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1.   INTRODUCTION 

The main focus of the Parts Obsolescence Management Tools (POMT) program was the 
definition of a reengineering methodology that supports both the initial design and the 
reengineering of modem electronics products. This methodology begins with the product 
specification using the concept of the simulatable specification as defined by the Continuous 
Electronic ENhancements using Simulatable Specifications (CEENSS) program and continues 
with the reengineering process whereby an implementation is developed and culminates with the 
interface to the manufacturing process. This effort also focused on the development of two key 
computer-aided design (CAD) tools needed to support the application of this methodology in 
real-world product challenges. These tools include the Behavioral Product Reengineering 
(BPR) tool and a Design Verification Test Generator (DVTG) tool. 

1.1   POMT Program 

Parts obsolescence, also referred to as out-of production parts (OPP), is a major issue which 
must be faced both in the design of modem weapon systems as well as in the support of older 
legacy systems. This has become evident in TRW's design and planning for manufacturing of 
the communications, navigation and identification (CM) systems for F-22 and Comanche 
helicopter. From the second quarter of 1995 through the second quarter of 1996, TRW 
experienced 62 OPP events across the total set of 693 active component line items. The 16 
most serious of these events forced redesign. The expected continuation of this problem has 
driven TRW to adopt a periodic preplanned product improvement (P4I) strategy that integrates 
elements of design, manufacturing and support. The TRW company's strategy preempts 
obsolete parts problems through preplanned periodic redesigns of the electronics, the recurring 
costs of which are recovered through savings in production and support. In addition, the 
periodic incorporation of new technology with higher processing densities allows for 
performance enhancements and savings in weight and cost. Using this strategy since 1995, 
TRW has improved the F-22 CM functionality and durability while reducing the total number of 
modules from 16 to 6, thereby reducing weight and costs. Contributing significantly to the 
success of this strategy is the aggressive adoption of commercial business practices and the 
move towards contractor logistics support (CLS). 

The TRW company has adopted the P4I strategy for its digital and receiver product road maps, 
through which F-22 designs are being upgraded and migrated to the Comanche helicopter and 
Joint Strike Fighter (JSF). Key technology components of these road maps include the 
movement toward the use of field programmable gate arrays (FPGAs) in lieu of application 
specific integrated circuits (ASICs), VHSIC hardware description language (VHDL) to capture 
both design requirements as well as behavior, and the use of commercial radio frequency (RF) 
microwave technology. 



The TRW company's move to this P4I strategy has been challenged by the lack of key 
methodologies and CAD tools. The prototype CAD tool set developed on the CEENSS 
program provided a good starting point, but needed to be expanded in the areas of behavioral 
product design synthesis and automation in the development of design verification tests. This 
program proposed to fill this shortfall through development of new tools that enhance the 
prototype CEENSS tool set by completing the commercialization of the formal requirements 
modeling environment and by adding two key additional tools. These tools include a BPR 
capability and DVTG. The BPR is built on top of the Synopsys Design Environment (SDE) tool 
and incorporates other key product design tools from Synopsys such as their Behavioral 
Compiler tool. The DVTG tool is based on a VHDL specification language (VSPEC), a formal 
requirements specification language developed by the University of Cincinnati. This language 
has evolved into the system level description language (SLDL). Formal requirements support 
tools were a key component of simulatable specifications capability demonstrated on the 
CEENSS program. These tools not only have relevance to modern systems, but to older 
legacy electronics systems as well, using the captured legacy design as a baseline for parts 
replacement or redesign throughout the life of the legacy system. 

1.2 Objectives 

As discussed in the previous section, the POMT program, begun in 1998, had the following 
major objectives: 
• Extend the CEENSS methodology as a form, fit, function, and interface (F3I) specification 

strategy. This involves applying simulatable specifications at each design level, which may 
potentially require reengineering attention (subsystems, boxes, boards, components and 
design reuse elements). 

• Design products at a higher level by moving from implementation-specific design to abstract 
level design. This can be demonstrated by designing with behavioral VHDL as opposed to 
register transfer level (RTL) VHDL, or even designing at a higher level of abstraction, such 
as SLDL. The benefits of designing at a higher level include: 
• Significantly reduces the reengineering effort 
• Provides a level of component technology independence 
• Improves the potential to resynthesize a component or a board from its simulatable 

specification 
• Partially automate the test development process. The objective was to do the following: 

• Provide CAD tool support for test vector generation 
• Support direct generation of tests from the product requirements specification in the 

simulatable specification. 

1.3 Statement Of The Problem 

The Department of Defense (DoD) is faced with a major avionics parts obsolescence problem, 
which is just beginning to be appreciated. This problem affects not only older legacy avionics 
systems but also relatively recently developed avionics systems as well as next generation 



avionics systems yet to be designed. The root cause of this obsolescence problem is the rapidly 
increasing rate of electronics parts technology evolution, which is resulting in much shorter life 
cycles for existing parts. This shortened parts life cycle has resulted in fielded products that 
have problems acquiring replacement parts soon after their deployment. This situation has been 
accelerating and is now to the point at which weapon systems have component availability 
problems before they can even get to production. 

This problem has become a major concern for custom component technologies, which depend 
upon specific processes and facilities such as ASICs, and multi-chip modules (MCMs). When 
prototype systems are developed early in a weapon system development, there is a good 
chance that the processes and facilities used for these type of parts may no longer be supported 
by semiconductor vendors by the time that production begins. This results in the need to 
reengineer the prototype designs to get to production. 

In the case of older legacy weapon systems the parts obsolescence problem is further 
exacerbated by the fact that the existing design is often not available in a modem electronic 
representation. In fact, the design often is only available in the form of paper documents, which 
may or may not be up to date. Furthermore, the parts used in the design often have no 
functional model, making it difficult to infer the exact function of the part or of the board utilizing 
the part. This not only makes it difficult to keep these legacy products in operation, but also 
makes it very difficult to determine what the best strategy is when an obsolescence issue arises. 

In the case of modem avionics, there is a shift toward CLS. This will require avionics 
developers, such as TRW, to warrant their avionics for an extended period. This warranty 
period may be 20 years or longer. This means that developers must anticipate the effect of 
parts obsolescence over that period and include in the product cost and system design the 
impact of mitigating the risk of those parts obsolescence problems. This prospectively means 
that the developer has to project as many as four or five product reengineering activities for a 
product over that support period. 

A further complication is the fact that during the life cycle of the product, we typically find 
ourselves in a position in which we must retrofit a product design in order to correct problems, 
to add or improve functionality and performance, or to take advantage of technology in order to 
reduce size, weight, power or cost. This implies that when we attack a parts obsolescence 
situation, we may often find that the reengineering task may not be as simple as providing an 
exact equivalent capability. Rather, we may need to allow for design changes at the same time. 

An analysis of the situation results in the identification of the following key needs: 
A) The ability to recognize and predict parts obsolescence problems 
B) The ability to identify the most affordable response to the parts obsolescence situation, 

which may include the development of a drop-in replacement part, the reengineering of the 
product to utilize a similar part, or the reengineering of the product to utilize alternate 
component technologies 



C) The ability to efficiently recover the designs of legacy electronics, including product 
requirements as well as implementation 

D) The ability to efficiently develop a replacement component 
E) The ability to efficiently reengineer an existing design to replace a part 
F) The ability to efficiently reengineer to achieve a new design 
G) The ability to incorporate new and/or modified functions into a product during the 

reengineering associated with a parts obsolescence problem 
H) The ability to design products from the beginning to minimize the impacts of potential 

downstream parts obsolescence problems 

The focus of this program was upon a reengineering methodology and supporting CAD tools 
necessary to enable solutions to needs E, F, G and H. The POMT program is not alone in 
recognizing some of these problems. The E-3 VHDL Synchronizer Program also recognizes 
similar problems and needs, as stated in their objective: 

Further complicating the problem are the ever growing diminished 
manufacturing source (DMS) issues inherent in a system whose basic 
technology is now over 25 years old. Ever shrinking technology lifecycles 
which today last perhaps five years or less, reinforce the need for a design 
methodology which captures the system's functionality in a "technology 
independent" manner, reducing future impacts of DMS. 

Another area of concern is the lack of support from commercial vendors for DoD applications. 
As stated in Anthony Bumbalough's white paper "USAF Manufacturing Technology's Initiative 
on Electronics Parts Obsolescence Management": 

Commercially manufactured electronics and parts obsolescence issues are 
intimately intertwined. The military market volume is dwarfed when 
compared to the consumer market. This has resulted in virtually no 
military influence on the electronics market place and thus no impact on 
electronics parts availability. A lot of integrated circuit (IC) 
manufacturers have stopped producing military-qualified devices. 
Obsolescence problems have become systemic and chronic in military as 
well as commercial systems. The Engineering Manufacturing 
Development (EMD) stage of some weapon systems can take 5 or more 
years. Production phases are stretched out over several more years and 
the actual system mission life extends over decades. With some systems, 
such as the B-52, approaching 100 years. This is in comparison with some 
key commercial technologies having 18-month product life cycles. 
Another example of worsening obsolescence problems is commercial 
consumer electronics is moving to lower voltages (3 volts, 1.8 volts etc.). 
Current military electronics are based on 5 volt ICs. 



The above discussion points out some key differences between the commercial and 
DoD markets. With such a small percentage of market share (currently estimated at 
less than .2%), DoD is unable to drive the marketplace. This not only applies to ICs 
but also to electronic design automation (EDA) tools as well. 

1.4   Terminology 

This section identifies and defines some of the terminology used throughout this document. 

• Axiom: An axiom is a basic truth that is accepted without proof. Axiomatic specification is 
a technique used where axioms defining pre-conditions and post-conditions for specifications 
are defined. 

• Behavioral: In the discussion that follows, the term behavioral will be used to describe 
designs at higher levels of abstraction than the traditional RTL level. When pertaining to 
VHDL, it describes VHDL in as non implementation-specific or non technology-dependent 
manners as possible (i.e., behavioral VHDL). 

• Design: The term design is used loosely in this paragraph to describe the design of product 
requirements as well as the design of product structure and the realization of product 
behavior in algorithms. Design, in its more formal sense, refers to the activity, which occurs 
in a specific phase of development between the specification of requirements and production 
from a completed design. Design, as such, is an integrated activity that includes design 
synthesis, analysis, and validation in a (possibly virtual) prototype. 

• Model: The term model will describe the expression ofthat design in an abstract 
specification or design language. 

• Product: The term product will describe an object of design at a particular level. 

• Reengineering: The term reengineering will be used to describe the process of modifying an 
existing design in order to create a new design. 

VHDL: The acronym VHDL will be used to mean IEEE 1076 and any of its extensions. 
When treating the subject of electronic hardware specification and design methodology, a 
more explicit aggregation of acronyms would be more cumbersome and less inclusive. When 
a specific extension, such as VHDL analog-mixed signal (VHDL-AMS), is intended in the 
discussion, it will be indicated by its more precise designation. 
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3.   METHODOLOGY 

The methodology has been divided into two primary sections, one for the design methodology 
and one for the tools methodology. The design methodology focuses on the CEENSS 
methodology and appropriate extension for this effort. The tools methodology focuses on the 
two tools being developed and how they fit into the design methodology. 

3.1     Design Methodology 

We have identified a goal to make the POMT reengineering methodology and tools support 
both legacy electronics as well as modern designs. Toward this end we have defined a top- 
level methodology in which the simulatable specification is the key input to the reengineering 
process. The POMT methodology is illustrated in Figure 1. The three different processes 
identified include the following: 
• Legacy design 
• Initial product design 
• Reengineering an existing design. 

Each of the design processes has a different starting point, as follows: 
• When addressing legacy designs, the methodology begins with the recovery of the existing 

product design and the representation ofthat recovered design in the form of a simulatable 
specification. 

• When developing a new design, the first step is the construction of the simulatable 
specification for the product. 

• When reengineering an existing design, the first step is the consideration of the simulatable 
specification for potential modifications, if necessary. 

In all three cases, the process begins with the creation of a simulatable specification and then 
follows an identical reengineering process flow, as shown in Figure 1. 
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Figure 1. Reengineering Methodology that Supports Both Legacy and Modern 
Designs 

Based upon an analysis of requirements identified by the TRW CM product development 
organization in light of parts obsolescence issues and CLS, it was determined that the design 
and support of modern electronics systems requires that products be designed from the 
beginning with the expectation that they will have to be periodically redesigned during their life 
cycle. This is necessary both in response to parts obsolescence issues and the need for product 
improvements during the life cycle of the product. Further, we have determined that the design 
and reengineering of products at a higher level of abstraction is a key approach. This allows 
product design to be accomplished independently of the selected implementation. This directly 
supports the expectation that products will have to be redesigned, potentially several times. 
This technique assumes that any individual realization of the product design will incorporate a 
mapping from a higher level of abstraction to a product implementation. This approach requires 
an efficient methodology to develop and/or modify an implementation. 

It is essential that in addition to designing with the expectation of periodic reengineering, a 
methodology and supporting CAD tools must be available to significantly reduce the risk and 
effort required for these periodic preplanned reengineering activities. Two key tool aspects of 
such a reengineering methodology are illustrated in Figure 2. 
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Figure 2. Key Reengineering Methodology Concepts 

These two concepts will require CAD tool support in order to make the methodology feasible 
for application to real avionics product design and reengineering projects. 
• We must have an efficient low risk capability to synthesize implementations directly from 

higher levels of abstraction than traditional RTL VHDL. This is necessary in order to 
reduce or eliminate the time-consuming and error-prone tasks currently performed to 
develop the implementation-specific RTL VHDL or gate level designs necessary for 
individual component synthesis. 

• We must have the capability to partially automate the process of developing design 
verification tests (test benches and accompanying test vectors). This process is currently a 
highly labor-intensive task as well as being a significant opportunity for both errors and 
incomplete testing. Typically this is a manual process in which paper requirements 
specifications are analyzed and formal test vectors/test benches are developed to verify 
these English language requirements. 

The POMT approach was to define such a reengineering methodology and to develop tools to 
support that methodology. These tools began with the simulatable specification capability 
developed on the CEENSS program and extended that capability in order to enable rapid 
reengineering of board and component level designs. This extension consisted of two tool 



developments. The first tool development produced a BPR tool which supported the 
development of product designs directly from the VHDL product behavioral model within the 
simulatable specification. The second tool development produced a DVTG tool which 
supported the generation of test vectors directly from the product requirements model within the 
simulatable specification. These tools provide the following benefits: 
• Product design at a behavioral level resulting in designs which are not tied to specific parts or 

technologies 
• Rapid implementation and/or reengineering based upon behavioral synthesis, thus significantly 

reducing the need for the manual step in which synthesizeable RTL VHDL must be 
developed and tested 

• Rapid design verification following initial design or reengineering. This attacks the highly 
manual labor intensive test vector generation process. 

These tools support a product design/reengineering methodology which concentrates on the 
specification of products in a simulatable specification form and the rapid mapping ofthat 
product specification to an implementation using behavioral synthesis and design verification test 
automation. This methodology supports the legacy reengineering process as well as the modern 
product design and reengineering process. If the design is captured in the form of a simulatable 
specification for legacy systems, then this reengineering methodology and tools will be 
applicable to legacy reengineering as well. 

The following subparagraphs discuss in greater detail the flows that were mentioned briefly 
earlier in this section: 
• Recovering Legacy Designs (no simulatable specification representation) 
• Creating a New design 
• Reengineering an existing design (existing simulatable specification representation) 

There are many flows in the design development process, and even though the identified flows 
are not intended to be all-inclusive, they do highlight the most common design development 
flows. Additionally, there is a flow associated with modifying requirements that can be applied 
to each of the three flows identified above. 

3.1.1    Recovering Legacy Designs 

When recovering an existing product design, the recovered data may be minimal or may contain 
a complete product data set. The three sources of information identified in Figure 3 include 
legacy product data, the legacy product, and the legacy product test. A brief description of 
each is given in the following paragraphs. 
•    The legacy product data can come in numerous forms. It can be represented by 

schematics, hardware description language (HDL) code, source code, initial design 
requirements, or basically anything else that provides details on the product. It is a 
representation of all available information on the initial product. 
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The legacy product is the actual product. If the original product were a circuit card, the 
legacy product would be a physical copy of the circuit card. This would obviously be most 
valuable for characterization purposes if any reverse engineering is necessary to understand 
the function and requirements of the initial product. 
The legacy product test includes any information used to test the original product. This may 
include among other things, a test bench with associated test vectors. 
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Figure 3. Legacy Reengineering Methodology 

The first step in this process flow is to recover and evaluate the existing design as illustrated in 
Figure 4. A decision must then be made to determine whether or not to implement the 
simulatable specification methodology or to simply use the classical design environment. It is 
possible that the legacy product: 
• is not intended to have a long life cycle 
• does not have any projected reuse components 
• can be reengineered within the classical design environment, implementing any required 

modifications to the legacy design. 

If all of the above conditions are true, it may not be worthwhile to implement the simulatable 
specification methodology. In cases in which it is determined that the simulatable specification 
methodology would be beneficial, the next step is to recover the requirements and function of 
the legacy design. Once this is accomplished, a requirements specification for the legacy design 
is developed. Concurrently, all applicable portions of the legacy design should be brought into 
the design specification. At this point, the design specification must be evaluated to determine 
how much of the recovered legacy design data can be applied to the new design. Depending on 
the completeness of the existing design, the reengineering activity may be viewed as an initial 
product engineering task or a product reengineering task. Each of these flows will be described 
in greater detail in sections 3.1.2 and 3.1.3. 
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There are associated problems with recovery of legacy design. Difficulties include the following: 
• Required data does not exist (need to reverse engineer to recover data) 
• Existing data is in paper form (not electronic) and converting to electronic form introduces 

possibility for error 
• Electronic data may not be compatible with modern design environments 
• Design data is physical design (parts list, board layout, etc.); it does not provide models of 

design unit 
• Difficult to reverse engineer requirements; you are typically reverse engineering an 

implementation of the requirements 
• Few if any tools exist to assist in recovering legacy design. 

