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Foreword 
This overview describes the objectives, work carried out and results obtained in this 
project in accord with the final reporting requirements. A more detailed section entitled 
"Details of Analytical Studies" follows which describes the analytical approaches, results 
and parametric studies of our rapid turn-around models of store separation. Preprints and 
reprints of selected papers constitute the final section to provide a self-contained 
description of our effort under the contract. 

Objectives 
Perform research to study store interaction with cavity bay shear layers relevant to 
separation and delivery with emphasis on 

• application of asymptotic and numerical methods to description of store release 

• study of vorticity interactions in cavity shear layers 

• coupling of dynamics and fluid dynamics store release aspects 

The foregoing objectives are in response to AEDC, Wright Labs (ARCTIC), and Eglin 
who have stressed the importance of internal store separation from weapons bays 
because of the possibilities of interaction of their highly active shear layers with the store 
motion. AEDC stressed a unit problem approach in which the details of the interaction of 
the cavity flow should be understood rather than concentration on the complete vehicle. 
In response to Air Force needs, we have focused on store separation from a rectangular 
cavity. This provides an excellent launching pad for our future studies in stage separation 
for access-to-space and other flight vehicles. The former subject has a high priority in the 
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SLI program under which second and third generation reusable launch vehicles are being 
developed. 

Status and Accomplishments 

In 1999, we revised our previous modeling of two-degree-of freedom (2-DOF) store 
trajectories discussed in [1,2]* using substantial further developments of modeling 
provided in [3,4] and emphasizing coupling with store rigid body dynamics and stability. 
Details of this study are presented in [5] (a preprint of which is in the last section of this 
report). We analyzed the dynamic equations for different phases of the separation process 
using small perturbation theory. This allowed us to simplify the trajectory equations and 
integrate them in explicit analytical forms for different typical cases associated with body 
motion inside and outside the cavity. In addition, the eigenvalue structure provides 
insight into the important parameters for stability in the store-cavity context, 
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Fig.l    Bifurcation  phenomenon  of the  pitch  angle  ior  separation  from  subsonic 
rectangular cavity; a) - CG trajectory, b) - pitch angle: Model B4N2, U„ = 62.1 

m/s, Yn =2.8 inch, a0 =-11.9°, V0 =15 inch/s. co0 =52.86 deg/s. 

Furthermore, the analytical solutions provide explicit dependencies of the body trajectory 
on the flow and body characteristics. These dependencies help in extracting lumped 
parameters and gaining insight into the physics of the separation process. They are 
consistent with the tests we carried out in the IIT subsonic wind tunnel. Our comparisons 
with IIT data are shown in Fig. 1. For a major portion of the data, the calculations are in 
good agreement with experiment. Moreover, the theory is able to capture nuances of the 
body pitching observed experimentally. These results confirm our theoretical model. 
However, in some cases the body separation is affected by more complex flow phenomena 
that are not captured by our model. The discrepancy seems to be due to the slip surface 
displacement induced by the shear-layer instability and/or self-excited oscillations of the 

In this section, reference, equation and figure numbers are local to it. 
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cavity flow. These effects can lead to a pitching moment phase jump from 0 to 180 
degrees when the body crosses the shear layer. The jump may trigger quick transition 
from one pitch-angle trajectory' to another for the body motion outside the cavity (see Fig. 
lb). This interpretation is consistent with the experimental data and suggests that two 
substantially different pitch trajectories exist for approximately the same initial 
conditions. Since we are dealing with nonlinear dynamic equations, the body trajectory 
may have a bifurcation point associated with shear-layer crossing. Although this 
transitional phase is relatively short, its aerodynamics determines the selection between 
possible trajectories outside the cavity. Further theoretical and experimental studies will 
help to establish and clarify the bifurcation mechanism. 

In 2000-2001, we emphasized external and cavity store separations into a transonic 
outer flow. New elements in the effort were: 

• Extension of our previous analysis to the transonic regime 
• Analysis of separation from cavities of finite span 
• Modeling of the drag force components and study 3-DOF trajectory with a 

breakdown among friction, base, drag due to lift and wave.drag 

We analyzed separation of a body of revolution from a deep rectangular cavity. The 
separation process was subdivided into three phases: (Phase 1): the body moves inside' 
the cavity; (Phase 2): the body crosses the shear layer, separating the cavity flow from 
external stream; and (Phase 3): body is totally outside the cavity. We showed that for 
many practical applications the relations 

S = ^-«l   -^- = ££0(1),  a = - = 0(1),  £:Re»l. (la) 
'0 

^«l.-4t«W0=^»l.tf(1=.^»i. (lb) 
an L0Vr aQ a0 

are fulfilled. 

Here /„ and 5„ are body length and its maximum radius respectively: V. is 

characteristic vertical body speed; ä is angle of attack; £/„ is freestream velocity; 

LQ,Hn and D0 are cavity length, height and half-width; Ss is shear-layer thickness, 

Re = pJJJn ///„ is the Reynolds number. 

Due to the inequalities (la) we can describe the flow over the body using slender body 
theory (cf. [6]). According to the inequalities (lb) we can treat the shear layer as a free 
slip surface, neglect the flow inside the empty cavity and consider the cavity wall effect 
as a small perturbation. Within this framework, solutions for the flow potential were 
found separately in the inner and outer asymptotic regions using transonic small 
disturbance theory. 
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Apparently, the strongest interaction occurs when the body crosses the shear layer. The 
latter was treated as a slip surface that is schematically shown in Fig. 2. In this separation 
phase, the slip surface displacement is unknown a priori, and interacts with the solution. 

Cavity walls 

Body 
Y,y 

do 

b) Phase 3 

Fig. 2 Cross-sectional views of body crossing shear layer. 

The scaling of variables is similar to slender body theory as detailed in [5]. In the 
dominant approximation, the near-field flow potentials inside the cavity and in the 
stream (O and <1>+ respectively) are solutions of the two-dimensional Laplace equation 
in cross-sectional planes with the following boundary conditions: 

On the body surface: 
Y = Yb(X,0,t) = N(X,t) + a(x)sm0, H =Y0(t)-a(t)X , 

Y>Yf:   v; = v; sin0;   Ve
+ (X,t) = Vo(t) -0){t)X , (2a) 

0-4 ^ ROCKWELL 
^J SCIENTIFIC 



SC71153.FTR 

Y <Y  :   v„ = a x + V sin 0. Vr (Xj) = eVe' (X.t)- a(t). (2b) 

On the slip surface: 
Yf=pF(X.Z.t). 

«•; = fi(F, + £u-; FZ } V/ = //(F, + FX + H-7 FZ ). p;- = /?;. (3) 

Pressures below and above the slip surface, p and p~ respec'i .^ely. are determined from 
the unsteady Bernoulli equation, i.e. 

S2pJJl 
®,+it+-(w2+v2) 

P  -P. 
S2p u: = -£ O* +-\\v 

'        0 
+ v .    (4) 

On the cavity walls, the normal component of the flow velocity vanishes. 

In the most general case, when all perturbations are of the order of 0(£), we obtain 

f.«l, p = £; ax=ealx, a = ea[,Ve =eVel =£\Ve
+ -aj, 

F = Fn + fip!, 0+ = <pl + £0* + 0(£2). <J> = E0U + £-$x + 0{£3). 

0I,+0IX+T(
V

.>
+W

O)  \ + 0{£1), 

P' =-e\tä,+£ 
1 /   •• 

• + 0(f3) 

(5a) 

(5b) ■ 

(5c) 

(5d) 

In the first order approximation, the boundary conditions on the body surface are similar 
to Eqs. (2). Conditions (3) on the slip surface can be shifted to the plane Y - 0 and 
expressed as 

Y = 0:   \<;f = F0,,    v0/ = F0I + Fox,    u 0, + wox = < (6) 

We analyzed the two unit problems shown schematically in Figures 2a and 2b. Problem 
1: Body crosses the shear layer; and Problem 2: Body drops below the slip surface. To 
solve Problem 1 we applied the conformal mapping of the upper half-plane (cavity 
region) and the lower half-plane (stream region) (C, -plane) on the flat plate exterior (a - 
plane) and obtained the complex-conjugate velocities using the Keldysh-Sedov integrals 

Wn(a;X,t) = - 
1 do- 

rn \4ö^-i?*C 
. Wfr: -s2v0n(s)ds _ r Js2 -b2 w0f (s)ds 

-b (S-(7)1(S) (S-(7)1(5) 
(7a) 
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w;((j:X,t) = - 
da 

m yla^dC 

, "r Vfr2 - s2 v,;n (5)ds | r Vr -b2 \\-;f (s)ds 

-b~ 
(s-a)l(s) (s-a)l(s) 

(7b) 

Here b and /Tare flat plate semi-spans in the G -plane, 7(5) is mapping metric: the 
second integrals are calculated along the slip surface located in the intervals (-°°.-/?). 

(_oo -b*) eud (fe.oo), (b\°°). Using the Cauchy integral and Eqs. (6). we expressed tUe 

transverse flow velocities on the slip surface in terms of the slip-surface shape 

hf     h 'of + h 
K Jt 

im-,2aiH:F\U,-fM";F\]+ {H-F\+Z-\    x    2[{H-F)-+Z-\ 

(8a) 

(8b) 

+ 1 
n = l 

a(H-F) 

{H-Ff+Z2 

B + l 
,2k ß 

±(-irc?j 
k=0 H-F 

Ju-,(£)sin(n£)</£ >. (8c) 

,y\    a{H-F 

rb{x,z,t) = -v;{jr-ß a (H-F) 

+ 2Y 
{H-Ff+Z2 

\_{H-F)
2
+Z

2 

1_Z 

ri 

+ 

:*. 
(8d) 

where the anjle /? is shown in Fig. 2a and « = 1 - /?/;r. From these relations we derived 

the Poisson equation for the slip-surface shape F0 

d2Fn     d
2Ft ■ + ■ 

dt2      dÄ 
i = -i-f 
2 ir2   J 

l    }[lbt(Ä,S.T)+Ihx(^S,T)}is 

s-Z 
(9) 

where r = t-X . This equation contains interesting physics. According to slender body 
theory, the inner asymptotic solution is harmonic in each crossflow plane. However, the 
slip surface displacement does not explicitly depend only on the streamwise coordinate 
X and time t, but has an implicit global interaction with the solution. This may lead to 
new physical effects that will be studied in our research. We showed that the problem (as 
well as the more complicated nonlinear problem for moderate and large displacements of 
the slip surface) can be solved by simple iterations. This provides a good launching pad 
for further studies of the body-shear layer interaction. An understanding of these 
interactions is critical to current experiments on time-averaged shear layer undulations in 
acoustically controlled and uncontrolled modes and their consequences for safe store 
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release. Our work will complement PIV and DNS investigations of these phenomena and 
help establishing the proper control laws for mitigation of adverse consequences of the 
acoustic damping schemes such as span wise pulsating jets. 

Relevant to Eq. (9) in our first cut modeling for the body trajectory', we assumed the 
shear layer displacement FQ = 0 and obtained analytical solutions for the near field and 

expressed the lift force and pitching moment in explicit forms for all three phases of the 
separation process. We also analyzed the far-field flow and its parametric dependencies 
at transonic speeds. We found that the scaling for the outer asymptotic region is 
expressed as 

x=£, y=Ä z=5^, r = i-, r = ■$&.. ö = /0f/Jx + ^(X.f,z,r].      (10) 
'o 'o 'o o 'o 

where £x results from matching of the outer and inner solutions, //, is associated with 

the outer-region scale, and t0 is characteristic time scale. The equation for the outer 

flow-field potential is 

ö2[K-(y+l)<px-(y-l)Sq>T]p3a+M2{<Pff+q>2Z)-2Sp„-S2<pTr=0, (11-). 

1-M2 -    - 
where  K = ;—  and 5 = /n/(r0f/„)  is the Strouhal number. We showed that for 

S~ 
practical ranges of 5, the outer flow is quasi-steady and is governed by the steady 
axisymmetric form of the axisymmetric Karman-Guderley equation (in a cylindrical 
coordinate system) 

[K-(y+l)<px]<p>a+-(r(pr)r=0, (12) 
r 

with the asymptotic boundary condition 

r^OwS'W'SK (.3) 1    r 2K 

Here the source strength Qe is determined from matching with the near-field solution 

and is expressed in the compact analytical form 

For Phase 2:    Q(X,t) = - 
nd 

4axe{)(n)-xVe(l + 2n2) 
•,\sin^7? 

6n 
(14) 

ForPhase3:    QAX,t)=^£^£^. (15) 
jH2+d2 

A numerical solution of the problem (12), (13) was used to predict the transonic wave 
drag using our slender body transonic small disturbance code. The theoretical model in 
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[7] for the base drag and the empirical model [8] for the friction drag has also been 
incorporated in our prediction of the drag. Besides the quasi-steadiness. examination of a 
practical distinguished limit reveals that the outer flow is dominantly axisymmetric 
during early separation for which re-contact is important. Both of these properties 
provide a substantial simplification of the outer transonic problem to make it tractable on 
a PC desktop or laptop. 

Our ongoing parametric studies of external and internal store separation fron- a 
rectangular cavity into a transonic flow indicate that the theoretical model captures 
trajectory bifurcations, re-contact and ricochet. Figure 3 shows an example of external 
store separation into a Mach 0.999 freestream. If the initial vertical speed is zero (red 
lines and symbols), the body moves up and hits the wall (re-contact). At relatively small 
initial vertical velocity (V0 = -0.5 m/s), the separation is smooth and re-contact is 

avoided. This shows that external store separation can be controlled by the release 
mechanism. It also confirms our conjecture about the ÜT tests that repeatability can be 
enhanced by close control of the release mechanism. Studies such as these can be useful 
in designing ejection units and thrust motors for stage separation. They not only can be 
useful to determine the amount of thrust and weight required for these units but they also 
indicate how we can effectively correct an adverse re-contact situation with a relatively 
small impulse. 

Figure 4 shows trajectories of the center of gravity (CG) for external separation from a 
flat wall (left plot) and separation from cavity (right plot) into a Mach 0.999 stream. The 
blue lines with circles are trajectories at identical release conditions (ejection velocity 
V0 = -20   inch/s).  Comparing these trajectories we conclude that the shear layer 

increases the lift, pushing the body back into the cavity (ricochet). It is also seen that at 
near-critical conditions of re-contact ^(external separation) and ricochet (cavity 
separation), the store trajectory is sensitive to the initial conditions associated with : tore 
release. This is consistent with our previous subsonic experiments at ITT. Figure 5 shows 
that a variation of the initial angle of attack causes dramatic changes of the CG 
trajectory. 

The impact of this work will be: 

• Enhanced insight into the mechanisms of store and stage interference with the parent 
vehicle and shear layer. 

• Models that can be used to design control systems and determine control laws for 
safe store release and staging. 

• Rapid turnaround PC desktop models for quick assessments and certification. 

Future research will study more geometric realism in the simulations, investigate physics 
of wave interactions with shear layers and between multiple bodies and develop 
matching techniques for the local flow problem near the weapons bay with the complete 
airplane flow field. 
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Locations of the body reference line segment AB at 
successive equally spaced time increments 

CG Trajectories 

Locations of the body reference line segment AB at 
successive equally spaced time increments 

External separation of Model B4N2 at Mach=.999 

Strong sensitivity is consistent 
with our IIT low Mach number tests 

0.0 

-0.5 

-1.0 

-1.51 

wall 

Oft 

^-Body radius 

i                    i 

^M^               recontact 

—•—   Vo=0. m/S 

—<—   V0=-0.5m/s 

wc=0,, u0=6 

-2.0 

.9 5 
2 

CG Trajectories 

Fig. 3 External store separation into a transonic free stream. 
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wall 
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Separation from cavity 

Y/D„ 
top cavity wall 

V„=-20 inch/s 

20       30       40       50       60 

X/D„ 

Body of shape B4N2: M=.999, 0^=6 deg., wb=0 

Fig. 4     CG trajectories for external (left plot) and cavity (right plot) separations; 

M =0.999, fl)o=0, a0= 6°. 

Q 

Fig. 5     CG trajectories for separation from cavity at various initial angles of attack a0: 

M = 0.999, a)0 = 0, V0 = -20 inch/s, body of shape B4N2. 
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Abstract 
Aerodynamic and dynamic problems relevant to separation of a thin body of revolution 
from rectangular cavities into subsonic and transonic flows are considered. In the 
dominant approximation, the shear layer separating cavity flow from outer flow is 
approximated by a slip surface and the flow is described by slender body theory. The 
separation process is subdivided into three phases: body inside the cavity (Phase 1). body 
crosses the shear layer (Phase 2). and body outside the cavity in the outer stream (Phase 
3). Herein, models ior inner (near field) and outer (far field) asymptotic regions are 
provided for all phases of the body motion. Also, analytical and numerical solutions of 
the flow and trajectory equations are discussed and compared with experiments. 

In Part 1, the general problem for the inner asymptotic region is formulated and 
analyzed. In order to capture basic features, the case of small perturbations is considered 
in detail. A Poisson equation is derived for the slip surface displacement induced by the 
body. The flow problem is reduced to two coupled linear integrodifferential equations for 
the complex flow velocity and the slip surface displacement. For Phase 2. the solution of 
this system is singular at the body and slip surface line of intersection. For finite 
perturbations, a system of nonlinear integrodifferential equations is derived for the inner 
asymptotic region. It is shown that this system can be solved using an iteration procedure. 

In Part 2, the first iteration relevant to zero distortions of the slip surface is considered. 
Explicit solutions of the governing equations are obtained and analytical expressions for 
the lift force and pitching moment are derived for all phases of the separation process. It 
is shown that a singularity arising in Phase 2 at the body and slip surface intersection line 
is integrable and does not contribute to the aerodynamic forces. Therefore, the solution 
can be treated as a dominant approximation of the general problem and can be used for 
the body trajectory analysis. 

In Part 3, the two-degree-of-freedom trajectory equations for the center of gravity and 
pitch angle are analyzed using the results of Part 2. Asymptotic solutions of these 
equations for Phaser 1 and 3 give explicit dependencies of the trajectory on the governing 
parameters. The analytical results of Part 3 dramatically simplify body trajectory 
calculations. A robust computational code is developed for quick turn-around predictions 
of the center of gravity and pitch angle trajectories for all phases of separation. The code 
is verified by comparisons with the IIT experimental data obtained for subsonic store 
separations. In many cases, the calculations are in a good agreement with the data. It is 
shown that a unusual behavior of the pitch angle in Phase 3 is associated with the 
trajectory bifurcation. Parametric studies of the trajectory dependencies on the initial 
conditions, flow parameters and body characteristics are presented. 

In Part 4, the outer limits of the inner solutions for Phases 2 and 3 are investigated 
including terms up to the third-order approximation. It is shown that for an infinite span 
cavity, the outer limit of the dominant solution corresponds to the flow induced by a 
dipole distribution along the body axis, while the source term arises only in the third- 
order approximation. A general form of the inner solution for a finite-span cavity is 
obtained. In this case, the far flowfield is induced by the source distribution whose 
intensity is proportional to the ratio of the body thickness to the cavity span. The outer 
asymptotic problem is formulated and analyzed. Explicit inner solutions are used to 
formulate matching conditions for the transonic outer region. Different regimes of outer 
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unsteady flows are classified. The drag force components associated with the transonic 
wave drag, cross-flow, friction drag and base drag are analyzed. These items are the basis 
for analytical results that are used to develop a computer code to solve the trajectory 
equations. The obtained theoretical results are used to analyze three-degree-of-freedom 
body dynamics for separation into subsonic and transonic freestreams. Examples of the 
external and cavity store separations are discussed including critical cases of recontact 
and ricochet. 
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7t-ß 
n(X,t) = ^ 

71 

normalized angle; Eq. (1.2.17a) 
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5 = -£- half of body thickness ratio 
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Introduction 
The store separation problem has important practical applications. Its diverse aspects 
have been intensively investigated. Engineering, semi-empirical computational and 
experimental approaches are illustrated in [1-4]. Most studies have been concerned with 
external separation at subsonic or supersonic speeds. Relatively less attention has been 
given to separation from cavities, especially at transonic speeds. This is because the 
problem is very complicated due to athe large number of parameters governing the flow 
structure and the vast variety of physical phenomena involved in the separation process. 

Our objectives in the research to be described in this document are to fill this gap by 
identifying the first-order physics, solve unit problems related to modeling the basic 
mechanisms and develop fast and robust methods for predicting store trajectories. Key 
thrusts are to divide the separation process into component phases, formulate unit 
problems for each phase and solve these problems using a combination of asymptotic and 
numerical methods. In contrast to ad-hoc approaches, these give systematic 
approximation schemes modeling store separation processes that easily couple with 
rigid-body dynamics for desktop PC "design" codes that rapidly predict store trajectories 
They also improve our understanding of the physics, parametric limits and trends. 

Matched asymptotics suggest that a component of the global problem of interaction of 
the separating with the entire airplane flow field, is the local problem of separation of a 
body of revolution from a rectangular cavity into an external subsonic or transonic flow 
of uniform freestream speed. In this physical system, we divide the separation process 
into three phases that will hereinafter be denoted Phases 1-3. In Phase 1. the body moves 
inside the cavity, whereas in Phase 2 the body crosses the shear layer separating the 
cavity flow from external stream. In Phase 3 the body is totally outside the cavity and 
moves in the external stream. We assume that the body is thin, the vertical flow velocity 
and angles of attack ä are small, so that the following relation? /»old 

S = ^«\,   -^- = £<0(\), a = ^ = 0(l), (1) 

where /", and 50 are respectively the body length and its maximum radius, Vr is the 

characteristic vertical component (plunge) speed and SU„ is the scale of the vertical 

velocity perturbations in the external freestream of velocity £/„. 

The body-shear layer interaction is an important component of the store separation 
process, especially, in Phase 2. This interaction depends on the ratio of shear-layer 
thickness Ss to body radius a(1. For many practical applications, the following relations 

hold 
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^■«1.  £:Re»l. Re = ^^. (2) 
5, M- 

where Re is Reynolds number; p„ and //„ are freestream density and viscosity. 
According to the first inequality of (2) the shear layer can be treated as a free slip surface 
with a tangential velocity jump and continuous normal velocity, pressure and the density 
across itself. The second inequality of (2) allows us to neglect viscous effects and ase 
potential flow theory for regions well outside of the shear layer. If the shear la> er 
thickness is small compared to the body thickness, it is reasonable to assume the potential 
flow approximation will provide a good approximation of the aerodynamic forces. We 
consider deep cavities of the length-to-height ratio L0 / H0 < 6. In this case, the outer 

flow weakly penetrates into the cavity; i.e., flow velocities inside the cavity can be 
neglected because of the relations 

4- ^-«1, (3) 
V,     eSLn 

Within this framework, the flow over the body can be described by slender body theory 
[5-7]. The aerodynamic forces in this theory are controlled primarily by a cross flow 
"inner region" close to the body. Parts 1 and 2 of this report emphasize this inner 
asymptotic region. It covers a distance from the body axis of the order of the body radius. 
Following Refs. [16, 17, 19-21] we formulate the problem in Section 1.1. In the dominant 
approximation, the near-field solution has a similar form for both subsonic and transonic 
freestreams. It is governed by two-dimensional Laplace equations in the crossflow plane 
approximately perpendicular to the freestream direction. The relevant crossflow 
boundary value problems allow us to use the well-developed theory of analytical 
functions [8-15] but with a new twist associated with the presence of the slip surface 
approximating the temporal mean position of the a thin shear layer. From the inner 
solution we can calculate the lift force and pitching moment acting on the body and 
analyze two degree-of-freedom body dynamics restricted to vertical motion and pitching. 
These can be extended to more general motions involving roll and yaw motions with 
generalizations of our techniques. 

Even with these simplifications however, it is difficult to obtain explicit solutions due to 
the complex geometry of the flow boundaries. To facilitate analysis we note that for 
many applications, the relative cavity height and half-width, D{), are much larger than the 
body radius; i.e. 

d0=^»\,H0=^-»l. (4) 
an an 
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This allows the cavity wall effect to be treated as a small perturbation. From this 
approximation, it is possible to isolate the wall-body and slip surface-body interactions 
and treat them as separate component sub-problems whose solutions can be 
superimposed to provide the complete flow. 

The slip surface-body interaction is the most difficult component problem because the 
shape of the free boundary is not known a priori and should be determined as a part of 
the solution since it strongly and nonlinearly interacts with it. This is a challenging 
problem even for current CFD modeling and many methods are in development to solve 
it. Since our goal is to develop transparent models of the physics as well as rapid 
turnaround methods, we use a simplification of the boundary value problem which is 
described in Section 1.3, using small perturbations that avoids large scale computation. 
Using the theory of analytical functions [8-15], we formulate a new approach and derive 
the slip-surface shape from a Poisson equation, with the right-hand side being an explicit 
function of the transverse coordinates and trajectory parameters. The problem is reduced 
•to two singular linear integrodifferential equations for the slip-surface shape and the 
complex flow velocity. These equations include integrals of Cauchy type along the body 
cross-section contour and can be solved numerically by simple iterations. In Phase 2, this 
solution is singular at the body and slip surface line of intersection. We do not analyze 
this singularity since it is integrated and its contribution to the aerodynamics is negligible 
within the approximations considered here. Using the asymptotic results, in Section 1.4 
we reformulate the general problem for the body-slip surface interaction and reduce it to 
a system of nonlinear singular integrodifferential equations that can be solved by simple 
iterations. Our new approach reduces the boundary value problem for the crossflow to 
boundary data quadratures, dramatically simplifying the solution procedure. 

In Part 2, we consider the first iteration and find analytical expressions for the flow 
potential in all three phases of the body motion [17, 19-21] neglecting the slip-surface 
deformation. In Section 2.2, we obtain solutions in the form of rapidly converging series 
for Phases 1 and 3. The method of solution is based on the theory of Ref. [9] with new 
terms associated with three-dimensional effects. In Section 2.3, a conformal mapping is 
applied to obtain the solution for Phase 2. This solution differs from known results such 
as [15] by new terms related with three-dimensional flow effects. For all phases, we 
derive simple analytical expressions for the lift force and pitching moment acting on the 
body. These results are cross-checked by comparison with known analytical solutions 
[15.24] 

In Part 3 we analyze 2-DOF trajectory equations for vertical center of gravity translation 
and pitching rotation [20,21]. In Sections 3.2 and 3.3, approximate analytical solutions of 
the trajectory equations are obtained for Phases 1 and 3. A numerical code predicting the 
trajectory through the three phases is developed. In Section 3.4, the code is verified by 
comparisons with subsonic wind tunnel experiments [18]. Results of parametric studies 
are also presented. 

In Part 4, we analyze the outer asymptotic problem. In Section 4.2, we investigate far 
field asymptotics of the inner solutions obtained in Part 2 for store separation from a flat 
plate and from an infinite-span cavity. In the former case, an equivalence rule similar to 
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[25-29] is formulated. For the latter, the far field corresponds to a dipole distribution 
along the body axis. In Section 4.3, a general form of the inner solution for Phase 2 is 
obtained for store separation from a finite-span cavity and its outer limit is studied. In 
Section 4.4, similar results are obtained for Phase 3. Higher order approximations of the 
inner solutions are discussed in Section 4.5. In Section 4.6. we formulate matching 
conditions and determine a general form of the outer solution. In contrast to the usual 
slender body theory [6], different time scales inherent in the problem considered generate 
a variety of unrteady regimes for the outer transonic flow. We identify these regimes in 
dependence of the relationship between the Strouhal number and uow perturbation scale. 
It is shown that the quasi-steady outer flow approximation is adequate in order to 
accurately calculate transonic wave drag. In Section 4.7, we analyze different drag 
components including the wave drag, pressure drag, viscous drag and base drag. In 
Section 4.8, the numerical method for solving the 3-DOF trajectory equations is 
discussed. From this method, we develop numerical codes predicting 3-DOF trajectories 
for store separations from a flat wall (external separations) or from a rectangular cavity. 
In Sections 4.9, numerical examples for external separations and separations from 
cavities are presented and discussed. They show that the theoretical model can simulate 
such complex phenomena as re-contact and ricocheting. 
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Part 1. Flow Field in the Inner Asymptotic Region 

1.1 Introduction 
Within the framework of slender body theory [5-7] the flow field is subdivided into two 
asymptotic regions. The inner region is located over the body surface and has a length 
scale of the order of the body radius. In this region, Laplace's equation for the flow 
potential and the unsteady form of Bernoulli's equation for the pressure describe both 
subsonic and transonic flows. Herein?fter we formulate the problem for the inner 
asymptotic region and discuss the governing equations emphasizing the most difficult 
problem associated with the slip surface motion. We have not found a rational and 
rigorous method for prediction of the slip surface motion for three-dimensional 
compressible flow in the literature. This is a challenging problem even for current CFD 
and a variety of numerical schemes were developed to solve it. Existing approximate 
methods are based on the results of Wagner [11], who analyzed incompressible two- 
dimensional flows for body submerging into liquids and gliding/planing. However, these 
methods do not account for compressibility and three-dimensional aspects considered 
herein. Moreover, we are dealing with the shear-layer interactions that are quite different 
from those occurring in hydrodynamic problems relevant to air-liquid interfaces. The 
theoretical model of Wagner [11] does not allow us to treat a combination of unsteady 
and three-dimensional effects that are important in store separation problems. 
Accordingly, the equations for the shear-layer dynamics obtained in this report are 
substantially different from those of Wagner [11]. 

In Section 1.2 we formulate the inner asymptotic problem in the dominant approximation. 
In Section 1.3 we use small perturbation theory to identify basic physical properties of 
the flow and find an appropriate form of the general solution for unsteady flows with a 
slip surface boundary. In Section 1.4, as an extension of the results obtained in Section 
1.3, we derive a nonlinear system of equations for the case of finite flow perturbations. 
We show that this system can be solved using an iteration procedure. A short discussion 
of the result obtained in Part 1 and basic conclusions are presented in Section 1.5. 

1.2 Problem formulation 
We consider a slender body of revolution released from the top wall of a rectangular 
cavity at an initial instant t = 0. The initial angle of attack ä0, vertical speed V0 and 

angular speed fi)0 are assumed to be small, of the order of O(S). The body drops under 

gravity along the cavity symmetry plane and separates from the cavity into the external 
flow. At the initial instant, the flow within the cavity is neglected. The cavity interior is 
separated from external stream by the slip surface bridging the cavity edges. The flow 
scheme for Phase 2 (body crosses the shear layer) and the coordinate systems are shown 
in Figures 1.1 and 1.2. The coordinate system OXYZ is attached to the unperturbed slip 
surface, as shown in Fig. 1.1. Therein, the OX-axis is directed along the freestream 
velocity and OY as well as OZ are respectively vertical and spanwise coordinates. The 
coordinate system oxyz  is attached to the body center of gravity (CG) that moves 
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vertically with the velocity V0(t). The o.v-axis is directed along the body symmetry axis 

and the ox and oz axes lie in the cross-sectional plane. The direction of <;:-axis 

coincides with the direction of OZ - axis. The axes ox and ox are inclined with respect to 

the axes OX and OY at the angle a(t); they rotate around oz -axis with the angular 

speed co(t). Along with the Cartesian coordinates we use the polar coordinates, r and 9. 

specified as 

z = r cos 6, y = r sin 6 . (1.1. i) 

The dimensionless variables for the inner asymptotic region are determined as 

x = *.y = _L;Z = |_; A. = i;>,=X;z = iL, (U.2a) 

t = U-,a=*-,V0=t:a>=*^. (1.1.2b) 
I 6    "    Vr L 

Neglecting terms of O(ä') and assuming that the longitudinal and transverse coordinates 

of the CG are constant, in particular, Z0 (t) = X0 (r) = 0, we obtain the relations 

X =x,Y = Y0(t) + y-xa,Z = z, (1.1.3) 

where Y0 (t) is vertical coordinate of CG. 

The flow space consists of the cavity region (above the slip surface) and the external 
stream region (below the slip surface). In the cavity region, the potential,Ö+, and flow 
velocities are defined as 

Ö>+ =äQVr®
+ =£Ö2UJn<l>,ö>; =eö2Ui<!>;,$>+

i =eS2U„u\ (1.1.4a) 

*t =£öu„v\®+
2 =£<5£Ov+,N+ =<&;,v+ =<D;,VV

+
 =$>;. (i. i .4b) 

Hereinafter, the superscript "+" denotes flow quantities inside the cavity. The 
corresponding quantities in the external stream region are expressed as 

Ö = /„£/„. (I + £
2

<D}ÖF =ö2Ui®,,®x =Um(l + Ö2u), (1.1.5a) 
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Ö, =ÖU„v,Qf =SU„w,u = ®x,v = &y,w = $i (1.1.5b) 

The pressures p and p+ are determined from the unsteady form of Bernoulli's equation 

is 

+     P  -P~ 
P   =T^ - = -£ 

S2p U2 

p-p- 
S2pJJl 

<D;+-(u-+2 + r2) 

<t>,+»+-(vv: + v:) 
2 

(1.1.6a) 

(1.1.6b) 

To 0(S2), both potentials are harmonic functions in the cross-sectional planes. 
Accordingly, we can introduce the complex variable £\ the complex potential 
Tl(£\X,t), and the complex conjugate velocity W{£;X,t) as 

n(^;X.O) = <D + /'vF. W(£,X,f) = ^ = u-/v. £" = Z + /Y. 

where *¥(X.Y,Z,t) is the nondimensional stream function. The boundary conditions on 

the body surface Y = Yb are expressed in the form 

Yh(X,Zj) = H + asin0 = H±4a2-Z2,H(Xj) = Yo(t)-a(t)X,        (1.1.7a) 

r = a,   Yh>Yf:   vn
+ = ^- = V; sintf;   V;(X,r) = ^- = V0(r)-ö>(f)X ,   (1.1.7b) 

er Ot 

r = a.   Yh<Yf:   vn =^- = ax+VesinO, Ve(X,t) = £V;(X,t)-a(t),     (11.7c) 
or 

where vn is flow velocity normal to the body surface and H(X,t) is the distance from 
the body axis to the plane Y = 0. In Eq. (1.1.7a), the plus and minus signs respectively 
correspond to y > 0   andy < 0. Equations (1.1.7b) and (1.1.7c) correspond to the body 

surface inside and outside the cavity, respectively; and Ve
+(X,t) and Ve(X,t) are 

effective velocities of the body cross-seciion. 

The boundary conditions on the slip surface, Yf = fiF(X,Z,t), are formulated as 

ev+(X,uF(X,Z.f).Z,f) = u(F, +ew}Fz), 

v{X,\LF(X,Z.t),Z.t) = \i(F, + Fx+wfFz), 

p{X,MF(X,Z,t),Zj)=p+{X,MF(X,Zj),Zj), 

(1.1.8a) 

(1.1.8b) 

(1.1.8b) 

r^ ROCKWELL 
^i SCIENTIFIC 



71153.FTR 

where the parameter  ju   characterizes a scale of the slip-surface perturbation: the 

subscript / denotes flow parameters on the slip surface. 

On the cavity walls, normal velocities are zero and the boundary conditions are expressed as 

Y = Hn,   -d,<Z<d0:   4^ = 0;  Z = ±d0,  0<Y<Ho:   ^- = 0. (1.1.9) 
dY oL 

'7 

The flow velocities on the upstream and downstream walls are of the order of 0(S~). 
and the boundary conditions are not involved in the dominant approximation of slender 
body theory. In this approximation, the lift force and pitching moment can be determined 
using the inner asymptotic solution only. Therefore, the CG coordinate, Y0 (t). and speed, 

V0 (t), as well as the pitch angle, a(t), and the angular speed, co{t). are solutions of the 

dynamic equations 

d Y     dVIL=   L_       L = L—-. = -{{p\x,e.t)a(x)smadxd0,      (1.1.10a) 
: At ' g n   TT- X-l - i J 

*,.  0 dr       dt      '       g pJJlS^ 

^- = — = c„M, M = ^—^ = -f \p'(x.0,t)xa(x)sin6dxd6.       (1.1.1 Ob) 
dr      dt pJJ-„8-la-       ii 

Here L and M are respectively lift force and pitching moment; m and / are body mass 
and moment of inertia: x0(t) and xe(t) are body nose tip and base coordinates. 

1.3 Asymptotic theory for small flow perturbations 
The unknown a priori slip surface shape and the nonlinear boundary conditions (1.1.8) 
are the main obstacles to obtain an explicit solution for the problem formulated in Section 
1.2. In order to find analytical solutions and capture basic features of this problem we 
consider the case of small flow perturbations. Let the body drop with small vertical 
velocity and angle of attack and its cross-section area is a slow function of the axial 
coordinate; i.e. 

ax = £aaLx, a = £aal, V, = e{V - coX)-eaax, V; =e(V-coX), 

ea «1,ea «1,£«\. 
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We substitute these relations to the boundary conditions (1.1.7) on the body surface and 
express them in the form 

r = a,  Yh>Y f •    v" 

0$ 
dr 

= £{V-coX)sine, 

r = a,  Yh<Yf:   vlt=—- = £ilau+e{V-QjX)-£aals\n0 
or 

These relations indicate that the flow potentials and slip surface shape can be expanded as 

,0+=£f+...,    ® = £0 + £ja+£ja+...,    jUF = £F0+£aFa+£aFa+... 

It is possible to consider the distinguished limits 

£ £ 
— —> 0 or oo,   -2- _> 0 or °° 
£ £ 

However, our analysis shows that the corresponding problems are not simpler than the 
general problem for  £a~ £a~ £. Therefore, we assume that 

£a =£a =£«l, (1.2.1a) 

ax=£alx, a = eal,V,=&el,   Vel =£(ve; -ax\ Ve\ ={V-coX). (1.2.1b) 

In this case, we consider the most general problem when all sources of perturbations are 
of the same order of 0{£), and all of them are included in the dominant approximation. 
Different cases for various distinguished limits can be easily treated using the general 
solution. 

Flow perturbations in the cavity and in the external stream are of the same order of 0(£), 
and we express the solution in the form of the asymptotic expansions 

p = e:  F = F0 + eFy, <D+ = fa + £<p; + 0(£2), <D = £</>0 + £20x + 0(£~),     (1,2.2a) 

1/ , 
P = ~£\ <Po, +0ox+£ 

P+=-e\ti,+£ 

^+0i.Y+-(vn+^o) 

1 
<PL+-\

V
»   

+W
O 

+ 0(£'), 

+ 0(£i). 

(1.2.2b) 

(1.2.2c) 

All terms of the potential expansions are governed by the Laplace equation with the 
boundary conditions on the cavity walls given by Eq. (1.1.9). In the dominant 
approximation, the boundary conditions (1.1.7) on the body surface are reduced to the 
form 
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r = a,   Yh>0:   v^, =^ = V,+sinö, (1.2.3a) 
dr 

r = a.   Yb<0:   v^ =^ = alJC+(v;-flrjsin*. (1.2.3b) 

The boundary conditions (1.1.8) on the slip surface are linearized and shifted to the plane 
Y = 0; they are expressed as 

■Y = O:v;=Fol,vo=Fol+Fox;0Ot+0ox=til. (1.2.3c) 

Differentiating the last equation (1.2.3c) with respect to Z we obtain the equation for the 
tangential flow velocities on the both sides of the slip surface 

dt       dx       dt 

In the second-order approximation, the boundary conditions (1,1.7) are 

r = a:   M- = ^ = 0. (1.2.4aV 
dr        or 

In order to formulate the boundary conditions on the slip surface in the second-order 
approximation, we estimate the potential and tangential velocity of the dominant 
approximation on this surface as 

<p;)(X,£F0,Zj) = ^(XAZ4) + £F0F,,,^(X,£Fl),Z,t) = ^(X,0,Zj) + £F{){Ft)!+Fi)X\ 

KiX^.z,y M^^V-0(,,,o(X.^,z.o = ^^) + 0(f, 
dZ dZ 

Substituting these relations to Eqs. (1.2.2), we obtain the boundary conditions of the 
second order approximation 

Y = 0 : v,; = Fu + W(;F0Z, vlf = Fu + FIX + w0F0Z , (1.2.4b) 

dt     dt    dx      oV       ; 

= 1F0X{2FOI + FOX)+F0{2FOI+FOX)X +i(w- -vv(f) , (1.2.4c) 

dw{     dw\     dw1  _dR0(X,Z,t) 
~dt        dT~~d¥~        a~Z 

(1.2.4d) 

In comparison with the dominant approximation, the conditions (1.2.4) include additional 
terms due to the slip surface displacement and the potential jump through the slip surface. 
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For Phase 2, when the body crosses the shear layer, the conditions (1.2.3c)-( 1.2.3d). 
(1.2.4b)-(1.2.4d) are applied at \Z\ > c. 

The potentials 0o(X,Y,Z,t) and <j)x(X,Y,Z,t) are solutions of the two-dimensional 

Laplace equation in the cross-section planes. Therefore, they are determined modulo 
arbitrary functions of X and t. These functions are multiplied by gauge functions 
appropriate to matching in the form \n(l/S)gt)(X,t) and \n{\/S)gl(X,t) in accord with 
slender body theory [5-7]. They are determined from matchine with the outer solution. In 
our initial consideration of the inner problem, we do not consider these functions. 

1.3.1 Body moves in the cavity or in the stream (Phases 1 and 3) 

In Phase 1 (body drops inside the cavity), for each cross-section plane the appropriate 
inner problem involves a circle of radius a(x) dropping with the velocity V~ in a 
rectangle with its lower boundary being the slip surface (see Fig. 1.3). To simplify the 
problem we estimate on part of the cavity wall effect by modeling the potential on the 
slip surface as zero. Then, continuing the flow symmetrically through the boundaries, wi 
reduce the original problem to the problem of flow over a doubly-periodic lattice of 
circles, which has the analytical solution [9]. From this solution we conclude that the 
side-wall effect is of the order of 0[d~2)«1. The top-wall effect is proportional to 

(//„ - H)~:; it is small when the body is near the slip surface. The slip-surface effect 

decreases as H ~2; it is small when the body is near the top wall. Therefore, we can 
assume that the influence domains of these effects are weakly coupled, and each effect 
can be treated separately. This allows us to split the problem into the following unit 
problems for the complex conjugate velocity W0(£;X,t) = vv0 -/v0: 

(la) Find a harmonic function in the lower half-plane Y <il~ that satisfies Eq. (1.2.3a) 
for the normal velocity on the circle and provides a vanishing imaginary part 
(v0 =0)at Y = 0 (see Fig. 1.4a) 

(2a) Find a harmonic function in the upper half-plane that satisfies Eq. (i.2.3a) for the 
normal velocity on the circle and provides a real part, w0 given by Eqs. (1.2.3c)- 

(1.2.3d) at Y = 0 (see Fig. 1.4b). 

Considering Phase 3 (the body moves in the external stream), we can formulate for each 
cross-section the problem: a circle drops with the velocity V,  from the mixed top 

boundary consisting of flat walls (Y = 0, \Z\ > dQ) and free slip surface (Y = 0, \Z\ < dt)). 

The flow scheme is shown in Fig. 1.5. Note that the finiteness of the cavity span is 
important for the far field asymptotic, which will be analyzed in Part 4. We neglect the 
cavity wall effect near the body (it is estimated as 0\\.l\H2 + d2 )J« 1) and formulate the 

unit problem: 
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(2b) Find a harmonic function W0(C:X.t) in the lower half-plane that satisfies Eq. 

(1.2.3b) for the normal velocity on the circle and provides the real part u0 given by 

Eqs. (1.2.3c)-( 1.2.3d) at Y = 0. 

The solution of the problem (la) with the uniform boundary condition on the wall is 
found using the condition of analytical continuation of the complex conjugate velocity 
W0(g) = W()(£), and the multipole expansion method [9]. It can be expressed in the form 

of the Laurent series (see Part 2) 

where the functions A_k^(X,t)and B_k_{(X.t) are found from the boundary conditions 

(1.2.3a). 

The third equation of (1.2.3c) relevant to the slip-surface potential allows the solution 
<pof = 0. In this case, the solution of the unit problems (2a) and (2b) can be expressed in a 

form similar to Eq. (1.2.5) (see Part 2). The boundary conditions (1.2.3c) also allow a 
nonzero potential on the slip surface. In this case, we cannot find an analytical solution of 
the problems (2a) and (2b). However, we can simplify these problems by reducing them 
to integrodifferential equations, which consist of one-dimensional integrals along the 
cross-sectional body contour only. This can be done using a conformal mapping of the 
flow regions shown in Fig. 1.4b and Fig. 1.6a with the cuts from the body to infinity into 
the rectangle in the complex plane a = q + iT] as shown in Fig. 1.6b. The mapping has 
the form 

6>      \c + H\(C-ic) r-p r 2co a '    ' 
cr = —L-lnJ ! ,c = yJH   -a , a), =—Lln :—,. (-.2.6) 

2m        a(£ + ic) '      n      a-|#| 

In the transformed plane (see Fig. 1.6b), the lower side of rectangle. (0,2^), 

corresponds to the body surface; the upper side, (ico2+2col), corresponds to the slip 
surface; the left and right sides are the cut edges. 

We assume  that  the tangential  velocities  on the both  sides  of the  slip  surface, 
wnf(X,Z,t) and wlf(X,Z,t), are given. Then, using the formula of Villat [8], we find 

the complex conjugate velocity in the rectangle by its real part on the upper side and the 
imaginary part on the lower side. For the unit problem (2b) the solution has the form 

1 do 
W01(cr) = — —A    \G(cr,s)wnf(s)ds-i \G(cr,s)v0n(s)ds 

m öL, '   J J 
(1.2.7a) 
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(1.2.7b) 

where <J{(z) is Weierstrass sigma-function, and fy is its characteristic [12]. A similar 

formula determines the function W(p(£;X,t) for the unit problem (2a). In this case, the 
full solution in the cavity is represented as 

W0
+(^;X,r) = Wn;(C;X,r) + U/o

+
2(^;X,r)-W0;(^;X,O. (1-2.8) 

where W^(^;X,t) is common part of the functions W^(^:X,t) and W^2(£:X.t) that 

corresponds to the circle dropping in unbounded fluid. 

