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Preface 

This book is a collection of selected reviewed papers that were presented at the International 
Union of Theoretical and Applied Mechanics Symposium "Mechanical waves for composite 
structures characterization". The Symposium took place June 14-17, 2000 in Chania, Crete, 
Greece. As is customary, IUTAM Symposia Proceedings are published in the series "Solid 
Mechanics and Its Applications" by Kluwer Academic Publishers. I am indebted to Professor G. 
M. L. Gladwell who is the series editor. I would also like to take this opportunity to express my 
sincere gratitude to Professor M. A. Hayes the Secretary General of the International Union of 
Theoretical and Applied Mechanics and a member of the Symposium's Scientific Committee. His 
constant encouragement and support made the Symposium not only possible but also successful. 
To the success also contributed all the members of the Symposium's Scientific Committee which 
I had the honor to chair. I express my appreciation to each one of them who are: Professor J. D. 
Achenbach (Northwestern University, Evanston, Illinois, USA), Professor M. A. Hayes 
(University College, Dublin, Ireland), Professor K. J. Langenberg (University of Kassel, 
Germany), Professor A. K. Mai (University of California, Los Angeles, USA), Professor X. 
Markenscoff (University of California, San Diego, USA), Professor S. Nair (Illinois Institute of 
Technology, Chicago, USA), Professor R. W. Ogden (University of Glasgow, UK), Professor G. 
J. Quentin (University of Paris, France), and Professor F. Ziegler (Technical University of 
Vienna, Austria). Finally, the financial support of Unesco, Iutam, and the US Army Research 
Laboratory-Europe Office is gratefully acknowledged. 

The Symposium covered a wide variety of areas and subjects that fall under its title-theme. As the 
symposium theme is interdisciplinary in nature, participants were invited from diverse fields such 
as Applied Mathematics, Applied Physics, Biomedical Engineering, Civil Engineering, Electrical 
Engineering, Fluid and Solid Mechanics, Materials Engineering, Mechanical Engineering, and 
Seismology. The symposium covered analytical, computational, numerical, theoretical and 
experimental aspects from state-of-the-art fundamental research to applied research and 
applications in emerging technologies. The topics include body waves, elastic waves, guided 
waves, inhomogeneous waves, rays, surface waves, and ultrasound in composite materials which 
are fiber-reinforced, laminated, or homogeneous containing bonds, coatings, cracks, defects, or 
thin films. The symposium participants who represented four continents are here acknowledged. 
As mentioned above, however, only selected reviewed papers from the ones presented in the 
Symposium are included in this volume. These papers are placed in five thematic categories and 
presented in the volume sequentially: The first category includes two papers that deal with waves 
or rays from localized/plastic sources in layered media. In the second category five papers deal 
explicitly with discontinuities (e. g. dislocations, cracks). Two papers make up the third category 
in which experimental investigations are of primary interest. The fourth category includes three 
papers that concentrate on waves in multilayered structures. Finally, two papers are included in 
the fifth category dealing exclusively with elastic waves and interfaces. I cannot close without 
thanking each one of the authors that made this volume possible. 

Dimitrios A. Sotiropoulos 
Marietta, Georgia, USA 



ELASTIC WAVES FROM LOCALIZED SOURCES IN COMPOSITE LAMINATES 

AJITMAL 
Mechanical and Aerospace Engineering Department 
University of California, Los Angeles 
California 90095-1597, U.S.A. 

1. Abstract 

This paper is concerned with the analysis of elastic waves generated by localized 
dynamic sources in structural composites. The damage can be external, involving low- 
velocity foreign object impact on the surface of the structure, or internal, as in sudden 
crack initiation and its rapid growth from existing internal flaws. Both problems are of 
critical importance in the safe operation of composite structures, due to their vulnerability 
to hidden delaminations that can occur in composite materials when they are subjected to 
this type of loads. It is well known that both the dynamic surface loading associated with 
impact, and the sudden "opening" of an internal crack associated with the extension of a 
preexisting flaw, act as sources of elastic waves in the material of the structure. The 
research reported here consists of model-based analysis of the guided waves generated by 
localized low-velocity impact and microcrack initiation in graphite epoxy composite 
laminates commonly used in aircraft and aerospace structures. The objective of this study 
is to develop a mechanics based understanding of the causal relationship between the 
properties of the source and the characteristics of the waves generated by its initiation and 
propagation. The results of this research are expected to be useful in developing effective 
health monitoring systems for new as well as aging aircraft and aerospace structures. 

2. Introduction 

Fiber-reinforced composites are being used increasingly as primary structural 
components in aircraft and aerospace structures as well as in ground and marine 
transportation. These materials have highly desirable engineering properties, notably, 
relatively low weight accompanied by high strength and damage tolerance that can be 
exploited to design structures with high demands on their performance. They also offer a 
unique mix of formability and other processing advantages over conventional metals. 
However, composites are very sensitive to the presence of manufacturing flaws and 
service conditions that can lead to a serious degradation in their load carrying capacity. 
Another major concern is the growth of undetected hidden delaminations caused by low 
velocity foreign object impact. Both types of damage, if undetected, can grow to a 
critical size and lead to catastrophic failure of the structure. In order to insure the safety 
of the structure, it is often necessary to carry out expensive and extremely time 
consuming inspection procedures at regular intervals. The availability of a practical, on 
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board, damage monitoring system in aircraft and aerospace structures can be extremely 
helpful in improving their safety and reducing maintenance cost by a significant amount. 

The sudden occurrence of small flaws initiated from damage sites in structural solids 
generates elastic waves that carry important information on the nature of the damage. 
Careful analysis of the waves can reveal the characteristics of the fracture process and the 
damage. A coordinated theoretical and experimental program of research is being carried 
out by the author and his associates in an effort to develop the knowledge base required 
for the design of a practical damage monitoring system in composite structures consisting 
of distributed surface mounted or embedded multiple sensors. One of the issues that has 
been studied carefully under this project is the relationship between the properties of the 
source and the characteristics of the guided elastic waves in composite laminates, and the 
major findings of these studies are summarized in this paper. 

An extensive review of published research on low velocity as well as ballistic impact 
on laminated composites has been given by Abrate [1]. The focus of this research is wave 
propagation effects associated with impact, research in this area has been very limited to 
date. Mai and Lih [2] and Lih and Mai [3-5] investigated the response of unidirectional as 
well as multidirectional composite laminates of infinite lateral dimensions to localized 
dynamic loads through theoretical modeling and laboratory tests. In contrast to the impact 
problem, studies on the waves generated by internal sources in structural composites, is 
rather sparse. Guo, Mai and Ono [6] carried out laboratory experiments and theoretical 
modeling to study the characteristic of the guided waves generated by crack initiation in 
thin composite laminates. 

In this paper an overview of the theoretical and experimental studies carried out by 
the author's group to characterize the properties of the elastic waves generated by both 
types of sources, namely, localized surface loads and the initiation of embedded 
microcracks, is presented. The potential applications of this research in developing 
effective health monitoring systems for aerospace and aircraft structures are discussed. 

3. Theory of Wave Propagation in Composite Laminates 

The behavior of elastic waves propagating through a composite material is determined by 
its elastic properties. Since composites are highly heterogeneous and anisotropic 
materials, a number of assumptions need to be made in creating their models that can be 
treated under the framework of elastodynamic theories. For fiber reinforced 
graphite/epoxy materials, the homogeneous, and transversely isotropic medium with 
symmetry axis along the fibers, has been found to be quite reasonable in capturing the 
behavior of the waves in the frequency range of interest in low velocity impact and 
microcrack extension. This is due to the fact that the diameter of the graphite fibers (5-10 
um) is significantly smaller than the wavelength (of about 100 urn) at frequencies up to 
20 MHz, which is well above the frequency range of interest in the problems of interest 
here. Assuming that the symmetry is along the xraxis the constitutive relation for the 
material can be expressed in the form (see, e.g., Mai and Singh, [7]) 
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where ay is the Cauchy's stress tensor, u; is the displacement components, C44 = (C22 - 
C23)/2 and the five independent stiffness constants of the material are Cn, C12, C22, C23 
and C55. 

Modeling the effective elastic moduli of composite materials has been the topic of 
many studies. For low frequencies and low fiber concentration, the theoretical prediction 
of the effective elastic constants is in good agreement with experimental results. On the 
other hand, for high frequencies the theoretical estimates are not satisfactory since the 
effect of wave scattering by the fibers becomes significant. For fiber-reinforced 
composite materials, dissipation of the waves is caused by the viscoelastic nature of the 
resin and by multiple scattering from the fibers as well as other inhomogeneities. Both of 
these effects can be modeled by assuming complex and frequency-dependent stiffness 
constants, Cy, in the form Mai, Bar-Cohen and Lih, [8], 
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where Cy is the real, perfectly elastic, stiffness constant and p is the damping factor which 
can be expressed in the form, 

/> = />o[l + «o(— -1)2#(— -1) 
G>n On 

(2b) 

The parameter p0 represents the effect of material dissipation, a0 models the effect of 
scattering due to the fibers and other inhomogeneities, and a>0 is a frequency below which 
the scattering effect is negligible. 

For multilayered laminates, each layer is assumed to be transversely isotropic, with 
its own axis of symmetry along the fibers, and is bonded to its neighbors with a thin layer 
of the matrix material. In the present analysis these interfacial layers are ignored for the 
sake of simplicity, but if needed, they can be incorporated in the analysis without 
difficulty. 



3.1. THE GLOBAL MATRIX METHOD FOR MULTILYERED LAMINATES 

Elastodynamic analysis of multilayered composite laminates is difficult due to the 
complex behavior of the waves caused by their multiple reflection and transmission at the 
interlaminar interfaces and the boundaries of the laminate. This is due to the fact that, 
each incident ray at an interface produces three reflected waves and three transmitted 
rays, as shown in Mai, Yin and Bar-Cohen, [9], in addition to diffracted waves and head 
waves. At the frequencies of interest here, the wavelengths are larger than the individual 
laminae, but can be smaller than the laminate thickness. Thus, the ray theoretical 
approach cannot be used to calculate the wavefield accurately. A wave theoretical 
treatment using a matrix method proposed by the author [10] has been found to be very 
effective in generating accurate numerical solutions to this class of problems. A brief 
description of this method is given here. 

Three problems involving different types of sources that can be solved by this 
method are sketched in Figure 1. The first problem, shown in Figure 1A, models the so- 
called Leaky Lamb Wave (LLW) experiment in which the laminate is immersed in water 
and insonified by a beam of acoustic waves. The second problem, shown in Figure IB, is 
the dynamic surface source problem typical of relatively low-frequency impact loading or 
high frequency ultrasonic testing. In the third problem, shown in Figure 1C, the source of 
the waves is the sudden occurrence or extension of a delamination at an interface. In all 
three cases, the interest is the determination of the elastodynamic field in the laminate, 
and in the second problem, the acoustic field in the fluid. All three problems can be 
formulated under the same general framework; they differ only in the specific forms of 
the boundary conditions. 

Let us consider the general case of the multilayered laminate consisting of N laminae 
and total thickness H as shown in Fig. IB. Each lamina is assumed to be transversely 
isotropic with fibers, or axis of symmetry on its plane. A global coordinate system, X(X(, 
X2, X3), with origin on the top surface of the laminate and a local coordinate system, x(xi, 
x2, x3), in each lamina, with the Xi - axis along the fiber direction and x3-axis coincident 
with the global X3-axis, are introduced. The fiber direction in the mth lamina makes an 
angle <|>m with the Xraxis, and the thickness of the m* lamina is hm. 

The displacement and the stress components in the m* lamina are denoted by U™ 

and  X™   in the global coordinate system and by«,™ ander "in the local coordinate 

system. Then the displacements and stresses in the local and global coordinate system 
are related by 
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where 
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Figure 1. Geometry of the composite laminate with three types of loading 
(A): Acoustic wave loading in the leaky Lamb wave experiment. 

(B): Surface loading in foreign object impact. 
(C): Microfracture initiation in a damage site. 
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and cm = cos((|)m), sm = sin((()m). 
Let all field quantities be subject to the Fourier time transform so that the problem 

can be formulated in the frequency domain first. Time domain results will be obtained 
through FFT inversion of the frequency domain results. Denoting the Fourier time 
transform by an overbar, the Cauchy's equations of motion for the m* lamina become, 

~("') (m)    2~(m)      « &ÜJ +p('(OUi      = 0 (4) 

where pm is the overall density of the material of the m* lamina and the summation 
convention and comma notation apply. These equations must be supplemented by the 
constitutive equation (1) and the solution must satisfy the outgoing wave (or radiation) 
condition at large lateral distances from the load. 

If there are no delaminations at the interfaces, the traction and displacement 
components must be continuous across the interfaces parallel to the X]X2 - plane, i.e., 

-(m-l)      -(«) —(m-l)      —(m) 
Mi =Ui     ,        an        =CT,'3   , *3=*3" (5) 

where X™ is the location of the interface between the layers m and m-l. The boundary 
conditions at the top and bottom faces of the laminate depend on the external loading and 
will be specified later. 

The stress and displacement components are now subjected to a two dimensional 

Fourier transforms with respect to X, and X2, denoted by u",&" in the general form 

0(Kj,K2,X3,o))= I   l0(X1,X2,X3,(o)e-i(K'X'+K^X^dX1dX2 
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(6) 

where K, and K2 are the global wave number in Xj and X2 directions, respectively. 
In order to facilitate the application of the interface conditions, it is convenient to 

introduce the six-dimensional "stress-displacement vector," {Sm } , in the transformed 
domain through 

{Sm(K1,K2,X3,a>} = {ü1l      °?3} (7) 

The arguments, Kh K2 and a in {Sm} will be omitted for brevity. It should be noted 

that in absence of interfacial forces, {Sm(X3)} is continuous in the domain, 0 < X3 < H 

and that in the m"1 lamina, (Sm(X3)} can be expressed in a partitioned matrix product 
form 
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where C±   are complex constants related to downgoing and upgoing waves within the 

m* lamina, and p+ Jare the "vertical" propagation vectors, 

[E"(X3)]=Diag 
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The matrices, Qy   and the other symbols appearing in equation (8) are defined below, 
omitting the superscript m for brevity. 
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The "vertical" wavenumbers Q are subject to the restriction, Imfe) > 0, to insure the 
outgoing wave condition at infinity and exponential decay of the evanescent waves in the 
layers at high frequencies. In each layer, the "horizontal" wave numbers, £, and %2, are 
related to the global wave numbers, K^ and K2, through 

cos(<f>m)    sin(<j>m) 

-sin(<t>m)   cos(</>m) «2 

The interface continuity conditions (5) can be expressed as 

where 

H = 
cm 
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The subscript "+" in Q' represents the upper interface of m* lamina and the 

subscript"-" indicates the lower interface. 

The 6N constants C± , must be determined from the interface conditions (11) and 
the appropriate boundary conditions on the top and bottom surfaces of the plate. In order 
to illustrate the solution procedure, we first consider the case where a time dependent and 
distributed normal force is applied to the top surface of the plate as shown in Figure 1. 

Denoting the force by f(Xj,X2,t) and its triple Fourier transform by f(K1,K2,a>), 
the boundary conditions can be expressed as 



frLW-M WK-w 
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One possible approach toward the solution of the system of equations given by (11) 
and (15) is to use the so called Thomson-Haskell approach [10] based on an recurrence 

relation between the constants fCm } and fCm+ }. However, this approach introduces 
the so-called precision problem in the numerical calculation and the solution becomes 
unstable at high frequencies. An alternate global matrix method, which is free from the 
precision problem, is used here by assembling the linear algebraic equations into the 6N* 
6N banded system as follows. 
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In the problem shown in Figure 1A, the boundary conditions at the top and bottom 
surfaces of the plate can be expressed in the form 

S(0) = {U0    V0   irio(l-R)     0   0 

S(H) = {UH    VH   irjoT     0   0     ■ 

-pa>2(l + R)} 

■pa>2T) 
(17) 

where-Uo, V0 are the horizontal and vertical components of the displacement on the top 
surface of the laminate, UH, VH are those at the bottom surface, r\0 is the vertical 
wavenumber of the acoustic waves, R is the reflection coefficient of the acoustic waves 
above the plate and T is the transmission coefficient below the plate. Equations (17) can 
be used to modify the linear system (16) and the reflection and transmission coefficients 
can be determined through its solution [9]. The reflected and transmitted waves can then 
be calculated in the frequency domain or in the time domain. Another quantity that can be 
calculated from the theory is the dispersion equation for guided waves that can be 
transmitted along the laminate in the form 

G(a),v,cZ,pm,hm) = 0 (18) 
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where v is the velocity of the guided waves at frequency co. Equation (18) is a nonlinear 
relation between the velocity of the multimode guided waves and the material properties 
of the laminate. For given laminate properties the dispersion curves can be determined 
from the equation. The dispersion curves can be determined accurately from the LLW 
experiment, and for unidirectional composites the experimental dispersion data can be 
inverted to provide accurate estimates of the matrix dominated properties of the 
composite. 

If there is an onset of delamination in a small area A at the p* interface, as shown in 
Figure 1C, then the first of equation (5) must be modified to 

UiXXx,X2,X$,co ■.D,(a>),     (X{,X2)eA (19) 

where [M£ implies jump discontinuity in u, and DJ(<D) is the Fourier time transform of the 

discontinuity. For assumed forms of the discontinuity, equations (16) after appropriate 
modifications can again be solved to determine the wavefield produced in the laminate by 
the initiation or propagation of internal delaminations. Accurate measurement of the 
wave signals by means of surface mounted transducers can be used to locate and 
characterize damage initiation and propagation in aircraft and other structures under 
service loads. 

3.2. APPROXIMATE THEORY FOR THIN LAMINATES 

If the thickness of the laminate, H, is much smaller than the wavelengths, then the 
problem can be solved by approximate methods. It is well known that the classical plate 
bending theory of the plate underestimates the deflections as well as the stresses and 
overestimates the phase velocity of the propagating waves. The classical theory becomes 
more and more inaccurate at higher frequencies. Refined higher order theories have been 
developed by many authors in an effort to improve the accuracy of the approximate 
results [4]. The first order shear deformation theory retaining transverse shear and rotary 
inertia of the plate elements is used here. Assuming that the xy-plane is the mid-plane of 
the laminate, the displacement components within the laminate are assumed to be of the 
form 

u(x, y,z) = u0{x,y) + zy/x{x,y) 

v(x,y,z) = v0(x,y) + zy/y(x,y) (20) 

w(x,y,z) = w0(x,y) 

where (u0, v0, w0) are the displacement components at a point in the mid-plane, and vj/x 

and v|/y are the rotations of a line element, originally perpendicular to the longitudinal 
plane, about the y and x axes, respectively. Then from the first shear deformation theory, 
the governing equations can be expressed as 

[L]{A} = {f} (21) 
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where |A}= ^i0,u0,u0,i//x,i//yj, f is the applied force, [L] is a matrix of differential 

operator with components, 

~^55"11 ~~ 2/1(50,2 _^44«22 + A"« 

J12 : ^55«",- AA5d2» ■^13 _    ^45"1     ^44"2 

I22 = Dj xdn +2D16dn +D66d22 -A55I3d„ 

L21=iD\2 +D66)d12 + Dl6dU +-D26rf22 ~ 4*5 

L33 = 2D26dn + D22d22 +-C*66"11 ~~ ^44^3"« 

(22) 

and we have used the notations Jft =—r-,«/, =—,0*2 =— ,0*^ = 
dt2 '  '     dx' dy'  li     Bxdy 

etc. 

The constants Dy, Ay and i! are defined by the integrals through the thickness as 

W / 9 /■/ / 9 HI') ff I9 

Ay=    \Qydz,BiJ=    \zQijdz,DiJ =    J   zlQijdzai=    \  pz'^dz 
-H12 -HU -H/2 -HI2 

(23) 

The global constitutive equations can be written as 

'22 

'33 

'23 

'31 

'12 

ßll ßl2 ßl3 ßl6 «1,1 

Ö12 ß22 ß23 ß26 «2,2 

ßl3 ß23 ß33 ß36 «3,3 

0 ß44 ß45 **2 3         3 2 

0 ß45 ß55 Ml   ^    T   M-3   1 

016 ß26 ß36 Qee «1,2+ «2,1 

(24) 

where the global material constants Qy are related to the local material constants Qy 

through the equations 

Qu = ß„c4 +2(ß12 + 2ß66)cV + ß22/ 

ßi2 =(0ii +ß22 +4ß66)cV +ß12(c4 +/) 

ßl3=ßl3C2+ß23*2 

ßie = -«3ß22 +cisQn -cs(c2 -s2){Qn +2Q66) „2     ^2^ 

_2_2 
ß22 = ßi/ +2(ßi2 + 2ß66)cV + ß22c" 

ß23=ßl3^+ß23C2, ß33=ß33 

ß~26 =C^ß22 +^3ß„ -«(C2 -*2)(ß12 +2ß66) 

ß36 = (ßl3 - ß23>C> ß44 = ß44C2 + ß55*2 

(25) 

= ß55c
2+ß4452 

ß45=(ß55-ß44)«, ß55 

ß66 =(ßll +ß22 "2ß12)cV +ß66(c2 -52)2 
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In the above, c = cos (j) and s = sin (j), <j) is the angle between local and global systems and 
the superscript label for the layer, m, has been dropped for convenience. In the case of 
plane stress on the 12-plane, 

Qii = cv- 
c»cj3 

-33 
(26) 

where Cy is the stiffness constant of the material of the layer. If, in addition, the laminate 
is symmetric about the xy-plane, then the equation for the out-of-plane motion reduces to 

hx Ln Ln w0 '/" 

Z-21 L22 L23 Vx .   =  . 0 

hx L32 ^33 _ Wy 0 

(27) 

The solution of this equation can be obtained by the transform technique in the form 

  1 CO     oo 

A     2    J      !Yx 

ATT       -00 -00 
\ub2 

AK       -00-00 

w0{x,y,co) = -L- J ]w0(^2^)eK4'x^y)d^d^2 
ATT    -oo -co 

(28) 

where    y/x{x,y,co),y/   (x,y,a)),wo(x,y,co)    are   the   Fourier   time   transforms   of 

y/x{x,y,a),if/y(x,y,co),w0(x,y,a>) respectively. Substitution from (27) into (20) results 

in a system of linear algebraic equations for the unknowns y/x,y/ w0. The inversion into 
the frequency and time domains can be carried out as in the previous section. In the 
classical plate bending theory, V|/x = i|/y = 0, and the out-of-plane deflection of the plate 
due to a normal concentrated force f(t) at the origin is given by the simple closed form 
expression, 

F{co) 7 "? 1 
wo(x,y,a)- I  I 

AK
1
 -„-oo A ,# + 2(Dn + 2D55){fö + D22£ 

-e^^^d^d^     (29) 

where F(co) is the Fourier transform of the forcing function f(t). This integral can be 
evaluated to give the spectrum and its inversion by FFT gives the time history of the 
deflection. 

4. Numerical Results 

Equations (8) and (16) provide the formal solution for the displacement and stress 
components of the surface load problem in the triple transform domain. The inversion of 
the transformed quantities needs to be carried out for most problems of practical interest. 

After C±   is determined from (16) for the impact loads and its modified form for the 
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LLW problem or the delamination problem the displacement and stress components in 
each lamina can be obtained from equation (8). Their frequency spectra are derived 
through evaluation of the wavenumber integrals and the time histories are determined 
through inversion of the spectra by means of FFT. The evaluation of the wavenumber 
integrals is complicated by the presence of the Rayleigh-Lamb poles and sharp spikes in 
the vicinity of the poles on the path of integration. The FFT inversion requires evaluation 
of the integrals at a large number of frequencies. An efficient and adaptive integration 
algorithm has been developed by the author's group - the details of the method can be 
found in Lih and Mai [4 ] and will not be repeated here. Numerical results are presented 
for a number of typical problems involving the three types of loading discussed in the 
previous section. 

4.1. MATERIAL CHARACTERIZATION USING LEAKY LAMB WAVE DATA 

A major objective of the LLW experiment, shown in Figure 1A, is to determine the 
elastic constants of the bulk composite material. The dispersion curves measured by this 
experiment can be inverted to yield accurate estimates of the matrix dominated elastic 
constants, c22, c23 and c55 of the bulk composite material. The details of the experiment 
and the data inversion procedure can be found in Bar-Cohen, Mai and Lih [11]. The 
theoretical and experimental dispersion curves for Lamb waves for a unidirectional 
composite plate are shown in Figure 2. The dissipative properties of the material have 
negligible influence on the dispersion curves in the frequency range considered and were 
ignored in the theoretical model. The real elastic constants, determined through inversion 
of the LLW data using equation (18), are: c„ = 161.31 GPa, c12 = 6.10 GPa, c22 = 13.90 
GPa, c23 = 6.53 GPa, c55 = 7.26 GPa. These values are substantially different from those 
calculated homogenization theories using the constituent properties of graphite and 
epoxy. 

It should be noted that the dispersion curves in the frequency range used in the 
experiment are not very sensitive to the elastic constants, cn, Ci2, and the dissipation 
constants, p0, a0 and co0- Thus, the values of these parameters cannot be determined 
accurately from the measured dispersion curves. They require the use of time-of-flight or 
other data as discussed in Mai, Bar-Cohen and Lih [8] and in Bar-Cohen, Mai and Lih 
[11]. The waveforms recorded in a typical LLW experiment with incident angle 20° and 
three different fiber orientations on a 25 mm thick unidirectional graphite/epoxy laminate 
are shown in Figure 3 together with calculated results using the exact theory. The elastic 
constants and the damping parameters that gave the best visual fit between the theoretical 
and experimental signals are given by: p = 1.59 g/cc, Cu = 160.7 GPa, C12 = 6.4 GPa, 
C22 = 13.9 GPa, C23 = 6.9 GPa, C55 = 7.1 GPa, p0=0.01,ao = 0.3, co0 = 0.6TI. 
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Figure2. Dispersion data for a defect-free 16-ply unidirectional Gr/Ep laminate of thickness 2.8 mm and density 
1.59 g/cc. 
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Figure 3. Reflected acoustic waves from a 25 mm thick unidirectional graphite/epoxy plate recorded in the 
LLW experiment are compared with those calculated from the theoretical model using perfectly elastic material 
in the left column) and dissipative material (right column). 
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4.2. DYNAMIC SURFACE LOAD ON A MULTILAYERED LAMINATE 

The response of multilayered graphite/epoxy laminates with different ply 
configurations to a variety of dynamic surface loads has been calculated based on the 
exact and approximate theories described in Section 3 [4, 5]. The normal surface 
displacement produced in a 1 mm thick [0, 90]s cross-ply laminate by a concentrated unit 
(1 kN) normal force on its surface is shown in Figure 4. The material properties of each 
lamina are assumed to be: p = 1.58 g/cc, cn = 160.7 GPa, cl2 = 6.4 GPa, c22 = 13.9 GPa, 
c23 = 6.9 GPa, c55 = 7.1 GPa, p0 = 0.005, a0 = 0.1, and co0 = 0.67t. The time dependence of 
the force and its Fourier transforms are given by 

/(0 = sin—,     0<*<r (30) 
T 

7t(\-COTl27t) ,_... 

ln   -icor/2 ,,     o„./_ 

CO 

where x is the duration of the source. 
The calculated results using the exact theory and the approximate laminate theory are 

compared in Figure 4 for different distances of propagation on a line oriented at 45° to the 
fibers. The duration of the source, x, is assumed to take on the values 5 usec and 0.5 |xsec 
in the two cases shown in Figures 4A and 4B. It can be seen that for x = 0.5 usec, (Figure 
4B), that the high frequency oscillations in the exact solution are absent in the 
approximate solution. The oscillations are caused by the reflection of the waves at the 
interfaces and these are smeared out in the laminate theory. The agreement between the 
exact and approximate results is improved significantly at x = 5 usec. The main pulse in 
the time domain solution is caused by the plate guided flexural waves and these are 
reproduced well in the approximate solution, but their speed is overestimated, resulting in 
their earlier arrival at larger distances. Interface delamination is a common problem in 
composite structures when they are subjected to foreign object impact. 

Since delamination damage is often caused by the transverse stresses, UQ, at the 
interfaces, their determination is of great interest in developing strategies for predicting 
this critical damage in the structure. The theory described in Section 3 can be used to 
determine the transverse interfacial stresses in multilayered laminates subject to 
distributed surface loads. An example of this is given in Figure 5, where the stress 
component, cr33, at the topmost interface in a 1 mm thick [0, 45, -45, 90]s quasi-isotropic 
graphite/epoxy laminate produced by a distributed normal load in a circular area on its 
surface is calculated. The spatial dependence of the load is assumed to be a Gaussian and 
its time dependence is the same as in equation (30), i.e., 

f(xux2,t) = e-<-x'+x')sm{27rt/T),     (*,2+*f)<l,     0<t<r (32) 
It can be seen that cr33 has the general shape of the sign reversed force with superposed 
high frequency oscillations, that are less prominent for propagation near 45° to the fibers 
in the top lamina. 
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Figure 4. source Exact and approximate (SDPT) spectra and time histories of the normal surface displacement 
on a 1 mm thick [0, 90o] cross ply laminate due to a unit concentrated force normal to the surface. The 
displacements are at points along a line through the source at 45° to the top fibers at different distance form the 
source, a single cycle of sine wave of duration 5 „sec in (A) and 0.5 „sec in (B). 
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4.3. RADIATION FROM INITIATION OF MICROFRACTURE 

Composite materials are very sensitive the presence of hidden flaws that may develop 
during their manufacturing, due to fatigue loading, and from foreign object impact during 
service. These defects, if undetected can grow to critical sizes, resulting a serious 
degradation in the performance of composite structures and can compromise their safety. 
Thus, composite structures require careful monitoring of the initiation and growth of 
these flaws through nondestructive methods in order to insure their safety and integrity. 
At the present time periodic inspection and maintenance procedures are carried out on 
many aircraft and aerospace structures. These procedures are expensive and often 
unnecessary for a variety of reasons [see, e.g., 12]. Implementation of on-board 
continuous monitoring systems in defects critical structures can be very effective in of 
dealing with this issue in aging as well as new structures. Recording and analysis of the 
elastic waves generated by crack initiation can be used to detect and characterize flaw 
initiation and growth in aircraft and aerospace structures. The basic idea behind such a 
system for a thin composite laminate used in aircraft components is described in this 
subsection. 

A typical crack monitoring system is sketched in Figure 6. It consists of a number of 
broadband sensors attached to the surface of the laminate. The waves generated by 
initiation of a new crack or the extension of an existing crack is simultaneously recorded 
by the sensors and stored in a computer. The theory developed in Section 3 can be used to 
locate the initiation site and to characterize some of the properties of the crack in the 
laminate. It can be shown that if the distance of the field point is more than twice the 
laminate thickness, then the motion at the field point is dominated by the plate-guided, 
multimode Lamb waves, and the surface displacement can be expressed as a sum of these 
modes [6]. The number of modes depends on the dominant frequency of the source (i.e., 
its rise time) and the relative contributions from the modes depend on the detailed nature 
of the source including its location within the laminate. 

In order to verify the accuracy of the approximate calculations, a pencil lead break 
source was used to generate and record the response on a unidirectional graphite epoxy 
plate of 1 mm thickness. The source can be represented by a vertical force, but its time 
dependence is not known a priori. The response of the measurement system is also 
unknown, as is the case with most such systems. The source time history modified by the 
system response was determined by measuring the surface Rayleigh wave response 
produced by the same source in a large aluminum block. The modified source time 
history is shown in Figure 6(a). The normal displacement generated by the source was 
then calculated using the theory. The measured and calculated results are compared in 
Figure 6 for three directions of propagation relative to the fibers. It can be seen that the 
agreement between the theoretical and experimental results are excellent in all three 
cases. 

The radiation from the three major types of microfracture in thin multilayered 
composite laminates is considered next. A number of [0, 90]s cross-ply graphite/epoxy 
laminate coupon specimens of thickness 0.125 mm and lateral dimensions 100 mm x 150 
mm with embedded defects were prepared in an autoclave, and subjected to fatigue 
loading in a servohydraulic test frame [INSTRON 8501]. The waves generated by crack 
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break including the response of the recording system, the surface response at (b) Oo, (c) 45o, and (d) 90o to the 
fibers mal mm thick unidirectional graphite/epoxy plate. Calculated results are based on the approximate thin 
plate theory. 
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initiation due to fiber break, matrix cracking and delamination, the three most common 
types of damage in composite materials, were recorded by four broadband sensors 
attached to the sample during the tests. The details of the sample preparation and testing 
procedure can be found in [6]. Theoretical calculations of the Lamb waves from the 
sources were carried out using the laminate theory outlined in Section 3.2. The source 
time function was assumed to be of the form 

f(t) = sin2(nt/2r)H(t-r) (33) 

where t is the rise time of the source and H(t) is the Heaviside step function. 
The experimental and theoretical results are compared in Figure 7 for each type of 

damage initiation. The values of the rise time, T, that produced the best visual fit to the 
data were 0.5 usec, 1.0 usec and 2 usec for fiber break, matrix cracking and 
delamination, respectively. It should be noted that there is very agreement between the 
calculated and measured displacements during the arrival of the main pulses from the 
source. The later arrivals in the experimental data are due to multiple reflections at the 
edges of the specimens and are not included in the theoretical model. Another 
noteworthy feature of the results is the differences in the nature of the signals due to the 
three source types. The wave motion due to fiber break and matrix cracking are primarily 
the symmetric or extensional modes while that due to delamination contains both 
symmetric and antisymmetric (or flexural) modes. The difference in the properties of the 
signals generated by the three types of damage can be used to identify the onset or growth 
of delaminations during service in composite structures. The time histories and the 
spectral amplitude of the signals generated by the initiation of fiber break, matrix 
cracking and shear delamination in the middle layer of a [0, 90]s laminate are shown in 
Figure 8. The differences in the properties of the signals are obvious - the first two types 
of damage generate mostly extensional waves of higher frequency, while the motion due 
to the delamination is dominated by flexural waves of lower frequency. 

5. Concluding Remarks 

The elastic waves generated by three classes of sources in composite laminates are 
investigated through laboratory experiments and theoretical models. The first source is a 
beam of acoustic waves incident on the laminate immersed in water, and is the basic 
feature in the so called Leaky Lamb Wave experiment. The dispersion curves of the 
plate-guided Lamb waves and the reflected acoustic waves were studied to determine the 
effective elastic constants and damping parameters of the material nondestructively. The 
second source is impact loading on the surface of the laminate, for which the surface 
displacement and internal transverse stress components were calculated by means of an 
exact and an approximate (laminate) theories. The accuracy of the approximate method 
was evaluated through comparison between the results obtained by the two methods. The 
third source is the initiation of three common types of damage, namely, fiber break, 
matrix cracking and delamination within the laminate. The signals produced by each 
type of damage were determined through laboratory experiments and theoretical 
modeling. The agreement between the two sets of results was found to be very good in all 
three cases. The differences in the signals generated by the three types of damage were 
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Abstract. The expansion into plane waves of cylindrical or spherical waves 
propagating in a layered elastic half-space proves to be quite efficient for short 
observation times at a fixed receiver. Even the divergence effects of dipping interfaces 
of wedge-type layers are perfectly included by proper coordinate rotations and the exact 
"seismograms" are observed at a point receiver from any source located at the 
hypocenter. These nontrivial technique relies on invariance of the phase function and of 
the infinitesimal amplitude of the plane waves in the ray expansion. Recently, the 
concept of the elastic background was explored for the elastic-viscoplastic waves 
propagating in thin rods and extended to the 3-D problem of spherical waves with point 
symmetry. In that context and in an incremental formulation, the notion of plastic 
sources was used, which emit elastic waves in the background. Further, the dynamic 
generalization of Maysel's formula of thermo-elasticity to include all kinds of 
eigenstrains connected the dynamic stress Green's function of the background with the 
eigenstrain distribution by a convolution and the domain integral. The novel 
contribution ofthat paper to acoustic emission and monitoring of (layered) structures is 
the formulation of the full 3-D problems and the introduction of the generalized rays in 
the background considering an instantaneous oblique force point source. 

Taking into account the progress in symbolic manipulation with integrated numeric 
such a formulation seems timely and may be competitive to the entirely computational 
Finite Element Method of analysis of signals received from plastic sources. 