There are also problems with the current legacy recovery environment, including the following: 
• Expensive (consumes significant resources) 
• Time consuming (requires reverse engineering for understanding of legacy design) 
• Manual and error prone (little or no automation currently available in translation of legacy 

data into useful format) 
• Unavailability of commercial tools, although there are some efforts currently underway that 

are attempting to address the problem. 
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Figure 4. Legacy Recovery Flow 

The VP Technologies company is performing another reengineering tool effort for the parts 
obsolescence initiative. As described in Anthony Bumbalough's white paper: 

VP is under a three and a half year agreement to look at a number of 
powerful new  technologies:  including virtual prototyping,   automated 
model generators, and behavioral abstractors.   These methodologies are 
being brought  to  bear  on  the  legacy  electronics  and  COTS parts 
obsolescence/insertion problem.   VP will create a "Redesign Advisor " to 
evaluate the best approaches  to  an  obsolescence redesign problem, 
including evaluating costs and scheduling of various upgrade options. 
They will be conducting performance modeling to evaluate capabilities of 
target system platforms. They will be developing technologies to automate 
hardware understanding, including: "Explorers"for circuit extraction at 
chip  and board level,   multiple  thesis  resolution  through  computer- 
generated experiments, structural board-level virtual prototype creation, 
and  abstraction   to   simulatable   behavioral prototypes.   Testing  and 
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verification of the tools and libraries will be on the Boeing Corporation's 
legacy design suite. VP 's goal is a 4X improvement in upgrade cost and 
time. 

The potential exists that a VP Technologies tool may be used to abstract the behavior of a 
legacy design, allowing that information be used to support development of a simulatable 
specification. 

3.1.2    Initial Product Design 

When creating a new design, the starting point in development of a simulatable specification is 
the product requirements. This design flow is based on the CEENSS methodology as shown in 
Figure 5. 
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Figure 5. Initial Product Design Flow 

The first stage in Figure 5, specify product requirements, refers to the development of the 
requirements specification. These are the requirements as defined by the customer dictating 
what the end product needs to accomplish. The second stage, define product requirements, is 
also associated with requirements, but doesn't deal with the functional requirements associated 
with specify product requirements, but rather with tying down requirements not dictated in 
specify product requirements. The next stage, design product architecture, deals with 
performing the functional decomposition of the design and the corresponding requirements 
decomposition. Finally, synthesize product implementation deals with the actual design and 
synthesis of the individual design units. A slightly more detailed breakdown is presented in 
Figure 6. 
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Each of the steps in the flow are discussed in the following sections. 

3.1.2.1 Specify Product Requirements 

The product requirements specification process begins with the customer requirements and 
results in the creation of the product requirements specification. This process includes the 
capture and representation of the customer requirements in a structured requirements database, 
and the development of formal requirements models for the product and appropriate interfaces 
that are nonstandard or for which an interface model will be developed. At this point, a brief 
description of the requirements model is probably useful. 

A requirements modeling language must be able to express what a module must do without 
specifying how. For example, what defines in axiomatic terms the required relationship between 
a function's inputs and outputs. The language must also be capable of specifying nonfunctional 
performance constraints, such as heat dissipation, electromagnetic interference (EMI) emissions, 
propagation delay, clock speed, power consumption, form factor, and weight. 

The Requirements Model fully specifies the following: 
• Required product interfaces 
• Required product function and timing 
• All a priori expectations, in the form of constraints and axioms, regarding operation and 

attributes of the product. 
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The requirements model should capture only actual requirements. The actual implementation of 
the requirements is designed to satisfy the requirements model and describes one valid black 
box function. The implementation of the design will also be referred to as the operational facet. 

Rosetta is the language used to represent the requirements model and is a System Level 
Description Language (SLDL). Rosetta will be discussed in greater detail in Appendix A. 

3.1.2.2 Define Product Requirements 

Once the requirements model has been developed, there may be additional requirements that 
need to be defined in order to proceed with the actual implementation. The step of defining 
product requirements encompasses completing requirements not specified in product 
requirements. It involves bringing the requirements up to a point at which they describe the 
element sufficiently so that it could be a reuse element. This may include the following: 
• Completing the definition of all interfaces not tied down in the product requirements 
• Completing the timing and electrical constraint definitions where they are not fully defined in 

the product requirements 
• Completing the black box function model in any areas in which the product requirements 

were not fully functional. 
The phrase 'definitize product requirements' was introduced in the CEENSS methodology and 
is used interchangeably with 'define product requirements' in following figures. 

3.1.2.3 Design Product Architecture 

Once the requirements have been fully defined, the next step in the flow is to functionally 
decompose the design. This includes not only the decomposition of the proposed architecture 
of the design, but additionally the decomposition of the requirements of the design so that 
requirements flow down to the individual design units. This is a highly iterative design process in 
which the black box functionality of the product is decomposed to components, and 
synthesizable simulatable specifications are developed for each unique component. This 
decomposition should take into account available commercial off-the-shelf (COTS) 
components, available intellectual property (IP), and business decisions as well as functional and 
performance requirements. Where the component is COTS, this simulatable specification 
supports future reengineering ofthat component. Where the component is custom, this 
simulatable specification serves as the basis to search for potential IP to use and/or adapt for the 
current implementation as well as the basis for future reengineering. 

3.1.2.4 Synthesize Product Implementation 

After the design requirements have been decomposed down to the aforementioned individual 
design units, the next step is to develop the implementation. This is usually a fairly significant 
step in the overall process, including the actual design and synthesis of individual design unit. 

The synthesizable simulatable specification forms the basis for creating an implementation for 
each custom component and may utilize IP sub-elements which may or may not be pre- 
synthesized. The resulting simulatable specification documents the results of the synthesis 
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activity as well as all of the control and data necessary to replicate this synthesis when 
necessary. A resynthesis effort based upon the exact same starting point would only need to 
select a different synthesis target and resynthesize to that target. The BPR tool developed on 
this effort is focused in this area. 

3.1.2.5 Develop Reference Test 

A parallel activity to the synthesize product implementation step is the development of the 
reference test. The reference test development includes the development of the test bench and 
generation of test vectors and is based upon the requirement model and validates any valid 
implementation (of which the reference model is one). Validation consists of testing the 
reference test to determine correct test function and the testing of the reference model using the 
reference test. The DVTG tool developed on this effort is focused in this area. 

3.1.2.6 Fabrication and Assembly 

Fabrication and assembly is the development of a physical copy of the design. This is the phase 
in which the product is actually built. This often involves the development of a physical 
prototype for use in integration and test before going into full production, but with the increasing 
acceptance of the virtual prototype, there is also increased confidence in passing over the 
physical prototype stage. The virtual prototype refers to a model of the design that can be 
simulated and tested without the actual development of the physical prototype. Increased 
capability of tools that validate the virtual prototype has led directly to their increased 
acceptance with the obvious advantage of being able to uncover design flaws before the design 
is committed to hardware. 

3.1.2.7 Integration and Test 

Integration and test in previous design methodologies followed the fabrication and assembly step 
and involved the test and validation of a physical copy of the design. It is now becoming a more 
parallel process to the synthesize product implementation step with the advent of the virtual 
prototype. With the ability to simulate a design and exercise the virtual design against the test 
bench and associated test vectors, the design can be validated before committing to hardware. 
This does not mean that the integration and test step is completed prior to fabrication and 
assembly, but rather that there is increased confidence in the design before physical 
development, leading to a decreased possibility of uncovering errors after commitment to 
hardware. 

3.1.3    Reengineering an Existing Design 

There are many different scenarios when considering the reengineering of an existing design. As 
shown in Figure 7, the primary reengineering scenarios include the following: 

Redesign (system level requirements reengineering) 
Board level reengineering (system level architecture reengineering) 
Component level reengineering. 

17 



Depending on what change is causing the reengineering activity determines at what point in the 
design process the redesign activity needs to start. More specifically, if there was a fundamental 
requirements change that affects the entire system, the redesign activity would need to revisit 
product requirements. Effectively, this means the redesign activity needs to start from almost the 
beginning. On the other hand, if the change is at the component level and does not change the 
component's requirements, the redesign activity can be isolated to that component, thereby 
limiting how far back in the design cycle to implement the change. The following sections will 
examine each of the possible scenarios. 

Traditional Product Design 

Specify 
Product 

Requirements 

Definitize 
Product 

Requirements 

Design 
Product 

Architecture 

Synthesize 
Product 

implementation 

Initial Product Design 

Design 
Product 

Architecture 

Synthesize 
Product 

Impiementation 

Re-Design 

Synthesize 
Product 

Implementation 

Board Level Reengineering 

Synthesize 
Product 

Implementation 

Component Level Reengineering 

Fabrication 
and 

Assembly 

Figure 7. Engineering and Reengineering Flows 

3.1.3.1 Redesign (Modifying Requirements) 

When discussing requirements for a design, there are effectively two types of requirements to be 
considered. The first are the product's requirements as defined by the customer. These 
requirements represent what the product needs to do to meet the customer's definition of 
correctness. The second type of requirements is associated with what needs to be defined in 
order to proceed with the design and implementation. These have also been referred to as 
implementation requirements and are often associated with activities such as defining the 
interfaces to the product. These were discussed briefly in sections 3.1.2.1 and 3.1.2.2. 
Although both of these activities are associated with the product requirements, there is a need to 
be able to differentiate between the two in the interest of reengineering. Figure 8 and Figure 9 
portray the different entry points into requirements modification, depending on whether a 
customer requirement or implementation requirement change is forcing the reengineering activity. 
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Figure 8. Modifying Product Requirements 

In the case of a modified customer requirement (modified product requirement), the entire 
specification needs to be revisited, whereas in the case of a modified implementation 
requirement (modified product definition), the possibility exists that the resulting impact may not 
even affect the reference test. This highlights the importance of differentiating between the types 
of requirements along with the difficulty associated with recovering a legacy design. When 
evaluating a legacy design, it is often next to impossible to determine whether a specific function 
was dictated by the product requirements or was simply the result of a design decision 
associated with the implementation. 
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Figure 9. Modifying Product Definition 

Figure 10 is a slightly modified version of Figure 6 and points out that the reengineering activity 
is very similar to an initial design except that it is modifying product requirements as opposed to 
specifying the product requirements. The entry point into the design flow in Figure 10 will be 
either the first or second step depending on what type of requirements change is driving the 
redesign. For a more detailed description of each of the design steps, please refer to the 
appropriate subsection of 3.1.2. 
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Figure 10. Product Design Flow from Modified Requirements 

3.1.3.2 Board Level Reengineering 

In the case of a board level reengineering activity, the product's requirements are not changed, 
but the architecture of the design most likely has. A typical scenario for this type of redesign 
activity is the case of combining multiple boards into one board or multiple components into a 
single FPGA or ASIC. The requirements of the product have not changed, but the 
implementation has. Figure 11 and Figure 12 represent similar views of this particular design 
flow. 
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Figure 11. Modifying Product Architecture 

In Figure 12, the entry point into the design flow is at the design product architecture step, 
bypassing both of the requirements steps. Again, it is worth noting that the design activity 
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follows the same path as the previously described flows, but with a different entry point. For a 
more detailed description of each of the design steps, please refer to the appropriate subsection 
of3.1.2. 
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Figure 12. Product Design Flow from Modified Architecture 

3.1.3.3 Component Level Reengineering 

In the case of a component level reengineering activity, neither requirements nor architecture has 
changed. This is often merely a resynthesis activity driven by unavailability of a particular 
component or technology. Figure 13 and Figure 14 represent different views of this particular 
design flow.  
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In the case of previously described redesign activities, the possibility existed that the test bench 
would not need to change. In this particular flow however, that is the rule. None of the 
requirements or external interfaces should be affected by the redesign activity; therefore, the 
same reference test along with its associated test vectors should still be applicable. For a more 
detailed description of each of the design steps, please refer to the appropriate subsection of 
3.1.2. 
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3.1.4    POMT Design Methodology Metrics 

In the discussion of the methodology so far, various design possibilities have been discussed, 
including both engineering and reengineering scenarios. The design possibilities introduced so 
far include the following: 
• Initial product design (POMT) 
• Requirements level reengineering 
• Board level reengineering 
• Component level engineering. 

Additionally, there are two more design methodologies that need to be introduced. These are 
as follows: 
• Traditional product design 
• Initial product design (CEENSS). 
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The traditional product design is referred to briefly in Figure 7 and refers to a common 
approach to product design. The CEENSS initial product design employs the CEENSS design 
methodology, which was the starting point for the POMT design methodology. 

The following sections discuss various aspects of the individual scenarios as well as provide 
metrics for the projected benefits. 

3.1.4.1 Engineering Scenarios 

In the scenarios listed above, three scenarios are associated with initial product design and three 
scenarios are associated with reengineering. This section concentrates on the initial product 
design scenarios, which include the following: 
• Traditional product design 
• Initial product design (CEENSS) 
• Initial product design (POMT). 

The steps in each of the three design flows are basically the same as illustrated in Figure 6. 
These include: 
• Specify product requirements 
• Define product requirements 
• Design product architecture 
• Synthesize product implementation 
• Develop reference test 
• Fabricate and assemble 
• Integrate and test. 

The primary difference between the traditional product design and the CEENSS product design 
is that in the CEENSS flow, more time is spent on the up-front requirements definition task 
which has a payoff in later tasks. The most notable improvement was in the integration and test 
step as demonstrated on the CEENSS program. 

The POMT initial product design flow is effectively the same as the CEENSS initial product 
design flow, except for projected improvements in the synthesize product implementation and 
develop reference test steps due to the incorporation of the BPR and DVTG tools respectively. 

3.1.4.2 Engineering Projected Benefits 

Although each of these processes has been described in some detail, no details regarding the 
projected benefits from a metrics point of view have been discussed. This section addresses 
these projected benefits. 

The numbers represented in this section were gathered from numerous sources, including the 
following: 
• Design experiences of the POMT team 
• Interviews with design engineers and engineering managers within TRW 
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•    Various publications. 

These numbers are meant to reflect projected benefits of implementing the POMT methodology 
as well as actual metrics from previous design experience. These numbers are subjective in 
nature because there are almost as many different design methodologies as there are designs. 

The first step in setting up a baseline for metrics development is to determine what percentage of 
the design flow is spent in each of the individual steps. The traditional product design 
methodology will be used as the baseline 

Table 1 reflects the level of effort of each of these steps for the traditional product design 
methodology and the CEENSS product design methodology. 

Table 1. Traditional Product Design Effort 

Design Step Traditional CEENSS 
Specify product requirements 5 10 
Define product requirements 2.5 2 
Design product architecture 2.5 2 
Synthesize product implementation 15 10 
Develop reference test 20 14 
Fabricate and assemble 5 5 
Integrate and test 50 25 
Total 100% 68% 

As noted earlier, the CEENSS methodology requires additional effort in the specify product 
requirements step but offers improvement in most of the other steps. Most notably, there is a 
significant reduction in the integration and test step due to the increased effort spent in 
requirements. It is obviously more beneficial to capture an error in the requirements stage as 
opposed to integration and test. 

The POMT methodology is effectively implementing the CEENSS methodology along with the 
tools being developed on POMT. The tools will be discussed in detail in section 3.2. For the 
purposes of this metrics discussion, all that is necessary to understand about these tools is that 
they are focused in the synthesize product implementation and develop reference test steps. 
The projected benefits of this methodology, along with the previously described methodologies, 
are shown in Table 2. 
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Table 2. Projected Benefits of POMT Methodology 

Design Step Traditional CEENSS POMT 
Specify product requirements 5 10 10 
Define product requirements 2.5 2 2 
Design product architecture 2.5 2 2 
Synthesize product implementation 15 10 5 
Develop reference test 20 14 7 
Fabricate and assemble 5 5 5 
Integrate and test 50 25 25 
Total 100% 68% 56% 

3.1.4.3 Reengineering Scenarios 

There are three scenarios associated with product reengineering. These include the following: 
• Requirements level reengineering 
• Board level reengineering 
• Component level reengineering. 

Each of these scenarios is based on having a simulatable specification as the starting point. In 
order to provide metrics to project the benefits of each of these reengineering flows, a baseline 
needs to be introduced depicting the current approach to reengineering. 

In the Reuse Methodology Manual for System-On-A-Chip Designs, Michael Keating and 
Pierre Bricaud describe the difficulty with the current reengineering scenario: 

Legacy designs - those designs we wish to reuse but were not designed for 
reuse - present major challenges to the design team.  Often these designs 
are gate-level netlists with little or no documentation.     The detailed 
approach to a specific design depends on the state of design.   However, 
there are a few general guidelines that are useful. ... 

The most difficult part of dealing with a legacy design is recapturing the 
design intent.  With a good functional specification and a good test suite, it 
is possible to fix, modify, or redesign a block relatively quickly.    The 
specification and test suite fully define the intent of the design and give 
objective criteria for when the design is functioning correctly. 

If the specification and test suite are not available, then the first step in 
reusing the design must be to recreate them. Otherwise, it is not possible 
to modify the design any way, and some modification is nearly always 
required to port the design to a new process or to a new application. 
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The problem with recreating the specification and test suite, of course, is 
that these activities represent well over half of the initial design effort. 
Almost none of the benefits of reuse are realized. 

Thus, if the specification and test suite exist and are of high quality, then 
reuse is easy, in the sense that even if a complete redesign is required, it 
will take a fraction of the cost and time of the original development. If the 
specification and test suite do not exist, then reuse of the design is 
essentially equivalent to a complete redesign. ... 

In spite of the observations in the above section, some unfortunate design 
teams are required to try to reuse existing designs, usually in the form of 
netlists,for which documentation and test benches are mostly nonexistent. 
In such cases, most teams attempt to use the design as-is. That is, they 
attempt to port the design to a new process without changing the 
functionality of the circuit in any way. 

Formal verification is particularly useful in this scenario because it can 
prove whether or not modifications to the circuit affect behavior. Thus, 
synthesis can be used to remap and reoptimize the design for a new 
technology, and formal verification can be used to verify the correctness 
of the results. 

The following are several key points discussed in the above excerpt: 
1. It is difficult to extract design intent when reverse engineering a product design. 
2. Depending on the information available, reverse engineering the product can be anywhere 

from extremely difficult (if not impossible) to relatively straightforward. 
3. If the product was not designed originally with design reuse as a goal, reengineering the 

product can often result in a complete redesign. 
4. A significant portion of the reengineering activity is involved in extracting the requirements of 

the original design. 

For the purposes of this baseline, it was assumed that the original product was not designed 
with reuse in mind. This will lead to an almost complete redesign activity when reengineering the 
product, which is essentially equivalent to the traditional initial product design. The details of the 
primary differences between the other reengineering flows were described in detail in section 
3.1.3. 

3.1.4.4 Reengineering's Projected Benefits 

What remains to be discussed are the benefits of the different reengineering methodologies. 
One of the greatest benefits with the POMT (or CEENSS) methodologies is that they help to 
minimize the possibility of starting from scratch when faced with reengineering the product. 
Another benefit, as described earlier, is that the driving force for the redesign helps dictate that 
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step in the design methodology that the redesign activity needs to start from. This was 
described in detail in section 3.1.3. Table 3 portrays the projected benefits for each of these 
design scenarios. 