For the unit problems (2a) and (2b), solutions for the lower and upper half-planes, which 
do not contain the body, are given by the Dirichlet formulas 

1  °°f\vof(s)ds l  °°ru\u(s)ds 
K(0 = -±     f  '   ;W0

+(O = -f-J^7-- (1.2.9) 
m J    s-L m J    s-L 

Because the tangential velocities on both sides of the slip surface are not known a priori, 
we should find them along with the slip surface shape as a part of solution. However. 
Equations (1.2.3) and (1.2.7) are not closed, and we need to derive an additional equation 
using the relations between the real and imaginary parts of the boundary value of a 
harmonic function [13]. We represent the complex conjugate velocity by the Cauchy 
integral along the contour shown in Fig. 1.6a for the problem (2b) or similar contour in 
the upper half-plane for the problem (2a). Then, using the Sokhotsky-Plemelj relations 
combined with the boundary condition, we obtain the following equations, which relate 
the tangential velocities on the slip surface with its shape, 

Problem (2a): 

H',;/(X.Z,f) = -^ - ,u-0/(X,Z,0 = — ;       (1.2.10a) 
7t n 

Problem (2b): 

I0f(X.Z,t) + Ib(X,Z,t) C(X.Z,0 
u-0/(X.Z.r) = ^ - ,w;f(X,Z,t) = —^ .      (1.2.10b) 

K n 

Principal values of the Cauchy integrals Iof(X,Z,t) and I^f(X,Z,t) along the slip 

surface are expressed as 
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Ki(Z)=]i^,Iatm--]^n±i^ndZ, z'-z 
(1.2.11) 

Using the flow symmetry and the relations presented in Appendix A, we express the 
Cauchy integrals l+

b (Z) and /,, (Z) along the body surface as 

Ih(X,Z,t) = Rei§ 
w0(sb)-iv0(sb)^        2-KaZ    r 
 as,. — —; v iWvl + 

s,,-Z '     H-+Z- 

+ ■ 
aH 

"> -~r "> H-+Z 
H'oi-K. + lK, On 

aH    Y"UX  .u^/Z^ 
i=0 

/;(X,Z,r) = -aRep 

tf2+Z\ 

rW0(sh)-lV0(sh) 

KHj 
. (1.2.12a) 

sb-Z 
dsb = 

2na2HZ 

(//2+z2)2 HoVKl + K 
f    aH    ^"-, 

tf2+Z: rC-tf.c» 
*=0 

+1 

( 7\ 

\Hj 

2k 

.     (1.2.12b) 

Here the symbol [f] denote the integer part of the fraction; C2**1 are binomial 

coefficients; d = nl2 + 6 is polar angle measured from the plane of symmetry as shown 
in Fig. 1.6a; \\e{X,t,9) is flow velocity tangential to the body surface and the functions 

u0n (Xj) are coefficients of its Fourier series 

1 2* 
"oJX't) = — \wJX.t.-&)sin(n$)d$, 

wl(X,t) = —[wjX.t.-&)sin(n-&W. 
271 

(1:2.13a) 

(1.2.13b) 

Using the solution (1.2.5) we can represent the functions w[)n(X,t)and w*n(X,t) in the 
form 

w0.(X,t) = - 
2B_,(X,f)-V. 

u-02lI(X,0 = (-l)M_2„_1(X,f), H02n+1(X,0 = (-l)n5.2n.2(X,r)., 

(1.2.13c) 

(1.2.13d) 

where the functions A_2„_,(X,f) and B_2n_2(X,t) are determined in Section 2.2 of Part 2 

in the form of power series of the parameter q(X,t) = a l{2H) < 1 / 2. 
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Substituting Eqs. (1.2.10)-(1.2.13) into Eq. (1.2.3d) and introducing the new variables 
r = f-X,A = X,we obtain for the slip-surface shape the integrodifferential equation 

n&^h^T^-^-2^- 
where the right hand side is expressed P" 

s-Z 
(1.2.14a) 

For Problem (2a): 

For Problem (2b): 

p„a,z,D=- di;(X,Z,t) 

dt 

pn(Ä,z,T)jjt+^yb{x.z,t). 

(1.2.14b) 

(1.2.14c) 

Solving the Abel equation (1.2.14a) we obtain the Poisson equation for the function 
Fn(X,Z.t) 

a^ + 0 = -2^U,Z,r),   S0(A.Z.r)=\]P^T)ds 

dr     M- 

An integral representation of the solution is: 

2/r1 s-Z 
(1.2.15a) 

F0(X,Z,t)=j ]so(X',Zj')GP{X,t:X\t')dt'dX\ (1.2.15b) 

GP{X,t;X',t') = ln[2{X -X'f +{t-t'f -2{t-t'){X -X')\. (1.2.15c) 

Using the relations given in Appendix A we express the function Sa{X,Z, r) as 

For Problem (2a): 

n 

For Problem (2b): 

50(X.Z,T) = 
a<2,;(x,z.r) 

dt 

,A 1-Z: 

^oVv;;)7
i^+l^f-Z(-i)4c^ß1It(z) 

(l + Z2)"    ^    ri    So 

00   = =1 M.Y 

S0(X,Z,T) = 

l-z- 

dt + dx 
Q«{X,Z,t), 

Wo„? 

l + Z 
r + <?(w0I - Vd )-^-, + 1^-1 (-D* C^Qnk (Z) 

(>+z=) 

(1.2.16a) 

(1.2.16b) 

(1.2.16c) 

(1.2.16d) 
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QJZ) = ft{{2(k-m)-l}\{2(n-k + m)-l).\Zlm - 
m=0 

n\Z 

l+z- h     (n-m)\     {\ + Z2) 
(   *>   y 

Vl + Z-; 
(1.2.16e) 

where Z =Z/H. Therefore, we obtained the right hand side of Eq. (1.2.15a) in the form 
of the power series of the variable q. Note that these power series are rapidly convergent 

since q <l/2. 

To summarize, we have shown that the slip surface shape is given by the Poisson integral 
(1.2.15) in closed form. Equations (1.2.15) provide explicit coupling of the slip-surface 
perturbations with the flow velocity on the body surface. Accordingly, the inner 
asymptotic solution is intrinsically non-local with respect to the streamwise coordinate 
and time, although it is harmonic in each cross-section plane. This contrasts with classic 
slender-body theory [5-7] where the non-locality of the inner solution is associated with 
the function of integration AQ(XJ) correction to the crossflow-harmonic inner dominant 

terms. The latter is determined from matching of the inner and outer solutions. As 
contrasted to the non-local behavior due to the shear layer, this "switchback" term 
(referring to its low order in the inner solution that matches a high order term in the outer 
solution) has a "global" dependence reflecting the upstream downstream interaction from 
the outer solution. This is a needed 3-D refinement of the 2-D crossflow nature of the 
inner solution near field, reflecting the outer flow physics. 

Equations (1.2.6), (1.2.7) and (1.2.15) comprise a closed system of linear 
integrodifferential equations that can be solved numerically by simple iterations. At the 
first iteration we assume 0af = 0of =0 and obtain the solution in the form of series 

presented in Section 2.2 of Part 2. We calculate the tangential velocity on the body 
surface, and, then, the slip surface shape and flow velocities on its sides from Eq. (1.2.14) 
and (1.2.10). After this step, we calculate the contribution of the first integral (1.2.7a) to 
the tangential velocity we (0) on the body surface and repeat the above procedure in the 
second iteration. This sequence of calculations is repeated until the required accuracy is 
achieved. For rough estimates, we can use the first iteration. 

1.3.2 Body crosses the slip surface (Phase 2) 
For Phase 2 (body crosses the slip surface), with the accuracy discussed in Section 1.2 we 
can neglect the side and top wall effects. The infinite flat slip surface 
(Yf =0, \Z\ > c(X,t)) subdivides the body into three parts. Typical cases are shown in 

Fig. 1.7. These depend on the angle of attack, submergence depth, body, nose position of 
the body (X0< X <XY) and the location of its rear part (X2 < X < Xe) relative to inside 

or outside the cavity. The solutions for these body portions are obtained with the 
framework of the unit problems (la), (2a) and (2b) discussed in Section 1.2. The body 
part (X, < X < X2) is partially submerged: a portion of it is inside the stream (Yh < 0), 
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and the other portion is inside the cavity (Yb > 0 ). Boundary conditions on the surface 

of each portion and on the slip surface are given by Eqs. (1.2.3) and (1.2.13). As in 
Phases 1 and 3, the boundary conditions allow zero value of the potential on the slip 
surface, 0O/ = <plf = 0. In this case, the solutions for the cavity and stream regions are 

obtained in Section 2.3 of Part 2; they correspond to the first iteration. In the general 
case, the problem is also reduced to a system of integrodifferential equations using a 
conformal mapping of the cavity and stream flow regions into the upper and lower half- 
planes, respectively. The cross-section scheme is presented in Fig. 1.8. The mapping of 
the stream region to the lower half-plane of the complex variable cr = £ + z'77 is given by 

the relations 

* R"((j)-1 7T a-b 

da    (<j2-b2\Rn{(j)-\]~   ,     c I ,    „2        .   R — = -i ^———'—;b = — ;c = yla-H   = asm ß, 
d£ 4c R" (a) n 

(1.2.17a) 

(1.2.17b) 

where ß(X j) is angle between the body cross-section and OZ-axis at their intersection 

point (see Fig. 1.8a). The submerged body potion (Yb <0) is transformed to the lower 

side of the interval [-b,b]. The mapping, £" = f\a,X,t), of the cavity region to the 

upper half-plane and the upper body portion (Yh > 0) in the upper side of the interval 

[-b\b^] is given by Eqs. (1.2.9) with a replacement of n by m = l-n and of b by 

b" =t7 m. 

For given tangential velocities on the both sides of the slip surface and the normal 
velocities on the body parts specified by Eqs. (1.2.3a) and (1.2.3b), the complex 
conjugate velocity can be obtained in the explicit analytical form from the KelJysh- 
Sedov formula in the transformed plane [8] 

WAo\X.t) = - 
1 

m Ja2-b2 
Kda, 

. "rjb2-s2v0n(s)ds    r Js2-b2wnf (s)ds 

-b (s-a)l(s) (s-(J)Ks) 

(1.2.18a) 

W;(CJ;XJ) = - 
m i'V<J2 -b2 

(K ,-l "r Jb2-s2v;n(s)ds    r <Js2-b2wZf (s)ds !J + - (s-a)l(s)        J       (s-ff)l(s) 

j   =)  + M*) = K 
da 77=0 

(1.2.18b) 

13 r^ ROCKWELL 
^i SCIENTIFIC 



71153.FTR 

From Cauchy integrals for the complex conjugate velocity in the cavity and external flow 
regions, we derive the following relations for the transverse velocities on the upper and 
lower sides of the slip surface 

w+(X,Z,t) = - 
i;f(x,z,t)-rh(X,z,t) 

it 

wQf(X,Z,t) = 
Iof(X,Z.t)+Ib(X,Z,t) 

(1.2.19a) 

(1.2.19b) 
71 

Integrals I*f and Iof along the slip surface preserve their forms (1.2.11) provided that 

the integration path consists of the intervals (- °°, c) and (c, «>) 

r-c 

nfa)= M 
V-oo C        J 

^FQt{Z')dZ' 

z'-z Jof(Z) = 1  +f )l2l^l±l2Ä^ldZ\    (1.2.20) 
J       J 7'-7 

V-~       c   J 

In Phase 2, H = 0 can occur. In order to avoid a singularity at these points, we express 
the integrals along the body contours inside the stream and cavity regions in the form 

/„(X,Z,0 = Re/ j 
w'to-'VO 

y„<F L-z 
dCb=aRe\- WnW + irA») 

\H+iz{\ —e" 
■d# = 

V H + iZ j 

= ReH + 
H + iZ 

^'oi +Vel 

(       1 ^ 
Z? + -sin2/? 

\r 2 
r   a   ^ 

.n+l 

Z/ + /Z + *"X"\J 

/;(x,z,t) = aRe7  ke»^-:wW   - 

H+iZJ 

(1.2.21a) 

ß   (H + iZU-     "     e' V \     H+iZ 

= Re/< mv^-V* 
f 1 ^ 
x-ß—sin2/? 

'     <z    V 
. «+i 

//+/Z +^IH'OJ 
H+iZ 

H'0n (/?) = -[ w,(#)sin(n#)</#, <, (/?) = -[H-; (0)sin(« tf)di?. 
7C i 7tJR 

(1.2.21b) 

(1.2.21c) 

Equations (1.2.14a) and (1.2.15a) for the slip surface preserve their forms, provided that 
the function P0(X,t,Z) is replaced by the expression 

P0(X,t,Z) 
a/„  dh  di: 

■+■ 
dt    dx     dt 

(1.2.22) 
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In Appendix A, the function S0(X,t,Z) is expressed as 

2^SJX,t,Z) = ^ + dQn   ,  9ön      3ßn+ 

dt      dX       dt 
(1.2.23a) 

Ib(X,t,y)dy     Ißaa IX 

<•   / 

^01  "Kl 
' .    sin2/^ 

v-Z Z"+tf 

#, z + 

Zlnf^ + (*-2£)ff 
Z-c 

f aZ 

2—ln^-^ + (;r-2/? + 2sin2 /? 
Z     Z-c 

^V 

-T^-T   Ew0n(/?)ß0n(X,Z,r) 
Z.   + n   J _=T. 

VZ; 
2 

Z2+H2 

+ 8cos: /?> + 

(1.2.23b) 

or-J+J i;(X,t,y)dy 

v-Z 

aZ 

Z2+//" 
^v'o, -Vrl W-^ 

v 

x< 
_H.   Z + c     / .   2 Jf#V 

2 — In + ^-2p + 2sin  p 
Z     Z-c 

-2 
\L j 

oCOS2 ß } + 

V 
+ 

Z2+H2 
^On(ß)Q0n(X,Z.t) 

J    n=2 

vn-2 

Z2+H2 
(1.2.23c) 

Q^X,Zj) =   ta|±£ + 22^^[(Z + c)"-(c-Zr]t(-l)tC^--"Z^ + 
Z-c      ^      ma t=0 

?] 
+ • K-lß^lt C:S'mmß[{Z + c)m+{c-Z)m} y (-lyc^tf-^Z2*.   (1.2.23d) 

m=i     ma" t=0 

Thus, as in Phases 1 and 3, the slip-surface shape in Phase 2 is determined by a Poisson 
integral (2.1.15b) involving an explicit function depending on the trajectory parameters. 
Analyzing the relations (1.2.23) we conclude that the slip surface shape has a singularity 
on the line of intersection of the body with the slip surface. This singularity is due to 
linearization of the equations and boundary conditions. It has also the physical 
explanation: a vortical surface cannot end on a rigid wall. In order to find a non-singular 
solution, we need to analyze the inner asymptotic region near the intersection line. A 
similar situation occurs in the two-dimensional problem of a submerging cylindrical body 
[11]. The singularity disappears if c -> 0, ß -> 0,x; i.e., the body cross-section is in the 
cavity or in the stream. In this case, Equations (1.2.21) and (1.2.23) translates to Eqs. 
(1.2.12) and (1.2.16). 

1.4 Analysis of the slip-surface effect for finite perturbations 
In this section we analyze the flow equations when the flow perturbations are not small, 
s = ju = 1. We focus on the slip-surface effect since it is the most difficult aspect to 
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model. As shown in Section 1.2. this effect can be isolated from cavity wall effects. 
Within the framework of slender body theory, we analyze the following problems in a 
cross-section plane: 

1) In Phase 1, the circle of radius a(x) drops in the upper half plane (where fluid is at 

rest) toward the slip surface 
2) In Phase 2, the circle crosses the slip surface 
3) In Phase 3, the chicle moves in tl.e external stream away from the slip surface. 

Using the asymptotic results of the previous section we describe these unit problems by a 
system of nonlinear integrodifferential equations, which satisfy all boundary conditions 
and directly couple the slip surface distortion with the flow over the body surface. This 
system can be solved numerically by a relatively simple iteration method. The first-step 
solutions are expressed in analytical forms; they are similar to the dominant 
approximation discussed in Section 1.2. 

We reformulate the boundary conditions (1.1.8) using the curvilinear non-orthogonal 
coordinate system attached to the slip surface as shown on Fig, 1.9. Here r is coordinate 
along the intersection curve of the slip surface and the plane Z = const; n is normal 
coordinate to this curve; (p is angle between r-axis and OZ-axis. Using the boundary 
conditions (1.1.8) we can express the curvilinear components of the fluid velocity vector 
on the slip surface as 

u:=^.u-n=^L,u:=h^+tlL. (1.3.1a) 
h h h 

F (F + F ) i r 
u; = hwf + -^ ^,h = yj\+F- , (1.3.1b) 

where un and ur lac normal and tangential velocities on the slip surface; superscripts '+' 
and '-' stand for its upper and lower sides, respectively. Differentiating (1.1.8) with 
respect to Z we obtain the equation for the transverse flow velocities on the both sides of 
the curve slip surface in the form 

dw+
f     dwf     dwf 

-£—-äf—^- = H-/H>+v/vJZ-H>^-v;v^=Ä(X,Z,f). (1.3.2) 

In order to correlate the boundary potential with the slip-surface shape we represent the 
complex conjugate velocity in the cavity or stream regions by the Cauchy integral along 
the contour bounding this region. These contours are similar to those shown in Figs. 1.3, 
1.6 and 1.8 for Phases 1, 3 and 2, respectively. From these integrals, using the Sokhotsky- 
Plemelj relations we derive the following equations for tangential velocities on the slip 
surface: 

For Phase 1: 
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wUX,Z,t) = - 
lUX,Z,t)-i;(X,Z,t) 

,wf(X,Z,t) = - 
I,(X,Z,t) 

n n 
(1.3.3a) 

For Phase 3: 

wf{X,Z,t) = 
If(X,Z,t) + Ih(X,Z,t)     + 

,wUX,Z,t) = - 
lUX,Z,t) 

It Jt 
(1.3.3b) 

For Phase 2: 

wUX,Z,t) = - 
rf(x.z,t)-i;(x,z,t) 

7t 
,wf(X,Z,t) = 

If(X.Z.t) + Ib(X,Z.t) 
.(1.3.3c) 

n 

Integrals  I+
f and I f along the upper and lower sides of the slip surface are expressed as 

'/ """ Af 

For Phase 1: 

i;(x.zj)=ReifVf(C) 'xr
f{C)d('=i;f(x,zj)+i;f(x,zj)-- 

C'-C 
F,(Z')dZ' 

z'-z      B=1 

°°   /    T-' 

-p£^i<-»>-fl^ 
F -F 
Z'-Z 

2/1-1 r F'-F 
u:{Z') + u;(Z')^y-^ 

*\      1-7* h(Z)dZ 

Z'-Z 
(1.3.4a) 

For Phase 3: 

7/(X,Z,f) = Re/j-^^r4^^r = //(^.2,r) + /1/(X,Z,f) = 
C'-C 

"J 
Ft(Z')+Fx(Z'ldr + 

Z'-Z 
°° f   1-' 

n=\ -ooV ^ 

F -F 
,2n-l 

z -z 
,,F'-F 

U;(Z')+U;(Z')— 
Z'-Z 

f \  f-r' h(Z')dZ 

Z'-Z 
(1.3.4b) 

For Phase 2, these integrals have the same form if the integration is carried out in the 
intervals (-<» -ZA) and (ZA,°°); the attachment points A are shown in Fig. 1.2. Due tr 

flow symmetry, integrals 7fc
+ and Ih along the body surface are expressed as 

MX.z.rt-M><,')-'?,')*»- 
2;raZ 

sft-Z (//-ff+Z2 fl,+ q(//-FXw1-Vj" 

(tf-F)2+Z2 
+ 
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+ 2mZ 
(H-Ff+Z2 2>„ 

a{H-F) 
(H-Ff+Z2 

-in-l     ! 

Z(-i)k c» 
kM) 

k ^2i-rl 
1 (H-F) 

2 k 

(1.3.5a) 

„   2?Vf+(5fc)-/v+(5j 
/;(X,Z,f) = -flReJ ^ = ^-z 

2m2{H-F)Z 

[(H-Ff+Z2]- 
w;-v;+ !>!•; 

g(//-F) 

_(#-F):+Z:J    * 
a-D'c *: ^-.2i'+l 

1 f . 

(H-rh 
(1.3.5b) 

where the coefficients vr„ and K* are given by Eqs. (1.2.13). For Phases 2. similar to 

Eqs. (1.2.21), we obtain 

Ib(X,Z,t) = Rci | 
w(^)-iv(^) 

1,     ^-z 
dCh=aRe J wfl(E9) + /v„(z9) 

r^ = 

-ß,{H-F + iZ) 1 — 
a 

„   .,   2/?.aar 
= ReH———— + 

J/-F + /Z 
AW, + V, 

f     1        ^ ßA+-sm2ßA 
J 

H-F + iZ 

a 

H-F + iZ 
+ 

j 

. n+l 

+ TXWB 

2*-/?4 

i;(X,Z,t) = aRe   J 

H-F + iZ, 

k(i?)+iv;(tf)]rfi? 

^   (//- F + iz{l-        G        e" v \     H-F + iZ     J 

(1.3.5c) 

Re/< Ävt-r-v; 
' 1        ^ n-ßA--sm2ßA 

Ä 

/ a 
H-F + iZ 

, n+l 

H-F + iZ 

(1.3.5d) 

'On 
# 0 

1  r 
Wn_ = — jw,(0)sin(n #)</#, <„ = -{<(??)sin(ntf)d#. (1.3.5e) 

A. 

Substituting these relations into Eq. (1.3.2) we have 

For Phase 1: 

For Phase 3: 

1 ~ÄF^Z')h(Z')\+\Fx{Z')h{Z% ^ _ 1 

z'-z dÄ       dt       dt 
-R,       (1.3.6a) 
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For Phase 2: 

l ~r[F,(Z'MZ')l+lFi(Z')h(Z%dz, = _J_ 

z'-z 
dJlL+

dJlL + ^± 
dA      dt     dA 
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-/?,      (1.3.6b) 

7t 

-Z.4 [f,(Z/)/i(Z')]l+[Fl(Z/)A(Z')], 

7t 

Z'-Z 
■dZ' = 

dA       dt       dA      dt 
-R (1.3.6c) 

These equations are similar to Eqs. (1.2.14) and (1.2.22) of Section 1.2 besides the 
presence of additional nonlinear terms. Assuming that the right-hand sides are known, we 
can solve the Abel equations (1.3.6) and express Eqs. (1.3.6) in the form 

d2F    d2F    Fz{FtFZl + F,Fn)      „_^/v „ 

df      dA' h 

u 7t-h 

For Phase 1: 

For Phase 3: 

dLAAXj)    di:f(A,Z'j) 
i/v +-H1- - + 7tR(A,Z',t) 

dA dt 
dZ' 

Z'-Z 

S(X,Z,t) = - 

S(X,Z,t) = 

i   }di;(A,z',t) dz' 

In-hl       dt        Z'-Z' 

1     d  }Ih(A,Z\t)dZ' 

For Phase 2:  S(X,Z,t) = - 
1 

27t3h 

iTt'h dA 
f-zA     -   A 

hi 
z< J 

z'-z 
dIb(A,Z',t)    drh{A,Z',t) 

dA dt 
dZ' 

z'-z 

(1.3.7a) 

(1.3.7b) 

(1.3.7c) 

(1.3.7d) 

Equation (1.3.7a) is a nonlinear integrodifferential equation for the slip-surface shape 
provided that tangential velocities on the slip surface and the body cross-section contour 
are known. It is similar to the Poisson equation (1.2.15a). The leading operator of the left- 
hand side of Eq. (1.3.7a) is the Laplace operator. The first term in the right-hand side of 
Eq. (1.3.7a) provides direct coupling of the slip-surface displacement with the body 
motion. It is similar to the forcing term in Eq. (1.2.15a), however we cannot calculate it 
explicitly, since the integrands of Eqs. (1.3.7b)-(1.3.7d) depend on the slip-surface shape. 
The other terms of Eq. (1.3.7a) represent nonlinear effects of the slip surface motion. 

In order to close the problem, we need to obtain an explicit form of the solution for the 
complex conjugate velocity. To use the Keldysh-Sedov formula we map the slip surface 
to the plane Y = 0. Assuming that the slip surface shape is known we apply the Cisotti 
formula to conformal mapping of the cavity region or the stream region on a ring in the 
complex plane ^ = Z, +iYl. For Phase 1 and 3, this mapping has the form [10] 
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£(Z)-iF(X,0,t) = i\- %,m(z)=— \^-^<p{t)dt . <p(s) = arctg[Fz(s)]. (1.3.8) 
J

0(\-zY 2xJ0e  -:. 

The outer boundary of the ring is a circle associated with the slip surface. The inner 
boundary is not circular and corresponds to the body surface. In order to map this ring to 
the rectangle of sides 2cox and 2ia>2 in the complex plane <r = ^ + iri. we can use the 

numerical method [14]. The body is transformed to the interval [O.leo^ of the real axis, 

and the slip surface is transformed to the parallel interval [iü)2.ico2 +2ä>J. In the a- 
plane, the solution is expressed by the formula of Villat [8] as 

ia>: +2<u. I'OJ+^CO] 

J G(<x, s)u; (s)ds - i   J G(a, s)v„ (s)ds (1.3.9) 

For the external regions, which are the stream region for Phase 1 and the cavity region for 
Phase 3, we have the Neumann problems with the normal velocities on the slip surface 
given by Eqs. (1.3.1). In these regions, solutions are found using the additional conformal 
mapping of the ring (1.3.8) exterior to the lower or upper half planes of the complex 
variable ax =£, +ir)l 

<T, =- z+- 
X 

(1.3.10) 

In this plane, the body cross-section is not a circle. However, its profile is symmetrical 

with respect to the fy-axis. It is given by the equation r\x =H(xj) + a(x,0J)sinß, 

where H(xj) is transformed distance to the body axis, and d(<9j)  is transformed 

body radius. This equation can be written in the form r = a(x,6 J), where r and 6 are 
attached to the body axis polar coordinates in the transformed plane. 

The solutions in the upper and lower half planes (without the body) are expressed as 

W+(oJ = - 
1 döx °p    iFn(s)ds 

7t d^i{s-aX(s) 

W(GJ = 
1 9a, 7    ujs)ds i 
it 3£ -(s-aXts) 

,h(s)= 
do, 

^ 

(1.3.11a) 

(1.3.11b) 
T1,=0 

Corresponding solutions with the body present can be obtained using the multipole 
expansion method [9]. 
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Equations (1.3.3)-(1.3.11) comprise a closed system of nonlinear integrodifferential 
equations that can be solved numerically by iterations. The first step approximation 
corresponds to a flat slip surface of zero potential. This problem is similar to the 
dominant approximation problem analyzed in Section 1.2 for small displacements of the 
slip surface. 

In Phase 2, in order to obtain expressions for the complex conjugate velocity, we note 
that the mappings (1.3.8) and (1.3.10). with the boundary angle defined as 

<p(s) = 
arctg[Fs(X,sJ)\\s\>c 

— + 0(s), \s\ < c 

transform the cavity flow region to the upper half plane. The body portion located inside 
the cavity is transformed to the upper side of the interval [-&,£]. The external stream 
region and the submerged body portion are transformed to the lower half plane and the 
lower side of the üiterval [-b,b], respectively. Applying the Keldysh-Sedov formula we 
can express the complex conjugate velocity in the form 

W(X,z,t)- 

W+(X.ZJ) = - 

. Wfr: -s2vn(s)ds    ryls2 -b2aT(s)ds 

(s-Z)l(s) is-Z)l(s) 

m 
V 

J = \ -{,/(*) = 

. r Vfr2 -s2vn(s)ds    r Vs2 -b2u*(s)ds 

i    (s-z)l(s)   ~ + Jf     (s-z)l(s) 

fy 

(1.3.12a) 

(1.3.12b) 

K=0 

These expressions allow us to calculate the tangential velocity on the body surface and 
normal velocities on the slip surface. Thus, Equations (1.3.5), (1.3.10) and (1.3.11) form 
a closed system of integrodifferential equations, which can be solved by iterations. In the 
first step, the slip surface is specified as Y = 0, \Z\ > c. This approach substantially 

simplifies numerical calculations because the flow characteristics are calculated using 
analytical formulas at each iteration step. 

1.5 Discussion and conclusions 
This chapter represents a first step of our combined asymptotic and numerical analysis of 
the store separation problem. We considered separation of the body of revolution from a 
rectangular cavity into subsonic/transonic stream. Using slender body theory, we 
formulated the inner asymptotic problem for the near-field region. Solutions of this 
aerodynamic problem can be coupled with the body dynamic problem to predict two 
degrees of freedom trajectories including vertical coordinate of CG and pitch angle. 
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The body separation process is treated as a sequence of the following phases: in Phase 1. 
body is inside the cavity; in Phase 2, body crosses the shear layer; in Phase 3. body is 
outside the cavity in free stream. We showed that for many practical cases the cavity 
side-wall effects can be neglected. This allowed us to decompose the general problem 
into the unit problems: 

1) Body drops from a flat wall to fluid at rest (Phase 1) or to the external stream (Phase 
3); 

2) Body crosses the slip surface (Phase 2); 

3) Body drops toward the slip surface (Phase 1) or away from the slip surface (Phase 3). 

The first unit problem can be solved analytically using the multipole expansion method 
[9]. The second and third problems are more complicated because they include effects of 
the body interaction with the free slip surface. In order to obtain their analytical solutions 
and provide insight into the slip surface effect on the near-field flow, we analyzed the 
case of small slip-surface displacements using asymptotic methods. We show that the slip 
surface shape is described by a two-dimensional Poisson equation with the time and 
longitudinal coordinate to be independent variables and transverse coordinate to be as a 
parameter. This indicates that the inner solution is not local with respect to time and 
streamwise coordinate, although it is harmonic in the cross-sectional planes. This is 
intrinsic property of the inner solution for flows with free boundaries, whereas in the 
classic slender body theory [5-7] the non-locality is associated with the outer-flow region 
and matching conditions. The forcing term of the Poisson equation directly couples the 
slip surface displacement with the body motion. This displacement is an explicit function 
of the trajectory parameters and transverse coordinate. Analysis of the slip-surface 
equation and a linear integrodifferential equation for the complex velocity is performed 
using the conformal mapping and Keldysh-Sedov formula. That gives a general form of 
the inner solution. 

Note that for small perturbations, the equation for Phases 1, 2 and 3 are obtained in 
compact analytical forms accounting for the slip surface displacement. For these 
equations a relatively simple iteration procedure can be used for calculations of flow 
characteristics. For Phases 1 and 3, analytical solutions for the slip-surface displacement 
will be obtained in near future. They can be used in the cases when the body is 
sufficiently far from the slip surface. The analytical results provide significant 
simplification in prediction of the slip surface effect on aerodynamic forces and moments 
acting on the body in all phases of the separation process. 

In the general case, when the slip-surface perturbations are not small, we used the results 
of small perturbation analysis as a launching pad to attack this complicated problem. We 
derived the nonlinear integrodifferential equation for the slip surface shape, the leading 
terms of which are similar to those of obtained for small perturbations. An explicit 
integral representation of the Laplace equation solution for the complex conjugate 
velocity is obtained using conformal mappings of the flow regions to simple regions such 
as a ring or a flat plate exterior. Combining this equation with the slip-surface equation 
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we derived a closed system of equations that can be solved by iterations. In the first 
iteration step, the slip surface is treated as a flat plane of zero potential, and the near field 
solution can be expressed in analytical form. 

Our analytical solutions are new. Some of them extend the two-dimensional result [11] to 
three-dimensional flows. Our approach substantially simplifies numerical calculations 
because flow characteristics are evaluated at each iteration step using explicit analytical 
formulas. 
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1.6 Illustrations 

Fig. 1.1 Flow scheme and coordinate systems: side view 

Cavity walls 

Body 

Slip surface 

Y,y 

a z 

-d„ 

Fig. 1.2 Flow scheme and coordinate systems: back view. 
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Cavity walls 

Y 

r. "*^    Body 

Slip surface           ^»*«. ^/ 

—7 
Z 

Fig. 1.3 Cross-section flow scheme for Phase 1: the body in the cavity. 

V 

--Q \ Top wall: Y=0,v=0 

Slip surface: Y=0, u=0 

Body 

0~ 
a) Unit problem (la) b) Unit problem (2a) 

Fig. 1.4 Flow schemes for unit problems (la) and (2a) in Phase 1. 
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-d. 

Cavity wall 

Body 

Slip surface d0 Z 

Cavity wall 

Fig. 1.5 Flow scheme for Phase 3. 

iY © 
o ZA 

A 

Body 

( iH 1       z 

^\6i fa 
_S^N 

Cut-* 

^ > 1  > 

,Slip surface 

Cut Cut 

Body 2©! 

a) Unit problem (2b) b) Transformed plane 

Fig. 1.6 Flow scheme and transformed plane for the unit problem (2b). 
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Slip surface 

a) b) 

X„ ^2    ?1        ^0 

Xx     X0 

c) d) 

-I 
Xe=X2 

xe= x2 Xj   x0 "[ 
Xi    x0 

e) f) 

Fig. 1.7 Different body disposition with respect to the slip surface in Phase 2. 

T\ w 
Body, Y>0 

b+ § 

-b \     b 

Slip surface / \ Body, Y<0 

a) Physical plane; b)Transformed plane; 

Fig. 1.8 Cross-section flow scheme for Phase 2; the contour of integration and the 
transformed plane. 
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Fig. 1.9 Curvilinear coordinates on slip surface. 
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Appendix A 

Calculation of the integrals Ib and Vh 

Using the relation C,h = aexp(i0) = -iaexp(/tf), where I3 = KI2 + 6 is the polar angle 

measured from the symmetry plane (see Fig. 1.6a) we represent the Cauchy integrals 

Vh (Z) and I,, (Z) along the body surface as 

Ih(X,Z,t) = Reij ;XH<n(O-/v0(O^ ^,2f^(^)-Von(^)i:0- 
sh-Z 

bb J    iU-7-in^ 

2?WnM + iv0n(#) 

J   H + iZ-ae'a { (ff + iZjfl---     ^ v \     //+/Z 

= Re£ 
a// 

■ *> »-»■ "> V        n J     i 

i;(X,Zj) = aRzfV™{T)-vL(?dT = 

V " /       o 
2ff 

Here vvfl(0) is velocity tangential to the body surface. Accounting for symmetry 
properties of the tangential velocity and the expression (1.2.3b) for the normal velocity, 
we obtain 

Jkö(tf) + /v0n(tf)>'n^ = ^ 
o 0 

1    2" 
»on(X.O = — fvvoö(X,r.tf)sin(n*W. (A.l) 

Using the binomial formula and separating the summation by odd and even indices, we 
find" 

n+l 

f 7\ 

= I(-D^ 
<t=o v#y 

t+1 
+1 

f 7^ 2i- 

v#y 

where the symbol  [T] denote the integer part of the fraction. Accounting for these 

relations we obtain the expressions 
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h=—. 
InaZ 

H-+Z- 

aH 
fl*V+z3 W01-Vfl + lM'0„ f    aH    Y  &l   ,M 

H-+Z- 

f 7 \lk 

t(-l) C; 
k=i) 

k+\ 
+1 H \n J 

}. 

r      2m-HZ 
n=2 

f    aH    ^ 
H2+Z2 li-ifc2 

*=0 

k ^2k 
+1 

( 7\ 

\Hj 

(A.2a) 

(A.2b) 

Calculation of the function S0(A,T,Z) 

Consider the Cauchy type integral 

a 

1   %Ib{X,t,Z')dZ* 
UQ

    2^1      Z'-Z 

[v 
alxI0fi+aH(wQ1 -Vfl)/0, +fjw0nfj(-l)

k C^l(aHy-2k Ik, 
n=2 k=0 

- T Z'dZ' "r Z'dZ' 
Iofi = L(Z'-ZlH2

+Z'2}     0J = I(Z'_ z)(H2
+ Z'2 )2 ' 

7*- = JT^7 
Z'2i+1JZ' 

(z'-z)(//2+z'2)"+1' 

The principal value of the integral lkn is expressed as 

dZ' 

(A.3a) 

(A.3b)" 

(A.3c) 

~     l7'2k+\       7-k+\\j7' 

*' "i(z'-z)(//2 + z-r I(z'-z)(//2 + z'2f "z " 
The coefficients em are calculated using the table integral [19] 

_ ?  Z'2ik-m)dZ'   _ n [2(k-m)-\]\[2(n-k + m)-l]l 
Cm ~ L(H

2
 +Z'2)"+1 ~ H 2"n\H2{n-k+m) 

For the integral /„, we have the recurrent relation 

(A.4) 

'••ITT. 
dZ' n i 

• + ■ 
i(Z'-Z)(//2+Z'2)n+1        H2+Z'2        H2+Z2t*(H2+Z2)m    (H2+Z2)" 

Using the table of integrals [19] we find 
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•      -? dZ' -      x[2(n-m)-l)l 7 & 
n-m J  /      -, /-,\n~m+] *- n-m "" **< »-»i ^ ^ •' (■) 

„(//2 +Z'2)"m+1     V-mHH2{n-m){n-m)\ 

Then, we obtain 

/  =- 
;zZ 

2"HH2n(H2+Z2) 

^2m[2{n-m)-l}\ 

m=0 (n-m)! 

'     //2     ^ 
H2+Z2 

+ 

H(H
2
 + Z

2
)' 

f   2H2    V 

yH
2+Z2j 

(A.5) 

Thus, the integral is represented as the explicit function of the transverse coordinate Z. 
vertical location of the body axis H(X,t) and the body radius a{x) 

h, = 
7t 1 

H 2nH2i"'k) 

[2(k-m)-l]\[2(n-k + m)-\}\( Z2 A 

2^2 

H-+Z- 

^2m[2(«-m)-l]ü (        ZJI        \m      ( 

m=0 (n-m)! 

# 

tf2+Z2 

2H- 

v^'y 

V 

tf2+Z2 (A.6) 

The formulas for 70 0 and /,,; are obtained by substituting k = 0,   n = 0,1 to Eq. (A.6) 

KH TT(H
2
-Z

2
) 

'0,0 —   TTi    ,   „•>  '      *0,1  ~~ /      , , \2 
2#(tf2+Z-j H-+Z' 

(A.7) 

Now we can find the explicit dependence of the function Q0  on the variables  Z 

H(X,t) and a(x). It is expressed in the compact form 

TC 

\-Z wonq [i 
Z- i-i-72r   ^   n!   ns i + z^   ^ -    c"(i + z2)2 

;• _ 
£[2(Jfc - m) -l]ü[2(n - Jk + m) - l]üZ2m - 

x 

m=0 

«!Z2;+2/^[2(n-m)-l]ü "I (_2_) 
,1 + Z2

y 

V 
+ 

l + z- 1 + Z-  \m=n     (n-w)! 

Integrals for the solution of Phase 2 
Because the above equations are singular at H = 0 we present them in the form 

(A.8a) 

(A.8b) 
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-do-. 
>•/<,     C-z 

H+iZ 

H + iZ 
flVt'oi+V,! ß + -sia2ß 

V 

H+iZ 
+ ^Iw"i 

f    a    >""' 
On yH + iZj 

IUY7t\    „r-T     k(^+^(^ /fc(A,Z,f) = aRe  J    -?  

v \     H+iZ 

= Re/ 
f 1 A 

^01-Ki x-ß--smlß 
a 

+xl< 
f v+1 

H+iZ 

1 K 

yH+iZj 

. (A.9a) 

(A.9b) 

1 ^ 1 r 
w0n = - f wg{&)sin(n&)d&, < = - f < (tf)sin(ntf)d$. (A.9c) 

The function ß0 is expressed as 

y°"2^J      y-Z 

= -]m<2ßaalxIn +a' 
T/ (_    sin 2ß~] 

/i+ZHo-fl"+,/-    • 

The integral /„, n = 0,1... is calculated using the table of integrals [22] 

dx 
. \«+i 

#-+z- 

(>--ZXH + IV)' 

,   c-iH    .   c + iH    ^,C; 
In In +\—- 

c-Z c + Z     ^ m V c + iH 

f c-Z 
c-iH 

Jln^±£ + 2yCcosm^[(z + 6r_(c,_zr]_ 

[    Z-c      tl       m 

_,^.2A+2|;£^[(z+cr+(<-zr])}x 

*, , ' ,w,t(-i)'ff-"z"(HC;.',--2C')- 
|//"+Z")     *=i 

The imaginary part of this expression is 
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Im I 
-1 /,  Z + c 

In + 
"   (H

2
+Z

2
)"

+1
 l\  Z~c 

+2^
c"cofwiß[(z+cr -(c-zr]\xf-i/c+i//n-2iz:;+i+ 

m=l 

+ < ^-2yg + 2T C;sinW^i[Z + c)"+(c-Zrj\f (-l^C^g'-^'Z2*!   (A.10) 
.m-l m k-l 

At n = 0, 1 we obtain 

Im/n = 
-1 

Im/, = 
-1 

(H*+z*n 

H"+Zl 

Z + c 

Z\n%¥- + H(x-2ß) 
Z-c 

(A.lla) 

2HZ\n^- + (H2 -2Z2\n-2ß + 2sin2 ß)+%Z2 cos2 ß 
Z-c 

(A.llb) 
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Part 2. Analytical Solutions in the First Order Approximation 

2.11ntroduction 
In Part 1. using slender body theory and the method of small perturbations [5. 6] we 
analyzed the near-field flows over a thin body of revolution separating from a deep 
rectangular cavity into subsonic or transonic external streams. The problem formulation, 
notations and scaling for the inner asymptotic region were provided. Aerodynamic 
pioblems relevant to Phase 1 (body is inside the cavity). Phase 2 (body crosses the shear 
layer) and Phase 3 (body is outside the cavity) were decomposed and simplified. It was 
shown that in the inner asymptotic region, the cavity side-wall effect can be neglected for 
all three phases. In this framework, the shear layer separating the cavity interior from 
external stream is treated as a slip surface with continuous density, pressure and normal 
velocity across it. The problem of the slip-surface displacement induced by the body 
motion is challenging. It was isolated from other unit problems and reduced to a system 
of nonlinear integrodifferential equations for the tangential velocity on the body surface 
and the slip surface. It was shown that this system can be solved by iterations. In the first 
step, a plane of zero potential approximates the slip surface and the problem is 
decomposed into the following unit problems: 

1. Thin body of revolution drops from a flat rigid wall: 
a) to fluid at rest; 
b) to the stream; 

2. Thin body of revolution drops: 
a) in fluid at rest toward a flat slip surface of zero potential; 
b) away from a flat slip surface of zero potential in the free stream; 

3. Thin body of revolution crosses a flat slip surface of zero potential. 

Problems la and 2a allow us to find solutions for Phases 1: Problem 3 corresponds to 
■Phase 2; Problem 2b gives the solution for Phase 3; Problem lb is relevant to external 
store separation. Using the multipole expansion technique [9], we solve Problems 1. 2 in 
a Laurent series and obtain coefficients up to the fifth term. This is suitable for explicit 
calculations of the flow characteristics with appropriate accuracy. To solve Problem 3, 
we use the method of conformal mapping [8.10.15]. Some terms of the solutions of 
Problems 1 -3 are known, and we use them for cross checking. The other terms, relevant 
to three-dimensional effects have not been determined elsewhere. 

From the solutions of these aerodynamic problems we derive analytical expressions for 
the lift force and pitching moment acting on the body in all phases of its motion. This 
allows us to identify key parameters, extract dominant physics effects and develop a 
robust method giving rapid predictions of body trajectories. In this chapter, we do not 
discuss the yaw and streamwise components of the body motion. However, our theory 
can be easily extended to treat these effects. The streamwise component associated with 
the aerodynamic drag will be analyzed in Part 4. 
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In Section 2.2, we formulate the unit problems for Phases 1 and 3 and obtain their 
analytical solutions using the multipole expansion method. We derive explicit 
dependencies of the lift force and pitching moment on the body trajectory parameters. In 
Section 2.3, we formulate and solve the unit problems relevant to Phase 2. Then we 
derive explicit expressions for the cross-sectional lift force components and obtain 
relations for the total lift force and pitching moment. In Section 2.4. we verify the 
solutions obtained in previous sections by comparison with known analytical results [15. 
16,24]. In Section 2.5, we conclude the chapter. Appendices B and C include treatment of 
improper and Cauchy type integrals of relevance to the analysis. 

2.2 Unit problems for body dropping inside and outside the cavity (Phases 
1 and 3) 

We consider here Problems la), lb), 2a) and 2b) in the inner asymptotic region. A 
combination of solutions of Problems la) and 2a) describes Phase 1; Problem lb) is 
relevant to external store separation; Problem 2b) corresponds to Phase 3. 

Within the framework of slender body theory [5-7], the coiüpiex conjugate velocity 
W(X-.^.t) = w-iv is an analytical function of the complex viable C, =Z + iY in the 
cross-section planes. The body cross-section profile is a circle of radius a(X) centered at 
the point £ = iH(Xj). This circle moves with the vertical velocity 

V ,(.v.f) = Vn(t)-co{t)x-a{t) in a uniform stream or with the velocity 

VJ(xj) = V0(t)-co(t)x in fluid at rest (within cavity). Let the wall or slip surface 
coincide with the plane 7=0. For half planes containing the body, we have the 
following problem: 

• Find an analytical function W(X,£,0 that satisfies Eqs. (1.1.7) for a specified 
normal velocity on the circle and has zero real (imaginary) part on the slip surface 
(wall). 

The analytical continuation through the wall and the slip surface gives W(£) = W (£") 

and W(£) = -W(£) respectively. Here, the overbar denotes complex conjugation. From 
these conditions we reduce the half plane problem containing the circle to problems for 
the full space containing two identical circles located symmetrically with respect to the 
plane Y = 0. The flow scheme in the cross-section plane is shown in Fig. 2.1. 

In Pan 1. the solutions of these problems are expressed in a general form containing the 
boundary integrals. This form was derived using a conformal mapping of the flow region 
to a ring and then to a rectangle. However, since the slip-surface shape is trivial in the 
first iteration, the method of multipole expansions [9] is more appropriate for the 
analysis. It allows us to express the solutions in the form of a Laurent series and obtain 
relatively simple analytical expressions for aerodynamic forces and moments. As 
contrasted to the problem analyzed in Ref. [9], the considered problems are three- 
dimensional. This leads to new effects, which has not been previously studied and 
motivates us to represent details of our analysis as well as discuss the new results. 
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2.2.1   Solutions obtained by the multipole expansion method 
Usins the Cauchv formula we obtain the integral equation for the function W(X.C.t) [9] 

W{X,C.t) = — f 
1    f W(X.iH + s.t)ds      1     r W(-iH + s)ds 

2\K> £-iH-s 
+ -^ j- 

£ + iH-s 
(2.1.1: 

Expanding the kernels into Taylor series, using die analytical continuation and flow 
symmetry we obtain the solution of this equation and the complex potential in the form of 
the series 

w=2>n+ c n-1 +_£- 
n=0 (C-iH)n+l     (C + iH) n+l 

00    ^tn~r^ 

Y\ = A»{Xj) + aA_\\n{£-iH)±\n{£ + iH))-Y,  
n=l 

c n-1 c 
is-my   (£+m)" 

C_n_,=A_n_x+iB_n^   A_2n=0,   5_2n.,=0 

(2.1.2a) 

(2.1.2b) 

(2.1.2c) 

Here the upper (lower) sign corresponds to the body motion near the wall (slip surface). 
The function A0(X,t) is determined from matching of the inner solution (2.1.2) with the- 
outer asymptotic solution. It does not affect the lift force and pitching moment and will 
be considered in Part 4. Functions C_„_, (X,t) are coefficients in the Laurent series of the 

complex conjugate velocity at the points £ = iH(Xj)\A_n_l(X,t) and 5_„_,(X./) are 
their real and imaginary parts. They are found from the boundary condition on the body 
surface. For a body dropping into the stream from the wall or slip surface, this condition 
leads to the infinite system of the linear algebraic equations 

A_} =ax.B = B_2 =V, ±qfi(-l)
mq2m{A.:a_i+gB_2m_2), 

m=n 

= + (-l)V" y(2/w + 2w-l)!    J, 2m + 2n ^ 

-2""1    "(2«-l)!tr,        2m! 
:(-l)V A_„„_,+- 

B_^=±{-»:q2n+1±am:2,>)i(-i)"r 
(2n)\ 2m! 