1.    Introduction 

Elastic-viscoplastic uniaxial waves in thin rods are considered by means of the elastic 
background with additional plastic sources acting in the transient, progressing plastic 
zone in [1] and [2]. A localized plastic source emits elastic waves in both directions of 
the rod if an increment of plastic strain (kept constant within a single cell of sufficiently 
small length) is caused within the time step. Causal superposition of the elastic wave 
pattern produced in the background by the external load and of the elastic waves 
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emitted from the plastic sources produces the fully nonlinear solution eventually 
including plastic shock fronts. The basic equations are in consecutive order, generalized 
Hooke's law, and the resulting nonhomogeneous wave equation of the axial 
displacement u 

ä=E[e-e) , u<xx~c~2u<tt = e x, c2 = E/p (i) 

Boundary conditions and the material law of the rod are understood to be given in the 
course of the full solution. The waves emitted from a concentrated unit plastic source, 

£,x = 5,x{x-S)Ht-*) (2) 

are, however, given by the stress influence function of the infinite rod. The force 
Green's function is a D'Alembert box-type wave of amplitude c/2E , hence, the stress 
takes on the form of two Dirac pulses propagating in opposite directions 

5(x,$;t,T) = ±{8[x-Z-c{t-q]-8[x-Z + c{t-j\}}J{t-JI (3) 

Distributions of plastic sources render, the particular solution of the nonhomogeneous 
Eq. (1) takes on the integral form (of the dynamic and generalized Maysel's formula), 
homogeneous boundary conditions (b.c.) apply, - for convenience, the unit force is now 
applied at x , -note the displacement Green's function of a unit plastic source, 

u*(x,t) = j dxj   5{^x;t,TJe(^T)Ad^ , cr(£x;t) = u{x, £ f) . (4) 

The nonhomogeneous boundary conditions render the D'Alembert wave u0{x, t) that is 
a solution of the homogeneous wave equation, and thus, the total displacement becomes 
incrementally, 

u = u0[x, t) + u* [x, t) (5) 

Figure 1 shows the Mach plane of the action of a single plastic source with a stress 
wave reflection at one finite boundary indicated, i.e. the stress Green's function of the 
infinite rod was used in Eq. (4) in that simple case. Thus, when monitoring the rod, 
development of plastic deformations can be identified by analysis of the observed 
signals (taking the time or spectral correlation), see Figure 2. 

The three-dimensional wave propagation problem with point symmetry resulting 
from an explosion in a cavity of a viscoplastic material is analyzed by means of the 
background concept in [3] and [4], including the unloading phases. The spherical waves 
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when using the displacement potential, u[R, t) = <j>R , are the solution of the 
nonhomogeneous D'Alembert wave equation for f (/?, r)) = (R <f) , 

f,RR-cl2f,tt = RJ P{R,t))dR, 

P = Pi+P2,Pl=^[eR,R + ^eRy P2Ji-l)jtR-^L f K=CLICS  (6) 

Xi 

Figure 1. Acoustic emission from a local plastic source in a semi-infinite rod, stress wave shown. 
Transducer in receiving mode during monitoring of the rod. 

however, at the price of nonlocal plastic sources due to the integral of the forcing 
function. P2 = 0 , in case of classical incompressible plasticity dilatation e = 0 . 
Considering such a discretized plastic source (distributed over a shell of thickness AR ) 
of some proper time signature assigned, £ f = F(t) 5(R -Rk] , yields, after integrating 

Px, 

I 
Figure 2: Monitoring an elastic-plastic rod with a transducer in receiving mode attached. 

RJ Pl(R,t))dR = ^ 8{R-Rk) + ^n{R-Rk) (7) 
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Updating of the plastic sources in space and time is done in a time stepping procedure 
by substituting the current state in the constitutive relations. For viscoplastic materials 
with a first order time evolution law of the plastic strain even a one-step Euler 
increment sufficiently well approximates the strength of the plastic sources (with no 
iterations necessary), see e.g. [5]. Ductile damage with growth of voids in the plastic 
zone is taken into account by means of Kachanov's damage parameter proportional to 
porosity (below the critical value), [6], without additional computational costs. A 
micromechanical foundation of the plastic source concept is given in [7]. Equation (7) 
provides the forcing terms of acoustic emission of a single plastic event for further 
processing the wave pattern analytically. 

In the present paper the three dimensional localized plastic source is considered 
with respect to acoustic emission and, by domain integration, the extension to a plastic 
zone. The displacements of P- and S-body waves in the elastic background continuum, 
according to the Helmholtz decomposition and the definitions by the gradient and the 
curl of the potentials are associated to the wave-operators, and are produced by the 
given dynamic load and by the plastic sources. They are solutions of the 
nonhomogeneous p.d.e., 

üi «}° = g,i, D2 «P} = eijk hKj , Di.2 = clA .~ (8) 
at 

where 

g c~s 
2= 2 (K2 - 1) G,j - (K2 - 2) HUJ], K = cL I cs , h,. cS 2 = - eijk GkJ (9) 

Gi = (Uik + eirsVskr)k, H^Hj^-ejuViH , (10) 

with two (related) potentials, see e.g. Kröner [8] for details of that dislocation based 
analysis, 

Uij,kk = £ij>   Vij,kk = eimn Umj,n> Gi = {Uik ~ eirs Vsk,r) k ^ Gi,j = Gj,i (11) 

In   that   connection   in   [91   the   combined   displacement   influence   function 
"(1)        "(2) M/(op) = M;ocß + M/oß are reported by considering a singular point source in the infinite 

background with body forces. The integral representation of the particular solution 
consequently results, valid in incremental form in the infinite background, 

"i* (*.') = J dx\v "i(aß)(*.*o;f- T) «öß (*o.*) dV(jf0) . (12) 
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Equation (12) is the basis of analysis of acoustic emission from phase transformations, 
see e.g. [10]. Analogous, Pao [11] used the Green's displacement dyadic to derive 
solutions for dynamic nuclei of strains (see the list of papers in acoustic emission there). 

In [12], however, is the generalized dynamic Maysel's formula of thermoelasticity 
derived, see again Eq. (4) for the uniaxial case, that exhibits a more promising 
characteristic. It contains time convolution too, but it is complementary to Eq. (12) in 
the sense that it applies the dynamic force in the background at the point of observation 
and it holds good for finite bodies. In the incremental form, nonhomogeneous initial 
conditions are to be considered as well. In the time Laplace domain, a slightly different 
notation is introduced, part of the surface is free of traction, the remaining part has 
prescribed displacements, the contribution of the surface integral vanishes if the b.c. of 
the original and the auxiliary problem (of instantaneous single force loading) are 
identical, 

u*(x0; s) = j   £aß(*; s) aaß(0(x,x0; s) dV(x) 

+ P j    MaoM " a©(*> x0\s)+v a0(x) u a(l)(*, x0; s] dV(x) 
(13) 

Acoustic emission of a single plastic event is merely given by the convolution 
contained in the first line of Eq. (13). Note the reciprocity of the influence functions of 
stress and displacement in Eqs. (12) and (13), 

°a?,(i)[x>xo'>s) = ui{a?>)[xo>x'>s) (14) 

2.    The 3-D dynamic Green functions expanded in plane waves 

Consequently, acoustic emission from a concentrated plastic source (in a single cell) 
should be observed primarily in Eq. (13) taking into account Eq. (14). However, the 
influence functions must be presented in a suitable form for inversion of the Laplace 
transform and for taking into account reflections on the traction-free surface of a half 
space, at the interface of a surface layer, at the surfaces of a plate or wedge wave guide, 
etc. The expansion into plane waves, i.e. the resulting generalized ray theory seems 
appropriate for short observation times. Subsequently, we suppress the tilde. 

2.1  BASIC EQUATIONS 

The Helmholtz decomposition of the displacements in a homogeneous and isotropic 
solid yields the set of wave equations for P- and S-waves, in absence of body forces, 

K = grad0 + curl y , A0 = c_20, Ay = C~2 ijr , divyr = 0 (15) 
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Furthermore the three components of stresses, given by Hooke's law enter the "internal" 
boundary value problems of vertical and horizontal single forces to be considered below 

,    ,■• d2$     d2w     d2w 

di       dxdz     dydz J 

°* = V -C-'vy + 2 
d2<\>      d2Wx     d

2% 

dxdz.     dxdy       dx 
-C~2\j/x + 2 

d2
¥z     d2

Vx 

dy dz.     dxdz       dz 
.(16) 

2.2 VERTICAL INSTANT SINGLE FORCE 

lap/ace-transformation in time, Fourier transformations with respect to the horizontal 
(JC, y) coordinates, render the solution via the three conditions provided by the internal 
b. v. problem 

z = 0: azk& K> s) = - ö £z QzHs)> ux =uy = 0 (17) 

Figure 3. Vertical force in infinite space. Rotation of coordinates about the y-axis 

in terms of the P- and S-wave potentials, expanded into plane waves and in the form of 
the Weyl-Sommerfeld integrals, the phase - time relationship has been indicated, note 
the simple form of the emittance functions, see also [13], [14] and [15], 

$z {x,y,z,s) =s2QzF(s)SZ flSz
Pexp(sgp)dZdK, 

-t = gP=i£x + iKy-T]\z-Zo\,   T] = \l'c~2 + £2 + K2, 

y) [x, y, z, s) = s2Qz F{s) £ jl Sz
Sjcxp(sgs) d^dK, 

-t = gs= i£x + iKy-t;\z-z0\ ,   £=\J' C~2 + £2 + K2, j = x,y 
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F(s)=f(s)/^s2p ,S*P = -ez,  5^ = -^,   5§y = | , ^ {x,y,z,s) =0 (18) 

The potentials, e.g. of Eq. (18), are easily referred to rotated coordinates, see Figure 3, 
by enforcing the following invariance conditions for the plane wave amplitudes and 
phases, P or S waves are understood, 

Sd£dK=Srd%rdK,   -t = g = gr=i£x + iKy-{Ti,Q\z \=i^xr + iKy-(t],C)r\zr\ 

i(f = i^cos a-[r\,C\ sin a ,iKr = i* (19) 

However, the transformed 3-dimensional solution cannot be interpreted to represent the 
potentials of the counter-rotated (horizontal) force by putting a = n/2 . Violation of the 
condition of axisymmetry is the major reason,- the interpretation holds true only for the 
2-dimensional case of line loads, see again [13]. 

2.3 HORIZONTAL INSTANT SINGLE FORCES 

The instantaneous forces are considered in the x- and ^-directions and the internal b. v. 
problems yield alternated emittance functions, listed in Table 1, 

z = 0: ö-J^ K s) = - - ez Qx'f[s), uz = uy = 0 

z = 0: azy{^, K, s) = - \ ez Qyj{s), uz = ux = 0 (20) 

Table 1 Emittance functions of horizontal forces 

r] Ax    *x     z'     Aj 
Sp = C~ —-£-,Sx

Sx-ez%K-£—,SSy-e. 

S^iK^-f2-"2 ,Ax^(C2-e)-^ 
x 

'I ^y y 

y 

Putting alternatively j = x, y in the displacement potentials, note the coupling by the 
characteristic determinants of the Eqs. (20), 
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4? [x, y, z, s) = s2 Qj F(s) jZ £, 4«P (**/>) d£dr 

^ (*,j, z, j) = s2QxF{s)\Z jZ Sj
Sxexp(sgs)d^dK 

Wj
y [x, y, z, s) = s2Qx F{s) £, jl 4,exp [sgS) d^dK 

^z [x, y, z, s) = s2Qx F(s) JT jZ Siexp(sgs) d$dK 

(21) 

(22) 

and considering Table 1 renders the desired solutions. Note the vector potentials, now 
with all three components present. 

2.4 THE OBLIQUE FORCE 

Since a common time source function is understood in the above given solutions, Table 
1, the potentials are summed to render the so called source ray. We note the emitted P- 
and S-waves, for a unit force just the direction cosines are substituted, 

${x,y,z,s)=s
2F{s)lZ\ZSP™V{sgP)dSdK ,SP= Qx^-QyA^-Qzez , 

¥x = s2F(s)jZjlSSxexp(st;s)d^K ,SSx = Q; 
ez^[n-0 

y/y=slF{s)jZjlSSyexp{sgs)d^dK ,SSy = Qxez-Q: + Ö ZC ' 

vr^%)i:i:%expHd^d.,s&=[^-k2+K2)] 
i K it: 

Qx -H. Qv -T- .(23) 

2.5  THE OBLIQUE SURFACE FORCE 

Considering a transducer in the receiving mode at the traction free surface. Hence, 
buried source and receiver, where z-Zo>0 , in the half-space are taken into account 
i.e. the direction factor is positive in the source ray, Eq. (23), and secondly, the reflected 
rays, (first segment pointing upwards) Pp and Ps, are superposed. In that solution, the 
limit of the source depth to zero is performed to render the proper emittance functions 
of the surface force, the reflection coefficients for potentials are derived in [16], see Fig. 
4 for the P-source ray (further reflections are illustrated), 

f = d>0+lim (<PPp + 2,(ps,kp , Sp = S0p + SPRPP + XsskRS'kP,k = x,y,z , 
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?S,kS,j 
WsJ=¥oj+ um IVpsj + ItYsjcsA ,SsJ = S0sJ + SPR"J + X%*^""       (24) 

Zo-^0 . k 

l = x,y,z 

Similarly, the force in a point source located in the interface between a surface layer 
and an underlying dissimilar half space is considered, however, the direction factor is 
negative. Since the acoustic signals emitted from any buried plastic source are received 
in an ultrasonic transducer at the surface, Eq. (24) represents the proper Green's 
functions. The Green's stress tensor at the location of the plastic source, i.e. at an 
interior point, is derived from Hooke's law which renders what is commonly called the 
stress receiver functions, note also the factors s in Table 2 and use div yr = 0 . For 
completeness sake also the receiver functions of displacements are listed, derived from 
Eq. (15). Velocity and acceleration are received by multiplication with s or s , 
respectively. 

2 
Table 2 Receiver functions at interior (plastic source) point, H = pC 

3D- 
Displace- 
ments 

Df/s DSjX/s Dfy/S Bf/s 

ux % 0 e{ iK 

Uy IK -eC 0 -it 
uz -£77 -iK % 0 

3D- 
stresses fy*2 $/s2 Z?Z/s2 4"2 

Oxx'V f2-<f+K2-2772 0 2e(i£)Z -2%K 

OyylP £
2
 + £

2
-K2-277

2 -2e{iK) C, 0 2%K 

°zz'» tf + f+K? 2e(irc) £ -2e{iQC 0 

V -2$K 0 2e(iK) £ -(?-e+A 
V<" -2e[iK) 77 f + f+K* 0 2<® S 

ajß -2e{i§T) 2|v \?+?-A 0 
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2.6 THE OBLIQUE INTERFACE FORCE 

Buried source and receiver in a source layer, where z - z0 < 0 t are considered first, i.e. 
the direction factor is negative in the source ray, Eq. (23), and secondly, the reflected 
rays, (first segment pointing downwards) pP and pS, are superposed (the resulting rays 
of interest are propagating upwards). Three dimensional reflection coefficients of plane 
waves at the interface of two dissimilar half spaces are taken into account and the limit 
Zo^>h is understood. The phase functions are set up according to the two wave modes 
and the absolute vertical segment becomes (h - z) . In all these cases we end up with a 
fully coupled problem. Potentials of the reflected waves are 

<PPp = s2Hs)fZ. £ SPRPPexp{sgpp)d£dx-, (25) 

Vpsj = j2%)JC jl SpRPSjexp[sgps)d/;dK , 

9rfp-s2F(s)!Z fZ %Rs,kptxp{sgsp)d^dK , 

V/s,kSj = s2Hs)fl jl SStkRStkSJexp[sgsS)d^dK (26) 

Superposition yields 

;,kP <PP = (POP + lim I<PPp + S(Ps,kp) ,
S

P = SOP + 
S

P
R

PP + Z
s

s,kRs,i 

Vsj = Vosj + lim (VpSj + £ ¥s,ksj\ , ssj = Sosj + SPRpsj + Xss,kRs,ksj (27) 
*°-»*^ k ) k 

Using rotated coordinates according to a dipping layer in Eqs. (25) to (27) the oblique 
force acts on a dipping fault. The slowness are given by enforcing the invariance 
conditions (19). 

The phases of the upward propagating reflected rays are considered in unrotated 
coordinates and their slowness is derived by another forward rotation according to Eq. 
(19). Rays received are grouped according to their last ray segment, P or S and 
according to their arrival times. A fast bottom produces refracted rays. 

2.7  GREEN'S STRESS DYADIC RECEIVED IN AN INTERLAYER POINT 

When considering a localized interlayer slip as a plastic source, it becomes necessary to 
substitute the Green's stress dyadic received at this point into Eq. (13). A transducer in 
the receiving mode is commonly situated at the traction free surface, i.e. the solution of 
section 2.5 applies, with a "receiver" situated within the surface layer, see again Fig. 4 
for the P-source ray. The source ray, Eq. (24), with a positive direction factor, and the 
rays reflected at the interface, Eq. (25), are superposed. The result is similar to Eq. (27), 
however, the limit z-»ft of the depth of the buried receiver to the layer thickness is 
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performed. Again, a dipping interface requires rotated coordinates for the consideration 
of classical reflection. 

cp2> cs2 r i 
Figure 4: P-waves emitted from a surface force and received at a buried receiver (at a local 
plastic source). A plastic interlayer slip requires the limit of receiver depth taken to the layer 

thickness, Section 2.7. 

3.    Conclusions 

Since the influence functions of displacements and stresses enter the generalized 
dynamic Maysel's formula, receiver functions become the additional factors in the ray 
integrals together with higher powers of the Laplace transform variable s, see Eq. (16). 
For cylindrical waves, these functions are tabulated in [17], for spherical waves see 
Table 2. All necessary transformations of the Cagniard-de Hoop inversion technique are 
performed symbolically. Thus, the response of a single plastic source is folly accounted 
for by varying the receiver coordinates. To locate the plastic source emitting the 
acoustic signal by triangulation needs at least three separately placed transducers. The 
matrix notation introduced in the IUTAM selected landmark paper [13] is a starting 
point for such an enterprise. Identification of waves from plastic sources is of great 
importance in monitoring the safety of ductile structures eventually under the action of 
dynamic overload. The plastic interlayer slip, section 2.7, provides a special case of Eq. 
(13). Superiority of Eq. (13) over Eq. (12) or other classical convolution integrals, like 
the Mura-Willis integral, should be emphasized. 
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Abstract 

It is shown that the energy release rate for a moving dislocation may be obtained by using 
the energy flux through the slip-plane. This facilitates the calculation for the case of a 
general motion of the dislocation, since it requires only the 0(1) term in the near-field 
expansion of the resolved shear stress radiated by the dislocation, which is already 
obtained. This energy release rate is equated to the externally supplied energy-rate to 
give the equation of motion for a dislocation. 

I.   Introduction 

The energy release rate of a moving dislocation may be calculated in a similar way as a 
moving crack. However, the dislocation is more singular than the crack with essential 
differences between the two. The energy release rate is very important in the sense that it 
is intimately related to the equation of motion of a dislocation. Here is calculated the 

energy release rate for a screw and edge dislocation jumping from rest to a speed X>d by 

using a rectangular contour surrounding the dislocation and moving with it. The result is 
the same if the whole slip-plane is used for the calculation of the energy flux. Using the 
whole slip-plane, the energy release rate is calculated for moving dislocations (screw and 
edge) in general motion X-Jit). The energy rate that is required for this motion 

needs to be externally supplied, and this provides the equation of motion of the 
dislocation. Eshelby (1953) wrote a key paper on the equation of motion of a dislocation, 
but the question is too difficult and it has remained unanswered since then. 

II. Energy - release rate from a dislocation jumping from rest to a constant velocity 

In order to compute the energy radiated during the transient motion of the dislocation, we 

compute the rate at which energy passes through the surface Sd towards the core of the 

dislocation, which is (Freund 1972) 
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^"ij + jP^-^Kr (1) 

where   G ij,ui  and\)i   are  the   stress,   displacement  and  particle   velocity fields, 

respectively; tt;. are the components of the unit outside normal   n   to SdX>n is the 

component of the dislocation velocity in the direction of the normal n, and p is the 

density of the solid. 

It has been shown in Clifton & Markenscoff (1981) that for a dislocation jumping from 
rest to a constant speed the integral (1) is independent of the shape of the contour. In 
Clifton & Markenscoff (1981) a circular contour was chosen. We will show here that the 
half-plane may be used as a contour, and this will facilitate the derivation of the energy 
release rate for a general motion of the dislocation. But first we will use a rectangle 
contour, so that the transition to the half-plane becomes apparent. 

n.l   EDGE DISLOCATION 

Let us choose a rectangular contour bounded by the lines: X—X—8 ,x=A,+ 8   and 

Z--S,    Z =£ , where A,= —.   Let 
d 

x =X+r cos0,z= r sinG (2) 

Then we need to compute: 

U6 

#=lim       ]p i3&i{x,E,t)-ai3&i{x,-£,t)\dx i = 1,2,3 
E->0    J E 

X-5 

(3) 

du    du. 
The terms of interest are:   ——,——i-,G    ,G 

dt      dt u 

and they are found by expansion of the expressions given in Markenscoff & Clifton 
(1981) around the current position of the dislocation.   These near field expansions are 

along z = +£ , i.e. for (d z=0=drs'mQ +rcosQ dQ) and for small 8: 
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du r(    ,      -v     AM 

3? 71 2/ 

rfVl-a2sin8     rf(2-ß2)>/l-ß
2sin9 | 

~(l-a2sin2e)r+      2(l-ß 2sin % )r 

3«, / A     AM 

3f nb 

-d2(l-a2)   rf2(4-6ß2 + ß4)| 

fc a
2t ;ß2(l-ß2) 

3 
2f 

/    ,       \       AM 
o„U±e,r) = —-j\i 

7t  O 

2^3(3-2a2)|^
3([2-20ß2 + 7ß4)i 

Vl^f ß2V(l-ß2)3r 
(4) 

a    (*, + e,f)= 
AM 

7t fo 
"M 

X      oc2sin9 2J2
A/^-a2) sin9 

^  ß 2V(l-a 2)3        ^-a2sin20> 

J2(2-ß2Vl-ß2 sine | 

(l-ß2sin0 2e)r 

where a  and b are the longitudinal and shear wave slownesses respectively, 

V,     a 1), 

c j     a c2    rf 

The products C, 
3w, 

-, and C7. 
3«. 

are odd functions of 6; thus the two terms in 
zz    dt   » zz    df 

(3) corresponding to z =± £ can be combined.   Substituting (4) into (3) yields: 

r.    ~ ^2 
nb2 } 

V Au J 
^       e^0 t    

J e    [    (l-a
2sin2Gj 

tan 1— 
o 

J4(2-ß2)(3-2a2)Vl-ß2   | ^4(l2-20ß2+7ß4)^^2 

2^rIT(l-ß2sin2e)    +    2(l-a2sin20)A/(l-ß
2)3 

rf4(2-ß2)([2-20ß2+7ß4) 

4(l-ß2)(l-ß2sin2e) 

_Xa^dH2-a2)     X   a2d 2-N/T^T(4--6ß2 + ß4) 

ix (l-a2sin29)+2H     (i_a 2sin 20 W(l-ß2)3 
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+ 2d4(2-a2\\-a2)   </4(4-6ß2+ß4yr^T(l-a2) 
(l-a2sin2e) (l-a2sin2eW(l-ß2)3 

-^4(2-a2|2-ß2yiTßT    J4(4-6ß2 + ß4)(2-ß2 
(5) 

Vl-a2(l-ß 2sin2e) ß2Il-ß 
2sin 2ef 

de 

where H 
Ä.+ 2JX 

a2        X 
—T- and - = ^(ß2-2a>) 

)i    a 

m 
Krj 

terms in the During the calculation of (3) it is observed that due to symmetry the   0 
V 

ibute to the integral.    1 

terms is the steady-state solution with 

expansion near the dislocation do not contribute to the integral.    This is expected 

considering that the coefficients of the    V 

velocity the current velocity of the dislocation, and for steady-state motion no energy is 
required if the material is purely elastic. 

Collecting terms and performing the integration in (5) yields: 

27tß 2t 

12-80C2     (l2-20ß2+7ß4) 

[(l-a2)^       (l-ß2)^      j (6) 

This expression coincides with the one for circular contour obtained by Clifton and 
Markenscoff(1981). 

II.2 SCREW DISLOCATION 

We compute the energy release rate for a screw dislocation jumping from rest to a 

velocity Va based on a rectangular contour surrounding the dislocation. Let us choose a 

contour of sides 2e in the z-direction and 28  in the x direction centered at the current 
position of the dislocation. (See figure.) 
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K- ^^ 

x = l(t) 

■$\ 

fa 8 

At * X 

Figure 1 

For a screw dislocation integral (1) becomes: 

tairV 

#= Km Km    [   ^ ^ d6 
8—>0 £—»O J , _1E/ 3Z   3f tan '% 

(7) 

3M „   3M„ " y y 
where   ——, ——  are the expansions near the current position of the dislocation 

dz      dt 
obtained by Clifton and Markenscoff (1981). 

d"j, _ (Au *\ 

v27ty dz 
■cose^l-ß2 d 

(l-ß2sin26)r    ^Z^~t     t 

~dT~   ~2K j(l-ß'sin2e), 

(8) 

Substituting (8) into (7) yields; 

#= ̂  
^A^2 

2rc 
v     y 

^/^^ 
n-'E/ 

Km Km Li: 
de 

6^E^tan:,E/'-ß   sin e 
/o 

H(AW)
2 

2jtf 

N/^ 

>/l1^ 

(9) 
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It may be observed that the limit 8 —> 0 is never taken, i.e. fr is independent of 5   as 

long as % —> 0  This is important in allowing 8   to extend from — o°,+°° in x.  It is 

also observed in both calculations for screw and edge, that only the 0(1) terms in the near 
field expansion contribute. 

The above calculation of the integral in (5) for an edge dislocation is lengthy and tedious. 

It may be avoided by choosing a rectangular contour C with 8 =8 ", n <1, so that 

from 
_i_ 

$=lim [c5un.i£idx- \o ..(x,e,f)rc.4(x,£,r}& 
£->oJ J     J    J p     .    „    } J ' e^0± (10) 

e" 

d ± a 

where it was taken into account that X)n  — 0 at the upper and lower faces, and that the 

displacement is a step function discontinuity on the slip-plane. 

Substituting Oa (A(r),0,f)   from (4) into (10) we obtain: 

12-8CC2     12-20ß2+7ß' ^>i(Aw)2 

27Uß vr^7    ^(i-ß2)3 (11) 

which coincides with the circular and rectangular contours. 

HI. Energy release rate for a nonuniformly moving dislocation in general motion 

When a dislocation is moving nonuniformly, i.e. with acceleration, then, unlike cracks, a 
logarithmic singularity appears that has as coefficient the current value of the acceleration 
of the dislocation. In case of a dislocation loop (Markenscoff & Ni, 1990) the coefficient 
also depends on the current value of the loop curvature. 
This logarithmic singularity does not cancel by integration around the contour the way 

the — singularity does. Actually the Xn terms give rise to divergence of the integral, 
£ 

which is due to the strong step-function discontinuity of the core in the  Volterra 
dislocation model. 
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However, in an approximation effort, one many cut-off the radius of the core at a distance 

ro , and then the logarithmic term is treated as a constant term in the near field. This is 

consistent with other dislocation core models, such as the Peierls-Nabarro one (Hirth & 
Lothe, 1982). This constant term will be added to the 0(1) term that has to be computed 
by singular expansion of the integral that gives the radiated field from the moving 
dislocation as an integral over the history of the motion. 

du y 

IT 
^ z t)_   Au~c(t-tä)fc-tfH{t-T]fc)-rb)^ 

211 0 ri-n02-rV]^ 
(12) 

( Au _2 d |(r-»fe))2tf(f-rife^-rfc)        Au      x 
2n     dti    rit-n&f-Sbf* 2**W 

where r2 =(x-Z,)2 + z2 , and where T| (x) is the inverse of l(t) and t = T|(x) describes 

the motion equivalently to X =l(t) . 

The 0(1) term in the asymptotic expansion of (12) has been computed by Markenscoff 

(2000). For the equation of motion of a dislocation the energy rate given by W in (3) 
must be provided by an external agent. Finding the motion A(f) from this can be done 

only numerically. 
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BACKSCATTERING OF BULK WAVES FROM A SURFACE-BREAKING 
CRACK UNDER A COMPRESSIVE STRESS 

Abstract 
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European Commission 
PO BOX 2, 1755 ZQ Petten 
The Netherlands 

A recent investigation into the scattering of a Rayleigh wave from a one-dimensional 
surface-breaking crack under a compressive stress field has shown the occurrence of a 
surprising phenomenon. When the crack depth is of the order of a wavelength or larger, 
and the compressive stress is lower than a characteristic value, a significant increase of 
the reflected signal is predicted theoretically and observed experimentally. The purpose 
of this work is to extend the previous investigation to the case when the incident field is 
either a longitudinal or a shear wave. 

The effect of the compressive stress on the scattering event is modeled by using the 
quasi-static approximation for two rough surfaces in contact. The spring elastic 
constants KN and KT, which simulate the macroscopic elastic behavior of the contacting 
crack faces, may vary along the crack faces. This additional degree of freedom allows 
the model to consider situations where the crack is either uniformly partially closed 
along its whole extent, or partially closed at its tip, or at its mouth only. The scattered 
field is evaluated in its far-field zone. The dependence of the backscattered signal on i) 
the intensity and spatial dependence of the compressive stress, ii) the direction of 
incidence of the inspecting ultrasonic wave, and iii) the normalized crack depth is 
investigated, and possible implications for the detection and characterization of the 
partial closure of a surface-breaking crack is discussed. 

1.    Introduction 

During the last twenty years, the scattering of elastodynamic waves by cracks has been 
investigated extensively by many authors both theoretically and experimentally. In 
particular, considerable attention has been given to the description of elastodynamic 
wave scattering by surface-breaking cracks. Datta (1979) presented a model of the 
diffraction of an antiplane shear wave by an edge crack, which is valid in the low 
frequency limit. Stone, Gosh, and Mai (1980) extended Datta's work on scattering of 
shear horizontal (SH) waves to moderate and high frequencies by solving an integral 
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equation for the crack opening displacement (COD) first, and, then, providing 
expressions for the scattered wave in the far-field region. 

To the best of this author's knowledge, Achenbach, Keer, and Mendelsohn (1980) 
and Mendelsohn, Achenbach and Keer (1980) were the first to describe the scattering of 
surface (Rayleigh) and bulk waves from an open, surface-breaking crack. They 
formulated the problem in terms of two uncoupled integral equations for the COD's 
gradients, also known as dislocation densities. A ray analysis of the same problem was 
presented by Achenbach, Gautesen, and Mendelsohn (1980). The latter work, however, 
neglected the radiation of bulk waves from the crack tip. Kundu and Mai (1981) 
considered the problem of an open crack, insonified by both surface and bulk waves, 
breaking the surface of a plate. They provided high-frequency solutions to these 
problems following the same approach adopted by Achenbach, Gautesen, and 
Mendelsohn (1980), except that the analysis by Kundu and Mai (1981) accounted also 
for the bulk waves radiated by the crack tip. The validity of these theoretical models 
was tested experimentally by Vu and Kinra (1985), and Tittmann, Ahlberg, and Mai 
(1986). Vu and Kinra (1985) considered a surface-breaking crack insonified by an 
incident Rayleigh wave at normal incidence. They measured the scattered field at low, 
intermediate, and high frequencies along the surface containing the scatterer. The 
experimental measurements were found to agree well with the theoretical predictions. 
Tittmann, Ahlberg, and Mai (1986) focused their work on the high frequency results, 
and, in particular, they measured the amplitude of the bulk waves radiated by the tip of a 
crack insonified by an incident Rayleigh wave. The experimental results supported the 
theoretical prediction of Kundu and Mai's analysis. Angel and Achenbach (1984) 
extended the modeling of scattering of Rayleigh waves by open, surface-breaking 
cracks to include the case of oblique incidence. The model was validated by 
Achenbach, Komsky et al. (1992) by employing a self-calibrating ultrasonic technique 
to measure the ratio between the transmission and reflection coefficients as a function of 
the normalized crack depth at several values of the angle of incidence. Finally, Zhang 
and Achenbach (1988) considered the scattering of a Rayleigh wave by a surface- 
breaking crack which is inclined with respect to the surface that contains it. A boundary 
element method was used to solve the integral equations for the COD, and values for the 
reflection and transmission coefficient of the incident Rayleigh wave were given as 
functions of the angle between the crack and the normal to the surface, and of the 
normalized frequency. 

The effect of the partial closure of a crack on the wave scattering properties of a 
crack has been investigated to a lesser extent. A literature review on this subject was 
recently presented by Pecorari (2000), who also extended the work by Achenbach, Keer, 
and Mendelsohn (1980) and Mendelsohn, Achenbach and Keer (1980) to the case of 
Rayleigh wave scattering by a surface-breaking crack which is partially closed by a 
compressive stress field. The partial closure of the crack faces was modeled by 
invoking a quasi-static approximation (QSA) according to which the macroscopic 
elastic response of the crack to an incident wave can be described by means of a 
continuous distribution of normal and tangential springs. Within the framework of the 
QSA, the components of the total stress applied to the crack faces produce a 
discontinuity of the displacement components according to the well-known boundary 
conditions, 
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axx(x = 0 + ,z) = axx(x = 0  ,z) = KN [u(x = 0 + , z) - u(x = 0",z)] , (1) 

a^ (x = 0+, z) = <T^ (JC = 0-, z) = tfr[v(;c = 0+, z) - v(x = 0", z)] .  (2) 

In Eq. (1) and Eq. (2), the first equality enforces the continuity of the total stress 
components, o^ and axz, across the crack faces placed at JC = 0 and extending into the 
material to a depth z = h. The second equality in both equations relates the applied 
stress to the displacement discontinuity across the crack faces via a quantity, KN or KT, 
that represents the stiffness of the distributed springs. Following the results of several 
investigations by Buck, Rehbein, Thompson (1987 and references therein), provision 
was made for the spring stiffness constants KN and KT to vary along the crack faces. An 
essential component of the model was the choice of the ratio KT /KN, which 
experimental evidence shows being of the order of 0.5 (Nagy (1992)), slowly increasing 
with increasing strength of the applied stress. Alternatively, a ratio close to unity can be 
expected between two rough surfaces showing a high degree of conformity, as may be 
the case of the faces of fatigue cracks. For values of the ratio KT/KN of the order of 0.5, 
and for surface-breaking cracks with depth larger than half a wavelength of the incident 
Rayleigh wave, a surprising and considerable increase up to 40 percent of the reflection 
coefficient was predicted (see Fig. 1). These results were obtained for a surface- 
breaking crack in an aluminum half-space characterized by the following properties: 
longitudinal wave velocity, CL= 6286 ms'1, shear velocity, Cr= 3195 ms"1, mass density 
p = 2.7 103 kg m"3. Experimental results supporting the model predictions were also 
presented. 

# 

-75- 

-100- 

hU=3 
hU=0.3 
hU=0.(B 

KN(10,4N/m) 
10 

Figure 1. Relative variation of the reflection coefficient of an incident Rayleigh wave vs. KN 

for a crack that is partially and uniformly closed. Three values of the normalized crack 
depth, hlXg, are considered: 0.03, 0.3, and 3.0. The frequency of the incident and scattered 
wave is equal to 4 MHz. 



48 

In this work, elastodynamic scattering by a surface breaking crack with faces in 
partial contact is extended to the case of longitudinal and shear incidence. The 
dependence of the backscattered signal on systems parameters such as the intensity and 
spatial dependence of the compressive stress, the direction of incidence of the 
inspecting ultrasonic wave and the normalized crack depth is investigated. Possible 
implications for the detection and characterization of a surface-breaking crack are also 
discussed. 

2.    Theory 

Following the approach presented by Achenbach, Keer, and Mendelsohn (1980) and 
Mendelsohn, Achenbach and Keer (1980), the mathematical formulation of the problem 
of interest is expressed via two uncoupled integral equations of the first kind for the 
gradients of the COD caused by the incident wave. To this end, the same equation of 
motion and the same boundary conditions discussed in Pecorari (2000) are utilized. In 
this work, the stress carried by the incident field comprises the contributions of the 
primary field, i.e., the bulk plane wave propagating from infinity towards the cracks, 
and of the plane waves reflected by the stress-released surface containing the crack (see 
Neerhoff(1980)). 

Once the COD of the crack faces is calculated, the far-field amplitude of the 
scattered bulk waves can be evaluated by using the asymptotic expansion of the integral 
representation of the scattered field (Neerhoff (1980)). Expressions for the cylindrical 
longitudinal and shear components of the scattered field are found in this way. 
Adhering to Neerhoof's notation as far as possible, the field radiated from the crack into 
the bulk of the host material can be written as follows, 

.       i r~2~~   f      i  \ i \~Y~   (      i  > 
ur

a
aa(r,e) = -i ——exp ikPr--in PP(i)ea+-il——exp iksr--m P5(e)£w,eff,(3) 

A\jikPr      y 4    ) 4\xksr      ^ 4    J 

where, r is the distance between the mouth of the crack and the observation point 
located in the far-field, i is the unit vector pointing along the position vector of the 
observer, kP and ks are the wavenumbers of the longitudinal and shear waves, 
respectively, and, finally, /V.s (•) are the characteristic functions for the longitudinal (P) 
and shear (S) waves, respectively. These quantities can be calculated using the 
following integral, 

h 

PPS (e) = J Aua daß B
p/(z,e)dz . (4) 

In eq. (4), daßBß represent the far-field components of the Green's stress tensor, and Aua 

is the oc-th component of the COD. Thus, through Aua the characteristic functions 
depend on the angle of incident of the exciting wave, and on the interfacial conditions 
between the crack faces. The integration is performed along the crack depth. Thus, the 
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characteristic functions contain the dependence of the scattered amplitude on all the 
system parameters except for the distance of the observation point from the scatterer, r. 
In this work, numerical results are presented for the characteristic function of the 
scattered bulk waves having the polarization and wave (propagation) vectors parallel to 
the analogous quantities of the incident wave. For the sake of simplicity, in the 
following the characteristic function is referred to as backscattered amplitude. The 
mechanical properties of the host material are those used in Pecorari (2000) and 
reported above. 

