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Foreword

This overview describes the objectives, work carried out and results obtained in this .
project in accord with the final reporting requirements. A more detailed section entitled
“Details of Analytical Studies” follows which describes the analytical approaches. results
and parametric studies of our rapid turn-around models of store separation. Preprints and
reprints of selected papers constitute the final section to provide a self-contained
description of our effort under the contract.

Objectives

Perform research to study store interaction with cavity bay shear layers relevant to
separation and delivery with emphasis on

e application of asymptotic and numerical methods to description of store release
e study of vorticity interactions in cavity shear layers
¢ coupling of dynamics and fluid dynamics store release aspects

The foregoing objectives are in response to AEDC, Wright Labs (ARCTIC), and Eglin
who have stressed the importance of internal store separation from weapons bays
because of the possibilities of interaction of their highly active shear layers with the store
motion. AEDC stressed a unit problem approach in which the details of the interaction of
the cavity flow should be understood rather than concentration on the complete vehicle.
In response to Air Force needs, we have focused on store separation from a rectangular
cavity. This provides an excellent launching pad for our future studies in stage separation
for access-to-space and other flight vehicles. The former subject has a high priority in the
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SLI program under which second and third generation reusable launch vehicles are being
developed.

Status and Accomplishments

In 1999, we revised our previous modeling of two-degree-of freedom (2-DOF) store
trajectories discussed in [1,2]" using substantial further developments of modeling
provided in [3,4] and emphasizing coupling with store rigid body dynamics and stability.
Details of this study are presented in [5] (a preprint of whicu is in the last section of this
report). We analyzed the dynamic equations for different phzses of the separation process
using small perturbation theory. This allowed us to simplify the trajectory equations and
integrate them in explicit analytical forms for different typical cases associated with body
motion inside and outside the cavity. In addition, the eigenvalue structure provides
insight into the important parameters for stability in the store-cavity context.

(a) (b)
] Y linch] 8] a[deg]
14: 47
] ® experiment _ * experiment
124 -~ - free drop o - o=ofM)
theory e = -M)
104 — MM) ‘j.'l Al
g o= -M) e o
6 ,c"if' -8 ans™ -—._- .
/‘/d d ".n
-1 = g -
N Az
27 t [sec] - t [sec]
000 004 008 012 016 020 0.02 0.02 006 0.10 0.14 0.18 0.22

Fig.1 Bifurcation phenomenon of the pitch angle ior separation from subsonic
rectangular cavity; a) — CG trajectory, b) — pitch angle: Model B4N2, U_ =62.1

mvs, ¥, =2.8 inch, a, =-11.9°, V, =15 inch/s. @, =52.86 deg/s.

Furthermore, the analytical solutions provide explicit dependencies of the body trajectory
on the flow and body characteristics. These dependencies help in extracting lumped
parameters and gaining insight into the physics of the separation process. They are
consistent with the tests we carried out in the IIT subsonic wind tunnel. Our comparisons
with IIT data are shown in Fig. 1. For a major portion of the data, the calculations are in
good agreement with experiment. Moreover, the theory is able to capture nuances of the
body pitching observed experimentally. These results confirm our theoretical model.
However, in some cases the body separation is affected by more complex flow phenomena
that are not captured by our model. The discrepancy seems to be due to the slip surface
displacement induced by the shear-layer instability and/or self-excited oscillations of the

" In this section, reference, equation and figure numbers are local to it.
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cavity flow. These effects can lead to a pitching moment phase jump from 0 to 180
degrees when the body crosses the shear layer. The jump may trigger quick transition
from one pitch-angle trajectory to another for the body motion outside the cavity (see Fig.
1b). This interpretation is consistent with the experimental data and suggests that two
substantially different pitch trajectories exist for approximately the same initial
conditions. Since we are dealing with nonlinear dynamic equations. the body trajectory
may have a bifurcation point associated with shear-layer crossing. Although this
transitional phasc is relatively short, its aerodynamics de‘ermines the selection between
possible trajectorics outside the cavity. Further theoretical and experimental studies will
help to establish and clarify the bifurcation mechanism.

In 2000-2001, we emphasized external and cavity store separations into a fransonic
outer flow. New elements in the effort were:

e Extension of our previous analysis to the transonic regime

e Analysis of separation from cavities of finite span

e Modeling of the drag force components and study 3-DOF trajectory with a
breakdown among friction, base, drag due to lift and wave drag

We analyzed separation of a body of revolution from a deep rectangular cavity. The
separation process was subdivided into three phases: (Phase 1): the body moves inside’
the cavity: (Phase 2): the body crosses the shear layer, separating the cavity flow from
external stream; and (Phase 3): body is totally outside the cavity. We showed that for -
many practical applications the relations

a 14 %4 .
0=—-<<1, =<0, a=—=0(). 6" Re>>1, (1a)
[ 53U 500
S ) D H -
— << 1.5‘;'3“ <«<ld,==2>>1.H,=—">>1.. (1b)
a, L)V, a, ay l
are fulfilled.

Here [, and a, are body length and its maximum radius respectively: Vs

r

characteristic vertical body speed; & is angle of attack; U_ is freestream velocity:
EO, H , and Dﬂ are cavity length, height and half-width; 5_‘ is shear-layer thickness,

Re=p U JO / i, is the Reynolds number.

Due to the inequalities (1a) we can describe the flow over the body using slender body
theory (cf. [6]). According to the inequalities (1b) we can treat the shear layer as a free.
slip surface, neglect the flow inside the empty cavity and consider the cavity wall effect
as a small perturbation. Within this framework, solutions for the flow potential were
found separately in the inner and outer asymptotic regions using transonic small
disturbance theory.

0-3 (\ RockwELL
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Apparently, the strongest interaction occurs when the body crosses the shear layer. The
latter was treated as a slip surface that is schematically shown in Fig. 2. In this separation
phase, the slip surface displacement is unknown a priori. and interacts with the solution.

Cavity walls

Bod‘v\‘ .

Slip surface

d

a) Phase 2

Slip surface Y=0

Body

b) Phase 3

Fig. 2 Cross-sectional views of body crossing shear layer.

The scaling of variables is similar to slender body theory as detailed in [5]. In the
dominant approximation, the near-field flow potentials inside the cavity and in the
stream (® and ®" respectively) are solutions of the two-dimensional Laplace equation
in cross-sectional planes with the following boundary conditions:

On the body surface:
Y=Y,(X.0,t)= H(X,)+a(x)sin6, H =Y, (1) —a()X ,
Y>Y,: v =V 'sing; V) (X,)=V,-00X, B (2a)

04 (\RUCKWELL
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Y<Y,: v, =ay+V,sing. V(X.)=eV (X.1)-a(1). (2b)
On the slip surface:
Y, =uF(X.Z.1),
2 =/1(F: +‘9";Fz)~ Vi =/1(Fr +Fy +Wsz)- p;=p;. (3

Pressures below and above the slip surface, pand p~ respectiely. are determir:d from
the unsteady Bernoulli equation. i.e.

%(u': +1‘2)}, P =_ig;—_p,:= —e{(b,* -

p-P.
=——=—0, +u+
P [ ' 6°p.U.

5 p.U:

o

%(u": +1'°:)} 4)

re -—

On the cavity walls, the normal component of the flow velocity vanishes.

In the most general case, when all perturbations are of the order of O(¢). we obtain

e<<l, u=¢ a,=a,, a=¢ea,V, =€V, =e( A —al). (5a)
" F=F,+¢&F,, ® =¢; +e0] +0(”). =g, +£°0, +0(e). (5b)’
1/, ) . <
p= ‘“8{%1 +0ox +€[¢u +0ix +';,'(V(; +Wy )}}"' o), (3¢) -
1{ .2 .2 A _
p = e{gpm +e[¢l, 2( PR B 0N )}}+0(€'). (5d)

In the first order approximation, the boundary conditions on the body surface are similar
to Egs. (2). Conditions (3) on the slip surface can be shifted to the plane Y =0 and
expressed as

Y=0: v..=F ;=F,+F

of 00 01 oxe» Wy TWox = _Wg: . (6)
We analyzed the two unit problems shown schematically in Figures 2a and 2b. Problem
1: Body crosses the shear layer; and Problem 2: Body drops below the slip surface. To
solve Problem 1 we applied the conformal mapping of the upper half-plane (cavity
region) and the lower half-plane (stream region) (¢ -plane) on the flat plate exterior (o -

plane) and obtained the complex-conjugate velocities using the Keldysh-Sedov integrals

‘ 1 9| +b? —s7v, (s)ds Vs? =b>w,, (s)ds
W, (0:X 1) = —————— zj j . , (7a)
mJoi-b* 9| 5, (-olls) 7 (s=0)(s)
o5 > RockweELL
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1 o0 I] Vb =57v] (s)ds +IV53 —b*wj, (s)ds

— —— (7b)
mvo: —b? 9¢ l_h- (s —0)l(s) (s=—o)l(s)

W (o:X.1)=

Here b and b~ are flat plate semi-spans in the o -plane, I(s) is mapping metric: the
second integrals are calculated along the slip surface located in the intervals (—oo.—b).
(=oo—b*) zu.d (b,), (b",e0). Using the Cauchy integral and Eqs. (6). we expressed i
transverse fluw velocities on the slip surface in terms of the slip-surface shape

“.Jf=_10f_'lbq w0f=£0‘f_;‘-‘1—b, (8a)
T
F,(Z)dZ' R (Z)+E(Z)
I (X.Z,p)= !’ZT Iof(x,z,r)-£ S —dz (8b)
1(X.Z.y=—2AHZF) 2a(H - F) fu - V. pa(H-F)
(H-F)y+Z° AH-Ff +2°]
rn+l .
N H nL 3 -‘ﬂ .
. . a(H - F) 2
(X, Z8) ==V (1= ) ———— | +
b( ) e( ﬂ{(H F) +Z
alH - F) ] z V¥
2°C . _-J_lkczk y?‘t . - .dy. 8d
" 2{6;“;§i;§7} 3 (=) M{;;:;} iwg@)mMnf); (8d)

where the an"le B is shown in Fig. 2aand n =1- B/ . From these relations we derived
the Poisson equation for the slip-surface shape F, '

oO°F,  &F, __ I[Ib, (A5 7)+ Ly (A.s.7)lds .

= , 9
or | oF -2 9

where 7=t- X . This equation contains interesting physics. According to slender body
theory. the inner asymptotic solution is harmonic in each crossflow plane. However, the
slip surface displacement does not explicitly depend only on the streamwise coordinate
X and time ¢, but has an implicit global interaction with the solution. This may lead to
new physical effects that will be studied in our research. We showed that the problem (as
well as the more complicated nonlinear problem for moderate and large displacements of
the slip surface) can be solved by simple iterations. This provides a good launching pad
for further studies of the body-shear layer interaction. An understanding of these
interactions is critical to current experiments on time-averaged shear layer undulations in
acoustically controlled and uncontrolled modes and their consequences for safe store

0-6 | (\ROCKWELL
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release. Our work will complement PIV and DNS investigations of these phenomena and
help establishing the proper control laws for mitigation of adverse consequences of the
acoustic damping schemes such as spanwise pulsating jets.

Relevant to Eq. (9) in our first cut modeling for the body trajectory. we assumed the
shear layer displacement F, =0 and obtained analytical solutions for the near field and

expressed the lift force and pitching moment in explicit forms for all three phases of the
separation process. We also analyzed the far-field flow and its parametric dependencies
at transonic speeds. We found that the scaling for the outer asymptotic region is
expressed as

.t)
h)

X=x, V=201 722010 T

)|

ON)I“‘)

7’-(- , rz—;l—l. b=1U_[x+eox.F.7.1. 0
0 0

N,‘
C—

0 0

where & results from matching of the outer and inner solutions, x4, is associated with
the outer-region scale, and f, is characteristic time scale. The equation for the outer
flow-field potential is

S K —(r+ D@y =¥ =DS@; 0 + 12 (037 + 955 ) =250y =S 01 =0, (1.

where K = 1——51:/[- and § =1An /(t,U_) is the Strouhal number. We showed that for -

practical ranges of S, the outer flow is quasi-steady and is governed by the steady

axisymmetric form of the axisymmetric Karman-Guderley equation (in a cylindrical
coordinate system)

1 .

(K =7+ Doy 19 +—(rg,), =0, (12)

with the asymptotic boundary condition

_ 52 Q(X.T/S)
2r
Here the source strength Q. is determined from matching with the near-field solution

and is expressed in the compact analytical form

r—0:grp, (13)

For Phase 2: QO (X.t)= 2a”(x)sin/m

{44(6(, (n)—nV, (1+2n? )22 ”"}, (14)

n 6n

nala H —aB_,)

\/.m . (15)

A numerical solution of the problem (12), (13) was used to predict the transonic wave
drag using our slender body transonic small disturbance code. The theoretical model in

For Phase 3: Q.(X.1) = 4

o7 - ROCKWELL
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[7] for the base drag and the empirical model [8] for the friction drag has also been
incorporated in our prediction of the drag. Besides the quasi-steadiness. examination of a
practical distinguished limit reveals that the outer flow is dominantly axisymmetric
during early separation for which re-contact is important. Both of these properties
provide a substantial simplification of the outer transonic problem to make it tractable on
a PC desktop or laptop.

Our ongoing parametric studies of external and internal store separation from a
rectangular cavity into a transonic flow indicate that the theoretical model captures
trajectory bifurcations, re-contact and ricochet. Figure 3 shows an example of external
store separation into a Mach 0.999 freestream. If the initial vertical speed is zero (red
lines and symbols), the body moves up and hits the wall (re-contact). At relatively small
initial vertical velocity (V, =-0.5 my/s). the separation is smooth and re-contact is

avoided. This shows that external store separation can be controlled by the release
mechanism. It also confirms our conjecture about the IIT tests that repeatability can be
enhanced by close control of the release mechanism. Studies such as these can be useful
in designing ejection units and thrust motors for stage separation. They not only can be
useful to determine the amount of thrust and weight required for these units but they also
indicate how we can effectively correct an adverse re-contact situation with a relatively
small impulse. .

Figure 4 shows trajectories of the center of gravity (CG) for external separation from a
flat wall (left plot) and separation from cavity (right plot) into a Mach 0.999 stream. The
blue lines with circles are trajectories at identical release conditions (ejection velocity
V, =20 inch/s). Comparing these trajectories we conclude that the shear layer

increases the lift, pushing the body back into the cavity (ricochet). It is also seen that at
near-critical cooditions of re-contact (external separation) and ricochet (cavity
separation). the store trajectory is sensitive to the initial conditions associated with :iore
- release. This 1s consistent with our previous subsonic experiments at IIT. Figure 5 shows
that a variation of the initial angle of attack causes dramatic changes of the CG
trajectory.

The impact of this work will be:

e Enhanced insight into the mechanisms of store and stage interference with the parent
vehicle and shear layer.

e Models that can be used to design control systems and determine control laws for
safe store release and staging.

e Rapid turnaround PC desktop models for quick assessments and certification.

Future research will study more geometric realism in the simulations, investigate physics
of wave interactions with shear layers and between multiple- bodies and develop
matching techniques for the local flow problem near the weapons bay with the complete
airplane flow field.

0-8 : Q\ROCKWELL
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Fig. 3 External store separation into a transonic free stream.
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Separation from cavity
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05~ D2 Al | ——V,=30inch/s |
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IR - T
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Fig.4 CG trajectories for external (left plot) and cavity (right plot) separations:
M =0999, w, =0, o, =6". ~
6 ,
E cavity wall .
—_—— . =
4 ' °
= D S a0=-6°
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(=]
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=~
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Fig. 5 CG trajectories for separation from cavity at various initial angles of attack «,;

M =0.999, w, =0, V, =-20 inch/s, body of shape B4N2.
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Abstract

Aerodynamic and dynamic problems relevant to separation of a thin body of revolution
from rectangular cavities into subsonic and transonic flows are considered. In the
dominant approximation. the shear layer separating cavity flow from outer flow is
approximated by a slip surface and the flow is described by slender body theory. The
separation process is subdivided into three phases: body inside the cavity (Phase 1). body
crosses the shear layer (Phase 2). and body outside the cavity in the outer stream (Phase
3). Herein. models .or inner (near ficid) and outer (far field) asymptotic regions are
provided for all phases of the body mciion. Also, analytical and numerical solutions of
the flow and trajectory equations are discussed and compared with experiments.

In Part I, the general problem for the inner asymptotic region is formulated and
analyzed. In order to capture basic features, the case of small perturbations is considered
in detail. A Poisson equation is derived for the slip surface displacement induced by the
body. The flow problem is reduced to two coupled linear integrodifferential equations for
the complex flow velocity and the slip surface displacement. For Phase 2. the solution of
this system is singular at the body and slip surface line of intersection. For finite
perturbations, a system of nonlinear integrodifferential equations is derived for the inner
asymptotic region. It is shown that this system can be solved using an iteration procedure.

In Parrt 2. the first iteration relevant to zero distortions of the slip surface is considered.
Explicit solutions of the governing equations are obtained and analytical expressions for
the lift force and pitching moment are derived for all phases of the separation process. It
is shown that a singularity arising in Phase 2 at the body and slip surface intersection line .
is integrable and does not contribute to the aerodynamic forces. Therefore. the solution
can be treated as a dominant approximation of the general problem and can be used for
the body trajectory analysis.

In Part 3. the two-degree-of-freedom trajectory equations for the center of gravity and
pitch angle are analyzed using the results of Part 2. Asymptotic solutions of these
equations for Phase. 1 and 3 give expiicit dependencies of the trajectory on the governing
parameters. The wualytical results of Part 3 dramatically simplify body trajectory
calculations. A robust computational code is developed for quick turn-around predictions
of the center of gravity and pitch angle trajectories for all phases of separation. The code
is verified by comparisons with the IIT experimental data obtained for subsonic store
separations. In many cases, the calculations are in a good agreement with the data. It is
shown that a unusual behavior of the pitch angle in Phase 3 is associated with the
trajectory bifurcation. Parametric studies of the trajectory dependencies on the initial
conditions, flow parameters and body characteristics are presented.

In Part 4, the outer limits of the inner solutions for Phases 2 and 3 are investigated
including terms up to the third-order approximation. It is shown that for an infinite span
cavity. the outer limit of the dominant solution corresponds to the flow induced by a
dipole distribution along the body axis, while the source term arises only in the third-
order approximation. A general form of the inner solution for a finite-span cavity is
obtained. In this case, the far flowfield is induced by the source distribution whose
intensity is proportional to the ratio of the body thickness to the cavity span. The outer
asymptotic problem is formulated and analyzed. Explicit inner solutions are used to
formulate matching conditions for the transonic outer region. Different regimes of outer
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unsteady flows are classified. The drag force components associated with the transonic
wave drag, cross-flow, friction drag and base drag are analyzed. These items are the basis
for analytical results that are used to develop a computer code to solve the trajectory
equations. The obtained theoretical results are used to analyze three-degree-of-freedom
body dynamics for separation into subsonic and transonic freestreams. Examples of the
external and cavity store separations are discussed including critical cases of recontact
and ricochet.
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maximum body radius
local body radius

function accounting for the outer flow effect on the body

aerodynamics. Eq. (4.1.1a)
cross-sectional area of actual body
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gravity force coefficient
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Section 4.9 '
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gravity acceleration .
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Introduction

The store separation problem has important practical applications. Its diverse aspects
have been intensively investigated. Engineering. semi-empirical. computational and
experimental approaches are illustrated in [1-4]. Most studies have been concerned with
external separation at subsonic or supersonic speeds. Relatively less attention has been
given to separation from cavities, especially at transonic specas. This is because the
problem is very complicated due to athe large number of paramsters governing the flow
structure and the vast variety of physical phenomena involved in the separation process.

Our objectives in the research to be described in this document are to fill this gap by
identifying the first-order physics, solve unit problems related to modeling the basic
mechanisms and develop fast and robust methods for predicting store trajectories. Key
thrusts are to divide the separation process into component phases. formulate unit
problems for each phase and solve these problems using a combination of asymptotic and
numerical methods. In contrast to ad-hoc approaches, these give systematic
approximation schemes modeling store separation processes that easily couple with
rigid-body dynamics for desktop PC “design”codes that rapidly predict store trajectories
They also improve our understanding of the physics. parametric limits and trends.

Matched asymptotics suggest that a component of the global problem of interaction of -
the separating with the entire airplane flow field. is the local problem of separation of a
body of revolution from a rectangular cavity into an external subsonic or transonic flow
of uniform freestream speed. In this physical system, we divide the separation process
into three phases that will hereinafter be denoted Phases 1-3. In Phase 1. the body moves
inside the cavity, whereas in Phase 2 the body crosses the shear layer separating the
cavity flow from external stream. In Phase 3 the body is totally outside the cavity and
moves in the external stream. We assume that the body is thin, the vertical flow velocity
and angles of attack @ are small, so that the following relations Ziold -

a Vv 174
=L <<], ——=£<0(0), a===0(Q), 1
10«' 5 ESON, a 5 ‘() (H

o0

where IAn and a, are respectively the body length and its maximum radius, V, is the
characteristic vertical component (plunge) speed and SU_ is the scale of the vertical
velocity perturbations in the external freestream of velocity U .

The body-shear layer interaction is an important component of the store separation
process. especially. in Phase 2. This interaction depends on the ratio of shear-layer

thickness SS to body radius a,. For many practical applications, the following relations
hold
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p Uan'r
ﬂm N

f<<1. 0°Re>>1. Re=

P)IQ'»

where Re is Reynolds number; p_. and u_ are freestream density and viscosity.
According to the first inequality of (2) the shear layer can be treated as a free slip surface
with a tangential velocity jump and continuous normal velocity, pressure and the density
across itself. The second inequality of (2) allows us to neglect viscous effects anc use
potential flow theory for regions well outside of the shear layer. If the shear layer
thickness is small compared to the body thickness, it is reasonable to assume the potential
flow approximation will provide a good approx1manon of the aerodynamic forces. We

consider deep cavities of the length-to-height ratio L /H <6. In this case. the outer

flow weakly penetrates into the cavity; i.e., flow velocities inside the cavity can be
neglected because of the relations

Within this framework, the flow over the body can be described by slender body theory
[5-7]. The aerodynamic forces in this theory are controlled primarily by a cross flow
“inner region” close to the body. Parts 1 and 2 of this report emphasize this inner '
asymptotic region. It covers a distance from the body axis of the order of the body radius.
Following Refs. [16, 17, 19-21] we formulate the problem in Section 1.1. In the dominant
approximation, the near-field solution has a similar form for both subsonic and transonic
freestreams. It is governed by two-dimensional Laplace equations in the crossflow plane
approximately perpendicular to the free-tream direction. The relevant crossfiow
boundary value problems allow us to uwse the well-developed theory of analvtical
functions [8-15] but with a new twist associated with the presence of the slip surface
approximating the temporal mean position of the a thin shear layer. From the inner
solution we can calculate the lift force and pitching moment acting on the body and
analyze two degree-of-freedom body dynamics restricted to vertical motion and pitching.
These can be extended to more general motions involving roll and yaw motions with
generalizations of our techniques.

Even with these simplifications however, it 1s difficult to obtain explicit solutions due to”
the complex geometry of the flow boundaries. To facilitate analysis we note that for

many applications, the relative cavity height and half-width, D, , are much larger than the
body radius: i.e.

H
dy=—2>>1, H,=—2>>1. 4)
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This allows the cavity wall effect to be treated as a small perturbation. From this
approximation, it is possible to isolate the wall-body and slip surface-body interactions
and treat them as separate component sub-problems whose solutions can be
superimposed to provide the complete flow.

The slip surface-body interaction is the most difficult component problem because the
shape of the free boundary is not known a priori and should be determined as a part of
the solution since it strongly and nonlinearly interacts with it. This is a challenging
problem even for current CFD modeling and many methods are in development to solve
it. Since our goal is to develop transparent models of the physics as well as rapid
turnaround methods, we use a simplification of the boundary value problem which is
described in Section 1.3, using small perturbations that avoids large scale computation.
Using the theory of analytical functions [8-15], we formulate a new approach and derive
the slip-surface shape from a Poisson equation, with the right-hand side being an explicit
function of the transverse coordinates and trajectory parameters. The problem is reduced
to two singular linear integrodifferential equations for the slip-surface shape and the
complex flow velocity. These equations include integrals of Cauchy type along the body
cross-section contour and can be solved numerically by simple iterations. In Phase 2. this
solution is singular at the body and slip surface line of intersection. We do not analyze
this singularity since it is integrated and its contribution to the aerodynamics is negligible
within the approximations considered here. Using the asymptotic results. in Section 1.4
we reformulate the general problem for the body-slip surface interaction and reduce it to
a system of nonlinear singular integrodifferential equations that can be solved by simple
iterations. Our new approach reduces the boundary value problem for the crossflow to
boundary data quadratures. dramatically simplifying the solution procedure.

In Part 2. we consider the first iteration and find analytical expressions for the flow
potential in all three phases of the body motion [17, 19-21] neglecting the slip-surface
deformation. In Section 2.2, we obtain solutions in the form of rapidly converging series
for Phases 1 and 3. The method of solution is based on the theory of Ref. [9] with new
terms associated with three-dimensional effects. In Section 2.3, a conformal mapping is
applied to obtain the solution for Phase 2. This solution differs from known results such
as [15] by new terms related with three-dimensional flow effects. For all phases, we
derive simple analytical expressions for the lift force and pitching moment acting on the
body. These results are cross-checked by comparison with known analytical solutions
(15, 24]

In Part 3 we analyze 2-DOF trajectory equations for vertical center of gravity translation
and pitching rotation [20,21]. In Sections 3.2 and 3.3, approximate analytical solutions of
the trajectory equations are obtained for Phases 1 and 3. A numerical code predicting the
trajectory through the three phases is developed. In Section 3.4, the code is verified by
comparisons with subsonic wind tunnel experiments [18]. Results of parametric studies
are also presented.

In Part 4, we analyze the outer asymptotic problem. In Section 4.2, we investigate far
field asymptotics of the inner solutions obtained in Part 2 for store separation from a flat
plate and from an infinite-span cavity. In the former case, an equivalence rule similar to
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[25-29] is formulated. For the latter. the far field corresponds to a dipole distribution
along the body axis. In Section 4.3, a general form of the inner solution for Phase 2 is
obtained for store separation from a finite-span cavity and its outer limit is studied. In
Section 4.4, similar results are obtained for Phase 3. Higher order approximations of the
inner solutions are discussed in Section 4.5. In Section 4.6. we formulate matching
conditions and determine a general form of the outer solution. In contrast to the usual
slender body theory [6], different time scales inherent in the problem considered generate
a variety of unsteady regimes for the outer transonic flow. We identify these regimes in
dependence of the relationship between the Strouhal number and fiow perturbation scale.
It is shown that the quasi-steady outer flow approximation is adequate in order 1o
accurately calculate transonic wave drag. In Section 4.7, we analyze different drag
components including the wave drag, pressure drag, viscous drag and base drag. In
Section 4.8, the numerical method for solving the 3-DOF trajectory equations is
discussed. From this method, we develop numerical codes predicting 3-DOF trajectories
for store separations from a flat wall (external separations) or from a rectangular cavity.
In Sections 4.9, numerical examples for external separations and separations from
cavities are presented and discussed. They show that the theoretical model can simulate
such complex phenomena as re-contact and ricocheting.
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Part 1. Flow Field in the Inner Asymptotic Region

1.1 Introduction

Within the framework of slender body theory [5-7] the flow field is subdivided into two
asymptotic regions. The inner region is located over the body surface and has a length
scale of the order of the body radius. In this region, Laplace’s equation for the flow
potential and the unsteady form of Beroulli’s equation for the pressure describe both
subsonic and transonic flows. Hereinafter we formulate the problem for the inner
asymptotic region and discuss the governing equations emphasizing the most difficult
problem associated with the slip surface motion. We have not found a rational and
rigorous method for prediction of the slip surface motion for three-dimensional
compressible flow in the literature. This is a challenging problem even for current CFD
and a variety of numerical schemes were developed to solve it. Existing approximate
methods are based on the results of Wagner [11], who analyzed incompressible two-
dimensional flows for body submerging into liquids and gliding/planing. However. these
methods do not wccount for compressibility and three-dimensional aspects considered
herein. Moreover, we are dealing with the shear-layer interactions that are quite different
from those occurring in hydrodynamic problems relevant to air-liquid interfaces. The
theoretical model of Wagner [11] does not allow us to treat a combination of unsteady
and three-dimensional effects that are important in store separation problems. -
Accordingly. the equations for the shear-layer dynamics obtained in this report are
~ substantially different from those of Wagner [11].

In Section 1.2 we formulate the inner asymptotic problem in the dominant approximation.
In Section 1.3 we use small perturbation theory to identify basic physical properties of
the flow and find an appropriate form of the general solution for unsteady flows with a
slip surface boundary. In Section 1.4, as an extension of the results obtained in Section
1.3, we derive a nonlinear system of equations for the case of finite flow perturbations.
We show that this system can be solved using an iteration procedure. A short discussion
of the result obtained in Part 1 and basic conclusions are presented in Section 1.5.

1.2 Problem formulation .

We consider a slender body of revolution released from the top wall of a rectangular
cavity at an initial instant r =0. The initial angle of attack @,, vertical speed \70 and
angular speed @, are assumed to be small. of the order of O(d). The body drops under

gravity along the cavity symmetry plane and separates from the cavity into the external
flow. At the initial instant, the flow within the cavity is neglected. The cavity interior is
separated from external stream by the slip surface bridging the cavity edges. The flow
scheme for Phase 2 (body crosses the shear layer) and the coordinate systems are shown

in Figures 1.1 and 1.2. The coordinate system OXYZ is attached to the unperturbed slip
surface. as shown in Fig.1.1. Therein, the OX -axis is directed along the freestream

velocity and OY as well as OZ are respectively vertical and spanwise coordinates. The
coordinate system ox¥: is attached to the body center of gravity (CG) that moves

1 (.\RocKWELL
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vertically with the velocity V(). The of -axis is directed along the body symmetry axis
and the oV and o7 axes lie in the cross-sectional plane. The direction of oZ -axis
coincides with the direction of OZ - axis. The axes oX and oy are inclined with respect to
the axes OX and OY at the angle @(7): they rotate around oZ -axis with the angular

speed @(r). Along with the Cartesian coordinates we use the polar coordinates. r and €.
specified as

=Fcosf, y =rsinf. : (1.1.1)

2)

The dimensionless variables for the inner asymptotic region are determined as

X=£;Y=—¥—;Z=A£; A=£,)=%,z=:—-', (1.1.2a)
l a, a, I q, a,

=l By Ve, OUO (1.1.2b)

lO 5 Vr l() T

Neglecting terms of O(&") and assuming that the longitudinal and transverse coordinates '
of the CG are constant, in particular, Z,(t) = X (1) =0, we obtain the relations

X=xY=YO+y-xa,Z=2z, (1.1.3)

where Y, (r) is vertical coordinate of CG.

The flow space consists of the cavity region (above the slip surface) and the external

stream region (below the slip surface). In the cavity region, the potential,@*, and flow
velocities are defined as ’

d" =a,V,o" =edU 1,0, ®; =5°U2d;, d}, =e5°U u”, (1.1.4a)
O =e0U_v', ®, =edU w' u" =Pf, v =], w’ =D}, (1.1.4b)

Hereinafter, the superscript “+” denotes flow quantities inside the cavity. The
corresponding quantities in the external stream region are expressed as

d=1U_(1+6d) &, =6°U2D,, &, =U_(1+6%), (1.1.5a)

2 | > ROCKWELL
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&)y- =0oU_v, (i)z- =0U_wu=®,,v=0,, w=0,. (1.1.5b)

The pressures p and p” are determined from the unsteady form of Bernoulli’s equation
is A

p+ 2_2’_&_—;_8[(1): +£(H'+2+1'+2):|. (1163)
o p.U; 2
p=Pp. L4y : ”
=———t= = (1),.*. +—lw +v . 1.1.6b
p PN li u 2(H )} ( )

To O(8°), both potentials are harmonic functions in the cross-sectional planes.
Accordingly, we can introduce the complex variable ¢, the complex potential
I1(£: X,1). and the complex conjugate vetocity W({'; X.1) as

M X.0)=d+iY, W({,X,t)z%%:w—iv, {=Z+iY.

where W(X.Y.Z,t) is the nondimensional stream function. The boundary conditions on
~ the body surface Y =Y, are expressed in the form

Y,(X.Z.t)=H+asind=Htva’ -Z* , H(X,1)=Y,(t) —a()X , (1.1.7a)

r=a Y,>Y,: v =2 _ysing; V;(X,t)=aa—H=Vo(t)—a)(t)X, (1.1.7b)
t .

n 8

r=a. Y, <Y v, =%?—=ax+VPsin9, V.(X.D=eV"(X,n-a(), (117

where v, is flow velocity normal to the body surface and H(X,t) is the distance from

the body axis to the plane Y =0. In Eq. (1.1'.7a), the plus and minus signs respectively
correspond to y >0 andy < 0. Equations (1.1.7b) and (1.1.7c) correspond to the body

surface inside and outside the cavity, respectively; and V,(X,r) and V (X.t) are
effective velocities of the body cross-sec:ion.

The boundary conditions on the slip surface, Y, = 4F(X,Z,t), are formulated as

ev* (X.WF(X.Z.t).Z.1)=u(F, +ew’F,), (1.1.8a)
V(X .WF(X.Z.1).Z.t)=p(F, + Fy +w, F,), (1.1.8b)
p(X MF(X,Z,1),Z.t)= p" (X . UF (X ,Z.1),Z.t), (1.1.8b)
3 - HOCKWELL
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where the parameter 4 characterizes a scale of the slip-surface perturbation: the
- subscript f denotes flow parameters on the slip surface.

On the cavity walls. normal velocities are zero and the boundary conditions are expressed as

i =0; Z=%d,. 0<Y<H,: i&;:O. (1.1.9)
Y

Y=H, -d,<Z<d,: ~

The flow velocities on the upstream and downstream walls are of the order of O(J 7).

and the boundary conditions are not involved in the dominant approximation of slender
body theory. In this approximation. the lift force and pitching moment can be determined

using the inner asymptotic solution only. Therefore, the CG coordinate, Y, (1) . and speed.
V (t), as well as the pitch angle, a(t), and the angular speed, @(r). are solutions of the
dynamic equations '

2 v r X2z T
d Y =&=C,L—cg, L= L — =~Ijp’(x,&.t)a(x)sin&dxd@. (1.1.10a)
dr*  dt p UGy 1%

_(13 =a'_a) =c,M, M =—M;— =—I]p'(x.&,t)xa(’x)sin6l’1.\'d8. (1.1.10b)

i~ dr pUZS L 1%

I 136° 136 “. Y, > uF
Cg = 8 1)7 ¢ = Pty .C, = Poto , = p b H ' (llloc)
* o 8U? m I p. Y, <uF

Here L and M are respectively lift force and pitching moment: m and / are body mass
and moment of inertia: x,(t) and x,(f) are body nose tip and base coordinates.

1.3 Asymptotic theory for small flow perturbation§

The unknown a priori slip surface shape and the nonlinear boundary conditions (1.1.8)
are the main obstacles to obtain an explicit solution for the problem formulated in Section
1.2. In order to find analytical solutions and capture basic features of this problem we
consider the case of small flow perturbations. Let the body drop with small vertical
velocity and angle of attack and its cross-section area is a slow function of the axial
coordinate; i.e.

a, =¢€,a, 0=V, =eV-wX)-¢,0,,V] =V -aX),
£,<<l, g, <<l e<<]1.
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We substitute these relations to the boundary conditions (1.1.7) on the body surface and
express them in the form

r=a, Yb>Yf: v:-:?r =8(V-—CI)X)SiI’19,

n

AD .
r=a, ¥, <Y, v =3=£da1_‘.+8(V—a)X)—€aalsm0

These relations indicate that the flow potentials and slip surface shape can be expanded as
O =gp" +.., P=ep+e, P, +E,P,+...., UF=¢€F,+€,F, +€,F, +...

It is possible to consider the distinguished limits

£
—2 53 00roe, = ->00ro
£ £

However. our analysis shows that the corresponding problems are not simpler than the
general problem for &, ~ £, ~ €. Therefore, we assume that

£, =€, =€E<L], (1.2.1a)
a.=e&,, a=¢€q,.V,=¢V,, V, =€V, - = V a)X (1.2.1b)
R¢ 1 1 ¢ el

In this case. we consider the most general problem when all sources of perturbations are
of the same order of O(¢), and all of them are included in the dominant approximation.

Different cases for various distinguished limits can be easily treated using the oeneral
solution.

Flow perturbations in the cavity and in the external stream are of the same order of O(¢),
and we express the solution in the form of the asymptotic expansions

u=¢e F=F +¢eF, O =¢; +£0 +0(’), ®=¢9,+£°¢, +0(’), (1.2.2a)

p= —g{(bo, - +g{¢“ +0, +%(v§ +w )}}+0<g3), (1.2.2b)
{¢Or +€!:¢11 (‘0 +W0 ):]}+0(€ ) (122(:)

All terms of the potential expansions are governed by the Laplace equation with the
boundary conditions on the cavity walls given by Eq. (1.1.9). In the dominant
approximation. the boundary conditions (1.1.7) on the body surface are reduced to the
form

5 (\ ROCKWELL
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r=a, Y,>0: v, =agﬂ=Ve+ sin@. (1.2.3a)
-
d
r=a. Y, <0: v, =—§1 =a,, '*'(V; -—al)siné?. (1.2.3b)
’

The boundary conditions (1.1.8) on the slip surface are linearized and shifted to the plane
Y =0 they are expressed as

Y =00 =Ly = Fo # Fox: 0 +ox =05 - (1.2.3¢)

Differentiating the last equation (1.2.3c) with respect to Z we obtain the equation for the
tangential flow velocities on the both sides of the slip surface

owy . owop owy;

(1.2.3d)
ot oX ot
In the second-order approximation. the boundary conditions (1.1.7) are
a¢1+ a¢l 3
——=—-=0. 1.2.4ay
o or (242

In order to formulate the boundary conditions on the slip surface in the second-order '
approximation, we estimate the potential and tangential velocity of the dominant
approximation on this surface as

0y (X €F) Z.1) = ¢ (X 0.Z.1) + €F, F,,. (X €F, Z.1) = 9 (X ,0.Z.1) + &F, (Fy, + F ).
00,(X.0.Z.1)
0Z

w (X.eF,.Z.1)- ~Ma’70’ﬂ)~+-0(s). w,(X.eF,.Z.1)= +0(¢).

Substituting these relations to Eqs. (1.2.2), we obtain the boundary conditions of the
second order approximation '

Y= O:vl*f =F,+w, F,;, v, =F, +F +wF,, (1.2.4b)
d¢; 99, d9,
- - =R I(X.Z,t)=
o o 0X ol )
3 n 1( ) +2) ,
=;an (2Fm + Foy )+ Fn(‘-Fm + Fox )x +§ Wy =%, /> (1.2.4¢)

ow; dw,  ow, _9RI(X,Z,1)
o o oX = oZ

. - (1.244)

In comparison with the dominant approximation, the conditions (1.2.4) include additional
terms due to the slip surface displacement and the potential jump through the slip surface.

6 (\ ROCKWELL
* - SCIENTIFIC



71153.FTR

For Phase 2, when the body crosses the shear layer. the conditions (1.2.3c)-(1.2.3d).
(1.2.4b)-(1.2.4d) are applied at |Z| > ¢.

The potentials ¢,(X.Y,Z,1) and ¢,(X.,Y.Z,t) are solutions of the two-dimensional

Laplace equation in the cross-section planes. Therefore, they are determined modulo
arbitrary functions of X and t. These functions are multiplied by gauge functions

appropriate to matching in the form In(1/8)g,(X.t) and In(1/8)g,(X.1) in accord with

slender body theory [5-7]. They are determined from matching with the outer solution. In
our initial consideration of the inner problem, we do not ccussider these functions.

1.3.1 Body moves in the cavity or in the stream (Phases 1 and 3)

In Phase 1 (body drops inside the cavity), for each cross-section plane the appropriate
inner problem involves a circle of radius a(x) dropping with the velocity V,” in a

rectangle with its lower boundary being the slip surface (see Fig. 1.3). To simplify the
problem we estimate on part of the cavity wall effect by modeling the potential on th:
slip surface as zero. Then, continuing the flow symmetrically through the boundaries. we
reduce the original problem to the problem of flow over a doubly-periodic lattice of
circles. which has the analytical solution [9]. From this solution we conclude that the

side-wall effect is of the order of O(d;*)<<1. The top-wall effect is proportional to -

(H,—H)™: it is small when the body is near the slip surface. The slip-surface effect

~ decreases as H ™ it is small when the body is near the top wall. Therefore. we can
assume that the influence domains of these effects are weakly coupled. and each effect
can be treated separately. This allows us to split the problem into the following unit

problems for the complex conjugate velocity W, (J; X, 1) = w, —iv,:

(1a) Find a harmonic function in the lower half-plane Y <./, that satisfies Eq. ( 1.2.3a)

for the normal velocity on the circle and provides a vanishing imaginary part
(v, =0)at Y =0 (see Fig. 1.4a)

(2a) Find a harmonic function in the upper half-plane that satisfies Eq. (i.2.3a) for the
normal velocity on the circle and provides a real part, w, given by Egs. (1.2.3¢)-

(1.2.3d) at Y =0 (see Fig. 1.4b).

Considering Phase 3 (the body moves in the external stream), we can formulate for each
cross-section the problem: a circle drops with the velocity V, from the mixed top
Z|>d,) and free slip surface (Y =0,|Z|<d,).

The flow scheme is shown in Fig. 1.5. Note that the finiteness of the cavity span is
important for the far field asymptotic. which will be analyzed in Part 4. We neglect the
cavity wall effect near the body (it is estimated as 0[1 /(H *+d; )] << 1) and formulate the

unit problem:

boundary consisting of flat walls (Y =0,

7 (\ROCKWELL
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(2b) Find a harmonic function W,({:X.r) in the lower half-plane that satisfies Eq.
(1.2.3b) for the normal velocity on the circle and provides the real part w,, given by
Egs. (1.2.3¢)-(1.2.3d)at Y =0.

The solution of the problem (la) with the uniform boundary condition on the wall is
found using the condition of analytical continuation of the complex conjugate velocity

W, (47 )= W,(¢). and the multipole expansion method [9]. It can be expressed in the form
of the Laurent series (see Part 2)

= A +IiB A -iB
W+ ,X,t = n+l —k-1 —k-1 + —k-1 -k-1 . (1 .25)
i )‘ Z {[:-i(Ho—H)]"” [;-+i(Ho—H)]“‘}

where the functions A_,_,(X,t)and B_,_,(X.t) are found from the boundary conditions
(1.2.3a).

The third equation of (1.2.3c) relevant to the slip-surface potential allows the solution
@,, = 0. In this case, the solution of the unit problems (2a) and (2b) can be expressed in a

form similar to Eq. (1.2.5) (see Part 2). The boundary conditions (1.2.3¢c) also allow a
nonzero potential on the slip surface. In this case, we cannot find an analytical solution of
the problems (2a) and (2b). However. we can simplify these problems by reducing them
to integrodifferential equations, which consist of one-dimensional integrals along the .
cross-sectional body contour only. This can be done using a conformal mapping of the
flow regions shown in Fig. 1.4b and Fig. 1.6a with the cuts from the body to infinity into
the Tectangle in the complex plane ¢ =& +in as shown in Fig. 1.6b. The mapping has
the form

6=&lnw,c=\/if—a', ﬂ=ﬂln i
27 a({ +ic) 7 a-|H|

(1.2.6)

In the transformed plane (see Fig. 1.6b), the lower side of rectangle. (0.2w,).

corresponds to the body surface; the upper side, (iw, +2wl), corresponds to the slip
surface; the left and right sides are the cut edges. '

We assume that the tangential velocities on the both sides of the slip surface,
w,(X,Z,1) and wy (X.Z,1), are given. Then, using the formula of Villat [8]. we find

the complex conjugate velocity in the rectangle by its real part on the upper side and the
imaginary part on the lower side. For the unit problem (2b) the solution has the form

Wm(o')_-:%_a_o_'{ IG(O' s)w,, (s)ds — IG(O’ s)v()n(s)ds} (1.2.7a)

8 (\ ROCKWELL
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o(s-o+w,)
I(s)o, (wl )01 (5 "0')

(1.2.7b)

G(o,s)= exp[ n(s-— 0‘)]. l[

n=0

where o,(z) is Weierstrass sigma-function, and 7, is its characteristic [12]. A similar

formula determines the function W,;(¢; X,r) for the unit problem (2a). In this case. the
full solution in the cavity is represented as

Wi (XD =W (5 X, 0+ Wi (X - W (XL, (1.2.8)

where W, ({;X,t) is common part of the functions W, ({:X,t) and W,;({: X.t) that
corresponds to the circle dropping in unbounded fluid.