A-im-\ + 

2m + 1 

2m + 2« +1 

2m +1 

<jB-2„-2 

<lB-ln>-2 

(2.1.3a) 

(2.1.3b) 

.   (2.1.3c) 

Here, q(X,t) = 0.5a(X)/\H(X,t)\<0.5. If the body is a cylinder or it drops in fluid at 

rest (inside the cavity), then A_: -ax =0 and the other coefficients are determined from 

a system of algebraic equations similar to (2.1.3). In this case, these equations coincide 
with the system formulated in Ref. [9]. 

Note that this approach can be applied to non-circular body cross sections with the 
coefficients (2.1.3) determined as Fourier series coefficients of the function v„(0). 

Accordingly, this method can be used to find solutions in the <JX -plane defined by Eqs. 
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(1.3.11). Thus, in every iteration of the general problem considered in Section 1.3. an 
explicit form of the complex conjugate velocity can be obtained without mapping of the 
flow region to a rectangle. This leads to significant simplification of the iteration 
procedure. For practical calculations, we present the approximate solutions of Eqs. (2.1.3) 
as a power series in the parameter q. 

To accuracy 0(q*) (where q* < 1/256) the solution of Problem lb (for the circle 
dropping into a stream from a rigid wall) has the coefficients 

B = V,[\ + q2Sl(q)}+qaxS2(q) + 0(q9), (2.1.4a) 

A_,=-q2[ax(l + 2q2+5q4+\4q*)+2Veq(l + q2+4q4)]+0(q9). (2.1.4b) 

Sl(q) = l + q2 +3q4 +%q" +0(q*),  S2{q) = 1 + q2 + 2q4 + 5q" + {q*) . (2.1.4c) 

For a fluid at rest (Problem la), the coefficients are given by Eqs. (2.1.4) with ax = 0 and 

Ve replaced by Ve
+. 

For a circle dropping in a stream from the free surface (Problem 2b) we obtain 

B = V,[\-q2S,(q)}-qaxS4(q) + 0(q9). (2.1.5a) 

A_,=q2[ax(l-2q2 -q' -4q6)+2qVe(l-q
2 +qA)]+0(q9), (2.1.5b) 

B^=qi[ax(l-3q2 -3q4)+3qV,(l-q2 -3qA)]+0(q9), (2.1.5c) 

A.,=-q4[ax(\-4q2-6qA)+4qVe(l-q
2)]+0(q9), (2.1.5d) 

5j = 1_^ -q* -2q\ SA(q) = l-q2 -3q*. (2.1.5e) 

When the body drops to the slip surface in a quiescent fluid (Problem 2a), these 
expressions reduce to 

B = V;[l-q%(q)]+0(q9), S5(q) = \-qz -q  +0(q7). (2.1.6a) 

A^=-2V;qi(l-q2-2q4)+0(q9),B_A=3V;q4(\-q2-4q4)+0(q9).      (2.1.6b) 

As discussed in Part 1 and for Phase 1 (body drops in the cavity), the complete solution is 
expressed as a superposition of the two solutions: W*(X,£,i) (corresponding to the body 

dropping from the top wall) and (W2
+(X.£,t) corresponding to the body dropping towaid 

the slip surface. This composite solution is 

W*(C:XJ) = W;(£;XJ) + W2 (C:Xj)-w;(C;X,t), 

where W, * is the common part of the both solutions corresponding to the circle motion in 

the unbounded flow. 
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In the coordinate system oxyz attached to the body CG. the pressure and flow potential 

relevant to Phase 3 are represented as 

BO    3$    .. BO    1 r ,      ,i 
P        dt     dx      'dv     2L J 

(2.1.7a) 

O = A0 + aax In--' {B - Ve )r + — 
a    I r 

sin 0- 

«I A-2n-l 
a) 

V"    f „\ 
+ 

a cos 2« 0 

2« 
+ *_,.._, 

/     \2n+l        /-     \2n+l 

+ 
V'V 

sin(2i, + l)fl Jb) 

2/2 + 1 

where r and 0 are polar radius and angle in a cross-section plane shown in Fig. 2.1. On 
the body surface, the potential and its derivatives are given by 

Mß     a do 

2/2 

~{2B-Ve)cos(0) + u1 

<D = 4,-(2ß-V>sin(0) + 0, 0 = -2aY ^^cos(2/2 0) + -^^sin[(2/2 + l)#] . 
£?l    2/2 ••     2/2 + 1 J 

i ao 

1 d<t) 
"i =     •,'  = 2ZiA ^-i sin(2/iö)-5_,„_, COS[(2H + 1)6>J, 

,     f[(2ß-V>:] I 
x _fl: _ 1JV ^L_k_2(ß-V.)ai   si sintf. 

= (4,+0),-a(2Ä-V,),sin(0). 

Substituting these relations into Eq. (2.1.6), we obtain the pressure on the body surface 

[{2B-v,y-l 
p = {a{2B-Ve\+- 

a 
■ 2{B - V, )a, f sin 0 + 25«, cos 0 - -^ + 

V    — 
■ (A, + 0), - (An + 0)x + -^—^- -2B2cos20. (2.1.8) 

For Phase 1, the pressure p*(X,r,0,t) and potential Q>+(X,r,0,t) are given by (2.1.8) 

with \ = ax = O^ = 0 and V, replaced by V/. Then, the pressure on the body surface is 

determined by the formula 

p+ = a(2B - v; I sin 0 + 2Bux cos 0 - ^ e- -<p,-2B2ulcos20.    (2.1.9) 

38 ^ ROCKWELL 
^J SCIENTIFIC 



71153.FTR 

Using the expression for the tangential velocity on the body surface, in the first order 
approximation we obtain the coefficients w0n in the expansions (1.2.12) or wn in the 

relation (1.3.5a) of Part 1. They are expressed as 

H\(X,f) = - 
25_,(X.f)-V„ 

W2n(Xj) = (-\yA„2n_l(x,t), 

w2n+l(x.t) = (-\yB_2n_2(x,t). 

Similar relations give the coefficients w„n and w+
n . 

2.2.2  Lift force and pitching moment calculations 

The dimensional forms of the local, Lx{x,t), and total, L(t), lift forces as well as the 

pitching moment. M (t), are expressed as 

Lx{x.t) = -ajpsmtidO; L(t) = $Lx(x,t)dx; M(t) = JLx(x,t)xdx 

Evaluating the pressure from Eqs. (2.1.8) and (2.1.9) we obtain the following expressions 
for the cross-sectional lift force (in the case of the body dropping inside the stream and in 
the cavity) 

L =   Jdi?B-Ve)a2] + fl2 9(2*-V,) _ 

Z.T. = -no. 

dx dt 

- 2{B - Ve)aax + 2BA_3a - 2a|>_2n_1 - A_2„_3)5_2n_2}, 

d(2B+-Ve
+) 

n=\ 

dt 
■ + 2B+A^-2Yj{A_2n_l-A^_i)B^2n_2 

n=l 

(2.1.10a) 

(2.1.10b) 

Integrating these equations along the body axis we derive formulas for the lift force and 
pitching moment. If the body is inside the cavity, then 

nrt=-^('Vw.M*w=-*"i(')+Mrco. 
dt dt 

L\{t) = -2n\ 
Xr 

X,. 

Af,+ (r) = -2;rj 

1 = 1 

11=1 

a(x)dx, 

a(x)xdx, 

(2.1.11a) 

(2.1.11b) 

(2.1.11c) 
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V; =nj[2BUxJ)-V/(xj)\,2(x)dx. a)'a = ^\[2B'{x.t)-V; {xj)]p2(x)xdx. (2.1.lid) 

If the body drops inside the stream, then we obtain 

L'(t) = - + L~At), M "(f) = -^-^) + M ,-(/). (2.1.12a) 

+ 

2n\ 

2n\ 

dt   di 

mt) = -m2(xe)[2B(xe,t)-Vf(xe,t)]+ 

{B - Ve )ax - BA_3 + X (A.,.., - A_2n_, )B_2n_2 

M"(0 = V; -m2(xe)xe[2B(xeJ)-Ve(xe.t)]+ 

a(x)dx,     (2.1.12b) 

(5-V>, -BA_, +£04_,B_1 -A 2fl_,)B_,B_; a(.v).wf.v.     (2.1.12c) 

V;(f) = 7iJ[25(x.r)-Vf('A-)ry)]a2(A-^A-, (2.1.12d) 
X, 

-(t ) = TC\[2B( x,t )-Ve( x,t j]a2( xjxdx, (2.1.120- (0 

The first terms of the expressions (2.1.11a) and (2.1.12a) for the force and moment are 
due to the fluid inertia. The first terms of Eqs. (2.1.12b) and (2.1.12c) are associated with 
the pressure gradient in the stream along the body axis. The integral terms represent the 
effect of the flow boundary which vanish at great distances from it. 

Explicit dependencies of the force and moment on the trajectory parameters are found by 
substituting   into   Eqs    (2rl.ll)-(2.1.12)   the   coefficients    P[x.t),  A_2n_,(.v.O    and 

B_-,„_■, (xJ) given by Eqs. (2.1.4)-(2.1.6). For Phase 1, when the body drops in the cavity 

from the top wall Y - Ha to the slip surface Y = 0, we use the composite solution. Then, 

we obtain 

Va
+(t) = auV0-al2a). co+

a{t) = avyo-a22(o. (2.1.13a) 

an =4gn+G0(t)lal2 = 4gl+Gl(t)}.a22 = 7t[g2+G2(t)} (2.1.13b) 
X{ A, Xr 

gQ = ja2(x)dx: gx = ^a2(x)xdx; g2 = ^a2(x)x2dx, (2.1.13c) 
A,, .1 A.. 

A,, Xe 

G0 =2\[q;Sx{q,)-q2S,(q)\i2dx,    G, = 2\[q2Sl(ql)-q2S5(q)\i2xdx, (2.1.13d) 
A, X,, 

G2 =2\[q2Sl(qi)-q2S5(q)]p2x2dx,ql = ° , (2.1.13e) 
l(tin— ti) 
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5M 3 -£(^2-. - ±U-,)B-2-2  = ^ W + V + *%) + ^ ~ V ~ tf)\ 
n=l 

(2.1.13f) 

In Phase 3, when the body moves into the stream, we substitute Eqs. (2.1.4). (2.1.5) into 
Eqs. (2.1.12c) and express the functions V~(t) and co~(t) as 

V~{t) = au(V0 -a)-avco+aw, aa{t) = an(V0 -a)-a22a) + a20.     (2.1.14) 

The coefficients of this equation are determined similar to the case of Eqs. (2.1.13). If the 
body drops from the wall, then 

Xe xr *, 

G„ = 2 jS^qWdx-, G, = 2^Si(q)q2a2xdx: G2 = 2\sx{q)q2a2x2dx. 
X0 .tn *0 

-v,, -r„ 

■*   aw= 2K\S2(q)qa2axdx oc2(t = 2K\S2(q)qa2axxdx, 
-to *0 

{B-VX-BA_i + fj{A_2n_l-A_2n_i)B_2n_2=a;q(l + 2q2+6q4+\9q6)+ 
n=l 

+ 2V,293(l + 292+9<?
4)+Kfl^2(2 + 6<?

2+20?
4+63^6)+O(^).   (2.1.15) 

If the body drops from the slip surface, then 

X, x! X' 

Ga = -2$S,(q)q2a2dx:Gl = -2\s^q)q2a2xdx;G2 = -2JS3(q)q2a2x2dx, 
.«,) ' *o x., 

Xe X, 

aw = -2K fS4(q)qa2axdx, a20 = -2^j54(^)ga2arxJ,v, 

(B - V,)ax - BA_3 +fj{A_2n_l - A_u_3)ß_2n.: - -qa;(l-2q2 + 2qA)- 
n=l 

-2Veaxq
2(\-3q2 +2q')-2q3Ve

2(l-2q2 +6q4)+0(q9). (2.1.16) 

It is seen that the ^liear-layer effect is proportional to first power of q for body motion in 
the stream: i.e., \t is stronger than for the body motion inside the cavity. This is due to the 
three-dimensional effect associated with the axial variation of the body shape (ax *0). 
These expressions give the explicit dependencies of the lift force and pitching moment on 
the trajectory parameters, CG speed V0(t), angular speed co{t), angle of attack a(t), and 
CG vertical coordinate Y0(t). They allow us to develop a fast numerical algorithm for 
solving the trajectory equations. 
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2.3 Unit problem for body crossing the slip surface (Phase 2) 
We consider the flow induced by the body crossing the flat slip surface of zero potential. 
In Phase 2, the slip surface Y = 0 divides the body surface into three portions: typical 
configurations are shown on Fig. 1.7 of Part 1. Depending on the angle of attack and the 
submerging depth, the nose (X0<X <Xl) or/and the base portion (A\ < X < A7,,) is 
located in the cavity or/and in the stream: the solutions for these portions are presented in 
Section 2.2. The third portion (X^ < X < X2) is partially submerged into the stream. The 
flow schemes in the cross-section planes are shown in Figs. 1.2 and 1.5 of Part 1. T^: 
body surface intersects the slip surface at the line Z =±c(X,t) = ±asinß. where 

ß(Xj) = arccos(/f la) is the angle between the body and slip-surface cross-section 

contours. The upper portion of the circle moves with the vertical speed V,'(X.t) in the 

fluid at rest; the normal velocity on its boundary is v„ = V,+ sin 6. The lower portion 

moves with the vertical speed Ve (X,t) in the stream so that the normal velocity on its 

boundary is v„ =ar+Ve sinO. Thus, in each half plane separately we can formulate the 

problem: 

•    Find the complex conjugate velocity W(X,£,t), which provides a specified normal 

velocity on the corresponding circular arc and has zero real part on Y = 0. \Z\ > c. 

In Section 2.3.1 we solve analytically this problem using the conformal mapping method 
[10] and the Keldysh-Sedov formula [8]. 

2.3.1   Solution of the flow equations 
The solution is obtained from conformal mapping of the upper and lower flow regions. 
The mapping of the stream region (in the lower half-plane of the complex variable 
Q = q + i r/) has the form 

f./V.X.,) = c*'(g-*-,H1
;  »(X.,)=^.  R.°±>MX.,)=H. (2.2.1a) 

R"(a,X,t)-\ n o-b n 

d£ Ac2 R" ^ dC ^,„s<„ 4r2ß"(£*) 
(2.2.1b) 

Ztf)L = c^. y(£)|„.0 = -2Äin™ , (2.2.1c) 

D(£,n) = Q2"-2Q"cosmi + \,Q"(Z,b) = ^±. (2.2.1d) 
$-b 

In the a -plane, the submerged circle portion is transformed to the lower side of the 
interval [-b,b]. The mapping C, = f+(a,X,t) of the cavity flow region to the upper half 

plane and the upper body portion to the upper side of the interval [-b+,b+] is obtained by 
replacing m = \-n by n in Eqs. (2.2.1). In the transformed space, the explicit solution is 
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found using Keldysh-Sedov formula [8].    After integration, the complex conjugate 
velocity and potential in the stream region are represented as 

W(a,X,t) = -iVt 

Yl(a.X.t) = -iVe 

a      da) ax        da r^Jb1-s2ds 

~ ^a2-b2^C)+ i^a2-b2^cl(s-cr)l(s)' 
da hHb2 -s2ds 0 (2.2.2a) 

C(a)-yla--b-\ *- I   . /       -, (2.2.2b) 
n ilAb--s-{s-a) 

y/(s,n) = arctg 
Qn(s)-l t mi 
 ctg — 
Q"(s) + \       2 

The first terms of Eqs. (2.2.2a), (2.2.2b) are due to the body motion and angle of attack. 
They are a modification for the flow over a log given in Ref. [15] for slip line boundaries 
instead of walls obtained by Dr. N. D. Malmuth [16] for the flow over a portion of a 
circle (see Section 2.4). The second terms arise due to the body shape variation in the 
streamwise direction. For n > 1/2, the flow velocities have a singularity of the type 

(^: -c2) 2n~l or (a2 -b2)2" at the points where the free surface intersects the body. 
Since this singularity is integrable, the lift force and pitching moment are not singular. 
However, local asymptotic analysis near these points is needed for the higher order 
approximations. 

On the body surface, T] = -0, |£| < b, the flow potential and the tangential velocity are 

expressed as 

sin nn 
0(x>i.r) = 01+<D: = V, Ji-\2 - 2nQn(X)   . 

 sin nn 
D(hn) 

(2.2.3a) 
K 

wg(x,A,t) = Vr 
Q2n(A)-\ . .Jl-A2D(A,n) 

smmi-A- 
D(A.n) 4n-Qn(A) 

+ 

+ 

\ + X   _.,     ,    r     y(s)ds 
x=t-Qa>'i-x 

L(X,n)= \ 
yll-?{s-X) 

Khn)=\ 
Q"(s)ds 

iD(s,nhJl-s2{s-X) ' 

(2.2.3b) 

(2.2.3c) 

(2.2.3d) 

where  E{A.n)md  I(A,n)  are the principal values of the integrals and the potential 

0,(.v,i.f) and <£,(x. A,t) are induced by the circle vertical motion and axial body radius 
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variation, respectively. Using these functions and Eq. (2.1.6) we obtain the pressure on 
the body surface 

V 
p(x.A.t) = -^,-^x+^ 

1+(l-^)DUn)/2 (Än) 

7T-Q2\A) 

1- 
x-(\-x-)p-g.n) 

\bn'Q2n(A) 

A(\-A
2
)D

2
{A.H) Ti, 

+ Vay——r-4—: HA.n). 
' A     An-7tQra(X) 

(2.2.4) 

Retaining only the first terms (^(.w/U) in Eqs. (2.2.2)-(2.2.3) and replacing V, and ;/ 

by V/ and m = \-n respectively, we obtain the relations for the flow parameters in the 

cavity region. Thus, the flow potential, tangential velocity and pressure on the upper body 
portion (inside the cavity) are expressed as 

<T(;c,/U) = V 
svamn 

VI 
VTTJ-^öM 

\ 

D(A,m) 
smmn 

J 

w;(x,x.t) = ve 
Q2m(A)-l . ,yl\~X-D(A.m) 

■smmn — A- 
D(A,m) 4m2Q'"(A) 

^ '       2   1 \6niAQ-'"(A)     J 

(2.2.5a) 

(2.2.5b) 

(2.2.5c) 

As will be shown in Section 2.3.2 the singularities in Eqs. (2.2.3)-(2.2.5) as n —> 0. n -> 1 
and A -> ±1 are integrable. Using Eqs. (2.2.3b) and (2.2.5b) we can calculate the 
coefficients u0„ and u0

+„ in Eqs. (1.2.21) and (1.2.23). Because these formulas are rather 
lang we do not present them here. 

2.3.2   Lift force and pitching moment 

The local lift force Lx(x,t) acting on a cross-section of the partially submerged body 

portion. X, < X < X2, is determined as 

-J 

Lx(x,t) = jp(x,z,t)dz-jp+(x,z,t)dz = 
-r -r 

p(x,A,t)— p (x.Aj)- 
dA 

dt dx 

dA 

+ P(x,t), 

dA = 

P(x,t) = aV2Px(x,t)-aa]P2{x,t) + aaxVePn(x,t)-vf-p+{x,t) 

(2.2.6a) 

(2.2.6b) 
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Using   Eqs.   (2.2.1),   (2.2.3a)   we   can   express   the   mean   values   of   potentials. 
Q>(x,t) = ~Ö>l(x,t) + ~Ö>2(xj) and <D+(xr),as 

*,(x,0 = ]^(x,z,t)dz = {».(x,^)^^'0^ = 

= V. \Yb(z)dz+yb2-f-Z,dt = -V.a- 
x    1  •  -.       sin" ^72 .  ,  ^ 

x(\-n) + — sin 2;z7z An(») 
2 /I 

Using Eq. (B1.2) given in Appendix B, we obtain 

Q1(x,t) = -V,a 
1 .   _       7r(2n~+\)s\n~ mi 

n{\ -n) + — sin 2mi ;  
2 6n2 

/; -> 1: <D, (x.t) « -2Vea-7r{\ -n),n->0: «^(x,t) ~ -V.arn 
V      6y 

Similarly, we find the mean potential for the upper body portion (within the cavity) 

Ö+U.f)=J(T(.v.^  ^'T)df = 

=-v:a- 

dc 

1 .   . x(2m~ +l)sin" nn 
7Z(\-tri) + — Sin 2^7/2 ;  

2 6m- 

m -> 1: O + U,0 = -2V,V;r(l-/n), m -> 0 : <D + (.t,0 = -V,V;r 
V      6y 

(2.2.7a) 

. (2.2.7b) 

The second term of the mean potential is evaluated as 

ÖU.v.r) = ]oi(x^t)dz = ]^x^t)^ld^ = - Jz(*,£r) *^f) 

4a-axnsin2(mi) \Qn(s)Il(s,n)ds 
 '■ tn{n), AiW-    /      ,    • 

_J,  D(S)TI\-S- 

d$ 

K 

Integral lx{s.n) is given by Eqs. (B4.1) and (B4.2) presented L Appendix B 

D(A)Jl-A2(A-s)     n 
1- 

2« sin mQn (s) 

D(s)Jl-s2 

Thus, for the function E0(n) we obtain the expression 
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E,{n) = -[l0{n)-27tl,{n)smmi) = -^-—\e,(n)-'^-[\ + n(\-n)ctg7m} 
., " ii" cm mi i n~ sin ^7/ 

The integral 7p(/2) is reduced to a tabulated integral and expressed as (see Appendix B) 

,  , ,     r   Q2"(s)ds       l + x(l-n)ctgm 
/p(") =   —;—s T\ = :—— • 

i:D-(s)[\-s-)     .   4/isnr;zn 

The function *,(/i) has the form 

.   .    j   Q"(s)ds       \i//{s)sds 

_J,D(s)vW     iyll-s- 
.            n2{\-n) .   .    n2n2 

/z —> 1:  en= —— -, n -» 0: e0 = In 2 - 
8 12 

This form is derived in Appendix C (see Eqs. (C1.1)-(C1.5)) and shown in Fig. 2.2. 
Accordingly, the mean value of the second potential and its asymptotic behavior can be 
expressed as 

<&2{x,t) = -4a-ax <en(n)--[l + x(\-n)ctgnn]>, 

n -»l:Ö2(xJ) = -U}-n)27T-a2ax.  n -» 0 :&2(x,t) « -2(2\n2-\)mi2ax. 

Thus, the mean potential on the wetted surface (outside the cavity) has the form 

~<F(xJ) = Va2 ,    1   .   „   .    x(2n-+\)sm-mi 
n(\-n) — sin 2,0! + —  

2 6/r 

-Aa2ax
S-^^U{n)~[\ + n(\-n)ctgmi]\, (2.2.8a) 

n -» 1: Q(x,t) « 2Vt,a-7r{\-n)^-(\ - n)27tya2ax. (2.2.8b) 

n -»0: 0(.v,f) = V,<r;r 
f „2\ 

V      6y 

- 2(2 In 2-l);»2^. (2.2.8c) 

The first nonlinear term of Eq. (2.2.6) is determined by the expression 

P1 =sin;z?j •-iM 
1   \A2(\-A2)p2(A,n) dz 

8/I-1 e:nU)     a£ 
■<u 

i \ 
= sin ;zJ 1 1 [2 - cos(OTi)(ß" (5) + ß"" (*))]r<fc 

8« -1 
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The latter integral is reduced to the tabulated integral and evaluated in Appendix B (see 
Eq. (B3.2)). Then, the function P^xj) is expressed as 

PAx.t) = sin;z?z 1- 
\-m(\ + 2n2)ctgmi 

6/zj 

1 
n -> I: Pfat) <*—n\ n -> 0:/^(x.f) 

7Ü\K' - 6) 

18      ' 

(2.2.9a) 

(2.2.9b) 

The second nonlinear term of Eq. (2.2.6b) is transformed to the form 

P., = sin^7i i+l}^^H)/U^' a# 
= sin mi 

«       2/2  „ 
1+ — £,(«) 

Tr- 

io. Appendix C (see Eqs. (C3.1)-(C3.2)), the integral £,(n) is reduced to the form 

7T_       2_ 

In    nA 

i 

£,(/!) = $[2-(Qn(s) + Q-"(s))cos(mi)]l2(s,>i)ds = 
-i 

n27r2ctg2(mi)\eQ(n)-^[l + Tr(l-ti)ctg(m)]\-2ew(n) 

where 

'in 
, ,      4ff      Qn(s)Q"(t)lnQ(t)dsdt (n) = n Jj- 

-l-i D(s)D(f)Vl-rVl-r(r - s)' 

1 n~ n ! n —> 1: em = —, n —> U : e,n = — 10     48 4 

;T~H" 
21n2-l-^-(3-41n2) 

6 

The function ew(ri)  is considered in Appendix C (see Eqs. (C4.1)-C4.2)); its plot is 

shown in Fig. 2.2. Now, the second nonlinear term is expressed as 

P,(.v.0 = 2sin^Jl + 2^-^ <?0 (n) — (l + TT(\ - n)ctgmi) 
_4£m00 

TT'n 

n -»1: P,(l) = -, n -> 0 : P:(0) = -;r(3-41n2). 

, (2.2.10a) 

(2.2.10b) 

The third nonlinear term of Eq. (2.2.6b) is 
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sin^?2 ]rA(l-A2)D2(A.n) „,   ^ dz         siiijoi 
/>  =——  —i ^—: I(A.n)—dA = E,{n) 

'"     4/rVi       ß:nU) ^ m\ 

where the function E2(n) is expressed as (see Eqs. (B5.1)-(B5.3) of Appendix B) 

£,(*) = \{2-[Q"(A) + Q-"(A)}cosxn}l(A.n)AdA = J^MlL^jB = 

/2 sin ^72 

DU)v'l-r 

4(l-^?icr^j)e(10j)-2e2(/j)+ ~ n2cos2 mi 
6 

The integral 

, ,     ,     f{2-[g"q) + g""(/i)]cos^^ I4(s,n)= I1 J-  J, A-s 

= 4{\-mictgm)+s\mCOS'™[Qn(s)-Q-''(s)]-2\nQ{s)\ 
[   sin mi J 

is given by Eq. (B5.3) of Appendix B. The function 

e2(n) = ?ism(mi)\ —,        —= I [(25  -l)\nQ(s)-2s\J-j=^. 

. 7T2(\-n) n2 r ,i 
7? —> 1: e, = . H->0: e, =—1 - 2/r . n n L J 

'^ 

12 12 

is considered in Appendix C (see Eqs. (C2.1)-(C2.3)); its plot is shown in Fig. 2.2. 
Accordingly, the cross-nonlinear term is- 

Pl2(n) = ——-\4[\-mictg{mt)]e0(n)-2e2{n) + — ;r cos2(;z??) >. (2.2.11a) 
mr 

n —> 1: Pv = -K, n —» 0 : Pr = - 
n ( 

41n2 + 2- 
V 

7t~ 

"2 j 
(2.2.11b) 

Similar to Eqs. (2.2.9), the later term of Eq. (2.2.6b), which corresponds to the nonlinear 
pressure component on the body surface inside the cavity, has the form 

J     1 + m?i[\ + 2m2 ptgmn 1 

6m3 P"(x,f) -sin;zw 

m-*l: P*{x,t) = --7Ü, m -> 0: P+ (x,t) » -^  ~6'. 
2 18 

(2.2.12a) 

(2.2.12b) 
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Due to the first linear terms of Eq. (2.2.6a) the local lift force is singular at a small 
submerging depth, when n -> 1. Using the definition of n and Eq. (2.2.8b) we obtain 

LM _> „ _ _^_ «a _ 2vM^-f\ - 2aV-^^. (2.2..3, 
dt     dx) dt       dx V 7T{\-n) 

This result is consistent with the two-dimensional theory [11]. However, there is the 
additional term, which is due to the axial variation of body shape. This singularity leads 
to impulsive loads at the beginning of the body submergence process. Nevertheless, the 
body momentum is continuous; it is proportional to the potential 0; ~ 1 - n. 

The foregoing relations allow us to evaluate the lift force and pitching moment acting on 
the body in the transitional phase 3, when the body passes through the slip surface. In this 
phase, the total lift force and pitching moment can be expressed as the superposition of 
three terms, namely, 

L(t) = L+(t) + L±(t) + L-(t), M(f) = M+(0 + M"(f) + M"(r). 

The terms Lr and M± correspond to integration of the local lift (2.2.6) over the interval 
[.vPA\]. We can give them in the forms 

i.(0 = -^+z1=(o,M=(,) = -^+Mr(,). 
dt dt 

mt)= \P(x,t)dx + (1 - xu JÖ(JC,,t) + .v„Ö+ (*!,t) - (l - x2l )Ö(A-:,t)~ .v:,<r (x2.t). 

xz x: 

M[(t) = jP(x,t)xdx+ j®(x,t)dx + 

+ .v, [(l - -vu)OU„0 + xu®
+(x„t)]- x2[{\ - x2ty&(x2,t) + x2^

+(x2,t)l 
x, x, 

K"(0 = |[ö(.v,0-ö+(x,r)K co;{t) = \\®(x,t)-®+(xj)\xdx.        (2.2.14) 

The critical points x\{t), x2(t) and their speeds are found from the equations 

gvt±flUt) = ro(0,*h(Og^=  \-^    k = \,2 (2.2.15) 
dt       a±ax{xk) 

Note that the form of Eqs. (2.2.14) allows us to avoid the singularity (2.2.13) in the 
critical points on the lowest body generator corresponding to n = 1. On the other hand, 

this singularity is integrable since \-n ~    xk - x . Explicit dependencies of the lift force 
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and moment on trajectory parameters can be obtained by substituting the derived above 
expressions into Eqs. (2.2.14). 

The lift force Lit) is determined by integrating the local lift force (2.2.10b) over the 
body portion totally inside the cavity. This term is similar to that given by Eqs. (2.1.11) 
plus the additional sum accounting for the motion of the critical points. Fig. 1.7 of Part 1 
shows possible locations of the body with respect to the slip surface and the integration 
intervals. Relevant cas^s are 

a) Interval .r, (t) < x < xn, if the body nose ordinate Y„ (t) > 0 (.see Fig. 1.7a) 

b) Interval x2(t) < x < xe, if Y„(t) < 0 and the lowest body-base ordinate 7,,(t) > 0 (Fig. 

1.7b) 

c) Nose interval (^ (t) <x< x0) and the base interval (x2 (f) < x < xe). if Yn (t) > 0 and 

Yel(t)>0 (Fig. 1.7c). 

In the cases shown in Figs. 1.7d and 1.7f, we get Ü =M+ = 0 because the body nose and 
tail are in the stream. 

The lift force L'(t) acts on the body portion with its cross-sections being totally in the 
external stream. Its expression is similar to Eqs. (2.1.12) plus additional terms due to the 
critical point motion. The totally submerged body part can be located in: 

d) Interval X2 (t)<X<Xe. if Y„ (t) > 0 and Y,„ (t) < 0 (see Fig. 1.7a) 

e) Interval X,(f) < X < X0, if Yn(t) < 0 (see Fig. 1.7b) 

f) Intervals   X,(t)<X<X0   and   X2(t)<X<X„  if  Yn(()<0   and   YJt)<0   (see 

Fig.Ud) 

If the body nose and base are inside the cavity (see Fig. 1.7c) or the body base is partially 
submerged into external stream (see Fig. 1.7e), then Yt,,(t)<0 and Yeu(t)>0. For this 

case, we get V -MT = 0. 

Extracting the inertia term, we express the total lift force and pitching moment acting on 
the body in Phase 2 as 

L(t) = -dV"(T)+Ll(t), M(t) = -d0)*(t) +M,(0 (2.2.16a) 
dt dt 

Ll(t) = mt) + I^(t) + mt), Ml(t) = M?(t) + M?(t) + M;(t).    (2.2.16b) 

Va(t) = v;(t) + V;(t) + V;(t), a)(t) = a>;(t) + a)±
a(.t) + a>;(t).      (2.2.16c) 

This form is convenient for numerical solution of the trajectory equations. 
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2.4 Cross-checks of the theory 
Herein we compare our solution given by Eq. (2.2.2) with the solution obtained by 
Malmuth [16] for a circular cylinder submerging into a freestream with a vertical velocity 
U . The problem is similar to the problem of the flow over the lens-shaped body 
considered by Milne Thompson [15] or equivalently, the flow over a log or bump in a 
solid wall. In contrast, Malmuth considered the same circular segment crossing an 
infinite span slip line/shear layer in [16]. The former problem is relevant to store 
separation from a flat wall or portion of a wing o- fuselage, where if a cavity is involved, 
the body lateral dimension is of order of the cavity span. The latter applies to store 
separation from a cavity bridged by a sheai layer in which is the cavity span is large 
compared to the body lateral dimension. This problem is our focus in this section. Its 
solution is the complex potential 

mO=   ,2U
(
C

r   /y£ = Z + iY = icco£;^L = e-. (2.3.1) 
n sin(^ n ) 2   C, - c 

In Eqs. (2.3.1), £' is complex variable in the bipolar coordinate plane [15], the body 
intersects the slip surface at the points (c,0)and (-c\0). The part of Eq. (2.2.2) 
corresponding to Eq. (2.3.1) is expressed as 

n(ö-) = ivJ<T2 -bl; a = b^—^- = ibcot^-; k =-: S = £±£.        (2.3.2) 
•     ' 5*-l 2 n C-c 

The parameters of Eqs. (2.3.1) and (2.3.2) are related by formulas 

V, = V„ -a-m = Us; n = In = 2*'^; c = a sin/?, (2.3.3) 
7t 

Substituting the expression for o from the second equation of (2.3.2) to the first formula 
for the complex potential we obtain 

bV. IcV. n(C') = bv^i+cor(kC'/2)= . p;    = ,/6;    =mn.    (2.3.4) 
sin(Ä:^   2)    n sm(£   n ) 

Thus, we prove that solutions (2.3.1) and (2.3.2) are identical. Note that the solution 
(2.2.2) includes an additional term proportional to ax(x). This term has no an analytical 

form. Because" its integral representation is simpler in the a -plane we use this plane for 
calculations of the lift force. 

Also note that in the case considered, the classical form of Blasius theorem is strictly not 
applicable for calculations of the lift force since the solutions above and below the slip 
surface differ. They are found separately in the relevant upper and lower half-planes. The 
lift force acting on the upper body portion (inside the cavity) is calculated separately from 
the lift force acting on the lower portion (outside the cavity). As a result, the expression 
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for the lift force includes additional terms, which are not included in the classical form of 
the Blasius theorem. However, generalized forms of this theorem exist such as those 
given in Milne Thompson [15] that can be further extended to handle the slip line 
boundaries in our inner problems. This leads to contour integrals that can be evaluated by 
residue calculus in the upper and lower half planes. 

For "external carriage'* and separation from a rigid plate, the part of solution proportional 
to ax(x) can be expressed in an explicit analytical form that can be exploited for cross 

checking of our theoretical model. This solution was used in Ref. [24] for calculations cf 
the interaction force between two slender bodies of revolution at zero incidence in a 
uniform stream. In this case, the flow is modeled by two sources located at the points 

^ = ±ic = ±iH-sjl - {a/Hf , and the complex potential is expressed as 

Tl{C) = aax[\n{C-icj+\n{C + ic)]. (2.3.5) 

Expanding the square roots of this expression to the series, we obtain the relation (2.3.5) 
in the form of series identical to Eq. (2.1.2). We are not aware of an analytical solution in 
the presence of a slip surface such as this in the literature. 

2.5Discussion and conclusions 
In this part, we obtain analytical solutions of dominant approximation problems relevant 
to separation of a thin body of revolution from a rectangular cavity into a uniform stream. 
In our approximation, the slip-surface displacement is neglected: i.e.. the slip surface is 
presented as a plane of zero potential. For Phases 1 and 3. we use the multipole 
expansion method that allows us to derive compact expressions for the pressure on the 
body surface and the cross-sectional lift force. For Phase 2. the solution is obtained by 
conformal mapping in the form of a Cauchy type integral that is partially integrated. The 
local lift force is also represented in explicit form by introducing nev.special functions 
which are investigated analytically and numerically. 

In Phase 1 (body moves inside the cavity from the top wall to the slip surface), the flow 
potential and the pressure are expressed by the formulas, which are similar to the known 
relations derived for two-dimensional flow over a cylinder. In this phase, the full solution 
is found as a sum of two unit solutions that separately account for the top wall and slip 
surface effects separately. This approach exploits the fact that the boundary influence 
decreases rapidly (as the inverse square) with distance. 

As contrasted to the two-dimensional problem, solutions for Phases 2 and 3 include new 
terms relevant to the body shape variation in the axial direction. These terms lead to a 
qualitatively new behavior of the slip surface and rigid wall effects. For example, in 
Phase 3 the slip-surface effect is stronger than in Phase 1 because the influence of this 
boundary decreases only as the inverse distance to the body. 

In Phase 2, the flow velocities of the first order approximation are singular at the line of 
intersection between the slip surface and the body surface. However, these singularities 
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are integrable. This allows us to calculate the lift force and pitching moment without a 
detailed analysis of the singular regions. Nevertheless, such an analysis is needed to treat 
the higher-order approximations. This singularity resembles body nose and wing leading 
edge stagnation singularities. It does not cause any difficulty in integrating the trajectory 
equations since the body momentum is a continuous function of the submerging depth 
that is proportional to the mean potential on the wetted surface. 

The results provided here support the development of a computationally non-intense 
algorithm predicting the body trajectory through all separation phases. 
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2.6 Illustrations 

£=Z+iY 
Y 

Slip surface or wall 

-V-, for wall 

Ve, for slip surface 

Fig. 2.1 Cross-section scheme for the reflection method for Phases 1 and 3. 
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Fig. 2.2 Plots of special functions. 
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Appendix B. Analytical evaluation of improper integrals 

We analyze the integral 

.J,  D(5)VT^7      "i     D(x)(l + e2xJ 

n    l + s      ,t          <?2t-l     ,       4e2j[dx     1      ,        4e 
Q = = e~ . -5 = — , as = -, TT-, 1-5" = 

l-s e-x+\ (^+l)- (^+l)- 

D(jc) = e4~-2e2,"cos(;m) + l. 

(Bl.la) 

(Bl.lb) 

(Bl.lc) 

Let's consider the following integral along the closed rectangular contour C,  in the 

complex plane :. = x + iy (see Fig. B1) 

! A 

I = jf{z)dz = i\[f(A + iy) - f(-A + iy)]dy + j" [f(x - i f) - f(x + i f)]dx = 2mresf(0). 
C -T -A 

The integrand has the third order pole at :. = 0 with the residue 

2/r+l 
resf(0) = - 

I2n 

The contour is bounded by the horizontal lines, y = ±f, and vertical lines 

.v = ±,4. <4 —> °°. The integrals along the vertical, lines vanish as A -» oo. Along the 
horizontal lines, we have 

[e    +1) \e     e     —\) \e    -f L) \e   e     —l) 
x I   ~x       -I y    4n.t       t j 

/(jc-/5)-/(jc+/f)=2/g )\ "\r - ~i;. 
r+l[DW 

Thus the function /1(,(«) is expressed as 
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2/7" +1 
An(n)=— K 

6/7 
(B1.2) 

Substituting (Bl.lb) we analyze the integral 

\   Q2"(s)ds    =1]e^dxJ    dx = J_r  

.1: "     {D
2
(S){I^7)    

2
LD

2
(X)    {(e'^+e^+lcosimn))1    4/z f, [f.7;(r 

dt 

1 

4/2 sin- (mi) 

sh(t) 

ch(t) + cos(mn) 

m = 1-«, / = /i.v = ln 

+ cos(^?Ol  
lch(t) + 

)J     4nl[ch(t) + cos(mn)] 

dt 
J

0 ch(t) + cos(mn) 
(B2.1) 

\-s 

As shown in Ref. [21], 

dt 
f '- cos(mn)    sin(mi) 

arctg tg 
'mn^   f 

th 
v ^ J sin(^7!) 

arctg tg vT; 
x(\-n) 
s'm{mi) 

Then the function Iv (n) is expressed as 

/,,(«) = 
\ + 7T(\-n)ctg(mi) 

An sin2 (;z7i) 
(B2.2) 

Consider the integral 

Iu(n) = \[Qn{s) + Q-"{s)y-ds = 
-1 

= J[(1 + .v)"(1 -syn + (1 + sT"(1 -.0" -(1 + s)Wn(1 - *)'-"■ -(1 + 5)1-"(1 -5)1+"Jdv. (B3.1) 

Using the table of integrals [22] and accounting for properties of the Euler gamma- 
function, we obtain 

/11(77) = f/i(l + 2/2-)r(/7)r(l-/7) = 

Substituting (Bl .lb) we analyze the Cauchy type integral 

_ 4^7(1 +2/7:) 

3sin(;z?7) 
(B3.2) 
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Consider the following integral along the closed contour C,   in the complex plane 
- = x + iy (see Fig.B2) 

I = jf(z)dz = i\ti(A + iy)-f(-A + iy)]dy+]\f(x-if)-f(x + if)}l.x + 
c 

0 

+ J /(z: + re^Widcp + J /(-, + re'*)re'*id(p = 2mresf(0). 
K 0 

f(.)=        (e2K + l)ez 

The contour is similar to that shown in Fig.Bl, while the singular points 

In Q(s) + ix \nQ{s)-in 

are bypassed along the half-circles of radii /• —> 0. The integrand has a simple pole at the 
point r = 0 with the residue 

resf(0)=l~S 

in 

For the integrals alone the half-circles, we have 

,. Q"{s)e""+\ ■ Q"(s)e-"»+l 
- +re ■) = :—/ 1 : 1,   j{z^+rev) = :—, ■ : 1. 

2ire"4QÜ)\Qn(s)e""-l\ " lire"JÖ(s)\Qn(s)e"m -lj 

Iff   ^    ^   "p-A,n           xbtt(s)eim+l] f(zl + re*)repid(p = r=i=1 —-—,, 
{ lyjQ(s)[Qn(s)e'm-l\ 

hf    M    >^   »-^         7c]Qn{s)e-im+\] f(z, +rev)revid(p = —r-i—. ——i. 

HJIQ" (s) sin mi 
\f(z,+re")re'*id<p+ f/(;, +re«)re»id<p = ^ W^ 

Integrals along the vertical contour lines vanish as A —» °°. Along the horizontal contour 
lines (except of the end-points cu) we obtain 
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iex(e2nxe-im+l) ,       .r iex (e2"-x e,!B: +l) 

2iex(eAnx-l) 
f(x-i$)-f{x+i$) = h —1 J - -     D(x.n)\e-X-Q(s)\ 

-l\e2x-Q(s)\' 

Then, the function I](s,n) is expressed in the form 

IAs.n)=- 1- 2nsin(jpQj2"ly) 

D(s)jl-s2 
(B4.2) 

We consider a principal value of the Cauchy-type integral 

\{2-[0"U) + Q~"q)]cos(mi)}MA _ 

Using the table of integrals [22] and Eq. (B3.2). we get 

Q"(A)dA    \(\ + A)n(\-AyndA        n rjJ  {A)üA _ r 

-1       A — S _j 

j^- = -l„ß(5), J,A-s 

A-s sin(^?0 
[l-£?"U)cos(;m)]. 

)b-u)^-u)k^..gw(m)|g.(,).^(l)]. 
l 

j[ß"(^) + ß-''(/l)]ßf/l 
4;z72 

sin(^7j) 

(B5.2a) 

(B5.2b) 

(B5.2c) 

(B5.2d) 

Then, the function IA(s,n) is represented as 

IA(s,n) = 4[l-mictg(mi)]+s\-2\nQ(s)+;rCOS (m) [Qn(s)-Q~n(s)]\. (B5.3) 
sm(mi) 
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integration contour C 

/ 

iy 

-A A X 

\ /■ 

-ix/2  ' 

Fig.Bl Integration contour C,. 

integration contour C 
iy 

ix/2 

A x 

-ix/2 

Fig.B2 Integration contour C2, 
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Appendix C. Analytical and numerical investigations of integrals 
Consider the integral 

Q"(s)ds 1 \Ms)  r T e0(n 

^Dis^l-s-     2n sin mitt   ds »sin; 

)_ 

mi 

Integrating by parts we obtain 

. .     \y/{s)sds       , . en(") = J   f== < V^s) = arc 
VI-5" 0 

'£ — ctg\ — (Cl.l) 

Using the table of integrals [22] we get the following asymptotic expression 

1        2/1 \ 

n-»l: ■ I0(l) = $jyll-s2ds = -, e0~* U        « 1.2337(1-»).   (C1.2) 

Expanding the integrand to Taylor series versus n we find in the limit /? -» 0 

/„(») = »" <o + 12 2*VJ 
1       <k      ^ 

VW^ 
= « 'n+- l7 (2*o-l) 

The integral /0 is reduced to the table integral [22] using the substitution 

* = iln^ = ±lnQ(s), 
1 -s 

,.:-,.(• ds If        dx In 2 

Then, we obtain the asymptotic expression 

(C1.3) 

n -> 0 :  <?0(») = In2-—— + 0(«4) * 0.693-0.8225»2. (C1.4) 

To calculate the integral e,,(») in the range 0<»<1. we remove the singularity at the 
upper integration limit using the substitution 

\-s = x2, Q(x) = =—^-, Dl(x) = x4"+(2-x2)2" -2x2n (l- x2)" cos mi... (Cl. 5) 
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The integral is transformed into the form 

A y/(x)(\ - x2 )dx      .  , 
en(n) = 21 yy ;v        ^   , y/(x) = arctg 

o     V2-A- _(2-.r)"+.v^ 
erg 

v2y 

and is calculated by the trapezoidal rule. 

Consider the integral 

dy/{s,n) 
e2(n) = nsinmiI2(n) = 2J(p(s)\nQ(s)sds = js^\-s2\nQ(s)-^^ds = 

= -fl/(5,n)-?-[Wl-r InQ(*)}fc = *3(n) -2e0(«), (C2.1a) 
i ds 

i 
ds 

3(/j) = J
fär-lV(5,n)lnß(s)-r 

In the limit « —> 1, we obtain integrating by parts 

(C2.1b) 

I2{l) = $\y[r^\nQ{s)sds = M-(\-s2f]nQ(s)   ^l^^H^ds   = —, 

;r2(l-/7) 
*,(!)=■ 

12 
.«0.8225(1-«). (C2.2) 

At n —> 0, we find 

i2(n) = limn2I2(n) = i20+ — \27c2iyi-i2l\= — 
n->0 

1 + 2/1- 
vl2     , 

The integral /,,, is evaluated similar to the case of Il0(n) (see Eq. A 1.1), and the integral 

/,[ is integrated by parts 

ds 

''*= Jo 

= 2/C 
\\nQ{s)sds        r      r,   _,, J1     „ r 

N, = [    f—-^ = -Vl-^-lnQ(5)    + 21- _ 
-,   VI-V Ll      -iVl-J- 

r \nQ(s)sds _   1-     *(e2j-l)ecJ.v     = n_ 

itr2+ln: ö(5)]>/l^?""   i(^:+4x2Xe2t+l): "12 

Then, we obtain 
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/?-»0:  e->(n) = 7T 
f     fT£^ U(n) = ^(l-2/r)= 0.8225(l-2/r).   (C2.3) 

To calculate the integral e^n) over the segment 0 < n < 1 we use the substitution (C1.5). 