Table 3. Re engineering Design Effort 

Design Step 
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Specify product requirements 5 5 0 0 
Define product requirements 2.5 1 0 0 
Design product architecture 2.5 2 2 0 

Synthesize product implementation 15 5 5 5 
Develop reference test 20 3.5 0 0 

Fabricate and assemble 5 5 5 5 
Integrate and test 50 25 20 15 

Total 100% 46.5% 32% 25% 

When evaluating the metrics for the reengineering activities, it is important to note that some of 
the steps have zero effort because these steps should not be necessary within the particular 
redesign activity. 

3.2   Tools Methodology 

Two goals of the POMT effort were to create a methodology that supports the 
engineering/reengineering process and to develop tools that can be used within that process. 
The focus to this point has been on the methodology itself; discussion now shifts to the tools. 
More specifically, the goal of the tools is to provide an engineering/reengineering environment 
that supports efficient implementation based upon a behavioral design. There are many tools 
currently available that support the reengineering methodology, but there are also some 
identified gaps in the tool process that will be the focus of the POMT effort. 

As described by Anthony Bumbalough in his white paper: 
The goal of this area is to provide the military industrial base and logistics 
centers with common, commercially available obsolescence management 
... reengineering tools. The intent is for the tools to be maintained and 
supported by vendors who also have both commercial and military 
customer bases. While the data input tools and the resulting designs may 
be different, it is important that both commercial and military industry use 
the same tools and standards for information exchange. 
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More specifically, relative to the POMT objectives described in section 1.2, two of the primary 
objectives were as follows: 
• Design our products at a higher level by moving from implementation-specific level design to 

abstract level design. This can be demonstrated by designing with behavioral VHDL as 
opposed to RTL VHDL, or even designing at a higher level of abstraction such as SLDL. 
The benefits of this include the following: 
• Significant reduction of the reengineering effort 
• Provision of a level of component technology independence 
• Improvement in the potential to resynthesize a component or a board from its 

simulatable specification 
• Partially automate the test development process. The objective was to do the following: 

• Provide CAD tool support for test vector generation 
• Support direct generation of tests from the product requirements specification in the 

simulatable specification. 

The first objective was the focus of the BPR tool, developed by Synopsys. The second 
objective was the focus of the DVTG tool, developed by the University of Cincinnati and 
commercialized by EDAptive. Each of these are discussed in greater detail in following 
sections. 

The term simulatable specification has been used extensively throughout this report and is a key 
component of POMT's methodology. A part of the simulatable specification that has also been 
receiving considerable attention is the requirements model. At this point, it may be beneficial to 
describe what is meant by the term requirements model and what its benefits are. Darrell 
Barker's white paper describes requirements modeling as follows: 

Requirements modeling ... models a system's requirements. Another way to 
say this is that it is a "meta-specification "; which means a specification of a 
specification. The research is based on the fact that studies (e.g., the 
Standish Report, 1995) have determined that 5 of 8 leading causes of 
cost/schedule overruns, project failures, and poor quality are related to the 
system's requirements and specifications. This is one of the reasons that 
VHDL behavioral modeling is so effective. But the requirements modeling 
referred to here is done prior to VHDL behavioral modeling. Requirements 
modeling models the intended functionality of the system, the control of the 
system, the structure of the system, the constraints on the system, the 
information content of the system, and the verifications that must be 
performed on the system. Requirements modeling does not model an 
implementation of the system; VHDL does that. Requirements models enable 
computer analysis and tracking of requirements. This will help to manage 
large system developments, to control specialists like programmers and IC 
designers, and to get many more designs right the first time. Requirements 
models will enable automatic parameter passing to synthesis tools, automatic 
system structure passing to Electronic Computer Aided Engineering and 
Computer Aided Software Engineering tools and to cost and failure analysis 
tools.    Requirements models are the very first models for a system and 
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provide an early kind of prototype to show the customers as well as enable 
system architecture trade-off. They will enable automatic searching for re- 
usable designs. They will enable automatic verification and validation. And 
they will enable intended functionality to be passed to "System Synthesis" 
tools. Requirements models are implementation independent. Therefore the 
requirements can be met with any combination of hardware, software, 
analog, digital, or microelectromechanical implementation. Requirements 
modeling will reduce system costs and schedules of projects that do not have 
major problems from 20-40% and will cut down on the frequency and 
severity of cost/schedule overruns by eliminating many of the surprises that 
are only discovered during systems integration. Requirements models will 
provide the necessary information to maintain, upgrade, or re-engineer a 
system. Requirements modeling is a new dimension and direction in the 
modeling and simulation spectrum. Requirements modeling uses a new 
language called Systems Level Design Language. 

The methodology for each of the tools are addressed next. 

3.2.1    BPR Methodology 

The BPR tool provides a design environment where the product engineer can develop a product 
implementation based upon the behavioral product model contained within the simulatable 
specification. This tool supports the rapid development and modification of design 
implementations, taking advantage of commercial behavioral synthesis tools currently available. 

3.2.1.1 Goals and Objectives 

The BPR tool is comprised of commercially available tools (both shrink-wrapped and 
customized tools) and has been developed by Synopsys to support design reuse, design 
reengineering, and parts obsolescence management. Synopsys has utilized its expertise in this 
area to develop the appropriate tools, flow, and overall environment to allow design re-targeting 
and reengineering with a wide variety of targeted technologies. 

The overall purpose of the POMT program is to reduce the engineering effort and cost 
associated with reengineering legacy FPGA and ASIC designs. Currently, such legacy designs 
outlive the process and manufacturing technology for which they were originally produced. 
Thus, to ensure the continued delivery of critical components, redesign of such circuits in the 
current technology is required. Furthermore, in order to realize the cost and overall system 
complexity reduction benefits associated with the higher levels of integration offered by new 
technologies, the reengineering effort is compounded. 

Much of the difficulty and cost associated with current reengineering and obsolescence 
management is a result of the implementation-specific details imposed upon the design during its 
original realization. With the passage of time and advent of new technologies, such 
implementation-specific details may not be applicable for the current design processes, 
manufacturing technology, or targeted level of integration, and thus represent an entangled web 
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that the design team must sort out prior to reusing or re-implementing the targeted design. It is 
thus required that an environment and flow be established that frees the representation of the 
design from the implementation-specific details while enabling the physical realization of the 
design at hand. Thus the technology and intellectual property represented by the design can be 
easily re-targeted to new silicon process technologies and/or integrated into a larger design at a 
future date with relative ease. 

In order to support the changes in design processes that may occur over the life of the topic 
legacy designs, an obsolescence management system must be able to accept design 
representations of varied levels of abstraction. Currently, this includes anything from 
behavioral VHDL down to a gate level netlist. With the advent of SLDL, the level of 
abstraction is raised even further. Furthermore, the design flow, including all inputs, variable 
settings and constraints for each step, used to achieve the final representation must be clearly 
identified. For this flow to be reproducible, either as-is or as migrated to the then current best 
practice, it is critical that industry standard tools and data formats be used. To facilitate the 
adoption of new and current best-practice design flows, the obsolescence management system 
must be open and flexible enough to enable integration of new tools and flows as they emerge. 

Given the rapid change and feature size reduction of silicon process technology, a 
reengineering flow must also be able to easily accept current silicon vendor libraries. In 
addition, the tools and the associated outputs of the reengineering flow must be widely accepted 
across the myriad of silicon vendor design flows. 

To enable higher levels of integration and the associated benefits mentioned above, an 
obsolescence management system must clearly capture and document the items referenced 
previously and provide an environment in which they can be reproduced and integrated into the 
larger design. Such documentation entails far more than a textual description. Rather, it is the 
organized collection and description of all the necessary inputs and processes required to realize 
the subject module. The obsolescence system must not only clearly capture such information, 
but also must enable its reuse and integration into the larger design. 

Section 3.2.1.2 describes how the BPR tool meets the above objectives and provides an 
obsolescence management methodology whereby an implementation-independent 
representation of a design is taken as input, architectural trade-offs explored, and the 
implementation-specific outputs generated to enable a physical realization of the design. 

3.2.1.2 Implementation 

3.2A.2A   Technical Approach 

Figure 15 shows a top-level tool flow that incorporates the BPR tool into the design 
environment. Figure 16 provides a more detailed view, showing the relationship of existing 
technology and tools currently provided by Synopsys for the POMT design flow.   This solution 
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leverages commercial products with additional development to specifically support the design 
object representation required by an affective parts obsolescence management environment. 

Behavioral Product Reengineering Tool 

/      Simulatable       \ 
Specification 

Requirements 
Model 
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Reference 
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(SDE Setup) 

Preparation 
"H  for Synthesis 
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Design Compiler 

Test Compiler 

Power Compiler 

Figure 15. BPR Tool Flow 

The approach developed by Synopsys is built around the SDE tool, developed by the Synopsys 
Professional Services Group, along with tools that are in commercial release. The use of COTS 
tools for cost savings, as well as capability, was one of the goals of this approach. Key 
development efforts for the purpose of the POMT demonstration flow included the integration 
of Synopsys' FPGA Compiler tool into the SDE environment and the development of the 
SimSpec2SDESetup tool to automate the flow through of information from the simulatable 
specification into SDE and the physical realization of the design. 

The simulatable specification is the implementation-independent representation of the design 
data associated with the topic design. The simulatable specification contains such information as 
source file level of abstraction, file location, and targeted tool usage, as well as top-level 
constraints intended to represent the environment in which the design will be placed. The SDE 
then serves as the means to translate this implementation-independent information into a design 
format that is physically realizable. Hereafter this flow will be referred to as the SimSpec/SDE 
flow. 
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Figure 16. SimSpec/SDE Design Flow 

3.2.1.2.2  SimSpec/SDE Design Flow Description 

Design object data extracted from existing designs or captured from specification and 
requirements documents are contained in a simulatable specification data set, or as external 
(stand-alone) files. This data set supports the VHDL language as a description language for the 
behavior of a design object.   The simulatable specification has the ability to reference other 
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formats of design representation, such as graphical front-ends to design capture (i.e., Mentor 
Graphics' Renoir). The SDE supports the ability to receive this behavioral or graphical 
representation after the design data has been written out in compatible American National 
Standard Code for Information Interchange (ASCII) VHDL format. In addition, design data 
described in stand-alone files is also supported. 

Design data representations embedded or referenced within a simulatable specification data set 
are extracted through a simulatable specification parser (provided by the DVTG effort) into a 
design file (DF) and top constraints file (TCF), respectively. As an alternative, these files may 
also be created by hand. An example design file and top constraints file can be found in Figure 
17 and Figure 18, respectively. Note that among other things, the design file contains such 
information as targeted silicon vendor library, identification of design source and test bench files, 
location pointers, and target tool information. The top constraints file contains top-level generic 
design requirements. 

The SimSpec2SDESetup tool, developed by Synopsys, reads the design file and top constraints 
file, and seeds the associated information into SDE, thus ensuring the flow-through of critical 
top-level requirements. As an alternative, SDE offers an interactive tool to guide the user 
through the process of supplying all required information. Once this information has been 
obtained, SDE will translate it as needed into the various control and constraint files required to 
properly drive the design tools within SDE. 

The SimSpec/SDE flow supports behavioral, RTL and gate level (GL) representations of the 
design. Although the requirements may be represented in Rosetta (SLDL), there is currently no 
capability to synthesize Rosetta; therefore, the design implementation must be in a form that is 
synthesizable (i.e., VHDL). The SDE can receive as inputs any combination of input 
representations and then preprocess the information as necessary for interfacing with the 
appropriate synthesis and design tools. In addition, SDE provides the user access to basic 
scripts used to drive design tools. Therefore, these scripts may alternatively be modified for 
interfacing with non-Synopsys-supported design tools, thus enabling the user to integrate other 
tools of their choice. 
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#[Begin FILESPEC] 

# Project Name Section: A project name identifier can be placed here for reference 

Project:   example # <project name> 

# Top Level of Hierarchy Section: top level of IC design to be implemented 

Top_level: Top # <top level name> 

# This is the level were the design constraints specified in the simulatable specification are applied 

# Top Level of Test Bench Section: 

Test_Bench top_tb #<test bench name for top level> 

# Target library Section: identifies the library the IC will be implemented in 

Library: /libraries/cba.db abc.db # <full path to library> 

# Source/VHDL file Section: source locations, block names, type, tool to use and whether it 

# is ready for synthesis 

# location 

specO/vhdl/top_tb 

specO/vhdl/top. vhd 

specO/vhdl/blockA.vhd 

specO/vhdl/blockA_tb.vhd     blockA_tb 

specO/vhdl/blockB.vhd blockB 

specO/vhdl/blockC.vhd 

specO/vhdl/blockD.vhd 

specO/vhdl/blockl .vhd 

spec0/vhdl/block2.vhd 

spec0/vhdl/block3 .vhd 

spec0/vhdl/block4.vhd 

spec0/vhdl/block5 .vhd 

spec0/vhdl/block6.vhd 

spec0/vhdl/block7 .mcl 

spec0/vhdl/block8 .mcl 

#[End FILESPEC] 

name 

top_tb 

Top 

blockA 

blockC 

blockD 

blockA 

blockA 

blockA 

blockB 

blockB 

blockB 

blockC 

blockC 

source_type target_tool synthesizable 

rtl none N 

rtl DC Y 

rtl DC Y 

rtl DC Y 

rtl DC N 

rtl DC N 

behavioral BC Y 

behavioral BC Y 

rtl DC Y 

rtl DC Y 

gates DC Y 

behavioral BC Y 

rtl DC Y 

mcl MC Y 

mcl MC Y 

Figure 17. Example Design File 
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set_max_power 3mW 
set_max_area 20000 
clk_per_clkl = 25 
create_clock -name clkl -period 25ns -waveform {0 12.5} 
set_input_delay $clk_per_clkl*.l -clock clkl <inputname> 
set_output_delay $clk_per_clkl*.4 -clock clkl <output name> 
clk_per_clk2 = 50 
create_clock -name clk2 -period 50ns -waveform {0 25} 
set_input_delay $clk_per_clk2*.l -clock clk2 <input name> 
set_output_delay $clk_per_clk2*.4 -clock clk2 <output name> 

Figure 18. Example Top Constraints File 

The following subsections cover the various flows of different types of design source objects or 
design requirements that are anticipated in this tool environment. Reference Figure 16 for the 
appropriate entry point into the POMT flow. 

It is worth noting that in each of the cases described in the following subsections, additional 
data, which may be needed to explore alternative architectures and complete a specific design 
implementation, is supported through customization or modification of the SDE script modules. 
DesignWare libraries provide basic building blocks of design objects, such as arithmetic 
functions, as well as data steering and decoder functions to allow for the most optimized logic to 
be created. The ASIC or FPGA library selection is performed through the SDE in conjunction 
with the synthesis tools. 

3.2.1.2.2.1 Simulatable Specification Data Containing Top-Level Generic Design 
Requirements 

The simulatable specification parser extracts top-level generic design requirements, converts 
appropriate requirements into Synopsys synthesis formats, and outputs these constraints into the 
TCF. The top-level design requirements may include information related to clock and 
input/output (I/O) timing, area, power and component technologies. This data output by the 
parser is then set up for SDE by the SimSpec2SDESetup tool. Synopsys has provided a 
complete specification for the simulatable specification parser Requirements and has developed 
the SimSpec2SDESetup Tool. The developed parser tool was developed for operation on 
PVS code (VSPEC) and is not currently available with SLDL (Rosetta), but is seen as a low 
risk translation. 

3.2.1.2.2.2 Simulatable Specification Data Containing RTL Code Reference 

In addition to the TCF, the simulatable specification parser creates a design file in FileSpec 
format suitable for submission into the SDE. The SDE, through the SimSpec2SDESetup tool, 
processes the information, as appropriate, along with constraint data, to drive the Design 
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Compiler (DC) or FPGA compiler synthesis tool as well as other Synopsys and third party 
tools integrated into SDE as desired. 

3.2.1.2.2.3 Simulatable Specification Data Containing Behavioral Code Reference 

The simulatable specification parser creates a design file representing the VHDL behavioral 
source suitable for submission into the SDE. The SDE, through the SimSpec2SDESetup tool, 
processes the information, as appropriate, along with constraint data to drive the Behavioral 
Compiler (BC) synthesis tool. The BC creates a VHDL RTL source representation of the 
design. The SDE is then used to process the VHDL RTL source information, as appropriate, 
along with constraint data to drive the DC or FPGA compiler synthesis tool as well as other 
Synopsys and third party tools integrated into SDE as desired. 

3.2.1.2.2.4 Simulatable Specification Data Containing References GL Code 

The simulatable specification parser creates a design file representing the GL source suitable for 
submission into the SDE. The SDE, through the SimSpec2SDESetup tool, processes the 
information, as appropriate, along with constraint data to drive the DC or FPGA compiler 
synthesis tool as well as other Synopsys and third party tools integrated into SDE as desired. 
This flow provides an easy, effective way for new silicon vendor libraries to be explored and/or 
targeted for the current physical realization of the design. 

3.2.1.2.2.5 Simulatable Specification Data Containing References to Behavioral, RTL or 
GL 

The simulatable specification parser creates a design file representing the modules of the design 
and their various levels of abstraction. The SDE, through the SimSpec2SDESetup tool, 
processes the files to drive the appropriate synthesis and design tools as required for each file 
type. 

3.2.1.2.2.6 Behavioral or Graphical Design Environment Data 

For design source data originating in a behavioral or graphical design representation, the tool 
(such as Mentor Graphics' Renoir) must provide an ASCII output representation of the design 
in VHDL format suitable for processing by Synopsys BC or DC. The SDE will accept this 
ASCII VHDL format information as described in the design file and drive the BC, DC or other 
tools as appropriate. 

3.2.1.2.2.7 Stand-alone Design Source Data 

The SDE accepts source data not embedded or pointed to by the simulatable specification. 
When stand-alone data is used, the SDE processes the data as directed, along with any 
constraint information provided, to drive the appropriate tools. 

3.2.1.2.2.8 SDE Interface with Other Design Tools 

The SDE provides user access to the script modules used to drive the Synopsys tools. With 
this access, the user can customize the modules for interfacing with non-Synopsys-supported 
design tools. 
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3.2.1.2.2.9 SDE Custom Interfacing with Synopsys Design Tools 

The SDE provides user access to the script modules used to drive the Synopsys tools. With 
this access, the user can customize the modules for deriving advanced or customized results 
from the Synopsys design tools. 

