target state nodes in Figure 3 across different time samples represent the 

target model expressed by a set of conditional probabilities, i.e., state transition probabilities. 

For example, the kinematic state component (VEL(f),POS(f)) can be any of the maneuvering 

target model, or the Constant Course and Speed (CCS) model for any length of time interval, or 

with a slight modification, can be modeled as multiple model dynamics. 

2.2 Sensor Models 

The sensor is modeled by the target-state-to-measurement transition probability, which is a 

conditional probability of a measurement vector given a target state vector, which is attached to 

each of the arcs connecting target state nodes and measurement nodes in Figure 3.   Like the 
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target model, sensor models described in this section are only for the purpose of the discussions 

described in the later sections of this report, and their validity may be questioned in the further 

studies, as necessary. 

2.2.1    Acoustic Sensor Elements 

A simplified model for an acoustic sensor consists of (i) acoustic sound pressure measurement 

model (wide-band processing), (ii) base frequency measurement model (narrow-band 

processing), and (iii) acoustic spectrum pattern (acoustic signature) models (narrow-band 

processing). A simple sound pressure model would be 

ys=jl + ns (1) 

under the hypothesis Hx that assumes that a target exists and under the condition that the target's 

source-level sound pressure is s and the target range from the sensor is r, where ns is an 

independent zero-mean random variable with a unit that normalizes the sensor gain. Under the 

null hypothesis H0 assuming the measurement is in the noise, we have the model ys = ns. 

Under Hl, the base frequency observation is modeled as 

37 
(     r\ (2) 
1— fs+nf 

V     c J 
s ' '-/ 

where r is the range rate of the target relative to the sensor location, c is the speed of sound in 

the medium (water), fs is the source (base) frequency, and nf is an independent zero-mean 

random variable. 

The third observation may be an acoustic signature that can be used as the basis for the target 

classification. Theoretically, any single acoustic sensor element that is autonomously operated 

with sufficient power to support a necessary signal processing unit can produce a probability 

distribution,   Prob.{TYPE = T|y}, for each possible target type   T   and any set of data   Y 

accumulated to each moment. Although the exact functional form of this a posteriori 

probability distribution is not known, since this function can be autonomously performed for 
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each sensor element, target classification can be processed all through the three levels of 

distributed data fusion. This aspect will be discussed later in Section 4.3. 

In a current DADS sensor node, a linear array of acoustic sensor elements is used to generate 

bearing measurements with coherent signal processing (to produce Time Difference Of Arrival 

(TDOA) observations) and with time series of such data through a Track Before Detect (TBD) 

tracking technique [1]. For the mini or micro DADS, however, such coherent acoustic 

processing must be done using high-speed, wireless acoustic communication. Whether such 

communication is possible with enough communication speed is still in question, depending on 

many factors, such as power consumption, sensor element spacing, modulation technology, and 

environmental parameters. Assuming this coherent processing is possible, target localization 

through acoustic elements is only possible at the second level of distributed data fusion, i.e., the 

inter-sensor, intra cluster processing. This aspect will be discussed in Section 4.2.1. 

2.2.2   Magnetic Sensor Elements 

According to [1], a magnetic sensor element measures a three-dimensional magnetic field at the 

sensor location as, with appropriate unit normalization, 

ym=G{Au)m + nm (3) 

where Au = u - us is the three dimensional relative target-sensor positional vector with the three- 

dimensional target position u and the three-dimensional sensor location us, G() is the 3x3 

matrix valued function defined as 

G(/1M)=|UM|| 
^,.Y^Y     ^ 

3 
Au 

\AU\ \\AU\\ 
-I 

v -     "A"     -        J 

(4)1 

m is the three-dimensional source magnetic moment vector, and nm is an appropriate random 

vector that model background noises.   In other words, under the hypothesis Hx assuming that 

By XT, we mean the transpose of a matrix or vector X .    x  is the usual Euclidean norm of a vector 

x in any Euclidean space, i.e., be = Vx x .  I is the identity matrix with an appropriate dimension. 
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there is a target at location u, the conditional probability of the three-dimensional magnetic field 

measurement ym is determined by eqn. (3). 

Depending on the dimension of the unknown components of the source magnetic moment m, 

even when the measurement error in eqn. (3) is negligible, we cannot determine the three- 

dimensional target location u. However, the single sensor element may produce target position- 

velocity estimates through the time-series, in particular, from a Closest Point of Approach (CPA) 

event. Alternatively, even with two sensor elements, simultaneous observation of the two three- 

dimensional magnetic field observations at different locations, all together six-dimensional 

observation, may produce target location and source magnetic moment estimates simultaneously. 

In other words, magnetic sensor elements may produce target localization estimates through the 

second level of distributed data fusion, i.e., inter-sensor, intra-cluster data fusion. 

2.3 Processing Node Model 

As information is accumulated into each sensor node (that is itself an autonomous sensor node in 

the micro DADS concept), the target state estimation will be refined and each sensor node 

maintains its own target state estimates. At a certain point such information will be exchanged 

among sensor nodes, first within a sensor cluster, and then spread through the entire system. 

(a) (b) (c) 
Figure 4: Information Stored at Sensor Node 

(d) 

10 
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At each point, the information possessed by a sensor node can be represented by an a posteriori 

joint probability distribution, which can be represented by a Bayesian network, or more 

precisely, a Bayesian network fragment [31]. 

Figure 4 illustrates the changes in the informational states in each sensor node. Figure 4a 

illustrates an initial informational state, i.e., the a posteriori probability distribution that is 

obtained by updating the a priori probability distribution by the first measurement that is 

assumed to be a magnetic sensor measurement. Figure 4b illustrates the procedure in which the 

a posteriori distribution shown in Figure 4a becomes an a priori probability distribution with 

respect to the new acoustic measurement Y2 through an extrapolation procedure. Figure 4c is the 

Bayesian network fragment that represents the a posteriori probability constructed from the first 

two measurements, Yx and Y2. Then Figure 4d illustrates the updating procedure by yet new 

measurement F3. 

Figure 5 illustrates the distributed data fusion solution concept using the Bayesian network 

inference method. Figure 5a is a Bayesian network presentation of the two sensor data fusion 

problems. For the purpose of illustration, in Figure 5, the target states are assumed to consist of: 

(1) the target type (TYPE), (2) the operation mode (MODE), (3) the mass of the target (MASS), 

(4) the target position (POS), (5) the target velocity (VEL), (6) the engine output (Eout), (7) the 

primary acoustic signature (AS1), (8) the secondary acoustic signature (AS2), and (9) the target 

source vector magnetic moment (MS). Given those states, the two sensors, or two sensor 

clusters, receive observations consisting of (i) the primary acoustic signature measurements, 

ASH and AS 12, by Sensors 1 and 2, (ii) the secondary acoustic signature measurements, AS21 

and AS22, and (iii) the vector magnetic field measurements, MM1, by Sensor 1, and (iv) the 

positional measurements, POS1 and POS2, by two sensors. In reality, as described in Section 3, 

the positional information is propagated from the target state to the sensor measurements in a 

much more complicated way. However, we use a simplified picture in Figure 5 for illustrative 

purposes. 

11 
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(a) Centralized Solution (b) Local Solution 1 

^^xti 

(c) Bayesian Network Fragment (d) Fusion of Solutions 
Figure 5: Distributed Data Fusion Using Bayesian Network 

Figure 5 a illustrates the centralized data fusion problem in which the two sensors provide 

measured information to a hypothetical central data fusion node. Since each sensor is operated 

autonomously, when Sensor 1 detects a target as both acoustic and magnetic detections, Sensor 1 

evaluates the Bayesian network that models local information processing by Sensor 1 as shown 

in Figure 5b. Sensor 1 then tries to send information to Sensor 2, and when it receives that 

information, Sensor 2 will fuse information sent by Sensor 1 with its own local information. To 

do this, the target states updated by Sensor 1 measurements are sent to Sensor 2, as a Bayesian 

network fragment, as illustrated by Figure 5c. 

In general, the a posteriori joint probability distribution will have more "dependency" or 

"correlation" among random variable or vector nodes. When the fragments are sent from Sensor 
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1 to Sensor 2, some of those correlation, represented by arcs, may be taken out as a part of 

approximation. We propose to use the Bandwidth Agile Situation Dissemination (BASD) 

technique, developed by IET and OSU, when this information is transferred between two sensor 

nodes. Detailed discussions of the application of BASD to the distributed data fusion will be 

described in Section 4.3, while the technical details of the BASD itself will be found in 

Appendix C. After the Bayesian network fragment illustrated by Figure 5c is transferred into 

Sensor 2, the fragment is used as the a priori state information by Sensor 2 and subsequently 

updated by the Sensor 2 measurements, as illustrated in Figure 5d. 
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3 DATA FUSION DISTRIBUTION LEVELS 

This section defines and describes the three levels of distributed data fusion. The concept is 

based on the physical reality of the micro DADS and the sensor element capability. 

3.1 Intra-Sensor Data Fusion 

As mentioned in the previous section, each micro DADS sensor node, i.e., a sensor element, 

assumed to have 

1) an acoustic sensor element that measures the received sound pressure (the wide-band 

mode) and the frequency spectrum (the narrow band mode), and 

2) a magnetic sensor element that measures a three-dimensional magnetic field. 

The acoustic sensor element is capable of target detection that is binary information, positive or 

negative, about the range and the source level sound pressure implicated by the detection 

probability function, the received base frequency, and the additional acoustic spectrum structure 

that constitutes an acoustic signature useful for target classification. The time-series data fusion 

of the Doppler frequency may produce the CPA range and time, under a certain conditions. 

A single measurement by the magnetic sensor element is capable of determining a three- 

dimensional manifold in the six-dimensional (or possibly lower-dimensional) target state 

consisting of the three-dimensional target position and the three-dimensional magnetic moment 

vector. Since the detection range by a magnetic sensor is generally very limited, the detection 

itself provides relatively good target localization. The time-series data fusion may determine at 

least higher dimensional sub-state estimate, although the observability dimension is not clear. 

Finally it is possible to fuse information from the two sensor elements, acoustic and magnetic 

within a single sensor element. The most important data fusion is the detection fusion. In the 

current DADS implementation, an AND logic is used for target detection, and the simultaneous 

detection by an acoustic sensor and a magnetic sensor (both implemented by arrayed sensors) 

initiates a track. 
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(a) Sparse Deployment 

V.VN. v>; 

(b) Dense Deployment 

(c) Clustered Deployment (d) Barrier Deployment 
Figure 6: Micro DADS Deployment Patterns (Field Control) 

Figure 6 shows some of possible micro DADS deployment patterns. In these figures, each filled 

circle represents a mini DADS sensor node and the dotted circle around it represents acoustic 

detection range. The sparse deployment pattern (Figure 6a) is similar to the one used in the 

current DADS implementation. If we use this pattern for the micro DADS, since each sensor 

node is just a single sensor element, its data fusion capability is very limited as described earlier 

in this section. 

One of the novel concepts associated with the micro DADS implementation is formation of 

clusters as illustrated by Figure 6c. In this concept, several sensor nodes, i.e., sensor elements, 

typically three or four, are placed in a cluster within a rather small proximity. As shown in 

Figure 6c, this placement does not increase detection range (coverage). However, as discussed 

below, formation of a cluster may generate an equivalent effect of forming a sensor array, just 

like the linear sensor array attached for each of the current DADS sensor nodes, provided 

effective coherent signal processing is possible among those sensor elements in a cluster. 

Theoretically, if we deploy numerous mini DADS sensor elements in a very dense way, as 

illustrated by Figure 6b, we may create the same capability utilizing high-speed communication 

I 
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between neighboring sensor nodes. Although this concept may constitute a unique system 

architecture, it is less effective than a more organized structure, such as the clustered 

organization illustrated by Figure 6c. Each sensor cluster then can be used as a current DADS 

sensor node and we can rather expand many of the currently used data fusion technologies ([1] - 

[7]) rather straightforwardly. Figure 6d shows an example in which a collection of sensor 

clusters is deployed to from a barrier. 