Then, integrating by parts we reduce this integral to the form 

1 

e3(n) = 2j{ln(2 - x2)- 2x2 (l - x2 )ln Q(x)\r(x. n) ■ 

x    'y/{x,n)-Ansmmi 
Dx{x) 

x2n[\n{x-)-2] 

2-x2 

dx 

VT7' 
(C2.3) 

The integral (C2.3) is calculated numerically using the trapezoidal rule. 

Consider the integral 

1 

£,(«) = \f(A,n)l2(A,n)dA- f(A.n) = [2-(Qn(A) + Q-n(A))cos(m)}.    (C3.1) 
-1 

where I(s.n) is expressed in the form of successive integral 

r-(A.n) = 
■ 0(s. n )ds r(p{s.n)as     _ r<p(sl.ti)asl r<p(.s2 

\    s -A \    s, - A    \    s. 
 --'  — ---■-    -. 0(s. n) - 

j    s, — A    _j    s-, — A D(.v)Vl-.r 

Then, the integral  E{(n)  is transformed into the triple integral. Using the Poincare- 
Bertrand rule [13] we change the integration sequence and express (C? 1) in the form 

_ .  ,     f.,       . ,   \f(A.n)dA \<p(sl,n)dsi Ex{n) = J <p(s2,n)ds2j —— J       ' = 
_1 _l ~* _l *^1 

1 1 

= j 0(s2,n)ds2 J 0(s,,n)Eu(s1.s,,n)dsi +n2E{)(n), 
-1 

1   /i2n, 

:„(«)= U:(5,»)/(j.n)rf5 = }-^^f>-|ß',(5) + ß-,,U)]cos(OTi)}/5. 
_i ',0(5,11) 

J,,5,,/I)=—L_ f —5 —— }[2-(Q"(A) + Q~"(A))cosmi\iA . 
s2 ~s\ -\A-s2     A-s{ ) 

Eu(s,,s,,n) = 

Using Eqs. (B3.2) and (B5.2) of Appendix B we find 
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En(s{,s„n) = —— {2[lnQ(5,)-lnß(5,)] + 

+ *C0S'/m)[Q^sl)-Q-n(sl)-Q\s;) + Q-"(sA. 
sin(mi) J 

Function En(n) is calculated using Eqs. (B2.1)-(B2.2) and expressed in the form 

_ . ,     1  r l-cos(;ztt)c7z(f)}ff 
£„ (n) = — : =- 

2« J
Q [ch(t) - cos(mi)\~ 

dt ,     "t dt 1 
= — \ sin: (mi) [7 ^ - cos(mi) \ > = —. 

2« [ i[ch(t)-cos(mi)\- lch(t)-cos(mi)\    In 

Then, the integral £,(«) is 

-, x    x~    if,^, r^(Oinß(0*    2;rcos2(;z?z) j- ,. ., .    ,, £.(n) = 4  0(5)<fc  ^^—^v        + —-   0(s)L(s.n)ds = 
In      J i       t-s s'm(mi)    ^ 

;r 2^cos2(^?2) 
= - 4E1()(«) + ———£,,(«), 

2« sin(;m) 

Using Eqs. (B4.2), (Cl.l) and (B2.2), we find 

£,, («) = -[/0 (n) - In sin(mi)Iv (n)] = -^-  e0 (n) - ^ [l + JC(\ - n)ctg(mi)}  . 
n n~ sm(mi) [ 2 J 

Then, we obtain 

EM) = ^-^Ew(n) + ^ctg\mi)\e^)-^[\ + ^(l-n)ctg(mi)]\. (C3.2) 
2/2 n~ I 2 . J 

Now, we analyze the double integral 

4 4 \Q
n(s)\nQ(s)ds\    Q"(t)lnQ(t)dt 

ew(n) = n El0(n) = -n   \ 7=^1 T==Tt r      (C4-1) 

Ii D(s,n)<\-s-  J-iD(t,n)^\-f{t-s) 

Its asymptotic value at n = 1 is 

~r , r ^l-s2ds     K ew(\) = -±\\nQ(t)4^?dtrl   S~dS=^\lnQ(t)^tdt. 
_i -i     5-r        l«_i 

Integrating by parts we obtain 
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^>>=^JHT^rz?''*"M/,/n^* «"a2056- <C4-21 

At n = 0 we have 

JuMl -In -^\-2ln2~l ,0.09657. , (p. - f Wflf = »(/ _^-) = 

i[^+In2 0(0]^?"     2"'        " 4 

The first integral is given by Eq. (C1.3); the second integral is evaluated in a similarl way 

i A 
.21= O*-3   J 

<£v 

'1=J(l-rIlnß2(r) + ^r2^-l(l + ^r4^ 

In the limit « -> 0, the integral (C4.1) is reduced to the form 

1 il4(s)ds    r iis{t)ds 

12 1 -iVl-r     -illn-ß(5) + Ä-Jvl-J 

H~;r 
= e,o(0) + --   {8e,o(0)-l} = 

2^2-1 + '-^  (4In2-3) 
6 

0.09657-0.09352/r (C4.3) 

The integrals il4(t) and z15(f)are calculated similar to the case of /,(.?./;) (see Eqs. A4.1- 

A4.2) 

,4(0 = J 
\nQ(s)ds K 

i[^-+ In2 Q(s)]sf]^?{s-t)     2 
1 

In 

^fi^7[lnQ2(t) + n2] 

,3(0 = J 
lnQ(s)ds 7T'■ 

y/l^7{s-t)    Vl-r ' 

For 0 < /7 < 1, the function ein(/i) is evaluated numerically using the substitutions 

jc = (l-s),fl+,,,\r = (l-f)\i' = —.*=- 
« + 1 7? 

With these variables the above integrals are transformed into the proper integral 

64 ^ ROCKWELL 
^J SCIENTIFIC 



7I153.FTR 

«10 ( 

ty^lTW) ^(2-r'r-Mng(r)_2(l_r>) 
{ D,(T,n) D,(r,n) 

1 

£r(r,n) = i/J 

</r.(C4.4) 

D,U/i) D,r,/i)        J(r*-jcl'X2-r*-.v'')' 

D,(x,r) = xlnv + (2 - A-
V
' J2" - 2*"" (2 - xv' J" cos(mi), 

DL(r,n) = (2 - r* )r" + r -2r(2 - r* )T cos(^z). 

The integral ew(n) is calculated numerically using the trapezoidal rule. 

Consider the integral 
1 1 

E2(n) = jf{A,n)I(A,n)AdA = \(/){t,n)I,{t,n)dt. (C5.1) 

The inner integral 74(n) is given by Eq. (B5.3). The function t2(n) is expressed as 

cos2( x)n 
E,(n) = 4[\-mK-tg(mi)]l0(n)-2^(n) + x    .    "7/„,(/;) 

sm(nn) 

1 
n sinCfltt) 

4[l-mictg(mi)]e0(n)-2e2(n) + — ;r cos:(;ztt) 

Its asymptotic behavior is 

n->l:  F.,{n) = —£—,   £,(0) = -f 
2(l-n)       " 3 

;r ■41n2-2 
V J 

. (C5.2) 

(C5.3) 

65 ^ ROCKWELL 
^i SCIENTIFIC 



71153. FTR 

Part 3. Dynamics of Slender Bodies Separating from Rectangular 
Cavities 

3.1 Introduction and Problem Formulation 
Modeling of store separation from a cavity, even into a subsonic external stream, is very 
difficult. It is the subject of intensive application of current CFD. The motivation of the 
work describee* herein is the need for quick, Las computer-intense methods of certifying 
and assessing the physics of store separation from cavities. Similar rapid evaluation 
methods are needed for stage and cargo separations. A variety of computational methods 
are being developed. As contrasted to pure computational modeling, we discuss in this 
chapter a combined asymptotic and numerical approach based on the theoretical results 
provided in Parts 1 and 2. The analysis in this chapter neglects slip-surface displacement. 
A more general case is analyzed in Part 1, where the slip surface is treated as a free 
boundary. This leads to nonlinear boundary conditions on the slip surface. For the 
practically important case of small deflections, the boundary conditions can be linearized 
on the length scale of the cavity. Local flow scales show larger deflections in which an 
iterative scheme needs to be used to obtain a solution The non-deflected slip surface 
corresponds to the initial iterate in such a small-perturbation scheme. 

In this chapter, we couple the results for the body aerodynamics, obtained in Parts 1 and" 
2. with rigid-body dynamics and analyze two degree-of-freedom (2-DOF) vertical and 
pitching motions induced by aerodynamic and gravity forces during the separation 
process. The coordinate systems XYZ (attached to the cavity), (wind axes) oxyz 
(attached to the body center of gravity), (body axes) are shown in Fig. 3.1. The OAT- 

frame is inclined with respect to XY - frame at an angle of attack a(t). This frame can 
rotate around the oz -axis with the angular speed 0){t) = daldt. In the wind axes, the 

center of gravity (CG) coordinates are X.=Zr=0 and Y = Yc(t). We denote 

H(X,t) = Yc - uX as the vertical coordinate of the body axis. Using slender body theory 

[6] scaling, we introduce the nondimensional variables 

x = X_   Y=Y_   Z=Z_    v = _£    v = _y_    r = J_   t = UÄ. (31) 

ä   w    V. SU„ä> 
a = — , V =-^-, co = 

8     c    V' /, 0 

where the body half thickness ratio.  S, is treated as a small parameter. Crossflow 
velocities and coordinates are normalized by SUx and ä„ respectively. The streamwise 

and axial coordinates are scaled using /„ and the pressure perturbation, p , is normalized 

with respect to pJJl,S2Q . 
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As shown in Ref. [17], the equations for vertical and pitching body motions can be 
expressed in the form 

dt dt dt dt 

Vt(t) = I j&(x,e,t)a(x)dadx,   cod{t) = J \<b{x.O,t)a{x)xdedx. (3.2b) 

5^2 
= 8k       .. _xpXö2      ,.   _KPJ*Ö 

Sui 
(3.2c) 

m 

where A„ and xe are coordinates of the body nose and base respectively, m and / are 
the body mass and moment of inertia respectively and O is the near field body (inner) 
flow potential. We consider the initial-value problem for Eqs. (3.2a) assuming that the 
CG position, angle of attack and body velocity are prescribed at the initial time t = 0 as 

V,(0) = V0,   aK0) = eoa,   F,(0) = F0,   ar(0) = flr0. (3.3d; 

Note that dVd I dt and dcoa I dt in (3.2a) represent the time derivative of the crossflow 
potential (incompressible harmonic inner solution) needed for the pressure in the 
crossflow plane from the unsteady Bernoulli equation. The terms Lx and Ml are integrals 
involving the square of the crossflow speed that also appear in the Bernoulli law for the 
pressure in the crossflow inner problem. This speed is the square of the crossflow 
gradient of <t>. 

In Section 3.2. analytical solutions of the problem (3.2a)-(3.2d) for Phase 1 are obtained 
for small lift forces compared to the weight. In Section 3.3, the trajectory equations are 
analyzed for Phase 3 and are transformed into two decoupled ordinary differential 
equations with constant coefficients. A stability analysis of their solutions is performed, 
and behaviors of the pitch angle a(t) and the vertical coordinate Yc (r) are discussed for 
typical cases. In Section 3.4, the predictions based on the theoretical model for all three 
phases (in Eqs. (3.2)) (without the stability linearization) is compared to experimental 
data of Ref. [18]. Section 3.4 concludes with some parametric trajectory studies. In 
Section 3.5. conclusions are discussed. 

3.2 Phase 1: body inside cavity 
The lift force. L(t), and the pitching moment. Af(r), acting on the body moving inside 
the cavity are derived in Ref. [17]. They are expressed as integrals along the body axis, 
with the integrands expressed as power series in the parameters qx(x,t) = 0.5a/(//„ -H) 

and q = 0.5a/H . where H{) is cavity depth shown in Figs 3.1a and 3.1b. If the body is 

far from the top cavity wall and the slip surface, then qx and q can be treated as small 

parameters. Neglecting terms of the order of 0(q\ q*) the functions V^(f) and co^(t) 

are 
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v; (t) s an(t)VL. it) - a12 (tMt).    <oa it) = a12 {t)Vc it) - a22 (t)a)(t). (3.3a) 

au(t) = x[gn+G0(t)].   al2(t) = x[g1+Gl{t)].   a22(t) = -^[g2+G2{t)]. (3.3b) 

ga s ja
2{x)dx,   g, = ja2(x)xdx,   g2 = jo2ix)x2dx. (3.3c) 

X, x, x 

G0(t) = 2\[q2(x,t)-r2(xJ)\i2(x)dx. (3.3d) 
x- 

xe x* - -. 

Gl(t) = 2\[qi(x.t)-q2(x,t)\i2(x)xdx,  G2(t) = 2J[q2(xJ)-q2(x,t)]fr(x)x2dx.(33e) 
Xr. *0 

This transformation helps to express the dynamic equations in a form convenient for 
further discussion of the body trajectory features. Using Eqs. (3.3a)-(3.3e) the trajectory a 
first integral of Eqs. (3.2a) is 

^ = .MlCt, + Mlva+c,mMl}, (3.4a) 
dt A(0   g      L{t) 

da    b,At)        A,(r)      ,       ,. ,  ,. ny)M — = ^rCst+--—co0+cmKV0b2it), (3.4b> 
dt      L{t) Lit) 

where 
bn(t) = \ + clauit),   bl2it) = cIa12it),   b2lit) = c„,al2it\   b22it) = \-c„:a22{t). 

L = bllit)b22(t) + bl2it)b2]it). 

A, =buiO)b22it) + bl2(t)b2liO),   L2 =bnit)b22iO) + bl2iO)b2l(t). 

bl=\{(i—mng2)[Gl(t)-Gl(Oj\+ 
A 

+ cmK8l[G2(t)-G2(0)\+cmn[Gi(0)G2(t)-Gi(t)G2(0)]}. 

fe,si{(l + c-,^n)[G1(0)-G1(O]+c/^I[Gn(r)-Go(0)]+c,4G1(0)G0(O-GI(r)G„(0)]}. 
A 

The first term of Eqs. (3.4a)-(3.4b) models the gravity effect* the second comes from the 
initial conditions, and the third arises from the boundary and initial conditions. The 
angular acceleration is proportional to the product of the pitching moment coefficient cm , 

the gravity force coefficient cg and the value gx +G,(f) characterizing the displacement 

of the center of pressure from the CG. Equations (3.4) can be solved numerically using, 
for example, the Runge-Kutta method. Note that the slip surface effect and the top wall 
effect rapidly decrease as the body moves away from these boundaries. Neglecting terms 
of the order of Oiq2 +q2), which are associated with the boundary effects, the solution 
of Eqs. (3.4) can be expressed in the explicit analytical form 
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Yc(t) = Yn+V0t ^f^cs:. a(t) = a0 + co,t +  ^ ^ ' r. (3.5a) 

A„ =(l + c/^0)(l-cm^;) + c/cm^
:g1

2. (3.5b) 

Equations (3.5) show that the CG coordinate, Yc(t), and the pitch angle. a(t). are 

parabolic functions of time when the body moves in an unbounded fluid at rest. 

Analytical solutions of Eqs. (3.4) can also be obtained when the lift and moment are 
small compared to the body weight and pitch inertia. This is typical for many practical 
cases because the coefficients c,  and cm are proportional to the air density to body 

density ratio, px I ph « 1. For a body of uniform density, non-dimensional "ballistic 

parameters" may be defined to define a "weak" aerodynamic force case. These are 

c- 1    c   = 1    — = — . (3.6) 
/Wo P)Mi      <■'„     g 0 

Non-dimensional groupings such as these to our knowledge have not been used to 
evaluate the accuracy of large-scale computer (CFD) store separation simulations. 
Despite the difficulty associated with gridding, complex geometry and turbulence ' 
modeling as well as other uncertainties, surprisingly accurate correlations with flight test 
and wind tunnel trajectories can in regions of parameter space be obtained with 
computationally intense numerics. In some cases, pseudo-steady Eider solutions provide 
surprisingly good answers even when viscous, unsteady and high angle- of-attack 
vortical and complex shock interactions effects are present. We conjecture that in many 
of these situations the aerodynamic forces are relatively negligible compared to the rigid 
body inertia! forces. The. ballistic parameters provide a means of cataloging and 
correlating the various scenarios and determining when rougher and approximate 
simulations as well as coarse grid CFD will have a good chance of giving a fast answer 
of useful engineering accuracy with low cost and overhead. In fact, it is reasonable to 
develop a new systematic (asymptotic) approxitnation scheme for "heavy" bodies in units 
of non-dimensional parameters such as those in (3.6). This important possible thrust of 
our research would use the vacuum rigid body solution as the dominant approximation of 
the aerodynamic coupled trajectory problem. The influence of the aerodynamics would 
be a linearized second order approximation with simplified mathematics. The discussion 
that follows is relevant to this idea. 

For the experimental conditions in [18], the coefficients c, and cm as well as other basic 

parameters are shown in Tables 1 and 2, where the gravity force coefficient is calculated 
at the freestream speed f/00=77.1 m/s. 

If terms linear in c, and cm are retained in Eqs. (3.4), the approximate linear and angular 

trajectories are 
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(3.7) 

The CG coordinate and the pitch angle are parabolic functions of time. In the first-order 
approximation, the vertical motion corresponds to a pure gravity drop. The lift force gives 
a small negative correction of the CG acceleration similar to the case of a plunging 
cylinder in the presence of a shear layer considered in Ref. [16]. The analytical 
expressions (3.7) below are consistent with trends of numerical solutions and 
experimental data. 

Table 1. Physical parameters of models [18] 

Model 

B1N1 .31250E-01 
B4N2 .31250E-01 
B5N5    .32609E-01 

.51333E+00 

.49500E+00 
.62261E+00 

8( 8i 8: 
.86206E+00 
.86206E+00 

.85606E+00 

.68807E-01 

.53002E-01 
.16423E+00 

.66707E-01 

.57596E-01 
.12753E+00 

Table 2. Aerodynamic and gravity acceleration coefficients for models [18] 

Model c, 

B1N1     .29915E-03 
B4N2     .72519E-03 
B5N5     .36773E-02 

X      ° 

.22204E-02 
.38857E-02 
.24684E-01 

.95585E+02 
.95585E+02 
.87786E+02 

.16080E-01 
.16080E-01 
.14768E-01 

3.3 Phase 3: body outside cavity 
If the body is totally outside the cavity and moves into an external free stream, the lift 
force and pitching moment are again expressed as integrals alcns the body axis, with the 
integrands being power series in the parameter q = 0.5a/H (see Section 2.2). These 
analytical solutions reveal clearly that the slip-surface effect on the body trajectory is 
proportional to the quantity 

jqa2axdx+jq2a2dx~- + q2g0+O[qig()), (3.8) 

where the bars denote averaging along the body axis. For typical cases, the body shape 
factor is given by Eq. (3.3c) gn = 0(1). The average distance parameter is q < 0.5. Its 

maximum value q = 0.5 corresponds to contact of the body surface with the slip surface. 
The maximum values of the first and second terms in Eq. (3.8) are 1/6 and 1/4 
respectively. As the body drops, both terms decrease quickly and the slip surface effect 
vanishes. Thus, dominant terms are associated with the body drop in an unbounded 
uniform stream. In this case, the equations for the lift force and pitch moment can be 
reduced to the form 
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M =K 

dVc        dco    ... ,       / ,\ 
-g»-r- + gi-— (Vc- a)a- + co[g() + xea;} 

at at 

dVc dco    ...       .1 ,\ 
-Sl—f- + 82-T + (K -<x)\ga ~We)+cax;a; 

at at 

(3.9a) 

(3.9b) 

where ae - a{xe) is the base radius {ae=l for cylindrical afterbody). These expressions 

were derived for bodies with a sharp nose, a'yx0) = 0. Substitution of (3.9a) and (3.9b) 

into the trajectory equations (3.2a) and integration give a linear ODE system (with 
constant coefficients) 

—£- = cu(Vc -a) + cvco-cw,    — = cn[Vc -a)+t\,co + L\a. 
dt ' dt 

CV 

t\» 

c,, cu = 
c{n 

V„Mi(go ~*eal)~ 0 -cmng2 K2], 

■' ci: 

cfl 

A„ "       A0 

K1 - cmng2 )(g0 + xea))+ cmngxx)a) ], 

c,.,n ' m 

C...7C 
C",, =• 

[(! + c,fig„ fco - x,a;)+ c^g.a] ], 

[(1 + ty^go ).v;a; - cyrg, (gn + *,a;)], 
»0 

where A„ is given by Eq. (3.5b). 

(3.10a) 

(3.10b) 

(3.10c) 

(3.10d) 

(3.10e) 

In a manner similar to the nonlinearized 2-DCF equations treated above (after Eqs. (3.2a- 
c)). we consider the initial-value problem tor Eqs. (3.10a) assuming that the body is 
totally outside the cavity for t>ta, and its initial speeds, vertical position and pitch angle 
are respectively 

V,(r„) = V0\   6>(r0) = ö>0,   Yc(tQ) = Y«,   a(t0) = a'0. (3.11) 

From Eqs. (3.10a), the angular velocity co and the function W(t) = Vc(t)-a(t)  are 

solutions of the decoupled equations 

d-W    .   dW      ... .   d-co    .dco 
—— -2y + xW + c, =0, —^-2y— + rca) + c =0, 
dt1 dt ' dr dt - 

(3.12) 

where the constant coefficients are 
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x; - — + ncl(x;g0-2xeg1+g2) (3.13a) 

-a;xe -cwigtx, -gt)]. (3.13b) 

2)                  CmC^(             vn2\ a   . r, = :—\Q., —x.a.  . (3.13c) 
An A0 

The characteristic (secular) equation for the eigenvalues of the ODE system (3.10a) and 
its solutions are 

A2-2yA + K = 0,   A]=y+iQ,   A2 = y-i£l, Q = ^fC-f (3.14) 

Various cases significant for the trajectory stability will now be discussed. 

3.3.1 Eigenvalues Al and A2 are complex 

If A, and A2 are complex, the trajectory variables are expressed in the form 

V (t)=V{'+ d~C'2T + eyr{Alcosnr+A, sinflr). 
K 

CD = —2- + er{Bl cosQr+5, sinOr). 
K 

(3.15a) 

(3.15b) 

,'y 
Y (t) = Yt')+\ V0' + -]r--^-r:+ — [{yA, -O4,)cosflr+(QA,+ ^,)sinQr],   (3.15c) 

1 -       2K K 

a(t) = a'l--{c,T+)B, -QB, -e?T[(>ßr-QßOcosQr+(Qß1 +}B)sinQr]}.   Q.\5d> 
K   - ' ' 

where T = t-t{) and d = -Af(V0' - or,')- q - ^5, + D.B2. The coefficients A,, A, 5j and 

5, are determined from the initial conditions (3.11) and Eqs. (10a). They are expressed 

as 

A=—-   ^2=7r-+     ^     •   K=—;—= c„(V0-flr0) + c12ß;0-cin,        (3.16a) 0 ^ Ml- 

B,=^+^.,   ä,=^-^L,   Ä =^2)ÄC  (v0'-aj;)+c,X+^. (3.16b) 
/r        ~ £2 dt ' 

Equations (3.15) indicate that the body motion consists of two components. The first 
terms of Eqs. (3.15a), (3.15b) correspond to body rotation, with the constant angular 
speed -c2l K and a vertical translation with uniform acceleration - c, / K . Also present 

is a drift with constant velocity a'^ -(c: +2^„ -ö)0)/K that depends on the initial angle 

of attack and angular velocity. These terms are associated with a non-oscillatory motion, 
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which we refer to as the "mean state." The second component corresponds to periodic 
modulations of this state. These oscillations are neutral for 7 = 0, unstable for positive y 
and stable for negative y. For pointed body tails. ae = 0, Eq. (3.13) specializes to 

ii • y = 0,   K = Q   =-^gn,   c\=—^—glt   £■■,=——g 
A0 A0 A0 

This case corresponds to neutral oscillations. For heavy bodies with base radius ae = 1 

and small ballistic coefficients cl «1, cm «1, we can linearize about c, and cm. 

Equations (3.13) give 

y = 7TC, 

(             \ 
K -*■ - * = &' = <vKso--Ü- 

V               Cm J 
(3.17a) 

c\ = ncmc, fei -KI   c, = K\CJ (gn -xe),   d = M;(fl>0 + cg). (3.17b) 

Equations (3.17) show that oscillations are unstable for x2
e >c,/cm. This case fits the 

experimental conditions of Ref. [18]. For .17 < c, I cm, oscillations are stable or neutral. In 

all cases the increment is small y ~ cm ~ Q.' « 1. 

The expressions for the vertical speed and angular velocity are 

. Vc =Vl1-cj+Al(errcos£lT-l)+A2e
rrsmClT,   co = -cg + eyr{Bl cosQr+Bz sinQr). 

The first equation indicates that the CG oscillates near its mean state associated with a 
free drop. If the body dynamics is stable, y < 0   and the oscillations vanish as r -4 °°. 

Nevertheless, they induce the constant vertical velocity -Al =c;^(ö)(' +c?)/Q2. The 

second equation shows that the angular velocity oscillates near its mean level W = —c 

associated with a free drop. 

3.3.2 Eigenvalues \ and A2 are real 

If \ - y+ v and /L = y-v (v = • y2 -K ) are real, then the solution of Eqs. (3.10a) or 

Eqs. (3.12) is 

V (t) = Vt'+    ~C':r + er(AchVT + A,shvr),   ü) = -^ + err(Blchvr+B.shvr), (3.18a) 
K K 

„ . d <Y 

Y (r) = r„' + K + - r —- r + — [fa, - vA, )ch vr + fa,- vAx )sh vr],   (3.18b) 
\ K)       IK K 

a(t) = a' --kr + fa -vB, -er[(fa - vB, ]chvv+ (fa -vB: )shvA     (3.18c) 
K 
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where d = -ic(V(' - a't) )- c, - jß, + vB2. and the coefficients are 

A-J-,  A,=£L+1^Ä,  ü-ac+i.  a,-^A. ,5.19) 
K "      VK V K ' V 

.Again, the body motion consists of two components. The first component is similar to the 
previous case. It is associated with a pure gravity drop and can be treated as a baaic state. 
The second component is relevant to an exponential drift from or toward the bajic state 
depending on the signs of the eigenvalues. If \ <0 and A2 <0. then the exponents 
decay as r -> °°, and the body motion tends exponentially from the initial conditions to 
the basic state, which includes rotation with constant angular velocity and translation with 
constant acceleration. If \ and/or /t, are positive, then the exponential terms grow with 
time and the body departs from its basic state (aperiodic divergence). If v = 0. then the 
second component of the body motion is governed by the sign of y. 

These analytical solutions and stability characteristics of the body dynamics can be used 
for fast qualitative estimations of the body trajectory outside the cavity. To our 
knowledge, these results are new. With further development and generalization, test 
engineers and other personnel can use them to rapidly and cost-effectively certify and 
qualify store arrangements and new configurations. 

3.4 Results and discussion 
To calculate the body trajectory, including all phases of the separation process. Eqs 
(3.2a) have been integrated numerically using a fourth order Runge-Kutta scheme [23]. 
We have used this procedure to develop a research code, which includes a module that 
calculates the lift force and pitching moment for Phases 1, 2 and 3 using the analytical 
results of Part 2. The accuracy of the predictions can be related to the sire-of the 
perturbation parameters and uncertainties in the experimental launch condition. In the 
best cases, the accuracy can be as good as a few percent when the aerodynamic forces are 
small compared to the weight and the characteristic pitch inertia with experimental initial 
conditions that matched those assumed in the theory. Large excursions can result if large- 
scale shear layer motions occur and other disturbances evolve in the external flow. 

The combined asymptotic and numerical method described provides a means to rapidly 
calculate body trajectories. One trajectory is normally predicted in less than 1/2 minute 
using a PC Pentiuml66. To illustrate this capability, this quick-turnaround-PC oriented 
tool will be compared to the subsonic experimental data [18] in what follows. 

3.4.1 Experimental Data 
Drop tests [18] were conducted at the National Diagnostic Wind Tunnel of IIT Fluid 
Dynamics Research Center in the Mach number range 0.12 < M < 0.23. The rectangular 
cavity of 20 inches length, 41 inches width and 4 inches height was mounted on the top 
wall of the wind tunnel test section. The models were bodies of revolution of radius 
a() =3/8' and nose length xn =3.56' (see Fig. 3.2). Two models (B1N1 and B4N2) 
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were ogive-cylinders of 12 inches length. The third model (B5N5) has elliptic nose and 
total length of 11.5 inches. The heaviest model B1N1 had a mass m = 111.85 g. moment 
of inertia / = 0.0014 kgxm2 and a CG location i0 = 6.16'. For Model B4N2. m = 46.14 

g. / = 0.0008 kgxm2. jc„ = 5.94'. For the lightest model B5N5. m = 8.72 g. 

/ =0.000015 kgxm2. In these experiments, bodies were dropped from a cavity in the 
IIT wind tunnel. The models were released by withdrawing pins holding them at their 
nose and tail. 

3.4.2 Comparison with Experiment 
Preliminary analysis of the experimental data shows that at the release time. tr ~ 0.03 
sec. the initial angular and vertical velocities can be affected by uncontrolled 
disturbances that may be induced by the release mechanism. Shortly after the release 
time, the gravity force may increase the pitch rate, if the model ends are not released 
simultaneously. This motivated identification of the actual initial angular speed 6>0 and 

vertical velocity VA by differentiating the experimental distributions of the pitch angle 

ä(t) "aid the CG vertical coordinate Yc(i). This was used to correlate the theory and 

help isolate as well as understand any discrepancies between theory and the experiments. 

The "a" parts of Figs. 3.3-3.10 show comparisons between predicted (solid lines) and 
experimental (symbols) CG trajectories for all three models. Dashed lines indicate the 
free-drop trajectories under the gravity force only. As noted above, the lift is small 
compared to the body weight. Figure 3.3 shows that a free drop in a vacuum is very close 
to the computational results and the experimental data for moderate angles of attack, 
especially for the heavier model B1N1. However, the "vacuum" curve diverges from the 
experimental data, if the body enters into the external stream at relatively large G.. This is 
clearly seen in Figs. 3.4a. 3.8a, and 3.10a. In these cases, the theoretical prediction 
accounting for aerodvnamic loads is in good agreement with the experiment. Moreover, 
the theoretical mode! ii capable of capturing trajectory nuances shown in Fig. 3.8a. 

The "b" parts of Figs. 3.3-3.10 compare predictions (lines) and experimental (symbols) 
histories of the angle of attack Ct{t). Figures 3.3b-3.6b show good agreement between 
theory and the experiment. The agreement is satisfactory only for the cases shown in 
Figs. 3.7b- 3.9b. Rough estimates indicate that the initial growth of (X (see Fig. 3.7b) may 
be associated with an initial pitch impulse generated by the release mechanism under a 
gravitational couple from the pins. In this case, both the initial angle of attack and angular 
speed were estimated from the experiments and were used as the initial conditions for our 
calculations. For the lightest model B5N5 (see Fig. 3.8b), the discrepancy seems to be 
due to the difference between the actual nose shape (elliptic) and the shape used in our 
calculations (parabolic ogive). Unfortunately, calculations were not possible for the 
actual nose because its precise geometry was not available. Note that the nose shape 
becomes more important at large pitch angles. The divergence of the predicted and 
experimental curves in Fig. 3.9b seems to be due to the flow inside the cavity, which is 
presently not included in our modeling. Pitch oscillations observed in Phase 1 (body is 
totally inside the cavity) clearly indicate the presence of this effect, which may also 
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explain the substantial difference between the theory and the experiment shown in Fig. 
3.10b. 

As indicated above, the pitch behavior in Phase 3 (body is outside the cavity) strongly 
depends on the entry condition, which is a function of the angular velocity, vertical speed 
and their derivatives. For the case shown in Fig. 3.10b. the shear-layer displacement from 
its basic state into the cavity may cause a phase jump of the right-hand side term in Eq. 
(3.2a) from 0 to 180 degrees. Such a jump affects the pitch history outside the cavity. 
This is illustrated in Fig. 3.10b by the dotted line that was calculated with the opposite 
sign of the pitching moment. This curve is in a good agreement with the experimental 
data. On the other hand, experimental curves, shown in Figs. 3.5b. 3.6b and 3.7b for 
approximately the same initial conditions, have a regular behavior; i.e. they are in good 
agreement with the computations performed without changes of the sign of pitching 
moment. These findings suggest a bifurcation in the pitch history a(t) when the body 
enters into the external stream. The trajectory equations allow such a bifurcation, since 
the aerodynamic forcing terms of Eqs. (3.2a) are nonlinear (quadratic) functions of 
speeds V and co. One of two possible trajectories is selected, when the body crosses the 
shear layer. Therefore, Phase 2 serves as a trigger of the pitch bifurcation. Accurate 
modeling of this mechanism is important to predict the pitch history and store trajectory 
in the next phase when the store is outside the cavity. To verify this hypothesis additional 
theoretical, numerical and experimental studies are needed. 

3.4.3 Parametric Studies 
Parametric studies of the body trajectory were conducted for different initial conditions, 
body parameters and freestream speeds. The results are shown in Figs. 3.11-3.15. 
Variations of the initial vertical velocity cause not only CG acceleration but phase shift of 
the pitch angle (see Fig. 3.11). In accord with the analytical solution discussed in Section 
3.3.1, an increase of the freestream velocity leads to a substantial increase of the mean 
pitching angle and the pitch oscillation frequency (see Fig. 3.12). while the CG trajectory 
is changed slightly. Figure 3.13 shows th.T pitch oscillation amplitude increases and 
phase shift occurs as the initial angular speed increases. Amplification of the pitch 
oscillations is stronger in the case of positive co0 with the CG trajectory also noticeably 

affected. The effect of the initial pitch angle is similar to the effect of co{) (compare Figs. 
3.14 and 3.15). However, the variation of the CG trajectory in this case is smaller. 

Trajectory dependencies on the body shape are illustrated in Fig. 3.15. The calculations 
were performed for three experimental models of Ref. [18] under the same initial 
conditions. As expected, the highest amplitude and frequency of the body oscillations 
correspond to the lightest model B5N5. The body trajectories outside the cavity also are 
consistent with the analytical solution discussed above. 

3.5 Conclusions 
In this part, we discussed modeling of 2-DOF vertical and pitching motions of thin bodies 
of revolution separating from a rectangular cavity into external free stream. The problem 
is analyzed using combined asymptotic and numerical methods. The body dynamic 
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equations include aerodynamic forces and moments, which are predicted using 
approximate analytical solutions obtained in Part 2 our previous studies within the 
framework of the slender body theory. Different phases of the separation process were 
analyzed using small perturbation theories. This leads to simplifications of the trajectory 
equations and their integration in closed form for different typical cases associated with 
Phase 1 (body is inside the cavity) and Phase 3 (body is outside the cavity). These 
analytical solutions provide explicit dependencies of the body trajectory on the flow and 
body characteristics, to allow identification of the critical parameters ~nd provide insight 
into the physics of the separation process. 

The numerical code predicting trajectories for all three phases of store separation was 
validated by comparison with the experiment. For a major portion of the data, the 
calculations are in good agreement with experiment. Moreover, the theory is able to 
capture nuances of the body pitching observed experimentally. These results confirm our 
theoretical model. However, there are cases when the agreement is only satisfactory. The 
body separation is affected by more complex flow phenomena, which are not captured by 
our model. One discrepancy seems to be due to the slip surface displacement induced by 
shear-layer instability and/or s^if-excited oscillations of the cavity flow. These effects can 
lead to a pitching moment phase jump from 0 to 180 degrees during Phase 2. when the 
body crosses the shear layer. The jump may trigger quick transition from one pitch-angle 
trajectory to another for Phase 3. when the body is outside the cavity. Our calculations 
showed that this interpretation is consistent with experimental data and indicates the 
existence of two substantially different pitching trajectories for approximately the same 
initial conditions. Since nonlinear dynamic equations are involved, the body trajectory 
may have a bifurcation point associated with Phase 2. Although this transitional phase is 
relatively short, its aerodynamics may determine the selection between possible 
trajectories outside the cavity. Further theoretical and experimental studies are needed to 
establish and clarify the bifurcation mechanism. Our future work will extend this model 
to transonic speeds. Progress in this direction is discussed in Part 4 of this report. 
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3.6 Illustrations 

top cavity wall 

u. 
0   \ X 

slip surface 

store 

a) 

top cavity wall 

To 
slip surface 

y u 
store cross section 

b) 

Fig. 3.1 Schematic of store separation: a) - side view; b) - back view. 

78 ^N ROCKWELL 
Ni SCIENTIFIC 



71153. FTR 

k 

Fig. 3.2 Models for free drop tests in the IIT wind runnel. 
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Fig. 3.3 Model B4N2; J7. = 62.3 m/s, Yn =1.42 inch., a0 = 0\ V0 = 8 inch/s, co0 = 9 

des/s. 

0.4 

0.3 

0.2 

0.1 

0.0 

Y, m ' a, deg 

experiment 
• free drop 
-theory ■ 

t, sec 
0.00      0.05      0.10      0.15      0.20      0.25 

a) 

00       0.05.       0.10       0.15       0.20       0.25 

b) 

Fig. 3.4 Model B4N2: U„ = 41.3 m/s, Y0 = 2.4 inch (0.061 m), aa = 9.6° 

V0 = 2 inch/s (0.0508 m/s), o)K) = -80 deg/s. 
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Fig. 3.5  Model B1N1: U„ =62.7 m/s, Ya = 2.72 inch (0.0691 m), or,, = -11 r, . V(, =9 

inch/s (0.2286m/s). o)n = 75 deg/s. 
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Fig. 3.6 Model B1N1: U.. =40.8 m/s, F0 =2.65 inch (0.0673 m). a0 =-7.8°. V(, =12 

inch/s (0.381 m/s). 0)Q =80 deg/s. 
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Fig. 3.7  Model B4N2; U_ = 40.6 m/s, Y0 = 2.65 inch (0.0673 m). a0 = -9.2°. 

V0 =15 inch/s (0.381 m/s), o>a =70.8 deg/s. 
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Fig. 3.8  Model B5N5; U, = 62.5 m/s, Y0 = 3.85 inch (0.978 m), an = 2.4°, 

•     V0 = 19 inch/s (0.4826 m/s), G>„ = 140 deg/s. 
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Fig. 3.9     Model B4N2; U„ = 62.3 m/s. Yn = 2.33 inch. an = 9.5°. Vrt = 6 inch/s. 
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Fig. 3.10   Model B4N2: U„ =62.1 m/s. ^=2.8 inch. a„ = -11.9\V0 =15 inch/s. 

ö>„ =52.86 deg/s. 
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a) b) 

Fig. 3.11    Model B4N2; U„ = 62.3 m/s, Y0 =1.42 inch, a0 = 0°, o)0 = 8 deg/s. 

 V„ = 8 inch/s. V() =50 inch/s. 
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Fig. 3.12   Effect of the free stream velocity on the body trajectory: Model B4N2; 
Y0 =1.42 inch, an = 0\ V„ = 8 inch/s, o)„ = 8 deg/s. U„ =62.3 m/s, 

 (/   =200 m/s. 
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Fig. 3.13   Influence of the initial angular speed on the body trajectory: Model B4N2; 
U„ =62.3 m/s. Yn =1.42 inch, or,, =0°. V„ =8 inch/s. 
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Fig. 3.14   Influence of the initial pitch angle on the body trajectory; Model B4N2; 

U„ =62.3 m/s. Yn =1.42 inch. V0 =8 inch/s, ß>„ =8deg/s'. 
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a) b) 

Fig. 3.15   Trajectories of different models; U„ = 62.3 m/s, Y0 =1.42 inch, 

a0 = 0°, V0 = 8 inch/s, co0 = 8 deg/s. 
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Part 4. Transonic Flow Applications-Investigations of the outer 
limits of the inner solutions 

4.11ntroduction 
To calculate the drag force acting on a slender body dropping into an external transonic 
flow, we need to find the outer asymptotic solution [5, 6]. By matching, this solution is 
determined from the outer limit of the inner solution. For external aiore separation from a 
flat plate this limit corresponds to the flow induced by sources distributed along the store 
axis, and the drag can be calculated using the equivalence rule [6.25.26.29]. For other 
cases, the outer solution is not known. It can be determined from the analysis of the outer 
limit of the inner solution, i.e., the inner potential 0(X, r,0,t) needs to be considered for 
/• » H for Phases 2 and 3, when the body crosses the shear layer and drops into the 
external flow. 

In Section 4.2, we analyze the limits of the solutions obtained in Part 2 for store 
separation from a wing or infinite-span cavity. The dominant approximation is not 
sufficient to calculate the drag force acting on the store. A similar situation was 
considered in thin wing theory [26-31], where effects of higher-order approximations are 
taken into account to find the outer transonic solution. Hereinafter, we discuss the highen- 
order effects associated with a finite cavity span as well as the lift force and the body 
thickness. 

In Sections 4.3 and 4.4, we obtain a general form of the inner solution for store separation 
from a finite span cavity and analyze its outer limits for Phases 2 and 3. In Section 4.5. 
we study higher-order effects considering the outer limits of the second- and third-order 
inner solutions. Cavities with finite and infinite span are discussed. Higher-order 
approximation unsteady terms are shown to give a dominant order contribution to'the far 
field asvriptotics. 

In Section 4.6. we match inner and outer asymptotic solutions for transonic flows induced 
by a store separating from a cavity and wing. For the problem considered, formulation of 
the matching conditions is not straightforward because of .unsteady effects. We identify 
different regimes for the outer flow field for various relationships between the Strouhal 
number and the scale of the flow perturbations. Different time scales relevant to the store 
separation process are identified and discussed. 

We assume that short duration processes associated with freestream and body 
oscillations are averaged over a long -time scale characterizing the outer flow and give a 
negligibly small contribution to the wave drag. This idea is important relevant to current 
investigations involving the impact of cavity noise and vibration reduction using spoilers, 
jets and other devices. Effects of cavity oscillations are on such a short time scale that 
they or manipulations of them with control devices are averaged out on the trajectory 
time scale. For store drops, this is a Froude scale. We therefore conjecture that the 
influence of these rapid oscillations on the trajectory is small and possibly negligible. 
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Accordingly, we consider the quasi-steady outer solution, which is induced by sources 
along the body axis that is relevant to the dominant effect for a finite-span cavity. 

In Section 4.7, drag force components acting on the body in Phase 2 (the body crosses the 
shear layer) and Phase 3 (the body drops in the stream) are theoretically modeled. 
Analytical expressions for the pressure drag are derived using the solutions obtained in 
Part 2. The friction drag is calculated using a modification of the Schultz-Grunow 
correlation [32] for axisymmetric flows. The base drag is predicted using results from 
Ref. [33]. The wave drag modeling is reduced to solving the Karman-Guderley equation 
over an equivalent body of revolution simulating the store. Analytical formulas and 
computational examples for the equivalent body shape are provided. 

We have developed a computer code to predict 3-DOF store trajectories. As contrasted to 
the results of Parts 1-3. this module is coupled with a code developed by Dr. N. Malmuth. 
This is small disturbance solver of the axisymmetric Karman-Guderley equation. It is 
based on the Murman-Cole successive line overrelaxation (SLOR) approach. It is very 
rapidly convergent for many practical cases on current-generation (considerably less than 
1 GB. 500 MB RAM processors) using a Visual Foriian compiler. A brief description of 
this code is provided in Section 4.8. Note that the theoretical model developed herein can 
be extended to 6-DOF trajectories, including yaw and roll. 

Parametric studies discussed in Section 4.9 demonstrate the effects of the body thickness 
and initial (release) conditions on trajectory characteristics. These results are discussed in 
Section 4.10. 

4.2 Outer expansion of the dominant inner solution 
For a store moving near a plane surface (H - a), in accord with the our previous results, 
(see Section 2.2) the first term of the outer expansion of the inner solution is 

Ol        ~AJXj) + 2a{X)ax(X)\n{r), (4.2.1a) 

r*Dr ~2a(X)ax(X). (4.2.1b) 

where the function A{){X,t) accounts for the outer flow effect on the body aerodynamics. 

The relation (4.2.1b) is treated as an asymptotic boundary condition for the outer problem 
[6.25.26.29]. In this scheme, the outer expansion corresponds to axisymmetric flow over 
a body of revolution whose cross-sectional area is twice that of the store cross-sectional 
area. i.e. 

A,ff{x.t) = 2Ah. (4.2.2) 

From conformal mapping, a similar analysis is relevant to external separation from a 
fuselage. These results allow us to apply the equivalence rule [6.25.26.29] and calculate 
the wave drag for external store separation. This is important in extending our predictions 
of trajectories from 2-DOF to 3-DOF. 
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To obtain an asymptotic expression for the potential induced by the body motion inside 
an infinite-span cavity, we use the complex velocity W0 and the complex potential n „ of 

the dominant approximation (see Section 2.2. Eqs. (2.2.12)). These are 

W0(C.X.t)=^ = W-iv = Yja^\A_2n_ 
n=0 

1 

+ iaB^- ■ + ■ 

(C-iH)2'"1    (C + iH) 

1 

2n-l 
+ 

!!„(£,X,t)=4> + W = aax\n 
C-iH 
C+iH 

n0(£,X,f) = <!> + /¥ = 00, In 
C + iH 

+ v.* 
2n-\ 

+ 
(C-iH)2"-1    (C + iH)2 n-l 

(4.2.3a) 

(4.2.3b) 

In Section 2.2 of Part 2, the coefficients v4_,n_,(X.f) and B_2n_2(X.t) are expressed as- 

convergent   series   in   the   parameter   q = a/(2H) < 1/2.   Substituting   the   relation 

C = re    + iH into Eq. (4.2.3b) and considering the case H Ir « 1. we can reduce this 
equation to the form 

n,, = aa, In 
re 

f       u        \ 
TO -iff     1    ,    ■  n        -if 2iaB_^e      \ + i     e 

V        r        ) 
re'" +ZH f 

r 
V 

1 + 2/V" 
r 

(4.2.4a) 

In the dominant approximation, the potential is therefore expressed as 

<Z>, = -^sin6.    D0(X,t) = 2a{axH + 5_,). 
r 

(4.2.4b) 

Equation (4.2.4b) shows that the outer-flow field has an angular dependence in the cross 
flow plane; it corresponds to a dipole on the body axis. 

