
<xjA r> 

A LARGE SCALE INTEGER LINEAR PROGRAM AS A 

DECISION SUPPORT TOOL FOR FORCE MIX SELECTION 

THESIS 

Craig A. Punches, Captain, USAF 

AFIT/GLM/ENS/02-15 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright Patterson Air Force Base, Ohio 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense or the U.S. 
Government. 



AFIT/GLM/ENS/02-15 

A LARGE SCALE INTEGER LINEAR PROGRAM AS A 

DECISION SUPPORT TOOL FOR FORCE MIX SELECTION 

THESIS 

Presented to the Faculty 

Department of Operational Sciences 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Logistics Management 

Craig A. Punches, B.S. 

Captain, USAF 

March 2002 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



AFIT/GLM/ENS/02-15 

A LARGE SCALE INTEGER LINEAR PROGRAM AS A 

DECISION SUPPORT TOOL FOR FORCE MIX SELECTION 

Craig A. Punches, B.S. 

Captain, USAF 

Approved: 

/s/ 7 Mar 02 

Stephen M. Swartz, Maj, USAF, Advisor Date 
Assistant Professor of Logistics Management 
Department of Operational Sciences 

/s/ 7 Mar 02 

William P. Nanry, COL, USA, Reader Date 
Assistant Professor of Operations Research 
Department of Operational Sciences 

IV 



Acknowledgements 

While I am the author of this thesis, many other people have made significant 

contributions to its very existence. 

First and foremost, I dedicate this to my wife, daughters, and son for knowing that 

my job is not an easy one, and doing everything they can to make it easier. A special 

thanks to my mom for teaching me determination in the face of adversity, to my dad for 

teaching me to dream and think "big picture," to grandma T who nurtured me and taught 

me to believe in myself, to grandpa T who taught me about life and the world around us, 

and to Mr. Smith, my 5th grade teacher and WWII veteran, who taught me war is not 

glamorous but requires patriots to protect our freedoms, racism is un-American, and that I 

can accomplish anything that I set my mind to. My in-laws deserve special thanks for 

treating me like a son and supporting our family in every way. 

I'm also very grateful to my thesis committee for their help during this research: 

- My advisor, for letting me discover what Socratic learning is. 

- My reader, for providing valuable insight. 

Craig Punches 



Table of Contents 

Page 
Acknowledgements v 

List of Figures ix 

List of Tables x 

Abstract xi 

I.    Introduction 1 

Background 1 
Problem Statement 7 
Research Question 7 
Investigative Questions 7 
Research Methodology 8 
Assumptions 9 
Scope/Limitations 12 
Summary 13 

II.   Literature Review 15 

Introduction 15 
Problem Structure 15 

Cold War CONOPS Change 15 
The Need for Merging 21 
Nature of the Problem 22 
Previously Used Methodologies 25 

Tomahawk Selection Optimization Model (TSOM) 25 
The ALP 29 
David Wakefield's GA Approach 32 

Solution Approaches 38 
Modeling 38 
Mathematical Programming and Modeling 41 
Mathematically Defining the Problem 43 
Large-Scale Integer Linear Programming (LSILP) 50 

Summary 54 

VI 



III. Methodology 55 

Introduction 55 
Model Formulation 55 
ILP Formulation 60 

Basic Model 60 
Expanded Model with a Single Preference Curve Point 66 
Expanded Model Along a Preference Curve 68 

Performance Measures 71 
Model Validation 72 
Experimental Design 74 

Computational Environment 74 
Factors and Levels 74 

Preference Curves 74 
Search Methods 77 
Batching Approaches 78 
Summary of Factors and Levels 78 

Experiments 78 
Summary 79 

IV. Results 81 

Introduction 81 
Experiment One Output and Analysis 81 
Statistical Analysis 82 
Summary 87 

V. Conclusion 89 

Introduction 89 
Conclusions and Significance of Research 92 
Limitations 92 
Recommendations and Future Research 95 
Summary 97 

Appendix A. Acronyms and Definitions 99 

Appendix B. ALP Pilot Problem (Swartz, 1999) 102 

Appendix C. Task Preference Matrix (TPM) Example 119 

Appendix D. Task Suitability Matrix (TSM) 120 

Appendix E. Munitions Configuration Matrix (MCM) 121 

Vll 



Appendix F. Bomb Component Matrix (BCM) 122 

Appendix G. MRR Weight Matrix 123 

Appendix H. Preference Curve Mapping Macro Code 124 

Appendix I. TSOM Definitions and Formulas (Kuykendall, 1998: 16-19) 125 

Appendix J. MOMGA Formulation (Wakefield, 2000: 52) 127 

Appendix K. Trial Runs to Maximum Missions that Improves Total Suitability 128 

Appendix L. Trial Runs to 775 Missions 129 

Appendix M. MRR Mix for the 5 Batch/Curve 1 Test 130 

Appendix N. Wilcoxon Large Sample Approximation Test on Search Methods 131 

Appendix O. Friedman Multiple Rank Test on the Preference Curves 132 

Appendix P. Friedman Multiple Rank Test of Batching Methods 133 

Bibliography 134 

Vita  138 

Vlll 



List of Figures 

Figure Page 

Figure 1. Traditional and Disaggregate TPFDD Combat Capability Comparison 4 

Figure 2. Mission Preference Vector (Curve) (Johnson and Swartz, 2000:27) 11 

Figure 3. Campaign Issues Value Hierarchy (Buzo, 2000:80) 13 

Figured  1950-1989 Army Deployments (AV 2010, 1996) 16 

Figure 5.  1990-1996 Army Deployments (AV 2010, 1996) 17 

Figure 6. MK 41 Missile Location Configuration (Kuykendall, 1998: 4) 26 

Figure 7. Example of Two Half-Module Loadout 27 

Figure 8. (a) Unique Optimal Solution, (b) Alternate Optimal Solutions 48 

Figure 9. (a) Redundant Constraint, (b) Unbounded Solution 48 

Figure 10. Infeasible Solution 49 

Figure 11. Integer and Non-integer Solution Space Comparison 52 

Figure 12. Infeasibility Caused by Rounding 53 

Figure 13. MARMOT Processing Model 56 

Figure 14. Task Preference Over Mission Levels (RAND, 1997:18) 58 

Figure 15. Preference Curve Mapping Process 69 

Figure 16. Single Batch Step-Wise Runtime Distributions for Curves 1 - 4 83 

Figure 17. Single Batch Jump-Wise Runtime Distributions for Curves 1 - 4 83 

Figure 18. Five Batch Step-Wise Runtime Distributions for Curves 1-4 84 

Figure 19. Five Batch Jump-Wise Runtime Distributions for Curves 1 - 4 84 



List of Tables 

Table Page 

Table 1. Desired Capability Matrix (Wakefield, 2001: 51) 33 

Table 2. Categories and Characteristics of Mathematical Models (Ragsdale, 2001: 8) ..42 

Table 3. Summary of Experiment One Results 81 

Table 4. Summary of Experiment Two Results 83 

Table 5: A-M TPM 102 

Table 6: Sortie/Mission Mix Preference Inflection Points (over Resource Levels) 105 

Table 7: Sortie/Mission Mix Preference Inflection Points (over Time) 106 

Table 8: M-R-T TPM 107 

Table 9: Asset-Set Points Along the Sortie/Mission Preference Vector 108 

Table 10: Relative Values of Asset Set Points along the Mission Preference Vector... 112 
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Abstract 

In the post cold war environment, the rapid deployment of combat capability is 

critical. Deployment lift capability is limited, however, so the real-time selection of the 

optimal combat asset mix that balances capability provided and sustainment required has 

become paramount. In this model, the value of a force mix is determined by the sum of 

the individual weapon system "suitabilities" against their assigned missions. The value is 

constrained by the numerical limits on the items required to create and support the force 

mix, and the lift required to move these items. 

The research considered heuristic and complete enumeration methods against the 

problem structure to develop a decision support model that expedites the selection of the 

best overall force mix. War planners are provided a decision support tool that objectively 

compares alternative force mix packages and selects the optimal asset mix in a reasonable 

amount of time while explicitly considering logistics constraints. This demonstrates the 

feasibility of an approach that integrates intelligence, operations, and logistics issues into 

a single decision support and planning tool for force mix decisions. 



A LARGE SCALE INTEGER LINEAR PROGRAM AS A 

DECISION SUPPORT TOOL FOR FORCE MIX SELECTION 

I. Introduction 

Background 

In a perfect world, force mix optimization determinations (what and how many 

assets to take to meet mission requirements) and time phased force deployments (when) 

would not be necessary since the on-scene commanders would have everything 

instantaneously—the entire Air Force, Army, Marine Corps, and Navy fleet would be 

instantaneously in place. 

However, the real world is not so generous, since this instantaneous availability of 

all desired resources would require unlimited and unconstrained transportation. This 

does not exist in contingency actions or war. Transportation planners would require a 

long, foreseeable planning window and/or a long build-up time to have effectively 

unlimited and unconstrained transportation. For example, the military would need to 

know that in 20 years they would be required to deploy "X" pieces of "Y" equipment to 

location "Z" or know that they face the perfect enemy, like Saddam Hussein, who would 

remain foolhardy and nonaggressive while we build up our forces. 

These situations will not likely occur in future conflicts, causing transportation to 

be a very restrictive, binding constraint. The reduction of the United States (US) forward 

presence in overseas locations magnifies this and other logistics constraints. The 



Aerospace Expeditionary Force (AEF) concept reflects the Air Force's Global 

Engagement vision of worldwide deployment from continental US and attempts to 

simultaneously pursue initiatives to reduce the resources required for deployment, the 

deployment footprint, and to increase management flexibility of resource allocation 

(Filcek,2001). 

If it were up to operations, they would want to take everything all at once. 

However, since this is impossible, a prioritized time sequence list must be developed 

reflecting what assets and logistics to take and when to transport it. This has traditionally 

taken the form of the Unit Type Code (UTC) based Time Phased Force Deployment Data 

(TPFDD) document. Although the Gulf War deployment has generally been considered 

a success, the mentality of trying to take everything with limited transportation and 

logistics support highlighted several negative results. According to the US Secretary of 

Defense at the time, "The readiness rates and operating tempos of primary platforms such 

as aircraft, tanks and fighting vehicles outpaced the ability of support structures and 

equipment. For instance, aerial tankers became a limiting factor in air operations" 

(Aspin, 1992: xiii.3). This observation was supported by recent research: "One of 

USTRANSCOM's most intractable and high-visibility problems during Desert 

Shield/Desert Storm was a backlog of sustainment cargo at aerial ports of embarkation" 

(Wakefield, 2001: 1). The amount of cargo arriving at Al Jubayl and Ad Dammam 

overwhelmed the ability of the system to manage the traffic. General Gus Pagonis, chief 

logistician of the Gulf War, noted, "We had to open some 28,000 of 41,000 arriving 

containers right there on the dock just to find out what was in them" (Pagonis, 1992: 

206). 



The traditional UTC based TPFDD document is a generic, large-scale plan that 

bases force mix on large, aggregate chunks of capability (forces) combined with the 

"close date" concept (Swartz, 2001). This aggregation over forces and time results in 

sub-optimization of the logistics system. 

Forces aggregation is the grouping together of assets based on capability that 

fulfill general mission roles. Since this resource aggregation is for general purpose 

planning, mobilizing in pieces or for specific circumstances requires improvisation rather 

than systematic evaluation of the true effects on marginal logistics requirements and 

combat capability. For example, a theater commander in charge (CINC) may want three 

precision bombing sorties daily in desert conditions, but the traditional UTC is designed 

for bombers in nonspecific areas performing nonspecific bombing missions with 

preselected two or four-ship aircraft packages. How does the planner adjust the package 

to limit the logistics drain on the transportation system while ensuring the CINC gets 

what he needs? The planner could choose the 4-ship package and reduce the number of 

aircraft by one, but what cargo and personnel can be eliminated as redundant or 

unnecessary? The traditional UTC provides no means of conducting a marginal analysis 

of the trade-offs between the marginal cost of logistics and the marginal cost of combat 

capability. 

Time window aggregation, "close date" concept, accentuates this large chunk 

delivery by having large scale combat capability delivered by some future date. This 

concept is illustrated by deploying all the bullets needed for a UTC on one shipment, 

followed by all the weapons on a separate shipment, then followed by all the combat 

troops on a final shipment. Each piece of material arrives by some future date, but the 



package as a whole is ineffective until that time. Another example would be sending 

aircraft before sending maintenance and fuel troops. According to former Joint Staff 

Director of Operations Lieutenant General Thomas Kelly, "At some point [during the 

Gulf War], a fuel truck became more important than the tank it supported because it is no 

good to have the tank if you did not have the fuel for it" (Aspin, 1992: 36). The UTC 

resource and time aggregation creates large batch delivery of combat capability into 

theater and results in combat capability only being available in a step-wise function (see 

Figure 1). 
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Figure 1. Traditional and Disaggregate TPFDD Combat Capability Comparison 

This large batch delivery makes the TPFDD difficult to generate, non-responsive, 

and not adequate for dynamic/crisis planning (Carrico, 2000). The Air Force War and 

Mobilization Plans Division identified this shortfall by stating, "During the initial 

construction of 10 AEFs and 2 AEWs, functional area managers (FAMs) noted UTCs 

seemed too large for SSC [Small Scale Contingency] requirements...Kosovo highlighted 

need for more 'right-sized' UTCs" (Holleran, 2000). From Ms Holleran's briefing, the 

desirability of smaller "building blocks" of capability was identified during the 2000 



World Wide Planner's Conference by the Air Force War and Mobilization Plans 

Division. 

Instead of giving CINCs a preselected/prepackaged list of menu items (aggregate 

TPFDD) delivered by some future date, a dynamic planning tool would allow the CINCs 

the ability to tailor forces and timing. The realization that the traditional approach of 

aggregate TPFDDs used during the predictable cold war era would not effectively resolve 

the unpredictable challenges of the post-cold war environment (rogue nations with 

weapons of mass destruction, terrorism, ethnic tension, etc.) led to the creation of the 

Advanced Logistics Program (ALP). 

ALP, a joint Defense Advanced Research Projects Agency (DARPA) and 

Defense Logistics Agency (DLA) research project, was developed to speed up the 

sourcing and tailoring of existing TPFDDs. ALP intended to create a multi-echelon, real 

time tool to rapidly provide operators and logisticians rational alternatives that balance 

mission attainment and logistic footprint while remedying the UTC based TPFDD 

shortfalls. 

In appreciating the power of ALP, researchers at the Air Force Institute of 

Technology (AFIT) proposed that TPFDD disaggregation was now possible, practical, 

and highly desirable. Smaller, discrete pieces of capability can be delivered in 

incremental portions and time according to the CINCs' exact desires. It would be 

possible to create single resource UTCs for specific missions with one combatant and the 

necessary combat support. This eliminates excess items, creating more transportation 

space for items that are really needed and increasing delivery speed in turn. 



Researchers, realizing that the TPFDD could be disaggregated (smaller UTCs and 

shorter time blocks), have been trying to take advantage of this smaller, discrete 

information system. AFIT is pursuing the development of a Mission-Resource Value 

Assessment Tool (M-R VAT) that will maximize utility or value delivered into a theater 

over time. This tool is designed to rapidly identify alternative force mixes by matching 

mission preferences to tasks, tasks to resources, and resources to logistics requirements. 

This should allow combat capability to be delivered sooner and more consistently, 

improving capability/defensibility and the projection of near perfect economy of force 

(see Figure 1). Going back to the example of Desert Storm, US forces were not capable 

of preventing Iraqi infiltration until mid-September, one month after deployment 

(Pagonis, 1992). This might have been accelerated using the disaggregate UTC 

approach. 

The M-R VAT uses the concept of "Mission Ready Resources" (MRRs) to 

accomplish this matching. A Mission Ready Resource is the basic unit of these small, 

discrete blocks of capability. An MRR is composed of a resource type and its logistics 

requirements, i.e. aircraft, pilot, fuel, munitions, support equipment and personnel, etc., 

that has a certain "suitability" for a specific task. It is envisioned that the underlying M- 

R VAT logic can be applied to a wide range of similar problems. This would help the 

Army determine the best mix of tanks, artillery, aircraft, and soldiers; the Navy determine 

best mix of ships; the Marines determine the best mix of vehicles and personnel; and the 

Air Force determine the best mix of aircraft. 



Problem Statement 

Since we can now plan and execute for much smaller units of capability to be 

brought into theater in much smaller time increments, what is the best sequence of 

deliveries? Specifically, how would we optimize the delivery of capability subject to 

constrained resources? 

Research Question 

Is there a method that can rapidly find solutions to incremental force package 

mixes that balances mission supportability and capability? 

Investigative Questions 

To successfully create a quantitative decision support tool to enhance the force 

mix selection efforts of campaign planners, this paper addresses the following questions: 

1. What is the underlying nature and structure of the problem being studied? 

a. What are we trying to maximize? 

b. What are our constraints? 

2. What are the solution methodologies that best fit this problem structure? 

a. What are the key characteristics (to solution type) of the problem? 

b. What are the matching solution types? 

3. Can the effectiveness and efficiency of the selected methodology be tested? 

4. What are the results of this test (runtime, quality of solution, do you get an 
answer, does it converge on known optima)? 

5. What test would be performed and what inferences could/should be drawn 
from the test results? 



Answering these questions will ensure the decision support model is valid for 

determining the best force mix that balances capability and supportability. 

Research Methodology 

This research involved four phases designed to answer the five investigative 

questions. The first phase included a comprehensive literature review to determine what 

data was required, what analysis would be performed, and how the results will be 

interpreted. The data required included MRR type, MRR task suitability values, MRR 

lift consumption values, resource availability quantity, deployment lift availability 

quantity, resource daily mission turn rates, and CINC mission/task integer preference 

values. 

The second phase included data collection. The MRR suitability and deployment 

lift consumption were based on notional values from the ALP Pilot problem since actual 

mission specific resource capabilities were classified. To ensure this research receives 

the widest degree of evaluation for validity, this research and its conclusion were 

restricted to the unclassified realm. Actual logistical support for a given resource is 

difficult to determine, is often undefined until just prior to movement, and has not 

previously been evaluated via the MRR concept (Judge, 1998:32). This research was 

forced to make simplifying assumptions about the relationship between MRR missions 

and lift/logistics consumption. 

The third phase involved the creation of the decision support model and 

exploration of how to make the module fit within deployment material flow planning. 



The fourth phase evaluated the methodologies against solution quality and 

runtimes. Solution quality and runtime are discussed in Chapter III and Chapter IV. This 

paper reevaluated David Wakefield's work using other approaches to develop an 

algorithm that converges on an acceptable solution in a reasonable amount of time. 

Assumptions 

Since the actual mission specific asset capabilities are classified, this research will 

be constructed around a notional AEF of a size and diversity similar to that depicted in 

the ALP Pilot Program (Swartz, 1999). Actual resource suitability and lift costs will not 

be used. Once the results demonstrate the validity of the model, the actual classified 

values can be substituted into the model for full implementation. To support this 

research, this paper assumes that lift consumption is accurate and available for planning. 

Past research has suggested that for standard UTC sized F-16 deployments, the 

relationship of resource quantity to consumption is linear (Goddard, 2001). 

This decision model's validity is based on the continuance of the USAF's Global 

Engagement and Global Reach vision. That is, the USAF responds to theater crises by 

primarily deploying combat troops from CONUS stations. A dramatic change in this 

operating concept could be represented by a return to the cold war military era of forward 

basing, in which nearly all forces are based in the theaters of crisis. Such a change could 

lessen or eliminate the positive impact of this decision support tool. However, the 

assumption of continuing Global Engagement and Global Reach is sensible, given the 

end of the cold war, the end of large defense budgets, and the inefficiency of forward 

basing. 



It is also assumed that the MRR task suitability values and numbers available are 

stable and constant. This appears reasonable since a change in resource capabilities and 

quantity generally takes years to fund and implement. In addition, changes to resource 

suitability could be easily programmed into the model. 

The asset type turn rates will be assumed to be constant and stable over time and 

all mission types. If an F-15 aircraft can do three missions a day, on average, the turn 

rate will be three regardless of the type of mission. This value is used for the calculation 

of the asset availability. 

This research and M-R VAT were only concerned with the deployment planning 

and build-up phase while deployed resources were expected to be redeployed to their 

origins or elsewhere at the end of the conflict. Therefore, it was assumed that the 

quantity of missions available would not decrease. Resources would build-up over time, 

and the CINC would desire more missions (i.e. sorties) over time. As the level of total 

resources increased, the CINC would prefer a "mix" of MRRs for different missions. 

This changing mix preference would describe a curve or vector that can be referred to as 

the "mission preference curve." 

Since the ultimate goal of a logistics planner is to satisfy the CINCs requirements, 

it is assumed to be highly desirable to move along the mission preference curve. The 

decision maker's task preference between diverse missions, such as Air to Air (AA), 

Suppression of Enemy Air Defenses (SEAD), or Close Air Support (CAS), can be 

explicitly indicated by the number of missions, i.e. sorties, desired for each task at a 

given resource level (missions available). This is illustrated in Figure 2. For instance, 

given a relatively low amount of missions available (sortie generation rate) at the 

10 



beginning of a campaign, a CINC may prefer a ratio of 55 percent AA, 40 percent SEAD, 

and only 5 percent CAS to achieve air superiority. Over time, the number of available 

missions increases and the next campaign phase may emphasize ground attack. This is 

reflected in the CINC's task preferences: 10 percent AA, 30 percent SEAD, and 60 

percent CAS. 

CAS 

AA 

►SEAD 

AA CAS SEAD 
25     20      45 

Over differing levels of total resources available, 
a CINC prefers a different "mix" of missions. 

For example, when 40 sorties are available, the 
CINC preference curve would include 15 AA, 5 
CAS, and 20 SEAD missions. If 90 sorties were 
available, the CINC would prefer 25 AA, 20 
CAS, and 45 SEAD. 

Figure 2. Mission Preference Vector (Curve) (Johnson and Swartz, 2000:27) 

If a commander decided that fewer missions were required or that a different ratio 

or values of task types applied, then a new campaign phase would begin and the planning 

process described here would be re-accomplished from scratch. 

Since Air Force deployment cargo is generally denser (heavy) than it is bulky 

causing deployment lift to be constrained by deployment weight rather than volume, it is 

assumed that minimizing volume is unnecessary. If volume does becomes an issue, it can 

be easily managed as an additional constraint, just like weight, by setting the sum of the 

MRRs multiplied by their volume equal to or less than the available deployment volume. 

It is assumed that the availability of deployment lift can be determined, thus 

deployment weight would be a hard constraint making weight minimization unnecessary. 

11 



Scope/Limitations 

This research makes use of the composite (asset's designed capability to 

accomplish a specific mission or task and situational considerations such as host nation 

runway capability, political considerations, or fuel support) suitability of MRRs to 

examine the tradeoff between MRR suitability against MRR lift cost. Since situational 

constraints placed on the US by host nations or at the staging base may prevent the US 

from selecting certain combat assets or the combat assets that best meet the situational 

constraints may have little to no value for required tasks, selecting only part of the 

composite suitability would provide an incomplete solution and possibly an infeasible 

solution. To accurately represent reality, the composite suitability is required to balance 

both design suitability and situational considerations. This process is envisioned to create 

the composite suitability value (Best Value Asset Set Per Phase) by incorporating the 

Value Focused Thinking (campaign specific goodness) Decision Support Tool developed 

by Chistopher Buzo and Paul Filcek with the asset design capabilities; however, this 

process and evaluation is beyond the scope of this research. This merging of design 

capabilities and situational considerations to create the composite suitability is illustrated 

in Figure 3. Each specific campaign issue is compiled to create the Campaign Specific 

Value, which is combined with the Generic Mission Goodness (Design Suitability) to 

create the Best Value Asset Set Per Phase (Composite Suitability). The composite value 

is discussed in greater detail in Chapter II. 