3.2 Inter-Sensor, Intra Cluster Data Fusion 

In this report, we assume that the mini DADS sensor nodes are deployed in a clustered pattern so 

that there is a clear sense of groups among sensor nodes. A key technology that may support this 

clustered sensor concept is coherent processing between neighboring sensor nodes through high- 

speed wireless communications. The distance between such nodes should be small enough to 

enable high-speed communication yet large enough to provide geometrical diversity within each 

sensor cluster. 

Coherent signal processing of the acoustic signal received by two acoustic sensor elements may 

generate a TDOA measurement at two different locations from a target acoustic source, as a 

phase difference between two signals. A TDOA is translated into the difference between the two 

distances of the target from the two sensor locations, and hence, a TDOA measurement will 

define a rotated hyperbola with thickness defined by measurement errors. Theoretically three 

sensors may generate two-dimensional target localization by the intersection of two hyperbolae, 

and three-dimensional target localization may be possible using four acoustic sensor elements 

with three high-speed communication links enabling coherent processing. On the other hand, the 

time-series data fusion of two or three sensor elements may be enough to generate a complete 

target state estimate, i.e., three-dimensional position and velocity. 

Simultaneous observations of the magnetic fields at two different sensor locations may produce 

estimates of the three-dimensional target location and the three-dimensional target magnetic 

moment. This is a counterpart of the coherent processing of the acoustic signals. However, 

since we only need simultaneous observations and exchanges of those measurements between 

sensor nodes in order for the group of nodes to share this information, needs for high-speed 

communication is much less than that for the acoustic coherent processing. However, very small 
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detection range by magnetic sensor elements makes the use of such processing rather less 

significant, which makes the possibility of high-speed communication for acoustic coherent 

signal processing relatively crucial for the micro DADS concept. 

On the other hand, fusion of target detection and classification information among clustered 

sensor elements can be performed with significantly less communications requirements. Using 

multiple sensor elements, performance of acoustic and magnetic target detection, as well as 

target classification, should be enhanced. As for target detection, for example, a desired 

detection probability can be obtained with lower false alarm rate, or a desired false alarm rate is 

obtained with higher detection probability. At this point, as far as effective target classification 

is concerned, benefit of data fusion is not very clear among clustered sensors, since the 

information pertaining target classification may be largely redundant among clustered sensor 

elements. 

3.3 Inter-Cluster, System-Wise Data Fusion 

Using the cluster concept, we may consider each sensor cluster as a full functional DADS node 

(an equivalent of a current DADS sensor node). In other words, when each sensor cluster is 

designed and placed in an effective way, it may generate decent two or three dimensional target 

localization in a rather short time, while retaining the same ability for target classification. 

However, target range in which sufficient target localization is possible may be a function of 

how well acoustic coherent processing can be performed through high-speed acoustic 

communication, as well as inter sensor geometry within a cluster. 

Speed requirements for the communication between sensor clusters should be comparable to that 

of the current DADS implementation. Considering anticipated progress in the underwater 

acoustic communication technology (tele-sonar technology), any reasonable requirement will be 

satisfied for the future DADS concepts. With each sensor cluster organized to act like a single 

autonomous current DADS sensor node, the micro DADS, as a whole system, can perform many 

possible distributed data fusion functions coupled with many possible distributed resource 

management schemes, as documented in [1] - [7]. 
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For example, a collection of clustered sensors can be placed to form a barrier to protect a port or 

a naval facility in a littoral area. Or it may placed in a strategic location to perform "data fusion 

in transit," by tracking a target from sensor cluster to sensor cluster, handing over the essential 

information, location, course, speed and target classification as the target transits through a field 

of sensor clusters as illustrated in Figure 7. 

A\ 

Figure 7: Data Fusion in Transit 

In this figure, a transiting target is represented by a long arrow, indicating that three sensor 

clusters detect the target. A target track will be initiated when it hits a detection range of a 

sensor cluster, and subsequently, the target state estimates, as well as the target classification, 

will be handed over to the neighboring sensor clusters, depending on the target state prediction. 

Meanwhile, through inter-cluster communication, the target information is relayed to the surface 

communication gateway to connect the external tactical networks, through an RF connection. 

The sensor management, notably threshold control may be autonomously performed from cluster 

to cluster, or more centrally from a "master" node like the one in the current DADS concept. 
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4 DISTRIBUTED DATA FUSION SOLUTIONS 

This section describes techniques that can be utilized to realize the distributed data fusion 

concept outlined in the previous section. We will use rather simplistic mathematical models to 

illustrate the multi-level data fusion technology as applicable to the future DADS concept. 

4.1 Target Detection 

We consider the Neyman-Pearson approach for the target detection ([32]). According to this 

approach, a binary hypothesis testing problem is considered: a hypothesis H} assuming that the 

received signal originates from a target, versus the null hypothesis H0 assuming the received 

signal is only noise with no contribution from a target. The Neyman-Pearson criteria compare 

the likelihood ratio or the generalized likelihood ratio, with a given threshold to determine the 

detection, while the threshold is fixed according to the tolerable false alarm rate. 

4.1.1   Single-Sensor Acoustic Detection 

Using the model (1) in Section 2.3.1, and assuming the acoustic noise ns is a zero mean 

Gaussian variable with a given standard deviation crs, the simple thresholding on the received 

sound pressure level ys , we have 

j PD (r, s) = Prob{y5 > ys \ r, s, Hl }= erfc 

[PFA = Prob{ys > ys \ H0}= erfc(ys las j 

(T, ys -i°>r2)' 
ö-S 

(5)2 

where r is the target range, s is the source-level sound pressure, and ys is the threshold on the 

received sound pressure ys . The decision rule is: conclude hypothesis Hx assuming a target if 

ys >ys , otherwise conclude the null hypothesis H0. 

2 By erf   and erfc, we mean the error function and the complementary error function defined as 

erf {x) = \X e~e' 1dEl I Jin and erfc(x) = 1 - erf (x). 
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Figure   8   shows   the   detection 

probability as a function of the 

target range r, normalized by the 

expected     source-level     sound 

pressure    s,   the   false    alarm 

probability, and the noise level 

as. By defining the detection as 

a        conditional        probability 

conditioned by the target's state, 

it is possible to update any target 

state distribution by the fact that 

it is detected (positive information), as well as the fact that it is not detected (negative 

information). For example, the a priori target state distribution with the density function p can 

be updated by the positive or negative information as 

)(x)=    Pp{x)p(x)    _    Pp{r,s)p{x)        or 

\pD(t)p(z)dt fairem 
, v        (l-PD(jc))p(*) {l-Pn{r,s))p{x) 
U     |(l-Pß«^"f(l-^b))« 

0.2 0.4        0 6        0.8 1 1.2        1.4        1.6        1.8 2 
Normalized Target Range -» 

Figure 8: Acoustic Detection Probability 

, (6) 

I 

The pair (r, s) of the target range and the source-level sound pressure in (6) is a function of the 

state vector JC or £, as r(x) and s(x), or r(£) and s(£). 

4.1.2   Multiple-Sensor Acoustic Detection 

With a rather large number of "small" detection-only acoustic elements, as in the densly 

distributed micro DADS concept (as opposed to the cluster concept), or the "sono-buoy-field" 

concept, the simultaneous detection and non-detection, or in other words, positive and negative 

information, may be combined to produce useful information. The quality of information gained 

in this way may depend on the detection probability characteristics and the placement of the 

acoustic elements. The updating by such simultaneous detection and non-detection can be 

expressed as a product of detection probabilities PD{s,rt) or (l-P^s,^)), where s is the target's 

source-level sound pressure, and rx is the target range from the z'-th sensor. 
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Figure 9: Multiple-Sensor Acoustic Detection 

Figure 9 illustrates the possibility of target localization through acoustic detection information. 

In Figure 9, nine sensors are placed in a staggered array, either by green circles or red squares, 

then each sensor detects or does not detect a target. The target location is depicted by the purple 

circle. The north-east distance is normalized by the detection range and the expected source- 

level target sound level. 

As illustrated in Figure 9, target localization by this positive negative information combination is 

rather limited. Apparent non-Gaussian, potentially multi-modal probability distributions may not 

be represented or used in any useful way. It is for this reason, coherent acoustic processing that 

may provide much better information (that supports the sensor cluster concept) may be essential 

for successful implementation of the micro DADS concept. 

4.1.3   Single-Sensor Magnetic Detection 

As shown in Section 2.2.2, a magnetic sensor element can measure the three-dimensional 

magnetic vector field as a function of the three-dimensional target magnetic moment vector and 

the three-dimensional vector from the sensor location to the target location, contaminated by the 

background and other noises. Appendix B shows how the target detection problem is formulated 
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as a hypothesis testing problem on the chi-square statistics  x1 - ylK!ym  °f me three- 

dimensional magnetic field measurement ym, with the 3x3 covariance matrix Rm of the noise. 

The noise can be considered as a zero-mean Gaussian random vector after removing any 

significant locally persistent background magnetic field. 
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Figure 10: Target Localization by Single Magnetic Detection 

As shown in Appendix B, the Neyman-Pearson approach can be applied to define a single-sensor 

detection process. Figure 10 shows the target location estimated from the condition that the 

target is detected as %2 = yT
mR^ym ^ X2 > assuming that the target's magnetic vector moment is 

aligned to the horizontal direction of the figure. The distance in the figure is normalized by the 

source magnetic moment strength. The magnetic sensor element location is shown by the green 

circle. 

4.1.4   Multiple-Sensor Magnetic Detection 

As shown in Section 4.1.2, negative and positive information can both be used for target 

localization using the probability detection function, PD(Au,m) = ?rob\x2 >^2|zlM,w,iyr
1}, 

where Au = uT - us is the three-dimensional vector from the sensor location us to the target 

location uT, and m is the target magnetic moment vector, using the model described in Section 

2.2.2. 
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As in the case of acoustic sensors described in Section 4.1.2., the simultaneous detection by 

multiple magnetic sensors may provide accurate information about the target location. For 

example Figure 11 shows the probability distribution of the target location conditioned by the 

fact that it is simultaneously detected by two magnetic sensors represented by the green circles. 

Horizontal Distance -* 

Figure 11: Target Localization by Two Simultaneous Magnetic Detections 

The negative information is represented by (\-PD(Au,m)).   Figure 12 illustrates the target 

localization by the negative information. 

Horizontal Distance • 

Figure 12: Target Localization by Positive and Negative Information 
from Two Magnetic Sensor Elements 
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In Figure 12, we assume the left sensor element (the green circle) detects a target while the right 

sensor element (the gray circle) does not detect it. 

4.1.5   Multiple-Sensor Distributed Detection 

In the previous sections, it has been discussed how to combine information gained only by the 

fact that a certain sensor detects a target using its own local rule, notably using the Neyman- 

Pearson method, or by the fact that a certain sensor looks for a target but does not detect one. In 

the case of the latter, i.e., the positive information, a magnetic sensor will provide numerical 

information that is much richer than that provided by a single acoustic element, as discussed later 

in Section 4.2. As usual, any negative information only gives limited information. In any case, 

the issue of usefulness of the information aside, the binary information, i.e., detection or no- 

detection, can be used for target localization, using the detection probability function. 

On the other hand, as shown in Appendix B, target detection can be performed collectively by a 

set of similar or dissimilar sensors. In order for that to be effective, however, it is necessary for 

each sensor to exchange the local likelihood ratio as well as some sufficient statistics of the 

target state (or the location) under the hypothesis that each signal contains the signal component 

from a target. The communication load necessary for this can probably be considered as the 

minimum. Particularly, it would be nothing compared with the communication load required by 

coherent acoustic processing. Since, as information about the same target, information gained 

from the remote location is probably useless. When put together, distributed detection is 

probably only meaningful among sensor elements within a sensor cluster, i.e., for inter-sensor, 

intra-cluster data fusion. 