Numerical Results 

Figure 2 illustrates the dependence of the longitudinal backscattered amplitude on the 
angle of incidence at an ultrasonic frequency of 2.25 MHz. Figure 2a refers to a crack 
having a normalized depth hJlT = 0.3, while Figure 2b refers to a crack with h/AT = 3.0. 
The symbol XT is the wavelength of a shear wave at the frequency of 2.25 MHz. Three 
values of the interfacial spring constant, KN, are considered: KN = 0 (open crack), 2.0 
1014 Nm"3, and 4.0 1014 Nm"3. In this and the following figures, the partial closure of the 
crack is uniform along the crack extension, unless otherwise specified. Worth noting in 
Fig. 2 is the tendency of the characteristic interference oscillations of the backscattered 
amplitude to disappear with increasing values of the crack depth. In other words, the 
angular dependence of the amplitude backscattered by the crack increasingly resembles 
that of a longitudinal wave impinging on an imperfect interface of infinite extent as the 
normalized crack depth increases. 

Figure 3 shows the angular behavior of the amplitude of the backscattered shear 
wave for the same set of system parameters considered in Fig. 2. Note the large peak of 
the backscattered wave around the critical value for the longitudinal wave reflected by 
the stress-released surface, that is, 0L = 30.5 degrees. 

Figure 4 illustrates the behavior of the normalized backscattered amplitude for 
cracks with normalized depth, h/XT, equal to 0.3, and 3.0, at a frequency of 2.25 MHz, 
as the spring stiffness, KN, increases. The amplitude of the wave backscattered by an 
open crack under the same conditions is used as normalization constant. Figure 4a 
refers to a longitudinal wave incident at 45 degrees from the normal to the stress- 
released surface, while Fig. 4b shows the data relative to a shear wave impinging on the 
stress-free surface at an angle of incidence of 30 degrees. In both cases, the decrease of 
the scattered amplitude with increasing values of the interfacial spring constant follows 
the expectations based upon the behavior of the reflection coefficient of a bulk wave 
insonifying an imperfect interface at normal incidence. 

The dependence of the backscattered amplitude on the crack depth was also 
investigated and Fig. 5 reports sample results obtained for an open crack, and a crack 
the faces of which are partially closed (KN = 2.0 1014 Nm"3). The longitudinal 
backscattered amplitude (Fig. 5a) shows pronounced variations caused by interference, 
especially around h/AT= 1.0, while the shear backscattered amplitude (Fig.5b) increases 
in a smoother fashion. In both cases, the absolute magnitude of the oscillation is 
reduced by the partial crack closure. 
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Cracks may be partially closed only along a confined region of their extent. For 
instance, crack closure may occur only at the crack tip due to the action of a 
compressive residual stress field present within the plastically deformed region around 
the crack tip. This situation may be modeled by letting the normal stiffness of the 
distributed spring vary in the following way, 
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Figure 2. Longitudinal backscattered amplitude vs. angle of incidence for two values of the 
normalized crack depth, hlXT = 0.3 (a), and 3.0 (b), and three values of the normal spring stiffness, 
KN = 0 (open crack), 2.1014 Nm'\ and 4.1014 Nm"3. The ultrasonic frequency is/= 2.25 MHz. 
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Figure 3. Shear backscattered amplitude vs. angle of incidence for two values of the normalized 
crack depth, h/XT = 0.3 (a), and 3.0 (b), and three values of the normal spring stiffness, if„ = 0 (open 
crack), 2.1014 Nm"3, and 4.1014 Nm'3. The ultrasonic frequency is/= 2.2S MHz. 
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Figure 4. Normalized backscattered amplitude vs. Ks for a) longitudinal, and b) shear incidence at 
45 degrees and 30 degrees, respectively. As before, the ultrasonic frequency is 2.25 MHz. 
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Figure 5. Backscattered amplitude vs. normalized crack depth for an open crack and for a crack 
partially closed with a spring constant KN = 2.0 1014 Nm'3. a) longitudinal incidence at 45 degrees, 
b) shear incidence at 30 degrees. The ultrasonic frequency is equal to 2.25 MHz. 
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KN - 
KH cos 

0 

7t h 

2  0.4/j 
for   h < z < 0.6 h 

for   0.6 h < z < 0 

(5) 

In Eq. (5), the quantity K   is the maximum value of the normal spring stiffness.  The 

latter decreases to zero, that is, the crack is open at depths smaller than 0.6/i. Figure 6 

illustrates the variation of the backscattered amplitude with increasing values of K   for 

two cracks having a normalized depth equal to 0.3 and 3.0, respectively. Although 
hardly of any practical relevance because of its magnitude, the variation of the 
amplitude of both longitudinal and shear waves which are backscattered by the deeper 
crack is seen to increase with the interfacial stiffness, as previously reported for the case 
of Rayleigh wave reflection. 

4 6 
K^(ld4N/m) 

4 6 
tfN(l(y4N/m) 

Figure 6. Variation of the longitudinal (a) and shear (b) backscattered amplitude vs. K  .   Cracks 

considered here are partially closed within their tip region, and have a normalized depth equal to 
0.3 and 3.0. The ultrasonic frequency is equal to 2.25 MHz. 

Finally, a legitimate question may be asked as to whether any ratio between 
amplitudes of scattered waves may be used to characterize the state of partial closure of 
a surface-breaking crack. Figure 7 reports the ratio between the amplitude of the 
longitudinal and shear waves backscattered at 45 degrees and 30 degrees, respectively, 
by an open and a partially closed crack (KN = 2.0 1014 Nm'3) versus the normalized 
frequency, f/(Cj/h). The crack depth chosen equaled 3.195 mm, so that the 
normalization constant would be equal to 1 MHz. For values of the normalized 
frequency up to 3.0, the behavior of the ratio does not show any clear feature that may 
be considered characteristic of the partially closed state versus the open state. 
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Figure 7. Ratio between the longitudinal and shear waves that are backscattered at 45 degrees and 
30 degrees, respectively, vs. the normalized frequency, for an open crack and a crack that is 
partially closed. The crack depth, h, is equal to 3.195 mm. 

3. Concluding Remarks 

A model that describes the scattering of elastodynamic waves by a surface-breaking 
crack with faces in partial contact is now available. For the case of Rayleigh wave 
incidence, the model predicts a surprising and considerable increase of the reflection 
coefficient for crack depths larger than half a wavelength of the incident wave, and a 
normal spring stiffness, KN , smaller than a characteristic value. Such a prediction is 
supported by experimental results, and may lend itself to practical applications. For the 
cases of both longitudinal and shear incidence, the model yields a description of the 
backscattering phenomenon that qualitatively resembles the reflection of a bulk wave 
impinging on an imperfect interface of infinite extent: the amplitude of the 
backscattered wave decreases continuously with increasing spring stiffness. 

The model relies on the introduction of the stiffness constants of the macroscopic 
distributed springs to incorporate the effects of the microscopic contacts on wave 
scattering. Unfortunately, the QSA does not provide a direct link between the spring 
constants, KN and KT, and the compressive stress causing the partial closure. Thus, 
additional modeling accounting for the topographical and mechanical properties of the 
two partially contacting surfaces is required to fill the gap. To the best of this author's 
knowledge, no model explaining the contact problem in all its aspects is available to this 
date. However, even if such a program were brought to a successful conclusion, the 
lack of a characteristic acoustic signature of the partial crack closure on the scattered 
field seems to hinder the possibility of characterizing the compressive field partially 
closing the crack by ultrasonic methods based on linear phenomena. Nonlinear 
scattering of elastodynamic waves might enhance the chance of solving this problem. 
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In fact, the generation of higher harmonic components of the scattered field is a 
phenomenon that occurs only when the faces of the crack interact with each other. 
Therefore, it may provide a clear and unique signature of a compressive stress acting on 
the crack faces. 
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ASYMPTOTIC FORMULAS FOR THE STRESS FIELD 

OF A CRACK BY NONLOCAL ELASTICITY 
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Abstract- A new mathematical approach is adopted to deal with the crack tip stress 

field. By considering the parameter a, which is proportional to the reciprocal of the 

distance between atoms, being large, we construct two asymptotic expansions for the stress 

field, which are uniformly valid for ra (r is the distance to the crack tip) being bounded 

and unbounded respectively. The results show that the classical singularity is eliminated 

and a finite value at the crack tip is found. We define this value as Nonlocal Boundary 

Residual (NBR) which is microscopic mechanics quantity and disappears in macroscopic 

mechanics theory. It is also found that to small angle stress there is a maximum stress 

near to the crack tip. 

1    INTRODUCTION 

The concept of nonlocal elasticity has been developed in 60s and 70s. The basic idea of 

nonlocal elasticity is that microstructures of materials are considered in constitutive equa- 

tions. The Nonlocal Residuals exist in nonlocal theory. They are not only mathematical 

quantities but also physical quantities (Pan and Ji,1997, Pan and Takeda,1998). 

In this paper, we calculate the stress field by uniform asymptotic analysis (UAA) (Dai 

and Wong 1994, Dai 1997). In our mathematical treatment, we find that it is necessary to 

consider the cases of ra being bounded and unbounded respectively. We leave unbounded 

case to other paper because of limited pages. For bounded ra, by using the series repre- 

sentation of the classical stress field and the Taylor expansion for the exponential function 

in the polar coordinates, we first take term by term integration to obtain the first N terms 

in the expansion. To establish the asymptotic nature ofthat expansion with mathematical 

rigor, the remainder has to be estimated, which is done in the appendix. The remakable 

features of nonlocal solutions are that the solution eliminates the singularity and has a 
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finite value at the crack tip. The existence of the finite value has been proved by Actinson 

(1980) and Ari and Eringen (1983). We gave the value by UAA and explained it as NBR. 

The maximum of the stress near the crack tip changes its position and the value with 

different angles. The changes arc revealed only by nonlocal theory. 

2 NONLOCAL THEORY 

The character of nonlocal theory is that the constitutive relation considers the microstruc- 

tures of the material by introducing a. kernel function 7(|x' - x|, a), where a reflects the 

microstructure of the material. In this way, the only difference between nonlocal and clas- 

sical theory is the constitutive relation. The other displacement or geometric quantities 

arc same for both. The nonlocal stress field for linear, isotropic, homogeneous, elastic 

solid with vanishing body force and in a static case can be expressed as (Pan and Takeda, 

1998): 

*y(x)= /"Tdx'-xIK-txy^x'), (1) 
Jv 

where t,j and <T;J are the nonlocal and classical stresses respectively, 7 = 7oexp[—a2(|x'— 

x|)2] and 70 = 7T~
3
'
2

Q
3
, a = k/a, k = 1.65 are constants, a is a distance between atoms. 

The equilibrium equation can be satisfied in nonlocal case 

Uj,i = 0 (2) 

which is easy to be proved using identities 7J<T',- = _(7fT',)j' + la\i j< an(l considering 

Green-Gauss theorem and classical stress equilibrium. In fact, we have 

tij.) = / 7Ju'ijdv' = ~ f  (l"a'u)njdS + / ~ia'ij,ildv' = ° 
Jv Jdv Jv 

where dv denotes the surface of the body enclosing v, and n is direction vector of the 

surface. 

3 ASYMPTOTIC FORMULAS FOR NONLOCAL STRESS 

FIELD OF CRACK 

The classical stress field near to the crack tip can be found in any book of fracture me- 

chanics, which can be expressed by 

CO 

<7rM) = r-I/2E'-,'/2m 

1=0 
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OO 

Trg{r}8) = r-V2J2ri'2fU8), (3) 
«=o 

where 

1     °° 7 — 1 i 4- S 
fir = TT I> + 1)r5«(5 - 0«»(-5-«) + [<+!- 2(-l)']co6(^_fl)}ai+1 V^ 2 2 

+{(5 - i)sin(^ö) + [i + 1 + 2(-l)i]sin(^0)}ft+1}, 

1      °° » — 1 i 4- 3 
/i = A: £(« + l>H{(i + 3)cos(—0) - [• + 1 - 2(-l)«]cos(-±-0)}a,-+1 

+{(i + 3)sin(^0) - [i + 1 + 2(-l)«']sm(L^)}A+i}. 

1      °° ? — 1 i 4- 1 
Ä = TrYtt + l)»-*{{('' - !)sin(-^ö) - [t + 1 - 2(-l)«]8in(^_fl)}ai+1 

4v r i=o z 

+{(1 - t)cos(^0) + [t + 1 + 2(-l)i]cos(^ö)}/3i+1}. 

where a;, and /?,- are constants. It is obvious that the classical stresses are not valid when 

r -¥ 0 due to the infinite values. Then we can write 

i=0 

oo 

i-0 
oo 

r12 = r-1/>Y,ri,2n» (4) 
«=o 

where 

fn = />s20 + fesm29 - />in20, 

fn = /;sin2Ö + /jcos20 + /;ösin2Ö, 

/12 = \{fr - /l)sin2Ö + /«,cos20. 

Since the distance a between two atoms is very small, a = k/a is very large. Next, we 

shall regard a being the large parameter to deduce the asymptotic formulas for tjj from 

its integral by substituting (4) into (1). We write (4) as 

°nm (r, 9) = r-1'2 £ r^/L (9) + Fnm (r, 0), (5) 
«=o 
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where N is an arbitrary integer, and 

oo 

Fnm(r,ö) = r-1/2   £   r'l2fnm(6). (6) 
i=N+l 

Obviously, as r —> 0, 

Fnm(r,6) = 0((r)N/2) (7) 

uniformly valid in 8. Substituting (5) into (1), we obtain 

tnm = R\+R2, (8) 

where 

N        TOO /-7T 

Ri = Toexp(-aV) ]£ /    (r')(1+i)/2exp(-aV2) /    exp[2Q2rr'cos(0 - 6')]f'nm {9')d9'dr' 
i=oJo J~7T 

(9) 
and the remainder is 

#2 = 7oexp(-aV) /     exp(-ttV2) /    exp[2a2rr'cos(6i - 6>')]F„m(r', e')d6'dr'.     (10) 

We shall deal with i?i first.  According to the Taylor series for an exponential function, 

we have 

exp[2<Ar'cos(6> - 9')] = ^[2a2rr'cos(6» - 9')]j/j\ (11) 
j=o 

It should be noted that the series in (11) is convergent for any r' and 9'. Substituting (11) 

into (9) and interchanging summation and integration (this is permissible because of the 

previous point), we obtain 

B,: = 7oexp(-öV)££iM  r exP(-Q^)r'^'dr'giim(e), (12) 
:=Oj'=0        ■>'        J0 

where 

g^m{9) = /_*cos''(0 - 9')flm(9')d9'. (13) 

The integral in (12) can be easily evaluated by using the Gamma function T(r), and as a 

result we obtain 

Ä, = iW-cV) £[£ ^r(i±^kYm(ö)]o-^. (i4) 
»=o j=o     J • 

To establish an asymptotic formula for tnm, one needs to prove that the remainder R2 is 

smaller than the last term in the second summation in the right-hand side of (14). In the 
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appendix, we have provided a detailed proof that when ra is bounded, it is indeed such a 

case. Thus, we have established that 

tnm (r, 9) ~ -7oexp(-a V) Jjßj    \.,     T( ^ )<#m(0)]a    * (15) 
z to i=o     J- * 

as a —>■ oo uniformily valid for ra being bounded. The radial stress can be obtained by 

tr = tncos20 + f22sin20 + i12sin20. (16) 

Setting p = ar in Equaion (16), the curve of tr versus p is given in Fig.2 for an opening 

crack. 

4    DISCUSSIONS AND REMARKS 

In (16), if only the first term is taken (the error is 0(a~2)), we have 

tr(r,0) ~ fexp(-a2r2)[f:^r(^)^(ö)]^ (17) 

as a -> co uniformily valid for ra being bounded, where gr = gncos28 + g22sin28 + 

gi2sin28. The curves of the nondimensional stress T = tra~xl2/Kj versus the nondirnen- 

sional distance p = ar with different 6 according to the above formula are shown in Figure 

2.  From the results of Fig.2, we find that there is a maximum of the stress near to the 

crack tip. The value of the maximum increases with the decreasing 6. In the figure, the 

value changes from 3.75 to 3.78 when the angle 8 changes from 7r/3,7r/4,7r/6 to 0. When 

the distance from the crack tip increases, the effect of the angle disappears gradually. The 

result returns to the classical one. We can prove that for unbounded (large) p = ra, the 

solution is also convergent by the asymptotic approach (we will publish this part in other 

paper). So, for any bounded value of p = ra, as long as a sufficient number of terms in 

the series is taken, an accurate result can be obtained. If in particular r = 0, and noting 

that 
16 

5oo = 

from (17) we have 

5oo= -jj-ai, 

tr(o,o) = |(J)1/V/Jr(|)^. (18) 

Here a commonly used constant Ki in fracture mechanics is introduced in the above 

equation instead of the original constant «i for a crack of type /. The stress at crack tip 
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was also calculated by some authors numerically. For example, Bringen (1978) showed 

that the stress at the crack tip is zero in nonlocal case. Aktinson (1980) revealed that the 

value at the crack tip is not zero. Later, Ari and Eringen (1983) calculated the stress field 

close to the crack tip and gave a value of the maximum of the stress near to the crack tip 

which is 

tyymax/to = 0.643395o1/2. 

By our result (18), we have 

<o/A'/ = 2.607a1/2. 

In our approach we show that a large value is existent and can be given accurately at the 

crack tip. The value is reasonable in physics. The value produced is due to the effect 

of microstructures. The value reveals the existence of nonlocal boundary residual. This 

is because that to match the value at the crack tip the surface of the crack should have 

stresses (NBR). When a (the distance between two atoms) is neglected (tends to 0) , the 

value of (r (0,0) is infinity, which gives the classical result. Now in nonlocal consideration 

tr(0,0) is connected with microstructurc of the material, which means that the value of 

crack tip stress is micromechanics quantity. For other stress components we can obtain 

the same conclusion. 

ACKNOWLEDGEMENT 

This work was supported partly by a CERG Grant from Hong Kong Government and a Strategic 

Grant from City University of Hong Kong. The work is sponsored by Royal Society K.C.Wong 

Fellowship when K.Pan was visiting Keelc University. 

REFERENCES 

Abromowitz, M. and Stegun, I.A. (1965) Handbook of Mathematical Functions. Dover, 

New York. 

Ari, N. and Eringen, A.C. (1983) Cryst. Latt. Def. and Amorph. Mat., 10 33. 

Atkinson, A. (1980) Arch. Mech. 32 317 and 597. 

Dai, H.-H. and Wong, R. (1994) Wave Motion   19 293. 

Dai, H.-H. (1997) IMA J. Applied Mathematics 59 245. 

Eringen, A.C. (1978) Arch. Mech. 30 55. 

Pan, K.L.and Ji, X. (1997) Mech. Res. Commu. 24 325. 

Pan, K.L.and Takeda, N. (1998) Archive of Applied Mechanics 68 179. 



61 

APPENDIX 

Estimate of R2 

From the fact that F(r, 6) is bounded and of order (r)Nl2 as r —> 0 (see (7)), we know 

that there exists a positive constant K\ such that 

|F(r',fl')|<üfi(p')w/2. (19) 

Using the above equation in (10), we have 

/•oo PIT 

|fi2| < tfi7oexp(-aV) /    (r')N/2exp(-aV2) /    exp[2a2rr'cos(0 - d')]d9'dr' 
J0 J--K 

poo 

= tfnoexpt-aV) /    /0(2a2rr')(r')Ar/2exp(-a2r'2)dr' 
Jo 

= -Ä'i7oa-JV/2-1exp(-a2r2) /    /0(2arr1/2)rT-exp(-r)dr. (20) 
2 Jo 

In deriving (20), an integral representation for the modified Bessel function IQ(-) has been 

used (see formula 9.6.16, Abramowitz and Stegun 1965). Since 

^^ = ±^0^ (21) 
(formula 9.6.10, Abramowitz and Stegun 1965), which is convergent for any a, r and r, 

we have 

roo N_2 °2^     far)2*      Z100   u  "-2 
Jo    7o(2arr1/2)r —exp(-r)dr = £ ^    '+     ^    THTexp(-r)dr 

= £, fc!r(fc + i)r(fc + ~^} = 0(1) (22) 

for ar being bounded. 

From (20), (21) and (22), we conclude that 

R2 = 0(7oa-Ar/2-1exp(-a2r2)), (23) 

which is smaller than the last term in the right-hand side of the summation in (14) as 

a —> oo. 
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Fig. 1 An infinite crack with tensile 

-■-0 degree 

-M-30 degree 

-•-45 degree 

-4-60 degree 

Fig. 2 Stress distribution near an infinite crack tip (s-p) 
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1. Summary 

A near-tip, transient, elastodynamic solution is presented for the plane-strain problem of 
a crack in a fiber-reinforced composite body subjected to a non-uniform loading, which 
is suddenly and symmetrically applied to the crack faces. Interest is focused on the stress 
field in the immediate vicinity of the crack edge during a small time-interval right after 
the application of loading and, therefore, the cracked body is considered of infinite 
extent and the crack itself of semi-infinite length. The loading consists of a pair of 
equal, but opposite, line concentrated normal forces which have a step-function time 
dependence. In this way, the present solution provides the Green's function for more 
general cases of spatially/temporally non-uniform loading. The fiber-reinforced 
composite is modeled as elastic orthotropic with four different material constants. The 
mathematical diffraction problem is solved in an exact manner through integral 
transforms, an analytic-function decoupling technique, asymptotics and convolutions. 
Our results provide the time variation of the crack-tip stress intensity factor. These 
results may serve to quantify the fracture resistance of fiber-reinforced composite 
materials. 

2. Problem Statement 

As Fig. 1 depicts, we consider a fiber-reinforced body occupying the region 

(-OO<JC<OO, -oo<j<ooj  and containing a stationary semi-infinite crack situated 

along the plane (-oo<x<0, y=0), with respect to an (x,y) Cartesian coordinate 
system. The body is modeled as elastic and orthotropic, with either the x ory axis being 
the axis of material symmetry. The cracked body is stress-free and at rest for time t <0 
but at t =0 the crack faces are suddenly acted upon by a pair of concentrated line normal 
forces F, which tend to open the crack under plane-strain conditions. Because of 
symmetry with respect to the plane y =0, the problem can be viewed as a half-plane 

problem with the body occupying the domain (- oo < x < oo, 0< y < coj. 
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Figure I. Cracked body under concentrated impact loading. 

The governing equations for the problem described above are written as (see e.g. 
Lekhnitskii, 1963) 

<?v c^u. 
Cll    i!    +C66    a.2 -(C12+C66) 

C?K &U 
= P- dy2   '^'2 ■'""'dxdy    r dt2 

lC12+C66JX± = P 
 y_ y 

c66     o2    +C22    JZ.2 dy 

dur 
:C,] dx +C|2' 

du^ 

dy . °yy=CU 

dxdy 

dx 

dt2 

du,. 

dy Vxy = C66 

dux    du 
 - + " 
dy      dx 

(la) 

(lb) 

(2a,b,c) 

where [ux,u\ are the components of displacement vector, lcrK)<7w.,cr ) are the 

components of the stress tensor, p is the mass density, t is the time, and 

[cu,cn,c22,c66) are the four (independent) elastic constants. 
The initial and boundary conditions of the problem are as follows (for the upper 

half of the domain) 

uk(x,y,t=0} = duk(x,y,t=o)/dt=0 , {k = x,y) 

ayy(x,y=0,t) = -F-S(x + L)-H(t) for -oo<x<0 

axy[x,y=0,t)=0 for -oo<x<°o 

uy[x,y =0,r) =0 for 0< x < oo 

(3) 

(4a) 

(4b) 

(4c) 

where S() is the Dirac delta distribution, //(■) is the Heaviside step function, and F is 
expressed in dimensions of force per unit length. To render the initial/boundary value 
problem a well-posed one, eqns (l)-(4) should be supplied with the edge conditions at 
the crack tip (i.e. restrictions on the singular behavior of the fields) and the finiteness 
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conditions at remote regions (which are direct consequence of the asymptotic behavior 
of the pertinent Green's function). The former of these conditions are necessary for 
solution uniqueness in elastic crack problems (Knowles and Pucik, 1973), whereas the 
latter guarantee that the field at infinity consists of outgoing waves only. Both 
conditions are properly utilized at certain steps in the solution procedure (see e.g. 
Georgiadis and Rigatos, 1996). 

The objective of the present analysis is to exactly determine the stress field at the 
vicinity of the crack tip for the problem described above. 

3. Basic Integral-Transform Analysis 

The one- and two-sided Laplace transforms (LTs) are utilized to suppress the t and x 
dependence, respectively, in the governing equations and the boundary conditions. The 
transforms and their corresponding inversion operations are defined as 

G(x,y,s)=^g(x,y,t)-e-s'dt  ,   g(x,y,t) = — _(. G(x,y,s)■ es'ds (5a,b) 

G'{q,y,s)= faG(x,y,s)-e-s,pdx ,  G{x,y,s) = ^.jTG'(q,y,s)-e^dq      (6a,b) 

with the convention followed whereby a function which is to be transformed is denoted 
by a small letter, its one-sided LT by the corresponding capital letter, and its two-sided 

LT by an asterisk. The inversion paths (r,,r2) are the pertinent Bromwich paths in the 

associated complex planes. 
It can be shown now that successive application of the above transforms along 

with use of some elements from the theory of linear ODEs leads to the following general 
solution (bounded as y -» +<x>) in the double transform domain (provided that pertinent 

branch cuts are introduced in the complex g-plane so that Re(xr, jc2) >0) 

U'x (q,y,s) = Ax (q,s) ■ exp(- sKxy) + A2 (q,s) ■ exp(- sK2y) (7a) 

,/       x    K? + ßq2-a2   A I    \       i \ 
VyVW'3)= ^ A^q^-cxpl-SK^ 

Kl+ßq2-a2
2   . i    \       / \ 

+ A(fl„sl-expl-,sÄ:-,v) 
mqK2 \    i       \ i 

(7b) 
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where [Al,A2j are unknown functions which will be determined in each specific 
problem through enforcement of the boundary conditions, the new constants 
[a,ß,y,m,nj are related to the material parameters as 

a = En>ß = 5L y=l+aß-\—+l ^+u{i+aß-r)y\ 

(8a-e) 

and 

K,={2arl2\{a+\)al-yq' +[^q)f\\K1A2arl2\(a+\)a, 

with the following definitions being employed 

<p{q) = [{a+\)al -yq2f -4aß(a2 -q2\a\ -q2) 

ai={ßn)-]p ,      a2=n^2 

l-yq2 
11/2 l1/2 

[<j>{q]]       (9a,b) 

(10) 

(lla,b) 

Further, we notice that for a wide class of anisotropic materials (both natural and 
composite materials like, e.g., Magnesium, Titanium, Boron Epoxy and Graphite 
Epoxy) the following inequalities hold for the material constants (Payton, 1983): 
\<ß<a or 1< a < ß or 1< ß = a. In that case, when q takes pure imaginary values, the 

functions (K
,
1,K

-
2) 

are rea'- Generally, the axis ilm(g) is free from branch points, some 
of which are complex and the remaining are real at the locations ± a, and ± a2. In what 
follows, we confine attention to this class of anisotropic materials stressing that this is 
the most common case of material anisotropy. 

4. Transformed Problem and Decoupling 

In order to create a functional equation in the double transform domain connecting the 
two yet-unknown quantities of interest, i.e. the cleavage stress a,..(0< x < co,y =0,t) and 

the crack-face displacement u (-<x><x <0,_y=0,f), the following half-line transforms 

are defined 

S;+(<7,s)= jx„(x,0,s)-e-sixdx ,  U'y_{q,s)= \Uy(x,0,s)-e^'dx (12a,b) 
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where the first function has a region of analyticity in the right (subscript'+') half-plane 
and the second function in the left (subscript '-') half-plane of the complex variable q. 
Transforming now the boundary conditions (eqns (4)) and considering the general 
solution (7) along with the definitions in (12) leads to the following equation involving 
the unknown functions S*    and U* yy+ 

FesqL O 
K,-^=^TT~rK- (13) 

5 l«i -q ) 

where the kernel function Q is given by 

Q{q)={al-qT[Hi(q>v2(qyH2(q>vMn^f\Khq)-^q))]1   (14) 

Hj{q)=[(l-m)-Kfa)-fl{<t -q2)lKj{q)Y (15a) 
Vj{q)= m(m-l)q2 - oacj(.q)+ aß(a2 -q2) (15b) 

with j = (l,2) in eqns (15). Notice also that (13) holds only along a strip of analyticity 

along the i Im(#) axis. 
Further, eqn (13) will be solved (i.e. the yet-unknown functions will be 

decoupled) through the technique advanced in the works by Georgiadis and Brock 
(1993), and Georgiadis and Rigatos (1996). As explained in the latter paper, this 
technique is more general than the conventional Wiener-Hopf technique (see e.g. Noble, 
1958) in problems involving characteristic lengths (like the length L here) in the forcing 
function. In fact, the Wiener-Hopf technique is not applicable at all in such a case 
where, in addition, the strip of analyticity degenerates into a line. The technique 
employed here is based on contour integration, kernel factorization, Cauchy's theorem 
and integral formula, and Jordan's lemma. Also, use of the asymptotic Abel-Tauber 
theorems (see e.g. Noble, 1958) will permit the determination of the exact stress field in 
the immediate vicinity of the crack tip. Below, a brief description of the procedure will 
be given along with representative numerical results. 

As a necessary step of the decoupling procedure, a factorization (Noble, 1958) of 
the kernel should be accomplished. A direct factorization looks difficult, however, due 
to the complexity of the functions Hj and Vj. Instead, the analysis of Norris and 

Achenbach (1984) (who dealt with the simpler problem of the time-harmonic steady- 
state response of a crack to a uniform loading) is adopted according to which pertinent 
auxiliary functions are used with the kernel taking the form 

^•M-o.W-4) (16) 
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where 

<&„(?)= 
N, 

2[aß)   a\ 

*¥■■ 
ßa\ 

'/2iI/2 r   i ■,  . „W2i1/2 

'(2a) 11/2 

(r2-4^)'/2r+[,+(^-4^)l/2f 
[«y9-(W-l)2] 

JV, =4fl,2 (a/?)"2-a        ..       4 (o0)1/2[2(l-m)-y + 4a]-4a 
 ; r   .      N~ = a~  r-1, rri  
Y -2(m-\)   ' [y-2{m-\)\aßf 

(17) 

(18) 

(19) 

(20a,b) 

with ±aR being the roots of the equation ö(#)=0. These roots correspond to 
anisotropic Rayleigh wavefronts in the physical space/time domain (Norris and 
Achenbach, 1984). The new functions O0 and O, possess the asymptotic behavior at 
infinity needed for a factorization (Noble, 1958), i.e. that O0 ->1 and <P, ->1 when 

\q\ -> oo. Then, application of Cauchy's theorem provides 

^«V-^o- .    <i>i=<s>H-<bv (21a,b) 

where 

<Do±(?)=exP n 

0]±(?)=exp 

"2 

I tan"' 

-^)tan- 

(al-2p2f + Ntp
2 + N2 

I    2 2l1/2l      ,    J      I    7 -,11/21 | 
Pi   -/>   |      Kl(P)[ - |«2  " P   I      |*2 (/>) 

p + q 
dp 

I    9 -, 11/21      ,      l      I   , , 11/21 I 

fa-p I taool+pi -/> I h(/»)[ 

Now, eqns (21) allow writing eqn (13) as 

Fe"L 1        {al+q)m        _       (g-^)oo_ -P.. 

(,+«Ä).o0+.o1+
=c^   (fli_?)"V    <V 

/? + # 
^ 

(22) 

(23) 

(24) 

Further, according to the decoupling technique (Georgiadis and Brock, 1993; Georgiadis 
and Rigatos, 1996), we obtain 
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q + aR)-^+(qyOl+(q)     2fäs[l {a-aR\a + q) 

I (a - aR\a + q) ■ <D0_ (a) ■ ©,. (a»)     j 

where 

«->-....,,, t':"!.... „ViikN-^nk-»i(^^.)-i 
Jf[2a+|flf-©2|a2

,-fl»2K4fl'1 + JVi)2 

-l^lflf -«2|"2[k2 -«2|(4«2 +Af1) + 7']j (26) 

x = vj, ^-^-^   ,       r = (a2 -2«2)2 + A^2 + N2 (27a,b) 
2M'a

2 

5. Results 

Equation (25) may provide the cleavage stress in the physical space/time domain by two 
successive LT inversions according to (6b) and (5b). The former inversion is 
accomplished asymptotically by invoking the Abel-Tauber theorem. The latter is 
obtained through properties of convolution of one-sided LTs. The time Laplace 
transformed stress is found as 

lim Z,Jx,y =0,s) = —-.—ruf] I     / x da + 

-sLa I r e —"(a-a,) 
+2 j? \ ^  L   da\     (28) 

whereas the stress intensity factor (SIF), Jc,(t) = jim[(2OT)"2 -ayy(x,y =0,0j, has the 

following exact form 

*,W = 
(2/^l)"2F   ', J (r-laj(r-r) 1/2 

//(r-Za2) 

*„_(*) "«M*) 

+ i[H(r-Ia1)-^(r-Ifl2)]-O0+(r)-O1+(r)-Ö(T) rfr        (29) 
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The graph in Fig. 2 shows the variation of the normalized SIF äJ^/TTZ,)"
2
./

7
] 

with the normalized time t/[La2) for Boron Epoxy. This composite has the following 

material    constants:     a =35.47,    ß =11.47,    y =402.5,    n]/2 =1407.12 m/sec    and 

p =2.44 gr/cm3. It is noticeable here that the SIF takes on positive values only after the 
arrival of the anisotropic Rayleigh wave at the crack tip. 

Li. 
w 
■D 
O 
N 

2 3 

normalized time 

Figure 2. Normalized SIF versus normalized time for Boron Epoxy. 
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1. Abstract 

The wave function expansion method is utilized in the present study to investigate a 
spherical inclusion excited by an incident plane P-wave. The spherical obstacle is 
considered rigid while the exterior infinite medium is considered to be a homogenous, 
isotropic, elastic material. The imperfect interface is simulated by a spring type 
resistance model which can also accommodate the extreme cases of a perfect bond or a 
sliding interface. Results are presented for normalized rigid body displacements of the 
spherical inclusion and dynamic stress concentration factors. It is found that the effect 
of the flexibility of spring is more significant for reducing the dynamic stress 
concentration factor in tangential stress rather than in radial stress. 

2. Introduction 

The earliest study about spherical obstacles in an elastic medium, was the work of Ying 
and Truell (1956). They considered scattering by three types of fixed spherical 
obstacles, i.e. an isotropically elastic sphere, a rigid sphere and a spherical cavity due to 
an incident plane, longitudinal wave. A perfectly rigid sphere excited by a plane P- 
wave was investigated by Knopoff (1959) where the range of size of obstacles varied 
from very small to comparable to the wavelength. Pao and Mow (1963) also 
considered the same geometric problem as Ying and Truell (1956) for the case of 
incident plane compressional waves, but assumed that the displacement due to the 
combined incident and reflected waves must be associated with the rigid body 
translation. Iwashimizu (1972) treated the scattering of P and S waves by a movable 
rigid sphere embedded in an infinite elastic material, and compared the scattering cross 
section with that obtained by others, especially in the Rayleigh limit. 

The scattering behavior for an incident transverse wave is totally different from 
the case of an incident longitudinal wave. A spherical obstacle scattering an incident 
plane transverse wave, is no longer an axially symmetric problem, like the behavior 
under a longitudinal plane wave. Einspruch et al. (1960) investigated the scattering of a 
shear wave by a spherical discontinuity where the scattering is due to a cavity, a rigid 
sphere, a fluid-filled cavity and an elastic inclusion with properties different from those 
of the surrounding material. Kraft and Franzblau (1971) investigated the scattering of 
transverse waves from an empty spherical cavity in a solid and the relative contributions 
of the various components of longitudinal and transverse scattering cross sections were 
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isolated from each other. Jain and Kanwal (1978) studied the scattering of low 
frequency plane harmonic elastic P and S waves when they impinged on a movable or 
an immovable rigid spherical inclusion or a spherical cavity by an integral equation 
perturbation technique. Hinders (1991) and Bogan et al. (1992) investigated the 
scattering of elastic waves from an elastic spherical inclusion of arbitrary size in an 
infinite elastic medium. The scatterer and exterior medium are isotropic, homogeneous 
and linear elastic. They assumed arbitrarily differing material parameters with 
compressional and shear waves in both media. Exact expressions for the scattered and 
transmitted field, caused by an incident plane compressional or shear waves of unit 
amplitude, were calculated analytically, and general expressions for extinction cross 
sections and scattering cross sections were derived. 