For the unit problems (2a) and (2b). solutions for the lower and upper half-planes. which
do not contain the body, are given by the Dirichlet formulas

W, (é’)———J‘} o (8)ds W ({)—— Inof(s)ds'

(1.2.9)
-¢

Because the tangential velocities on both sides of the slip surface are not known a priori,
we should find them along with the slip surface shape as a part of solution. However.
- Equations (1.2.3) and (1.2.7) are not closed, and we need to derive an additional equation
using the relations between the real and imaginary parts of the boundary value of a
harmonic function {13]. We represent the complex conjugate velocity by the Cauchy
integral along the contour shown in Fig. 1.6a for the problem (2b) or similar contour in
the upper half-plane for the problem (2a). Then, using the Sokhotsky-Plemelj relations
combined with the boundary condition, we obtain the following equations, which relate
the tangential velocities on the slip surface with its shape,

Problem (2a):

S (X.Z.) -1 (X, Z.t 1 (X.Z,0)
Wi (X.Z,1)=— Los ( ) wof(X,Z,t)=—lf(———); (1.2.10a)
T T
Problem (2b):
1,,(X.Z,)y+1,(X.Z.t 17 (X.Z,t
oy (X.Z.1) = or ( )+1,( ),wgf(x,Z,t)=—M- (1.2.10b)
/4 T

Principal values of the Cauchy integrals [, (X,Z,r) and I;,(X,Z,t) along the slip

0f
surface are expressed as

9 (\RocKWELL
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© F,(Z))dZ’ - TF,@)+Fy(Z)
Igf(2)=j—°—‘z(,—_)z—,10_f(2)=j A Z,_Z“"( Laz’. (121D

—ec

Using the flow symmetry and the relations presented in Appendix A. we express the
Cauchy integrals I, (Z) and I,(Z) along the body surface as

‘ y —1Iv 2 ZZ r
1,,(X.Z,r)=Rei§“°(sb) Mol Spdys, = 22 1 4
) s, —Z H*+Z°
\ H aH ‘g z\*
a hd - k ~2k+1
bW, =V + T, | ——— ) = . (1.2.12a)
H3+Zg w01 el EMOn(Hz-I_Z:j k=0( ) n+l [HJ (
1;(X,z,r)=-aRejW° (5,) =1y (s”)dsh =
0 Sy —
2ma*HZ - aH v {2 AN
= T I -V Y w | —— J (1) cx = b, (1.2.12b)
(H:.{_Z:)_ n=2 H - +7Z" k=0 H

2k+1
n+l

Here the symbol [—Z—] denote the integer part of the fraction; C are binomial

coefficients; ¥ =7x/2+86 is polar angle measured from the plane of symmetry as shown -
in Fig. 1.6a: w,(X,1,0) is flow velocity tangential to the body surface and the functions

w,, (X.1) are coefficients of its Fourier series

W, (X.t)= ;1—— Iw%( X.t.9)sin(nd)dg, - (1.2.13a) |
2n g

wgn(X,t)=2L J‘wge(X,t.ﬁ)sin(nﬁ)dﬂ. (1.2.13b)
n 0

Using the solution (1.2.5) we can represent the functions w,, (X,t)and wy,(X,f) in the
form

2B,(X,t)-V
W (X, =222 B0 T (12130

Woan (X, 1) = (=D)AL, (X, 1), Wpapo (X, 1) =(=1)"B_,, ,(X,1), (1.2.13d)

where the functions A_,, ,(X,t) and B_,, ,(X,t) are determined in Section 2.2 of Part 2
in the form of power series of the parameter g(X,f) =a/(2H) <1/2.
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Substituting Egs. (1.2.10)-(1.2.13) into Eq. (1.2.3d) and introducing the new variables
r=t-X, A= X, we obtain for the slip-surface shape the integrodifferential equation

Fy(4,s,t =-P,(A,Z,7), 1.2.14a
H(ar- J ( )} — =-P(4.Z.7) ( )
where the right hand side is expressed a~
Xz
For Problem (2a): P(AZ.7)= _il_bi____l ; (1.2.14b)
ot
For Problem (2b): P(A.Z,7)= (aﬁ + _a_afjl” (X.Z,1). (1.2.14c)
' t

Solving the Abel equation (1.2.14a) we obtain the Poisson equation for the function
F.(X.Z.1)

J°F, 9°F, 1 (/1 s, z')ds
L0 =245 (A.Z.7), S,(A.Z, by 1.2.15
az_: a/iz ()( T) )( z.) 27[ J- S—Z ( a) i

An integral representation of the solution is:

oo oo

F(X.Z.0) = [ [So(X',Z.0)Gu(X,0: X i dX” (1.2.15b)
oo =X’
G, (X.:Xt) = (X = X' + (' =20t -r'\X - X')). (1.2.15¢)

Using the relations given in Appendix  we express the function §,(4.Z,7) as

00; (X.Z.1)

For Problem (2a): S (X.Z,7)= 8 , (1.2.16a)
t .
| . 2 W n( " _
0 =2 glws, —v;)A=2 _+Z 04" Z( D CXQ (Z)}. (1.2.16b)
e (+Z°) = n =
0 d
For Problem (2b): S,(X,Z.1)= =t Q()(X,Z,t), (1.2.16¢)

_2_(] -a—— 1-Z° wnnq [] k41 =
0= 1z T Vfl)(HZ:):*; 2 DIy (12160
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k ' —,
0.(Z) =Y {2tk -m -1~k +m) -Z*" -

m=0
F2k+2 | a1 o) m 9 "
_n!Z_-1 2[2(11 ni) 1]!.[ .._’j +( ._.J . (1.2.16¢)
1+Z° |53 (n—-m)! 1+Z- 1+7-

where Z = Z/ H . Therefore. we obtained the right hand side of Eq. (1.2.15a) in the form
of the power series of the variable g. Note that these power series are rapidly convergent

since q<1/2.

To summarize, we have shown that the slip surface shape is given by the Poisson integral
(1.2.15) in closed form. Equations (1.2.15) provide explicit coupling of the slip-surface
perturbations with the flow velocity on the body surface. Accordingly. the inner
asymptotic solution is intrinsically non-local with respect to the streamwise coordinate
and time, although it is harmonic in each cross-section plane. This contrasts with classic
slender-body theory [5-7] where the non-locality of the inner solution is associated with
the function of integration A,(X,t) correction to the crossflow-harmonic inner dominant

terms. The latter is determined from matching of the inner and outer solutions. As
contrasted to the non-local behavior due to the shear -layer, this “switchback™ term
(referring to its low order in the inner solution that matches a high order term in the outer
solution) has a “global” dependence reflecting the upstream downstream interaction from
the outer solution. This is a needed 3-D refinement of the 2-D crossflow nature of the .
inner solution near field, reflecting the outer flow physics.

Equations (1.2.6), (1.2.7) and (1.2.15) comprise a closed system of linear
integrodifferential equations that can be solved numerically by simple iterations. At the

first iteration we assume @, =@,, =0 and obtain the solution in the form of series

presented in Section 2.2 of Part 2. We calculate the tanzential velocity on the body
surface, and, then, the slip surface shape and flow velociues on its sides from Eq. (1.2.14)
and (1.2.10). After this step, we calculate the contribution of the first integral (1.2.7a) to
the tangential velocity w,(€)on the body surface and repeat the above procedure in the

second iteration. This sequence of calculations is repeated- until the required accuracy is
achieved. For rough estimates, we can use the first iteration.

1.3.2 Body crosses the slip surface (Phase 2)

For Phase 2 (body crosses the slip surface), with the accuracy discussed in Section 1.2 we
can neglect the side and top wall effects. The infinite flat slip surface
(Y, =0, Z‘ >¢(X,t)) subdivides the body into three parts. Typical cases are shown in
Fig. 1.7. These depend on the angle of attack, submergence depth, body, nose position of
the body (X, < X < X, ) and the location of its rear part (X, < X < X, ) relative to inside
or outside the cavity. The solutions for these body portions are obtained with the
framework of the unit problems (la), (2a) and (2b) discussed in Section 1.2. The body
part (X, < X < X,) is partially submerged: a portion of it is inside the stream (Y, <0),
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and the other portion is inside the cavity (¥, > 0 ). Boundary conditions on the surface
of each portion and on the slip surface are given by Egs. (1.2.3) and (1.2.13). As in
Phases 1 and 3, the boundary conditions allow zero value of the potential on the slip
surface, @,, =¢,, =0. In this case, the solutions for the cavity and stream regions are
obtained in Section 2.3 of Part 2; they correspond to the first iteration. In the general
case, the problem is also reduced to a system of integrodifferential equations using a
conformal mapping of the cavity and stream flow regions into the upper and lower half-
planes, respectively. The cross-section scheme is presented in Fig. 1.8. The mappiitg of
the stream region to the lower half-plane of the complex variable o =& +i7 is giveu by
the relations

5_(_")_121 (X,t)=£_—'q, R(G);G+b,
)—1 T o-b

Jo (a'—b)(R(a) iy e T i
8{ 2R (0) b—n,c—\/a H" =asinf, (1.2.17b)

{=f(o,X,n)= (1.2.17a)

where S(X,t) is angle between the body cross-section and OZ -axis at their intersection
point (see Fig. 1.8a). The submerged body potion (Y, <0) is transformed to the lower
side of the interval [—b,b]. The mapping, ¢ = f"(0,X,t), of the cavity region to the ‘
upper half-plane and the upper body portion (Y, >0) in the upper side of the interval
[-b*.b"] is given by Egs. (1.2.9) with a replacement of n by m=1-n and of b by
b =cl/m.

For given tangential velocities on the both sides of the slip surface and the normal
velocities on the body parts specified by Egs. (1.2.3a) and (1.2.3b), the complex
conjugate velocity can be obtained in the explicit analytical form from the Keldysh-
Sedov formula in the transformed plane [8] .

W()(O'ZX.T)=—'1————(§£] [l
L

—

Vb* =5y, (s)ds —I Vs* =bw,, (s)ds
(s—0)l(s) (s=0)l(s) |

mVol —-pr\90) | 2, )
(1.2.18a)
W (o X t)———————-( ]—1’7 bvbT =57 »(),,(s)ds “-‘/S2 —bzwgf(s)ds
o (004, mNo” —b i ,, (s=0)l(s) ] (s—o)l(s) ,

(1.2.18b)

b o )

[ =] +] =g

- Ol
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From Cauchy integrals for the complex conjugate velocity in the cavity and external flow
regions. we derive the following relations for the transverse velocities on the upper and
lower sides of the slip surface

I;(X.Z1)-1;(X.Z.1)

wo (X, Z,t)=- - (1.2.19a)
I, (X.Zt)+1,(X.Zt
wo (X, Z1)= os )n d ). (1.2.19b)

Integrals /;, and /,, along the slip surface preserve their forms (1.2.11) provided that

the integration path consists of the intervals (- eo,¢) and (c, o)

IJf(Z)=U jJFm(Z)dZ Io;(2) = (j IJFO’(ZHF“‘(Z) (1.2.20)

In Phase 2, H =0 can occur. In order to avoid a singularity at these points, we express
the integrals along the body contours inside the stream and cavity regions in the form

wo () +1v, (D)

(H+iZ)[1— 2 e“’)
H+iZ

4

2&1(] 1 a 2 - a n+l
=Reid =22 4l +V, +—sin2 ]( +r>w, | — .
{H+zZ { o ('B 2 g H+iZ 2l griz

(1.2.21a)

dv =

1,(X.Z.1)=Rei | © 16p) =M@Y o e j
T, <F ; -Z

:;rJ;ﬂ [“‘51 () +iv], (?_9)1419

5 (H+iz)(1— . e""]
H+iZ

1 a 2 - a n+l
=Reis|mv;, =V | m— f——sin2 +r3w, . (1.2.21b
{[ 01 el( i} > ﬁ]:l(H+iZ) nz=:2“0"(H+iZ] } (1 )

n

B8
w,, (B) = %Iwe (Msin(n)dd, w; (B) = lng (Msin(nH)d . (1.2.21¢)
0 7 B

I;(X,Z.t)=aRe

Equations (1.2.14a) and (1.2.15a) for the slip surface preserve their forms, provided that
the function P,(X,t,Z) is replaced by the expression

a, o, _d;

P(X,1,Z)= .
A P or

(1.2.22)
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In Appendix A, the function S,(X,t,Z) is expressed as

20, N 00, 90,
ot 90X o

I, (X t, \)d 2 faa, Z+c aZ Y
0.o[] +] frep 2 [l %
x{mvm—Vel(/}+5m2“’3ﬂ{2—z—l Z_Z+(x—2ﬁ+2sin2ﬁ{[£zl—jz—2}+8cos:ﬂ}+

_— Z, -, 1.2.2
+[Z TE )Zwo,,w)an(x t)(z — J (1.2.23b)

n=2

Q‘:_U +! ]1 =2 (ziZHHm ( 'B_MH

{Z%In;_i (ﬂ—2ﬁ+2sin2ﬁ{(g—): 2} 6cos’ ,B}

-

—t ' B 2.23¢) "
+(Z HJZ;D"(,B)QO"(XZr)(Z H] (1.2.23c)

~ . g
th"X’Z“:{ FaE e )—(c-zr]}z(—l)'c;:;‘m“zw

2178 ,(X,t,Z) = (1.2.23a)

¢ m=1 k=0

-

! [nﬂ
+{ﬂ_2p L 3ic_nmii$/_3[(z +c)" +(c-2) ]} Z (-1 cEH*Z* . (1.2.23d)
. om=l

ma k=0

Thus, as in Phases 1 and 3, the slip-surface shape in Phase 2 is determined by a Poisson
integral (2.1.15b) involving an explicit function depending on the trajectory parameters.
Analyzing the relations (1.2.23) we conclude that the slip surface shape has a singularity
on the line of intersection of the body with the slip surface. This singularity is due to
linearization of the equations and boundary conditions. It has also the physical
explanation: a vortical surface cannot end on a rigid wall. In order to find a non-singular
solution. we need to analyze the inner asymptotic region near the intersection line. A
similar situation occurs in the two-dimensional problem of a suhmerging cylindrical body
[11]. The singularity disappears if ¢ — 0, # — 0,7 ; i.e., the body cross-section is in the
cavity or in the stream. In this case, Equations (1.2.21) and (1.2.23) translates to Egs.
(1.2.12) and (1.2.16).

1.4 Analysis of the slip-surface effect for finite perturbations

In this section we analyze the flow equations when the flow perturbations are not small,
£=u=1. We focus on the slip-surface effect since it is the most difficult aspect to
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model. As shown in Section 1.2. this effect can be isolated from cavity wall effects.
~ Within the framework of slender body theory. we analyze the following problems in a
cross-section plane:

1) In Phase 1, the circle of radius a(x) drops in the upper half plane (where fluid 1s at

rest) toward the slip surface
2) In Phase 2, the circle crosses the slip surface
3) In Phase 3, the ci:cle moves in *..c external stream away from the slip surface.

Using the asympiotic results of the previous section we describe these unit problems by a
system of nonlinear integrodifferential equations, which satisfy all boundary conditions
and directly couple the slip surface distortion with the flow over the body surface. This
system can be solved numerically by a relatively simple iteration method. The first-step
solutions are expressed in analytical forms; they are similar to the dominant
approximation discussed in Section 1.2.

We reformulate the boundary conditions (1.1.8) using the curvilinear non-orthogonal
coordinate system attached to the slip surface as shown on Fig. 1.9. Here 7 is coordinate
along the intersection curve of the slip surface and the plane Z =const; n is normal

coordinate to this curve; ¢ is angle between 7 -axis and OZ -axis. Using the boundary

conditions (1.1.8) we can express the curvilinear components of the fluid velocity vector
on the slip surface as

F F +F, F,F
ll;:—'.ll;: ! X ,u:zhw;+-—z——'-, (1.3.1a)
h " h | h
F,(F +F, 3
u; = hw, +—Z—(—-'—h—-—3‘—2,h=\/1+Fz' , (1.3.1b)

where u, and u, z normal and tangential velocities on the slip surface: superscripts ‘+’

and ‘-* stand for its upper and lower sides. respectively. Differentiating (1.1.8) with
respect to Z we obtain the equation for the transverse flow velocities on the both sides of
the curve slip surface in the form

8w} aw, ow s . . . s -
5 - 5 - X =wfwjz+vaﬂ—wfwfz—vaﬂ=R(X,Z,t). (1.3.2)

In order to correlate the boundary potential with the slip-surface shape we represent the
complex conjugate velocity in the cavity or stream regions by the Cauchy integral along
the contour bounding this region. These contours are similar to those shown in Figs. 1.3,
1.6 and 1.8 for Phases 1, 3 and 2, respectively. From these integrals, using the Sokhotsky-
Plemelj relations we derive the following equations for tangential velocities on the slip
surface:

For Phase 1:
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I'(X,Z,n-1(X.Z.H) 1, (X.Z.t
wi(X,Z,t)=- (X200 ,wf(x,z,z)=L——) (1.3.32)
T
For Phase 3:
1.(X.,Z,h)+1,(X,Z,t . I7(X,Z.1)
wf(X,z,t)z I )1 ),w}(X.Z,t)=-—f—(————; (1.3.3b)
T o
For Phase 2:
: IT(X.ZH-1,(X.Z.t 1.(X.Z.H+1,(X.Z.1)
wi(X.Z,t)=~ (X201 ),wf(x,z,r)= X2+ .(1.3.3¢)
T ,

/4

Integrals /; and I, along the upper and lower sides of the slip surface are expressed as

For Phase 1:

wi(Y=ivi ()
1;(X.z.z)=Reij ”(if, éf(;'dc =1, (X.Z.)+1,(X.Z.0)=

f
F(Z )dZ = ‘[ F - F}h(Z YdZ'
1 Z Z . (134
j ’Z()f( ) u()+u()ZZZ_Z (1.3.4a)
For Phase 3:
1,(X.Z.n=R j &)= ”’f@)dg=1f(x.z,r)+11f(x,z,z)=
+ =<
J-F(Z )+F (2’ ) iz
= =(F_F\"'[ . F'-F h(Z')dZ'. |
+5(-1) ( . ] |:ur(Z J+u(Z)— } - . (1.3.4b)
Z; _[,Z—z z-z\| 7z -2

For Phase 2. these integrals have the same form if the integration is carried out in the
intervals (—o.~Z,) and (Z,,c°); the attachment points A are shown in Fig. 1.2. Due tc

flow symmetry. integrals I, and /, along the body surface are expressed as

I(X.Z. =Reif )Ty, Z ), alH —F)wm =V.) |,
y =2 (H-F)y +Z° (H-F) +Z*
17 N ROCKWELL
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[n7

n-1 | Sk
- - S A i
sz s, | aH-F) Z(—l)‘C;f:{ 2 } . (35
(H=-F)y +2* |2 "[(H=F) +Z°] = (H-F)
, Tyt (s, ) —ivT(s,)
I;(X,Z,1) = -aRe [— —ds, =
0 5, —Z
2ma’(H ~F)Z (H -F) gt z "
2P by S D S| ]
(H-F)+2°] = "UH-F) 427 ] i (H-r))]
(1.3.5b)

where the coefficients w, and w are given by Eqgs. (1.2.13). For Phases 2. similar to
Egs. (1.2.21), we obtain

) — T ﬁ-“‘ ) "
1,(X,Z,1)=Rei I Mé@dgb =aRe_|' we (D +1v, () d8=
Wer S B, (H—F+i2)(1———7a . e“’)
H-F+iZ
| 2p,aa, 1. a :
=Rei{ ———=2—+|m, +V +—sin2 _ |+
l{H—F+iZ [ E f(ﬁ" 2 ﬂAH(H—FH’Z]
+”i ( a )nﬂ (1 ’% 5 )
W . 3.5¢
n=2 " H—F+IZ
27-B, K Lt
I;(X,Z,H=aRe | bz @) +iv; o =
5o (H - F+iZ)(]—- a e”’j
_ H-F+iZ 7
. ‘ + 1. a : = a !
=R mw -V | x—-f, ——sin2 | + F ——— .
e'ﬂ " ( Py=7sin 'BAH(H—FH‘ZJ ”E_M"(H-—Fnzj }
| - | (1.3.5d)
lﬂ:\ . . 1 r . o
W, =—Iw9(z9)sm(nz9)dz9, W, =— ng(ﬂ)sm(nzﬂ)dﬂ. {1.3.5¢)
T T
Substituting these relations into Eq. (1.3.2) we have
For Phase 1:
1 ¢ [F@)H@2)) +[F2)nz)), 1\, ol oI
— | — dZ’ =— + -t |~R, 1.3.6
7r;[ Z'-Z | 04 ot ot ( )
For Phase 3:
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oo ’ ’ Il ’ . a] a[
LJ[E(Z L) e LACSTICH) S § AN . /%) I
T zZ'-Z | 04 ot 8/1
For Phase 2:
1 _fk i [F, @), +[F,EHm@), . _
T\ . 2, zZ'-7Z
ol,, ol a1, oI
=- + = -R. 1.3.6
{az o oA (1360
These equations are similar to Egs. (1.2.14) and (1.2.22) of Section 1.2 besides the

presence of additional nonlinear terms. Assuming that the right-hand sides are known, we
can solve the Abel equations (1.3.6) and express Egs. (1.3.6) in the form

o0°F . o0°F F,(FF,+F,F,)

T T3 + P =-275(X,Z,t)~-
’,,1;, L{allf(;/lz 1) 811ff(§;z'.r)+ RAZ t)} dfz‘ (1370 °
For Phase 1 S(X.Z.1) .—.-2”13}1 Iﬁa['j(’;’tz”’) dez , (1.3.7b)
For Phase 3: S(X.Z,H = 13h§ZTIb(’1Z’,Z_";)dZ’, (1.3.7c)

For Phas

[f J-][BI JAZ\D a1 (AZ, t)} A,
ot Z'-Z

Equation (1.3.7a) is a nonlinear integrodifferential equation for the slip-surface shape
provided that tangential velocities on the slip surface and the body cross-section contour
are known. It is similar to the Poisson equation (1.2.15a). The leading operator of the left-
hand side of Eq. (1.3.7a) is the Laplace operator. The first term in the right-hand side of
Eq. (1.3.7a) provides direct coupling of the slip-surface displacement with the body
motion. It is similar to the forcing term in Eq. (1.2.15a), however we cannot calculate it
explicitly. since the integrands of Egs. (1.3.7b)-(1.3.7d) depend on the slip-surface shape.
The other terms of Eq. (1.3.7a) represent nonlinear effects of the slip surface motion.

In order to close the problem, we need to obtain an explicit form of the solution for the
complex conjugate velocity. To use the Keldysh-Sedov formula we map the slip surface
to the plane Y =0. Assuming that the slip surface shape is known we apply the Cisotti
formula to conformal mapping of the cavity region or the stream region on a ring in the
complex plane y =Z, +iY,. For Phase 1 and 3, this mapping has the form [10]
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X imizy g 1 2r ir -
C()—iF(X,0,1)= iJ' el ()1:', m(z) = gy J.e“ al ptdr . o(s) = arctg[Fz (s)]. (1.3.8)
e (1-2)° 2rye’ -z

The outer boundary of the ring is a circle associated with the slip surface. The inner
boundary is not circular and corresponds to the body surface. In order to map this ring to

the rectangle of sides 2w, and 2i®, in the complex plane o =& +in. we can use the
numerical method [14]. The body is transformed to the interval [0.2@,] of the real axis.
and the slip surface is transformed to the parallel interval [, .io, +2a)l]. In the o-
plane, the solution is expressed by the formula of Villat [8] as

W(G)=il{ iwzfg(o,s)u’(s)ds—imT(a;(O',s)v (s)dsy. (1.3.9)
’ m aé’ w ’ i@ "

i,

For the external regions, which are the stream region for Phase 1 and the cavity region for
Phase 3, we have the Neumann problems with the normal velocities on the slip surface
given by Egs. (1.3.1). In these regions, solutions are found using the additional conformal
mapping of the ring (1.3.8) exterior to the lower or upper half planes of the complex

variable o, =&, +in,

oq:%(,zw%]. ‘ (1.3.10)

In this plane, the body cross-section is not a circle. However, its profile is symmetrical
with respect io the 7, -axis. It is given by the equation 77, = H( x.t)+5(x.0~.t)‘sin§ .
where H( v,¢) is transformed distance to the body axis, and a( ..d.1) is transformed |

body radius. This equation can be written in the form 7 =a (x,6.1), where 7 and 8 are
attached to the body axis polar coordinates in the transformed plane.

The solutions in the upper and lower half planes (without the body) are expressed as

196, 7 u'(s)ds
w* = z . 1.3.11
Ay ey ypy e
106, = u_(s)ds 06
W(o,)=——2 L 1 = |t . 1.3.
A Ay YA F A (131D

Corresponding solutions with the body present can be obtained using the multipole
expansion method [9].
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Equations (1.3.3)-(1.3.11) comprise a closed system of nonlinear integrodifferential
equations that can be solved numerically by iterations. The first step approximation
corresponds to a flat slip surface of zero potential. This problem is similar to the
dominant approximation problem analyzed in Section 1.2 for small displacements of the
slip surface.

In Phase 2, in order to obtain expressions for the complex conjugate velocity, we note
that the mappings (1.3.8) and (1.3.10). with the boundary angle defined as

arctg[F,(X,s.0)|s| > ¢
(s) {

§+ Q(s), Is|< ¢

transform the cavity flow region to the upper half plane. The body portion located inside
the cavity is transformed to the upper side of the interval [-b,b]. The external stream
region and the subrerged body portion are transformed to the lower half plane and the
lower side of the iaterval [-b,b], respectively. Applying the Keldysh-Sedov formula we
can express the complex conjugate velocity in the form

) 22, 2 _p2,,- )
WX p.0) = 1 [ J IVb sV, (s)ds_JVs b u; (s)ds  (13.12)
w5 o=l 1 =l
’7 2 2 R
WX ) = e 1 ié_' lj- b -5y, (s)ds+J-\/s —b u(s)ds (13120
i ;( -b’ ,7( 3 =0l 5 (s=0I0)

oo -b éf
NREINCE:

—oo

¥,=0

These expressions allow us to calculate the tangential velocity on the body surface and
normal velocities on the slip surface. Thus, Equations (1.3.5), (1.3.10) and (1.3.11) form
a closed system of integrodifferential equations, which can be solved by iterations. In the

>c. This approach substantially

simplifies numerical calculations because the flow characteristics are calculated using
analytical formulas at each iteration step.

1.5 Discussion and conclusions

This chapter represents a first step of our combined asymptotic and numerical analysis of
the store separation problem. We considered separation of the body of revolution from a
rectangular cavity into subsonic/transonic stream. Using slender body theory, we
formulated the inner asymptotic problem for the near-field region. Solutions of this
aerodynamic problem can be coupled with the body dynamic problem to predict two
degrees of freedom trajectories including vertical coordinate of CG and pitch angle.
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The body separation process is treated as a sequence of the following phases: in Phase 1.
body is inside the cavity; in Phase 2. body crosses the shear layer: in Phase 3. body is
outside the cavity in free stream. We showed that for many practical cases the cavity
side-wall effects can be neglected. This allowed us to decompose the general problem
into the unit problems:

1) Body drops from a flat wall to fluid at rest (Phase 1) or to the external stream (Phase
3);
2) Body crosses the slip surface (Phase 2);

3) Body drops toward the slip surface (Phase 1) or away from the slip surface (Phase 3).

The first unit problem can be solved analytically using the multipole expansion method
[9]. The second and third problems are more complicated because they include effects of
the body interaction with the free slip surface. In order to obtain their analytical solutions
and provide insight into the slip surface effect on the near-field flow. we analyzed the
case of small slip-surface displacements using asymptotic methods. We show that the slip
surface shape is described by a two-dimensional Poisson equation with the time and
longitudinal coordinate to be independent variables and transverse coordinate to be as a
parameter. This indicates that the inner solution is not local with respect to time and
streamwise coordinate, although it is harmonic in the cross-sectional planes. This is
intrinsic property of the inner solution for flows with free boundaries, whereas in the
classic slender body theory [5-7] the non-locality is associated with the outer-flow region .
and matching conditions. The forcing term of the Poisson equation directly couples the
slip surface displacement with the body motion. This displacement is an explicit function
of the trajectory parameters and transverse coordinate. Analysis of the slip-surface
equation and a linear integrodifferential equation for the complex velocity is performed
using the conformal mapping and Keldysh-Sedov formula. That gives a general form of
the inner solution. .

Note that for small perturbations, the equation for Phases 1, 2 and 3 are obtained in
compact analytical forms accounting for the slip surface displacement. For these
equations a relatively simple iteration procedure can be used for calculations of flow
characteristics. For Phases 1 and 3, analytical solutions for the slip-surface displacement
will be obtained in near future. They can be used in the cases when the body is
sufficiently far from the slip surface. The analytical results provide significant -
stmplification in prediction of the slip surface effect on aerodynamic forces and moments
acting on the body in all phases of the separation process. ’

In the general case, when the slip-surface perturbations are not small, we used the results
of small perturbation analysis as a launching pad to attack this complicated problem. We
derived the nonlinear integrodifferential equation for the slip surface shape, the leading
terms of which are similar to those of obtained for small perturbations. An explicit
integral representation of the Laplace equation solution for the complex conjugate
velocity is obtained using conformal mappings of the flow regions to simple regions such
as a ring or a flat plate exterior. Combining this equation with the slip-surface equation
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we derived a closed system of equations that can be solved by iterations. In the first
iteration step, the slip surface is treated as a flat plane of zero potential, and the near field
solution can be expressed in analytical form.

Our analytical solutions are new. Some of them extend the two-dimensional result [11] to
three-dimensional flows. Our approach substantially simplifies numerical calculations
because flow characteristics are evaluated at each iteration step using explicit analytical
formulas.

23 (\PocKWELL
~ \3 SCIENTIFIC



71153 FIR

1.6 lllustrations

Cavity walls

Fig. 1.1 Flow scheme and coordinate systems: side view

Cavity walls

Body r

N

Slip surface -
N\ A\ A
o) V4

-d, O gy d

Fig. 1.2 Flow scheme and coordinate systems: back view.
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Cavity walls
Y
Body
ot
HL_2
Slip surface
Y, .
Z

Fig. 1.3 Cross-section flow scheme for Phase 1: the body in the cavity.

1Y
~ 7 Y
X Top wall: Y=0, v=0 Body
Body
H a H
Slip surface: Y=0, u=0
\ 4 X TV:
\'A Z
a) Unit problem (1a) b) Unit problem (2a)

Fig. 1.4 Flow schemes for unit problems (1a) and (2a) in Phase 1.
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Y
-d, Slip surface d, Z
Cavity wai ' Cavity wall
Body
H a
\4

\Y

€

Fig. 1.5 Flow scheme for Phase 3.

iy
@ Slip surface in @
i(ﬂz ﬁ
Cut—» l¢—Cut
§
Body 2w,
a) Unit problem (2b) b) Transformed plane

Fig. 1.6 Flow scheme and transformed plane for the unit problem (2b).
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Slip surface

e) ‘ f)

Fig. 1.7 Different body disposition with respect to the slip surface in Phase 2.

@ yl @ '
Y
Body, Y>0
H a . E
— N b L
B S
y Slip surface Body, Y<0
a) Physical plane; b)Transformed plane;

Fig. 1.8 Cross-section flow scheme for Phase 2; the contour of integration and the
transformed plane.
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\slip surface

Fig. 1.9 Curvilinear cvordinates on slip surface.
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Appendix A

Calculation of the integrals /, and I;

Using the relation ¢, =aexp(if) = —iaexp(iv}), where ¥=7x/2+86 is the polar angle
measured from the symmetry plane (see Fig. 1.6a) we represent the Cauchy integrals
1;(Z) and I,(Z) along the body surface as

Iiwog(zﬁ‘) Von (19)

1,,(X,z,z)=Rez§ “(;” —0() 4

-2 o IH Z —iae'”
=aReTWZ(§?+l,l’onfl:9)dﬂzaReT [W09(0)+iv0n(z9)]d19 _
0 +iZ —ae 0(H+z'Z{1— ..‘f" em]
H+iZ
n+l Z n+l2x
=Re Z( ] (l—i—j I[Wog(ﬁ)-i-ivon(l})]einddﬁ'
n=0) H !
I;(X,Z,t)=aRe j"”oe(” vo,.(r) e
0 iH-Z -lcze

n+l n+l 2
= Re Z( ) (1—:‘—3) [bvzs @+ iviy (0™ dr.

=0 0

Here w,(8) is velocity tangential to the body surface. Accounting for symmetry

properties of the tangential velocity and the expression (1.2.3b) for the normal velocity.
we obtain :

-J‘[Woe () +iv,, (D" d = i._'.[woe (P)sinndd+v,, (F)cosn Sldo = 27i(w,, +a, -V,.).
0 0
op (X,1) = = [ Wip (X1 B)sin(n D). | (A1)
2 s, _

Using the binomial formula and separating the summation by odd and even indices., we
find

- Uy
(1-i-§j Z( 1) C,,ﬂ[ j —z——Z( 1) C,.il”[ ] ’

where the symbol [ﬂ] denote the integer part of the fraction. Accounting for these
relations we obtain the expressions
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[n -
2 H ad Y2l o ZY
I, =LZ a, +—'7L_q Wo =V F ZMU’I (E___*—__”—J Z(—l)‘ Cii 1(“]

H*+Z° H*+Z® b Z:) i H
(A.2a)
2Bz - aH "“H( 1);. o[ Z j“’ A%
I =——"—n, -V + 3w, | —— - al— . (A2
b (5??2’*-22)2 Wor el E:Hon(H__'_Z_j Ago 1([{
Calculétion of the function §,(4,7.2)
Consider the Cauchy type integral
1 TI1,(X,t,Z )dZ
0, =—— [~
2’ Y Z'-Z
=;a:— a1X100+aH Wor — 101'*'2”0;:2( D* C:i;1 1 . (A.3a)
[ T z'dz’ -
00—J. ’ d'a 7Y I()I=I ) (A3b)
Z-zfar+z?) Y Lz -zt 2
L 72k+1 ’
IA n= J- z dZ (A3C)

Az -z vz

The principal value of the integral /., is expressed as

w Z»’jk_ﬂ _Zlk+1 Z’ o dZ,
IA n ] ( )d

k
ZZkH = Zlm + Zlk?l[
Az -z\H+z2)" i _[,(Z’—Z)(Hz +2z7 )" ;e "

The coefficients e, are calculated using the table integral [19]

T Z7%maz xRk -my-1]2(n—k +m) - 1]
e'" = J. 2 22 \ntl - n_y gy 2n—k+m) (A4)
Jwez?y H 2"n'H

For the integral I, , we have the recurrent relation

(z'-z)H* Z")MIZ_H2+Z'3=_H3+22;(H2+—22)m+(H2+Zz)".

T Zi,—1, Z < i I,

- Using the table of integrals [19] we find

30 (\ ROCKWELL
' \3 SCIENTIFIC



71153.FIR

; _]i dz’ _ an-m)-1] /- Z

_m(Hz +Z,3 )n-m+l - 2n—mHH2(n—m)(n_m)!’ 0 _Hin .*_Z2 ’

Then. we obtain
n_HmfH _ _1in 2 m 2 n
= ,”Z, 32 [2(n = m)-1]! H R %H Ol s
2'HH*(H*+Z)| 5%  n-m)! \H+Z° H*+Z°

Thus, the integral is represented as the explicit function of the transverse coordinate Z .
vertical location of the body axis H(X,t) and the body radius a(x)

T
Ikn=_ 2 3
" H2VHAR

= n' H®

. ';kJZ n m _ _1n 2 m 2 "

_ _z ’ 2"[2(n = m)-1]! H R 21H BRIs (A6)
H +Z .= (n—m)! H +Z- H"+Z'

The formulas for /, and /,,, are obtained by substituting k =0, n=0.1 to Eq. (A.6)

| {im-m)—l]!![2<n—k+m>—1]!!(22 ) _

7H JZ'(H
= 2 27 10.1 - A
H>+Z 2H(H? +2°

- (A7)

IO.O

Now we can find the explicit dependence of the function Q, on the variables Z,
H(X.t) and a(x).Itis expi’essed in the compact form

&

—
(SRR
.

a 1-Z° =W, q" ke
0y = gl V) + Y 3 (<D € X
(1 + Z - ) n=2 n: k=0 :

X[ZA: [2(k =m)-1"[2(n -k +m)—1]1Z*" -

t. m=0
172k+2 [ n _ — 1 m "
_n 2 [Z(n m) 1]( 2_’] +[‘ 2_7] ’ (A.82)
1+Z- \m=  (n—m)! 1+Z- 1+Zj
= Z a
Z=—",g=—. A.8b
i q S H ( )

Integrals for the solution of Phase 2
Because the above equations are singular at H =0 we present them in the form
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. i B L . l9

Ih(XvZJ)=ReiJ' Wl(gb) llx(gh)dé,b:aReI um(z?)+nm( )
, , —Z : ' a

T.<F b ﬁ(H + IZ 1 -2,

H+iZ
2faa 1. a Y
=Reis—=+| v, +V, +—sin2
CI{HHZ |:m‘01 el(ﬂ 251 'BH(H+

2 n~1
had a
+r¥w, | —— . (A.9a)
iZ) nz::““"(HHZ) } (

b @+ivzDls .

2z-f
I;(X.Z.t)=aRe |

‘ . . 1 . a 2 - . a n+l
=Re 1{{7:»%1 -V (n -pB —Esm 2,5)}( I iZ) +ﬂr§:w0"(71—-i—-i'—2) } (A.9b)

ﬁ r
w,, = }1;.[”‘9 (P sin(nHdd, wy, = -Il;ng(ﬁ) sin(n)dd. (A.9c)
; ;

The function Q, is expressed as

1 T1(X,t,0d
QO = 3 j. . =
2r° s, y-Z
. in 2 = .
=_21 : Im{2ﬂaalxln +a-[w01 —Vﬂ(/n - 'Bﬂll +3 w,,a" 11"}.
T - n=2

The integral I, n=0,1... is calculated using the table of integrals [22]

SRl v_zxmwyé

H-iz \"™| c¢—iH | c+iH &CMl(c+Z
== In —In +Z
H +Z7 c—Z7Z c+Z = m|\c+iH c-—zI-’

R

. Z+c CI" cosmf3 ‘) -

—{lnz_c+2; > [z + zy]-

-—l<ﬂ' 2ﬂ+2ZC"‘smm,@[( +c)" +(c—Z)’"]>}x

x_.__.l______Z( —DFHTRZH(HCE —iZC2).
(H + 72 )n+1

The imaginary part of this expression is
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Iml,

N 22 CT cosmp [(

m

<7r 2ﬁ+2z C Sln""B[(erc

Atn =0, 1 we obtain

Im/, =

M { In Z+c
]>Z( 1) C"l’i{rlHn—NZ AH

k=1
]>Z( i CHH 7

} (A10)

Ztc, (Alla) -

: I:
H2+22
Z+c

Z-c

[2H21n

— H(7r—2,5)},
+(H? —222X7‘[—2ﬂ+25in2ﬁ)+SZ:COSZﬂ:l.

(A.11b)
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Part 2. Analytical Solutions in the First Order Approximation

2.1 Introduction

In Part 1. using slender body theory and the method of small perturbations [5. 6] we
analyzed the near-field flows over a thin body of revolution separating from a deep
rectangular cavity into subsonic or transonic external streams. The problem formulation.
notations and scaling for the inner asymptotic region were provided. Aerodynamic
pioblems relevant to Phase 1 (body is inside the cavity). Phase 2 (body crosses the shear
layer) and Phase 3 (body is outside the cavity) were decomposed and simplified. It was
shown that in the inner asymptotic region. the cavity side-wall effect can be neglected for
all three phases. In this framework, the shear layer separating the cavity interior from
external stream is treated as a slip surface with continuous density, pressure and normal
velocity across it. The problem of the slip-surface displacement induced by the body
motion is challenging. It was isolated from other unit problems and reduced to a system
of nonlinear integrodifferential equations for the tangential velocity on the body surface
and the slip surface. It was shown that this system can be solved by iterations. In the first
step. a plane of zero potential approximates the slip surface and the problem is
decomposed into the following unit problems:

1. Thin body of revolution drops from a flat rigid wall:

a) to fluid at rest;

b) to the stream:
. Thin body of revolution drops:

a) 1in fluid at rest toward a flat slip surface of zero potential;

b) away from a flat slip surface of zero potential in the free stream:
3. Thin body of revolution crosses a flat slip surface of zero potential.

1o

Problems 1a and 2a allow us to find solutions for Phases 1: Problem 3 corresponds to
hase 2: Problem 2b gives the solution for Phase 3; Problem 1b is relevant to external
store separation. Using the multipole expansion technique [9], we solve Problems 1. 2 in
a Laurent series and obtain coefficients up to the fifth term. This is suitable for explicit
calculations of the flow characteristics with appropriate accuracy. To solve Problem 3,
we use the method of conformal mapping [8.10.15]. Some terms of the solutions of
Problems 1-3 are known, and we use them for cross checking. The other terms, relevant
to three-dimensional effects have not been determined elsewhere.

From the solutions of these aerodynamic problems we derive analytical expressions for
the lift force and pitching moment acting on the body in all phases of its motion. This
allows us to identify key parameters, extract dominant physics effects and develop a
robust method giving rapid predictions of body trajectories. In this chapter, we do not
discuss the yaw and streamwise components of the body motion. However, our theory
can be easily extended to treat these effects. The streamwise component associated with
the aerodynamic drag will be analyzed in Part 4.
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In Section 2.2, we formulate the unit problems for Phases 1 and 3 and obtain their
analytical solutions using the multipole expansion method. We derive explicit
dependencies of the lift force and pitching moment on the body trajectory parameters. In
Section 2.3, we formulate and solve the unit problems relevant to Phase 2. Then we
derive explicit expressions for the cross-sectional lift force components and obtain
relations for the total lift force and pitching moment. In Section 2.4, we verify the
_solutions obtained in previous sections by comparison with known analytical results [15.
16,24]. In Section 2.5, we cenclude the chapter. Appendices B and C include treatment of
improper and Cauchy type integrals of relevance to the analysis.

2.2 Unit problems for body dropping inside and outside the cavity (Phases
1 and 3) '

We consider here Problems ia), 1b), 2a) and 2b) in the inner asymptotic region. A
combination of solutions of Problems la) and 2a) describes Phase 1; Problem 1b) is
relevant to external store separation; Problem 2b) corresponds to Phase 3.

Within the framework of slender body theory [5-7]. the coripiex conjugate velocity
W(X.l.t)=w—iv is an analytical function of the complex vuiable { =Z+iY in the
cross-section planes. The body cross-section profile is a circle of radius a(X) centered at
the point ¢ =iH(X.r). This circle moves with the vertical velocity
V(u)y=V (t)-w(t)x—a(t) in a uniform stream or with the velocity ~
V. (x.t)=V, (1)—o@)x in fluid at rest (within cavity). Let the wall or slip surface

- coincide with the plane Y =0. For half planes containing the body, we have the
following problem:

e Find an analytical function W(X,{,r) that satisfies Eqs. (1.1.7) for a specified

normal velocity on the -circle and has zero real (imaginary) part on the slip surface
(wall). ,

The analytical continuation through the wall and the slip surface gives W(Z’ )\=W(§ )

and W(&)=-W ({) respectively. Here, the overbar denotes complex conjugation. From
these conditions we reduce the half plane problem containing the circle to problems for
the full space containing two identical circles located symmetrically with respect to the
plane Y = 0. The flow scheme in the cross-section plane is shown in Fig. 2.1.

In Part 1. the solutions of these problems are expressed in a general form containing the
boundary integrals. This form was derived using a conformal r:apping of the flow region
to a ring and then to a rectangle. However, since the slip-surface shape is trivial in the
first iteration. the method of multipole expansions [9] is more appropriate for the
analysis. It allows us to express the solutions in the form of a Laurent series and obtain
relatively simple analytical expressions for aerodynamic forces and moments. As
contrasted to the problem analyzed in Ref. [9], the considered problems are three-
dimensional. This leads to new effects, which has not been previously studied and
motivates us to represent details of our analysis as well as discuss the new results.
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2.2.1 Solutions obtained by the multipole expansion method
Using the Cauchy formula we obtain the integral equation for the function W(X.¢.1) [9]

W(X.iH +s.r)ds+ 1 W(—iH +5)ds

(2.1.1)
(-iH-s 2, {+iH-73

WXLty =— |

27

[si=a

Expanding the ker.els into Taylor series, using the analytical continuation and flow
symmetry we obtain the solution of this equation ar.d the complex potential in the form of
the series

= i { n+l * CT"-I n+l } . (2.1.2a)
=0 ¢~ IH) ({+iH)
M=A(X.1+aA, [1n(g“—iH)iln(é“+"H)]‘i - { = : o } (2.1.2b)
< n |((-iH)" (£+iH)
Coa=A +iB, .