Distributed detection can be viewed as a pre-detection data fusion method. An alternative is to 

fuse the detection decisions that are made locally, independently, according to the "local" rules. 

We should point out that, as an alternative to distributed detection and data fusion of binary data 

(detection or non-detection), there is a body of theory that views the joint detection process as a 

team problem, where the communication among the members (sensor elements) is limited to be 

binary, known as decision fusion ([33]). While these issues should be studied more for their 

potential contribution to the micro DADS concept, because of its complexity, utility of pre- 

detection fusion and decision fusion does not appear promising. 
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4.2 Target Localization and Tracking 

One of the significant challenges posed by the micro DADS concept is that, because each DADS 

sensor node is essentially a single sensor element (although, as we assume, it may have an 

acoustic as well as a magnetic sensor element), unlike a current DADS sensor node, it cannot 

produce any complete target localization by itself. Therefore, it is necessary for each node to 

fuse data either temporally (time-series integration) or spatially (distributed data fusion). This 

section describes several possibilities of such data fusion at different levels of data fusion 

distributed processing. 

4.2.1   Acoustic TDOA Localization and Tracking 

It is well known ([9] - [11]) that though coherent signal processing, it is possible to estimate the 

difference of the time when a certain signal from a target arrives at a sensor from the time when 

the same signal arrives at another sensor located nearby but with certain spacing [9]. This 

TDOA, At, is directly translated into the difference Ar = rx-r2 between the range rx of the 

target from one acoustic sensor and the range r2 of the target from another sensor. Given three- 

dimensional sensor locations of the two sensors and this difference Ar = rx -r2 of the ranges, it is 

well known that a surface on which the target is located can be determined. 

<- North 
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Figure 13: Hyperbolic Surface Determined by TDOA 

As illustrated in Figure 13, a noiseless TDOA measurement corresponds to a hyperbola defined 

by the distance-difference from the two sensors (as its two foci) on a horizontal plane containing 

the two sensors, and to the two- 

dimensional surface in the three- 

dimensional space obtained by 

rotating the hyperbola along the line 

defined by the two sensor locations. 

Measurement and processing errors 

will provide some "skin depth" to this 

surface. An error in the TDOA 

estimate translates to the errors that 

increase as the distance from the 

sensors increases. 

0.6      0.8 

Figure 14: TDOA Tracking 

The temporal integration, or data fusion, of TDOA measurements, coupled with a target dynamic 

model, such as the Constant Course and Speed model, may provide us with the four dimensional 

(2-dimensional position plus 2-dimensional velocity) target state estimate, as illustrated in Figure 

14. 

This batch-processing algorithm may generate good four-dimensional target state estimates when 

the target depth is known, e.g., through magnetic sensor element measurements. However, as 

shown in Figure 13, the state estimation in this method clearly generate a "mirror" image, just as 

a mirror bearing from an acoustic line array. This ambiguity must be resolved using data fusion 

with other sensor nodes. 

On the other hand, if we use a cluster of three acoustic sensor elements, we may have two 

independent TDOA measurements, from which we can localize a target position within a plane. 

As shown in [9], there is an analytic method for exactly determining the intersection of two 

hyperbolae. This means that, using three acoustic sensor elements (nodes) in a cluster in such a 

way that coherent signal processing produces two simultaneous TDOA's, it is possible to 
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produce a two-dimensional target position estimate instantaneously. This hyperbola intersection 

algorithm is illustrated by Figure 15. 

-0.8     -0.6 0.4      0.6      0.8 •0.4     -0.2        0       0.2 
East -» 

Figure 15: Hyperbola Intersection Method 

In Figure 15, the TDOAs between Sensors 1 and 2 are depicted by the green hyperbola, and 

those from Sensors 2 and 3 by the dotted blue hyperbola. In Figures 13 to 15, the location scale 

is normalized by the sensor location. In general, from the viewpoint of the localization accuracy, 

it is desired to have large distances between sensor elements within detection range. However, 

as a micro DADS concept, the more distance between two sensor elements, the more expensive 

the high-speed wireless communication to enable the coherent processing to produce good 

TDOA estimates. This tradeoff between estimation accuracy and communication requirements 

is one of the studies that may be crucial for the micro DADS concept. 

Figure 16 illustrates the accuracy of the hyperbola intersection target localization algorithms by 

showing the measurement likelihood function obtained by the two TDOA measurements. For 

this figure, the scale is normalized by the TDOA measurement accuracy (translated to the 

distance difference). 
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Figure 16: Likelihood Function of Hyperbola Intersection Localization Algorithm 

In Figure 16, two hyperbolae produced by the sensor pairs, 1 and 2, and 2 and 3, are shown and 

the target location estimate is obtained as the intersection. The shape of the likelihood function 

shown in Figure 16 shows that the estimation error increases as a function of range. Indeed, 

estimates obtained this way may resemble bearing measurements more than a Gaussian target 

localization estimate. This indicates the need either for more acoustic elements within a sensor 

cluster or for inter-cluster data fusion (which may be equivalent of bearing intersection target 

localization). 

4.2.2   Acoustic Doppler Tracking 

As described in Section 2.2.1, each single acoustic sensor element, i.e., each single micro-DADS 

node, may measure Doppler frequency, provided a narrow-band acoustic processing with enough 

accuracy and enough signal-to-noise ratio in the environment ([14]). Figure 17 illustrates a 

possible frequency observation around the CPA event. The scales are normalized by the CPA 

time tCPA, the CPA range rCPA, the target speed V, the source frequency fs, and the speed of the 
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sound in the medium (the water) c, assuming the Constant Course and Speed (CCS) behavior of 

the target around the CPA event. 

-2 -10        1 
Normalized Time -* 

Figure 17: Doppler Frequency Measurements 

Potentially, by observing this CPA event by a single acoustic element, we can estimate the CPA 

time tCPA, the CPA range rCPA, the target speed V, and the target source base frequency fs . The 

received sound pressure measurement is generally proportional to the source-level sound 

pressure , and the square of the inverse of the target range, \lr\ and may provide additional 

information to estimate the CPA time, as illustrated in Figure 18. 
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Figure 18: Received Sound Pressure Measurements 

For each CPA event observed by a single acoustic element, there is one unobservable component 

of the target state, which is the target course (assuming a CCS target). The course may be 

determined by the two CPA events observed by two acoustic sensor elements, as illustrated in 

Figure 19. 

Sensor 2 Target 

Figure 19: Multiple-Sensor Doppler Tracking Data Fusion 

In this figure, three CPA events at tCPM, tCPA2, and tCPA3, by three acoustic elements, Sensors 1,2 

and 3, are illustrated.   The blue ring associated with each sensor represents the CPA range 
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estimates. Together with other estimates on the CPA time tCPAi, the target source frequency fs, 

the target velocity V , and the source level sound pressure s, it is possible to fuse estimates from 

multiple sensors to generate a full state distribution. 

This Doppler tracking provides us with a flexible data fusion method. Since it does not require 

any coherent processing, required communication among sensor nodes is minimal. Hence this 

method for distributed data fusion can be applied to both the inter-sensor, inter-cluster (Level 2) 

and the inter-cluster (Level 3) distributed data fusion. Possible drawbacks include vulnerability 

to the target maneuvering, which prevents the data fusion illustrated in Figure 19 in a relatively 

short time period. 

4.2.3   Magnetic Localization and Tracking 

As shown in Section 2.2.2, a single magnetic sensor element measures a three-dimensional 

magnetic field. As shown in Section 4.1.3, the magnetic field loses its strength in proportion to 

the cubic power of the range, and because of the usual background magnetic field, the detection 

range is very small ([1],[12],[13]). However, within the detection range, the magnetic 

measurement may provide accurate target information. As shown by eqns. (3) and (4) in Section 

2.2.2, a single observation is a three-dimensional magnetic field measurement, while the target 

state component involved in eqn. (3) is the three-dimensional target location plus the three- 

dimensional target magnetic vector moment, i.e., a six-dimensional sub-state vector. Therefore, 

in order to determine the state with enough accuracy, we need to fuse data either temporally or 

spatially. Using the micro DADS sensor cluster concept, however, it is relatively easy to obtain 

decent estimates of the target three-dimensional location and the three-dimensional target 

location with simultaneous measurements at a single time instance. 

Simultaneous magnetic field measurements can be expressed as 

ym = 
ml, 

ymh G(Au2j]m 
«i,l 
„lj CD 

where ymi is the three-dimensional magnetic field observation by Sensor i, Aut is the three- 

dimensional vector from the location of Sensor i to the target, m is the three-dimensional target 

magnetic vector moment, w. is the background magnetic noise, and G() is the matrix-valued 
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function defined by eqn. (4) in Section 2.2.2. Hence, it may be possible to obtain joint estimates 

of the target location and the target magnetic moment m from the six dimensional measurement 

ym. Figure 20 illustrates such data fusion. 

12 3 4 1 
Horizontal Distance -> 

Figure 20: Two-Sensor Magnetic Localization (Vertical) 

Figure 20 shows an example of the likelihood function within a vertical plane containing two 

sensor locations (on the bottom of the ocean). The scales are normalized by the sensor spacing, 

and the noise level is assumed to be 0.1 of the magnetic source signal level (SNR = 6dB). Figure 

21 shows the same likelihood function in a horizontal plane which contains the target. The 

sensors are not in the plane shown by Figure 21 (They are on the bottom). 
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Figure 21: Two-Sensor Magnetic Localization (Horizontal) 

Like Figure 20, the scales of Figure 21 are normalized by the sensor spacing. It is very 

interesting to see the non-Gaussian a posteriori distribution resulting from the magnetic field 

observation. The rather complex contours shown in Figures 20 and 21 indicate that the nonlinear 

problem to obtain a "good" estimate for the three-dimensional target location may not be easily 

solved. Depending on situations, a very powerful nonlinear, non-convex optimization technique 

may be required. 

This difficulty may be overcome by fusing data that are gathered temporally (time-series) or 

spatially (more sensor elements). A significant fact is, however, this multiple-sensor-element 

magnetic localization method does not require any coherent processing. However rather very 

small detection range makes only the intra-cluster data fusion possible. Since the three- 

dimensional localization is possible, the information is very useful for the inter-cluster, system- 

wise distributed data fusion. 
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4.2.4   Inter-Cluster Distributed Tracking 

In the earlier sections, it was shown that it is possible to configure a micro DADS sensor 

elements in such a way that they collectively form a set of current DADS sensor nodes with 

acoustic and magnetic arrays. As mentioned before, in order for this to be possible, we need 

wireless high-speed acoustic (or any other possible means) that enables coherent acoustic 

processing among adjacent sensor elements. In other words, it is possible to realize the current 

DADS sensor node functionality by a cluster of micro DADS sensor nodes, each of which has 

only a single acoustic sensor element and a single magnetic sensor element. 

In other words, a micro DADS concept may make a sensor cluster that may function as a single 

sensor node of the current DADS concept. If this concept is realizable, all the data fusion 

concepts and the system control concepts that have been developed up until now ([1] - [7]) can 

be realized by the micro DADS concept. Assuming the coherent acoustic signal processing is 

possible through high-speed communication, it may be possible to obtain two or three 

dimensional target localization at a single time, although from time to time, target localization 

may resemble bearing measurements rather than positional information. If this is accomplished, 

many diverse techniques for tracking and data fusion ([15] - [28]) can be applied. 

In particular, we should point out that a general solution to the multiple target tracking problem 

[30] and its extension to general distributed tracking problems [29] can be used to maintain 

optimality or near-optimality in distributed data fusion. 