From Eq. (4.2.3b), we consider the far field limit appropriate to a < r « H .a < r « H ; 
i.e., the case when the body is far from the slip surface. The coefficient B_^ is 
approximated as 
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B , = a V-a- 
2H 

The dominant terms of the potential (4.2.3b) are 
r 

n,, = aa. In In 
2iH 

is re 

1   ,       ' if 

2iH 

la e V -a- 
V 

aa. 

2// 

~aa In i(V-a)—e+i—- A     2/7/ /• 2// 
/*'*+ — e-'0 

In  the  dominant  approximation,  this  potential  is  reduced  to  the  potential  of an 
axisvmmetric flow over the bodv of revolution in an unbounded stream 

0„ ~aa. In —+ 0 
2H       [2H 

(4.2.5) 

A similar result can be obtained for the body crossing the shear layer (Phase 2). In this 
phase, the complex conjugate flow velocity and potential (see Eqs. (2.2.2) of Section 2.3) 
are 

W=i(V-a) J- 
Q"(s)ds dC &       ]        4c2 a x 

V^0"    Vcx: -b2 J   iKyja2 -b2 -i,D(s,n)\b2 -s2 (s-cr 

n, =i(V-a)(C-^J(72-b2 )+=^yj(j2 -b2 f 
7C L 

y/(s)ds 

-h^jb2 -s2 (s-cr) 

y/ - arctg 
\s + :,y+(s-b)n      (m^ 

{s + b)n-{s-b)n 
ctg 

v2y 

. (4.2.6a) 

(4.2.6b) 

(4.2.6c) 

As a —>'oo. the limit of the complex conjugate velocity (4.2.6a) is 

l + 
b- 

W,, = 
l KG 

2cr2 'rJb2-s2vnl,(s) 

l(s) 
ds. (4.2.7a) 

and the potential is approximated as 

o„=- DAX.t)  . 
sin#.  D„ 

l hJb2-s2vnh(s) 

*L        MS) 
ds. (4.2.7b) 
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In the dominant approximation, the potential (4.2.7b) corresponds to the flow induced by 
a dipole of the strength D0(X.t). Thus, in the outer limit, the inner solution does not 

contain a source term for an infinite span cavity. Crossing the shear layer, the body 
induces a vertical-velocity on the free slip surface (vf) such that the following integral 

relation is satisfied 

Thus, the flow field induced by sources on the body surface and sinks on the shear layer 
at large distances from the body behaves as a dipole. 

4.3 Separation from a finite-span cavity into a transonic external flow: 
General form and outer limits of the inner solution for Phase 2 
For Phase 2. the cross-flow scheme is shown in Fig. 4.1. Notations and dimensionless 
variables are similar to those introduced in Section 1.2. The inner-flow region includes 
the cavity region, which is bounded by the slip surface and cavity walls, as well as the 
free-stream region with the upper boundary consisting of the mixed boundary (the slip 
surface.  |Z|<üf0, the flat plates, \Z\>dQ) and the submerged body portion. To the 

accuracy indicated in Section 1.3, we neglect the sidewall effect. In the dominant 
approximation with respect to the small parameter S « 1. the inner asymptotic solution 
is described by the two-dimensional Laplace equation in the cross-sectional plane. Here 
we consider the free-stream region only. We also neglect the slip-surface displacement 
and treat it as a plane of zero potential. In the cross-sectional plane of the complex 
variable £ = Z + iY, the problem for the complex conjugate velocity. 
W((,X,t) = w-iv, is accordingly formulated as 

Find a harmonic function W, which satisfies the conditions: 

1. Im W = -v = 0 in the intervals (-°°,-d0) and (d0,°°) 

2. ReW = w = 0 in the intervals (-d{),-c) and (c.d{)) 

3. Velocities v, w are finite at the cavity edges, Z = dn, Y = 0 

4. Im(f ~'0W) = -v„ on the submerged body surface 

5. W -» 0 for £ -> oo 

This problem is solved using the conformal mapping (2.2.1) of Section 2.3 (see Part 2) to 
map the free-stream region to the lower half-plane of the complex variable a = g + ir]. In 
the transformed plane shown in Fig.4.2, the cavity has the semi-span 

{l + cf-{l-cf d0 n 
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The submerged body portion is the lower side of the flat plate. Y = -0. £ <b, which 

moves with the vertical velocity 

1 
nlX,t) = VJKZ) = — [ax+VesinO], 

Ab2-$z)D({.n)    n_b + l 
HZ) 

da 

% <7=<> 
4c2Q"(g)    "' Q    b-f 

.  D = Q2n+\-2Qncosmi. 

.   Q    Y($)-H      . Qn(£)   .  ,     ^ 
sin# =— = -2 — sin  ;z?z + cos ;z7z 

a(x) D(£,n) 

(4.3.2a) 

(4.3.2b) 

(4.3.2c) 

Here, tilda denotes flow parameters in the a -plane. 

For a finite-span cavity (d<°°), we apply the Keldysh-Sedov formula [8] in the 
transformed plane and obtain the following expressions for the complex congugate 
velocity and complex potential with rj < 0 

ff«a.™ = -!j^jJ£--r v„(s)ds 

x\ G' -b- \\ d~ -s- (s-(T)l(s) 

da 
W(a.X.t)=—W: Tl(<T.X.t) = \wd(T. 

dC 

(4.3.3a) 

(4.3.3b) 

Using (4.3.3) we can derive relatively simple explicit expressions for the lift force and 
pitch moment acting on the body. These expressions have a structure similar to that 
obtained for an infinite-span cavity in Section 2.3 of Part 2. 

Consider the outer limit of the inner solution, a —» °°, d = fix. from Eqs. (4.3.1) and 
(4.3.2) we obtain 

3<r=1,(i-*2)bJ, ~f*° 
da 3a- 

O 
K^J 

Using these expressions, we find from Eq. (4.3.3) that, in the first order approximation, 
the far field is induced by sources distributed along OX -axis; /. e. 

W 
Q,„(X.t) 

IKL 
1 + 0 

d2+b2 

Q*(X.t) = l\ 
xl„\d- 

\b2 -s2 v„{s)ds 

Hs) 
(4.3.4) 

This relation allows us to match the inner and outer solutions. It also shows that the outer 
flow is axisymmetric in the dominant approximation. 
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For relatively wide cavities with d»b, the complex conjugate velocity (4.3.3a) is 
expressed as 

ml .(r-b- l\     1d- 

Yb2-s2vn(s)ds___l     a:-d:"r   b2-s2vn(s)ds 

,    (s-ff)l(s)     ~   ml   a2-b2l    (s-<7)l(s) 

Substituting the expressions for vn and / into this equation and integrating we obtain the 

complex conjugate velocity and complex potential 

w-^l V. a<r 4c~axI((T.n) 

/(cr,«)=[ 

(do   yjcr2 -b2 )    K4O~ -b2 

Qn(s)ds 

D(s,n)Jb2-s2(s-(T) 

(4.3.5a) 

(4.3.5b) 

For the inner region 

\<j\ « d, sa2 - d2 = -id 1--^ + ... 
2d- 

the dominant approximation of Eq. (4.3.5) is reduced to ((2.2.2a) for an infinite-span 
cavity , so that 

W = -i V„ K 
dCJ     ^J(T2-b2 )      Ttyja2 -b2 

+ At-aJ(a.n) (4.3.6) 

For the outer limit, cr —»°°, d fixed, we obtain 

W 
Qeff(X,t) 

2nC 
1 + 0 

QeAXj) = 
2a2(x)sin^7j 

nd 
4aJten(/i)-;rV,(l + 2/r) 

-,\sin;m 

6/i 

(4.3.7a) 

(4.3.7a) 

where the function en(n) is provided in Appendix C of Part 2. Note that the outer limit of 

the inner solution is proportional to the ratio bid, whereas the flow parameters in the 
inner region, as well as the lift force and pitching moment are 0[b2/d2). Equations 
(4.3.7) allow us to formulate the matching condition for the outer asymptotic solution in 
an explicit form. 

93 ^N ROCKWELL 
^i SCIENTIFIC 



71153.FTR 

4.4 Separation from a finite-span cavity into transonic stream: General form 
and outer limits of inner solutions for Phase 3 

For Phase 3. the cross-flow scheme is shown in Fig. 4.3. In this case, the vertical distance 
from the slip surface to the body axis is H <-a: all notations are the same as in Fig. 4.1. 
We consider the flow in the lower half-plane only. The inner problem for the complex 
conjugate complex velocity. W(£,X,t) = w-iv . is formulated as 

Find a harmonic function W satisfying the conditions: 

1. ImW = -v = 0 in the intervals (-°°,-d„) and (d{),°o) 

2. ReW = vr = 0 in the interval (-c,c) 

3. the velocities v. w are finite' at the cavity edges. Z = ±d{), Y = 0 

4. lm[e~")w) = -v„on the body surface. |<T-'#| = flU) 

5. W --Ofor(-^°° 

For Phase 3. this problem is more complicated than for Phase 2. since the flow region is 
doubly connected. The solution method developed in Ref. [8] includes a conformal 
mapping of the free-stream region to a rectangle. The complex conjugate velocity is 
expressed by the Keldysh-Sedov formula, including elliptic functions in the integrand 
(see Section 1.2 of Part 1). However, it is difficult to obtain an analytical solution using 
this method. We develop another method, which is based on the results of Ref. [9]. It is 
similar to the method used in Section 2.2 of Part 2. Introduce the analytical function 

M£,XJ) 
w(C.x.t) 

Using the symmetry principal for harmonic functions [10], we analytically continue this 
function to the upper half-plane with the relation 

fAC.X.t) 
W(C.x.t)     W(£.x.t) 

C-d\ c- 
= -fx(£.X.t) (4.4.1) 

From Cauchy's formula, we obtain the integral equation for W(g) 

W(0 = 
C-dl 
llK 

i =i 

W(iH+t)dt 

{t + iHf-dtiC-iH-t) 

+ 
! =1 

W(-iH + f)dt 

{t-iHf-di;{C + iH-t) 
(4.4.2) 
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Thus, the problem is reduced to the problem of two circles vertically translating down in 
an unbounded flow as schematically shown in Fig. 4.4. Using Eq. (4.4.1) and expanding 
denominators of the integrands as Taylor series, we express Eq. (4.4.2) in the Laurent 
series 

W(Q=^\~d\±a"1 C n-\ c 
iJIPTditi     [iC-mr*   (C+iHr 

I '-. ~       2—1 I       n+l 
■ -n-\ 

(s + 2iH) n+l 
(4.4.3) 

where s = C-iH = rew . The Laurent coefficientsC_n_, and C_„_, of the function j\{C 

at the points L, = iH and £ = -iH are 

C^^A^+iB^^ 
2in J x   y(2*-l)!! 

^    2kk\ k=\ 

t + 2iH 

C^x=A„n_x-iB_ 

H- + d, 0 J 

W(iH+t)t"dt 

^{t + iHf-d2 

These expressions are derived using the flow symmetry and the boundary conditions on 
the body surface. The derivation is similar to that described in Section 2.2 of Part 2. In 
particular, we derive from Eq. (4.4.1) 

W(£) = W(-0. C „_, = (-If <:_„_,: C 2n = «.,„: C_2n_, = A_2n_,. (4.4.4) 

The coefficients A_x =ax,B_2 =Ve+Bi) are determined by Eqs. (2.1.3) for an infinite 

span cavity. The finite span cavity effect appears for n > 1. Coefficients of these numbers 
have more complicated form than for an infinite span. They are not provided here since 
only the two first terms are needed to determine the outer asymptotics. 

Consider the outer limit of the inner solution: /• -»°°,<i„, H fixed. From Eqs. (4.4.3), 

(4.4.4) we obtain 

W(s) = Qeff +0 
2ns 

H 

s2   H2 + d, 

dA 
eff 

11   J 
dx 

= QeAXj) 
4mi{A^H-aB_2) 

^H2+d> 
.    (4.4.5) 

For the large-span cavity limit, r —> °°, dn » 1, H « d{) we find 

QeAX,t) = 
47ta{axH-aB_2) 

1- 
2d- 

(4.4.6) 
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The source intensity tends to zero as d{) ->°° . 

For the other limit, r -» °°. H » d„. the source intensity tends to 

0/i(X) = tea_=2i^.=fM£. ,4.4.7, 
Ö.V ax 

In this case, the cavity effect is negligible and the problem corresponds to a body of 
cross-sectional area distribution A,\x) dropping from an infinite flat plate. The effective 

cross-sectional area is A^ix) = 2Ah(x). 

4.5 Outer limits of higher order approximations 
For a zero-thickness wing in an unbounded transonic flow, the outer limit of the first- 
order inner potential has a dipole form similar to that given by Eqs. (4.2.4b) and (4.2.7b). 
However, a logarithmic source solution of the second-order approximation is dominant in 
the far-field region and determines the form of the outer solution [25-29] that couples 
with this dipole behavior. This source term can give a sizeable wave drag due to lift 

ex 
contribution if A = > °°. where a is the angle of attack and 8 is the thickness ratio. 

S 
The lift-induced source strength is proportional to C'(x)C"(x), where C(x) is the lift up to 
the streamwise station .v. This contribution can be of the same order or larger than the 
wave drag due to thickness. Reference [6], the authoritative source for development of 
transonic slender body theory based on systematic asymptotic approximation schemes, 
(particularly, higher order approximations in a lucid, deductive framework) treats the case 
of A - 0(1). in which the wave drag due to thickness dominates the wave drag due to 
lift. For thin wings, similar, asymptotic expansions were considered in [26-29] with a a 
small parameter. Reference [30] discusses higher order approximations in a subsonic and 
supersonic flow context. 

Our analyses are extending the framework of [6] from a slender body in an infinite flow 
to one separating from a flat surface or cavity. 

The results presented in this section can be regarded as a first step to developing a high- 
order asymptotic theory for unsteady transonic flows with free boundaries. Within the 
scope of this report, we restrict our matching considerations to the low order terms. A 
higher order investigation to be conducted will include the ramifications of the slip 
surface in the matching scheue and its effect on the intermediate expansions which need 
to be introduced to avoid the mismatch of the higher inner and outer expansions in 
slender body theory. This mismatch phenomenon was elucidated in [6]. Accordingly, 
outer asymptotics of the inner solutions are obtained in Part 2 and Sections 4.3-4.4. 
Although the focus is on dominant order matching herein, we consider the asymptotics of 
the second and third order inner solutions for a body of revolution separating from a 
cavity. We have estimated the order of source terms of the outer solutions using the 
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approach in [6] for asymptotic matching. This allows us to evaluate the contribution of 
the higher-order approximations to the inviscid drag force. 

Second- and third-order approximations of the inner potential for the body crossing the 
slip surface can be obtained from the full potential equation with the method of [6]. This 
equation is 

IC" - U - —— + \C- - v- j—^T + [C- - M- )—~T - 2U —=— - -zr- - V JdX-    V 'dY2    V 'd.Z- dXdt     df 
rl + ü£](r- + ^-)-2^M, = 0, (4.5.1a) 

dt        dXjX J dZdY 

U   =—^r,      V=  ~,      M'=—=-, (4^. ID) 
ax       dY       dz 

p   p~ 
(±] 

1 
y U2+v2+\r     c2     ul     c ,, - , ,  + = ^^ + —^-. (4^.1c) 

2 y-\     2     y-\ 

Here, C is the sound speed; p is fluid density and &(X,?.2j) is the velocity 
potential. We consider separation from a flat wall to illustrate the asymptotic 
developments that we have applied preliminarily to finite and infinite-span slip surface 
cases. For store separation from a flat wall, the appropriate inner asymptotic expansion 
for the transonic flow potential from [6] is relevant and is 

{x+ö2\ogö(2S1(X.t))+S2®1(X.Y.Z.r.K.S)+} 

{SA\ogÖb2l(X,Y,Z,t;K,S) + ö4®2+--- j 

= l„U„{x +S20(X.Y,Z.t:S)}. (4.5.2a) 

which is valid in the inner limit 
Y = YIS,   Z&Z/S,    K,S   fixed as £ ^ 0 . 

where K = (l - Ml )l S2 is the transonic similarity parameter; M„ =Ux/c„ is the Mach 

number, S = l{)/(UjQ) is the Strouhal number. The appropriateness of (4.5.2a) stems 
from the fact that for the flat plate the far field looks like that generated from two 
cylinders (of arbitrary cross section), tangent to each other at the wall whose axes of 
symmetry are parallel to the freestream. The second cylinder is the reflection of the 
physical one needed to satisfy the no-flow through boundary conditions on the solid wall. 
The distance of the cylinders from the wall is negligible in the far field. This gives an 
equivalent body area that is twice the physical area, as indicated elsewhere in this report. 
The reflection gives a flow symmetric in the direction normal to the flow from a double 
source in the crossflow plane. In contrast, if a slip surface replaces the solid wall, (such as 
for an infinite span cavity), an antisymmetric solution is needed to satisfy the 
homogeneous   Dirichlet   condition   for   the   perturbation   potential   rather   than   the 

97 ^v ROCKWELL 
^i SCIENTIFIC 



71153.FTR 

homogeneous Neumann one appropriate for the solid wall. Accordingly, the double 
source far field now becomes nearly a source-sink pair (dipole). 

A crossflow velocity potential can be defined as 

w= — = u S(w-iv) = u s(w0 + s2w, +s4wA n = ö+/4' (4.5.2b) 

Further the normalized pressure coefficient and sound speed are respectively 

P = 
P-P~ i 

PJJIS2     }M: 

C2       1      7-1 

(M:C
:
>-'-I , M~2 =\ + KS2 + KS\ 

C:=K = -^- — S2(2S0,+20x+W
2+v-+S202

x). 
•C-     M-       2       v ' 

(4.5.2c) 

(4.5.2d) 

As contrasted to the previously used scaling (see Eq. (1.1.2b)), the dimensionless time is 
defined as r = t/tl) (where t0 is the time scale associated with the flow perturbations). To 

0(S~) we express the body surface shape as 

Yh=H±^a:(X )-Z2 + 

+ S2a 
a 

^a2(X)-Z2 + 
Xaa'(X) 

4a2{X)-Z2 
■aa'(X)- 

a-X 

f«{X,Zj) + 82 j\{X.Zj) + 0{8A). (4.5.3) 

The potential O0 and the complex conjugate velocity W0 of the dominant approximation 

are analyzed in Sections 4.2-4.3. In the polar coordinates r,d, the potential of the 
second-order approximation satisfies the Poisson equation [6. 30] 

ia  ao    i a:o,   .IO1
^       d2o   (■*   ^ 

 ,• - + — — = o    — + 2S ——-— + l-i — 
rdr      dr       ,-   d02 dt2 dXdt     [dX        at 

{ dr   dr     r2   dd dd. 
oao0  fao ^ 

dx 
■+ 

\ dr j 

i raonv 

(d<S>A 

\   or   j 
+ - 

a# 
+ 

/• V^y 
(4.5.4) 

To second-order, the boundary condition for the normal velocity on the body surface is 
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_ S\i + fix + tPuxhx     l/i» + -/o.v )hzJ\z (4 5 5) 

1 + tiz l + /oz    " 

On the slip surface and horizontal cavity walls, the boundary conditions are 

c <\Z\<d0:   <D, = 0;   Z > d :   —- = 0. (4.5.6) 

In addition, the flow velocities are finite on the cavity edges Z = ±d0. 

The solution of Eq. (4.5.4) is represented as the sum [6.30] 

0;=<D21 + 02/). (4.5.7) 

The potential 021 satisfies Laplace's equation with the boundary conditions (4.5.5). 
(4.5.6). The solution is obtained using a conformal mapping outside the body in the o- 
plane (see Fig. 4.2). This mapping results from a slight modification of Eqs. (2.2.1) (see 
Part 2) using the asymptotic method developed by Lavrentiev [10]. From the Keldysh- 
Sedov formula we obtain the complex velocity W2l in the o -plane as 

W„ = -■ 1    £lzjq I»2-'2    v>W   , (4.5.8) 
x V o2 -b' i^d- -s2 (s-cr)l{s) 

which is similar to Eq. (4.3.3). Therefore, the asymptotic behavior of the second-order 
potential 0,; is similar to the asymptotic behavior of the potential O0. For the finite- 

span cavity, the asymptotic form of Eq. (4.5.8) as 0"-»°° is determined by the source 
distribution alci.g the body axys, i.e.. 

W,,~^,   O^-ß^hw, (4.5.9a) 
a ' 

1     x]Jd2-s2     Hs)       d>>"    xdl lit) b 

For the infinite-span cavity, the outer limit of the second-order potential 02] is defined 
by the dipole distribution on the body axis 

D^(X,t)  . 1 bJb2-s2v^(s) 
O,, = — sm#,  /),, = —ds (4.5.10) 

r x ih Hs) 
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The potential <t>v is a partial solution of the Poisson equation (4.5.4) satisfying the 

boundary conditions of zero normal velocity on the body surface. 02/, =0 on the free 

surface, and 3<J>, / dY = 0 on the horizontal cavity walls. Using the method of Ref. [30]. 

we express the potential <J>:/7 as 

"*-* 
5V+Mäl>-K« + 

4„j^jm+s^)+^li^m 
dx dt 

*:„=RerV (4.5.11) 

From Section 4.2 relevant to the infinite-span cavity, the asymptotic behaviors of the 
complex conjugate velocity and the complex potential are determined by the relations 

Dn <r=c+o(r\ w{)=^+o(r\ n0=-^+o(r2-U —^ oo (4.5.12) 

Substituting these expansions into Eq. (4.5.11). we find that the third term of this 
equation is of the order of 0{£~~) and the second term is of the order of 0(C~~) as 
^ -^ oo . in the far field, the dominant term of Eq. (4.5.11) has the asymptotic form [30] 

n,. (SD0lt+2D{)XX^C. 

«D,,, ~ -" {SDl)n + 2Di)Xt)r[\n(r)co-& + 0sinel 
4 

(4.5.13a) 

(4.5.13b) 

where the dipole strength DJX,t) is determined by Eqs. (4.2.4b) and (4.2.7b). For a 

finite span cavity, the dominant asymptotic term of the potential <&2p is determined as 

O -/•' 
d2Qft       d

2Qff _eS + o _ --JL 
dr      " dtdX 

r{\nr-\) (4.5.14) 

where the source intensity of the first order approximation is determined in Sections 4.3 
and 4.4. The potential O^ given by the asymptotic expressions (4.5.13) and (4.5.14) is 

proportional to the Strouhal number. In both cases, the second and third terms of the 
expansion (4.5.2a) have the same order of magnitude in the region where 

/• ~ (4.5.15) 
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In this region, unsteady asymptotics of the second-order potential can be of the same 
order of magnitude or dominate the first order asymptotics for the potential. For a finite- 
span cavity, these asymptotics are axisymmetric. whereas they have an angular 
dependence for an infinite-span cavity. Note that all terms of the second order 
approximation (excluding the unsteady terms) obtained in this paragraph are similar to 
those obtained in Ref. [6]. Then, we can use the theory [6] to formulate the matching 
conditions and identify an outer solution form in the second-order approximation. Such 
an analysis will be performed in our future work. 

Equations (4.5.9)-(4.5.14) show that the outer limit of the second order approximation 
does not contain a source term for the case of an infinite span cavity. Then, according to 
the general theory [6, 26-31], a source term is not contained in the outer asymptotic 
solution in the second order approximation. This indicates that the second-order solution 
does not contribute to the in viscid drag. Note that this result is consistent with theory [6], 
which shows that the source intensity of the second order approximation is directly 
related to the source intensity of the first-order approximation. Since the first order 
approximation does not contain a source term for an infinite span cavity, we conclude 
that such a source term must be zero in the second order approximation. 

Using a similar method, we analyze the outer limit of the third-order inner potential for" 
an infinite-span cavity. The equation for this potential is 

1 9    3<D,     1  3:0,     v+l  d r^ru v 

rdr      dr      r2   dG2 2    dX 

y+\ DnxDaxx 

ao> 

s- 

•(l-cos20) + - 
1 r- 

, a4D„   „ 34D„    a4A, 

dx 
KD 

+ K 
a:o 

J dx2 ̂ -+s: a:o,      a:o, 
dt2 

- + 25 
dtdX 

■ + ... 

SD     +">D 
""sinfl-S      :1" 21*'sinfl- 

± + S 
a?4        dt'dX    drdX2 r[ln(r)cosO + 0sm&\+... (4.5.16) 

The first two terms on the right hand side of Eq. (4.5.16) are dominant for a steady flow. 
The last two terms arise due to unsteady effects. Thus, the third-order potential is 
represented as 

O = ^-DoxDoxx{O3O(r) + O3l{r)cos20)+KDoxx^32(r)sin0- 

d4Dn    _ d4Dn      a
4D„ 

^ + 5 - + ■ 
dt4 dt'dX    drdX2 / 

— r = 2; <P30=ln   r, r— r  
dr      dr dr      dr 
a  ao„ 

/• — r 

r — r —-<J>3, =r,   r — r —-O33 =r_(lnr + 2), 
dr      dr ' dr      dr 

[033(r) cos <9 + <J>34(/-)<9 sin #]+...,(4.5.17a) 

-403]=-2, (4.5.17b) 

(4.5.17c) 

101 ^N ROCKWELL 
^J SCIENTIFIC 



a  ao 
/• — r - 34 

dr      dr 

71153.FTR 

&u=-r. (4.5.17d) 

Matching using intermediate expansions is discussed in [5.6]. Consistent with the low 
order matching described herein, the form of the outer solution can be obtained by 
rewriting the far-field inner asymptotics in outer variables. Using the outer-expansion 
variable r = S'r. we obtain from Eq. (4.5.15b) 

f        y\ 

V 
In   , 

8- 
= ln2F-41n£lnF + 41n:£. (4.5.18) 

The second term of this relation corresponds to a source term in the outer asymptotic 
expansion that is 0[£fi/H£|. This result is consistent with the asymptotic theory [6.26.29] 
for thin wings and Munk's theorem; i.e., the source intensity and the drag-due-to-lift 
coefficient are proportional to the square of the lift force. In our case, the lift is 0( S}) so 

that the drag coefficient is proportional to 0( <T In S). 

Due to the third order source type term, this approximation gives a non-zero contribution 
to the drag. The results of Sections 4.3 and 4.4 indicate that for Phases 2 and the initial 
stage of Phase 3 the finite span cavity effect is 0{eS2 InS) in the far-field asymptotics. 

where e = at)/d0. Accordingly, this effect is dominant for £ » SA compared to the 

drag-due-to-lift component, which is OiS^lnS). This situation is typical for many 
practical cases. Its analysis is presented in Section 4.7. 

Note that the analysis of this report is restricted by the case of relatively small angles of 
attack (ä ~ S) and vertical body velocities (Vtt ~ 5UX). For ä » S and/or V„ » SUm 

the drag due to lift may be of the order of (or even larger than) the finite span effe^. 
These cases will be addressed in our future work. 

4.6 Outer asymptotic expansion for the flow potential 
The complete flow region, which includes the cavity interior, the shear layer arid the 
outer stream (see Fig. 4.5) is subdivided into the outer and inner asymptotic regions. In 
each region, solutions are expressed as asymptotic expansions with respect to the small 
parameters 

S = üjl,->0.   £- = ^ = —->0. (4.6.1) 

where ü„ is maximum body radius. dt) is cavity half-span and fn is body length. From the 

results of Sections 4.2 - 4.5 we formulate the matching conditions of the inner and outer 
solutions. 
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4.6.1 Matching conditions 
In the inner asymptotic region, the flow potential is represented as 

Ö- =S2uJ0[&(X,Y,Z.t)+OlE2)}. 

Ö> = Ö2UJfl[®(X,Y,Zj) + G(Xj) + o(£2)\ G(X.r) = ln^(51(X.r)). 

(4.6.2a) 

(4.6.2b) 

Hereinafter, the superscript "+" denotes flow quantities inside the cavity. The second 
(switchback) term is added into Eq. (4.6.2b) to match the inner and outer solutions. To 
0(S2) both potentials are solutions of two-dimensional Laplace equation in the cross- 
sectional planes. They are determined in Part 2 for an infinite-span cavity and in Sections 
4.3 and 4.4 for a finite-span cavity. To dominant order, the pressures p and f>~ are 
determined from the unsteady Bernouilli equations as 

P   = 

P = - 

O* +-\w ' +v" 
2 

O, +u + — [\v2 +v!) 
2 

(4.6.3a) 

(4.6.3b) 

where u.v,v are the flow velocities in the fixed coordinates. 

Sections 4.3 - 4.5 show that the finite-span cavity effects are the leading terms of the 
outer limits of the inner solutions. Therefore, the matching condition of the inner and 
outer solutions is determined as [6] 

V 
dr r_ 

3d)        =   1   dA#{X,t) 

__ ~ In      dX 
(4.6.4) 

Here Aeff = m-2
ff is the cross-section area of the equivalent body of revolution that is 

identified in Sections 4.2 - 4.4. The flow potential <p{X,r,0,T) and the variables for the 
outer asymptotic region are determined below by Eqs. (4.6.9). 

For Phase 2 of separation from a cavity, the effective area of the partially submerged 
body portion is a function of the dimensionless angle n(X,t) = \-7tß{X,t) (see Section 
4.3) 

X, <JC<X, : 
dAeff(Xj)       2a2(x)s,mmi 

dx 
= £ 4axe{,(n)-xVe(l + 2n2) 

sin mi 

6« 
(4.6.5) 

For a fully submerged body portion, the effective area satisfies the equation (see Section 
4.4) 
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dAtff(X.t)_4m{axH-aB) (466) 

äV H2+d2 

This equation is relevant to Phase 3 (the body is totally outside the cavity) and Phase 2 
for the body portions .v < X, and .v > X2. Here X{(t) and X2(t) are coordinates of the 

upstream and downstream critical points, Xn(t) and Xe(t) are coordinates of the body 

nose and tail respectively. According to Eq. (2.1.3a) of Section 2.1, the function B{x.t) is 

B(x.t) = V,-q^{-l)kq2k[A_H_l(.xj) + qB_,k_Ax,t)lq = ^ (4.6.7) 
;-=o 2|rt| 

Typical distributions of the effective area are shown in Fig. 4.7 for Phase 2 (t = 0.03 s) 

and Phase 3. In this plot, the abscissa is the CG coordinate .v//„, and the ordinate is the 

effective cross-sectional area normalized by the maximum body area A,, = m2. These 
results vvere obtained by computations of the 3-DOF trajectory for the body B4N2 at the 
initial conditions: Y0 =1 in, V„ =10   ft/s co0 =200 deg/s a„ =0°. At t = 0.03 s. the 

trajectory parameters are: Y„/D = 0.21. X„/D = 0.009, a = 6.2\ V =-3.2 m/s. 

co = 228.3 deg/s. and U= 0.024 m/s. At r = 0.03 s. the trajectory parameters are: 

y/D = -4.47. XJD = 2SA. a = 5AT. V =-2.19 m/s, co = -461.3 deg/s. £7=1.11 
m/s. The effective body for Phase 2 is thinner than that for Phase 3. In Phase 2, the 
effective body nose is located at the upstream critical point Xx > X0. When the body is 

not far from the cavity (H ~ 0(1) « d{) ),Eq. (4.6.6) becomes 

dA 
"■'■' =Asm{axH-aBil + 0 

dx 

rHi\ 

V ^o J 

(4.6.8a) 

When the body is far from the cavity (H » d0). Eq. (4.6.8a) becomes 

^- = 4^v=2^^, (4.6.8b) 
dx dx 

where A,,{x) is the body cross-section area. This equation coincides with the equation for 

external separation. 

For subsonic and supersonic flows, we can find the function 5,(X,r) using Eqs. (4.6.5)- 
(4.6.8) and Ward's procedure [7]. Equations (4.6.5)-(4.6.8) allow us to formulate the 
outer asymptotic problem for transonic flows. 

4.6.2 Classification of unsteady solutions in the outer asymptotic region 
For analysis of the outer asymptotic region, we introduce the scaling 
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X=l; f = ^; 2 = ^; T = [:   f = ^ . (4.6.9a) 
IQ <O 'O ?O '() 

<f> = /„[/„ {x+<?2p(X.P,Z,f)}, (4.6.9b) 

p=-l^ = ^+5^+0(^):   S=Jf-. (4.6.9c) 

where // is the parameter, which controls the length scale of the outer-region: 5 is 
Strouhal number; f0 is a characteristic time scale. Keeping dominant terms of the full 

potential equation [6] with respect to S2 we derive the equation 

S2[K'-(y + l)(px-(y-\)S(pT)cpn+M2{<PYf+<Pzz)-2S<PxT-S2<Prr=0-    (4-6.10) 

Here K = (l-M2)/S2 is transonic similarity parameter. Equation (4.6.10) depends on 
the ratio 5=5 IS2. We can identify typical forms of this equation as follows. 

If 5 «S2,S «1, then, in the dominant approximation, the outer solution is governed 
by the steady transonic equation 

ßj = S,   p=-(px,[K-{y + V<Px\Pxx+<Prr+<Pzz=°- (4.6.11) 

If S=/J2 =S2, 5=1. so that t{) =f0/(S2UJ. we obtain the usual unsteady transonic 
equation 

P = -<px\ [K-{y+l)<px}pxx+{<Pyy+-<Pzz)-2<Pxr=0- <4-6-12) 

For faster processes, with Strouhal number S2 «5 «1, we need to introduce an 
intermediate asymptotic region, where the following linear equations of acoustic type are 
valid 

/J2=S,   p=-(px, g)n+(pz2-2<pXT=0 = 0. (4.6.13) 

If 5=1, so that tn=l0/U„, then the intermediate region has the scale /„, and the 
governing equation includes the second derivative of the flow potential with respect to 
time 

M = l   p = -(px-(pT,<p??+(pzz-2(pXT-(pTT=o(82)=0. (4.6.14) 
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To determine outer solutions of Eqs. (4.6.12)-(4.6.14) we should investigate properties of 
the corresponding intermediate solutions. Unsteady perturbations can attenuate passing 
through the intermediate region. In the outer region, they can be less than steady 
perturbations, which are of the order of ö2or Ö2\nö. Then, in the first order 
approximation, the outer solution is steady. 

In the problem under consideration, the time scale relevant to the vertical motion under 
the gravity force is expressed as 

il)=ßJ^,S=y^. (4.6.15) 

This is similar to the conventional Froude time scale. We note that the pitch angle can 
oscillate. This is typical for a body moving outside the cavity (see Part 3). The time scale 
associated with these oscillations is determined as 

^ = 2^r^7 _L./ÄÜ, (4.6.16) 

gt) = jVuW-v:  g, = ja2(x)x2dx. 

where ph is body density. 

The presence of several time scales indicates that qualitatively different regimes can arise 
in the far field region. Their occurrence depends on lumped physical parameters and non- 
dimensional groupings. We believe that during the long time scale relevant to the outer 
asymptotic region the short-time effects are averaged out. ana t-ieir contribution to the 
wave drag is small [16]. With this interpretation we can neglect the unsteady effects and 
use Eqs. (4.6.11) to predict the wave drag for transonic separation from a flat wall and 
cavity. These equations are reduced to the Karman-Guderely axisymmetric form 

p=-<px. [^-(r+0fvk-4(^)?=0. (4.6.17) 
r 

where <p is the dominant approximation of the outer perturbation potential, which is valid 
in the outer limit [6] 

X.rsör.K.Süxed as    £-> 0 

The second order term in the inner representation of the outer expansion, g(Xj), which 
is needed to compute surface pressures and wave drag, is determined from solving the 
Karman-Guderley equation (4.6.17) for <p and taking the limit 
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(4.6.18) 

where A'eff = dAeff IdX is the streamwise derivative of the cross sectional area of the 

equivalent body. Eqs. (4.6.5)-(4.6.8) show that the expansions ((4.6.2b) and (4.6.9b)) join 
two different asymptotic expansions valid in two separate asymptotic regions. If the body 
is near the cavity, H =0(l)«\/£, then according to Eqs. (4.6.5) and (4.6.8a) 'he 
function G(Xj) of the inner expansion (4.6.2b) and the outer potential <p{X.r.t) are of 
the order of £ . If the body is far from the cavity, H»\l£. Equation (4.6.10b) indicates 
that G(Xj) and <p(XJ,t) are 0(1). In the intermediate region, \«H «\/£, the 
order of these functions varies from e to 1. This means that when the body is near the 
cavity, the nonlinear range of Mach numbers is narrow and the wave drag is £ times 
smaller than that occurring in classical slender body theory [6,7]. As the store moves 
away from the cavity, the flow Mach number increases. Note that, in the dominant-order 
approximation, the inner potential, <&(X,Y,Zj), and the outer potential, <p(XJj), are 
governed by different physical effects. The outer solution is induced by sources 
distributed along the equivalent body axis, whereas the inner solution is induced by 
multipoles, which do not include source terms. 

4.7 Analysis of the drag components 
In Phase 2 (when the body crosses the slip surface), the drag force can be represented as 
the sum of four terms 

CD(t)=      T7
D

 f1 . =CDF(t)+CDB(t)+Cm.(t)+CDP(t), (4.7.1a) 
pJJ'Jto'K 

where C,,r(t) is the friction drag coefficient andCnB( t) is the base drag coefficient. The- 

two last terms, the wave drag coefficient Cm.(t), and the crossflow drag coefficient 

CDP(t), result from integrating the streamwise projection of pressure force over the body 
projected frontal area. Accordingly, 

X, ß 

CDK<,t) + CDP{t) = Öz\AXx)dx\\p(xj,ö)-p + {x,t,$)\l&, 

where A(x) is body cross-section area and A' = dA/dx. Substituting the pressures from 
Eqs. (4.6.3) into this equation and using Eqs. (4.6.2) for the flow potential we obtain 

e 

Cm.(t) + CDP(t) = -2S2\ 
dg(x,t) | dg(xj) 

dt dx 
A'(x)ß(x,t)dx + 
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aoc.v.r. ü)  ao(.v.r. m _ ao>ru\f. m 
dt dx dt 

d$- -S2\A'(x)dx\ 
-ß. 

- Ö1 \ A\x)dx\[vl (x.t,#) + vHx.t.&)-**' (xJ.ti) -\^~ {x,t.&)\l&.       (4.7.1b) 

where ß( x.t) is the angle of intersection of the slip surface with the body surface. In 
Phases 1 or 3, the body is fully in the cavity or in the freestream and ß = n. In the right- 
hand side of this formula, the first term corresponds to the wave drag, and the two other 
terms relate to the cross-flow drag. 

4.7.1 Friction drag 

The friction drag coefficient CDF(t) is found by integrating the local friction coefficient 

ct (X. Re (.) over the body surface: i.e. 

D, 
-\kcf(X.Rex)dX, 

X=X-X„.    Re, =ReX[l-^/(f)].Re=/7°°^"" 

(4.7.2a) 

(4.7.2b) 

where U(t) is horizontal body speed; /?„,//«, and C/^are density, viscosity and speed of 
the freestream. The coefficient k is indicative of the friction drag being appreciable only 
on the body portion submerged in the flow external to the cavity. The two typical cases of 
the body location with respect to the slip surface are shown in Figs. 4.5 and 4.6. For a 
partially submerged body portion. (Xx < X < X2) k = ßln\ for the totally submerged 

portion k = 1; for the body portion totally inside the cavity (the nose part. X0 < X <' Xx, 

in Fig. 4.6) it = 0. Because cf is a weak function of the Mach number at transonic 

speeds, we use the Schultz-Grunow correlation for the incompressible turbulent boundary 
layer on a flat plate and its modification for axisymmetric flows [32]. Accordingly. 

X.Rev) = r,(Ret) 
r   7 

Ja Hx)dx c,(ReA) = 0.37(lgRe.v 
\-2.584 (4.7.3) 

4.7.2 Base drag 

The base drag coefficient  CDB(t)  is found by integrating the pressure difference. 

Pi, ~ /'-• over lhe body base. It is expressed as a function of the Mach number [33] 

CnB(M ) = -7^-r^ = ^r[l-ph(M )]■ (4.7.4a) 
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where M = M.[l-t/(r)]: ae is base radius, and p„(M) = ph I p„ is the non-dimensional 

base pressure. Ref. [33] showed that (4.7.4a) is in good agreement with experimental data 
for ogive-cylinder bodies. The function ph{M) is shown in Fig. 4.8. For external 

separation, the base drag can be expressed as a function of the equivalent body thickness 
8 and the transonic similarity parameter K; i.e. 

.CDB(M.S) = 2S2CDO(K). (4.7.4b) 

where CD0(K) is a universal function for thickness-ratio-scaled, affmely-related bodies. 

A plot of this function for an ogive-cylinder of B4N2 profile specified in Ref. [18] is 
shown in Fig. 4.9. In Phase 2, the slip surface leads to new physical effects. If the body 
base is not fully submerged into the external flow, as shown in Fig. 4.5a. then the base 
pressure ph (M) = 1 is due to the boundary condition on the slip surface. Accordingly, the 

base drag coefficient is CDB = 0. If the body base is fully submerged in the external flow, 
as shown in Fig. 4.5b, then the base drag is calculated using Eq. (4.7.4). 

4.7.3 Transonic wave drag 
The wave drag coefficient CDV(t,M ) is due to sources distributed along the equivalent 

body axis. As an illustration for separation from a flat plate, it is 

Cmv(t) = -2S2l 
dg(x.t) | dg(x.t) 

dt dx 
A\x)dx. (4.7.5) 

The term "wave drag" indicates that the integral (4.7.5) is equivalent to the integral of the 
total pressure jumps along the shock wave system [6]. Since the body is moving, the 
wave drag dep'ads on time, ao indicated by the derivatives of g in the integrand of 
(4.7.5). Also.,-the end conditions and our inclusion of the base drag in the force 
accounting negates the need for extra terms indicated in [6]. which is applicable for the 
steady flow over a transonic body in the presence of a flat plate. We examine the class of 
store separations in which the Strouhal number is such that a pseudo-steady 
approximation can be used at each time step. Accordingly ^ the function CDW(t.M ) was 

calculated at these steps with the steady transonic code of N. Malmuth. This code solves 
the Karman-Guderley equation (4.6.17) for the outer flow potential with the asymptotic 
boundary condition given by Eqs. (4.6.9b), (4.6.5) and (4.6.6). From numerical studies 
discussed in Section 4.9, its value monotonically grows as the body moves away from the 
cavity. This behavior is confirmed by the numerical calculations discussed in Section 4.9. 

4.7.4 Cross-flow drag 
The cross-flow drag coefficient CDP(t) results from integrating the pressure component 
relevant to the inner potential 0(X,Y,Z,t) (without the term g(X,t) given by Eq. 
(4.6.2b)) over the body surface. It is expressed by the second and third terms of Eq. 
(4.7.1b). 
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We subdivide the body into the three parts: the first part is partially submerged into the 
outer stream; the second is totally submerged: the third is inside the cavity. Accordingly, 
the cross-flow drag coefficient can be expressed as a sum of three terms 

C'^(f)=      ,r"^r =S2\c,{x,t)a(.x)ax(x)dx = S2{CDn+CDP2+Cr ,npyh    (4.7.6a) 

cx (x.t) = c vl (.v. t) + cx2 (x.t) + cxi (x. t)=] [p(x, t.$)-p~ (.v. t. &)\i #+ 
-ß 

+ lp(x.t,t»d&+ \p^{xj,$)dd, (4.7.6b) 
(1 0 

v. .v,..v, x,.x, 

CDn(0 = jcJx.t)A'(x)dx: CDP2(t) =  $cx2{xj)A'dx; CDPi{t) =  jcxi{x,t)A'dx, (4.7.6c) 

where cv is local cross-flow drag coefficient. The first term of Eq. (4.7.ob). cx](x.t), 

corresponds to the partially submerged body portion located in the interval Xl < X < X: 

(see Fig. 4.5b). The second term of Eq. (4.7.6b). cx2(xj). corresponds to the submerged- 

body portions: it is located in the interval X„ < X < Xx for the case shown in Fig. 4.5 and 

in the interval X2 < X < Xe for the case shown in Fig. 4.6. The third component is the 
cross-flow drag of the body part being inside the cavity. These drag components are 
expressed in an explicit analytical form that simplifies numerical calculations. 

Consider the partially submerged body part. On the body surface, f] = -0. |£| < b. the 

inner potential and the tangential velocity ire given by Eqs. (2.2.3) of Section 2.3 

<&(xXt) = <b, + <P, = 

= V 
sin nn Vi-x: 

wJx,A.t) = Ve 

2nQn(X)   . 
 sin Kn 
D(X.n) 

Q2n(A)-\ 

laa 

D(A.n) 

K 

sin mi -A 

x-J\-\2E(X.n). (4.7.7a) 

yJ\-AzD(A.n) 

4n2Qn(A) 
+ 

"■vrrj;a-"){2-[8-oi)+8-a)]cosm,}. 
7t 

(4.7.7b) 

The potentials O^.v.i.r) and 0,(.v.i.f) are induced by the vertical body motion and 
axial variations of the body radius, respectively. Using these functions and Eq. (4.6.3) we 
express the pressure on the body surface by Eq. (2.2.4) of Section 2.3 

110 ^ ROCKWELL 
^J SCIENTIFIC 



71153.FTR 

V 
pU.A.f) = -<&,-<&,+-£- 

7t2Q2n(A) 

A2(\-A2)p2(A.?i) 

l6nAQ2n(A) 

f,     A(\-A
2
)D

2
(A.H) .. 

e x     4n-nQ-"U) 
(4.7.8) 

The local cross-flow drag coefficient relevant to the partially submerged body cross 
section is expressed as 

Cxi = ~ — + — 
dt + dx 

\a0( x,t ) + V; N{( x.t) + a;N2( x.t ) + VeaxNvJ x.t). (4.7.9) 

The average value of the potential over the cross-sectional body contour. O(.v.r). is 

represented in the form 

dZ 
Ö= l&(X,Z,t)j£dZ = aßt(n)-Vß0{n), 

sin Tin [    ,    ,    n r.       ..       . ,\ 

r 
On(0) = 47i Inl- 

V 
sin mi 

;O0(l) = 0. 

O, (n) = 4 e,n(/z); O, (0) = 4ä»,(1(0); O, (1) = 0 . 
n 

(4.7.10a) 

(4.7.10b) 

(4.7.10c) 

(4.7.10d) 

The special function e,0(/i) is expressed by the double improper Cauchy integral given in 
Appendix C of Part 2; its plot is shown in Fig. 2.2. The sec.ofid term of Eq. (4.7.8) is 
expressed as 

NJn) = -l-\ 1- 
X2(l-X2)p2(X.n) 

\6n4Q2"(X) 

dZ 
<% = 

K 

6n2 
1 + 2«J- 

->    sin 2ltn 

V 2nn 
-rt\~n). 

iV,(l) = |; tf,(0) = | ^-2 
v3       j 

(4.7.11a) 

(4.7.11b) 

The third term of Eq. (4.7.8) is 

' -b 

l+(l-A2)D2(A,n)l2(Än 

n-Q2\A) 
(4.7.12a) 
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4cos;m . 
■ 7r(2-n) + —: ^„(/!)-2 

f ünmx^ 

nsmmi 

■ "     2      - ' 3 

V   JOl   ) 
ein(/i)-"[l + *(l-/z)t-#;Di]f,   (4.7.12b) 

(4.7.12c) 

The function ew{n) is given in Appendix C of Part 2; its plot is shown in Fig. 2.2. The 

fourth term of Eq. (4.7.8) is expressed as 

N,,(n) = -  ——,   ; , -I{X.n) — d£ = 

/ 
= 4 1- cos mi 

V 

sin/m ■eu{n)      cos mi 
+ ■ 

n sin mi      mi~ 
><?,(«)■ 

7T2(l-f- 2«" )" 

2;r 
Nr (1) = ;r: Wp (0) = — (41n 2 -1). 