12 
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Figure 3. Campaign Issues Value Hierarchy (Buzo, 2000:80) 

Discussion of operational plans and actual task suitability may be classified. 

Therefore, this research, research conclusions, and the information used are unclassified. 

All data will be reasonable but notional. The purpose of the research is to develop and 

validate a structure and an approach, not discern a specific answer to a specific force mix 

and flow problem. 

Summary 

This chapter provides the justification and motivation for developing a decision 

support tool that will balance the desires of operations and logistics planners to aid 

selection of the best force mixes for contingencies. With a continuing resource 

constrained environment, campaign and deployment planning is critical. This research 

proposes to develop a methodology for presenting campaign planners a best force 

package mix balancing combat capability and supportability. 

13 



Chapter II provides a background on the characteristics of the problem and 

reviews classic and modern mathematical programming techniques. Chapter III 

describes the methodology used to construct the large-scale integer linear programming 

problem and evaluate the solution approach. Chapter IV details the results using the 

selected integer linear programming optimization methodology. Chapter V provides 

conclusions on research contributions and makes recommendations for further research. 

14 



II. Literature Review 

Introduction 

The overall purpose of this chapter is to answer the second investigative question: 

what are the solution methodologies that best fit this problem? To answer this 

investigative question, it will be broken down into its two subcomponents: problem 

structure and solution approaches. First, the key characteristics of the problem were 

determined. After the problem structure was determined, matching solution types were 

reviewed. 

This chapter first presents the problem structure by reviewing changes in post 

cold war concepts of operations (CONOPS); the need for joint service, combined service, 

and merging operations and logistics planning and decision support tools; and previously 

used methodologies. The second section of this chapter provides an overview of the 

various solution approaches. The characteristics, requirements, and benefits of these 

approaches will be reviewed. The chapter concludes by discussing why large-scale 

integer linear programming was the selected approach. 

Problem Structure 

Cold War CONOPS Change. 

Faced with the threat of a known adversary, the Cold War (although a time of 

great danger) had a predictable, certain, and stable environment where rivals typically 

used conventional, symmetric means of attack and planning. Since there was a 

continuous threat from a known opponent, the Department of Defense could plan for and 

acquire resources necessary for operational requirements. After the Gulf War, "a 

15 



prominent theory arose that there would no longer be a need for large land forces, that 

power projection and national strategy could primarily be carried out through precision 

strikes using technologically advanced air and naval forces" (AV2010, 1996). This 

theory was termed the "standoff approach. The approach was expected to eliminate the 

need for large land forces, since the degree of US involvement and commitment would be 

dramatically reduced. "Reality proved that theory to be invalid" (AV 2010, 1996). This 

is illustrated in Figure 4 and Figure 5. The Army conducted 10 deployments from 1950 

to 1989 and 25 from 1990 to 1996, an increase in missions by a factor of 16 (AV 2010, 

1996). 
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Figure 4.  1950-1989 Army Deployments (AV 2010,1996) 

Today, as suggested by Figure 5, threats to national security are discontinuous, 

rapidly changing, dynamic, unconventional, and unpredictable with adversaries who will 
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1990-1995 
6 Years — 25 Deployments 
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likely seek asymmetric means of attacking US interests due to America's conventional 

military superiority. To effectively and efficiently respond to this changing/dynamic 

environment; the DoD would need state-of-the-art or "right-sized" organizations, 

infrastructure, legal and regulatory structure, and business practices. However, the 

system that ensured the US won the Cold War forced DoD's current support systems, 

structures, and practices to be outdated and antiquated (Cohen, 1998). According to the 

acting US Secretary of Defense in 1998: "DoD has labored under support systems and 

business practices that are at least a generation out of step.. .the defense establishment 

remains frozen in Cold War structures and practices" (Cohen, 1998). Since the DoD has 

a fixed budget, an excessive infrastructure siphons monetary resources that could be used 

for readiness and modernization efforts. The acquisition and procurement legislation and 

oversight rules limit DoD's ability to rapidly transition new technology, limit DoD's 
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ability to negotiate and find "best value," and increase the price of doing business. For 

example, since there are only two competitors in the military aerospace industry, is it 

logical to attempt to use competitive market strategies while trying to negotiate an 

acquisition? Additionally, DoD is required to hold back a portion of business for 

disadvantaged and small businesses instead of finding the most efficient use of the 

money. Lastly, since any unspent DoD money at the end of a fiscal year is taken back 

and future budgets will likely reflect a reduction equal to the amount of the unused 

portion (since it is perceived that it is unneeded), there is an incentive to spend the entire 

budgeted amount and no incentive/reward to efficiently use the money. The Secretary of 

Defense acknowledged this mismatch between the current environment and DoD's ability 

to respond to it and addressed a plan of action: 

The fundamental challenge confronting the Department of Defense is 
simple, but daunting. U.S. forces must meet the demands of a dangerous 
world by shaping and responding throughout the next 15 years.. .To meet 
this challenge, the Department must prepare now to meet the security 
challenges of an unpredictable future. As the nation moves into the next 
century, it is imperative that it maintain its military superiority in the face 
of evolving, as well as discontinuous, threats and challenges... To maintain 
this superiority, the United States must achieve a new level of proficiency 
in its ability to conduct joint and combined operations. This proficiency 
can only be achieved through a unified effort by all elements of the 
Department toward the common goal of full spectrum dominance 
envisioned in Joint Vision 2010, the Chairman of the Joint Chiefs of 
Staffs blueprint for the future military operations. (Cohen, 1998) 

This need for joint and combined planning and proficiency is discussed in the 

next subsection. With the new era of rapidly changing, unpredictable threats, the defense 

industry and the DoD needed to transform more than their ability to operate in a full 

spectrum of crises, they needed to implement a culture change to meet the new 



challenges of a new century. Reacting to the new challenges and the need for a culture 

change, the DoD established two corporate-level goals: 

Goal 1. Shape the international environment and respond to the full 
spectrum of crises by providing appropriate sized, positioned, and mobile 
forces. Goal 2. Prepare now for an uncertain future by pursuing a focused 
modernization effort that maintains U.S. qualitative superiority in key 
warfighting capabilities. Transform the force by exploiting the Revolution 
in Military Affairs, and reengineer the Department to achieve a 21st 
century infrastructure. (DoD, 2001) 

The realization that the traditional approach (aggregate TPFDDs) used during the 

predictable cold war era would not effectively resolve the unpredictable challenges of the 

post-cold war environment (rogue nations with weapons of mass destruction, terrorism, 

ethnic tension, etc.), the decline of resource availability (personnel and budget), and the 

reduction of bases and personnel in forward based overseas locations, led to the creation 

of several DoD initiatives. These include the joint Precision Engagement and Focused 

Logistics and the Air Force's Global Engagement strategies; and the Navy's Ring of Fire, 

the Marine's Maneuver Warfare on Urban Terrain, the Army's Force XXI, and the 

USAF's AEF concepts. 

The Navy implemented Ring of Fire to provide rapid, accurate, and effective fire 

support to joint forces. The Marines implemented Maneuver Warfare on Urban Terrain 

to improve flexibility and coordination of dispersed small units using maneuver warfare 

in urban areas (Cohen, 1998). The Army implemented the Force XXI concept to design 

organizations and capabilities to be light, rapidly tailored and deployed, and effectively 

employable in joint and multinational crises (Cohen, 1998). The USAF implemented the 

AEF concept to provide greater flexibility and the rapid deployment of highly capable 

forces with fewer resources for global engagement in peacetime, crisis, and war (Looney, 
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1996:5). AEF units are expected to conduct air operations independently for the first 

seven days until logistic sustainment is established (Godfrey, 1998: 2). 

These concepts increase the criticality of selecting the best force package mix for 

deployment. As slack in the system, excess capacity, and redundancy of combatants and 

support resources are reduced, the importance of having the right forces in the first place 

increases. An error in planning can result in lives and resources lost as well as negatively 

affecting the conflict's final outcome. And, the need for rapid crisis response and 

deployment magnifies the need for rapidly tailorable force mix packages. Compounding 

the situation, timely selection of the best force package mix has become increasingly 

difficult with current initiatives to reduce and eliminate Unit Type Codes (UTCs) 

(Filcek's interview with Petersen, 2001: 12-13). 

Previously, UTCs were large, general-purpose force packages that campaign 

planners used to tailor for specific mission requirements. They were easy to use and very 

convenient during short notice crises (Filcek, 2001: 12); however, no systematic rules 

exist for tailoring and planners must rely solely on their best guesses. The tailoring used 

a top down approach by taking large packages and cutting unnecessary items through 

intuition instead of using a systematic process that builds on the true marginal logistics 

requirements. This can overburden lift requirements or overlook/cut critically necessary 

logistics items, thus limiting the ability to rapidly deploy lethal forces. Because force 

mix selection seeks to get desired forces and support resources in the right amount to the 

right place at the right time; it may have the greatest impact on the logistics footprint size, 

the deployment speed, and force sustainment (Filcek, 2001: 13). 
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The Need for Merging. 

Joint operations are maneuvers that involve coordination and cooperation of more 

than one US military service, while combined operations are exercises that involve more 

than one nation's military. Joint and combined planning are systematic processes that 

make joint and combined operation possible by determining the best assignment of 

mission preferences to tasks, tasks to resources, and resources to logistics requirements 

(JSOG, 1997: paragraph 500). 

To maintain national security by developing the ability to respond to the full 

spectrum of crises, "the United States must achieve a new level of proficiency in its 

ability to conduct joint and combined operations...Achieving this new level of proficiency 

also requires improving the U.S. military's methods for integrating its forces and 

capabilities with those of its allies and coalition partners" (Cohen, 1998). The necessity 

to conduct joint and combined operations is compounded even more by several factors 

(JV2010, 1997:8): 

• The reduction of military personnel to the lowest levels faced since the 1950s, 
while operations tempo dramatically increased 

• The reduction of permanently overseas stationed forces 

• Flat budgets with increasing overhead, readiness, and modernization costs 

• Statutory mandate 

This combination of factors has resulted in the situation where "simply to retain our 

effectiveness with less redundancy, we will need to wring every ounce of capability from 

every available resource" (JV 2010, 1997: 8). 
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The Goldwater-Nichols DoD Reorganization Act of 1986 sought to improve joint 

operations and create clear lines of authority and unified command over all services for 

joint operations by legally mandating jointness (Osgood, 1996). The Act was passed 

after investigations found joint command and control and planning shortfalls, such as the 

1970 North Vietnam Sontay prison prisoner of war operation, the failed 1975 Mayaguez 

Iran hostage rescue operation, and the 1983 Grenada operation (Carlson et al, 1984). 

Fragmented, uncoordinated joint and combined planning and strategy is 

eliminated with a unified war planning environment; additionally, unified planning 

between operations planners and logistics planners will result in more successful 

execution with lighter, leaner, and more lethal forces (Colvard, 2001: 8). 

Nature of the Problem. 

This subsection provides a specific description of the nature of the force mix 

value, the decision variables (force mix), and how the resource limitations restrict the 

force mix. 

Since the purpose of this research was to develop and validate a structure and an 

approach, not discern a specific answer to a specific force mix and flow problem, the 

force mix values were notional and were represented in the Task Suitability Matrix 

(TSM) in Appendix D. This matrix establishes the task-weighted preferences between 

assets for missions. These task-weighted preferences represent the relative values, from 0 

to 1, of each alternative asset/munitions configuration performing a specific task, based 

upon the analysis of the composite values (discussed in Chapter I). Since these values are 

campaign and location specific, a model would require different template values for the 

different scenarios. An MRR composite value of 1 would provide the commander with 
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the best total value, based on all design and campaign specific issues. On the other hand, 

an MRR composite value of 0 would indicate an infeasible MRR, based upon either an 

infeasible design or campaign specific issue. Since each additional (feasible) MRR 

contributes additional benefit to the CINC, the additive composite values of the total 

MRRs would equal the total benefit the CINC received from an asset set. The additional 

benefit of each MRR is the probability of its mission success and campaign specific 

goodness, which is the MRR composite (task suitability) value. For example, if an F-16 

deployed to conduct 2 missions a day, the total benefit per day of deploying the F-16 

would be the benefit received from the F-16 performing the first mission plus the benefit 

received from conducting the second mission. Since a CINC receives value for each 

MRR assigned a task, the total value of the asset set (force mix) is the sum of all the 

incremental values. The values of alternative asset sets are compared within the lift and 

resource availability constraints. An asset mix with the highest value, within constraints, 

is preferred. Conversely, asset mixes with lower values, within constraints, are 

considered less desirable. 

The decision variables represent the number of MRR asset types assigned to a 

task. The asset types can represent different aircraft (all services), same aircraft with 

different weapons configurations (all services), naval vehicles, army vehicles, or 

personnel with different skills and equipment. The variables represent one asset type 

performing one task. For example, if an F-16 is performing an Air-to-Air (AA) and a 

Suppression of Enemy Air Defense (SEAD) missions in the same day, this would be 

represented as two separate decision variables: one as an F-16 doing an AA and one as an 

F-16 doing a SEAD. Even if this is the same asset, it must be split by its different tasks 
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to account for different suitability values and logistics requirements. Since a task must 

either be completed or not completed, partial missions are not feasible; the decision 

variables must be integer values. 

Since assets like tanks, naval ships, aircraft, and trained personnel require a long 

lag time between demand time and production or training, the age of rapid deployment 

forces planners to use only currently available resources when developing force mixes. If 

there are only X number of assets/resources available in inventory and the current plan 

must be executed before more assets/resources will be available, the planner cannot 

develop a plan to deploy more than X resources/assets. Additionally, if resources needed 

to support an asset are not available, this limits the ability to use this asset and the 

usefulness of this asset. For example, if tanks are deployed for combat and no fuel for 

tanks is available in theater, then the tanks become useless after their initial fuel capacity 

is consumed. Since assets (like aircraft and tanks) require resources (such as fuel and 

ammunition) to accomplish missions, increasing the number of missions increases the 

amount of resources needed. Furthermore, resource consumption must be less than or 

equal to available resources. Therefore, resource availability restricts the mission 

supportability and selection (decision variable selection). For example, increasing a 

decision variable representing an F-16 conducting an AA task by a value of 1 will 

proportionally increase fuel and ammunition requirements. This increase in resources 

required must be available or the mission is not possible. 

As mentioned in Chapter I, lift availability is also very limited. This forces 

planners to select force mixes that do not exceed the capacity of the available lift. For 

example, if airlift can only support deploying two tanks a day, planners cannot plan for 
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more. Additionally, these constraints force planners to evaluate less suitable MRRs to 

maximize the total asset mix value. For example, assume there is only enough lift 

available for one more F-16 to perform an AA mission. Even though the F-15 may have 

a superior suitability for AA missions, the lift requirement would exceed lift availability. 

Although the F-15 is superior for AA missions, the resource limitation restricts the force 

mix to selecting the F-16 since it improves the number of sorties and value for the CINC. 

Previously Used Methodologies. 

As the starting point for determining what methodology to use and how to build a 

decision support tool for force mix optimization, a review of the methodology of previous 

attempts was conducted. This review focused on three major areas: Tomahawk Selection 

Optimization Model, the ALP and David Wakefield's Genetic Algorithm (GA) approach. 

Tomahawk Selection Optimization Model (TSOM). 

Scott Kuykendall's Optimizing Selection of Tomahawk Cruise Missiles was the 

most applicable and promising study found during the review of force tailoring tools. 

The TSOM was used to rapidly select the optimal (maximizing future strike flexibility 

and capability) missile location given a specified missile type for an assigned mission. 

TSOM was an integer program designed to support real-time single-platform (single ship 

or submarine) and battlegroup missile selection. It was proposed to replace the manual 

approach, which could require several hours to get missiles on target, and the Tomahawk 

Weapon Control System automatic missile selection, which often assigned missiles from 

sub-optimal locations (Kuykendall, 1998: 1). 

The TSOM, regarding the MK 41 Vertical Launching System (see Figure 6 for 

this configuration), provided the following guidance (Kuykendall, 1998: 2-15): 
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• Each system contains eight modules which contains two half-modules each. 

• Each half-module has four cells (except module 5) with a missile in each cell. 

• Only one missile can be launched at a time from each half-module and both 
half-modules within a module can fire simultaneously 

• Only missile types Oil (Block III conventional 1000-pound bullpup 
warheads), CII (Block II conventional), Dili (Block III sub-munition), and 
DII (Block II sub-munition) were considered 

• Sustainment of Oil capability is preferred over CII, CII over Dili, and Dili 
over DII 

• Selecting the correct missile type from a missile location that would leave a 
16 salvo capability (ability to simultaneously fire 16 of the same missile type) 
for future requirements of all missile types provides the highest value or 
flexibility 

Module Module 

8 7 6 5 

1 

4 3 2 cell 1 

1 2 3 4 5 6 7 8 

8 7 6 5 

3 

5 

7 

4 3 2 1 

1 2 3 4 5 6 7 8 

8 7 6 5 4 3 2 1 

1 2 3 4 5 crane 

8 7 6 5 4 3 2 1 

1 2 3 4 5 6 7 8 

Figure 6. MK 41 Missile Location Configuration (Kuykendall, 1998: 4) 

If a 16 salvo capability of all missile types is not possible, a 16 salvo of the Oil is 

preferred over all other missiles, the CII is preferred over the D series, and the Dili is 
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cm CII CII Dili 
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preferred over the DII (Kuykendall, 1998: 2-15). To demonstrate optimal versus sub- 

optimal selection, Figure 7 provides an illustration using a given loadout. Given the 

Cell 8 7 6 5 

Half-module 1 

Half-module 2     

12 3 4 

Figure 7. Example of Two Half-Module Loadout 

missile selection or tasking order of Oil and CII, there are several possible combinations 

that can satisfy this requirement. Selecting cell 8 for tasking 1 and cell 3 for tasking 2 is 

one possible solution; however, the maximum number of future Oil or CII salvo is one 

instead of two, which is sub-optimal according to the TSOM guidance above. If cell 1 

for tasking 1 and cell 7 for tasking 2 had been selected instead, an optimal solution is 

generated since the greatest flexibility is achieved by allowing two simultaneous salvos 

of Oil (cells 2 and 8), CII (cells 3 and 6), or Dili (cells 4 and 5). 

This was just one example of a launching configuration and loadout. Launching 

configuration and loadout can vary per ship/submarine or ship type, and a battlegroup 

configuration can contain any combination of these ships or submarines. Since a valid 

model can simply incorporate true operational loadouts/configurations and it is 

impossible to test all possible combinations, typical loadouts were tested for each ship 

class and various battlegroup combinations (Kuykendall, 1998: 21-22). 

The TSOM was formulated using linear programming to maximize the objective 

function subject to real-world limitations and constraints (Appendix I presents 

Kuykendall's TSOM mathematical definitions and formulations). The objective function 
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was designed to maximize future flexibility/capability by weighting decisions based on 

maximizing the value of future salvos. Penalty values were assessed for failing to 

accomplish primary, ready-spare, and back-up missions; as well as for selecting a 

submarine missile that was not preloaded in its torpedo tube. A bonus was earned for the 

number of remaining Oil missiles (Kuykendall, 1998: 19). This formulation encourages 

missile selection that leaves one of each missile type in each half-module, which 

promotes future flexibility/capability, while ensuring the current missions get 

accomplished. The constraints were designed to restrict decision alternatives to account 

for operating restrictions. The first constraint ensured the model represented the 

launching system limitation of one missile launched out of each half-module per tasking. 

The second constraint ensured that post-launch loadout per each missile type equaled pre- 

launch loadout minus missiles assigned (assumed fired) to primary missions. The third 

and fourth constraints ensured tracking of each missile type in each half-module available 

for future salvos, SALVOSjm. This was accomplished by having SALVOSjm equal one for 

each half-module that contained one or more of each type of missile in the post-launch 

loadout or zero when a missile type has no missiles in the half-module. The SALVOSjm 

binary values are multiplied by each representative missile type value and summed to 

create the objective function discussed above. The fifth, sixth, and seventh constraints 

ensured that only one missile could be assigned to a primary, ready-spare, and back-up 

missions and ensured that a penalty would be applied if any mission was unfilled. The 

eighth constraint ensured that a ready-spare is assigned to the same ship that is assigned 

the primary mission. The ninth constraint ensured that the backup is assigned to a 

different ship than the one assigned the primary mission. The tenth and eleventh 
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constraints define the relationship among the variables for primary, ready-spare, and 

backup missions. 

This approach provided valuable insight for the force mix problem. The model 

proved robust for sensitivity analysis, and the accelerated speed provided additional 

rationale for exploring the use of linear programming for the force mix problem. 

Additionally, the concept of applying a value to asset-mission assignments was directly 

applicable to the force mix problem. Although Kuykendall's research showed many 

similarities between selecting the best mix of assets to missions with constrained 

resources, it only evaluated the selection of a missile location and did not include 

evaluating an asset's suitability against specific targets or the effects of decisions on the 

logistics footprint, which may limit the suitability of using this approach. 

The ALP. 

The ALP is attempting to develop a multi-echelon, distributed computing 

architecture that will create a near real-time deployment planning process for military 

forces.   The architecture attempts to automate logistics plan generation, perform real- 

time situation assessment, end-to-end movement control, and rapid supply (Carrico, 

2000). This deployment planning architecture will enable logistics planners to 

significantly reduce planning process time for situation-tailored logistics plans (Carrico, 

2000). This time reduction is achieved by using an automated system that integrates 

logistics and operations while also promoting seamless planning and execution (Filcek, 

2001: 20). Although using a single system promotes seamless integration and 

significantly reduces process time, a single program/model could possibly yield even 

greater results. 
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As mentioned in Chapter I, the ALP was developed to speed up the sourcing and 

tailoring of existing TPFDDs. Although automation speeds up the process, this 

methodology still promotes sequential processing which takes longer than parallel 

processing. For example, operations and intelligence planners develop operations plans 

which are then sent to logistics planners. Logistics planners then determine if the plan is 

supportable and decide how to tailor existing TPFDDs. The plan then returns back to the 

operations planners for re-planning or implementation. Several iterations may be 

required to balance operation plans with logistics constraints. If a model could be built 

that incorporated operations asset requirements in parallel with logistics requirements and 

constraints, time could be saved. 

The ALP, in its fifth year, is a single system that uses software agents to automate 

and manage logistics plan generation, execution monitoring, end-to-end movement 

control, and rapid supply and sustainment (Carrico, 2000b). Software agents, rather than 

an object-oriented design methodology, were pursued to facilitate a process focus instead 

of a data orientation. The agents are the foundation of the ALP Architecture Cluster as 

illustrated: 

Software agents are semi-smart, programmable pieces of software that can 
automate routine information processing, planning and monitoring 
activities. They can perform these functions relative to a set of processes 
and business rules appropriate for their domain and perform these actions, 
tailored to the requirements of the situation, in coordination with other 
humans, organizations and entities participating in the process. (Carrico, 
2000b) 

The general purpose agents and clusters, plus the domain knowledge and business 

rules/processes create domain specific agents that represent combat units, support units, 

and command and control responsibilities (Carrico, 2000b; Shaneman, 1999: 7). Agent 
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communities are composed of several interconnected clusters (such as Wings, 

TRANSCOM, CENTCOM, Army AMC, Battalions, etc) and agent societies are 

composed of several interconnected communities (Carrico, 2000b). For the Air Force, 

deployment order initiation begins the ALP contingency process. Deploying unit clusters 

allocate resources and forces to AEF clusters and AEF clusters use decision rules to tailor 

requirements for the Logistics Readiness Center (LRC) community (Filcek, 2000: 20; 

Carrico, 2000b). The LRC uses an optimization routine to source requirements and 

forwards the results to the US Transportations Command (TRANSCOM) community. 