In distributed tracking or data fusion, the following decisions must be made by each distributed 

sensor node: 

(1) Information Dissemination: Depending on information accumulated by each sensor 

node (cluster), when, to whom, and what information should be transmitted. The 

transmission frequency may be an important decision depending on the 

communication and processing capacity of adjacent sensor nodes. In addition, 

decision should be made, depending estimates of a target, as to which node should be 

communicated {e.g., the direction that the target moves). 
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(2) Distributed Data Fusion: In general, information sent from another sensor node 

(cluster) is aggregated information rather than raw data (measurements). Hence each 

node must be able to fuse local data and those foreign data to come up with local 

global information. Each node also must be able to remove informational redundancy 

if two sensor nodes repeatedly communicate to each other. If each node also 

communicates with some basic hypotheses, e.g., detection hypothesis, association 

hypothesis, etc., it is also necessary to maintain consistency by remembering the past 

informational states. 

(3) Situation Assessment: Since overall communication speed within the overall system 

may be limited because of use of acoustic communication, some urgent information 

must be propagated to external nodes through an RF gate with much higher priority 

than other usual communication. This means each node (cluster) should be able to 

form a situation assessment by itself, to disseminate such information to the external 

node as soon as possible. 

Distributed data fusion is also driven by target classification that can be performed, in large part, 

autonomously within a single (micro DADS) sensor node. That aspect will be discussed in the 

next section. 

4.3 Dynamic, Distributed, Hierarchical Classification Using Bayesian Networks 

4.3.1   Problem Statement 

Formally, classification seems a simple problem. The task is to compute a probability over a set 

of possible target types, T, given a set of observable data, e. Given P(ell), P(7), and a specific e* 

that is observed, one can simply compute: 

P(71e*) = P(e*)_1 P(e*\T) P(7) (8) 

More generally, if e can be broken into subsets as (e\,-,en) that are independent given T, we have 

?(T\e*) = P(e*)-1 P(ei*\T) ?(e2*\T)-P(en*\T) P(7) (9) 

While the above may be useful for dealing with multiple sensors, though, it does not solve 

several emerging problems: 
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1. Computational complexity of the above is linear in the number of possible target types. 

This makes dealing with large numbers of types difficult. 

2. Sensor evidence is rarely truly independent given target state. 

3. The simple type model above is inadequate for dealing with increasingly richly structured 

information about a type (e.g., modal information). 

4. The simple model above is inadequate for representing type-based temporal correlations 

(e.g. type-based behaviors) 

5. The above does not provide for distributed cooperative classification unless information 

from multiple platforms can be modeled as independent given the type. 

In this report we present an alternative formulation of classification as a dynamic, distributed, 

structured process. 

• Dynamic - we will propose dynamically managing the number of types under 

consideration. 

• Distributed - we will propose methods for multiple sensors to cooperate in classifying a 

platform in the presence of communication bandwidth limitations. 

• Structured - we will propose a structured, hierarchical representation to manage the 

increasingly complex information about platform types. 

Our proposal will be based on the use of Bayesian networks as a fundamental representational 

and communication element. A Bayesian network is a structured representation of probability 

information, especially useful for compactly representing information about large, highly 

structured domains. Use of Bayesian networks enables compact representation and efficient 

application of classification knowledge. 

We begin with a discussion of single-site classification in section 4.3.2. In section 4.3.3 we 

explore issues in distributing the classification process. 
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4.3.2   Local Classification 

4.3.2.1   Structuring Classification Knowledge for Representation and Application 

There is a wide variety of knowledge potentially applicable to the classification task. This 

knowledge is relevant through its direct or indirect effect on observables. We have identified 

four varieties of knowledge about platforms: 

• Knowledge of static physical characteristics 

• Knowledge of dynamics 

• Knowledge of operating modes (discrete parameters that, typically, induce correlations 

among physical characteristics) 

• Knowledge of behaviors (typical or important sequences of operating modes) 

Varying subsets of this knowledge may be relevant to differing classification tasks. We would 

like to represent this knowledge in a way that permits flexible application of only those parts 

needed. 

In addition to structure in the classification knowledge for a single platform, there is structure in 

our knowledge about the relationship among platforms. "Family tree" or hierarchical structures 

are useful both for representing similarities among platforms, and also for economy of reasoning 

- they can be used to rule in or out entire sub-families of platforms by considering only a single 

hypothesis. 

For the above reasons we propose a structured, hierarchical representation of classification 

knowledge. An example of such a representation is shown in Figure 22 below. 
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.5 Ktons 
Acoustics.. 
Magnetics 

38 Ktons 
Acoustics... 
Magnetics... 

18 Ktons 
Acoustics.. 
Magnetics. 

10.7 Ktons 
Acoustics... 
Magnetics... 

11 Ktons 
Acoustics... 
Magnetics... 

1.6 Ktons 
Acoustics.. 
Magnetics. 

.7 Ktons 
Acoustics.. 
Magnetics. 

11.6 Ktons 
Acoustics... 
Magnetics... 

Figure 22: Hierarchical Representation Of Classification Knowledge 

The above representation defines P(ell) for each of the leaf types in the hierarchy through the 

standard Object-Oriented programming language semantics of inheritance and overriding. 

Further details are beyond the scope of this document, see [34], [35] for more details. 

The left side of Figure 23 below shows how a typical platform model might look at the graphical 

level (the middle of the diagram is a simplified acoustic conduction path model, including very 

simple models of acoustic and magnetic sensors. As can be seen from this model, in this 

discussion we are focusing on modeling for classification, so traditional state vector elements 

such as position, needed for tracking, are not included. We propose accounting for correlations 

among sensors through a model based approach that directly represents the dependence of sensor 

information on underlying shared platform parameters. 
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^Configuration 

Figure 23: Simplified Typical Platform Model 

The overall complete classification model, combining the above two, then, is as follows at the 

graphical level (again, this is simplified, and does not account for platform existence uncertainty. 

See [34], [35] for more details): 

Figure 24: Sample Classification Tree for an Unknown Platform 

In this model platform classification information is found in the "... subtype" nodes. Once 

evidence is  asserted on the magnetic report and acoustic report nodes  (actually multi- 
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dimensional), posterior probabilities of the Platform Subtype and Submarine Subtype nodes can 

be computed using standard Bayesian network inference algorithms. 

4.3.2.2   Dynamic Classification 

The above is a useful convention for organizing, representing, and computing with classification 

knowledge. However, we believe it necessary to go further and dynamically manage the 

classification space in much the same way that trackers dynamically manage tracks and data 

associations. At any point in time current posterior about a target to be classified can be 

represented using only a subset of the classification hierarchy. An example is shown in Figure 24 

above. In that example, the platform in question is thought to be either a Russian Yankee-class or 

a Akula-class submarine. Sensors can provide evidence to one or more nodes in this hierarchy, 

depending on the characteristics affecting the sensor and where those characteristics are defined. 

The task of dynamic classification is to introduce and prune hypotheses as evidence arrives to 

keep the overall size of the hypothesis space small and the resulting computation efficient. 

There are many methods for hypothesis space management. One task in phase II will be to 

perform a detailed evaluation of a set of theoretically motivated and/or knowledge-based 

algorithms. As one example consider a simple top-down refinement algorithm: 

6. Instantiate root node of classification tree. 

7. Instantiate all children of any leaf node having probability greater than some refinement 

threshold, s. 

8. Compute posteriors for new leaves, and prune all with posterior probability below some 

threshold t. In subsequent loops, pruning back must be applied recursively up the tree. 

9. loop to step 2 as long as at least one leaf node has probability greater than refinement 

threshold s. 

The above procedure is repeated whenever new evidence arrives. The classification tree shown 

in Figure 24, is an example of an early stage of such a process. With appropriate choices of s and 

t the total number of classifications under consideration at any time will be ciog(N), where a is 
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the branching factor in the classification graph and N is the total number of classifications in the 

system. 

4.3.2.3   Multiple Targets 

This approach extends to multiple targets, but we defer discussion on this topic. Some issues 

include: 

• Target hypothesis space with two or more targets - discussion of the semantics of a 

multiple-target hypothesis space 

• Groups - another dimension of hierarchical classification (this isn't just a Yankee-stretch, 

it is also the mother ship to platform 2). 

• Extracting consistent global hypotheses from a hypothesis space. 

4.3.3   Distributed Classification 

We now turn our attention to the problem of two or more nodes cooperating to classify a 

platform. There are three levels at which cooperation might take place in the proposed Darwin 

architecture: (1) intra-node; (2) intra-cluster; (3) inter-cluster. The first is handled by our 

fragment-based modeling technology, which permits flexible, dynamic application of those 

model elements needed to relate platform models to models for relevant sensors. In this report 

we focus on the middle level, intra-cluster. Further, we focus on three central problems: what to 

communicate, when to communicate, and how. We further restrict our analysis in this report to 

singly connected communication architectures. 

4.3.3.1   Communication Contents 

What matters for classification is not evidence itself, but rather the impact of that evidence on 

potential platform classifications. We assume that this impact can be communicated more 

compactly than the raw sensor evidence itself (see Section 4.3.3.1.1). There are two elements to 

this impact: the sub-tree of the classification tree deemed relevant given the evidence (i.e., the set 

of leaf platform types being considered), and the likelihood distribution over that sub-tree. In 

order to enable fusion with remote evidence, we provide this likelihood over platform-model 

parameter space rather than over classification. 

41 



Unclassified 

Initial communication contents, then, include the initial classification tree for a platform, plus the 

likelihood distribution over the platform model elements in the tree (mass, velocity, depth, etc), 

given the initial evidence. The latter can be compactly transmitted using the techniques described 

below. Finally, we also propose transmitting an expected classification refinement schedule: a 

discrete schedule of the most likely way the classification will be refined over time, given 

expected local evidence. This schedule is useful in determining when subsequent transmissions 

are needed. Subsequent communications include changes to the classification tree for a platform, 

likelihood over platform models given previously transmitted evidence, and an updated expected 

refinement schedule. 

We have performed preliminary experiments on one proposed data compression scheme we term 

bandwidth agile situation dissemination. In this method, nodes communicate likelihoods over 

shared state, represented as network fragments. In this section we briefly report on the 

experiment we performed. We discuss the situation being modeled, the experiment designed, the 

data collected, and analyses of this data. 

Experiment scenario: In our experimental scenario there is one platform and two sensors. One 

sensor is magnetic, the second is acoustic, and the platform is observable by both sensors. Each 

sensor takes a single observation, and the acoustic sensor must then send information to the 

magnetic sensor, where fusion and classification occur. We show below the combined 

platform/sensor model used. Note that the information from the two sensors is highly correlated. 

Figure 25: Target-Sensor Model by Bayesian Network 
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Experiment Design: For experimental purposes we choose to send the likelihood, given evidence, 

over platform state from the acoustic node to the magnetic node. Since Magnetic Dipole is 

separated from the acoustic measurements by the other state variables, and therefore is 

independent of the acoustic evidence given the other state variables, the information to be 

communicated can be reduced to the joint likelihood over {Classification, Mode, Speed, Mass, 

Engine_Output}. We choose to discretize the state space for each variable. While it may seem 

that Mass, Speed, and Engine jOutput are more easily represented as continuous variables, we are 

particularly interested in studying approaches to handling large numbers of discrete parameters. 

We believe that as platform models scale to incorporate additional sensors and levels of platform 

modeling, discrete parameters will dominate. The domain for each parameter has 4 elements, so 

the total size of the likelihood over the five relevant platform state variables is 1024. The goal of 

this experiment is to explore the effect of compressing this data on the classification task. Data 

compression is performed by learning a low-order structured model of the likelihood. We study 

the tradeoffs by evaluating the quality of the fused classification for zeroth through fourth order 

models. Processing proceeds as follows. First, the acoustic node computes a compact 

representation of P(AcousticEvidence I PlatformState), where PlatformState is {Classification, 

Mode, Mass, Speed, EngineOutput} as discussed earlier. We use Bayesian network fragments to 

represent the likelihood, as shown in figures 26-29. Note that these can be arbitrarily accurate: a 

fully connected DAG (with its associated probability distributions) can exactly represent any 

probability or likelihood distribution over the associated set of variables. The magnetic node 

applies the magnetic sensor evidence to its platform model, and then attaches the network 

fragment representing the acoustic likelihood to its platform model. This attachment can be 

performed as follows: an arc is added from each platform state node in the original magnetic 

node platform model to the corresponding node in the network fragment received from the 

acoustic node. Following this integration of the acoustic likelihood network fragment, standard 

Bayes net inference can be used to recover the platform classification posterior. 
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-►MSpeed J Magnetic Sensor Node 
Classification Model 

Figure 26: Magnetic Sensor Node Classification Model with 2nd Order Acoustic Likelihood 
Fragment Attached 

Learning low-order models: We used the following procedure to learn a low-order likelihood 

model given the acoustic evidence: 

• Randomly sample the network to obtain a ground truth classification and measurement 

data. 