A,, =0, B,,,=0. (2.1.2¢)

Here the upper (lower) sign corresponds to the body motion near the wall (slip surface).
The function A,(X.r) is determined from matching of the inner solution (2.1.2) with the-
outer asymptotic solution. It does not affect the lift force and pitching moment and will
be considered in Part 4. Functions C_,_ (X,1) are coefficients in the Laurent series of the -
complex conjugate velocity at the points ¢ =iH(X,t);A_,_,(X.,r) and B__(X.1) are

their real and imaginary parts. They are found from the boundary condition on the body
surface. For a body dropping into the stream from the wall or slip surface. this condition
leads to the infinite system of the linear algebraic equations

A,=a.5=B,=V,+q) (-1)"¢*"(A,,+qB_,,), (2.1.3a)
=()
~1D)"g*" & (2 -1)! s 2m+2

A_:n_l - i_( ) q ( m+2n 1) (_l)mq_m (A_-,m_l + m+2n qB_,’m_‘ \] . (213b)

2n-1n! = 2m! e 2m+1] T

n _2n+l o + . +

B - —( 1) Z(znl 2”) mq_m(A - M'-—I'CIBJ,”_« . (213(:)

! = 2m! 2m+1 T
Here. g(X,t)=0. <0.5. If the body is a cylinder or it drops in fluid at

rest (inside the cavity), then A =a, =0 and the other coefficients are determined from

- a system of algebraic equations similar to (2.1.3). In this case, these equations coincide
with the system formulated in Ref. [9].

Note that this approach can be applied to non-circular body cross sections with the
coefficients (2.1.3) determined as Fourier series coefficients of the function v,k (6).

Accordingly. this method can be used to find solutions in the o, -plane defined by Eqs.
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(1.3.11). Thus, in every iteration of the general problem considered in Section 1.3. an
explicit form of the complex conjugate velocity can be obtained without mapping of the
flow region to a rectangle. This leads to significant simplification of the iteration
procedure. For practical calculations, we present the approximate solutions of Egs. (2.1.3)
as a power series in the parameter g . ‘

To accuracy 0(q") (where g® £1/256) the solution of Problem 1b (for the circle
dropping into a stream from a rigid wall) has the coefficients

B =Vy[1+61251(q)]+ anSz(q)+0(q9), (2.1.4a)
A =—q*la (1+2¢7 +5¢* +144° )+ 2V g1+ ¢* + 4¢* )J+ 0(g°) . (2.1.4b)
S\(¢)=1+q" +3¢ +8qé +0(q*), S.(@)=1+q" +2¢* +5¢" +(¢"). (2.1.4c)

For a fluid at rest (Problem 1a), the coefficients are given by Eqgs. (2.1.4) with a, =0 and
V, replaced by V.".

For a circle dropping in a stream from the free surface (Problem 2b) we obtain

B=V[l-¢*S.(q))-ga,5.(9)+0(q") . (2.1.5a)
AL =qla(1-2¢" - ¢ —4¢°)+ 29V, (1-¢* +¢* ]+ 0. (2.1.5b)
B, =q¢'la.(1-3¢> =3¢*)+3qV.(1- 4> =3¢" |+ 0(g®), (2.1.5¢)
A, =—¢'la,(1-44> - 64" )+ 49V, (1— N+ o). (2.1.5d)
S,=1-¢°-¢" —2q S, (p=1-q"-3q". (2.1.5¢)

/.

When the body drops to the slip surface in a quiescent fluid (Problen 2a), these
expressions reduce to

B=V l-¢'S,@]+ 0@, S(@) = 1-¢* ~¢* + 0(g"). (2.1.62)
AL =2V ¢ (1-¢' =2¢* )+ 0(¢"). B, =3V, ¢*(1-¢° —4¢*)+ 0(¢’).  (2.1.6b)

As discussed in Part 1 and for Phase 1 (bod'y drops in the cavity), the complete solution is
expressed as a superposition of the two solutions: W,"(X,{.t) (corresponding to the bedy

dropping from the top wall) and (W, (X .{,t) corresponding to the body dropping towz:d
the slip surface. This composite solution is

W*(.X.1) =Wf({:X.t)+W;(§:X.t)—WO+(§;X,t),

where W.™ is the common part of the both solutions corresponding to the circle motion in
the unbounded flow.
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In the coordinate system oxy: attached to the body CG. the pressure and flow potential
relevant to Phase 3 are represented as

171 -
= — V== +u . (2.1.7a)
P T oy 2[ ]

®=A,+aa, ln—r-—((B—Ve)r-*-ﬁi}sinﬁ—

a | r

2n n " | 2n+l 2n+l . 5
aY AL, ( ) +(£) cos2nb | p . | [ij +(5) sin@nFDOL -5 4 oy
o r 2n i \a r 2n+1

where r and @ are polar radius and angle in a cross-section plane shown in Fig. 2.1. On
the body surface, the potential and its derivatives are given by

®=A,-(2B-V,Jasin()+¢. ¢ = -2a2{ cos(2r19)+2 +lsm[(”n+1)8]}.
2n

W, = _100 =-(2B -V, )cos(8) +u,.
a 06

cll jg - 2;{‘4—2"-1 sin(2n6) - B._

%?‘(A +0) - ‘—{M—Q(B—Vl.)a}sine.

u = ,cos[(2n + 18}

2n—

a

ab

. (A, +¢), —a(2B-V,),sin(8) .

Substituting these relations into Eq. (2.1.6), we obtain the pressure on the body surface

[2B-v,)a*],

a

-

-2(B-V, )a,‘}sin 8+ 2Bu, cosé —f%i+

-

-

9 _2B*cos’ 8. (2.1.8)

_(Ao +¢), - (An + ¢)1 +
For Phase 1, the pressure p*(X.r.6,t) and potential ®*(X,r.0,r) are given by (2.1.8)

with A, =a, =® =0 and V, replaced by V,". Then, the pressure on the body surface is
determined by the formula "

: _‘/+2 ot R
p*=al2B-V") sin@+2Bu, cosH—“—l—z—f——(z), ~2B%, cos’ 8. (2.1.9)
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Using the expression for the tangential velocity on the body surface. in the first order
approximation we obtain the coefficients wy, in the expansions (1.2.12) or w, in the

relation (1.3.5a) of Part 1. They are expressed as

2B, (X.n)-V
w (X, =- "(70 =,

HYZn(X’t) = (_1)" A-Zn—l (th) ’
Wans (X’t) = (_l)nB—Zn—2(Xat) .

Similar relations give the coefficients w;, and w; .

2.2.2 Lift force and pitching moment calculations
The dimensional forms of the local, L (x,t), and total, L(¢), lift forces as well as the
pitching moment. M (¢), are expressed as

L,(x.0) = —a | psin@d; L(r) = [ L,(edx: M (1) = [ L, (x.)xdx
0 Xa Xy

Evaluating the pressure from Egs. (2.1.8) and (2.1.9) we obtain the following expressions
for the cross-sectional lift force (in the case of the body dropping inside the stream and in
" the cavity)

~-2(B-V,)aa, +2BA_,a- 2ai(A_2,,_, - A_z,,_3)B_3n_:} , (2.1.10a)

< n=1

- _m{a 2B -V,)

X

= +ZB+A*3—22(A,2,1_1—A_Zn_3)B_2n_2} - (2.1.10b)
n=1

Integrating these equations along the body axis we derive formulas for the lift force and
pitching moment. If the body is inside the cavity, then

L) = AN L), M (t)= _dw,® M), (2.1.11a)
dt dt
L= —2;er {B*A_3 - i(A_z,]_l ~ Ay, )B_,, ., la(x)dx, (2.1.11b)
X n=1 -
M (t)= —2/7"[[3*/{_3 - i(A_z,,_1 — AL, 3)B.., . la(x)xdx, (2.1.11¢c)
Xa n=l -
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X,

v, =228 -V, (el v, @] = zrj 2B (v =V (kP (0ady. 2.1.11d)

a

X

If the body drops inside the stream, then we obtain

L (1) =

dt dr

() = —ma (x,)[2B(x,.) =V, (x,.1)]+
+2r j [(B -V,)a, =BA,+) (A, —A4)Boss }a(’.\')dx. (2.1.12b)
X, n=1

MI(t) =V —m* (x,)x,[2B(x,.0) =V, (x,.1)]+

+2r j [(B -V,)a,—BA .+ i (A, —A,, :)B.,, - }a(’x)xdx. (2.1.12¢)
X n=}

Va”(t)=n_f[2B(x.t)—Vé,(x,t)]al(x)d_x. (2.1.12d)
W, (t)= n'f[2B(x,t )-Vt,(x,t)]az(x)xdx. (2.1.12¢)

‘The first terms of the expressions (2.1.11a) and (2.1.12a) for the force and moment are
due to the fluid inertia. The first terms of Eqgs. (2.1.12b) and (2.1.12c) are associated with
the pressure gradient in the stream along the body axis. The integral terms represent the
effect of the flow boundary which vanish at great distances from it.

Explicit dependencies of the force'and moment on the trajectory rarameters are found by
substituting into Egs (2:1.11)-(2.1.12) the coefficients R¢x.1), A, (x.f) and -
B_,, .(x.t) given by Egs. (2.1.4)-(2.1.6). For Phase 1, when the body drops in the cavity
from the top wall Y = H,, to the slip surface ¥ =0, we use the composite solution. Then,
we obtain -

Vi =aqV,-o.0. o) t)=0.V,-0..0. (2.1.13a)
o, =rxlg, +G, (O} e, =g, + G, ()}, = 2[g, + G, (1)] (2.1.13b)
g, = Iaz(x)dx:_‘g, = J.az(x)xdx; g. = Iaz(x)x:dx. (2.1.13¢)

G, =2_“Q12S1(q1)_qZSS(Q)kzdx’ G, :’)j:[chzsl(qi)_qzsﬁ(q)},z‘xdx’ (2_-1-13d)

a

Pys— (2.1.13¢)
Z(Ho -H)

G, =2“61551(ql)—qz'Ss(CIﬂffx:dx’ g, =
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0

B'A - Z(A—?.n—l s W )B—Zn—?. = _ZV:Z [%3 (1 + 2(11: + 95114)"' 43(1 - 2‘12 -3q" )]

n=]
(2.1.13f)

In Phase 3, when the body moves into the stream, we substitute Egs. (2.1.4). (2.1.5) into
Egs. (2.1.12¢) and express the functions V. (¢) and @, (t) as

Vi) =, (V, —0) — 00+ 0, @ (1) = @p(V, = @) = Q@+ oy . (2.1.14)

The coefficients of this equation are determined similar to the case of Eqgs. (2.1.13). If the
body drops from the wall, then

G, = IS (9)g’a’dx; G, —2IS (9)q°a’ xdx. G, —ZJ‘S (@)q’a’ X dx.

Xy

o, = ,.lz'_[S (q9)ga’adx o, = 77rIS (q)qa a xdx.

Xy Xy

(B-V.)a, - BA_ +Z o —AL )B, . =aiq(l+2g> +64" +194° )+

+2V g 1+ 29" +9¢* )+ V.a g* (2 + 64" + 204" +63¢° )+ O(¢”). (2.1.15)
¢ q X

If the body drops from the slip surface, then

Xy

— J-S (q)q a dx G =—’)J.S (q)q a Ad\' G :-—7‘[S (q)q a X d\

a, = —27[!34(q)qa3axdx, = —27rJ‘S4(q)qa2axxdx,

Xy Xy

(B-V, )a.: -BA,; + i(A-—Zn-l -A,,, )B—zn-: = _qaf (1 -2¢° +24* )"

n=1

—2V.a,q*(1-3¢% +2¢°) - 2¢°V.* (1-2¢> + 64" )+ 0(¢"). (2.1.16)

It is seen that the shear-layer effect is proportional to first power of g for body motion in
the stream: i.e., it is stronger than for the body motion inside the cavity. This is due to the
three-dimensional effect associated with the axial variation of the body shape (a, #0).

These expressions give the explicit dependencies of the lift force and pitching moment on
the trajectory parameters, CG speed V, (), angular speed @(t), angle of attack a(t), and

CG vertical coordinate Y, (r). They allow us to develop a fast numerical algorithm for
solving the trajectory equations.
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2.3 Unit problem for body crossing the slip surface (Phase 2)

We consider the flow induced by the body crossing the flat slip surface of zero potential.
In Phase 2. the slip surface Y =0 divides the body surface into three portions: typical
configurations are shown on Fig. 1.7 of Part 1. Depending on the angle of attack and the

submerging depth, the nose (X, < X < X,) or/and the base portion (X, < X <X,) is

located in the cavity or/and in the stream: the solutions for these portions are presented in
Section 2.2. The third portion (X, < X < X,) is partially submerged into the stream. The

flow schemes in the cross-section planes are shown in Figs. 1.2 and 1.¢ of Part 1. Thc
body surface intersects the slip surface at the line Z =zxc(X.r)=tasinf. where

B(X 1) = arccos(H / a) is the angle between the body and slip-surface cross-section
contours. The upper portion of the circle moves with the vertical speed V, (X.7) in the
fluid at rest; the normal velocity on its boundary is v, =V,"siné. The lower portion
moves with the vertical speed V, (X,r) in the stream so that the normal velocity on its

boundary is v, =a, +V, sin@. Thus, in each half plane separately we can formulate the
problem:

o Find the complex conjugate velocity W(X.{,r), which p.rovides a specified normal

velocity on the corresponding circular arc and has zero real part on ¥ =0.|Z| > c.

In Section 2.3.1 we solve analytically this problem using the conformal mapping method
[10] and the Keldysh-Sedov formula [8].

2.3.1 Solution of the flow equations

The solution is obtained from conformal mapping of the upper and lower flow regions.
The mapping of the stream region (in the lower half-plane of the complex variable
o =& +in) has the form

*

_ R'(0.X.1)+1 -4 o+b | ¢
=flo.X.1)=c————; n(X.1)= . R= bX.n=—.022.
¢ =f1 ) CR"(O',X,[)—] n(X.0) n o-b (£.1) n (2.212)
do_lo 'b',an ) exn =2 b ",f-n)D(‘f'”), (2.2.1b)
X’ 4¢°R K\ prgen  4°QNED)
B 'an _1 _ 'Qn '
)|, =¢ 5 Y&, =2 —sin, (2.2.1c)
D(,n)=Q" -2Q"cosm+1, Q" (£.b) = %' (2.2.1d)

In the o -plane, the submerged circle portion is transformed to the lower side of the
interval [-b,b]. The mapping { = f"(0,X,t) of the cavity flow region to the upper half
plane and the upper body portion to the upper side of the interval [-b",b"] is obtained by
replacing m =1-n by n in Egs. (2.2.1). In the transformed space, the explicit solution is
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found using Keldysh-Sedov formula [8]. After integration, the complex conjugate
velocity and potential in the stream region are represented as

o) 80‘} a. o0 tb* —s'ds
- ] :
Joi-b* ) inyo' - 9 2 (s=o)l(s)
v ——1 2iaa~No -b" ¢ w(s)ds
(o.X.t)=—iV,|{(0)-No~ =b |- ! = . (2.2.2b)
, [ ] 4 _‘[,\/b2 ~-s'(s-0)

Zo-l2)

Q"(s)+1 2

—— sy o

W(o,X.1) = —iVe[

y(s.n) = arctg[

The first terms of Egs. (2.2.2a), (2.2.2b) are due to the body motion and angle of attack.
They are a modification for the flow over a log given in Ref. [15] for slip line boundaries
instead of walls obtained by Dr. N. D. Malmuth [16] for the flow over a portion of a
circle (see Section 2.4). The second terms arise due to the body shape variation in the
streamwise direction. For n>1/2, thz flow velocities have a singularity of the type

B 5 l., -1 5 B l..,— ' . N .
(g - —c') oor (0" —b') ™ at the points where the free surface intersects the body.
Since this singularity is integrable, the lift force and pitching moment are not singular.

However. local asymptotic analysis near these points is needed for the higher order -
approximations.

On the body surface, n=-0, }§| < b, the flow potential and the tangential velocity are
expressed as

D(xAt)=D, +D, =V, Sin (Vl—?f —Msinnnj—
- n D(Ai.n)

_299x T 3ZE(hn). (2.2.3a)

T

D(A.n) 4n*Q"(A)
L M=ATAD 6 o2y + 07 (A))cos ), (2.2.3b)
/4
g I+A . £ y(s)ds
A=2 oM )=—2 E(hn)= [t (2.2.3¢)
b 1-2 1[\/1—52(5—7»)
1 n :
I(hn)=| Q' (s )ds (2.2.3d)

SD(s,n N1-s*(s=2) ’

where E(A.n)and I(A.n) are the principal values of the integrals and the potential
@, (x.A.1) and @,(x.A.r) are induced by the circle vertical motion and axial body radius
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variation. respectively. Using these functions and Eq. (2.1.6) we obtain the pressure on
the body surface

Yo 16n*Q°"(A)
Al-F)D*(An) i
A Q" (A)

’* 21 22 p- X
p(x.At) =@, _¢A+L:{1_/1 (1-4)p (/l.n)J_

An). (2.2.4)

a; 1+<1—/?.2)D2(/1.n)
o) ﬂ:Q:n(/i)

1%@:)} +Va,

Retaining only the first terms @, (x,4.1) in Egs. (2.2.2)-(2.2.3) and replacing V. and n
by V." and m =1-n respectively, we obtain the relations for the flow parameters in the

cavity region. Thus, the flow potential. tangential velocity and pressure on the upper body
portion (inside the cavity) are expressed as

o (x A=V S0 17 LI Cope— (2.2.50)
m D(A,m) _
w, (A =V, QA G e g MIZA DA | 5 5
D(A.m) 4m-Q"(A)

P (rAut) =~ + L1 al £ )1? (A | (2.2.5¢)
2 16m Q" (A4) .

As will be shown in Section 2.3.2 the singularities in Egs. (2.2.3)-(2.2.5)as n > 0.n — 1
and A — *1 are integrable. Using Eqs. (2.2.3b) and (2.2.5b) we can calculate the
coefficients w,, and w,, in Egs. (1.2.21) and (1.2.23). Because these formulas are rather

Un

lung we do not present them here.

'2.3.2 Lift force and pitching moment ,
The local lift force L (x,t) acting on a cross-section of the partially submerged body
portion, X, < X < X,, is determined as

L (xt)= ].p(x.z,t)d: - jp*(x. hdz =

1

o (x.A.1) . of "(x.A.1)
= (| pr AL 28D e r gL 22D g o
| P AnTm - p 2 T A
=______a(q>_cp )—ai)-rP( x1), (2.2.6a)
ot ox

P(x,t) = aV P(x,t)—aa.P,(x,t)+aaV,P.(x.t) — V::P+ (x,1) . (2.2.6b)

-1
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Using Egs. (2.2.1), (2.2.3a) we can express the mean values of potentials.
D(x.1) = B, (x,1)+ D, (x.1) and O (x.1), as

c 13 N )
El(x,t) = I@I(x,:,t)d: = jd)l(x.f,t)—@‘%f—’ﬁdé =

UY,,( 2)dz +J.\/b =&z dfil -V,a- {x(l—n)+—-sm”7m sin” 1 ln(n)}.

Using Eq. (B1.2) given in Appendix B. we obtain

Py 5 2 2 .2
(Dl(x’t)="Vya'|:”(1_”)+%sin27m_”( n 21)15“1 ﬂ?l}.
= . n-

n—=1:® (x.t)==2V.a’n(l-n)n >0:® (x,1) = —V,azzr(l - %j .
Similarly, we find the mean potential for the upper body portiori (within the cavity)

. b -
D (x.) = j@‘(x.ét)i—(g;i’gdf =

. 2 1 . 7(2m~ +1)sin” 7mn
==V a | 7(1-m)+—sin2mn - 7 ) )
2 6m*

-h

(2.2.7a)

m—1:®" (vt)~—”V ar(l-m)m—=0:®"(x,t) =~V a Jr[ ] (2.2.7b)

The second term of the inean potential is evaluated as

o'tl)(ré't)

u)_jcb(x-r)d-—jcp( 5:)%"5%5 I (& )Tl gg =
% 29 2
4a'a,(nsm'(fm) Q" ()1 ,(s, n)ds
=- : E\(n), Ey(n) =
T ) j] D(sW1-5°
Integral /,(s.n) is given by Egs. (B4.1) and (B4.2) presented i.. Appendix B
L =Jl’ orw-tn  x | 2nsinmQ(s) |
U ADWI-A(A-s) n| DGsWI-5
Thus, for the function E (n) we obtain the expression
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. T
E.(n)= Z[-[Io(n) - 27:112()z)smﬂ71] =

1
: {eo(n) —’—1[1 + (1 —n)(:tgmz]j .
n n-sin/m 2

-

The integral /,,(n) is reduced to a tabulated integral and expressed as (see Appendix B)

1

I5(n) =I

-1

Q" (s)ds 1+7r(1-n)érgmz
Dz(s)(l—sz) - 4rzsin37271 '

The function z,{n) has the form

1 n 1
e,(n) =nsin(zm)1 (n) = nsin(zm) Q" (s)ds = _[ pis)sds
0

IDGWI-sT 1=s
n—1: enzﬂ—:—lg, n—>0:e, =m2-21
8 12
This form is derived in Appendix C (see Egs. (C1.1)-(C1.5)) and shown in Fig. 2.2.

Accordingly, the mean value of the second potential and its asymptotic behavior can be
expressed as ’

®,(x,t) =—4a’a, S {e(,(n) —%1[1 +7(l- n)ctgim]} ,
n .

-

n—1:®,(x.1)= —-1(1 -nyr'aa,. n—0: 6:(.7(.0 ==2Q2In2-Yma, .

Thus. the mean potential on the wetted surface (outside the cavity) has the form

— N 2 2 a2
(h.(.\'-f)'—_-V,ﬂ’I:?Z'(l-—)Z)—lSinz,Diﬁ-”( & +13sm m'}_

2 6n"
—4020.\ SIn {eo(n) —%[1 +7(l- n)ctgmz]} , (2.2.8a)
n 2
n—1:0(x.1)=2V.an(l-n) -%(-1 -n)yraa,, (2.2.8b)
n—0:Dd(x1)= Vyazi{l+%—) —2(21n2—1)7ra2a.\. . (2.2.8¢)

The first nonlinear term of Eq. (2.2.6) is determined by the expression

1 a2 22 _
P = sinm|1- - ’1(1_}“,)1) L)
sn'd Q") of

"

=sin mz{] - L} I[2 - cos(mz)(Qn (s)+ Q‘”(s))ls'dsL .
8n” 7 )
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The latter integral is reduced to the tabulated integral and evaluated in Appendix B (see
Eq. (B3.2)). Then, the function F,(x,t) is expressed as

R(x.n)= Sinmz[l— ! “m(“"z”-)“fgml}

-~ (2.2.92)
n

rz—)l:P](x,t)z—-;—ﬂ'; n ——)O:R(x.t)z-—f—(%g). (2.2.9b)

The second nonlinear term of Eq. (2.2.6b) is transformed to the form

L= 22 2¢ - 2
Rzmm1+{j0lyﬂiwﬁwmiwﬂ=mmpﬁiaw}
- n? Q") o0& T

In Appendix C (see Egs. (C3.1)-(C.3.2)), the integral E,(n) is reduced to the form

1

Em = [2-(0"(s)+ 0™ (9))costa)]1* (s.n)ds =

~1

/S n .
—-;—+—-4— n-rctg(m) en(n)-—;[l+72'(1—n)ctg(7m)] —-2e,,(n) |,
2n n

P

where

L1 n .
e,(n) = n"‘j Q" (5)Q" () InQ(r)dsdt .
25 DEDEN1 -5 V1= (t - 5)

n—>1:em=%,n—>0:ew=5{21n2_1_”-”-

G—4m2ﬁ.

The function e, (n) is considered in Appendix C (see EQS. (C4.1)-C4.2)); its plot is
shown in Fig. 2.2. Now, the second nonlinear term is expressed as

e 2 . 3
lﬁnﬂ:Qﬁmm%+2”gm{q@ﬂ—%@+nﬂ—Mﬂymﬂ—4%&?ﬁ(22w®
n Z 1
T 3
;pe1:30»:;Jp+o:g«»=;n@-4m2y (2.2.10b)

The third nonlinear term of Eq. (2.2.6b) is
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) 1 D=2 z i
= Slnfzn J’/l(l—/{)D (A.m) 1(/1")_8::_‘12 — S E:(”)
T o dnm 0"(4) Js &

where the function E,(n) is expressed as (see Eqs. (B5.1)-(B5.3) of Appendix B)

E.(n) = I b-lorc+ 0 (cosmlt(amada = —an“”‘“'” ds _

-1 -1 D(S)\/l—-S:
N ]
- 2+ .,

=- .1 {4(1—mzctgﬂn)eﬂ(n)—2e3(_n)+(- m )E'COS'MIJ.

nsinsm 6

The integral
h {2 - [Q”(Z) + Q'"(/i)]cosmz}/ia’/i
14(s,n)=j s =

-1

= 4(1 - mictgm)+ s{m cos [Q" (s)—-Q07" (s)]— 2In Q(S)}

sinJm

is given by Eq. (B5.3) of Appendix B. The function

1 . 1
e,(n)=n sin(mz)j Q'(s)ln Q(s)ﬁsds = _“(252 -DInQO(s)— :’.S]M .
-1 D(S)\/l—s_ 0 ) V]‘S_
nolie,=202M Lo, =~”——-[1—-2n:].
- 12 - 2

is considered in Appendix C (see Egs. (C2.1)-(C2.3)). its plot is shown in Fig. 2.2.
Accordingly. the cross-nonlinear term is-

’) : al h
P.(n)=~- 1, {4[1—701ctg(7z71)]en(11)—2e2(n)+ 2w+l cos'(mz)}. (2.2.11a)
-
n—1:P, =-r. n—>0:1>,3=—5’3—[41n"2+2—-’;l). (2.2.11b)

Similar to Eqs. (2.2.9), the later term of Eq. (2.2.6b), which corresponds to the nonlinear
pressure component on the body surface inside the cavity, has the form

P (x,n)= sinmn{l i izm(l * 2'31- )(:tgmn } . (2.2.12a)

6m
m=—1:P (x,1) = —%7[, m—=0:P (x,1)= —@. (2.2.12b)
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Due to the first linear terms of Eq. (2.2.6a) the local lift force is singular at a small
submerging depth, when n — 1. Using the definition of n and Eq. (2.2.8b) we obtain

Ln—=1)~ 99, 09, 2Vya2ﬁ(@+?—’lj PMAUSTN) (2.2.13)
ot ox ot ox 7(l—n)

This result is consistent with the two-dimensional theory [11]. However. there is the
additional term, which is due to the axial variation of body shape. This singularity leads
to iinpulsive loads at the beginning of the body submergence process. Nevertheless. the

body momentum is continuous; it is proportional to the potential ®, ~1-n.

The foregoing relations allow us to evaluate the lift force and pitching moment acting on
the body in the transitional phase 3, when the body passes through the slip surface. In this
phase. the total lift force and pitching moment can be expressed as the superposition of
three terms, namely,

Ly=LW+L@)+L @), MO =M"@O)+M )+ M (1).

The terms L° and M~ correspond to integration of the local lift (2.2.6) over the interval
[x..x,]. We can give them in the forms "

(1) = - dVd Q) day; (t)

+ L), M*(1)=- +ME(t).

L= fP(x,t)dx +(1=x, )D(x, 1)+ x, D" (x,,1) - (1= x,, ) (xs,1) ~ x:,zﬁ' (x5.1).

ME@) = J.P(r r)xdx+jq>(r,r)dx+
+xl1- xl,)(b(xl,t)+,\1,d) (xl,t)} [(l—r Y (x01) + 1, @ (x,01)].

Vi) = j [@0n - (nldx, w2() = J’ [Bn-B (unhde.  (22.14)

X B!

The critical points x,(¢), x, () and their speeds are found from the equations

dy () _ Vo—ex 4, (2.2.15)

ox, xalx)=Y (1), x, (1) = dr atalx,)

Note that the form of Egs. (2.2.14) allows us to avoid the singularity (2.2.13) in the
critical points on the lowest body generator corresponding to n =1. On the other hand,

this singularity is integrable since 1 —n ~ . x, — x . Explicit dependencies of the lift force
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and moment on trajectory parameters can be obtained by substituting the derived above
expressions into Egs. (2.2.14).

The lift force L (1) is determined by integrating the local lift force (2.2.10b) over the
body portion totally inside the cavity. This term is similar to that given by Egs. (2.1.11)
plus the additional sum accounting for the motion of the critical points. Fig. 1.7 of Part 1
shows possible locations of the body with respect to the slip surface and the integration
intervals. Relevant caces are

a) Interval x,(1) € x < x,, if the body nose ordinate Y, (1) >0 (see Fig. 1.7a)

b) Interval x,(t) < x< x,,if ¥,(r) <0 and the lowest body-base ordinate Y, (1) > 0 (Fig.
1.7b)

¢) Nose interval (x,(t) € x € x,) and the base interval (x,(f) < x<x,). if ¥, (z)>0 and
Y, (t)>0 (Fig. 1.7¢).

In the cases shown in Figs. 1.7d and 1.7f, we get L' = M~ =0 because the body nose and
tail are in the stream.

The lift force L™ (¢) acts on the body portion with its cross-sections being totally in the

external stream. Its expression is similar to Eqgs. (2.1.12) plus additional terms due to the
critical point motion. The totally submerged body part can be located in:

d) Interval X.(N<X <X,.if Y, (1)>0 and Y, (1) <O (see Fig.1.7a)

el

e) Interval X (1)< X <X,.if Y, (1) <0 (see Fig. 1.7b)

f) Intervals X, (N<A <X, and X, ()< X <X,, if Y,(1)<0 and Y, (1)<0- (see
Fig.1.7d)

If the body nose and base are inside the cavity (see Fig. 1.7c) or the body base is partially
submerged into external stream (see Fig. 1.7e). thcn Y,(t)<0 and Y, (1)>0. For this

en

case.weget L =M. =0.

Extracting the inertia term, we express the total lift force and pitching moment acting on
the body in Phase 2 as

dv

== Lo, may =40
dt t

+ M, (1) (2.2.16a)
LO=LO+LO+L®, M) =M 0O)+M 0)+M (1), (2.2.16b)
V)=V O)+Vi+V (1), o () =w, )+ (H)+a,(1).  (2.2.16c)

This form is convenient for numerical solution of the trajectory equations.
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2.4 Cross-checks of the theory

Malmuth [16] for a circular cylinder submerging into a freestream with a vertical velocity
U . The problem is similar to the problem of the flow over the lens-shaped body
considered by Milne Thompson [15] or equivalently, the flow over a log or bump in a
solid wall. In contrast, Malmuth considered the same circular segment crossing an
infinite span slip line/shear layer in [16]. The former problem is relevant to store
separation from a flat wall or portion of a wing - fuselage, where if a cavity is involved.
the body lateral dimension is of order of the cavity span. The latter applies to store
separation from a cavity bridged by a shea layer in which is the cavity span is large
compared to the body lateral dimension. This problem is our focus in this section. Its
solution is the complex potential

i*.zULC,T;§=Z+iY=iccot£; Sl =e" . (23.1)
n’sin(¢” n') 2 {-c

n’(;’) =
In Egs. (2.3.1). {’ is complex variable in the bipolar coordinate plane [15]. the Bod_v '

corresponding to Eq. (2.3.1) is expressed as

N(o)=iV Vo' -b";0=b

) .
Sk+1=ibcotk—é’::k=lls=£“t’c" 2.32)
51 2 no {-c

The parameters of Egs. (2.3.1) and (2.3.2) are related by formulas
‘ ’ Y/ ﬂ .
V.=V —-a-ax=Us;n"=2n=2 ;c=asinf, (2.3.3)
. 74 ,

Substituting the expression for o from the second equation of (2.3.2) to the first formula
for the complex potential we obtain

, — bV, 2V, o
M) = bV, 1+ cot* (k¢7/2) = D" n,sin‘(g, = ). (234)

Thus. we prove that solutions (2.3.1) and (2.3.2) are identical. Note that the solution

form. Because its integral representation is simpler in the o -plane we use this plane for
calculations of the lift force.

Also note that in the case considered. the classical form of Blasius theorem is strictly not
applicable for calculations of the lift force since the solutions above and below the slip
surface differ. They are found separately in the relevant upper and lower half-planes. The
lift force acting on the upper body portion (inside the cavity) is calculated separately from
the lift force acting on the lower portion (outside the cavity). As a result, the expression
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for the lift force includes additional terms. which are not included in the classical form of
the Blasius theorem. However. generalized forms of this theorem exist such as those
given in Milne Thompson [15] that can be further extended to handle the slip line
boundaries in our inner problems. This leads to contour integrals that can be evaluated by
residue calculus in the upper and lower half planes.

For “external carriage” and separation from a rigid plate. the part of solution proportional
to a,(x) can be expressed in an explicit analytical form that can be exploited for cross

checking of our theoretical model. This solution was used in Ref. {24 for calculations ¢{
the interaction force between two slender bodies. of revolution ar zero incidence in &
uniform stream. In this case, the flow is modeled by two sources located at the points

$ =ic =+iH\1- (a/H) . and the complex potential is expressed as

) =aa, [n(¢ = ic)+1n(¢ +ic)]. (2.3.5)

Expanding the square roots of this expression to the series, we obtain the relation (2.3.5)
in the form of series identical to Eq. (2.1.2). We are not aware of an analytical solution in
the presence of a slip surface such as this in the literature.

2.5Discussion and conclusions

In this part, we obtain analytical solutions of dominant approximation problems relevant
to separation of a thin body of revolution from a rectangular cavity into a uniform stream.
In our approximation. the slip-surface displacement is neglected: i.e.. the slip surface is
presented as a plane of zero potential.  For Phases 1 and 3. we use the multipole
expansion method that allows us to derive compact expressions for the pressure on the
body surface and the cross-sectional lift force. For Phase 2. the solution is obtained by
conformal mapping in the form of a Cauchy type integral that is partially integrated. The
local lift force is also represented in explicit form by introducing nev-. special functions
which are investigated analytically and numerically. )

In Phase 1 (body moves inside the cavity from the top wall to the slip surface). the flow
potential and the pressure are expressed by the formulas, which are similar to the known
relations derived for two-dimensional flow over a cylinder. In this phase, the full solution
is found as a sum of two unit solutions that separately account for the top wall and slip
surface effects separately. This approach exploits the fact that the boundary influence
decreases rapidly (as the inverse square) with distance.

As contrasted to the two-dimensional problem. solutions for Phases 2 and 3 include new
terms relevant to the body shape variation in the axial direction. These terms lead to a
qualitatively new behavior of the slip surface and rigid wall effects. For example, in
Phase 3 the slip-surface effect is stronger than in Phase 1 because the influence of this
boundary decreases only as the inverse distance to the body.

In Phase 2, the flow velocities of the first order approximation are singular at the line of
intersection between the slip surface and the body surface. However, these singularities
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are integrable. This allows us to calculate the lift force and pitching moment without a
detailed analysis of the singular regions. Nevertheless, such an analysis is needed to treat
the higher-order approximations. This singularity resembles body nose and wing leading
edge stagnation singularities. It does not cause any difficulty in integrating the trajectory
equations since the body momentum is a continuous function of the submerging depth
that is proportional to the mean potential on the wetted surface.

The results provided here support the development of a computationally non-intense
algorithm predicting the body trajectory through all separation phases.
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2.6lllustrations

Y
(=Z+Y A-V,, for wall

-H a(x)

yV,, for slip surface

Slip surface or wall y Z
r .
HE— 2
/a(x)
VVe
Fig. 2.1 Cross-section scheme for the reflection method for Phases 1 and 3.
0.8F e,(n)
e,(n)
e,,(N)
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O
c
R=)
E 0,4 ™
©
@
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02t
0,0 A ] . L . 1\7\ .
0,0 0,2 0,4 0,6 0,8 1,0

Dimensionless angle, n = 1-p/n

Fig. 2.2 Plots of special functions.
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Appendix B. Analytical evaluation of improper integrals
We analyze the integral

, (n)zj[QZ"(s)ql;ds 7l 1)(e ~le'dr
L DW=t L D(i+e)

'—-.

(Bl.1a)
oolts_ e o€iol g Adx o e
-5 e +1 (el.r +1)- (ez" " 1)_
(B1.1b)
D(x)=e*™ =2 cos(rm)+1.
| (Bl.1c)

Let’s consider the following integral along the closed rectangular contour C, in the
complex plane z = x+iv (see Fig. B1)

jj )d’=lj[f(A+l\) f(- 4+1\)]d\+_”f(r—1”) j(r+i”)]dr—')7mesf(0)

.~._("'+ Xe +)e
o= —IIXe _117

The integrand has the third order pole at = =0 with the residue

2n” +1
12n

resf (0) =

The contour is bounded by the horizontal lines. y=%%. and vertical lines

x=1A. A—> . The integrals along the vertical lines vanish as A—> oo . Along the
horizontal lines. we have

ie* (ez" - 1)(6"’"’62"‘ + 1)
(ez" + 1)2 (e‘""e:” - 1)

Flemin e flerin =l e 1)
) (e +1) D(x)

ie"( - 1)(ei’"’e2”+1)
(e + 1} (e”me"" —1) ‘

flx=if)= flx+i%)=

Thus the function /,,(n) is expressed as
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2" +1
6n

1,(n)= .

(B1.2)

Substituting (B1.1b) we analyze the integral

o= e e T
D’ (U\l —T) D (x) 0 e’“ +e™ +2cos( fan)) 4n [c-/z(r)-i-cos(mn)]:

1 I: sh(t) | +cos(m1)j dt } (B2.1)

- 4nsin® (/m) | ch(t)+ cos(/‘mz)l0 » ch(t)+cos(/mmn)

+
m=1-n, I=m’—ln(1 Sj.

-5

As shown in Ref. [21].

r dt 2 [ j [ j ) 2 (mn) (l=m
I = — arctg| tg th = arctg| tg =— — .
° ch(t)+cos(zom)  sin(mn) 2 2 o sm(mz) 2 sin(/m) _

Then the function 1, (n) is expressed as

1+7r(1—n)ctg(7m)
4nsin” ()

I.(n)=
Consider the integral ¢

I,(n)= I[Q"(s) + Q‘"(s)]s:dv =

~1
1

= H(1+s)"(1-s)“" +(1+9)"A=5)" =1+ (1=5)"~(1+5)" (1~ ‘*"]ds. (B3.1)

-1

Using the table of integrals [22] and accounting for properties of the Euler gamma-
function. we obtain

IO o
I, (n) =3n(1+2n)T ()T (1 =n) =_4}-7m(.1+—_n). (B3.2)
; 3sin(/m)
Substituting (B1.1b) we analyze the Cauchy type integral
56 - ROCKWELL

~J SCIENTIFIC



71153.FTR

PR a0 e B S 7

- - . (B4.1)
DW= A (A-5) 1=53 D)™ —0(s)]

Consider the following integral along the closed contour C, in the complex plane
= x+Iiy (see Fig.B2)

[ =§f(z)dz = ij[f(A+ iv)— f(—A+iv)ldv+ ][f(x —iE)— f(x+i%)|de+
fa - -4

0 -
+[ fzy +re®yreidp+ j f(z +re®)reido = 2niresf (0) .
r 0

('™ + e’

1= = D rom)

The contour is similar to that shown in Fig.B1. while the singular points

~1

MmO +ir Q) -ir
- 2 T 2 )

~ r

~9

are bypassed along the half-circles of radii » — 0. The integrand has a simple pole at the
- point ;=0 with the residue

-5
2n

<

resf (0) =

For the integrals along the half-circles. we have

0" (s)e™ +1 o 0" (s)e™™ +1
2ire’® \JO(s)|0" (9)e™ 1]’ JE ety == 2ire’” JO()[0" (s)e ™™ —1]
ﬂ[Q"(s)e"’" + 1]
2J05) 0" (s)e™ -1}’
70" (s)e™ +1]
2.J05) 0" (s)e™™ —1]
2imQ" (s)sinm T

D(s,m){O(s)

Integrals along the vertical contour lines vanish as A — . Along the horizontal contour
lines (except of the end-points Z, ,) we obtain

flz +re®)=

'ff(:l +re?)reidp = -

.

0
If(:z +re®)reide =

Jf(':: +re?)reidp+ If(:l +re®)reide =
bid 0
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N ie (e +1) eiEy ie"(e e +1)
f( X I —(6 Y ——— l)le Q(‘S)J- f(-\ +1 :)— (g:mg”m _IXg _Q(S)J.
2ie* (e*'“ —1)
D(x. n)l —Q(S)J

fa=iH)—-fx+i%)=

Then. the function /{(s.n) is expressed in the form

(B4.2)

_2n sin(za) Q" (s)
DGsW1-5° |

We consider a principal value of the Cauchy-type integral

Q (D+Q0™ (ﬂ)]cos(mz)}

I,
(s,n) = J- 1o,
Q( Y+ Q™" (A)|cos(m)dA+s —10"(4 ._n. : .(B5.D)
J~ Pl /1] }1'/1 I{ [Q (/1)+?1 (2)]005(7271)}7'/1
) -8
Using the table of integrals [22] and Eq. (B3.2). we get
1 n n -n
j 0 (’1):” j a+4) /;1;’1) di =Sinzrml)[I—Q"(S)cos('rm)]. (B5.2a)
-1 .
j 9 _ _1ngs). (B5.2b)
S A-s
V[ An —n .
j[Q (’1);? : (i)]d'l = —/rctg(mf)[Q" (s)-0™ (9)] (B5.2¢)
-1 e
1
[lory+owlia=—2_ (B5.2d)
’ sin(7m)

Then. the function /,(s,n) is represented as

1,(5.n) = 4]l - mctg ()] + s{— 21n O(s) + FEO ) [y _ o (s)]}. (B5.3)
sin(/m)
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iy
integration contour C

/ ix/2

AN

ixf2 7

Fig.B1 Integration contour C, .

iy
integration contour C
/ ix/2 z
/A !
¢ S
A Al x
A 4 N
N 70
-ix/2 7 Zy

Fig.B2 Integration contour C,,
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Appendix C. Analytical and numerical investigations of integrals
Consider the integral

10(1)“.[ Q"(s)ds 1 j&"’(”«/—_d_ 0 N)'

D(s\W1-s° 2nsinm nsinm
Integrating by parts we obtain
5)sds Q" (s)-1 m
en(n)—_[l://()_s l//(s)-—arctg[Q 91 rg(—z—J:l (CL.D

Using the table of integrals [22] we get the following asymptotic expression
1 2
n—1: 1,Q1) =%Ix/l—szd =—g—, e, =£——(—l—§’—” =1.2337(1-n). (Cl1.2)
-1 .
Expanding the integrand to Taylor series versus » we find in the limit n — 0

A 1 2
I,(n)=n |:lo+12[_ﬂ' I :{\/i___;_ noi,+ T (..m(, 1).

The integral i, is reduced to the table integral [22] using the substitution

x=1ln—S =1InQ(s) .
.

" 7
i —llmn I (n)—j ds -1 I ax _In2 (C1.3)

Jr+mioNi-s 71 (+x° )éh? ”

Then. we obtain the asymptotic expression
nrm . .

n—0: e,(n)=In2- +0(n")=0.693-0.8225n". (Cl14)

To calculate the integral e,(n) in the range 0 <n <1. we remove the singularity at the
upper integration limit using the substitution

l—s=x, Q(x=22 S, D) =x" +2-x )" =22 (2= x* ) cosm. .(CL.5)
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The integral is transformed into the form

e,(n)= 2j‘ ______l//(x)(l = xj )a’x s W(x)= arctgl:———(z — VY - ctg(ﬂﬂ
0

2-x (2—x')" +x*"

and is calculated by the trapezoidal rule.

Consider the integral

e,(n) =nsinml, (’1)"2I¢(S)IHQ(s)sds-js f1-§2 InQ(s )é’w(s n)

= —j l//(s,n); [sxll —s InQ(s)ids = es(n)—2e,(n), (C2.1a)
) S

l B
e,(n) =j.l‘2s2 —1>,Ll(s,n)1n O(s) (C2.1b)

1-5

In the limit n — 1, we obtain integrating by parts

L 2
[3(1)23‘_[\/1—52 an(s)sds=ﬁ{-—(l—5:)':
-1

7 (1=n)
(=227
e:(1) 12

1 1

+2[I-s'ds =
-1 12
~0.8225(1-n). (C2.2)

At n — 0. we find

s rl: 2 V4 A 7[2
Ly=limn I, (n)=1i., +— 12700, =i, |=—|1+2n" | — =1 [].
) =limn* Ly n) = iy + 7Py i 12{ [12 ﬂ

The integral i,, is evaluated similar to the case of /,,(n) (seé Eq. Al.1), and the integral
i,, 1s integrated by parts

jlngff.dz_ﬁw(s)y rof £

InQ(s)sds __41 x(e' —l)e‘ dx /4

5 zr +1n Q(s)}\ll—s 1(JZ':+4X2X€2"+1)2 12

'___.._-

Then. we obtain
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A~

n—0: e(n) =7r[1 —Eg;ji:(n) = %(1-—2;1:)'—: 0.8225(1 ~2%). (C2.3)

—

To calculate the integral e,(n) over the segment 0 <n <1 we use the substitution (C1.5).
Then. integrating by parts we reduce this integral to the form

e (n)= j{[ln”—x ”x ” -x° )an(x)]u/(\ n)-

_li My (x,n) — dnsinm (”—x:) szn[}n( )= ]} ax (C2.3)

D,(x) 2-x7 NP

The integral (C2.3) is calculated numerically using the trapezoidal rule.