3.2.1.2.3 Additional Capabilities and Benefits of the BPR Approach 

In addition to the capabilities referenced above, the use of SDE in the POMT program provides 
the following benefits: 

• 

• 

• 

• 

• 

• 

It is estimated that up to 48 percent of a design engineer's time can be spent in tool flow, 
environment, and integration issues. When using SDE the design team need not be expert 
toolsmiths on all the tools required in the design flow. The SDE user need only specify the 
flow order, associated compilation strategies and pertinent design information, and SDE 
creates the scripts to drive the tools in the flow. The user need only run these scripts as 
desired to support the targeted flow. Thus, the use of SDE significantly reduces the learning 
curve associated with the many point tools of the overall design flow and can cut the time 
spent on integration and flow issues by as much as 50 percent. The SDE also provides the 
flexibility to enable the expert toolsmith to customize the tool scripts and constraints as 
desired. 

In addition to providing general flow support for behavioral RTL, the SDE, via BC, assists 
in exploring alternative architectures for the realization of the desired function through the 
use of behavioral design exploration. Such exploration capabilities enable the designer to 
trade off throughput and area, enabling up to a 48 percent reduction in area or up to an 80 
percent improvement in throughput. In addition, the BC can provide up to a 1 Ox speed 
improvement in functional simulation and debug. 

The SDE provides graphical tools for viewing the results of various architectural 
implementations as well as generates design reports to evaluate the alternative architectures 
and component library specific solutions. 

Through the integration of VHDL simulators, SDE provides for automated RTL regressions, 
given the user-defined test bench. That is, once the test bench has been developed and 
supplied to SDE and the associated regression setup completed, SDE automates the 
running of RTL regressions and provides reports concerning their success or failure. 

Via its automated setup procedures, SDE enables the user to quickly switch between 
different silicon vendor libraries, thus assisting in the re-targeting and exploration effort 
while providing appropriate documentation as to the technology used and results obtained. 

The overall SDE environment effectively documents the design flow, source files, 
constraints, scripts, and individual steps run to produce the resulting design. Such 
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information can be efficiently stored and communicated via SDE's archive and test case 
generation capabilities. 

•    SDE already supports a comprehensive list of industry standard tools while providing the 
opportunity for others to be integrated as needed. 

3.2.1.2.4  High Level Benefits of BPR Approach 

The BPR effort and SimSpec/SDE embodiment leverages proven technology and industry 
standards for design creation and synthesis as well as proven technology in the area of 
behavioral synthesis. The SDE was extended and used to tie the database formats defined by 
the simulatable specification to existing standards for inputs to commercial tools. This approach 
minimized technical risk, lowered development cost, automated the flow-through of critical 
design information, and leveraged the commercially available SDE along with commercial CAD 
products. In addition, the open nature of SDE allows for the integration of additional tools as 
they are released to the market. Thus, the SimSpec/SDE flow can be adopted as time passes 
to keep pace with the best in class design, reuse, and obsolescence management practices as 
advancements in these areas are realized. 

Furthermore, the integration of leading technology tools into SDE reduces the learning curve 
associated with the overall design flow while allowing expert users the freedom and flexibility to 
customize the environment as desired. The use of the BC provides a reduction in time-to- 
architecture of up to 50 to 80 percent. In addition, the use of SDE increases the productivity of 
the design development team and has been found to reduce the overall time-to-netlist by as 
much as 60 percent. The SimSpec/SDE environment also provides a comprehensive means of 
capturing the flow, methodology, and inputs used to achieve the particular implementation of the 
design at hand, thus ensuring repeatability and significantly reducing re-targeting effort. 

Risk reduction was accomplished in this program through two key approaches. First, the use of 
existing, released, mature products to solve a high percentage of the technical challenges meant 
that fewer technical challenges needed to be overcome. Second, a modular approach to 
conversion of the design object representation with multiple opportunities to track the flow- 
down of all requirements and elements of the product implementation data set will allow the 
design development team to track and debug problems quickly. 

This approach was arrived at based on experience in solving various tool interface and design 
object representation problems for a wide variety of customers and a wide variety of design 
requirements. 

3.2.2    DVTG Methodology 

The need to improve the development of the verification environment is becoming increasingly 
important. A survey by ISD magazine showed that more time is being spent on verification 
than is being spent on design. Design managers say that from 50 to 75 percent of the total time 
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is spent on verification. Add to that the fact that over the last few years, HDL-based design and 
synthesis has become the standard design flow. This has allowed designers to make huge 
increases in productivity, able to design very complex systems in only a few months. But as 
designs grow larger and larger, there has been no significant advance in the area of functional 
verification tools. The real challenge is to put a correct HDL description into synthesis. If we 
look at the total time spent on verification, over 50 percent is spent building up the test bench 
environment and developing the tests. So, verification teams are spending a lot of time before 
they even start simulation. Also, since design complexity is growing by Moore's Law, and the 
quantity of stimulus is also increasing exponentially, we could say that the verification problem is 
growing by Moore's Law squared. Figure 19 depicts the increasing role of verification in the 
design environment. 

TESTBENCH 

Figure 19. The Verification Problem 

3.2.2.1 Goals and Objective 

The University of Cincinnati has developed a set of tools which operate within the reengineering 
tool environment as a plug-in and provide partial automation support to the product 
reengineering methodology in the area of the development of design verification tests for digital 
electronic products. These tests are in the form of test benches and accompanying test vectors. 
These tests were developed based upon formal product requirements models written in the 
Rosetta language. More specifically, the requirements model is represented by a requirements 
facet written in the SLDL, which is also known as Rosetta. These tools contribute both to the 
significant reduction in the effort required to develop a new product design as a part of the 
reengineering methodology and to the reduction in the opportunity for manually introduced 
errors and incomplete design verification. For a brief overview of Rosetta, please see section 9. 

3.2.2.2 Implementation 

The DVTG tool accepts as an input the formal requirements model for the product written in the 
SLDL/Rosetta language and contained in the simulatable specification for the product. The 
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DVTG tool partially automates the process of developing formal design verification tests to be 
used to test product implementations against the product requirements. The DVTG tool 
develops these tests in the form of abstract test vectors, which can then be translated into 
waveform and vector exchange (WAVES) test vectors for use with accompanying 
WAVES/VHDL test benches. The benefit of the DVTG tool is anticipated to significantly 
reduce the test engineering effort and reduce the risks associated with each reengineering pass. 
A high level view of the process is depicted in Figure 20. The steps to the process are as 
follows: 

1. Specify the design's requirements 
• Rosetta is used to annotate a design (develop requirements facet) 
• Rosetta requirements are analyzed to ensure correctness (prove the requirements facet). 

This capability currently exists with VSPEC and it is possible to translate it to Rosetta. 
2. Requirements are refined into a specification and implemented in hardware and/or software. 
3. Test vectors are semi-automatically generated to determine correctness of refinement: 

• Derive the various inputs and their expected outputs from the Rosetta specification model. 
4. Validate the design 

• Exercise the implementation with the specified input values using a simulation environment or 
test facility 

• Check if the implementation generates correct outputs. 

Specify 
Requirements 

Develop 
Implementation 

Develop 
Testbench 

Figure 20. Validation Flow 

In the flow described above, steps 2 and 3 can be accomplished concurrently. In step 4, the 
objective of validation is to determine the following: 
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• Did you build it right? 
• Did you move from requirements to specification to implementation correctly? 
Once you have validated the design with both the test bench and the implementation being 
derived from the requirements, there is a high degree of confidence that the design will work as 
intended. 

Although Figure 20 provides a necessary view of the overall flow, the focus of DVTG resides 
within the development of the test bench step. Figure 21 provides a more detailed overview of 
how the DVTG tool fits within the environment. 

Figure 21 depicts the flow for test vector generation. The primary inputs to the process include 
the requirements facet (which was formerly represented by VSPEC) and the test facet. Each of 
these are explored in greater detail later. Effectively, these facets represent the requirements of 
the design and the requirements of the test on that design. Together, these facets can be used to 
create test vectors that can eventually be used directly with a test bench, or converted into test 
vectors to be used within a specific simulation environment. 
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Figure 21. DVTG Tool Flow 

A more detailed flow for the development of the test vectors within the DVTG tool is shown in 
Figure 22. For a more complete understanding of the DVTG methodology, an overview of the 
underlying logic within each of the blocks depicted in Figure 22 follows. 

3.2.2.2.1   System Requirements 
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The primary inputs to the flow are the system and test requirements. The system requirements 
are represented in Rosetta by the requirements facet and are what would be formerly 
represented by the VSPEC specification. 

3.2.2.2.2 Test Requirements 

As mentioned earlier, the test requirements are a key input to the DVTG tool. The test 
requirements are represented in Rosetta by the test facet and indicate specific requirements for 
test implementation. Initially, they were limited to ranges and increment sizes on input variables. 
For example, the 'var : start to end : steps of count' test requirement translates to the test input 
var starting with value start, ending with value end, in increments of count. 

Recent enhancements have been made in this area. Test requirements are no longer limited to 
simple range and step specifications, but allow the user to specify the following: 
• characteristics of input system signals 
• coverage of requirements 
• initialization codes used to set up test scenarios. 
The DVTG capability allows the user to specify input signal characteristics in the traditional 
manner by specifying signal-noise characteristics, sample size and sample rate. Using calls to 
MATLAB™, DVTG generates signal and noise waveforms, samples each and adds samples to 
generate input to the device under test. The user may specify any waveform or noise source by 
either updating test requirements or augmenting the functions available to the DVTG system. 

Coverage limitations are used to specify how an input variable's range is to be covered in the 
testing process. Currently, coverage requirements are specified as an initial and final value with 
a nonzero step size. The DVTG also automatically generates tests to examine boundary 
conditions in the required range. 

Frequently it is necessary to drive a system to a particular state prior to executing a test vector. 
The DVTG supports this by allowing the user to write test vectors that generate the desired 
system state. These vectors are associated with the resulting state value and are automatically 
included in generated vector sets when state initialization is required. The DVTG also provides 
mechanisms for looping through test vectors and avoiding initialization prior to vector execution. 

3.2.2.2.3 Test Scenario 

The test scenario is an abstract specification of how the design unit will be tested. It indicates 
classes of tests to be performed, including what the requirements coverage is and what the 
preconditions and post conditions are for correct operation. The test scenario is generated 
using specification-based testing techniques and includes both black box and white box testing. 
In black box testing, it tests for precondition and post condition coverage, whereas in white box 
testing, it pulls the preconditions and post conditions apart to more fully exercise the model for 
more complete specification coverage. An example of this would be testing both the "then" and 
"else" conditions in an "if-then-else" statement. One key factor associated with test scenarios is 
that they cover only requirements level issues; implementation issues are deferred. This 
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approach is more abstract than traditional automated test vector generation (ATVG) systems 
and does not perform "stuck at" or glitch detection. 

Test scenarios are generated from logical operators in the Rosetta specification. These logical 
operators indicate the types of the scenarios and how many scenarios must be tested. Table 4 
portrays some representative examples. 

Table 4. Logical Operators and Generated Test Scenarios 

Specification Form Scenarios to Test 
P(x) and Q(y) (P(x) = true) and (Q(y) = true) 
P(x)orQ(y) P(x) = true 

Q(y) = true 
Not P(x), then Q, else R endif P(x) = true and Q 

P(x) = false and R 

In the "P(x) or Q(y)" specification form, when evaluating the "P(x)=true" scenario, Q(y) is 
considered a "don't care" condition. Likewise, when evaluating "Q(y) = true", P(x) is a "don't 
care" condition. The logical operators (and, or, not, if then else) may also be nested and the 
scenarios to test will follow the nesting. 

When a logical predicate is asserted, a class of tests is generated. For example, the following 
classes of tests are generated: 
• sensitive to P(x) generates a test scenario to assure P(x) activates the component 
• requires P(x) generates a test scenario to assure P(x) is true upon initiation 
• ensures P(x) generates a test scenario to assure P(x) is true upon termination. 

3.2.2.2.4 Abstract Test Vectors 

The primary outputs of the DVTG tool are the abstract test vectors, which specify test driving 
values and expected output conditions. These test vectors are the actual input values generated 
for a simulator and are independent from any specific description language. However, the test 
vectors can be translated into whatever simulation environment necessary to test the 
implementation (e.g., VHDL/WAVES format if the implementation and test bench are 
represented in VHDL). 
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Figure 22. DVTG Information Flow 

3.2.2.3 DVTG Example 

At this point, a simple example may be beneficial to demonstrate the process. The code in 
Figure 23 is representative SLDL (Rosetta) code for a simple schmidt-trigger. 

entity schmidt-trigger 
port(j:in real; o:out bit); 

state b:bit; 
requires j>0.0 andj<5.0; 
ensures 
if j<1.0 then state'post=0 

else if j>4.0 then state'post=l 
else state'post=state 
endif 

AND 
o=state; 

end schmidt-trigger; 

Figure 23. Rosetta Code Example 

The test scenarios generated from the above example include the following: 
• j< 1.0 and state = 0 and o=state 
• j>=1.0 and j>4.0 and state = 1 and o=state 
• j>=1.0 and j<=4.0 and state'post = state and o=state. 
In these scenarios, conditions on inputs indicate driven values, and conditions on outputs 
indicate checks or tests that need to be made. 
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Evaluating the first test scenario (j<1.0 and state = 0 and o=state) and applying test 
requirement,] : 0.0 to 5.0 : steps of 0.2, yields the following test vectors. 

j = 0.0 and state=0 and o=state 
j = 0.2 and state=0 and o=state 
j = 0.4 and state=0 and o=state 
j = 0.6 and state=0 and o=state 
j = 0.8 and state=0 and o=state. 

3.2.2.4 Benefits ofDVTG 

As discussed previously, the creation of the test bench and test vectors to drive the simulation 
has become an increasingly difficult task. The DVTG addresses a portion of this problem by 
providing the capability to partially automate the test vector generation process. Additional 
benefits of this approach include the following: 
• Tests for incomplete, inconsistent or misinterpreted requirements. This is done prior to the 

DVTG tool within the proving capabilities of the requirements facet. Proving is 
accomplished through the use of Prototype Verification System (PVS), and was previously 
demonstrated with VSPEC. This is an anticipated future capability of Rosetta. 

• Ensures better conformance of implementation to original requirements through the 
generation of test vectors directly from the product's specifications as opposed to an 
implementation of the product. 

• The outputs are independent of specific simulation or specification environments and can 
easily be converted into traditional simulation and testing environments. 

• Significantly reduces development and redevelopment time for test cases both initially and 
even more so when requirements change. 

• Significantly reduces the impact of manual error injection into the test development process. 

3.2.3    Integrated Tool Flow 

In the discussion of the tool methodology so far, the focus has been on the requirements and 
capabilities of individual tools. The methodology also needs to address how the individual tools 
will work together and how the tools fit into the overall design flow. This will be handled in an 
incremental fashion by discussing how the tools fit into different pieces of the overall information 
flow. 

One of the main components for either of the flows that we will discuss will be the design 
environment that will be used to drive the flow. In each of the flows discussed, it is assumed 
that a graphical design environment (such as Mentor Graphics' Renoir) will be used. 

3.2.3.1 Requirements Specification Proving Flow 

The first flow discussed here is associated with proving the requirements specification as shown 
in Figure 24. After the creation of the requirements facet, PVS code is generated. The PVS 
generation involves the creation of the PVS model and the PVS proof generation code that are 
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input to the PVS prover, which in turn provides the results of the proving exercise. This path 
was demonstrated with VSPEC as the requirements specification language. Although the figure 
shows a Rosetta flow, it is not currently available with SLDL, but is seen as a low risk 
translation from VSPEC. 

Graphical Design 
Environment 

(Renoir) 

Rosetta Source Editor 

Requirements 
Facet 

Parser 

PVS 
Generation 

PVS Model! 

PVS Proof 
Generation 

PVS Prover 

Prover Results 
->   Information Flow 

-►   Control Flow 

Figure 24. Requirements Specification Proving Flow 

There are several classes of errors that proving catches. One class is when requirements either 
directly or indirectly conflict. It is also capable of catching problems with non- functional 
requirements like power constraints that are not considered in simulation processes. Proving 
also deals well with incomplete specifications that cannot be simulated or systems where 
simulation cannot generate enough throughput to catch an error. For example, if an error 
appears every 1012 states, simulation is not going to catch it, but theorem proving or model 
checking will. 
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3.2.3.2 Representative Virtual Prototype Flow 

The DVTG is introduced into the flow as part of the overall development of a virtual prototype 
as depicted in Figure 25. In the interest of not making the diagram too cluttered, the proving 
path has been removed. In this flow, in addition to the creation of a requirements facet, a test 
facet is also created for the purpose of developing test vectors. The two facets feed the DVTG 
tool, which proceeds to develop the abstract test vectors described previously. In this 
representative example, these abstract test vectors are then converted into VHDL/WAVES 
compatible test vectors for use in a VHDL simulation environment. 
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Figure 25. Representative Virtual Prototype Flow 

Previous paragraphs detailed the flow through the generation of test vectors for use within the 
simulation environment. There must also be a design or implementation that is exercised by the 
vectors. This includes both an implementation of the design and the reference test. 

The implementation of the design is also referred to as the operational facet and is the 
culmination of developing a design that is both simulatable and synthesizable and is based on the 
requirements facet. Most likely, there will be some functional decomposition of the 
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requirements facet to partition the design into more manageable design units. It is important that 
the requirements are also partitioned, flowing down to the individual design units. Section 
3.2.3.2.1 briefly discusses this design decomposition. 

3.2.3.2.1   Design Decomposition 

The requirements model, represented by the Rosetta requirements facet, may or may not be 
decomposed hierarchically. In many cases, the model is decomposed to allow for flowing 
requirements down to the component level or to break the requirements up into more 
manageable pieces. If the design is decomposed into multiple models, those models will have 
an architecture associated with them determining how the various models are connected. It is 
important to maintain relationships between the requirements model and the design's 
implementation (operational facet) when decomposing. Figure 26 illustrates an example 
functional decomposition maintaining the implied relationship between the SLDL (Rosetta 
models) and the VHDL. 

VHDL 
Models 

VHDL 
Architecture 

ntin  » rYrnf^i 

Functional Decomposition! 