• Apply all evidence to a second copy of the network and compute the "true" fused 

classification posterior 

• Acoustic Node 

• Construct a simplified model in which all platform state variables have uniform 

(uninformative) priors. 

• Apply acoustic evidence 

• Query the joint over the platform state variables. 

• Sample this joint to construct a sample data set. For these experiments we took 10000 

samples 

• Use the sample dataset as input to a graphical (Bayesian Network) learning method, 

to construct a factored model of the joint distribution. We ran the learning method 5 
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times, restricting the maximum number of parents of any node to 0-4, to obtain 

variant models with different levels of complexity (size). 

• Magnetic Node 

• Construct a full classification model 

• Apply the magnetic evidence 

• Apply the factored likelihood distribution. 

• Query the fused classification posterior. 

• Final evaluation 

• Compute the Kullback-Leibler (KL) distance between the fused posterior and the 

reference ("true") fused posterior. 

We show below typical examples of network fragments of orders 0-3. The system did not find 

a 4th-order (4 parent) model that accounted for the data better than the last model shown. Further 

comments on the fragments will follow in the analysis section. 

'Model Qpeed) 

Engine Output 

Figure 27: 0-th Order (No Parent) Structural Model Of Acoustic Likelihood On State 
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(Speed) 

( Mass j Engine Output 

Figure 28:1st Order (1 Parent Max) Structural Model Of Acoustic Likelihood On State 

(speedj 

-fiftgine Output 

Figure 29: 2nd Order (2 Parent Max) Structural Model Of Acoustic Likelihood On State 

Figure 30: 3rd Order (Three Parent Max) Structural Model Of 
Acoustic Likelihood On State 

4.3.3.1.1    Experiment Results 

We collected data for 30 randomized trials. For each trial we recorded the following: 
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1. KL distance between the true (all data) classification posterior distribution and the 

posterior computed by combining the exact state likelihood from acoustic data with the 

magnetic sensor data. 

2. KL distance between the true posterior and the posterior using only the magnetic data 

3. KL distance between the true posterior and the posterior using only the acoustic data 

4. KL distance between the true posterior and the posterior using the magnetic data and the 

0th, 1st, 2nd, 3rd, and 4th order acoustic likelihood fragments 

5. the size (sum of the sizes of all distributions in) each fragment. 

The actual data collected are displayed in the Figures 31 to 33, showing the KL distance (in the 

linear and log scales) between the true posterior and the likelihood-fragment posterior as a 

function of the size of the fragment. 

Figure 31: KL Distance From True Posterior (Vertical) By Fragment Size (Horizontal) 
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Figure 32: KL Distance from True Posterior, with 0-th Order Distance Normalized to 1 
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Figure 33: Log KL Distance from True Posterior, With 0-th Order Distance 
Normalized To 1 

4.3.3.1.2   Discussion 

It is immediately obvious that the overall trend is that KL distance is reduced as we move to 

higher order fragments. It is less clear why the reduction plateaus rather quickly, and in some 

cases even reverses. We believe the explanation lies in the use of sampling to generate the 

dataset from which fragment learning occurs. The sample set is used as an approximate 

representation of the joint distribution to be modeled, so that various conditional independence 

and mutual information tests can be performed. It would have been better to use the exact joint 

distribution, as represented in the classification Bayes net available at the sensor node. However, 

implementations of Bayes net learning available all rely on sample data sets, and time was not 

available to modify one of them to work directly from a network representation. Future work 

should address this issue and confirm this hypothesis. A second possibility is that there was some 
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undetected discrepancy between the versions of the classification model used for the acoustic 

sensor, magnetic sensor, and ground truth. 

Not obvious from the above graphs, but visible in the data listed in the appendix, is that a similar 

order of magnitude reduction in KL distance occurred simply by fusing the zeroth-order acoustic 

likelihood with the magnetic model. 

4.3.3.2 Communication Timing 

We propose an intra-cluster communication protocol of: 

1. Communication on initial detection, as described above. 

2. Subsequent communication occurs when the cost of misclassification at a neighbor node 

exceeds the cost of communication. Assuming a classification cost matrix, expected 

misclassification cost is straightforward to compute given the available information 

(neighbor classification tree and likelihoods, and neighbor's knowledge of local expected 

classification refinement schedule, together with actual local classification refinement 

since last communication). Similarly, communication costs include power cost, 

bandwidth consumption cost (perhaps more crucial to inter-cluster rather than intra- 

cluster processing), and detection cost. Both of these costs will be heuristically estimated 

based on cost models to be developed in phase II. 

4.3.3.3 Communication Method 

Key to our design is a method for efficiently communicating large probability structures. An 

overall architecture for this communication is shown in the following figure. 
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Figure 34: Overall Communication Functional Architecture 
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5  CONCLUSIONS 

This final report summarizes the technical achievements made in the period of 1 July, 2001 to 15 

January, 2002, the period of the base funding of the Phase I STTR project, Autonomous 

Distributed System, to show the feasibility of the multiple-level distributed data fusion concepts 

using the distributed Bayesian network technology for the future DADS. As shown in Table 1 in 

Section 1, all the possible data fusion opportunities at every data fusion level were examined and 

difficulties involved in each data fusion concept was identified. The use of the distributed 

Bayesian network inference techniques were discussed as a general distributed data fusion 

method that can be applied to every data fusion concept that was shown in this report, and later, 

its details were discussed for a hierarchical target classification problem as an example. 

The following observations were made: 

1) Assuming that coherent acoustic processing across two neighboring mini DADS sensor 

nodes is possible, a well configured cluster of mini DADS sensor nodes may achieve the 

functionality of the linear acoustic array for each current DADS node. The communication 

requirement, particularly speed, must be further investigated. 

2) Without such coherent acoustic processing, target localization must rely on acoustic and 

magnetic detection distributions, and the Doppler tracking, which may produce only limited 

target localization accuracy. Comparison of target localization performance with and without 

coherent acoustic processing should be investigated. 

3) If the coherent acoustic processing is feasible, multiple-level data fusion can be performed 

with each mini-DADS sensor cluster functioning as a single current DADS sensor node. 

Tracking concepts that are currently used by the DADS, the Automated Track Before Detect 

(ATBD) and the Magnetic Matched Field Tracking (MMFT) algorithms, can then be applied, 

with minimum modifications. In addition, any other commonly used distributed tracking and 

classification algorithms may be applied to various degrees. 

4) Application of the distributed Bayesian network inferencing algorithm to future DADS data 

fusion can be readily applied to a hierarchical distributed target classification problem, as 
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well as distributed detection problems, using a combination of the Bayesian network 

fragment and the Bandwidth Agile Situation Dissemination techniques. However, practical 

application for target localization needs further study because of necessary discretization of 

the target state space. 

The technical focus for the Phase I efforts was set to target detection, tracking, and classification, 

as indicated above. However, there are needs for decision making algorithms for each level of 

distributed data fusion functions for the future DADS concepts. Examples may include: (1) 

detection decision at different levels (e.g., threshold control), (2) decisions concerning 

information dissemination at different levels, (3) signaling to neighboring nodes to indicate 

situations, in terms of alarming, warning, hand-over messages, (4) optimization of information 

routing to the RF gateway, and (5) communication and power consumption management. 

Those decision making problems, either distributed or centralized, can be formulated as 

influence diagrams that are decision-theoretic extensions of the Bayesian networks. One of the 

advantages of using the influence diagrams is their capability of clearing stating the problems in 

terms of each decision with respect to the information that is available when that decision is to be 

made. Techniques used to solve decision-making problems formulated as influence diagrams 

have significant similarity to those used for the Bayesian networks. The IET/OSU team is 

capable of contributing substantial expertise in this field that constitute potential Phase II efforts. 
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APPENDIX A: BAYESIAN NETWORKS 

A Bayesian network is a network of random variables and vectors. It is convenient to imbed the 

network structure to the index set / (a finite set) rather than the set {jt,-}fe/ of random vectors3, 

each xi defined on a Euclidean space Ei, for each i e I. We assume that the index set / is an 

acyclic directed graph, i.e., a partially ordered set without any cycle. 

Generally lack of relation between two nodes i, and i2 means that the two random vectors x, 

and JC,2 are independent. On the other hand, existence of an arc from a node z, to another node 

i2, graphically depicted  f x   j J xi  )  as indicates that the random vector  x.   is the 

"cause" of the random vector xt , or x{   is "determined by" xt .  This "causal" relationship is 

specified by a conditional probability density function P\xi be. j.   In general, we will use the 

symbol P both for conditional and unconditional probability density functions. If the random 

variable is absolutely continuous the density should be understood as being with respect to the 

Lebesgue measure, if it is discrete, with respect to the discrete measure, and otherwise with 

respect the appropriate hybrid measure. 

Any Bayesian network is an extension of a Markov chain for which the 

index set is a linearly (totally) ordered set, and hence, must satisfy JL 

certain Markovian properties.   The first property is the conditional I   ° J 

independence property.    For example, if a set of random vectors ^Jt       Jr        **^^ 

{jCj, x2, x3} is the successor of another random vector x0 as shown on I Xi J    \2 J    \ 3 J 

the right, then the successors {JC, , x2, x3} are assumed to be conditionally independent given the 

predecessor x0, i.e., P[x1 ,x2,x3\x0) = P{x1 \x0)P[x2\x0)P\x3\x0). 

The other property is a direct inheritance from Markov chains.   Consider a chain of random 

variables J xx  )—►{ x2 j—►( *3 ) ►  Then, given a node x2, the upstream and the down 

stream is independent,    i.e.,     P{xl,x3\x2)=P{xl\x2)P{x?i\x2),    or 

3 Let a random variable be a special case of a random vector. 
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equivalently, P(JC3 | JC,, x2) = P{x3 \x2). 

A probabilistic inference or estimation problem is specified when a subset Y = (x. ).e7, usually by 

a leaf subset I (i.e., each element i in 7 is maximal in /, or a leaf node), is given as observed 

data.    A general problem may be defined as the one for calculating the joint posterior4 

p((x,)feA7|F), or the one for calculating a marginal (joint) posterior P((.X.).6/-|F) where / is a 

subset of I\I. Since the concept for Bayesian networks was formally defined in 1980s, several 

algorithms to solve these problems have been devised. IET's Symbolic Probabilistic Inference 

(SPI) algorithm for solving conditional joint probability densities from any directed acyclic 

Bayesian network was developed by Dr. Bruce D'Ambrosio. Almost all multi-source fusion 

algorithms rely explicitly on probabilistic models and algorithms and so can be implemented as 

Bayesian networks. The SPI algorithm is one of only two general solution Bayesian network 

solution algorithms known, and it is now widely acknowledged to be the more powerful of the 

two algorithms discovered to date. Its polynomial basis approach makes it uniquely suited for 

incremental, anytime fusion algorithms, distributed and parallel processing for concurrent fusion 

of multiple observations, and, more generally, any modular approach to fusion of incrementally 

received observations. 