The final step involves TRANSCOM's balancing of these requirements with other 

communities (services) deploying forces while optimizing the airlift sequence and speed 

and reducing the logistics footprint (Shaneman, 1999: 7) 

The ALP demonstrated its feasibility by building a Level 5 (highly-detailed) 

logistics plan for the US Army's 3rd Infantry Division in less than one hour in 1998 

(Carrico, 1998: 5), and a realistic Level 6 deployment plan (including support and 

sustainment) for a major joint deployment in 2000 (Carrico, 2000b). The success of the 

1998 test was especially noteworthy, since the demonstration was conducted using 

standard personal computers over standard internet bandwidth extracting real-time data 

from the Joint Total Asset Visibility, Global Transportation Network, and Global 

Decision Support System databases to build detailed plans (Carrico, 1998: 5). Timelines 

can be significantly reduced since all critical players have instantaneous access to 

detailed joint logistics plans generated in the ALP architecture. 

This new model could also give operations planners visibility into how their 

decisions affect sustainment and are affected by logistics constraints. To take advantage 
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of the power of ALP, researchers at AFIT proposed that building-up capability based on 

incremental units of capability and logistics requirements was more effective and 

efficient than breaking-down existing TPFDDs. Additionally, ALP has been unable to 

expediently select the "best" logistics plan from competing alternatives and the "best" 

logistics plan selection cannot begin without the selection of the best force mix (Buzo, 

2000: 1). While the ALP architecture does not solve the force mix problem directly, it 

will (for the first time) make available in real-time the information required to formulate 

and solve this problem. 

David Wakefield's GA Approach. 

David Wakefield's GA modeling approach attempted to build a model that 

identified a preferred force mix by balancing resource suitability and lift requirements. 

"An Evolutionary approach was applied to a tri-objective constrained optimization 

problem with 15 decision variables with the goal of producing five Pareto optimal sets of 

force mixes corresponding to five progressively larger sortie capability levels" 

(Wakefield, 2001: x). The three objectives were to maximize task suitability, minimize 

lift weight, and minimize lift volume. Task suitability refers to the aircraft's designed 

effectiveness/suitability to perform specific aerospace missions. The first objective, 

maximize task suitability, promotes selecting an MRR set or force mix that is "best" 

suited for the specified missions. The force mix provides a certain suitability/capability 

to the CINC, but at a cost: lift resource consumption. The finite military lift capability is 

a key constraint on the amount and timing of resources flowing into an area of operation. 

Therefore, it is desirable to deliver an MRR combination that minimizes lift. Airlift is 

constrained not only by the amount of space available in the cargo aircraft, but also by 
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the amount of weight a cargo aircraft can transport. Since the goal of the planners is to 

provide the CINC the best combination of MRR that satisfy the time phased needs for 

these resources and provide the greatest combat capability, the competing objectives 

(minimizing lift consumption and maximizing suitability) must be balanced. 

The 15 decision variables included 5 different resources capable of doing 3 

different tasks. Each of the 5 resources (MRR) represents a combination of an asset type 

and its requirements, e.g. aircraft, pilot, fuel, munitions, support equipment and 

personnel, etc., that has a designed suitability for a single task. To illustrate, assume that 

a notional aircraft F, has three configurations, FA, FB, and Fc, which constitutes three 

MRR types. The tasks represent the types of missions, targets, or tasks that the CINC 

desires to be resolved by the MRRs. In this research, they represent Air-to-Air, Air-to- 

Ground, and Precision Bombing tasks. The task mix or preference can be defined as the 

set of points along the resource/capability levels within a given campaign phase (see 

Table 1). 

Table 1. Desired Capability Matrix (Wakefield, 2001: 51) 

1 
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The capability/resource levels represent different levels of total activity (resource 

availability). To demonstrate, assume that only four notional FA aircraft could be 

prepared and flown four times per day, then it would represent a capability level of 16 

(16 sorties available per day). The five different capability levels are identified in Table 

1. The capability levels are 16, 32, 75, 150, and 300. To illustrate, the first capability 

level of 16 is broken down into 10 AA, 5 AG, and 1 PB tasks. The task mix for the 

problem is somewhat arbitrary. For a real-world situation, the task mix is proportional to 

the commander's preference curve. 

Since the combinatorial nature of the research was assumed to be very large, it 

necessitated the use of a heuristic and a relatively small set of assets with which to 

explore the algorithmic search for an acceptable solution (Wakefield, 2001: 5). For 

example, with 300 sorties per day, it was estimated that ~ 4.37 x 1019 different solution 

combinations were possible. Therefore, real world problems with even more possible 

solutions remain hard or nearly impossible to solve with deterministic methods, and the 

combinatorial nature of the problem may require heuristic approaches. 

Meta-heuristics, like GA and Tabu Search, were developed to deal with these 

increasingly more complicated problems by balancing computational processing time 

with solution quality. Heuristics provide approximate solutions (good solutions with no 

guarantee of optimality) with less computational processing. A meta-heuristic refers to a 

master strategy that guides other heuristics to explore solutions beyond local optimality to 

find high quality global solutions (Glover, 1999: 17). GA seeks to replicate the 

biological phenomenon of evolutionary reproduction, where populations (potential 

solutions) evolve through natural selection and survival of the fittest (Glover, 1999: 1). 
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GAs use this population based approach to produce new potential solutions "offspring" 

by randomly determining which characteristics "hereditary traits" of the of existing 

solutions "parents" to combine and randomly selects which existing solutions will be 

parents (Glover, 1999: 18). Since population size is fixed; old, weak individuals are 

discarded or killed off. Over many generations the hereditary traits associated with 

higher quality solutions tend to dominate the surviving solutions. This approach uses 

randomization to prevent cycling, reduce dependence on memory, and increase 

simplicity. 

Cycling, revisiting previously evaluated solutions, is undesirable since it wastes 

computational processing time and reduces the chance of finding high quality solutions 

within time constraints. Since heuristics are used because of their ability to expeditiously 

find good solutions, cycling would eliminate any timesavings. GAs use randomization to 

achieve a diversifying effect thus preventing cycling. Since each solution has an equal 

chance of being selected using randomization, problems with realistically sized solution 

spaces have a low probability of revisiting previously evaluated solutions (cycling). This 

promotes selecting unique (diverse) solutions for evaluation. Since diversification is 

achieved, the algorithm does not need to use exponentially large amounts of computer 

resources to store information and history of previously visited solutions or maintain 

numerical accuracy after hundreds of thousand to millions of mathematical calculations. 

The need for large amounts of computational memory are eliminated in GAs by only 

storing attributes of the best found solution and not storing data about any other 

previously visited solutions. The assumption that revisiting previous solutions is low 
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Supports tracking only the attributes of the best solution. Since the method is 

"memoryless," no special programming is needed to track solution history or attributes. 

From an abstract standpoint, there is clearly nothing wrong with 
equating randomization and diversification, but to the extent that 
diversity connotes differences among elements of a set, and to the extent 
that establishing such differences is relevant to an effective search 
strategy, then the popular use of randomization is at best a convenient 
proxy (and at worst a haphazard substitute) for something quite 
different. (Glover, 1999: 101-2) 

The reader is referred to Appendix J for the mathematical formulation that David 

Wakefield used to solve the force mix problem. His Multiobjective Messy Genetic 

Algorithm (MOMGA-II) was modeled after the ALP Pilot Problem and used notional, 

but not arbitrary, coefficients to represent MRR suitability values, weight requirements, 

and volume consumption. The MOMGA-II was formulated using mathematical 

programming to present a Pareto optimal set of force mixes to the war planner for 

selecting the desired force mix within constraints. An optimal set of force mixes are 

presented for each capability level, instead of a single optimal force mix, since the three 

separate objective functions may represent three different optimal force mixes. Each 

Pareto optimal set must be balanced using some decision making methodology to 

generate a preferred MRR mix. 

The first objective function was designed to maximize the suitability of the MRR 

set to accomplish required tasks by summing the product of the MRR suitability and 

associated quantity. Based on the linear weight requirement assumption, the second 

objective function was designed to minimize the MRR set total weight requirements, 

calculated by summing the product of the MRR type quantity by the MRR type weight 

coefficient. Based on the linear volume requirement assumption, the final objective 
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function was designed to minimize the MRR set total volume consumption, calculated by 

summing the MRR type quantity by the MRR type volume coefficient. 

The 10 constraints were designed to restrict the decision alternatives to model 

reality. The first constraint ensured that a negative number of MRR types could not be 

assigned to tasks. Since it would be impossible to assign a negative number of aircraft to 

accomplish a task, this is a relevant restriction. It is also impossible to assign a fractional 

number of aircraft to accomplish a mission. The second constraint remedied this 

restriction by ensuring MRR only assume integer values. The third, fourth, and fifth 

constraints ensured that one MRR was assigned to exactly one task and that tasks were 

accomplished in the exact proportion specified by the decision maker at each 

capability/resource level. Since an MRR type can only be assigned to a task if one is 

available, this restriction must be included in a valid model. The remaining constraints 

ensured that the quantity of each MRR types assigned to tasks were available to be 

assigned. To illustrate, assume ten F-16s are available. The F-16s can be assigned to any 

combination of tasks, but only if the total quantity of F-16s assigned is less than or equal 

to ten. 

There are several reasons this method was rejected. First, processing and 

computational speed and computer memory capability continues to grow exponentially, 

making deterministic models more feasible and desirable. Second, many meta-heuristic 

methods are not generalizable. New problems require new procedures, since applications 

generally require highly problem-specific designs (Frontline, 2000: 15). Third, the 

criticality of selecting the best force package mix, as identified in the Cold War CONOPS 

Change and The Need for Merging subsections, makes finding the true optimal value 
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more important. Since heuristic models cannot guarantee optimality, deterministic 

models are preferred. Fourth, "MOMGA-II does not go far enough to prevent 

convergence to an infeasible front" (Wakefield, 2001: 70). Finally, this methodology 

requires extensive knowledge in programming to create and use the model while 

enumerative deterministic models can be created in user-friendly software such as Excel. 

For example, the Excel compliant Large-Scale LP Solver "uses advanced matrix 

factorization methods such as LU decomposition and dynamic Markowitz refactorization, 

for both speed and numerical stability.. .capable of handling very large problems of up to 

65,000 variables and 65,000 constraints" (Frontline, 2000: 12). Since a deterministic, 

exact approach to the problem shows promise, and has not yet been tried, further 

consideration was warranted. 

Solution Approaches 

This subsection discusses some basic aspects of the various solution approaches: 

modeling, mathematical programming and modeling, mathematically defining the 

problem, linear programming, and large integer linear programming. This research effort 

constructs a general modeling approach for force mix selection that is applicable over the 

wide range of problems on the crisis-planning spectrum illustrated in Figures 4 and 5. 

Modeling. 

Modeling is a management approach that uses a simplified version of a problem 

or object to represent the relevant characteristics to be studied. The benefits of modeling 

are that they are usually simplified versions of the problem, less expensive to analyze, 

provide information in a more-timely manner, safer in certain circumstances, provide 
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insight into things that would be impossible to do in reality, and improve decision maker 

insight and understanding of the problem (Ljung, et al, 1994: 14; Ragsdale, 2001: 4-5; 

Smith, 1977: 7; Chang, 1990: 258). 

Modeling is very important in the military for four reasons. First, timely delivery 

of information can mean the difference between life and death. Second, it would be 

impossible to perform certain important tests (such as live fire tests to determine B-2 pilot 

survivability against Surface to Air Missiles) since it is too risky and potentially too 

expensive. Third, it is less expensive to build representative models of aircraft and tanks 

to determine weapon system feasibility. Finally, low cost models can find flaws and 

avoid costly mistakes before full-scale production. For example, "it is far less costly to 

discover a flawed wing design using a scale model of an aircraft than after the crash of a 

fully loaded jet liner" (Ragsdale, 2001: 4). A precautionary statement is necessary: a 

model is only valid if it accurately represents the relevant characteristics of the problem 

in question. 

There are three basic types of models: mental, visual, physical or scale, and 

mathematical (Ljung, et al, 1994: 14-15; Ragsdale, 2001: 2; Williams, 1985: 3). A 

mental model is a decision analysis approach where alternatives are evaluated within the 

decision maker's mind, such as mentally determining how to best utilize the workday. 

For complex problems like force mix determinations, a mental model would be 

impossible and inadequate. A visual model is a drawing or map, such as blueprints, that 

helps a decision maker evaluate various routes or layouts. Since force mix 

determinations involve evaluating how to optimize hypothetical quantities of assets to 

meet requirements within constraints, visual models would be infeasible. A physical or 
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scale model is a method of analyzing or evaluating physical objects to determine their 

capability, feasibility, or risk. Since force mix determinations are not physical objects or 

concerned with determining the physical characteristics of a specific object, physical or 

scale modeling would be inappropriate. A mathematical model uses mathematical 

relationships to evaluate problems. Force mix determinations try to maximize combat 

capability within constrained resources, and these relationships and objectives can be 

represented mathematically, mathematical modeling would be appropriate. Mathematical 

models are usually represented in computer programs to address questions about the 

model's behavior (Kelton, 1998: 6). A discussion of computer modeling follows while a 

detailed review of mathematical programming and modeling will be expanded in the next 

subsection. 

Today, decision makers face a fast-paced, rapidly changing competitive 

environment with complex problems that are not easily solved and involve numerous 

possible solution options. Selecting the best course of action and assessing these solution 

options embodies the fundamental nature of decision analysis. Trying to cope with the 

complexities of managing in the "real-world," managers discovered that using computer 

models, such as spreadsheets, was one of the most effective means of assessing the 

different solution options and selecting the best course of action (Williams, 1985: 229; 

Ragsdale, 2001: 1). 

To establish the foundation of the term computer model for this research, the 

research uses the following definition: a set of mathematical relationships and logical 

assumptions (mathematical modeling) that represent the physical processes being 

analyzed implemented in a computer (Ragsdale, 2001: 1; Ljung, et al, 1994: 169-170). 
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Mathematical Programming and Modeling. 

Mathematical programming (MP) is a field of management science that attempts 

to optimize individual or business objectives within limited resources using mathematical 

relationships that represent physical processes being analyzed (Smith, 1977: 7; Williams, 

1985: 3-5; Ragsdale, 2001: 16). As mentioned above, mathematical models are quite 

different from physical or visual models. These models use mathematics, structural and 

quantitative approximations and assumptions, as well as logic to describe how the system 

works or will work. A simple example can illustrate how mathematical models can 

represent or describe a problem: 

REVENUE = SALES PRICE X QUANTITY SOLD (2.1) 

Equation 2.1 describes the relationship between revenue, sales price and quantity 

sold. This is a mathematical relationship that describes how revenue is a function of 

individual sales price and the quantity sold. Since equation 2.1 helps management 

evaluate alternatives to optimize revenue within quantity available constraints and uses 

mathematical relationships, this formula is a simple mathematical model. 

MP techniques have been successfully used in solving product mix, routing and 

logistics, and financial planning problems (Ragsdale, 2001: 17; Williams, 1985: 64-68). 

Since determining manufacturing product mix (what products to make and in what 

quantity with a variety of different amounts of constrained resources) uses a nearly 

identical methodology as finding military force mixes, this provided strong, additional 

rationale for using this approach. 
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There are three categories of mathematical models: descriptive, predictive, and 

prescriptive (Ragsdale, 2001: 7-8). A summary of each model category and their 

characteristics is presented in Table 2. 

Table 2. Categories and Characteristics of Mathematical Models (Ragsdale, 2001: 8) 

21                                             Model Characteristics 

Category Form of !"(•) 
Values of 

Independent 
Variables 

Management Science 
Techniques 

Prescriptive 

Models 
known, well- ; 

defined 

known or 
under decision- 
makers control ; 

Linear Programming, Networks, 
Integer Programming, CPM, 
Goal Programming, EOQ, 

I        Nonlinear Programming 

Predictive 
Models 

unknown, ill- 
defined 

known or 
under decision- 

! makers control 

Regression Analysis, Tiiru- 
Series Analysis, Discrimina nl 

i                     Analysis 

Descriptive 
Models 

known, well- 
defined 

unknown or 
i       uncertain 

Simulation, Queuing, PERT. 
Inventory Models 

Descriptive models are used when decision makers have a well-defined functional 

relationship between the independent and dependent variables, and the exact values of the 

independent variables are uncertain or unknown. These models describe outcome or 

behaviors of a given operation or system. Since this research assumes that the functional 

relationship and independent variable values are known, this method was considered 

unsuitable for this research. 

Predictive models are used to predict the value of the dependent variables when 

the functional relationship is unknown, and independent variables take on a specific 

value. Since this research assumes that the independent values are known, predictive 

models may be unsuitable for this research. 
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Prescriptive models are used to help decision-makers decide what action to take 

when the functional relationship is well defined and the independent variables are known. 

Because of these characteristics, this approach appears well suited for this research 

problem. 

Mathematically Defining the Problem. 

Since mathematical programming attempts to optimize resource allocation, 

optimization problems must be able to be defined in mathematical terms or symbols to 

represent the decisions, constraints, and objective (Ragsdale, 2001: 18-19; Williams, 

1985: 3-7). The decisions may represent the amount of different products to manufacture 

or the amount of different aircraft to deploy to a conflict. The values or outcomes of the 

optimization problem decisions can be represented by a set of variables: 

Xi, X2, ..., X„-i, X„ (2.2) 

These variables are usually referred to as the decision variables; additionally, the exact 

symbols used are a matter of personal preference. The constraints are the limits on the 

amounts of the resources available. Resource consumption can be expressed as a 

function of the decision variables to represent some type of limited resources that apply 

to the situation. The nature of the constraints can be expressed in three general ways to 

represent the problem in relation to a specific value: an equal to constraint, a less than or 

equal to constraint, or a greater than or equal to constraint. For example, if there are only 

50 aircraft to fly missions, the constraint on the amount of the aircraft resource would be 

less than or equal to 50. The objective in optimization problems is represented by the 

objective function, such as: 

MAX (or MIN): f0(Xh X2, ..., Xn.h Xn) (2.3) 
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"The objective function identifies some function of the decision variables that the 

decision maker wants to either MAXimize or MINimize" (Ragsdale, 2001: 19). Equation 

2.3 is expressed as a function since the model can represent a linear or nonlinear 

relationship between decision variables with or without interactions between these 

variables. In general terms, this infers that the objective function is a mathematical 

statement describing the relationship between the objective the decision maker wishes to 

optimize and the value of the decision variables in the problem. This assumes that the 

objectives can be clearly identified, mathematically represented, and are limited in 

number. 

The objective function is also assumed to be the sole criteria for choosing 

between feasible values of the decision variables. The standard mathematical 

optimization format, indicating both the desired outcome (objective) and resource 

limitations (constraints), would generally take the form of: 

MAX (or MIN): f0(Xh X2, ..., Xn.h X„) (2.3) 
Subject to: fi(Xh X2, ..., Xn.h Xn)=bi (2.4) 

f2(X1,X2,...,Xn.1,X„)<b2 (2.5) 
f3(X1,X2,...,Xn.1,X„)>b3 (2.6) 

This general MP model can be used with many kinds of functions and constraints, giving 

it great diversity. These functions, represented by fo in equation 2.3, can be linear or non- 

linear with or without interaction between the variables. The specific MP technique 

called linear programming, which solves optimization problems with linear objective 

functions and constraints, will be examined. 
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Linear Programming (LP). There are various methods for formulating problems 

as linear programs. Two specific requirements needed to formulate problems as an LP 

model are linear objective functions and constraints. Murty describes LP as follows: 

[It] deals with problems in which a linear objective function is to be 
optimized (i.e., either maximized or minimized) subject to linear 
equality and inequality constraints and sign restrictions on the variables. 
To formulate a real life problem as a linear program is an art in itself. 
Even though there are excellent methods for solving a problem once it is 
formulated as a linear program, there is little theory to help in 
formulating the problems in this way. (Murty, 1976: 1) 

Formulating an optimization problem as a LP model requires proportionality, additivity, 

continuity of variation, divisibility, and deterministic coefficient assumptions (Murty, 

1976: 2-3). Proportionality assumes that each variable's contribution to the value of the 

objective function is proportional to the level/value of the variables, and each variable is 

independent of each other. Additivity assumes the total objective function value can be 

obtained by adding the individual contributions of the different variables. Continuity of 

variations assumes that the decision variables can be all real values in its range of 

variation. To illustrate, variables that represent real world integer decisions must be 

modeled as an ILP. Divisibility assumes that variables can be any non-negative values 

including fractional ones. Deterministic coefficients assume that the decision variables 

values are know with certainty and do not vary. The general LP formulation according to 

Williams, Murty, and Ragsdale was stated as: 

MAX (or MIN): ciXi + c2X2 + ...+ cnXn (2.7) 
Subject to:          anXi + ai2X2 + ...+ ainX„=bi (2.8) 

akiXi + ak2X2 + ...+ aknXn<bk (2.9) 
amiXi + am2X2 + ...+ amnXn>bm (2.10) 
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This model differs from the general MP model since the objective function and 

constraints are restricted to a linear function of the decision variables; the coefficients (c 

and a) must be proportional, additive, and deterministic; and each variable must be 

independent of each other (no interactions). 

The process of taking a problem like force mix selection and describing it 

algebraically in LP format is known as model formulation. Ragsdale identifies five steps 

for formulating LP models: understand the problem, identify the decision variables, state 

the objective function as a linear combination of the decision variables, state the 

constraints as linear combinations of the decision variables, and identify any upper or 

lower bounds on the decision variables (Ragsdale, 2001: 20-21). 

Although the "understanding the problem" step appears obvious, people's 

enthusiasm to solve a problem often causes them to start programming before they 

understand the problem. "If you do not fully understand the problem you face, it is 

unlikely that your formulation of the problem will be correct" (Ragsdale, 2001: 21). The 

decision variables are the fundamental decisions that must be made to solve the problem. 

This means determining what Xi, X2, ..., Xn_i, X„ represents. Stating the objective 

function as a linear combination of the decision variables involves creating an objective 

function that algebraically expresses the relationship between the variables to be 

maximized or minimized. For example, a $175 profit earned on each chair (Xi) sold and 

$200 profit for each couch (X2) sold can be modeled as: 

MAX:     175X!+200X2 

The function above calculates (and seeks to maximize) the total profit for 

whatever values Xi and X2 could take. However, the range of values for Xi and X2 is 
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surely limited (constrained). Stating the constraints as linear combinations of the 

decision variables places limits on decision variable selection according to resource 

availability. To demonstrate, assume each chair requires 10 board-feet, each couch 

requires 20 board-feet, and only 3000 board-feet are available at the company. This 

resource limitation can be modeled as: 

10Xi + 20X2<3000 

Identifying any upper or lower bounds on the decision variables includes mathematically 

representing additional constraints. For example, selling a negative number of chairs or 

couches is not feasible/possible and can be modeled as follows: 

Xi, X2 > 0 

The explicit purpose of linear programming is to identify an optimal solution, as 

represented by the values of the decision variables. The optimal solution is a solution 

that either maximizes or minimizes the objective function (depending on the problem 

objective) and is within the feasible region (Murty, 1976: 19). The feasible region is "the 

set of points or values that the decision variables can assume and simultaneously satisfy 

all the constraints in the problem" (Ragsdale, 2001: 29). There are 5 possible conditions 

that may arise: unique optimal solution, alternate optimal solutions, redundant 

constraints, unbounded solution, and infeasible solution (Williams, 1985: 21-35; 

Ragsdale, 2001: 31-33; Frontline, 2000b: 39). 