Mow (1965) investigated the transient response of a rigid spherical inclusion of 
arbitrary density, embedded in an elastic medium, due to an incident P-wave. He used 
the Fourier-integral method and obtained an exact solution of this response. The same 
geometric problem was considered by Wijeyewickrema and Keer (1989) who 
calculated the response of the inclusion and the interfacial stresses by the Fourier 
synthesis technique. This method of solution yields an exact solution for the inclusion 
response. They also found that the interfacial stresses were suitably expressed by an 
infinite series in the long-time response. In the early time analysis, the problem was 
reformulated in the Laplace transform domain and the results in the shadow region were 
obtained by utilizing the Watson's transformation. 

The boundary element method has been used to study P-wave scattering by a 
spherical cavity and a spherical inclusion with a perfect interface and an imperfect 
interface by Kitahara et al. (1989a, 1989b, 1990). 

In order to characterize defects Gubernatis et al. (1979), Kohn and Rice (1979) 
and Sotiropoulos et al. (1987) have investigated elastic wave scattering from spherical 
and ellipsoidal flaws. 

In the present study a rigid sphere embedded in a linear-elastic full space with an 
imperfect interface, subjected to an incident plane P-wave is considered using the 
procedures adopted by Pao and Mow (1963, 1973). 

3. An imperfectly Bonded Rigid Spherical Inclusion Excited by a Plane P-Wave 

When a spherical inclusion is much more rigid than the surrounding material, it may be 
treated as a perfectly rigid sphere. A rigid spherical inclusion and an incident wave is 
shown in Fig. 1. Ying and Truell (1956) solved the problem of a sphere fixed in a 
certain position by external forces or other constraints. Since this is not very realistic 
considering that the sphere is embedded in an infinite elastic solid, it is assumed that the 
sphere will translate as a rigid body under the impact of incident waves. Since a rigid 
spherical inclusion is considered in this study, there are no refracted waves inside the 
sphere. A spring type resistant model is introduced, to simulate the imperfectly bonded 
interface. 

3.1   BASIC EQUATIONS 
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incident plane P-wave 

Figure 1. A rigid spherical inclusion excited by a plane P-wave. 

The spherical coordinate system (r,0,ß) used is shown in Fig. 1, where the elastic 
infinite medium is denoted ' 1' and the rigid sphere of radius a is denoted ' 2 . The 
superscripts (in), (sc), and (t) represent incident, scattered and total waves respectively. 
In medium 1, the total wave is the sum of the incident wave and the scattered wave. 
The displacement potential due to the incident wave propagating in the positive z- 
direction can be expressed as, 

(p   (r,0,t) = <pt}e (3.1) 

where k i is the wave number of the P-wave in medium 1, © is the circular frequency 

and (p{) is the amplitude of the incident wave. Equation (3.1) can be rewritten as 

<p{sc)(r,0,t) = <p/*"Yp.n +1)/",; (kpSr)P (cosß), (3.2) 

where jn is the spherical Bessel function of the first kind of order n and P is the 
Legendre polynomial. 

The two outward propagating reflected waves can be represented by 

qr\r,e,t)=e"' Y.A„h\\k ,r)P,(cosÖ), 

Wsc\r,6,t) = e" Z BX\kslr)P„(cose), 

(3.3) 

(3.4) 

where hn   is the spherical Hankel function of the first kind of order n, Avl is the wave 

number of the S-wave in medium 1 and An, Ba are unknown expansion coefficients. 
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For the axisymmetric case under consideration, the relevant non-zero displacements and 
stresses in the medium 1 are, 

Kr>,0,/) = - e'°" t [-<pjw + AJU + B& ]P(cos0), (3.5) 
r       ».o 

ul;;(rAt)=-e-"°'i[-<p^M + AJ2l + BJ22]-^-P(Cos0), (3.6) 

<7>,0,r) = ^ e"" £ [-%£„ + /(„£, + S £2]P.(cos0), (3.7) 

a;;, (r,0,0 = ^ e"" 2 h»„£» + 4£, + * £ J"^" P"(c0S ö)' (3"8) 
r »=» at? 

where the coefficients £ ,(/ = 1 -4,y = 0,1,2) are given in the Appendix, /J, is the 

shear modulus of medium 1 and the expansion coefficients An, Bn are to be determined 
by appropriate boundary conditions. 

3.2   DETERMINATION   OF   THE    EXPANSION   COEFFICIENTS    FOR   AN 
IMPERFECTLY BONDED RIGID SPHERE 

Due to the axisymmetric situation, the rigid body displacement of the sphere 1/ (0 is in 
the direction of the incident P-wave. It is assumed that a displacement jump is allowed 
in the 0 -direction and that the displacement must be continuous in the radial direction, 
i.e., slip is allowed but a gap is not permitted between the sphere and the elastic 
medium. The displacement jump between the elastic medium and the inclusion in the 
tangential direction is considered to be proportional to the shear stress at the interface. 
Hence, the boundary conditions at r = a are, 

[CM) + CM)]=«2M), (3.9) 

[W;;" {a,e) + u{;\a,ej\- uja,9) = A*"(a,0) , (3.10) 

where   u  (a, 0) = (7, cos 0,   u02 (a, 0) = - U. sin 6   and   A   is  an  interfacial  sliding 
flexibility parameter where A = 0 represents a perfectly bonded interface and A -> co 
represents a sliding interface.   The displacement U. is determined by the equation of 
motion, 

m&=\ {(^''(a, Ö) cos ö-or^(a,ö) sin öV sin ft/ft//?, (3.11) 
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where m - - na p   is the mass, and p2 is the mass density of the sphere and the 
3 

integral over the spherical surface represents the force components acting on the sphere. 
By introducing eqns (3.7) and (3.8) into eqn (3.11), the displacement caused by rigid 
body motion can be expressed as, 

U, =E[3i<pjXkpla) + Atf)(kp,a)-2Brt,)(kpla)y'"', (3.12) 

where p = pj pt is the density ratio of the medium to the inclusion and p is the mass 
density of the elastic medium. 

The expansion coefficients Al, Bx and An, Bn,(n = 0,2,3,...) can be determined after 

substituting for the displacements and the stress a1'* from eqns (3.5), (3.6) and (3.8) 
into the boundary conditions eqns (3.9) and (3.10), and are given in the Appendix. 

3.3   RIGID BODY MOTION OF THE SPHERICAL INCLUSION 

Substituting for At and #, from eqns (A.13) and (A.14) into eqn (3.12), the rigid body 
displacement of the sphere is 

U =Ae~ (3.13) 

where 

A = —;—- K l+2^)/in(k.ia)-Kta^lin(Kfl) (3.14) 

\D\ is given by eqn (A. 17) and 

u 2(1-v,) 

l-2v, 
(3.15) 

where v, is the Poisson's ratio of medium 1. 

From the incident displacement potential defined by eqn (3.1), the displacement and 
stress in the incident direction can be expressed as, 

/(*FiZ-<«f) 

C7{in)=ae 

<pik e (3.16) 

(3.17) 
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where  <r(1 = -(l, + 2/xl)kpX(pa = -{jlks](plj  and At  is the Lame's elastic constant of 

medium 1. It is noted that a0 is the stress amplitude of the incident wave, in the 
direction of propagation. The rigid body motion of the sphere, normalized by the 
amplitude of eqn (3.16) can be expressed as 

U. [p,K, ,kpla   = —.tee 
a        J     k_,a \D\ 

1 + 2%/^«) a ' a 
(3.18) 

For the perfectly bonded interface, i.e., when A = 0, eqn (3.18) yields 

-   , v     3;py//" (kwla)e-""  

(3.19) 
which agrees with Pao and Mow (1973, p. 649, eqn 4.3). 

For the rigid body motion, two special cases are of interest.  The first case is when 
/3 = 0, i.e. when the obstacle is much heavier than the surrounding medium. From eqn 

(3.18), it can be easily seen that the normalized displacement £/ I O.O,*",-]— ,k ta\  is 

zero, i.e., the spherical inclusion does not move. The second case is when the density 
of inclusion and medium are the same, i.e., p = 1, and here the normalized 
displacement is reduced to 

- f MA        ~\ 3ie~'°" U    1.0,/c,—'— ,k a) =- ; r . (3.20) 
v a ' k a h   \k  a) 

From eqn (3.20) it is seen that when 73 = 1, the normalized rigid body motion of the 
sphere is independent of the material properties of the surrounding medium and the 
interfacial sliding flexibility parameter and is only dependent on the incident wave 
number. An analogous result was obtained for the perfect bond case by Pao and Mow 
(1973, p. 649). 

The normalized rigid body displacement of the spherical inclusion for different 
«A 

values of -J— are shown in Fig. 2. 
a 
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Figure 2. Normalized rigid body displacement of spherical inclusion for various M 

when p = 10.0 and K = Vi , (a) Re (t/7    and (b) Im ([/,   ; 

M 
= 0.0; 

M 
0.5; 

«A 
1.0. 

a a 

3.4   DYNAMIC STRESS CONCENTRATION FACTORS 

Expressions for the stresses can be obtained from eqns (3.7) and (3.8) and are 
normalized by a0, the stress amplitude of the incident wave (see eqn 3.17), to obtain, 

äXa,0) = 
*„tf 

F^icos e) + X G3„P„(cos 9) 
n=0 

(3.21) 

or ,(a,0) 
V 

F,. — P(COS6>) + YG, — P(cos6>) (3.22) 
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Figure 3. Dynamic stress concentration factors vs  6, when  p=0.1, ä: = V3   and 

A„a = 1.0, (a) Abs(ärl) and (b) Abs(äö,); 

M = 0.0; M 
= 0.5; 

MA 
= 1.0. 

a a a 
The normalized stresses given by eqn (3.21) and (3.22) are the dynamic stress 

concentration factors and the coefficients  Fit,   Ftl, and Gu,Gu,{n = 0,2,3,...) are 
given in the Appendix. 

In Figs. 3 and 4, the effect of the imperfect interface is shown for k ta = 1.0 and 
0.1, respectively; where it can be observed that the effect of the sliding flexibility 
parameter is more significant in reducing the dynamic stress concentration factors in 
tangential stress rather than in the radial stress. From Fig. 3 it can be seen that the 
dynamic stress concentration factors are higher on the incident side {n 12 < 9 < K) and 
lower on the shadow side (0 < 8 < n I 2). Figure 4 indicates that when k {a = 0.1, the 
dynamic stress concentration factors are symmetric about the plane 6 = n I 2, i.e. for 
low values of k a the solution tends to the static solution of Goodier (1933). 
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Figure 4. Dynamic stress concentration factors vs  6, when p=0.1, xr = V3   and 

A a = 0.1, (a) Abs(ärrl) and (b) Abs^,); 

:—= 0.0; 
a 

0.5; = 1.0. 
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Appendix A 

The functions E, , (/ = 1 - 4,j = 0,1,2) appearing in eqns (3.5)-(3.8) are given by 

(A.l) 

(A.3) 

tw = -r{2n + \)[njXkpr)-kprj^(Kr)> 
%i() = -f(2n+\)i(kpr), (A.2) 

£o = -'""(2n + l) [n  - n - - k]/j jn (kplr) + 2A„r/„tl(kplr) 

C = -<"(2K + 0[O- Dy.(V)-V-/.+ .(V) • <A-4> 
£u = «^(v)-V/^(V)> (A-5> 
£. =h?(k

Pr > (A.6) 

6, = {» -» -\*>2X'"(v)+ 2V€,(V • (A.7) 

^n = -n{n + \)h[x){kj), (A.9) 

4 = -(" + lK(k.r)+k,ShZ(k,s)> (A-10) 
4n = -»(« + \)[(n - \)h^{ksr)-kjh[l{k!Xr) , (A.l i) 

*«=-{" -] -\ky)h:\kj)-kA:(Ks) (^ 



81 

The expansion coefficients Av 5, and An, Bn,(« = 0,2,3,...) are given by, 

+kJ\ + 2^)(ß - lV.fcaX'C*..«) 

sA -k ,a 

+k,k,a\ 1 + 2 

A 
a ^^+2(l-p)-4^(p-l)k(t,Ia>f,,M 
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(A. 18) 
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The functions Fyl,Ftl and GJn ,Gin,(n = 0, 2, 3,...) appearing in eqns (3.21) and (3.22) arc given by, 
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Abstract 

In recent years Lamb waves have been successfully used for detecting defects in 
homogeneous metal plates, coated plates, and multi-layered composite plates. Different 
Lamb modes generate various stress and displacement profiles in the plate. These stress 
and displacement components are altered by the internal defects, and thus the defects are 
detected. All Lamb modes are not equally sensitive to a particular defect. A number of 
studies have been carried out to identify which Lamb mode is most effective for detecting 
a defect at a specific location of the plate. Superiority of the Lamb wave inspection 
technique compared to the conventional ultrasonic technique using P-waves has been 
established. The overwhelming success of the Lamb wave inspection technique for metal 
and composite plate inspection has encouraged Kundu and his coworkers to investigate 
its applicability for some new problems. The new applications include internal defect 
detection in metal pipes, concrete beams, as well as some new applications in composite 
plate inspection. One such new application is to generate the "Near-Lamb Mode Image" 
of a multi-layered composite plate, instead of the "Lamb Mode Image". Advantage of the 
"Near-Lamb Mode Image" is that it can distinguish between the layers of mirror 
symmetry in a composite plate. The pipe inspection has been carried out by the higher- 
order non-axisymmetric flexural modes instead of the commonly used longitudinal and 
torsional modes. A brief review of these recent advances of the Lamb wave inspection 
technique is presented in this paper. 

1. Introduction 

Lamb waves, also known as guided waves, are elastic stress waves that are observed in 
plates and pipes. These waves are guided by the traction free boundary surfaces of a 
plate and by the traction-free outer and inner surfaces of a hollow cylinder. The plate or 
pipe structure that helps the guided wave to propagate is called a wave-guide. The Lamb 
wave observed in a plate is also know as the plate wave; the Lamb wave in a cylinder is 
more commonly known as the cylindrical guided wave. When the plate or pipe is 
immersed in a liquid then the boundary surfaces are not traction free and the energy of 
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the propagating wave leaks into the surrounding liquid and the propagating wave is called 
the leaky Lamb wave. 

Lamb waves have an infinite number of modes that a plate can vibrate with. 
Different Lamb modes can be generated by changing the signal frequency and the 
incidence angle of the transmitter. In a homogeneous plate these modes can be classified 
into two groups, symmetrical and anti-symmetrical modes, according to the direction of 
the particle displacement. 

Lamb waves propagate dispersively, that is the wave speed is a function of 
frequency. It excites the entire plate thickness unlike Rayleigh waves where the particle 
displacement is observed only in the region close to the surface. 

1.1. ADVANTAGES OF USING LAMB WAVES FOR ULTRASONIC INSPECTION 

With conventional ultrasonic methods, the area under interrogation at any instant is 
limited to the region covered by the transducer. As a result, the conventional methods are 
time consuming because transducer needs to inspect each point of the structure. 
However, the Lamb wave can be excited at one point of the structure and received at 
another point after propagating a considerable distance along the structure. This path 
length depends on the wavelength. With the pitch-catch arrangement, a receiving 
transducer, kept at a distance, picks up the propagating signals that contain information 
about the integrity of the region between the two transducers. Therefore, the Lamb wave 
inspection technique monitors a comparatively large region and requires less time. 

The entire thickness of the plate can be inspected by different modes exciting 
different depths of the plate. This makes it possible to detect defects near the surfaces as 
well as those inside the plate because each mode has its own sensitivity to each defect 
along the depth. 

Detection of defects by conventional ultrasonic methods is based on the principle of 
ultrasound being reflected or scattered by the defects. Therefore, the wavelength 
determines the smallest size defect that can be detected by certain signal. Small defects 
cannot be detected by signals of low frequencies. On the other hand the high frequency 
signals have high attenuation. That is why there is always a compromise between the 
smallest defect that can be detected and the maximum distance of the defect from the 
transducers for successfully detecting the defect. The Lamb wave inspection technique is 
very promising for detecting small defects because the defect detection capability does 
not simply depend on the reflection of the waves from defects, but on how the waves 
interact with them. This important interaction affects the V(f) (Voltage amplitude versus 
frequency) curves in two ways. The peak amplitude corresponding to a particular Lamb 
mode may change because of the presence of a defect, or there may be a frequency shift 
of the peak amplitude. 

In summary, Lamb waves are used because they offer an improved inspection 
potential due to their multi-mode characteristics, sensitivity to different types of flaws, 
propagation over long distances, guiding character that enables them to follow curvature 
and reach hidden and/or buried parts, and the capability of in-situ testing. 

The theory of Lamb wave propagation in multi-layered plates (Karim, Mai and Bar- 
Cohen, 1990; Mai, Yin and Bar-Cohen, 1991; Taylor and Nayfeh, 1992; Potel and de 
Belleval, 1993a,b; Castaings and Hosten, 1994; Nayfeh, 1995; Yang and Kundu, 1998) 
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and pipes (Gazis, 1959) are available in the literature. Those theories are not repeated 
here. Different applications of the Lamb wave inspection technique are described below. 

2. Pipe Inspection 

Pipeline operators use a variety of methods to give their pipes periodic checkups, but all 
these methods use a "smart pig," a robotic device that crawls through the pipe carrying 
sensors. Smart pigs are expensive to run, several thousand US Dollars per mile (Kiefner, 
1986) and the results sometimes are not reliable. Under the best circumstances, smart 
pigs only provide data for infrequent periodic integrity assessment (once every two to ten 
years), yet crack and corrosion type defects may develop and grow between inspections. 
Furthermore, to use pigs, pipelines must allow free passage and must have pig launch and 
retrieval facilities that are not always available. 

Because of the shortcomings of the current "smart pig" technique it is necessary to 
develop a technology to assess the integrity of the pipeline in non-intrusive manner 
without disrupting its operation. One way of doing it is by launching Lamb waves or 
cylindrical guided waves in the pipe. Lamb waves can be launched in the pipeline by 
ultrasonic exciters placed either at the outside wall or inside wall. Alleyne and Cawley 
(1995) have inspected pipe defects using Lamb waves. In their effort the time histories 
recorded by the receiver have been carefully analyzed for detecting any small signal 
reflected by the defect. Although this has been useful for detecting some defects, 
sometimes such small "defect signals" may remain undetected. Guo and Kundu (1998, 
2000a,b) detected the pipe defect from the change in the V(f) curve. V(f) curve is the 
plot of the variation of the received signal voltage as a function of the signal frequency. 
Ideally, the strike angle and the signal frequency should be adjusted to launch the Lamb 
mode that is most sensitive to the pipe damage and least prone to attenuation and can 
propagate a long distance along the pipeline before losing its strength. Lamb wave 
frequency should be set at such a level that it is not affected by the noise generated by the 
fluid flowing through the pipe so that the pipes can be inspected under normal operating 
conditions. Guo and Kundu (1998, 2000a,b) have developed a new coupling mechanism 
for efficiently generating non-axisymmetric cylindrical Lamb waves in pipes. This new 
design is briefly described in the following; experimental results generated by the new 
coupling mechanism are also presented. 

2.1. DESCRIPTION OF THE TRANSDUCER-PIPE COUPLING MECHANISM 

Kundu et.al.(1996), Ghosh and Kundu (1999) selectively generated different Lamb 
modes in a plate by rotating the transducer in the coupling fluid, thus changing the 
incident angle of the striking beam and fine tuning the frequency of excitation. 
Following the same principle two small open-ended water containers were placed directly 
over the pipe wall as shown in Figure 1 to have similar capability (free rotation of 
transducers) for the pipe inspection. The water container shape was made conical to 
block the diverging signals from the transducer from reaching the pipe wall. 
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Figure 1. Relative Positions of the Transmitter (T), Receiver (R), Conical Containers and the Pipe Specimen 

2.2. SPECIMENS 

Five aluminum pipes of same dimensions, 22.2 mm (0.875 inch) outside diameter and 
20.6 mm inside diameter have been inspected. The receiver was placed at a distance of 
0.5 m from the transmitter. Received signals were first generated with a damage-free 
pipe. Then these signals were again recorded after replacing the defect-free pipe by four 
other pipes containing three types of defects - removed metal, dent, and gouge as shown 
in Figure 2. Most mechanical damage defects are combinations of these three primary 
components (Davis and T. A. Bubenik, 1996). 

Figure 2 shows the defect free pipe (top geometry) and four defective pipes - one 
gouge, one dent and two removed metal type defects. Two different dimensions of 
removed metal type defects were fabricated and denoted by the terms 'removed metal 
(less)' and 'removed metal (more)'. The gouge defect was fabricated by pressing the 
outer wall of the pipe while keeping the inner diameter unchanged by placing a rigid rod 
inside the pipe. The same size outer groove was made in another pipe by machining and 
removing the metal. Although dimensions (depth = 0.022 inch, width = 0.165 inch, see 
Figure 2) of the two defects [gauge and removed metal (less)] are identical they are 
different in many respects. The groove in the gauge was formed by removing no metal 
but pressing the pipe wall while the removed metal type defect was fabricated by 
removing metal from the pipe wall. The amount of cold working and residual stress is 
much more in the gouge defect than the removed metal type defect. 

The bottom geometry of Figure 2 shows a dent type defect. It is formed by pressing 
the pipe wall at that location. During the formation of this defect the inner wall was free 
to move. As a result, both outer and inner diameters of the pipe were changed. For this 
defect the wall thickness did not change significantly in the defect position although the 
pipe diameter changed. This defect has the largest groove size (depth = 0.03 inch, width 
= 0.181 inch). The second from the bottom geometry shows another removed metal type 
defect with a different groove size (depth = 0.0245 inch, width = 0.173 inch), it is marked 
as removed metal (more). 

2.3. EXPERIMENTAL RESULTS ON PIPE SPECIMENS 

Receiving signal voltage versus frequency or V(f) curves generated by the five aluminum 
pipe specimens of Figure 2 are shown in Figure 3. 
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Figure 2.   Aluminum pipe specimens - defect free (top) and four defective pipes containing gouge, dent and 
two removed metal type defects. All dimensions are in inch (1 inch = 25.4 mm) (after Guo and Kundu, 2000). 

For generating these curves the transducers are inclined at 18° relative to the plane 
that is perpendicular to the pipe axis. This inclination is needed to generate strong Lamb 
modes in the pipe. The transmitter is excited in the tone-burst mode with the signal 
frequency continuously changing from 500 to 1400 kHz. The received signal amplitude 
is plotted (along the vertical axis) against the signal frequency to generate the V(f) curve. 
The curve with the cross markers is generated by the defect-free specimen. Two peaks, 
one near 700 kHz and the second one near 900 kHz correspond to two Lamb modes. V(f) 
curves for all defective specimens are smaller than the non-defective specimen. 
Percentage change of the peak amplitude due to the presence of the defect is more 
(almost 50% reduction) for the lower frequency mode than the higher frequency mode. 
However, the higher frequency mode is more sensitive to the type of defect. V(f) curves 
for the two removed metal type defects are shown by solid and open square markers. As 
expected, removal of more metal gives rise to smaller V(f) curves (line with open 



squares). V(f) curve generated by the gouge is shown by open circles. It is interesting to 
note that although gouge and one removed metal type defect have same groove 
dimensions [depth = 0.022 inch (0.56 mm), width = 0.165 inch (4.19 mm)], V(f) curves 
corresponding to these two defects (curves with open square and open circle markers, 
respectively) are quite different. From these experimental results it can be concluded that 
the non-axisymmetric Lamb waves generated by the new transducer holder mechanism 
can detect and distinguish between different types of mechanical defects in pipes. 

8000 

400 600 1200 1400 800 1000 
Frequency (KHz) 

Figure 3. V(f) curves for the five aluminum pipe specimens.  Frequency is plotted along the horizontal axis in 
kHz.  Received voltage amplitude is plotted along the vertical axis. Transmitter inclination angle for all curves 
is 18° (after Guo and Kundu, 2000). 

3. Composite Plate Inspection 

A number of investigators in the past have studied the Lamb wave propagation in 
composite plates (Karim, Mai and Bar-Cohen, 1990; Taylor and Nayfeh, 1992; Potel and 
de Belleval, 1993a,b; Castaings and Hosten, 1994; Nayfeh, 1995). Many investigators 
have also tried to use Lamb waves for damage detection in composite and metal plates 
(Mai, Yin, and Bar-Cohen, 1990; Karpur et.al., 1995, 1998; Maslov and Kundu, 1997; 
Kundu and Maslov, 1997; Yang and Kundu, 1998; Ghosh et.al., 1998; Ghosh and Kundu, 
1999; Kundu et.al., 1996, 1998, 2000a,b). Kundu and associates (Kundu et.al., 1996; 
Maslov and Kundu, 1997; Kundu and Maslov, 1997) fabricated a multi-layered 
composite plate specimen and scanned it with different Lamb modes. Their experimental 
findings are presented below. 
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3.1. THE SPECIMEN 

The specimen that was scanned by the Lamb wave is a five-layer metal matrix composite 
plate of dimension 80x33x1.97 mm3. Orientations of five layers of fibers and internal 
defects of the specimen are shown schematically in Figure4. Five layers or plies of SCS- 
6 fibers in Ti-6A1-4V matrix are oriented in 0° and 90° directions in alternate layers. SCS 
is a copyrighted/registered name by the fiber manufacturer, the Textron Inc. This fiber 
has a carbon core of about 25 um diameter, two concentric layers of silicon carbide 
surround the carbon core and finally two very thin (a few microns thick) layers of carbon 
coating are placed on the outside. The overall fiber diameter is about 152 um. The 
composite was made by foil-fiber-foil technique. The internal flaws, shown in Figure 4, 
were intentionally introduced in the plate during the fabrication process. The first (top) 
and the fifth (bottom) layers of fibers did not have any flaw. The left part of the second 
layer fibers (90°) was coated with boron nitride to impede the formation of good bonding 
between the fibers and the matrix as schematically shown in Figure 4. The fibers in the 
third layer (0°) were intentionally broken near the middle. The fourth layer (90°) had two 
areas of missing fibers, on the left side five fibers and on the right side ten fibers were 
removed. 

#1 no defect 

#2 debond 

#3 broken fiber 

#4 missing fiber 

#5 no defect 

Figure 4. Schematic of the internal defects in the five layers of the composite plate specimen 

3.2. EXPERIMENTAL RESULTS 

Images generated by the conventional ultrasonic C-scan technique using normal 
incidence P-waves of different frequencies are shown in the left column of Figure 5. 
Images generated by different Lamb modes are shown in the right column of Figure 5. 
Clearly internal defects are more prominent in the Lamb wave generated images. 
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Figure 5. Left figure: Conventional C-scan images generated by 10 MHz [top (Fig.5A) and middle (Fig.5B)] 
and 75 MHz [bottom (Fig.5C)] focused transducers used in the pulse-echo mode. The back surface echo is 
omitted for constructing the top and bottom (A and C) images and it is considered for the middle image (B). 
Right figure: Different L-scan images of the composite plate. Fig.5a is generated with the transducer angle 
0=16°, and the signal frequency/=2.8 MHz, for Fig.5b, 0=14°, /=3.5 MHz, for Fig.5c, #=16°, /=5.35 MHz, and 
for Fig.5d, 0=20°, /=5 MHz. (after Kundu et.al., 1996). 

3.3. NEAR LAMB MODE IMAGING 

Two images shown in Figure 6 are generated by the same Lamb mode with slightly- 
different frequencies and incident angles. The top image is generated by the 5.0 MHz 
signal striking the plate at 20° (corresponding phase velocity from the Snell's law is 4.36 
km/s). The bottom image is produced by the 5.15 MHz signal incident at 21° 
(corresponding phase velocity is 4.16 km/s). In the top image the fourth layer can be 
clearly seen in spite of this layer being guarded by the delamination of the second layer. 
In this image the second layer cannot be seen at all although it is closer (compared to the 
fourth layer) to the transducers. However, in the bottom image both second and fourth 
layers can be seen. 

Figure 6. For top image 0=20°, f=5 MHz, for bottom image 0=21°, f=5.15 MHz (after Kundu et.al., 2000) 
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Simple theoretical computations assuming isotropy and homogenity of the plate at 
low frequency [Maslov and Kundu (1997)] show large stress magnitudes near the second 
and fourth layer positions in a defect free sample for this Lamb mode. Presence of 
delamination and missing fiber type defects affects this stresses and alters the reflected 
signal's intensity, and thus images of the defects are produced. That is why flaws of the 
second and fourth layers can be seen by this Lamb mode. However, when the signal 
frequency and the angle of incidence are changed from 5.1 MHz and 21° to 5.0 MHz and 
20° respectively then the Lamb mode is not changed. For both these combinations the 
same Lamb mode is excited in the plate and stress, displacement fields are similar. Then 
why is this big difference in the Lamb wave scan or L-scan images produced by these 
two frequency-angle combinations? Why did one image completely ignore the second 
layer while the other one did not? To answer these questions one needs to carefully 
compute the internal stress field in this multilayered anisotropic plate not only for a 
specific Lamb mode but also very close to the Lamb mode as was done by Kundu etal., 
2000, and briefly described below. 

3.3.1. Numerical Compilation 
Material constants are continuously varied until theoretical values approximately 
coincide with the experimental values. After some trial and error, the following stress- 
strain relation for individual layers was obtained. 

C          ~\ 
"900    50     50 0 0 0 

a22 150    96 0 0 0 

°"33 150 0 0 0 

^23 27 0 0 

°31 70 0 

<Tn 70 

'22 

'33 

Is. 

2e, 

23 

31 

(1) 

12 J 

where xi is the fiber direction, elastic constants are given in GPa. 
Numerically computed Lamb wave dispersion curves for the five-layer composite 

plate of 1.97 mm total thickness are shown in Figure 7. This is computed with the 
individual layer properties given in equation (1) when the Lamb wave propagates in the 
90° direction or normal to the fiber direction of the top layer. 

Shear stress (0^3) profiles along the depth of the plate for the two frequency phase 
velocity combinations at which images of Figure 6 have been generated are shown in 
Figure 8. These two points on the dispersion plot are denoted by two squares in Figure 7. 
It should be noted here that for the 5 MHz signal an is very small in the second layer and 
it is maximum in the fourth layer. That is why in Figure 6 we see that the image 
generated by the 5 MHz signal clearly shows the missing fiber defects of the fourth layer 
and completely ignores the delamination defect of the second layer. On the other hand 
for the 5.15 MHz signal (dotted line of Figure 8) the shear stress is maximum in the 
second layer and very small in the fourth layer. This explains why the image generated 
by the 5.15 MHz signal clearly shows the delamination defect of the second layer while 
the missing fiber defect of the fourth layer is not so clear. 
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Figure 7. Numerically computed dispersion curves (diamond symbols). Twenty experimental points are shown 
by triangular symbols. Square markers show the frequency-phase velocity combinations used for generating the 
two images of Figure 6. Shear stress plots for these two points are shown in Figure 8 (after Kundu et.al.2000). 
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Figure 8. Shear stress variations inside the composite plate for frequency-phase velocity combinations, denoted 
by two square markers in figure 7.  Corresponding ultrasonic images are shown in Figure 6 (Kundu et.al.2000). 

4. Concrete Inspection 

In spite of many developments of test techniques and equipment the use of NDE for 
inspecting concrete poses a number of difficulties. Compared to composite, metal and 
metal-based materials, ultrasonic NDE of concrete is a relatively immature discipline. 
The heterogeneous nature of concrete and unspecified code or standard of concrete NDE 
are two main areas where concrete inspection technology lags behind. 



93 

Concrete is a multi-phase material that is made of a coarse aggregate comprising 
particles of more than 5 mm in diameter, a fine aggregate, sand, and cement. The coarse 
granular structure, such as the relative concentration of the constituent particles, the 
degree of compaction, the moisture content, and the nature and amount of defects present, 
gives rise to a high degree of acoustic scattering and, therefore, attenuation. For this 
reason, testing is usually done at kilohertz frequency range. In addition, the presence of 
steel rods gives rise to more complications for inspecting reinforced concrete. 

It is well known fact that there are existing codes or standards available to be used as 
guidelines for many construction projects that do not involve concrete. For instance, 
American society of Mechanical Engineers (ASME) code is commonly used for 
construction of boiler and pressure vessel, American Petroleum Institute (API) code for 
construction in petroleum industry and American Welding Society (AWS) code for 
construction of steel structures. In such cases, the application of NDE is well specified. 
However, for civil construction involving concrete, there is no specific code or standard 
currently available that can be used as a guideline for the selection and application of 
suitable NDE methods, and for the acceptance/rejection criteria. Due to these facts, the 
NDE community should have a wide knowledge of NDE applications, so that the NDE 
technique can be effectively used in a particular situation. 

Concrete experts have been interested in detecting internal defects and determining 
properties of concrete by NDE techniques for many decades and a number of NDE 
techniques have been used for concrete inspection. The technique developed by Jung 
etal. (1999, 2000) are briefly presented below. Their experimental setup is described 
first. 

4.1. EXPERIMENTAL INVESTIGATION 

Under this investigation a number of specimens made of plain concrete have been 
fabricated and inspected by different Lamb modes. The first step of Lamb wave 
inspection is to produce Lamb waves inside the specimen. To this aim two transducers 
are placed over a defect-free plate specimen. The tone-burst excitation is then used to 
activate the transmitting transducer and generate the stress waves. The excitation 
frequency is continuously varied from a minimum to a maximum value within the 
bandwidth of the transducer to find the peak positions that correspond to the Lamb wave 
modes generated in the plate. The receiving transducer receives the reflected signal after 
its propagation through the specimen. The received signal amplitude is then displayed on 
an oscilloscope screen as a function of frequency. The gate position (the "gate" 
represents the time window for the received signal used to generate the V(f) curve) is 
placed near the beginning of the received signal. This is done to avoid collecting signals 
after those are reflected by other boundaries. Therefore, the early part of the received 
signal should be affected by the presence of the defect. The experimental setup is similar 
to the one developed by Ghosh and Kundu (1998) and Ghosh et al. (1998) and shown in 
Figure 9. 

Kundu etal. (1996), Maslov and Kundu (1997), Yang and Kundu (1998) generated 
different Lamb modes in a plate. The Lamb wave speed or the phase velocity (Vph) can be 
obtained from the Snell's Law, similar to the previous cases, 
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y     _    aw 
ph    Sine (2) 

where Vph is the Lamb wave phase velocity, aw is the longitudinal wave speed in the 

coupling fluid (for water it is equal to 1.49 km/s) and 6 is the angle of inclination of the 
transducer, i.e. the angle between the vertical axis and the transducer axis. 

The signal frequency and the transducer inclination angles are set at values 
corresponding to a Lamb mode of interest. The specimen is then inspected with this 
transmitter-receiver arrangement. 

Figure 9. Experimental setup for Lamb wave inspection of concrete specimen (after Jung et.al.2000) 

4.1.1. Experimental Results 
The specimen is a 40 in x 12 in x 8 in (101.6 mm x 30.5 mm x 20.3 mm) plain concrete 
beam. The defect is a cylindrical (12.7 mm diameter and 12.7 mm long) honeycomb 
(aggregate without mortar) zone. The defect is located 30.5 mm from one end of the 
beam at a depth of 10.2 mm. The V(f) curves, generated by the Lamb waves on the 
defective and non-defective sides of the beam are shown in Figure 10. The transducers 
were inclined at an angle of 16° to generate multiple strong Lamb modes in the specimen. 
This inclination angle corresponds to a phase velocity of 5.41 km/s (see Equation 2). The 
V(f) curve for 16° angle of incidence were generated several times to study the 
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consistency of the results. All those plots are shown in Figure 10. Two strong 
distinguishable peaks were observed, one near 53 kHz and the second one near 116 kHz. 
The wavelengths corresponding to these two Lamb modes are 102 mm and 46.6 mm 
respectively. Clearly the maximum aggregate size (3/8 inch or 9.5 mm) is much smaller 
than the wavelength. More peaks near 79 kHz, 145 kHz, 160 kHz, 180 kHz, 200 kHz and 
28 kHz were observed in the V(f) plot, however, these peaks are much weaker than the 
peaks at 53 kHz and 116 kHz. 

A fewer in number and weaker peaks were observed over the honeycomb region. 
Prominent peaks were again noticed at 53 kHz and 116 kHz. Weaker peaks were 
observed near 80 and 160 kHz. This comparison of V(f) curves clearly shows that the 
amplitudes of the signal are significantly reduced because of the presence of honeycomb 
defect inside the specimen. However, the positions of the prominent peaks were not 
changed because of the presence of the honeycomb. 
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Figure 10. V(f) curves over the non-defective zone (continuous line) and the honeycomb zone (dotted line) 
(after Jung et.al., 2000). 

Figure 11. Voltage versus frequency curves generated by the conventional through-transmission technique for 
the concrete specimen. Signals from the defect free zone are shown by thin lines. Signals from the honeycomb 
zone are shown by thick lines (after Jung et.al., 2000). 
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For comparison purposes, the V(f) curves for the same specimen generated by the 
conventional through transmission arrangement are shown in Figure 11. Clearly the 
Lamb wave technique detects the defect more clearly. 