:'\" is the set subtraction operator, i.e., A\B = \ae A| a g B\, for any pair \A,B) of sets. 
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APPENDIX B: GENERALIZED LIKELIHOOD TEST: NEYMAN-PEARSON CRITERIA 

This appendix shows a method for applying the Neyman-Pearson method for target detection to 

the cases where the probability density function conditioned by the hypothesis to be tested 

cannot be calculated directly but only through a "state variable." 

Let y be the measurement that is modeled by a random vector model by 

y = h(x)+n (Bl) 

under the hypothesis Hl assuming that the signal y originated from a target at state x in a 

Euclidean target state space, but contaminated by a zero-mean Gaussian noise with covariance 

matrix R, where h(-) is a smooth enough function to avoid any anomaly. Under the null 

hypothesis H0 assuming the signal y is only the noise ns, we have y = ns. 

The likelihood ratio is defined as 

/ \   p(y\Hi) LW = M CB2, 

where P(y\) is the conditional probability density function of y.   Then the Neyman-Pearson 

Criteria is 

{conclude Hx (delare target detection)    if L(y) > L 

I conclude H0 (declare no target) otherwise 
1 - - ■ -■ (B3) 
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The threshold value L must be determined so that the false alarm probability is kept under a 

specified probability PFA as 

PFA=?vob{L{y)>L\H0} (B4) 

Since we have assumed that ns is a zero-mean Gaussian vector with covariance matrix R , we 

have 

/ \ def (   1 
p(y|//0)=g(y;/?) = det(2^?)-1/2expl-i//?-1v 

(B5) 

J 

On the other hand, depending on the functional form of the generally nonlinear function h in 

eqn. (Bl) and the a priori distribution of the state vector x, it is not so each to calculate 

P(y|H1).   This appendix is concerned with how to calculate P^Hj or how to approximate 

P(y|H,) in a practical way without too much compromise on the accuracy. 

When /'(yli/,) is approximated, we call the approximate likelihood ratio generalized likelihood 

ratio. 

Consider a state estimation problem, i.e., the problem of calculating the conditional probability 

density P{x\ y,Hx) of the state under condition Hx or assuming eqn. (Bl). Then under a certain 

condition, we can approximate this distribution by a Gaussian distribution as 

p(*|y,/*i)=sM(y>vM)=d^^ (B6) 
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with the approximate conditional mean E[x\ y,//,) = x(y) and the conditional covariance matrix 

E((x-E(x\y,H1)lx-E(x\y,Hj\y,H1)=V{y). 

Unless the function h in eqn. (Bl) is linear, the conditional mean x(y) and the conditional 

covariance V(y) cannot be determined analytically most of the cases. However, in almost all the 

cases, an estimate x(y) of some sort can be calculated and can be used as an approximation of 

the conditional mean E\x\ y,Hx). For example, one of the most used nonlinear estimate is the 

one commonly known as the least square estimate defined as 

x(y)e argmin{(y-/j(x))r# '(y-^x))} (B7) 

In particular, if the function  h  is inversible, then we have  y = h(x(y)).    The conditional 

covariance can be approximated by the Cramer-Rao Bound as 

dh,„ V 
v(yr = ^(*(y))  R-1 ^m) dx 

a/*/.. 
dx 

+ V 
(B8) 

where V is the a priori covariance matrix of the state variable x. 

Then consider a simple application of the Bayes rule 

, v    p(y\x,HMAHi)    g(y-h{x)\R)p{x) 
P{x\y^)= p(y\Hl)        = p(y\Hl) (B9) 
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where p(x) = P{x\ Hi) is the a priori probability density function for the state vector x. We 

should note eqn. (B9) holds for all the vectors x in the state space and all the vector y in the 

measurement space. So in particular, we let x = x(y) and use the approximation (B6). Then 

eqn. (B9) becomes 

#,)=-^i-*-«») (B10) 
g{0;V{y)) 

from which the likelihood ratio can be calculated as 

,M- IJy\H<) - g(y-h(x(y));R)   p(x{y)) 

Furthermore, if the function h is inversible and we have y = h(x(y)), eqn. (Bl 1) becomes 

L{y)= pWy))det(2^(3')r2exp(-(l/2)/Ä-1y) 

Using the decision rule (B3) and treating p(x(y))det\2xV(y)j as a constant in calculating the 

false alarm probability, the thresholding on the likelihood ratio by (B4) becomes equivalent to to 

than on the familiar x2 statistics as 

r def _ 

I. conclude Hx (delare target detection)    if x1 — yTR~Xy^-Z2 CB13) 

I [conclude H0 (declare no target) otherwise 
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Then the false alarm probability becomes PFA = Probj^2 >x2\H0\=l-Fm{%2), where Fm is the 

probability distribution function (i.e., the cumulative probability) of the chi-square distribution of 

degree m of freedom, with the dimension m of the measurement vector y , and the detection 

probability is given as a conditional probability as 

PD{x) = Probfc2 >J2| *,#,}= Prob{{h{x)+n)TR-}{h{x)+n)>z2} 
l 

-erfc 
( x1 -m-h{x)T R~lh{x)^ 

^(m+lhixf RAh{x)) (B14) 
5 

%2 = yTR ly becomes a non-centric chi-square random variable with degree m of freedom and 

noncentrality parameter h{xj R~xh{x) under hypothesis H1, or v = h(x)+n, and a given x. 

Consider now two independent sensor elements, ^ and s2, observing simultaneously the target 

state x as 

yi=hi{x)+ni (B15) 

for each ie {1,2}, under hypothesis Hx assuming that both sensor observes a single target. We 

assume that the observation noises i\ and n2 are independent zero-mean random vectors. Under 

the null hypothesis H0 assuming both sensors observe only noises, we have yi = n(, for each 

i e {1,2}. We exclude the possibility that sensor sx observes a target but not s2, or vice versa. 

For the definition of erfc, see the footnote in Section 4.1.1. 
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Since we have assumed the conditional independence P\yx,y2\x,Hx) = P{yx\x,Hx)P[y2\x,Hx), 

we have 

P(yl,y2\H1)    \p(yx\x,Hl)p{y2\x,H2)p{x\Hx)dx 

^U.yil^o) P(y^P(y2\H0) 
p{yx\Hx)  P(y2\Hx)    (P{x\yvHx)p(x\yx,Hx) (B16) 

PMHO) P(y2\H0)  J P(x\Hx) i dx 

This means that the each sensor, sx or s2, can exchange their likelihood ratio 

P[yx\Hx)/ P\yx\H0) to each other and each can calculate the joint likelihood ratio, 

P\yx,y2\Hx)lP{yx,y2\H0) as the product of the two likelihood ratios times an extra factor. 

Assuming each local a posteriori probability distribution density function P\x\ yxM\) can be 

approximated by a Gaussian distribution as in eqn. (B6), this extra factor can be calculated as 

f 
p(x\yx,Hx)p(x\yx,Hx) ^ 

p{AHJ       x 

= ?(*(y,,y2)r det(2^(y(y1)+y2(y2f
,/ 

1/. exp-l^yj-^^^lyj+y^y,))"1^^)-^)) 
(B17) 

where x(yt) and V(yt) is the conditional mean vector and the conditional covariance matrix of 

the target state x given observation y;. 

The global mean vector  x(yx,y2)  and the associated covariance matrix  V(yx,y2)  can be 

calculated as 
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v(y,y2r=v(y.r+v(y2y 
(B18) 

Eqns. (B16) - (B18) provide us with a basis for a distributed detection and state estimation 

(localization and tracking) method. This approach requires each node to communicate the 

likelihood ratio as well as the conditional probability distributions conditioned by local 

measurements, which are in most practical cases mean vectors and error covariance matrices 

using Gaussian approximation. By exchanging the local statistics, the global posterior can be 

calculated by eqn. (B18). 

This integrated target detection and state estimation method requires communication of the mean 

vectors x(yt) and the estimation error covariance matrix V(yt).    From the point of view of 

communication requirement, this method, as generally referred to as state fusion, or estimate 

fusion, is considered "superior" to a more direct data fusion method in which local measurement 

y. is exchanged, as generally referred to as measurement fusion.  Needless to say, when local 

measurements are exchanges, the target detection and state estimation can be done in a central 

processing manner as if the global measurements are local for each sensor.    However, 

communication using  (*(yr-),V(y,)j may be always desirable since it can be considered as 

communication using a global frame.   In case the dimension of the measurement vector y;. is 

small, or in other words, not enough local data have not accumulated, either communication 

should be on hold for a while to accumulate more local measurements, or simply communication 

load under its capacity is not sensitive to communication cost. 
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APPENDIX C: BANDWIDTH AGILE SITUATION DISSEMINATION 

Suppose we have a group of agents who reason by Bayesian inference and communicate about a 

dynamic, ongoing situation. Assume that their communication links have low or variable 

bandwidth. How should they communicate so as to get as much of the most important 

information to where its needed as fast as possible? 

The solution we propose requires agents to choose a set of nodes about which they will 

communicate and then requires each agent use a learning algorithm to find a Bayes net which 

represents its posterior joint distribution on those nodes. The messages agents send each other 

represent changes to this learned Bayes net. To determine what messages to send, an agent 

relearns the learned net, so that it incorporates new evidence and information passed to it by 

other agents, and then compares the relearned net to a net, called the link net, representing the 

sender's understanding of the receiver's current belief state. This comparison yields a set of 

change messages which collectively describe a way to transform the link net into the learned net. 

Each change message describes either a topological change or a modification of a conditional 

probability table sent as a vector of likelihood ratios. The sender sorts these change messages by 

importance/urgency and starts sending them. As each message is sent, it is also used to update 

the link net. 

While this method has not been implemented, there is reason to believe that it will communicate 

the important information while using bandwidth very sparingly. However, the manner in which 

messages are formed appears to preclude use of pedigree to prevent double-counting. Thus its 

use may be limited to either singly connected networks or multiply connected networks, which 

simulate singly connected ones. Also, there are some open questions which an implementation 

would have to answer, notably the learning algorithm and a suitable heuristic to represent 

importance and/or urgency. 

C.l. Introduction 

Consider multiple agents looking at a scene and building a shared interpretation of their 

observations. In exploring this problem, we start from the following assumptions: 
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1. An "interpretation" is a Bayesian network model of hypothesized world elements that 

gave rise to the observations (directly or indirectly) and their relationship to those 

observations. These elements may be physical entities, activities, plans or intentions 

attributable to agents (entities capable of plans or intentions), etc. 

2. Not all elements of this global world model are of equal interest to every participating 

agent. Specifically, we assume some subset of the world model is of interest to each 

agent, and that these subsets overlap. 

3. Communication between agents is very low bandwidth compared to internal 

processing capacity of an agent. 

In this context, how shall agents utilize available communications bandwidth to efficiently 

converge to an accurate shared world model? By "accurate," we mean close in some sense to the 

model that would have been constructed by a single agent considering all the evidence. 

We begin with the following commitments: 

1. Agents exchange information intended to convey the impact of information available 

only to the sender on beliefs currently held by the receiver. 

2. The most efficient way to encode beliefs is as Bayesian networks. 

3. In dynamic situations, an efficient way to communicate changes in belief is as 

likelihoods on elements of an induced Bayes net over shared variables of interest. 

4. Bandwidth utilization can be optimized by ordering change messages and sending 

highest impact messages first. 

In this method, the sender of a message pools all information it has, regardless of whether that 

information originated locally or was sent by another agent, into a single Bayes net representing 

the joint distribution over a set of nodes of interest to some receiver. That Bayes net is compared 

to the another one representing what the sender believes the receiver knows, and the most 

important difference is selected as the first message to send to the receiver.   In this way, the 
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sender can forward the relevant information sent by many agents without the required bandwidth 

scaling as the number of agents involved. 

To avoid ambiguity, we will use the terms "net" and "network" as follows: a "net" is a Bayes net, 

and a "network" a communication network. Moreover, a net is composed of "nodes" connected 

by "edges", whereas a network is composed of "agents" connected by communication "links". 