Consider the integral
1 .
E )= [ fAmEAmda: f(An)=[-(Q"(D)+0™(D)eosta)]. (C3.1)
-1 : .

where /(s.n) is expressed in the form of successive integral

—_————

IF(A.n) = “MJ - '1"¢(.<f1.n)a's1 .1[¢§(,s2.n)a's2 dsm = _Q_”_(fld_v_
oS4 ! -4 D(s)W1-5"

Then. the integral E, (n) is transformed into the triple integral. Using the Poincare-
Bertrand rule [13] we change the integration sequence and express (C2.1) in the form

L Loy : '
(AmdA + §(s, n)ds,
El(n)=:.;¢(sz,ll)dszi{f : il) J'¢(V1 —’-lﬂ S, _

1 1
= jq)(sz,n)ds:J.(b(sl,n)E“(s,.sz,n)dsl +7°E,(n),
-1 -1

£ 0™ (s) b

1
E,(n)= :|'1¢3(5, n)f(s.n)ds = Y Dis.my 2 - [Q" (s)+Q0™ (s)]cos(fm)}is ,

1
E, (s,,5,.n)= 5 _l_s] :“1{1—153 - /1151 }[2—(Q”(ﬂ)+Q‘"(Z))cosmz]dl.

Using Eqgs. (B3.2) and (B5.2) of Appendix B we find
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E (s,5,,n)= ;—1—5_{2[1n 0(s;)~In Q(S:)]+
2 TS

IZ'COS:(IDI)[

: Q"(sl)—Q'"(sl)—Q"(s:)+Q'"(sg)]}.
sin(/m)

Function E, (n) is calculated using Eqs. (B2.1)-(B2.2) and expressed in the form
1- cos(m)ch(t)]dt _

[ch(t) - cos(zm)]: -

1. ., 7 dt P dt 1
=—<sin"(/m) — — cos(/m =—.
2n { ( }: [ch(t) - cos(rm) [’ ( )1‘ ch(t) - COS(IDI)} 2n

1 7]
E,(n)=—
L (n) 2n£

Then, the integral E, (n) is

2 13 1 Vi 2 1
E,(n) =£—-—-4J'¢(s)ds_[ ¢t inQ(n)dt 27 cos” (/m) I{Z)(S)Il(s,rz)ds:
2n . r—s

sin(zm) 7|
2 o) 2
=T 4B+ T ),
2n sin(7m) -

Using Egs. (B4.2). (C1.1) and (B2.2), we find

E.(n)= Z[Io(n) ~2nsin(/m)1 |, (n)]= il {eﬂ(n) —%[1+7r(1 ——n)ctg(mz)]}‘
n

n* sin(zm)

Then. we obtain

n

e

E (n)= % —4E ,(n)+ 2L2 ctgz(ml){eo(n) - ;—l [1 +7(l—- n)ctg(zm)]} . (C3.2)

Now. we analyze the double integral

e (n) = n*E, (m) = —n" ' Q"()nQ(s)ds ¢ Q" (InQ()dr CA1)
Y D(s.n)\/—l——? | D(t,u)\/i_:?(t—s)
Its asymptotic value at n =1 is
e, (1) =—% jln oW1-1 d,j_l\/—s—_j{_jdi =% jln O(W1-1tdt.
5 2 4
Integrating by parts we obtain
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1 1 2
e =2 | BN ZFrar =2 [Vi-Far=""=02056. (C42)
Y 16d -t 247 48

At n = 0 we have

1

o L
e,,(0) = I I, (Ndt —z(io+2 .1)=21n- 1
-1[7r +In’ Q(r)]\/l_,- 2

= 0.09657.

The first integral is given by Eq. (C1.3): the second integral is evaluated in a similarl way

1 ]‘3 dx 1
2° L1+ 57y 4m

!__..,...

b l—t )[an H+x ]2

In the limit n — 0, the integral (C4.1) is reduced to the form

i,(s)ds Jl' th(r)dv

—s Ao+ Nios

n'7r‘
=¢,,(0)+ B {8¢,,(0)-1}=

1(1(’1)_61()(O)+ {4” €,,(0)— _[

|-

{71 —1+"g’ (4m2-3)}=o.09657-0.09352n:. (C4.3)

’ The integrals i,,(f) and i,;(¢)are calculated similar to the case of I,(s.n) (see Egs. A4 1-
A4 2)
1
,'14(;):'[ : ,an(s)dS : _7 _ |
oM =5 (s-1) 2| Vi-rfho*n+7]
InQ(s)yds -

15(’)_ .
l '[\/l—s (s—~1) \ﬁ—tz

2

For 0 < n <1, the function e,,(n) is evaluated numerically using the substitutions

. “ )
x=(1_s)1n+l)/,.T:(l_[)n.v: .kzl.
n+1 no

With these variables the above integrals are transformed into the proper integral
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em(ll) = 2n3j‘ \/;(2— Tk y'_l- In Q(T)Irﬁ(z_ Tkr“% In Q(T) —.2(1
D(wn) | Dz

0
o Z'%va%(Z "-"VT—% \/;(2— z'ky'_l:xv% dx
ke = V;[ D(x,n) D,z,n) (- fo-r* -x)
D (x.r) = "+ (2 -x¥ f” - Zx"V(Z - x"):" cos(/m),

D (rmy=(2-7*)" +7° -21(2- 7] cos(m).

~ " E (z.x )}dr. (C4.4)

The integral e,,(n) is calculated numerically using the trapezoidal rule.

Consider the integral

1 1
E,(n) = [ f(A.mI(A,n)AdA= foc.mi1,¢myar. (C5.1)
-1 . -1

The inner integral /,(n) is given by Eq. (B5.3). The function £,(n) is expressed as

2(
E.(n) = 4]l — metg (mn)]l, (n) = 2L, () + 7580 1 () =
- - sin(/m)

= ———1—1:4[1 - mwtg(mz)]eo (n)—2e,(n)+

(2n° +1)
= -
nsin(sm) 6

: COS:(ﬂn)}. (C5.2)

Its asymptotic behavior is

z x(r '
1: F, = , E,(0O)=——] ——-4In2-2. C53
n— ,(n) 2a-n ,(0) 3( n J ( )
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Part 3. Dynamics of Slender Bodies Separating from Rectangular
Cavities

3.1 Introduction and Problem Formulation

Modeling of store separation from a cavity. even into a subsonic external stream. is very
difficult. It is the subject of intensive apphcatxon of current CFD. The motivation of the
work described Lerein is the need for quick, lcss computer-intense methods of certifying
and assessing tkz physics of store separation-from cavities. Similar rapid evaluation
methods are needed for stage and cargo separations. A variety of computational methods
are being developed. As contrasted to pure computational modeling. we discuss in this
chapter a combined asymptotic and numerical approach based on the theoretical results
provided in Parts 1 and 2. The analysis in this chapter neglects slip-surface displacement.
A more general case is analyzed in Part 1, where the slip surface is treated as a free
boundary. This leads to nonlinear boundary conditions on the slip surface. For the
practically important case of small deflections, the boundary conditions can be linearized
on the length scale of the cavity. Local flow scales show larger deflections in which an
iterative scheme needs to be used to obtain a solution The non-deflected slip surface
corresponds to the initial iterate in such a small-perturbation scheme.

In this chapter. we couple the results for the body aerodynamics. obtained in Parts 1 and-
2. with rigid-body dynamics and analyze two degree-of-freedom (2-DOF) vertical and
pitching motions induced by aerodynamic and gravity forces during the separation .
process. The coordinate systems XYZ (attached to the cavity). (wind axes) oxyz

(attached to the body center of gravity). (body axes) are shown in Fig. 3.1. The oxy -
frame is inclined with respect to XY - frame at an angle of attack «(z). This frame can
rotate around the oz -axis with the angular speed @(t)=da/dr. In.the wind axes. the
center of gravity (CG) coordinates are X, =Z_ =0 and Y=Y.(r). We denote
H(X.t)=Y - «X as the vertical coordinatz oi the body ‘axis. Using slender body theory
[6] scaling. we introduce the nondimensional variables

LrE— = (3.1)

x=2%
)

where the body half thickness ratio. J, is treated as a small parameter. Crossflow
velocities and coordinates are normalized by 8U_ and a, respectively. The streamwise

and axial coordinates are scaled using [, and the pressure perturbation, p . is normalized

with respect to p_U28%,’.
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As shown in Ref. [17], the equations for vertical and pitching body motions can be
expressed in the form

-V dlw+c
dlv, +¢v,) - L —c, . dY, =V (), M.—_CMM(;), 4% _ ). (3.22)
dt o dt

V()= [ [0(x.6.00x)dbdx, () = [ [©(x.8.0a(x)xdax. (3.2b)
X, 0 x, 0
T 732 752

S LS R S 2y (3.2¢)

*oUL m I

where x, and x, are coordinates of the body nose and base respectively. m and / are

the body mass and moment of inertia respectively and @ is the near field body (inner)
flow potential. We consider the initial-value problem for Egs. (3.2a) assuming that the
CG position, angle of attack and body velocity are prescribed at the initial time 1 =0 as

V)=V, w0)=w, Y.0)=Y, a0=a,. (3.24)

Note that dV, /dt and dw,/dt in (3.2a) represent the time derivative of the crossflow
potential (incompressible harmonic inner solution) needed for the pressure in the
crossflow plane from the unsteady Bernoulli equation. The terms L, and M, are integrals

involving the square of the crossflow speed that also appear in the Bernoulli law for the
pressure in the crossflow inner problem. This speed is the square of the crossflow
gradient of @.

In Section 3.2. analytical solutions of the problem (3.2a)-(3.2d) for Phase 1 are obtained
for small lift forces compared to the weight. In Section 3.3. the trajectory equations are
analyzed for Phase 3 and are transformed into two decoupled ordinary differential
equations with constant coefficients. A stability analysis of their solutions is performed.

and behaviors of the pitch angle a(t) and the vertical coordinate Y. (t) are discussed for

typical cases. In Section 3.4, the predictions based on the theoretical model for all three
phases (in Egs. (3.2)) (without the stability linearization) is compared to experimental
data of Ref. [18]. Section 3.4 concludes with some parametric trajectory studies. In
Section 3.5. conclusions are discussed.

3.2 Phase 1: body inside cavity

The lift force. L(r), and the pitching moment, M (¢), acting on the body moving ins.de
the cavity are derived in Ref. [17]. They are expressed as integrals along the body axis.
with the integrands expressed as power series in the parameters ¢,(x,r) =0.5a/ (H,-H)

and ¢ =0.5a/H . where H, is cavity depth shown in Figs 3.1a and 3.1b. If the body is
far from the top cavity wall and the slip surface. then ¢, and g can be treated as small
parameters. Neglecting terms of the order of O(g”, ¢;) the functions V. () and (1)
are ‘
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Vo =a, V. -a.0ar). 0,0 =a,(0V.(1)— o, (). (3.3a)
o, (h=xlg, +G,(D). a,()=xlg +G®]. a.()=-7[g,+GC, (1]. (3.3b)
g, = Iczz(x)d.r, g, = jaz(x)xdx, g.= ja:(x),\'zdx. (3.30)

G,(t) = 2'“(1I (x.1) =57 (. t)]a: (x)dx. (3.3d)

G, (1) = 2]£[qf(x,t) - qz(x,t)]a:(x)xdx. G.(1)= 2]5[(11: (x.t)- q:(x.r)]a: (x)x"dx.(3.3e)

X X5

This transformation helps to express the dynamic equations in a form convenient for
further discussion of the body trajectory features. Using Eqgs. (3.3a)-(3.3€) the trajectory a
first integral of Egs. (3.2a) is

dYr bﬂ(t) Al(t)
=——2Zc t+

dt A P AW
da_by® 80

d A 0 A

V, +c,mw,b, (1), . (3.42)

w, +c¢,7V,b.(1). ‘ (3.4b)

where
b (t)y=1+c,o, (1), b.(t)y=co,(). by(t)=c,0, ). bn()=1-c,a.,(1).
A=b (Db, (1) +b, (Db, (1)
A, = b, (0)b,, (1) + b, (Db, (0). A, =b (b, (0)+ b, (Db, (1).

b, E%{(l—"mﬂ:g: )[Gl(r)_Gl(O)]+
+¢,mg,[Ga(1)= G, (0)|+¢,mG,(0)G,(1)=G,(1)G,(0)]}.

b, =—{1+¢,m8.)[G,(0) - G, (O]+ ¢, 722, [G, (1) = G, ()] + ¢,7[G, (0)G, (1) - G, ()G, (D]}

1
A
The first term of Egs. (3.4a)-(3.4b) models the gravity effect, the second comes from the
initial conditions, and the third arises from the boundary and initial conditions. The
angular acceleration is proportional to the product of the pitching moment coefficient ¢, ,
the gravity force coefficient ¢, and the value g, +G () characterizing the displacement

of the center of pressure from the CG. Equations (3.4) can be solved numerically using,
for example, the Runge-Kutta method. Note that the slip surface effect and the top wall
effect rapidly decrease as the body moves away from these boundaries. Neglecting terms

of the order of O(g” +gq;), which are associated with the boundary effects. the solution
of Egs. (3.4) can be expressed in the explicit analytical form
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l—ﬂ'C b a
——"'g'—cgt'. at) =a, + ot +

==0 0

A, =(1+C17Zg())(l—cm”g:)+("1"m”:g1:' (3.5b)

ﬂg,c'mcg [2

Y(t)y=Y,+V,t— (3.5a)

Equations (3.5) show that the CG coordinate, Y (t), and the pitch angle. a(r). are
parabolic functions of time when the body moves in an unbounded fluid at rest.

Analytical solutions of Egs. (3.4) can also be obtained when the lift and moment are
small compared to the body weight and pitch inertia. This is typical for many practical
cases because the coefficients ¢, and ¢, are proportional to the air density to body
density ratio, p_/p, <<1. For a body of uniform density, non-dimensional “ballistic
parameters” may be defined to'define a “weak” aerodynamic force case. These are

_ P . P- ¢ _ &>
- » Oy -
ph”g()

(3.6)

C, = ’ .
pb”g 2 ¢ m g()

Non-dimensional groupings such as these to our knowledge have not been used to
evaluate the accuracy of large-scale computer (CFD) store separation sinmulations.
Despite the difficulty associated with gridding, complex geometry and turbulence
modeling as well as other uncertainties. surprisingly accurate correlations with flight test
and wind tunnel trajectories can in regions of parameter space be obtained with
computationally intense numerics. In some cases, pseudo-steady Euler solutions provide
surprisingly good answers even when viscous. unsteady and high angle- of-attack
vortical and complex shock interactions effects are present. We conjecture that in many
of these situations the aerodynamic forces are relatively negligible compared to the rigid
bedy inertial forces. The . ballistic parameters provide a means of cataloging and
correlating the various scenarios and determining when rougher and approximate
simulations as well as coarse grid CFD will have a good chance of giving a fast answer
of useful engineering accuracy with low cost and overhead. In fact, it is reasonable to
develop a new systematic (asymptotic) approximation scheme for “heavy” bodies in units
of non-dimensional parameters such as those in (3.6). This important possible thrust of
our research would use the vacuum rigid body solution as the dominant approximation of
the aerodynamic coupled trajectory problem. The influence of the aerodvnamics would
be a linearized second order approximation with simplified mathematics. The discussion
that follows is relevant to this idea. '

For the experimental conditions in [18], the coefficients ¢, and ¢, as well as other basic

parameters are shown in Tables 1 and 2. where the gravity force coefficient is calculated
at the freestream speed U_=77.1 m/s. :

If terms linear in ¢, and c,, are retained in Eqgs. (3.4), the approximate linear and angular
trajectories are
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Y =Y, 4Vt —05(1—7,g,)c " a=0a,+a0+0.578,c,c1°. (3.7)

m- e

The CG coordinate and the pitch angle are parabolic functions of time. In the first-order
approximation, the vertical motion corresponds to a pure gravity drop. The lift force gives
a small negative correction of the CG acceleration similar to the case of a plunging
cylinder in the presence of a shear layer considered in Ref. [16]. The analytical
expressions (3.7) below are consistent with trends of numerical solutions and
experimental data.  ~

Table 1. Physical parameters of models [18]
Model o X go g £-

e

BIN1 .31250E-01 .51333E+00 .86206E+00 .68807E-01 .66707E-01
B4N2 31250E-01 .49500E+00 .86206E+00 .53002E-01 .57596E-Ol
B5N5 .32609E-01 .62261E+00 .85606E+00 .16423E+00 .12753E+00

Table 2. Aerodynamic and gravity acceleration coefficients for models [18]
Model o C c,U z ¢

m

g

BIN1 .29915E-03  .22204E-02 .95585E+02 .16080E-01
B4N2 .72519E-03  .38857E-02 .95585E+02 .16080E-01
B5SNS5  .36773E-02  .24684E-01 .87786E+02 .14768E-01

3.3 Phase 3: body outside cavity

If the body is totally eutside the cavity and moves into an external free stream. the lift
force and pitching nioment are again expressed as integrals alcng the body axis, with the
integrands being power series in the parameter ¢ =0.5a/X (see Section 2.2). These
analytical solutions reveal clearly that the slip-surface effect on the body trajectory is
proportional to the quantity

XP

Iqa:axdx+ J.qzazdx ~ %+q:g0 +O(_q'3g(,), - (3.8)

X,

where the bars denote averaging along the body axis. For typical cases, the body shape
factor is given by Eq. (3.3c) g, = O(1). The average distance parameter is g <0.5. Its
maximum value g = 0.5 corresponds to contact of the body surface with the slip surface.
The maximum values of the first and second terms in Eq. (3.8) are 1/6 and 1/4
respectively. As the body drops, both terms decrease quickly and the slip surface effect
vanishes. Thus, dominant terms are associated with the body drop in an unbounded

uniform stream. In this case, the equations for the lift force and pitch moment can be
reduced to the form
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dv. dw ) B
L= n[— g0tV —aal+ olg, + x4’ )} : (3.92)
dv, ) - ’
M= 7{— 8 d; +g, %9—+(VC —()z)(g0 -x,a; )+ azr;a;}. (3.9b)
t

where a, = a(x, ) is the base radius (a, =1 for cylindrical afterbody). These expressions
were derived for bodies with a sharp nose, #{.,)=0. Substitution of (3.9a) and (3.9b)

into the trajectory equations (3.2a) and integration give a linear ODE system (with
constant coefficients)

chC =c, (V. —-a)-i-.cna)—cm. (2—(;) = czl(VC —a)+ Cyr@+ Cop . (3.10a)
Cpr ™ »l%"ﬂng—:cg L0y = —Z—f[cmﬂ'gl(go —xeay2 )~(1 -C, 78 )af]. (3.10b)
e = A—g o= limem g, v e miall, @00
Cy =E§—:E[(l+c,ﬂ'g(, Ng, - x.a’ )+ c,f[glaj], (3.10d) |
e =21 e, eial —cmp (g, +x,a7 )] (3.100)

]
where A, is given by Eq. (3.5b).

In a manner similar to the nonlinearized 2-DCF éiquations treated above (after Egs. (3.2a-
c)). we consider the initial-value problem ior Egs. (3.10a) assuming that the body is
totally outside the cavity for r 2¢,, and its initial speeds, vertical position and pitch angle

are respectively

’

V.t =V,, ot)=w, Y.(t,)=Y, alt,)=a,. (3.1 1)

From Egs. (3.103), the angular velocity @ and the function W(r) =V (1) —a(r) are
solutions of the decoupled equations

AW _ oy @ e, =0, E2 2499 prc, =0, (3.12)
dr- dt dr- dt -

where the constant coefficients are
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V= Ene xf ‘i+m'1 (.\'fgo —2x,8 +g:) . (3.13a)
2A() .m
szﬂ[go-ay:xe—cl”aez(gnxe_gl)]" (3.13b)
0
(,m(,'gﬂ' 2 a Cm(,'gﬂ' D
- —xa’l.c,= -x,a; ). (3.13¢)
('I An (gl e e ) d AO (g(\ ) -

The characteristic (secular) equation for the eigenvalues of the ODE system (3.10a) aud
its solutions are

P =2yA+x=0, A =y+iQ, A =y-iQ, Q=k-y . (3.14)

Various cases significant for the trajectory stability will now be discussed.

3.3.1 Eigenvalues 4, and A, are complex

If 4 and A, are complex, the trajectory variables are expressed in the form

’ d_ I-\ . T.
V‘,(t)=V(,-4-——£i+e"’(Al cosQ7+ A, sin Q7). (3.15a)
K
w=-"21¢"(B cosQr+ B, sinQr). (3.15b)
K

ty
Y.(1)= Y(,’+(Vﬂ’+i)r——§3—f +—ei—[(}Al —QA,)cos Q7+ (QA, + A, )sinQ7]. (3.15¢)
K K K

oty =a -l{c:r+ B, — OB, —e”[(1B. - OB, )eos QT +(QB, + 1B _JsinQ7]}. (3.15d
_ K . ’ '
where 7=1-1, and d = —«(V, - )— ¢, = 1B, + QB, . The coefficients A . A,, B, and

B, are determined from the initial conditions (3.11) and Egs. (10a). They are expressed
as -

d __¢-2_+V(—;Al' v 2 dvo _

Al =_;’ A: - Qx Q ’ 0 dt C”(VO,-—Q(,})+C1:0){) —Cip» (3'163)
’ s a) - . ’ ’ ’
B =w +=2. B, =—L—”—3i, @, =220 =y (V) = @) )+ o0 + ¢y (3.16b)

- Q 0 d[

Equations (3.15) indicate that the body motion consists of two components. The first
terms of Eqs. (3.15a), (3.15b) correspond to body rotation, with the constant angular
speed —¢,/x and a vertical translation with uniform acceleration —c¢, / k. Also present

is a drift with constant velocity a, —(c, + 2B, — @, )/ Kk that depends on the initial angle
of attack and angular velocity. These terms are associated with a non-oscillatory motion,
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which we refer to as the “mean state.” The second component corresponds to periodic
modulations of this state. These oscillations are neutral for ¥ =0, unstable for positive y

and stable for negative . For pointed body tails. a, =0, Eq. (3.13) specializes to

¢ Col T C,nC T
8ov O8> O F
AO AO A()

7:0’ ](':sz

This case corresponds to neutral oscillations. For heavy bodies with base radius a, =1

and small ballistic coefficients ¢, <<1, ¢, <<1, we can linearize about ¢, and c,.
Equations (3.13) give
» ¢ A2 |
y=m, | x; —— |, k=8 =c,m(g,—x,). (3.17a)
c

m

¢, =7m,cC, (‘g1 —xf), ¢, =7, C. (g,-x ), d=m, (a)n +c, ) (3.17b)

Equations (3.17) show that oscillations are unstable for x; >c,/c, . This case fits the

experimental conditions of Ref. [18]. For x] <¢,/c,,, oscillations are stable or neutral. In

m?

all cases the increment is small y ~ ¢, ~Q° <<1.
The expressions for the vertical speed and angular velocity are
Vo=V -, T+ A (e"" cost‘—l)+ A,e”sinQr, w=-c, +e”(B cosQr+B,sinQr).

The first equation indicates that the CG oscillates near its mean state associated with a
free drop. If the body dynamics is stable, ¥ <0 and the oscillations vanish as 7 — oo,

Nevertheless. they induce the constant vertical velocity — A =c,7r(a)(', +cg)/ Q°. The

second equation shows that the angular velocity oscillates near its mean level @ =—c,
associated with a free drop.

3.3.2 Eigenvalues 4, and A, are real

If A =y+v and 4, =y-v (v=y —x) are real, then the solution of Eqgs. (3.10a) or
Egs. (3.12)is

7 d - .-\ vr . ‘\
V=V, +A7GT (Achvr+A,shvr), @=--2+e" (Bchvr+B.shvz), (3.18a)
K K

. ty
Y.(r) = }1{+(w{+i)r—;—3 2+ 5[4, —vA, )chvr + (), —vA )shvr], (3.18b)
k) 2k K

at) =a, ——’lg{c:z'+ B, —VB, —e” (3B, = VB, )chvt + (1B, — VB, )sh vr]}, (3.18¢)
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where d = -x(V, =, )—c, - 1B, + VB, . and the coefficients are

A1=—i» a = Yoo B =+, B:=2“:_7’5_ (3.19)
K T VK 1% K V

. Again. the body motion consists of two components. The first component is similar to the
previous case. It is associated with a pure gravity drop and can be treated as a basic state.
The second component is relevant to an exponential drift from or toward the basic state
depending on the signs of the eigenvalues. If 4 <0 and A, <0. then the exponents

decay as 7 — oo, and the body motion tends exponentially from the initial conditions to
the basic state, which includes rotation with constant angular velocity and translation with
constant acceleration. If A, and/or A, are positive, then the exponential terms grow with
time and the body departs from its basic state (aperiodic divergence). If v =0. then the
second component of the body motion is governed by the sign of y.

These analytical solutions and stability characteristics of the body dynamics can be used
for fast qualitative estimations of the body trajectory outside the cavity. To our
knowledge, these results are new. With further development and generalization. test
engineers and other personnel can use them to rapidly and cost-effectively certify and
qualify store arrangements and new configurations.

3.4 Results and discussion

To calculate the body trajectory. including all phases of the separation process. Egs.
(3.2a) have been integrated numerically using a fourth order Runge-Kutta scheme [23].
We have used this procedure to develop a research code. which includes a module that
~calculates the lift force and pitching moment for Phases 1. 2 and 3 using the analytical

" results of Part 2. The accuracy of the predictions can be related to the sir¢-of the

perturbation parameters and uncertainties in the experimental launch conditioz:. In the
best cases. the accuracy can be as good as a few percent when the aerodynamic forces are
small compared to the weight and the characteristic pitch inertia with experimental initial
conditions that matched those assumed in the theory. Large excursions can result if large-
scale shear layer motions occur and other disturbances evolve in the external flow.

The combined asymptotic and numerical method described provides a means to rapidly
calculate body trajectories. One trajectory is normally predicted in less than 1/2 minute
using a PC Pentium166. To illustrate this capability, this quick-turnaround-PC oriented
tool will be compared to the subsonic experimental data [18] in what follows.

3.4.1 Experimental Data

Drop tests [18] were conducted at the National Diagnostic Wind Tunnel of IIT Fluid
Dynamics Research Center in the Mach number range 0.12 <M < 0.23. The rectangular
cavity of 20 inches length, 41 inches width and 4 inches height was mounted on the top
wall of the wind tunnel test section. The models were bodies of revolution of radius

a,=3/8" and nose length %, =3.56" (see Fig. 3.2). Two models (BINI and B4N2)
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were ogive-cylinders of 12 inches length. The third model (B5NS5) has elliptic nose arid
total length of 11.5 inches. The heaviest model BIN1 had a mass m = 111.85 g. moment
of inertia / =0.0014 kgxm2 and a CG location x, =6.16". For Model B4N2. m = 46.14

g. [=0.0008 kgxm’. %, =594". For the lightest model B5NS. m = 8.72 g.

I =0.000015 kgxm". In these experiments. bodies were dropped from a cavity in the

IIT wind tunnel. The models were released by withdrawing pins holding them at their
nose and tail.

3.4.2 Comparison with Experimeht
Preliminary analysis of the experimental data shows that at the release time. r, = 0.03

sec.. the initial angular and vertical velocities can be affected by uncontrolled
disturbances that may be induced by the release mechanism. Shortly after the release
time. the gravity force may increase the pitch rate. if the model ends are not released
simultaneously. This motivated identification of the actual initial angular speed @, and

vertical vzlocity V, by differentiating the experimental distributions of the pitch angle

a(t) raid the CG vertical coordinate 2,(? ). This was used to correlate the theory and
help isolate as well as understand any discrepanties between theory and the experiments.

The “a” parts of Figs. 3.3-3.10 show comparisons between predicted (solid lines) and -
experimental (symbols) CG trajectories for all three models. Dashed lines indicate the
free-drop trajectories under the gravity force only. As noted above, the lift is small
compared to the body weight. Figure 3.3 shows that a free drop in a vacuum is very close
to the computational results and the experimental data for moderate angles of attack.
especially for the heavier model BIN1. However. the “vacuum” curve diverges from the
experimental data. if the body enters into the external stream at relatively large ¢ . This is
clearly seen in Figs. 3.4a, 3.8a, and 3.10a. In these cases, the theoretical prediction
accounting for aerodviamic loads is in good agreement with the experiment. Moreover.
the theoretical mode! is capable of capturing trajectory nuances shown in Fig. 3.8a.

The “b™ parts of Figs. 3.3-3.10 compare predictions (lines) and experimental (symbols)
histories of the angle of attack a(r) . Figures 3.3b-3.6b show good agreement between
theory and the experiment. The agreement is satisfactory only for the cases shown in
Figs. 3.7b- 3.9b. Rough estimates indicate that the initial growth of & (see Fig. 3.7b) may
be associated with an initial pitch impulse generated by the release mechanism under a
gravitaricnal couple from the pins. In this case. both the initial angle of attack and angular
speed were estimated from the experiments and were used as the initial conditions for our
calcuiations. For the lightest model B5SN5 (see Fig. 3.8b), the discrepancy seems to be
due to the difference between the actual nose shape (elliptic) and the shape used in our
calculations (parabolic ogive). Unfortunately, calculations were not possible for the
actual nose because its precise geometry was not available. Note that the nose shape
becomes more important at large pitch angles. The divergence of the predicted and
experimental curves in Fig. 3.9b seems to be due to the flow inside the cavity, which is
presently not included in our modeling. Pitch oscillations observed in Phase 1 (body is
totally inside the cavity) clearly indicate the presence of this effect, which may also
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explain the substantial difference between the theory and the experiment shown in Fig.
3.10b.

As indicated above, the pitch behavior in Phase 3 (body is outside the cavity) strongly
depends on the entry condition, which is a function of the angular velocity. vertical speed
and their derivatives. For the case shown in Fig. 3.10b. the shear-layer displacement from
its basic state into the cavity may cause a phase jump of the right-hand side term in Eq.
(3.2a) from O to 180 degrees. Such a jump affects the pitch history outside the cavity.
This is illustrated in Fig. 3.10b by the dotted line that was calculated with the opposite
sign of the pitching moment. This curve is in a good agreement with the experimental
data. On the other hand. experimental curves, shown in Figs. 3.5b. 3.6b and 3.7b for
approximately the same initial conditions. have a regular behavior: i.e. they are in good
agreement with the computations performed without changes of the sign of pitching
moment. These findings suggest a bifurcation in the pitch history a(r) when the body

enters into the external stream. The trajectory equations allow such a bifurcation. since
the aerodynamic forcing terms of Eqgs. (3.2a) are nonlinear (quadratic) functions of
speeds V and . One of two possible trajectories is selected, when the body crosses the
shear layer. Therefore, Phase 2 serves as a trigger of the pitch bifurcation. Accurate
modeling of this mechanism is important to predict the pitch history and store trajectory
in the next phase when the store is outside the cavity. To verify this hypothesis additional
theoretical. numerical and experimental studies are needed.

3.4.3 Parametric Studies

Parametric studies of the body trajectory were conducted for different initial conditions.
body parameters and freestream speeds. The results are shown in Figs. 3.11-3.15.
Variations of the initial vertical velocity cause not only CG acceleration but phase shift of
the pitch angle (see Fig. 3.11). In accord with the analytical solution discussed in Section
3.3.1, an increase of the freestream velocity leads to a substantial increase of the mean
pitching angle and the pitch oscillation freqrzncy (see Fig. 3.12). while the CG trajectory
is changed slightly. Figure 3.13 shows thz: pitch oscillation amplitude increases and
phase shift occurs as the initial angular speed increases. Amplification of the pitch
oscillations is stronger in the case of positive @, with the CG trajectory also noticeably

affected. The effect of the initial pitch angle is similar to the effect of @, (compare Figs.
3.14 and 3.15). However, the variation of the CG trajectory in this case is smaller.

Trajectory dependencies on the body shape are illustrated in Fig. 3.15. The calculations
were performed for three -experimental models of Ref. [18] under the same initial
conditions. As expected, the highest amplitude and frequency of the body oscillations
correspond to the lightest model BSNS. The body trajectories outside the cavity also are
consistent with the analytical solution discussed above.

3.5 Conclusions

In this part, we discussed modeling of 2-DOF vertical and pitching motions of thin bodies
of revolution separating from a rectangular cavity into external free stream. The problem
is analyzed using combined asymptotic and numerical methods. The body dynamic
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equations include aerodynamic forces and moments. which are predicted using
approximate analytical solutions obtained in Part 2 our previous studies within the
framework of the slender body theory. Different phases of the separation process were
analyzed using small perturbation theories. This leads to simplifications of the trajectory
equations and their integration in closed form for different typical cases associated with
Phase 1 (body is inside the cavity) and Phase 3 (body is outside the cavity). These
analytical solutions provide explicit dependencies of the body trajectory on the flow and
body characteristics. to allow identification of the critical parameters #nd provide insight
into the physics of the separation process.

The numerical code predictino trajectories for all three phases of store separation was
validated by comparison with the experiment. For a major portion of the data. the
calculations are in good agreement with experiment. Moreover, the theory is able to
capture nuances of the body pitching observed experimentally. These results confirm our
theoretical model. However. there are cases when the agreement is only satisfactory. The
body separation is affected by more complex flow phenomena. which are not captured by
our model. One discrepancy sec.ns to be due to the slip surface displacement induced by
shear-layer instability and/or srif-excited oscillations of the cavity flow. These effects can
lead to a pitching moment phase jump from O to 180 degrees during Phase 2, when the
body crosses the shear layer. The jump may trigger quick transition from one pitch-angle
trajectory to another for Phase 3. when the body is outside the cavity. Our calculations -
showed that this interpretation is consistent with experimental data and indicates the
existence of two substantially different pitching trajectories for approximately the same
initial conditions. Since nonlinear dynamic equations are involved. the body trajectory
may have a bifurcation point associated with Phase 2. Although this transitional phase is
relatively short. its aerodynamics may determine the selection between possible
trajectories outside the cavity. Further theoretical and experimental studies are needed to
establish and clarify the bifurcation mechanism. Our future work will extend this model
to transonic speeds. Progress in this direction is discussed in Part 4 of this report.
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3.6 lllustrations
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Fig. 3.1 Schematic of store separation: a) - side view; b) - back view.
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Fig. 3.2 Models for free drop tests in the IIT wind tunnel.
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Fig. 3.3 Model B4N2; U_ =62.3 m/s, Y, =1.42 inch., q, =07, V, =8 inch/s. @, =9
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Fig. 3.4 Model B4N2: U_ =413 m/s, ¥, =2.4 inch (0.061 m), ¢, =9.6",
V, =2 inch/s (0.0508 mv/s), w, =—80 deg/s.
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Fig. 3.5 Model BIN1: U_ =62.7 m/s, ¥, =2.72 inch (0.0691 m), &, =-115 .V, =9
inch/s (0.2286m/s). w, =75 deg/s.
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Fig. 3.6 Model BINI: U_ =40.8 mvJs, ¥, = 2.65 inch (0.0673 m), &, =-7.8". V, =12
inch/s (0.381 m/s). w, =80 deg/s.
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Fig. 3.9 Model B4N2; U_ =623 m/s. ¥, =2.33 inch. &, =9.5°. V,, =6 inch/s.
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Fig. 3.10 Model B4N2: U_ =62.1 m/s. ¥, =2.8 inch. , =-11.9°.V, =15 inch/s.
w, =52.86 deg/s.
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5r ‘
Y,m , 214, de
al 0
—V.=02ms 2

-------- V,:' =127 m/s o

-8
4ol — V,=0.2m/s \
wl V,=127m/s 1 sec
0.0 0.2 0.4 06 08 1.0
a) b)

Fig. 3.11 Model B4N2; U_ =62.3 m/s, Y, =1.42 inch. a, =0°, @, =8 deg/s.
V, =8 inch/s. = = = V,, =50 inch/s.

12 . ) ) X t,. sec
0.0 0.2 0.4 0.6 0.8 1.0

a) b)

Fig. 3.12  Effect of the free stream velocity on the body trajectory: Model B4N2;
Y, =142 inch, o, =0, V, =8 inch/s, w, =8 deg/s. U_=623m/s,
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Y. m
al w, = 8 deg/s
-------- w, = 160 deg/s
w, =-160 deg/s
3r ‘
2+
r'/
J/f‘ !
1+ ,/’. ol
o t,sec
0 i A 1 1 ! - I L :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0

a) b)

Fig. 3.13 Influence of the initial angular speed on the body trajectory: Model B4N2:
U, =623 m/s. Y, =142 inch. &, =0". V, =8 inch/s.

c)
Fig. 3.14 Influence of the initial pitch angle on the body trajectory: Model BAN2:
U_. =623 m/s. Y, =142 inch. V, =8 inch/s, w, =8deg/s.
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i o, deg

0.0 0.2 04 0.6 0.8 1.0
a) b)

Fig. 3.15 Trajectories of different models; U_ =62.3 m/s, ¥, =1.42 inch.
o, =0",V, =8 inch/s, @, =8 deg/s.
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Part 4. Transonic Flow Applications-Investigations of the outer
limits of the inner solutions

4.1 Introduction

To calculate the drag force acting on a slender body dropping into an external transonic
flow. we need to find the outer asymptotic solution [5, 6]. By matching. this solution is
determir.cd from the outer limit of the inner solution. For external siore separation from a
flat plate his limit corresponds to the flow induced by sources distiibuted along the store
axis. and the drag can be calculated using the equivalence rule [6.25.26.29]. For other
cases. the outer solution is not known. It can be determined from the analysis of the outer
limit of the inner solution, i.e., the inner potential ®(X,r,8,t) needs to be considered for

r >> H for Phases 2 and 3, when the body crosses the shear layer and drops into the
external flow.

In Section 4.2, we analyze the limits of the solutions obtained in Part 2 for store
separation from a wing or infinite-span cavity. The dominant approximation is not
sufficient to calculate the drag force acting on the store. A similar situation was
considered in thin wing theory [26-31], where effects of higher-order approximations are
taken into account to find the outer transonic solution. Hereinafter, we discuss the higher-
order effects associated with a finite cavity span as well as the lift force and the body
thickness.

In Sections 4.3 and 4.4, we obtain a general form of the inner solution for store separation
from a finite span cavity and analyze its outer limits for Phases 2 and 3. In Section 4.5.
we study higher-order effects considering the outer limits of the second- and third-order
inner solutions. Cavities with finite and infinite span are discussed. Higher-order
approximation unsteady terms are shown to give a dominant order contribution to the far
field asy mptotics. '

In Section 4.6. we match inner and outer asymptotic solutions for transonic flows induced
by a store separating from a cavity and wing. For the problem considered. formulation of
the matching conditions is not straightforward because of .unsteady effects. We identify
different regimes for the outer flow field for various relationships between the Strouhal
number and the scale of the flow perturbations. Different time scales relevant to the store
separation process are identified and discussed.

We assume that short duration processes associated with freestream and body
oscillations are averaged over a long -time scale characterizing the outer flow and give a
negligibly small contribution to the wave drag. This idea is important relevant to current
investigations involving the impact of cavity noise and vibration reduction using spoilers.
jets and other devices. Effects of cavity oscillations are on such a short time scale that
they or manipulations of them with control devices are averaged out on the trajectory
time scale. For store drops, this is a Froude scale. We therefore conjecture that the
influence of these rapid oscillations on the trajectory is small and possibly negligible.
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Accordingly. we consider the quasi-steady outer solution. which is induced by sources
along the body axis that is relevant to the dominant effect for a finite-span cavity.

In Section 4.7, drag force components acting on the body in Phase 2 (the body crosses the
shear layer) and Phase 3 (the body drops in the stream) are theoretically modeled.
Analytical expressions for the pressure drag are derived using the solutions obtained in
Part 2. The friction drag is calculated using a modification of the Schultz-Grunow
correlation [32] for axisymmetric flows. The base drag is predicted using results from
Ref. [33]. The wave drag modeling is reduced to solving the Karman-Guderley equation
over an equivalent body of revolution simulating the store. Analytical formulas and
computational examples for the equivalent body shape are provided.

We have developed a computer code to predict 3-DOF store trajectories. As contrasted to
the results of Parts 1-3. this module is coupled with a code developed by Dr. N. Malmuth.
This is small disturbance solver of the axisymmetric Karman-Guderley equation. It is
based on the Murman-Cole successive line overrelaxation (SLOR) approach. It is very
rapidly convergent for many practical cases on curreni-generation (considerably less than
1 GB. 500 MB RAM processors) using a Visual Foruan compiler. A brief description of
this code is provided in Section 4.8. Note that the theoretical model developed herein can
be extended to 6-DOF trajectories. including yaw and roll.

Parametric studies discussed in Section 4.9 demonstrate the effects of the body thickness
and initial (release) conditions on trajectory characteristics. These results are discussed in
Section 4.10.

4.2 Outer expansion of the dominant inner solution

For a store moving near a plane surface (H ~ a), in accord with the our previous results.
(see Section 2.2) the first term of the outer expansion of the inner solution is

]

o~ A (X D+2a(X)ay (X)In(r), (4.2.1a)
r®, ~2a(X)ay (X). (4.2.1b)

where the function A,(X.t) accounts for the outer flow effect on the body aerodynamics.
The relation (4.2.1b) is treated as an asymptotic boundary condition for the outer problem
[6.25.26.29]. In this scheme, the outer expansion corresponds to axisymmetric flow over
a body of revolution whose cross-sectional area is twice that of the store cross-sectional
area. l.e.

A, (xr) =24, (4.2.2)

From conformal mapping. a similar analysis is relevant to external separation from a
fuselage. These results allow us to apply the equivalence rule [6.25.26.29] and calculate
the wave drag for external store separation. This is important in extending our predictions
of trajectories from 2-DOF to 3-DOF.
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To obtain an asymptotic expression for the potential induced by the body motion inside
an infinite-span cavity. we use the complex velocity W, and the complex potential I1,. of

the dominant approximation (see Section 2.2. Egs. (2.2.12)). These are

al—l hnd 5 1 1
Wl X =0 =S e AL N S N
6 ol 2 =T (CHIH T

n=0

| A 1
+iaB_,. —+ — |t (4.2.3a)
-[(;-sm-”*- &+l )" ﬂ
¢ —iH
¢ +iH

n,,.X.n)=0+i¥Y=aa, In

¢ —iH
{+iH

iB 1 1
I : : 4.2.3b
+2n—1{(§—iH)2"‘1 +(§+iH)2"“}}. ( )

In Section 2.2 of Part 2, the coefficients A_,,_,(X.f) and B_, ,(X.t) are expressed a$-

n,(¢,X.0)=®+i¥=aa,In

convergent series in the parameter g =a/(2H)<1/2. Substituting the relation

(= re'® +iH into Eq. (4.2.3b) and considering the case H/r <<1. we can reduce this '
equation to the form

- y 2iaB_ze‘i"(l+iH e'mj
re r

M, =aa, In— - T (4.2.4a)
re'” + 2.}1‘1 r(l +2; 1 it )
r
In the dominant approximation. the potential is therefore expressed as
D, .
@, =——sin. D, X.t)=2ala H+B._). , (4.2.4b)

Equation (4.2.4b) shows that the outer-flow field has an angular dependence in the cross
flow plane: it corresponds to a dipole on the body axis.

From Eq. (4.2.3b), we consider the far field limit appropriate to a < r << H .a <r << H ;
l.e.. the case when the body is far from the slip surface. The coefficient B_,is
approximated as
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B .= a(v —a—ﬁa'—‘] .
- 2H

The dominant terms of the potential (4.2.3b) are

. 2 —m[v a aav‘]
a e —_ - ——
e LA 2H

P o] ) -
1 2iH 21 7
re'’ a’ ad a
. - . . ] -8
=aq In———i(V —a)—e™ +i—=| re® + —e™ |.
2iH r 2H r

In the dominant approximation. this potential is reduced to the potential of an
axisymmetric flow over the body of revolution in an unbounded stream

®, ~aa, 1n—’i—+0(Lj. . (4.2.5)
<TaH \2H

A similar result can be obtained for the body crossing the shear layer (Phase 2). In this
phase. the complex conjugate flow velocity and potential (see Egs. (2.2.2) of Section 2.3) .
are

(+.2.6a)

o o _ 4cta, | Q" (s)ds
o

W, =i(V-a) = .
[8 Voo -b* inNo™ =b- i[/,D(s.n) b™ =5 (s—0)

h
M, =itV -al¢ —vor —b° J+ 2‘:"' Joi—p? [H0E (4.2.6b)

ANbT =57 (s—0) .

(s+5) +(s=b) (mzj |
=arctg) - ~———————— g — | |. (4.2.6¢)
v g{(s+b)”—(s—b)" 2

-

As 0 — . the limit of the complex conjugate velocity (4.2.6a) is

b:
1+ . b 2 2.,
W o= 20° [¥b s 1"”(-S)(1+—S—)als. (4.2.7a)
it~ 7, 1(s) \ o

and the potential is approximated as

. h b bl
(X, Vb =57y (!
——D‘(X [)sinH. D, =—lj ’ \”"(g)ds.