When an optimal solution occurs at some Right-Hand Side extreme point (points 

in the feasible region where two or more constraint boundaries intersect) that intersects 

the objective function at the extreme point, it is a unique optimal solution. This is 

illustrated graphically in Figure 8a. The graph represents the model by presenting the 
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objective function values at different decision variable points, the constraints as line 

segments, and the inequality area of the constraints as the feasible region. When more 

than one feasible point maximizes or minimizes the objective function value, they are 

alternate optimal solutions. Figure 8b shows alternate optimal solutions. When a 

Objective function level curve 
450Xj + 300X2 = 78300 

alternate optimal solutions 

Figure 8. (a) Unique Optimal Solution, (b) Alternate Optimal Solutions 

constraint is not relevant in determining the feasible region in the problem, it is a 

redundant constraint. Figure 9a shows this condition. When the objective function can 

■X,+2X2 = 100 

100 150 200 

(b) 
Figure 9. (a) Redundant Constraint, (b) Unbounded Solution 

250    X1 
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be made infinitely large, an unbounded solution occurs. Figure 9b shows this condition. 

When no solution exists that satisfies all problem constraints, it is an infeasible condition. 

This can be caused by the inability to solve all constraints or formulation/input errors. 

Figure 10 shows this condition. 

X2 

250 

200 

150 

100 

50 

:X, + X, = 200! 

feasible region for 
2ml constraint 

fciisihli- region for 
I" constraint 

X, + X, = 150 

0 50 100 150 200 250     X., 

Figure 10. Infeasible Solution 

There are several shortfalls to using LP techniques. First, properly defining the 

model can be difficult. Second, it can be very time consuming to build a valid model. 

Third, the model builder must have a thorough knowledge of model building and all 

extensive knowledge of the problem. Fourth, since the real world is very complex, it is 

impossible to mathematically represent all contributing factors in a model. 

These shortfalls evaluated before making the decision to use this method. LP was 

chosen as a valid methodology for the force package mix problem for four reasons. First, 

the objective function of force mix problems is the sum of the different asset-task 

suitability values multiplied by the number of assets fulfilling these roles, making it a 
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linear combination of the decision variables. Second, the constraints are a linear function 

of the decision variables. Third, modeling relevant, although not all, factors should 

adequately represent the problem and provide a valid tool for decision makers. Finally, 

off-the-shelf software, like Excel, has reduced the knowledge necessary for modeling 

problems. In the next subsection, the LP technique called integer linear programming, 

which solves optimization problems when some or all of the decision variables must 

assume an integer value, will be examined. 

Large-Scale Integer Linear Programming (LSILP). 

LSILP differs from LP on two key characteristics: large scale and the requirement 

for integer-only variable values. 

Although there is no precise definition of what constitutes "large" scale problems, 

and the definition changes depending on the tool or user, Brook describes it as: 

What is a large model? The answer varies. It is one that takes a lot of 
time (or money) to solve. It is one that "just fits" into memory available 
on your machine. It is one that has more than a few hundred lines of 
assignment and equations when written in GAMS. Briefly, any model 
that is expensive to solve or difficult to manage, or whose details are so 
overwhelming that it is hard to keep track of them is large. (Brook, 
1992: 166-167) 

Large scale problems are difficult for two basic reasons: a large decision space to 

search and large memory requirements to track the solution search and candidate results. 

"Such problems require different algorithmic methods to manipulate large amounts of 

data, and to maintain numerical accuracy after hundreds of thousands to millions of 

floating-point arithmetic calculations" (Frontline, 2000: 9). 

ILP is a natural extension of LP when the decision variables represent discrete 

choices such as planning an aircraft for a sortie or not. Since many real-world problems, 
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activities, and resources, like people, tanks, ships, aircraft, or sorties are indivisible, they 

require the determination of yes-no decisions or integer values. For example, if the Army 

is trying to decide how many tanks to send into combat, it must obtain an integer solution 

because the Army cannot deploy a fraction of tanks. The Theater Attack Model is an 

example of large-scale linear programming's applicability to DoD problems (Jackson, 

1989: 1). This model performs trade-offs analysis of the impact of aircraft and munitions 

effectiveness, weather, length of mission, and other factors on the effectiveness of a battle 

plan. According to many experts, "most optimization problems of a combinatorial nature 

can be formulated as integer programs" (Murty, 1976: 397). 

ILP can be classified into two categories: pure, all integer programs or mixed 

integer programs (Murty, 1976: 397). Pure integer programs are models where all the 

decision variables must assume integer values. Mixed integer programs are models with 

some integer and some continuous decision variables. 

"Although it is easy to state integrality conditions for a problem, such conditions 

often make a problem more difficult (and sometimes impossible) to solve" (Ragsdale, 

2001: 231). The difficulty and time required to find an optimal solution are increased 

since the search space is expanded beyond the feasible region extreme points to all 

integer points within the feasible region. For example, instead of calculating the 

objective function values for only four extreme points in the Figure 11(a) case, under the 

LP method, all eleven feasible integer solutions must be identified and calculated in the 

Figure 11(b) case. In this simple example, the integer condition represents a 275 percent 

increase in complexity between the LP and ILP methods. 
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Non-integer Feasible Solutions Integer Feasible Solutions 

(b) X, 

Figure 11. Integer and Non-integer Solution Space Comparison 

There is an additional problem with integer conditions applied to the LP. It is not 

sufficient to simply "round off the LP version of a problem in order to achieve integer 

results. As seen in Figure 12, using rounding to obtain an integer solution is not correct. 

First, this practice may yield an infeasible solution. Second, it would not guarantee 

selection of the optimal solution. These problems with using rounding require that an 

ILP cannot consider only the LP formulation as a solution starting point, resulting in 

(often dramatic) increases in the feasible decision space. Because of the decision space 

explosion caused by implementing integrality conditions, a complete enumeration of 

many realistic-sized problems will be required. These problems rapidly become 

unsolvable. 

The ILP packages have several ways to deal with/avoid complete enumeration of 

realistic-sized problems. First, the packages' generally offer users the ability to set a 

tolerance that will stop the search when a solution is found within the defined (tolerance) 

percentage of the relaxed LP value. Second, packages generally allow users to specify a 

maximum runtime or maximum number of iterations for the search to find the "best" 
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X 

optimal relaxed (non-integer) solution 

infeasible solution obtained 
by rounding down 

1 2 3 4       X1 

Figure 12. Infeasibility Caused by Rounding 

solution up to the specified search duration. Third, packages may allow users to stop the 

search, without a full enumeration, if a maximum amount of time has passed without an 

improving solution. Fourth, since these problems are generally very simple 

mathematically although massive in the number of alternatives, packages may use the 

exponential growth in computer processing speed to rapidly manage complete 

enumerations. Fifth, packages may use the Simplex or Branch and Bound methods. 

Last, packages may use new methods to speed the search process such as advanced 

matrix factorization methods, improved Simplex that fully exploits scarcity in the 

solution space, steepest-edge pivoting strategies, or parallel searches (evaluating two or 

more solutions simultaneously) (Frontline, 2000b: 40). 

All the disadvantages were considered before deciding to select this technique. 

Since force mix optimization problems are combinatorial and require integer decision 

variables, ILP provides a close fit to this research problem. Additionally, the integer 

decision variables are required to realistically model this problem. 
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Summary 

This chapter reviewed the literature that provides a background for this research. 

The literature review found that the post cold war environment highlighted the critical 

need for a rapid method of creating lean and lethal force mixes that views DoD as a 

single organization. This rapid method would achieve greatest value if it could give a 

global vision to planners by eliminating the operations and logistics separate planning 

barriers. Since modeling and MP was very successfully used for many DoD problems, it 

warranted further study. Previous research provided valuable insights for mathematically 

representing the preference curve concept, the MRR suitability value, MRR deployment 

lift concept, and shortfalls of the other approaches. Within modeling and MP, LSILP's 

exact approach showed promise and had not yet been tried; therefore, further 

consideration was warranted. In Chapter III, a large-scale integer linear programming 

model is formulated and presented for the force mix campaign-planning problem. 
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III. Methodology 

Introduction 

This research uses a model, an abstract representation of a real-world problem, as 

its primary investigative instrument. Since the real world is too complex to model 

exactly, a model must make certain simplifying assumptions and only contain the level of 

detail necessary to accomplish its objectives. The objective of this research is to develop 

an efficient and realistic decision support model for force mix optimization. The model 

is intended to provide planners the best force mix within logistics constraints. This 

should help dissolve the barrier between operations, intelligence, and logistics planners, 

and provide a composite planner with a view of the whole decision space (indicating how 

the planner's asset choices directly affect or are affected by logistics constraints). 

This chapter outlines the methodology used to develop the force mix optimization 

model. The chapter begins with the conceptual model formulation based on the ALP 

Pilot Problem. The second section describes the formulation of the ILP. This section 

also describes the development of the iterative process to solve along the preference 

curve to maximize the quantity of supportable missions restricted by improving 

suitability. The third section presents the performance evaluation measures, such as run- 

time and quality of solution. The fourth section presents the experimental design. 

Model Formulation 

The ALP Pilot Problem (Appendix B) provided the foundation for constructing 

this model. The MRR, the preference curve, and the Asset-Mission effectiveness value 

concepts were derived from this paper. 
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A systems approach was used to create the Mission Asset Resource Mix 

Optimization Tool (MARMOT) as a large-scale integer linear program model. The 

MARMOT Processing Model is illustrated in Figure 13. Using the systems approach, the 

problem was broken-down and evaluated according to the systems approach components: 

input, process, and output. The inputs consist of the Task Preference Matrix (TPM), the 

MRR Task Suitability Matrix (TSM), the MRR Weight Matrix, Deployment Lift 

INPUTS 
iDeployment Lift Availability 

PROCESS OUTPUT 

MRR Types & Availability 

Munitions Availability 

Munitions Confiq. Matrix 

Bomb Component Matrix 

Task Preferences Matrix 

MARMOT 
Decision 
Support 

Tool 

MRR Task Suitability Matrix 

Optimal Force Mix 
Along the 

Preference Curve 
Maximizing the # 

of Missions Bounded 
by Task Suitability 

and Logistics 
Supportability 

Task Preferences Matrix 

Campaign Specific 
Processing & 
Selection of 
Progressive 
Force Mixes 

Figure 13. MARMOT Processing Model 

Availability, MRR Types and Availability (different asset/munitions configurations and 

quantity of mission quantities), Munitions Configuration Matrix (MCM), Bomb 

Component Matrix (BCM), and Munitions and Component Availability. The process 

step, conducted in the MARMOT, converts the inputs into usable output. These inputs 

will be described in the next several paragraphs. The MARMOT Decision Support Tool 

uses the methodology extracted from the literature discussed in Chapter II and is 

described in the next section. The output should provide the war planner an optimal force 

mix that balances logistics constraints and operational requirements. The model solution 
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presents the planners the best mix of MRRs, the highest number of supportable tasks, the 

total number of supportable daily missions, the amount of deployment lift consumed, the 

number of assets to deploy, and the amount of bomb components and munitions to 

deploy. 

The TPM is based on the ALP Pilot Problem's Sortie/Mission Mix Preference 

Inflection Points (over Resource Levels) concept (Table 4). In this formulation, the 

integer values for each incremental mission are included in matrix form, eliminating the 

need for inflection points and linear relationship assumptions. The TPM is designed to 

represent the commander's preference for certain missions over others during an 

operation when a limited number of total missions are available. For example, during the 

initial deployment when few sorties are available and gaining air superiority is a priority, 

a CINC may prefer a large proportion of the total missions to be AA (20 of the 40 sorties 

available), a fairly large proportion to be SEAD (10 of 40) and INT (10 of 40), and no 

CAS. As more total missions become available and/or the campaign transitions to 

ground support priorities, the CINC may prefer a larger portion of CAS (600 of 1000 

sorties), a fairly large number of INT (250 of 1,000), and fairly low number of AA (100 

of 1,000) and SEAD (50 of 1,000). This is illustrated in Figure 14. The TPM then 

represents the relative priority of tasks. The TPM helps to rapidly identify force mixes by 

matching mission preferences to tasks. Appendix C presents an example of the notional 

TPM used for this model. 
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Figure 14. Task Preference Over Mission Levels (RAND, 1997:18) 

The TSM is based on the Pilot Problem's Asset-Mission Task Preference Matrix 

(A-M TPM) concept (Table 3). This research uses a slightly different definition of the 

effectiveness values. In the Pilot Problem Formulation, the A-M TPM value of .5 implies 

that two sorties are required to achieve the same battlefield result of a single sortie of the 

best asset for that mission. In this formulation, the TSM value is a "mission suitability" 

value assigned by military targeting experts. The TSM represents the relative 

effectiveness of an MRR performing a task. As mentioned in Chapters I and II, it is 

assumed that the effectiveness is composed of the intrinsic suitability (specific asset and 

munitions capability against a specific target) and the extrinsic suitability. 

Notional, yet realistic, data was used for this suitability matrix to keep this 

research unclassified. The real values would be based on the expert assessments of war 

planners and intelligence people, who would assign effectiveness values for specific 

assets and munitions combinations (MRRs) against specific target types (tasks). The 

TSM therefore establishes the mission-weighted preferences between assets (MRRs) and 

missions and is listed in Appendix D. 
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The MRR concept, as a basic deployment unit of measure, represents a departure 

from classical logistics approaches. Therefore, logistics support requirements (including 

deployment cargo weights) have not been formulated or calculated using this unit of 

measure. It was therefore necessary to construct approximate values for the support of an 

MRR based on existing (non-MRR) data. Notional values for the MRR weight matrix 

are used due to this lack of data. Determining the relationship between MRRs and lift 

requirements is beyond the scope of this research; however, this must be accomplished 

prior to real-world application of the model. Since actual values could be easily 

substituted into the model when they are determined, the use of notional values poses no 

risk to internal model validity. An extension to this model to calculate MRR logistics 

support requirements could then be used to calculate the exact deployment weight needed 

and create the TPFDD. 

The MCM lists the specific feasible munitions configurations for each MRR, and 

is used to calculate the total number of munitions required. For example, each A10-1 

MRR requires 2 AIM-9s, 2 AGM-65s, and 4 GBU-12s according to its configuration. 

The complete MCM is listed in Appendix E. The A10 and F16 configurations are based 

on the standard configurations from the FAS website listed in the Bibliography section. 

The others are based on notional data. 

Several munitions are built from shared components. Examples include gravity 

bomb assemblies such as MK82s, MK84s, or GBU-24s. Since the model is being built to 

determine concept feasibility and is not for full implementation, a representative sample 

(not a complete enumeration) of second tier resources (components) were programmed in 

the model. The BCM lists these components in Appendix F. The components are 
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referred to as second tier resources because their demand/usage is a derived demand from 

the munitions end item (i.e. MK-82) in the MCM determined by the number of MRR 

using that munition selected. For example, both the MK-82 and the GBU-12 munition 

use 500-pound bomb bodies as components. The need for 500-pound bomb bodies is 

therefore derived from the number of MK-82s and GBU-12s needed. The number of 

MK-82s and GBU-12s is derived from the number of A10-ls, A10-9s, A10-1 Is, F16-3s, 

F16-1 Is, F18s, F19s, Bis, B2s, and B3s selected. The BCM is based on the component 

list from the FAS and Eglin websites listed in the Bibliography section. 

The Deployment Lift Availability, MRR Types and Availability, and Munitions 

and Component Availability are all hard constraints based on the resources available to 

the planner using this model and situation specific circumstances. The planners will 

input these constraints based on their specific circumstances. To evaluate the validity of 

this model, notional values were selected and the values were fixed while evaluating the 

performance measures during the experimental design. 

ILP Formulation 

The model was constructed in three phases: basic model with single point on 

preference curve mapped, expanded model (basic plus munitions configuration and bomb 

components) with single point on preference curve mapped, and expanded model mapped 

along the entire preference curve. 

Basic Model. 

The first phase of MARMOT involved creating a basic model with a single 

preference curve point. A small-scale model was built to determine the feasibility of 
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pursuing this research methodology. This modeling process began by using the five steps 

identified by Ragsdale: understand the problem, identify the decision variables, state the 

objective function as a linear combination of the decision variables, state the constraints 

as linear combinations of the decision variables, and identify any upper or lower bounds 

on the decision variables (Ragsdale, 2001: 20-21). 

Understand the Problem. A thorough knowledge of the problem is essential to 

accurately model its relevant characteristics as simplistically as possible. This is 

important, since the "best model is the simplest model that accurately reflects the relevant 

characteristics or essence of the problem being studied" (Ragsdale, 2001: 9). The 

problem in this research is fairly easy to understand: how many of each MRR asset types 

to assign to each required task to maximize the total suitability value, while using no 

more than the amount of all resources available, and meeting the mission distributions 

according to the preference curve. 

Identify the Decision Variables. In this problem, the fundamental decision 

campaign planners face is how many of each MRR asset type to assign to satisfy the 

CINC's task preferences based on total mission levels. For this problem, X(i/ represents 

the number of MRRs using asset type i to complete tasky at daily total mission level "m." 

For example, Xij represents the number of A10-1 munitions configured aircraft assigned 

to AA sorties and X30jio represents the number of B5 munitions configured aircraft 

assigned to PB sorties. To test the applicability and robustness of this model to the real 

world, 300 decision variables were created (30 MRRs by 10 task types). This is 

substantively expanded over the 15 decision variables used in David Wakefield's study. 
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Objective Function. Since the decision variables have been determined, the next 

step is to create an objective function that is a linear combination of these 300 decision 

variables. Assuming that a daily task is satisfied by exactly one MRR and that no 

interactions exist between different MRR asset types, then the suitability (S) for all MRRs 

assigned to all tasks is defined by 

5 = EC/A (3-1) 

where C(J is the suitability of MRR i for Task j (according to the TSM in Appendix D) 

and Xij is the number of MRRs i assigned to tasky. 

Constraints. As mention in Chapter II, the decision variables usually have some 

limitations on the values that they can assume. These limitations must be identified and 

stated as a linear combination of the decision variables. For the basic model, there are 

four constraints: integrality condition, deployment weight availability, MRR asset 

availability, and preference curve requirements. 

Often, real-world situations may require all or some of the variables in the 

formulation to assume integer values since fractional values are not feasible/possible. In 

this model, the decision to assign an MRR asset to a task/mission is based on a yes/no 

decision and is not realistically divisible. This mandates that all the MRRs must assume 

an integer value, such as 

XtJ = Integer (3.2) 

Since the logistics footprint limits the amount of assets that can be deployed, the 

total weight consumed by the MRR selection must be within lift availability. This 

portion of the model is perhaps the weakest, because it includes the least realistic 
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assumptions. In reality, a deploying force requires lift for both re-usable (and shared 

among MRRs) equipment, and consumed materials (Goddard, 2001: 15). This model 

assumes a single, independent weight requirement for each MRR. This represents a 

serious limitation of the model formulation, but a true determination of lift requirement is 

unavailable and outside the scope of this thesis. 

Assuming that no interactions exist between different MRR weight values and an 

MRR weight across tasks is the same, the total weight (W) for all MRRs is defined by 

n m 

^ = X(^IX) (3-3) 

where 
/ = MRRl,...,n, 
j = task l,...,m, 
P, = weight of MRR i (according to the weight vector in Appendix G), 
n = final MRR asset type, 
m = last task, 
Xjj = number of MRRs i for tasky. 

Since the total weight (W) must be less than or equal to the available deployment weight 

(A W) the formula is written: 

W<AW (3.4) 

Instead of using the quantity of assets available to represent limited resources and 

to constrain MRR selection, the number of missions an asset could perform daily was 

selected. The number of asset-missions was the selected unit of measure since it more 

accurately represented the MRR concept. One MRR equals one task/mission and any 

individual asset has the ability to perform several missions in a day. In addition, logistics 

consumption (for example, fuel, munitions, or spares) was assumed to have a stronger 

correlation to the number of sorties than the number of aircraft. Ultimately, a given 
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resource can be classified as either "reusable" or "consumable." Reusable assets (like 

aircraft) can be used for many missions. Consumable resources are used once and 

discarded. The maximum number of missions per day (MMPD) for a specific asset class 

(A) is defined by 

MMPDA = QA(turn rateA) (3.5) 

where QA is the quantity of asset class A. The term asset class refers to identical base 

assets with different configurations. For example, the A10 asset class represent the A10- 

1 to Al0-11 MRR set since all Al0 configurations use the same airframe, and the total of 

all Al 0 configurations at any time must be less than or equal to the total number of A 10s 

available. Given that asset class A has Z configurations, the assigned daily missions 

(ADM) is formulated as 

ZA    m 

ADMA=YJJUXIJ (3.6) 

where 
/ = MRRl,...,n, 
j = task l,...,m, 
m = last task, 
n = final MRR asset type, 
Xjj = number of MRRs i assigned to task j, 
Z = final configuration, 
ZA = asset class A with 1,.. .,Z configurations. 

Since a mission can only be performed if the configured asset is available, the MMPDA is 

an upper limit for the ADMA and the constraint can be mathematically defined by 

ADMA < MMPDA (3.7) 

This constraint ensures that no MRR can be allocated a number of tasks during the time 

period that exceeds asset availability. The number of constraints resulting from equation 

64 



(3.7) is equal to the number of MRR asset classes. This is important to the programmer 

who must ensure this constraint is appropriately modeled. 

Since the decision maker precisely defines task/mission preference based on the 

total mission level, L (according to the preference curve) the relationship between the 

preference curve tasks (PC) and MRR assigned tasks (Xy) must be based on an equality 

constraint. The constraint that all tasks j=l,..,m must be satisfied at a particular total 

mission level is: 

^=IX (3-8) 
1=1 

where 
/ = MRRl,...,n, 
j = task l,...,m, 
L = mission level or total number of missions, 
n = final MRR asset type, 
Xjj = number of MRRs i assigned to tasky. 

The number of constraints resulting from equation (3.8) is equal to the number of m 

tasks. These constraints ensure that the number of sorties for Task i is equal to the 

commander's preference curve at that level of total missions. 

Bounds. Frequently, decision variables may have upper or lower bounds that 

should be viewed as additional constraints. In this model, there are simple lower bounds 

of zero on the X(J decision variables since it is impossible to generate a negative number 

of missions. These are referred to as non-negativity constraints, stated as: 

Xitj>0 (3.9) 

The basic model was built in Excel using these mathematical formulations and 

Frontline System's Large Scale Linear Programming Solver Add-in. Since initial runs 
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indicated that an optimal solution could be identified in a few seconds, the second phase 

was started. 

Expanded Model with a Single Preference Curve Point. 

The second phase involved creating an expanded model with a single preference 

curve point. The term expanded is used to represent the basic model plus the munitions 

and bomb component constraints. For this model to be of use to campaign planners, the 

computer run time for finding the optimal solution must be short (less than a minute). 

Having a combat asset (people or vehicles) without munitions has no combat 

value, and munitions are a limited resource. Therefore, munitions make up an additional 

important set of constraints. Bomb components are the basic unit that makes up different 

bomb configurations and these components are limited. A shortage of the components 

prevents bomb availability which precludes combat asset availability. 

The munitions end item (a fully configured munition; AIM-9, MK-82, etc.) 

requirement, Ut for all munitions end items t = l,..e, is determined by 

n m 

Ut=YJMCMiJjXlJ (3.10) 
i=\ 7=1 

where 
/ = MRRl,...,n, 
j = task l,...,m, 
m = last task, 
n = final MRR asset type, 
Xij = number of MRRs i assigned to task j, 
MCM, = number of munitions end items for MRR over all tasks (according to 

Appendix E). 