C.2. Distillation: Sending Changes to a Joint Distribution 

There is one basic set of operations at the core of this technique, and that is the communication 

of a change to a joint distribution from one agent to another. This section describes these 

operations, which we will collectively call "distillation". All other issues, including bi- 

directional communication, networks of more than two agents, and initialization will be deferred 

until the next section. 

We will assume that the transmitting agent (T) knows a joint distribution over some collection of 

random variables and has communicated some approximation to it to the receiving agent (R). 

We will expect the given joint distribution to change over time. We will not assume that this 

given joint distribution is presented to T in a Bayes-net representation, but rather as an oracle 

which can answer queries about probabilities of (partial) instantiations. (When we use this 

technique in the next section, the collection will be a subset, probably disconnected, of the nodes 

of a Bayes net.) A single message T sends to R may communicate a change to T's given joint 

distribution, an improvement to R's approximation, or both. 

T maintains two Bayes nets, the "learned net" and the "sync net", each of which represents an 

approximation to the given joint distribution. R maintains its approximation to the given joint 

distribution in a Bayes net called the "received net". The learned net is normally a better 

approximation to the given joint distribution than the sync net, and the sync net is kept identical 

to the received net. 

The learned net is maintained by an incremental learning algorithm which attempts to improve 

its agreement with the given joint distribution. Unlike a conventional Bayes net learning 

algorithm, which uses a sample of instantiations as input, this learning algorithm must work from 

the probabilities of (partial) instantiations under the given joint distribution.   Further, it must 
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choose which probabilities to calculate, and when the given joint distribution changes, it will 

need to propagate those changes quickly into the learned net. We have not yet considered what a 

suitable algorithm would be; perhaps it can be a version of the structural EM algorithm. Also, it 

may be possible that the appropriate way to "learn" the right net is to condense the full (shared + 

private) net, and that a modification of SPI procedures (see Appendix B) will do this readily. 

This use of learning is perhaps the fundamental innovation of this approach. 

The messages T sends to R are calculated by comparing the learned net to the sync net. This 

comparison is done in a way that, like the Unix "diff" command, yields a set of changes which 

will transform the sync net into a copy of the learned net. One of these changes is selected as 

being most important or most urgent; this change is the message T sends to R. When the 

message is received, R makes the specified change to the received net, and as soon as the 

message is sent (or acknowledged), T makes this same change to the sync net. Thus, the sync 

net and the received net are kept consistent. After one or a few messages have been sent, future 

messages are chosen by comparing the possibly updated learned net to the updated sync net. It 

may not be necessary to redo the entire comparison. 

Each change message is either a topological change or a table change. A topological change has 

the form "add (or delete) an edge from this node to that one". They are needed because 

conditional independence in the given joint distribution can change when the given joint 

distribution changes, and because the learning algorithm is searching for the best topology to use. 

A topological change message does not include a conditional probability table (CPT); instead 

when it is applied to a net, the CPT for the child node is built by duplicating rows if the edge is 

added and marginalizing out the dependency if the edge is deleted. We anticipate that a 

topological changes will be rare compared to table changes. 

A table change has the form "multiply these elements of this CPT by these numbers". After such 

a multiplication, the affected rows of the CPT will usually need to be renormalized. We intend 

to send likelihood ratios rather than probabilities, because we expect likelihood ratios to 

compress better than probabilities and to simplify the multiple-agent case described in the next 

section. The set of table elements changed may be a product set, so that it can be specified in a 

compact form and so that there is a natural order in which to list the likelihood ratios. There are 
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a number of details left unspecified in this description and many ways to fill them in. The 

heuristic used to select a change message attempts to choose the most important message. 

Because we do not assume that T knows R's utility function, we cannot use a maximum expected 

utility (MEU) criterion. Thus we would like to choose the message which maximizes the 

decrease in relative entropy between the given joint distribution and the updated received net, 

essentially using the negative of this relative entropy as a generic utility function. However, 

relative entropy is too expensive to compute, so we will use a heuristic which can be calculated 

locally and which approximates changes in relative entropy. 

Note that there are dependencies between table and topological changes - a table change may 

depend on being applied after a topological change, and may change a row of a table that doesn't 

exist before the topological change is applied. For this reason, to make the comparison step 

easier, and because we expect topological change messages to be short, we will probably 

compose the table change messages as if all topological changes have already occurred. Then the 

heuristic only needs to be able to compare table changes, and we can send each topological 

change immediately before the first table change message which depends on it. 

The operations which comprise distillation -- learning, comparison, and selection — can proceed 

simultaneously and in parallel, except for some critical sections involving moving data between 

these threads. Unless the learned net represents the given joint distribution exactly, the learned 

net is continually, iteratively improved. Unless the sync net is identical to the learned net, the 

two are compared and the best change message is selected, sent, and applied to the sync net. It is 

not yet clear how closely coupled comparison and selection must be. In this vein, it should be 

noted that a change message is applied to the sync net as soon as it is sent and to the received net 

as soon as it is received. This is illustrated in figure Cl. We further assume that evidence arrival 

proceeds in parallel and independently (as will model construction, a complication we will add in 

section C.5). 
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Figure Cl: Distillation: Sending Changes to a Joint Distribution 

C.3. Architecture for Simply-Connected Communication Networks 

Now that we know how to send changes to a joint distribution, we can describe how to maintain 

a Bayes net which is distributed among a network of agents. The agent network (AN) will be an 

undirected, simply-connected graph, in which each node is an agent and each edge is a bi- 

directional communication link. Any agent may introduce information (i.e. evidence) to the 

system. The messages sent over these links will be computed and chosen by distillation. Each 

agent in the network will maintain a Bayes net which is a fragment of the network-wide Bayes 

net. For each agent, this net will include some private nodes (the "private portion") and, for each 

of its neighbors, a set of nodes shared with that neighbor (the link's "shared set"). The various 

links' shared sets may overlap. We will call their union the agent's "shared portion". For now, 

we will require that every parent of a shared node is also shared, because this restriction makes 

analysis easier. It is probably not required. Note that a link's shared set, or an agent's shared 

portion, is not a Bayes net. Although any Bayes-net edges between shared nodes will be known 

to all agents with whom those nodes are shared, these edges cannot be assumed to represent the 

joint distribution on the shared set. We will also require that if two agents have an instance of 

the same node, that node is shared over every link connecting the agents. 

Sending messages is a straightforward use of distillation as described in the previous section, 

with one subtlety to which we will return. An agent's Bayes net will induce a posterior joint 

distribution on a shared set, and we take that joint distribution as the given joint distribution. 
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That is, each link is used to communicate changes to that posterior joint distribution, restricted to 

over that link's shared set. From there we do the learning, comparison, and selection as before; 

each link has its own learned net and sync net. Making use of incoming information requires a 

new operation which we will call merging. We take the entire shared portion of an agent's net 

and attach a Bayes net topology to it by including the links in the original (i.e. prior) net and all 

links in all of the received nets. We will call this the shared-joint Bayes net (SJBN). To ensure 

that the SJBN is acyclic, we will impose a global order on the nodes and use it to constrain the 

learning algorithm. Whenever a table-change message arrives over a given link, we apply it to 

both the received net for that link and the SJBN. Clearly, when the received nets' topologies 

differ, the table-change messages will need some generalization, such as replicating the effects 

across several rows. Whenever a topological change message arrives, we apply it to the 

appropriate received net and, unless another received net's contribution to the SJBN topology 

interferes, to the SJBN. 

It is possible for the SJBN to be intractable even though all of the received nets are tractable. If 

this is the case, we will copy it, use existing algorithms to remove unimportant edges from the 

copy, and use the copy in lieu of the SJBN6. 

We will now splice the SJBN into the agent's Bayes net in place of the shared portion. Every arc 

from a shared node to a private node can be replaced with an arc from the corresponding node in 

the SJBN. (There are no arcs from private nodes to shared nodes because we required all parents 

of shared nodes to be shared. If we allow such arcs, we will need a method of reconciling the 

effect of a parent node's state on a shared child node for which the SJBN contains only a 

marginal. 

We are essentially using the SJBN as if it were the prior for the shared portion, thus 

incorporating all information sent to us. We incorporate local evidence by applying it directly to 

the appropriate nodes, whether they are shared or private. The result of this splicing is a Bayes 

net which includes all the information the agent knows.  In essence, we have reached our goal; 

6 Uffe Kjaerulff, "Approximation of Bayesian Networks through Edge Removals", IR-93-2007, August 
93. 
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the agent can now query the spliced net or use it to make decisions. We will use the term 

"condensation" for the procedure just described for constructing the SJBN and splicing it onto 

the private portion, and we will call the resulting Bayes net the "spliced net". 

The spliced net also provides the oracle needed by the learning algorithm. Queries formed by 

the learning algorithm can be answered by applying standard Bayes net inference to the spliced 

net. This provides the information about the posterior joint distribution on shared sets which 

feeds the distillation of outbound messages. 

The subtlety mentioned above has to do with bi-directional communication and double-counting. 

We must ensure that we distinguish between information that is new to an agent and information 

that agent has already seen. Because we have assumed that the agent network is simply 

connected, we can do this by ensuring that an agent does not send information back to the 

neighbor from whom that information was learned. 

When we compare the learned net to our sync net for a link, we remove the information we have 

sent over that link from messages we may send. We also need to remove the information we 

have received via that link, which we have accumulated in our corresponding received net. In 

fact, both the sync and received nets contain information that we know the receiver already 

knows, and there is no reason to keep them distinct. Thus we will use one net for both roles, and 

we will call it the "link net". That is, when a message passes from one agent to another, both 

agents will apply it to their respective link nets. Thus the two link nets will be kept in agreement 

with each other. Moreover, each agent's link net will contain all the information that it knows 

that the other knows -- i.e. its understanding of the others beliefe state. 
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Figure C2: Architecture for Simply-Connected Communication Networks 

The operations associated with sending a message over a link from T to R are distillation and 

condensation, shown in figure C2. T uses the components of distillation, each running 

asynchronously: the learning algorithm to improve its learned net for the link; comparison of its 

learned net to its link net for the link to produce a list of candidate changes; and selection to 

choose the most important or urgent of these changes. Then applies this message to its link net 

and sends it to R. R applies the message to both its link net and condenses it to update its SJBN 

and spliced net. 

An example of this is in order. Suppose agents A and B have a communication link between 

them and share a root node with states (T, F). Assume that A's link net has a distribution of (.5, 
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.5) for this node. If B sends a table change message "Multiply the second entry by 0.25", A 

applies this message to get a table of (.5, .125), which normalizes to (.8, .2). Now suppose A 

generates a new learned net with table (.75, .25). Comparison might produce the message 

"Multiply the entries by .8/.75 and .25/.5 respectively." If A sends this message, it will perform 

these multiplications on its link net to get the table (.75, .25). Because B's link net started 

identical to A's and it makes the same changes to its link net at about the same times, the two link 

nets end up identical. 

C.4. Properties 

The purpose of this algorithm is to disseminate a situation model in a way that makes optimal 

use of the available bandwidth. Any algorithm which disseminates a model should have these 

two properties. First, if the evidence pattern is static, the algorithm eventually stops sending 

messages. We will say that a method which does this "converges". Second, it should allow 

agents to infer answers to queries about those parts of the model they care about, and if the 

evidence pattern is static, it should eventually yield answers to such queries which are identical 

to those yielded if the agent had the entire model and all the evidence. We will say that such a 

method "informs". This section will conclude that the distillation and condensation algorithm 

informs and converges if the learning algorithm is adequate. 

Convergence is a local property which need only be addressed for a single link. If a network has 

many agents and links but is simply connected, we can select a link and collapse the portion of 

the network on each side of the link down to a single large node. (In doing so, we are assuming 

that the method informs.) 