Figure 26. Maintaining Relationships Hierarchically 

Figure 27 provides a similar view of how the requirements are decomposed along with the 
operational facet (reference design) and reference test, decomposing the design from the system 
level down to the line replaceable unit (LRU) level. 
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Figure 27. Design Decomposition 

3.2.3.3 Representative Synthesis Flow 

The requirements proving flow and the virtual prototype flow have already been discussed. 
What remains to be discussed is a flow that takes the design through synthesis and into 
hardware. Figure 28 provides an example flow for this process. The highlights of this flow are 
the SDE setup tool and the VHDL synthesis step. The SDE setup tool parses out the 
requirements pertaining to synthesis from the requirements facet and incorporates them into the 
SDE environment. For more detail on this process, please refer to section 3.2.1 along with 
Figure 15 and Figure 16. 

3.2.3.3.1   Requirements Facet Parser 

The need to generate Synopsys synthesis constraints was addressed by enhancing the parser for 
the requirements facet. The original VSPEC language supported specification of both functional 
requirements and performance constraints. To support Synopsys constraint generation, the 
language was enhanced to represent new constraint types, and the parser was modified to 
generate input files for the Synopsys synthesis toolset. 

Supporting Synopsys synthesis required providing information on power consumption and area 
limitations as well as clocking issues. Power and area limitations were already supported by the 
language and parser. Thus, generating Synopsys constraint inputs was a matter of reformatting 
the existing constraints. Clock descriptions and constraints required adding clock definitions to 
the language. Because VSPEC explicitly supports extensions of this kind, the update was 
accomplished by updating a configuration file. 

The following VSPEC constraint section defines the format for power and area constraints as 
well as defines two clocks showing the format for constraint representation: 

power <= 3mW 
size <= lOOum * 200um 
clock is name=clkl, period=25ns, waveform=(0 12.5) 
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// The following are assumed to be in clkl domain and the delay is 
// a percentage of the clock period above, 
input delay <input name> <percent of period> 
output delay <output name> <percent of period> 

clock is name=clk2, period=50ns, waveform=(0 25) 
// The following are assumed to be in clk2 domain and the delay is 
// a percentage of the clock period above. 
input delay <input name> <percent of period> 
output delay <output name> <percent of period> 

The example above is translated into the following Synopsys constraint format: 

set_max_power 3mW 
set_max_area 20000 
clk_per_clkl = 25 
create_clock -name clkl -period 25ns -waveform {0 12.5} 
set_input_delay $clk_per_clkl*.l -clock elk <input name> 
set_output_delay $clk_per_clkl*.4 -clock elk <output name> 
clk_per_clk2 = 50 
create_clock -name clk2 -period 50ns -waveform {0 25} 
set_input_delay $clk_per_clk2*.l -clock elk <input name> 
set_output_delay $clk_per_clk2*.4 -clock elk <output name> 
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Figure 28. Representative Synthesis Flow 

Section 3 has provided a description of the methodology, tools and how they fit together. The 
next steps were to perform demonstrations implementing the methodology and tools, and collect 
metrics to determine how effective the tools and methodology were. Section 4 provides a 
description of the various demonstrations that were performed, and section 5 provides the 
results of the demonstrations. 
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4.   POMT DEMONSTRATION 

This section describes the demonstration portion of the POMT program and provides an 
overview of the different demonstration targets for both the BPR tool developed by Synopsys, 
as well as the DVTG tool developed by the University of Cincinnati. 

4.1   Purpose 

The demonstrations serve two purposes. They test the methodology and the tools as well as 
illustrate the capabilities of the methodology and tools. Initially, the demonstrations were used 
during the development of the BPR and DVTG tools for debug and test purposes. Upon 
completion of the BPR and DVTG tools, the demonstrations were used to illustrate the 
capabilities of the individual tools as well as how the individual tools tie in to the methodology. 

4.2  Objective 

No single demonstration, within this efforts scope and budget, was capable of demonstrating a 
significant portion of the methodology and tools. Therefore, multiple, limited-scope examples 
were developed to test different aspects of the methodology and tools. It is also a goal to 
demonstrate that the methodology and tools support both commercial and military design 
environments and design scopes ranging from relatively small to robust. These goals included 
focusing at least one demonstration on each of the following: 

• a "releasable" design, allowing for the distribution of the demonstration 
• a military application 
• a design scope which is of significant size but does not require major development due to 

limited time and budget constraints 
• a mix of behavioral VHDL and RTL VHDL. 

4.3   Demonstration Targets 

There were multiple demonstration targets, and each demonstration focused on a different tool 
capability. These included several demonstrations focusing solely on the BPR tool and others 
that exercised both the BPR and DVTG tools. 

The demonstrations focused on the BPR tool include the following: 
• Alarm clock 
• Core 
• Behavioral Core. 
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The demonstrations that exercise both the BPR and DVTG tools include the following: 
• Behavioral alarm clock 
• Satellite communications (SATCOM) application 

A brief overview for each demonstration is provided in the following sections. 

4.3.1 Alarm Clock Design 

The alarm clock demonstration is a very simple design that implements an alarm clock with 
hierarchical RTL VHDL. The purpose of this design is to demonstrate the POMT flow through 
SDE that utilizes DC. 

4.3.2 Behavioral Alarm Clock Design 

This design is very similar to the alarm clock design but has a behavioral module added in order 
to demonstrate the power of the BC and architecture exploration within SDE. In addition, this 
is a simple design that demonstrates the POMT flow from SimSpec2SDESetup through SDE 
utilizing the FPGA compiler. The VHDL code and both the requirements and test facets are 
provided in section 10. 

4.3.3 Core Design 

This design is intended as a supplement to the alarm clock designs. The purpose of this design 
is to provide a larger, more complex design that exercises a broader set of features within SDE. 
This design represents modules of varied levels of abstraction and include behavioral HDL. 

4.3.4 Behavioral Core Design 

This design is very similar to the Core design with the addition of a more complex behavioral 
module, an automatic gain control (AGC) loop. This design includes a scheduling script to 
demonstrate the architectural trade-off capabilities of the BC and a self-checking test bench 
with graphical output review. 

Note that the Core and behavioral Core designs are intended to be supplemental in nature 
relative to the alarm clock designs in order to cover areas in which the alarm clock designs do 
not provide sufficient demonstration capabilities. These designs do not have an associated 
SLDL model developed for them and focus primarily on testing capabilities of the Synopsys 
tools that are not being utilized by the other demonstration examples. 

4.3.5 SATCOM Application 

The SATCOM application demonstration implements a basic processing thread of some of the 
preprocessing functions required for a user to enter and communicate in a SATCOM time 
division multiple access (TDMA) network. Additionally, the demonstration application 
implements preprocessing functions required for receiving single-access channels. 
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In TDMA systems, messages from several users are interlaced in time. The data from each user 
are transmitted in time intervals called slots, with a number of time slots comprising a frame. 
Within a single time slot only one user may transmit or receive data, so each user occupies a 
cyclically repeating time slot. Each time slot consists of a preamble and information bits 
modulated onto a RF carrier. The preamble is used to provide identification and allow 
synchronization of the time slot at the intended receiver. Guard times are placed between each 
user's transmission burst to minimize cross talk between channels. 

In order to communicate in a TDMA network, the user must be able to detect a transmitted 
unique word preamble in the presence of additive white Gaussian noise. This is the requirement 
for the demonstration preprocessor. The functions necessary to detect this preamble include 
carrier recovery, bit synchronization, and correlation with a unique word. The unique word 
type, modulation type, modulation rate, and other parameters are variable control inputs to the 
preprocessor. The preprocessor decodes the control inputs to determine the type of message 
to expect. Figure 29 shows a general block diagram of the preprocessor operation. 

A critical component of the demonstration is the generation of input vectors to test the 
performance of the preprocessor against the system requirements. The input test vectors 
include the control inputs and sets of digitized input message waveforms with varying modulation 
types, modulation rates, Doppler frequency shifts, signal-to-noise ratios, etc. The 
demonstration should also provide a meaningful measurement of preprocessor performance 
versus the requirements. 

The algorithms developed for this demonstration are potentially applicable to future use on JSF 
and/or Comanche CM systems. This design provides the most applicable vehicle for a military 
demonstration and is the most robust of the examples. It is an end-to-end demonstration, 
meaning that an SLDL model was developed for the design, and it was taken through to 
hardware synthesis. Both the requirements and test facets are available at the Rosetta web 
page (www.sldl.org). Unfortunately, due to the proprietary nature of the implementation 
(operational facet), the code for this demonstration will not be made available. 
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Figure 29. SATCOM Preprocessor Block Diagram 

4.4   Demonstration Process 

The detailed process utilized in conducting the demonstrations for the various targets follows the 
methodology described in section 3. The process is briefly described in the following 
subparagraphs for overview purposes and is a specific implementation of the POMT 
methodology, given the tools and techniques available. 

The first step of the process for the demonstrations that tested both the BPR and DVTG tools 
was to develop a simulatable specification. The simulatable specification began with the 
customer's requirements, which were then translated into the requirements facet to be used as 
the basis for the design of the product. In addition to the requirements facet, a test facet was 
also developed. The test facet was used in conjunction with the requirements facet within the 
DVTG tool for development of test vectors. These test vectors were then used to validate the 
operational facet, which was the actual product implementation. 

The demonstration development consisted of the steps identified in Figure 5. A slightly more 
detailed depiction of the process is presented in Figure 6. For an explanation of the process 
described in Figure 5 and Figure 6, see section 3.1.2. 

4.4.1    Demonstration Design Flow 

As described previously, Figure 5 and Figure 6 describe the methodology for design 
development. In this section, the flow for the demonstration approach is defined. Figure 30 
represents a more sequential view than the one presented as part of the methodology design 
flow. It is more representative of the flow that the POMT demonstrations, utilizing both the 
BPR and DVTG tools, have taken. The demonstrations focus solely on the BPR, concentrated 
on the Synthesize Operational Facet step. Each of the facets are discussed in the following 
sections. 
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Figure 30. Demonstration Design Flow 

The first step of the process was to capture the requirements. This was initially represented with 
a paper specification. Once the requirements had been captured, the next step was to develop 
the requirements facet, which was represented in a Rosetta requirements facet. At this point, 
two parallel activities took place. With the requirements facet as the baseline, the operational 
facet and test bench were developed concurrently. The test bench included the task of defining 
the test requirements which was used to develop the test facet. With the test bench and 
operational facet in place, the operational facet was then validated by exercising it against the 
test bench and its associated test vectors. Discrepancies were addressed before the operational 
facet was synthesized in the final step. After the design was synthesized, the synthesized design 
was revalidated against the same test bench. This process is an elaboration of the process 
described in Figure 20. For an even more detailed description of the flow and how individual 
tools fit into that flow, see Figure 28. 

4.4.1.1 Core Demonstration 

As detailed in section 4.3, the Core demonstrations were not formal demonstrations and were 
focused entirely on the BPR tool. Their intent was to exercise the BPR tool with a more 
complex design than the alarm clock demonstration. This was accomplished by exercising more 
of the features utilized within the SDE, which is the basis of the BPR tool. The SATCOM 
application demonstration was considered robust enough, but was not far enough along in 
development to exercise these features. This was due to the shorter development cycle of the 
BPR tool. The Core demonstration was used instead to validate the BPR tool prior to the end 
of the Synopsys effort. 

From the standpoint of Figure 30, both the Core and behavioral Core demonstrations exercised 
only the following three portions of the design flow: 
• Develop operational facet 
• Validate operational facet 
• Synthesize operational facet 
The validate operational facet portion of this flow was not very meaningful, however, due to the 
absence of a test bench. 
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4.4.1.2 Alarm Clock Demonstration 

As detailed in section 4.3, the alarm clock demonstrations were developed to provide a 
demonstration of the flow. Only the behavioral alarm clock demonstration was utilized for an 
end-to-end demonstration of both the BPR and DVTG tools. 

A requirements facet was developed for the alarm clock demonstration and applies to both the 
alarm clock and behavioral alarm clock designs. The VHDL code (operational facet) for the 
behavioral alarm clock demonstration as well as both the test and requirements facets are 
available in section 10. 

Although not as robust as the SATCOM application demonstration, the behavioral alarm clock 
demonstration provides a simpler, and thereby easier-to-understand, model for both the flow 
itself as well as the representations of the various facets involved. 

4.4.1.3 SATCOM Application Demonstration 

The design flow used for the SATCOM application demonstration differed slightly from that 
shown in Figure 30. For validation purposes, the development of the test bench and operational 
facets included an additional step. A third party, high level, system simulation tool 
(SystemView) was used to develop algorithms and test vectors. The modified design flow is 
shown in Figure 31. Steps 1 through 4 of the following flow detail the key differences from the 
proposed POMT methodology: 

1. The conceptual design, as simulated in SystemView, was validated against the test vectors 
generated within SystemView. 

2. Once the conceptual design was validated, the VHDL implementation began, and the 
VHDL design was subsequently tested using the SystemView test vectors. 

3. Once the DVTG test vectors were generated from the test requirements facet, they were 
used in place of the SystemView test vectors. 

4. The DVTG test vectors were then compared with the SystemView test vectors to verify 
their correctness. More importantly, the results of the VHDL simulations were compared to 
validate the DVTG test vectors. 

5. Once the DVTG test vectors were validated, they were used to test the operational facet, 
as described in section 4.4.1. 
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Figure 31. SATCOM Application Design Flow 

4.4.2    Facet Development 

As discussed previously, facets will need to be developed for the demonstrations. Table 5 
depicts the facets that were developed for each of the demonstrations. The two Core 
demonstrations have only an operational facet associated with them, while the remaining three 
demonstrations also include the requirements and test facets. The same requirements facet and 
test facet were used for both of the alarm clock demonstrations. The only difference between 
these two demonstrations is in the implementation. 

Table 5. Facet Development 

Requirements Facet Test Facet Operational Facet 
Core X 
Behavioral Core X 
Alarm clock X X X 
Behavioral alarm clock X 
SATCOM application X X X 

4.5   Benefits Analysis 

To support the benefits analysis activity, the baseline was the SATCOM application 
demonstration task. The main steps involved included collecting metrics and analyzing the 
collected metrics. 
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4.5.1 Collect Metrics 

For the SATCOM application demonstration, supplemental time logs were maintained, 
documenting the time performed in accomplishing the various tasks. This information was 
collected during the performance of the case study in order to support the analysis activities. 

4.5.2 Analyze Results 

Following the completion of the case study, the collected metrics were analyzed and the 
demonstration was characterized in terms of its complexity so that the metrics could be 
extrapolated to larger applications. In addition, the people performing the case study were 
interviewed in order to identify shortcomings of the methodology and/or tools as well as 
suggestions for changes/enhancements in the methodology and/or tools. The analysis results 
identify what worked and how well, as well as what did not work and why. 
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5.   RESULTS 

In this section, both the BPR and DVTG tools as well as the demonstrations are evaluated 
relative to their initial requirements. It will detail what the requirements were and whether or not 
each requirement was met. If the requirement was met, it will describe how it was 
accomplished. 

5.1   BPR Results 

As can be seen from the implementation description discussed in section 3.2.1.2, the BPR tool 
effort meets all of the following defined objectives: 

• An implementation-independent data set for the design is established and used to generate a 
physically realizable design. 

• All levels of source code abstraction from behavioral to gate level netlists are supported. 

• An environment is provided in which the best-practice design flows are established and can 
be modified as technology progresses. 

• Widely used and accepted de-facto industry standard tools that use industry standard data 
exchange formats are used. 

• Automation of re-targeting of designs to new silicon vendor libraries is supported. 

• Effective documentation of the design flow, constraints, tools, and source files used is 
established to assist in reuse and higher level integration. 

5.1.1    BPR Requirements and Their Fulfillment 

This section discusses key requirements in the development of the BPR tool. Following is a list 
of the requirements and how these key requirements were met: 

Requirement:    Schematic level view. 
Approach:       The Synopsys tools provide an ability to present the final schematic view of any 

given design implementation. Additionally, the Synopsys tool set for behavioral 
design provides a mechanism for viewing the results of behavioral coding and 
architectures implied. 

Requirement:    Mapping entities and signals between behavioral representation and 
components of implementation. 
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Approach: 

Requirement: 
Approach: 

The Synopsys tools carry forward, from (synthesizable) behavioral code to 
RTL and finally to a gate level netlist, the correct resulting pins.   This capability 
will be maintained throughout the flow proposed. 

Generation of synthesizable VHDL packages for each custom component. 
The SDE and Synopsys BC tool supports the generation of synthesizable 
VHDL packages for code accepted at the behavioral level. This capability is 
subject to the limitations of coding style supported by the Synopsys BC 
product. 

Requirement:    Generation of VHDL architecture for the module. 
Approach:        When provided the behavioral level representation (in VHDL) from the product 

implementation data set or simulatable specification, the SDE tool can create 
files for submission to the Synopsys BC tool. The BC allows for the synthesis 
of a wide variety of alternate architectures, each of which meet the original input 
behavioral description and input constraints. These various architectures are 
expressed as synthesizable RTL and are subsequently translated to component 
specific implementations through the Synopsys DC tool. 

Requirement:    Generation of the netlist representation. 
Approach:        The Synopsys DC and FPGA compiler take in RTL VHDL source from 

various design data sets including those referenced within the simulatable 
specification or stand-alone. Additionally, the combination of DC and BC 
facilitates the translation of behavioral VHDL that is provided through a 
graphical front-end tool, referenced by the simulatable specification, or stand- 
alone. The Synopsys DC also takes additional input to create a resulting 
design implementation. This input is in the form of a targeted component library 
(either ASIC or FPGA), designer library (basic building blocks), constraints for 
timing, area and power as well as a synthesis strategy. The DC also has 
capabilities for handling legacy gate-level netlists for re-optimization and re- 
targeting. The SimSpec/SDE tool flow, provided by this proposal, supports 
communicating that information from the simulatable specification or optional 
product implementation data set to the tools provided by Synopsys or other 
non-Synopsys-supported tools. 

Requirement:    Specification/modification by designer of the specific component types to be 
assumed for each component in the implementation. 

Approach:       The designer can specify alternative architectures as well as alternative targeted 
semiconductor libraries (both FPGA and ASIC). This proposal does not 
support board level re-mapping of components and therefore does not support 
specification or modification of components beyond that contained within a 
given IC (the whole IC). 
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Requirement:    Interaction with the designer to create/modify the synthesis scripts used in the 
synthesis of each custom component. 

Approach:       The SDE is constructed in such a way that a baseline synthesis script is derived 
from data extracted from the implementation data set (or simulatable 
specification) as well as defaults for standard constraints. Users have access to 
these script modules for further modification and customization. 

Requirement:    The synthesis of the behavioral VHDL design for each custom component. 
Approach:        This capability is directly supported with the Synopsys BC. 

Requirement:    The interaction with VHDL simulation tools to be used to verify both the 
synthesizable VHDL design as well as the synthesized VHDL design for each 
custom component. 