The Ut must be less than the munitions available, MUNSr, 

Ut<MUNSt (3.11) 
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Since the munitions configurations are specifically defined, any munitions shortages 

within the configuration eliminates the configuration as a feasible alternative. For 

example, the A10-1 MRR requires 2 AIM-9s, 2 AGM-65, and 4 GBU-12s. If there are 

only 3 GBU-12s or a shortfall in any of the other munitions, no further A10-ls can be 

selected. If the reduced munitions configurations are a feasible planning alternative, they 

must be included as a separate configuration. 

The bomb component usage BQ/ for all bomb components d = l,..f, is determined 

by 

BCd=^BCMdiUt (3.12) 
(=i 

where 
d = bomb component 1,.../, 
e = last munitions end item, 
/= last bomb component, 
t = munitions end items l,...,e, 
BCMdj = number of bomb component items for each bomb end item (according to 

the BCM in Appendix F), 
Ut = number of munitions end items consumed. 

The BCrf must be less than the component available, CA</, 

BCd<CAd (3.13) 

Since the bomb configurations are specifically defined, any component shortages within 

the bomb configuration eliminates the configuration as a feasible alternative. For 

example, shortages in the M904E2 fuse eliminates any further selection of MK-82s or 

MK-84s and any combat assets using the MK-82s or MK-84s munitions. 

The expanded model, using the same Excel and Frontline System's Large Scale 

Linear Programming Solver Add-in, incorporated these additional mathematical 
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formulations. Since an optimal solution could be identified in less than five seconds, the 

third phase was started. 

Expanded Model Along a Preference Curve. 

In the final phase, a model was created to iteratively follow a preference curve to 

not only determine the optimal force mix at a specific point (total mission level), but also 

determine the optimal number of total supportable missions. This iterative process was 

intended to determine the maximum number of supportable missions, while fulfilling the 

CINC's exact task preference at that total mission level, and optimizing the selection of 

MRRs to complete these tasks. The preference curve matching process is illustrated in 

Figure 15. The visual basic code used to achieve this process in the model, the 

Preference Curve Mapping Macro (PCMM), is listed in Appendix H. 

The first step in the process involved determining if the current iteration has a 

total suitability value (S) greater than or equal to the previous iteration (the initial default 

value is zero). An important choice exists at this point. There is a fundamental question 

as to which has greater value: the suitability of an asset set assigned to a number of 

missions, or the total number of missions achievable for a given asset set. Given a finite 

amount of lift and resources, a tradeoff exists between the ability to prosecute fewer 

missions with better aircraft, or more missions with less capable aircraft. This tradeoff, 

which occurs when less capable assets require less lift and/or less constrained resources 

than better-suited assets, has not been suitably explored in previous literature and remains 

a critical area for future research. 
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Figure 15. Preference Curve Mapping Process 

Total suitability (5), instead of the number of missions, was selected as the 

primary objective. Setting the primary objective as maximizing the number of missions 

would subjugate the importance of task suitability to selecting assets with the lowest 

deployment lift requirements, since lift availability was a major factor limiting the 

number of MRR missions. For example, since F16-1 Is have the lowest weight 

requirements, they would be substituted for better-suited aircraft to increase the number 

of missions while keeping within the available weight. If the optimal aircraft mix was 

selected based on an asset capability and the maximum amount of weight was consumed, 

it was likely that in many circumstances (including the present model formulation) the 

only way to increase the number of missions would be to substitute better suited assets 

for lighter, less-effective assets such as sending F16-1 Is (instead of bombers) for 
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precision bombing tasks. Therefore, it was decided to prefer asset set suitability over 

total number of missions for this current model. 

In the decision diamond of Figure 15, the greater than or equal to condition has 

two parts. The greater than portion of the condition forced the model to explore 

increasing mission levels along the preference curve as long as the total asset set 

suitability value improved. Since a mix with the same total suitability value and higher 

quantity of total missions (mission level) was assumed to be preferred over the lower 

mission level mix, the equal to part of the condition (identified in the decision diamond of 

Figure 15) was incorporated into the macro. These two sub-conditions helped find the 

maximum number of supportable missions with assets performing tasks they are well 

suited for. If the current solution suitability value was greater than or equal to the 

previous iterative solution value, the macro completed the following tasks; otherwise, the 

macro skipped to the "decrement total mission level by 1 mission" task in Figure 15 and 

completes the task that follow. 

The second step copied the value of the current total suitability value for an 

optimal asset mix at the most recent total mission level to the previous suitability value 

location. This provided the comparison between the next solution result and this result 

for step one. 

The third step increased the Total Mission Level by one. This caused the task 

preference quantities to be updated from the TPM to exactly match the CINC's task 

preference at that Total Mission Level. This step was the backbone of the iterative 

process to map along the preference curve. 
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The fourth step ran the solver add-on to generate an optimal total suitability value 

for the current Total Mission Level. This sequence of steps ensured that the new 

suitability value (from step four) could be compared to the previous suitability value 

(from step two) in step one. 

Eventually, the first four steps caused the model to find a solution that was one 

mission beyond the best solution. At that point the suitability value began to decrease. 

The fifth step then forced the model to move back to the optimal mission quantity. This 

was initiated by decrementing the number of total missions by one. This caused the task 

preference quantities to be updated from the TPM to exactly match the CINC's task 

preference at that Total Mission Level. 

After step five was completed, the final task of the macro began. The final step 

identified the optimal mix of assets at the greatest number of supportable missions. This 

step also initiated the generation of an optimal total suitability value for the current Total 

Mission Level. After solver completed its optimization, the process was done. 

Performance Measures 

The total time to find the "best" solution, total runtime, is calculated as finish time 

minus the start time. 

total runtime = finishX - startX (3.14) 

The total runtime calculation was automated by including it in the Preference Curve 

Mapping Macro (see Appendix H). As seen in Appendix H, the macro recorded the time 

when the optimal solution was found (finish 1) and subtracted it from the time recorded at 
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the beginning of the search process (start 1) to calculate total runtime (cell W62 in the 

worksheet). 

Programming the runtime computation into the macro was designed to promote 

consistency through all iteration runs and between the different scenarios/trials; however, 

variance due to the computer's processing of other programs, the allocation/priority of 

computer random access memory, the computer's use of resources to keep the computer 

from overheating, etc. caused minor differences in the time to run the same scenario. 

These variances hide the "true" runtime; therefore, the Screensaver was disabled and all 

other computer processes/tasks (the ones that were able to be ended using the Window's 

Task Manager) were ended to remedy this effect and focus the runtime. 

Automating the runtime was designed to promote consistency by 

• Ensuring measurement validity (measures what it is supposed to) and 
reliability (consistently measures results accurately) 

• Eliminating variance in human response rate to measure time and between 
time keepers (internal consistency and interrater reliability) 

• Ensuring time was measured from the time the computer began computing 
until the last computation exactly the same way at the same start and stop 
points for all trials and scenarios 

Model Validation 

The validation process focused on three areas: general performance, preference 

curve compliance, and macro functionality. 

The general performance validation ensured that the model would select the 

correct assets (highest suitability values) and properly consume resources based on MRR 

usage and the munitions and bomb component matrices.   This was accomplished by 

solving small problems with known solutions. For example, the model was tested against 
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five sorties with AA only preference and unconstrained resources. Since all five sorties 

were performed by F 18s (the best selection) and resource consumption was as expected, 

the model performance was validated. 

Preference curve compliance was examined in two areas: monotonic assurance 

and exact mapping. First, it was necessary to ensure that all curves were monotonic. 

This was accomplished by creating a cell in Excel that compared the sum of each task at 

each level to the mission level total. If the value of the two numbers were equal, 

"TRUE" was recorded in the cell, otherwise "FALSE." No "FALSE" values were 

present, so the curves were monotonic. Second, the look-up function that maps the task 

quantities to the preference curves was tested. Different values were put into the total 

mission level block and the associated task values were compared to the values in the 

matrix worksheet. Since the values matched exactly, the look-up function ensured that 

the tasks at each mission level were the same as the task mix on the preference curve. 

The functionality of the macro was evaluated using two approaches. First, the 

solutions for curve 1 using the single and five-batch approach were calculated using 

manual runs and the results were compared to the macro solutions. This demonstrated 

that the macro would find the best solution since both approaches yielded the same MRR 

mix, mission totals, and suitability values. Second, comparing the macro-calculated time 

versus a stopwatch time on five occasions tested the macro's ability to accurately track 

model runtime. Since the times were within 100th of a second and any difference was 

likely due to human reaction time delay, the macro's runtime calculation was validated. 
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Experimental Design 

Computational Environment. 

The Frontline Systems Premium Solver Platform and Large-Scale LP Solver add- 

ons for use with Microsoft Excel 2000 were selected to execute this Large ILP 

methodology. They require limited programming skills, they are capable of handling 

problems with up to 65,000 variables and 65,000 constraints, the Excel program is user 

friendly and compatible with other presentation software such as PowerPoint, and they 

guarantee selection of the best/optimal solution. The MARMOT was executed on a Dell 

Inspiron 7500 equipped with a Pentium III 650MHz processor, 128MEG RAM, 18.6GB 

hard drive, and using Windows 2000 Professional. 

Factors and Levels. 

To measure model sensitivity, robustness, and generlizability, 16 different factor- 

level combinations were evaluated. These factor-level combinations were represented by 

four different preference curves, two different solution space search methods, and two 

different deployment lift batching approaches. The preference curves, search methods 

and batching approach factors and levels will be discussed in greater detail in the 

following sub-sections. 

Preference Curves. 

In order to test the performance of the complete model, a series of preference 

curves were developed. This series of preference curves were created to represent the 

different extreme possibilities (high, medium, or no task differences of a single line 

segment and multiple line segments with various slopes) that the preference curves could 

assume. Only the extreme points were evaluated since it was assumed that this isolated 
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each factor for study, eliminated interactions for evaluation, and efficiently/effectively 

represented all possible complicating factors. Four different curves were selected in 

order to represent the effects of multiple line segments and represent the high, medium, 

and no task differences of a single line segment. 

The first preference curve was constructed to represent changing proportions of 

task preference over different total mission levels without assuming linearity of the entire 

curve. Creating a preference "curve" with multiple line segments of various lengths and 

slopes up to 1,600 total missions represented this characteristic. Sixteen hundred was 

selected as the ending total mission level for all four curves, since it was large enough to 

allow the model to search the curves without exhausting the entire search space and it 

standardized the curves at the same ending mission level. For preference curve one, the 

ending value for each task was 130,210, 165, 155, 105, 140, 175, 125, 175, and 220. 

These values were selected for the following reasons: 

1. They provide for a "medium task difference" since some task preferences 
were higher than others without a strong bias 

2. They summed to 1,600 

3. They represented a relatively wide range of proportions 

The second preference curve was constructed to determine if differential 

preference was a factor that affected runtime or solution accuracy. This was modeled by 

assigning a higher preference for half the tasks and lower preference for the other half, 

while maintaining linearity of the entire curve and relatively constant proportions of 

tasks. Richard Antoine's Excel linear approximation program, which used an algorithm 

developed by Air Force Institute of Technology researchers, was used to create a very fiat 
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slope (high task difference) with a single linear segment (Antoine, 2001: 45-48). The 

Excel program generated monotonic integer preference curve values to 1,600 total 

missions with 270, 270, 270, 270, 270, 50, 50, 50, 50, and 50 ending task values. These 

values were selected for the following reasons: 

1. They represented high task differences since half the values were 5.4 times 
larger than other half 

2. They summed to 1,600 

3. They represented high task concentration with only two different proportions 

The third preference curve was constructed to represent relatively constant 

proportions of tasks with minor difference in preference between tasks while assuming 

linearity of the entire curve. The same Excel program used for preference curve two was 

used to creating a medium slope (medium task differences) with a single linear segment. 

The same ending values for preference curve 1 were used for this curve. These values 

were selected for the following reasons: 

1. They represented medium task differences, since some task preferences were 
higher than others without a strong bias 

2. They summed to 1,600 

3. They represented a diverse number of proportions 

4. They model linearity/constant proportions for comparison against curve one 

The fourth preference curve was constructed to represent relatively constant 

proportions of task with no difference in preference between tasks while assuming 

linearity of the entire curve. The same Excel program used for preference curve two and 

three was used to creating a high slope (no task differences) with a single linear segment. 
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All ten tasks were programmed to have 160 as their ending values. These values were 

selected for the following reasons: 

1. They represented no task differences (indifferent task preferences) 

2. They summed to 1,600 

3. They represented equal proportions 

Search Methods. 

The second major investigative factor was the method used to sequence the 

optimization algorithm. Two methods were created to navigate the solution space: step- 

wise and jump-wise. The step-wise method involved incrementing the total 

missions/resource level by one each time as it searched the solution space for the greatest 

suitability value. The search algorithm stopped when the suitability value began to 

decrease, and the algorithm then returned to the previously optimal value. The jump- 

wise method incremented the total missions by ten as it searched the solution space. The 

search algorithm stopped when the suitability value of the current iteration was lower 

than the value of the previous iteration. The method then decremented the total missions 

by twenty (two iterations) and proceeded step-wise. It was found that by only retracing 

to the previous jump, it was possible to miss the optimal solution. 

The jump-wise search was performed at the end points of the jump interval. The 

optimal point would most likely be at the top of a curve that decreased to the right and 

left ofthat point. When the placement of the interval caused values explored on the right 

side of the optimal point to be greater than the values explored on the left side, a false 

(local) optima could be picked up by the search. Therefore, a retrograde by two jumps 
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was required to ensure optimality. After the algorithm decremented twenty missions, the 

solution space search concluded by using the same approach as the step-wise method. 

Batching Approaches. 

The third major investigative factor was the method used to aggregate deployment 

weight for the lift constraint. Two batching approaches were used to model the weight 

constraint: a single batch of 18,000 short tons, and five batches of 3,600 short tons 

(totaling 18,000 short-tons). The single batch would be analogous to developing a plan 

for aggregating a week's worth of lift into a single movement, while the five batch 

approach would represent the development of a plan to optimize the force mix 

constrained by 5 smaller daily (disaggregate) movements. 

Summary of Factors and Levels. 

Model performance was evaluated by using the two search methods with the two 

batching approaches against the four preference curves. Since the search methods, 

batching approaches, and preference curves represent various extremes, the 16 different 

factor-level combinations (2 methods times 2 approaches times 4 curves) should provide 

an accurate measure of model sensitivity, robustness, and generalizability. 

Experiments. 

Two primary experiments were conducted: first, the model searched the 

preference curve until the maximum number of missions that yield the maximum 

suitability value was reached, and second, the model searched the preference curve to a 

maximum of 775 missions. 

The first experiment was designed to evaluate quality of solution, convergence on 

known optima, and attainment of the exact same MRR mix and suitability value for step- 
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wise and jump-wise test within each batch quantity and preference curve combination. 

To illustrate, the step-wise results for the single batch and preference curve 1 

combination would be compared to the jump-wise results for the same combination. 

The second experiment was designed to evaluate runtime performance to 

determine if the jump-wise approach would be faster than the step-wise approach 

regardless of the batching method or nature of the preference curve. 

In the first experiment, ten repetitions of each of the 16 factor-level combinations 

(160 total tests) were conducted while allowing the model to search the preference curve 

until the maximum number of missions with improving total suitability is reached. After 

each test was run, the iteration runtime, number of missions, and suitability values were 

recorded for analysis in Chapter IV. 

In the second experiment, the same procedures were followed; however, only five 

iterations of each test were conducted and the preference curve search space was 

restricted to 775 total missions. The 775-mission value was selected since it was the 

lowest number of tasks attained by all tests in experiment one, and it ensured that all tests 

ended at the same point. Ending the model at the same point eliminated potential bias 

caused by evaluating different sized solution spaces and allowed a valid comparison of 

runtimes between the different tests. 

Summary 

This chapter addressed the third investigative question (Can the effectiveness and 

efficiency of the selected methodology be tested?) by describing the experimental design 

and testing methodology. The ALP Pilot Problem described in Chapter II provided the 
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foundation to mathematically represent the force mix problem to be modeled as a LSILP. 

The performance measures were used in conjunction with the experimental design to 

demonstrate how the different methodologies could be tested. Chapter IV answers the 

remaining investigative questions by evaluating the results of the tests. 
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IV. Results 

Introduction 

The previous chapter presented the experimental design used to assess the 

MARMOT against two experiments with 16 different tests each. This chapter uses the 

results of these tests to evaluate the performance of the MARMOT. 

Experiment One Output and Analysis 

The complete results of the first experiment, 160 iterations, are presented in 

Appendix K and the summary results are presented in Table 3. To ensure that the search 

methods (step-wise and jump-wise) were comparable, the final MRR mixes and 

suitability values for preference curve one, the first iteration of the single batch, were 

matched to ensure exactly the same results. The same was done for the 5 batch approach 

for preference curve 1, iteration 1, using the step-wise and jump-wise search methods. 

The MRR mix is presented in Appendix M. Both tests demonstrated that each method 

yielded exactly the same MRR mixes and suitability values. 

Table 3. Summary of Experiment One Results 
Single Batch 5 Batches 

Step-Wise                   |                  Jump-Wise Step-Wise                 j                 Jump-Wise 
Mean Std Dev Tasks Value | Mean Std Dev. Tasks Value Mean Std Dev Tasks Value | Mean Std Dev. Tasks Value 

Preference 
Curve 1 1020.092 2.079 779 

1 
683.58ll26.620 0.633 779 683.58 851.515 3.031 790 683.211188.857 3.295 790 683.21 

Preference 
Curve 2 1386.524 3.908 789 

1 
710.88'251.426 0.974 789 710.88 941.877 0.993 790 694.78J238.432 0.582 790 694.78 

Preference 
Curve 3 938.479 1.833 775 

1 
656.19|l 13.053 0.124 775 656.19 841.518 1.618 782 651.3 J172.149 0.668 782 651.3 

Preference 
Curve 4 823.512 0.842 777 

1 

669.22Jl08.271 0.318 777 669.22 842.553 2.895 784 664.51 |l76.388 2.978 784 664.51 

The quality of solution was evaluated by determining if each iteration within each 

of the 16 tests produced the same suitability value and number of tasks, and that the step- 
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wise suitability value and mission quantities in each batch quantity and preference curve 

combination matched the jump-wise results in the same combination. As seen in 

Appendix K, all iterations yielded the same suitability values and quantity of missions 

within each test. As seen in Table 3, all step-wise suitability values and mission 

quantities for each batch quantity and preference curve combination matched the jump- 

wise results in the same combination. For example, the step-wise suitability value of 

683.58 and mission quantity of 779 for the single batch and preference curve 1 

combination equaled the jump-wise results for the single batch and preference curve 1 

combination. The quality of solution and comparability evaluations demonstrated that 

both approaches resulted in the same answer for the war planner regardless of the 

underlying nature of the preference curve or batching method. Since both methods result 

in the same solution, the method that yields the solution the fastest is the best method, as 

long as both methods converge on the same known optima. Since manually solving at 

each iterative point for the single and five batch approach for preference curve one had 

the same solutions as discussed in the comparability sub-section and Appendix M, it is 

assumed that the two methods would always converge on the same optimal solution. 

Statistical Analysis 

The complete results of the second experiment, 80 iterations, are presented in 

Appendix L and the summary results are presented in Table 4. The number of missions 

(tasks) were kept constant in this experiment to provide an accurate means of judging the 

effects of the preference curve design, batching method, and search methods on runtime. 
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These tests will help determine the robustness of the model and search methods and if 

one of the search methods is preferred. 

Table 4. Summary of Experiment Two Results 
Single Batch 5 Batches 

Step-Wise                   ■                  Jump-Wise Step-Wise                  |                  Jump-Wise 
Mean Std Dev. Tasks Value | Mean Std Dev. Tasks Value Mean Std Dev. Tasks Value | Mean Std Dev. Tasks Value 

Preference 
Curve 1 1014.452 1.518 775 682.1 1154.037 0.300 775 682.1 842.987 1.490 775 675.111178.402 0.372 775 675.11 

Preference 
Curve 2 1324.859 1.203 775 707.52l628.241 0.812 775 707.52 872.664 2.112 775 685.411208.375 0.295 775 685.41 

Preference 
Curve 3 949.387 0.426 775 656.19Jl26.100 0.647 775 656.19 835.885 1.590 775 647.66Jl79.277 0.426 775 647.66 

Preference 
Curve 4 830.283 1.627 775 668.27jll2.528 0.126 775 668.27 832.665 0.948 775 660.48| 189.191 0.251 775 660.48 

The sample data in Appendix L suggests that the population distributions for the 

16 tests are not normal and require non-parametric methods for statistical comparison 

(see Figures 16-19). The assumption of normalcy, necessary for parametric tests, would 

not be appropriate since several of the sample distributions appear to be bi-modal, 

exponential, or uniform. 

1012    1013     1014     1015     1016    1017 1325.5   1326.5 348.75 949 949.25 949.5 949.75 950828  829  830  831  832  833 

Figure 16. Single Batch Step-Wise Runtime Distributions for Curves 1-4 

~^r^h- 

153.5  153.75    154     154.25   154.5 154.75 526.5    627     627.5     628     628.5     629125.5        126 126.5 27.3112.3      112.4       112.5        112.6      112.7 

Figure 17. Single Batch Jump-Wise Runtime Distributions for Curves 1-4 

83 



343  844  845  846 869  870 871  872  873  874 875 833  834  835  836  837  838 831  831.5  832  832.5  833 833. 

Figure 18. Five Batch Step-Wise Runtime Distributions for Curves 1-4 
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i 

^^ 

78.25   178.5   178.75    179207.75     208       208.25      208.5   208.73178.5 179  179.25 179.5 179.75  180188.8 

Figure 19. Five Batch Jump-Wise Runtime Distributions for Curves 1-4 

The Wilcoxon Signed-Rank Test for Paired Observations and the Friedman 

Multiple-Block Rank Comparison Test were the nonparametric statistical techniques used 

to evaluate the runtimes. The Wilcoxon test assumes that the differences between the 

pairs are continuous and symmetric, which is significantly less restrictive than the 

assumption of normalcy (Devore, 2000). The Friedman test assumes that the results in 

each block are mutually independent (they do not influence the results in other blocks) 

and the observation in each block may be ranked according to some criterion of interest 

(Conover, 1980: 296-299). These assumptions are satisfied, so the following hypotheses 

are tested: 

HQ.    The step-wise and jump-wise sampled populations have identical 
probability distributions. 

H\.   The step-wise probability distribution is shifted to the right of 
(slower than) the jump-wise probability distribution. 
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Since the number of ranks, n, is greater than 20 and the Sign-Rank table only 

provided critical values for level a test when n < 20, the Wilcoxon Large-Sample 

Approximation test was used (Devore, 2000: 655). In Appendix N, the test was 

accomplished using Excel 2000 to calculate the test statistic 

7_      S+-n(n + \)/4 ^4Y 

A/«(« + l)(2n + l)/24 ' 

According to Devore, this test statistic can be justifiably applied to the standard normal 

(Z) distribution (Devore, 2000: 656). At the 0.01 significance level for the upper-tailed 

test, the observed value of 5.5109 indicates that there is sufficient evidence to reject Ho. 

This result demonstrated that the jump-wise method is significantly faster than the 

step-wise approach regardless of the underlying nature of the preference curve and 

batching approach. This result was also recognized by inspection, since all jump-wise 

time were several times faster than the corresponding step-wise version. By visual 

inspection, it also appears that the jump-times for curves 1,3, and 4 are within a minute 

of each other while curve 2 tends to be several minutes slower. This will be statistically 

analyzed below: 

HQ.   Each ranking of the random variables within a curve is equally 
likely. 