5. Steel-Concrete Interface Inspection 

Na et.al. (2000) studied the feasibility of using Lamb waves for detecting delamination 
between steel rod and concrete in reinforced concrete using Lamb waves. Steel rods of 
7/8 inch (22.2 mm) diameter embedded in concrete beams of square cross section (127 
mm x 127 mm) were inspected. Four specimens with different degrees of delamination 
were inspected. One specimen had no delamination the other three specimens had 25%, 
50% and 75% steel-concrete interface artificially delaminated. The rods were extended 
beyond the concrete beam as shown in Figure 12, so that the transducers could be 
mounted on the steel rod, as was done on pipe (Figure 1). However, in this case the 
coupling mechanism was different. Instead of water coupler, a plexiglas sphere was used 
as the coupler as shown in Figure 12. 

■ a   n   n i   y»«^»X 
'% Ot H    f 

XL 

Figure 12. A steel rod embedded in a concrete beam with part of the steel-concrete interface delaminated. 
Transmitters are mounted on the spherical plexiglas coupler on the left side and the receiver is on the right side. 

Results are shown in Figures 13 and 14. V(f) curves for different extents of 
delamination are shown for each of the two inclination angles of transmitters, 8° (Figure 
13) and 24° (Figure 14). 

Frequency (kHz) 
1140 "30 1320 ,^7 

Figure 13. V(f) curves for 8° angle of incidence for different degrees of delamination, 
denoted by different shades (after Na et. al., 2000). 

0% 25% 50% 75% 
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Frequency (kHz) 1140 1230 1330 . 

Figure 14. V(f) curves for 24° angle of incidence for different degrees of delamination, denoted by different 
shades as indicated in Figure 13 caption (after Na et. al., 2000). 

In Figures 13 and 14 one can see that V(f) curves generated by both transmitter 
inclination angles can distinguish between different degrees of interface delamination. 
However, 24° inclination angle produce much stronger signal. 

5. Concluding Remarks 

Lamb wave inspection technique is found to be an efficient ultrasonic evaluation method 
for detecting damages in metal pipes, composite plates, concrete beams as well as for 
interface characterization. Some research findings of the author and associates are briefly 
reviewed in this paper. 

6. Acknowledgment 

Results from a number of research grants (CMS-9523349, 9896182, 9800345, MSS- 
9310528, W08031-14 & EP-P241/C110) funded by the National Science Foundation and 
Electric Power Research Institute have been presented here. 

7. References 

Alleyne, D. and Cawley, P. (1995) The Long Range Detection of Corrosion in Pipes Using Lamb Waves, 
Review of Progress in QNDE, Eds. D. O. Thompson and D. E. Chimenti, Plenum Press, NY, 14B, 2073. 

Castaings, M. and Hosten, B. (1994) Delta Operator Technique to Improve the Thomson-Haskell-Method 
Stability for Propagation in Multilayered Anisotropie Absorbing Plates, Journal of the Acoustical Society 
of America, 95,1931-1941. 

Davis, R. J. and Bubenik, T. A. (1996) The Feasibility of Magnetic Flux Leakage In-Line Inspection as a 
Method to Detect and Characterize Mechanical Damage, GRI Report #GRI-95/0369, 

Gazis, D. G. (1959) Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cyliners, 
Journal of the Acoustical Society of America, 31,568. 

Ghosh, T. and Kundu, T. (1999) A New Transducer Holder Mechanism For Efficient Generation and Reception 



of Lamb Modes in Large Plates, Journal of the Acoustical Society of America, 104, 1498. 
Ghosh, T., Kundu, T. and Karpur, P. (1998) Efficient Use of Lamb Modes for Detecting Defects in Large 

Plates, Ultrasonics, 36,791-801. 
Guo, D. and Kundu, T. (1998) Special Sensors for Generating Lamb Waves in Pipes, Proceedings of the Review 

of Progress in Quantitative Nondestructive Evaluation, Eds. D. O. Thompson and D. E. Chimenti, Pub. 
Plenum Press, New York, Conf. held in Snowbird, Utah, July 19-24,1998,18A, 1155-1162. 

Guo, D. and Kundu, T. (2000a) A New Sensor for Pipe Inspection by Lamb Waves, Materials Evaluation, 58, 
991-994. 

Guo, D. and Kundu, T. (2000b) Detection of Mechanical Damages in Pipes by Lamb Waves Generated by a 
New Sensor, Proceedings of the <5* ASME NDE Topical Conference, San Antonio, Texas USA, April 20- 
22,1999, Pub.ASME, Ed. Corinne Darvennes, NDE-19, 137-143. 

Jung, Y. C, Kundu, T. and Ehsani, M. (1999a) Detection of Internal Defects in Concrete Panels by Lamb 
Waves, Proceedings of the Review of Progress in Quantitative Nondestructive Evaluation, Eds. D. O. 
Thompson and D. E. Chimenti,, Pub. Plenum Press, New York, Conf. held in Canada, July 1999,19. 

Jung, Y. C, Kundu, T. and Ehsani, M. (1999b) Lamb Wave Inspection of Concrete Beams, Recent Advances of 
Ultrasonic NDE and Composite Material Characterization, IMECE 99, Nashville, Tennessee, Nov. 14-19, 
1999. Eds. T. Kundu and V. K. Kinra, Pub. ASME, AMD-234, NDE-17, 33-46. 

Jung, Y. C, Na, W. B., Kundu, T. and Ehsani, M. R. (2000) Damage Detection in Concrete Using Lamb 
Waves, Nondestructive Evaluation of Highways, Utilities, and Pipelines IV, Ed. A. E. Aktan and S. R. 
Gosselin, Proceedings of SPIE NDE 2000 conf., Newport Beach, California, March 5-9, 2000,3995,448- 
458. 

Karim, M. R., Mai, A. K. and Bar-Cohen, Y. (1990) Inversion of leaky Lamb wave data by simplex algorithm, 
Journal of the Acoustical Society of America, 88, 482-491. 

Karpur, P., Benson, D. M., Matikas, T. E., Kundu, T. and Nicolaou, P. D. (1995) An Approach to Determine the 
Experimental Transmitter-Receiver Geometry for the Reception of Leaky Lamb Waves, Materials 
Evaluation, 53, 1348-1352. 

Karpur, P., Kundu, T. and Ditri, J. (1998) Adhesive Joint Evaluation Using Lamb Wave Modes with 
Appropriate Displacement, Stress and Energy Distribution Profiles, Proceedings of the Review of 
Progress in Quantitative Nondestructive Evaluation, Eds. D. O. Thompson and D. E. Chimenti, Pub. 
Plenum Press, New York, Conf. held in Snowbird, Utah, July 19-24, 1998,18B, 1533-1542, 

Kiefner, J. F., Hyatt, R. W. and Eiber, R. J. (1986) NDE Needs for Pipeline Integrity Assurance, American Gas 
Association Catalog Number L51505. 

Kundu, T., Maslov, K. I., Karpur, P., Matikas, T. and Nicolaou, P. (1996) A Lamb Wave Scanning Approach 
for Mapping of Defects in [0/90]Titanium Matrix Composites, Ultrasonics, 34,43-49. 

Kundu, T. and Maslov, K. I. (1997) Material Interface Inspection by Lamb Waves, International Journal of 
Solids and Structures, 34, 3885-3901. 

Kundu, T., Maji, A., Ghosh, T. and Maslov, K. I. (1998) Detection of Kissing Bonds by Lamb Waves, 
Ultrasonics,.3S, pp.573-580. 

Kundu, T., Potel, C. and de Belleval, J. F. (2000a) On the Near Lamb Mode Imaging of Multilayered 
Composite Plates, Ultrasonics, in press. 

Kundu, T., Potel, C, and de Belleval, J. F. (2000b) Near Lamb Mode Imaging of Multilayered Composite 
Plates, Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware, Ed. A. K. Mai, 
Proc. of SPIE NDE 2000, March 7-8, 2000, Newport Beach, California, 3994,174-183. 

Mai, A. K., Yin, C. C. and Bar-Cohen, Y. (1991), Ultrasonic Nondestructive Evaluation of Cracked Composite 
Laminate, Composite Engineering, 1, 85-101. 

Maslov, K. I. and Kundu, T. (1997) Selection of Lamb Modes for Detecting Internal Defects in Laminated 
Composites, Ultrasonics, 35, 141-150. 

Na, W., Kundu, T. and Ehsani, M. R. (2000) Inspection of Concrete-Metal Rod Interface Using Guided Waves, 
IMECE 2000, Orlando, Florida, Nov.5-10,2000, Eds. J. Qu and T. Kundu. Pub.ASME, NDE-18, 59-69. 

Nayfeh, A. H. (1995) Wave Propagation in Layered Anisotropie Media, Pub. Elsevier, Amsterdam. 
Potel, C. and de Belleval, J. F. (1993a) Propagation in an Anisotropie Periodically Multilayered Medium, 

Journal of the Acoustical Society of America, 93, 2669-2677. 
Potel, C. and de Belleval, J. F. (1993b) Acoustic Propagation in Anisotropie Periodically Multilayered Media: A 

Method to Solve Numerical Instabilities, Journal of Applied Physics, 74,2208-2214. 
Taylor, T. W. and Nayfeh, A. H. (1992) Dynamic Internal Response of Fluid-Loaded Multilayered Anisotropie 

Media, Journal of the Acustical Society of America, 91, 519-2528. 
Yang, W. and Kundu, T. (1998) Guided Waves in Multilayered Anisotropie Plates and its Use in Internal 

Defect Detection, ASCE Journal of Engineering Mechanics, 124,311 -318. 



ON THE ROLE OF MATERIAL CONSTITUTIVE RELATIONS IN LONG ROD 
PENETRATION MECHANICS 

Z. ROSENBERG AND E. DEKEL 
Rafael 
P.O. Box 2250, Haifa, Israel 

Abstract 

Two dimensional numerical simulations were performed in order to uncover the role of 
constitutive properties of both penetrator and target, on the penetration process of long 
rods. It was found that a maximum strain to failure criterion can simulate the effects of 
adiabatic shearing of the penetrator nose, accounting for the DU superiority over WA 
rods. Moreover, recent results with extremely strong rods, can be simulated with proper 
strength and failure values for both penetrator and target. 

1. Introduction 

The complex process of long rod penetration has been studied extensively in the last 50 
years by both armor and warhead designers (see [1] for a review). Various analytical 
and semi-empirical models have been developed, in order to account for the 
experimental data, by following the main mechanisms in the process. During the past 
decade, two- and three-dimensional simulations have taken the place of these 
engineering efforts, due to their improved accuracy and predictive power. The present 
paper summarizes some of one recent numerical work on this subject. We highlight the 
role of material constitutive properties, of both penetrator and target, on the penetration 
process, particularly, the role of elastic waves which are governed by the yield strength 
of these materials. The 2D simulations were performed with the Eulerian processor of 
the PISCES 2 DELK code described in [2]. This is a second order hydrocode, which is 
most suitable for large strain fields such as those encountered in deep penetrations. In 
order to assure convergence, we used 11 cells on the radius of the penetrator. The 
simulated targets were large enough to be considered semi-infinite, by the use of the 
FLOW boundary condition on their lateral and back surfaces (see [2]). Our main output 
for each simulation was the velocity-time histories of the front and back ends of the 
penetrator, as well as time variation of penetrator length and penetration depth. The 
final depth of penetration normalized to the initial penetrator length (P/L) is our main 
parameter for the penetration efficiency of a given penetrator-target pair. 
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2. The Role of Yield Strength 

2.1 TARGET STRENGTH 

In order to investigate the influence of target strength on the penetration process, it is 
best to use zero-strength penetrators. This way the effect of penetrator strength is 
cancelled out resulting in a non-decelerating penetrator. Our first set of simulations was 
for zero-strength steel penetrators, with an aspect ratio of L/D=I0, impacting aluminum 
targets at velocities in the range of 0-7 km/s.   Target strengths varied between 0.4- 
1.2 GPa, using a simple von-Mises yield criterion. Figure la shows the results of our 
simulation which exhibits the well-known shape of a very sharp rise in P/L for impact 
velocities greater than a certain critical velocity, which depends on target strength. The 
high-velocity end is asymptotic reaching values of P/ccL«l. where a is the square root of 
penetrator/target density ratio. This doubly normalized representation of the penetration 
depth is very convenient for comparison purposes. 
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Figure I. Our simulation results for zero-strength steel rods impacting 

aluminum targets with different strengths 

In Figure 2, we present the results of [3] for tungsten alloy rods impacting two steel 
targets, with Brinell hardness in the range of 180-388 BHN. It is quite clear that the 
same features discussed above are also seen here, namely, the S-shaped curves for 
velocities above a critical value, which depends on target strength, and the asymptotic 
convergence at high velocities to the hydrodynamic limit a. 
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Figure 2: Experimental results ßlfor WA penetrators in steel targets. 

2.2 PENETRATOR STRENGTH 

The influence of penetrator strength on its penetration efficiency can be seen in Figure 3. 
These are the simulation results for L/D=10 steel penetrators, with yield strengths in the 
range of 0-2.0 GPa, impacting an 0.4 GPa aluminum target (representing 2024-T3 M 
alloy). The shape of the curve for the high strength (2 GPa) rod is quite different than 
that of the zero strength rod. An S-shaped curve, starting at the origin, is obtained in 
good agreement with experimental data. It is also interesting to note the several 
crossovers which occur in these curves by increasing impact velocities. These crossovers 
were analyzed and discussed by us in [4], and they were attributed to the effect of elastic 
waves, running up and down the rod length, slowing it as it penetrates the target. We 
also showed that these crossovers disappear when failure and softening mechanisms are 
added to the constitutive relations of the penetrators. Figure 4 shows experimental 
results from [5] for tungsten alloy penetrators (YP« 1.4 GPa) impacting aluminum 
targets in the 0-4 km/s range. Both our simulations and experiments of [5] show a 
leveling-off for the high strength rod at values much higher than the hydrodynamic limit 
of P/L=a. These high values were attributed by Allen and Rogers [6] to a secondary 
penetration mechanism by which high density rods continue to penetrate the target after 
completion of the rod erosion process. We have shown in [7] that this suggested 
mechanism is probably an artifact and that high values of P/L can be obtained by high- 
strength penetrators, especially for large pP/pt values. 
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3.   The Role of Failure 

Two experimental observations were recently related to the failure characteristics of the 
penetrator: 1) the fact that depleted uranium (DU) penetrators are more efficient (by 
about 10%) than those made of tungsten alloy (WA) [8], and 2) the scaling effect, by 
which the ballistic efficiency of scaled WA rods (1:4) is less by about 20% than that of 
full-sized rods [9]. The superiority of DU over WA was attributed by Magness and 
Farrand [8] to the self-sharpening of penetrator nose by the adiabatic shear failure of 
DU. In [10] and [11], we demonstrated that with materials which undergo adiabatic 
failure (i.e., Ti 6A1 4V) a pointed penetration is formed, as suggested in [8], and that the 
nose shape of the penetrator has an important role on its ballistic efficiency. In order to 
emphasize this issue, we performed numerical simulations with a strain to failure 
criterion for the penetrator [4], by which a cell loses its strength, once it reaches a 
predetermined maximum strain (sF). Figure 5 shows the influence of sF on the final 
penetration of a WA rod (300 nm long and 15 mm in diameter), impacting an armor 
steel target at 1.7 km/s. It is clearly evident that for sF in the range of eF = 0-0.5, the 
penetration depth is much higher than that for sF= 1-5. This fact can be used to simulate 
the adiabatic shear failure with proper values of eF. In particular, values of eF = 0.2-0.3 
are often found in Hopkinson's bar experiments for several materials which undergo 

adiabatic shearing. 

320 

PM 

Figure 5. The dependence of penetration depth on the strain to failure for a 
WA penetrator impacting a steel target at 1. 7 km/s. 
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In order to further demonstrate the ability of sF to represent the experimental data, we 
performed similar simulations for increasing velocities (see Figure 6). It is quite evident 
that the effect of sr. diminishes with increasing velocity, just as the empirical data of [8] 
has shown for the difference between DU and WA penetrators. 
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Figure 6.  The influence of impact velocity on the sensitivity to £>.. 

As a final example for the importance of material constitutive relations on the 
penetration characteristics, we show in Figure 7 simulation results which were 
performed in order to account for the data of [12]. In these experiments, very strong, 
sphcrical-nosc, steel penetrators (L/D=10) impacted large 6061 Al targets, at velocities 
in the range of 0-3 km/s. These penetrated as rigid rods for velocities of 0-1 km/s while 
at higher velocities deformation and erosion took place. Figure 7 shows the simulation 
results for the 3.0 GPa rod impacting an 0.4 GPa aluminum target, as compared with the 
experimental results of Ref. [12]. It is quite clear that the simulations exhibit only part 
of the features found in the experiments. There is a break in the penetration curve at 
about I km/s, but there is no evidence for the sharp extrema seen in the empirical data of 
[12]. The break at about 1 km/s is due to the transition from a rigid-rod penetration to 
the erosion mode. 

In order to have a closer match with the data, we performed several sets of simulations 
with different values of er. for the target and penetrator. We found that the shape of the 
resulting penetration curves is very sensitive to these e,.- values. Figure 8 shows our 
results for one these sets of simulation (F.A] = 0.6, £|.c = 0.5), from which one can 
distinctly see that the sharp extrema near 1 km/s is now evident in the simulations, 
although at the high velocity end the agreement with experiment is not as good. 
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As far as target failure is concerned, the role of er. is most important for brittle targets 
(i.e., ceramics, rocks, glass, etc.), which arc very difficult to simulate. An important step 
has been achieved by Johnson and Holmquist [13], who defined two failure surfaces, 
one for the intact and one for the damaged material. A simplified version of this model 
was suggested by us [14], where we used a single parameter to correlate the properties 
of the damaged material to those of the intact material. This parameter is determined by 
lilting an experimental result for a long rod penetration experiment. Using this value, 
we were able to match our simulation results with a large number of penetration 
experiments into ceramic tiles, as shown in [14]. 

4. Summary 

This paper summarizes our recent work on the role of constitutive properties of the 
penetrator and target in long-rod penetration mechanics. We have shown that the rod 
strength plays an intricate role, which leads to a crossover phenomenon. The failure of 
rod material is an important issue in determining its ballistic efficiency, especially for 
materials undergoing adiabatic shear failure. The elastic waves in brittle targets can 
cause considerable damage and special failure criteria should be used to simulate this 
damage. 
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WAVE PROPAGATION 
IN PLANARLY-STRATIFIED MULTILAYERS 

A. MORRO 
University of Genoa, DIBE 
Via Opera Pia 11a, 16145 Genova, Italy 

1. Introduction 

Many applications in seismics, ocean acoustics and nondestructive evaluation are 
framed within wave propagation in planarly-stratified media. Planar stratifica- 
tion means that the material properties exhibit a one-dimensional inhomogeneity 
namely they vary with a Cartesian coordinate, say z. For defmiteness and gener- 
ality, the material parameters are taken to be piecewise smooth functions of z and 
suffer jump discontinuities at a finite number of surfaces z = constant. Geomet- 
rically, this is a multilayer configuration, namely a sequence of a finite number of 
layers. Each layer is allowed to be an anisotropic and dissipative solid which is 
pre-stressed in the equilibrium configuration. 

Let z0 = 0,zi, ...,zn = 
d be the ^-coordinate of the 
dividers.   The whole multi- 
layer, z € (0,d), is sandwiched 
between two homogeneous half 
spaces, one of them possibly 
being empty.   The constitu- 
tive equations are taken to . , 
be linear. Hence, by Fourier    FiSure 1: A constitutive parameter in a multilayer. 

analysis, time-harmonic dependence is appropriate for any time-dependent pro- 
cess. Let x, y be the transverse coordinates. Owing to the homogeneity in x and 
y we take any pertinent function to be factorized by exp[i(kxx + kyy - uit)] where 
(j is the real frequency and kx,ky are allowed to be complex. Next we show that 
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the equations of motion and the constitutive equations can be given the form 

w'(z) = A(z)w(z),        z£(-oo,z0)U(z0,zi)\J...\J(zn..1,zn)\j(zn,oo),    (1) 

where w, the set of state variables, is a 6-tuple of unknown functions of 2 € 
(-00,00), w' := dw/dz and A is a 6 x 6 complex-valued matrix function of 
z. Starting from the system (1), the reflection-transmission process results in a 
boundary-value problem for w. This in turn is expressed as a Cauchy problem for 
appropriate unknown matrices. 

The purpose of this paper is to show how the solution to the reflection-transmis- 
sion problem, at a planarly-stratified multilayer z € (0,d), can be determined. 
Given an incident wave in the homogeneous half space z < 0, the reflected wave 
in z < 0 is determined together with the transmitted wave in z > d and the 
solution w as z £ (0,d). Both the impedance matrix and the reflectivity matrix 
are shown to satisfy Riccati equations in (0,d). Along with appropriate boundary 
conditions, the pertinent matrices can be determined and the unknown field w 
be evaluated. Alternatively, the reflection-transmission problem can be given the 
form of an integral equation whose solution w is found to hold and is formally 
established. 

A reference to previous approaches to the problem is in order. Continuously 
layered bodies are considered in [1] though in one-dimensional scalar problems. 
Kennett [2] and Lewicki et al [3] show that the reflectivity matrix, as a function 
of the space variable, satisfies a Riccati equation. The use of the impedance 
matrix has been less frequent, see [4] for elastic solids and [5] for electromagnetic 
solids. The use of the propagator matrix is described, e.g., in [6]. None of these 
approaches, though, allows for jump discontinuities in the slab z € (0,d). Nor 
do they look for the unknown field w. By generalizing the procedure of [7], the 
approaches developed in this paper allow for any planar inhomogeneity and any 
number of discontinuity surfaces. Both the Riccati equations, for the reflectivity 
and the impedance, and the series solution for the propagator matrix, along with 
the pertinent boundary condition, are shown to provide the reflection and the 
transmission matrix of the multilayer. Meanwhile, no attention is devoted here 
to questions related to numerical instabilities which occur in evaluating reflection 
and transmission matrices of the multilayer. 

An extensive literature has been developed on (time-harmonic) guided waves in 
multilayers, the layers being elastic or absorbing and possibly arranged in periodic 
structures; cf. the review article [8] and references therein. These investigations, 
though, involve homogeneous layers (plates) in which case the evolution equations 
of this paper drastically simplify. 

2. Governing equations for pre-stressed, dissipative materials 

The equations of motion and the constitutive equations are derived for a solid 
which is subject to a body force and hence experiences a pre-stress in the equi- 
librium configuration. The motion superposed to the equilibrium configuration is 
regarded as small, which motivates the linearized approximation. 
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It is convenient, if not imperative, to make use of three configurations, the 
un-stressed configuration H, the pre-stressed, intermediate configuration Hi and 
the current configuration Ht [9]. We may view these configurations as the result 
of subsequent deformations or motions such that 

XeH   ->   xeiii   ->   xeKt. 

Denote by 
u(X,i) = x(X,i)-x(X) 

the displacement of the particle X, at time t, due to motion. By the assumed 
invertibility of x(X) we can regard both H and Hi as reference. The superposed " 
and " denote quantities pertaining to Hi and Ht. The symbols Vx and V(= Vx) 
denote the gradient operators relative to H and Hi. Sym is the set of symmetric, 
second-order, tensors. The superscript T means transpose. 

Let S, S be the first Piola-Kirchhoff stress tensors, p0>p the densities in H,Hi 
and F and F the deformation gradient from H to Hi and from H to Ht, i.e. 
F = VxxT, F = VxxT. It is worth remarking that, by the chain rule, 

F = Vx(x + u)T = F + HF 

where H = VuT. Also, let J = detF > 0. The mass density p0 at H is related to 
P by po = Jp- 

We now examine the equilibrium condition at Hi. The equilibrium equation 
may be given the form 

Vx • S + p0h = 0 

where b is the body force per unit mass. Since x = ü we can write the equation 
of motion as 

Poü = Vx • S + pob. 

We let b be a known smooth function of the position in space. Hence, 

b(x)-b(x) = (u-V)b + o(|u|). 

Subtraction and neglect of o(|u|) provides 

p0ü = Vx-(S-S)+po(u-V)b. 

Let Y and Y = Y + Y be the second Piola-Kirchhoff stress tensors correspond- 
ing to x and x, _      _ _ 

S = FY,        S = (F + VxuT)(Y + Y). 

We regard Y as small inasmuch as u and VuT =: H are small so that we neglect 
VxuTY as well as quadratic terms in u, Vxu and higher. Hence we have 

Poü = Vx ■ (HFY + FY) + p0(u ■ V)b. 
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We now determine the equation of motion with the equilibrium configuration 
as reference. By use of the identity d(FiK/J)/dxi = 0 we can write 

^oü = V • (iHFYFT + ifYFT) + Po(u ■ V)b. 

Observe that T := FYFT/J is the Cauchy stress at 7?.,.  Hence the equation of 
motion can be given the form 

Poü = V-(HT + iFYFT) + /90(u-V)b. (2) 
u 

Incidentally, the actual Cauchy stress T = FYFT/J in the linear approximation 
takes the form 

f = f + Ht + THT - f V • u + 1FYF
T (3) 

ü 

The result (3) traces back to Cauchy (cf. [10]). 
Henceforth we let Y be linear in C = C-C, C, C being the right Cauchy- 

Green tensors. To account for dissipativity through memory effects we let 

/*0O 

Y(t) = SC(t) + /    H'(OC(< - Z)d£ (4) 
Jo 

where E, S'(£) are fourth-order tensors mapping Sym into Sym. 

2.1. THERMODYNAMIC RESTRICTIONS 

Let T, L, p be the Cauchy stress, the velocity gradient, the mass density on the 
pertinent space-time domain. The dependence on position is understood and not 
written. 

The second law of thermodynamics is taken to be expressed by 

I*mT{t)-Lm>0' 
at any point of the body, for any non-trivial function L on [0,r) while T,L,p are 
periodic functions with period r. 

As a consequence of the second law, the half-range sine and cosine transforms 
ofS', 

roo /-co 

S»=/     S(Osin^d£, S'c(w)= S(Ocos^de 
Jo Jo 

satisfy the inequality 

E • E;E + 0 • s;© + E • (E'c - S^T)0 < 0,        Vw > 0, (5) 

for all E, 0 € Sym. In particular, E^ is required to be negative definite in Sym. 
The proof follows by starting with the observation that 

C = 2FTDF,        D:=(L + Lr)/2. 
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Hence 
-TL = —Y  C. 
p 2po 

We apply these conditions to the quantities associated with the motion x.   We 

have 1-    -        1   _     •        1 • 
-T  L = —-Y   C+-— Y  C. 
p 2p0 2p0 

For any periodic function C, on [0,r), the integral of Y ■ C on [0,r) vanishes. 
Hence we are left with the inequality 

/ Y(i) • C(t)dt > 0. 
Jo 

Choose the time dependence of C as C(t) - S sinut + 0 cos wt, where S, 0 are 
symmetric second-order tensors and ui > 0. The period r equals 2TT/LJ. Substitu- 
tion in 

C(t) ■ [SC(«) + J    S'(0C(t - Od£\dt > 0 

and integration with respect to t yield the inequality (5). The choice S = 0 
provide the negative definiteness 

S-S;(w)S<0,       Vw>0,    VEeSym. (6) 

It is convenient to deal with quantities induced by the motion x with the 
equilibrium configuration as reference. In the linear approximation we have 

C = 2FTEF,        E := (H + HT)/2. 

Hence we can write 

i(FYFT)im = KlmnpEnp(t) + /    K'lmnp(0Enp(t - £d£ 
J Jo 

where 

2____ 2 -    -       -     -    „ 
Kimnp = -jFiLFmMFnNFppELMNP, K'lmnp = -jFtLFmMFnNFppZLMNp. 

Moreover, by (6) we find that 

B • K',(w)B < 0,        Vw > 0,        VB € Sym. 

Letting 
/-OO 

T(i) = H(t)t + KH(t) + /    K'(0H(t - 0^, 
Jo 

we can write the equation of motion in the form 

Poü = v • r. (7) 
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2.2. DEFINITENESS PROPERTIES 

For a time-harmonic dependence, u(x,f) oc exp(-iut), we let T be given by 

T = G du/dx       (Tjh = Gjhkl duk/dxi), (8) 

where G is a complex-valued fourth-order tensor given by 

Gjhki = SjkTih + Kjhkl + /    K'jhkl(0 exp(iu>Z)dC 
Jo 

For any fourth-order tensor T and vectors a, b we let arb be the second-order 
tensor defined by 

(arb)jfc = Yjhkiahbi. 

If T is (negative) definite in Sym then brb is definite in the underlying vector 
space V. For, 

0 > (a ® b + b ® a) • T(a ® b + b ® a) = 4a • (brb)a 

for all non-zero a, b gives the result. As a consequence, since the imaginary part 
G, of G is negative definite in Sym then also the imaginary part Q, of Q — e3Ge3 

is negative definite in V. Let Q = QR + iQ, and observe that 

QR = e3 • te3 1 + e3Ke3 + egK^eg, Q, = e3K'se3 

whence GR,G, G Sym. 
We now show that Q is invertible. Let w £ <D3 and observe that Qxv = 0 is 

equivalent to 
0flwR - Q,yf, = o,   g,wR + gRw, = 0. 

Inner multiply by w, and wH, respectively, and apply the symmetry of QR and 
Q,. Subtraction yields 

wfl • G,wR + w, • g,v/, = 0. 

The negative definiteness of gt implies that wR, w, =0 and hence w = 0 whence 
we have the invertibility of g. 

In elasticity, g - e3 • Te31 + e3Ke3 is real-valued. It is reasonable to assume 
the ellipticity condition, K > 0 in Sym. This implies that g is positive definite if 
e3 • Te3 is positive or slightly negative. Now </w = 0 amounts to 

gwR = o,      öw, = o. 

Inner multiplication by wH and w, and summation gives 

w„ • 6w„ + w, • öw, = 0. 

Hence we have wB, w7 = 0, namely w = 0, and g is invertible. 
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3. State-variable equations 

We now look for time-harmonic waves of the form 

u(x, t) = ü(z) exp[i(k|| • x — ut)] 

where u is the real frequency and k,, is a given complex-valued wave vector, per- 
pendicular to e3. Hence ü is a unknown vector function of z. To obtain the 
governing equations in the form of a first-order system it is convenient to consider 

r := Te3 = r(z) exp[i(k|, • x - ut)]. 

In un-stressed bodies Te3 is the traction at planes perpendicular to the z-axis. 
Upon the observation that 

V = A + e3|. (9) 
OX || oz 

where xy is the part of x perpendicular to e3, eqs (7) and (8) give 

-pu2u = iTk|| +T', 

T = iG(u®k||) + G(u'®e3). 

Evaluation of Te3 and application of Q_1 gives 

Ü' = A'ü + A"f (10) 

where 
A/ = -iö-1(e3Gk„),        A" = g-K 

Meanwhile, evaluation of Tk,, and substitution gives 

r' = AIiru + A'vT (11) 

where 

A"' = -pu2l + k,Gk„ - (kllGe3)ö-1(e3Gkll),        A'v = (A')T. 

Letting w = [ü, r]T and defining the matrix A in the block form 

A-f   A'     A" 1 ~ [ A111    AIV J 

we can write the governing equations in the form (1). Hereafter we keep repre- 
senting 6x6 matrices through four 3x3 blocks as for A. This in turn shows that 
the 6-tuple w = [ü, f]T is the set of state variables. 

3.1. JUMP CONDITIONS 
In multilayers, the matrix A may suffer jump discontinuities across the dividers. 

To solve (1) in multilayers we then need the jump conditions of the unknown field 
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w.   The displacement u and the traction t = Te3 are taken to be continuous. 
Hence we need the jump condition for T. 

Observe that 
f = t + f Hr - TV • u + r. 

Application to e3 gives 

t = f e3 + f HTe3 - Te3 V ■ u + r. 

By means of the representation (9) we find that 

THTe3 - f e3 V • u = i(Tk„ ® e3 - Te3 ® k„)u. 

Substitution gives 

t = f e3 + i(f k,| ® e3 - te3 ® ky)u + r. 

The traction t comprises an additive time-independent term Te3. Hence, letting 

t — Te3 = t(z) exp[i(k|| ■ x — wt)], 

we can write the (invertible) relation 

"{] 
=
 [M    l]["]' M:=-t[Tkll®e3-te3®kll]. 

Boundary conditions are usually given in terms of displacement and traction. The 
value of r is determined through 

f = -Mu + t. 

Denote by [•] the jump of a quantity across a surface, namely 

[/(*)] = /(*+)-/(*-)• 

Hence the continuity of t, Te3 and k,| yields 

0 = [t]=i[Tkll](e3-u) + [f] 

whence we have the jump of r as 

[fl = -i[tk„l(e3-ü). (12) 

Accordingly, 

w(z+) = n(*)w(z_),     n := 1 0 
-t[Tkll]®e3    1 



115 

4. Impedance matrix 

Let Z(z) be the<C3x3-matrix function such that 

f = Zu. 

Differentiation with respect to z and comparison with (1) yields 

(Z' + ZA1 + ZA"Z - A"J - A'vZ)u = 0. 

This relation holds for every vector ü only if Z satisfies the Riccati differential 
equation 

Z' = A111 + AJVZ - ZA1 - ZA"Z. (13) 

If Z(f) is known at some z then the integration, in the existence domain I 3 z, 
provides Z(z), z e /. Once Z is determined, the function ü is found by solving 
the linear differential equation 

u' = (A7 + A"Z)u 

with a suitable value u(z). The vector f is then determined by applying Z to ü. 
The matrix W = Z_1, such that ü = Wt, is found to satisfy the Riccati 

differential equation 

W = A' + A" - WA,V - WAJIIW. 

The matrix Z differs from the standard impedance matrix [7] in that r is 
different from t. Indeed, since 

t = (Z - M)u 

then Z - M is the impedance matrix. Hence, across any surface z = constant, we 
have 

[Z] = [M] = -t[fk]®e3. 

To fix Z at some value of z we naturally have recourse to the boundary condi- 
tion. Here we look at the divider z = d and consider three possibilities. 
Free boundary.  At z = d we have Te3 = 0 and t = 0 while u is undetermined. 
Hence we let Z(d) - M(d) = 0 whence Z(cL) = -i(Tkn) <g> e3. Integration of (13) 
yields Z(0). 
Fixed boundary.   At z — d we have u = 0 while t is undetermined.   We then 
consider W and set W(d) = 0. By integration we obtain W(0). 
Homogeneous half-space as z > d. The value of Z(0) is connected with the wave 
modes occurring in the half-space z > d. The connection is made operative in the 
next section. 
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5. Reflectivity matrix 

We restrict attention to the homogeneous half-spaces z < 0, z > d. Let the matrix 
A be simple. Denote by Xa the (not necessarily distinct) eigenvalues of A and by 
p0 the associated independent eigenvectors, a = 1,2, ...,6. Let P be the matrix 
whose ordered columns are pi,p2,...,P6 and A = diag[Ai,...,\Q]. It is a well 
known result that 

P~1AP = A. (14) 

Let 

E(z) = exp[/A(0#] 
o 

and 
v = E_1P_1w. 

Owing to (1) we obtain 
v' = -ExQEv (15) 

where Q = P_1P'. Hence v is constant, as z < 0 and z > d. The meaning of v 
follows by considering w = PEv, namely 

wexp[i(k|, -x-cot)] = V\Q(.z)exp[ /   AQ(T)dr]pa(,z)exp[i(k|| -x-wt)} 
a=i Jo 

whence {va} are the amplitudes of the propagation modes. It is reasonable to as- 
sume that they partition in three forward propagating modes, (v' = [vi,V2,vz]T), 
and three backward, (v6 = [v4,v5,v6]T). Hence v = [v^,v6]T and we define the 
reflectivity matrix R through 

v6 = Rv/. 

To establish the connection between Z and R observe that 

■   ü   I _ r   P'E'      P"E'V  if   v^   l 
. ZÜ J ~ L P'"E'    P^E'1- J [ Rv' J- 

Evaluation of ü - first row - and substitution in the second row gives 

ZP'E V + ZP'^'^Rv' = P'"EV + P"'E'vRv/ 

whence 
Z = (P'"E' + P^E'^RXP'E7 + P"E'VR)-X 

with inverse 
R = (ZP" - P/VE,V)-1(P'" - ZP'E'). 

As shown in [7], the matrix function R(z) satisfies the Riccati differential 
equation 

R' = N'" + N,V,R - RN' - RN"R 



117 

where 
N = -E^P^P'E. 

Also, if the transmissivity matrix T is defined such that 

T(z)v'(*)=v'(d),        T(d) = l, 

then T(z) is determined through R by the differential equation [7] 

T' = -TN' - TN"R. 

When the half-space z > d is homogeneous we set, at z = d+, 

R = 0 

to mean that only transmitted waves occur. Hence we have 

Z(d)=Pi"(P1)"1- 

As for the reflection matrix, the transmission matrix is the value (of T) at the 
beginning of the layer, T(0_), such that 

T(0_)v'(0_)=v'(d+). 