{

' T, I(s)

O, = (4.2.7b)

i
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In the dominant approximation. the potential (4.2.7b) corresponds to the flow induced by
a dipole of the strength D, (X.f). Thus. in the outer limit. the inner solution does not
contain a source term for an infinite span cavity. Crossing the shear layer. the body
induces a vertical-velocity on the free slip surface (v, ) such that the following integral

relation is satisfied

b oo \ 7 b
(R
e b © b ‘

Thus, the flow field induced by sources on the body surface and smks on the shear layer
at large distances from the body behaves as a dipole.

4.3 Separation from a finite-span cavity into a transonic external flow:
General form and outer limits of the inner solution for Phase 2

For Phase 2. the cross-flow scheme is shown in Fig. 4.1. Notations and dimensionless
variables are similar to those introduced in Section 1.2. The inner-flow region includes
the cavity region. which is bounded by the slip surface and .cavity walls. as well as the
free-stream region with the upper boundary consisting of the mixed boundary (the slip
surface. |Z| <d,, the flat plates, |Z|>d,) and the submerged body portion. To the,
accuracy indicated in Section 1.3, we neglect the sidewall effect. In the dominant
approximation with respect to the small parameter & <<1. the inner asymptotic solution
is described by the two-dimensional Laplace equation in the cross-sectional plane. Here
we consider the free-stream region only. We also neglect the slip-surface displacement
and treat it as a plane of zero potential. In the cross-sectional plane of the complex
variable (' =Z+iY, the problem for the complex conjugate velocity.

W({,X.t) = w—iv, is accordingly formulated as
Find a harmonic function W, which satiz{ies the conditivas:

ImW = —v =0 in the intervals (—e,—d,) and (d,,,)
ReW =w =0 in the intervals (-d,.—¢) and (c.d,)
Velocities v, w are finite at the cavity edges. Z =d,,Y =0

Im(e*W )= v, on the submerged body surface
W — 0 for { =

I e

This problem is solved using the conformal mapping (2.2.1) of Section 2.3 (see Part 2) to
map the free-stream region to the lower half-plane of the complex variable o =¢&+in. In

the transformed plane shown in Fig.4.2, the cavity has the semi-span

——F)k - <
, -, (=—, k=—. 4.3.1
(1-*-5)‘—(1-5)A d, n ' ( )
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The submerged body portion is the lower side of the flat plate. ¥ =-0. & <b. which
moves with the vertical velocity

v(g,x.z)ﬂn//(@:#[ax+v( sind]. - (4.3.2a)
1§
2 e2\ny £
1 =% _b ‘?)f)(f'"). 0=2r poprii2gicosm.  (43.20)
G, 4cQ(S) b-¢
sinf = Ye)-H =-2 Q"(%) sin” /m+cosm . , (4.3.2¢)
a(x) D(&.n)

Here. tilda denotes flow parameters in the ¢ -plane.

For a finite-span cavity (d <o), we apply the Keldysh-Sedov formula [8] in the
transformed plane and obtain the following expressions for the complex congugate
velocity and complex potential with 7 <0

R
W'(a.x.r)z_l\/"’ d J'\/b S _val9)ds (4.3.3a)
aNo =b S \Nd =5 (s=0)(s) :
W(a.X.t)=g—?M7: ﬂ(‘a.X.r)=de0. (4.3.3b)

=)

Using (4.3.3) we can derive relatively simple explicit expressions for the lift force and
pitch moment acting on the body. These expressions have a structure similar to that
obtained for an infinite-span cavity in Section 2.3 of Part 2.

Consider the outer limit of the inner solution. ¢ — e, d = fix. From Eqs. (4.3.1 )' and
(4.3.2) we obtain

_a__é_’.zl.}_wq_o[ij
oo 30° o’

Using these expressions, we find from Eq. (4.3.3) that. in the first order approximation.
the far field is induced by sources distributed along OX -axis: i. e.

(X T 4+b° o 2
w:ﬁf{lm[d +b H 0, (X.n=2
g° T

This relation allows us to match the inner and outer solutions. It also shows that the outer
flow is axisymmetric in the dominant approximation.

b* =5 v, (s)ds
d*-s* I(s)

(4.3.4)

-h
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For relatively wide cavities with d >>b. the complex conjugate velocity (4.3.3a) 1s
expressed as

—d:j L) B esds c}:-—d:’j b - 5" ()ds
e m . ol -b -h

W= )
2d- (s=0)I(s) (s —o)(s)

1 o
]Zd ' 0: -b

Substituting the expressions for v, and ! into this equation and integrating we obtain the

complex conjugate velocity and complex potential

T L v{ﬁﬁ_ g }_4"'“{ wwmn) (43.50)
d o0 J03~b3 7[\[0"—17’
b n

[(o.n) = Q" (s)ds (4.3.5b)

S D(s.mb? =52 (s - o) .

For the inner region

p.
- +... |,
]

lo|<<d. Vo' -d’ = —id[l—

cavity , so that

~ | [ o 4c’a I(o.n)
W =iV, 2o PRGCRICAOA (4.3.6)
{ (30 az—blj fr\/o“—b'J

For the outer limit, & — o, d fixed , we obtain

(X.t :
W= Quy ( )[1+0[d1 H . : (4.3.7a)
oy 4 o '
0, (X.1) =gfl;(x);&[zlaxen(n)—ﬂvy(l+2n:)Slzml} (4.3.7a)
’ n n

where the function e,(n) is provided in Appendix C of Part 2. Note that the outer limit of
the inner solution is proportional to the ratio b/d, whereas the flow parameters in the
inner region. as well as the lift force and pitching moment are O(bz/ d ) Equations

(4.3.7) allow us to formulate the matching condition for the outer asymptotic solution in
an explicit form.
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4.4 Separation from a finite-span cavity into transonic stream: General form
and outer limits of inner solutions for Phase 3

For Phase 3. the cross-flow scheme is shown in Fig. 4.3. In this case. the vertical distance
from the slip surface to the body axis is H < —a: all notations are the same as in Fig. 4.1.
We consider the flow in the lower half-plane only. The inner problem for the complex
conjugate complex velocity. W({, X .t) = w—iv . is formulated as

-Find a harmonic function W satisfying the conditions:

ImW =—v =0 in the intervals (—e,—d,) and (d,,)

ReW =w =0 in the interval (-¢,c)

the velocities v.w are finite at the cavity edges. Z =%d,,,Y =0
Im(e'”'W)= —v,_on the body surface, ‘g" - iH| =a(x)

W -0 for { =

N

For Phase 3. this problem is more complicated than for Phase 2, since the flow region is
doubly connected. The solution method developed in Ref. [8] includes a conformal
mapping of the free-stream region to a rectangle. The complex conjugate velocity is
expressed by the Keldysh-Sedov formula. including elliptic functions in the integrand
(see Section 1.2 of Part 1). However, it is difficult to obtain an analytical solution using
- this method. We develop another method. which is based on the results of Ref. [9]. It is
similar to the method used in Section 2.2 of Part 2. Introduce the analytical function

_W({.X.1)

v évz —'doz

G ca T ——

K& X0

’ Using the symmetry bﬁnéipai for harmonic functions [10], we analytically continue this
function to the upper half-plane with the relation

L. W . X.t W(.X. :
L. X.n= © ) (¢ t)=—f1(§.,X.t). (4.4.1)

gz—dtf _gz_d(f

From Cauchy’s formula. we obtain the integral equation for W (')

W)= é:.-d‘; - ---—Wffgft)dt +
x| (t+iH) —d;((—iH —1t)
N J- Wi{—iH +1)dr (4.4.2)
L (—iH) - +iH-1)| o
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Thus. the problem is reduced to the problem of two circles vertically translating down in
an unbounded flow as schematically shown in Fig. 4.4. Using Eq. (4.4.1) and expanding
denominators of the integrands as Taylor series. we express Eq. (4.4.2) in the Laurent
series ‘

W) =—F——==

/ 2 : - - (_j_n_l _
/——H 2.4 {(g—zm"“ (§+iH>""}
_ (S+iH)- "do. ianﬂ{c-n—l _ € } (4.4.3)

l_ 'H:+d02 = snﬂ (S_*_.ziH)n-H

where s = ¢ —iH = re’® . The Laurent coefficientsC_,_; and C_,_, of the function f,({)
at the points { =iH and {=—iH are

k
—_ " ; : WH+ nd
C .=A_ +iB. -1 1_2(2]2 {) [I":QJH‘,]H. (i {)r rﬂ.
=1 20k H_‘L'do— \/(I"}'iH)-—dl;

C,..=A,,-1B, .
These expressions are derived using the flow symmetry and the boundary conditions on
the body surface. The derivation is similar to that described in Section 2.2 of Part 2. In -

particular. we derive from Eq. (4.4.1)

C, =4 (4.4.4)

2n -2n-1"

W()=W(=¢).C_,,=(-1yC_,:C,, =iB.,:

The coefficients A, =a,, B_, =V, +B, are determined by Egs. (2.1.3) for an infinite

span cavity. The finite span cavity effect appears for n > 1. Coefficients of these numbers -
have more complicated form than for an infinite span. They are not provided here since
only the two first terms are needed to determine the outer asymptotics.

Consider the outer limit of the inner solution: r — oo, d()', H fixed . From Egs. (4.4.3),
(4.4.4) we obtain

oA, dma(A_H —aB._,
W(s) = Cr +0| | ~H =2 =0,X0= A H—a "). (4.4.5)
27s s H'+d; oX /H2+dj
For the large-span cavity limit, r — e, d; >>1, H << d,, we find
4mala H —aB_,)|. H’
Oy (X.0)= - = {1— } (4.4.6)
g d, 2d; ~
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The source intensity tends to zero as d,, — .
For the other limit, » — o. H >>d,, . the source intensity tends to

_9 dAh (\') — dll eff (.\')
T dx dx

(+.4.7)

In this case. the cavity effect is negligible and the problem corresponds to a body of
cross-sectional area distribution A,(x) dropping from an infinite {lat plate. The effective

cross-sectional area is A, (x) = 2A,(x).

4.5 Outer limits of higher order approximations

For a zero-thickness wing in an unbounded transonic flow, the outer limit of the first-
order inner potential has a dipole form similar to that given by Egs. (4.2.4b) and (4.2.7b).
However. a logarithmic source sslution of the second-order approximation is dominant in
the far-field region and deterriines the form of the outer solution [25-29] that couples
with this dipole behavior. This source term can give a sizeable wave drag due to lift

T o . : . .
contribution if A EE — oo, where « is the angle of attack and & is the thickness ratio.

The lift-induced source strength is proportional to £'(x)("(x), where £(x) is the lift up to

the streamwise station x. This contribution can be of the same order or larger than the
wave drag due to thickness. Reference [6]. the authoritative source for development of
transonic slender body theory based on systematic asymptotic approximation schemes.
(particularly. higher order approximations in a lucid. deductive framework) treats the case
of A =0(). in which the wave drag due to thickness dominates the wave drag due to

lift. For thin wings. similar. asymptotic expansions were considered in [26-29] with & a
small parameter. Reference [30] discusses higher order approxima*ions in a subsonic-and
supersonic flow context.

Our analyses are extending the framework of [6] from a slender body in an infinite flow
to one separating from a flat surface or cavity.

The results presented in this section can be regarded as a first step to developing a high-
order asymptotic theory for unsteady transonic flows with free boundaries. Within the
scope of this report. we restrict our matching considerations to the low order terms. A
higher order investigation io be conducted will include the ramifications of the slip
surface in the matching sche::e and its effect on the intermediate expansions which need
to be introduced to avoid the mismatch of the higher inner and outer expansions in
slender body theory. This mismatch phenomenon was elucidated in [6]. Accordingly.
outer asymptotics of the inner solutions are obtained in Part 2 and Sections 4.3-4.4.
Although the focus is on dominant order matching herein. we consider the asymptotics of
the second and third order inner solutions for a body of revolution separating from a
cavity. We have estimated the order of source terms of the outer solutions using the
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approach in [6] for asymptotic matching. This allows us to evaluate the contribution of
the higher-order approximations to the inviscid drag force.

Second- and third-order approximations of the inner potential for the body crossing the
slip surface can be obtained from the full potential equation with the method of [6]. This
equation is

C=U )= — N2 == -
RRFTE vr TN T e o

d -~ 0 ) __ 00 i
20 eat)2ii 22 o (4.5.1a)
(ar X )(‘ i)~ 2 9Za7
U:Q, f-@-, 720 (4.5.1b)

J Y 3z

1 - -
) - ~ =\ 'y 2 s, 2 2 2 2
Groyl P |27 UtvAw O UL, & (4.5.1¢)
P P. \P- 2 y-1 2 -1

Here, C is the sound speed; p is fluid density and ®(X,Y.Z.7) is the velocity
potential. We consider separation from a flat wall to illustrate the asymptotic
developments that we have applied preliminarily to finite and infinite-span slip surface
cases. For store separation from a flat wall, the appropriate inner asymptotic expansion

for the transonic flow potential from [6] is relevant and is ‘

P X +6710g8(28,(X.1))+ 5D (X.Y.Z.1:K.S) +
S8 0g 8D, (XY Z.1 K. S)+ 51D, + - |
=1,U_{x +8°0(X.v.Z.:5))}. (4.5.20).

which 1s valid in the inner limit
Y=Y/6, Z=Z/68, K.S fixedasd — 0.

where K = (1 -M: )/ S~ is the transonic similarity parameter: M _ =U_/c_ is the Mach
number, S=/,/(U_t,) is the Strouhal number. The appropriateness of (4.5.2a) stems

from the fact that for the flat plate the far field looks like that generated from two
cylinders (of arbitrary cross section), tangent to each other at the wall whose axes of
symmetry are parallel to the freestream. The second cylinder is the reflection of the
physical one needed to satisfy the no-flow through boundary conditions on the solid wall.
The distance of the cylinders from the wall is negligible in the far field. This gives an
equivalent body area that is twice the physical area, as indicated elsewhere in this report.
The reflection gives a flow symmetric in the direction normal to the flow from a double
source in the crossflow plane. In contrast, if a slip surface replaces the solid wall, (such as
for an infinite span cavity), an antisymmetric solution is needed to satisfy the
homogeneous Dirichlet condition for the perturbation potential rather than the
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homogeneous Neumann one appropriate for the solid wall. Accordingly. the double
source far field now becomes nearly a source-sink pair (dipole).

A crossflow velocity potential can be defined as
W= %- =U_S(w—iv)=U_SW, +&W, +5'W,). M=d+1¥. (4.5.2b)

Further the normalized pressure coefficient and sound speed are respectively

p—p. 1 e -2 2 4
=Ll o (MC-1]. MZ =1+K8 + K&, (4.5.2¢)
P p U6 M_ {( ) :|
=l Tl shsp 120, 4wt 1 5°00). (4.5.2d)

C. M: 2 :

As contrasted to the previously used scaling (see Eq. (1.1.2b)). the dimensionless time is

defined as r =1 /1, (where 1, is the time scale associated with the flow perturbations). To .

O(J~ ) we express the body surface shape as

Y,=H+\a (X)-Z" +

+§:0{i%[\/a:(X)—Z2 +_—___)\(aa (X) - J~aa'(X)———a-3X}
Ja (X)=-2Z-

= f(X.Z.O+8 f(X.Z.0)+0(5%). (4.5.3)

The potential @, and the complex conjugate velocity W, of the dominant approximation

are analyzed in Sections 4.2-4.3. In the polar coordinates r,8., the potential of the
second-order approximation satisfies the Poisson equation {6. 30]

13 0P, 19°d. _,0'd, ’D, (-A aj o0, 1 (0@,
- r—+— = =85 ——+2§ + +S5— +—|— |+
ror  or r- 06° or- oXor \aX¥ ot or r-\ 06

\or or ~ 06006) 3x (aor) r\ o6

To second-order. the boundary condition for the normal velocity on the body surface is
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"n = flx +fl.\" +.¢it)Xf0X _ (fw +f0X )f?ZfIZ . (455)
1+ fiz (1+j;;z) 2

On the slip surface and horizontal cavity walls, the boundary conditions are

c<|z|<d,: @,=0: |Z|>4d: 9%: : - #56)

In addition, the flow velocitics are finite on the cévity edges Z ==d,.
The solution of Eq. (4.5.4) is represented as the sum [6.30]

O, =0, + ®Zp‘ (4.5.7)

The potential @,, satisfies Laplace’s equation with the boundary conditions (4.5.5).

(4.5.6). The solution is obtained using a conformal mapping outside the body in the o -
plane (see Fig. 4.2). This mapping results from a slight modification of Egs. (2.2.1) (see
Part 2) using the asymptotic method developed by Lavrentiev [10]. From the Keldysh-

Sedov formula we obtain the complex velocity W,, in the o -plane as

2 20h 2 2 \ .
Wﬁl=—i\/aﬂ a I\P $ Yy 0ds (4.5.8)
B 7No~=b" 2 \Nd -5 (s—0)l(s)

which is similar to Eq. (4.3.3). Therefore, the asymptotic behavior of the second-order
potential ®,, is similar to the asymptotic behavior of the potential @, . For the finite-

span cavity. the asymptotic for:n of Eq. (4.5.8) as 0 — o is determined by the source
distribution alci.g the body axis, i.e..

0.,
W, ~ (‘f , @, ~Q., Inr, (4.5.92)
1% [b2 =57 v,,(s)ds v,, (1)dr s
Qo =— — — | V1-1" 2 1=, 4.5.9b
2l n_j,, d*-s> Is) >t I I(t) b ( )

For the infinite-span cavity, the outer limit of the second-order potential ®,, 1s defined
by the dipole distribution on the body axis

b fp2_ 2y,
@, =-LaXDgng p o L[V (4.5.10)
r T, I(s)
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The potential @, is a partial solution of the Poisson equation (4.5.4) satisfying the
boundary conditions of zero normal velocity on the body surface. ®,, =0 on the free
surface. and o®., /dY =0 on the horizontal cavity walls. Using the method of Ref. [30].

we express the potential @, as

Z . a: ) a: I
a4 == e a— d
e 4[5 o 2 5 | TG+
1 aﬁo (z) aﬁn (z) W—n( z ) 2
| +5n(,(c)( SRS | =2 (W (C)aC
®,, =Rell,,. _ (4.5.11)

From Section 4.2 relevant to the infinite-span cavity. the asymptotic behaviors of the
complex conjugate velocity and the complex potential are determined by the relations

. D .
c=C+0(C") W, = —?g—’+ olc”} m, = —?“+ o¢?). oo, (4.5.12)
Substituting these expansions into Eq. (4.5.11). we find that the third term of this
equation is of the order of O(™") and the second term is of the order of O(L™) as
{ — oo . In the far field. the dominant term of Eq. (4.5.11) has the asymptotic form [30]

I_I3/’ -7 i (SDON +V2D0Xr ); In g N (45]3&)
D, ~ -S(SD() +2D, 5, )rlIn(r)coc 6 +Osin 6], (4.5.13b)
-1 4 n Xt ] '

where the dipole strength D ( X.r) is determined by Eqgs. (4.2.4b) and (4.2.7b). For a

finite span cavity. the dominant asymptotic term of the potential @, , is determined as

S[.0°Q, 90, .
D, ~ ST 42 = P (Inr -1). 45.14
[ ot T anx riinr=1) (45.19)

where the source intensity of the first order approximation is determined in Sections 4.3
and 4.4. The potential @, given by the asymptotic expressions (4.5.13) and (4.5.14) is

proportional to the Strouhal number. In both cases. the second and third terms of the
expansion (4.5.2a) have the same order of magnitude in the region where

ro~—. (4.5.15)
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In this region. unsteady asymptotics of the second-order potential can be of the same
order of magnitude or dominate the first order asymptotics for the potential. For a finite-
span cavity. these asymptotics are axisymmetric. whereas they have an angular
dependence for an infinite-span cavity. Note that all terms of the second order
approximation (excluding the unsteady terms) obtained in this paragraph are similar to
those obtained in Ref. [6]. Then. we can use the theory [6] to formulate the matching
conditions and identify an outer solution form in the sezond-order approximation. Such
an analysis will be performed in our future work.

Equations (4.5.9)-(4.5.14) show that the outer limit of the second order approximation
does not contain a source term for the case of an infinite span cavity. Then. according to
the general theory [6, 26-31], a source term is not contained in the outer asymptotic
solution in the second order approximation. This indicates that the second-order solution
does not contribute to the inviscid drag. Note that this result is consistent with theory [6].
which shows that the source intensity of the second order approximation is directly
related to the source intensity of the first-order approximation. Since the first order
approximation does not contain a source term for an infinite span cavity. we conclude
that such a source term must be zero in the second order approximation.

Using a similar method. we analyze the outer limit of the third-order inner potential for
an infinite-span cavity. The equation for this potential is

D, : ‘¢, 0D, ‘0,
10 a— lﬁa(D }'+li od, +K8 CD(,+S_8(D_+258 CD_+W~
ror or r- 00° 2 oX\ 0X
SD,, +2D

oX ° or* 010X
+1 D, D, KD, , X
}/’) —X 2 (1-c0s 26) + — - sinf - § — X sin @ —
r r

(29D, (3'D, 3D,
-2 |s +S
4 ort or'oX 8 “0X

]r[ln(r) cosG+8sin¥|+... (4.5.16)

- The first two terms on the right hand side df Eq. (4.5.16) are dominant for a steady flow.
The last two terms arise due to unsteady effects. Thus, the third—order potential is
represented as

+1 .
Q, = }/T Doy Dy (@ (1) + D, (1) €05 26)+ KD, @, (r) sin 6 -

2 ﬂa4 4 4
_5_[5- D, (3'D, 3'D,

] [4333(")005 6+®,,(r)fsin 9]+...,(4.5.17a’)

4 o' or'oX or’ox’
a aq)u ; 2 a aCD‘
P r =Y By =ity oy 40y, =2, (4.5.17b)
0 0D, 0 0P, ,
ra—’; 87'3 -0, =r; ra—’r 8)‘3 —-®,, =r*(inr+2), (4.5.17¢)
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3 o, :
9,08 o =t . (4.5.17d)
' Br’ or .

Matching using intermediate expansions is discussed in [5.6]. Consistent with the low
order matching described herein. the form of the outer solution can be obtained by
rewriting the far-field inner asymptotics in outer variables. Using the outer-expansion

variable ¥ = & r. we obtain from Eq. (4.5.15b)

~

F

52

(D_m~(ln J=ln:7’—4ln5ln7+4ln:5. (4.5.18)

The second term of this relation corresponds to a source term in the outer asymptotic
expansion that is 0[5(’ In 5]. This result is consistent with the asymptotic theory [6.26.29]
for thin wings and Munk’s theorem: i.e.. the source intensity and the drag-due-to-lift
coefficient are proportional to the square of the lift force. In our case, the liftis O(J" ) so

that the drag coefficient is proportional to O( 8°Ind ).

Due to the third order source type term. this approximation gives a non-zero contribution
to the drag. The results of Sections 4.3 and 4.4 indicate that for Phases 2 and the initial -

stage of Phase 3 the finite span cavity effect is O(&‘c?2 In 5) in the far-field asymptotics.
where € =a,/d,. Accordingly. this effect is dominant for £>> 6" compared to the
drag-due-to-lift component, which is O(S8®ind ). This situation is typical for many
practical cases. Its analysis is presented in Section 4.7,

Note that the analysis of this report is restricted by the case of relatively small angles of
attack (@ ~ 0) and vertical body velocities (V, ~ 6U_). For @ >> ¢ and/or V, >> U

the drag due to lift may be of the order of (or even larger than) the finite span effer*.
These cases will be'addressed in our future work.

4.6 Outer asymptotic expansion for the flow potential

The complete flow region. which includes the cavity interior, the shear layer and the
outer stream (see Fig. 4.5) is subdivided into the outer and inner asymptotic regions. In
each region. solutions are expressed as asymptotic expansions with respect to the small
parameters

S=a,/l, »0. e=="=— 0. (4.6.1)

where ¢, is maximum body radius. (?(, is cavity half-span and [, is body length. From the

results of Sections 4.2 — 4.5 we formulate the matching conditions of the inner and outer
solutions.
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4.6.1 Matching conditions
In the inner asymptotic region. the flow potential is represented as

& =5U_L0 (X.v.Z.1)+0e> ). (4.6.2a)
b =6U_] 0.y, 2.0+ GX.0+0(E )} GX.n=In&S,(X.N).  (46.2b)

Hereinafter. the superscript “+" denotes flow quantities inside the cavity. The second
(switchback) term is added into Eq. (4.6.2b) to match the inner and outer solutions. To

O(8*) both potentials are solutions of two-dimensional Laplace equatior: 1a the cross-
sectional planes. They are determined in Part 2 for an infinite-span cavity and in Sections
4.3 and 4.4 for a finite-span cavity. To dominant order. the pressures p and p~ are
determined from the unsteady Bernouilli equations as

-

p =—[®Z +§(w‘2 +»)} (4.6.3a)

p= —{(D, +u +?12—(w2 +1° )} , . (4.6.3b)

where u.v,v are the flow velocities in the fixed coordinates.

Sections 4.3 — 4.5 show that the finite-span cavity effects are the leading terms of the -
outer limits of the inner solutions. Therefore. the matching condition of the inner and
outer solutions is determined as [6]

o9 0 1 94,(X.0)

F - =y — — =

(4.6.4)

Here A, =m‘;j is the cross-section area of the equivalent body of revolution that is

identified in Sections 4.2 — 4.4. The flow potential ¢(X,7.6,T) and the variables for the
outer asymptotic region are determined below by Egs. (4.6.9).

For Phase 2 of separation from a cavity, the effective area of the partially subfnerged
body portion is a function of the dimensionless angle n(X,r) =1-78(X,t) (see Section
4.3)

A 2 .
<x<X, ;a o (XoD) =€2a (x)sin/m

. )sin m
1 4
ox n

X [461_‘_6’0(71) -7V, (l +2n”

}, (4.6.5)

n

For a fully submerged body portion, the effective area satisfies the equation (see Section
4.4)
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0, (X.1) _ dmala H —aB)

W, —asy, (4.6.6)
ox CH+d°

This equation is relevant to Phase 3 (the body is totally outside the cavity) and Phase 2
for the body portions x < X, and x > X,. Here X () and X.(r) are coordinates of the

upstream and downstream critical points, X,(r) and X (¢) are coordinates of the body
nose and tail respe-tively. According to Eq. (2.1.3a) of Section 2.1, the function B(x.r) is

oo

B(x.n)=V, - CIZ(_ l)k q” [A—lk—l (x.0)+¢B_,_, (-"’I)]; q= -
2]

(4.6.7)
Typical distributions of the effective area are shown in Fig. 4.7 for Phase 2 (r = 0.03 s)
and Phase 3. In this plot. the abscissa is the CG coordinate X/ f(,, and the ordinate is the
effective cross-sectional area normalized by the maximum body area A, =, . These
results were obtained by computations of the 3-DOF trajectory for the body B4N2 at the
initial conditions: Y, =1 in, V, =10 ft/s ®, =200 deg/s a, =0". At t = 0.03 s. the
trajectory parameters are: Y, /D =021, X,/D=0009., a=62". V=-32ns.
®=2283 deg/s. and U =0.024 m/s. At t = 0.03 s. the trajectory parameters are:
Y/D==447. X,/D=284. a=547". V=-219m/s. ©=-461.3 deg/s. U =1.11

m/s. The effective body for Phase 2 is thinner than that for Phase 3. In Phase 2. the
effective body nose is located at the upstream critical point X, > X,,. When the body is

not far from the cavity ( H ~ O(l) << d,,).Eq. (4.6.6) becomes

o4, - :
af _ 4;—72'./.1(a‘\.H —aBY1+0 H‘:‘ ) (4.6.8a)
a.\‘ o7 d(;

When the body is far from the cavity (H >>d,). Eq. (4.6.8a) becomes

dd . .
Y 4a, =2 %) (46.8b)
dx ' dx

where A, (x) is the body cross-section area. This equation coincides with the equation for
external separation. '

For subsonic and supersonic flows, we can find the function S,(X,?) using Egs. (4.6.5)-

(+.6.8) and Ward’s procedure [7]. Equations (4.6.5)-(4.6.8) allow us to formulate the
outer asymptotic problem for transonic flows.

4.6.2 Classification of unsteady solutions in the outer asymptotic region
For analysis of the outer asymptotic region. we introduce the scaling
104 > RockweELL
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x=Xog M g ol T (4.6.9)
lo 0 0 Iy 0
b=1U_{x+80(Xx.7.Z.0}, (4.6.9b)
~ i)_pon 2 [Aﬂ
PP 4Sp +0(8Y), S=—2—. (4.6.9¢)
P e @y +Sp; +0(07) U |

where 4 is the parameter, which conirols the length scale of the outer-region: S is
Strouhal number: 7, is a characteristic time scale. Keeping dominant terms of the full

potential equation [6] with respect to & * we derive the equation
S K = (y+ 1oy = (7 -DSo; Jo +:u2(¢ff +¢zz")’25¢x7 -S'p; =0. (4.6.10)

Here K =(1-M 2)/ 8* is transonic similarity parameter. Equation (4.6.10) depends on
the ratio S =S /6. We can identify typical forms of this equation as follows.

If S<<§&°,8<<1, then, in the dominant approximation, the outer solution is governed
by the steady transonic equation B

=0, P=—0y, [K“(}"*‘I)Q\'kﬂm' + Qpr + 95, =0. (4.6.11) -

If S=x°=6%, §S=1.s0that f, =1,/(6°U..). we obtain the usual unsteady transonic
equation

P=—¢x; [K —(y+Dey ](Dxx +(‘17§f t@;5 )_2(/’.\7 =0. (4.6.12)

For faster processes. with Strouhal number §° <<S<<1. we need to introduce an
intermediate asymptotic region, where the following linear equations of acoustic type are
valid . :

s &
u =S, p=—(px,(pyf+gozz—2(pﬁ=0[5]=0. (4.6.13)
If S=1, so that f, = /U_. then the intermediate region has the scale /,, and the
governing equation includes the second derivative of the flow potential with respect to
time

2

U=1 P==0Qy =@, Opp + Qg7 = 2057 — Ppr =0(5 )=0- (4.6.14)
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To determine outer solutions of Egs. (4.6.12)-(4.6.14) we should investigate properties of
the corresponding intermediate solutions. Unsteady perturbations can attenuate passing
through the intermediate region. In the outer region. they can be less than steady
perturbations, which are of the order of & or &°Ind. Then. in the first order
approximation. the outer solution is steady.

In the problem under consideration. the time scale relevant to the vertical motion under
the gravity force is expressed as .

_ - - Jlgls
P=dle. 52_‘5__, (4.6.15)

0

This is similar to the conventional Froude time scale. We note that the pitch angle can
oscillate. This is typical for a body moving outside the cavity (see Part 3). The time scale
associated with these oscillations is determined as

o 2 (o e,
[() — ..7211) - -]dm /Jhgj . .S = L pocgﬂ , . (4616)
UmQ Um megn 2” pl)gl

gy = 'ifaz(.\')dx: g. = -]:a:(.\').\‘zdx.

RS

where p, is body density.

The presence of several time scales indicates that qualitatively different regimes can arise
in the far field region. Their occurrence depends on lumped physical parameters and non-
dimensional groupings. We believe that during the long time sc=ic relevant to the outer
asymptotic region the short-time effects are averaged out, ana t!ieir contribution to the
wave drag is small [16]. With this interpretation we can neglect the unsteady effects and
use Eqgs. (4.6.11) to predict the wave drag for transonic separation from a flat wall and
cavity. These equations are reduced to the Karman-Guderely axisymmetric form

|
P==0y. [K —(y+Do, k’.\:\' +’?(" @5 )F =0, (4.6.17)

where ¢ is the dominant approximation of the outer perturbation potential. which is valid
in the outer limit [6]

X.7=0r.K.Sfixedas 6 =0

The second order term in the inner representation of the outer expansion, g(X.t), which

is needed to compute surface pressures and wave drag. is determined from solving the
Karman-Guderley equation (4.6.17) for ¢ and taking the limit ‘
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2

. N Ag(X.t)  _
g(X.ny=lim o(X.7,1)————InT |. (4.6.18)
-0 2 -]

where AJ, =0A, /0X is the streamwise derivative of the cross sectional area of the

equivalent body. Eqs. (4.6.5)-(4.6.8) show that the expansions ((4.6.2b) and (4.6.9b)) join
two different asymptotic expansions valid in two separate asymptotic regions. If the body
is near the cavity, H =0(1)<<1/€, then according to Egs. (4.6.5) and (4.6.8a) tha
functionr G(‘X ,t) of the inner expansion (4.6.2b) and the outer potential ¢(X.7.r) are of

the order of & . If the body is far from the cavity, H >>1/¢ . Equation (4.6.10b) indicates
that G(X.r) and @(X.7,t) are O(l). In the intermediate region. 1<< H << 1/¢€, the
order of these functions varies from £ to 1. This means that when the body is near the
cavity, the nonlinear range of Mach numbers is narrow and the wave drag is £ times
smaller than that occurring in classical slender body theory [6,7]. As the store moves
away from the cavity, the flow Mach number increases. Note that, in the dominant-order
approximation, the inner potential, ®(X,Y.Z.1), and the outer potential, ¢(X.r. 1), are

governed by different physical effects. The outer solution is induced by sources
distributed along the equivalent body axis. whereas the inner solution is induced by
multipoles, which do not include source terms.

4.7 Analysis of the drag components .

In Phase 2 (when the body crosses the slip surface). the drag force can be represented as
the sum of four terms

D
Cplt)= >

p.UnSl;

U =Cpp(t)+Cpp(t)+Cpy(t)+Cpp(t), (4.7.1a)

where C,,(t) is the friction drag coefficient and C,,( 1) is the base drag coefficient. ke
two last terms. the wave drag coefficient C, (), and the crossflow drag coefficient

C,,( 1), result from integrating the streamwise projection of pressure force over the body
projected frontal area. Accordingly,

%, ;
Con N+ Cpp(n) = 8 [ A0dx [[p(x.t.8) - p* (x.t.9) 0,
X, -B

where A(x) is body cross-section area and A" = dA/dx. Substituting the pressures from
Egs. (4.6.3) into this equation and using Eqgs. (4.6.2) for the flow potential we obtain

9g(x1) dg(x.1)
ot ox

Cpw ()+Cpp(t) =—25:_f[ }A'(x)ﬂ(x,t)dx+

w07 > RoCKWELL
| \3 SCIENTIFIC




71153.FIR

X, B - R T
—JZIA’(x)a'xﬂaq)(‘g;t‘ %) +8<D(,x.r.z9) _BCD (x,t. ﬁ)}dﬁ—

ox ot
* B 5 )
-6 '[A'(x)a'x I [wl (x. . )+t —w (x . 9) =T (vt ﬂ)pz?. (4.7.1b)
X, - .

where f(x.r) is the angle of intersection of the slip surface with the body surface. In
Phases 1 or 3. the body is fully in the cavity or in the freestream and £ = r. In the right-

hand side of this formula, the first term corresponds to the wave drag. and the two other
terms relate to the cross-flow drag.

4.7.1 Friction drag
The friction drag coefficient C o (1) is found by integrating the local friction coefficient
¢,;(X.Re,) over the body surface: i.e.

C (r)——D—f——-——ljkc (X.Re. )ix (4.7.2a)
o p Ums™l: &4 1T ‘ o

p-U.l,

oo

X=X-X,. Re =ReX[1-U(n}Re= (4.7.2b) -

where U(t) is horizontal body speed: p_, &4 and U_ are density. viscosity and speed of

the freestream. The coefficient k is indicative of the friction drag being appreciable only
on the body portion submerged in the flow external to the cavity. The two typical cases of
the body location with respect to the slip surface are shown in Figs. 4.5 and 4.6. For a
partially submerged body portion, (X, < X <X,) k= f/x: for the totally submerged

portion k =1: for the body portion totally inside the cavity (the nose part. X, < X <X .
in Fig. 4.6) k=0. Because ¢,

speeds. we use the Schultz-Grunow correlation for the incompressible turbulent boundary
layer on a flat plate and its modification for axisymmetric flows [32]. Accordingly.

is a weak function of the Mach number at transonic

6

_ T e T ~2.584 .
¢,(X.Re,)=¢,(Re,)| [a *(n)dx| . ¢ (Re,)=037(IgRe, )" ™. (4.7.3)

0

4.7.2 Base drag
The base drag coefficient C,,(r) is found by integrating the pressure difference.
P, — p... over the body base. It is expressed as a function of the Mach number [33]

D, a’
Con(M )= ————=—"—\l-p, (M )]. (4.7.4a)
DB o U781 MI'[ P ]
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where M = Mm[l-U(r)]: a, is base radius. and p,(M)=p,/ p.. is the non-dimensional
base pressure. Ref. [33] showed that (4.7.4a) is in good agreement with experimental data
for ogive-cylinder bodies. The function p, (M) is shown in Fig. 4.8. For external

separation, the base drag can be expressed as a function of the equivalent body thickness
¢ and the transonic similarity parameter K ; L.e.

Cpp(M,8)=26Cpy(K ). (4.7.4b)

where C,,(K) is a universal function for thickness-ratio-scaled. affinely-related bodies.

A plot of this function for an ogive-cylinder of B4N2 profile specified in Ref. [18] 1s
shown in Fig. 4.9. In Phase 2, the slip surface leads to new physical effects. If the body
base is not fully submerged into the external flow, as shown in Fig. 4.5a. then the base
pressure p,(M ) =1is due to the boundary condition on the slip surface. Accordingly. the
base drag coefficient is C,, = 0. If the body base is fully submerged in the external flow.
as shown in Fig. 4.5b, then the base drag is calculated using Eq. (4.7.4).

4.7.3 Transonic wave drag
The wave drag coefficient Cp,(t,M ) is due to sources distributed along the equivalent
body axis. As an illustration for separation from a flat plate. it is -

C oy (1) ==28° J’ {ag (a’t‘") + 2 ;i")}A’(x)dx. 475

The term “wave drag” indicates that the integral (4.7.5) is equivalent to the integral of the
total pressure jumps along the shock wave system [6]. Since the body is moving, the
wave drag dep-uds on tire, as indicated by the derivatives of g in the integrand of
(4.7.5). Also..ihe end conditions and our inclusion of the base drag in the force -
accounting negates the need for extra terms indicated in [6]. which is applicable for the
steady flow over a transonic body in the presence of a flat plate. We examine the class of
store separations in which the Strouhal number is such that a pseudo-steady
approximation can be used at each time step. Accordingly, the function C,,.(t.M ) was
calculated at these steps with the steady transonic code of N. Malmuth. This code solves
the Karman-Guderley equation (4.6.17) for the outer flow potential with the asymptotic
boundary condition given by Egs. (4.6.9b), (4.6.5) and (4.6.6). From numerical studies
discussed in Section 4.9, its value monotonically grows as the body moves away from the
cavity. This behavior is confirmed by the numerical calculations discussed in Section 4.9.

4.7.4 Cross-flow drag
The cross-flow drag coefficient C,,(t) results from integrating the pressure component
relevant to the inner potential @( X,Y,Z,r) (without the term g(X,t) given by Eq.

(4.6.2b)) over the body surface. It is expressed by the second and third terms of Eq.
(4.7.1b).
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We subdivide the body into the three parts: the first part is partially submerged into the
outer stream; the second is totally submerged: the third is inside the cavity. Accordingly.
the cross-flow drag coefficient can be expressed as a sum of three terms

D 4 % ~
Cpplt) = S, =6 jcr (x.na(x)a (v)dx=6" (Cppi + Cppr +Cpp:). (47.62)
p.U TS 1} '

RS

B
c(xt)y=c, (x.t)+c, (x.5)y+c (x.1)= I[p(x. ) —p(x.1, 19)]dz§’+
-f

+ [ plero)dd+ [ p(xr.0d?. (4.7.6b)
4] () .

X

Cpop (1) = IC"‘ (x.0)A/(x)dx: Cppa (1) =

X

[es(enAde: Copn)= [ (r.0Adx. (47.60)

XXy X Xs

where ¢ is local cross-flow drag coefficient. The first term of Eq. (4.7.0b). c lx.t),
corresponds to the partially submerged body portion located in the interval X, <X < X,
(see Fig. 4.5b). The second term of Eq. (4.7.6b). ¢ .( x.t ). corresponds to the submerged.
body portions: it is located in the interval X, £ X < X, for the case shown in Fig. 4.5 and
in the interval X, < X < X, for the case shown in Fig. 4.6. The third component is the

cross-flow drag of the body part being inside the cavity. These drag components are
expressed in an explicit analytical form that simplifies numerical calculations.

~ Consider the partially submerged body part. On the body surface. 77=-0.|&| <b. the
inner potential and the tangential velocitv are given by Egs. (2.2.3) of Section 2.3

D(xAt)=D, +D, =

] S 2 " 2 4 i
=V S nn VI=A —-—Msin Tn _ 244y 1-XE(An). (4.7.7a)
n D(h.n) s '
wy(x A=V, g——_(—/—il——lsinmz —ﬂ.—-l—ip—(—%ﬂ +
D(A.n) 4n~Q"(A)
LANIZATAD 6 [on 2+ 07 () Jeos ), (4.7.7b)
/4

The potentials @ (x.A.r) and ®.(x.A.r) are induced by the vertical body motion and
axial variations of the body radius. respectively. Using these functions and Eq. (4.6.3) we
express the pressure on the body surface by Eq. (2.2.4) of Section 2.3
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vl 21-2)p
X AN=-0 - +—|1- , -
p(x t) ! X oy { 16"4Q_n(,/1) i]

Al-2)D* (A
An° Q™" ()

P

I(A.n). (+.7.8)

“_fL( —'1,:){):(1’")
2 7 Q" (A)

I° (’l.n)} +V.,a,

The local cross-flow drag coefficient relevant to the partially submerged body cross
section is expressed as :

¢, = _(-g-+—aa—Jaq3(x,r)+ VN, (x.t)+a N.(x.t)+V,a N,(x.1). (4.7.9)
1 X

The average value of the potential over the cross-sectional body contour. O(x.1). is
represented in the form

b
= j@(X,f,t)%%dé‘:aX&)](n)—Ve(T)O(n), (4.7.10a)
b T
&, (n)= 4su;ml {eo(n)_.'_zz[1+1t(1 -n )Ctgnn]}, (4.7.10b)
6130(0)=4n(znz—%);&>0(1)=o. (4.7.10c)
&, ()= 422 ¢ (): B, (0) = 47e,,(0): B, (1) = 0. (4.7.10d)

n

“ The special function e, (1) is expressed by the double improper Cauchy integral given in

Appendix C of Part 2; its plot is shown in Fig. 2.2. The secofid term of Eq. (4.7.8) is
expressed as

b 2 2 2
Nl(n)=—%f{1‘X 1= M'"qa—zd&.
=

16n*Q*"(X) ag
=l,-(1+2n3—szmlj—n:(l—n), (4.7.11a)
6n° 271n
T r(n®
NH=—; NNO)=—] —=-21. 47.11b
(D 5 ,(0) 3( 3 j ( )

The third term of Eq. (4.7.8) is

14 (1=-2)D*(An) 3z
N (my=={|1 () | dé = 47.12
A (n) 2_[,“ oray LA 3 (4.7.12a)
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=7r(2—n)+4C?S]m{€n(n)—2[smml) emm)~ﬁ[1+zra—n>crgmz]}. (4.7.12b)
nsinm m 2

N, () =1;-: N, (0):%’5. (4.7.120)

The function e,(n) is given in Appendix C of Part 2: its plot is shown in Fig. 2.2. The
fourth term of Eq. (4.7.8) is expressed as

N, (n)-—'[ )Dn (4.1) 1(/1.11)8—Zd§= (4.7.13a)
: 4n*mQ*" (A) o
. A 2 o) 2
—.—4(1—(:037171 smmz) e‘f(’z) +C057,m {Ze,(n)——” (1+..n )j! (4.7.13b)
m ) nsinm m- - 6
2z
N.()=rm. N13(0)=—3—(41n2—1). (4.7.13c)

The function e.(n) is given in Appendix C of Part 2: its plot“ is shown in Fig. 2.2. The
functions @, (n). ®,(n). N,(n). N,(n). N, (n) are shown in Fig. 4.10.

Using the results of Section 2.2, we express the local cross-flow drag coefficient relevant
to the submerged body portions (the interval X, £ X < X, in Fig. 4.5a and the interval

X. <X <X, in Fig. 4.6a) in the form

1 w

c.=a,+2B -V + 2i(A‘,n_1+B“ ). 4.7.14)

-2n-2
n=l

Note that this expression is valid for Phase 3. A similar relation is obtained for the cross-
flow drag associated with the body part located inside the cavity.