H\.   At least one of the curves tends to require longer processing time 
than at least one other curve. 

The Friedman test in Appendix O was used to evaluate these four curves. The test 

was accomplished using Excel 2000 to calculate the test statistic 

T _(b-\)[B2-bk(k + \)2/4] (4 
2 A2-B2 
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where 

bk(k + lX2k + l) (4J) 

and 

BI=TLR1,- (4-4) 

At the 0.01 significance level, the null was rejected since T2 exceeded the 1-oc quantile of 

the F distribution from Table A26 with k\ = k-\ and kl = (b-\)(k-\) (Conover, 1980: 

300). A curve is considered different if 

\Ri-Ri\>ti-a/2 

2b(A2-B2) 
(4.5) 

_(fc-l)(*-l)_ 

is satisfied where tt_a/2 is the l-oc/2 quantile of the t distribution from Table A25 with (b- 

l)(k-\) degrees of freedom (Conover, 1980: 300). The results, illustrated in Appendix O, 

indicate that Curve 2 is significantly different from all the other curves, Curve 1 is 

significantly different from Curve 4 and 2, and Curve 3 is not significantly different from 

Curves 4 or 1. Although Curve 1 and Curve 4 statistically differ, the jump-wise 

difference of 2/3 of a minute, at most, in reality likely has no practical difference. Curve 

2's jump-wise 1/2 a minute to less than nine minute difference may also have no practical 

difference for war planners who are accustomed to waiting hours to days for less detailed 

information. 

The final hypothesis was designed to test the models against batching methods: 

Ho:    Each ranking of the random variables within a batch method is 
equally likely. 

HA:   At least one of the batch methods tends to require longer processing 
time than the other. 



The Friedman test in Appendix P was used to evaluate these two batching 

methods. The test was accomplished using Excel 2000 to calculate the test statistic 

where 

T _(b-l)[B2-bk(k + iy/4] (4 

fefc(* + l)(2* + l) 

and 

B^\±R]. (4.8) 

At the 0.01 significance level, the null was not rejected since T2 did not exceed the 1-oc 

quantile of the F distribution from Table A26 with k\ = k-\ and kl = (b-\)(k-\) (Conover, 

1980: 300). The previous test and this test demonstrated the robustness of the model by 

showing that batching and the nature of the preference curve did not affect the quality of 

solution or the ability of the model to rapidly find an optimal solution. 

Summary 

This chapter answered the fourth research question: what are the results of this 

test (runtime, quality of solution, do you get an answer, does it converge on known 

optima)? The results revealed that MARMOT was robust and yielded quality solutions 

regardless of the underlying preference curve or batching method. The results also 

demonstrated that the jump-wise approach was superior in all tests. The tests did reveal 

that there were statistical difference in runtimes for curves, particularly curves with large 

differences in tasks (flat slope); however, these time differences were less than nine 

minutes which would be insignificant in reality. This chapter analyzed the test results 
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and Chapter V presents the conclusions, limitations, recommendations, and areas for 

future research. 



V. Conclusion 

Introduction 

Chapter I and II discussed the motivation of this research by stating that the 

Defense Advanced Research Projects Agency (DARPA) seeks to use information 

technology to transport campaign planning into the 21st century with near real-time 

logistics information and the ability to develop and compare multiple deployment plans. 

Campaign planners will be able to develop and compare multiple scenarios, compare 

competing sets of combat assets based upon their designed suitability and theater specific 

issues, and respond to crises with greater effectiveness and efficiency than previously 

possible. 

The Mission-Resource Value Assessment Tool, the front-end DARPA 

component, is intended to reduce the deployment timeline and footprint by selecting the 

force mix that maximizes the combined designed suitability and campaign specific issues 

value within logistics constraints. The primary goal of this research was to determine if 

there was a method to accurately represent these conflicting goals and find optimal force 

mixes within a reasonable amount of time. To accomplish this goal, five research 

questions were answered: 

1. What is the underlying nature and structure of the problem being studied? 

a. What are we trying to maximize? 

b. What are our constraints? 

2. What are the solution methodologies that best fit this problem structure? 

a.   What are the key characteristics (to solution type) of the problem? 



b.   What are the matching solution types? 

3. Can the effectiveness and efficiency of the selected methodology be tested? 

4. What are the results of this test (runtime, quality of solution, do you get an 
answer, does it converge on known optima)? 

5. What test would be performed and what inferences could/should be drawn 
from the test results? 

These questions were answered in three phases. The first phase included a 

literature review of the problem structure and the modeling field.   The problem structure 

was reviewed to determine the interactions within the problem, the problem constraints, 

and what should be maximized. The review identified the need for total visibility 

between operations and logistics for planning, faster planning to cope with asymmetric 

warfare, and joint deployment planning to deal with limited resources and budgets. This 

answered question one. The modeling field was reviewed to determine the most 

appropriate modeling approach with which to model this problem. The review focused 

on metaheuristics, mathematical, linear, integer, and large-scale programming to 

determine the best methodology to fit the problem structure. This answered question 

two. 

The second phase included data collection. The MRR suitability and deployment 

lift consumption were based on notional values from the ALP Pilot problem since actual 

mission specific resource capabilities were classified. 

The third phase included creation of the Mission Asset Resource Mix 

Optimization Tool (MARMOT) by incorporating David Wakefield's formulation of the 

problem and the ALP Pilot Problem concepts into the integer linear programming 

formulation. The ALP Pilot Problem concepts include the Mission Ready Resource as 
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the basic combat asset/munitions building block of suitability and lift consumption, the 

Task Preference Curve/Matrix, force mix feasibility defined by decision space and 

problem constraints, and force mix desirability base on task preference/suitability. 

MARMOT was built to evaluate preference curves with different underlying 

characteristics and different batching methods. One curve was created to represent 

multiple line segments of various lengths. The other three curves were created to 

represent a single line segment with high, medium, and no differences between ending 

task quantities. This phase answered question 3. 

The fourth phase evaluated the alternative methodologies using two experiments 

with 16 tests each based on five objectives. The first objective was to determine if each 

iteration of the same test yields the same solution. The second objective was to 

determine if the jump-wise approach yields the same solution as the step-wise approach 

within a batch quantity and preference curve combination. The third objective was to 

determine if each test finds a known optima. The fourth objective was to determine if the 

jump-wise approach found a solution faster. The fifth objective was to determine if the 

model was robust. This phase answered the remaining questions and found that the 

MARMOT using the jump-wise approach was appropriate for rapidly finding the optimal 

force mix within logistics constraints. The results also show MARMOT's robustness. 

The exponential growth of computer processing speed and memory provide additional 

support to the viability of this approach to provide combat planners near-real time 

deployment solutions. 
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Conclusions and Significance of Research 

The results of this research showed that integer linear programming was a useful 

and promising approach to investigating the force mix selection problem. The 

significance of this research is identified in the results that: 

1. Proved the concept of using integer linear programming to optimize force mix 
selection for realistically sized problems in a reasonable amount of time 
(within minutes). 

2. Verified that force mix tailoring could be automated using a systematic and 
objective approach rather than subjective educated guesses. 

3. Showed that a force mix model could incorporate intelligence, operations, and 
logistics visibility/planning into a single system providing a global/system- 
wide view rather than a local stove-piped view. 

4. Elevated the logistics footprint from an afterthought to an integral part of the 
force mix decision. 

5. Demonstrated the MARMOT could provide real-time combat asset and 
logistics tradeoff analysis. 

6. Demonstrated the methodology could maximize rapid combat capability 
deployment by optimizing the entire system rather than only sub-systems. 

These results verified the viability of using a MARMOT-style model to generate optimal 

force mixes that maximizes combat capability by balancing combat sustainment and 

capability. 

Limitations 

First, the assumption of a single, independent weight requirement for each MRR 

represents a serious weakness of the model. If this simplifying assumption is not valid, 

the weight consumption for the force mix could be overstated or understated. Overstating 

the weight would cause the planner to deploy less combat capability due to the inefficient 
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use of lift. Conversely, understating the weight would cause the war planner to select an 

unsupportable force mix. In either case, inaccurately accounting of lift consumption 

would likely result in the selection of a sub-optimal force mix. This means that the 

model does not accurately represent the problem and should not be used. Additionally, if 

the model could not assume a single, independent value for weight, the use of specific 

business rules could cause the solution to be intractable with runtime increasing 

exponential due to the combinatorial nature of this problem. This would make this 

approach inappropriate for this type of problem. 

Second, the assumption that extrinsic and intrinsic suitability can be captured in a 

single number is a limitation. If a single number were not possible, then the model would 

not properly represent the tradeoff between these two factors. This could cause the 

selection of assets that are not allowed in an area or the overlooking of assets with a total 

package that is superior, such as low logistics footprint due to shared components with a 

host nation. Additionally, this could cause manual intervention, which would decrease 

the ability to rapidly and objectively build deployment packages. 

Third, the model assumes a linear and continuous relationship between the 

decision variables and constraints and between the decision variables and the objective 

function. If both relationships are not linear and continuous, linear programming cannot 

be used. Thus, a different methodology would be required to solve the problem. 

Continuing to use this approach when the assumptions are not satisfied could result in 

ineffective and inefficient deployment of combat power at the least or campaign failure 

and the needless loss of life at the other extreme. 
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Fourth, the model assumes that no assets are destroyed. This could overstate the 

number of assets available, which overstates the number of missions and tasks able to be 

supported. Overstating the missions assets can perform could cause the selection of force 

mixes that cannot meet planning objectives or cause campaign failure. The probability of 

asset destruction could be accounted for by adjusting each asset's turn rates to reflect the 

probability of accretion. 

Fifth, a limitation centers on the data retrievability assumption. The model 

assumes that the composite suitability values can be calculated on an MRR basis and 

deployment lift can be calculated as a function of the MRR values. Since the MRR 

concept is a new concept within DoD, a cultural and infrastructure shift would be 

required to re-align DoD to take advantage of this concept. Even though this concept 

may revolutionize and dramatically improve combat planning, people's resistance and 

adversity to change could prevent its acceptance and implementation. This resistance 

could affect the quality of data gathered, which would cause the model to select less than 

optimal or disastrous force mixes. Additionally, if the data cannot be gathered on an 

MRR basis, then the data and model would not represent the real-world problem. This 

could cause the model select an infeasible or dangerous force mix. 

Sixth, the assumption that the sum of the suitability values is more important than 

the sum of tasks is another limitation. This could cause the selection of a force mix that 

does not meet the needs of the combatant commander. Since building plans that meet the 

needs of the combatant commander is the primary objective of force mix planning, the 

model would pursue the wrong objective and select a less than optimal solution. 
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The final limitation deals with problem size and the number of resources 

modeled. Although the model was built for a realistically sized problem, adding more 

munitions, bomb components, or asset types may cause runtime to exceed an acceptable 

limit. This would cause the model to generate solutions too late or not at all. Since 

adding the munitions and bomb components to the basic model had very little effect on 

runtime, the models robustness may cause this limitation to be irrelevant. 

Although MARMOT currently can solve real-world problems, it is populated with 

notional data which requires actual values before being operationally applied. This 

means that the model cannot be used until the data is gathered. 

Recommendations and Future Research 

Since the success of the MARMOT cannot be achieved until real-world data is 

used, research must be done to collect lift business rules or single value. This research 

must investigate if a single, independent weight value accurately represents the MRR 

weight consumption or what the business rules are for each support item on an MRR 

basis, and what that value (either single value or business rule value) is for each MRR 

asset type. This would also include evaluating logistics requirements for any interactions, 

continuity, and linearity between MRRs. 

In addition to evaluating the weight consumption, research must determine if the 

intrinsic and extrinsic factors can be represented as a single, independent composite 

value, if there are any interactions between the different MRR that effect the values, how 

to combine the two major factors, and what the composite values are. This would also 

include evaluating the composite value for continuity and linearity. If the two factors 
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cannot be incorporated into a single factor, research must be done to determine how to 

include these two factors separately into the force mix determination model. 

Since the MARMOT model is reliant on the linear and continuity assumption of 

the objective function and the constraints, additional research is needed to validate this 

assumption. The objective function and weight constraint are discussed in the first two 

recommendations, but the other constraints, such as munitions end items and 

components, must be evaluated. Are all relevant constraints identified? Are the 

consumption values accurate? Do the consumption values change? When? 

Since the MARMOT model assumed that maximizing the suitability value was 

the goal, does this accurately represent the combatant commander's needs? Is 

maximizing the number of missions a better measure? Is there some combination of 

these two objectives that is preferred? How can these two objectives be balanced? This 

area has not been suitably explored in previous research and remains a critical area of 

exploration. 

The modular nature of the MARMOT model and formulas make it compatible for 

implementation into the Mission-Resource Value Assessment Tool and DARPA project, 

and consistent with previous research in the area. However, small-scale demonstrations 

and further testing are needed to evaluate integratability and appropriateness. 

Further research is also necessary to determine the most effective and efficient 

jump value. The value was set at 10, but is there a value which is universally better? Is 

there a value that is better for preference curves of a specific nature (high, medium, or 

low slope)? 
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Additional research is also needed to determine the underlying nature of 

preference curves and the best or easiest way to obtain preference curve values. Are the 

curve tasks monotonic? Are the curves linear? Are the curves piece wise linear 

segments? Are the curves constant during a combat phase? Can the data on the entire 

curve be enumeratively gathered from the combatant commander? Does gathering 

inflection points for the curve accurately represent the combatant commander's true 

needs? 

Finally, research is necessary to determine how sensitive the model is to more 

platform and munitions/bomb alternatives and the impact of the simplifying assumptions 

on the solution fitness. Does runtime increase exponentially with each addition? What 

increases runtime more adding platforms, munitions, bomb components, or some 

combination? How much of an increase in platforms, munitions, components, or some 

combination are needed before the model becomes unsolvable in a reasonable amount of 

time? 

Summary 

The MARMOT model developed in this research provides a method to rapidly 

evaluate and select force mixes based on task/target suitability, mission preference and 

capability, and resource/lift availability. It forms the foundation of the M-R VAT and 

DARPA architecture and provides a means for instantaneously computing force mix 

value, global planning visibility, and optimizing the deployment of combat capability. 

97 



This research and the MARMOT decision support tool presents several 

advancements over earlier works in the war planning and deployment field and provides 

a stepping-stone for future research. The most important advancement includes the 

quantification of force mix selection so that consistent, expert decisions will be made 

regardless of a planner's experience level. 
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Appendix A. Acronyms and Definitions 

AA 

AEF 

AEW 

AFIT 

ALP 

Air-to-Air—missions to clear the area and patrol incase of a launch 
of enemy aircraft 

Aerospace Expeditionary Force—a composite organization of 
aerospace capabilities from which a tailored Aerospace 
Expeditionary Task Force, composed of AEWs, AEGs, and AESs, 
is created to provide forces o meet theater CINC requirements. An 
AEF is not a discrete warfighting unit (AFI 10-400). 

Aerospace Expeditionary Wing—a wing or wing slice assigned or 
attached to an Aerospace Expeditionary Task Force or an in-place 
NAF by MAJCOM G-series orders. Normally, the Aerospace 
Expeditionary Task Force or in-place NAF commander also 
exercises OPCON of AEWs. An AEW is composed of the wing 
command element and some groups. The AEW commander 
reports to a COMAFFOR (AFI 10-400). 

Air Force Institute of Technology, Wright-Patterson, Ohio 

Advanced Logistics Project— a joint Defense Advanced Research 
Projects Agency and Defense Logistics Agency research project, 
was developed to speed up the sourcing and tailoring of existing 
TPFDDs. 

APS 

BCM 

CAS 

CINC 

CONOPS 

CONUS 

DARPA 

Advanced Planning System 

Bomb Component Matrix—a listing of the number of shared 
components used to make a specific bomb. 

Close Air Support—missions flown against hostile targets in close 
proximity to friendly forces. Bombers have effectively been used 
in the CAS role. However, missions have to be carefully planned 
to avoid fratricide and loss of the bomber to enemy fire. 

Commander in Charge/Combatant Commander—the commander in 
charge of all operations within a unified theater. 

Concept of Operations 

Continental United States—the 48 contiguous states. 

Defense Advanced Research Projects Agency 
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DLA 

FAM 

ILP 

JMPS 

LP 

LSILP 

MAJCOM 

MARMOT 

MCM 

MP 

MRR 

M-R VAT 

MTW 

PFPS 

PCMM 

Defense Logistics Agency 

Functional Area Managers—the person at the MAJCOM that is 
responsible for ensuring the accuracy of the data in UTCs. 

Integer Linear Programming—LP with some or all of the decision 
variables assuming integer values. 

Joint Mission Planning System 

Linear Programming—MP with linear objective function and 
constraints. 

Large-Scale Integer Linear Programming—an ILP that has many 
decision variables, constraints, or both and is so complex that 
normal ILP procedures are inadequate to deal with the problem. 

Major Command 

Mission Asset Resource Mix Optimization Tool 

Munitions Configuration Matrix—a matrix detailing the munitions 
load for a specific aircraft configuration. 

Mathematical Programming—using mathematics that describe how 
systems work or will work to find the optimal use of limited 
resources. 

Mission Ready Resource—composed of a resource type and its 
logistics requirements, i.e. aircraft, pilot, fuel, munitions, support 
equipment and personnel, etc., that has a certain task suitability. 

Mission-Resource Value Assessment Tool—a tool, using MRRs, is 
designed to rapidly identify alternative force mixes by matching 
mission preferences to tasks, tasks to resources, and resources to 
logistics requirements. 

Major Theater Wars 

Portable Fighting Planning System 

Preference Curve Mapping Macro—Macro in Appendix H 

100 



SEAD 

SSC 

TPFDD 

Suppression of Enemy Air Defense—missions to destroy or disable 
radar-guided, surface-to-air missile sites and anti-aircraft artillery. 

Small Scale Contingency—unpredictable challenges such as 
conflict against rogue nations with weapons of mass destruction, 
terrorism, ethnic tension, etc., that are not part of the MTW 
preplanning concept that require rapid response of limited forces. 

Time-Phased Force Deployment Data—Joint Operation Planning 
and Execution System data base portion of an operation plan with 
time-phased force data, non-unit-related cargo and personnel data, 
and movement data for the operational plan, including: (a) in-place 
units, (b) units to be deployed to support the operation plan with a 
priority indicating the desired sequence for their arrival at the port 
of debarkation, (c) routing of forces to be deployed, (d) movement 
data associated with deploying forces, (e) estimates of non-unit 
related cargo and personnel movements to be conducted 
concurrently with the deployment of forces, and (f) estimate of 
transportation requirements that must be fulfilled by common-user 
lift resources as well as those requirements that can be fulfilled by 
assigned or attached transportation resources (JP 1-02). 

TPM Task Preference Matrix—theater commander task preference based 
on number of total missions available. 

TSM Task Suitability Matrix—relative effectiveness of an MRR 
performing a specific task/mission and establishes the mission 
weighted preferences between MRRs and missions. 

US United States 

USAF United States Air Force 

USTRANSCOM        US Transportation Command, Scott AFB, Illinois 

UTC Unit Type Code—modular, scalable capability to provide combat 
and support operations across the spectrum of operations. 
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Appendix B. ALP Pilot Problem (Swartz, 1999) 

ALP Pilot Problem and Derivation of Mathematical Model 

I. Measuring the Relative Utility of Resource Sets 

Preferences or Relative Utility of Assets for Various Tasks 

Assume two basic aircraft: a bomber, with two potential configurations; B-A and B- 

B; and a fighter, with three potential configurations; F-A, F-B, and F-C. The aircraft are 

assigned to a unit tasked with providing four missions or tasks: SEAD, AA, CAS, and 

INT. Certain configurations of the different aircraft can provide higher or lower levels of 

effectiveness in applying a single sortie to the various missions according to the Asset- 

Mission Task Preference Matrix (A-M TPM). The "favorite" or best asset to apply to a 

particular mission is assigned a value of unity, and the effectiveness of alternative assets 

is weighted accordingly. A value of .5 implies that two sorties of the aircraft would be 

able to achieve equivalent results to a single sortie of the best aircraft for the mission. 

Table 5: A-M TPM 

SI. AD AA (AS IM 

B-A .5 0 .2 1 

B-B .8 0 .6 .8 

F-A .3 1 .2 0 

F-B .5 .1 1 .5 

F-C 1 .1 .3 .2 
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In essence, the "scorer" of the relative effectiveness of these resources is 

assessing how many additional sorties would have to be flown by a non-preferred asset in 

order to achieve the same mission outcome as the preferred asset. In some cases, there is 

no way an asset could create the same battlefield effect as another; in those instances, the 

non-preferred asset is assigned a value of 0. 

This matrix establishes our sortie-weighted preferences between assets for 

missions. These preferences can be set aside for the moment; the A-M TPM will become 

critical in a later section. 

Preferences or Relative Utility of Various Tasks for the Campaign 

Over the course of a campaign, commanders have preferences for certain missions 

over others; these preferences represent the relative value of one mission type over 

another. For example, out of an arbitrary number of total missions required for a given 

day, a commander may prefer that most of them be AA (60%), a fairly large number be 

SEAD (30%), no CAS, and a small amount (10%) for INT. At this level of total activity, 

for this given day of the campaign, these relative ratios represent the relative weight of 

importance or priority between the mission types. Of course, the relative priority and 

numbers of missions would be different for different days of the campaign. They would 

also probably be different for different levels of total activity (resource availability) 

possible. Let's examine the latter case further, then address the former. 

Utility in Response to Resource Level. The relative balance or share will probably 

not remain constant over varying levels of total resource availability. At any given level 

of resources available, the actual relative balance or share of mission type out of total 

missions may or may not remain constant. For example, a certain mission type may be 
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critical at a low level of total missions, but as resources increase, it's marginal value may 

taper and another mission type becomes paramount. For example, consider the following 

mission requirements based on the preference ratios just described: 

SEAD: 20     AA: 40     CAS: 0     INT: 10 

The relative ratios 2/4/0/1 between the numbers of missions by type for campaign 

operations can be used to provide an index of criticality or desirability; (preference or 

utility assumed to be weighted by the number of sorties specified). This relative utility 

assumes a certain level of resources available. These utility ratios may change as the 

level of resources increases or decreases. For example, as the total number of sorties 

possible gets larger and larger, the increase in the number of SEAD and AA sorties may 

taper (diminishing returns); while the value of some CAS or extra INT sorties may 

increase. Conversely, if the total number of sorties decreases, the INT sorties desired 

may decrease rapidly, and the commander may be more reluctant to reduce the SEAD 

missions than the AA missions. At varying levels of total resource availability, the 

relative marginal utility of one sortie or mission type over another may change. The 

inflection points of the diminishing/increasing utility curves can be captured using the 

expert knowledge of the campaign commanders and planners. The commander can be 

asked to determine relative utility given various levels of resourcing. For example, by 

identifying the preferred sortie/mission mix for the "nominal" case (above) and then 

providing alternative mixes representing points where the relative priorities change as 

resource levels go up or down, we could represent shifts in relative marginal utility or 

priority. 
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Table 6: Sortie/Mission Mix Preference Inflection Points (over Resource Levels) 

(lit \oin Mi 

SEAD 5 20 30 

AA 30 40 50 

CAS 0 0 10 

INT 0 10 25 

In this table, we can see that for resource levels between 0 and 35 total sorties/day, 

commanders would prefer a sortie mix in the ration of 5/30/0/0. In other words, as 

resources flow into the theatre of operations, the commander would prefer 6 AA sorties 

for every 1 SEAD sortie- and isn't interested in any CAS or INT sorties at all. Between 

35 and 70 total sorties, the relative utility can be represented by the ratio 15/10/0/10. 