Approach:        This interaction is supported by providing correct translation between the 
synthesizable (RTL) VHDL and synthesized (gate level) VHDL. Additionally, 
SDE is compatible with various verification environments and includes support 
for some components of verification (such as RTL regressions and static timing 
verification). It is, however, beyond the scope of this proposal to support a 
simulation framework or simulation strategy. 

Table 6 shows in summary form how Synopsys' technical approach satisfies its requirements. 

Table 6. BPR Requirements Summary 

Requirement Requirement Satisfied 
Schematic view Yes: View only 
Mapping of signals and entities Yes 
Generation of synthesizable VHDL packages Yes 
Generation of the architecture for the design Yes: Behavioral synthesis 
Generation of the implementation netlist Yes: Synthesis 
Specification/modification by designer of specific component 
types 

Yes: Limited to 
ASIC/FPGA libraries 

Interaction with designer to create/modify synthesis scripts Yes 
Synthesis of behavioral VHDL design for each component Yes 
Interaction with simulation and verification tools Yes: RTL regressions in 

SDE. Behavioral and RTL 
coordinate with verification 
tools. 
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5.2   DVTG Results 

As can be seen from the implementation description discussed in section 3.2.2.2, the DVTG 
tool effort meets all of the objectives defined. 

5.2.1    DVTG Requirements and Their Fulfillment 

The following provides a brief description of each of the key requirements as well as how the 
requirement was satisfied for the DVTG tool. 

Requirement:       Generation of concrete test vectors. 
Description:        Demonstrate generation of concrete test vectors from abstract Rosetta 

functional requirements and test requirements representations. Specifically, 
demonstrate a flow from Rosetta requirements specifications and test 
requirements specifications through abstract test vectors to concrete test 
vectors compatible with an existing simulation system. 

Approach: The DVTG tool accepts Rosetta descriptions written in the axiomatic style 
and automatically generates concrete test vectors in the WAVES format. 
System specifications are used to generate test scenarios. System 
requirements are used with test scenarios to generate abstract test vectors 
represented in Rosetta. Abstract test vectors are transformed into concrete 
test vectors for specific languages and tools. The methodology has been 
demonstrated for WAVES output, but is not limited to WAVES. 

Requirement: 
Description: 

Approach: 

Support representation of test requirements. 
Specifically, design and implement a Rosetta test requirements specification 
facet. The test requirements facet should be capable of representing test 
coverage information and specify constraints on values involved in tests. 
Test requirements are specified in the following two ways: 
• coverage requirements 
• input signal requirements 
Coverage requirements indicate ranges and step sizes for input values. They 
specify coverage required for correctness assurance. Input signal 
requirements define characteristics of input signals that require testing. They 
specify test requirements in a more traditional way, allowing the user to 
specify input signals directly rather than having DVTG generate them 
automatically. 

Requirement: 
Description: 

Approach: 

Support representation of test scenarios. 
Specifically, design and implement a Rosetta test scenario specification facet. 
The test scenario facet should be capable of representing abstract sets of tests 
to be performed on systems. 
Test scenarios are specified using a special Rosetta facet definition. They 
specify different cases that assure requirements coverage. 
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Requirement:       Support representation of abstract test vectors. 
Description: Specifically, design and implement a Rosetta test vector specification facet. 

The test vector facet should be capable of representing specific tests 
independent from any specific simulation language. The test vector facet 
should minimally be capable of representing vectors of input values and 
associated output values and/or tests to determine correctness of output. The 
option of developing a single Rosetta test facet representing information from 
Rosetta test vector, test requirements, and test scenario facets, should be an 
option for implementation. 

Approach: Abstract test vectors are specified using a special Rosetta facet definition. 
They allow specification of driving and driven values in a system-neutral 
fashion. Abstract test vectors are converted to concrete vectors by vector 
generation tools. 

Requirement: 
Description: 

Approach: 

Demonstrate generation of concrete test vectors from abstract test vectors. 
Specifically, develop a mechanism for generating test vectors in a concrete 
language such as WAVES. Demonstrate simulation of VHDL model using 
generates WAVES test vectors. 
Both the SATCOM application and alarm clock examples demonstrate the 
generation of WAVES vectors from abstract vectors. 

Requirement:       Support both white box and black box testing. 
Description: Specifically, address issues of test vector generation when internal structure is 

known and when internal structure is hidden. 
Approach: The SATCOM application and alarm clock examples both employ black box 

testing. The alarm clock example also employs white box testing by 
examining requirements during vector generation. 

Requirement: 
Description: 

Approach: 

Integrate test vector generation into the Mentor Graphics Renoir environment. 
Use Renoir to generate test benches and manage the test generation process. 
Determine feasibility of using Renoir to graphically manage Renoir 
specifications, generate WAVES test benches, WAVES test vectors, and 
accompanying VHDL models. 
Our commercialization partner, EDAptive Computing, has integrated the 
DVTG system into the Renoir environment. They have demonstrated the 
capability and are providing a beta release for potential customers. 

Table 7 shows in summary form how the technical approach for DVTG satisfies the 
requirements. 

64 



Table 7. DVTG Requirements Summary 

Requirement Requirement 
Satisfied 

Demonstrate generation of concrete test vectors Yes 
Support representation of test requirements Yes 
Support representation of test scenarios Yes 
Support representation of abstract test vectors Yes 
Demonstrate generation of concrete test vectors from abstract test vectors Yes, 

for VHDL only 
Support both white box and black box testing Yes 
Integrate   test  vector  generation   into   the   Mentor  Graphics   Renoir 
environment 

Yes 

5.3   Demonstration Results 

The following were the key objectives for the demonstrations, as detailed in section 4.2: 
1. Developing a "releasable" design, allowing for the distribution of the demonstration 
2. Developing a demonstration that includes a military application 
3. Developing a design scope which is of significant size but does not require major 

development, since our time is limited and our budget is constrained 
4. Developing a demonstration that uses a mix of behavioral VHDL and RTL VHDL. 

Table 8 provides a summary of the objectives and which primary demonstration satisfies the 
objective. 

Table 8. Demonstration Objectives Summary 

Objective Demonstration 
Releasable design Behavioral alarm clock 
Military application SATCOM application 
Significant scope SATCOM application 
VHDL mix Behavioral alarm clock 

Following is a textual description of how these key requirements are met: 

•    Releasable Design: The behavioral alarm clock demonstration best satisfies this objective 
because it provides an end-to-end illustration of the methodology and tools. It is also not 
proprietary in nature (as opposed to the SATCOM application demonstration) and all of its 
facets are available for inspection. These include the following: 
•    Requirements facet 
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• 

• 

• 

• Test facet 
• Operational facet 
It is also simple enough that its function and respective facets should be relatively easy to 
understand. 

Military Application: The SATCOM application demonstration best satisfies this objective 
because of its potential use in military applications such as Comanche and JSF. 
Unfortunately, due to its proprietary nature, only the requirements facet and test facet will be 
available for inspection. 

Significant Scope: The SATCOM application demonstration best satisfies this objective 
due to its robustness. One advantage of this demonstration target is that it allowed for 
adding functionality (and waveforms) incrementally throughout the development effort. 

VHDLMix: The behavioral alarm clock demonstration best satisfies this objective because 
it provides a mix of both behavioral VHDL and RTL VHDL. Another demonstration that 
satisfied this objective was the behavioral Core demonstration. 
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6.   SUMMARY/LESSONS LEARNED 

In summary, all goals set for the program have been met. The CEENSS methodology has been 
extended to incorporate the reengineering design flow and tools were developed to facilitate that 
flow. Demonstrations were also conducted to test the methodology and tools as well as 
illustrate their capabilities. Each of these are described in following sections. Prior to that, 
however, it may be beneficial to illustrate how TRW's POMT effort fits into the overall initiative. 

The POMT effort described in this report is only one part of a manufacturing technology 
initiative. As described in Anthony Bumbalough's white paper: 

This initiative currently consists of eight programs covering three key 
areas of work. 

1) Parts Obsolescence Management and Re-engineering Tools 
2) The Application of Commercially Manufactured Electronics 

(ACME) 
3) Pilot Demonstration Programs 

The initiative's main technology focuses are mixed signal electronics, 
ASICs, Physics of Failure validation with commercial field return data, 
and standardized information exchange. 

The TRW POMT effort is part of the reengineering tools effort and continues previous work 
from a manufacturing technology program (the CEENSS program) on system top-down design 
and simulatable specifications. 

The goals of the pilot demonstration programs as described by Anthony Bumbalough in his 
white paper are as follows: 

... to demonstrate technology insertion to systems, and to develop and 
document the obsolescence management business case. The initiative uses 
pilot demonstration programs to insure the successful demonstration and 
transition of the best business practices, tools and technology developed 
by the initiative. The objectives are to insure reliable application of 
commercial electronics in military systems, while documenting the cost 
avoidance of COTS and corporate approach to managing obsolescence. 

Relative to TRW's POMT effort, the pilot demonstration programs were to evaluate the tools 
developed and, if applicable, demonstrate their capability. In retrospect, it would have been 
beneficial to start the pilot demonstration programs earlier relative to TRW's POMT effort. 
Much of the methodology was already defined and the requirements for the individual tool 
efforts set prior to the start of the pilot demonstration programs. Neither the DVTG nor BPR 
tools were influenced significantly by the programs tasked with evaluating and potentially 
demonstrating their capabilities. 
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6.1 VSPEC to Rosetta 

During this effort, a decision was made to move from VSPEC as a source language to the 
emerging Rosetta systems-level design language. It became clear that basing a commercial 
system on VSPEC would be difficult for reasons concerning standardization and movement 
within the CAD community. The decision was made to move the DVTG aspects of this effort 
to the Rosetta language environment. It was felt that Rosetta had more commercial pull and 
represented a potentially lucrative basis for test vector generation. 

Although long-term potential is being met by the Rosetta effort, in the short term, significant risks 
were involved. The Rosetta language is not yet a standard, and tools are university beta quality. 
However, team members are intimately involved in the Rosetta effort and have required tool 
expertise to make the ultimate result workable. Significant new interest in Rosetta has emerged, 
making the move to Rosetta an excellent choice in retrospect. 

Growing pains with respect to Rosetta usage can be viewed as both technical and social. Not 
surprisingly, the technical issues have proven far easier to overcome than social issues. Moving 
the DVTG algorithms to the Rosetta parser has proven straightforward due to design decisions 
made during parser development. The Rosetta object model and parser proved easier to work 
with than the original VSPEC tool set. Although the language specification has been fluid, none 
of the changes have dramatically affected the DVTG effort. In most cases, language changes 
have made the tool more powerful and easier to develop. Specific examples include the 
MATLAB™ library files used for test requirement specification and the ability to express 
vectors and requirements directly in Rosetta. These features dramatically simplified the vector 
generation process and would not have been doable with the original VSPEC language without 
significant effort. 

Social issues have been more difficult, but not fatal to the effort. Lack of a language standard 
and working with an emerging language introduce risk into the process. Social risks include 
adoption of the language by the community and the willingness of engineers to write 
specifications in a new language. Current efforts in systems level design languages suggest two 
alternate approaches: 
• extend existing languages 
• develop new languages 
Rosetta is an example of the latter situation. A clear winner has not been established; however, 
it is most likely that a mixture of the two approaches will succeed. 

6.2 Methodology Summary 

The POMT methodology is capable of handling legacy design, initial product design, and 
reengineering an existing design as described in section 3.1. The primary requirement to realize 
the benefits of the methodology however is that a simulatable specification be developed for the 
design. This starts with the development of a Rosetta requirements model (also known as the 
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requirements facet). This approach appears to be better suited for an initial product design 
rather than recovering a legacy design because it effectively starts from scratch and makes it 
easier to determine the actual requirements for the design as opposed to attempting to reverse 
engineer the requirements from an implementation. 

In the case of recovering a legacy design, a decision needs to be made whether or not the 
simulatable specification approach is the most cost effective (please see section 3.1.1). As 
described in section 3.1.1, there are other tools that may be used in the place of those in 
TRW's POMT methodology or that can be used to support the methodology. 

Initially, there is additional work involved in the development of the requirements model. It is a 
more intensive effort than the standard approach of developing requirements in the form of a 
paper specification, but benefits can be realized the first time the design is implemented with a 
savings in the integration and test stages (please see section 3.1.4.2). Significant benefits are 
realized, however, when it comes time to reengineer a design that implements this methodology. 

The methodology also supports TRW's plan to adopt a P4I strategy that integrates elements of 
design, manufacturing and support. This strategy preempts obsolete parts problems through 
preplanned periodic redesigns of the electronics, the recurring costs of which are recovered 
through savings in production and support costs. In addition, the periodic incorporation of new 
technology with higher processing densities allows for performance enhancements and savings in 
weight and cost. Contributing significantly toward incentive to adopt this strategy is the 
adoption of commercial business practices and the move towards CLS. 

6.3   Tool Summary 

In summary, all of the goals and requirements for the POMT tool efforts have been met, as 
detailed in sections 5.1 and 5.2. 

One of the primary objectives of TRW's POMT effort was to incorporate tools from 
commercial tool vendors into the DoD environment. This is effectively a two-way street. In 
one direction, DoD needs to be aware of what factors go into a commercially viable tool. If 
DoD requires a capability that only the DoD will use, it is unlikely that such a capability will find 
its way into a mainstream shrink-wrapped tool that will be supported by the vendor. As 
discussed earlier, DoD does not have enough market share to drive the tools. The DoD 
represents such a small percentage of the customer base, that it would not make good business 
sense for a vendor to modify tools with capabilities that support only the DoD environment. 

In the other direction, tool vendors need to be educated about what is different in regard to the 
DoD environment relative to the commercial environment. With a clear understanding of the 
needs for both the commercial and DoD environments, developing a tool that addresses both is 
a much simpler task. The ultimate goal is to develop a tool that can support both environments 
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without sacrificing capability. Even though there are some key differences between the two 
environments (such as life cycle), both environments are similar at their most basic levels. 

Benefits of having commercially available tools that support the DoD environment are 
substantial. There are currently significant gaps in the design process not being supported by 
commercial tools. Often, custom tools need to be developed at great expense. Also, if 
commercial standards are adopted, information flow through the tools becomes much simpler. 

Relative to the tools developed on TRW's POMT effort, it would have been desirable if the 
Synopsys effort resulted in a commercially available shrink-wrapped product. The end result of 
the effort was a tool developed out of their Professional Services Group that requires 
customization for the user's specific tool environment and requires additional support with new 
releases of the tools within that environment. The Synopsys effort did however prove that a 
fairly seamless flow from development of a simulatable specification through design synthesis is 
possible. As described above, the primary obstacle for tool development and support from the 
large EDA houses is the lack of a business case for investment into the tools. As SLDL's 
become more adopted, the business case will result in the larger CAD vendors (such as 
Synopsys) supporting shrink-wrap products that provide the same capability as BPR. 

6.3.1    BPR Summary 

The purpose of the BPR tool developed by Synopsys for TRW is to support the technical 
community in the area of design reuse, design reengineering and parts obsolescence 
management tools. Synopsys has developed the appropriate tools, flow and overall 
environment to allow for behavioral/RTL design and architectural re-targeting of designs that 
have been extracted from legacy design documentation and information by some other process. 

The SimSpec/SDE embodiment of the POMT program provides a methodology whereby an 
implementation-independent representation of a design can be taken as input. Architectural 
trade-offs can be explored and the implementation-specific outputs generated to enable a 
physical realization of the design in a wide variety of targeted technologies. 

The SDE demonstration vehicle has been developed with capabilities to interface with the 
simulatable specification through an external simulatable specification parser (provided by the 
University of Cincinnati's DVTG effort) and the SimSpec2SDESetup tool (provided by 
Synopsys). In addition, Synopsys has provided an example design and documentation suite that 
will demonstrate the design environment flow through the SimSpec2SDESetup Tool, SDE and 
the Synopsys standard tools. 

Synopsys has proven its ability to deliver this capability to the design flow required for 
supporting ICs re-targeting of both architecture and technology. Capabilities in behavioral 
synthesis provide a mechanism for moving a design object through its various possible 
implementations over a 20 year period.   Synopsys' DC is a proven tool that can realize an 
implementation with timing, area and power constraints as inputs to the synthesis process. In 
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addition, Synopsys provides other tools in the area of test bench creation and automated test 
generation. In addition to offering seamless integration of the Synopsys tools, the SimSpec/SDE 
environment provides an open means to integrate other EDA design tools and enables the 
integration of future tools and capabilities as the state of the art progresses. 

Synopsys Professional Services Group has a history of working with many variations of inputs 
to its various leading technology design tools and solving this type of integration challenge for 
customers in completing customized tool flows. Synopsys has conducted and continues to 
conduct research into a wide variety of subjects related to high level design, system-on-chip 
design, design reuse, intellectual property component repository systems, test bench automation, 
behavioral synthesis, logic synthesis, design creation, and design verification.   Synopsys team 
members are often authors of trade studies and technical white papers on capabilities in these 
domains. Such efforts ensure that Synopsys tools and design environments will keep pace with 
and play a key role in defining the chip design methodologies of the future. 

For further detail regarding the capabilities and benefits of the BPR effort, please refer to section 
3.2.1 (section 3.2.1.2.4 in particular). 

6.3.2 DVTG Summary 

The purpose of the DVTG tool developed by The University of Kansas, University of 
Cincinnati, and EDAptive Computing is to support automated testing of systems. This capability 
supports the legacy systems support objective in two ways as follows: 
• engineers can automatically test legacy components against specifications 
• engineers can automatically test new components against design specifications. 
The first capability allows the design engineer to determine if the specification generated from a 
legacy component is in fact a faithful description of the component. Such information is vital in 
support of redesign efforts when replacing components. The second, more traditional capability 
allows the design engineer to determine if a design result is in fact meeting end requirements. 

Although many tools exist for generating test vectors, DVTG is unique in its capability for 
automatically analyzing specifications and generating test cases that provide guaranteed 
requirements coverage. Because vectors are generated directly from requirements rather than 
an operational VHDL model written from requirements, the DVTG algorithm can assure 
coverage. Thus, following testing, the design engineer can proceed with confidence that 
requirements have been covered during the testing process. Furthermore, when requirements 
change, the design engineer can easily generate new test vectors that are compliant with the new 
requirements. 