To integrate a singularity in the trajectory equations. which occurs at the beginning of
Phase 2. we express the cross-flow drag component. C,,, given by Eq. (4.7.6¢). as a

decomposition of the two terms

Com(t)= 5 [Cnpm( t)+Cppy(t )] (4.7.15a)
Copa(1)= £d—-_f(i‘v'( x.t)al x)a'( x )dx, (4.7.15b)
dt :
Cppin(t)= m[l-—U(t)]@( x,.t)a(x, Ja’(x,)- I@( x.t)i[g%—(}—)]dx+
x
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+ _f[VfN1 +a”N, —-Vya'le]a(x)a'(x)d.x'. (4.7.15¢)

Here the first (unsteady) term C,,,, is singular. whereas the second term is regular:

m =1 if the body base is partially submerged into the stream. and m =0 in the other
cases. Similar relations are obtained for the partially submerged body part located inside
the cavity.

4.8 Solution of 3-DOF trajectory equations
The 3-DOF trajectory equations are written as

v dw U |

-d—rz(,'[L(t)—Cg, 7;=('"1Mp(f). ";17 =C1CD(T). (4818)
~7 7Tig2 7502

o =B o b O (4.8.1b)
ouU_ m I

where m and I are body mass and moment of inertia, respectively: the lift force L(r)
and the pitching moment M ,(¢) are provided in Part 2. To integrate these equations we

developed a numerical code using a fourth-order Runge-Kutta scheme for the two first
equations of (4.8.1a). The most extensive computations are associated with the wave
drag. which requires solution of the Karman-Guderley equation. To reduce the run time. -
the Adams fourth-order explicit method is used to solve the third equation of (4.8.3.1a).
Our FORTRAN code consists of the following three components:

e Function.for contains auxiliary functions that are used to calculate the lift and drag
components.

e Wdrug.for contains the program AFTB2 of N. Malmuth for solving e Karman-
Guderley equations. As contrasted to the original version of AFTB2, t%.¢ initial data
are specified via COMMON-blocks.

e Traj3dl for contains the main program TRAJC3D with auxiliary subroutines. It
provides calculations of the lift and drag forces as well as the pitching moment in
three distinct phases of the body separation.

Note that for external separations the computational algorithm is essentially simplified
because there is no intricate Phase 3, in which the body crosses the slip surface.

4.9 Analysis of store separation from cavities and walls to a transonic
stream '

In this section, we analyze effects of the initial conditions and the body thickness on the
store trajectory. In our calculations, we use the ogive-cylinder body B4N2 tested in the
subsonic wind-tunnel experiments [18]. Physical properties of this body are described in
Part 3. In Section 4.9.1, we study external separation from a flat wall that generically
simulates a wing. In Section 4.9.2, we discuss separation from a transonic cavity.
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4.9.1 External separation

We consider external separation from a flat wall that simulates a fuselage or wing.
Calculations were performed for the ogive-cylinder body B4N2, which was tested in the
subsonic wind-tunnel experiments of IIT [18]. In our calculations. the freestream Mach
number is M_=0.999 and the Reynolds number based on the body length and

freestream parameters is Re = 6.4782755-10°. The initial location and horizontal
velocity of the bodv CGare X, =U, =0.

To estimate magnitudes of different drag components. we discuss the numerical results
provided in Figs. 4.11 and 4.12. Calculations were conducted at the initial conditions:

Y, =-0.975 inch. V, =-9.144 m/s. a, =-3.3". w, =-200deg/ s. Figure 4.11a shows
the CG trajectory Y/D, = f(X/D,). where D, is the body diameter: Figure 4.11b

shows the pitch angle time history. a(t): Figures 4.12a and 4.12b show histories of the
drag components.

Fig. “.12b shows that the wave drag is larger than the pressure drag in the initial phase of
trajectory. However, it decreases rapidly with body deceleration. Comparing the drag
components shown in Figs. 4.12a and 4.12b we conclude that the base drag is larger than
the wave and pressure drags. The dominant drag component is the friction drag. because .
the wave. pressure and base drag coefficients are proportional to & ; whereas the friction
drag coefficient is proportional to & (in the cases under consideration & = 0.03125 is

small). Note that such a hierarchy of drag components is consistent with the calculations
of Ref. [25].

Figures 4.13-4.14 illustrate effects of the initial vertical velocity on the body trajectory
and pitching angle. Figure 4.13a shows locations of the body axis at various equally
spaced times. and Figure 4.13b shows the CG trajectory. For an initial vertical velocity
V,=0. the body r.:oves toward the wall and finally re-contacts it. For V, =0.5 m/s. the
body separates from the wall monotonically. This example shows that there is a critical
initial vertical velocity, below which the body is not able to separate from the wall.
Figures 4.14a and 4.14b show histories of the pitch angle for these two regimes. It is seen
that the pitch angle oscillates with weakly growing amplitude: this oscillatory behavnor is
qualitatively consistent with the experiments [18. 34].

Figures 4.15-4.17 illustrate effects of the initial pitch angle on the body trajectory at the
release conditions: w, =0. Y, =-1.951inch. and V, =0. Figures 4.15a and 4.15b show

locations of the body axis at various times for the initial pitch angles ¢, =0", a, =6".
and «,=-6". Figure 4.16 shows the CG trajectory. At ,=6", body re-contact is

observed. For ¢, =0°. the body slowly separates from the wall. For a, =-6". the lift

force causes a more rapid departure. Similar to the case shown in Figs. 4.13-4.14, there is
a critical pitch angle above which the body does not separate from the wall. The results in

Fig. 4.16 show that the initial pitch angle @, = 6" is close to this critical value and the
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vertical coordinate of the center of inertia behaves non-monotonically. The pitch angle
histories shown in Figs. 4.17a and 4.17b are similar to the case discussed in the previous
paragraph. Note that the initial pitch angle effect is similar to the initial vertical velocity
effect and is consistent with the concept of the equivalent body velocity introduced in
Section 1.2. According to this concept the initial pitch angular velocity behaves similarly
to the initial pitch angle and vertical velocity.

The effect of initial condition on the tody trajectory illustrated by Figs. +.13 - 4.17
indicates that external store separations can be effectively controlled by the release
mechanism. It also confirms our IIT tests [18] conjecture that the repeatability could be
enhanced by close control of the release mechanism. These results may be useful in
designing ejection units and thrust motors for stage separation. They allow for evaluation
of thrust and weight required for these units, and indicate how to avoid adverse re-contact
with a relatively small impulse.

In Figs. 4.18-4.20, calculations for different body thickness are shown. The calculations
were conducted for the initial conditions: M =0.999, V, =-9.144m/s. «, =3.3",
w, =200 deg/s for the B4AN2 body of the diameters D = D, =3/8 inch. D =2D, and
D =3D,. The time variations of CG horizontal (Fig. 4.18a) and vertical (Fig. 4.18b)
coordinates. CG trajectory (Fig. 4.19a) and the pitch angle history (Fig. 4.19b) show that
the body thickness causes noticeable changes in the trajectory characteristics. Because of
increasing lift force, dropping time grows with body diameter. approximately as ~ D’
(see Figures 4.18a and 4.19b). As shown in Fig. 4.18a and 4.19a, due to this effect. the

thicker bodies penetrate downward longer distances in the horizontal direction. although
the total drag varies weakly (see Fig. 4.20).

Histories of the drag components are shown in Fig. 4.20a for the thinnest body and in Fig.
4.20b for the thickest body. Since the body thickness is small. the pressure drag is also
small. The base drag is proportional *c..he base area so that its coefficient D, is a weak .

function of the body thickness. The value of D, is consistent with Chow’s [33] results

that were scaled with the transonic similarity rule. For such slender bodies. the turbulent
friction drag may be dominant. This example shows that. prediction and control of the
friction drag (including transition and turbulence modeling) may be important for store
separation modeling and control. In this regard, the issues of transition and turbulence
modeling should also be addressed carefully.

For the body shape and release conditions considered, the wave drag is a very small
fraction of the total drag. The transonic drag effect is localized in narrow ranges of r and x
even at relatively large & because of a rapid deceleration of the body. Even for the body
of 3D, diameter, the wave drag is very small everywhere, with the exception of a short
initial “impulsive” phase (approximately 2 ms) where its value is about 1/2 the total drag.
A relatively small effect on the x trajectory of this almost “delta function” drag impulse is
due to the fact that the larger wave drag is localized to near sonic Mach numbers.
Accordingly, the impulse quickly decelerates the body to the lower transonic Mach
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number where the wave drag is insignificant. These conclusions could be changed for
different parametric conditions and cases where the axial deceleration of the body is
relatively small (for example. in the case of re-contact). However, the deeper significance
of these results is that they hint at an opportunity to economize the use of large-scale
codes and even to interpolate and extrapolate from them as well as to interpret their
results. Also, these results suggest how simple theoretical mathematical fluid dvnamic
models can give insight into the importance of the various flow mechanisms.

Two critical parameters that affect the generality of these observations are the transonic
similarity parameter K and the Strouhal number S. In additic. the possibility of throats
between the store and the parent body could create sonic choked flow situations. The lift
and moment curves show a much larger influence of d. since the lift force scales
quadratically with the increased base area. The frequency of this weakly divergent
phugoid pitch oscillation of this finless shape increases with body thickness ratio.

4.9.2 Store separation from cavities

In this section. we discuss purametric calculations. which illustrate dependencies of body
trajectories on the initial <onditions and body geometry for transonic separation from
cavities. As in Section 4.9.1, the main physical characteristics correspond to the body
B4N2. All calculations are conducted at the freestream Mach number 0.999. The more
complex physical conditions inherent in this type of separation lead to store ricochet -
dynamics.

Figures 4.21 - 4.25 demonstrate the body thickness effect on the trajectory characteristics.
Three bodies of diameters D = D, =3/8 inch. D=2D,. and D =3D, are considered.

The initial (release) conditions are shown in the figures. In these calculations. we varied
the body diameter at fixed body length. The dimensionless cavity width d is also varied
inversely proportional to D.

Figure 4.21 illustrates the body thickness effect on time histciies of. the vertical CG
coordinate. In Figs. 4.22. the CG trajectories are shown in X-Y space. The pitch angle and
the vertical speed temporal variations are shown in Fig. 4.23 and 4.24. It is seen that the
body dynamics strongly depend on the thickness ratio. For D=D,, the body separates
from the cavity in a relatively short time period. For D=2Dy, the body is almost stopped
near the parent body for a long time (until the pitch angle is negative). The total vertical
displacement is only about 4D. During this phase the body drifts downstream and
removes in the horizontal direciion from the initial state at X ~ 70D, which is larger than

four body lengths.

The average pitch angle and the pitch oscillation frequency also strongly depend on the
thickness ratio. The frequency increases approximately proportional to the thickness
ratio. For D=3D,. ricochet is observed. The body returns to the cavity with a relatively
small downstream displacement. The pitch angle monotonically grows with small
oscillations since the pitching moment is too small to overcome pitching due to the initial
angular speed.
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Figure 4.24 illustrates centerline trajectories for bodies of different diameters. It is seen
that the body of D=3D;, returns to the cavity. The body of D=2D, remains near the parent
body for a relatively long time. During this time. it is projected downward from the
cavity, with pitch angle decreasing. The D=D, body enters the external stream almost
immediately. and its trajectory only weakly depends on the parent body.

Figures 4.25a — 4.25¢ show time histories of different drag components for the bodies of
D=D,. D=2D, and D=3D. respectively. In Phase 2. the wave drag is less than the other
components since the effective area is relatively small. By neglecting the wave drag of
this chase we can substantially reduce the computational time. In Phase 3. the wave drag
is of the order of (or even larger than) the other drag components for the body of D=2D...
The pressure drag has a peak at the exit from the shear layer (the end of Phase 2) since all
its components have maximum at n = 0, based on the analytical expressions provided in
Section 4.7.4. The base drag jumps to a finite value or to zero, when the body base is
submerged into the outer stream or is returned to the cavity. In Phase 2, the friction drag
monotonically grows, with the wetted area increasing. As seen in the plots for the body of
D=Dy,. all drags tend to their asymptotic values in Phase 3. For the body of D=2D. the
time period is too short to achieve this asymptotic behavior. The body of D=2D, crosses
the shear layer during this time period. It moves downstream. and its pitch angle
decreases to a negative value. The base drag history shows that the body base returns into
the cavity in the time interval 0.05 - 0.06 s when the pitch angle becomes negative. Then
the body begins to separate from the cavity. The body of D=3D, does not separate. It
returns to the cavity with increasing pitch angle.

The second series of calculations are shown in Figs. 4.26 — 4.31 to illustrate the initial
vertical speed effect on the body trajectories. Calculations were made at

o, =6, w, =0deg/s, Y, =1 inch and the two near-critical values of the initial vertical
speed: V, =20in/s,30in/s. The plots of CG histories (Fig. 4.26), CG trajectories (Fig.

4.27). and centerline time histories (Fig. 4.30) at V, =20 mV/s indicate that the body
ricorkets from the freestream and re-contacts the parent body back of the cavity. “When
the body enters into the shear layer, the pitch angle grows slightly (see Fig. 4.28) due to
body inertia. Due to a negative pitching moment, it then decreases with a small angular
speed. This trend is too weak to decrease the pitch angle to its critical value (at which the
separation becomes possible). For V=30 m/s, the body stays near the shear layer for a
long time period and penetrates downward a long distance. In this case, the negative
angular speed is high enough to decrease the pitch angle below its critical value, and the
body separates from the cavity. Figure 4.29 shows that in both cases the vertical CG
speed grows to a positive value. For V=30 m/s, the gravity force is strong enough to
cause the store departure from the cavity, whereas for Vi, =20 m/s this force is too small
for separation.

Figures 4.31a — 4.31b show the time evolution of the drag components. At Vo =20 m/s,
the body is near the shear layer and the wave drag is small. The base and friction drags
are dominant components during most of the trajectory. The pressure drag is important in
the final phase of the trajectory. At Vy =30 m/s, the pressure drag peaks occur when the
body enters the freestream. We infer that the base drag evolution causes the body to
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return to the shear layer. At this time. the pressure drag reaches a minimum and then
grows to its maximum value when the body base exits from the shear layer again. As the
wetted area decreases, the friction drag decreases. In this case. the wave drag is smaller
than the other components. )
Figures 4.32-4.37 illustrate the initial pitch angle effect on the trajectory behavior. The
calculations were performed at Y, =1 inch. V, =20 inch/s. @, =0. The trajectory

characteristics are very sensitive to the angle @, which may be induced by the release
mechanism and aircraft maneuvering at the release instant. The variation Aa, =1 leads

to a substantial perturbation of the trajectory: at «, =5° the body separates from the

cavity. whereas at @, =6° re-contact is observed (see Figs. 4.32 and 4.33).

Near the critical angle. ¢, =5°. the trajectory behavior is similar to that shown in Figs.

4.26-4.30 for the initial speed V(=30 in/s. However. the vertical CG speed in this case
does not become positive (see Fig. 4.35). Drag comp~ient histories (Fig. 4.36a) cause the
body base to enter the external flow and then retur) to the shear layer again. when the
angle of attack becomes negative. Then, the body exits to the external flow and drops
downward from the shear layer.

The case ¢, =6 is also shown for comparison. Here. the body quickly crosses the shear

layer and separates from the cavity to a large distance. An interesting feature of this
regime is observed for vertical oscillations of CG speed in Phase 3 (body outside the
cavity). This behavior is consistent with our analysis for the body dropping in an
unbounded stream. Figure 4.36b shows that the body moves in the outer freestream for a
long time and the drag components approach their asymptotic values. This corresponds to
external body separation.

-4.10 Summary and conclusions

In this part. we analyzed the outer asymptotic solution and drag force components.
Parametric studies of store trajectories are provided including the separation from a wing
(external separation) and cavities into a transonic freestream. To determine the matching
conditions and identify forms of the outer solutions we consider the outer limit, » >> H ,
of the inner solutions. For cavities of a large span. our analysis is based on the solutions
of the dominant approximation obtained in Part 2. We found a general form of the inner
solutions in the case of finite-span cavities and investigate their limits.

Analyzing asymptotics for the inner solutions of the first order approximation we find:

e For external store separation from a wing. the outer limit relates to axisymmetric flow
over an equivalent body of revolution of twice the cross-sectional area of the store.

e In Phase 2 and 3 of separations from an infinite-span cavity. the far flow field is
three-dimensional and corresponds to a dipole distribution along the body axis.
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For separations from a finite-span cavity our analysis shows:

e In the inner asymptotic region. the finite-cavity span effect is second order with
respect to the ratio of the body radius to the cavity span. Therefore. it is small for
wide cavities.

e  The cavity span effect is dominant in the far field asymptotic behavior of the inner
solution. This effect deterraines one type of outer flow.

e The far flow field is induced by sources distributed along the store axis. The source
intensity is proportional to the ratio of the body radius to the cavity span.

We analyzed outer limits for the inner solutions in the second- and third order
approximations with respect to the small parameter &” and showed that

e In the region r ~ 1,/S, unsteady terms of the second-order potential can be of the

same order of magnitude (or even dominant) as the dominant terms of the first-
order potential. In the case of a finite-span cavity, the far-field asymptotics are
axisymmetric. In the case of the infinite-span cavity, they are three-dimensional.

e For unsteady flows, a thin structure of the far field can be rather complicated and
depend on the relationship between the Strouhal number and the body radius.

o If unsteady effects are small, then the higher-order asymptotics have the form of .
potential induced by sources (in the case of a finite-span cavity) or by dipoles (in
the case of an infinite-span cavity).

e For infinite-span cavities, the source term is O(5°Ind) in the far field. It is
negligibly small compared with the source term for finite-span cavities. which is
O(a,!d,;6*Inéd. '

Using the asymptotic theory [6] and the results of Parts 2 and 4, we formulated the
matching conditions for the inner and outer solutions in the case of a body of revolution
separating from a cavity into the outer transonic freestream. For Phases 2 and 3. quasi-
steady regimes are discussed in detail. In these cases. the outer flow corresponds to
transonic flow over an equivalent body of revolution. We obtain explicit functional forms
of the equivalent body as functions of time and the dimensionless cross-section area. The
latter continuously grows with time from a small value of the order of £ (in Phase 2) to
O(1) in Phase 3. Typical examples of the equivalent body shape are provided.

Analyzing the flow equations in the outer asymptotic region we identified typical flow

regimes relevant to different ratios S = /87, where S is the Strouhal number and &° is
characteristic scale of flow perturbations. For unsteady problems, we established the
presence of the intermediate asymptotic region governed by the linear equations of
acoustics. A detailed study of this regime is needed to identify solutions relevant to the
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" nonlinear transonic case. A thin “boundary layer” structure of the outer asymptotic region
is exhibited due to disparate time scales inherent in the separation process.

We believe that for many practical applications. the transonic wave drag can be evaluated
in the framework of the quasi-steady regime, since short-time effects are averaged out
over the long-time scale relevant to the outer transonic expansion, and their contribution
to the wave drag force can be neglected. Our analysis shows that the wave drag
monotonically increases during transition from Phase 2 to Phase 3 (as the body moves

away from the slip surface). Its value grows from O(ed”) to 0(5*).

The base and friction drags were evaluated using known theoretical results and empirical
correlations. The wave drag was calculated by integrating the outer pressure along the
equivalent body axis. For Phases 2 and 3. the pressure drag was expressed in closed form
using the inner pressure distribution on the body surface obtained in Part 2. We calculated
different components of this drag and discussed their behavior.

Using the results of Parts 2 and 4 we developed a FORTRAN code that coupies the solver
of the trajectory equations with the transonic code of Malmuth for the Ka~.uian-Guderley
equation. The computational package allows for prediction of 3-DOF trajectories for
transonic store separations.

Our parametric studies of 3-DOF body trajectories indicate that the body motion may be
rather complicated. including such phenomena as ricochet and/or re-contact. The body
trajectory is very sensitive to release conditions: for example, initial vertical speed and
pitch angle. When critical initial pitch angles and vertical speeds are exceeded.
ricochet/re-contact is possible.

We have shown that stores can easily separate from flat walls. Here, re-contact occurs
only at small initial speeds. Our studies a'50 indicate that a body thickness variation (from
D, to 3D, ) does not lead to the re-contzc:.

In contrast. store separation dynamics is more complicated from a cavity. Above the
initial critical pitch angle or below the critical initial vertical speed, the body does not
cross the slip surface and returns to the cavity. With increasing horizontal displacement
and pitch angle. collision with the upstream and downstream cavity walls is possible.
Near the critical conditions. the body can remain at a small distance from the shear layer
for a long time period. It also may partially return to the cavity interior. If the horizontal
displacement during this time period is larger than the cavity length. coriiact with the
upstream cavity wall is possible: otherwise. the store slowly separates.

Our calculations indicate that store separation can be controlled effectively by the release
mechanism. Our modeling can help design ejection units and thrust motors for stage
separation. It allows for evaluation of thrust and weight required for these units. and
indicates how to avoid adverse re-contact with a relatively small impulse.
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4.11 lllustrations

iH / rlgld wall

free surface J
B =n{1-n) z

N
- dD C O dn
v, = a,+V,ysind body

Fig. 4.1 Cross-flow scheme in Phase 2 (body passes slip surface).

cavity wall

free surface body
] b N 2 \
-d ¥ = -V /) d

Fig. 4.2 Cross-flow scheme in the transformed plane.
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Y @ZHY

free surface _ cavity wall

Fig. 4.4 Two circles moving in unbounded stream and integration contour.
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Cdvity walls

a) side view b) back view

Fig. 4.5 Typical body locations with respect to the slip surface: the body nose is in outer
stream.

Cavity walls

"dO

a) side view b) back view

Fig. 4.6 Typical body locations with respect to the slip surface: the body tail is in outer
stream.
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Fig. 4.7 Typical area distributions of the effective body in Phases 2 and 3.
Initial conditions: ¥, =1in. V, =10 ft/s. w, =200deg/s. «, =0".
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Fig. 4.8 Ogive-cylinder base pressure as a function of Mach number.
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Fig. 4.9 Wave drag scaling for bodies of the B4N2 type.

Cross-flow drag components
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Dimensionless angle, n = f/n

Fig. 4.10 Components of the cross-flow drag.
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a) CG trajectory
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Fig. 4.11 Trajectory
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b) Pitch angle history

parameters of B4N2 body for the initial conditions: ¥, =-0.975
-9.144 m/s. o, =-3.3°. @, =-200 deg/s.
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Fig. 4.12 Histories of drag components for B4N2 body for the initial conditions:
Y, =-0.975 inch, V, =-9.144 nvs, o, =-3.3°, w, = =200 deg/ s.
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a) Locations of the body axis at various initial vertical speeds
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Fig. 4.13 Trajectories of the body axis and center of gravity for the initial conditions:
w,=0.Y,=-195.inch: ¢, =6".
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Fig. 4.14 Pitch angle history for the initial conditions: @, =0, Y, =-1.95.inch; o, =6".
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Fig. 4.15 Locations of the body axis at various initial angles of attack: @, =0,
Y,=-195 inch.and V, =0.
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" A " 2 1 N Y
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X/D,

Fig. 4.16 CG trajectories for the initial pitch angles ¢, = 0°.6°: w,=0.Y,=-195
inch, and V, =0.

131 (\RDCKWELL
-~ ~Q SCIENTIFIC




71153 FTR

V:‘=0. m/s, (I_v.=-63

5
o
@
-]
3 o0
5
-10 L 1 i 1 L 1 1
0 50 100 : 150 200
t, msec ‘
a) a, =-6
0.0 . . . . . :
01 }F
0.2 —_
i
- V,=0. m/s, a,=0
5 w03}
04|
_0'5 n i " 1 " 1
0 50 100 150 200
t, msec
b) a,=0°

Fig. 4.17 Pitch angle history for the initial conditions: @, =0. Y, =-1.95inch. and
V,=0.
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Fig. 4.18 .Center of gravity evolution for bodies of different radii: M =0.999.

V, =-9.144 m/s, o, =3.3°. @, = 200 deg/s.
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Fig. 4.19 Body thickness effect on store trajectory characteristics: M =0.999,

V, =-9.144 m/s, o, =3.3°, 0, = 200 deg/s.
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Fig. 4.20 Histortes of drag components for bodies of various thickness: M = 0.999.
V,=-9.144 m/s. o, =3.3°, 0, =200 deg/s.
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a) Time histories of the vertical CG coordinate
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b) Trajectories of CG

Fig. 4.21 CG trajectory parameters for the bodies of various thickness.

135 (\ROCKWELL
E \.) SCIENTIFIC




71153.FTR

Y,=1in,V =120in/s,0,=200deg/s,a,=0

0 ricochet _—a—p=D
b i 0
ﬂg@hooﬂcm C—a—D = 2D0
i — =
o 5h D 3D0
@
i < B
_‘1.5 0:,_-;1:"
[e))
C
©
ST
=
-10 +
_15 L | 1 1 | 1
0,00 2,02 0,04 0,06 0,08 0,10
Time, sec

Fig. 4.22 Pitch angle histories for bodies of various thickness.
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Fig. 4.23 Vertical speed for bodies of various thicknesses.
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Fig. 4.24 Centerline trajectories for different bodies.
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Fig. 4.25 Histories of drag components for bodies of different diameters.
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Fig. 4.26 Time histories of vertical CG coordinate at V,, = 20 and 30 inch/s.

6

Top cavity wall
4
2+ Ricoche\

Shear layer

2r | —o— V,=20 m/s
——V =30 m/s
4+
0 ' 20 ‘ 40 | slo

X /D

0

Fig. 4.27 CG trajectories at V,, =20 and 30 inch/s.
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Fig. 4.29 Evolution of CG vertical speed at V,, = 20 and 30 inch/s.
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Fig. 4.30 Centerline trajectories at V, = 20.and 30 inchvs.
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Fig. 4.31 Evolution of drag components.
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Fig. 4.32 CG vertical coordinate histories at various initial angles of attack.
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Summary

This report considers aerodynamic and dynamic problems associated with separation of
slender bodies of revolution from rectangular cavities into subsonic/transonic stream.
Analyses of the aerodynamic problems are based on slender body theory. The inner and
outer asymptotic flow regions were analyzed using combined analytical and numerical
methods. /ssymptotic analyses allowed us to highlight lumped parameters controlling the
separation process and split the problem into a series of simpler unit tasks that were
solved analytically for a majority of practical cases. The analytical results substantially
simplify solving the store dynamic equations. They were used to develop fast and robust
numerical codes to predict 2-DOF and 3-DOF store trajectories. The computational
package was verified by comparisons with the subsonic wind tunnel experiments of IIT.
Parametric studies of store separation into a transonic freestream emphasized critical
regimes relevant to store re-contact and ricochet.

In Part 1. we formulated ihe inner asymptotic problem. The body separation process was
treated as a sequence of th2 three phases: in Phase 1, body is inside the cavity: in Phase 2.
body crosses the shear layer: in Phase 3. body is outside the cavity in the outer stream.
We showed that for many practical cases the cavity sidewall effects can be neglected.
This allowed us to decompose the inner problem into unit problems:

1) Body drops from a flat wall to fluid at rest (Phase 1) or to the external stream (Phase
3)

2) Body crosses the slip surface (Phase 2):

3) Body d:ops toward the slip surface (Phase 1) or away from the slip surface (Phase 3).

The first problem was solved analytically by rapidly convergent series. The second and
third problems are more complicated because they include effects of the body interaction
with the free slip surface. To obtain their analytical solutions and provide insight into the
slip surface effect on the near-field flow. we analyzed the case of small slip-surface
displacements using perturbation theory. In the dominant approximation. we derived a
system of linear integrodifferential equations that we solved numerically by an iterative
scheme. In the first iteration step therein. the slip surface was treated as a flat plane of
zero potential. and the nez. neld solution was expressed analytically. We showed that the
slip-surface shape is governed by Poisson equation in the two-dimensional space of
streamwise coordinate and time. The forcing term of this equation provides direct
coupling of the slip-surface displacement with the body motion. Results of our analyses
contrast with those for two-dimensional flows. Our results indicate that, in contrast to
classical slender body theory. the inner solution exhibits a global behavior. The nonlinear
equations were derived for the general case where the slip-surface perturbations are not
small. These analytical studies simplified the modeling of the slip surface effect in
determining aerodynamic forces and moments acting on the store in all phases of the
separation process.
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In Part 2. we obtained analytical solutions of the dominant approximation problems
relevant to separation of a thin body of revolution from a rectangular cavity adjacent to a
uniform flow. For Phases 1 and 3, we used multipole expansions that allowed us to derive
compact expressions for the pressure on the body surface and the cross-sectional lift. For
Phase 2, the solution was obtained by conformal mapping and Cauchy integral
representations. The local lift force was also expressed in an explicit form with the
introdvction of new special furctions. We investigated their characteristics analytically
and numerically. As contrasted fo the two-dimensional problem. the solutions for Phases
2 and 3 include new terms Televant to the body shape variation in the axial direction.
These terms lead to qualitatively new features of the slip surface and rigid wall effects.
For example. in Phase 3 the slip-surface effect is essentially stronger than in Phase 1
because the influence of this boundary decreases inversely with distance from the body.
In Phase 2, the flow velocities of the dominant approximation are singular at the line of
intersection between the slip surface and the body surface. However, these singularities
are integrable. This allows us to calculate the lift force and pitching moment without a
detailed analysis of the singular regions. Nevertheless, these singularities should be
analyzed in future to treat the higher-order approximations. Our results form a foundation
for the development of computationally non-intensive algorithms that predict body
trajectories through all separation phases.

In Part 3. 2-DOF dynamics of vertical and pitching motions of thin bodies of revolution
separating from a rectangular cavity into an external freestream was discussed. The
problem was analyzed using combined asymptotic and numerical methods. Dynamic
equations for Phases 1 and 3 were simplified using transonic small perturbation theory
and the analytical results of Part 2. This allowed us to integrate them in explicit analytical
forms. We showed that in Phase 1. the CG coordinate and pitch angle are very close to
parabolic functions of time. In Phase 3, the trajectory parameters oscillate near their mean
states - which are. again, almgst parabolic functions of time. The analytical solutions
allow iss to obtain explicit decr.adencies of the body trajectory parameters on the physical
characteristics of the body and freestream. This helps us extract governing parameters
and gain insight into the separation process. The results are consistent with the subsonic
experiments of IIT [18].

A numerical code predicting the store trajectory for all three phases separation was
developed and verified by comparisons with the experimental data [18]. For a majority of
the data. the calculations are in good agreement with experiment. Moreover, the theory is
able to capture nuances of the trajectory behavior observed experimentally. However.
there are cases when the agreement is only satisfactory. In the latter, the body separation
is affected by more complex flow phenomena that are not captured by our model. The
discrepancy seems to be due to the penetration of the outer flow into the cavity. It
indicates that a more complex model is needed for the cavity flow. The slip surface
displacement can lead to a pitching moment phase jump from O to 180 degrees during
Phase 2, when the body crosses the shear layer. The jump may trigger a bifurcation of the
pitch-angle history for Phase 3. Our calculations showed that this interpretation is
consistent with the experimental data [18] and indicates the existence of two substantially
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different pitching trajectories for almost identical initial conditions. Despite the
transitional phase 2 being relatively short, its aerodynamics is crucial in identifying one
of the two possible trajectories outside the cavity. Further theoretical and experimental
studies are needed to establish and clarify the bifurcation mechanism. Our future work
will extend this model to transonic speeds.

Our parametric studies show that trajectory parameters. such as the mean state
characteristic. oscillation amplitude, frequency and ampli‘ication rate depend critically on
the body mass. CG location and freestream speed. The trajectory is very sensitive to the
initial conditions induced by the release mechanism. Our ‘investigations lead to the
conclusion that a satisfactory agreement between theory and experiments is difficult
without detailed and accurate release conditions. The latter need to be extracted from
analysis of experimental trajectories. Our estimations show that the initial conditions are
also influenced by difficult-to-control disturbances such as wind tunnel flow oscillations
or/and capture of the model ends by the release mechanism.

In Part 4. we analyzed the outer asymptotic soiution and drag force components:
parametric studies of store trajectories include :he separation from a wing (external
separation) and cavities into a transonic freestream. To 'determine the matching
conditions and identify forms of the outer solutions we consider the outer limit. r >> H .
of the inner solutions. For cavities of a large span. our analysis is based on the solutions -
of the dominant approximation obtained in Part 2. We found general forms of the inner
solutions in the case of finite-span cavities and-investigated their limiting behaviors.

Analyzing asymptotics for the inner solutions of the first order approximation we find:

e In the case of the external store separation from a wing, the outer limit corresponds to
the axisymmetric flow over the equivalent body of revolution with the double cross-
sectional area of the store.

e In Phase 2 and 3 of separations from an infinite-span cavity. the far flow field is
three-dimensional: it corresponds to a dipole distribution along the body axis.

For separations from a finite-span cavity we observed that:

e In the inner asymptotic region. the finite span effect is second order with respect to
the ratio of the body radius to the span. Therefore. it is small for wide cavities.

e The cavity span effect is dominant in the ‘ur field asymptotic behavior of the inner
solution. This effect determines one type of outer flow.

e The far flow field is induced by sources distributed along the store axis. The source
intensity is proportional to the ratio of the body radius to the cavity span.

We analyzed outer limits for the inner solutions in the second- and third-order
approximations with respect to the small parameter 8" and showed that
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e In the region r ~1,/S". unsteady terms of the second-order potential can be of the

same order of magnitude (or even dominant) as the dominant terms of the first-order
potential. In the case of a finite-span cavity. the far-field asymptotics are
axisymmetric. In the case of infinite-span cavity. they are three-dimensional.

e For unsteady flows. a thin structure of the far field can be rather complicated and
depends on the relationsk..p between the Strouhal number and the body racius. '

e If unsteady effects are small. then the higher-order asymptotics have the form of a
potential induced by sources (in the case of a finite-span cavity) or by dipoles (in the
case of an infinite-span cavity).

e For infinite-span cavities, the source term is of the order of 0(8*%) in the far field. It
is negligibly small compared with the source term for finite-span cavities. which is of
the order of O(6°a, /d,).

Using the asymptotic theory and the results of Parts 2 and 4 we formulated the matching
conditions for the inner and outer solutions in the case of a body of revolution separating
from a cavity into the outer transonic freestream. For Phases 2 and 3. quasi-steady:
regimes are discussed in detail. In these cases, the outer flow corresponds to transonic
flow over an equivalent body of revolution. We obtained explicit forms of the equivalent
body as functions of time and the dimensionless cross-section area. The latter
continuously grows with time from a small value of the order of & in Phase 2 to O(1) in

Phase 3. Typical examples of the equivalent body shape are presented.

Analyzing the outer asymptotic region we identified different flow regimes depending on

the ratio of Strouhal numbe " co the characteristic scale of flow perturbations. § =5/8°.
We conclude that for the unsteady problems considered. an intermediaic- asymptotic
region is possible and would be governed by equations of acoustic type. This region
needs to be studied in detail in order to establish a form of the solution for nonlinear
transonic regimes. Such a thin structure of the outer asymptotic region is due to different
time scales inherent in the separation process. »

We believe that for many practical problems. the transonic wave drag can be predicted in
the framework of quasi-steady flow. Short-time effects are averaged out over a long time
scale relevant to the outer transonic region, and their contribution to the wave drag seems

to be small. Our analysis showed that the wave drag increases from O(&6 *) (in Phase 2)
to O(S*) (in Phase 3) as the body moves away from the slip surface.

We derived formulas for the base and friction drags using known theoretical results and
empirical correlations. The wave drag is calculated by integrating the outer pressure
along the axis of the equivalent body. For Phases 2 and 3, the pressure drag was
expressed in analytical form using the inner pressure distribution on the body surface
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obtained in Part 2. We calculated different components of the pressure drag and
performed their analysis. Using the results of Parts 2 and 4 we developed a FORTRAN
code coupling the trajectory equations solver with the code of Malmuth to provide
solutions of the Karman-Guderley equation. This package predicts 3-DOF trajectories for
transonic store separations.

Numerical results illustrating 3-DOF body dynamics for separations from a wing and
cavity in the transonic freestream show that this dynamics can be rather complicated. It

includes such phenomena as store ricochet or/and re-contact. The body trajectory is very
“sensitive to initial “launch” vertical speed or pitch angle. Critical values of these
parameters exist. In particular, ricochet/re-contact occur when the initial pitch angle is
larger or the vertical speed is smaller than these critical values.

Our studies show that stores can easily separate from flat walls, and re-contact can occur
for small initial speeds only. A body thickness variation (from D, to 3D, ) does not lead

to the re-contact. The body dynamics is more complicated in the case of the separation
from a cavity. Above an initial critical pitch angle or below a critic~i 1nitial vertical
speed. the body does not cross the slip surface and returns to the cavity. “#ith pitch angle
increasing or horizontal displacement. contact with the upper or back walls is possible.
Near the critical conditions. the body can stay at small heights from the shear layer for a

long time period and may partially return to the cavity interior. If the horizontal -

displacement during this time period is larger than the cavity length. contact with the
back cavity wall is possible; otherwise, the store slowly separates.

Our calculations indicate that the store separation can be effectively controlled by the
release mechanism. Our modeling can help with the design of ejection units and thrust
motors for stage separation. It allows for evaluation of thrust and weight required for
these units. and indicates how to avoid an adverse re-contact situation with a relatively
small impulse. :
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A second-mode stability analysis has been performed for a hypersonic boundary layer on a wail covered by a
porous coating with equally spaced cylindrical blind microholes. Massive reduction of the second mode amplifi-
cation is found to be due to the disturbance energy absorption by the porous layer. This stabilization effect was
demonstrated by experiments recently conducted on a sharp cone in the T-§ high-enthalpy wind tunnel of the
Graduate Aeronautical Laboratories of the California Institute of Technology. Their experimental confirmation
of the theoretical predictions underscores the possibility that ultrasonically absorptive porous coatings may be
exploited for passive laminar fiow control on hypersonic vehicle surfaces.

Nomenclature
admittance
thermal admittance
frequency parameter
porous layer thickness
porosity
pressure perturbation
Prandt number
displacement thickness Reynolds number
transition Reynolds number
pore radius
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mean flow temperature
time
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U mean flow velocity

u, v, w perturbation velocity components
x, ¥,z Cartesian coordinates

a, B wavenumber components
y -~ specific heat ratio

& = displacement thickness

6 = temperature perturbation

K = thermal conductivity

u = viscosity

p = mean flow density

o = spatial growth rate

@ = wave front angle

w = angular frequency
Subscripts

ad = adiabatic

€ = upper boundary-layer edge
m = maximum value

w = wall surface

Superscript

* = dimensional
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Introduction

HE ability to stabilize a hypersonic boundary layer and increase

its laminar run is of critical importance in the hypersonic ve-
hicle design.! Early transition causes significant increases in heat
transfer and skin friction. Higher heating requires an increased per-
formance thermal protection system (TPS), active cooling, or tra-
jectory modification. This translates to higher cost and weight of
hypersonic vehicles due to increased TPS weight. Moreover, with
the low payload mass fraction, even small savings in TPS weight
can provide a significant payload increase. Vehicle maintainabil-
ity and operability are also affected by transition. Robust metallic
TPS have temperature limits lower than ceramic TPS. Laminar flow
control (LFC) can help meet these more severe constraints. For a
streamlined vehicle with large wetted area, viscous drag becomes
important. It can be from 10% (fully laminar) to 30% (fully tur-
bulent) of the overall drag.? For optimized hypersonic wave/riders,
viscous drag may represent up to 50% of the total drag.® Vehicle
aerodynamics is another area impacte Uy laminar-turbulent tran-
sition. Asymmetry of the transition l6cr» can produce significant
yawing moments. Aerodynamic conrol surfaces and reaction con-
trol systems are also affected due to sensitivity of boundary-layer
separation to the flow state (laminar or turbulent).

If freestream disturbances and TPS-induced perturbations are
small, transition to turbulence is due to amplification of unstable
boundary-layer modes."* In this case, LFC methods and transition
prediction tools are predominantly based on stability theory and*
experiment.5~® LFC systems are aimed at slowing down or elimi-
nating amplification of unstable disturbances using passive and/or
active control techniques. A third form of flow control is known
as reactive control, in which boundary-layer disturbances are can-
celed by artificially introducing out-of-phase disturbances. Typical
passive LFC techniques are pressure gradient and shaping. Active
techniques include wall suction and heat transfer. In reactive control
methods, periodic suction/blowing, heating/cooling or wall vibra-
tions are used for artificial excitation of counter-phase disturbances.

In hypersonic boundary layers, amplification of the following
instability mechanisms may drive the transition process:

1) The first instability mechanism is the first mode associated
with Tollmien—Schlichting waves. This instability may be domi-
nant at relatively small local Mach numbers (normally less than 5).
This mode is strongly stabilized on cool surfaces. At low wall-
temperature ratios, the stabilization effect may be so strong that the
first-mode mechanisci becomes unimportant.

2) The second mode associated with an inviscid instability present
due to a region of supersonic mean flow relative to the distur-
bance phase velocity® belongs to the family of trapped acoustic
modes and becomes the dominant instability in two-dimensional and
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4 ﬂq ’ \sonic line: U(y, J=c-a(y,)

Fig. 1 Acoustic mode in a supersonic boundary layer on semitrans-
parent wall. .

quasi-two-dimensional boundary layers at Mach numbers M > 4.
The existence of the second mode was established by the exper-
iments of Kendall,’ Demetriades,'® Stetson et al.,!' Stetson and
Kimmel,'? and Kimmel et al.'> The most amplified second-mode
wavelength is approximately twice the boundary-layer thickness,
and its phase velocity tends to the boundary-layer edge velocity of
mean fiow. As a result, the second-mode disturbances are in the
ultrasonic frequency band. For example, the most amplified waves
observed in the experiment of Stetson et al.!! at Mach 8 correspond
to a frequency about 100 kHz. In contrast to the first mode, the
second mode is destabilized by cooling.

3) Crossflow vortices are observed in three-dimensional boundary
layers on the leading edge of a swept wing, axisymmetric bodies at
high angles of attack, etc. This instability is weakly sensitive to wall
cooling. It can be effectively stabilized by shaping. For example,
two-dimensional shaping of air breathers helps to avoid crossflow

* instabilities on large acreage regions of the vehicle surface.

4) Gortler vortices. play a major rele.in transition on concave
surfaces. Similar to the crossflow instability, their growth rate can
be reduced by shaping.

Because severe environmental conditions make it difficult to use
active and reactive LFC concepts for hypersonic vehicles, passive
LFC techniques are of great interest. Thus, Malmuth et al.'* pro-
posed a new passive method of second- and higher-mode stabiliza-
tion. They exploited the hypersonic boundary layer’s behavior as an

. acoustic waveguide, schematically shown in Fig. 1. Therein, acous-
tic rays are reflected by the wall and turn around near the sonic line:
¥ =Yya. U{y,) = Re(c) —a(y,), where c is the disturbance phase
speed and a is local sound speed. The second, third, and higher
boundary-layer modes correspond to the waveguide normal modes.
Malmuth et al.'* assumed that the absorption of acoustic energy by
an ultrasonically absorptive coating can stabilize these disturbances.
This assumption was examined using stability theory for inviscid
disturbances. It was found that an ultrasonically semitransparent
wall provides substantial reduction of the second-mode growth rate.

In this paper, we study this stabilization mechanism, including
viscous effects and an absorptive skin microstructure. We formu-
late the eigenvalue problem for viscous disturbances in a hyper-
sonic boundary layer on a wall covered by an ultrasonically absorp-
tive coating of special type, namely, a porous layer with equally
spaced cylindrical blind microholes. We obtain the analytical form
of boundary conditions on the porous surface and solve the viscous
eigenvalue problem numerically. We discuss results of calculations
showing the second-mode stabilization on porous surfaces of vari-
ous pore radii, spacing, and thickness. Then we briefly describe the
experimental data of Rasheed et al.!’ that confirm the theoretically
based hypersonic boundary-layer stabilization by porous coatings
given in this paper. These results were obtained in the T-5 Graduate
Aeronautical Laboratories of the California Institute of Technol-
ogy high-enthalpy wind tunnel on a sharp cone that they detail in
Ref. 15. Finally, we conclude the paper with a summary discussion
and indicate possible future directions.

Eigenvalue Problem

We consider supersonic boundary-layer flow over a flat plate or
sharp cone as schematically shown in Fig. 2. The fluid is a perfect
gas with Prandtl number Pr, specific heat ratio y, and viscosity p.
The coordinates x, y, and z are made nondimensionless using the
boundary-layer displacement thickness 5°. In the locally parallel
approximation, the mean flow is characterized by the profiles of
x-component velocity U(y) and temperature T(y), referenced to
the quantities U} and T, at the upper boundary-layer edge. Three-

boundary layer

porous layer
side view

fo e

XX IE
L T X7
L L X

Fig.2 Schematic of 3 wall covered by porous layer.

porous layer
top view

dimensional disturbances are represented in the traveling wave
form

G =Refg(y) expli(ax + Bz — w1}, g=I[u,v.w, p, 0] (1)
where &, ¥, and @ are velocity components; p is the pressure ref-
erenced to the double dynamic pressure p;U?; 6 is the temper-
ature; ¢ = *8* and B = B*8* are wave number components; and
w=w"3*/ U is the angular frequency. The system of stability equa-
tions that is derived from the full Navier-Stokes equations for a
locally parall:: compressible boundary layer can be represented in
the form'® -

T
dz ) du do dw
—=S5-z2, ={u, —,v,p,0, — w,— 2
dy b4 4 (u & v, p & w dy) )

where S is an 8 x 8 matrix. Its elements are functions of the mean
flow profiles, the displacement thickness Reynolds number Re =
8*U: p:/u?, and disturbance characteristics o, &, and 8.