5.1. JUMP CONDITION 

At any jump discontinuity of A the matrix R suffers a jump discontinuity. It is 
then convenient to determine R_(z) := R(-Z-) in terms of R+(z) := R(z+) at any 
value of z. First we write ü and t in terms of v, namely 

[*] = [£ IMil' 
The continuity of ü and t results in 

iZvl ]
=J

[R+V{] 

where 

Evaluation of v{, substitution and the identical validity with respect to v{ yields 

R_(JJ + J"R+) = Jr" + 3IVK+. 

Hence we obtain the sought relation in the form 

R_ = (J'" + J^R+)(JJ + JI/R+)-
1. (17) 
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6. Propagator matrix 

Let £lk(z,zk-i), z € [zk-i,zk), be defined by 

w(z) = Qk(z,zk-i)-w(zk-i),    ze(zk-i,zk)        nk(zk-i,zk-i) = l. 

Hence flk is the propagator matrix in the layer (zk-\,zk). Substitution in (1) 
gives 

Ojt(z,Zfc_i) = A(z)ilk(z,zk-i),    z 6 (zk-i,zk), 

whence we have the integral equation 

nfc(z,Ä*-i)=/      A(Onfc($,«fc_i)df,    ze(zk-i,zk). (18) 

For simplicity, it is understood and not written that A is the restriction to the 
pertinent interval (zk-\,zk). Define the sequence of matrix functions {Am(z,r])}, 
zk-\ <T) < z < zk, tobe given by 

A1(z,0=A(0, 

Am+i{z,r)) =       Am{z,v)Ai(v,jj)dv,        m = l,2,.... 
Jri 

If A is bounded on (zh-i,zk) then the solution Qk(z,Zk-i) to (18) exists and is 
unique in L2{zk-\,zk) and is represented by the Neumann series 

oo        ,-z 

Slk(z,zk-i) = 1+ Y] /      Am(z,t)d£,    z£(zk-i,zk). (19) 
^        rz 

m=lJzi—i 

Since Qk(z,Zk-i) is given by the series in (19), it is of interest to evaluate the 
error associated with the approximation of Clk(z, zk-\) as given by a finite number 
of terms, m = 1,..., n, for a selected n, namely 

fijj.n)(z,zfc_i) = 1+ V /       Am(z,Odf,        ze[zk-i,zk]. 
m=lJzk-i 

The estimate is given as follows for any matrix norm || • ||. 

Proposition. If M = sup{||A(?7)|| : zk-\ < r] < zk} then, as z 6 (zk-i,zk), 

lint^zt-o-nw^^-x)!^^^"^-1^^-^-!)^1.       (20) 

Proof. Application of the norm || • || to ilk — ilk    allows us to write 

\\nk(z,zk^)-^[n)(z,zk^)\\<    V    /       \\Am(z,Om,        z€[zk-uzk]. S   / m=n+1 
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Now 

||Am+i(z,T,)||< /  ||Am(z,OI|Mde 
Jr) 

whence 

Mn(z-r))
n-1 

\\M{z,rj)\\<M2{z-ri),        \\An{z,r,)\\<       ^ _ ^ 

Accordingly, 

fz Mm      fz Mm   f (z-fr-^F«*-*']' 
m 

Hence we obtain 

The right-hand side is the remainder of exp[M(z - z0)] relative to the polynomial 
Y,m=olM(z ~ z0)]m/m\. By means of the Lagrange's form of the remainder we 
have the estimate 

g    lM{z-zo)r=eMM(t-zr)} k_i)n+ly        te{xk_ugy 
*—' ml (n + ln 

m=n+l v ' 

Since £ < z, the estimate (20) follows. G 
Once we know the (exact or approximate) matrices 17^, fc = l,...,n, we can 

determine w(zn) in terms of w(0). Now, at any layer k, 

w((zfc)-) = fi*(zfc,z*-i)w((zfc-i) + ). 

Also, let Uk = n(zfc). Start from w(0_) and observe that w(0+) = now(0_). 
Hence apply fii and then III and so on to get 

w(d+) = nnnnnn_i...nin0w(o_). 

If, rather, [u,t]T(zn) is required in terms of [u,t]T(0) we apply the matrix M to 
obtain 

[ü,tf(d+) = fi(d,0)[Ü,t]T(0_) 

where 
n(d,o) = M(d+)nnn„nn_i...nin0M-1(o_). 

The matrix ft(d,0) is the propagator of the whole multilayer; it incorporates the 
effects of the single layers through fii,..., ft„, the jump of w at the dividers through 
n0, III,..., nn and the passage from [ü, t] to w (and viceversa) through M. If w 
is continuous at the dividers and no change of variable is performed then Sl(d, 0) 
is just the composition of the matrices of the single layers. 
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7. Reflection and transmission of a multilayer 

An incident wave is allowed to arrive from —oo and to hit the layer at z — 0. 
Reflected and transmitted waves originate at z = 0 and z = d and propagate 
away to — oo and +oo, respectively. Our purpose is to derive the reflected and 
transmitted waves in terms of the incident one and of the properties of the layer. 

In the (homogeneous) half-spaces z < 0 and z > d the matrix A is taken to 
have 6 linearly-independent eigenvectors pi,..., p6, associated with the eigenvalues 
Ai,..., A6- The matrix P is invertible and hence we define the 6-tuple s as 

s = P_1w. 

Accordingly w and [u, t]T take the form 

6 6 

w = ]L S«WP«(Z)> [U> *r = H S«WP<>(2) exP[«(kn • x - ut)}. 

To find the dependence of s on z we observe that, upon substitution, the vector s 
is found to satisfy the first-order system of equations 

s' = As-Q_1Q's. 

In homogeneous regions, 
s' = As 

and hence s(z) = exp[A(.z - zo)]v, where v eC6. Accordingly we have 

6 

[u> t]T = Yl v<*Pa(z) exp[i(k„ • x + oaz - U)t)] 
ct=l 

where aa = — i\a. We assume that, depending on the values of aa, three of 
them correspond to forward-propagating waves, say a = 1,2,3, and three to 
backward-propagating waves, a = 4,5,6. Accordingly, let v^ = [v\,V2,v^]T, 
vb = [v4,vs,vs]T. Any v can then be represented as 

v = 
v6 ,6 

In general we can write w as 

w = PEv 

where E(z) — exp(/fo A(£)df). However, for the sake of simplicity, it is convenient 
to consider separately the half spaces z < 0 and z > d. Hence we let ZQ = 0 or 
z0 — d according as we consider z < 0 or z > d. To be precise, if the incident wave 
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is coming from — oo then as z > d we have v = [v^,0]T, which means that only 
transmitted waves occur as z > d. Hence we have 

w(z) = P_ exp(A_z) 

w(z) = P+ E(d) exp(A+(z - d)) 

if i 

vf i 
0 

z<0, 

z> d 

where A_, A+ and P_, P+ are the constant values of A and P as z < 0 and z > d. 
Denote by v* the incident value of v, namely v* = v-^ (0_). At z = 0_ or z = d+ 

we have 

w(0_) = P_ 
v' 

R0v
i w(d+) = P+E(d) 

T0v* 
0 

(21) 

where Ro = R(0_) is the reflection matrix and To = T(0_) is the transmission 
matrix, namely 

v5(0_)=Rov',        v'(d+)=T0v\ 

Since w(d) = Cl(d, 0)w(0), we have 

P+E(d) 
T0v' 

0 ^°)P-[RTVO- 

Letting 

we can write 

T0v* 
0 

* = E(d)P71fi(d,0)P. 

#J     *" ir    vf    l 
,m     */v  J[  RoVi  J- 

Hence by the arbitrariness of v* we obtain 

R0 = -(Q")-1*"',        T0 = *J - *"(*JV)-1*J". (22) 

If, instead, the layer ends with a fixed boundary or a free boundary then only 
the reflection matrix is meaningful and the conditions are given as follows. 
1) Fixed boundary.  The displacement u is zero while the traction t is undeter- 
mined, at the boundary z = d. Accordingly, 

[t°    ]=w(rf) = ^,0)P_[R^] 

Let 

Hence we have 

* = fi(d,0)P_. 

0 = (*J + *"R0)v
i 
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for every vector v\ This implies that 

R0 = -(*")-!*'. 

2) Free boundary.  At the boundary, z = d, the traction t is zero while the dis- 
placement u is undetermined. Accordingly we write 

u(d) 
0 

= w(d) = * 
v' 

Rov4 

whence we have 
0 = (*"' + ¥7VRo)v* 

Again we make use of the arbitrariness of v1 to obtain 

7.1. REFLECTION AND TRANSMISSION RELATIVE TO w. 

The matrices Ro and To express reflection and transmission in terms of the wave 
modes. It is more customary to evaluate the reflection and transmission in terms 
of the state variables w. First, consider the displacement u. By (21), the reflected 
and transmitted displacements, ur,u', are given by 

ur(0_) = Pi'Rov*.        u'(d+) = P;E'(d)T0v\ 

Since the incident displacement is related to v: by u' = PW* then the invertibility 
of Pi gives 

vi = (P7_)-1ui(0_). 

We define the reflection and transmission matrices Ru, Tu through 

ür(0_)=Ruü
i(0_),        üt(d+) = Tuü

i(0_). 

Hence we have 

Ru = Pi' Ro (PL)"1,        Tu = P;E'(d)T0 (Pi)-1. 

By arguing in the same way, the matrices Rr and TT such that 

fr(0_) = Rr f *(0_),        f'(d+) = TT f'(0_) 

turn out to be given by 

Rr =PivRo(P7_'T1,        TT = P;"E/(d)To(Pi")-1. 

(23) 

(24) 
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8. Comments and applications 

The methods described above are all applicable to reflection-transmission problems 
in multilayers. The impedance Z is convenient when w is continuous, so that Z is 
continuous too, at discontinuities of A. 

The reflectivity R provides a more direct connection to the problem at hand but 
is usually discontinuous. The use of R is decisively efficient when the multilayer 
consists of homogeneous layers. In such a case P' = 0, N = 0 and the Riccati 
equation provides the constancy of R within each layer. The value of the reflection 
matrix Ro is then determined by the boundary condition, and hence R(d), and 
the jump of R at the dividers. 

The propagator matrix fi has the advantage that a close form, though in a 
series form, is known for the solution. It is certainly of interest when A is varying 
with z. 

By way of application we now consider the propagation of transverse waves in 
isotropic, un-stressed homogeneous layers. The reflectivity matrix R is then more 
convenient. The layer is sandwiched between two homogeneous half-spaces and 
then jump discontinuities of A are allowed to occur at the boundaries of the layer. 

8.1. TRANSVERSE WAVES IN A SINGLE HOMOGENEOUS LAYER 

If k|| is in the ei direction then the system (1) decouples and it follows that [Ü2, i2]T 

satisfies the system 

d_ 

dz 
u2 

*2 

0       1/fi 
^      0 

«2 

*2 

where \x is the coefficient of shear viscoelasticity and 

aT = y/(pu)2/ii)-k2, 

the root being that with minimal argument. Moreover, P is taken in the form 

p = r i//x    1//1 
L ic iaT -i<rT 

Denote by /x_,/i,/x+ and a_,ä,a+ the values of n and ar as z < 0, z G (0,d), 
z> d. 

The matrix R is 1 x 1; denote it as R. Let R(d+) = 0. This means that no 
wave is reflected within the homogeneous half-space z > d. Since [M] = 0, by 
(16) we find that 

3(d) = E-1(d)p-1(d_)P(d+)E(d) 

lr fi/fj,+ + a+/a 
. (/J./n+ - CT+/CT) exp(2i<r<i) 

(/Lt//x+ - a+/a) exp(-2iad) 
ß/li+ + (T+/ä }■ 

Hence, by (17) we have 

.R(GL) = exp(2iad) 
ßä + ß+cr+ 
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Since R' = 0 as z e (0,d) then R(0+) = R(d_). Now, 

/u_//2-f ä/cr_    fi_/ß — ä 
/i_ //2 - ä/cr_    ^i_ /ß + ä/a 

3(0) = If V-/lJ- + CT/a-    V-lv-ala- 

Hence we find that 

»   -wni- ./7"(0) + J,v(0)fl(0+) 
^° _ m~> ~   J-(0) + J"(0)R(0+) 

_ (M-cr- _ fi^ißv + M+^t) + (M-
17

- + ß^ißv ~ M+<T+) exp(2zäd) 
(/i_cr_ + ßä)(ßö + H+0+) + (/i_cr_ - ßä)(ßu — v+<7+) exp(2iäd) 

Also, we find that 
Ru = i?0) -Rt = —Ro- 

As a check, consider the limit case of a single discontinuity. Let d = 0, ä = <T+, 

ß = (i+. It follows the standard result 

ß_CT_ - fJ,+ (T+ 
/to 

fl-(T- + Li+(T+ 
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ULTRASONIC LAMB WAVES IN LAYERED PIEZOELECTRIC 

PLATES 
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1.   Introduction 

The propagation of guided ultrasonic waves (GUW) in deformable solid media has 
been an active research subject for the last thirty years due to its applications 
in non-destructive evaluation (NDE) of homogeneous and advanced composite 
materials used in mechanical, aerospace and civil engineering [1-4]. Stratified and 
fibrous piezoelectric composite materials have also lately given rise to increasingly 
active researches because of its numerous possible applications in sensors, actua- 
tors, active control and adaptive structures for their electromechanical conversion 
abilities [5]. Recently, the microelectronic technology has oustandingly progressed, 
particularly in the domain of multilayered piezoelectric semiconductors structures: 
heterostructures, multiple quantum well structures and the monolithic integration 
of surface acoustic waves (SAW) devices [6]. The high-performance electro-acoustic 
and acousto-optic devices utilizing GUW in multilayered structures are currently 
developed for a variety of applications in the field of communications, signal pro- 
cessing, optical computing,.... Thus, a detailed knowledge of the GUW propagation 
characteristics in piezoelectric multilayered structures, crucial for the accurate 
design of GUW devices, is urgently required. However, the task complexity due 
to great variety of structure geometries and related type of wave delay advances. 
Modeling wave propagation in piezoelectric layered media must take into account 
electromechanical material properties of layers, number and thickness of layers, 
electromechanical nature of interfacial and boundary conditions, and direction 
of propagation as well. Limited available analytical treatments make them fully 
dependent on computational capabilities. Also attempts in modeling ultrasonic 
waves propagation reported in literature can hardly cope with the demands of 
results in a large range of frequency along with a simple fast method. 

The purpose of the present work is to study harmonic plane wave propagation 
in infinite piezoelectric laminated structures perfectly coated with thin metallic 
electrodes. We focus our attention on free stiffened Lamb-like waves in multilay- 
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ered plates. Layers are made of high symmetry materials (hexagonal or cubic). 
Open-circuit and short-circuit surfaces boundary conditions are considered. The 
outline of the paper is as follows: In Sec. 2, the basic coupled equations which 
govern the dynamics of the layered piezoelectric structure are briefly reviewed. 
The solutions for sagittal plane modes by means of the state variables formalism 
are given in Sec. 3. In Sec. 4, the treatment of interface and boundary conditions 
by three methods is analyzed : (i) the transfer matrix approach; (ii) the local 
surface impedance concept; and (iii) the global matrix method. Finally in Sec. 5, 
some illustrative numerical results obtained by the previous three methods, for 
selected configurations (bilayer, sandwich and mirror seven layers) are presented 
and discussed in order to locate the birth of numerical instabilities and to show 
the influences of material properties of layers and electromechanical boundary 
conditions on the dispersive behavior. 

2.   Problem statement 

thin electrode 

X3 

Z 

thetoJt/4 
*x1 

Orlentatlai of a^jstal loyale axis 

XVZ OF the cubic crystals T3m 

thin electrode 

Figure 1.    The geometry and coordinate system. 

Let us consider a multilayered plate with infinite lateral extent consisting of n 
piezoelectric layers rigidly bonded at their interfaces and stacked perpendicularly 
to x3-direction, where (xi,x2,x3) is the reference Cartesian coordinate system 
as shown in Fig. 1. The origin of the coordinate system is chosen to be located 
in the bottom of the composite structure. The plane of each layer is parallel to 
xi - xi plane, which is also chosen to coincide with the bottom surface of the 
multilayered plate. The stratified structure thus considered allows the propagation 
of piezoelectric Lamb waves. Each layer (p) is a rotated cubic (43m) or an hexagonal 
(6mm) piezoelectric crystal. The three-fold (A3) or six-fold (Ae) crystallographic 
axis are directed along the £3-axis. The layer (p) of thickness h^ takes up the 

region a;3 < x3 < x3 where x3
p' is the position of the lower surface of the 

layer (p). Thus the total thickness of the layered plate is equal to h = XT=i ^p'- 
Moreover, the bottom and top surfaces of the laminated piezoelectric structure are 
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covered by very thin metal electrodes. In the subsequent analysis, the mass effects 
of electrodes are neglected. 

The components of mechanical displacement, the electric potential, the elas- 
tic stiffness moduli measured at constant or zero electric field, the piezoelectric 
coupling coefficients, dielectric permittivities measured at constant or zero strain 
field, the stress, the components of electric displacement and the density of the pth 
layers are denoted using Voigt's convention, by uf\ <jM\ cj,   , ef^, e^v , Ta

p , 

D\p^ and p(p) respectively, where i,j = 1,2,3 and a,ß = 1,2, ...6. 
In the present investigation, we are concerned for each ply (p) with plane strain 

wave motion 

u{p)=u^\Xj,t),  u{p\xj,t) = 0, (1) 

<l>(p)=<l>V)(xj,t), i,j = l,3. 

Prom this generalized displacement field and with respect to the selected crystal- 
lography class and the geometrical arrangement, the relevant local field equations 
for the ply (p), in the quasi-electrostatic approximation, reduce to the three coupled 
equations [7] 

Cll     ul,ll+c44     Ml,33 + >.C13       + C44     JU3,13 T te15   ^ eZl )<P,\3 ~P      ul     > 
fV^P) 4.    S(P)-1„(P)      ,E(p)tp)      ,      E(p)    (p)      ,      (p) .(p)   ,      (p) <(p) (P)-;(P) (2) 
lC13       +C44     iWl,13 + C44     U3,ll+C33     U3,33 + el5 ^,11 + e33 ?\33    ~P      U3    i W 

te15   +e31 ;M1,13 + e15 W3,ll +e33 U3,33       £11     'P.ll       E33     ?\33 U> 

where the constraints e^ = 0,e^ = e^.ef^ = ef3
(p) are imposed on materials 

coefficients for rotated cubic crystals. The two first equations (2)i)2 consist of the 
momentum equations and the last is the charge conservation equation or Gauss's 
law. 

The components of stress and electric displacement associated with the inter- 
face continuity and boundary conditions are given by the constitutive relations 

T(p) _    B(P)AP) ,   E(P).AP) , >U(P) 
13      —    c13     "1,1 + c33     "3,3 + e33 V",3   ' 

T^P)=  ^(«iS + ^lJ+eiSVy, (3) 
D(P) _  >)„(!>) + >)U(P) _£

5(P)>) 
^3     —   e31 "1,1 + e33 "3,3       fc33     Y>,3   ■ 

The relevant 3n field equations (2) are supplemented with 6(n - 1) + 6 electrome- 
chanical interface continuity and boundary conditions 

„(p+i) _ „(P)     „(P+1) - „(P)      T
(P+1)

 - T(p)      T(P+1)
 - T(p) 

0(P+I) = ^(P) ;    ^CP+D = 2j(rt    at    ^ = 4P+D,    p = 1,2, ...(n - 1),       W 

(i) for the stress-free piezoelectric layered plate in electrically open-circuit 

(5) 
T3

(1) = 0,    T5
(1) = 0,    D{

s
1] = 0,    at   x3 = 0, 

T3
(n)=0,    T5

(n)=0,    £#°=0,    at   z3=/i, 

(MJ for the stress-free piezoelectric layered plate in electrically short-circuit 
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TP = 0, if = 0, 4>w = 0, at x3 = 0, 

T3
(n) = 0, T{n) = 0) «/,(") = 0, at x3 = h 

(6) 

3.   State space formulation 

There are essentially two means to deal with governing field equations in acoustic 
guided waves propagation problems : partial waves method and state space for- 
mulation. The direct approach or the partial waves method remains the favorite 
among the engineering community [2]. The newer state space formulation or Stroh 's 
formalism [8] is well-known in the materials sciences, applied mathematics and 
physics community. The state space formulation is mathematically elegant and 
technically powerful. A distinctive feature of this method is that the general 
solution is provided in terms of the eigenvalues and eigenvectors of the Stroh's 
matrix. However, unlike in control theory, derivation of the state space equation 
from the relevant field equations is not always straightforward in the case of 
anisotropic elasticity or piezoelectricity [9-10]. In the particular studied case of 
the piezoelectric Lamb waves, the field equations of linear piezoelectricity involve 
a system of second order differential equation with respect to the x3 variable. By 
introducing additional continuous fields T3 , Tg and D3 across interfaces x3

p' 

and x3 , the field equations and constitutive relations can be reformulated as a 
first order system of differential equations. The methodology used here reduces the 
order of original equation system, the state space approach converts a boundary 
value problem into an equivalent initial value problem in terms of state variables. 

When specialized to plane harmonic waves, the above formulation leads to 
an homogeneous first-order system with piecewise constant coefficients whose the 
solution is merely the product of the solution for each layer. As pointed above, we 
are concerned with the harmonic plane waves propagating along the xx-direction, 
therefore the state variables for the layer (p) can be written as 

u^ =üip)(x3)e
i^Xl-^    j = 1,3,    0(p) =$p)(x3)e

ilk>Xl-"t\ 

rip)=rf')(a;3)e
i(fe>^-w«)    a = 3,5,    D{

3
p) = D{p) (x^^^, 

where k\ and w are the x\ — component of the wave vector and the circular fre- 
quency. We set the 6-state vector as 

S{p) = [iT3
P\ü[p\iD^\ü3

p\i¥p)Jp)f. (8) 
It can be shown that, for such motion, the governing field equations can be recast 
into the form of a matrix differential equation 

^-=iN^Sip),        with       JV(*> = 
dx3 

0     p(p> 
Q^  0 (9) 

where N^ is the 6x6 real block Stroh's matrix. The 3x3 symmetric submatrices 
P(p)and Q(p) are defined by 
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pW=-pWwa,    pW = -*1>    pW=0,    P2
(
2

p) = -l/cfip), 

j&> = -*! ew/cy, 4p) = -*?«w/cS(rt, «i? = -4p
3V

p), 

Q^ = (-"<$ - ^(p) 4?)*?/7(p) - P(p)^2,    Q$ = - *i M(p)/7(p), 

^ = 4}/7W,    «(p) = #/ + ^cj«,    7(p) = <$ $ + elf, 
,.(P)    _    JP)   o(P)   _   o(P)   r(P) ,,(P)    -   r(P)F(P)      I      p(P)   „(P) 
A*   — CI3 e33   e31   C33  '  "   — C13 fc33 + e31 e33 ■ 

It should be noted that the block structure of the matrix N^ is not a coinci- 
dence but, in fact, the result of judiciously ordering of the state variables in order to 
minimize the calculus and computational efforts. It should also be mentioned that 
the state space equation for the piezoelectricity is structurally the same as the state 
space equation for anisotropic elasticity except for the two additional quantities 
<j)^ and Dg due to the electric field contribution. The state space equation for 

pure elastic dielectric can be recovered by setting the piezoelectric constants, e\a', 
to zero. The solution to (9) can be written as 

£(P)(X3-4P)) ° 5(P) R[P) 4P) 

P<
P)
 4p) 

0 £>(">    (i3 - x (ph 
-l 
» (10) 

where D^(x3) = diag(eiXwX3,eiXmX3,eiX^X3) is a 3x3 exponential diagonal ma- 
trix, A/Pl are the complex eigenvalues of 6x6 non-symmetric matrix N^ with the 

following properties A[
P

J = -AJpj, AJpj = -A{
P

J, AJpj = -AJpj, PS,M are 3x3 

right eigenvectors submatrices and cf , cf  two constant 3-vectors. 

According to the values of Im{X?\) and Pe(P0
Pra3(i3 )), partial waves can be 

split into two subsets [11] : 
(t) if/m(AJp)

}) > 0 or /m(AJp)
}) = 0 and Pe(P0

(^3(4
p))) > 0, where a = 1,2,3, 

which corresponds to upgoing partial waves in 13—positive direction, obtained by 
(v) setting c£' = 0, 

(it) if Jm(AJp)
)) < 0 or /m(A(

(
p)

}) = 0 and Pe(P0
(p^(i3

P))) < 0, where a = 1,2,3, 
which corresponds to downgoing partial waves in i3—negative direction, obtained 
by setting cf' = 0, where the i3 component of the complex Poynting vector, for 
the layer (p), is defined by 

Pill = ^(-3f MP)* - TW + iPW), (ID 
where the asterisk * indicates the complex conjugate quantity. 
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4.   Treatment of interface and boundary conditions 

Once formal solutions are obtained in each layer (p), it remains to enforce interfa- 
cial and boundary conditions of the multilayered structure. Various methods have 
been proposed to carry out this main task which must take into account different 
parameters for instance : number and thickness of ply, frequency range,... . Usually, 
two principal approaches emerge from literature : transfer techniques and direct 
approaches. 

Matrix transfer methods are commonly used in transmission lines, electro- 
magnetic and acoustic guided waves in stratified media. These techniques are 
based on local transfers of informations regarding the state variables character- 
izing the input and the output of the unit cells or layers. The global transfer is 
based on local transfers and fields continuity conditions at junctions or interfaces. 
The Thomson-Haskell transfer matrix formalism [2,12] is advantageous since the 
order of the transfer global matrix is independent of the number of layers. The 
maximum dimension necessary for a matrix transfer is eight, for piezoelectric 
media. Unfortunately, at high frequency-thickness product, the method suffers from 
a loss of precision leading to inaccurate results. This difficulty can be discarded 
successfully with local surface impedance concept. The Local surface impedance 
approach [13-14] is based on local surface impedance transfer of each interface. It 
keeps the transfer method advantages, by the rank of matrices independent of the 
number of layers, but without numerical instabilities. It also allows more flexibility 
in boundary conditions treatment. 

Direct methods rely on simultaneous enforcement of all the conditions. In the 
Global matrix method [15-16], once we know the general solution for each material 
layer and boundary conditions, we are ready to combine the layers equations 
to describe the entire system. A single 6n matrix for n layered structure with 
only bounded terms, represents the complete equation system. Compared to the 
transfer matrix technique, this method has the advantage to be numerically stable 
at high frequency-thickness products. The drawback is that the global matrix may 
be large and the solution therefore may be require of high computer processing 
unity (CPU) times and important RAM memory when the systems involve many 
layers. However, the speed of treatment of some actual computers with high fre- 
quency processors along with available optimized softwares reduce the effects of 
this limitation. 

4.1.  THOMSON-HASKELL APPROACH AND INSTABILITIES 

Initially introduced to compute seismic surface waves dispersion functions, the 
Thomson-Haskell method or transfer matrix technique is easily extended to guided 
waves problems in anisotropic elastic and piezoelectric media [2,14,17]. The local 
transfer matrix method allows us to relate the state vectors specialized to the lower 
and upper surfaces of the layer (p). The transfer of information of each layer is 
given by the linear application 

Sip)(4P+1)) = A^Sip\4p)), (12) 
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where the 6 x 6 square matrix A^is the local transfer matrix for layer (p). By 
applying the above procedure for each layer and using the continuity of state vector 
at the layer interfaces. We finally relate the state vector at the bottom surface of 
the stratified piezoelectric structure, x3 = 0, to that at its top surface x3 = h, via 
the local transfer matrix multiplication 

S* = As\ 
sb = s{1) 

A = A^A^1l..A^A^\ 
, -qt _ -~(n)  . 
|a;3=0 O     — O |l3=hj 

(13) 

■b,t 
where A is the global transfer matrix of the total structure. The state vectors S0 

for a layered plate free of traction in open or short-circuit condition at x3 = 0, h 
are respectively defined by 

_b,t  b.t 
<? —   C |_       _       _ Q 
«->o      — &       lTo=D3=T5=0'      ■ 

b,t  b,t 
= s IT3=Ü3=T5=0'   "s    ~ "       \T3=T5=<t>=0 ■ (14J 

For nontrivial solutions for the wave amplitudes we get the dispersion relations 
for an open and short-circuit, by setting the sub-determinants of the global matrix 
transfer equal to zero 

D0(u,ki) = 
Aii Au Au 
AZ2 A34 A36 

Ah2 A5i A56 

= 0,        D,(w,fc1) = 
A12 A13 A14 

A52 A53 A5i 

A62 A63 Am 
= 0.    (15) 

The local transfer matrices are made of exponentially growing or decaying 
terms associated with partial waves in each layer. When we consider a multi- 
ply structure made of a large number of layers or of layers with very different 
thickness as in the case of some guided wave devices, the magnitude order of 
different terms in the transfer matrices becomes important. Accordingly, the global 
matrix transfer is ill-conditioned or singular. The Thomson-Haskell matrix method 
is not numerically stable in the cases where the depth of propagating evanescent 
waves is small with respect to the thickness of layers. This gives rise to results 
(dispersion curves, reflection and transmission factors, spatial distributions of the 
electroacoustic fields,...) with large errors, due to numerical overflow. 

4.2.  LOCAL SURFACE IMPEDANCE MATRICES 

To overcome these numerical difficulties, well known in numerical analysis referred 
to as the exponential dichotomy, and to treat various geometries with prescribed 
boundary conditions, it is more convenient to use the concept of interface or local 
surface impedance matrix. This concept has been initially developed to study the 
SAW in half-infinite homogeneous anisotropic elastic media and piezoelectric crys- 
tals. This method has been recently extended to SAW and guided acoustic waves 
(GAW) in piezoelectric multi-ply structures [13,14,18]. This approach consists of 
using the expression of general solution (10) to establish a relation between two 

partial state vectors [/ifj and V0,s defined respectively by 
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(i) for a layered plate in open-circuit 

U(P) = 'jr(P)    37(P)    -I(P) 
ll    > "3    j ' MP) 

(ii) for a layered plate in short-circuit 

MP) = 'jrW ;» ^P) 41    > «3    > ,K(p) = 

f(P)^(P))I5(p) 

TTKP)   ™(P)   T(P) 
J5    >J3    ><P 

iT 
(16) 

(17) 

Then the solutions (10) can be now written for a layered plate in open or short- 
circuit as : 

rj(p) 

(p) v0 

where 

p(p)      p(p) 
■""ol.sl    -"-03,53 

?(P) ?(P) pw       p1 

-""02,32    -"-04,54  J     . 

cw(i3-4p)) 
D(p)_1(x3-4P)) 

c(p) 

p(p)     _ j+  p(p)   i   r-   p (p) R. (p) 

(18) 

-i(/-sfl^ + I+si4
p,)> 

p(p)      _  r+   R(P)   ,   r-   p(p) p(pj      _      il j-   p(p)   ,    7-+   D(P)\ 
■"-03,83 — Jo,s-"-3      +Jo,3-"-4    )       no4,s4  —      Jlio,s-"-3      + J0|Sft4    J, 

_ It = {Itij = 0, t, j = 1, 2, 3,     ezcepf    J+2 = l) , 
7o~ = {loij = 0, i, j = 1, 2, 3,     excep«    J0~21 = J-33 = l) , 

7»+ = (^ = °' *'•?' = 1' 2' 3'     e^ceP*    77i2 = !. C33 = -*) > 
^ = {Qj = °>l'. J = !. 2> 3>     eicep«    7~ t = l) . 

The partial or local impedance matrices Zo,l are defined by linear applications 

V$=Z$U$, where 

(19) 

(20) 

Z(P) ^ ft   c 

7M y(p) Jom.sm 
9(P) 7V: 
£>oe,se      ^o 

oe,se 
(P) 
e,se 

(21) 

The 3x3 mixed impedance matrices Zofj are made of 2 x 2 mechanical impedance 

matrices Zom,sm (N/m3), Z^e\se and ZoP;se are 2D-vectors whose components are 

physically homogeneous to (C/m3) and Z^]se are scalars quantities homogeneous 
to (F/m2). It is possible to show that the surface impedance matrices for upgoing 
and downgoing waves marked +, — are given respectively by 

Z(P)+ _ D(P)   R(PT
1 y(p)- - D(P)    pip)'1 fool 

*^o,s      — -no2,s2-aol,sl i ^o,s      — -no4,s4-rto3,s3 ■ lzzJ 

Now, we consider the layer (p). Let us set Z^0,s[ the local surface impedance at the 

lower face 23 = a;3 . By using the previous results it can be shown that the local 

surface impedance at the upper face X3 = x£    ' is given by 

zitu(4p+1}) = (z%+Hiop)s + z$-)V + H£)-\ 

in which 
IJ-(P) _  M(P)     R(P) I/IP) 

ft(p) — (Z^p)+ - 7<P)  (^.(P)w-lfy(p)   („(P)\ __ y(p)-\ yyP)  t~(P)\\-\(7W   /JPJ\ _ 7{P)-\ 

(23) 

(24) 
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M%li = R^D^ih^R^    Mgs2 = R{:l3D^(h^)R^~i        (25) 

At this step it is worthwhile noting that all terms of 3 x 3 exponential diagonal 
matrix D^ are bounded by unity 

Dal (ft(p))   < x'a = x> 2>3' without sommation on a. 

MQ^S1 are the partial propagating matrices associated with the upgoing waves, 

with similar results for downgoing waves. R^l are the reflection matrices relating 

the upgoing waves to the downgoing waves across the surface xjf . By using the 
same arguments, the impedance matrices can be written for any number of ply. 
The interlamellar continuity conditions (4) are rewritten as 

^S1)(4P+1)) = ^tn(4P+1)),    for    p=l,2,...(n-l). (26) 
The above results can now be applied in the evaluation of the top surface impedance 
of total laminate plate. In order to satisfy the boundary conditions (5-6) at the 
bottom surface of the total laminated structure, we set the surface impedance ma- 
trices Zrf t(Q) = 0. On using an efficient recursive algorithm, easily implemented 
in computer program, based on the equations (22-26), we evaluate the surface 

impedance matrices ZoV,su(h) at the top surface 

v£Hh) = zW,u{h)UJ$(h)- (27) 
Applying boundary conditions to the top of the structure, makes finally to disper- 
sion equation, 

det(Z&]su(h)) = 0. (28) 

As shown in next section, one of the avantages of this recursive algorithm is its 
stability in presence of evanescent waves, which makes its use particularly suitable 
for applications in a wide range of frequencies. 

One also note that we can examine mixed boundary conditions using previ- 
ous results. For a multi-ply plate in open-circuit condition at its bottom and 
short-circuit conditions at its top and conversely, it can be shown that dispersion 
equations take on the form 

det(ZWtmu{h)) = 0. (29) 

4.3.  GLOBAL MATRIX METHOD 

The global matrix technique is based on the importance of choice of spatial origins 
for upgoing and downgoing bulk waves [15-16,19]. The efficiently simple process 
consists of assembling directly a single matrix deduced from the 6n continuity 
conditions at each interface and boundary conditions at external surfaces of the 
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structure. Unlike a transfer method the difficulty of the problem depends on the 
number of layers n because, as in direct method, amplitudes of all layers must 
appear. The original point of this method, to solve instability problem, is to intro- 
duce different spatial references of bulk waves according to their behavior in each 
layer. Accordingly, this method is still numerically robust, for any range of product 
frequency x total thickness (/ x h) value, because it does not rely, in particular 
at very high frequency, on coupling of inhomogeneous waves from one interface 
from another. No assumption is made about interdependence between state vector 
at each interface. However, for structures with numerous layers, as the number of 
matrix component increases, this technique involves roots extraction from large 
order determinant. 

The expression of the general solution (10) for the layer (p) can be rewrittten 
by using the previous notations, as 

?(p) R[p)  R{
3
P) 

R[
P)
  R

{P) 

DM(x3-x(
3
p)) 

0 D^~\X3-X{P^'>) >+*h %)■      <3°) 

The interface continuity and boundary conditions (4-6) can be expressed in a 
modified form involving only bounded terms. These equations are finally collected 
together to form an homogeneous linear system of 6n dimension 

where 

Ro,i p(p) 
• no2,s2 

^o,s^o,s — U, 

Ä&>.2JD(n)(fc(n))    Rot 

Rit3D
M(h^)   -R^DO-W-»)   -Rlf3;s\ 

B$MD™(h™)   -Älp
2-2

)ß(p"1)(^(p-1))   -R, 
3 • 

(p-1) 

(31) 

R: (i) Ri\l<DW(hV) 

t-o,a—    col,slico2,s2!°ol,sl   ico2,s2   )• 
?V)       -^2)       ~<1)       ~<1) 

>col,sl ico2,s2'col,sl i°o2,s2 

The solutions to the wave problems corresponding to nontrivial solutions for c0|. 
require that the determinant of R0 s, is zero : 

det R0 s — 0. (32) 

5.   Numerical examples and discussions 

In this section, some numerical results for specific layered configurations are pre- 
sented and discussed. In the numerical simulations we choose crystals of class 6mm 
Cadmium Sulfide (CdS), Zinc Oxide (ZnO), and rotated 43m Gallium Arsenide 
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(GaAs), Aluminium Arsenide (AlAs), as the constituent layers of the structures. 
In Figures 2-5 the dispersion curves for Lamb-like plate modes for four examples 
of layered structures with the identical layer thickness in open or short surfaces 
boundary conditions are presented : (i) a bilayer AlAs/GaAs in open-circuit where 
AlAs extends from z3 = 0 to h/2 and GaAs occupies the remainder; (ii) a bilayer 
ZnO/CdS in short-circuit where ZnO extends from x3 = 0 to h/2 and CdS occupies 
the remainder; (iii) a sandwich ZnO/GaAs/ZnO in short-circuit; and (iv) a seven- 
layered plate in open-circuit where the lowest layer is AlAs followed by three 
GaAs/Al As bilayers. The material constants used in the calculations are collected 
in Table I. 