The DVTG prototype was designed in a manner independent from existing simulation languages 
and tools. Rosetta system requirements are transformed into collections of test scenarios that 
describe various situations that must be evaluated to assure requirements coverage. Test 
requirements are then used to generate specific test cases from the test scenarios generated 
from functional requirements. The resulting test cases, called abstract test vectors, are 
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expressed in a manner independent from any specific simulation engine. Transformation tools 
then generate test vectors for specific test systems and languages from the abstract vectors. 

EDAptive Computing developed concrete demonstrations of DVTG in support for an eventual 
commercial offering. A plug-in for the Renoir graphical environment was developed and 
support for generating WAVES vectors was implemented using the DVTG framework. The 
WAVES generation capability converts abstract test vectors into WAVES vectors suitable for 
use in VHDL. The resulting outputs were tested as part of the SATCOM application 
demonstration described in section 4.3.5. This demonstration is evidence of the validity of the 
general approach. The Renoir plug-in integrates DVTG capabilities into the environment. 
Renoir demonstrates the effectiveness of the approach when included in a tool integration 
environment. Section 10 describes other related tool efforts by EDAptive. 

6.3.2.1 Rosetta Future Activities 

Work on Rosetta continues and is growing throughout the world. The VHDL International and 
Open Verilog International organizations have merged into a single CAD standards organization 
called Accellera. The systems level design language effort has moved from VI to Accellera and 
continues to be actively pursued. Standardization processes will begin within Accellera in late 
2001 or 2002. It is anticipated that a commercial demonstration with Texas Instruments will 
begin in the second quarter of 2001, sponsored by Accellera. This demonstration will provide 
the catalyst for standardization processes. A Rosetta book is being written, and the authors are 
under contract to deliver a published book by the 2002 Design Automation Conference (DAC). 

Tool development continues with The University of Kansas, Adelaide University, AverStar, and 
EDAptive performing research and developing commercial Rosetta tools. The University of 
Kansas continues to develop front-end parsing capabilities as well as component retrieval and 
test vector generation capabilities. The University of Kansas has started prototyping an 
evaluation system for Rosetta specifications and are engaged with AverStar and EDAptive in 
commercial tool development. Further commercialization is anticipated through The University 
of Kansas Information and Telecommunications Technology Center following development of 
research prototypes. 

Adelaide University has recently begun an effort to develop Rosetta simulation tools. Dr. Peter 
Ashenden and Dr. Robert Esser are leading a 3 year effort to develop Rosetta simulation 
capabilities. 

6.4   Demonstration Summary 

In summary, the demonstrations met all of the objectives detailed in section 4.2. No single 
demonstration, within scope and budget, was capable of demonstrating a significant portion of 
the methodology and tools. Multiple limited scope examples were developed to test different 
aspects of the methodology and tools. The two primary demonstrations were the behavioral 
alarm clock and the SATCOM application. 
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From a metrics point of view, the behavioral alarm clock was not robust enough to provide a 
reasonable picture of the expected benefits. Its primary purpose was to illustrate the capabilities 
of the individual tools as well as how the tools tie into the methodology. It also provides an 
example that can be used for educational purposes. It is an excellent starting point for 
understanding the various facets involved and how those facets are related. 

The SATCOM application demonstration provided a much clearer picture of the benefits 
associated with the tools and methodology. It was also used to test the methodology and the 
tools as well as to illustrate the capabilities of the methodology and tools. Initially, the 
demonstration was used during the development of the DVTG tool for debug and test purposes. 
The demonstration was also used to illustrate the capabilities of the individual tools as well as 
how the tools tie in to the methodology. 

For the SATCOM application, the benefits realized were in line with those projected in Table 2 
in section 3.1.4.2. For the POMT effort, the baseline is the CEENSS methodology, thereby 
putting the focus on the benefits realized in the synthesize product implementation and develop 
reference test steps. 

6.4.1 SATCOM Application - BPR Lessons Learned 

The use of the BPR tool did reduce the effort involved in synthesizing the implementation, 
although the benefit was slightly degraded by the use of a third party tool. Section 4.4.1.3 
details the deviation from the methodology by the use of this tool. 

One primary benefit that was realized in the synthesize product implementation step was that the 
design of the implementation was easier because the requirements facet could be used as a 
starting point for the implementation. Another benefit was that the information flow through the 
tools was more automated with the introduction of SDE and its ability to extract synthesis 
constraints from the requirements facet. One difficulty in this step, however, was that we were 
using an NT workstation for most of the implementation development, and then used a UNIX 
workstation for the actual synthesis effort. This resulted in extra effort of porting all of the 
necessary information between the two platforms. 

6.4.2 SATCOM Application - DVTG Lessons Learned 

The benefit in the develop reference test step was even more obvious with the use of the DVTG 
for partially automated test vector generation. There were some growing pains, however. 

The greatest potential benefit from the proposed design flow lies in the automated generation of 
test vectors from the requirements. However, the SLDL was not initially well suited to the task 
of generating test vectors from system-level performance requirements. For example, we have 
a system requirement to detect a unique word a certain percentage of the time given an input 
signal-to-noise ratio. This requirement is not an input to the system, but rather a description of 
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an input waveform property. In order to handle this requirement, the test facet was expanded 
to include a waveform generation component. The DVTG tool was also not initially geared to 
handle a sequential input, a must for the type of application we are demonstrating. Instead, 
DVTG was designed to produce single values that were coupled with a state internal to the 
device under test. Additionally, no capability existed to test some of the outputs. Another of 
the performance requirements was to receive data with a bit error rate less than some value. 
This was another case of the requirement not being a definition of the output signal, but rather a 
property of the output waveform. In order to test this requirement, additional functionality was 
proposed for the implementation. 

6.4.3    SATCOM Application - Other Lessons Learned 

There was a tendency to want to embed functionality into the requirements facet. It is an 
engineer's nature to think about how a design will be implemented as opposed to the black box 
requirements. When writing the requirements facet, it is important to describe required function 
without describing an implementation ofthat function. 

It is anticipated that the benefits realized with this methodology and tools will be magnified when 
a reengineering effort is required for the SATCOM application. As discussed previously, the 
primary benefit with this methodology is when a reengineering activity takes place. By designing 
at a higher level of abstraction and partially automating the test vector generation process, there 
is a significant reduction in the overall reengineering effort. Table 3 in section 3.1.4.4 illustrates 
anticipated benefits with this activity. 
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7.   CONCLUSION 

Throughout TRW's POMT effort, it became apparent that a formal specification of 
requirements has many benefits. It is also apparent that both the tools and methodology are 
integral to the design flow. A great methodology without tools that support it is not very useful. 
Likewise, there may be great tools that solve a critical piece of a design challenge whose benefit 
is diminished if it does not fit into the overall design methodology. 

The two tools that were developed on this effort are the DVTG and BPR. Each attacks a 
critical portion of the methodology. The focus of the BPR tool was to provide a mechanism to 
incorporate constraints specified in the simulatable specification into the synthesis environment. 
The BPR tool also incorporated Synopsys' BC in the tool flow to allow for designing at a higher 
level of abstraction than standard RTL VHDL. The methodology has taken this one step further 
with the incorporation of Rosetta (an SLDL) for describing the requirements model. Rosetta 
allows for describing the design in a non implementation-specific manner. The user can describe 
the requirements of the design as opposed to how it is implemented, the what instead of the 
how. It also allows for multiple domains to be described, effectively allowing for a higher level 
or system view of the design. Rosetta is in its infancy, but work has already begun to develop a 
Rosetta simulator. We expect that direct synthesis from a Rosetta model will be available in the 
future. 

The other tool developed is the DVTG tool. The focus of this tool was to partially automate 
test vector generation. These test vectors are generated from the requirements specification as 
opposed to the implementation, which significantly enhances the reuse capability of a design. 
The DVTG was developed to accommodate the focus of TRW's POMT effort, but it also has 
room to grow. We anticipate, based on interest, that continued commercial development of 
DVTG and related standards and tools will occur. This includes the SLDL standard, the 
Rosetta language, and supporting simulation and analysis tools. This continued development will 
result in a more robust DVTG capability in the future. We believe this capability will result in 
significantly reducing the effort involved in validating an implementation against its requirements. 
This capability is anticipated to be a significant step forward in the reengineering of future 
product designs. 
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8.   GLOSSARY 

AFRL 
AGC 
ASCII 
ASIC 
ATM 
ATVG 
BC 
BPR 
CAD 
CEENSS 
CLS 
CNI 
COTS 
DAC 
DC 
DF 
DMS 
DoD 
DSP 
DVTG 
ECSI 
EDA 
EMD 
EMI 
EPO 
EPOI 
F3I 
FPGA 
GL 
HDL 
I/O 
IC 
IP 
JSF 
LRU 
MCM 
MEMS 
OPP 
P4I 
POMT 
PVS 
RF 
RTL 
SATCOM 

Air Force Research Laboratory 
automatic gain control 
American National Standard Code for Information Interchange 
application-specific integrated circuit 
asynchronous transfer mode 
automated test vector generation 
Behavioral Compiler (Synopsys Tool) 
Behavioral Product Reengineering 
computer-aided design 
Continuous Electronic ENhancements using Simulatable Specific ations 
contractor logistics support 
communications, navigation and identification 
commercial off-the-shelf 
Design Automation Conference 
Design Compiler (Synopsys Tool) 
design file 
diminished manufacturing source 
Department of Defense 
digital signal processor 
Design Verification Test Generator 
European Chips and Systems Initiative 
electronic design automation 
engineering manufacturing development 
electromagnetic interference 
electronic parts obsolescence 
Electronic Parts Obsolescence Initiative 
form, fit, function and interface 
field programmable gate array 
gate level 
hardware description language 
input/output 
integrated circuit 
intellectual property 
Joint Strike Fighter 
line replaceable unit 
multi-chip module 
microelectromechanical systems 
out of production parts 
periodic preplanned product improvement 
Parts Obsolescence Management Tools 
Prototype Verification System 
radio frequency 
register transfer level 
satellite communications 

76 



SBIR Small Business Innovation Research 
SDE Synopsys Design Environment 
SLDL system level description language 
TCF top constraints file 
TDMA time division multiple access 
VHDL VHSIC hardware description language (IEEE Std. 1076) 
VHDL-AMS    VHDL - Analog Mixed Signal (IEEE Std. 1076.1) 
VHSIC very high speed integrated circuit 
VI VHDL International 
VSIA Virtual Socket Interface Alliance 
VSPEC VHDL specification 
WAVES waveform and vector exchange (IEEE Std. 1029) 
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9.   APPENDIX A-ROSETTA 

Rosetta is an emerging SLDL, useful for describing various aspects of computing systems. 
Technically, Rosetta supports simultaneous specification of heterogeneous systems models. 
Using the facet concept, Rosetta supports defining and composing models to define components 
and systems. It is domain and technology neutral, allowing specification of software, hardware, 
and mechanical systems. Politically, Rosetta is well positioned to become a future specification 
standard. Rosetta efforts are sponsored and supported by the U.S. Air Force Research Labs 
(AFRL), VHDL International (VT), the European Chips and Systems Initiative (ECSI) and is 
being evaluated by the Virtual Socket Interface Alliance (VSIA). Because of its technology 
independence and emergence as a potential standard, Rosetta is an excellent choice for system 
specification. 

9.1   Rosetta Specification 

Rosetta's basic specification unit is a design facet or simply a facet. Each facet describes one 
view or model of a system or system component. Figure 32 shows two such facets, describing 
functional requirements and performance constraints for a small system. The structure of the 
specifications follows a familiar form, providing parameterization, communication, data item 
declaration, and a mechanism for defining facet properties. The distinction between a Rosetta 
specification and specifications written in a traditional specification language is the explicit 
inclusion of a domain specified as a part of the begin declaration Each facet is based on a 
domain specification that defines a vocabulary for that facet. The functional requirements 
specification, sort-req, uses a domain for specifying axiomatic requirements, while the 
performance requirements specification, sort-const, uses a constraint specification domain that 
defines power, timing, and other performance constraint items. Thus, the designer is not forced 
to use "least common denominator" specification semantics. 

Complex, multifaceted systems are modeled by defining and composing facets from various 
design domains. For example, when modeling complex digital systems, functional correctness 
and performance constraints are issues that must be considered when assessing correctness. 
Using the Rosetta system, the designer specifies a performance constraint facet and a functional 
correctness facet. The domain specific facets are combined using conjunction to form a new 
facet that describes the desired system. This new facet has both sets of properties 
simultaneously. Figure 32 shows an example Rosetta fragment that specifies a functional 
requirements facet, a performance constraint facet and the use of conjunction to define an 
overall component. It is a simplistic example of the approach in which functional correctness of 
a sorting algorithm is specified by the facet sort-req and power consumption constraint specified 
by facet sort-const. The conjunction, facet sort, is a specification in which both specifications 
simultaneously hold. 

78 



facet sort-req(i::in sequence(T); o::out sequence(T)) is facet sort-const 
begin continuous power: :real; 

pre: true; begin constraints 
post: permute(o',i) and ordered(o'); p 1: power <= 5mW; 

end sort-req; end sort-const 

 Sort = sort-req and sort-const;  

Figure 32. Example Rosetta Fragment 

In addition to specifying individual components, Rosetta provides mechanisms for specifying 
system structure using techniques similar to those employed by VHDL. Components are 
instantiated and interconnected to represent systems that use aggregation. Like facets for a 
single component, facets representing components in a structural description may be 
heterogeneous in nature. 

9.2   Domains 

Each Rosetta domain provides a vocabulary for defining specifications in a particular design 
domain. When writing a design facet, the Rosetta user selects a domain and then extends the 
domain by writing a specification for the current problem. The example sort-req in Figure 32 
uses the state-based domain as the basis of specification. This domain provides the semantics 
for referencing an item at the current or the next state. Thus, o' has meaning in this domain. 
Alternate specification domains provide a means for defining discrete time, continuous time, and 
performance constraint specifications. The example, sort-const, uses the domain constraints to 
define a single performance constraint for the component. This domain defines properties such 
as heat dissipation, power consumption, and timing constraints. 

Existing Rosetta domains address specification of functional requirements and performance 
constraints in design problems related to systems-on-a-chip processes. Specification domains 
currently exist for the following: 
• general purpose mathematical specification 
• state-based specification 
• finite state systems 
• synchronous-reactive systems 
• discrete time systems 
• continuous time systems. 
In addition to these functional domains, the constraints domain exists for defining performance 
constraints, and a mechanical domain is being developed to describe mechanical systems 
requirements.   The constraints domain is being developed and enhanced in conjunction with the 
Open Verilog International / VHDL International Design Constraints Working Group to assure 
industrial acceptance and applicability. The mechanical systems domain is being developed in 
conjunction with the Air Force Materials Directorate to assure applicability to DoD systems. 
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9.3   Domain Interactions 

Unlike traditional specification languages in which all specifications share a common semantics, 
Rosetta provides a framework for defining and composing specifications with multiple 
underlying semantic models. Such a framework is necessary to allow domain experts to design, 
using abstractions common to their engineering domain while supporting domain integration. 
This framework does not rely on a shared semantics, but on a mechanism for specifying domain 
interactions. Thus, users write Rosetta specifications using semantics and language constructs 
suitable for their specific domain. When specifications are composed, the interaction 
framework is used to analyze consistency of the composition. 

Domain interactions are defined in Rosetta using a domain interaction or simply interaction. 
Such definitions use Rosetta's reflective specification capabilities to define when and how 
interactions occur. In many cases, such interactions are easily modeled and evaluated. One 
such case is the interaction between a safety specification and a state-based specification. We 
know that any safety property, typically expressed in a time-invariant manner, applies to all 
system states. Other interactions are far more complex and cannot be completely 
characterized. Even in these cases, it is possible to coarsely specify interactions between 
domains. The key is to define interactions that cause specifications to interact only when 
appropriate rather than provide complete theories that become mathematically intractable. 
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10. APPENDIX B - EDAPTIVE RELATED TOOL EFFORTS 

10.1 Introduction 

In addition to the POMT effort, EDAptive Computing, Inc. (EDAptive) and the University of 
Kansas are jointly working on several other related design automation tool research and 
development efforts that will collectively solve the electronics parts obsolescence (EPO) 
problem. Specifically, the University of Kansas is conducting research in the areas of system 
level design languages, specification-based component retrieval and automated test vector 
generation whereas EDAptive is serving as the technology transition partner, transforming 
research technologies and prototypes from the University of Kansas into real-world solutions 
under the sponsorship of the U.S. Air Force, DARPA, US Navy, and NASA through several 
Small Business Innovation Research (SBIR) projects. To provide a good understanding of 
ongoing and possible future-related tool developments, an overview of the EDAptive EPO 
methodology is provided, and then each of the tool components of this methodology is 
described. 

10.2 Overview 

EDAptive EPO methodology utilizes four core technologies, namely SLDL to specify system 
requirements, a system design editor to capture system specifications intuitively, DVTG to 
automate test generation and rapid component retrieval to enable retrieval of components that 
match requirements. Further, EDAptive EPO methodology has been primarily designed for 
obsolete electronic board replacement, although could be easily customized for other electronic 
systems. Figure 33 shows an overview of the EDAptive EPO methodology and the relationship 
between the core technologies it employs. 
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Figure 33. EDAptive EPO Methodology 

Under EDAptive's EPO methodology, a user will create a Rosetta (a SLDL) specification of 
the obsolete board using available design documentation for the board, such as schematics, test 
data, and requirements. With Rosetta, all required electronic systems, namely general ICs and 
ASICs, analog circuits, digital circuits - both logic and signal processing functions, and hybrid 
circuits can be specified. EDAptive's system design editor, namely Syscape™ , can be utilized 
to capture a Rosetta specification more intuitively. Once created, a user will employ the DVTG- 
based tool, namely EDAptive VectorGen™, to generate tests and corresponding expected 
responses from the Rosetta specification. The user will then validate the Rosetta specification by 
testing the actual, obsolete board with generated tests and comparing its responses with the 
DVTG-generated expected responses. The user will continue to refine the Rosetta specification 
until the test of the actual obsolete board yields the same response as the DVTG-generated 
expected response. Then, the user will employ the EDAptive elPM™ tool suite to search for 
and retrieve components from a database of component specifications that partially or fully 
match the Rosetta specification. Using the found components, the user will construct a 
functionally equivalent board. Following construction of the functionally equivalent board, the 
user will test the newly constructed board with DVTG-generated tests to validate the board 
design. The user will repeat the last two steps until the newly constructed board's response 
matches the DVTG-generated expected response. Figure 34 shows all of the steps required to 
construct a new, functionally equivalent system using a flowchart. 
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Figure 34. Steps in EDAptive EPO Methodology 

Next, a brief overview of each tool component is provided, as shown in Figure 34, namely 
Syscape™, VectorGen™ and elPM™. These tools have resulted from ongoing research and 
development efforts, and EDAptive continues to explore several enhancements to these tools in 
collaboration with the University of Kansas. More information about EDAptive's tool offerings 
is available on its website at www.edaptive.com 

10.3 Syscape TM 

10.3.1 The Challenge 

Syscape™ is a solution for commercial enterprises and government agencies experiencing 
difficulty in fielding mixed technology systems of growing complexity due to lack of design 
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automation tools. The difficulty in fielding complex, heterogeneous systems is compounded by 
the shrinking scientific, technical, and engineering workforce. Mixed technology systems and the 
shrinking knowledge workforce are the drivers that motivate our Syscape™. 