(4.7.13a) 

(4.7.13b) 

(4.7.13c) 

The function <?,(») is given in Appendix C of Part 2; its plot is shown in Fig. 2.2. The 

functions Ön(/i). Ö[(/i). N{(n), N2(n). /Vi;(»)are shown in Fig. 4.10. 

Using the results of Section 2.2, we express the local cross-flow drag coefficient relevant 
to the submerged body portions (the interval X0 < X < Xl in Fig. 4.5a and the interval 

X, < X < X, in Fis. 4.6a) in the form 

c^=a;+2B2 -V;+2^(A:2^+B:2n_2). (4.7.14) 
n=\ 

Note that this expression is valid for Phase 3. A similar relation is obtained for the cross- 
flow drag associated with the body part located inside the cavity. 

To integrate a singularity in the trajectory equations, which occurs at the beginning of 
Phase 2. we express the cross-flow drag component. CDPX, given by Eq. (4.7.6c). as a 
decomposition of the two terms 

Cnn(t) = S2[CDPJt)+CDm(t)] (4.7.15a) 

Con (T) = —{0(x.t)a(x )a'( x )dx. (4.7.15b) dt l 
CDPVJt) = m{l-U(t)]^(x,J)a(xJa'(x,)-]0(xj)^a(Xf(x)]dx + J dx 
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+ j\y;Nt +a'2N2 -V,aNl2\nx)aXx)dx. (4.7.15c) 
A; 

Here the first (unsteady) term CDPU is singular, whereas the second term is regular: 

m = 1 if the body base is partially submerged into the stream, and m = 0 in the other 
cases. Similar relations are obtained for the partially submerged body part located inside 
the cavity. 

4.8 Solution of 3-DOF trajectory equations 
The 3-DOF trajectory equations are written as 

W        r,s d0) AM   t*    dU = clL(0-cg^ = cmMp(t),^- = c!CD(t). (4.8.1a) 

c   = ^^  c, =   - - "—  c   =^— . (4.8.1b) 

where m and / are body mass and moment of inertia, respectively; the lift force L(t) 

and the pitching moment M (r) are provided in Part 2. To integrate these equations we 

developed a numerical code using a fourth-order Runge-Kutta scheme for the two first" 
equations of (4.8.1a). The most extensive computations are associated with the wave 
drag, which requires solution of the Karman-Guderley equation. To reduce the run time, 
the Adams fourth-order explicit method is used to solve the third equation of (4.8.3.1a). 
Our FORTRAN code consists of the following three components: 

• Function.for contains auxiliary' functions that are used to calculate the lift and drag 
components. 

• Wdrug.for contains the program AFTB2 of N. Malmuth for solving '\e Karman- 
Guderley equations. As contrasted to the original version of AFTB2, ftc initial data 
are specified via COMMON-blocks. 

• Trcij3dl.for contains the main program TRAJC3D with auxiliary subroutines. It 
provides calculations of the lift and drag forces as well as the pitching moment in 
three distinct phases of the body separation. 

Note that for external separations the computational algorithm is essentially simplified 
because there is no intricate Phase 3, in which the body crosses the slip surface. 

4.9 Analysis of store separation from cavities and walls to a transonic 
stream 

In this section, we analyze effects of the initial conditions and the body thickness on the 
store trajectory. In our calculations, we use the ogive-cylinder body B4N2 tested in the 
subsonic wind-tunnel experiments [18]. Physical properties of this body are described in 
Part 3. In Section 4.9.1, we study external separation from a flat wall that genetically 
simulates a wing. In Section 4.9.2, we discuss separation from a transonic cavity. 
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4.9.1   External separation 
We consider external separation from a flat wall that simulates a fuselage or wing. 
Calculations were performed for the ogive-cylinder body B4N2, which was tested in the 
subsonic wind-tunnel experiments of IIT [18]. In our calculations, the freestream Mach 
number is   MTC = 0.999   and the Reynolds number based on the body length and 

freestream parameters is Re = 6.4782755 106. The initial location and horizontal 
velocity of the body CG are X() = U{) = 0. 

To estimate magnitudes of different drag components, we discuss the numerical results 
provided in Figs. 4.11 and 4.12. Calculations were conducted at the initial conditions: 
K„ =-0.975 inch. Vn =-9.144 m/s. an =-3.3°. a>0 = -200deg/.v. Figure 4.11a shows 

the CG trajectory F/D0 =/(X/Dn), where D„ is the body diameter; Figure 4.11b 

shows the pitch angle time history. a(t); Figures 4.12a and 4.12b show histories of the 
drag components. 

Fig '•. 12b shows that the wave drag is larger than the pressure drag in the initial phase of 
trajectory. However, it decreases rapidly with body deceleration. Comparing the drag 
components shown in Figs. 4.12a and 4.12b we conclude that the base drag is larger than 
the wave and pressure drags. The dominant drag component is the friction drag, because 
the wave, pressure and base drag coefficients are proportional to SA; whereas the friction 
drag coefficient is proportional to S (in the cases under consideration S = 0.03125 is 
small). Note that such a hierarchy of drag components is consistent with the calculations 
of Ref. [25]. 

Figures 4.13-4.14 illustrate effects of the initial vertical velocity on the body trajectory 
and pitching angle. Figure 4.13a shows locations of the body axis at various equally 
spaced times, and Figure 4.13b shows the CG trajectory. For an initial vertical velocity 
V0 =0. the body moves toward the wall and finally re-contacts it. For V0 =0.5 m/s. the 
body separates from the wall monotonically. This example shows that there is a critical 
initial vertical velocity, below which the body is not able to separate from the wall. 
Figures 4.14a and 4.14b show histories of the pitch angle for these two regimes. It is seen 
that the pitch angle oscillates with weakly growing amplitude: this oscillatory behavior is 
qualitatively consistent with the experiments [18. 34]. 

Figures 4.15-4.17 illustrate effects of the initial pitch angle on the body trajectory at the 
release conditions: con =0. Y0 =-1.95 inch, and V„ =0. Figures 4.15a and 4.15b show 

locations of the body axis at various times for the initial pitch angles a{) =0\ an =6°, 

and  or,-, =-6°. Figure 4.16 shows the CG trajectory. At  or0=6°, body re-contact is 

observed. For a0 = 0\ the body slowly separates from the wall. For an =-6°. the lift 
force causes a more rapid departure. Similar to the case shown in Figs. 4.13-4.14, there is 
a critical pitch angle above which the body does not separate from the wall. The results in 
Fig. 4.16 show that the initial pitch angle an = 6° is close to this critical value and the 
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vertical coordinate of the center of inertia behaves non-monotonically. The pitch angle 
histories shown in Figs. 4.17a and 4.17b are similar to the case discussed in the previous 
paragraph. Note that the initial pitch angle effect is similar to the initial vertical velocity 
effect and is consistent with the concept of the equivalent body velocity introduced in 
Section 1.2. According to this concept the initial pitch angular velocity behaves similarly 
to the initial pitch angle and vertical velocity. 

The effect of initial condition on the body trajectory illustrated by Figs. 4.13-4.17 
indicates that external store separations can be effectively controlled by the release 
mechanism. It also confirms our IIT tests [18] conjecture that the repeatability could be 
enhanced by close control of the release mechanism. These results may be useful in 
designing ejection units and thrust motors for stage separation. They allow for evaluation 
of thrust and weight required for these units, and indicate how to avoid adverse re-contact 
with a relatively small impulse. 

In Figs. 4.18-4.20, calculations for different body thickness are shown. The calculations 
were conducted for the initial conditions: M =0.999, VQ =-9.144 m/s. a„ =3.3°. 

OJ, = 200 deg/s for the B4N2 body of the diameters D = £><, = 3/8 inch, D = 2D0 and 

D = 3D„. The time variations of CG horizontal (Fig. 4.18a) and vertical (Fig. 4.18b) 

coordinates. CG trajectory (Fig. 4.19a) and the pitch angle history (Fig. 4.19b) show that 
the body thickness causes noticeable changes in the trajectory characteristics. Because of 
increasing lift force, dropping time grows with body diameter, approximately as ~D: 

(see Figures 4.18a and 4.19b). As shown in Fig. 4.18a and 4.19a. due to this effect, the 
thicker bodies penetrate downward longer distances in the horizontal direction, although 
the total drag varies weakly (see Fig. 4.20). 

Histories of the drag components are shown in Fig. 4.20a for the thinnest body and in Fig. 
4.20b for the thickest body. Since the body thickness is small, the pressure drag is also 
small. The base drag is proportional To*.,.he base area so that its coefficient Dh is a weak 

function of the body thickness. The value of Db is consistent with Chow's [33] results 
that were scaled with the transonic similarity rule. For such slender bodies, the turbulent 
friction drag may be dominant. This example shows that, prediction and control of the 
friction drag (including transition and turbulence modeling) may be important for store 
separation modeling and control. In this regard, the issues of transition and turbulence 
modeling should also be addressed carefully. 

For the body shape and release conditions considered, the wave drag is a very small 
fraction of the total drag. The transonic drag effect is localized in narrow ranges of t and x 
even at relatively large £ because of a rapid deceleration of the body. Even for the body 
of 3D0 diameter, the wave drag is very small everywhere, with the exception of a short 

initial "impulsive" phase (approximately 2 ms) where its value is about 1/2 the total drag. 
A relatively small effect on the x trajectory of this almost "delta function" drag impulse is 
due to the fact that the larger wave drag is localized to near sonic Mach numbers. 
Accordingly, the impulse quickly decelerates the body to the lower transonic Mach 
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number where the wave drag is insignificant. These conclusions could be changed for 
different parametric conditions and cases where the axial deceleration of the body is 
relatively small (for example, in the case of re-contact). However, the deeper significance 
of these results is that they hint at an opportunity to economize the use of large-scale 
codes and even to interpolate and extrapolate from them as well as to interpret their 
results. Also, these results suggest how simple theoretical mathematical fluid dynamic 
models can give insight into the importance of the various flow mechanisms. 

Two critical parameters that affect the generality of these observations are the transonic 
similarity parameter K and the Strouhal number 5. In addition, the possibility of throats 
between the store and the parent body could create sonic choked flow situations. The lift 
and moment curves show a much larger influence of 8, since the lift force scales 
quadratically with the increased base area. The frequency of this weakly divergent 
phugoid pitch oscillation of this finless shape increases with body thickness ratio. 

4.9.2  Store separation from cavities 
In this section, we discuss parametric calculations, which illustrate dependencies of body 
trajectories on the initial rjnditions and body geometry for transonic separation from 
cavities. As in Section 4.9.1, the main physical characteristics correspond to the body 
B4N2. All calculations are conducted at the freestream Mach number 0.999. The more 
complex physical conditions inherent in this type of separation lead to store ricochet 
dynamics. 

Figures 4.21 - 4.25 demonstrate the body thickness effect on the trajectory characteristics. 
Three bodies of diameters D = D() =3/8 inch. D - 2D„, and D = 3D,, are considered. 
The initial (release) conditions are shown in the figures. In these calculations, we varied 
the body diameter at fixed body length. The dimensionless cavity width do is also varied 
inversely proportional to D. 

Figure 4.21 illustrates the body thickness effect on time histories of the vertical CG 
coordinate. In Figs. 4.22. the CG trajectories are shown in X-Y space. The pitch angle and 
the vertical speed temporal variations are shown in Fig. 4.23 and 4.24. It is seen that the 
body dynamics strongly depend on the thickness ratio. For D=Do, the body separates 
from the cavity in a relatively short time period. For D=2Do, the body is almost stopped 
near the parent body for a long time (until the pitch angle is negative). The total vertical 
displacement is only about 4D. During this phase the body drifts downstream and 
removes in the horizontal direction from the initial state at X ~ 70D„ which is larger than 

four body lengths. 

The average pitch angle and the pitch oscillation frequency also strongly depend on the 
thickness ratio. The frequency increases approximately proportional to the thickness 
ratio. For D=3Do. ricochet is observed. The body returns to the cavity with a relatively 
small downstream displacement. The pitch angle monotonically grows with small 
oscillations since the pitching moment is too small to overcome pitching due to the initial 
angular speed. 
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Figure 4.24 illustrates centerline trajectories for bodies of different diameters. It is seen 
that the body of D=3D0 returns to the cavity. The body of D=2D0 remains near the parent 
body for a relatively long time. During this time, it is projected downward from the 
cavity, with pitch angle decreasing. The D=D„ body enters the external stream almost 
immediately, and its trajectory only weakly depends on the parent body. 

Figures 4.25a - 4.25c show time histories of different drag components for the bodies of 
D=D0, D=2D0 and D=3£>0. respectively. In Phase 2. the wave drag is less than the other 
components since the effective area is relatively small. By neglecting the wave drag of 
this phase we can substantially reduce the computational time. In Phase 3. the wave drag 
is of the order of (or even larger than) the other drag components for the body of D=2Dlh 

The pressure drag has a peak at the exit from the shear layer (the end of Phase 2) since all 
its components have maximum at n = 0, based on the analytical expressions provided in 
Section 4.7.4. The base drag jumps to a finite value or to zero, when the body base is 
submerged into the outer stream or is returned to the cavity. In Phase 2. the friction drag 
monotonically grows, with the wetted area increasing. As seen in the plots for the body of 
D=Do, all drags tend to their asymptotic values in Phase 3. For the body of D=2D0. the 
time period is too short to achieve this asymptotic behavior. The body of £>=2D0 crosses 
the shear layer during this time period. It moves downstream, and its pitch angle 
decreases to a negative value. The base drag history shows that the body base returns into 
the cavity in the time interval 0.05 - 0.06 s when the pitch angle becomes negative. Then 
the body begins to separate from the cavity. The body of D=3D0 does not separate. It 
returns to the cavity with increasing pitch angle. 

The second series of calculations are shown in Figs. 4.26 - 4.31 to illustrate the initial 
vertical speed effect on the body trajectories. Calculations were made at 
a0 = 6°,Q){) =0 deg/s, F0 = 1 inch and the two near-critical values of the initial vertical 

speed: V0 = 20 in Is, 30 in Is . The plots of CG histories (Fig. 4.26), CG trajectories (Fig. 
4.27). and centerline time histories (Fig. 4.30) at V0 =20 m/s indicate that the body 
ricochets from the freestream and re-contacts the parent body back of the cavity. When 
the body enters into the shear layer, the pitch angle grows slightly (see Fig. 4.28) due to 
body inertia. Due to a negative pitching moment, it then decreases with a small angular 
speed. This trend is too weak to decrease the pitch angle to its critical value (at which the 
separation becomes possible). For V0=30 m/s, the body stays near the shear layer for a 
long time period and penetrates downward a long distance. In this case, the negative 
angular speed is high enough to decrease the pitch angle below its critical value, and the 
body separates from the cavity. Figure 4.29 shows that in both cases the vertical CG 
speed grows to a positive value. For Vo=30 m/s, the gravity force is strong enough to 
cause the store departure from the cavity, whereas for V0 =20 m/s this force is too small 
for separation. 

Figures 4.31a - 4.31b show the time evolution of the drag components. At V0 =20 m/s, 
the body is near the shear layer and the wave drag is small. The base and friction drags 
are dominant components during most of the trajectory. The pressure drag is important in 
the final phase of the trajectory. At V0 =30 m/s, the pressure drag peaks occur when the 
body enters the freestream. We infer that the base drag evolution causes the body to 
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return to the shear layer. At this time, the pressure drag reaches a minimum and then 
grows to its maximum value when the body base exits from the shear layer again. As the 
wetted area decreases, the friction drag decreases. In this case, the wave drag is smaller 
than the other components. } 

Figures 4.32-4.37 illustrate the initial pitch angle effect on the trajectory behavior. The 
calculations were performed at Y{) = 1 inch. Vn = 20 inch/s, <y„ = 0. The trajectory 

characteristics are very sensitive to the angle <%. which may be induced by the release 
mechanism and aircraft maneuvering at the release instant. The variation Aor0 = 1° leads 

to a substantial perturbation of the trajectory: at at) = 5° the body separates from the 

cavity, whereas at an = 6°  re-contact is observed (see Figs. 4.32 and 4.33). 

Near the critical angle. a{) = 5°, the trajectory behavior is similar to that shown in Figs. 

4.26-4.30 for the initial speed V0=30 in/s. However, the vertical CG speed in this case 
does not become positive (see Fig. 4.35). Drag competent histories (Fig. 4.36a) cause the 
body base to enter the external flow and then rerun to the shear layer again, when the 
angle of attack becomes negative. Then, the body exits to the external flow and drops 
downward from the shear layer. 

The case orn =6' is also shown for comparison. Here, the body quickly crosses the shear 

layer and separates from the cavity to a large distance. An interesting feature of this 
regime is observed for vertical oscillations of CG speed in Phase 3 (body outside the 
cavity). This behavior is consistent with our analysis for the body dropping in an 
unbounded stream. Figure 4.36b shows that the body moves in the outer freestream for a 
long time and the drag components approach their asymptotic values. This corresponds to 
external body separation. 

4.10 Summary and conclusions 
In this part, we analyzed the outer asymptotic solution and drag force components. 
Parametric studies of store trajectories are provided including the separation from a wing 
(external separation) and cavities into a transonic freestream. To determine the matching 
conditions and identify forms of the outer solutions we consider the outer limit, r » H , 
of the inner solutions. For cavities of a large span, our analysis is based on the solutions 
of the dominant approximation obtained in Part 2. We found a general form of the inner 
solutions in the case of finite-span cavities and investigate their limits. 

Analyzing asymptotics for the inner solutions of thw first order approximation we find: 

• For external store separation from a wing, the outer limit relates to axisymmetric flow 
over an equivalent body of revolution of twice the cross-sectional area of the store. 

• In Phase 2 and 3 of separations from an infinite-span cavity, the far flow field is 
three-dimensional and corresponds to a dipole distribution along the body axis. 
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For separations from a finite-span cavity our analysis shows: 

• In the inner asymptotic region, the finite-cavity span effect is second order with 
respect to the ratio of the body radius to the cavity span. Therefore, it is small for 
wide cavities. 

• The cavity span effect is dominant in the far field asymptotic behavior of the inner 
solution. This effect deterr;ünes one type of outer flow. 

• The far flow field is induced by sources distributed along the store axis. The source 
intensity is proportional to the ratio of the body radius to the cavity span. 

We analyzed outer limits for the inner solutions in the second-  and third order 
approximations with respect to the small parameter 8: and showed that 

• In the region r ~ l0/S, unsteady terms of the second-order potential can be of the 

same order of magnitude (or even dominant) as the dominant terms of the first- 
order potential. In the case of a finite-span cavity, the far-field asymptotics are 
axisymmetric. In the case of the infinite-span cavity, they are three-dimensional. 

• For unsteady flows, a thin structure of the far field can be rather complicated and 
depend on the relationship between the Strouhal number and the body radius. 

• If unsteady effects are small, then the higher-order asymptotics have the form of 
potential induced by sources (in the case of a finite-span cavity) or by dipoles (in 
the case of an infinite-span cavity). 

• For infinite-span cavities, the source term is OiS^lnS) in the far field. It is 
negligibly small compared with the source term for finite-span cavities, which is 

0{aJdjS}\xi8. 

Using the asymptotic theory [6] and the results of Parts 2 and 4, we formulated the 
matching conditions for the inner and outer solutions in the case of a body of revolution 
separating from a cavity into the outer transonic freestream. For Phases 2 and 3. quasi- 
steady regimes are discussed in detail. In these cases, the outer flow corresponds to 
transonic flow over an equivalent body of revolution. We obtain explicit functional forms 
of the equivalent body as functions of time and the dimensionless cross-section area. The 
latter continuously grows with time from a small value of the order of e (in Phase 2) to 
0(1) in Phase 3. Typical examples of the equivalent body shape are provided. 

Analyzing the flow equations in the outer asymptotic region we identified typical flow 
regimes relevant to different ratios S = SIS2, where S is the Strouhal number and S2 is 
characteristic scale of flow perturbations. For unsteady problems, we established the 
presence of the intermediate asymptotic region governed by the linear equations of 
acoustics. A detailed study of this regime is needed to identify solutions relevant to the 
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nonlinear transonic case. A thin "boundary layer" structure of the outer asymptotic region 
is exhibited due to disparate time scales inherent in the separation process. 

We believe that for many practical applications, the transonic wave drag can be evaluated 
in the framework of the quasi-steady regime, since short-time effects are averaged out 
over the long-time scale relevant to the outer transonic expansion, and their contribution 
to the wave drag force can be neglected. Our analysis shows that the wave drag 
monotonically increases during transition from Phase 2 to Phase 3 (as the body moves 
away from the slip surface). Its value grows from 0(eS4) to 0(S4). 

The base and friction drags were evaluated using known theoretical results and empirical 
correlations. The wave drag was calculated by integrating the outer pressure along the 
equivalent body axis. For Phases 2 and 3. the pressure drag was expressed in closed form 
using the inner pressure distribution on the body surface obtained in Part 2. We calculated 
different components of this drag and discussed their behavior. 

Using the results of Parts 2 and 4 we developed a FORTRAN code that couples the solver 
of the trajectory equations with the transonic code of Malmuth for the Ka^uan-Guderley 
equation. The computational package allows for prediction öf 3-DOF trajectories for 
transonic store separations. 

Our parametric studies of 3-DOF body trajectories indicate that the body motion may be 
rather complicated, including such phenomena as ricochet and/or re-contact. The body 
trajectory is very sensitive to release conditions: for example, initial vertical speed and 
pitch angle. When critical initial pitch angles and vertical speeds are exceeded, 
ricochet/re-contact is possible. 

We have shown that stores can easily separate from flat walls. Here, re-contact occurs 
only at small initial speeds. Our studies a'so indicate that a body thickness variation (from 
D„ to 3D0) does not lead to the re-cont?a. 

In contrast, store separation dynamics is more complicated from a cavity. Above the 
initial critical pitch angle or below the critical initial vertical speed, the body does not 
cross the slip surface and returns to the cavity. With increasing horizontal displacement 
and pitch angle, collision with the upstream and downstream cavity walls is possible. 
Near the critical conditions, the body can remain at a small distance from the shear layer 
for a long time period. It also may partially return to the cavity interior. If the horizontal 
displacement during this time period is larger than the cavity length, co-iiact with the 
upstream cavity wall is possible; otherwise, the store slowly separates. 

Our calculations indicate that store separation can be controlled effectively by the release 
mechanism. Our modeling can help design ejection units and thrust motors for stage 
separation. It allows for evaluation of thrust and weight required for these units, and 
indicates how to avoid adverse re-contact with a relatively small impulse. 
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4.11 Illustrations 

free surface 

iZ+iY 

a   z rigid wall 

ß=jn(l-n) z 

vn = ax+Vesin6 body 

Fig. 4.1 Cross-flow scheme in Phase 2 (body passes slip surface). 

free surface 

L + 
-d 

(crf+tTl 

bodv cavity wall 

v = -vn/1ß) 

Fig. 4.2 Cross-flow scheme in the transformed plane. 
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Fig. 4.3 Cross-flow scheme in Phase 3: body is outside the cavity. 

Fig. 4.4 Two circles moving in unbounded stream and integration contour. 
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Cavity walls 

lip surface 
a) side view b) back view 

Fig. 4.5   Typical body locations with respect to the slip surface; the body nose is in outer 
stream. 

-V2     Xn       X 

Cavity walls 

Slip surface 

a) side view b) back view 

Fig. 4.6 Typical body locations with respect to the slip surface: the body tail is in outer 
stream. 
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Horizontal coordinate, X /D„ '       0       0 

a) CG trajectory 

10 15 20 25 

Time, seconds'10 

b) Pitch ansle history 

Fig. 4.11 Trajectory parameters of B4N2 body for the initial conditions: Yu = -0.975 

inch. V„ =-9.144 m/s. ßr„ =-3.3°. co„ =-200 deg/s. 
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Fig. 4.12 Histories of drag components for B4N2 body for the initial conditions: 
Y0 =-0.975 inch. Vn =-9.144 m/s, a{) =-3.3°, con =-200deg/s. 

127 ^ ROCKWELL 
^J SCIENTIFIC 



71153.FTR 

0,0- 
wall 

Q 

-0.5- 

-1.0- 

-1,5- 

-2,0- 

-2.5 

recontact 

-D72 

L.Q o 

u =6°. V0=0. m/s 

a =6°, V,=0.5 m/s 

1 

X/D„ 

a) Locations of the body axis at various initial vertical speeds 

wall 

Y/q 
t 

0,5 -D^2 

- jr-»"^             recontact 

1.0 

^^»■•"^ 
-»- v=o. 

^roxocoooooo 
-^-  V=-0.5 

2.0 

.           i i i 

X/Q 

b) Trajectory of center of inertia 

Fig. 4.13 Trajectories of the body axis and center of gravity for the initial conditions: 
&»,, =0. F0 =-1.95 . inch; an =6°. 
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Fig. 4.14 Pitch angle history for the initial conditions: *yn =0, F0 =-1.95 . inch; cc{) =6° 
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Fig. 4.16 CG trajectories for the initial pitch angles a{) = 0°, 6°; con = 0. Y0 =-1.95 

inch, and V0 =0. 
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Fig. 4.17 Pitch angle history for the initial conditions: 6;n = 0. Fn = —1.95 inch, and 

V„=0. 
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Fig. 4.18 Center of gravity evolution for bodies of different radii: M = 0.999, 
Vn = -9.144 m/s, a0 = 3.3°. co0 = 200 deg/s. 
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Fig. 4.19 Body thickness effect on store trajectory characteristics; M = 0.999, 

V„ = -9.144 m/s, a„ = 3.3°, co(1 = 200 deg/s. 
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Fig. 4.20 Histories of drag components for bodies of various thickness; M = 0.999. 
\/„ = _9.144 m/s. a„ = 3.3', co„ = 200 deg/s. 
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Fig. 4.21 CG trajectory parameters for the bodies of various thickness. 
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Fis. 4.22 Pitch angle histories for bodies of various thickness. 
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Fig. 4.23 Vertical speed for bodies of various thicknesses. 
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Fig. 4.24 Centerline trajectories for different bodies. 
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Fig. 4.25 Histories of drag components for bodies of different diameters. 
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Fig. 4.26 Time histories of vertical CG coordinate at V0 = 20 and 30 inch/s. 
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Fig. 4.27 CG trajectories at V0 = 20 and 30 inch/s. 
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Fig. 4.29 Evolution of CG vertical speed at V0 = 20 and 30 inch/s. 
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Fig. 4.30 Centerline trajectories at V0 = 20-and 30 inch/s. 
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Fig. 4.32 CG vertical coordinate histories at various initial angles of attack. 
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Fig. 4.34   Pitch angle histories at various initial angles of attack; Yn = 1 inch, 
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Fig. 4.35   CG vertical speed histories at various initial angles of attack; Yn = 1 inch, 
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Summary 
This report considers aerodynamic and dynamic problems associated with separation of 
slender bodies of revolution from rectangular cavities into subsonic/transonic stream. 
Analyses of the aerodynamic problems are based on slender body theory. The inner and 
outer asymptotic flow regions were analyzed using combined analytical and numerical 
methods, /asymptotic analyses allowed us to highlight lumped parameters controlling the 
separation process and split the problem into a series of simpler unit tasks that were 
solved analytically for a majority of practical cases. The analytical results substantially 
simplify solving the store dynamic equations. They were used to develop fast and robust 
numerical codes to predict 2-DOF and 3-DOF store trajectories. The computational 
package was verified by comparisons with the subsonic wind tunnel experiments of IIT. 
Parametric studies of store separation into a transonic freestream emphasized critical 
regimes relevant to store re-contact and ricochet. 

In Part 1. we formulated ihe inner asymptotic problem. The body separation process was 
treated as a sequence of th* three phases: in Phase 1, body is inside the cavity: in Phase 2. 
body crosses the shear layer; in Phase 3. body is outside the cavity in the outer stream. 
We showed that for many practical cases the cavity sidewall effects can be neglected. 
This allowed us to decompose the inner problem into unit problems: 

1) Bodv drops from a flat wall to fluid at rest (Phase 1) or to the external stream (Phase 
3): ' 

2) Body crosses the slip surface (Phase 2): 

3) Body drops toward the slip surface (Phase 1) or away from the slip surface (Phase 3). 

The first problem was solved analytically by rapidly convergent series. The second and 
third problems are more complicated because they include effects of the body interaction 
with the free slip surface. To obtain their analytical solutions and provide insight into the 
slip surface effect on the near-field flow, we analyzed the case of small slip-surface 
displacements using perturbation theory. In the dominant approximation, we derived a 
system of linear integrodifferential equations that we solved numerically by an iterative 
scheme. In the first iteration step therein, the slip surface was treated as a flat plane of 
zero potential, and the nez: field solution was expressed analytically. We showed that the 
slip-surface shape is governed by Poisson equation in the two-dimensional space of 
streamwise coordinate and time. The forcing term of this equation provides direct 
coupling of the slip-surface displacement with the body motion. Results of our analyses 
contrast with those for two-dimensional flows. Our results indicate that, in contrast to 
classical slender body theory, the inner solution exhibits a global behavior. The nonlinear 
equations were derived for the general case where the slip-surface perturbations are not 
small. These analytical studies simplified the modeling of the slip surface effect in 
determining aerodynamic forces and moments acting on the store in all phases of the 
separation process. 
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In Part 2. we obtained analytical solutions of the dominant approximation problems 
relevant to separation of a thin body of revolution from a rectangular cavity adjacent to a 
uniform flow. For Phases 1 and 3, we used multipole expansions that allowed us to derive 
compact expressions for the pressure on the body surface and the cross-sectional lift. For 
Phase 2, the solution was obtained by conformal mapping and Cauchy integral 
representations. The local lift force was also expressed in an explicit form with the 
introdrction of new special functions. We investigated their characteristics analytically 
and numerically. As contrasted to the two-dimensional problem, the solutions for Phases 
2 and 3 include new terms "relevant to the body shape variation in the axial direction. 
These terms lead to qualitatively new features of the slip surface and rigid wall effects. 
For example, in Phase 3 the slip-surface effect is essentially stronger than in Phase 1 
because the influence of this boundary decreases inversely with distance from the body. 
In Phase 2, the flow velocities of the dominant approximation are singular at the line of 
intersection between the slip surface and the body surface. However, these singularities 
are integrable. This allows us to calculate the lift force and pitching moment without a 
detailed analysis of the singular regions. Nevertheless, these singularities should be 
analyzed in future to treat the higher-order approximations. Our results form a foundation 
for the development of computationally non-intensive algorithms that predict body 
trajectories through all separation phases. 

In Part 3. 2-DOF dynamics of vertical and pitching motions of thin bodies of revolution 
separating from a rectangular cavity into an external freestream was discussed. The 
problem was analyzed using combined asymptotic and numerical methods. Dynamic 
equations for Phases 1 and 3 were simplified using transonic small perturbation theory 
and the analytical results of Part 2. This allowed us to integrate them in explicit analytical 
forms. We showed that in Phase 1. the CG coordinate and pitch angle are very close to 
parabolic functions of time. In Phase 3, the trajectory parameters oscillate near their mean 
states which are. again, almost parabolic functions of time. The analytical solutions 
allow us to obtain explicit decadencies of the body trajectory parameters on the physical 
characteristics of the body and freestream. This helps us extract governing parameters 
and gain insight into the separation process. The results are consistent with the subsonic 
experiments of IIT [18]. 

A numerical code predicting the store trajectory for all three phases separation was 
developed and verified by comparisons with the experimental data [18]. For a majority of 
the data, the calculations are in good agreement with experiment. Moreover, the theory is 
able to capture nuances of the trajectory behavior observed experimentally. However, 
there are cases when the agreement is only satisfactory. In the latter, the body separation 
is affected by more complex flow phenomena that are not captured by our model. The 
discrepancy seems to be due to the penetration of the outer flow into the cavity. It 
indicates that a more complex model is needed for the cavity flow. The slip surface 
displacement can lead to a pitching moment phase jump from 0 to 180 degrees during 
Phase 2, when the body crosses the shear layer. The jump may trigger a bifurcation of the 
pitch-angle history for Phase 3. Our calculations showed that this interpretation is 
consistent with the experimental data [18] and indicates the existence of two substantially 
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different pitching trajectories for almost identical initial conditions. Despite the 
transitional phase 2 being relatively short, its aerodynamics is crucial in identifying one 
of the two possible trajectories outside the cavity. Further theoretical and experimental 
studies are needed to establish and clarify the bifurcation mechanism. Our future work 
will extend this model to transonic speeds. 

Our parametric studies show that trajectory parameters, such as the mean state 
characteristic, oscillation amplitude, frequency and amplification rate depend critically on 
the body mass. CG location and freestream speed. The trajectory is very sensitive to the 
initial conditions induced by the release mechanism. Our investigations lead to the 
conclusion that a satisfactory agreement between theory and experiments is difficult 
without detailed and accurate release conditions. The latter need to be extracted from 
analysis of experimental trajectories. Our estimations show that the initial conditions are 
also influenced by difficult-to:control disturbances such as wind tunnel flow oscillations 
or/and capture of the model ends by the release mechanism. 

In Part 4. we analyzed the outer asymptotic ^iution and drag force components: 
parametric studies of store trajectories include die separation from a wing (external 
separation) and cavities into a transonic freestream. To ' determine the matching 
conditions and identify forms of the outer solutions we consider the outer limit, r» H . 
of the inner solutions. For cavities of a large span, our analysis is based on the solutions 
of the dominant approximation obtained in Part 2. We found general forms of the inner 
solutions in the case of finite-span cavities and investigated their limiting behaviors. 

Analyzing asymptotics for the inner solutions of the first order approximation we find: 

• In the case of the external store separation from a wing, the outer limit corresponds to 
the axisymmetric flow over the equivalent body of revolution with the double cross- 
sectional area of the store. 

• In Phase 2 and 3 of separations from an infinite-span cavity, the far flow field is 
three-dimensional: it corresponds to a dipole distribution along the body axis. 

For separations from a finite-span cavity we observed that: 

•     In the inner asymptotic region, the finite span effect is second order with respect to 
the ratio of the body radius to the span. Therefore, it is small for wide cavities. 

• The cavity span effect is dominant in the ^"ar field asymptotic behavior of the inner 
olution. This effect determines one type of outer flow. >> 

•    The far flow field is induced by sources distributed along the store axis. The source 
intensity is proportional to the ratio of the body radius to the cavity span. 

We  analyzed outer limits for the inner solutions in the second- and third-order 
approximations with respect to the small parameter 8" and showed that 
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• In the region /• ~ l0/S\ unsteady terms of the second-order potential can be of the 
same order of magnitude (or even dominant) as the dominant terms of the first-order 
potential. In the case of a finite-span cavity, the far-field asymptotics are 
axisymmetric. In the case of infinite-span cavity, they are three-dimensional. 

• For unsteady flows, a thin structure of the far field can be rather complicated and 
depends on the relationship between the Strouhal number and the body radius. 

• If unsteady effects are small, then the higher-order asymptotics have the form of a 
potential induced by sources (in the case of a finite-span cavity) or by dipoles (in the 
case of an infinite-span cavity). 

• For infinite-span cavities, the source term is of the order of 0(£6) in the far field. It 
is negligibly small compared with the source term for finite-span cavities, which is of 

the order of 0(S2a{) Id0). 

Using the asymptotic theory and the results of Parts 2 and 4 we formulated the matching 
conditions for the inner and outer solutions in the case of a body of revolution separating 
from a cavity into the outer transonic freestream. For Phases 2 and 3, quasi-steady 
regimes are discussed in detail. In these cases, the outer flow corresponds to transonic 
flow over an equivalent body of revolution. We obtained explicit forms of the equivalent 
body as functions of time and the dimensionless cross-section area. The latter 
continuously grows with time from a small value of the order of e in Phase 2 to 0(1) in 
Phase 3. Typical examples of the equivalent body shape are presented. 

Analyzing the outer asymptotic region we identified different flow regimes depending on 
the ratio of Strouhal numbe co the characteristic scale of flow perturbations. 5 = SIS1. 
We conclude that for the unsteady problems considered, an intermediate- asymptotic 
region is possible and would be governed by equations of acoustic type. This region 
needs to be studied in detail in order to establish a form of the solution for nonlinear 
transonic regimes. Such a thin structure of the outer asymptotic region is due to different 
time scales inherent in the separation process. 

We believe that for many practical problems, the transonic wave drag can be predicted in 
the framework of quasi-steady flow. Short-time effects are averaged out over a long time 
scale relevant to the outer transonic region, and their contribution to the wave drag seems 
to be small. Our analysis showed that the wave drag increases from 0(e5A) (in Phase 2) 

to 0(S4) (in Phase 3) as the body moves away from the slip surface. 

We derived formulas for the base and friction drags using known theoretical results and 
empirical correlations. The wave drag is calculated by integrating the outer pressure 
along the axis of the equivalent body. For Phases 2 and 3, the pressure drag was 
expressed in analytical form using the inner pressure distribution on the body surface 
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obtained in Part 2. We calculated different components of the pressure drag and 
performed their analysis. Using the results of Parts 2 and 4 we developed a FORTRAN 
code coupling the trajectory equations solver with the code of Malmuth to provide 
solutions of the Karman-Guderley equation. This package predicts 3-DOF trajectories for 
transonic store separations. 

Numerical results illustrating 3-DOF body dynamics for separations from a wing and 
cavity in the transonic freestream show that this dynamics can be rather complicated. It 
includes such phenomena as store ricochet or/and re-contact. The body trajectory is very 
sensitive to initial "launch" vertical speed or pitch angle. Critical values of these 
parameters exist. In particular, ricochet/re-contact occur when the initial pitch angle is 
larger or the vertical speed is smaller than these critical values. 

Our studies show that stores can easily separate from flat walls, and re-contact can occur 
for small initial speeds only. A body thickness variation (from D0 to 3D,,) does not lead 
to the re-contact. The body dynamics is more complicated in the case of the separation 
from a cavity. Above an initial critical pitch angle or below a critic.".! initial vertical 
speed, the body does not cross the slip surface and returns to the cavity.'Vv'ith pitch angle 
increasing or horizontal displacement, contact with the upper or back walls is possible. 
Near the critical conditions, the body can stay at small heights from the shear layer for a 
long time period and may partially return to the cavity interior. If the horizontal 
displacement during this time period is larger than the cavity length, contact with the 
back cavity wall is possible; otherwise, the store slowly separates. 

Our calculations indicate that the store separation can be effectively controlled by the 
release mechanism. Our modeling can help with the design of ejection units and thrust 
motors for stage separation. It allows for evaluation of thrust and weight required for 
these units, and indicates how to avoid an adverse re-contact situation with a relatively 
small impulse. 
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A second-mode stability analysis has been performed for a hypersonic boundary layer on a wail covered by a 
porous coating with equally spaced cylindrical blind microholes. Massive reduction of the second mode amplifi- 
cation is found to be due to the disturbance energy absorption by the porous layer. This stabilization effect was 
demonstrated by experiments recently conducted on a sharp cone in the T-5 high-enthalpy wind tunnel of the 
Graduate Aeronautical Laboratories of the California Institute of Technology. Their experimental confirmation 
of the theoretical predictions underscores the possibility that ultrasonically absorptive porous coatings may be 
exploited for passive laminar flow control on hypersonic vehicle surfaces. 

Nomenclature 

A = admittance 
B = thermal admittance 
F = frequency parameter 
h = porous layer thickness 
n = porosity 

P = pressure perturbation 
Pr = Prandtl number 
Re = displacement thickness Reynolds number 
Rea = transition Reynolds number 
r = pore radius 
s = pore spacing 
T = mean flow temperature 
t = time 
U = mean flow velocity 
U, V, w = perturbation velocity components 
x, y, z = Cartesian coordinates 
«t.ß = wavenumber components 
Y - specific heat ratio 
&' = displacement thickness 
e = temperature perturbation 
K = thermal conductivity 
u = viscosity 
P = mean flow density 
a = spatial growth rate 
<P = wave front angle 
CO = angular frequency 

Sttbscrip its 

ad = adiabatic 
e = upper boundary-layer edge 
m = maximum value 
w = wall surface 

Superscript 

* = dimensional 
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Introduction 
THE ability to stabilize a hypersonic boundary layer and increase 

its laminar run is of critical importance in the hypersonic ve- 
hicle design.1 Early transition causes significant increases in heat 
transfer and skin friction. Higher heating requires an increased per- 
formance thermal protection system (TPS), active cooling, or tra- 
jectory modification. This translates to higher cost and weight of 
hypersonic vehicles due to increased TPS weight. Moreover, with 
the low payload mass fraction, even small savings in TPS weight 
can provide a significant payload increase. Vehicle maintainabil- 
ity and operability are also affected by transition. Robust metallic 
TPS have temperature limits lower than ceramic TPS. Laminar flow 
control (LFC) can help meet these more severe constraints. For a 
streamlined vehicle with large wetted area, viscous drag becomes 
important. It can be from 10% (fully laminar) to 30% (fully tur- 
bulent) of the overall drag.2 For optimized hypersonic wave/riders, 
viscous drag may represent up to 50% of the total drag.3 Vehicle 
aerodynamics is another area impacted jy laminar-turbulent tran- 
sition. Asymmetry of the transition loci-, can produce significant 
yawing moments. Aerodynamic control surfaces and reaction con- 
trol systems are also affected due to sensitivity of boundary-layer 
separation to the flow state (laminar or turbulent). 

If freestream disturbances and TPS-induced perturbations are 
small, transition to turbulence is due to amplification of unstable 
boundary-layer modes.14 In this case, LFC methods and transition 
prediction tools are predominandy based on stability theory and • 
experiment.5-8 LFC systems are aimed at slowing down or elimi- 
nating amplification of unstable disturbances using passive and/or 
active control techniques. A third form of flow control is known 
as reactive control, in which boundary-layer disturbances are can- 
celed by artificially introducing out-of-phase disturbances. Typical 
passive LFC techniques are pressure gradient and shaping. Active 
techniques include wall suction and heat transfer. In reactive control 
methods, periodic suction/blowing, heating/cooling or wall vibra- 
tions are used for artificial excitation of counter-phase disturbances. 

In hypersonic boundary layers, amplification of the following 
instability mechanisms may drive the transition process: 

1) The first instability mechanism is the first mode associated 
with Tollmien-Schlichting waves. This instability may be domi- 
nant at relatively small local Mach numbers (normally less than 5). 
This mode is strongly stabilized on cool surfaces. At low wall- 
temperature ratios, the stabilization effect may be so strong that the 
first-mode mechanise becomes unimportant. 

2) The second mode associated with an inviscid instability present 
due to a region of supersonic mean flow relative to the distur- 
bance phase velocity5 belongs to the family of trapped acoustic 
modes and becomes the dominant instability in two-dimensional and 
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sonic line: U(yc)=c-a(ya) 
boundary layer 

porous wall  '       7! 
<3S&s^äfcsi~< 

Fig. 1 Acoustic mode in a supersonic boundary layer on semitrans- 
parent wall. 

quasi-two-dimensional boundary layers at Mach numbers M > 4. 
The existence of the second mode was established by the exper- 
iments of Kendall,9 Demetriades,10 Stetson et al.,11 Stetson and 
Kimmel,12 and Kimmel et al.13 The most amplified second-mode 
wavelength is approximately twice the boundary-layer thickness, 
and its phase velocity tends to the boundary-layer edge velocity of 
mean flow. As a result, the second-mode disturbances are in the 
ultrasonic frequency band. For example, the most amplified waves 
observed in the experiment of Stetson et al.11 at Mach 8 correspond 
to a frequency about 100 kHz. In contrast to the first mode, the 
second mode is destabilized by cooling. 

3) Crossflow vortices are observed in three*dimensional boundary 
layers on the leading edge of a swept wing, axisymmetric bodies at 
high angles of attack, etc. This instability is weakly sensitive to wall 
cooling. It can be effectively stabilized by shaping. For example, 
two-dimensional shaping of air breathers helps to avoid crossflow 
instabilities on large acreage regions of the vehicle surface. 

4) Görtier vortices play a major role.in transition on concave 
surfaces. Similar to the crossflow instability, their growth rate can 
be reduced by shaping. 

Because severe environmental conditions make it difficult to use 
active and reactive LFC concepts for hypersonic vehicles, passive 
LFC techniques are of great interest. Thus, Malmuth et al.14 pro- 
posed a new passive method of second- and higher-mode stabiliza- 
tion. They exploited the hypersonic boundary layer's behavior as an 
acoustic waveguide, schematically shown in Fig. 1. Therein, acous- 
tic rays are reflected by the wall and turn around near the sonic line: 
y = ya, U(ya) — Re(c) -a(ya), where c is the disturbance phase 
speed and a is local sound speed. The second, third, and higher 
boundary-layer modes correspond to the waveguide normal modes. 
Malmuth et al.14 assumed that the absorption of acoustic energy by 
an ultrasonically absorptive coating can stabilize these disturbances. 
This assumption was examined using stability theory for inviscid 
disturbances. It was found that an ultrasonically semitransparent 
wall provides substantial reduction of the second-mode growth rate. 

In this paper, we study this stabilization mechanism, including 
viscous effects and an absorptive skin microstructure. We formu- 
late the eigenvalue problem for viscous disturbances in a hyper- 
sonic boundary layer on a wall covered by an ultrasonically absorp- 
tive coating of special type, namely, a porous layer with equally 
spaced cylindrical blind microholes. We obtain the analytical form 
of boundary conditions on the porous surface and solve the viscous 
eigenvalue problem numerically. We discuss results of calculations 
showing the second-mode stabilization on porous surfaces of vari- 
ous pore radii, spacing, and thickness. Then we briefly .describe the 
experimental data of Rasheed et al.15 that confirm the theoretically 
based hypersonic boundary-layer stabilization by porous coatings 
given in this paper. These results were obtained in the T-5 Graduate 
Aeronautical Laboratories of the California Institute of Technol- 
ogy high-enthalpy wind tunnel on a sharp cone that they detail in 
Ref. 15. Finally, we conclude the paper with a summary discussion 
and indicate possible future directions. 