Table I 

Material parameters CdS ZnO GaAs AlAs 

eft (lO^N/m*) 8.56 20.97 14.57 14.75 

cf3 (lO^N/m*) 4.62 10.51 5.38 5.70 

c& (lO^N/m*) 9.36 21.09 11.88 12.02 

cf4 (lO^N/m*) 1.49 4.24 5.94 5.89 

P (kg/m3) 4824 5676 5307 3760 

eis (C/m*) -0.21 -0.59 -0.154 -0.225 

esi (C/m2) -0.24 -0.61 -0.154 -0.225 

e33 (C/ma) 0.44 1.14 0 0 

eft (lO-^F/m) 7.99 7.38 11.061 8.907 

C& (10-^F/m) 8.44 7.83 11.061 8.907 

In what follows VP.R.O and VP.R.S denote, the piezoelectric Rayleigh velocities 
in open and short surfaces boundary conditions respectively. Specifically, Fig. 2. 
shows phase velocity dispersion curves versus the frequency-thickness product fxh 
for the "Lamb-like"waves in the bilayer AlAs/GaAs in open-circuit. In the oppo- 
site, in the case of homogeneous plate, the breaking of geometrical and material 
symmetries do not permit to obtain pure antisymmetric and symmetric modes. 
As in case of homogeneous plates, we observe that only the first two fundamental 
modes do not exhibit cut-off frequency. A significant feature observed in Fig. 2. is 
the distinct flattening of the modes around the value VP.R.O AlAs = 3391 rns~l. 
As the dispersion curves approach this hidden line from the left they exhibit the 
well-known plateau and step phenomenon. This phenomenon is similar to that 
observed in purely elastic bilayers, the energy is trapped in the layer whose the 
velocities are the slowest. Along the plateau the curves are almost parallel to 
the hidden line with phase speed almost constant. We also notice that the phase 
velocity of the first fundamental mode for large frequency-thickness product tends 
asymptotically toward VP.R.O GaAs = 2864 ms*1, while all other modes at the 
high frequency limit, after crossing the hidden line, seem to approach the previous 
piezoelectric Rayleigh velocity VP.R.o GaAs or piezoelectric Stoneley wave if it 
exists. This particular point it is not analytically obvious and will need further 
development to conclude. Finally, we note that the dispersion spectra obtained 
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for this configuration are in good agreement with results presented in recent work 
[20]. 

Global matrix method 
O     Local impedance method 
A    Transfer matrix method 

x1 

\ GaAs (001M110) 

h, AlAs (001)-[110] 

2h2=2h=h 

Frequency.Thickness f.h (MHz.mm) 

Figure 2.    Dispersion curves of Lamb waves in bilayer AlAs/GaAs in open-circuit. 

In Fig. 3. the corresponding phase velocity dispersion curves versus the frequency- 
thickness product for the "Lamb-like"waves in the bilayer ZnO/CdS in short- 
circuit are presented. The observations and conclusions from this graph are similar 
to those of the previous configuration. However, quantitative differences occur and 
it is first noted that the plateau phenomenon takes place in proximity of the phase 
velocity equal to VP.R.s ZnO = 2696 ms~l. We also observe that the phase velocity 
of the first mode for high values of the frequency-thickness product tends asymp- 
totically toward VP.R.S cds = 1723 ms~l, while for all other modes, after the 
terracing phenomenon and when the frequency-thickness product becomes large, 
the phase velocities seem to tend asymptotically toward the vertically polarized 
shear wave Vs.v CdS = 1790 ms~x or piezoelectric Stoneley wave if it exists. 
In Fig. 4. we have plotted the phase velocity dispersion curves versus the frequency- 
thickness product of the lower order modes of Lamb waves in sandwich ZnO/Ga- 
As/ZnO plate in short-circuit. In this symmetric layered structure the modes are, 
as in homogeneous plate, antisymmetric or symmetric. As previously observed, 
only the first two modes do not present cut-off frequencies. All higher-order modes 
end in a cut-off frequency and exhibit a complex behavior where symmetric and 
antisymmetric modes cross each other several times. It is also noted that at high 
values of the frequency-thickness product, the energy is trapped in the skin formed 
of the slower material. The linear dispersion spectrum displays a mode clustering 
behavior close to that observed in finite periodically layered media. Finally, we now 
turn to the mirror seven-layered plate AlAs/GaAs/.../GaAs/AlAs. This structure 
is symmetric, the outer layers are two identical AlAs layers. Accordingly, the 
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Figure 3.    Dispersion curves of Lamb waves in bilayer ZnO/CdS in short-circuit. 

wave motions occur with either antisymmetric or symmetric field distribution. 
Figure. 5. shows the variations of the phase velocity for the Lamb-like modes as 
function of the product frequency-thickness. We find again two first fundamental 
antisymmetric and symmetric modes without cut-off frequency, while all other 
modes present a complex behavior (crossing and repulsion). We notice in Fig. 5., 
that all modes seem to tend toward asymptotic value VP.R.O AiAs for large / x h. In 
this region of dispersion spectrum the energy is totally trapped in Al As. Here also 
the mode clustering behavior appears clearly. The number of modes in observed 
clusters seems correlated to the number of different material used. 

A further point of interest is, in Fig. 2-5, the comparison of numerical so- 
lutions obtained by the three approaches detailed in previous section : (i) Stroh 
formalism associated with matrix transfer method; (ii) Stroh formalism associated 
with local surface impedance method; and (iii) Stroh formalism associated with 
global matrix method. These comparative studies show in particular the great 
influence of piezoelectric materials and their assembly on the birth of numerical 
instabilities. When the product frequency-thickness is lower than a critical value 
(/ x h)c, the three methods produce identical dispersion curves. For instance, 
in the cases of bilayers ZnO/CdS in short-circuit and AlAs/GaAs in open cir- 
cuit (Fig. 2-3), the values are respectively (/ x h)c ZnoiCdS — 6-5MHz.mm and 
(f x ^)c AlAs/GaAs — 27MHz.mm. For more complex configurations such as like 
sandwich ZnO/GaAs/ZnO and seven layers AlAs/GaAs/.../GaAs/AlAs in open- 
circuit, the critical values are respectively (/ x h)c ZnO/GaAs/ZnO — Vl.hMHz.mm 
and (/ x h)c AlAs/GaAsl,„/GaAs/MAs ^ 27.bMHz.mm. Beyond these critical val- 
ues, the transfer matrix approach suffers from numerical instabilities illustrated 
by clouds or clusters of dots. In the four cases considered, the two other methods 
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Figure 4-      Phase velocity  dispersion curves of Lamb waves for  a sandwhich plate 
ZnO/GaAs/ZnO in short-circuit case. 
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Figure 5.     Phase velocity dispersion curves of Lamb waves for a seven layered plate 
AlAs/GaAs/.../GaAs/AlAs in open-circuit case. 

work well in large range of product / x h and extend the dispersion curves already 
obtained by the usual technique. However, we have a minor reservation as regard 
to the local surface impedance method. It converges slowly in the range of phase 
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velocities limited by two piezoelectric Rayleigh velocities of two materials. It is 
in this range of phase velocities and after at the end of the plateau, where the 
exchange of energy are strongest, that the dispersion curves show localized impor- 
tant curvature variations. Only the global matrix method is completely satisfying, 
which can serve as a benchmark method, but the price of this success is the drastic 
increase of computation time which limits actually its use. This technical difficulty 
is due in part, to the order of global matrix which depends on the number of layers, 
for e.g. : the global matrix for a seven layered plate is a 42 x 42 matrix. 

6.   Concluding remarks 

In this paper, we have examined the propagation of ultrasonic Lamb waves in mul- 
tilayered piezoelectric structures in open-circuit and short-circuit boundary condi- 
tions. The state variable formalism associated with the transfer matrix method, the 
local surface impedance concept and the global matrix approach are successively 
presented. Numerical simulations have been performed for a limited number of 
specific configurations ( bilayer, sandwich plates and seven plies mirror structure). 
The results show the influence of the materials properties of layers and electrome- 
chanical boundary conditions on the linear dispersion spectra. Comparative tests 
allow us to specify quantitatively the validity range of the classical transfer matrix 
method. This study collects some basic reference elements that are essential for 
the selection process of treatment methods of interface and boundary conditions 
and for the building of new exact or approximate models. In particular, it has 
been clearly established that the efficient recursive algorithm based on the local 
surface impedance is the best compromise between, numerical precision, computer 
processing unit time and stability on large range of frequency. 

In addition, the analysis presented may be also considered as a preliminary 
work to others studies concerning the propagation of Lamb waves in finite or semi- 
infinite periodic piezoelectric structures. The extension to Lamb waves, to acousto- 
optic interactions in multilayered plates, and to other materials and symmetries 
will be treated in future papers. 
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Introduction. 

Interaction of bounded acoustic beams with multilayered structures has been 
investigated extensively by several researchers in the last half of this century. It was W. 
T. Thompson9 who treated the problem the first time and introduced the "transfer 
matrix". This matrix describes the relation between the displacements and stresses at the 
top of a layer and those at the bottom of the layer. It was the initial impetus for further 
research.6"*10"13 

In this paper, a multilayered solid embedded in a liquid is considered. The aim 
of this paper is to present the modelling of the interaction of bounded acoustic beams 
with a multilayer by means of the Mode Method1,2'3'4,5. 

The study of the reflected profile of an incident Gaussian beam enables us to 
characterize material parameters or to estimate the elastic properties of the reflector. It is 
known8,13 that computational difficulties occur for high frequencies, thick layers and 
large angles of incidence. We dealt with this problem in our model by restricting the 
spectrum of radiation modes to the most substantial ones. 

In the first section, the general decomposition formula in radiation modes for a 
multilayered structure is derived. In the second section, an illustrative application is 
given. Determination of the residual stress in a plastically deformed plate is developed. 
In a first subsection, the modelling of the plastically deformed plate is worked out. A 
parabolic distributed residual stress is chosen in subsection two. In the final subsection, 
computations are done. It is shown that the residual stress can be measured by means of 
the reflected amplitude and phase profile of a Gaussian beam incident at a Lamb angle. 

1. Construction of the orthogonal set of radiation modes for a multilayered 
structure. 

Consider a multilayered structure of total thickness d embedded in an elastic liquid. We 
assume n viscoelastic solid layers with infinite extent in the z-direction. Layer j has 
thickness dj and lower interface at yj-i and upper interface at yj; see fig. 1. 
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Fig. 1 Multilayered structure embedded in a liquid. 

Firstly, we consider the radiation modes generated by plane waves incident 
from the upper liquid (called type 1). It can be remembered that a radiation mode 
represents the resulting total field, i.e. the incident, reflected and transmitted field, and 
the waves in the medium1"4. The displacement field of this first type of radiation modes 
can be written as : 

tt1=V(<J>'+Or) fory>d (T) 

ül=V(®') fory<0. 
The displacement field in the medium has been omitted because we are only interested 
in the field in the liquid. The potential functions are represented by : 

4>' = Aexp[i(-kyy + kzz)-ax\ 

r 1 (2) <Dr = AVdirexp[i(kyy + kzz)-ax\ 

O' =AWlrexp\i(-kyy + kzz)-wt\ 

with ky and kz the y- and z-component of the wavenumber k in the surrounding liquid ; 
co the angular frequency. A denotes an arbitrary amplitude, Vdir the reflection 
coefficient, and W^ the transmission coefficient. 

Secondly, the radiation modes can be generated by plane waves incident from 
the other side of the multilayer (y<0) (called type 2). The displacement field of this 
second type of radiation modes can be written as : 

M2=V(0'+<Dr) fory<0 

£2=V(0') fory>d. 
The potential functions are represented by : 

Ö' =Aexp\i(kyy + kzz)-COt\ 

®r = AVopp exp[/(-*y y + kzz) - cot\ 

<5' = AWlrexp\i(kyy + kzz)-cot\ 

Here, Vopp denote the reflection coefficient at the beneath side of the multilayer. 

(3) 

(4) 
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For each layer, indexed by k, we define the propagator matrix bf*. which 

links the displacement and stress tensor components at an arbitrary point in one layer to 
the components at the bottom of the considered layer. 
Requiring continuity of the normal and tangential displacements and stresses at each 
interface, leads to the transfermatrix of the multilayer : 

uz(d) 

uy(d) 

Tyy(d) 

yTyz(d\ 

= {% 
MO) 
Tyy(0) 

i=l,...,4 ; j = l,...,4. 

with aij = 1' .(») !.(«-!) 
'ik     (dH    k   , lKn-\ Kn-\Kn-2 

1.(2) (D, (yk^-A^iyiW^M) 

(5) 

(6) 

The reflection and transmission coefficients can now be calculated by continuity 
requirements at y = d and y = 0. 

Two radiation modes of type 1 and type 2, incident at the same angle of 
incidence, are not orthogonal although they have a completely different nature. 
Performing an analogous procedure as in ref. 1, 2 leads to two new types of radiation 
modes : 

ur =u  +u (7) 
ü =u +bu 

The parameter b can be determined by requiring that the orthogonality condition (see 
eq. (8) in ref. 5) should be fulfilled for radiation modes of type 1 and 2 with the same 
angle of incidence. It is easily seen that for symmetrical multilayers or a plate, this 
parameter b is equal to -1, which corresponds to the symmetrical (r'=s) and anti- 
symmetrical (r"=a) radiation modes1,2. Written more exhaustively, the displacement 
components of the first new type radiation modes become : 
if y>d: 

ur
z' = A^z|exp[-iÄ:>(y-rf)]+Of1exp[iÄ:;y(y-rf)]]exp[^zz] 

Uy = Aiky{-exp[- iky (y -d)]+ ax exp[iky (y - rf)]jexp[iA:zz]; 

ify_<0: 

ur
z' = A^lexp^yyj+Jiexp^^^yjjexp^z] 

ury = A^y|exp[*),y]-^exp[-iÄ:3,y]|exp[^zz]; 

(8) 

(9) 

witha'=^>+^ (10) 
-vopp+wtr 

Radiation modes of the second new type are described by : 
if y>d: 
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uz = Aikz {exp[- iky (y ~ d)\ + a2 exp['*y (y - d)^p[ikzz] 

ur
y = Aiky {-exp[-iky (y -d)]+ a2 exp[iky (y-d)ßexp[ikzz]; 

ifv<0: 

u[ = /M*z|&exp[tf;y;y]+<%exp[-i*y;y]jexp[i*zz] 

ury = Aiky{bexp[ikyy]-82 exp[~'*yy\^^p[ikzz]' 

with   l     d,r        ,r as) 
Ö2=bVopp+Wlr 

Rigorous formulas for Vdir, W,,, Vopp and b are given in the appendix. 
As a consequence we have a complete set of radiation modes for the 

multilayered structure. An arbitrary acoustic field can be decomposed into the radiation 
modes : 

(11) 

(12) 

u(y,z) ^ Jdr\ky)u"(y,Z;ky)dky ^) 
0 

where summation is taken over the two new types of radiation modes, integration is 
taken over the continuous spectrum of radiation modes. c(r) (k ) denotes the expansion 

coefficient. The Stoneley modes are omitted, because they are not excited. Only 
Gaussian beams, incident at angels « 90°, are considered here and as a consequence 
they have expansion coefficients equal to zero. The expansion for the stress tensor 
component is analogous1,5 to (14). The expansion coefficient can be calculated by 
means of the z-component of the incident displacement field along the z = z0 - axis : 

I ,'"<7„ ,.\T(r) uz"c(y,z0)T^(y,z0;ky)dy 

dr\ky) = --  (15) 

An expression for the normalization constant Qir)(k )is given in the appendix. 

Generally, computational difficulties can occur for high frequencies, thick 
layers or great angles of incidence. We avoided these kind of problems by restricting the 
spectrum of radiation modes to the most substantial ones in (14). We let ky vary in the 

neighbourhood of k'"c, the y-component of the wavevector of the incident Gaussian 

beam. 

2. Application : determination of residual stresses in a plate. 

2.1 MODELLING A PLASTICALLY DEFORMED PLATE. 

We assume a plastically deformed plate. Consider the non-linear stress-strain relation 
(Hooke): 
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'■ij = *-ijkiekl + L>ijklmnekiemn (^) 

with Tjj and and eu , respectively the stress and strain components; Cyu and T>ijunm, the 
linear and non-linear stiffness coefficients. This prestressed plate will now be impinged 
by a finite acoustic beam. The total acoustic strain is then given by 

ea=4+e% (1?) 
with es

kl and e^ , respectively the static and acoustic strain. Inserting (17) into (16), 

neglecting the product term with two acoustic strains (we assume the static strain to be 
much larger than the acoustic strain) and omitting the terms purely related to the static 
strain, we become: 

*<J     ~^ijkiekl   + *-'ijklmnekiemn> (*8) 

denoting the total acoustic stress. 

2.2 PARABOLIC DISTRIBUTED RESIDUAL STRESS IN 
AN ISOTROPIC PLATE. 

We will consider a parabolic prestressed plate. This structure will be discretisized by 
dividing the plate into 2n+l substructures or layers. For each layer (i=l,...,2n+l) a 
uniform stress is assumed : 

e«=ew=e==5*. (19) 
with Si a real number ; the shear stresses are supposed to be equal to zero. 
The parabolic initial stress distribution is defined as follows : 

S„+i = 7     (central layer) 

4m2 CM» 
S„.,+m=Y-Y T,  m<n 

n+l±m    '    A(2n + 1)2 

with Y the maximal strain, at the center of the plate. 
For convenience, we will consider a fixed layer with strain S in order to derive the 
stress-strain relation. 
Putting (20) in (18), we get: 

*(/    =Cijklekl  + ^ijklmm^ekl @1) 

As a result, considering isotropic structures, (21) reduces to : 

Tr=2^+ÄekkS„ (22) 

with C-U22 (23) 

and Xo, ji0 denoting the Lame constants of the unstressed plate. 
It is easy to show that the density is decreased due to the plastic deformation, 

and is approximately equal to 
p = p0(l-3S) (24) 
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with Po the density in the unstressed case. 
We summarize by stating that modelling a parabolic prestressed isotropic plate amounts 
to adapting p0, X0 and \IQ in each layer by means of the relations given by (23) and (24). 
It can be shown that the coefficients of S in (23) are approximately equal to 1. 

2.3 NUMERICAL COMPUTATIONS. 

Calculations were done in order to measure the residual stress characterized by different 
values of the parameter y by means of amplitude and phase curves. We consider a 
transducer placed at y0 = 10cm and z0 = 0cm, emitting a Gaussian acoustic beam with 
initial halfwidth 1 cm. The beam is incident at 22°31\ the S2-Lamb angle, on a brass 
plate of thickness 2 mm. The surrounding liquid is water with phase velocity of sound 
equal to 1480 m/s; the parameters of the brass plate are : V] = 4410 m/s, v, = 2150 m/s 
and p = 8600 kg/m3, denoting the longitudinal and shear velocity, and density 
respectively. The frequency is 3 Mhz. Fig. 3, 4 and 5 show the amplitude and phase 
curves of the reflected profile in a plane perpendicular to the wavevector after 8 cm 
propagation (£ = 8 cm, see fig. 2). Four values of y are considered and compared : y = 0 
(there is no residual stress), y = 10"\ y = 10"3 and y = 10"4. 11 layers were assumed to 
model these parabolic residual stresses. 

z=a- 

Fig. 2 Reflection on a multilayer, coordinate system. 
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Reflected Amplitude Profile 
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Fig. 3 Amplitude of the reflected profile at plane i = 8 cm. 
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Fig. 4 Phase curves of the reflected profile at plane I = 8 cm. 
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Fig. 5        Phase curves of the reflected profile at plane ( = 8 cm. 

Analyzing the amplitude profiles, there is only an observable effect in case of y = 10"2 

and Y = 10"3. On the other hand, fig. 4 and 5 shows that residual stresses up to y = 10"4 

are measurable by considering the phase difference in the point where the shifted 
component of the reflected amplitude profile reaches its maximum. Phase differences of 
1° (Y = 10"4) and 10° (y = 10"3) are found. 

3. Conclusion 

The Radiation Mode Model was presented and extended for multilayered structures. A 
general Radiation Mode decomposition formula was derived and enables us to study the 
reflected, refracted and transmitted profiles of an incident acoustic beam. One particular 
application was worked out : measuring residual stresses by means of phase effects in 
the reflected profile. A parabolic prestressed plate is chosen and it is shown that the 
residual stress is measurable with a high accuracy. 

APPENDIX 
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(A4) 

(A5) (A6) 

(A7) (A8) 

(A9) 

(A10) 
Q(r"\kv) = 2A2ikzAk2em'z7r(a2 +bS2) 

REFERENCES 

'R.Briers, O. Leroy, and G. N. Shkerdin, "Mode theory as a framework for the investigation of the generation 
of a Stoneley wave at a liquid/solid interface", J. Acoust. Soc. Am. 95, (1994). 

2R. Briers, O. Leroy, and G. N. Shkerdin, "Conversion of a Stoneley wave at the extremity of a fluid loaded 
plate," J. Acoust. Soc. Am. 101,1347-1357 (1997). 

3R. Briers, O. Leroy, and G. N. Shkerdin, "A liquid wedge as generating tchnique for Lamb and Rayleigh 
waves," J. Acoust. Soc. Am. 102 (4), 2117-2124 (1997). 

4R. Briers, O. Leroy, and G. N. Shkerdin, "Stoneley wave excitation by a bounded beam at the down-step of a 
thin layer on a substrate," J. Acoust. Soc. Am. 102 (4), 2108-2112 (1997). 

5J. Vandeputte, O. Leroy, R. Briers and G. N. Shkerdin, "Extension of the mode method for viscoelastic media 
and focused ultrasonic beams", Submitted to JASA. 

6B. A. Auld, Acoustic fields and waves in solids, 1973. 
7L. M. Brekhovskikh, Waves in Layered Media. New York : Academic, 1960. 
8 Michael J. S. Lowe, "Matrix Techniques for Modeling Ultrasonic Waves in Multilayered Media", IEEE 
Transactions on Ultrasonics, Ferroelectrics and frequency control. Vol. 42, No. 4, July 1995. 

*W.T. Thomson, "Transmission of Elastic Waves through a Stratified Solid Medium", Journal of Applied 
Physics, Vol. (21), February, 1950. 

10 P. Shaw and P. Bugl, "Transmission of Plane Waves through Layered Linear Viscoelastic Media", J. 
Acoust. Soc. Am. 46,1969. 

11 D. B. Bogy and S. M. Gracewski, "On the plane-wave reflection coefficient and nonspecular reflection of 
bounded beams for layered half-spaces underwater", J. Acoust. Soc. Am. 74 (2), 1983. 

12 P. Cervenka and Pascal Challande, "A new efficient algorithm to compute the exact reflection and 
transmission factors for plane waves in layered absorbing media (liquids and solids)", J. Acoust. Soc. Am. 
89(4), 1991. 

13 T. Kundu, "On the nonspecular reflection of bounded acoustic beams", J. Acoust. Soc. Am. 83 (1), 1988. 
14 L. M. Brekhovskikh, O. A. Godin, "Acoustics of layered media", Moscow Science, 1989. 



ELASTIC WAVE SCATTERING FROM A PERTURBED FLAT 

INTERFACE 

S. NAIR 
Illinois Institute of Technology, Chicago, Illinois 

D. A. SOTIROPOULOS 
Southern Polytechnic State University, Marietta, Georgia 

1.   Introduction 

Reflection and refraction of ultrasonic waves form fundamental techniques 
in the non-destructive evaluation of structural components. When these 
techniques are applied to composite structures the interface between dif- 
ferent layers plays a crucial role. A part of the non-destructive evaluation 
deals with the monitoring of the health of interfaces. Delaminations along 
the interface and local buckling of the layer are common defects in lay- 
ered composites. In this paper the effect of a geometrically perturbed flat 
interface on the reflection and refraction of elastic waves is considered. 
Specifically, the perturbation is assumed to be in the form of a sinusoid 
with small amplitude compared to the wave length of the incident beam. 
Any periodic imperfections of the interface caused by local buckling or 
by machining prior to fabrication, can be represented as a Fourier series. A 
basic solution of the reflection problem with a single sine wave imperfection 
can be of use in analyzing these more complicated periodic perturbation 
of interfaces. The method used here is the regular perturbation expansion 
of the equations of dynamic elasticity with the amplitude of the interfacial 
curve forming the small parameter. 

Perturbative methods have a long history in their applications in elastic 
wave problems. The dispersion of Love waves due to a small amplitude 
curvature of the surface was studied by Mai (1962). Markenscoff and Lek- 
oudis (1976)have considered Love waves when the elastic layer has a slowly 
varying thickness. Recently, the effect of interface roughness as a ran- 
dom variable has been the subject of a number of studies-Nagy and Rose 
(1993), Pecorari, et al. (1995), etc. Further citations can be found in the 
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above papers. The scattering problem has received considerably more ex- 
tensive treatment in the context of electromagnetic waves. The paper by 
Chandler-Wilde et al. (1999) gives a large number of references on this 
topic. 

In this paper two types of linear elastic materials are considered-isotropic 
and orthotropic incompressible. Although, the results for isotropic materials 
are implied in the second order perturbation calculations given by Peco- 
rari, et al. (1995), they are explicitly given here. They provide a unified 
view of the general problem. Incident longitudinal and shear waves are 
treated here simultaneously in a vector formulation in the case of isotropy. 
A perturbed interface separating two orthotropic incompressible materials 
is studied here for the first time. Elastic wave reflections from flat interfaces 
in incompressible orthotropic and monoclinic materials are treated by the 
present authors (1997,1999a,1999b). 

2.   Formulation 

Two distinct linear elastic media, one occupying the space — oo < 3:1,3:3 < 
00, —00 < X2 < f(x\) and the other occupying the space —00 < x\, £3 < 00, 
f{x\) < X2 < 00 are considered (see Fig. 1). Along the interface x2 = fixi) 
the two are assumed to be perfectly bonded. With reference to the interface 
the media will be referred as the upper and lower medium. In the first part 
of this paper it is assumed that the media are isotropic and in plane strain 
in the s^-direction. The boundary, x^ = f(xi), is specified by 

f(xi) = 2acosmxi, (1) 

where 2a is the amplitude of the sinusoidal curve and 27r/m is the wave 
length. 

The stress-strain relations for the lower medium are given by 

o"n  = (A + 2fi)diu\ + \d2u2, 
022 = (X + 2fx)d2u2 + \d\ui, (2) 
au = n{d2ui + diu2), 

where U{ and &ij represent the displacement and the stress components and 
di the partial differentiation with respect to X{. 

The equations of motion are 

diCTn +92<7l2   =  püi, .  . 
d\0\i + <92CT22   =   PÜ2, 

Eliminating the stresses in the above equations using the equations 
(2)and assuming time-harmonic waves with 
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(pAn) 

2acos(mx) 

\ 

x2 

X1 

11 11 
Figure 1.    The sinusoidal interface separating two elastic media. 

iti(a;i,a;2,i) = Ui(x1,x2)e~im 

the equations of motion can be expressed as 

[<4% + u\{d\ + (4)]Ui + (w2 - ul)did2U2 = 0, 
[<4d2

2 + w2 (Ö2 + (4)]U2 + K - ^l)did2Ui = 0, 

where 

w£ = pft2 

(JJT 

pÜ2 

The two equations in (5) reduce to the single equation 

(w| + A)(<4 + A)t/i = 0,    * = 1,2 

where A is the Laplace operator. 
The solutions of equation (7) are sought in the form 

Ui — -Ave      , 

(4) 

(5) 

(6) 

(7) 

(8) 

where k = (ki,k2) = ku with k being the wave vector, k its magnitude and 
v the unit vector in the direction of propagation. 

Substitution of equation (8) in (7) yields two solutions for k, the longi- 
tudinal wave number, &£,, and the transverse wave number, kr, having the 
following expressions: 

7,2 _    2       .2 _    2 
(9) 
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From equation (5), it is seen that for longitudinal waves (L-waves) 

Ai = kLlAL,    A2 = kL2AL (10) 

and for transverse waves (T-waves) 

Ai = kT2Ar,    A2 = -kT1AT (11) 

where the quantities AL and AT are potential amplitudes. Specifically, 

Al = U*/ul    AT = U2/uT. (12) 

In the following the subscripts L and T will be omitted whenever the 
context clarifies the situation. Omitting the factor iexp[i(k.x — Ut)] the 
stresses in the material can be expressed as: 

For L-waves: 

au = 2nkik2A,    an = (Xk2 + 2ßk2)A,    a22 = (Xk2 + 2ßk2)A,     (13) 

For T-waves: 

CT12 = jJ,{k2 - k2)A,    an = 2fikik2A,     a22 = -2p,kxk2A,        (14) 

Except for the material constants, the equations for the displacements 
and stresses for the upper medium are the same as those in (2) to (14). 
To distinguish the quantities pertaining to the upper medium, they will 
be denoted by an over-bar. Thus, the density and Lame constants for the 
upper medium are p, A, and ß, respectively. 

With n being the outward normal to the interface from the lower medium, 
the continuity of displacements and stresses require 

Ui-Üi= 0,    U2-Ü2 = 0, (15) 

(on - an)ni + (CTI2 - ax2)n2 = 0,     {an - aX2)ni + {a22 - a22)n2 = 0 (16) 

If I/J(XI,X2) is any field variable, on x2 = f(x\) « 1, 

^(x1,/(xi))«^(x1,0) + /(x1)92l/>(x1,0) (17) 

and the components of the normal are approximated as 

ni « -/',    n2 « 1 (18) 

where the prime denotes differentiation with respect to x\. 
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These approximations allow one to expand all field variables in regular 
perturbation series as 

Ui u?] + u\x) + (o) ,    (i) . (19) 

and similar quantities for the upper medium. Using the above forms and 
the approximations (18) in equations (15) and (16), the continuity for the 
zeroth and first order quantities can be separated as 

u[0) = ü[°\ 

a (o)     -(o) 
12 — a 12 o, 

u. (0) 

'22 

u. (0) 

,(°)     *(°) 
'22 = 0 (20) 

U- (1) U, 
(1) - -mui* - ü[\   u™ - ftp = -fdM0) - ^0)), 

a (i) 12 —a (1) - f'(a 12   — / \a 
(0) 
11 ' ■^l))-/92«2 

(0)_-(0), \      „(1)    =(1) _     ta (J°)    ff(°)\ 
12 )■>      CT22 _cr22   - -Ja2\^22 ~a22 ) 

(21) 
The zeroth order problem is the classical reflection-refraction problem in 

which an incident L or T-wave in the lower medium produces reflected L and 
T-waves in it and refracted L and T-waves in the upper medium. Assuming 
the amplitudes of the incident waves to be II and IT, the amplitudes of the 
reflected waves to be RL and RT, and those of the refracted waves to be RL 

and RT, the reflection-refraction problem can be treated in a unified way if 
it is assumed that the incident L and T-waves have the same component of 
the wave vector in the direction of x\, i. e., k\ is common. In order to satisfy 
the continuity of stresses and displacements, the reflected waves and the 
refracted waves must also have wave vectors with the same x\-component, 
k\. These six wave vectors are shown in Fig. 2. The ^-components of the 
wave vectors may be expressed using the notation, 

Figure 2.    The wave vectors in the upper and lower media with a common fci-component 
(incident L-waves and T-waves are considered simultaneously). 
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<£ = tan0£,     tT = tanOT,    if, = tan 6^,     tr = tari0T, 

kL2 = Mi,    kT2 = Mr,    kL2 = kitL,    kT2 = Mr- 

Using the vectors 

'-{£}■ *-{£}■ *-&}■ 
the continuity of displacements gives 

Afi(t)R-AÄ(*)R = A7(t)I, 

and the continuity of tractions gives 

where 

KBfi(t)R-BÄ(*)R = Bj(t)I, 

K = n/n, 

(22) 

(23) 

(24) 

(25) 

(26) 

and 

AÄ(t) = 

AR(i) = 

Aj(t) = 

1   tr 

*L -1. 

1      -<r 
-<L    -1. 

1     tT 

tL   -1 

BÄ(<) = 

BR(t) = 

B/(t) = 

2?L 4-1' 
(fc?./fci)(l + *l)-2   -2fr J 

—2ti, tf — 1 
L(^A£)(l + *i)-2    2fr J' 

2*i 4 - ! 
(A£/fc£)(l + t£)-2   -2*r. 

(27) 

(28) 

The above four equations give the required amplitudes R and R of the 
zeroth order solutions. 

Prom equation (1) the boundary shape / can be written as 

/(xi)=o[eimxl+e —imxi] (29) 
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As the boundary conditions (21) are linear in /, the first order perturba- 
tion solutions can be divided into two sets-one due to the first term in (29) 
and the other due to the second term. The second set can be generated by 
changing (m) to (—m) after obtaining the first set. Equation (21) also shows 
that the component of wave vector along x\, for the first order solutions, 
is (ki ± m). The two first order wave vectors (one advanced and the other 
retarded) are shown in Fig. 3. With this, the displacement components can 
be written as 

Figure 3.     Two first order waves produced by the interface for a primary wave with 
horizontal component k. 

r(i) J(p.x-tit) Uy'= icLjeW-1"'    j = 1,2, (30) 

where the imaginary number i has been inserted to have the amplitudes a,j 
real when substituted in the non-homogeneous boundary conditions (21), 
and 

Pi = fci + m,    PL2 = v^|-Pi>    VTI = y/tir - p\- (31) 

The angles of the forward scattered (first order) waves can be defined 
as 

TL = tan cf>L,    TT = tan 4>T,    TL = tan </>L    TT = tan <^r, 

PL2=PlTL,      PT2=PlTT,      PL2=PlTL,      PT2 = Pl^T- (32) 

The potential amplitude vectors for the scattered waves can be written as 

-ft}- '-{£}• (33) 

where e = üCJL is a nondimensional measure of the height of the perturbed 
interface. 

The continuity conditions (21) for the displacements give 
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AÄ(T)r-AÄ(r)r = 
ki/u)L 

Pi/h 

and the continuity of tractions gives 

[CjI + CRR-CRR], (34) 

«BÄ(r)r - BR(T)T = J^JD/I + DßR - KDRR], (35) 

where the matrices A's and B's are the same as those given in equations 
(26) and (27), except that all symbols t have to be replaced by T. The newly 
introduced matrices C's and D's are given by 

C,= 

CR = 

CR = 

\ T/ryi 

t2 
-tT\ 

~-tL E-T-1 

. lL tT\ 

\h T,rp 

P -tT 

(36) 

D,= 

DR = 

DÄ = 

2*1 •7[(4/*£)(i + *i) 
U2  11,1 

t\\  tT(t2
T - 1) - 27t7 

tLm/kl)(l + tl)-2] 

2t\ 7[(PT/kl)(l + tl) 
-tL{(k2

T/kl)(l + tl)-2] 
*£]   -tT{t1

T-l) + 21tT 

~ Zih'-p 
(37) 

2PL - 7[(fcf/Ä£)(l + PL) - PJ  *r(4 - 1) - 27tT 

ti.[(^A£)(l+tl)-2] ~ ZiZ'T-' 

where 7 = m/&i = 6/cos 9L, with J = TU/UL- Here J is a nondimensional 
measure of interface perturbation wave length. 

The effect of the sinusoidal interface is contained in the above matrices. 
It is to be noted that in addition to the usual parameters: k^fa, ISLJCT, and 
K, two new parameters: e = CLüJL and S = m/oji characterizing the interface 
asperity height and wave length appear in these relations. The first order 
amplitudes r measure the quantity e, while the scattering angle 4>L or (f>T 

measures the quantity S. 