Between 70 and 115 total sorties/day, our preference ratios would be 10/10/10/15. As no 

inflection point was identified above 115 total sorties/day, it could be assumed that the 

relative utilities above that level would be equal; with relative priority ratios of 1/1/1/1. 

These three inflection points could be associated with "Critical," "Nominal," and "High" 

levels of resources. 

Utility in Response to Time. The relative balance or share (relative preference) of 

missions will probably not remain constant over time. Priorities will change as the 

campaign progresses. The time-phased preference changes can be represented by system 

states or phases at some arbitrary (but preferred) level of total missions. For example, 

assume that our campaign can be conducted in three phases: an air supremacy phase, a 

strategic bombing phase, and finally a close air support phase. Given a scenario 
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(including enemy configuration), a commander could provide the following preferences 

for numbers of sorties at the "nominal" level of missions. 

Table 7: Sortie/Mission Mix Preference Inflection Points (over Time) 

I II III 

SEAD 20 20 10 

AA 40 16 16 

CAS 0 10 40 

INT 10 30 10 

Note that the actual time value associated with the phase (state) change is not 

indicated. It could be specified in advance when the state/phase changes are anticipated 

to occur. For example, state/Phase I type operations will begin on "Day 0" and the 

change to state/Phase II will occur on "Day 15," and Phase III operations are planned for 

"Day 30." Also, while this example indicates the presence of only three states or phases, 

a very large number of nuanced states could be defined. Of course, for each phase of the 

campaign, the commander would also be able to complete the specification of relative 

preferences or utility at various levels of resources as in the previous paragraphs. 

Preferences for missions would therefore vary along two dimensions: the 

dimension of time or phases and the dimension of resource availability. The resulting 

three-dimensional matrix will indicate relative marginal utility of missions or tasks over 

both time and level of resources. This can be represented by the Mission-Resource-Time 

Task Preferences Matrix (M-R-T TPM). This matrix, when combined with the 
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previously described Asset-Mission Task Preference Matrix (A-M TPM), can be used to 

construct a map of the relative "value" of different sets of assets in the theatre against the 

missions that are preferred during the campaign. 

Table 8: M-R-T TPM 

I II III 

Oil Nom Hi Oil Nom Hi (in Nom in 

SEAD 5 20 30 15 20 30 10 10 15 

AA 30 40 50 5 16 20 5 16 20 

CAS 0 0 10 0 10 10 30 40 60 

INT 0 10 25 15 30 60 5 10 20 

The M-R-T TPM represents the relative utility or preference the campaign 

commander has for the set of available missions, for the resources at his or her disposal, 

over various levels of resource availability and over the duration of the campaign. Each 

combination of sorties or tasks under any specified resourcing level and campaign phase 

represents a "preferred sortie set" or point in n dimensions where n is the number of 

sortie or task types. The preferred mix of sorties or tasks can be described as the set of 

points along the resource levels (with inflection points specified) within a given 

campaign phase. Starting from "0" resources, the preferred mix of sorties or tasks is the 

vector between inflection points as resource levels increase. 

Calculating the Relative Value of Preferred (Benchmark) Asset Sets 

Assume, for the purpose of discussion, that we only assign the "best" asset to each 

task or sortie as described by the A-M TPM. Assume further that the total set of assets 

increases or decreases in a linear fashion between the inflection points described in the 
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M-R-T TPM, within each time phase. We could then easily establish the rank order or 

relative value of each asset set according to its position along the line between points. 

For example, in Phase I we start with having no assets and seek to achieve sufficient 

assets to reach the "Critical" task or sortie set of 5-30-0-0. The best SEAD asset is the F- 

C, and the best AA asset is the F-A. Since we desire 6 AA sorties for every 1 SEAD 

sortie (and since we desire 0 CAS or INT sorties); and since we are interested in integer 

values only, a sample relative value ranking would involve the following asset sets (from 

least to most) shown in Table 9. 

Table 9: Asset-Set Points Along the Sortie/Mission Preference Vector 

u-.\ u-u I'-A l-'-U 1 ■■-( 

0 0 0 0 0 

0 0 1 0 0 

0 0 2 0 0 

0 0 3 0 0 

0 0 4 0 0 

0 0 5 0 0 

0 0 6 0 0 

0 0 6 0 

0 0 7 0 

0 0 8 0 

0 0 9 0 

0 0 10 0 

0 0 30 0 5 
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For each increment, we are able to state confidently that the increment (asset set) is 

better than or preferable to the increment that preceded it; and is not as good or is not 

preferred to the one that follows it. We are unable, however, to ascertain by "how much" 

any increment is preferred over another. This issue will be addressed momentarily. 

Currently, the concept of rank preference is sufficiently useful to continue the analysis. 

Using the tabular information (representing a vector through the asset set space), the 

position of any asset combination (point in the asset space) could be related to the 

previously developed value or preference vector. For example, the point (1, 0, 6, 0, 0) is 

not on the value vector- but the point (0, 0, 6, 0, 0) is. What then can we say about the 

relative value of (1, 0, 6, 0, 0) vs. (0, 0, 6, 0, 0)? Has the combatant commander gained 

anything by having an additional B-A sortie? 

The positive argument says yes, the commander has obviously gained; he or she has 

an additional sortie above and beyond what was desired. The negative argument says no, 

the commander has not gained; this additional sortie is unwanted and therefore provides 

no value. Both arguments seem to have merit; but which is correct? Consider a key fact: 

the commander has already indicated preferences for sorties. While it may be true that 

the additional sortie does add value to the package, it would be difficult to claim that the 

value added is greater than the value represented by the next point along the vector. 

While it may be true that (0, 0, 6, 0, 0) < (1, 0, 6, 0, 0), it is also true that (1, 0, 6, 0, 0) < 

(0, 0, 6, 0, 1). If given the choice between an additional B-A sortie and an F-C sortie, the 

commander has already spoken. Indeed, the commander prefers an additional F-C sortie 

over any number of any combination of additional sorties. The value of any off-vector 

combination of sorties is greater than the smallest vector point that is completely satisfied 
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by all elements of the off-vector combination; and less than the value of the next higher 

vector point. For the time being, we can ignore the incremental value of the off-vector 

asset sets and consider their value to be equal to the value of the lowest completely 

satisfied on-vector asset sets. 

Calculating the Relative Value of Non-Preferred Asset Sets 

In the previous discussion, we have assumed that only the preferred assets (relative 

A-M TPM value of "1.0") would be considered. We were then able to assume a "one for 

one" correlation between the individual sorties or tasks (from the commanders mission 

preferences described in the M-R-T TPM) and the assets assigned to perform those 

sorties. During that discussion, the terms "sortie set" and "asset set" were synonymous. 

If non-preferred assets are being used, the value of the sorties provided must be adjusted 

relative to what would be achieved using the preferred assets. We must "calibrate" 

between sorties and assets to account for the use of less capable assets. Of course, we 

already have a way to do this: the A-M TPM provides us with our correction factors. 

The asset set represents the number of mission-ready assets available to be tasked 

against sorties on the specified day. The sortie preference sets represent the points along 

the commander's preference vector. Relative position (relative to the preferred sortie sets 

vectors) can be calculated by multiplying the respective A-M TPM preference weight by 

the number of assets available for any given day. This weighted asset set can then be 

compared to the "nominal" (or one-one previously described) sortie set vector, and 

assigned a relative position based on the minimum sortie set satisfied by the weighted 

asset set. An example may be instructive. 
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Assume we have available at our disposal 12 F-C assets. These assets can be used in 

any combination against SEAD, AA, CAS, and INT sorties in the weights of 1, 0.1, 0.3, 

and 0.2. By assigning all assets to a single mission, we could achieve 12 SEAD, 1.2 AA, 

3.6 CAS, or 2.4 INT weighted sortie equivalents maximum. Therefore, we have 4 

possible integer allocations of these 12 assets to these 4 missions using the "all or 

nothing" principle, and weighting for effectiveness/preference of the asset type against 

the mission type. The four preference weighted sortie sets for the allocation of these 

assets would be: (12, 0, 0, 0), (0, 1, 0, 0), (0, 0, 3, 0), or (0, 0, 0, 2). Truncation is used 

instead of rounding; as a partial asset is meaningless for the performance of a sortie on a 

given day. The relative value of these preference weighted, asset allocated sortie sets 

could then be assigned against the preferred sortie set vector as previously discussed. 

Bounded Possibilities; the Relative Values of All Combinations of Sortie Sets 

Following the procedures described above, it would now be possible to enumerate all 

possible combinations of asset sets, bounded by the total numbers of assets available 

within each type. These asset sets could then be converted into preference weighted 

sortie sets using the A-M TPM. The (asset) preference weighted sortie sets could be 

assigned relative value positions along the (mission) preference weighted sortie set vector 

described by the M-R-T TPM. At this point, many of the asset sets could share the same 

value positions. We have lost the ability to differentiate among asset sets sharing the 

same sortie set value; even though differences may exist. Also, we have no ability to 

assign absolute values (vice relative values) to any of the sortie sets or asset sets. The 

enumerated asset set-relative value pairs could be considered to describe a response 

surface. The Dependent (outcome) variable of the surface is the relative value. The 
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Independent Variables are the numbers of assets by each type; an asset feasible 

combination of assets (an asset set) represents an m dimensional point along the surface 

where m is the number of different asset types. 

Table 10: Relative Values of Asset Set Points along the Mission Preference Vector 

v Sonic Mix 
(S, A, C, I) 

l.i|imaknt Asset Sits (15-A. 15-15. 1 -A. 1-15. 1 -( ) 

0 (0, 0, 0, 0) (0, 0, 0, 0, 0) 

1 (0,1,0,0) (0, 0, 1, 0, 0):(0, 0, 0, 10, 0):(0, 0, 0, 0, 10):(0, 0, 0, 9, 1):(0, 0, 0, 8, 2)... etc. 

2 (0, 2, 0, 0) (0, 0, 2, 0, 0):(0, 0, 1, 10, 0):(0, 0, 1, 0, 10):(0, 0, 1, 9, 1):(0, 0, 1, 8, 2)... etc. 

3 (0, 3, 0, 0) (0, 0, 3, 0, 0):(0, 0, 2, 10, 0)... etc. 

4 (0, 4, 0, 0) (0, 0, 4, 0, 0)... etc. 

5 (0, 5, 0, 0) (0, 0, 5, 0, 0)... etc. 

6 (0, 6, 0, 0) (0, 0, 6, 0, 0)... etc. 

7 (1,6,0,0) (0, 0, 6, 0, 1):(0, 0, 5, 10, 1)... (0, 0, 0, 0, 61):(0, 2, 6, 0, 0). .. etc. 

8 (1,7,0,0) (0, 0, 7, 0, 1). . etc. 

9 (1,8,0,0) (0, 0, 8, 0, 1). . etc. 

10 (1, 9, 0, 0) (0, 0, 9, 0, 1). . etc. 

11 (1,10,0,0) (0,0, 10,0, 1) .. etc. 

12 (1,11,0,0) (0,0,11,0,1) .. etc. 

13 (1,12,0,0) (0,0,12,0,1) .. etc. 

14 (2, 12, 0, 0) (0, 0, 12, 0, 2) .. etc. 

15 (2, 13, 0, 0) (0,0, 13,0,2) .. etc. 

16 (2, 14, 0, 0) (0, 0, 14, 0, 2) .. etc. 

17 (2, 15, 0, 0) (0,0, 15,0,3) .. etc. 

Max TBD All assets of each type 

It must be noted at this time that the response surface just described would change 

between phases of the campaign. As the commander's mission preference vectors 

change between phases, the relative value of any given asset set would change as well. 

An asset set that gives you the "best" answer for Phase I might not (probably will not) 

give you the "best" answer for either Phase II or Phase III. In order to achieve better 
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results over the duration of the campaign, the conduct of any individual phase may need 

to be subordinated or sub-optimized. This issue will need to be addressed by whatever 

solution methodology is employed to choose among potential asset sets. 

The problem is not only bound by the total numbers of assets available, but is 

constrained by the total amount of lift available. The initial delivery and subsequent 

support of an asset (used to produce a sortie) consumes materials. These support 

materials need to be brought into theater. Each item transported into the theater 

consumes lift along two dimensions: cube (volume) and tare (weight). Lift is made 

available in finite amounts over time; and the amounts of cube and tare available will 

limit the amount of material support that can be delivered. The nature of the bounds and 

how to restrict the feasible set according to the bounds will be discussed in the next 

section. 

II. Bounding Utility: Converting Asset Sets to Lift Requirements 

The Nature of the Bounds: Finite Assets 

As was just mentioned, the region of all possible combinations of asset sets could be 

generated using the commander's preferences for sorties by type, matched against the 

applicability of assets to missions. Of course, these possibilities are bound by the assets 

available and mission-ready at the operating location, on the day required. The total 

availability of resources required to make up the mission ready assets, available at the 

operating location, will limit the missions that can be serviced by sorties. In turn, there 

are two considerations that will bound the amount of resources available at the operating 
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location: the total number of resources available worldwide, and the amount and timing 

of lift required to transport them. 

The total number of resources available worldwide (and this number may change 

over time as resources are either generated through production or consumed through 

attrition) forms a "pool" of potential resources that sets the absolute "ceiling" for 

potential resource availability. The amount of lift available over time, combined with 

what is already present at the operating location at any given moment in time, will dictate 

the actual availability. The characterization of resources by consumption type 

(renewable or consumable) and failure type (frequency and predictability) are important 

considerations in determining resource availability. If a resource is renewable (vice 

consumed during use), it places no load on the lift process aside from the initial 

movement. However, even otherwise renewable resources may fail and be "consumed." 

When a failure occurs, this creates a demand for a replacement which must be satisfied 

through the lift process. These distinctions between renewable and consumable 

resources, and between failure frequencies and types, will be explored further in our 

discussion of resource types. 

In our example, we had two basic aircraft: the "B" and the "F." The "B" airframe 

can be combined with other resources (fuel, munitions, equipment, etc.) to create two 

basic configurations, the B-A and the B-B. Similarly, the F airframe can be configured 

into three distinct assets, the F-A, F-B, and F-C. If we have only "X" Fs available, then 

any feasible asset set combination must have the total number of F-As, F-Bs, and F-Cs 

strictly less than or equal to "X." This strict bound would apply to each asset, and to each 

of the constituent resources that make up the asset. An asset (mission-ready asset) may 
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consist of several resources bound in this manner. The number of basic airframes would 

certainly bound the possibilities. Auxiliary equipment, fuel, and munitions may also 

bound specific classes of assets as well. All of these resources can be classified as either 

being renewable or consumable. Rules for the use and availability of renewable and 

consumable assets can be developed to describe the nature of the bounds each will place 

on the feasibility of the potential asset sets. 

Renewable Resources. Renewable resources are those which could be used over and 

over again for many missions, while perhaps suffering some minor degradation or 

wearout. Perhaps more importantly, these are resources that can be characterized by 

failures that are either rare, or unpredictable, or both. Three types of logistics resources 

could be classified as "renewable:" Aircraft, Equipment, and Personnel. Each of these 

will be discussed in turn. 

The total number of aircraft (the F airframe, for example) in use at any given time 

could not exceed the total number available. However, any individual F could be used 

repeatedly over time for any number of F-A, F-B, or F-C missions. Upon return from a 

sortie, the individual aircraft could be repaired, refueled, and reconfigured for any 

suitable task. In this sense, the aircraft as a resource would be renewable; i.e., it could be 

used over and over again during the course of the campaign. 

There would, of course, be a time delay involved between the time the aircraft 

completed it's previous task and when it would be available for the next task. Also, there 

would be a number of additional resources that may be needed (borrowed or consumed) 

by the aircraft in order to restore it to a mission ready configuration. Items such as 

spares, ammunition, and fuel would need to be installed (consumed) on the aircraft prior 
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to it's being available for another task. Items such as power units, bomb loaders, and 

toolboxes would need to used (borrowed) during the restoration actions. 

Another type of renewable resource includes items of support equipment. Tools, test 

equipment, powered and nonpowered aerospace ground equipment are all resources that 

could be used over and over again in support of the campaign. 

The last category of renewable resources includes people. Operations, maintenance 

and support skill sets would all be included in this category. 

The rules governing the use of renewable resources would be generally 

straightforward: calculate how many items you would need to support a given level of 

tasks, and then account for failure and attrition. As long as you have a sufficient number 

of each item available to meet the activity level, you will be able to accomplish the tasks 

specified. For example, to fly X sorties of F-A and Y sorties of F-B, you would need to 

have X+Y F airframes on hand. You would (perhaps) need X+Y maintenance people of 

type "Aircraft Crew Chief as well. The rule for a different skill set (e.g. "Life Support") 

may be totally different; 1 person needed for the first 20 aircraft assigned, then one 

additional specialist for every 5 more aircraft. There may be a type of powered ground 

support equipment used to start the aircraft engines. This "start cart" is used on each 

aircraft for just 5 minutes, and then moved to the next aircraft. The start cart may only by 

needed in a ratio of 1 for every four sorties. In this case, then, the "rule" for the resource 

would result in a calculation of (X+Y)/4; rounded up to the next highest integer value. 

Another example might involve a ground refueling hydrant. After the sorties are flown, 

the aircraft need to be recovered. Recovery involves refueling; which requires the 

availability of a ground refueling hydrant. Here, the requirements rule for hydrants may 
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be a complicated step function: the first hydrant will handle up to 4 sorties, two hydrants 

can service up to six aircraft, and three hydrants are sufficient to refuel up to 16 sorties- 

with similar increments beyond that number. Overall, however, the business rules for 

determining the requirements for renewable resources involve a comparison of activity 

level to capability of the resource. 

Consumable Resources. Consumable resources are those that could not be used over 

and over again for many missions. While they (as in the case of spares) may indeed last 

for more than one mission, repeated use will result in additional demand for more 

resources. Generally, consumables can be characterized by failures or demands that are 

either predictable, or common (frequent), or both. Three types of logistics resources 

could be classified as "consumable:" Fuel, Munitions, and Spares. Each of these will be 

discussed briefly in turn. 

Fuel 

Munitions 

Spares 

The rules governing the use of consumable resources would be similar to the rules 

for renewable resources in that they would be based on the activity level supported. 

However, the calculation of the requirement would (in many cases) be a straightforward 

summation of use, without complex 

Resource-Activity Integration. 

The fundamental question of lift for this problem is "what to move into the operating 

location and when does it need to be there?" This question has two fundamental 

components that must be reconciled: first, what resources are needed on any given day; 
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and second, what will already be on-hand for that day. The shortage of material between 

the two makes up what needs to be delivered on that day. The delivery schedule can then 

be used to identify sources of material, and schedule the lift ofthat material from origin 

to destination. 

Consider the restoration of an F returning from an F-A task, which must be made 

available for an F-B task. In order to create a mission-ready F-B, a host of prerequisites 

must be satisfied. First, an F airframe must be borrowed. 
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Appendix C. Task Preference Matrix (TPM) Example 

Number of 
Missions 

Task/Mission Preferences 

AA AB AC AD AE AF AG NB SB PB 
0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 
2 2 0 0 0 0 0 0 0 0 0 
3 3 0 0 0 0 0 0 0 0 0 
4 4 0 0 0 0 0 0 0 0 0 
5 5 0 0 0 0 0 0 0 0 0 
6 6 0 0 0 0 0 0 0 0 0 
7 7 0 0 0 0 0 0 0 0 0 
8 8 0 0 0 0 0 0 0 0 0 
9 9 0 0 0 0 0 0 0 0 0 
10 10 0 0 0 0 0 0 0 0 0 
11 10 1 0 0 0 0 0 0 0 0 
12 10 2 0 0 0 0 0 0 0 0 
13 10 3 0 0 0 0 0 0 0 0 
14 10 4 0 0 0 0 0 0 0 0 
15 10 5 0 0 0 0 0 0 0 0 
16 11 5 0 0 0 0 0 0 0 0 
17 12 5 0 0 0 0 0 0 0 0 
18 13 5 0 0 0 0 0 0 0 0 
19 14 5 0 0 0 0 0 0 0 0 
20 15 5 0 0 0 0 0 0 0 0 
21 16 5 0 0 0 0 0 0 0 0 
22 17 5 0 0 0 0 0 0 0 0 
23 18 5 0 0 0 0 0 0 0 0 
24 19 5 0 0 0 0 0 0 0 0 
25 20 5 0 0 0 0 0 0 0 0 
26 20 6 0 0 0 0 0 0 0 0 
27 20 7 0 0 0 0 0 0 0 0 
28 20 8 0 0 0 0 0 0 0 0 
29 20 9 0 0 0 0 0 0 0 0 
30 20 10 0 0 0 0 0 0 0 0 
31 21 10 0 0 0 0 0 0 0 0 
32 22 10 0 0 0 0 0 0 0 0 
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Appendix D. Task Suitability Matrix (TSM) 

Asset Type & 
Munitions 

Configuration 

TASK SUITABILITY 

AA AB AC AD AE AF AG NB SB PB 
A10-1 0.45 0.78 0.96 0.95 0.97 0.91 0.94 0.01 0.40 0.01 
A10-2 0.52 0.87 0.90 0.92 0.93 0.92 0.88 0.01 0.80 0.02 

A10-3 0.52 0.80 0.90 0.89 0.91 0.92 0.97 0.01 0.70 0.02 
A10-4 0.51 0.87 0.91 0.86 0.89 0.93 0.85 0.01 0.01 0.20 
A10-5 0.51 0.86 0.92 0.83 0.87 0.93 0.85 0.01 0.01 0.20 
A10-6 0.51 0.84 0.93 0.98 0.85 0.94 0.85 0.01 0.01 0.20 
A10-7 0.51 0.82 0.94 0.96 0.87 0.94 0.85 0.01 0.01 0.20 
A10-8 0.51 0.80 0.95 0.95 0.87 0.95 0.85 0.01 0.01 0.20 
A10-9 0.51 0.78 0.96 0.94 0.87 0.95 0.85 0.01 0.01 0.20 

A10-10 0.51 0.85 0.97 0.93 0.85 0.96 0.85 0.01 0.01 0.20 
A10-11 0.51 0.88 0.98 0.98 0.87 0.96 0.85 0.01 0.01 0.20 
F16-1 0.80 0.85 0.90 0.63 0.61 0.53 0.79 0.01 0.01 0.01 
F16-2 0.76 0.64 0.76 0.85 0.85 0.58 0.53 0.01 0.01 0.01 
F16-3 0.67 0.79 0.78 0.66 0.74 0.85 0.90 0.01 0.05 0.01 
F16-4 0.70 0.70 0.77 0.66 0.70 0.64 0.84 0.01 0.02 0.04 

F16-5 0.71 0.86 0.63 0.69 0.69 0.65 0.72 0.01 0.10 0.10 
F16-6 0.69 0.86 0.62 0.63 0.62 0.65 0.80 0.01 0.01 0.01 
F16-7 0.68 0.84 0.78 0.57 0.80 0.69 0.85 0.01 0.20 0.01 
F16-8 0.67 0.79 0.84 0.66 0.66 0.67 0.73 0.01 0.01 0.04 
F16-9 0.68 0.75 0.79 0.54 0.71 0.70 0.80 0.01 0.05 0.01 