We consider a wall covered by a porous layer of the thickness &*.
The pores are equally spaced cylindrical blind holes of radius 7* per-
pendicular to the wall surface, as schematically shown in Fig. 2. The
hole spacing s* and diameter are assumed to be much less than the
boundary-layer displacement thickness §°. Because the pore radius
is small and interactions between neighboring pores are weak, per-
turbations of longitudinal and transverse velocity produced by the
porous layer are neglected. However, the porous structure is semi-
transparent relative to the vertical velocity and temperature perturba-
tions. In this case, the wall boundary conditions can be expressed as

w(0) = Ap(0).  6(0) = Bp(Vy

3)

where the admittance A and thermal admittance B are complex
quantities that depend on properties of the wall material, poros-
ity parameters, mean flow characteristics on the wall surface, and
flow perturbation parameters such as a wave frequency and wave-
length. These dependencies are derived in the next section. Because
boundary-layer modes decay outside the boundary layer, we have

u(0) =0, w(0) =0,

- u(00) = v(00) = w(oo) = 6(00) =0 @

The ¢ige:r «alue problem (2—4) provides the dispersion relation
F(a, 8, w) =0. For temporal stability, the wave number compo-
pents « and B are real quantities, and w is 2 complex eigenvalue. If
Im(w) > 0, then the disturbance is unstable. For spatial instability in
two-dimensional boundary layers, the frequency w and transverse
wave number component § are real, whereas a is a complex eigen-
value. [f Im() <O, then the disturbance amplifies downstream with
the spatial growth rate o = —Im(a).

Admittance of Porous Layer
The porous layer is characterized by the porosity n, which is the
fraction of the overall volume taken up by the pores. For the pore
spacing shown in Fig. 2, the porosity, n =n (r*/s*)?, can be varied
in the range 0 < r*/s* < /4, where the upper limit corresponds to
s* =2r*. The pore radius and spacing are considered to be much
less than the disturbance wavelength, which is of the order of the
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boundary-layer displacement thickness. In this case, the porosity
is fine enough to avoid disturbing the laminar boundary layer by
other mechanisms associated with effective surface roughness. The
porous layer thickness h* is assumed to be much larger than the pore
radius r*, that is, each pore is treated as a long tube.

To obtain the relationship between the admittance A and porous
layer parameters, we use the theoretical model developed by
Gaponov for subsonic'”!* and moderate supersonic speeds.' These
studies addressed the porosity effect on Tolimien—Schlichting (TS)
waves. As contrasted to second-mode waves of acoustic type dis-
cussed in this paper, the TS waves over porous walls analyzed by
Gaponov are vortical disturbances that become unstable due to vis-
cous mechanisms. For this reason, the second-mode interaction with
a porous surfacc is fundamentally differ»:.. from that of TS waves.
Yet, the results' for the disturbance propagation within a porous
wall are independent of the nature of lie boundary-layer distur-
bances, for example, second-mode acoustic or TS waves. In par-
ticular, they can be used in formulating the porous wall boundary
conditions for the vertical velocity of second-mode disturbances
considered herein. The therma! admittance B is derived using an
explicit coupling between the pressure, temperature, and velocity
perturbations within a uniform pore.?®

Following the analysis,'® we apply the theory of sound wave prop-
agation in thin and long tubes (see, for example, Ref. 21). Because
k* > r*, the pressure is approximately constant across the pore. In
this case, the acoustic field within each pore is characterized by the
propagation constant A and the characteristic impedance Zo. These
parameters can be expressed as a function of the series impedance
Z and the shunt admittance Y for the tube element of unit length
using the transmission line formalism.?* The series impedance
properties of the tube element are associated with the storage of
kinetic energy and its dissipation due to viscous losses at the tube
wall. The shunt admittance is associated with the potential energy of
compression and the thermal energy losses due to the wall heat con-
ductivity. We assume that the mean gas temperature along the tube
is constant and equal to the wall surface temperature 7. Daniels?
and Benade?® showed that the dimensional series impedance Z*
and shunt admittance Y* per unit length of a tube with radius r* are
expressed as

-1
iwpn[ 2 Ik
zr= 2Pty 2 T
re [1 k. Jg(k,,):l ©)
Cdwtnrt? -2 Jiky)
= - L+ (v i) - 6
oot [ oy Jo(k:)] ©

where, p; and a;, are mean density and sound speed in a tube. Jo
and J, are Bessel functions of the arguments k, = r* /(iw* o, /1L},)
and k, = k,./(Pr), which measure the ratio of the tube radius to the
viscous boundary-layer thickness and to the thermal boundary-layer
thickness on the tube surface, respectively. Using the relation

Jo(x) + J2(x) = 2/1(x)/x )
we express Z* and Y* in the form
iw'p, Joky)

Z" = v . 8
nrt J(ky) @

iw*mr? Ja(ky)
Y'=- +(y —1)- ©
paz [” YDk )

For the average velocity through the pore, the transmission line
is characterized by the impedance Z} = §*Z* and shunt admittance
Y; =Y*/S*, where §* = rrr*? is pore cross-sectional area. Choosing
the boundary-layer displacement thickness and mean flow parame-
ters at the upper bouudary-layer edge as reference scales, we have

ars* iow Jotk,) iwp
Z, = ' m e — k, = R (
T A A TS W U0
prUzs” o )
Yi=f e v = —ioM -1 11
1= iw [r+(y )Jo(k:)] an

where r = r*/8* is nondimensional pore radius. The characteristic
impedance Z, and the propagation constant A are expressed in the
form

Zo=\/Z,]Y,

The coupling between the pressure amplitude p and the average
velocity disturbance amplitude » at the pore end, y = —h, can be
expressed as p(—h) = X - v(—h), where the impedance X depends
on characteristics of the backup structure. If the lower pore end is
closed by a solid wall (blind pores), then v(—h) = 0. Inthis case, the
impedance is X = oc, and the velocity—pressure ratio at the upper
end of the pore is

{9(0)/ p(0)] = (1/Zo) tanh(Ah) (13)

A=\Z1. Re(A) <0 (12}

Averaging the vertical velocity amplitude at the wall over the surface
area, we have v(0) =n - v(0). Then the admittance in the boundary
conditions (3) is expressed as

A = (n/Zo) anh(Ah) (14)

If the porous layer is relatively thick (Ah — o0). then Eq. (14) is
reduced to the form

= —(n/Zo) (15)

Note that the limit Ak — oo leads to Eq. (15) at any finite value of
X (i.e., the disturbance at the upper end of each hole does not feel
the lower end due to the decay of sound propagating along a tube).

According to the analysis of Stinson and Champoux.? the pres-
sure disturbance, average temperature disturbance, and average ve-
locity disturbance within a cylindrical pore are coupled as

") = dp” (w.)[l 2 Jl(kn]

- 16
iw*py dy* ky Jo(ky) (1o

o [p‘(w')/dp. (Prw')}a'(Prw') amn
Ky dy*

Substituting Eq. (16) into Eq. (17), accounting for Eq. (7), and nondi-
mensionalizng the result, we oblain

6" (') =

6 = ~(y — DVM*T,pha(k) [ Jo(ko) (18)

Thus, the thermal admittance in the boundary condition (3) for the
temperature disturbance is expressed as

B=-n(y - DM*Thk)/hk) (9

Computational and Parametric Studies

To evaluate the porous layer effect on the second-mode stability,
we solve the eigenvalue problem (2—4) numerically using the ad-
mittance (14) or its limiting form (15) and the thermal admittance
(19). We consider the boundary layer of a perfect gas with Prandtl
number Pr =0.71 and specific heat ratio y = 1.4. The temperature-
viscosity law is specified as pu = po(T/Tp)™ with the exponent
m =0.75; the second viscosity is zero. Figure 3 shows the spa-
tial growth rate o as a function of the Reynolds number Re for
two-dimensional unstable waves (8 =0) of nondimensional fre-
quency F=w*'v;/U2=2.8 x 10~ in the boundary layer at the
Mach number M = 6. The wall temperature T, = 1.4 approximately
corresponds to the wall temperature ratio T,/ T, =0.2. Calcula-
tions were conducted for a thick porous layer (Ah — o0} with the
porosity n = 0.5 at various values of the nondimensional pore radius
r=r"/5". Note that the porous layer causes massive reduction of
the second-mode growth rate. In Figs. 3—6, symbols correspond to
the case of zero thermal admittance, B = 0. For all cases considered,
temperature perturbations on the porous surface weakly affect the
disturbance growth rate and can be neglected.

Figure 4 shows that deep pores of fixed radius (r= 0.03 at
Re =2 x 10%) and spacing (porosity n =0.5) strongly stabilize the
second-mode waves in a wide frequency band at various Reynolds
numbers Re (dashed lines). This example illustrates that it is possi-
ble to cause significant reduction of the disturbance growth rate on
large surface areas without fine tuning the pore size. As contrasted to



e A S 5 1 At 4 AR PO AR Al B Y 5 M Pl Al

oW ntAu e

608 FEDOROV ET AL

0.04

0.03

0.02

0.01

0.00

5.0
Ax10°

Fig. 3 Growth rate o as a function of Reynolds number Re at vari-
ous poreradiir: M=6,T, =1.4, F=2.8 X 10~%,:1 = 0.5, and Ak — oo
(solid lines); symbols indicate zero thermal admittance. (R = Reynolds
number in figure.)
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Fig. 4 Growth rate o as a function of disturbance frequency F at
‘various Reynolds numbers Re: M=6, T, =1.4,n=0.5, and Ak — oo;
solid lines r = 0, dashed lines r = 0.03 at Re = 2.0 x 10%, symbols indicate
zero thermal admittance. (R = Reynolds number in figure.)

reactive fiow control techniques, a porous coating provides passive
stabilization of the boundary-layer fiow regardiess the disturbance
phase and amplitude distributions in space and time and with no
external energy input. Note that the waveguic behavior described
earlier in this paper in connection with the inst- »ility of the acous-
tic second mode that is quenched by the ultrasonic absorbing wall
concept described herein resembles amplification processes studied
by the second author in connection with the stability of hypersonic
strong interaction flows.?

Figure 5 shows distributions of the maximum growth rate,
om(Re) = max,[o(w, Re)], at the wall temperatures T,, = 1.4, 3.5,
and 7.0, that approximately corresponds to the wall temperature ra-
tio T,/ T4 =0.2,0.5, and 1. The stabilization effect decreases as the
wall temperature increases. A strong reduction of the growth rate is
observed in the boundary layer on a cool wall (see Fig. 5), 2 more
practical case for hypersonic applications. This trend is consistent
with the admittance asymptotic behavior associated with Egs. (10—

'12) and (15). For deep pores (Ah>> 1) of relatively small radius

(lk,| < 1), the admittance A is propomona.l to k,M./(T,) and de-
creases with the wall temperature as T, ™

Figure 6 shows the maximum growth rate ax as a function of the
porosity n for Re =4 x 10° and r =0.03 for the boundary layer at
M =6 and T, = 1.4. The porous layer of spacing s =4r(n=0.2)
reduces the growth rate by a factor of 2 compared to the solid
wall case n=0. Our calculations using the eV method indicates
that this stabilization translates to extending the transition onset
point more than three times its value without porosity. In Fig. 7,
the second-mode growth rate is shown as a function of the nondi-
mensional porous layer thickness h=h*/8* at n=0.4, r =0.03,
Re=4x 10%, and F =3 x 10™*. The limit Ak — oo is achieved
at a relatively small value of h==0.3 (pore depth is about five
diameters) that is due to strong damping of sound waves in thin
pores. There is an optimal thickness, 4 = 0.12, at which the porous
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Fig. 5 Distributions of maximum growth rate o,.(Re) at various pore
radiir: M =6,n=0.5,and Ak — oo (——); symbols mdlcau zero ther-
mal admittance. (R = Reynolds number in figure.)
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n
Fig. 6 Maximum growth rate o, as a function of porosity n at
Re=4x10°: M=6, T, =14, r=0.03, and Ah — oo (——); symbeols
indicate zero thermal admittance.

wall effect is able to stabilize the disturbance completely. In this
case, the disturbance reflected from the pore bottom is in counter
phase with the boundary-layer disturbance. However, the optimal
thickness strongly depends on the disturbance frequency and the
thick porous layer is more robust. Figure 8 illustrates the stabiliza-
tion effect for three-dimensional waves of the second-mode family.
The growth rate is shown as a function of the wave front angle
¢ = arctan(B, /a, ) at various pore radii. The porous coating causes
massive reduction of the disturbance growth rate and substantially
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decreases the unstable range of wave front angles. These examples
show that a relatively thin porous coating can dramatically reduce
the second-mode amplification and increase the laminar run if tran-
sition is driven by second-mode disturbances.

Experimental Validation of Theory

Rasheed et al.!’ have recently verified the theoretical concept
by testing a S-deg half-angle sharp cone with an ultrasonically ab-
sorptive coating in the California Institute of Technology T5 high-
enthalpy shock tunnel. The cone was 1 m in length, with half of its
surface solid and the other a porous sheet perforated with equally
spaced blind cylindrical holes. Porosity parameters were chosen
from the preliminary theoretical analysis of Fedorov and Malmuth
as well as manufacturing constraints. The average pore radius r”
was 30 pm, the depth h* was 500 pm, and the average spacing s*
was 100 um. Figure 9 shows a microphotograph of a portion of
the porous surface. For typical runs, the boundary-layer thickness
was about 1 mm, and the estimated number of holes per boundary-
layer disturbance wavelength was about 20. Static measurements of
ultrasound refiectivity of perforated sheet coupons (without flow)
showed that the porous coating attenuated the incident ultrasonic
signal of 400-kHz frequency by 3.0 dB relative to a solid wall.

The model was instrumented by thermocouples, and the tran-
sition onset point was determined from the Stanton number dis-
tributions S7(x) measured simultaneously on both sides of the
model for each run. Nitrogen was selected as the test gas to
minimize the chemistry effects, which were not iucluded in the
theoretical analysis. Runs were performed for the ranges of the
freestream total enthalpy 4.18 < Hp < 13.34 MJ/kg and M=ch num-
ber 4.59 < M., < 6.4. Figure 10 shows a summary plot of the tran-
sition onset Reynolds number Re, =x3U; p]/u; vs Hy. The solid
squares correspond to transition on the solid wall, and the open cir-
cles correspond to transition on the porous surface. The circles with
arrows indicate that the boundary layer on the porous surface was
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Fig. 10 Transition onset Reynolds number Rey. vs total enthalpy Ho:
m, solid wall; O, porous wali; and é, boundary layer on porous wall is
laminar up to the model base.

laminar up to the model base, that is. the value plotted is not a real
data point because the cone was not long enough to measure the
transition locus. In all cases, the circles are well above the squares.
This indicates that the porous coating always delays transition by a
signijzicant amount.

. : Summary :
A second-mode stability analysis has been performed for hyper-
sonic boundary layers over walls covered by porous coatings with
equally spaced blind microholes. Absorption of the disturbance en-
ergy by porous layers was modeled using the theory of disturbance
wave propagation in thin and long tubes. The admittance and ther-
mal admittance coupling the pressure disturbance with the vertieal
velocity and temperature disturbances on the porous surface are
expressed as explicit functions of porosity characteristics. Stabil-
ity calculations showed that the absorption of disturbance energy
by the porous coating provides massive reduction of the second-
mode growth rate in a wide range of disturbance frequencies and
Reynolds numbers. The flow stabilization is due to vertical velocity
perturbations on the porous surface associated with nonzero admit-
tance of porous medium. Temperature perturbations weakly affect
the boundary-layer disturbance and can be neglected. This indicates
that temperature disturbances play a passive role in the second-mode
instability mechanism.

Our conclusions are consistent with the results of Maimuth
et al.,!* obtained from their inviscid stability analysis. The mostpro-
found effect is observed on a cool wall that is typical for hypersonic
vehicle TPS surfaces. A relatively thin porous coating (of thickness
about 30% of the laminar boundary-layer displacement thickress)
provides a strong stabilization effect. Such porous coatings can be
designed for passive LFC in hypersonic vehicle surfaces. Note that
the disturbance absorption should be introduced at the initial phase
of transition process, where the unstable disturbance amplitude is
about 0.01-0.1% of its level in transitional and turbulent bound-
ary layers. In this phase, additional heating of the porous coating
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associated with partial absorption of the disturbance epergy is neg-
ligibly small compared to the turbulent heating.

The first series of experiments conducted by Rasheed et al.'s on
a sharp cone in the T5 shock tunpel at the Graduate Aeronauti-
cal Laboratories at the California Institute of Technology qualita-
tively confirms the theoretical prediction. Quantitative comparison
of the theory with these data is planned for the future. Because the
boundary-layer stabilization is due to the disturbance energy extrac-
tion mechanism, we believe that similar effects may occur for other
types of high-frequency instabilities. Absorptive coatings may also
affect the bypass mechanism, which is responsible for transition past
TPS roughness elements. These assumptions could be examined by
further theoretical modeling and verified by experiments.

Many TPS materials, which can provide efficient absorption of
acoustic disturbances, have a random porosity. The interaction of
the boundary layer and unstable disturbances with a random porous
coating may be different from the case of the regular pore structure
discussed earlier. Because of communication between randomly dis-
tributed pores, a mean flow may occur inside the coating that leads
to a slip effect on the coating surface. Boundary conditions for un-
stable disturbances may be also affected. These effects will also be
addressed in our future studies. )

Acknowledgments

Portions of this effort was supported by the Air Force Office
of Scientific Research, Air Force Materials Command under Con-
tracts F49620-92-C-0006, F49620-96-C-0004, and F499620-98-1-
0353. The U.S. government is authorized to reproduce and distribute
reprints for government purposes, notwithstanding any copyright
notation thereon. The views and conclusions herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed, or implied
by the Air Force Office of Research or the U.S. government.

References

- Malik, M. R,, Zang, T. A., and Bushnell, D. M, “Boundary-Layer Tran-
sition in Hypersonic Flows,” AIAA Paper 90-5232, 1990.

2Reed, H. L., Kimmel, R., Schneider, S., and Amal, D., “Drag Pre-
diction and Transition in Hypersonic Flow,” AIAA Paper 97-1818, June
1997.

3Bowcutt, K. G., Anderson, J. D., and Capriotti, D., “Viscous Optimized
H)?ersouic Waveriders,” AIAA Paper 87-0272, 1987.

Reshotko, E., “Boundary-Layer Instability, Transition, and Control,”
AIAA Paper 94-0001, Jan. 1994.

SMack, L. M., “Boundary-Layer Stability Theory,” Special Course on
Stability and Transition of Laminar Flow, edited by R. Michel, Rept. 709,
AGARD, 1984, pp. 3-1-3-81.

SReshotko, E., “Stability Theory as a Guide to the Evaluation of Transition
Data,” AIAA Journal, Vol. 7, No. 6, 1969, pp. 1086-1091.

"Malik, M. R., “Prediction and Control of Transition in Supersonic
and Hypersonic Boundary Layers.” AIAA Journal, Vol. 27, No. 11, 1989,

pp. 1487-1493.

8Malik, M. R., “Stability Theory for Laminar Flow Control Design,"
Viscous Drag Reduction in Boundary Layers, edited by D. M. Bushnell and
J. N. Hefner, Vol. 123, Progress in Astronautics and Aeronautics, AIAA,
Washington, DC, 1990, pp. 3-46. '

9Kendall, J. M., “Wind-Tunnel Experiments Relating to Supersonic and
Hypersonic Boundary-Layer Transition,” AIAA Journal, Vol. 13, No. 3,
1975, pp. 290-299.

9pemetriades, A., “Hypersonic Viscous Flow over a Slender Cone, Part
IN: Laminar Instability and Transition,” AIAA Paper 74-535, 1974.

UStetson, K. F., Thompson, E. R., Donaldson, . C., and Siler. L. G..
“Laminar Boundary-Layer Stability Experiments on a Cone at Mach 8.
Part 1: Sharp Cone,” AIAA Paper 83-1761, 1983.

128tetson, K. F., and Kimmel, R. G., “On the Breakdown of a Hypersonic
Laminar Boundary Layer,” AIAA Paper 93-0896, 1993.

BKimmel, R., Demetriades, A., and Tinaldson, J., “Space-Time Corre-
lation Measurements in a Hypersonic Transitional Boundary Layer,” AIAA
Paper 95-2292, 1995. X )

14Malmuth, N. D., Fedorov, A. V., Shalaev, V., Cole, ., and Khokhlov, A.,
“Problems in High-Speed Flow Prediction Relevant to Control,” AIAA Paper
98-2995, June 1998.

1SRasheed, A., Hornung, H. G., Fedorov, A. V., and Malmuth, N. D,
“Experiments on Passive Hypervelocity Boundary-Layer Control Using a
Porous Surface,” AIAA Paper 2001-0274, Jan. 2001.

16Mack, L. M., “Boundary-Layer Stability Theory,” Jet Propuision Lab.,
Rel)l. 900-277, rev. B, California Inst. of Technology, Pasadena, CA, 1969.

"Gaponov, S. A., “Influence of Porous Layer on Boundary-Layer Sta-
bility,” Izevestia SO AN SSSR, Seria Technicheskich Nauk, Vyp. 1, No. 3,
1971, pp. 21-23 (in Russian).

Gaponov, S. A., “Influence of Gas Compressibility on Stability of

‘Boundary Layer on Porous Surface at Subsonic Speeds,” Zhurnal Prikladnoi

Mechaniki i Technicheskoi Fiziki, No. 1, 1975, pp. 121-125 (in Russian).

9Gaponov, S. A., “Stability of Supersonic Boundary Layer on Porous
Wall with Heat Conductivity,” lzvestia AN SSSR, Mechanika Zhidkosti i
Gaza, No. 1, 1977, pp. 41-46 (in Russian). .

stinson, M. R., and Champoux, Y., “Propagation of Sound and the
Assignment of Shape Factors in Model Porous Materials Having Simple
Pore Geometries,” Journal of the Acoustical Society of America, Vol. 91,
No. 2, 1992, pp. 685-695. .

21Rzhevkin, S. N., Lectures on Theory of Sound, Moscow State Univ.,
Moscow, 1960 (in Russian).

2Daniels, F. B., “On the Propagation of Sound Waves in a Cylindrical
Conduit,” Journal of the Acoustical Society of America, Vol. 22, No. 2, 1950,
pp. 563-564.

BBenade, A. H., “On the Propagation of Sound Waves in a Cylindrical
Conduit,” Journal of the Acoustical Society of America, Vol. 44, No. 2, 1968,
pp. 616-623.

24Malmuth, N., “Stability of the Invi- .id Shock Layer in Strong Interac-
tion Flow over a Hypersonic Flat Plate,” "luid Mechanics and Its Applica-
tions, edited by D. E. Ashpis, T. B. C =5k, and R. Hirsch, Kluwer Academic,
Boston, 1993, pp. 189-223.

M. Sichel -
Associate Editor




AIAA JOURNAL

Vol. 40, No. 6, June 2002 (Tentative)

Influence of a Counterflow Plasma Jet
on Supersonic Blunt-Body Pressures

V. M. Fomin* and A. A. Maslov'
Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia
~ N.D. Malmuth?
Rockwell Scientific Company, Thousand Oaks, California 91360
and
V. P. Fomichev,® A. P. Shashkin T. A. Korotaeva,**A. N. Shiplyuk,"and G. A. rozdnyakov*
Institute of Theoretical and Applied Mechanics, Novosibirsk, XXXXX. Fussia

Aerodynamic augmentation in the presence of a thin high-temperature onboard plasma jet directed upstream of a
slightly biunted cone was studied experimentally and numerically. The flow around a truncated cone cylinder atzero
incidence was considered for Mach numbers M, = 2.0, 2.5, and 4.0. For the first time, computationally validated
experimental pressure distributions over the model surface in the presence of the plasma jet were obtained. As in the
conventional (nonplasma) counterflow jet, two stable operational regimes of the plasma jet were found. These were
a short penetration mode and a long penetration mode (LPM) aerospike into the opposing supersonic freestream.
The greatest drag reduction occurred in the moderate LPM regime. LPM strong overblowing reduces the benefits.
The experimental pressure results were approximately validated against an Euler computational fiuid dynamics
simulation, modeling a perfect gas hot jet, counterflowing against a perfect gas supersonic freestream. Plasma effects
such as electron pressure, radiation, electric field interactions, Joule heating, and induced vorticity, streamers, and
plasmoids have been identified that, if accounted for, may improve the comparison. Procedures for the use of these
experimental results have been outlined as a baseline that will be useful in separating fluid dynamic/thermal effects
from plasma processes in understanding the physics of onboard plasma jets for aerodynamic augmentation.

Introduction

ONSIDERABLE interest exists today regarding the applica-

tion of onboard plasma devices (OBPD) to enhance aerody-
namic performance of flight vehicles. A number of concepts that
have been considered include microwave, electron beams, surface
and volume discharges such as coronas, and plasma jets. Both nu-
merical and experimental papers devoted to this problem are exem-
plified in Refs. 1-5. The effect of a laser optical pulse discharge in
a supersonic flow giving a spikelike energy source decreases coni-
cal and hemispherica! nose drag.® Bodies of revolution with vary-
ing bluntness ranging from a sphere to a flat-faced cylinder were
considered®* for different methods of modifying the flow such as
microwaves, heated wires, or glowing discharges.

Originally, much of the interest was stimulated by the possibil-
ity of weakening the vehicle shock system by the interaction of the
artificially generated plasma with the shocks system. One of our con-
jectures is that streamers form that create strong delta-functionlike
transverse temperature gradients. By Crocco’s theorem, these cre-
ate intense vorticity that can attenuate the shocks. The origin of
the plasma aerodynamic augmentation or flow modification s quite
controversial, with one camp believing that the major effects are
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due to heating and conventional fiuid mechanics, whereas another
is convinced that it is all due to plasma physics. Most likely, any
benefits are due to a combination of both phenomena. The relative
proportion of each is related to the device or scheme used to obtain
aerodynamic benefits and the range of parameters considered.

How to create a power source using the minimum possible energy
in these devices is not obvious now. Weight and size as well as scal-
ing (including identification of the correct parameters) are key for
systems integration and tradeoff comparisons against conventionat
thrust augmentation schemes for rogket and scramjet propelled ve-
hicles. New databases and mod: 'ing are needed to deal with these
issues. Thermodynamic analyses =, also needed to bound the prob-
lem. An example of a simple plasma aerodynamic augmentation de-
vice is a counterflow plasma jet. Experimental studies on injection
of a cold ordinary gas jet were described in Refs. 8-11. The possi-
bility of decreasing the drag of a blunted body was demonstrated in
these studies,’~!* including experiments and numerical modeling.
This work was extended for hot and, later, plasma jets in Refs. 15
and 16. Available data show that the jet effects substantially depend
on the shape of the housing parent body as well as on the jet and
freestream flow conditions. However, these data are scattered and
do not lead to general conclusions.

Most of the OBPD literature gives information on overall forces
and moments without providing pressure distributions. This infor-
mation is the minimum needed to resolve the aforementioned con-
troversy and is a central theme in this paper, which not only provides
this information but also computational fluid dynamics (CFD) val-
idations of perfect gas Euler simulations that can be used to test
the hypothesis that, for a range of plasma parameter space, plasma
effects such as electron pressure, electric fields, charge separation,
plasma radiation, and nonequilibrium and vibrational relaxation are
small compared to Joule heating source terms modifying a perfect
gas simulation of the plasma jet flow modification. This study exam-
ines the conjeciure that, if the flow patterns and pressures are approx-
imately similar between experiment and an Euler computational
model, conventional gasdynamic processes control the flow. Inde-
pendent of its origin, heat addition significantly modifies the body
flowfield, forming a complex system of compression and expansion
waves interacting with bifurcational unsteady flow separations and
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cavities. These bifurcations produce significant changes in the body
forces and moments.

Existing onboard plasma jet experimental databases contain no
pressure distributions. Furthermore, no adequate theoretical mode!
exists currently. To fill these gaps, experiments and modeling were
performed. A description of these studies follows.

Test Facility and Equipment

Performance of counterflow plasma jets in supersonic freestreams
was the primary focus of the experimental portion of the investiga-
tion. A significant capability was the availability of a long run-time
[nstitute of Theoretical and Applied Mechanics T-325, SB RAS su-
personic wind tunnel for the counterflow plasma jet experiments.
In this facility, the test section, which is 200 x 200 x 600 mm, pro-
vided good views of the flow patterns. The long run times were
ideally suited for ::nderstanding the flow patterns to be described.

Experimcitts were performed at Mach numbers Mo, = 2.0, 2.5,
and 4.0, total temperature 300 K, and stagnation pressures 1-
3 aétm, which correspond to unit Reynolds numbers Re;, = (13-40) x
10° 1/m. :

The nonuniformity of the Mach number in the test section did not
exceed +0.8%. Pressure and temperature in the settling chamber
was measured and kept constant within an accuracy of 4:0.5%. The
test article was a cylinder with a blunted cone forebody. The cone
haif-angle was @, =30, and it was 40 mm in diameter and 200 mm
inlength. The cone was mounted in the wind-tunnel test section with
a-strut on one window, so th:. as forebody could be seen through
the test section optical glass. The blunted cone nose was necessary
to accommodate a nozzle fur the plasma generator and to inject the
plasma jet. Figure I shows the plasma generator nozzle located in
the forebody of the model. A dc plasma generator with a variable
length arc and gasdynamic displacement of the anode spot on the
anode surface was used in the experiments. The discharge current
was 30-60 A, voltage was 100-200 V, and the characteristic value of
the power supply in the gas was 6 kW/g. A (continuous) plasma gen-
erator produced a hot jet of nitrogen of temperature 5000 K and gas
flow rate 0.7 g/s. The body of the plasma generator was bounded by
a water-cooling jacket that permitted long, continuous runs. Current,
voltage, gas flow rate, and pressure in a prechamber of the plasma
generator were measured in the experiments. The plasma genera-
tor operational parameters were adjusted before each T-325 wind-
wnnel run. The flow conditions were monitored during the runs.

Standard equipment was used for measurements of current, volt-
age, and pressure. Frecision of measurements of current and voltage
was £0.5% ani’ pressure 3%, respectively.

The plasma g:.. >fator was attached to a strut that did not affect the
measured value of the mode! drag. The metric part of the model wasa
thin-walled shell that was attached to a strain-gauge balance located
on the extreme downstream end of the casing shield. A strain-gauge
registered forces acting only on the thin-walled shell. The forces
acting on the plasma generator (including the jet reaction force)
were compensated by the strut response that was not measured by
the balance.

On the forebody of the model, 10 pressure taps were installed,
and 6 were placed on the cylindrical afterbody. Three pressure sen-
sors were located inside the modzl, between the cone and plasma
generator. One was located w2ar the strain-gauge balance.

Fig.1 Plasma generator nozzle, ry =4 mm and r; =17.5 mm.

The tests included 1) testing of the balance measurement sys-
tem using a sharp cone model, 2) balance measurements of model
drag, 3) pressure measurements on the model surface and inside the
model, 4) video filming of the flow pattern with the plasma generator
operating, and 5) schlieren pictures of the flow.

Balance and Pressure Measurement Apparatus

The drag force of the model was measured using a strain-gauge,
one-component balance with a range of force measurement of
0-100 N. The balance was calibrated after each change of the model
position in the test section of the T-325 wind tunnel.

The value of the model drag obtained from a strain-gauge balance
accounted for the internal pressure in the model using the formula

g
N=B +f 2rrPi(r)dr
41

where B is the force measured by the strain-gauge balance, ry is the
internal radius of truncation, r; is the internal radius of the model
forebody (Fig. 1), and P, (.r) is the pressure distribution over the
internal surface of the forebody.

The pressure distributions on the surface of the model were mea-
sured with the taps (diameter 0.7 mm) and strain gauges. These were
isolated from the electromagnetic fields of the plasma generator.

Experimental Results

The plasma generator was activated when the desired wind-tunnel
flow conditions were established. Plasma generator ignition resulted
in a glow enveloping the model and highlighting the flowfield. Two
steady flow modes were observed: short jet penetration mode (SPM)
into the incoming airflow and long jet penetration mode (LPM).
Both modes of flow were observed in the same experimeat. The
transition from one mode to another was accompanied by transient
phenomena, giving different flow patterns. During these transition
regimes, a reorganization of the flow structure occurred from one
exhibiting a multibarreled jet structure, charactenistic of the LPM,
to one with one barrel, intrinsic to the SPM. Qualitatively, such phe-
nomena have been previously observed for nonplasma counterflow
cold jets embedded in supersonic flows.

Figures 2 show typical schlieren images associated with these ex-
periments exhibiting the aforementioned features. All occur sequen-
tially in one run at nominal, nearly constant wind-tunnel conditions
with growing pressure in the plasma generator prechamber. The
LPM occurred at the beginning of experiment. Then'it transformed
itself into the SPM. Following Refs. 8 and 10, the occurrence of the
two modes was correlated with the stagnation pressure ratio param-
eter P = po;/p,,. where py; is the total pressure of a plasma jet
and py, is the total pressure behind normal shock. Figure 2a corre-
sponds to the LPM, where P = 3.8. The head bow shock and trailing
shocks are obvious. Figure 2¢c shows the SPM, where P =5.0. An
example of a transitional regime, P =4.4, is shown in Fig. 2b. The
images of both modes (exposure time ~0.01 s) are superimposed
in Fig. 2b. A transitional regime exhibiting instability in the zone
of interaction of the jet and counterflow was observed in the range
4.1 < P <4.5. It is possible to estimate the critical P for which
mode transition/bifurcation occurs as approximately 4.3. This value
is slightly higher than that for cold counterfiow jets (P critical ~3)
in similar flow conditions.? The disparity may be related to plasma
effects.!’

SPM also appears for P < 2. The drag force of the truncated cone
model with counterflow plasma jet injection was compared with the
value of the drag force of a sharp cone model. Figure 3 shows the
values of the drag coefficient of the model Cp = X/qS, where X is
the drag force of the model, g is the freestream dynamic pressure,
and § is the area of model cross section, for various stagnation
pressures of the flow pg;, obtained by balance measurements.

Precision of the go determination was £0.5%. The pressure
gauges had a 100-kPa measurement range, also subject to an er-
ror of 20.5%. Total error for Cp was +1-2%. The maximum error
is shown as an I bar in Fig. 3 (upper right point). Because the flow
under study was unsteady and the model surface was subjected to
the high-temperature plasma jet, additional errors could occur due to
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Fig.2 SPM to LPM transitions.

model erosion. Baseline experiments were carried out with a sharp
cone (points 1), blunted cone without a jet (points 2) and with a
plasma jet (points 3 and 4) at M, =2.

Surprisingly, the sharp cone has the greatest drag for the inves-
tigated range of T-325 freestream pressures. The blunted cone has
somewhat less drag. This is due to a suction force on a fiat nose,
even without the jet.!® This was not measured in our experiments.

Addition of the plasma jet reduced the drag of the model. The
experimental data form two groups of points corresponding to the
SPM and the LPM. LPM produced the greatest drag reduction (up to
23%), whereas the drag reduction was not too significant for SPM.
For the LPM, the jet penetrates much further into the flow, reducing
the effective cone angle/body thickness ratio. Figure 4 shows a plot
of the model drag vs the Mach number M, for pos = 100, 200,
and 300 kPa, where 1 refers to a sharp cone, 2 a truncated cone
without the jet, and 3 a trun-ated cone with the jet. The forebody drag
was estimated by integration of the measured pressure distributions,
accounting for the jet thrust.

* Fig.3 Cone drag dependence on total pressure Py, 1, sharp coﬁc; 2,
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Fig. 4 Model drag dependence on freestream Mach number: 1, sharp
cone; 2, truncated cone without the jet; and 3, truncated cone with the
plasma jet.

Drag coefficients are plotted vs the freestream total pressure for
Mach numbers My, =2.0, 2.5, and 4.0 and for the fiow with a jet
and without the jet in Fig. 5.

The forces obtained from balance and pressure measurements
(M = 2.0) with and without the plasma jet are compared in Fig. 6.
It is evident that the integrated surface pressure distribution, ac-
counting for the intemal model pressure, agrees-well with the bal-
ance measured forces. This is a mutual validation of our force and
pressure measurements.

Computational Studies

As another check of the experiments, a perfect gas model of
the flow was implemented computationally. For the comparisons,
the governing equations are the inviscid three-dimensional Euler
equations for a perfect gas in conservative form. The interaction
of the plasma jet with the external flow was modeled by assuming
flow variable values such as Mach number and temperature at an
internal boundary inside the outer far-field computational domain
corresponding to the jet exit boundary. Currently, we are general-
izing this model to simulate computationally the interaction of the
internal nozzle and external flowfields, including plasma processes.

The gas flow was considered as unsteady with a prescribed ini-
tial state. A time-explicit, space-implicit, second-order accurate,
central-difference scheme with relaxation smoothing for solving the
three-dimensional Euler equations by the finite volume method was
used. To obtain a steady-state solution, a time-asymptotic method
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Fig. 6 Drag dependence on total pressure (pressure and balance
measurement).

and a shock-capturing weakly nonmonotonic and fully conserva-
tive technique was employed. The solutions belong to the class of
bounded functions.

For generation of computational grids, the algebraic method of
construction of grids'® was applied. Grid convergence was assessed
from calculations on different grids (50 x 50, 50 x 100, 50 x 150,
100 x 50, 100 x 100, and 150 x 150) involving varying grid den-
sities on the bodies and in the flow. Global features of the flow
solution were preserved on grid refinement but with emergence of
subtic local flow details.

Comparison with Experiment

To compare the numerical and experimental data and to analyze
the results obtained, a supersonic flow around a truncated cone with a
counterflow jet was calculated. The truncated cone parameters were
cone half-angle ®@, = 30 deg, ratio of the midsection diameter d; to
the front face diameter d; of 5:1, and d,:d, = 1:4. The freestream
conditions were Mach number M, =2, angle of attack a =9 wad
total temperature Tor =283 K. The Mach number M,; at the jet
exit was unity. A specific heat ratio y =c¢,/c, = 1.4 was a< .med
in all calculations. The parameter P = po;/py, was varied in the
range 1.15-5. Total temperature in the jet was Tp; = 5000 K. These
parameters were approximately typical of all of the experiments.
Both modes (LPM and SPM) were obtained in the calculations.

CFD isotherms of the LPM and the SPM validating those obtained
in the experiments are shown in Fig. 7. In Fig. 8, the normalized pres-
sure C, = p/2q, where p is the surface pressure on the model, for
1.7 < P <4.5is plotted against the dimensionless coordinate X/d>,
where dy =9 mm, for the Mach number My, =2 and pos =1 atm
Points | correspond to a flow regime without a jet and points 2 and 3
with a jet in SPM and LPM, respectively. In Fig. 8, the position of the
cone frustum cylinder shoulder is designated by /. The two mods3
are again evident. In both cases, a significant pressure change due

LPM (P=3.2)

SPM (P=1.7)
Fig. 7 Photographs and calculated isotherms of flow.

0.60 1
cp
[ I
0,50 " 2
O |
------ num1
0.40 4 man 2 P17
~—*——mm3 P=2S
0.30 —=—num3 P=2,85
—O—nums3 P=3,0
————nums P=3,2
0.20
0.10 a,‘: B
0.00
0,00 1,00 2,00 3,00 4,00 5,00

142 X K2

Fig. 8 Pre<-ure distributions over conical and cylindrical surface: I,
truncated cone without a jet and 2 and 3, truncated cone with the plasma
jet, SPM =2a¢ LPM.

to the plasma jet occurs on the model’s conical surface. A value of
P =3.2 provided the best CFD fit of the lower solid triangle (LPM)
experimental points, although a closer estimate for P was 2.4. The
value of P =1.7 was used for the upper SPM group. These two
cases are shown in Fig. 7. {The parameter P was obtained from ex-
perimentally measured pressures in the plasma generator chamber
(giving po;) and the normal shock relations, (giving py )]

Uncertainty in estimating P is due to a combination of many fac-
tors. These include the time variation of the pressure in the plasma
generator, adequacy of assuming choked conditions at the jet exit,
heat addition in the nozzle chamber, losses in the conversion of elec-
trical energy into kinetic energy in the nozzle, plasma effects inside
and outside the nozzle, and viscous interactions such as shear lay-
ers and separations. Separate measurements are needed to assess the
plasma generator efficiency. [n addition, our earlier mentioned more
accurate simulation modeling the coupling of the internal and ex-
ternal flows in the numerics will be used to improve the simulation.
Moreover, coupling with plasma chemistry in the high-temperature
zones inside the nozzle and the core of the jet needs to be accounted
for. Despite the need for such refinements, it is remarkable that the
complete pressure distribution is so wetl reproduced with a reason-
able average value for P, even on a relalive basis. Absolute levels
will require inclusion of plasma effects, examples of which have
been cited earlier herein.
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Agreement of the perfect gas Euler CFD pressure distributions
with the measurements at selective flow conditions such as Mach 2
strongly suggests much of the physics at that Mach number resem-
bies conventional (nonplasma) counterflow jet gasdynamics. The
validated pressure distributions such as those obtained in this inves-
tigation (for the first time to our knowledge for plasma jets) are more
convincing than drag measurements in making this assertion. The
proposition that, if pressure distributions of the plasma jet fiow are
close to the conventional jet flow, plasma effects are insignificant
is not axiomatically proven here. However, evidence of the truth of
this proposition is the similarity of the observed and computed flow
patterns obtained in this study, as shown in the figures. Both indi-
cations suggest that this conclusion is at least one, but not a unique,
possibility. Mathematically, if the pressure distribution is prescribed
in the c:assical inverse problem of gasdynamics, and if certain side
conditions such as closure for an airfoil are also given, a unique solu-
tion f-: ihe body shape and resulting flowfield is obtained. A similar
statement can be conjectured for a body of revolution if a single set
of governing equations of motion is used to model the flow. On the
other hand, if the form of the equations of motion can be allowed to
vary from conventional gasdynamics to real gas plasma gasdynam-
ics, then this conclusion, although plausible, may be challenging to
prove. To summarize, coincidence of the pressures for the plasma
Jet flow with those of a perfect gas jet is 2 necessary but not suffi-
cient condition to assert that the two flows are equivalent. However,
the resembience of the flow patterns of the computations with those
observed makes this conclusion plausible.

Although comparisons of drag between plasma and conventional
counterflow jets is less convincing to arrive at such a conclusion,
because they contain less information, they are an important check
on the pressure measurements and useful to assess the energetic
efficiency of possible drag reductions with plasma counterflow jets.
These observations are major findings of this investigation. In other
experiments conducted by the authors at Mach 6 and not discussed in
this paper, some qualitative but less quantitative similarity is evident,
and our conjecture is that plasma physics accordingly plays a more
significant role. In Fig. 9, the total drag of the body

dy/2 d/2
Cp= 27:-/ p~y‘dy+27r‘/‘ Lo -Ul-y-dy qg-S
0 0

as a function of n= py;/ps, is shown, where v, and P. are the
velocity and the density in the jet exit, respectively. Here, the total
drag of the body is understood to be the pressure drag plus the
reacti~u. force of the counterflow jet.

As inuicated earlier, the calculations and experiments confirm
the existence of the LPM and SPM configurations. The appearance
of these regimes depends mainly on the pressure ratio P. Plasma
effects, temperature, geometry, and perhaps other factors may be
significant but have not yet been studied. LPM has appeared in
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Fig.9 Influence of the jet pressure ratio on total body drag.

o

the range 2 < P <4.5 in our studies. Outside this range. SPM was
observed.

The main features of these configurations that were deduced pri-
marily from Euler computations performed in this investigation are
as follows:

1) For the SPM mode, the underexpanded jet forms a new body
that moves upstream of the jetless bow shock and forms a single cell,
as shown in Fig. 10. Conventional perfect gas nonplasma counter-
flow jets exhibiting this behavior have been previously studied.?

2) For the LPM mode, for some range of the pressure ratio P. the
jet is compressed, and its cross section is decreased. It penetrates
the jetiess bow shock and forms the multicellular structure shown in
Fig. 11. In this structure, a few small toroidal vortices are evident.
Penetration may be relatively short or leag. When the penetration
is intermediate, suction, which is obscived on the side surfaces of
the body, can be significant. Long penetration and overblowing for
a slender jet does not fead to signifivant decrease of the pressure on
the side surfaces of the body. Here, the aerospike or long penetration
jet is too far upstream and is of such high fineness ratio that it cannot
significantly slenderize the body because its shock pattern is very
weak and oblique and has a negligible attenuation of the jetless
blunt-body bow shock system. Accordingly, an optimal range of
parameters exists that maximizes drag decrease.

C

@

Fig. 10 Counterfiow jet flow pattern, SPM.