Eigenvalue Problem 
We consider supersonic boundary-layer flow over a flat plate or 

sharp cone as schematically shown in Fig. 2. The fluid is a perfect 
gas with Prandtl number Pr, specific heat ratio y, and viscosity ß. 
The coordinates x, y, and z are made nondimensionless using the 
boundary-layer displacement thickness A*. In the locally parallel 
approximation, the mean flow is characterized by the profiles of 
x-component velocity U(y) and temperature T(y), referenced to 
the quantities £// and T* at the upper boundary-layer edge. Three- 

porous layer 
top view 

Fig. 2   Schematic of a wall covered by porous layer. 

dimensional disturbances are represented in the traveling wave 
form 

q=Re{q(y)exp[i(ax+ßz-(ot)]},        q = [ü, v, w, p, 6]   (1) 

where «, v, and w are velocity components; p is the pressure ref- 
erenced to the double dynamic pressure p'U?2; 9 is the temper- 
ature; a =a'S' and ß = ß'S' are wave number components; and 
(a = co'S'/ Ul is the angular frequency. The system of stability equa- 
tions that is derived from the full Navier-Stokes equations for a 
locally paralk • compressible boundary layer can be represented in 
She form16 

dz (du dB        duA 
— =Sz. z=\u,—,v,p,6,—,w,— \ 
dy \    dy dy        dy) 

(2) 

where S is an 8 x 8 matrix. Its elements are functions of the mean 
flow profiles, the displacement thickness Reynolds number Re = 
S'U^p'/ß*, and disturbance characteristics m, a, and ß. 

We consider a wall covered by a porous layer of the thickness h". 
The pores are equally spaced cylindrical blind holes of radius r' per- 
pendicular to the wall surface, as schematically shown in Fig. 2. The 
hole spacing 5* and diameter are assumed to be much less than the 
boundary-layer displacement thickness 8'. Because the pore radius 
is small and interactions between neighboring pores are weak, per- 
turbations of longitudinal and transverse velocity produced by the 
porous layer are neglected. However, the porous structure is semi- 
transparent relative to the vertical velocity arid temperature perturba- 
tions. In this case, the wall boundary conditions can be expressed as 

u(0)=0,        u>(0)=0,        v(0) = Ap(0),        6(0) = Bp((J) 

(3) 

where the admittance A and thermal admittance B are complex 
quantities' that depend on properties of the wall material, poros- 
ity parameters, mean flow characteristics on the wall surface, and 
flow perturbation parameters such as a wave frequency and wave- 
length. These dependencies are derived in the next section. Because 
boundary-layer modes decay outside the boundary layer, we have 

u(oo) = v(oo) = ui(oo) = 0(oo) = 0 (4) 

The eigei «alue problem (2-*) provides the dispersion relation 
F(a, ß, co) =0. For temporal stability, the wave number compo- 
nents a and ß are real quantities, and ai is a complex eigenvalue. If 
Im(w) > 0, then the disturbance is unstable. For spatial instability in 
two-dimensional boundary layers, the frequency w and transverse 
wave number component ß are real, whereas a is a complex eigen- 
value. If Im(a) < 0, then the disturbance amplifies downstream with 
the spatial growth rate a = —Im(a). 

Admittance of Porous Layer 
The porous layer is characterized by the porosity n, which is the 

fraction of the overall volume taken up by the pores. For the pore 
spacing shown in Fig. 2, the porosity, n = n(r'/s')2, can be varied 
in the range 0 < r*/s* < JT/4, where the upper limit corresponds to 
s* = 2r*. The pore radius and spacing are considered to be much 
less than the disturbance wavelength, which is of the order of the 
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boundary-layer displacement thickness. In this case, the porosity 
is fine enough to avoid disturbing the laminar boundary layer by 
other mechanisms associated with effective surface roughness. The 
porous layer thickness h' is assumed to be much larger than the pore 
radius r*, that is, each pore is treated as a long tube. 

To obtain the relationship between the admittance A and porous 
layer parameters, we use the theoretical model developed by 
Gaponov for subsonic17'18 and moderate supersonic speeds.19 These 
studies addressed the porosity effect on Tollmien-Schlichting (TS) 
waves. As contrasted to second-mode waves of acoustic type dis- 
cussed in this paper, the TS waves over porous walls analyzed by 
Gaponov are vortical disturbances that become unstable due to vis- 
cous mechanisms. For this reason, the second-mode interaction with 
a porous surface is fundamentally differ-*:,, from that of TS waves. 
Yet, the results18- for the disturbance propagation within a porous 
wall are independent of the nature of uie boundary-layer distur- 
bances, for example, second-mode acoustic or TS waves. In par- 
ticular, they can be used in formulating the porous wall boundary 
conditions for the vertical velocity of second-mode disturbances 
considered herein. The thermal admittance B is derived using an 
explicit coupling between the pressure, temperature, and velocity 
perturbations within a uniform pore.20 

Following the analysis,18 we apply the theory of sound wave prop- 
agation in thin and long tubes (see, for example, Ref. 21). Because 
h' » r*. the pressure is approximately constant across the pore. In 
this case, the acoustic field within each pore is characterized by the 
propagation constant A and the characteristic impedance Zo- These 
parameters can be expressed as a function of the series impedance 
Z and the shunt admittance Y for the tube element of unit length 
using the transmission line formalism.22-23 The series impedance 
properties of the tube element are associated with the storage of 
kinetic energy and its dissipation due to viscous losses at the tube 
wall. The shunt admittance is associated with the potential energy of 
compression and the thermal energy losses due to the wall heat con- 
ductivity. We assume that the mean gas temperature along the tube 
is constant and equal to the wall surface temperature Tw. Daniels22 

and Benade23 showed that the dimensional series impedance Z* 
and shunt admittance Y' per unit length of a tube with radius r* are 
expressed as 

Z* = 
iw'K 
Tir-2 k. ' Mk,) 

iw'jtr'2 

o'a 
l.+ (v--i) 

-2    Mk,) 

k, ' Mk,) 

(5) 

(6) 

where, p* and a*, are mean density and sound speed in a tube. J0 

and J\ are Bessel functions of the arguments kv — r* J(i<i>'pl,l p'w) 
and k, = Jk„ J(Pr), which measure the ratio of the tube radius to the 
viscous boundary-layer thickness and to the thermal boundary-layer 
thickness on the tube surface, respectively. Using the relation 

M*) + Mx) = 2Mx)/x 

we express Z* and Y' in the form 

ico'Pl    Mky) 

r = - 

nr'2     Mk,) 

ico'nr*2 

Y + (Y    0-,,, , Mk,)_ p*a*2 

(7) 

(8) 

(9) 

For the average velocity through the pore, the transmission line 
is characterized by the impedance Z\ = S'Z* and shunt admittance 
y* = Y'/S', where S' =nr*2 is pore cross-sectional area. Choosing 
the boundary-layer displacement thickness and mean flow parame- 
ters at the upper boundary-layer edge as reference scales, we have 

*2a- 

Yx = 
irr* 

ico Mkv) 

TÜMkvY 

Y' = -icoM1 y + (y-D 

ia>pw 

P-«, 

Mk,)' 
Mk,) 

R     (10) 

(11) 

where r = r'/S' is nondimensional pore radius. The characteristic 
impedance Zo and the propagation constant A are expressed in the 
form 

A = JzlYl. Re(A)<0     (12) Z0 = y/Zi/Yi, A = v/z1y1. 

The coupling between the pressure amplitude p and the average 
velocity disturbance amplitude v at the pore end, y = -h. can be 
expressed as p(-h) = X ■ v(-h), where the impedance X depends 
on characteristics of the backup structure. If the lower pore end is 
closed by a solid wall (bhnd pores), then v (-h) = 0. In this case, the 
impedance is X = oo, and the velocity-pressure ratio at the upper 
end of the pore is 

(13) [ü(0)/p(0)] = (l/Zo)tanh(A/i) 

Averaging the vertical velocity amplitude at the wall over the surface 
area, we have u(0) =n ■ v(0). Then the admittance in the boundary 
conditions (3) is expressed as 

A = (n/Zo) tanh(Afc) (14) 

If the porous layer is relatively thick (A/i -*■ oo), then Eq. (14) is 
reduced to the form 

A = -(n/Zo) (15) 

Note that the limit Ah^-oo leads to Eq. (15) at any finite value of 
X (i.e., the disturbance at the upper end of each hole does not feel 
the lower end due to the decay of sound propagating along a tube). 

According to the analysis of Stinson and Champoux,20 the pres- 
sure disturbance, average temperature disturbance, and average ve- 
locity disturbance within a cylindrical pore are coupled as 

v'(co') 
1     dp' 

iw'Pl dy* 
<<»*) 1 

2 ■/,(*.) 

K Mkv) 

e\cü')=1^-   p'(co') f^-(Prw')   i'iProf) 

(16) 

(17) 

Substituting Eq. (16) into Eq. (17), accounting for Eq. (7), and nondi- 
mensionalizng the result, we obtain 

Q =-{y- l)M2Tu,pMk,)/Mk,) (18) 

Thus, the thermal admittance in the boundary condition (3) for the 
temperature disturbance is expressed as 

B = -n(y - \)M-TwMk,)/Mk.) (19) 

Computational and Parametric Studies 
To evaluate the porous layer effect on the second-mode stability, 

we solve the eigenvalue problem (2-4) numerically using the ad- 
mittance (14) or its limiting form (15) and the thermal admittance 
(19). We consider the boundary layer of a perfect gas with Prandtl 
number Pr = 0.71 and specific heat ratio y = 1.4. The temperature- 
viscosity law is specified as p = po(T/T0)

m with the exponent 
m =0.75; the second viscosity is zero. Figure 3 shows the spa- 
tial growth rate cr as a function of the Reynolds number Re for 
two-dimensional unstable waves (ß = 0) of nondimensional fre- 
quency F = <u*v*/f//2 = 2.8 x 10~4 in the boundary layer at the 
Mach number M = 6. The wall temperature Tw = 1.4 approximately 
corresponds to the wall temperature ratio r„/T11j=0.2. Calcula- 
tions were conducted for a thick porous layer (Ah -y oo) with the 
porosity n = 0.5 at various values of the nondimensional pore radius 
r = r*/5*. Note that the porous layer causes massive reduction of 
the second-mode growth rate. In Figs. 3-6, symbols correspond to 
the case of zero thermal admittance, B — 0. For all cases considered, 
temperature perturbations on the porous surface weakly affect the 
disturbance growth rate and can be neglected. 

Figure 4 shows that deep pores of fixed radius (r = 0.03 at 
Re = 2 x 103) and spacing (porosity n = 0.5) strongiy stabilize the 
second-mode waves in a wide frequency band at various Reynolds 
numbers Re (dashed lines). This example illustrates that it is possi- 
ble to cause significant reduction of the disturbance growth rate on 
large surface areas without fine tuning the pore size. As contrasted to 
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/MO 
Fig. 3 Growth rate a as a function of Reynolds number Re at vari- 
ous pore radii r:M = 6, 7„ = 1.4, F = 2.8 x 10_4,ii =0.5, and AA —*oo 
(solid lines); symbols indicate zero thermal admittance. (R = Reynolds 
number in figure.) 

Fig. 4 Growth rate a as a function of disturbance frequency F at 
various Reynolds numbers Re: M = 6, Tw -1.4, n = 0.5, and AA —► oo; 
solid lines r = 0, dashed lines r = 0.03 at R< = 2.0 x 103, symbols indicate 
zero thermal admittance. (R = Reynolds number in figure.) 

reactive flow control techniques, a porous coating provides passive 
stabilization of the boundary-layer flow regardless the disturbance 
phase and amplitude distributions in space and time and with no 
external energy input. Note that the waveguir't fjehavior described 
earlier in this paper in connection with the ins'/ btlity of the acous- 
tic second mode that is quenched by the ultrasonic absorbing wall 
concept described herein resembles amplification processes studied 
by the second author in connection with the stability of hypersonic 
strong interaction flows.24 

Figure 5 shows distributions of the maximum growth rate, 
am(Re) = max^taCw, Re)], at the wall temperatures Tw = 1.4,3.5, 
and 7.0, that approximately corresponds to the wall temperature ra- 
tio Tm I r,d = 0.2,0.5, and 1. The stabilization effect decreases as the 
wall temperature increases. A strong reduction of the growth rate is 
observed in the boundary layer on a cool wall (see Fig. 5), a more 
practical case for hypersonic applications. This trend is consistent 
with the admittance asymptotic behavior associated with Eqs. (10- 
12) and (15). For deep pores (AA » 1) of relatively small radius 
(|*„| <K 1), the admittance A is proportional to /kt,M^/(T1I,) and de- 
creases with the wall temperature as T^m/2. 

Figure 6 shows the maximum growth rate a„ as a function of the 
porosity n for Re = 4 x 103 and r = 0.03 for the boundary layer at 
M = 6 and Tw = 1.4. The porous layer of spacing s = 4r(n «0.2) 
reduces the growth rate by a factor of 2 compared to the solid 
wall case n = 0. Our calculations using the eN method indicates 
that this stabilization transla&s to extending the transition onset 
point more than three times its value without porosity. In Fig. 7, 
the second-mode growth rate is shown as a function of the nondi- 
mensional porous layer thickness h = h*/8* at n = 0.4, r =0.03, 
Re = 4 x Id3, and F = 3 x 10~*. The limit AA -+ oo is achieved 
at a relatively small value of A«0.3 (pore depth is about five 
diameters) that is due to strong damping of sound waves in thin 
pores. There is an optimal thickness, A « 0.12, at which the porous 

ffx10"- 

flx10 

Fig. 5 Distributions of maximum growth rate am(Re) at various pore 
radii r: M = 6, n = 0.5, and AA —► oo ( ); symbols indicate zero ther- 
mal admittance. (R = Reynolds number in figure.) 

0.04 
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0.01 

0.00 

Fig. 6   Maximum growth rate <r„ as a function of porosity n at 
Äe = 4x 103:M = 6, 7V = 1.4,r = 0.03, and AA—»oo ( ); symbols 
indicate zero thermal admittance. 

wall effect is able to stabilize the disturbance completely. In this 
case, the disturbance reflected from the pore bottom is in counter 
phase with the boundary-layer disturbance. However, the optimal 
thickness strongly depends on the disturbance frequency and the 
thick porous layer is more robust Figure 8 illustrates the stabiliza- 
tion effect for three-dimensional waves of the second-mode family. 
The growth rate is shown as a function of the wave front angle 
<p = arctan(0r/ar) at various pore radii. The porous coating causes 
massive reduction of the disturbance growth rate and substantially 
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Fig 7    Growth rate <r as a function of porous layer thickness h at 
n = 0.4,r = 0.03,Re = 4xl03,F = 3xlO-4, M = 6,andr„ = 1.4forzern 

thermal admittance. 
Fig. 9   Microphotograph of porous surface. 

0.04 

Fig. 8    Growth rate cr as a function of wave front angle ip at various pore 
radii r: M = 6,7\, = 1.4, Re = 4287, F = 3 X lO"4, n = 0.3, and AA -► oo. 

decreases the unstable range of wave front angles. These examples 
show that a relatively thin porous coating can dramatically reduce 
the second-mode amplification and increase the laminar run if tran- 
sition is driven by second-mode disturbances. 

Experimental Validation of Theory 
Rasheed et al.15 have recently verified the theoretical concept 

by testing a 5-deg half-angle sharp cone with an ultrasonically ab- 
sorptive coating in the California Institute of Technology T5 high- 
enthalpy shock tunnel. The cone was 1 m in length, with half of its 
surface solid and the other a porous sheet perforated with equally 
spaced blind cylindrical holes. Porosity parameters were chosen 
from the preliminary theoretical analysis of Fedorov and Malmuth 
as well as manufacturing constraints. The average pore radius r* 
was 30 (im, the depth h* was 500 ßm, and the average spacing s' 
was 100 urn. Figure 9 shows a microphotograph of a portion of 
the porous surface. For typical runs, the boundary-layer thickness 
was about 1 mm, and the estimated number of holes per boundary - 
layer disturbance wavelength was about 20. Static measurements of 
ultrasound reflectivity of perforated sheet coupons (without flow) 
showed that the porous coating attenuated the incident ultrasonic 
signal of 400-kHz frequency by 3.0 dB relative to a solid wall. 

The model was instrumented by thermocouples, and the tran- 
sition onset point was determined from the Stanton number dis- 
tributions 5/(x) measured simultaneously on both sides of the 
model for each run. Nitrogen was selected as the test gas to 
minimize the chemistry effects, which were not included in the 
theoretical analysis. Runs were performed for the ranges of the 
freestream total enthalpy 4.18 < H0 < 13.34 MJ/kg andM'ch num- 
ber 4.59 < JKJO < 6.4. Figure 10 shows a summary plot of the tran- 
sition onset Reynolds number Rea = x^U*p^/ti'e vs H0. The solid 
squares correspond to transition on the solid wall, and the open cir- 
cles correspond to transition on the porous surface. The circles with 
arrows indicate that the boundary layer on the porous surface was 
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Fig. 10 Transition onset Reynolds number Rea vs total enthalpy Ho: 
■, solid wall; O, porous wall; and i, boundary layer on porous wall is 
laminar up to the model base. 

laminar up to the model base, that is. the value plotted is not a real 
data point because the cone was not long enough to measure the 
transition locus. In all cases, the circles are well above the squares. 
This indicates that the porous coating always delays transition by a 
significant amount. 

Summary 
A second-mode stability analysis has been performed for hyper- 

sonic boundary layers over walls covered by porous coatings with 
equally spaced blind microholes. Absorption of the disturbance en- 
ergy by porous layers was modeled using the theory of disturbance 
wave propagation in thin and long tubes. The admittance and ther- 
mal admittance coupling the pressure disturbance with the verticaj 
velocity and temperature disturbances on the porous surface are 
expressed as explicit functions of porosity characteristics. Stabil- 
ity calculations showed that the absorption of disturbance energy 
by the porous coating provides massive reduction of the second- 
mode growth rate in a wide range of disturbance frequencies and 
Reynolds numbers. The flow stabilization is due to vertical velocity 
perturbations on the porous surface associated with nonzero admit- 
tance of porous medium. Temperature perturbations weakly affect 
the boundary-layer disturbance and can be neglected. This indicates 
that temperature disturbances play a passive role in the second-mode 
instability mechanism. 

Our conclusions are consistent with the results of Malmuth 
et al.,14 obtained from their inviscid stability analysis. The mostpro- 
found effect is observed on a cool wall that is typical for hypersonic 
vehicle TPS surfaces. A relatively thin porous coating (of thickness 
about 30% of the laminar boundary-layer displacement thickness) 
provides a strong stabilization effect. Such porous coatings can be 
designed for passive LFC in hypersonic vehicle surfaces. Note that 
the disturbance absorption should be introduced at the initial phase 
of transition process, where the unstable disturbance amplitude is 
about 0.01-0.1% of its level in transitional and turbulent bound- 
ary layers. In this phase, additional heating of the porous coating 
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associated with partial absorption of the disturbance energy is neg- 
ligibly small compared to the turbulent heating. 

The first series of experiments conducted by Rasheed et al.13 on 
a sharp cone in the T5 shock tunnel at the Graduate Aeronauti- 
cal Laboratories at the California Institute of Technology qualita- 
tively confirms the theoretical prediction. Quantitative comparison 
of the theory with these data is planned for the future. Because the 
boundary-layer stabilization is due to the disturbance energy extrac- 
tion mechanism, we believe that similar effects may occur for other 
types of high-frequency instabilities. Absorptive coatings may also 
affect the bypass mechanism, which is responsible for transition past 
TPS roughness elements. These assumptions could be examined by 
further theoretical modeling and verified by experiments. 

Many TPS materials, which can provide efficient absorption of 
acoustic disturbances, have a random porosity. The interaction of 
the boundary layer and unstable disturbances with a random porous 
coating may be different from the case of the regular pore structure 
discussed earlier. Because of communication between randomly dis- 
tributed pores, a mean flow may occur inside the coating that leads 
to a slip effect on the coating surface. Boundary conditions for un- 
stable disturbances may be also affected. These effects will also be 
addressed in our future studies. 

Acknowledgments 
Portions of this effort was supported by the Air Force Office 

of Scientific Research, Air Force Materials Command under Con- 
tracts F49620-92-C-0006, F49620-96-C-0004, and F499620-98-1- 
0353. The U.S. government is authorized to reproduce and distribute 
reprints for government purposes, notwithstanding any copyright 
notation thereon. The views and conclusions herein are those of the 
authors and should not be interpreted as necessarily representing 
the official policies or endorsements, either expressed, or implied 
by the Air Force Office of Research or the U.S. government. 

References 
1 Malik, M. R., Zang, T. A., and Bushneil, D. M, "Boundary-Layer Tran- 

sition in Hypersonic Rows," AIAA Paper 90-5232, 1990. 
2Reed, H. L., Kimmel, R., Schneider, S., and Arnal, D., "Drag Pre- 

diction and Transition in Hypersonic Flow," AIAA Paper 97-1818, June 
1997. 

3Bowcutt, K. C, Andeison, J. D., and Caprioui, D., "Viscous Optimized 
Hypersonic Waveriders," AIAA Paper 87-0272, 1987. 

Reshotko, E., "Boundary-Layer Instability, Transition, and Control," 
AIAA Paper 94-0001, Jan. 1994. 

5 Mack, L. M., "Boundary-Layer Stability Theory," Special Course on 
Stability and Transition of Laminar Flow, edited by R. Michel, RepL 709, 
AGARD. 1984, pp. 3-1-3-81. 

6Reshotko, E., "Stability Theory as a Guide to the Evaluation of Transition 
Data," AIAA Journal, Vol. 7, No. 6, 1969, pp. 1086-1091. 

7 Malik, M. R., "Prediction and Control of Transition in Supersonic 
and Hypersonic Boundary Layers," AIAA Journal, Vol. 27, No. 11, 1989, 

pp. 1487-1493. 
8MaIik, M. R, "Stability Theory for Laminar Flow Control Design," 

Viicour Drag Reduction in Boundary Layers, edited by D. M. Bushnell and 
J. N. Hefner, Vol. 123, Progress in Astronautics and Aeronautics, AIAA, 
Washington, DC, 1990, pp. 3-46. 

'Kendall, J. M., "Wind-Tunnel Experiments Relating to Supersonic and 
Hypersonic Boundary-Layer Transition," AIAA Journal, Vol. 13, No. 3, 
1975, pp. 290-299. 

10Demetriades, A., "Hypersonic Viscous Row over a Slender Cone, Part 
HI: Laminar Instability and Transition," AIAA Paper 74-535,1974. 

"Stetson, K F., Thompson, E. R_ Donaldson, J. C, and Siler, L. G.. 
"Laminar Boundary-Layer Stability Experiments on a Cone at Mach 8. 
Part 1: Sharp Cone," AIAA Paper 83-1761, 1983. 

12Stetson, K. F., and Kimmel, R. G., "On the Breakdown of a Hypersonic 
Laminar Boundary Layer," AIAA Paper 93-0896, 1993. 

13Kimmel, R., Demetriades, A., aw1 Tionaldson, J., "Space-Tune Corre- 
lation Measurements in a Hypersonic Transitional Boundary Layer," AIAA 
Paper 95-2292,1995. 

14Malmuth, N. D., Fedorov, A. V, Shalaev, V, Cole, J., and Khokhlov, A., 
"Problems in High-Speed Flow Prediction Relevant to Control," AIAA Paper 
98-2995, June 1998. 

15Rasheed, A., Hornung, H. O, Fedorov, A. V, and Malmuth, N. D., 
"Experiments on Passive Hypervelocity Boundary-Layer Control Using a 
Porous Surface," AIAA Paper 2001-0274, Jan. 2001. 

16Mack, L. M-, "Boundary-Layer Stability Theory," Jet Propulsion Lab., 
Rept. 900-277, rev. B, California InsL of Technology, Pasadena, CA, 1969. 

"Gaponov, S. A., "Influence of Porous Layer on Boundary-Layer Sta- 
bility," kevestia SO AN SSSR, Seria Technicheskich Nauk, Vyp. I, No. 3. 
1971, pp. 21-23 (in Russian). 

18Gaponov, S. A., "Influence of Gas Compressibility on Stability of 
Boundary Layer on Porous Surface at Subsonic Speeds," Zhumal Prikladnoi 
Mechaniki i Technicheskoi Fiziki, No. 1, 1975, pp. 121-125 (in Russian). 

"Gaponov, S. A., "Stability of Supersonic Boundary Layer on Porous 
Wall with Heat Conductivity," Izvestia AN SSSR, Mechanika Zhidkosti i 
Gaza, No. 1, 1977, pp. 41-46 (in Russian). 

^Stinson, M. R, and Champoux, Y., "Propagation of Sound and the 
Assignment of Shape Factors in Model Porous Materials Having Simple 
Pore Geometries," Journal of the Acoustical Society of America, Vol. 91, 
No. 2, 1992, pp. 685-695. 

21Rzhevkin, S. N., Lectures on Theory of Sound, Moscow State Univ., 
Moscow, 1960 (in Russian). 

^Daniels, F. B., "On the Propagation of Sound Waves in a Cylindrical 
Conduit," Journal of the Acoustical Society of America, Vol. 22, No. 2,1950, 
pp. 563-564. 

^Benade, A. H., "On the Propagation of Sound Waves in a Cylindrical 
Conduit," Journal of the Acoustical Society of America, Vol. 44, No. 2,1968, 
pp. 616-623. 

24Malmuth, N., "Stability of the Invi ,,id Shock Layer in Strong Interac- 
tion Flow over a Hypersonic Flat Plate," Huid Mechanics and Its Applica- 
tions, edited by D. E. Ashpis, T. B. C'_3ki, and R. Hirsch, Kluwer Academic, 
Boston, 1993, pp. 189-223. 

M. Sichel 
Associate Editor 



AIAA JOURNAL 

Vol. 40, No. 6, June 2002 (Tentative) 

Influence of a Counterflow Plasma Jet 
on Supersonic Blunt-Body Pressures 

V. M. Fomin* and A. A. Maslov* 

Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia 

N. D. Malmuth* 

Rockwell Scientific Company, Thousand Oaks, California 91360 

and 

V. P. Fomichev,5 A. P. Shashkin,1 T. A. Korotaeva,"A. N. Shiplyuk,nand G. A. r'ozdnyakov** 

Institute of Theoretical and Applied Mechanics, Novosibirsk, XXXXX, Russia 

Aerodynamic augmentation in the presence of a thin high-temperature onboard plasma jet directed upstream of a 
slightly blunted cone was studied experimentally and numerically. The flow around a truncated cone cylinder at zero 
incidence was considered for Mach numbers M„ = 2.0,2.5, and 4.0. For the first time, computationally validated 
experimental pressure distributions over the model surface in the presence of the plasma jet were obtained. As in the 
conventional (nonplasma) counterflow jet, two stable operational regimes of the plasma jet were found. These were 
a short penetration mode and a long penetration mode (LPM) aerospike into the opposing supersonic freestream. 
The greatest drag reduction occurred in the moderate LPM regime. LPM strong overblowing reduces the benefits. 
The experimental pressure results were approximately validated against an Euler computational fluid dynamics 
simulation, modeling a perfect gas hot jet, counterflowing against a perfect gas supersonic freestream. Plasma effects 
such as electron pressure, radiation, electric field interactions, Joule heating, and induced vorticity, streamers, and 
plasmoids have been identified that, if accounted for, may improve the comparison. Procedures for the use of these 
experimental results have been outlined as a baseline that will be useful in separating fluid dynamic/thermal effects 
from plasma processes in understanding the physics of onboard plasma jets for aerodynamic augmentation. 

Introduction 

CONSIDERABLE interest exists today regarding the applica- 
tion of onboard plasma devices (OBPD) to enhance aerody- 

namic performance of flight vehicles. A number of concepts that 
have been considered include microwave, electron beams, surface 
and volume discharges such as coronas, and plasma jets. Both nu- 
merical and experimental papers devoted to this problem are exem- 
plified in Refs. 1-5. The effect of a laser optical pulse discharge in 
a supersonic flow giving a spikelike energy source decreases coni- 
cal and hemispherical nose drag.6 Bodies of revolution with vary- 
ing bluntness ranging from a sphere to a flat-faced cylinder were 
considered3 47 for different methods of modifying the flow such as 
microwaves, heated wires, or glowing discharges. 

Originally, much of the interest was stimulated by the possibil- 
ity of weakening the vehicle shock system by the interaction of the 
artificially generated plasma with the shocks system. One of our con- 
jectures is that streamers form that create strong delta-functionlike 
transverse temperature gradients. By Crocco's theorem, these cre- 
ate intense vorticity that can attenuate the shocks. The origin of 
the plasma aerodynamic augmentation or flow modification is quite 
controversial, with one camp believing that the major effects are 
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due to heating and conventional fluid mechanics, whereas another 
is convinced that it is all due to plasma physics. Most likely, any 
benefits are due to a combination of both phenomena. The relative 
proportion of each is related to the device or scheme used to obtain 
aerodynamic benefits and the range of parameters considered. 

How to create a power source using the minimum possible energy 
in these devices is not obvious now. Weight and size as well as scal- 
ing (including identification of the correct parameters) are key for 
systems integration and tradeoff comparisons against conventional 
thrust augmentation schemes for rocket and scramjet propelled ve- 
hicles. New databases and modi 'ing are needed to deal with these 
issues. Thermodynamic analyses i.v. also needed to bound the prob- 
lem. An example of a simple plasma aerodynamic augmentation de- 
vice is a counterflow plasma jet. Experimental studies on injection 
of a cold ordinary gas jet were described in Refs. 8-11. The possi- 
bility of decreasing the drag of a blunted body was demonstrated in 
these studies,12"14 including experiments and numerical modeling. 
This work was extended for hot and, later, plasma jets in Refs. 15 
and 16. Available data show that the jet effects substantially depend 
on the shape of the housing parent body as well as on the jet and 
freestream flow conditions. However, these data are scattered and 
do not lead to general conclusions. 

Most of the OBPD literature gives information on overall forces 
and moments without providing pressure distributions. This infor- 
mation is the minimum needed to resolve the aforementioned con- 
troversy and is a central theme in this paper, which not only provides 
this information but also computational fluid dynamics (CFD) val- 
idations of perfect gas Euler simulations that can be used to test 
the hypothesis that, for a range of plasma parameter space, plasma 
effects such as electron pressure, electric fields, charge separation, 
plasma radiation, and nonequilibrium and vibrational relaxation are 
small compared to Joule heating source terms modifying a perfect 
gas simulation of the plasma jet flow modification. This study exam- 
ines the conjecture that, if the flow patterns and pressures are approx- 
imately similar between experiment and an Euier computational 
model, conventional gasdynamic processes control the flow. Inde- 
pendent of its origin, heat addition significantly modifies the body 
flowfield, forming a complex system of compression and expansion 
waves interacting with bifurcational unsteady flow separations and 
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cavities. These bifurcations produce significant changes in the body 
forces and moments. 

Existing onboard plasma jet experimental databases contain no 
pressure distributions. Furthermore, no adequate theoretical model 
exists currently. To fill these gaps, experiments and modeling were 
performed. A description of these studies follows. 

Test Facility and Equipment 

Performance of counterflow plasma jets in supersonic freestreams 
was the primary focus of the experimental portion of the investiga- 
tion. A significant capability was the availability of a long run-time 
Institute of Theoretical and Applied Mechanics T-325, SB RAS su- 
personic wind tunnel for the counterflow plasma jet experiments. 
In this facility, the test section, which is 200 x 200 x 600 mm, pro- 
vided good views of the flow patterns. The long run times were 
ideally suited for mderstanding the flow patterns to be described. 

Experiments were performed at Mach numbers M^ = 2.0, 2.5, 
and 4.0, total temperature 300 K, and stagnation pressures 1- 
3 atm, which correspond to unit Reynolds numbers Re\ = (13-40) x 
106 1/m. 

The nonuniformity of the Mach number in the test section did not 
exceed ±0.8%. Pressure and temperature in the settling chamber 
was measured and kept constant within an accuracy of ±0.5%. The 
test article was a cylinder with a blunted cone forebody. The cone 
half-angle was 0C = 30, and it was 40 mm in diameter and 200 mm 
in length. The cone was mounted in the wind-tunnel test section with 
a strut on one window, so th;>: .is forebody could be seen through 
the test section optical glass. The blunted cone nose was necessary 
to accommodate a nozzle for the plasma generator and to inject the 
plasma jet. Figure 1 shows the plasma generator nozzle located in 
the forebody of the model. A dc plasma generator with a variable 
length arc and gasdynamic displacement of the anode spot on the 
anode surface was used in the experiments. The discharge current 
was 30-60 A, voltage was 100-200 V, and the characteristic value of 
the power supply in the gas was 6 kW/g. A (continuous) plasma gen- 
erator produced a hot jet of nitrogen of temperature 5000 K and gas 
flow rate 0.7 g/s. The body of the plasma generator was bounded by 
a water-cooling jacket that permitted long, continuous runs. Current, 
voltage, gas flow rate, and pressure in a prechamber of the plasma 
generator were measured in the experiments. The plasma genera- 
tor operational parameters were adjusted before each T-325 wind- 
tunnel run. The flow conditions were monitored during the runs. 

Standard equipment was used for measurements of current, volt- 
age, and pressure. Precision of measurements of current and voltage 
was ±0.5% an<' pressure ±3%, respectively. 

The plasma f;,i, orator was attached to a strut that did not affect the 
measured value of the model drag. The metric part of the model was a 
thin-walled shell that was attached to a strain-gauge balance located 
on the extreme downstream end of the casing shield. A strain-gauge 
registered forces acting only on the thin-walled shell. The forces 
acting on the plasma generator (including the jet reaction force) 
were compensated by the strut response that was not measured by 
the balance. 

On the forebody of the model, 10 pressure taps were installed, 
and 6 were placed on the cylindrical afterbody. Three pressure sen- 
sors were located inside the model, between the cone and plasma 
generator. One was located u^ar the strain-gauge balance. 

The tests included 1) testing of the balance measurement sys- 
tem using a sharp cone model, 2) balance measurements of model 
drag, 3) pressure measurements on the model surface and inside the 
model, 4) video filming of the flow pattern with the plasma generator 
operating, and 5) schlieren pictures of the flow. 

Balance and Pressure Measurement Apparatus 

The drag force of the model was measured using a strain-gauge, 
one-component balance with a range of force measurement of 
0-100 N. The balance was calibrated after each change of the model 
position in the test section of the T-325 wind tunnel. 

The value of the model drag obtained from a strain-gauge balance 
accounted for the internal pressure in the model using the formula 

N = B + rPm(r)dr 

7ZZZZA 
Fig. 1    Plasma generator nozzle, r\ = 4 mm and r2 = 17S mm. 

where B is the force measured by the strain-gauge balance, rx is the 
internal radius of truncation, r2 is the internal radius of the model 
forebody (Fig. 1), and Pia(.r) is the pressure distribution over the 
internal surface of the forebody. 

The pressure distributions on the surface of the model were mea- 
sured with the taps (diameter0.7 mm) and strain gauges. These were 
isolated from the electromagnetic fields of the plasma generator. 

Experimental Results 

The plasma generator was activated when the desired wind-tunnel 
flow conditions were established. Plasma generator ignition resulted 
in a glow enveloping the model and highlighting the flowfield. Two 
steady flow modes were observed: short jet penetration mode (SPM) 
into the incoming airflow and long jet penetration mode (LPM). 
Both modes of flow were observed in the same experiment. The 
transition from one mode to another was accompanied by transient 
phenomena, giving different flow patterns. During these transition 
regimes, a reorganization of the flow structure occurred from one 
exhibiting a multibarreled jet structure, characteristic of the LPM, 
to one with one barrel, intrinsic to the SPM. Qualitatively, such phe- 
nomena have been previously observed for nonplasma counterflow 
cold jets embedded in supersonic flows. 

Figures 2 show typical schlieren images associated with these ex- 
periments exhibiting the aforementioned features. All occur sequen- 
tially in one run at nominal, nearly constant wind-tunnel conditions 
with growing pressure in the plasma generator prechamber. The 
LPM occurred at the beginning of experiment. Then it transformed 
itself into the SPM. Following Refs. 8 and 10, the occurrence of the 
two modes was correlated with the stagnation pressure ratio param- 
eter P = poj/p'of, where p0j is the total pressure of a plasma jet 
and p'0f is the total pressure behind normal shock. Figure 2a corre- 
sponds to the LPM, where P = 3.8. The head bow shock and trailing 
shocks are obvious. Figure 2c shows the SPM, where P = 5.0. An 
example of a transitional regime, P =4.4, is shown in Fig. 2b. The 
images of both modes (exposure time ~0.01 s) are superimposed 
in Fig. 2b. A transitional regime exhibiting instability in the zone 
of interaction of the jet and counterflow was observed in the range 
4.1 < P < 4.5. It is possible to estimate the critical P for which 
mode transition/bifurcation occurs as approximately 4.3. This value 
is slightly higher than that for cold counterflow jets (P critical ~3) 
in similar flow conditions.8 The disparity may be related to plasma 
effects.17 

SPM also appears for P < 2. The drag force of the truncated cone 
model with counterflow plasma jet injection was compared with the 
value of the drag force of a sharp cone model. Figure 3 shows the 
values of the drag coefficient of the model CD = X/qS, where X is 
the drag force of the model, q is the freestrearn dynamic pressure, 
and S is the area of model cross section, for various stagnation 
pressures of the flow p0/> obtained by balance measurements. 

Precision of the qx determination was ±0.5%. The pressure 
gauges had a 100-kPa measurement range, also subject to an er- 
ror of ±0.5%. Total error for CD was ±1-2%. The maximum error 
is shown as an I bar in Fig. 3 (upper right point). Because the flow 
under study was unsteady and the model surface was subjected to 
the high-temperature plasma jet, additional errors could occur due to 
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Fig. 2   SPM to LPM transitions. 

model erosion. Baseline experiments were carried out with a sharp 
cone (points 1), blunted cone without a jet (points 2) and with a 
plasma jet (points 3 and 4) at MK = 2. 

Surprisingly, the sharp cone has the greatest drag for the inves- 
tigated range of T-325 freestream pressures. The blunted cone has 
somewhat less drag. This is due to a suction force on a flat nose, 
even without the jet.l8 This was not measured in our experiments. 

Addition of the plasma jet reduced the drag of the model. The 
experimental data form two groups of points corresponding to the 
SPM and the LPM. LPM produced the greatest drag reduction (up to 
23%), whereas the drag reduction was not too significant for SPM. 
For the LPM, the jet penetrates much further into the flow, reducing 
the effective cone angle/body thickness ratio. Figure 4 shows a plot 
of the model drag vs the Mach number Moo, for Pof = 100, 200, 
and 300 kPa, where 1 refers to a sharp cone, 2 a truncated cone 
without the jet, and 3 a truncated cone with thejet. The forebody drag 
was estimated by integration of the measured pressure distributions, 
accounting for the jet thrust. 

Cd 

1.0 

0.9 

0.7 

0.6 

0.5 
100 150 200 250 300    Po,-, kPa 

Fig. 3 Cone drag dependence on total pressure P0f. 1, sharp cone; 2, 
truncated cone without the jet; 3, truncated cone with the plama jet, 
SPM, and 4, truncated cone with the plasma jet, LPM. 
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Fig. 4 Model drag dependence on freestream Mach number: 1, sharp 
cone; 2, truncated cone without the jet; and 3, truncated cone with the 
plasma jeL 

Drag coefficients are plotted vs the freestream total pressure for 
Mach numbers Mx = 2.0, 2.5, and 4.0 and for the flow with a jet 
and without the jet in Fig. 5. 

The forces obtained from balance and pressure measurements 
(A/oo = 2.0) with and without the plasma jet are compared in Fig. 6. 
It is evident that the integrated surface pressure distribution, ac- 
counting for the internal model pressure, agrees-well with the bal- 
ance measured forces. This is a mutual validation of our force and 
pressure measurements. 

Computational Studies 

As another check of the experiments, a perfect gas model of 
the flow was implemented computationally. For the comparisons, 
the governing equations are the inviscid three-dimensional Euler 
equations for a perfect gas in conservative form. The interaction 
of the plasma jet with the external flow was modeled by assuming 
flow variable values such as Mach number and temperature at an 
internal boundary inside the outer far-field computational domain 
corresponding to the jet exit boundary. Currently, we are general- 
izing this model to simulate computationally the interaction of the 
internal nozzle and external flowfields, including plasma processes. 

The gas flow was considered as unsteady with a prescribed ini- 
tial state. A time-explicit, space-implicit, second-order accurate, 
central-difference scheme with relaxation smoothing for solving the 
three-dimensional Euler equations by the finite volume method was 
used. To obtain a steady-state solution, a time-asymptotic method 
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and a shock-capturing weakly nonmonotonic and fully conserva- 
tive technique was employed. The solutions belong to the class of 
bounded functions. 

For generation of computational grids, the algebraic method of 
construction of grids19 was applied. Grid convergence was assessed 
from calculations on different grids (50 x 50, 50 x 100, 50 x 150, 
100 x 50, 100 x 100, and 150 x 150) involving varying grid den- 
sities on the bodies and in the flow. Global features of the flow 
solution were preserved on grid refinement but with emergence of 
subtle local flow details. 

Comparison with Experiment 
To compare the numerical and experimental data and to analyze 

the results obtained, a supersonic flow around a truncated cone with a 
counterflow jet was calculated. The truncated cone parameters were 
cone half-angle ®c — 30 deg, ratio of the midsection diameter d) to 
the front face diameter d2 of 5:1, and d^.di = 1:4. The freestream 
conditions were Mach number Mx = 2, angle of attack a = 0 „,id 
total temperature Tof = 283 K. The Mach number Maj at the jet 
exit was unity. A specific heat ratio y =cp/cv = 1.4 was ar- utned 
in all calculations. The parameter P = poj/p'0, was varied in the 
range 1.15-5. Total temperature in the jet was TOJ = 5000 K. These 
parameters were approximately typical of all of the experiments. 
Both modes (LPM and SPM) were obtained in the calculations. 

CFD isotherms of the LPM and the SPM validating those obtained 
in the experiments are shown in Fig. 7. In Fig. 8, the normalized pres- 
sure Cp = p/2q, where p is the surface pressure on the model, for 
1.7 < P < 4.5 is plotted against the dimensionless coordinate X/di, 
where d2 = 9 mm, for the Mach number Mx = 2 and p0f = 1 atm 
Points 1 correspond to a flow regime without a jet and points 2 and 3 
with a jet in SPM and LPM, respectively. In Fig. 8, the position of the 
cone frustum cylinder shoulder is designated by /. The two modes 
are again evident. In both cases, a significant pressure change due 

LPM (/> = 3.2) 

SPM (P= 1.7) 

Fig. 7   Photographs and calculated isotherms of flow. 
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Fig. 8 Pre^ure distributions over conical and cylindrical surface: 1, 
truncated oore without a jet and 2 and 3, truncated cone with the plasma 
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to the plasma jet occurs on the model's conical surface. A value of 
P = 3.2 provided the best CFD fit of the lower solid triangle (LPM) 
experimental points, although a closer estimate for P was 2.4. The 
value of P = 1.7 was used for the upper SPM group. These two 
cases are shown in Fig. 7. [The parameter P was obtained from ex- 
perimentally measured pressures in the plasma generator chamber 
(giving poj) and the normal shock relations, (giving p'of)]. 

Uncertainty in estimating P is due to a combination of many fac- 
tors. These include the time variation of the pressure in the plasma 
generator, adequacy of assuming choked conditions at the jet exit, 
heat addition in the nozzle chamber, losses in the conversion of elec- 
trical energy into kinetic energy in the nozzle, plasma effects inside 
and outside the nozzle, and viscous interactions such as shear lay- 
ers and separations. Separate measurements are needed to assess the 
plasma generator efficiency. In addition, our earlier mentioned more 
accurate simulation modeling the coupling of the internal and ex- 
ternal flows in the numerics will be used to improve the simulation. 
Moreover, coupling with plasma chemistry in the high-temperature 
zones inside the nozzle and the core of the jet needs to be accounted 
for. Despite the need for such refinements, it is remarkable that the 
complete pressure distribution is so well reproduced with a reason- 
able average value for P, even on a relative basis. Absolute levels 
will require inclusion of plasma effects, examples of which have 
been cited earlier herein. 
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Agreement of the perfect gas Euler CFD pressure distributions 
with the measurements at selective flow conditions such as Mach 2 
strongly suggests much of the physics at that Mach number resem- 
bles conventional (nonplasma) counterflow jet gasdynamics. The 
validated pressure distributions such as those obtained in this inves- 
tigation (for the first time to our knowledge for plasma jets) are more 
convincing than drag measurements in making this assertion. The 
proposition that, if pressure distributions of the plasma jet flow are 
close to the conventional jet flow, plasma effects are insignificant 
is not axiomatically proven here. However, evidence of the truth of 
this proposition is the similarity of the observed and computed flow 
patterns obtained in this study, as shown in the figures. Both indi- 
cations suggest that this conclusion is at least one, but not a unique, 
possibility. Mathematically, if the pressure distribution is prescribed 
in the c.assical inverse problem of gasdynamics, and if certain side 
conditions such as closure for an airfoil are also given, a unique solu- 
tion fo; ihe body shape and resulting flowfield is obtained. A similar 
statement can be conjectured for a body of revolution if a single set 
of governing equations of motion is used to model the flow. On the 
other hand, if the form of the equations of motion can be allowed to 
vary from conventional gasdynamics to real gas plasma gasdynam- 
ics, then this conclusion, although plausible, may be challenging to 
prove. To summarize, coincidence of the pressures for the plasma 
jet flow with those of a perfect gas jet is a necessary but not suffi- 
cient condition to assert that the two flows are equivalent. However, 
the resemblence of the flow patterns of the computations with those 
observed makes this conclusion plausible. 

Although comparisons of drag between plasma and conventional 
counterflow jets is less convincing to arrive at such a conclusion, 
because they contain less information, they are an important check 
on the pressure measurements and useful to assess the energetic 
efficiency of possible drag reductions with plasma counterflow jets. 
These observations are major findings of this investigation. In other 
experiments conducted by the authors at Mach 6 and not discussed in 
this paper, some qualitative but less quantitative similarity is evident, 
and our conjecture is that plasma physics accordingly plays a more 
significant role. In Fig. 9, the total drag of the body 

CD = p ■ y■dy + 2n 
/■<*l/2 

ydy q-S 

as a function of n = poj/p^ is shown, where va and pa are the 
velocity and the density in the jet exit, respectively. Here, the total 
drag of the body is understood to be the pressure drag plus the 
reacti-ii. force of the counterflow jet. 

As indicated earlier, the calculations and experiments confirm 
the existence of the LPM and SPM configurations. The appearance 
of these regimes depends mainly on the pressure ratio P. Plasma 
effects, temperature, geometry, and perhaps other factors may be 
significant but have not yet been studied. LPM has appeared in 
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Fig. 9    Influence of the jet pressure ratio on total body drag. 

the range 2 < P <4.5 in our studies. Outside this range. SPM was 
observed. 