F16-10 0.68 0.88 0.80 0.78 0.84 0.78 0.84 0.01 0.03 0.01 
F16-11 0.69 0.89 0.88 0.78 0.76 0.52 0.70 0.01 0.02 0.05 

F18 0.85 0.85 0.85 0.84 0.76 0.62 0.94 0.01 0.06 0.02 
F19 0.63 0.60 0.77 0.90 0.54 0.75 0.72 0.01 0.09 0.10 
F20 0.72 0.75 0.63 0.86 0.53 0.67 0.68 0.01 0.01 0.01 
Bl 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.50 0.40 0.80 
B2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.40 0.50 0.70 
B3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.80 0.60 0.60 
B4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.70 0.70 0.50 
B5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.60 0.80 0.40 
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Appendix E. Munitions Configuration Matrix (MCM) 

Missiles Guided Bombs Un guided Cluster 
Air Intercept Air to Ground Laser Guided GPS Guided Bombs Bombs 

. ai genug ± uus 

AIM 
7 

AIM 
9 

AIM 
120 

AGM- 
65 

AGM- 
84 

AOM- 
86C 

AGM- 
88 

AGM- 
130 

AGM- 
154 

AGM- 
158 

GBU- 
10 

GBU-12 GBU- 
24E/B 

GBU- 
31 

MK 
66 

MK 
82 

MK 
84 

CBU 
87 

CBU 
89 

CBU 
97 

AAS- 
35 

ASQ- 
213 

LANT1RN 

AlO-l 2 2 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 

A10-2 2 4 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 

A10-3 2 2 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 

A10-4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 

A10-5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 

A10-6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 

A10-7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 

A10-8 2 2 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 

A10-9 2 2 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 

AlO-10 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AlO-11 2 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 

F16-1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

F16-2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

F16-3 2 2 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 

F16-4 2 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 

F16-5 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 

F16-6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 

F16-7 2 2 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 

F16-8 2 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

F16-9 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

F16-10 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

F16-11 2 2 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 

F18 2 0 2 2 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 

F19 4 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 

F20 2 0 2 1 i 0 2 0 0 0 0 1 1 0 0 0 0 0 2 2 1 

Bl 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 

B2 0 2 2 2 2 2 1 1 1 1 1 0 0 1 1 1 0 0 0 

B3 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 

B4 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 

B5 0 2 2 2 2 2 2 1 1 0 1 1 0 0 1 1 1 0 0 0 
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Appendix F. Bomb Component Matrix (BCM) 

Constraints: 
Fuze Options 

Missiles Guided Bombs Un guided 
Air Intercept Air to Ground Laser Guided GPS Guided Bombs 
AIM 

7 
AIM 

9 
AIM 
120 

AGM- 
65 

AGM- 
84 

AGM- 
86C 

AGM- 
88 

AGM- 
130 

AGM- 
154 

AGM- 
158 

GBU- 
10 

GBU-12 GBU-24 
E/B 

GBU- 
31 

MK 
66 

MK 
82 

MK 
84 

M904E2 0 0 0 0 0 0 1 1 
M905 0 1 1 0 0 0 1 1 
FMU-26A/B 0 0 0 0 0 0 1 1 
FMU-26B/B 0 1 1 0 0 0 1 1 
FMU-54/B,A/B 0 0 0 0 0 0 0 0 
FMU-56 D/B 0 0 0 0 0 0 0 0 
FMU-72/B 0 0 0 0 0 0 1 1 
FMU-81/B 0 1 1 1 0 0 0 0 
FMU-110/B 0 0 0 0 0 0 0 0 
FMU-113/B 0 0 0 0 0 0 1 1 
FMU-124A/B,B/B 1 0 0 0 0 0 0 0 
FMU-139A/B 0 1 1 1 0 0 1 1 
FMU-143/B,B/B 0 0 0 0 0 0 0 0 
FMU-152/B 1 1 1 1 1 0 0 0 
MK43 TDD 0 0 0 0 0 0 0 0 
FZU-39/B 0 0 0 0 0 0 0 0 

Body Options 
500 LB 0 0 1 0 0 0 1 0 
1000 LB 0 0 0 0 1 0 0 0 
2000 LB 1 1 0 1 0 0 0 1 
4000 LB 0 0 0 0 0 0 0 0 
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Appendix G. MRR Weight Matrix 

Asset Type & 
Munitions 

Weight 

(ST) 
AlO-1 25.3 
A10-2 26.8 
A10-3 23.5 
A10-4 25.1 
A10-5 24.5 
A10-6 24.5 
A10-7 25.1 
A10-8 24.5 
A10-9 23 
AlO-10 24.1 
AlO-11 23.5 
F16-1 24.2 
F16-2 24.6 
F16-3 22.5 
F16-4 25.4 
F16-5 24.4 
F16-6 26.5 
F16-7 24.4 
F16-8 26.8 
F16-9 29.5 
F16-10 21.4 
F16-11 24.2 

F18 22.9 
F19 23.9 
F20 24.3 
Bl 22.1 
B2 23.9 
B3 25.5 
B4 22 
B5 22.1 
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Appendix H. Preference Curve Mapping Macro Code 

Sub JW() 
Start 1 = Timer 
Do 

If Worksheets("ILP").Range("v47") >= Worksheets("ILP").Range("w47") Then 
Worksheets('TLP").Range("L69") = Worksheets("ILP").Range("L69") + 10 
Worksheets('TLP").Range("w47") = Worksheets("ILP").Range("v47") 
SolverSolve (True) 

Else 
End 
Exit Do 

End If 
Loop Until Worksheets("ILP").Range("v47") < Worksheets("ILP").Range("w47")   ' 

Exit outer loop immediately. 
If Worksheets("ILP").Range("v47") < Worksheets("ILP").Range("w47") Then 

Worksheets('TLP").Range("L69") = Worksheets("ILP").Range("L69") - 20 
SolverSolve (True) 
Worksheets("ILP").Range("w47") = 0 

Else 
End 

End If 
Do 

If Worksheets("ILP").Range("v47") >= Worksheets('TLP").Range("w47") Then 
Worksheets('TLP").Range("L69") = Worksheets("ILP").Range("L69") + 1 
Worksheets('TLP").Range("w47") = Worksheets("ILP").Range("v47") 
SolverSolve (True) 

Else 
End 
Exit Do 

End If 
Loop Until Worksheets("ILP").Range("v47") < Worksheets("ILP").Range("w47")   ' 

Exit outer loop immediately. 
If Worksheets("ILP").Range("v47") < Worksheets("ILP").Range("w47") Then 

Worksheets('TLP").Range("L69") = Worksheets("ILP").Range("L69") - 1 
SolverSolve (True) 
Finish 1 = Timer 
Worksheets("ILP").Range("w62") = Finishl - Startl 

Else 
End 

End If 
'JW Macro 
'Macro recorded 11/30/2001 by cpunches 
End Sub 
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Appendix I. TSOM Definitions and Formulas (Kuykendall, 1998: 16-19) 

Indices: 
s ships {e.g., DD-987, DDG-53, CG-54, SSN-720} 
i half-module, dependent on type of ship {e.g., hl-hl6 for DD-987} 
j cell, each half-module contains four cells {cl-c4} or {c5-c8} 

Note: the valid (s,i,j,) tuples are called missile locations. 

m missile type loaded in cell, {e.g., Oil, DII, ASROC, etc...} 
n mission number, total missions known to require tasking {e.g., nl, n2, 

n3,...} Each mission corresponds to a single requested missile firing. 

Given Data: 
loadsijm equals 1 if initial loadout in location (s,i,j) is a missile of type m, 0 

otherwise 
ordernm equals 1 if mission n calls for missile m, 0 otherwise 
rs„ equals 1 if mission n calls for a ready-spare, 0 otherwise 
bkupn equals 1 if mission n calls for a back-up, 0 otherwise 
valm relative value for missile m 
primepen elastic penalty for not completing a primary mission 
rspen elastic penalty for not completing a ready-spare mission 
bkpen elastic penalty for not completing a back-up mission 
torppen elastic penalty for assigning a missile not currently loaded in torpedo 

tubes (refers only to submarine assignments) 
notintubeSjj      equals 1 if location (s,i,j) is not in torpedo tubes, 0 otherwise (refers 

only to submarine) 

Derived Data: 
oksij„ equals 1 if missile in location (s,i,j) can be assigned as a primary, 

ready-spare or back-up for mission n;   okSyn = XmloadSjjm * ordernm 

Variables: 
Missile firing and Assignment 
XSijn equals 1 if missile in location (s,i,j) is fired for primary mission n, 0 

otherwise 
WSijn equals 1 if missile in location (s,i,j) is assigned as ready-spare for 

mission n, 0 otherwise 
Zsij„ equals 1 if missile in location (s,i,j) is assigned as back-up for mission 

n, 0 otherwise 
Ysij equals 1 if missile in location (s,i,j) is fired for a primary mission, 0 

otherwise 
VSjj equals 1 if missile in location (s,i,j) is assigned as a ready-spare or 

back-up mission, 0 otherwise 
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Missile Counting 
HMODsim        residual number of missile m on ship s, in half-module i after firing 
SALVO Sim       equals 1 if ship s, half-module i contains one or more missiles of type 

m after firing, 0 otherwise 

Incomplete Missions 
UNABLEn      equals 1 if no missile is selected for primary mission n, 0 otherwise 
RSUNABLEn equals 1 if no missile is assigned as ready-spare for mission n, 0 

otherwise 
BKUNABLEn equals 1 if no missile is assigned as back-up for mission n, 0 otherwise 

Notes on Variable Definitions: 
1) XSij„, WSijn, and Zsijn are not defined if oksijn = 0. 
2) YSij and Vsy are not defined if EmloadSijm = 0. 
3) HMODsim is meant to be general integer, but can be treated as continuous 

since it must equal the sum of binary variables in Constraint (3). 
4) HMODsim and SALVOSim are not defined if ZjloadSijm = 0. 
5) UNABLEn, RSUNABLEn, and BKUNABLEn are meant to be binary 

variables, but are treated as continuous since they must equal 1 minus the 
sum of sum of binary variables in Constraints (6) - (8). 

Formulation: 
la) MAXIMIZE   Islilmvalm * SALVOsim 
lb) - primepen * £nUNABLEn 

lc) - rspen * £n rsn * RSUNABLEn 

Id) - bkpen * £n bkupn * BKUNABLEn 

le) - torppen * Esij notintubeSij * (Ysij + Vsij) 
If) + IsI.HMODs^cin 

•ct to: 
2) Ij(YslJ + VS1J) < 1 Vs,i 
3) Ejloadsijm - Ejloadsijm * Ysij = HMODSim Vs,i,m 
4) HMODsim > SALVOsim Vs,i,m 
5) ImSALVOslm<l Vs,i 
6) £sLZjXsij„ + UNABLEn =1 Vn 
7) EsLZjWsijn + RSUNABLEn = 1 Vn s.t. rsn = 1 
8) EsEiEjZsijn + BKUNABLEn = 1 Vn s.t. bkn = 1 
9) ZiZjXsijn ^ ZiZjWsijn Vs,n s.t. rsn = 1 
10) ZiZj(Xsijn + Zsijn) ^ 1 Vs,n s.t. bkn = 1 

11) i sij — Zjn^sijn Vs,i,j 
12) Vsij = E„(rSn * Wsijn + bkupn * Zsijn) Vs,i,j 
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Appendix J. MOMGA Formulation (Wakefield, 2000: 52) 

The complete MOP formulation is as follows: 

Decision variables: Number of MRRy assigned to Task i = {xij ... xy} 

Maximize: 

5" = 0.8x,, + 0.3x, 2 + 0.6x, 3 + 0.00 lx, 4 + 0.00 lx, 5 + 0.4x2, + 0.8x22 + 0.6x2 3 

+0.00 lx24 + 0.00 lx25 + 0.00 lx31 + 0.00 lx32 + 0. lx3 j + 0.8x3 4 + 0.4x35 

Minimize: 

W = 20.2(xu +x2jl + x31) + 28.5(x12 +x22 + x32) + 35.7(x13 +x23+x33) 

(5.1) 

(5.2) 

F = 1650(x,, +x2J + x31) + 2475(x12 +x22 + x32) + 2887.5(x13 +x23 +x33) 

+1705(x14 +x24 +x34) + 2200(x15 +x25 +x35) 

Subject to: 
xljlr^,x3j5 >0 (5.4) 

JV'y  1    ~\    JVy   'J   ~l    J\,sy  T   ~\    J\,f\   A   ~l    JVy  c       l\_Ljldt$ IX yy                                                                                                  I J.  /   / 

vl'T   1     ~\      vl'T   ry    ~l      vl'T   -1    ~l      vl'T    A        l"   "A"l   C         _/YXjtt/lJ •*/,,. "1                                                                                                                                       I   »J • O  / 

xn + x2, + x3, < RLmrrm, (5.9) 

x, 2 + x2 2 + x3 2 < RLmrrm 2 (5.10) 

x, 3 + x23 + x33 <RLmrrm3 (5.11) 

x14 + x24 + x34 <RLmrrm4 (5.12) 

x15 + x25 + x35 <RLmrrm5 (5.13) 

where m is the Resource Level index for the current problem. 
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Appendix K. Trial Runs to Maximum Missions that Improves Total Suitability 
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Appendix L. Trial Runs to 775 Missions 
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Appendix M. MRR Mix for the 5 Batch/Curve 1 Test 

Asset Type & 
Munitions 

Missions 
AA AB AC AD AE AF AG NB SB PB 

A10-1 0 0 0 0 2 0 0 0 0 0 
A10-2 0 0 0 0 0 0 0 0 0 0 
A10-3 0 0 0 0 1 0 85 0 0 0 
A10-4 0 0 0 0 0 0 0 0 0 0 
A10-5 0 0 0 0 0 0 0 0 0 0 
A10-6 0 0 0 0 0 0 0 0 0 0 
A10-7 0 0 0 0 0 0 0 0 0 0 
A10-8 0 0 0 0 0 0 0 0 0 0 
A10-9 0 0 41 0 0 75 0 0 0 6 

A10-10 0 0 0 0 0 0 0 0 0 0 

A10-11 0 0 39 60 0 0 0 0 0 0 

F16-1 0 0 0 0 0 0 0 0 0 0 
F16-2 0 0 0 0 0 0 0 0 0 0 
F16-3 0 0 0 0 0 0 0 0 0 0 
F16-4 0 0 0 0 0 0 0 0 0 0 

F16-5 0 0 0 0 0 0 0 0 0 0 
F16-6 0 0 0 0 0 0 0 0 0 0 
F16-7 0 0 0 0 0 0 0 0 0 0 
F16-8 0 0 0 0 0 0 0 0 0 0 
F16-9 0 0 0 0 0 0 0 0 0 0 
F16-10 0 115 0 0 52 0 0 0 0 0 
F16-11 0 0 0 0 0 0 0 0 0 0 

F18 100 0 0 0 0 0 10 0 0 0 
F19 0 0 0 0 0 0 0 0 0 0 
F20 0 0 0 0 0 0 0 0 0 0 
Bl 0 0 0 0 0 0 0 0 0 42 
B2 0 0 0 0 0 0 0 0 0 42 
B3 0 0 0 0 0 0 0 11 0 25 
B4 0 0 0 0 0 0 0 24 18 0 
B5 0 0 0 0 0 0 0 0 42 0 

Total Missions: 100 115 80 60 55 75 95 35 60 115 
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Appendix N. Wilcoxon Large Sample Approximation Test on Search Methods 

CPU Run-Times Step-Wise j Jump-Wise Difference 

43 
O 
13 
m 
"5b 

i/S 

s u 

Iteration 1 1014.398 154.523 859.875 

Iteration 2 1014.93 154.031 860.899 

Iteration 3 1014.18 153.945 860.235 

Iteration 4 1016.484 153.703 862.781 

Iteration 5 1012.266 153.984 858.282 

u 

3 u 

Iteration 1 1325.695 628.461 697.234 

Iteration 2 1323.634 628.453 695.181 

Iteration 3 1324.113 626.813 697.3 

Iteration 4 1326.52 628.656 697.864 

Iteration 5 1324.332 628.82 695.512 

u 

3 u 

Iteration 1 948.945   |     125.563 823.382 

Iteration 2 948.984   |     125.711 823.273 

Iteration 3 949.816  I    126.188 823.628 

Iteration 4 949.816  1     127.18 822.636 

Iteration 5 949.375   ■     125.859 823.516 

<* 
u 

s u 

Iteration 1 828.211 112.359 715.852 

Iteration 2 832.727 112.602 720.125 

Iteration 3 829.844 112.469 717.375 

Iteration 4 830.063 112.523 717.54 

Iteration 5 830.57 112.688 717.882 

H 
t/3 
O o 

O 

u 
43 
O 

m 

s u 

Iteration 1 843.164 178.469 664.695 

Iteration 2 845.148 177.976 667.172 

Iteration 3 843.317 178.594 664.723 

Iteration 4 841.148 178.883 662.265 

Iteration 5 842.157 178.088 664.069 

u 

3 
U 

Iteration 1 874.361 207.898 666.463 

Iteration 2 872.366 208.523 663.843 

Iteration 3 874.88 208.672 666.208 

Iteration 4 869.547 208.321 661.226 

Iteration 5 872.165 208.462 663.703 

u 

3 u 

Iteration 1 837.605 179.305 658.3 

Iteration 2 833.687 179.758 653.929 

Iteration 3 835.879 179.368 656.511 

Iteration 4 837.176 178.587 658.589 

Iteration 5 835.078 179.368 655.71 

<* 
u 

s u 

Iteration 1 833.176 189.047 644.129 

Iteration 2 833.383 189.587 643.796 

Iteration 3 832.195 188.945 643.25 

Iteration 4 833.36 189.102 644.258 

Iteration 5 831.21 189.273 641.937 

Signed Rank 

43 
O 
13 
m 
"5b 

t/2 

s u 

Iteration 1 37 
Iteration 2 39 
Iteration 3 38 
Iteration 4 40 
Iteration 5 36 

U 

s u 

Iteration 1 23 
Iteration 2 21 
Iteration 3 24 
Iteration 4 25 
Iteration 5 22 

en 
u 

S u 

Iteration 1 33 
Iteration 2 32 
Iteration 3 35 
Iteration 4 31 
Iteration 5 34 

<* 
u 

s u 

Iteration 1 26 
Iteration 2 30 
Iteration 3 27 
Iteration 4 28 
Iteration 5 29 

H 
t/3 
O 
o 

<« 
o 
u 

43 
O 
13 
m 

s u 

Iteration 1 16 
Iteration 2 20 
Iteration 3 17 
Iteration 4 12 
Iteration 5 15 

U 

s u 

Iteration 1 19 
Iteration 2 14 
Iteration 3 18 
Iteration 4 11 
Iteration 5 13 

C1 
u 

S u 

Iteration 1 9 
Iteration 2 6 
Iteration 3 8 
Iteration 4 10 
Iteration 5 7 

s u 

Iteration 1 4 
Iteration 2 3 
Iteration 3 2 
Iteration 4 5 
Iteration 5 1 

|            820f oc= 0.01 

Zcriticai = 2.33 Table A.3 Standard Normal Curve Area (Devore, 2000: 723) 
z = 5.5109 The null is rejected since z > Zcriacal 
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Appendix O. Friedman Multiple Rank Test on the Preference Curves 

CPU Run-Times 
Curve 1 Curve 2 Curve 3 Curve 4 

J3 o 
S3 

PQ 

"3> 
.g 
c/5 

1 ft u 
55 

Iteration 1 1014.4 1325.7 948.945 828.211 
Iteration 2 1014.93 1323.63 948.984 832.727 
Iteration 3 1014.18 1324.11 949.816 829.844 
Iteration 4 1016.48 1326.52 949.816 830.063 
Iteration 5 1012.27 1324.33 949.375 830.57 
Iteration 1 154.523 628.461 125.563 112.359 
Iteration 2 154.031 628.453 125.711 112.602 
Iteration 3 153.945 626.813 126.188 112.469 
Iteration 4 153.703 628.656 127.18 112.523 
Iteration 5 153.984 628.82 125.859 112.688 

H 
i/i 
o o 
VO m 
O 

u 
o 

m 
> 

1 ft u 
55 

Iteration 1 843.164 874.361 837.605 833.176 
Iteration 2 845.148 872.366 833.687 833.383 
Iteration 3 843.317 874.88 835.879 832.195 
Iteration 4 841.148 869.547 837.176 833.36 
Iteration 5 842.157 872.165 835.078 831.21 

s 

Iteration 1 178.469 207.898 179.305 189.047 
Iteration 2 177.976 208.523 179.758 189.587 
Iteration 3 178.594 208.672 179.368 188.945 
Iteration 4 178.883 208.321 178.587 189.102 
Iteration 5 178.088 208.462 179.368 189.273 
A2 = 

B2 = 

T,= 

600 k, = 3 

571.1 k2= 57 
46.7439 a= 0.01 

4.16 Table A26 (Conover, 1980: 485) 

The null hypothesis is rejected T2 > Tcritical 

CPU Run-Times Rank Ordered 
Curve 1 Curve 2 Curve 3 Curve 4 

3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
3 4 2 
1 4 2 3 
1 4 2 3 
1 4 2 3 
2 4 1 3 
1 4 2 3 

51 80 39 30 

The F distribution is used to evaluate the test statistic, T2, since it was found to be superior to previous 
chi-square approximation. (Conover, 1980: 300)  

Multiple Comparisons: using the t distribution with (b-\)(k-\) degrees of freedom 

t,. a/2 = 2.667 Table A25 (Conover, 1980: 480) 
Any test more than 12.0106 units apart may be regarded as unequal. 

Ordering and underscoring yields 
Curve 4     Curve 3    Curve 1    Curve 2 

30 39 51 80 

*Underscoring indicates Curves 
that do not statistically differ 
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Appendix P. Friedman Multiple Rank Test of Batching Methods 

Runtimes 

0) 

teration 1 
teration 2 
teration 3 
teration 4 
teration 5 
teration 1 
teration 2 
teration 3 
teration 4 
teration 5 
teration 1 
teration 2 
teration 3 
teration 4 
teration 5 
teration 1 
teration 2 
teration 3 
teration 4 

teration 1 

teration 1 

teration 1 

teration 1 

teration 5 

teration 2 
teration 3 
teration 4 
teration 5 

teration 2 
teration 3 
teration 4 
teration 5 

teration 2 
teration 3 
teration 4 
teration 5 

teration 2 
teration 3 
teration 4 
teration 5 

Single Batch 
1014.398 
1014.93 
1014.15 
1016.484 
1012.266 
1325.695 
1323.634 
1324.113 
1326.52 
1324.332 
948.945 
948.984 
949.816 
949.816 
949.375 
828.211 
832.727 
829.844 
830.063 
830.57 
154.523 
154.031 
153.945 
153.703 
153.984 
628.461 
628.453 
626.813 
628.656 
628.82 
125.563 
125.711 
126.15 
127.15 
125.859 
112.359 
112.602 
112.469 
112.523 
112.688 

Multi Batch 

A2 = 

B2 = 

T2 = 

1 Critical ~~ 

200 a = 0.01 

843.164 
845.148 
843.317 
841.148 
842.157 
874.361 
872.366 
874.88 
869.547 
872.165 
837.605 
833.687 
835.879 
837.176 
835.078 
833.176 
833.383 
832.195 
833.36 
831.21 
178.469 
177.976 
178.594 
178.883 
178.088 
207.898 
208.523 
208.672 
208.321 
208.462 
179.305 
179.758 
179.368 
178.587 
179.368 
189.047 
189.587 
188.945 
189.102 
189.273 

k,= 

I Ranks Single Batch 1 Multi Batch 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 |                   60 6o[ 
180 k2 = 

0.0000 

7.34 Table A26 (Conover, 1980: 485) 

39 

The null hypothesis is not rejected T2 < Tci.itical 
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