10.3.2 The Concept 

The primary goal of Syscape™ is to provide a design environment in which designers of mixed 
technology systems can graphically capture their designs in multiple forms and varying levels of 
abstractions and further customize the design environment for easy use of their domain tools. To 
accomplish this goal, EDAptive is developing a unique product by researching, developing, 
adapting, and integrating the following functionality: 

• Hierarchical block diagram editor with an ability to associate user-defined multiple views 
with each block in the design 

• Support for user-defined plug-ins to process system design information contained in the 
block diagram 

• Support for design reuse through archival of designs in a library 

• Plug-ins to support use of the design environment for capturing requirements in Rosetta and 
automatically generate requirements-level tests using EDAptive VectorGen™. 

10.3.3 The Benefits 

• Enables graphical capture of mixed technology system designs 
• Permits capture of heterogeneous designs through association of user-defined views with 

elements of system design 
• Permits customization of design environment with user- defined plug- ins 
• Supports design reuse through archival of designs in libraries 
• Plug-in to capture system specifications in Rosetta 
• Plug-in to automatically generate tests from Rosetta specifications with EDAptive 

VectorGen™. 

10.3.4 Key Features 

• Hierarchical block diagram editor 
• Ability to associate multiple views with each block in the design 
• Support for user- defined plug- ins 
• Platform-independent design 
• Plug- in for generation of structural Rosetta 
• Plug- in for use of EDAptive VectorGen™. 
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10.4VectorGen™ 

10.4.1 The Challenge 

Fifty to seventy percent of the total design cycle time is spent in verification, and more than fifty 
percent of the verification time is spent in modeling the environment and developing tests. In 
addition, paper-based requirements development and tracking leads to mistakes that are found 
during test and integration, when most expensive. Such mistakes account for over fifty percent 
of development cost and increase integration risk, costs, and delays. Reduction of verification 
time through automated test generation and use of formal specification is the driver that 
motivates VectorGen™. 

10.4.2 The Concept 

The primary goal of VectorGen™ is to automate test vector generation from specifications. This 
tool accepts the following as input: 

• a requirements level system description 

• test requirements, written in the Rosetta specification language. 

The tool generates a set of generic test vectors that are useful for assessing the correctness of a 
detailed design with respect to the requirements specification. These generic test vectors are 
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transformed into vectors for a specific modeling language and environment. The current 
implementation addresses generation of WAVES test vectors suitable for evaluating a potential 
design described using traditional VHDL. 

10.4.3 The Benefits 

• Provides automated test generation capability 
• Implements specification-based testing 
• Enables selection of relevant test cases 
• Provides generic test vectors 
• Supports concrete test vector generation capability. 
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Figure 36. The VectorGen™ Information Flow 

10.4.4 Key Features 

Platform-Independent Design • 

• Works for Rosetta Behavioral specifications 
• Generates WAVES test vectors 
• Allows Test Requirements Specification 
• Easily integrates as plug-in to Design environments 
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10.5 elPM™ 

10.5.1 The Challenge 

elPM™ is a solution for commercial enterprises and government agencies that are experiencing 
difficulty in fielding systems of growing complexity. The difficulty in fielding complex systems is 
compounded by the shrinking scientific, technical, and engineering workforce. Growing system 
complexity and the shrinking knowledge workforce are the drivers that motivate elPM™. 

10.5.2 The Concept 

The primary goal of elPM™ is to enable reuse of IP through accurate search and retrieval of IP. 
To accomplish this goal, EDAptive is developing a unique product by researching, developing, 
adapting, and integrating the following technologies: 

• Formal specification language to capture the requirements and intended functions of desired 
system 

• Multi-tiered, specification-based and parameter-based search and retrieval tool suite that 
accurately and rapidly finds IP that either fully or partially matches the system specification 

• New databases of digital signal processor (DSP) components, analog components, MEMS 
reduced-order models, and ATM components for search and retrieval with EDAptive's 
tool suite. 

10.5.3 The Benefits 

Enables design reuse 
Complete IP management suite 
Facilitates collaborative design 
Enables distributed design 
Enables correct-by-construction systems 
Supports specification-based system synthesis 
Supports architecture-based design 
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10.5.4 Key Features 

Browser-based graphical user interface 
Parametric and specification-based search and retrieval 
Platform-independent design 
Easily integrates with third party tool environments to provide reuse support 
Search selected heterogeneous and distributed databases 
Works with most relational databases 
Fast and accurate search 
Ability to save searches between sessions 
Secure authentication system 
Customized viewing of search results 
Customized display preferences. 



11. APPENDIX C - ALARM CLOCK DEMONSTRATION 

11.1 Introduction 

This appendix provides an overview of the behavioral alarm clock demonstration. For 
additional information, please see the Rosetta web page (www.sldl.org). Subsections provide 
both Rosetta and VHDL example code as well. Figure 38 provides an overview of the inputs 
and outputs of the alarm clock. 
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toggleAlarm 

setAlarm 

setTime 

setTime 

£Ü 
Store 

timeln u 
alarmTime 

clockTime 

alarmOn 

MUX 

T 

Comparator 

displayTime alarm 

Figure 38. Alarm Clock Representation 

In order to understand the code in the following sections, it would help to understand the 
function of the alarm clock. The primary functions are as follows: 

• When the setTime bit is set, the timeln is stored as the clockTime and output as the 
display time. 

• When the setAlarm bit is set, the timeln is stored as the alarmTime and output as 
the display time. 

• When the alarmToggle bit is set, the alarmOn bit is toggled. 
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• WhenclockTime andalarmTime are equivalent and alarm On is high, the alarm 
should be sounded. Otherwise it should not. 

• When setTime is clear and setAlarm is clear, clockTime is output as the display 
time. 

• The clock always increments its time value. 

11.2 Alarm Clock Rosetta Specification 

This section defines the following: 
• Requirements specifications with timing constraints 
• Component specification and structure 
• Power and clock speed constraints 
• Composite, heterogeneous, systems-level specification. 

Before providing examples of the Rosetta code, the following term definitions are necessary: 

ti meTypes defines basic types and functions 

alarmClockBeh defines real-time functional requirements 
• Terms define functional requirements 
• Hard real-time constraints specified using continuous time domain 

alarmClockStruct defines the structure of an implementation 

alarmClockConst defines a collection of constraints 
• Individual facets describe separate constraints 
• Conjunction used for facet assembly 

When alarmClockLP defines a low power alarm clock 
• Behavioral description asserts function and real-time constraints 
• Structural description asserts a structure 
• Constraints force a low power model 
• Conjunction asserts all requirements simultaneously. 

11.2.1 Example Alarm Clock Rosetta Code 

The figures in this section show example code. 
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// Systems level specification of the overall alarm clock behavior 
use timeTypes; 
facet alarmClockBeh(timeln::in time; displayTime::out time; 

alarm::out bit; setAlarm::in bit; 
setTime::in bit; alarmToggle::in bit) is 

alarmTime :: time; clockTime :: time; alarmOn :: bit; 
begin continuous-time 

setclock: if %setTime 
then clockTime@t+5ms = timeln 

and displayTime@t+5ms = timeln 
else clockTime@t+5 = clockTime endif; 

setalarm: if %setAlarm 
then alarmTime@t+5ms = timeln 

and displayTime@t+5ms = timeln 
else alarmTime@t+5ms = alarmTime endif; 

tick: clockTime@t+5ms = increment-time clockTime; 
armalarm: if %alarmToggle 

then alarmOn@t+5ms = -alarmOn 
else alarmOn@t+5ms = alarmOn endif; 

sound: alarm@t+5ms = alarmOn and %(alarmTime=clockTime); 
end alarmClockBeh;  

Figure 39. Systems Level Alarm Clock 
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// Basic times used for component and system specifications 
package timeTypes is 

begin logic 
hour :: type(natural) is sel(x::natural | x =< 12); 
minute :: type(natural) is sel(x::natural | x =< 59); 
time :: type(univ) is record [h::hours | m::minutes]; 

increment_time(t::time)::time is 
record[h = increment_hours(t) | m = increment_minutes(t)]; 

increment_minutes(t:: time)::minute is 
if t(m) < 59 then t(m) + l else 0 endif; 

increment_hours(t:: time)::hours is 
if t(m) = 59 then ift(h) < 12 

then t(h) + 1 
else 0 endif 

else t(h) endif; 
end timeTypes;  

Figure 40. Time Types Package 

// MUX selects from among inputs based on operation performed 
use timeTypes; 
facet mux(timeln::in time; displayTime::out time; 

clockTime::in time; setAlarm::in bit; setTime::in bit) is 
begin state-based 
II: if%setAlarm then alarmTime' = timeln endif; 
12: if %setTime then displayTime' = timeln endif; 
13: if %(-(setTime or setAlarm)) then displayTime'=clockTime endif; 

end mux; 

Figure 41. Display Multiplexer 

92 



// Storage for alarm clock information including clock time, alarm time 
and 

// alarm on/off state 
use timeTypes; 
facet store(timeln::in time; setAlarm::in bit; setTime::in bit; 

toggleAlarm::in bit; clockTime::out time; 
alarmTime::out time; alarmOn::out bit) is 

begin state.based 
II: alarmTime' = if %setAlarm then timeln 

else alarmTime endif; 
12: clockTime' = if %setTime then timeln 

else increment_time(clockTime) endif; 
13: alarmOn' = if %toggleAlarm then -alarmOn 

else alarmOn endif; 
end store; 

Figure 42. Alarm State Storage 

// Compares current time with alarm time and sets the alarm output 
// indicator 
use timeTypes; 
facet comparator(alarmOn:: in bit; alarmTime:: in time; 

clockTime: : in time; alarm:: out bit) is 
begin state-based 

11: alarm' = %(alarm On and (alarmTime=cloc kTime)) 
end comparator; 

Figure 43. Comparator 
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//    Structural    definition    combining    store,    comparator,    and    MUX 
definitions 

use timeTypes; 
facet alarmClockStruct(timeln::in time; displayTime::out time; 

alarm::out bit; setAlarm::in bit; setTime::in bit; 
alarmToggle::in bit) is 

clockTime :: time; 
alarmTime :: time; 
alarmOn :: bit; 

begin logic 
store_l : store(timeln,setAlarm,setTime,alarmToggle,clockTime, 

alarmTime.alarmOn); 
comparator_l : comparator(setAlarm,alarmTime,clockTime,alarm); 
mux_l : mux(timeln,displayTime,clockTime,setAlarm.setTime); 

end alarmClockStruct;  

Figure 44. Structural Definition 

// Alarm clock power constraints 
facet alarmClockPower(lp::design boolean) is 

p::power; 
begin constraints 

pwr: if Ip then p=<l OmW else p=<40mW endif; 
end alarmClockPower; 

// Alarm clock clockspeed constraints 
facet alarmClockClkspd is 

clocks peed: frequency; 
begin constraints 

elk: clockspeek =< 1 MHz; 
end alarmClockClkspd; 

// Combined constraints specifications 
alarmClockConst(lp::design boolean)::facet = 

alarmClockPower(lp) and alarmClockClkspd; 

Figure 45. Constraints Definitions 
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// Low Power alarm clock 
alarmClockLP :: facet is alarmClockStruct and alarmClockBeh 

and alarmClockConst(TRUE); 

// Variable mode alarm clock 
alarmClock(pm::design boolean) :: facet is 

alarmClockStruct and 
alarmClockBeh and 
and alarmClockConst(pm);  

Figure 46. Low Power and Mixed Specification 

11.2.2 Alarm Clock Test Facet 

FACET alarmClockBeh_TEST( timeln:: in time; displayTime:: out time; alarm: 
out bit; setAlarm:: in bit; setTime:: in bit; alarmToggle:: in bit)  IS 

alarmTime :: time; 
clockTime :: time; 
alarmOn :: bit; 
BEGIN state_based 

ACCEPTl_setclock:  ( setTime = 1 ) AND ( clockTime' = timeln ) AND ( 
displayTime' = timeln ); 

ACCEPT2_setclock:  ( setTime = 0 ) AND ( clockTime' = clockTime ); 
ACCEPTl_setalarm:  ( setAlarm = 1 ) AND ( alarmTime' = timeln ) AND ( 

displayTime' = timeln ); 
ACCEPT2_setalarm:  ( setAlarm = 0 ) AND ( alarmTime' = alarmTime ); 
ACCEPTl_displayClock:  ( setTime = 0  ) AND ( setAlarm = 0  ) AND ( 

displayTime' = clockTime ); 
ACCEPTl_tick:  ( clockTime' = increment_time(clockTime) ); 
ACCEPTl_armalarm:  ( alarmToggle = 1 ) AND ( alarmOn' = -alarmOn ) ; 
ACCEPT2_armalarm:  ( alarmToggle = 0 ) AND ( alarmOn' = alarmOn ) ; 
ACCEPTl_sound:  ( alarm' = alarmOn ) AND ( alarmTime = clockTime ); 

END alarmClockBeh_TEST;  

Figure 47. Example Test Facet 

11.3 Behavioral Alarm Clock VHDL Code 

The figures in this section show example VHDL code for the behavioral alarm clock. 
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entity ALARM_BLOCK is 
port (ALARM,HRS,MINS,CLK: in BIT; 

C0NNECT9:buffer INTEGER range 1 to 12; 
CONNECT10: buffer INTEGER range 0 to 59; 
C0NNECT11: buffer BIT); 

end; 

architecture BEHAVIOR of ALARM_BLOCK is 

component ALARM_STATE_MACHINE 
port(ALARM_BUTTON: in BIT; 

HOURS_BUTTON: in BIT; 
MINUTES_BUTTON: in BIT; 
CLK:in BIT; 
HOURS: out BIT; 
MINS: out BIT); 

end component; 

component ALARM_COUNTER 
port (HOURS: in BIT; 

MINS: in BIT; 
CLK: in BIT; 
HOURS_OUT: buffer INTEGER range 0 to 12; 
MINUTES_OUT: buffer INTEGER range 0 to 59; 
AM_PM_OUT: buffer BIT); 

end component; 

Top level nets that connect major modules 

signal C0NNECT1,C0NNECT2 : BIT; 

begin 
Ul: ALARM_STATE_MACHINE port map 

(ALARM,HRS,MINS,CLK,C0NNECT1,C0NNECT2); 
U2: ALARM_COUNTER port map 

(C0NNECT1,C0NNECT2,CLK,C0NNECT9,CONNECT10,C0NNECT11) 
end; 

Figure48. ALARMBLOCK.vhd 
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entity ALARM_STATE_MACHINE is 
port (ALARMLBUTTON, HOURS_BUTTON, MINUTES_BUTTON, CLK: in BIT; 

HOURS, MINS: out BIT); 
end; 

architecture BEHAVIOR of ALARM_STATE„MACHINE is 
type STATE_TYPE is (IDLE,SET_HOURS,SET_MINUTES); 
signal CURRENT_STATE, NEXTJSTATE: STATE_TYPE; 

begin 

COMBIN: process(CURRENT_STATE, ALARM_BUTTON, HOURS_BUTTON, MINUTES_BUTTON) 
begin 

NEXT_STATE <= CURRENT_STATE; 
HOURS <= '0'; 
MINS <= '0'; 
case CURRENT_STATE is 
when IDLE => 

if (ALARMLBUTTON = '1' and HOURS_BUTTON = '1' and MINUTES_BUTTON = '0') then 
NEXT_STATE <= SET_HOURS; 
HOURS <='l'; 

elsif (ALARMLBUTTON = '1' and MINUTES_BUTTON = '1' and HOURS_BUTTON = '0') then 
NEXT_STATE <= SET_MINUTES; 
MINS<='1'; 

else 
NEXT_STATE <= IDLE; 

end if; 
when SETJHOURS => 

if(ALARM_BUTTON ='1'and HOURS_BUTTON ='1' and MINUTES_BUTTON = '0')then 
NEXT_STATE <= SETJHOURS; 
HOURS <= '0'; 

else 
NEXT_STATE <= IDLE; 

end if; 
when SET_MINUTES => 

if(ALARM_BUTTON ='1'and MINUTES_BUTTON ='1' and HOURS_BUTTON = '0') then 
NEXT_STATE <= SET_MINUTES; 
MINS <= '0'; 

else 
NEXT_STATE <= IDLE; 

end if; 
end case; 

end process; 

SYNCH: process 
begin 

wait until CLK'event and CLK = '1'; 
CURRENT_STATE <= NEXT_STATE; 

end process; 

end BEHAVIOR; 

Figure 49. ALARM_STATE_MACHINE.vhd 
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entity ALARM_COUNTER is 
port (HOURS, MINS, CLK : in BIT; 

HOURS_OUT : buffer INTEGER range 1 to 12 := 12; 
MINUTES_OUT : buffer INTEGER range 0 to 59 := 0; 
AM_PM_OUT: buffer BIT:= '0'); 

end; 

architecture BEHAVIOR of ALARM_COUNTER is 
begin 

process 
begin 
wait until CLK'event and CLK = '1'; 

MINUTES_OUT <= MINUTES_OUT; 
HOURS_OUT <= HOURS_OUT; 
AM_PM_OUT <= AM_PM_OUT; 

if (MINS = '1' and HOURS = '0') then 
if MINUTES_OUT = 59 then 

MINUTES_OUT <= 0; 
ifHOURS_OUT=12then 

HOURS_OUT<=l; 
AM_PM_OUT <= not AM_PM_OUT; 

else 
HOURS_OUT <= HOURS_OUT + 1; 

end if; 
else 

MINUTES_OUT <= MINUTES_OUT + 1; 
end if; 

elsif (HOURS = T and MINS = '0') then 
ifHOURS_OUT=12then 

HOURS_OUT<=l; 
AM_PM_OUT <= not AM_PM_OUT; 

else 
HOURS_OUT <= HOURS_OUT + 1; 

end if; 
end if; 

end process; 

end BEHAVIOR; 

Figure 50. ALARM_COUNTER.vhd 
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