The main features of these configurations that were deduced pri- 
marily from Euler computations performed in this investigation are 
as follows: 

1) For the SPM mode, the underexpanded jet forms a new body 
that moves upstream of the jetless bow shock and forms a single cell, 
as shown in Fig. 10. Conventional perfect gas nonplasma counter- 
flow jets exhibiting this behavior have been previously studied.8 

2) For the LPM mode, for some range of the pressure ratio P. the 
jet is compressed, and its cross section is decreased. It penetrates 
the jetless bow shock and forms the multicellular structure shown in 
Fig. 11. In this structure, a few small toroidal vortices are evident. 
Penetration may be relatively short or long. When the penetration 
is intermediate, suction, which is obsci ved on the side surfaces of 
the body, can be significant. Long pene'r-stion and overblowing for 
a slender jet does not lead to significant decrease of the pressure on 
the side surfaces of the body. Here, the aerospike or long penetration 
jet is too far upstream and is of such high fineness ratio that it cannot 
significantly slenderize the body because its shock pattern is very 
weak and oblique and has a negligible attenuation of the jetless 
blunt-body bow shock system. Accordingly, an optimal range of 
parameters exists that maximizes drag decrease. 

Fig. 10   Counterflow jet flow pattern, SPM. 

Fig. 11    Counterflow jet flow pattern, LPM. 
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The efficiency of plasma jet ejection in reducing drag may be 
estimated by comparing drag power to input power. Thus, 

r, = &CDqSV/Q, 

where ACD is the reduction in drag coefficient due to the plasma 
jet from the value for the same body with the plasma jet off, q is 
the freestream dynamic pressure, 5 is the frontal area of the model. 
V is the freestream velocity, and Q, is the electrical power used to 
develop plasma jet. 

The value of 17 has been calculated for the tests discussed herein. 
At a freestream stagnation pressure of 1 atm, the LPM jet gave 
r\ = 1.98. For the SPM, this parameter was 0.5. This conclusively 
demonstrates the drag benefits of the LPM configuration. With 
flight-weight plasma generator units, this gain can be translated into 
more efficient drag reduction of hypersonic cruise vehicles such as 
blunted shapes for which the nose pressure drag is a dominant part 
of the drag buildup. Such drag reductions could have a substan- 
tial impact on aerodynamic efficiency (L/D) and result in higher 
payloads as well as reduced mission cost. 

Qualitative Interpretations and Trends 
Our calculations give trends similar to those observed by Romeo 

and Sterret20-21 for cold jets. They show bifurcations as well as 
qualitative details of the observed flow patterns reported by these 
authors. 

For counterflow jets, the jet specific impulse (per area unit) is 
higher than the impulse in the external stream downstream of the 
normal shock wave. This consideration suggests as a governing 
parameter P = P0j/Pof. which occurs in our calculations, where 
POJ is the stagnation pressure in the jet and PQ . is the stagnation 
pressure downstream of the normal shock wave. 

SPM and LPM Regimes 
The role of jet exit Mach number and temperature, as well as the 

ratio of nozzle to rim diameters, will be suppressed in this part of 
the discussion. (In all our calculations, this ratio was assumed to be 
in the range 0.2-0.25.) 

Although SPM and LPM are the major modes, transitional 
regimes between these modes also exist. In particular, our exper- 
iments indicate different SPM regimes as shown in Fig. 12. which 
is also a validation of our computational model against experimental 
data for prediction of jet penetration and drag. We conjecture that 
these regimes are affected by P. 

For low momentum of the jet compared to that behind the shock, 
SPM occurs. Here, the counterflow jet forms a reverse-circulation 
region whose slip line/shear layer reattaches on the side surface 
(Fig. 10). 

An LPM regime forms when part of the jet is supersonic with a 
stable multibarrel shock structure. This can occur when the jet has 
sufficiently high momentum compared to that of the flow behind 
the normal shock. In this regime, the jet penetrates the flow ahead 
of the bow shock wave of the body with the jet off (jetless case). 
This creates a new oblique shock structure ahead of the bow shock 
that is altered from the jetless case. Our calculations suggest that a 
necessary condition for this regime's stability is reattachment of the 
eddy slip line on the rim face in contrast to its conical or cylindrical 
surfaces. The jet seems to be associated with a toroidal vortex and 
almost constant pressure inside the reverse-circulation region shown 
in Fig. 11. In our calculations, existence of this eddy is connected 
with the bifurcation of the flow at the reattachment point. These 
remarks pertain to the case considered in this study in which the 
jet diameter is small compared to the front face diameter. This case 
contrasts to that considered by Romeo and Sterret,20-2' where the jet 
and frontal diameters are nearly the same and the rim is small. 

From the computations, one can see that the attachment point 
can move along the flat face containing the jet exit. As soon as the 
attachment point migrates to the side surface, the pressure in the 
recirculation zone decreases. This causes a decrease in size of this 
zone and, correspondingly, in attachment point migration back to 
its original position on the flat face. This bistable equilibrium is 
subsequently recycled into an oscillation unless a trigger such as 
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Fig. 12    Movie stills of LPM mode. 
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a downstream pressure perturbation disrupts it. If the jet becomes 
strongly underexpanded, the flow may transition directly to SPM. 
As a rule, the oscillation of the attachment point position near the 
boundary of the flat face causes LPM perturbations involving peri- 
odic changes of its structure and length. Although, opportunities for 
these oscillations to occur, the LPM can be quite stable, as shown 
in Fig. 12. These movie stills from our tests show high dynamic 
stability of the jet in the LPM mode from an initial transient. This 
stability has practical implications for drag reduction practical ap- 
plication on blunt hypersonic vehicles where the forebody drag can 
have a major impact on payload. 

For high P (strongly underexpanded jet), a single SPM shock 
forms again, in contrast to the split LPM configuration. 

Jet Exit Mach Number Effects 
The following discussion is based on our experiments and calcu- 

lations. 

Ma>l 
If the counterflow jet is supersonic and weakly underexpanded or 

overexpanded at the nozzle exit, multiple cells can arise. A weakly 
underexpanded jet exhibits small area changes along its length. 
Some perturbations cause Mach number increases with reduced 
pressure and shrinl^nge of the jet. This causes its specific impulse 
to grow, giving increased penetration. Strongly underexpanded jets 
exhibit substantial i.ea increase, resulting in a specific impulse de- 
crease, producing a shock wave upstream of the jet. If the impulse 
decreases still further, the flow reverts to the SPM regime. If the 
supersonic jet is weakly overexpanded, its cross section decreases. 
This leads to an increased specific impulse and an LPM config- 
uration. Strongly overexpanded jets create a normal shock with a 
decreased specific impulse that leads to SPM. 

Ma = I 
For sonic jets, supersonic and subsonic conditions can occur up- 

stream of the jet similar to Laval nozzle flow. A weakly underex- 
panded jet can expand, giving supersonic flow. This leads to LPM. 
SPM can occur for strongly underexpanded or overexpanded jets. 
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Ma < 1 .. 
Here, the LPM regime can be associated with a convergent lip 

angle with acceleration to critical conditions and an upstream throat 
and farther upstream behavior already discussed for the choked case 
We have observed this behavior in our computations, but only for 
high-temperature experiments. 

To summarize, LPM flow in our calculations was observed for 
supersonic jets whose pressure differs little from the external jet 
pressure. It is not very important whether the nozzle exit is subsonic, 
sonic, or supersonic. If conditions exist for a supersonic transition 
and the jet is generally weakly underexpanded, LPM can occur. 
These are necessary but insufficient conditions. An associated vortex 
seems also to be a feature of this flow. 

Effects of Sep? ■ :iion 
Some interesting studies that ate usefui in understanding the effect 

of the separated region in the LPM mode stem from the work of 
Ehrich,22 who extended the Zhukovski hodograph method discussed 
by Milne-Thompson23 to infinite slot two-dimensional (planar) jets 
in a crossflow. His closed-form solutions include counterflow. jets 
as a special case. For the latter, penetration was limited if the flow 
was attached to the outside of the slot. In contrast, the penetration 
became infinite at a finite jet-to-freestream velocity ratio if the jet 
was separated over the slot. 

Summary 
Results of experimental and numerical studies of the influence of 

a thin counterflow, high-temperature jet on the aerodynamic charac- 
teristics of a blunted body in supersonic flow have been presented. 

The experiments were conducted with plasma jet injection into 
supersonic and low hypersonic freestreams. They included balance, 
pressure distribution measurements, video and photographic visual- 
ization, and schlieren pictures. Two stable regimes of the plasma jet 
flow resembling ordinary perfect gas counterflow jets were found. 
These are SPM and LPM into the freestream. LPM produced the 
only substantial drag reduction, which was especially strong for 
transition from SPM to LPM. 

Experimental pressure distributions over the surface of a truncated 
cone-cylinder model in the presence of a plasma jet were obtained. 
These distributions represent the first data of this type for onboard 
plasma jets and should be useful for separating aerodynamic heating 
from plasma physics phenomena in aerodynamic augmentation. 

The experimental results were compared to Euler perfect-gas, 
hot-jet CFD models. Both SPM and LPM were obtained with these 
simulations tased on our calculations, wc believe that the bifur- 
cation is drivr.i by interaction of separated flow regions and the 
delicate roic of reattachment points &'. interact with the flow and 
shock system on a global scale. These can be driven by the noz- 
zle cavity flow and oscillations from the plasma generator. From a 
different perspective, we believe that the bifurcation is related to a 
nonuniqueness of the steady-state boundary value problem for the 
gasdynamic equations of motion, which may be an eigenproblem in 
a bifurcation stability sense. This indeterminacy relates to the clas- 
sical incompressible problem of oblique collision of jets, which is 
nonunique to within an unknown constant. This nonuniqueness is re- 
lated to the need to incorporate the flow history through determinism 
to assess the current state of the colliding jet flow. In this connection, 
conventional time-marching CFD codes may give path-dependent 
solutions rather than unique time asymptotics, due to a number of 
factors including stability of the temporal solution that might be 
an asymptotically bistable oscillation between the bifurcation SPM 
and LPM modes. We have correlated the LPM-SPM switch to a 
change in the position of the reattachment. We noticed migration of 
the attachment point from the forward face containing the jet exit to 
the inclined face and correlated this with LPM and SPM. 

The numerical results are in reasonable agreement with the ex- 
perimental data for supersonic freestreams, both for pressure distri- 
butions and drag, if the key stagnation pressure parameter P was 
adjusted within the experimentally observed range. This suggests 
that the dominant physics is fluid dynamics and that the plasma 
effects are relatively small at moderate supersonic Mach numbers. 
In particular, the large drag reductions associated with the LPM re- 

sult from the resulting suction on the forward facing parts of the 
cone cylinder, namely, the conical face. Nevertheless, aerodynamie 
heating that controls much of the moderate Mach number flow has 
an important link to plasma processes, which are the only means 
of producing the intense energy densities and high temperatures in 
the plasma jet. These temperatures can be several thousand degrees 
Kelvin higher than those of conventionally heated jets For hyper- 
sonic cases, the agreement of calculation and experimental results 
is only qualitative! We believe that this uncertainty is partly caused 
by plasma effects that were not taken into account Future work will 
be focused on this aspect. 
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Vertical and pitching motions (two degrees of freedom) of a thin body of evolution separating from a rectangular 
cavity in a subsonic stream are investigated using combined asymptotic and numerical methods. The analysis is 
based on explicit analytical solutions for the lift force and pitching moment obtained in our previous studies. Body 
trajectory dependencies on initial conditions, body parameters, and frccstrcam velocity arc studied. The problem 
is divided into three phases of the motion. In phase 1, the body is inside the cavity. In phase 2,'the body crosses 
the shear layer, and in phase 3, the body is outside the cavity. For phases 1 and 3, analytical solutions of the body 
dynamics are obtained for typical cases. This analysis provides insight into the separation process and identifies 
governing lumped nondimcnsional parameters relevant to the body dynamics as well providing a model that can 
provide quick, computationally non-intensive estimates of store separation with a personal computer. The role of 
the nondimensional parameters in the dynamic stability eigenvalues is identified and found particularly useful in 
this connection. These parameters implicitly contain the effect of the shear layer. Numerical calculations for all 
three phases arc in good agreement with a major portion of the free-drop experimental data obtained in a subsonic 
wind tunnel. However, there arc cases when the agreement is only satisfactory. The discrepancy is associated with a 
pitching bifurcation when the body crosses the shear layer. It is shown that small variation of the initial conditions 
can trigger quick transition from one pitch angle trajectory to another and cause dramatic changes of the body 
trajectory outside the cavity. 

Nomenclature X,Y,Z 

a(x) = local body radius 
a0 = maximum body radius "O  *Ct ^C 

b, = coefficient defined after Eqs. (4), i = 1.2 
b,J        :, = coefficient defined after Eqs. (4), /, ,7 = 1.2 x,y,z 

Cl = gravity force coefficient (Froude number). 
Eq. (2c) a 

Cl = lift force apparent mass, Eq. (2c) «11.a12.a22 

Cm = apparent pitch inertia, Eq. (2c) Y 
G[, G2, G} = coefficients defined in Eq. (3d) A., ±2, A3 

8 = gravity acceleration 8 

80, Si. 82 = body shape factors, Eq. (3c) » 
H(X,t) = vertical distance from body axis to 1 slip surface X 
Ho = cavity depth P 
I = moment of inertia * 
L = lift force n 
k = body length U) 

M = pitch moment coa 

m = body mass 
P = pressure Subscripts 
t = time 
u, v, w = flow velocity components a 

va = defined in Eq. (2b) 0 

Vr = characteristic vertical speed c 

Vb = body initial vertical speed, see Eq. (2d) e 
0 
00 
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Superscripts 

A 

+ 

Cartesian laboratory frame with origin 
shown in Fig. la 
Cartesian moving body axes with origin 
at body e.g. 
Cartesian moving body axes at general 
location in body 
pitch angle or angle of attack 
coefficients defined after Eq. (3) 
angular velocity stability parameter, Re(X) 
coefficients defined after Eqs.^4) 
body half-thickness ratio, So//o 
azimuth angle 
eigenvalue 
density 
near-field flow potential 

.angular frequency of body oscillations, —Im(X) 
pitch angular velocity 
defined in Eq. (2b) 

body cross section of radius a 
body surface 
eg. 
body base 
initial value 
freestream 

dimensional value 
inside the cavity 

Introduction 
MODELING of store separation from a cavity, even into a sub- 

sonic external stream is a very difficult problem that is the 
subject of the intensive application of current computational fluid 
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dynamics. The motivation of the work described herein is the need 
for quick methods for certification and assessment of the physics 
of store separation from cavities. Similar rapid evaluation methods 
are needed for stage and cargo separations. A variety of compu- 
tational methods are under development.1-3 As contrasted to pure 
computational modeling, this paper discusses a combined asymp- 
totic and numerical approach. It will be applied to solve aerody- 
namic problems relevant to separation of a thin body of revolution 
from rectangular cavities into subsonic or transonic flows.4-3 The 
separation process can be divided into three phases. In phase I, the 
body is inside the cavity. In phase 2, the body crosses the shear 
layer that separates the cavity flow from the external flow. In phase 
3, the body is outside the cavity. In many practical cases, viscous 
effects can be approximated with inviscid models. As an example, 
a vortex sheet representing an infinitesimally thin slip surface can 
be used to approximate the shear layer over a cavity. This approach 
is consistent with simulating the cavity shear layer interaction as a 
rational outer solution that is associated with viscous-inviscid in- 
teraction theory. This is an extension of the concept of transpiration 
velocities (outer limit of inner solution for asymptotic matching) 
that arises in boundary-layer viscous-inviscid interactions. It leads 

, to a self-consistent simulation of the shear layer as an inviscid vortex 
sheet. Also, we time average the unsteady motions of the shear layer, 
because these are on a timescale that is at least three orders faster 
than the Froude scale of the dropping body. This is a self-consistent 
approximation that should be realistic for the practical case of high 
Reynolds number of the approaching boundary layer. 

Also, the flow over the separating body can be modeled using 
«lender body theory.6 In Rcfs. 4 and 5, effects of the side cavity walls 
were shown to be negligible in all phases of the separation process. 
In the analysis of this paper, the near-field flow associated with the 
body aerodynamics is governed by a system of nonlinear integro- 
differential equations. In Rcfs. 4 and 5, this problem was analyzed 
using asymptotic methods giving explicit analytical expressions for 
the lift force and pitching moment acting on the body in all three 
phases of the separation process. In the analysis, the slip-surface 
displacement is neglected. A more general case is when the slip 
surface is a free boundary supporting nonlinear boundary conditions 
and interacting with the solution. For the practically important case 
of small deflections, the boundary conditions can be linearized on 
the slip surface, on the length scale of the cavity. Local flow scales 
have larger deflections in which an iterative scheme needs to be 
used. The nondeflected slip surface corresponds to the initial iterate 
in such a small-perturbation scheme. 

Problem Formulation 
In this paper, we couple our previous results on the body aerody- 

namics with the body dynamics and analyze two-degrce-of-freedom 
(2-DOF) vertical and pitching motions induced by aerodynamic 
and gravity forces during the separation process. The coordinate 
systems XYZ (attached to the cavity) and oxyz (attached to the 
body center of gravity) are shown in Fig. 1. The oxy frame is in- 
clined with respect to the XY frame at an angle of attack a(t). 
This frame can rotate around the oz axis with the angular speed 
w(0 = da/dt. The e.g. coordinates are expressed as Xc = Zf = 0 
2nd Yc(t); H(X, t) — Yc — aX is the vertical coordinate of the body 
axis. Using scaling of the slender body theory,6 we introduce the 
nondimcnsional variables 

X = X/l0,        Y = Y/S0,       Z = Z/S0,       x = x/lo 

y = y/S0,       z = z/a0l       t = U„?/k 

a = 5/S,        Vc = Vc/Vr,       (o = 8Utnä>/k        (1) 

where the body half-thickness ratio & is treated as a small parameter. 
Crossflow velocities and coordinates are normalized by 6£/«, and Sa, 
respectively. The streamwise and axial coordinates are scaled using 
lQ, and the pressure perturbation p is normalized with respect to 

top cavity wall 

u_ 
0   \ X 

slip surface 

store 

a) Side view 

JL 
top cavity wall 

/'0 Z 
slip surface 

V 
store cross section 

^    b) Back view 

Fig. 1   Scheme of store separation. 

As shown in Ref. 5, the equations for vertical and pitching body 
motions can be expressed in the form 

d(V, + c>y«) 
df 

d(a> + cm<oa) 

df 

= c,L(t)-c„, 

= cmM(t). 
da 

(2a) 

V«(/)= /    /    <b{x,0,tMx)dOdx 
Jxo Jo 

rxr fix 
aia{t) =  /     /     <t>(.x,e,Oa{x)xd9dx 

Jxa JO 
(2b) 

SUl 
c, = 

nPooloS1 nPco 'o<5 
5*2 

(2c) 

where xo and x, are coordinates of the body nose and base, re- 
spectively, and * is the near field with :;ipect to the body (inner) 
flow potential. We consider the Cauchy initial-value problem for 
Eqs. (2a) assuming that the body speeds, e.g. coordinate, and angle 
of attack are prescribed at the initial time; = 0 as 

Vc(0)=V0.      •«(()) =«o.        YM = Y0,        ct(0) = a0 

(2d) 

Note that dVa/dt anddüja/di in Eq. (2a) represent the time derivative 
of the crossflow potential (incompressible harmonic inner solution) 
needed for the pressure in the crossflow plane from the unsteady 
Bernoulli equation. The terms L\ and M\ are integrals involving the 
square of the crossflow speed that also appear in the Bernoulli law for 
the pressure in the crossflow inner problem. These are determined 
from the square of the crossflow gradient of $. 

In this paper, analytical solutions of the problem (2a-2d) for 
phase 1 are obtained for small lift forces compared to the weight. 
Slip-surface deflections are neglected, and Eqs. (2a-2d) are trans- 
formed into two decoupled ordinary differential equations with con- 
stant coefficients. A stability analysis of their solutions is performed, 
and behaviors of the pitch angle a(t) and the vertical coordinate 
yc(/) are discussed for typical cases. In addition, the theoretical 
model for all three phases [in Eqs. (2) (without the stability lin- 
earizations)] is evaluated by comparison of the predicted trajecto- 
ries with the experimental data of Ref. 7. The paper concludes with 
some parametric trajectory studies. , 
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Phase 1: Body Inside Cavity 
The lift force L(t) and the pitching moment M{t) acting 

on the body moving inside the cavity are derived in Ref. 5. 
They are expressed as integrals along the body axis with the 
integrands being a power series with respect to the parameters 
ql{x,t) = 0.5a/(H0-H) and q = 0.5a/H, where,H0 is cavity 
depth shown in Figs, la and lb. If the body is far from the top 
cavity wall and the slip surface, then q\ and q can be treated as 
small parameters. When terms of the order of 0(qz, q\) are ne- 
glected, the body cross section vertical velocity V+(/) and angular 
velocity w+{t) arc expressed in the form 

V+(0 ■«„(»)V«C0-«ia(0»(0 

«4,(0 = a,2(/) V«(0 - a»</)»(0 (3a) 

«n(0 = n[g0 + C0(/)], «12(0 = nl8\ + d(0] 

So= /    a2(jc)dc, gis       a2(x)xdx 

g2m  f   a\x)x2dx 

Go« B 2 f   [q2(x, t) - q\x, t)]a\x) dx 

C,(0 E 2 f   [q2(x,:)-q2(x,t)]a2(x)xdx 
JlQ 

C2(/) = 2 /   [<?? G*. /) - <?
2
(JC, o]a2M*2d* 

(3b) 

(3c) 

(3d) 

(3e) 

This transformation helps to express the dynamic equations in a 
form convenient for further discussion of the body trajectory fea- 
tures. When Eqs. (3a-3e) are used, the trajectory equations (2a) can 
be integrated once and expressed in the form 

dl 

d? 

—T777cf' + "T77T vo + c,Jra>o6| (/) (4a) A(0 

A(0 A(r) 

where the coefficients are defined as 

iii(i)sl+C|0„(i), ba(i)ssciaa(t) 

*2i(Osc„o12(0, bniO^l-c^xtit) 

A^MOMO + MOMO 

Ai»t,i(Q)6n(O + MO*2i(0) 

ft,H(l/A){(l-ei.»ft)[Oi(O-C|(Q)] + c111^i[G2(0-C2(0)] 

+ cmx[GMGi(f) - G,(r)G2(0)]} 

62-a (1/A){(1 +c,xgo)[Gi(0) - Gt(/)] + ciirgilG0{t) - G0(0)] 

+ c/w[C,(0)Co(0 - C,(OGo(0)]) 

The first term of Eqs. (4a-4b) models the gravity effect, the sec- 
ond term comes from the initial conditions, and the third term arises 
from the boundary and initial conditions. The angular acceleration 
is proportional to the product of the pitching moment coefficient 
c„, the gravity force coefficient ct, and the value gx + Gt(r) char- 
acterizing the displacement of the center of pressure from the e.g.' 
Equations (4) can be solved numerically using, for example, the 
Runge-Kutta method. Note that tl;e slip-surface effect and the top- 
wall effect rapidly decrease as the body moves away from these 
boundaries. Neglecting terms '-.f the order of 0(q2 + qf), which are 
associated with the boundary effects, the solution of Eqs. (4) can be 
expressed in explicit analytical form: 

Ye(t) = Y0+Vot- 
1 - ncmgi 

2AQ 

c.r 

«(,) = «„ +a*,+ ^r2 

2-2 A0 = (1 + c/7rso)(l - c^ngz) + Qc„jr^f 

(5a) 

(5b) 

Equations (5) show that the e.g. coordinate Yc(t) and the pitch angle 
or(f) are parabolic functions of time when the body moves in an 
unbounded fluid at rest 

It is also possible to obtain analytical solutions of Eqs. (4), when 
the lift and moment are small compared to the body weight. This is 
typical for many practical cases because the coefficients t; and cm 

are proportional to the air density to body density ratio, Px/pt, <K 1 • 
For a body of uniform density, nondimensional ballistic parameters 
may be defined as 

c, = Poo 

Pi,xgo' Pb^gi 
± = il       (6) 
Cm gO 

For the experimental conditions,7 the coefficients Q and cm as 
well as other basic parameters are shown in Tables 1 and 2, where 
the gravity force coefficient is calculated at the freestream speed 
U„c=:71.lm/s. 

If terms linear in c/ and cm arc ■■ wtained in Eqs. (4), the approximate 
linear and angular trajectories ar; 

Yc = r0 + V0t - 0.5(1 - nc,g0)ctt
2 

or = a0 + wot + 0.5n- g\cmcgt
2 (7) 

The e.g. coordinate and the pitch angle are parabolic functions 
of time. In the first-order approximation, the vertical motion corre- 
sponds to a pure gravity drop. The lift force gives a small negative 
correction of the eg. acceleration similar to the case of a plunging 
cylinder in the presence of a shear layer considered in Ref. 4. As will 
be shown, the analytical expressions (7) are consistent with trends 
of numerical solutions and experimental data. 

Model 

Table 1   Physical parameters of models7 

Xt 80 82 

B1NI 0.31250E-01 0il333£+00 0.86206£+00 0.68807E-01 0.66707£-01 
B4N2 0.31250£-0I 0.49500£+00 0.86206£+00 0J3002E-01 0.57596£-01 
B5N5     0.32609£-01     0.62261E+00     0.85606£+00     0.16423E+00     0.12753£+00 

Model 

Table 2   Aerodynamic and gravity acceleration coefficients for models7 

ci Cm ctUi 

B1N1 
B4N2 
B5N5 

0.29915E-03 
0.72519£-03 
0.36773 £-02 

0.22204£-02 
0.38857£-02 
0.24684£-01 

0.95585 £+02 
0.95585£+02 
0.87786£+02 

0.16080E-01 
0.16080£-01 
0.14768£-01 
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Phase 3: Body Outside Cavity 
If the body is totally outside the cavity and moves into an external 

freestream, the lift force and pitching moment are again expressed 
as integrals along the body axis with the integrands being a power 
series with respect to the parameter q =Q.5a/H (see Ref. 5). When 
these analytical solutions are analyzed the slip-surface effect on the 
body trajectory is obtained to be proportional to the quantity 

I    qa2a,dx +        q2a2dx ~ | + q2gQ + 0(q: 
go)      (8) 

where the over bars denote averaging along the body axis. For typical 
cases, the body shape factor is given by Eq. (3c), go = 0(l). The 
average distance parameter is q < 0.5. Its maximum value q = 0.5 
corresponds to contact of thebody surface with the slip surface. The 
maximum values of the first and second terms in Eq. (8) are g and 
^, respectively. As the body drops, both terms decrease quickly, and 
the slip-surface effect vanishes. Thus, dominant terms are associated 
with the body drop in an unbounded uniform stream. In this case, 
die equations for the lift force and pitch moment can be reduced to 

dVr        dco ,       / ,,1 L = 7r  -So-^-+Si-^-iVc-a)a2
f+w(g0+xea

2)\    (9a) 

dVr dcü / .,\ ,    ,1 
M = * ~81 "dT + *2d7 + (V ~ a)(g0"x'a*>+   ' ' 

(9b) 

where a, = a(xe) is the base radius (a, = 1 for a cylindrical after- 
body). These expressions were derived for bodies with a sharp nose, 
a(x0) = 0. Substitution of Eqs. (9a) and (9b) into the trajectory equa- 
tions (2a) and integration once give the linear ordinary differential 
equation (ODE) system (with constant coefficients) 

= Cl|(V,:-a)+C,2Ü>-Cl0 
dv; 

d/ 

dco 
-r- = C2i (Vc - a) + c22a> + cm (10a) 

1 ~ Cm7Tg2 
ClO = ——; Cf, 

. An 
Cza = 

cmCi,ng\ 

ClTT , 
c" = ' j~LCm7r*'(s° ~ x'a*) ~ (1 ~ cmXg2)a2] (10b) 

en = -^-[(1 -cm7rg2)(go + xta
2) + c„ngix

2a2
e] (10c) 

C2i = -£-[(1 + ci7tg0)(ga - xea
2

t) + qngia2] (lOd) 

C22 = "^-[d + ciirg0)x1a2
e -c,ngi(gQ + xra

2)] (lOe) 

where A0 is given by Eq. (5b). 
We consider the Cauchy problem for Eqs. (10a) assuming that 

the body is totally outside the cavity for/ > IQ, and its initial speeds, 
coordinate, and pitch angle are 

Vc(io) = V0',        «(/o>= fl&        re(fo) = Jo.        «('o) = «i 

(ID 

From Eqs. (10a),'the angular velocity to and the function 
W(/)= Vc(/)—or(») are solutions of the decoupled equations 

d2W    „   dW      ,„ d2ü>    „  da 

* * * * (12) 
where the constant coefficients are 

cmna2
f [ 2     c, , 2       ,        ,     \ 

= -z-r1- \xt + *c,Ixlgo - 2x(gi + g2) 
2A0   L c" 

K = J£-[go-a2xt-ci7:a2(g<>xl-gt)] (13a) 

c">cJ7r / 2   2\ c"^trc I 2\ 
c\ = -^-(*i " W-        c* = ~^-(*° " x'a<) 

(13b) 

The characteristic (secular) equation for the eigenvalues of ODE 
system (10a) and its solutions are 

X2-2yk + K = Q, ki=Y+iQ 

X2 = y-iQ, ß = -/* - y2 (14) 

Various cases significant for the trajectory stability will now be 
discussed. 

Eigenvalues Ai and X2 Are Complex 
If Xi and k2 are complex, then the trajectory parameters are ex- 

pressed in the form 

Vc(r) =Tv0' + (d - C2T)/K + ey,(A, cos ßr + A2 sin ßr) 

to = -(C2/K) + eyt(Bi cos ßr + B2 sin ßr) (15a) 

n(0 = y0 + W+d/K)T - (C2/2K)T2 + i/y/k) 

x [(.yAi - ßA2) cos ßr + (ßA( + yA2) sin ßr] (15b) 

a(t) = a'0- (1/K)[C2T + yBl-QB2- e*T[(yBi - UB2) cos ßr 

+ (ßßi+yß2)sinßr]} -  (15c) 

where T =/ - /0 and d = -K(V„' -a'0)-cl-yBl + ßß2. The co- 
efficients A\,A2,B\, and B2 are determined from the initial condi- 
tions (11) and Eqs. (10a). They are expressed as 

A,=—, 
K 

dV(0) 

*2=^ + 
■yAi 

Vo = 
d/ 

UK ß 

= cn(V0'-ao) + c12COo-Cio (16a) 

C2 
5.=^+-. fl2 = öp-yBi 

ß 

(oo = 
do)(0) 

d; 
= C2i (V0' - a'0) + cna'o + c20 (16b) 

Equations (15) indicate that the body motion includes two com- 
ponents. The first terms of Eqs. (15a) and (15b) correspond to body 
rotation with the constant angular speed —C2/K and a vertical trans- 
lation with uniform acceleration -C2/K. Also present is a drift with 
constant velocity a'0 - (c{ + 2y Bt - WO)/K that depends on the ini- 
tial angle of attack and angular velocity. These terms are associated 
with a nonoscjllatory motion, which is called the mean state. The 
second component corresponds to periodic modulations of the mean 
state. These oscillations are neutral for y = 0, unstable for positive 
y, and stable for negative y. For zero base radius ae = 0, Eq. (13) 
specializes to 

y = 0,       K = n2 = (c„,jr/A0)so,       £i = (cmctn/A0)gi 

In = (.CmCt7T/A0)go 

This case corresponds to neutral oscillations. For heavy bodies 
with base radius a, = 1 and small ballistic coefficients q <K 1 and 
cm <£. 1, we can linearize about c( and c„. Equations (13) yield 

y = nc„(x2-c,/cm),        K = ß2 = cm}i(g0 - xt)    (17a) 

c\ = nc„c, (si - x1),        c2= 7tc„cs (go - *e) 

d = 7rci(.(Oo + cs) (17b) 
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Equations (17) show that oscillations are unstable for x2 > ci/cm. 
This case fits the experimental conditions of Ref. 7. Forx, < c,/cm, 
oscillations are stable or neutral. In all cases the increment is small, 
y~cm~n2«l- 

The expressions for the vertical speed and angular velocity are 

Vc = V0' - c,r + Ax{eY' cos QT - 1) + A2eyr sin Qx 

u = -ct + erT(Bi cos Qr + B2 sin flr) 

The first equation indicates that the e.g. oscillates near its mean 
state associated with free drop. If the body dynamics is stable, y < 0, 
then the oscillations vanish as z -* oo. Nevertheless, they induce 
the constant vertical velocity -A, = c/jr(w'Q + ct)/£l2. The second 
equation shows that the angular velocity osculates near its mean 
level, co--cr associated with free drop. 

Eigenvalues \i and X2 Arc Real 
Ukl=y + vandk2 = y-v [v = J(y2 -*)] are real, then the 

solution of Eqs. (10a) or Eqs. (12) is 

Vr(») = V0' + (d -c2T)/K+ey,(.A[Chvc + A2shvr) 

to = ~(C2/K) + eyr(.B,chvx + B2shvx) (18a) 

YAO = ^o + (^o + <*7*)r ~ te/2*)1* 
+ i.e'Y/K)[{yAi - vA2)chvx + (yA2 - vArfshvx]      (18b) 

«(/) = a'0- {\/K){C2X + yBi - vB2 - eyx[{yBx - vB2)chvx 

+ (yB2-vBi)shvx]} (18c) 

where d = -*(V0' - a'0) - c\ - yB\ + vB2 and the coefficients are 

A, =-(<//*). A2=c2/vK + (V0-yAl)/v 

Bl=(o'Q + c2/K, B2 = {6>Q-YBI)IV (19) 

Again the body motion has two components. The first component 
is similar to the earlier case. It is associated with a pure gravity drop 
and can be treated as a basic state. The second component is relevant 
to an exponential drift from or toward the basic state depending on 
the signs of the eigenvalues. If Xi <0 and X2 <0, then the expo- 
nents decay as x -* oo, and the body motion evolves from the initial 
conditions to the basic state, which includes rc'aiion with constant 
angular velocity and translation with constant acceleration. If k\ 
and/or k2 are positive, then the exponential ;erms grow with time, 
and the body departs from its basic state (aperiodic divergence). If 
v = 0, then the second component of the body motion is governed 
by the sign of y. 

The aforementioned analytical solutions and stability characteris- 
tics of the body dynamics can be used for fast qualitative estimations 
of the body trajectory outside the cavity. To our knowledge, these 
results are new. 

Results and Discussion 
To calculate the body trajectory including all phases of the sepa- 

ration process Eqs. (2a) are numerically integrated using a fourth- 
order Runge-Kutta scheme (see Ref. 9). Our computational code 
includes a module that calculates the lift force and pitching moment 
for phases 1-3 using the analytical results of Ref. 5. The accuracy 
of the predictions can.be related to the size of the perturbation pa- 
rameters and uncertainties in the experimental launch conditions. 
(Because these data arc referenced, their accuracy can be obtained 
from the authors.) In the best cases, the accuracy can be as good 
as a few percent when the aerodynamic forces are small compared 
to the weight and the characteristic pitch inertia with experimental 
initial conditions that matched those assumed in the theory. Large 
excursions can result if large-scale shear layer motions occur and 
other disturbances evolve in the external flow. 

The combined asymptotic and numerical method described pro- 
vides a means to calculate rapidly body trajectories. One trajectory is 
normally predicted in less than \ min using a personal computer Pen- 
tium 166. This quick-turnaround personal-computer-oricntcd tool 

Fig. 2   Models for free-drop tests in the IIT wind tunnel. 
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Fig. 3   Model B4N2, Ux = 623 m/s, V0 = 1-42 in., a0 = 0 deg, V0 = 
8 inVs, and wo = 9 deg/s. 

will be compared to the subsonic experimental data7 in what fol- 
lows. 

Experimental Data 
Drop tests7 were conducted in National Diagnostic Wind Tunnel 

of the Illinois Institute of Technology (IIT) Fluid Dynamics Re- 
search Center at the Mach number range 0.12 < M < 0.23. The rect- 
angular cavity 20 in. long,41 in. wide, and 4 in. high was mounted on 
the top wall of the wind-tunnel test section. The models are bodies 
of revolution of radius a0 = | in. and nose length Jc„ =3.56 in. (see 
Fig. 2). Two models (B1N1 and B4N2) are ogive cylinders 12 in. 
long. The third model (B5N5) has an elliptic nose and a total length 
of 11.5 in. The heaviest model, B1N1, has mass m = U 1.85 g, mo- 
ment of inertia /=0.0014kg-m2, and e.g. location Jt0 = 6.16 in. 
For model B4N2, m = 46.14 g, /= 0.0008 kg • m2, and x0 = 5.94 in. 
The lightest model, B5N5, has m = 8.72 g and / = 0.000015 kg • m2. 
In these experiments, bodies were dropped from a cavity in the IIT 
wind tunnel. 
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Fig. 4   Model B4N2, t/„ = 4U m/s, Yt = 2.4 in., a0 = 9.6 deg, V0 ■■ 
2 \nJs, and wo = — 80 dcg/s. 
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Fig. 6   Model B1N1, U„ = 40.8 m/s, Yt = 2.65 in., a0 = -7.8 deg, V0 = 
15 inJs, and wo = 80 deg/s. 
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Fig. 5   Model B1N1, l/« = 62.7 m/s, Y0 = 2.72 InJs, a0 = -11.8 deg, 
Vb .= 9 in./s, and wo = 75 dcg/s. 
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Fig. 7   Model B4N2, t/«, = 40.6 m/s, Yt> = 2.65 in., a0 = -9.2 deg, V0 = 
15 inJs, and WQ = 70.8 dcg/s. 

The models were released by withdrawing.pins, holding them at 
their noses and tails. 

Comparison with Experiment 
Preliminary analysis of the experimental data shows that during 

the release time tr a* 0.03 s, the initial angular and vertical velocities 
can be essentially affected by uncontrolled disturbances that may 
be induced by the release mechanism. During the release time, the 
gravity force may increase the pitch rate, if the model ends are not 
released simultaneously. This motivated identification of the actual 
initial angular speed öo and vertical velocity V0 by differentiating 
the experimental distributions of the pitch angle S(7) and the e.g. 
vertical coordinate Yc(7). 

Figures 3a-10a show comparisons between predicted (solid lines) 
and experimental (symbols) eg. trajectories for all three models. 
Dashed lines indicate the free-drop trajectories under the gravity 
force only. As already noted, the lift is small compared to the body 
weight. Figure 3 shows that the free drop in a vacuum is very close 
to the computational results and the experimental data for moderate 
angles of attack, especially for the heavier model, B1N1. However, 
the vacuum curve diverges from the experimental data if the body 
enters into the external stream at relatively large a. This is clearly 
seen in Figs. 4a, 8a, and 10a. In these cases, the theoretical prediction 
accounting for aerodynamic loads is in a good agreement with the 
experiment. Moreover, the theoretical model is capable of capturing 
trajectory nuances shown in Fig. 8a. 
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Fig. 8   Model BSN5,1/«, = 62.5 m/s, Y0 = 3.85 in., a„ = 2.4 deg, V0 = 
19 iaJs, and WQ = 140 deg/s. 
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6 inJs. 
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Fig. 10   Model B4N2, t/» = 62.1 m/s, Y0 = 1£ in., cm = -11.9 deg, V0 = 
15 inVs, and u>o = 52.86 deg/s. 
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Fig. 11   Effects of initial vertical velocity: model B4N2,1/oo = 623 m/s, 
YQ = 1.42 in., QO = 0 deg, and u>o = 8 deg/s. 

Figures 3b-I0b show a comparison between predicted (lines) 
and experimental (symbols) histories of the angie of attack a(/). 
Figures 3b-6b show good agreement between the theory and the 
experiment. The agreement is only satisfactory for the cases shown 
in Figs. 7b-9b. Rough estimates indicate that the initial growth of o 
(see Fig. 7b) may be associated with an initial pitch impulse gener- 
ated by the release mechanism under a gravitational couple from the 
pins. In this case, both the initial angle of attack and angular speed 
were estimated from the experimental data. These were used as the 
initial conditions for the calculations. For the lightest model, B5N5 
(see Fig. 8b), the discrepancy seems to be due to the difference 
between the actual nose shape (elliptic) and the shape used in our 

calculations (parabolic ogive). Unfortunately, calculations were not 
possible for the actual nose because its geometry was not available. 
Note that the nose shape becomes more important at large pitch 
angles. The divergence of the predicted and experimental curves 
in Fig. 9b seems to be due to the flow inside the cavity, which is 
presently not included in our modeling. Namely, the nonuniform 
upwash field due to the rccircuiatory flow in the cavity has not been 
included. Such an upwash field will change the crossflow angle of 
attack from that due solely to the vertical speed of the body, which 
has been accounted for in the approximate model described here. 
This can be thought of as a first estimate of the flow physics. The 
effect of the upwash field can be considered a refinement of this 
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Fig. 12   Effect of frccstrcam velocity on the body trajectory: model 
B4N2, y0 = 1-42 in-i ao = 0 deg, V0 = 8 inJs, and w0 = 8 deg/s. 
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Fig. 13 Influence of the initial angular speed on the body trajectory: 
model B4N2, Uoo = 623 m/s, K0 = 1.42 in., aa = 0 deg, and Vo = 8 inJs. 

model in which this rccirculalory flow can be estimated from the 
empty cavity flow. An inviscid approximation for the latter is given 
in Ref. 4 for deep cavities. (Deep cavities are almost bridged at 
their top end by the shear layer in contrast to shallow cavities for 
which the shear layer will collide with their bottom.) Further refine- 
ments would include the interaction of the moving body with this 
nonuniform flow for both deep and shallow cavities. Pitch oscilla- 
tions observed in phase 1 (body is totally inside the cavity) clearly 
indicate the presence of this effect, which may also explain the sub- 
stantial difference between the theory and the experiment shown in 
Fig. 10b. 

As indicated earlier, the pitch behavior in phase 3 (body is out- 
side the cavity) strongly depends on the entry condition, which is a 
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Fig. 14 Influence of the initial pitch angle on the body trajectory: model 
B4N2, Uao = 623 m/s, Yo = 1.42 in., Vt = 8 inJs, and u»0 = 8 deg/s. 

function of the angular velocity, vertical speed, and their derivatives. 
For the case shown in Fig. 10b, the shear layer displacement from 
its basic state into the cavity may cause a phase jump of the right- 
hand-side term in Eq. (2a) from 0 to 180 deg. Such a jump affects 
the pitch history outside the cavity. This is illustrated in Fig. 10b 
by the dotted line that was calculated with the opposite sign of the 
pitching moment. It is seen that this curve is in a good agreement 
with the experimental data. On the other hand, experimental curves, 
shown in Figs. 5b, 6b, and 7b for approximately the same initial 
conditions, have a regular behavior, that is, they are in a good agree- 
ment with the computations performed without changes of the sign 
of pitching moment. These findings suggest that there is a bifurca- 
tion in the pitch history a(f) when the body enters into the external 
stream. The trajectory eauations allow such a bifurcation because 
the aerodynamic for-hig terms of Eqs. (2a) are nonlinear (quadratic) 
functions of speeds V and o>. One of two possible trajectories is se- 
lected when the bo^y crosses the shear layer. Therefore, phase 2 
serves as a trigger of the pitch bifurcation. Accurate modeling of 
this mechanism is important for prediction of the pitch history and 
store trajectory in the next phase, when the store is outside the cav- 
ity. To verify this hypothesis additional theoretical, numerical, and 
experimental studies are needed. 

Parametric Studies 
Parametric studies of the body trajectory were conducted for dif- 

ferent initial conditions, body parameters, and freestream speeds. 
The results 'are shown in Figs. 11-15. Variations of the initial ver- 
tical velocity cause not only e.g. acceleration but phase shift of the 
pitch angle (see Fig. 11). In accord with the analytical solution dis- 
cussed earlier, an increase of the freestream velocity leads to a sub- 
stantial increase of the mean pitching angle and the pitch oscillation 
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Fig. 15 Trajectories of different models: I/» = 62.3 m/s, YQ = 1.42 in., 
cto = 0 deg, Ko = 8 inJs, and WQ = 8 deg/s. 

frequency (see Fig. 12), while the e.g. trajectory is changed slightly. 
Figure 13 shows that the pitch oscillation amplitude increases and 
the phase shift occurs as the initial angular speed increases. Ampli- 
fication of the pitch oscillations is stronger in the case of positive 
cüo with the e.g. trajectory also noticeably affected. The effect of the 
initial pitch angle is similar to the effect of <oo (compare Figs. 14 
and 15). However, the variation of the e.g. trajectory in this case is 
smaller. 

Trajectory dependencies on the body shape are shown in Fig. 15. 
The calculations were performed for three experimental models of 
Ref. 7 under the same initial conditions. As expected, the highest 
amplitude and frequency of the body oscillations correspond to the 
lightest model, B5N5. It is also seen that the body trajectories out- 
side the cavity are consistent with the analytical solution discussed 
earlier. _ - 

Conclusions 
This paper discussed modeling of Z-uOF vertical and pitching 

motions of thin bodies of revolution separating from a rectangular 
cavity into an external freestream. The problem is analyzed using 
combined asymptotic and numerical methods. The body dynamic 
equations include aerodynamic forces and moments, which are pre- 
dicted using approximate analytical solutions obtained in our pre- 
vious studies within the framework of the slender body theory. Dif- 
ferent phases of the separation process were analyzed using small 
perturbation theories. This leads to simplifications of the trajectory 
equations and their integration in closed form for different typical 
cases associated with phase 1 (body is inside the cavity) and phase 
3 (body is outside the cavity). These analytical solutions provide 
explicit dependencies of the body trajectory on the flow and body 
characteristics, which allows identification of the critical parameters 
and insight gained into the physics of the separation process. 

The numerical code predicting the trajectories for all three phases 
of store separation was validated by comparison with the experi- 
ment. For a major portion of the data, the calculations are in a good 

agreement with experiment Moreover, the theory is able to capture 
nuances of the body pitching observed experimentally. These re- 
sults confirm our theoretical model. However, there are cases when 
the agreement is only satisfactory. The body separation is affected 
by more complex flow phenomena, which are not captured by our 
model. One discrepancy seems to be due to the slip-surface dis- 
placement induced by the shear layer instability and/or sclf-excitcd 
oscillations of the cavity flow. These effects can lead to the pitching 
moment phase jump from 0 to 180 deg during phase 2, when the 
body crosses the shear layer. The jump may trigger quick transi- 
tion from one pitch angle trajectory to another for phase 3, when 
the body is outside the cavity. Our calculations showed that this in- 
terpretation is consistent with the experimental data indicating the 
existence of two substantially different pitching trajectories for ap- 
proximately the same initial conditions. Because nonlinear dynamic 
equations are involved, the body trajectory may have a bifurcation 

. point associated with phase 2. Although this transitional phase is 
relatively short, its aerodynamics may determine the selection be- 
tween possible trajectories outside the cavity. Further theoretical 
and experimental studies are needed to establish and clarify the bi- 
furcation mechanism. Our future work will extend this model to 
transonic speeds. 
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