Assuming the learning algorithm converges, it should be clear that the one-way transmission of a 

joint distribution converges. That two-way transmission converges is less obvious because there 

is feedback, so oscillation might be possible. Suppose our network has nodes A and B, and that 

A has no information to send. That is, A's learned net is identical to its link net and exactly 

represents the posterior shared joint distribution given its SJBN and evidence. The link net is 

then the SJBN multiplied by the likelihood ratios for the local evidence. (Note that A's private 

portion might as well consist of a single soft-evidence node.) Suppose A gets a message from B. 

This message will consist of another set of likelihood ratios, and when we apply it to A's link net 
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and its SJBN, we are multiplying them both by these likelihood ratios. So if we compute the 

posterior shared joint distribution given the new SJBN, we will find that it is exactly represented 

by the new link net, and A still has nothing to send. This suggests that there will be convergence 

and not oscillation. 

In order to show that distillation and condensation informs, we will collapse the network-wide 

Bayes net down until it looks like the agent network. Collapse each link's shared set to a single 

node, which we will call a link node. Collapse each agent's net (private portion and shared 

portion) of the agent's Bayes net to a single node, which we will call an agent node. When a 

node is in the intersection of two or more of an agent's shared sets, treat each of the shared sets as 

if it contained a copy node and add a soft-evidence node to the agent's private portion to keep the 

copies in agreement. The link nodes will be the root nodes, and the agent node that comes from 

each agent will be the child of the link nodes for all the links connected to that agent. The 

resulting Bayes net is called the collapsed net. This construction is why we required that parents 

of shared nodes be shared. There does not seem to be an analogous construction for the situation 

we get if we remove this restriction ~ unless it's an undirected graphical model. In addition, this 

requirement plays a role similar to normalizing the graph in junction-tree construction. 

If we do inference on the collapsed net, we will notice that the messages travelling from agent 

node to link node (lambda, or upward, messages) consist of likelihood ratios and the messages 

travelling the other way (pi, or downward, messages) consist of marginals. Note that all our 

table change messages are likelihood ratios, so the cumulative effect of any number of them must 

also be a likelihood ratio. In essence, the messages we send are decomposed versions of the 

lambda messages. The pi messages are sent internally to the agents when we use the SJBN in 

local queries, including those made by the learning algorithm. In fact, except for the order in 

which the messages travel, the operations we describe are simply an incremental implementation 

of message-passing for this network. 

And message passing has been shown to work correctly. A proof is given in which the nodes 

send messages whenever they have something to send, just as our agents do here. Thus we can 

conclude that distillation and condensation inform, assuming that the learning algorithm 

eventually converges to an exact representation of the posterior distribution on the SJBN. 
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C.5. Letting the Net Change 

Now we will add one more complication: we will allow the net topology and the shared sets to 

change, and we will allow any agent to introduce these changes agent. Such changes are 

necessary if the Bayes net is used to evaluate hypotheses which are being generated dynamically 

by a separate process, such as an expert system or a marker passing system, operating on the 

same evidence. 

We will assume that only a finite possible set of node types may be added, and that all agents 

know the semantics and prior CPTs for all of these types. Then we need to define the initial 

configuration of the net and the shared sets (e.g. empty) and define the messages to add nodes to, 

and delete them from, shared sets. 

Recall that, to ensure that the SJBN is acyclic, we required a global order on the nodes. If the 

global Bayes net is fixed, or is a dynamically selected subset of a fixed net, maintaining a global 

order is straightforward. But if, as just described, we have a fixed set of node types and allow 

agents to instantiate nodes of these types, a preassigned order won't work. Nodes could be 

ordered primarily by type, and nodes of the same type could be ordered by timestamps. Ties 

between timestamps could be resolved by an ordering on the agents. If a node is instantiated 

independently by two agents, it will have two timestamps and hence two places in the global 

order. A method is needed for choosing one of them, e.g. take the earlier timestamp. 

Two other problems are created by the possibility that a node can be instantiated by two agents 

independently. One is that of maintaining the junction tree property. It seems that we must 

choose between globally distributed messages announcing instantiations -- which would scale 

poorly — and giving up the property. There may be another option, such as locally distributed 

announcement messages. 

The other problem is recognizing that two independently instantiated nodes are the same thing 

and should be combined. When agents instantiate nodes by type, the nodes are identified by 

their type and by one or more designators. A designator identifies some entity about which we 

are reasoning, and each node represents a facet of that entity, such as its existence or activity. If 

the designators match — say two nodes already share a hypothesis that entity X exists and 

independently a node representing entity X's behavior -- there is no problem in recognizing that 
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nodes are the same. The problem is one of recognizing when designators generated by two 

different agents refer to the same entity, and it is probably not resolvable by any bookkeeping 

method. Because it involves reconciling different partial views of the same situation, the 

problem will probably require reasoning about association hypotheses. The fact that the model is 

distributed does not cause the problem, but may exacerbate it. 

C.6. Multiply-Connected Agent Networks 

Most communications networks are multiply connected, in part because they cannot be 

disconnected by the failure of a single link and in part because adding parallel links is a natural 

way to increase bandwidth. Thus the requirement that the agent network be simply connected 

seriously limits the usefulness of distillation and condensation. This requirement arises because 

the manner in which we chose to avoid double-counting evidence — don't send information back 

to the node that sent it — is insufficient if the network contains loops. Extending distillation and 

condensation to a multiply connected network requires us to rethink the relationship between 

message transmission and double-counting. We haven't yet found a satisfactory extension, 

though we have three pieces, which seem promising and relevant. These are: putting a 

networking layer between distillation and condensation and the physical communication links; 

organizing the network into clusters; and using a multicast version of distillation and 

condensation within the clusters. 

There is no inherent reason for distillation to be in direct control of the communication links. 

We can put another process, a "networking layer", in direct control of the links and have it do 

conventional networking tasks such as forwarding, routing, and duplicate rejection. It can then 

provide distillation and condensation with virtual links. The agents' networking layers can 

simulate any desired topology, which lets us separate reasoning from logistics. However, we 

can't separate them completely — if the virtual topology is too different from the physical 

topology, bandwidth use will increase dramatically. It is doubtful that simulating a singly 

connected network would give good performance. 

Another idea is to organize the network into clusters. We would choose our clusters so that 

agents within a cluster are closely linked physically, and we would treat intra-cluster and inter- 

cluster communication separately.   We could reasonably hope that many shared nodes would 
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only be shared locally, within a cluster. This idea is probably a good one, but it alone is not a 

complete solution to the problem of generalizing distillation and condensation. 

One way we might do clustering would be to construct a clique tree for the agent network. 

Messages would be passed between cliques by a version of distillation and condensation in 

which one agent speaks for the whole clique. In the event that there are several paths between the 

same pair of cliques (i.e. several parallel links in the agent network that are fused into a single 

link in the clique tree), we would need some coordination to prevent the sending of duplicate 

messages. Agents within each clique could use a separate protocol, perhaps a multicast 

adaptation of distillation and condensation. This approach turns out to have problems. The main 

one is that it requires sending data over pseudo links added during triangulation. Consider an 

agent network in the form of a single large loop. Triangulation necessarily adds links across the 

middle and then constructs cliques containing agents at either end of them. Because the method 

assumes communication within a clique is relatively easy, traffic on these pseudo links may be 

high. Pseudo links must be simulated using the physical ones, which may be arbitrarily 

expensive. Any clustering procedure that produces a singly connected network of clusters is 

probably inappropriate for some real communication networks . 

There is a straightforward extension of distillation and condensation, which uses multicast 

messages. In it, each agent will treat the remainder of the network as a single agent to which it is 

connected by a single link. The agents' networking layers multicast all messages generated by 

distillation - i.e. send them to all other agents. There will be a single network-wide shared set, 

and each agent needs only a single link net. Each agent integrates incoming messages without 

regard to which agent sent them. 

This multicast method will communicate information in a way that allows valid inferences, but it 

throws out the main benefits of distillation and condensation. The total number of messages will 

scale as the number of nodes, and all messages will get to all nodes, so each node's workload 

scales linearly with network size.   If the network is sparsely connected, the traffic through a 

7 Also, we have yet to propose a method of doing this that works. The primary obstacle lies in describing 
what happens at the boundary of cliques. 
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bottleneck will scale linearly with the network size. Moreover, we are forced to share all 

messages globally, even though they may only be needed on one side of the bottleneck. 

It can, however, be used in clusters within a larger network. There are many ways clusters can 

be put together; we will describe a two-level hierarchy, with a multicast network of clusters, each 

of which uses multicast internally. Each cluster has a local shared set, all of which contain the 

global shared set. Messages are similarly classified as local or global, with local messages being 

broadcast only within the cluster and global messages being sent to all agents. Above the 

networking layer, each agent acts as if it has two links: one to the rest of its cluster, and one to 

the rest of the network8. 

This can be extended to a tree of arbitrary depth, in which the leaves are agents and the cluster at 

each level has is one of several nested in the cluster at its parent level. (Note that this is a tree of 

a very different type from a clique tree.) The workload for each agent scales N log(d), where N 

is the branching rate of the tree, and d is the number of levels. And, because the clusters may be 

chosen arbitrarily, information need only be sent where it is needed. Note also that clusters need 

not be connected if the networking layer is set up to do routing. This is currently the best 

candidate for a generalization of distillation and condensation to multiply connected networks, 

but it is clear that there are many possibilities left to explore9. 

8 It's almost a multicast triangle, but "the rest of the network" doesn't get all the messages, and doesn't 
share all the nodes. 
9 This raises a few questions: How can we combine simply-connected clusters with multicast clusters? 
Can multicast clusters overlap? Is there any problem with using the simply-connected method, and 
collapsing loops to multicast clusters? 
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provide us with powerful yet rather intuitive methods for modeling complex probabilistic 

systems, and particularly, enable us to express causal relationships explicitly. IET and Oregon 

State University have developed a unique and powerful set of algorithms, called the Symbolic 

Probabilistic Inferencing (SPI) algorithms that effectively solves inference and estimation 

problems formulated using Bayesian Networks. 

Table 1: Distributed Data Fusion Levels for Future DADS 
Future DADS 

Distributed Data Acoustic Sensor Magnetic Sensor Acoustic-Magnetic 
Fusion Level Fusion 

Level 1: Intra- Detection Range Detection Range Acoustic/Magnetic 
Sensor Node (Range/Source SP) (4.1.3) Detection Fusion 
Data Fusion (4.1.1.) Estimation on Manifold (4.1.5) 
(3.1) Doppler Frequency in Source Magnet / Acoustic/Magnetic 

Tracking (Temporal Target Location Space Temporal Integration 
Integration) (4.2.2) Temporal Integration 
Target Classification 
Based on Acoustic 
Signature (4.3) 

Level 2: Inter- Multiple-Sensor Multiple-Sensor Multiple-Sensor 
Sensor, Intra- Acoustic Detection Magnetic Detection Detection Fusion 
Cluster Data (4.1.2) (4.1.4) (4.1.5) 
Fusion TDOA measurements Multiple-Sensor Acoustic/Magnetic 
(3.2) by Coherent Processing Magnetic Localization Localization Fusion 

(4.2.1) (4.2.3) Acoustic/Magnetic 
Multiple TDOA Magnetic Target Classification Fusion 
Localization (4.2.1) Classification (4.3) 
Multi-Sensor Doppler 
Tracking (4.2.2) 
Multi-Sensor Target 
Classification Fusion 
(4.3) 

Level 3: Inter- Multiple-Sensor Distribut ed Tracking and Classifica tion (4.2.4) 
Cluster, System- Information Relay to Surf ace RF Gateway 
Wide Data Data Fusion in Transit: A arming, Warning, and Hai id-Over 
Fusion System-Wide Resource ]V anagement: Power Consu mption Management and 
(3.2) Control, Threshold Contrc )1 

The solution techniques developed through the Phase I efforts are described in Sections 2 to 4, as 

outlined in Table 1. The last section, Section 5, will describe conclusions and recommendations 

towards the further development of the Bayesian Network based data fusion concepts for the 

future DADS. 