Fig. 11 Counterfiow jet flow pattern, LPM.
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The efficiency of plasma jet ejection in reducing drag may be
estimated by comparing drag power to input power. Thus,

n=248Cp-q-5-V/Q,

where ACp is the reduction in drag coefficient due to the plasma
jet from the value for the same body with the plasma jet off, ¢ is
the freestream dynamic pressure, S is the frontal area of the model.
V is the freestream velocity, and Q; is the electrical power used to
develop plasma jet.

The value of  has been calculated for the tests discussed herein.
At a freestream stagnation pressure of 1 atm, the LPM jet gave
n=1.98. For the SPM, this parameter was 0.5. This conclusively
demonstrates the drag benefits of the LPM configuration. With
flight-weight plasma generator units, this gain can be translated into
more efficient drag reduction of hypersonic cruise vehicles such as
blunted shapes for which the nose pressure drag is a dominant part
of the drag buildup. Such drag reductions could have a substan-
tial impact on aerodynamic efficiency (L/D) and result in higher
payloads as well as reduced mission cost.

Qualitative Interpretations and Trends

Our calculations give trends similar to those observed by Romeo
and Sterret®2! for cold jets. They show bifurcations as well as
qualitative details of the observed flow patterns reported by these
authors.

For counterflow jets, the jet specific impulse (per area unit) is
higher than the impulse in the external stream downstream of the
normal shock wave. This consideration suggests as a governing
parameter P = Pg,/P(;f, which occurs in our calculations, where
Po; is the stagnation pressure in the jet and Py; is the stagnation
pressure downstream of the normal shock wave.

SPM and LPM Regimes

The role of jet exit Mach number and temperature, as well as the
ratio of nozzle to rim diameters, will be suppressed in this part of
the discussion. (In all our calculations, this ratio was assumed to be
in the range 0.2-0.25.)

Although SPM and LPM are the major modes, transitional
regimes between these modes also exist. In particular, our exper-
iments indicate different SPM regimes as shown in Fig. 12. which
is also a validation of our computational model against experimental
data for prediction of jet penetration and drag. We conjecture that
these regimes are affected by P.

For low momentum of the jet compared to that behind the shock,
SPM occurs. Here, the counterflow jet forms a reverse-circulation
region whose slip line/shear layer reattaches on the side surface
(Fig. 10).

An LPM regime forms when part of the jet is supersonic with a
stable multibarrel shock structure. This can occur when the jet has
sufficiently high momentum compared to that of the flow behind
the normal shock. In this regime, the jet penetrates the flow ahead
of the bow shock wave of the body with the jet off (jetless case).
This creates a new oblique shock structure ahead of the bow shock
that is altered from the jetless case. Our calculations suggest that a
necessary condition for this regime’s stability is reattachment of the
eddy slip line on the rim face in contrast to its conical or cylindrical
surfaces. The jet seems to be associated with a toroidal vortex and
almost constant pressure inside the reverse-circulation region shown
in Fig. 11. In our calculations, existence of this eddy is connected
with the bifurcation of the flow at the reattachment point. These
remarks pertain to the case considered in this study in which the
jet diameter is small compared to the front face diameter. This case
contrasts to that considered by Romeo and Sterret, 202! where the jet
and frontal diameters are nearly the same and the rim is small.

From the computations, one can see that the attachment point
can move along the flat face containing the jet exit. As soon as the
attachment point migrates to the side surface, the pressure in the
recirculation zone decreases. This causes a decrease in size of this
zone and, correspondingly, in attachment point migration back to
its original position on the flat face. This bistable equilibrium is
subsequently recycled into an oscillation unless a trigger such as

3:05:20 3:05:21 3:05:22

3:05:23 3:05:24 3:06:11

3:06:12 3:06:13 3.06:18

3:06:27 - . 3:06:28 3:00:29
Fig. 12 Movie stiils of LPM mode.

a downstream pressure perturbation disrupts it. If the jet becomes
strongly underexpanded, the flow may transition directly to SPM.
As a rule, the oscillation of the attachment point position near the
boundary of the flat face causes LPM perturbations involving peri-
odic changes of its structure and length. Although, opportunities for
these oscillations to occur, the LPM can be quite stable, as shown
in Fig. 12. These movie stills from our tests show high dynamic
stability of the jet in the LPM mode from an initial transient. This
stability has practical implications for drag reduction practical ap-
plication on blunt hypersonic vehicles where the forebody drag can
have a major impact on payload.

For high P (strongly underexpanded jet), a singlc SPM shock
forms again, in contrast to the split LPM configuration.

Jet Exit Mach Number Effects
The following discussion is based on our experiments and calcu-
lations.

Ma>1

If the counterflow jet is supersonic and weakly underexpanded or
overexpanded at the nozzle exit, multiple cells can arise. A weakly
underexpanded jet exhibits small area changes along its length.
Some perturbations cause Mach number increases with reduced
pressure and shrink=ge of the jet. This causes its specific impulse
to grow, giving increased penetration. Strongly underexpanded jets
exhibit substantial w.ea increase, resulting in a specific impulse de-
crease, producing a shock wave upstream of the jet. If the impulse
decreases still further, the flow reverts to the SPM regime. If the
supersonic jet is weakly overexpanded, its cross section decreases.
This leads to an-increased specific impulse and an LPM config-
uration. Strongly overexpanded jets create a normal shock with a
decreased specific impulse that leads to SPM.

M,=1

For sonic jets, supersonic and subsonic conditions can vccur up-
strcam of the jet similar to Laval nozzle flow. A weakly underex-
panded jet can expand, giving supersonic flow. This leads to LPM.
SPM can occur for strongly underexpanded or overexpanded jets.
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M, <1

aHere. the LPM regime can be associated with a convergent lip
angle with acceleration to critical conditions and an upstream throat
and farther upstream behavior already discussed for the choked case.
We have observed this behavior in our computations, but only for
high-temperature experiments.

To summarize, LPM flow in our calculations was observed for
supersonic jets whose pressure differs tittle from the external jet
pressure. Itis not very important whether the nozzle exit is subsonic,
sonic, or supersonic. If conditions exist for a supersonic transition
and the jet is generally weakly underexpanded, LPM can occur.
These are necessary but insufficient conditions. An associated vortex
seems also to be a feature of this flow.

Effects of Sep2- :iion

Some interesting studies that are usefui i understanding the effect
of the separated region in the LPM mode stem from the work of
Ehrich 22 who extended the Zhukovs'i hodograph method discussed
by Milne-Thompson? to infinite slot two-dimensional (planar) jets
in a crossflow. His closed-form solutions include counterflow. jets
as a special case. For the latter, penetration was limited if the flow
was attached to the outside of the slot. In contrast, the penetration
became infinite at a finite jet-to-freestream velocity ratio if the jet
was separated over the slot.

Summary

Results of experimental and numerical studies of the influence of
a thin counterflow, high-temperature jet on the aerodynamic charac-
teristics of a blunted body in supersonic flow have been presented.

The experiments were conducted with plasma jet injection into
supersonic and low hypersonic freestreams. They included balance,
pressure distribution measurements, video and photographic visual-
ization, and schlieren pictures. Two stable regimes of the plasma jet
flow resembling ordinary perfect gas counterflow jets were found.
These are SPM and LPM into the freestream. LPM produced the
only substantial drag reduction, which was especially strong for
transition from SPM to LPM. :

Experimental pressure distributions over the surface of a truncated
cone—cylinder model in the presence of a plasma jet were obtained.
These distributions represent the first data of this type for onboard
plasma jets and should be useful for separating aerodynamic heating
from plasma physics phenomena in aerodynamic augmentation.

The experimental results were compared to Euler perfect-gas,
hot-jet CFD models. Both SPM and LPM were obtained with these
simulations. tased on our calculations, w¢ believe that the bifur-
cation is driveu by interaction of sepurated flow regions and the
delicate roie of reattachment points tH: iateract with the flow and
shock system on a global scale. These can be driven by the noz-
zle cavity flow and oscillations from the plasma generator. From a
different perspective, we believe that the bifurcation is related to a
nonuniqueness of the steady-state boundary value problem for the
gasdynamic equations of motion, which may be an eigenproblem in
a bifurcation stability sense. This indeterminacy relates to the clas-
sical incompressible problem of oblique collision of jets, which is
nonunique to within an unknown constant. This nonuniqueness is re-
lated to the need to incorporate the flow history through determinism
to assess the current state of the colliding jet flow. In this connection,
conventional time-marching CFD codes may give path-dependent
solutions rather than unique time asymptotics, due to a number of
factors including stability of the temporai solution that might be
an asymptotically bistable oscillation between the bifurcation SPM
and LPM modes. We have correlated the LPM-SPM switch to a
change in the position of the reattachment. We noticed migration of
the attachment point from the forward face containing the jet exit to
the inclined face and correlated this with LPM and SPM.

The numerical results are in reasonable agreement with the ex-
perimental data for supersonic freestreams, both for pressure distri-
butions and drag, if the key stagnation pressure parameter P was
adjusted within the experimentally observed range. This suggests
that the dominant physics is fluid dynamics and that the plasma
effects are relatively small at moderate supersonic Mach numbers.
In particular, the large drag reductions associated with the LPM re-

~1

sult from the resulting suction on the forward facing parts of the
cone cylinder, namely, the conical face. Nevertheless. aerodynamic
heating that controls much of the moderate Mach number flow has:
an important link to plasma processes, which are the only means
of producing the intense energy densities and high temperatures in
the plasma jet. These temperatures can be several thousand degrees
Kelvin higher than those of conventionally heated jets. For hyper-
sonic cases, the agreement of calculation and expenmental results
is only qualitative. We believe that this uncertainty is partly caused
by plasma effects that were not taken into account. Future work will
be focused on this aspect.
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Dynamics of Slender Bodies Separating
from Rectangular Cavities

» V. 1. Shalaev* and A. V., Fedorov'
Moscow Institute of Physics and Technology, Zhukovski, 14080, Russia
and
N. D. Malmuth?
Rockwell Science Center, Thousand Oaks, California 91630

Vertical and pitching motions (two degrees of freedom) of a thin hody of ~evolution separating from a rectangular
cavity in a subsonic stream are investigated using combined asymptotic and numerical methods. The analysis is
based on explicit analytical solutions for the lift force and pitching moment obtained in our previous studies. Body
trajectory dependencies on initial conditions, body parameters, and freestream velocity are studicd. The problem
is divided into three phases of the motion. In phase 1, the body s inside the cavity. In phase 2, the body crosses
the shear layer, and in phase 3, the body is outside the cavity. For phases 1 and 3, analytical solutions of the body
dynamics are obtained for typical cases. This analysis provides insight into the separation process and identifies
governing lumped nondimensional parameters relevant to the body dynamics as well providing a model that can
provide quick, computationally non-intensive estimates of store separation with a personal computer. The role of
the nondimensional parameters in the dynamic stability eigenvalues is identified and found particularly useful in
this connection. These parameters implicitly contain the cffect of the shear layer. Numerical calculations for all
three phases arc in good agreement with a major portion of the frec-drop experimental data obtaincd in a subsonic
wind tunncl. However, there are cases when the agreement Is only satisfactory. The discrepancy is associated with a
pitching bifurcation when the body crosses the shear layer. It is shown that small variation of the initial conditions
can trigger quick transition from one pitch angle trajectory to another and cause dramatic changes of the body

trajectory outside the cavity.

flow velocity components

defined in Eq. (2b)

characteristic vertical speed

body initial vertical speed, sec Eq. (2d)

Nomenclature
a(x) = local body radius
ag = maximum body radius
b = coefficient defined after Egs. (4), i =1,2
by = coefficient defined after Egs. (4),{, j=1,2
Cs = gravity force coefficient (Froude number),
Eq. (2¢)

1] = lift force apparent mass, Eq. (2¢)
Cm = apparent pitch inertia, Eq. (2c)
G, G2, Gy = coefficients defined in Eq. (3d)
J4 ; = gravity acceleration
8o, 81, &2 = body shape factors, Eq. (3c)
H(X,1) = vertical distance from body axis to slip surface
Hy = cavity depth
! = moment of inertia
L = lift force
Iy = body length

= pitch moment

= body mass

= pressure

= time
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X, Y,z = Cartesian laboratory frame with origin
shown in Fig. la

Xey Yoo Z. = Cartesian moving body axes with origin
at body c.g.

x,y,2 = Cartesian moving body axes at general
location in body

a = pitch anglc or angle of attack

ay,app,a = coefficients defined after Eq. (3)

¥ = angular velocity stability parameter, Re(A)

A.. 33, Ay = cocfficients dsfined after Eqgs. (4) -

é = body half-thickness ratio, ag/lp

c = azimuth angle

A = ecigenvalue

P = density

P = near-field flow potential

Q = .angular frequency of body oscillations, —Im(2)

w = pitch angular velocity

W, = defined in Eq. (2b)

Subscripts

a = body cross section of radius a

b = body surface

c = c.g

e = body base

0 = initial value

oo = freestream

Superscripts

A = dimensional value

+ = inside the cavity

Introduction

ODELING of store separation from a cavity, even into a sub-
sonic external stream is a very difficult problem that is the
subject of the intensive application of current computational fluid
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dynamics. The motivation of the work described herein is the need
for quick methods for certification and assessment of the physics
of store separation from cavities. Similar rapid evaluation methods
are needed for stage and cargo separations. A variety of compu-
tational methods are under development.!~3 As contrasted to pure
computational modeling, this paper discusses a combined asymp-
totic and numerical approach. It will be applied to solve aerody-
namic problems relevant to separation of a thin body of revolution
from rectangular cavities into subsonic or transonic flows.*® The
separation process can be divided into three phases. In phasc 1, the
body is inside the cavity. In phase 2, the body crosses the shear
layer that separates the cavity flow from the external flow. In phase
3, the body is outside the cavity. In many practical cases, viscous
effects can be approximated with inviscid modcls. As an example,
a vortex sheet representing an infinitesimally thin slip surface can
be used to approximate the shear layer over a cavity. This approach
is consistent with simulating the cavity shear layer interaction as a
rational outer solution that is associated with viscous—inviscid in-
teraction theory. This is an extension of the concept of transpiration
velocities (outer limit of inner solution for asymptotic matching)
that arises in boundary-layer viscous—inviscid interactions. It leads

, toaself-consistent simulation of the shear layer as an inviscid vortex
sheet. Also, we time average the unsteady motions of the shear layer,
because these are on a timescale that is at least three orders faster
than the Froude scale of the dropping body. This is a self-consistent
approximation that should be realistic for the practical case of high
Reynolds number of the approaching boundary layer.

Also, the flow over the separating body can be modeled using
<lender body theory.S In Refs. 4 and 5, effects of the side cavity walls
were shown to be negligible in all phases of the separation process.
In the analysis of this paper, the near-field flow associated with the
body aerodynamics is govemned by a system of nonlinear integro—
differential equations. In Refs. 4 and §, this problem was analyzed
using asymptotic methods giving explicit analytical expressions for
the lift force and pitching moment acting on the body in all three
phases of the separation process. In the analysis, the slip-surface
displacement is neglected. A morc general case is when the slip
surface is a free boundary supporting nonlinear boundary conditions
and interacting with the solution. For the practically important case
of small deflections, the boundary conditions can be linearized on
the slip surface, on the length scale of the cavity. Local flow scales
have larger deflections in which an iterative scheme nceds to be
used. The nondeflected slip surface corresponds to the initial iterate
in such a small-perturbation scheme.

Problem Formulation

In this paper, we couple our previous results on the body aerody-
namics with the body dynamics and analyze two-degree-of-freedom
(2-DOF) vertical and pitching motions induced by aerodynamic
and gravity forces during the separation process. The coordinate
systems XY Z (attached to the cavity) and oxyz (attached to the
body center of gravity) are shown in Fig. 1. The oxy frame is in-
clined with respect to the XY frame at an angle of attack ().
This frame can rotate around the oz axis with the angular speed
w(t) =da/dt. The c.g. coordinates are expressed as X, =Z,=0
20d Y, (1); H(X, 1) =Y. —aX is the vertical coordinate of the body
axis. Using scaling of the slender body theory,® we introduce the
nondimensional variables

X=X/lo, Y=Y/ay Z=2Z/ag x=3i/ly
y=5/501 z=z/30l 1=UOO?/E)
a=dfs, Ve=Ve/V w=bUsd/l (1)

where the body half-thickness ratio § is treated as a small parameter.
Crossflow velocities and coordinates are normalized by § Uo and @,
respectively. The streamwise and axial coordinates are scaled using
Iy, and the pressure perturbation p is normalized with respect to

Pl 1. :

top cavity wall
I'd
Y
H,
0
U \ slip surface
= y
a
store ¢
X
a) Side view )
/top cavity wall
Yx
. H' -
0o -z
slip surface

store cross section
_ b)Back view

Fig.1 Scheme of store scparation.

As shown in Ref. 5, the equations for vertical and pitching body
motions can be expressed in the form

d(V, +aV,) dr.
——c—&—'—"- ?CIL(I) ~Cps T Ve(n)
d(w + cmwy) _

- C,,,M(f),

do
m T = w(t) ‘ .(2a)

Xe pim
V() =/ / & (x,0,)alx)do dx
xg V0O

X p2T ’
w, (1) =f / ®(x, 9, ra(x)x do dx (2b)
xp VO
o = glo o= 7 Doo 138° o = 7 Peo 1362
&7 sy’ T "
(20)

where xo and x, are coordinates of the bod, nose and base, re-
spectively, and @ is the near field with :2spect to the body (inner)
flow potential. We consider the Cauchy initial-value problem for
Egs. (2a) assuming that the body speeds, c.g. coordinate, and angle
of attack are prescribed at the initial time ¢ =0 as

VO =Ve, w@=w, YO)=Y, a0 =aq

(2d)

Note thatdV, /ds and dw, /ds in Eq. (2a) represent the time derivative
of the crossflow potential (incompressible harmonic inner solution)
needed for the pressure in the crossfiow plane from the unsteady
Bemoulli equation. The terms L; and M, are integrals involving the
square of the crossflow speed that also appear in the Bernoulli law for
the pressure in the crossflow inner problem. These are determined

* from the square of the crossflow gradient of ¢.

In this paper, analytical solutions of the problem (2a-2d) for
phase 1 are obtained for small lift forces compared to the weight.
Slip-surface deflections are neglected, and Eqs. (2a-2d) are trans-
formed into two decoupled ordinary differential equations with con-
stant coefficients. A stability analysis of their solutions is performed,
and behaviors of the pitch angle a(f) and the vertical coordinate
Y.(r) are discussed for typical cases. In addition, the theoretical
model for all three phases [in Egs. (2) (without the stability lin-
earizations)] is evaluated by comparison of the predicted trajecto-
ries with the experimental data of Ref. 7. The paper concludes with
some parametric trajectory studies.
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_ Phase 1: Body Inside Cavity

The lift force L(r) and the pitching moment M(s) acting
on the body moving inside the cavity are derived in Ref. S.
They are expressed as integrals along the body axis with the
integrands being a power series with respect to the parameters
qi(x,1)=0.5a/(Ho — H) and q=0.5a/H, where Hy is cavity
depth shown in Figs. la and 1b. If the body is far from the top
cavity wall and the slip surface, then g; and g can be treated as
small parameters. When terms of the order of O(¢®, q7) are ne-
glected, the body cross scction vertical velocity V,* (1) and angular
velocity w} () are expressed in the form

V) = ap(Ve(t) = ap(®o(@)

wa (1) = (1) Ve(t) — an(to(r) (3a)
ay (1) = wlgo + Goln)], ap(l) = nfg + Gi(1)]

an(t) = -wlg+ G2(1)] - (3b)

Xe Xe |

&= f a*(x)dx, s = / a?(x)x dx
X0 X0 o
Xe
g2 = / a*(x)x*dx . (30
0 ' "

Go(t) =2 / [dx ) - n]dwde (39

X0

Xe
G(t)= 2/ [q,z(x. 1) — qz(x, t)]az(x)xdx

X0

Gi{t) = 2] ‘ [qlz(x,'l) - g%(x, t)]az(x)xzd.x Ge)

X0

This transformation helps to express the dynamic equations in a
form convenient for further discussion of the body trajectory fea-
tures. When Eqgs. (3a—3e) are used, the trajectory equations (2a) can
be integrated once and expressed in the form

dy, b (r) A0
e —K-(?)—c,l + -ATt)-_Vo-l-Clﬂwobx(l) (4a)

da by () 82(1)
~d7 = —_A(l) Cpl + “""""‘A(t) wy + cn7t Voba (1) (4b)

where the coefficients are defined as
by =1+can (1), bia(t) = craya (1)

byu(f)=1-caan(r)

A = by (0bn(1) + b ()b (1)

Ay = b1 (0)b2a(r) + bi2(0)b21(0)

4z = by (1)bn(0) + b12(0)b2 (1)

by (1) =cmai2t),

by = (1/A)(1 = currg2)[Gi (1) — G1(0)]) + cmm 1G22 (1) — G2(0)]
+cat[G1(0)G2(1) — G1(1)G2(0)]] _
by-= (1/A){( + e go)[G1(0) = G ()] + cig1[Goft) = Go(0)]

+ar[Gi(0)Go(t) — G1(1)Go(M)]})

The first term of Eqs. (4a—4b) models the gravity effect, the sec-
ond term comes from the initial conditions, and the third term ariscs
from the boundary and initial conditions. The angular acceleration
is proportional to the product of the pitching moment coefficient
cm, the gravity force coefficient ¢;, and the value g; + G () char-
acterizing the displacement of the center of pressure from the c.g.}
Equations (4) can be solved numerically using, for example, the
Runge-Kutta method. Note that <.e slip-surface effect and the top-
wall effect rapidly decrease as the body moves away from these
boundaries. Neglecting terms ~{ the order of O(g? + g7), which are =
associated with the boundary effects, the solution of Eqgs. (4) can be
expressed in explicit analytical form:

|
_‘Yc(l) = Yo+ Vor — ﬂc 2

28 ¢
at) = ag + wot + M'—t2 (5a)
24,
Ag = (1 +cwgo)(1 — Cm82) + crcmm gt (5b)

Equations (5) show that the c.g. coordinate Y,(¢) and the pitch angle
a(t) are parabolic functions of time when the body moves in an
unbounded fluid at rest.

It is also possible to obtain analytical solutions of Egs. (4), when
the lift and moment are small compared to the body weight. This is
typical for many practical cases because the coefficients ¢; and ¢,
are proportional to the air density to body density ratio, pe/ps < 1.
For a body of uniform density, nondimensional ballistic parameters
may be defined as -

Poo Poo Ct 82

’ Cm = ’ - = - (6)
Pyt 8o PuTT 82 Cen &o

C =

For the experimental conditions,’ the coefficients ¢; and ¢, as
well as other basic parameters are shown in Tables 1 and 2, where
the gravity force coefficient is calculated at the freestream speed
U =T77.1 mJs. _

Ifterms linear in ¢; and ¢, arc : Aained in Egs. (4), the approximate
linear and angular trajectories an: . ‘

o= Yo+ Vot — 0.5(1 — wci80)c, 1
o =ag+ wyl + 0.57g Cmeyt? 0]

The c.g. coordinate and the pitch angle are parabolic functions
of time. In the first-order approximation, the vertical motion corre- *
sponds to a pure gravity drop. The lift force gives a small negative
correction of the c.g. acceleration similar to the case of a plunging
cylinder in the presence of a shear layer considered in Ref. 4. As will
be shown, the analytical expressions (7) are consistent with trends
of numerical solutions and experimental data.

Table1 Physical parameters of models’ -
Model 8 Xe 80 81 82

- . BINI"  031250E-01 051333E+00 0.86206E+4-00 0.68807E-01 0.66707E-01
e B4N2  031250£-01 049500E+400 0.86206E+00 0.53002E-01 0.57596E-01
B5N5S  0.32609E-01 0.62261E+00 0.85606E+00 0.16423E+00 0.12753E400

Table2 Aerodynamic and gravity acceleration cocfficients for models’

Mode! 7 cm U G

BINI 02991SE~03 *  0.22204E-02 0.95585 E+02 0.16080E£-01
B4N2 0.72519E-03 0.38857E-02 0.95585 E+02 0.16080E~01
BSNS 0.36713E—~02 0.24684E~01 0.87786E+02 0.14768 E-01
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Phase 3: Body Outside Cavity

If the body is totally outside the cavity and moves into an external
freestream, the lift force and pitching moment are again expressed
as integrals along the body axis with the integra.ids being a power
series with respect to the parameter ¢ =0.5a/ H (see Ref. 5). When
these analytical solutions are analyzed the slip-surface effect on the
body trajectory is obtained to be proportional to the quantity

Xe Xe 7 — —
/ gata,dx + f q*a*dx ~ % +q%80+0(q%0) (8)
X X0

0

where the over bars denote averaging along the body axis. For typical
cases, the body shape factor is given by Eq. (3c), go=O(1). The
average distance parameter is § <0.5. Its maximum value § =0.5
corresponds to cautact of the body surface with the slip surface The
maxxmum values of the first and second terms in Eq. (8) are ¢ ! and

1 respectively.As the body drops, both terms decrease quxckly, and

e slip-surface effect vanishes. Thus, dominant terms are associated
with the body drop in an unbounded uniform stream. In this case,
_ the equations for the lift force and pitch moment can be reduced to

do )
T T (Ve - a)a3+w(go+x.af)] (%a)

-

dV, dw
M= 7"’[“'8:—+82 +(V-d)( —x.a)-i-wx 3]

Ve
L= ”[‘god

dr

b) -

where a, = a(x,) is the base radius (a. =1 for a cylindrical after-
body). These expressions were derived for bodies with a sharp nose,
a(xg) = 0. Substitution of Eqs. (9a) and (9b) into the trajectory equa-
tions (2a) and integration once give the lincar ordinary diffcrential
equation (ODE) system (with constant coefficients)

dV.
o = cu(Ve—a)+cipw—cpo
dw
I =c(Ve —a) 4+ cnw+cy (10a)
1 —cnrtg: CmCeT
co=—7 g2 = _'"7;_0_31

Crv

o= -—-—|_c,,.7rgl(go - xea?) = (1 = cnmg2)al ] (10b)
Ci2 = %i:-[(l — c,,,rtgz)(go +X(a3) + Cnﬂglxsaz] (10c)
oy = CA—O [(1 + cimgo)(go — xea?) +cimgia?]  (10d)

CnT
= —_A—o-[(l +cmgo)xial — "‘”3'(30 +x,a3)] (10e)

where Ay is given by Eq. (5b).

We consider the Cauchy problem for Eqs. (10a) assuming that
the body is totally outside the cavity for ¢ > £, and its initial speeds,
coordinate, and pitch angle are

V(‘(‘O) = Voll

w(f) = wp, Ye(to) = Yo, a(to) = ag

(1)

From Egs. (10a),'the angular velocity @ and the function
W(t) = V.(t) — a(t) are solutions of the decoupled equations

W dw d*w
-a-l—--—Zy Y +xW+c =0, at—z

where the constant coefficients are

+xkw+c; =0
(12)

dow

2
CmITQ [of
y = _"__'[xz - c—l- +71L‘1(X380 - 2x.81 +82)]

24 "
x = Cz_n'[go —aix —cmajGor ~g)]  (132)
o = c,,,c, ( ) a= Cygt (go _x,af)
(13b)

The characteristic (secular) equation for the eigenvatues of ODE
system (10a) and its solutions are

A =2yA 4K =0, M=y +iQ

hy=y—iQ, Q=\/k—-y? (14)

Various cases significant for the trajectory stability will now be
discussed.

Eigenvalues A and Az Are Complex
If A; and A, are complex, then the trajectory parameters are ex-
pressed in the form

V() =/V6 +(d—ct)/k + e’ (A cos QT + Ay sin Q1)
w = —(c2/K) + ¢"* (B, cos Qt + B, sin Q1) (15a)
Ye(t) = Y§+ (V) + d/K)t = (c2/26)T% + (¢ /)
x [(YA1 — QA2)cos Qt + (QA; + ¥ Az) sin Qr] (15b)
a(t) =ag— (1/k){cat +y By = QB — " [(y By — 2B,) cos Rt
+(QB) + y By) sin Qrl} " (15¢)

where 1=¢ —fp and d = =« (Vj — o) — ) — y B) + 28,. The co-
efficients A, A;, By, and B; are determined from the initial condl-
tions (11) and Eqgs. (10a). They are expressed as

d o Vo—vA
A =-5, =5 Yooy
! x 42 Q« + Q
. dV( , ,
Vo= © = cn (Vg — ag) + crawy = cio (162)
¢ ag—yB
Bi=vhtsn  B=——p—
dw(0)

T en(Vy — ag) + cnwy + e (16b)

Equations (15) indicate that the body motion includes two com-
ponents. The first terms of Eqgs. (15a) and (15b) correspond to body
rotation with the constant angular speed —c,/k and a vertical trans-
lation with uniform acceleration —c,/«. Also present is a drift with
constant velocity ay — (¢; + 2y B; ~ dx)/« that depends on the ini-
tial angle of attack and angular velocity. These terms are associated
with a nonoscillatory motion, which is called the mean state. The
second component corresponds to periodic modulations of the mean
state. These oscillations are neutral for y =0, unstable for positive
¥, and stable for negative y. For zero base radius a, =0, Eq. (13)
specializes to

y=0, «=0"=(camt/A0)g0,

by = (cmce / Bo)go

This case corresponds to neutral oscillations. For heavy bodies
with base radius a, =1 and small ballistic coefficients ¢; <1 and
cm < 1, we can linearize about ¢; and ¢,,. Equations (13) yield

b= (Cmcgn/AO)gl

Y =y (xf - c,/c,,,). K =Q =cpm(go—x) (172)

Cl =MCaCy (g, - x}). €2 = ency (8o — Xe)

d = mei(wo +¢) (17b)
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Equations (17) show that oscillations are unstable for x2 > ¢;/Ca-

This case fits the experimental conditions of Ref. 7. For x:‘ <c1/Cms

oscillations are stable or neutral. In all cases the increment is small,
y~em~ QKL _ .
The cxpressions for the vertical speed and angular velocity are

Vo=Vo—ct+ A(e" cosQr — 1) + Aje?"sinQr
w = —Cg + €"* (B, cos Rt + By sin Q1)

The first equation indicates that the c.g. oscillates near its mean
state associated with free drop. If the body dynamics is stable, y <0,
then the oscillations vanish as T —» 00. Nevertheless, they induce
the constant vertical velocity —A| = et (wg + ¢5)/ 2. The second
equation shows that the angular velocity osciliates near its mean
level, @ = —cy, associated with free drop.

Eigenvalues A; and Az Arc Real ;
IfA,=y-+vand A=y —v [v=/(y? — )] are real, then the
solution of Eqs. (10a) or Egs. (12) is

V.(t) = Vg + (d —.c2t)/k + €"" (Aichvt + AyshvT)
w = —(cz/Kk) + €"" (Bichvt + Byshvr) (182)
Yet) = Y+ (Vg +d/K)T = (c2f2)7°

+ (&' [)[(y A1 — vA)chvt + (Y A2 — VA )shvt] (18b)
a(t) = o — (1/x){cat + ¥y Bi — vBy ~ " [(y By — vBy)chvt

+(y By — vB)shvt]] ' (18¢)
whered = —K(Vo" —ap)—c,—yB;+vByandthe coefficients are
Ay = /v + (Vo = Y AD/V

By=(n—yB)/v (19

Al = _(d/K)o
By = wy+ /X,

Again the body motion has two components. The first component
is similar to the earlier case. It is associated with a pure gravity drop
and can be treated as a basic state. The second component is relevant
to an exponential drift from or toward the basic state depending on
the signs of the eigenvalues. If A; <0 and A; <0, then the expo-
nents decay as T — oo, and the body motion evolves from the initial
conditions to the basic state, which includes re*ation with constant
angular velocity and translation with constunt ncceleration. If 4,
and/or A, are positive, then the exponentia! ierms grow with time,
and the body departs from its basic state (aperiodic divergence). If
v =0, then the second component of the body motion is governed
by the sign of y. :

The aforementioned analytical solutions and stability characteris-
tics of the body dynamics can be used for fast qualitative estimations
of the body trajectory outside the cavity. To our knowledge, these
results arc new.

Results and Discussion

To calculate the body trajectory including all phases of the sepa-
ration process Eqs. (2a) are numerically integrated using a fourth-
order Runge~Kutta scheme (see Ref. 9). Our computational code
includes a module that calculates the lift force and pitching moment
for phases 1-3 using the analytical results of Ref. 5. The accuracy
of the predictions can be related to the size of the perturbation pa-
rameters and uncertainties in the experimental launch conditions.
(Because these data aré referenced, their accuracy can be obtained
from the authors.) In the best cases, the accuracy can be as good
as a few percent when the aerodynamic forces are smali compared
to the weight and the characteristic pitch inertia with experimental
initial conditions that matched those assumed in the theory. Large
excursions can result if large-scale shear layer motions occur and
other disturbances evolve in the external flow. :

The combined asymptotic and numerical method described pro-
vides ameans to calculate rapidly body trajectories. One trajectory is
normally predictedin less than % min using apersonal computer Pen-
tium 166. This quick-turnaround personal-computer-oriented tool

Fig.2 Models for free-drop tests in the IIT wind tunnel.

161 Y [inch]
12{ ., experiment
4 e free drop
—— theory
8<
4

0 t[sec] .
a) 000 005 0.0 0.15 020 0.25

4l o[deg]

N

0

-24 . experiment
theory

_ t {[sec]
b) 000 0.05 0.0 0.45 020 0.25

Fig. 3 Model B4N2, Uoo = 623 mJs, Yy = 142 in, o = 0 deg, Vo = ‘
8 inJs, and wy = 9 deg/s.

will be compared to the subsonic experimental data’ in what fol-
lows.

Experimental Data

Drop tests” were conducted in National Diagnostic Wind Tunnel
of the Illinois Institute of Technology (IIT) Fluid Dynamics Re-
search Center at the Mach number range 0.12 < M < 0.23. The rect-
angular cavity 20in. long, 41 in. wide, and 4 in. high was mounted on
the top wall of the wind-tunnel test section. The models are bodies
of revolution of radius g¢ = -i- in. and nose length x,, = 3.56 in. (see
Fig. 2). Two models (BINI and B4N2) are ogive cylinders 12 in.
long. The third model (B5NS5) has an elliptic nose and a total length
of 11.5 in. The heaviest model, BIN1, has mass s =111.85 g, mo-
ment of inertia [ =0.0014 kg - m?, and c.g. location xp=6.16 in.
Formodel B4N2,m =46.14g, [ =0.0008kg - m?, and Xxo = 5.94in.
The lightest model, BSNS, hasm = 8.72 gand [ = 0.000015kg - m?,
In these cxperiments, bodies were dropped from a cavity in the HT
wind tunnel.
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Fig. 4 Model BAN2, Uy = 41.3 nv's, Yy = 24 in., g = 9.6 deg, Vo =
2 inJs, and wp = —80 deg/s.
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Fig.5 Modecl BIN1, Uy = 62.7 nv's, Yy ='2.72 InJs, ag = —11.5 deg,
Vo = 9inJs, and wg = 75 deg/s.

The models were released by withdrawing.pins, holding them at
their noses and tails.

Comparison with Experiment

Preliminary analysis of the experimental data shows that during
the release time 1, ~0.03 s, the initial angular and vertical velocities
can be essentially affected by uncontrolled disturbances that may
be induced by the release mechanism. During the release time, the
gravity force may increase the pitch rate, if the model ends are not
released simultancously. This motivated identification of the actuai
initial angular speed @y and vertical velocity Vo by differentiating
the experimental distributions of the pitch angle a(r) and the c.g.
vertical coordinate YC(T).

Fig. 6 Model BIN1, Uy, =40.8 m/s, Yo = 2.65 in., g = —7.8 deg, Vo =
15 inJs, and wy = 80 degss.
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Fig.7 Maodel BAN2, Uy, = 40.6 nv/s, Yy = 2.65 in., ag = —9.2 deg, Vo =
15 inJs, and wg = 70.8 deg/s.

Figures 3a~10a show comparisons between predicted (solid lines)
and experimental (symbols) c.g. trajectories for all three models.
Dashed lines indicate the free-drop trajectories under the gravity
force only. As already noted, the lift is small compared to the body
weight. Figure 3 shows that the free drop in a vacuum is very close
to the computational results and the experimental data for moderate
angles of attack, especially for the heavier model, BIN1. However,
the vacuum curve diverges from the experimental data if the body
enters into the external stream at relatively large &. This is clearly
seenin Figs. 4a, 8a, and 10a. In these cases, the theoretical prediction
accounting for aerodynamic loads is in a good agreement with the
experiment. Morcover, the theoretical model is capable of capturing
trajectory nuances shown in Fig. 8a.
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Fig. 8 Model BSNS, U = 62.5 m/s, Yy = 3.85 in,, g = 24 deg, Vg =
19 inJs, and wy = 140 deg/s.
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Fig.9 Modcl BAN2, Uoo =623 m/s, Yy =233 In, g = 9.5.dcg, and V=
6 inJs. ' '

Figures 3b—10b show a comparison between predicted (lincs)
and experimental (symbols) histories of the angie of attack &(r).
Figures 3b—6b show good agreement between the theory and the
experiment. The agreement is only satisfactory for the cases shown
in Figs. 7b-9%b. Rough estimates indicate that the initial growth of &
(see Fig. 7b) may be associated with an initial pitch impulse gener-

ated by the relcase mechanism under a gravitational couple from the:

pins. In this case, both the initial angle of attack and angular speed
were estimated from the experimental data. These were used as the
initial conditions for the calculations. For the lightest model, BSNS
"(scc Fig. 8b), the discrepancy seems to be due to the difference
between the actual nosc shape (elliptic) and the shape used in our

161 Y [inch]

147 8 axperiment

4294 - free drop

theory

10: .—-—a=a(g,f)

g{ = u=0(-M)

6-

44

21 t [sec]
a) 000 004 008 0.12 0.6 020

8 a[deg] -

4- .

] = experimen’
o a=a(M)

s amolM)

-~ -12] 0y
] “t [sec}

b) 002 002 006 010 014 018 022
Fig. 10 Model BAN2, Uoo = 62.1 mVs, Yg = 2.8 in., ag = —11.9 deg, Vg =
15 inJs, and wy = 52.86 deg/s.
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Fig.11 Effccts of initial vertical velocity: modcl BAN2, U = 623 ms,
Yo =142 in., ag = 0 deg, and wp = 8 deg/s.

calculations (parabolic ogive). Unfortunatcely, calculations were not
possible for the actual nose because its geometry was not available.
Note that the nose shape becomes more important at large pitch
angles. The divergence of the predicted and experimental curves
in Fig. 9b seems to be due to the flow inside the cavity, which is
presently not included in our modeling. Namely, the nonuniform
upwash ficld duc to the recirculatory flow in the cavity has not been
included. Such an upwash field will change the crossflow angle of
attack from that due solely to the vertical speed of the body, which
has been accounted for in the approximate model described here.
This can be thought of as a first estimate of the flow physics. The
effect of the upwash ficld can be considered a refinement of this
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Fig. 12 Effect of freestream velocity on the body trajectory: model
B4N2, Yy = 1.42 in.,.axp = 0 deg, Vo = 8 inJs, and wp = 8 deg/s.
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Fig. 13 Influcnce of the initial angular speed on the body trajectory:
model BdN2, U = §2.3 s, Yg = 1.42 in., ag = 0 deg, and Vj = 8 inJs.

model in which this recirculatory flow can be estimated {rom the
empty cavity flow. An inviscid approximation for the latter is given
in Ref. 4 for deep cavities. (Deep cavitics arc almost bridged at
their top end by the shear layer in contrast to shallow cavities for
which the shear layer will collide with their bottom.) Further refine-
ments would include the interaction of the moving body with this
nonuniform flow for bbth deep and shallow cavities. Pitch oscilla-
tions observed in phase 1 (body is totally inside the cavity) clearly
indicate the presence of this effect, which may also explain the sub-
stantial difference between the theory and the experiment shown in
Fig. 10b.

As indicated earlier, the pitch behavior in phase 3 (body is out-
side the cavity) strongly depends on the entry condition, which is a
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Fig.14 Influence of theinitial pitch angle on the body trajectory: model
B4N2, U = 62.3 m/s, Yo = 1.42 in., Vg = 8 inJs, and wq = 8 deg/s.

function of the angular velocity, vertical speed, and their derivatives.
For the case shown in Fig. 10b, the shear layer displacement from
its basic state into the cavity may cause a phase jump of the right-
hand-side term in Eq. (2a) from 0 to 180 deg. Such a jump affects
the pitch history outside the cavity. This is illustrated in Fig. 10b
by the dotted line that was calculated with the opposite sign of the
pitching moment. It is seen that this curve is in a good agreement
with the experimental data. On the other hand, experimental curves,
shown in Figs. 5b, 6b, and 7b for approximately the same initial
conditions, have a regular behavior, that is, they are in a good agree-
ment with the computations performed without changes of the sign
of pitching moment. These findings suggest that there is a bifurca-
tion in the pitch history a(r) when the body enters into the external
stream. The trajectory eauations allow such a bifurcation because
the aerodynamic for-iug terms of Eqs. (2a) are nonlinear (quadratic)
functions of speeds V and w. One of two possible trajectories is se-
lected when the bouy crosses the shear layer. Therefore, phase 2
scrves as a trigger of the pitch bifurcation. Accurate modcling of
this mechanism is important for prediction of the pitch history and
store trajectory in the next phase, when the store is outside the cav-
ity. To verify this hypothesis additional theoretical, numerical, and
experimental studies are needed.

Parametric Studics

Parametric studies of the body trajectory were conducted for dif-
ferent initial conditions, body parameters, and freestream speeds.
The results ‘are shown in Figs. 11~15. Variations of the initial ver-

. tical velocity cause not only c.g. acceleration but phase suift of the

pitch angle (see Fig. 11). In accord with the analytical solution dis-
cussed earlier, an increase of the freestream velocity leads to a sub-
stantial increase of the mean pitching angle and the pitch oscillation
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Fig.15 Trajectories of diffcrent models: U = 62.3 mi/s, Yg = 1.42 in.,
ag = 0 deg, Vo = 8 inJs, and wq = 8 deg/s.

frequency (see Fig. 12), while the c.g. trajectory is changed slightly.
Figure 13 shows that the pitch oscillation amplitude increases and
the. phase shift occurs as the initial angular speed increases. Ampli-
fication of the pitch oscillations is stronger in the case of positive
wy with the c.g. trajectory also noticeably affected. The effect of the
initial pitch angle is similar to the effect of wy (compare Figs. 14
and 15). However, the variation of the c.g. trajectory in this case is
smaller.

‘Trajectory dependencics on the body shape are shown in Fig. 15.
The calculations were performed for three experimental models of
Ref. 7 under the same initial conditions. As expected, the highest
amplitude and frequency of the body oscillations correspond to the
lightest model, BSNS. It is also seen that the body trajectories out-

side the cavity are consistent with the analytical solution dxscussed-

earlier. .

Conclusions

This paper discussed modeling of Z-0OF verfical and pitching
motions of thin bodies of revolution separating from a rectangular
cavity into an external frecstream. The problem is-analyzed using
combined asymptotic and numerical methods. The body dynamic
equations include aerodynamic forces and moments, which are pre-
dicted using approximate analytical solutions obtained in our pre-
vious studies within the framework of the slender body theory. Dif-
ferent phases of the separation process were arialyzed using small
perturbation theories. This leads to simplifications of the trajectory
cquations and their integration in closed form for different typical
cases associated with phase 1 (body is inside the cavity) and phase
3 (body is outside the cavity). These analytical solutions provide
explicit dependencies of the body trajectory on the flow and body
characteristics, which allows identification of the critical parameters
and insight gained into the physics of the separation process.

The numerical code predicting the trajectories for all three phases
of store separation was validated by comparison with the experi-

ment. For a major portion of the data, the calculations are in a good

agreement with experiment. Moreover, the theory is able to capture
nuances of the body pitching observed experimentally. These re-
sults confirm our theoretical model. However, there are cases when
the agreement is only satisfactory. The body separation is affected
by more complex flow phenomena, which are not captured by our
model. One discrepancy seems to be due to the slip-surface dis-
placement induced by the shear layer instability and/or sclf-excited
oscillations of the cavity flow. These effects can lead to the pitching
moment phase jump from 0 to 180 deg during phase 2, when the
body crosses the shear layer. The jump may trigger quick transi-
tion from one pitch angle trajectory to another for phase 3, when
the body is outside the cavity. Our calculations showed that this in-
terpretation is consistent with the experimental data indicating the
existence of two substanﬂally different pitching trajectories for ap-
proximately the same initial conditions. Because nontinear dynamic
equations are involved, the body trajectory may have a bifurcation

. point associated with phase 2. Although this transitional phase is

relatively short, its aerodynamics may determine the selection be-
tween possible trajectories outside the cavity. Further theoretical
and experimental studies are needed to establish and clarify the bi-
furcation mechanism. Qur future work will extend this model to
transonic speeds.
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