3.   Reflection from a Free Surface 

The solution to the problem of reflection from a sinusoidal free surface is 
a special case of the above formulation. If it is assumed that the upper 
medium is absent. The continuity requirement for displacements, equation 
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(24), has to be omitted and the refracted wave amplitudes have to be set 
to zero. Equation (25) becomes 

BÄ(t)R = -Bj(t)I, (38) 

which yields the classical reflection amplitudes. 
For the first order solutions, again, the displacement condition (34) has 

to be omitted and the stress condition (35) becomes 

BÄ(r)r = -^[D7I + DÄR], (39) 
Pi 

4.   Normal Incidence 

As the above formulation utilizes the common component k\ of all wave 
vectors for normalization, the case of normal incidence, where k\ = 0, needs 
special consideration. When ki = 0 equations (24) and (25) give uncoupled 
relations for the longitudinal and transverse components. The solutions are 

,   RL = ^ 

,    Rr = 
KT] — 
\ RT=   (   

2
^,JT,    RT = '-

:IJ
—^IT (41) r](Kr] + 1) KT] + 1 

where £ = khl^h and rj = kr/kr- 
Assuming S « 1, the terms on the left side of equations (34) and (35) 

uncouple. Solutions of these equations can be obtained as 

2£      KT) 2-l 
Tr rL — 

K£ + 1 KTj 2+£/L 

fL = 2[ 
1 

KT)2 +£ 
1           1 

K£ + 1J 

rT 
_rtkTKT] 

kL KT) ^ 

?T = 
^       1- 

~V      T 

(42) 

-kLT}(KTI + l)" (43) 

Further, for the reflection from a free surface, setting n = 0, 

rL = -2IL,    rT = -2^IT (44) 
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Figure 4.     Dependence of first order amplitudes on the angle of incidence, 0L, of an 
L-wave with 7 - 1 for kT/kL = kT/kL = 2, K = ß/ß = 2, and 5 = 0.1. 

Figure 5.     Dependence of first order amplitudes on the angle of incidence, 0L, of an 
T-wavc with J = 1 for kr/kL = kr/kL = 2, K = ß//i = 2, and 8 = 0.1. 

5.   Examples for Isotropie Media 

Fig. 4 shows the amplitudes of the first order waves, ri, ff,, ry, fr, as 
functions of the incident angle 61 for an_L-wave of amplitude, 7 = 1. The 
material parameters used are: kr/ki = kr/kL = 2, K = ß/ß = 2, 6 = 0.1. 
It can be seen that rj, has a maximum at about 0L = 50°. 

Fig. 5 shows the first order amplitudes for the same material combina- 
tion when the incident wave is a T-wave. The incidence angle 6T is related 
to 0L as cos 6T = 0.5 cos 0L for this case. 
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6.   Orthotropic Incompressible Media 

For incompressible materials in plane strain, d\Ui + c?2^2 = 0 and 83113 = 0. 
Assuming one of the axes of symmetry is parallel to the zi-axis, the stress 
strain relations are given by 

o-ii = -p + Cndiui + Cnd2U2 
o-n — —p + Cndiui + Ciidiv-i (45) 
012 = Cm(d2Ui + diu2) 

where p is the hydrostatic pressure (not to be confused with wave vector 
components pi and p2) and Cn, C12, C22 and Cm are elastic constants. 

The incompressiblity condition can be satisfied by expressing the dis- 
placement components in terms of a potential, ip, as 

i*i = d2ip   U2 = — d\ip (46) 

Eliminating p between the two equations of motion, (3), the potential 
ip satisfies 

A2V> + ±ßd\dlil> = pAJ>/n (47) 

where 
p^Cee,    ß = (C11 + C22 - 2Ci2 - C66)/Cm (48) 

where, for positive definite energy density, p, > 0 and ß > — 1. 
Assuming plane harmonic solutions of the form 

iß = IAJQ*-*-™') (49) 
1 

where i has been inserted to have the displacement components similar in 
form to those in (11), the components of the wave vector k satisfies the 
quartic 

k4 + Aßklkj - u?k2 = 0, (50) 

where w2 = pü2/fj,. 
Generic plots of ki/u) versus A^/w (slowness curves) are shown in Fig. 

6 for the case of ß < 0 and for the case of ß > 0. 
It is known that the energy flux corresponding to any wave vector k 

terminating on the slowness curve, is directed normal to the curve (Fedorov, 
1968). 

In the presence of a sinusoidal interface, as is done for the isotropic 
case, it is assumed that the upper medium has the parameters, p, p, and 
ß and the lower medium, where the incident wave is traveling, has the 
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Figure 6.    Generic shapes of slowness curves for the parameter ß < 0 and ß > 0. 

parameters, p, /i, and ß. The fci-components of the incident, reflected, and 
refracted waves are identical. For a given value of ki, by defining 

fa/h = t 
the quartic (50) can be written as 

(51) 

i4 + 2(2ß + l)t2 + 1 - u?{t2 + l)/k2 = 0 (52) 

From the slowness curve shown in Fig. 6 it is clear that, when ß > 0 two 
real solutions of (52) correspond to the incident wave with the tangent of the 
incident angle t and the reflected primary wave with tangent — t. There are 
also two complex solutions representing surface waves. Only one of these, 
the one with negative imaginary part,<2, is admissible, in order to have the 
amplitude of the surface wave decaying along the negative a^-direction. 

As shown in Fig. 7, when ß < 0, there are values of k\ for which four real 
solutions exist. The criteria that the energy flux must be directed towards 
the interface for an incident wave and away from the interface for a reflected 
wave rule out two of these four solutions. This has been discussed by Nair 
and Sotiropoulos (1997). In Fig. 7 the energy flux is directed towards the 
interface for incident wave vectors with their origin on the sector AB of the 
inner curve and also for those on CD. Interestingly, when the incident wave 
vectors originate from the CD-sector, the phase velocity is directed away 
from the interface but the energy flux is directed towards the interface. 
Setting dk\/dk2 = 0, the points (A and C) where the tangent is vertical 
can be found. This gives an allowable disjointed range for the incident angle 
as 

- cos-1[(-4^)-1/4] < 0! < 0    and    coS-
1[(-4^)-1/4] < 0/ < TT/2    (53) 
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Figure 7.     Generic shapes of slowness curves for the upper medium with ß < 0 (outer 
curve) and the lower medium with ß < 0 (inner curve). 

with the phase velocity having an xi-component directed from left to right. 
In the schematic shown in Fig. 7, as the slowness curve for the upper 

medium encloses that for the lower medium, for each ki there is a real 
solution for k. This establishes a unique refracted body wave. On the other 
hand if the slowness curve for the upper medium is inside that of the 
lower medium, there are values of ki for which real solutions for k do not 
exist. This results in surface waves in the upper medium. This solution for 
(52) (with "barred" parameters) will be denoted by ii. The second solution 
of (52), i,2 for the upper medium is complex with its imaginary part positive 
for surface waves decaying along positive x2. 

As before, omitting a factor of iAex#[i{kiX\ — fit)], the stresses at the 
surface can be written as 

CTii 

Cl2 

P 

2aklk2{l + 2ßkHk2) 
-2ak1k2{l + 2ßkj/k2) 
a(fci-fc?) (54) 

=   W<766(^-*f ) + (<7n Cl2)k\ + (C; 12 C22)k\] 

Similar to what has been done in the case of isotropic media, the poten- 
tial amplitude of the incident wave is denoted by I, the two reflected waves 
by i?i (body wave) and R2 (surface wave), and the two refracted waves by 
Äi(body or surface wave) and ^(surface wave). 

The boundary conditions (20) can be written in the same form as (24) 
and (25) with I being a scalar and the defining relations 

K = fl/fl (55) 
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Afi(«) = 

AÄ(Ö) = 

A'(<H!}< 

[1 11 

h *2. 

[l 11 

L*i *2j 
(56) 

and 

BÄ(<) = 

BÄ(t) = 

B/(0) = 

«1-1 
.^(l + ^^l + läf) 

1 
2(3 2/3 (57) 

:i + i^r 
where t\ = —£. 

Having the amplitudes R and R, the first order amplitudes are obtained 
from equation (21) as equations (34) and (35) with a new interpretation 
for u)i as w and 

-w 
\h t2] 
P SI p 

[*1 h] 
p SI P l2. 

(58) 

D,= V-l)-7i(l + fS) 

Dfl = 

Dfl = 

*2(l + ?fk) 
2/3t 

*i(*? -1) -7*i(i + r^v) *2(*i -1) -7*2(1 + r^) 
2/3tf 

*?(1 + ^) 
2/3*2 *^(i + r^) 1+tS 

(59) 

2/3? 
*i(*f - 1) - 7*i(l + f&)  *2(*1 - 1) - 7*2(1 + f^) 

2/3 i? 
1+tJ 

^(1 + ^) *1(1 + ^|) l + *2 

1+tS 
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Solving equations (34) and (35) with the above matrices, f and r can 
be found for any combination of parameters. 

As has been done for the isotropic case, reflection from a perturbed 
interface can be treated using the equations (38) and (39). 

7. Normal Incidence for Orthotropic Incompressible Case 

When &i = 0, using the notation K = ß/fi and r\ = ü/w, it is seen that 
there is a unique reflected body wave and a unique refracted body wave 
with amplitudes 

KTJ + 1 V(Krl + 1) 

For the forward scattered wave p\ = m and from the quartic (50) for 
the two first order reflected waves, 

f+lm2 . 
P2i = -w 1 ö Ö",    P22 = -im (61) 

where the second imaginary wave number indicates a surface wave (if the 
amplitude is nonzero). For the refracted waves, 

-h     4/3 + 1 m2       _        . 
P2i=w[l —-rj],    p22 = im. (62) 

Using these in equations (56) and (57) and assuming m/ui « 1, it is 
seen that the non-vanishing components are, 

K77 — 1_               2 1 — 77 T .    . 
n = 2-4—1,    fi = -J-I, 63 

which are identical to those given in equation (43). 

8. Numerical Example for Orthotropic Case 

An upper orthotropic incompressible medium with ß = 1/8 and a lower 
medium with ß — —1/2 are considered to illustrate the reflection-refraction 
problem.The other parameters are: 77 = GJ/UJ = 2 and K = fi/n = 2. The 
slowness curve for the upper medium is convex and that for the lower 
medium is non-convex. With reference to Fig. 7, the wave vector for the 
incident wave can have an angle in the range, CD = [—32.8°,0] or AB = 
[32.8°, 90°]. As mentioned earlier, the energy flux of the incident wave has to 
be directed towards the interface, that of the reflected wave towards X2 -> 
—00, and that of the refracted wave towards X2 —> 00. Also, when surface 
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TABLE I. Zeroth and first order reflection and refraction coeffi- 
cients when the incident angle is negative (parameters: ß = -0.5, 
ß = 0.125, ß//J, = 2, m = 0.1.) 

e, -32.765 -26.212 -19.659 -13.106 -6.553 0.000 

|äI| 0.00 0.119 0.249 0.419 0.656 1.000 

1*2 1 1.00 0.779 0.606 0.441 0.252 0.000 

lÄll 0.00 0.072 0.100 0.095 0.062 0.000 

\M 0.00 0.057 0.083 0.082 0.055 0.000 

M 0.529 0.353 0.200 0.146 0.288 0.580 

M 1.056 0.820 0.608 0.487 0.489 0.585 

N 0.198 0.154 0.112 0.074 0.039 0.014 

M 0.130 0.084 0.069 0.066 0.048 0.010 

TABLE II. Zeroth and first order reflection and refraction 
coefficients when the incident angle is positive (parameters: 
ß = -0.5, ß = 0.125, ß/n = 2,m = 0.1.) 

6,        32.765     44.212     55.659     67.106     78.553     90.000 

|Äi|     1.000       0.340      0.831       0.665       0.3466     0.000 

1*2 | 0.000 0.542 0.838 0.945 1.158 1.000 

1*11 0.00 0.070 0.596 1.397 2.056 0.000 

1*2 1 0.00 0.080 0.374 0.247 0.068 0.000 

N 1.056 0.474 0.447 0.124 10.68 0.000 

M 0.529 0.205 0.492 0.713 2.761 0.000 

N 0.130 0.059 0.528 0.424 10.85 0.000 

N 0.200 0.055 0.053 0.130 2.971 0.000 

waves are present, they must decay along the direction perpendicular to 
the interface. 

The results of the computation are presented in Table I and II. In 
computing the matrix elements, it is important to select the correct roots 
of the quartics for k2,k2, P2 and p2 so that the reflected and refracted waves 
satisfy the energy flux criterion, namely, they are directed away from the 
interface and, in case of surface waves, their amplitudes decay. 



167 

9.   Conclusions 

The effect of a perturbed flat interface on the reflection and refraction 
coefficients associated with an incident plane harmonic wave is considered. 
The perturbation is in the form of a sinusoid with a small amplitude relative 
to the wave length of the incident wave. Two different classes of linear elastic 
materials are studied. The first class consists of two different isotropic 
materials on the upper and lower sides of the interface and the second 
class consists of two different orthotropic incompressible materials. Prom 
an inspection of the reflected or refracted amplitudes and the corresponding 
wave vector directions the amplitude and the wave length of the sinusoidal 
perturbation can be inferred. Conversely, for a well defined interface the 
anisotropy of the elastic medium may be inferred. Numerical examples are 
provided to illustrate the effect of the perturbed interface on the first order 
corrections to the flat interface problem. 
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THE EFFECT OF STRESS ON INTERFACIAL WAVES IN ELASTIC 
COMPRESSIBLE INTERLAYERS 
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Abstract. The characteristics of elastic interfacial waves in pre-stressed compressible 
interlayers are examined. The interlayer is separated from an infinite surrounding solid 
of a generally different non-linear elastic compressible material by planar parallel 
boundaries. The underlying stress conditions in the two solids are homogeneous with 
their underlying finite strain having common principal axes, one axis being normal to 
the planar interfaces. For arbitrary materials and otherwise arbitrary stress, the 
dispersion equation of superposed small amplitude waves is derived in explicit form for 
propagation along a principal pre-strain axis lying on an interfacial plane. Analysis of 
the dispersion equation reveals the characteristics of propagating waves. In respect of 
the solids' material and pre-stress parameters, single or multiple mode propagation 
occurs or no propagation at all. The propagation characteristics are classified into 
categories defined by the material and pre-stress parameters. For wavelengths large as 
compared to the interlayer thickness, the interfacial wave speed is derived in explicit 
form yielding parameter conditions for the non-existence of interfacial waves. The 
bifurcation equation, a limiting case of the dispersion equation, is also examined 
yielding standing waves as solutions which define the boundaries of stability for the 
propagating waves. Graphical illustrations are also presented based on numerical 
computations for Blatz-Ko materials. 

1. Introduction 

Understanding of the propagating and standing interfacial wave characteristics of 
layered stressed solids is of significance in several areas of applications such as the 
ultrasonic non-destructive evaluation and characterization of materials, their interfaces 
and stress conditions, the design of vibration isolators, and the processing of electronic 
signals. Of particular attention, here, is the study of non-linear elastic layered materials 
as are, for example, rubber-like materials and biological tissues. 

The layered structure considered is composed of a layer imbedded in an infinite 
solid, each under finite strain, and subsequently superposed by a small dynamic stress 
state resulting to the generation of interfacial waves propagating parallel to the planar 
boundaries separating the two solids. The goal of the present study is to understand the 
propagation characteristics and the dependence of wave speed on frequency, material 
parameters and pre-stress conditions. To make the mathematics tractable, the case 
considered is such that the principal axes of pre-strain are common in the two solids, 
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with one of them being perpendicular to the planar interfaces. Moreover, propagation is 
considered along one of the principal pre-strain axes. For such a case, a detailed analysis 
is performed that reveals the propagation and standing wave characteristics. 

The analogous to the case of the present study but with incompressible 
materials was considered by the present authors, Sotiropoulos and Sifniotopoulos 
(1995). When the materials are compressible, as is the case here, several cases dealt with 
previously in the literature are obtained as limiting cases of the present study. When the 
interlayer material becomes vacuum, Rayleigh-type waves result in a pre-stressed half- 
space, a problem first examined by Hayes and Rivlin (1961) and for more general pre- 
stress conditions by Dowaikh and Ogden (1991). When the surrounding infinite material 
becomes vacuum, the structure under consideration here reduces to a plate of arbitrary 
thickness in one direction and of infinite extent in the other direction. For waves 
propagating along the infinite plate dimension, the dependence of the wave speed on 
pre-stress parameters was investigated by Roxburgh and Ogden (1994). When the 
thickness of the interlayer is large as compared with the wavelengths, the problem 
under consideration here reduces to one of Stoneley-type waves in two semi-infinite pre- 
stressed solids. This will be dealt with in the present paper as the limit of high frequency 
waves. The simple case of equibiaxial in-plane deformations was examined by one of 
the present authors, Sotiropoulos (2000). 

2. Mathematical Formulation 

An interlayer of arbitrary uniform thickness embedded in an infinite solid is considered. 
The two solids are of pre-stressed compressible non-linear elastic and isotropic materials 
and they are subjected to pure homogeneous finite strains. The principal strain directions 
in the two solids are aligned, one direction being normal to the two planar interfaces. 
The interlayer lies between x2=0 and x2=-h, with h denoting its thickness, in a 
rectangular Cartesian coordinate system (x,_ x 2, x 3) the axes of which coincide with the 
principal strain directions. The principal stretches are denoted by A.1? X2, A3 and Xi\ A2\ 
A3 for the surrounding solid and interlayer respectively. Herewith, all quantities 
referring to the interlayer will be superscripted by a star (*). The compressibility of the 
two materials gives 

AiA2A3=J,      A] Ä2 A3   = J (1) 

where J= p/p with pr and p the densities before and after the strain is applied. 
On the underlying deformations is superposed a time harmonic interfacial wave 

of small amplitude propagating along the positive xraxis on the upper interfacial 
boundary. Motion is considered in the (xb x2)-plane with velocity components vb v2 

independent of x3. The interfacial wave below, inside and above the interlayer is 
represented respectively by the velocities 

V) = A exp (skx2 - ikx] + icot) 

v2= B exp (skx2 - ikx! + icot) 
v   x, < -h (2) 



v*i = A* exp (s*kx2 - ikx! + iot) 

v*2= B* exp (s*kx2 - ikxi + irat) 
-h< x2<0 
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(3) 

v'i = A' exp (-skx2 - ikxi + icotJ~ 

v'2= B exp (-skx2 - ikxi + icot) 
x2>0 (4) 

where k = co/c is the wavenumber, co being the circular frequency, and c the phase speed 
to be determined together with s and s*. A, B, A*, B*, A', B' are arbitrary constants 
within the context of incremental infinitesimal motion. By definition, the interfacial 
wave must decay, that is, vb v2 must vanish as x2—> °° and \r', v2' must also vanish as 
x2-> -°o. Therefore, s must have positive real part. No requirement is placed ab initio on 
s* unless kh—> <» in which case s* must also have positive real part. For the underlying 
solid, the component equations of motion are: 

ailVl.ll + Y2Vi,22 + 5V2,12 = PrVl.tt 

5VU2 + YlV2.ll + CC22V2,22 = prV2,tt 

where , i symbolizes 3/3XJ and 

On = JA, Oiijj > Yi = JA0i2i2,      Y2=JA, 02121 

5 = a12 + Y2-Jö2 2ß = ana22 + YiY2-52 

JAoü^YiYjt^W/CÖ^)] 

(5) 

(6) 

(7) 

JAoiüi= * (8) 

mfjAoiiii-JAoiijj+Mcw/ai)] i^j, Xi = x.j 
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Aoijji  = Aojüj = Aojjij - Oj (9) 

in which Gj are the principal Cauchy stresses and are given as 

Jo; = ^(3W/aj) (10) 

with W(Xh X2, X3) being the strain energy density function after deformation. Necessary 
and sufficient conditions for the material constants of equation (5) to be strongly elliptic 
are (Dowaikh and Ogden, 1991) 

a„>0, a22>0, Yi>0> Y2>0 (11) 

[(ana22)
,/2 + (YlY2)1/2]2-52>0 (12) 

Eliminating one of the velocities in (5) gives 

«nYi vmin„ + 2ßvm,1122 + <x22y2vm,2222 = 

Pr (an + Yi) vmjlUt + pr (a22 + Y2) vm,22tI - p2
r vm,mt (13) 

for m = 1 or 2. Substitution of one of (2) in (13) results in 

a22y2 s
4 - [2ß - prc

2 (a22 + y2) ] s2 + (a,, - pr c
2) (y, - prc

2) = 0        (14) 

Equation (14) gives two solutions S[2 and s2
2 as 

s2! + s2
2 = [2p - prc

2 (a22 + y2)] / (a22y2) 
(15) 

s2,s2
2 = [(an - prc

2) (y, - prc
2)] / (a22y2) 

from which we see that Si2, s2
2 are either real or complex conjugates. This is equivalent 

to the product and the sum of sb s2 being positive. This yields, that in order to have a 
diminishing wave as |x2|—> °°, 

Yi/Pr,   ^<  cc22( an- 1) 
an>Yi,     0<c2< -) _     _(16) 

(Ti -an ri2L)/[pr(l -r|
2

L)],   8
2>  a22( a22- 1) 
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an/ft,    5?<   1 -    du 
a„<Yi,     0<c2< <{ _(17) 

(Yi-anTl2L)/[pr(l-Tl2L)],   82>1-   au 

where 

TI = [(Y, - Prc
2) / (o„ - Prc

2)]1/2,    n* = [(yV PV) / (a „- pV)]1/2 (18) 

and TIL = Ti at S!+s2 = 0. Equations (16), (17) define the upper bounds of the interfacial 
phase speed. Moreover, these upper bounds correspond to phase speeds of body waves 
in a pre-stressed infinite material and whose energy flux vector is along the xr axis 
(parallel to the interfacial boundary for the problem under consideration). In addition, 
the upper equations of (16), (17) define phase speeds of body waves whose wave vector 
is also along the xr axis, whereas the lower equation of (16), (17) correspond to body 
waves with a wave vector at an angle to the xr axis. For the properties of body waves in 
a pre-stressed infinite material the reader is referred to the recent work of Ogden and 
Sotiropoulos (1998). 

(19) 

Substitution of (2) in (5) yields 

vj = [Ai exp (sikx2) + A2 exp (s2kx2) ] exp[i(cot- kxi)] 

v2 = [Bi exp (sjkx2) + B2 exp (s2kx2) ] exp[i(cot- kxO] 

with 

ism5Bm = (prc
2 + Y2 sm

2 - <x„) Am, m = 1,2 (20) 

The same hold for the overlying solid but with primed quantities and also s replaced by 
-s. For the interlayer we have 

v*i = [A*] exp (s*ikx2) + A*2exp (s*2kx2) 

+ A*3exp (s*3kx2) + A*4exp (s*4kx2)] exp[i(ö)t- kx,)] 
(21) 

v*2 = [B*i exp (s\kx2) + B*2exp (s*2kx2) 

+ B*3exp (s*3kx2) + B*4exp (s*4kx2)] exp[i(cot- kxi)] 

with 
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is*m5*B*m = (p*rc
2 + Y*2 s*2

m - <x*„ ) A*m, m = 1,2,3,4 
(22) 

s3  =-Si,S4 = -S2 

3. The Dispersion Equation 

The dispersion equation will be obtained on use of the boundary conditions on the two 
interfacial planes, x2 = 0 and x2 = -h. The interlayer is assumed to be welded to the 
infinite solid, and thus the velocity and traction rate are continuous across the two 
interfaces. The relevant components of the traction rate in the underlying solid are given 
by 

5021 = [(Y2 / J) " 02 ] V2,i + (Y2 / J) V,,2 

(23) 
5022 = (<Xi2 / J) vu + (a22 / J) V2,2 

Substitution of (19)-(22) and of the corresponding ones for the overlying solid 
in the boundary conditions results in a set of eight linear algebraic homogeneous 
equations for the eight independent unknown constants (coefficients) A1; A2, A,', A2', 
Ai , A2 , A3 , A4 . For a nontrivial solution the determinant of the coefficients must 
vanish yielding the dispersion equation. However, it is the purpose of the present paper 
to analyze the propagation characteristics. Therefore, in order to analyze the dispersion 
equation, it is necessary to have it in explicit form. Carrying out the operations in the 
determinant and simplifying, we obtain the dispersion equation in the following form 

N = [C2 Oi, x{, a, r) + D2 (n, TI*, r) (s\ + s*2)
2] 

[sinh2 [>/2kh (s\ + s*2)] / (s*, + s*2)
2 ] 

- [C2 (n, V, G, r) + D2 (n, -TI\ r) (s*, - s*2)
2] 

[sinh2p/2kh(s*1-s*2)]/(s*1-s*2)
2] 

+C ft, TI*, O, r) D ft, TI*, r) sinh [ kh (s\ + s*2)] / (s*, + s*2) 

-C (T), -n*, O, r) D ft, -TI*, r) sinh [ kh (s*, - s*2)] / (s*, - s*2) 

+E ft, -TI*, r) = 0 (24) 

where the coefficients of (24) are defined by 
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C (Ti, i\, o, r) = j! [ft / Wl) + 1] f Ol\ a) / d - n*2) 

+ r2  7i[(V/  a22*1/2) + l]f(ii,G)/(l-ii2) 

. + 2r 7i1/2 7r/2 [(1- o) / Yi1'2 - ( ä12 / ä
1/2

22) n] • 

[(1-GV 7ri/2-(ä*12/ä22*1/2)ii*] (25) 

D (ri, ti*, r) = r ( öi22
1/2r| +  a22*1/2 r\* ] (si + s2) (26) 

E (ii, ii*, r) = 4r2 ä22
1/2ii a*1/2

22 r{ (s, + s2)2 (27) 

in which 

f (il, o) = ( ü12
2/  ä22

I/2)T|3 + [ ö„ - 1 + (1 - o )2/  Yi]ri2 

+ [[ ä22 ( ä„ - 1) - ä12
2 ] / ä22

1/2] il - (1 - o f I Yi 

(s, + s2)2=(y,/ä22)- [(ö„-l+ B2)!!2 

+ 2 ä22
1/2 ( ä„ -1) Tj + ä22( an -1) - S2 ]/(l - il2) 

(28) 

(29) 

with 

an =   an / Yi, a22 =   a22 / Y2, 8 = 8 / (YI Y2)"2, 
(30) 

Yi = Yi / Y2,       au = au / (Yi Y2>1/2,    o = Jo2 / Y2 

and 

r = Y2J*/(Y*2J) (31) 

il* can be written in terms of r\ as 

r|*2 = [(R an -1) il2 + 1 -R] / [(R an -   a\i) ri2 +  a\i - R], 

R = YiP*r/(Y*iPr) <32> 
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When the interlayer material becomes vacuum (y2*-» 0) the dispersion equation 
(24) becomes a secular equation independent of frequency, kh, and it is 

f(T),o) = 0 (33) 

This is identical to the equation obtained by Dowaikh and Ogden (1991) governing the 
propagation of surface waves in a pre-stressed compressible half-space. 

When the surrounding material becomes vacuum then equation (24) yields 

f* Cn*, o*) sinh [Vi kh (s*, + s*2)] / (s*, + s*2) = 

± f * (V, a) sinh [Vi kh (s\ - s*2)] / (s*, - s*2) (34) 

which is identical to the equation obtained by Roxburgh and Ogden (1994) for the 
frequency equation in a plate. 

For high frequency interfacial waves, kh —> «>, the dispersion equation (24) 
yields 

<P(C) = [(TI/  ä„1/2) + l][f0lV)/(W2)]   Y>* 

+ r (s, + s2) (s* + s2*) ( a22
1/2ri + a22*,/2 rf) 

+ 2r( Y, ?,)1/2[(l-o)/ y~,1/2-( än I  a22
1/2) r,* ] ■ 

[(i-o-V y.*,/2]-(ä12*/ ä2;
i/2)n*] 

+ r2y,[TiV ä22*1/2)+l]f(ri,o)/(l-Ti2) = 0 (35) 

which is the secular equation governing the propagation of Stoneley-type waves in two 
pre-stressed half-spaces. One of the half-spaces is of the same material as that of the 
original surrounding solid and the other half-space is of the same material as that of the 
original interlayer. In fact, equation (35) determines the asymptotic solutions for high 
frequency interfacial waves. It can be shown that the necessary and sufficient condition 
for the existence of a high frequency solution and, in fact, unique is qKOMCm«)«^, with 
Cmax defined in (16)-(19). Particular attention will now be focused on equibiaxial in- 
plane deformations, Xi=X2, X*=X2*. It can be shown that if the densities of the two 
materials are the same after deformation, p=p*, and  a<l or/and a*<l, then interfacial 
waves may exist depending onjhe material and pre-stress parameters. It can also be 
shown that if p=p* and col, a*>l then interfacial waves cannot exist; this includes 
Stoneley's result for stress-free materials. Furthermore, if p*p\ R=l and a>l, a*>l 
interfacial waves exist; this includes Stoneley's result where the two materials 
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are stress-free and have equal shear wave speeds. In addition, if p*p\ a<l, 
a*<l then interfacial waves exist only if r satisfies (1- a*)/(l+ a*)<r<(l+ a)/(l- a). 

4. Interlayer of Small Thickness 

When the interlayer thickness is small compared to the wavelength, kh «1, the 
dispersion equation (24), to the first power in kh, gives 

2 ä22
m r\ (S! + s2) + g (n, o, r, R) K = 0 (36) 

where 

g (T,, o, r, R) = r2 j, [( a22
m r\ I a22) + 1] f ft, o) / (1 - r,2) 

+ 2r Yi*1/2 Yi"2 [(1 - a) / jim - ( ä12/ ä22
1/2) n] ■ 

[(1 - a*)  7riQ " ä22
1/2 ä12* / ä22*] (37) 

with K = kh / r. It is revealing to consider further the case  an>l and W< a22(  ctn- 
1). Then, at K = 0 the only solution of (36) is r\= 0. Thus, the r\ that satisfies the 
dispersion equation can be written to the first power in K as T|=r|iK. This, upon 
substitution in (36) yields 

T|i = Vz  j{m [ ä22( on - 1) - 62]-1'2 [ 7/ (R - 1) + (1 - r)2] (38) 

The phase speed is subsequently derived from (18) as 

c = cL[l-r,i2K2(än-l)/2] (39) 

However, to satisfy the decay conditions n must be positive. Therefore, interfacial 
waves cannot propagate when 

?1(R-l) + (l-r)2<0 (40) 

or, equivalently, when 

R<landmax{0,l-[ ?, (1-R)]1/2} <r <1 + [ y\(l-R)]m (41) 

Necessary conditions to satisfy (40) or (41) are 

R<landr<l+ j{m (42) 
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The above simple but important conditions define material and pre-stress parameters to 
be used for design criteria as well as for non-destructive evaluation and 
characterization. For equibiaxial in-plane deformations as well as for materials that are 
not pre-stressed ( Yi*=l)>li >s concluded from (42) that R>1 or r>2 guarantees the 
propagation of low-frequency interfacial waves. From the opposite point of view, in 
order not to allow propagating interfacial waves, it is necessary that R<1 and r<2. 

If, however,  än>l and c?> a22( aH-l) or  an<l and   c?>l- anthenatK = 
0 the only solution of (36) is r\ = r|L, where r|Lis the solution s,+s2 = 0 and is given by 

T1L = [ W\ a„-l) + |   8|[ 6*-( a„ - 1) ( a22-l)],/2]/ 

( 5>+ ä„-l) (43) 

In this cases, and for small kh, r\ may be expressed as r| = r|L+r|2K2. Then, to obtain r\2 

the dispersion equation must be considered up to the second power in kh resulting to a 
second degree algebraic equation for T]2.The phase speed is subsequently given as 

c = Co [ 1 - %Ti2K2( a,, - 1) Y, / prc
2o (1 -1]\)2] (44) 

where c0 is the phase speed that satisfies S]+s2 = 0 and is given by 

c2o = c\(l-  äuTi2L)/(l-ri
2

L) (45) 

Finally, if an < 1 and  5< 1- an then at K = 0, equation (36) has no solution 
that satisfies the decay condition. 

5. Standing Waves 

Standing waves represent quasi-static interfacial deformations and are given as solutions 
of the bifurcation equation, which is a limiting case of the dispersion equation when 
a)—>0, c->0 and kh arbitrary. The bifurcation equation not only provides conditions on 
material and pre-stress parameters for the existence of standing waves but also has a 
strong influence on interfacial wave motion. For given material and pre-stress 
parameters satisfaction of the bifurcation equation gives those values of kh for which 
stopping bands of propagating interfacial waves either begin or end. Numerical results 
on this will be presented in the next section. 
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6. Numerical Results and Discussion 

The numerical examples deal with Blatz-Ko materials whose strain energy function is 

W = y2 ix ( Xi2 + V2 + h'2 + 2J - 5) (46) 

from which we obtain 

au = 3|x/X2, a22 = 3(j.A,2
2, Yi = jxIX2, j2 = [ilh2, <*i2 = MJ      (47) 

and 

Jcj = |x(J l\ - 1) / l\,     i = 1,2,3 (48) 

In Fig. 1, the surrounding solid is stress-free whereas the interlayer is deformed 
in the same plane as that of the superimposed interfacial wave motion, that is, V=l. 
This results in X2*=Xi*'lfi. The strong ellipticity condition is always satisfied for the 
surrounding solid whereas for the interlayer it requires that 0.3724<X1*<2.6851. In Fig. 
1(a), for A,! =0.8, the interfacial wave characteristics are classified into three regimes 
depending on the values of r and R. In regime (0) propagating interfacial waves cannot 
exist at small frequencies in accordance with the inequality (40). In fact, they do not 
exist at any frequency. In regime (I), there is propagation at small frequencies but no 
propagation at high frequencies, that is, Stoneley-type waves do not exist. In regime (II), 
there is a high frequency asymptote and since this regime does not intersect with regime 
(0), there is propagation for all frequencies. Figures 1(b), 1(c), 1(d), 1(e) show the 
dependence of r| on the non-dimensional wavenumber, kh, in the different regimes of 
Fig. 1(a). Note that in regime (I), there is a single or multiple mode propagation 
depending on whether R is smaller or larger than unity. 
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Figure 1. Blatz-Ko materials with a stress-free surrounding solid and an interlayer with 
in-plane underlying deformations and with V=0.8. (a) Regions of existence of 
propagating interfacial waves for different r, R values: (0) no propagation, (I) no high 
frequency propagation, (II) one high frequency asymptote, (b), (c), (d), (e) Dependence 
of the non-dimensional phase speed parameter, r\, on the non-dimensional wavenumber, 
kh. 
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For comparison, Fig. 2 is presented in which both the interlayer and the surrounding solid 
are stress-free resulting to Poisson materials (equal Lame' constants). The absence of 
stress is demonstrated quantitatively to have a significant effect on the frequency regions 
of existence of interfacial propagating waves as well as on the dependence of phase 
speed on frequency. 
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Figure 2. Same as the caption of Fig. 1 but with a stress-free interlayer as well. 
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In Fig. 3, both materials are stressed but only along the x2-axis which is perpendicular to 
the interfaces. This implies that X,=A.3, X2=Xi'

A. The same holds true for the interlayer 
stretches as well. Figure 3 represents the case ^,=0.9, which together with the strong 
ellipticity condition requires that r< 1.4251. In Fig. 3(a) the shaded area violates this 
condition. Figures 3(b), 3(c), 3(d), 3(e) show the T| dependence on kh in the different 
regimes of Fig. 3(a). 
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0.3 

0.2 

0.1 

(e) 

0       2       4       6       8      10 
kh 

Figure 3. Same as the caption of Fig. 1 but with stressing perpendicular to the interfaces 
and with A.,*=0.9. 
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(a) 

A; 

(b) 

kh 

Figure 4. Blatz-Ko materials with X2=X3=X^=\, y./\i=pjp'=l. (a) The existence of high 
frequency propagation as it depends on A,, and A,,*; regions (I) and (II) are defined as in 
the caption of Fig. 1. (b) Standing wave existence as it depends on X* and kh for a 
stress-free surrounding solid. 
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A* 
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Figure 5. Same as the caption of Fig. 4 but with u/u.*=p/pr*=2. 
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A different and, from the practical point of view, useful way of presenting the effect of 
stress on the existence or not of high frequency asymptotes is shown in Fig. 4(a). The 
two regimes (I) and (II) are drawn in the (X]; V)- Plane for Blatz-Ko materials with 
\2=A.3=V=1, !^*=P/Pr'=l •In the shaded area, the strong ellipticity condition is 
violated. It is noted that, X,=V(which results in L,*=l) falls in region (I) as no Stoneley 
wave can exist in stress-free materials of equal density. The existence of standing waves 
is demonstrated in Fig. 4(b) for the same case as that considered in Fig. 4(a) and, 
moreover, with the surrounding solid being stress-free, Ä,,=l. For a given stretch, V> in 
the interlayer Fig. 4(b) defines the ratio of the interlayer thickness, h, to the standing 
wavelength, A=27t/k, for which standing waves exist. 

The effect of different materials on high frequency asymptotes and on the existence of 
standing waves is demonstrated on Fig. 5(a), 5(b) in which u/u*=pr/pr*=2. Fig. 5(a) is 
analogous to Fig. 4(a) and Fig. 5(b) to Fig. 4(b). The effect of material deviation with the 
same underlying stress is very pronounced. It is noted here that the stress-free case, 
A,,=V, falls in region (II) as Stoneley waves exist in materials of equal shear wave speed. 

Acknowledgment: We would like to express our thanks to Carolyn Magee of the 
Mathematics Department for typing the manuscript that includes all the cumbersome 
equations. 
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